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ABSTRACT

Recommender systems are a type of information filtering system that

suggests items that may be of interest to a user. Most information retrieval sys-

tems have an overwhelmingly large number of entries. Most users would expe-

rience information overload if they were forced to explore the full set of results.

The goal of recommender systems is to overcome this limitation by predicting

how users will value certain items and returning the items that should be of the

highest interest to the user. Most recommender systems collect explicit user

feedback, such as a rating, and attempt to optimize their model to this rating

value. However, there is potential for a system to collect implicit user feedback,

such as user purchases and clicks, to learn user preferences. Additionally with

implicit user feedback, it is possible for the system to remember the context of

user feedback in terms of which other items a user was considering when mak-

ing their decisions. When considering implicit user feedback, only a subset of all

evaluation techniques can be used. Currently, sufficient evaluation techniques

for evaluating implicit user feedback do not exist.

In this thesis, I introduce a new model for recommendation that borrows

the idea of opportunity cost from economics. There are two variations of the

model, one considering context and one that does not. Additionally, I propose

a new evaluation measure that works specifically for the case of implicit user

feedback.
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Chapter 1

INTRODUCTION

1.1 Motivation

Recommender systems are a type of information filtering system that provides

users suggestions on new and exciting items that may be of interest.

Recommender systems differentiate themselves from traditional information

filtering systems as their suggestions are personalized to each user. These

suggestions are directly related to the user decision making process of a

particular system. Examples of these decision making processes are choosing

which songs to listen to or which items to purchase. Different recommender

systems focus on different “items”. Items can be movies, songs, books, events,

people, or news stories. Since each system focuses on different types of items,

they each require different techniques of recommendation and their own user

interface to make effective and useful suggestions to personalize the user’s

experience with the system.

Recommender systems operate on a principle commonly seen in

everyday life: individuals rely on friends and family to make daily or routine

decisions [45, 49]. For example, it is common to ask other people for

suggestions on which book to read next or where to travel for a vacation.

Because of this, recommender systems seek to mimic this behavior.

Recommender systems are geared towards individuals who may not be

a domain expert for the items used by the system. Because of their lack of

domain knowledge, it would be difficult for the user to evaluate an

overwhelming number of alternatives to choose from. This is often referred to

the problem of information overload. For example, Pandora is a music

recommender system focusing on discovering new music that contains over
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800,000 different songs from a large spectrum of genres [68]. A user may be

familiar with only a small subset of this large catalog of songs, but would like to

use the system to discover new music. Pandora allows users to select only one

musical group or song they like and can instantly begin suggesting songs that

the user may also like.

Traditional information filtering systems can also accomplish problems

with information overload [10] and lack of domain knowledge [17]. However,

these systems do not take into account that different users have varying needs

and require special treatment. The diversity of users clearly shows the need for

recommender systems. For example, a user may come to a movie

recommender system knowing they want to watch a Johnny Depp movie.

Depp has acted is almost 60 different movies in a diverse set of genres [28]. A

traditional information filtering system may return a list of all the movies Depp

has acted in. This would solve the problem of information overload as the

system could select a small subset of all movies ever made. However, 60

movies may still be overwhelming to the user. In this case, a recommender

system could choose an even smaller subset of movies or rank the entire list of

movies. This would be done on a personal user basis. Some users may prefer

his children-friendly movies while others may like his work with director Tim

Burton. Being able to personalize the user’s experience cannot be

accomplished with traditional information filtering system, but only with a

recommender system.

Recommender systems collect user feedback, such as ratings on a

scale of 1 to 5 and “thumbs up” or “thumbs down” data. Based on this user

feedback, they attempt to generate predictions on how the active user, the user

currently seeking suggestions, will value the items associated with the system.
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These predictions determine which items the system will recommend to the

active user. However, there are many different ways to collect user feedback.

After a system decides how it would like to collect user feedback, it can then

choose from a variety of recommendation techniques.

The general input for a recommender system consists of a set of items

and a set of users. Additionally, there is some information linking these two

sets that records users’ preferences on the items. A commonly used technique

to make recommendations is collaborative filtering which utilizes the entire log

of user preferences to make recommendations for the active user. These

approaches primarily focuses on user feedback in terms of a numerical score,

usually on a scale of 1 to 5. Work on this type of feedback was fueled by the

offering of the Netflix Prize and their associated dataset [51]. Netflix asked the

question of how to improve the quality of recommendation? For this, a proxy

objective was defined which was to minimize the root mean square error

between the recommender system’s predicted ratings and the users’ actual

ratings. However, this is a limited problem setting where only numerical rating

values are possible and results are only evaluated on prediction accuracy.

Although many existing recommender system techniques use rating

scores as the mechanism for user feedback and give accurate prediction of

user’s ratings [19, 33, 59], it is important to note that this is not necessary.

First, I discuss when prediction accuracy is not necessary. Since a

recommender system is trying to aid in the user’s decision making process, its

job is merely to suggest items to a user. In this case, a system just needs to

decide the best alternatives for the user without providing a predicted relevance

value. For example, if a user wants to watch a movie on Netflix, they system

only needs to suggest items which can be done by ranking items based on

3



predicted relevance values. It does not matter whether the predicted relevance

value for the movie is 5 or only 3. If the user wants to watch a movie, they will

watch the movie with the highest perceived value. When returning a list of

ranked items to the user, the relative order of the items is the most important

characteristic of the output. Next, I discuss the limitations of numerical rating

scores. When a user rates an item a 4, it is not inherently saying it is twice as

relevant as an item rated a 2. Rating scores are a mechanism to determine the

relative order of user’s preferences. Working on user feedback on an ordinal

scale (e.g. A, B, C, D, F) is an important problem because some recommender

systems take feedback in this form and numerical rating values can even be

interpreted this way. This makes ordinal relevance feedback a more general

problem that can work for a wider variety of systems such as [35, 39, 60, 57].

Even though ordinal feedback is more general than a numeric score,

pairwise preferences can work on even more types of user feedback. Pairwise

preferences are comparisons between items that give their relative order of

preference. For example, a user may prefer item i over item j, or it may prefer

item j to item j. This feedback can be derived from implicit user feedback such

as items a user watches are preferred to those items that a user clicks on, but

does not watch. Implicit feedback can be easily obtained through all user

interactions without requiring users to do more work such as thinking about a

rating score to give an item. This type of feedback is also more common and

not as sparse as explicit user feedback which makes its use beneficial. It is

also worth noting that pairwise preferences do not restrict the scale in which

users can give feedback (e.g. only from 1 to 5, or only A to F). To the best of

my knowledge, there is no existing work that handles pairwise preferences.
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There is also a benefit from leveraging information regarding the context

in which feedback information is generated. Beyond the traditional ideas of

context (e.g. weather, time, or location), there is the opportunity to use

information in terms of which alternatives a user sees before interacting with

the system or making their decisions. This is the context of user choice which

relates the decision making process in sessions. Users are given a set of items

that they are offered by the system. A user can only act upon a limited number

of these items (e.g. purchase, watch) due to certain constraints. Therefore they

must give up the ability to act on certain items which is related to the idea of

opportunity cost in economics. Opportunity cost is the cost associated with

passing up the next best choice when making a decision [22]. Therefore, I can

use this information to better learn user preferences when knowing which items

a user had to give up when making their decision.

1.2 Contributions

I study a new problem setting for recommender systems to handle pairwise

preferences rather than numerical or ordinal user relevance feedback. Pairwise

preferences are more general than other types of feedback and can actually be

generated based on other feedback (e.g. items rated 5 are preferred to items

rated 4). To handle this new problem setting, I propose a new model for item

relevance which generates a relevance score to predict whether a certain item

is preferred to another item to predict pairwise preferences. This model

borrows the concept of opportunity cost from economics. This model can be

used to rank a new set of items that a user wants suggestions.

Additionally, I study another problem setting where user feedback is

collected within user sessions. I again borrow the concept of opportunity cost

from economics. This time I further extend my previous model to handle this
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new problem setting. The new model looks at incorporating the context of the

items shown to the user. This is related to opportunity cost as the user can

only act upon as subset of these items and must give up the others. The new

model can can generate context-dependent relevance values for items that are

based on the other items that are involved within a particular user session.

Again, using this model, items can be ranked during a new user session.

I also look at improving evaluation techniques to measure the rank

accuracy of a recommender system. There are currently no existing evaluation

techniques to handle rank accuracy evaluation for pairwise preferences that

are weighted based on the relevance of the item. I propose Expected

Discounted Rank Correlation to compute the rank accuracy of partially ordered

lists where mistakes in ranking the most preferred items are more heavily

weighted than lesser preferred items.

Finally, I run a set of experiments to show the efficacy of my techniques.

I run experiments on the global, or pairwise preference, problem setting

against existing work to show my methods produce better ranked outputs. I

then run more experiments for the session problem setting against the only

work that handles sessions. This again shows that my approaches provide a

better ranked output.

6



Chapter 2

RELATED WORK AND BACKGROUND

2.1 Introduction

Recommender systems are a tool for users that provide suggestions on new

and exciting items that may be of interest to the user. These suggestions are

directly related to the user decision making process of a particular system. For

example, some systems may make recommendations on which music to listen

to while other may suggest goods to purchase. There are many different ways

to make these recommendations to the user. The system attempts to either

assign a relevance value to each item or makes pairwise comparisons of items

to find those items that should be suggested to the user.

The general techniques used by recommender systems are

content-based filtering, collaborative filtering, demographic filtering,

knowledge-based filtering, community-based filtering, or a hybrid approach

[63]. Content-based approaches look at items that the user has previously

liked and then attempts to find similar items to recommend [27, 37, 41, 58, 66].

Collaborative filtering uses feedback from all users to make recommendations

for the active user [12, 19, 24, 34, 59, 61, 65, 73]. This often involves trying to

find similar users and items. Demographic filtering tries to localize

recommendations for the particular profile of the active user [44].

Knowledge-based filtering use domain knowledge to match the users needs to

the possible items that can be suggested by the system [13, 42, 62].

Community-based filtering is mainly used in social network applications where

the system recommends users to follow or content to consume [43, 70]. These

recommendations are based on the social graph of the active user. Finally,
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there are many applications where these methods can be combined in a hybrid

approach [36, 46, 47, 67, 72].

2.2 Relevance Classification

A key characteristic of a recommender system is how it makes predictions for

relevance to the user. Since the predictions are based on the input data,

predicted relevance usually directly relates to this input data. Recommender

systems attempt to predict a relevance value for each user/item pair. For this,

user feedback can be collected in a variety of different ways as outlined in the

below sections.

User Feedback

The two main ways that systems collect user feedback are either explicit and

implicit.

Explicit Feedback

Explicit feedback occurs when the system has a mechanism (e.g. button

or combo box) that directly allows the users to give feedback. The most

common example of this is with movie rating websites where users can

click on a button that says how well they like the movie on a scale of 1 to

5. In these cases, it is reasonable for the system to record a specific

relevance value as it was given by the user.

Implicit Feedback

Implicit feedback occurs when the system does not offer a mechanism for

the user to give feedback. Examples of implicit user feedback are users

clicking on items or records of what videos a user watched. In these

cases, the system cannot record a specific relevance value for user/item

pairs as the user never provides this information.
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Relevance Scales

Beyond explicit and implicit user feedback, different systems use different

scales for relevance. These scales are outlined below.

Cardinal Relevance

Cardinal relevance is the most commonly studied form of user feedback

in recommender systems. Using cardinal relevance means that when a

user rates an item a particular value, the relevance assigned to this item

has a distinct numerical value and the difference between these two

values is significant. This would mean rating an item a 4 means it is twice

as good as a 2. Please note that although it is not necessary, most work

on cardinal relevance limits the range of values a using can rate items to

be fixed which is a limitation of the datasets they are working on. This is

because most systems only allow users to rate items on a fixed scale so

that all users confine themselves to the same range of rating values.

These types of scales are typical on movie rating websites where users

rate on a scale from 1 to 5. Research that uses cardinal relevance

feedback typically measures the effectiveness of the system using

measures of prediction accuracy such as root mean square error.

Examples or work using this type of feedback are [19, 33, 34, 59].

Ordinal Relevance

Ordinal relevances looks at feedback that is on any type of ordinal scale

(e.g. A, B, C, D, F). Although each value may not have a numerical value

associated with it, the relative position of each discrete value is known

(e.g. A is better than B, B is better than C, etc...). It is important to note

that this scale does not have to be fixed. However, in most literature a
9



fixed number of ordinal relevance values, such as the letter grading

scale, is used. Again, this is ensure that all users are using the same

range of rating values. Furthermore, it is important to note that ordinal

relevance is not the same as multi-class, nominal classification (e.g. red,

green, blue). This is because for a multi-class classification, there does

not have to be an order among the possible classes. Examples or work

using this type of feedback are [35, 39, 57, 60].

Binary Relevance

Binary relevance presents a unique challenge for classification as it

actually depends on how the data is handle by the system. Binary

relevance could be cardinal if the system uses cardinal relevance values

such as 0 and 1. It could be also ordinal if the system uses two ordinal

values such as interacted and not interacted. However, using interacted

and not interacted can also be handled as a binary classification problem

which is not the same as the relative order of these two classes is not

considered. Examples or work using this type of feedback are

[50, 60, 75].

Unary Relevance

Unary relevance is similar to binary relevance. The difference is that

instead of knowing the items with user interaction and without interaction,

only the items that were interacted by the user are known.

Pairwise Relevance

Pairwise relevance is very different from cardinal or ordinal. Pairwise

relevance assumes that only pairwise comparisons of items (e.g. item i

is preferred to item j) are known. This is most commonly associated with

implicit user feedback where it would be difficult, if not impossible to
10



Table 2.1: Examples of Explicit User Feedback based on Relevance Scales

Scale Explicit Feedback
Unary User clicks a Like button
Binary User can click either a Like or Dislike button

Cardinal User rates items on 1 to 5 scale
Ordinal User rates items on A to F scale
Pairwise Ask user to choose between two items

generate a total order of preference among items. The system can use

its own ordinal-like scale (e.g. bought, clicked, no interaction). From this,

pairwise preferences among items can be generated. For example, all

items that are bought are preferred to those that are only clicked.

Additionally, items bought or clicked are preferred to those items without

any interaction. There is no existing work that directly handles this type of

feedback.

Now I look at examples of how these different relevance scales can be

applied by the system to collect user feedback. First, I look at Table 2.1 which

shows examples for explicit user feedback. Notice that the relevance scales go

from unary to pairwise. This is from most restrictive to least restrictive. Unary is

very limiting since it only tracks items that are liked by the user. Pairwise

preferences are the least restrictive because there is not set cardinal or ordinal

scale in which items must be ranked. Because of this, there could be endless

levels of preference beyond 1 to 5 or A to F. Pairwise can also be used on

binary, cardinal, and ordinal feedback. For example, binary feedback can

generate pairwise preference between all liked items and all disliked items.

Pairwise can be generated from cardinal and ordinal by creating preferences

between all items rated 5, or A, and all items rated 4, or B.
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Table 2.2: Examples of Implicit User Feedback based on Relevance Scales

Scale Implicit Feedback
Unary User buys an item
Binary User buys an item after being shown a set of possible alternatives

Cardinal N/A (Not possible to use cardinal value without explicit feedback)
Ordinal Use implicit ordinal scale (e.g. bought, clicked, no interaction)
Pairwise Enumerate all possible combinations from ordinal scale

Now I look at Table 2.2 which shows examples for implicit user

feedback. Again, I use the same order showing the most restrictive to least

restrictive. Please note that cardinal scales for implicit feedback cannot directly

be done because it requires an explicit value which cannot be done by the

system because it would only be a guess or estimate. Again, pairwise

preferences can be generated from binary, cardinal, and ordinal relevance.

However, this cannot be done with unary because only one relevance value is

known so preferences cannot be generated. Note that ordinal relevance

usually is handled on a fixed scale (e.g. grading A to F) while having pairwise

preference does not have this restriction.

Context and Relevance

Another facet of relevance is whether the relevance value assigned to an item

is static and does change or is dynamic and can change with the context of the

recommendation. Below I discuss the differences between

context-independent and context-dependent relevance.

Context-independent Relevance

Context-independent is when relevance information is collected without

any temporal data associated with it. Even if the data is collected within a

user session, no other information is stored. This is the general case of a

recommender system. This means that each user/item pair has a static
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value that will not change. This means that if a user rates an item, this

value is assumed to be the proper relevance value across all possible

contexts.

Context-dependent Relevance

Context-aware recommendation studies the problem of having a user’s

relevance value for an item change depending on the context of the user.

Context information collected during the time of user interaction (e.g.

time, weather, or location) can be used to change the relevance of an

item. A key characteristic of this type of relevance is that user/item pairs

can have dynamic values which change with the context.

2.3 Learning to Rank

Learning to rank is a machine learning technique that attempts to learn a

model to rank items based on some set of training data. In the context of this

work, learning to rank becomes and important part in using the prediction

model that assigns relevance values to items. Generally, there are two main

alternatives to learn to rank: pairwise raking and pointwise ranking [40].

Pairwise

Pairwise ranking involves assigning a value to each possible pairwise

comparison of items. Based on these pairwise comparisons, then you

can construct a ranking. For example, if there are two items, i and j.

There might be a value for i is preferred to j and j is preferred to i. If one

is bigger than the other, then that is the correct way to ranking those two

items. Since pairwise ranking looks at making comparisons on an item to

item basis, it has a time complexity of O(n2). This work is typically done

when considering binary preferences and learning is done by comparing

13



items in the more preferred class with those in the less preferred class

such as the work in [60].

Pointwise

Pointwise ranking involves giving each item a relevance value. The

prediction model being learned is optimized to training data by looking at

one training instance at a time. Then a set of items can be solely ranked

based on their relevance values. The time complexity of pointwise is only

O(n) as it only looks at each item once without making any comparison.

This is most common when iterating over the set of user ratings as each

point is a given rating. Examples of this work are [19, 33, 34, 59].

2.4 Collaborative Filtering

Collaborative filtering is one technique used in recommender systems. It uses

historical knowledge of how users value items and based on all of these

previous interactions makes recommendations for the active user. The

traditional problem setting for collaborative filtering includes the system

knowing ratings for a set of user on a set of items. Using this set of ratings, the

system attempts to make predictions for user/item pairs that are previously

unknown. Using the problem setting, it is common for the set of ratings to be

stored in a matrix where rows and columns represent items and users. There

are two main varieties of collaborative filtering techniques: memory-based and

model-based.

Memory-based methods focus on finding similar users [25, 61, 69] or

similar items [16, 38, 65] to the active user or active item, those involved in the

current prediction. There is also work done by combining both of these

similarity techniques [73]. After finding the similar users or items to use,

predictions are made by using the subset of ratings from the similar users or
14



items. Limitations of memory-based techniques are that most of the work

needs to be done online because the it is not known until the time of

recommendation which items need to be predicted. It is possible to

pre-compute all user to user similarities, or all item to item similarities, but this

is not always feasible if the number of users or items is too large (e.g. over 1

million).

Model-based methods try to address the limitation of memory-based

techniques. Model-based techniques over this because after learning some

model, predictions can be made in constant time online when the user wants a

recommendation. This is done by developing a model and then employing

some machine learning techniques to find the parameters of the model.

Examples of model-based methods are [19, 33, 35, 59, 75].

2.5 Regularized SVD

Regularized singular value decomposition (RSVD) was first proposed by

Simon Funk in a blog post regarding the Netflix prize [19]. Previous work had

look at performing singular value decomposition (SVD) on the rating matrix, but

this came with many issues especially relating to rating sparsity. SVD

techniques reduce the dimensionality of the original rating matrix. This matrix

could involve 17,000 movies and 500,000 users, as seen in the Netflix Prize

dataset [19]. This would lead to 8.5 billion entries in the matrix with only 100

million of these entries being filled in with ratings. Sparse matrices do not

perform well with SVD techniques. RSVD does not directly perform SVD, but

attempts to construct similar matrices of lower dimensionality.

Funk proposed thinking about each user and item as a feature vector.

Each of these vectors are of a given length, k. Each feature in an item vector

represented how much the item possessed that particular feature. Each user
15



feature represented how important that feature is to that user. Taking the dot

product of a user and an item vector would yield a single scalar value which

predicts that user’s relevance score on the item. Since the number of possible

features for an item is endless, latent features are used which do not

correspond to any particular real world feature. A user vector can be denoted

as φu where φu = 〈f1, f2, · · · , fk〉 and an item vector can be denoted as φi

where φi = 〈f1, f2, · · · , fk〉.

The RSVD model, φu · φi, is learned based on an optimization goal and

can predict ratings on non-rated items based on this model. To find the feature

values, the optimization goal in Equation 2.1 can be used. The difference

between the actual user rating, rui, for user u on item i, is compared with the

predicted value, φu · φi. This is done for all known ratings, R. Regularization is

controlled based on the parameter ρ. Regularization is done to reduce the

complexity of the model which prevents over-fitting of the model. To do this, the

magnitude of each feature vector is minimized for each user in the set of users,

U , and each item in the set of items, I.

min
φ∗

∑
rui∈R

‖rui − φu · φi‖2 + ρ

[∑
u∈U
‖φu‖2 +

∑
i∈I
‖φi‖2

]
(2.1)

2.6 Work on Ordinal Feedback

There has been some work done with user feedback that is ordinal in nature.

The key difference of this work is that relevance feedback is only treating as

ordinal, having a relative order, rather than having a numerical value. Work

done in this area includes OrdRec [35], EigenRank [39], Bayesian

Personalized Ranking(BPR) [60], and Ordinal Matrix Factorization(OMF) [57]. I

choose to to further describe OrdRec as it is the latest proposed method and it

is extensible to allow for cardinal feedback to be interpreted as ordinal.
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Additionally, BPR only handles binary preferences, OMF is overly complex, and

EigenRank uses out-dated memory-based techniques.

OrdRec

Koren and Sill [35] proposed a collaborative filtering framework called OrdRec

which can be used as a wrapper to any traditional matrix factorization

techniques such as RSVD [19] or SVD++ [33] to treat user feedback as as

ordinal rather than the traditional explicit relevance score. For example, all

items giving an a rating of 5 are preferred to those given a rating of 4 or lower.

The focus of their methods is to provide a personalized item rating distribution

for each user. They say that this provides a richer system output as it can

predict the mean, mode, or median for any rating value. Additionally, it can be

used by the system to provide a confidence level for its predictions.

The input data for OrdRec is similar to that of RSVD, presented in

Section 2.5, as their are users, items, and ratings from users on items. The

difference is that instead of taking in cardinal rating values, OrdRec takes in

ordinal values. They refer to the possible rating values as 1, 2, 3, ..., S.

Since OrdRec is not a model, but a framework, it requires a

recommendation model whose internal rating score is denoted as yui for a

predicted rating for user u on item i. They have S − 1 thresholds

corresponding to each of the possible rating values, except for the most

relevant, S. These thresholds are denoted as t1, t2, ..., tS−1 such that

t1 ≤ t2 ≤ ... ≤ tS−1. The first threshold value is a parameters of their

framework with the others being set using a set of parameters, β1, β2, ..., βS−2.

These values set the thresholds such that tr+1 = tr + exp(βr). They denote the

combined parameters of their framework, t1 and β1, β2, ..., βS−2, and those

from whichever model being used as Θ.
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For their method, they first generate a random score, zui that is

generated based on a normal distribution centers at the internal score of the

modeling being used, yui. They assume that this random score corresponds to

the ordinal value which it falls according to the threshold value such that

tr−1 < zui ≤ tr. This can be used to say that the probability of the user rating

an item as r is P (rui = r|Θ) which is equal to P (tr−1 < zui ≤ tr). Using this,

they define the probability of observing a rating rui = r as follows:

P (rui = r|Θ) = P (rui ≤ r|Θ)− P (rui ≤ r − 1|Θ) (2.2)

Their goal is to learn the function L(R) which is the log likelihood of

rui = r using the training set of ratings, R. They update all parameters of this

function, Θ, using stochastic gradient descent. This can then be used to

determine a probability distribution over the possible rating values.

After having the probability distribution, items still need to be ranked for

the user. This is done by creating a vector for each item/item pair which is of

the length S. Each index is the difference in probability between the two items

for each rating value. This can then be used to learn a linear mapping to give a

predicting rating for each item.

2.7 Context-Aware Recommendation

Context-aware recommendations are those that use contextual information

(e.g. time, location, weather) when making predictions [5]. This information can

be used to generate context-dependent relevance values for items as

discussed in Section 2.2. In general, there are three main alternatives to

incorporating context with a model for a recommender system. These

alternatives are pre-filtering, post-filtering, and contextual modeling [5]. These

alternatives are described below.
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Pre-filtering

Pre-filtering consists of taking the traditional input data and only selecting

a subset of this data before learning a model or making predictions. This

subset of the input data is chosen based on some selection criteria which

compares the current context to previous contexts to find the most similar

historical contexts. For example, in [3], both time and location are

considered as possible third dimensions of the rating matrix. Now there

are rows and columns for users and items and entire matrices for

different days of the week or cities. If I consider the matrices to be for

days of the week, the current day may be Sunday, so pre-filtering would

only look at the rating matrix for all ratings made on Sundays. If a model

is used, then it is learned based only on the subset of data which will

result in context-dependent relevance values. However, since the

selection of a subset of data is dependent on the current context, the

entire model or prediction process has to be done online. This would

cause this method to be extremely costly with many online calculations

and the delay would be easily noticeable by users. Pre-filtering is seen in

the following works: [3, 4, 30].

Post-filtering

Post-filtering consists of the first learning a model or making predictions

in the usual manner. After this model is learned or initial predictions are

made, which can be done entirely offline, refinements can be made in a

variety of ways. Looking at the example from pre-filtering that uses

multi-dimensional matrices, I could learn the model and then update the

model further by only learning the model or doing calculations based on

the similar contexts (e.g. same day’s ratings). This would change the
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model temporarily for the active user or edit the predictions, again

resulting in context-dependent relevance values. The main advantage of

this approach is that it may be practical as most of the work is done

offline and only small refinements are required during online

computation. Nonetheless, to make substantial changes would improve

the quality, but this would still take longer than a user would be willing to

wait. Post-filtering is used in the following works: [4, 55, 52, 53].

Contextual Modeling

Context modeling has a range of alternatives. All would not do any

pre-filtering or post-filtering. This approach requires a model that would

take the context as a parameter. The model could be learned offline and

when predictions are needed for the active user, no change would be

made to the model and the prediction could be made immediately. This

seems to be the most viable alternative as predictions can be made in

constant time with no notable delay to the users. Contextual modeling is

used in [3, 8, 56, 65].

Contextual modeling is the most applicable for my work as I was to

create a contextual model where the context is the set of items shown to a user

as the time of recommendation. Because of this, I give more information

regarding how context is handle in this type of work.

Contextual modeling looks at incorporating contextual attributes such

as day, time, or location directly into the model. One approach for this is used

in [56]. This approach creates a context profile that links user’s to contexts.

This context profile is used to model how a user interacts with the system in

different context (e.g. different days of the week). It captures a user’s tendency
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to interact with particular items and how they are valued depending on the

depending on the context. The profile will map a user and a context with the

relevance values for the set of items observed in that context. Since this paper

is a framework that can be used with different models, they do not describe any

specific learning techniques linked to this type of user profiling, but rather talk

about how it can be used in collaborative filtering to restrict learning the model

for a user to only take into consideration similar user and similar contexts.

2.8 Collaborative Competitive Filtering

Yang et al. [75] proposed collaborative competitive filtering (CCF) as a way to

predict binary user actions based on historical user sessions. This is different

from other work as it looks at exploiting the context of the items displayed to

the user. This changes the problem setting from previous work to have a set of

historical user session instead of ratings. Each session consists of an offer set

of items, O, and a decision set of items D. The offer set are the items

displayed to the user while the decision set is the items they user acted upon

(e.g. purchased). Note that this is only binary relevance and CCF imposes the

limitation of only having one item in the decision set. That is that only one item

can be considered to the most relevant in any given offer set.

CCF uses the idea of opportunity cost, borrowed from economic theory.

Their assumption is that each item has a potential revenue to the user. This

revenue is gained by taking the one of the opportunities and passed up

otherwise. They say that each user will try maximize their profit by choosing the

item that has the most revenue in comparison to potential loss that might occur

by not taking an opportunity. They use this assumption to attempt to assign a

higher relevance to items known to be in the decision set in comparison to the

items that are not in the decision set. They do this by saying that the revenue
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from the chosen item is higher than the maximum of the non-choosen items

such that rui∗ ≥ max{rui|i ∈ O \ D} where rui is the revenue of an item and

rui∗ is the revenue of the item in the decision set. The revenue in their model is

modeled using the same latent features vectors as seen in Section 2.5.

As CCF does not have their own model, they update the parameters of

the traditional latent feature vector based on certain update rules. Like the

RSVD and OrdRed, they use stochastic gradient descent for to update the

parameters. CCF updates these parameters based on the following

optimization goal:

min
∑
t

log

∑
i∈Ot

exp(φut · φi)

− φut · φi∗t (2.3)

This goal looks at all sessions at different times denoted as t. This method

uses the assumptions of a multinomial logit model.

2.9 Evaluation of Recommender Systems

Evaluation is important in any field with recommender systems not being an

exception. Recommender systems evaluation is generally broken up into two

different categories: user-centric or system-centric. User-centric evaluation of

recommender systems is done with respect to how a user would judge the

quality of the system. There are objective ways of doing this such as prediction

and ranking accuracy. There are also subjective measures of doing this such

as novelty, diversity, serendipity, and trust. System-centric evaluation

determines the quality of the system from the system’s perspective. Examples

of system-centric measures are coverage, robustness, confidence, utility, risk,

privacy, adaptability, and scalability.

My work specifically look at accuracy with an emphasis on ranking.

Most of the existing work looks at improving the prediction accuracy which
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means optimizing to an explicit relevance value. However, there are many

times when only implicit feedback is collected and in these cases, existing

measures and metrics fail to work. In these cases, rank accuracy measures

and metrics can be used. However, some of them require information that

might not also be provided using implicit feedback such as nDCG [29] needing

explicit relevance values.

The next sections review common characteristics of measures and

metrics and some commonly used metrics and measures used for rank

accuracy.

2.10 Characteristics of Measures and Metrics

Although all measures and metrics attempt to show the efficacy of a particular

system or method, they each have different characteristics. In terms of rank

accuracy, all measures and metrics looks at comparing how well the system

ranks items with respect to how the user would rate the same set of items. One

of these rankings is the prediction while the other is the ground truth. These

measures and metrics has characteristics themselves and characteristics in

terms of what type of data they can evaluate. First I look at characteristics of

the evaluation technique itself.

Measures vs. Metrics

Although the words measure and metric often are used interchangeably,

they both have a unique characteristics which make each distinct. The

notion of metrics comes from mathematics where they are used as a way

to find the distance between two sets. As it is a way to find distance, it is

natural to assume that it does not matter which set would be considered

the ground truth and which is the prediction. Either way, any metric
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produces the same result by swapping the ground truth and prediction.

This is not the case for a measure. A measure does not guarantee that

this holds true and the resulting value is dependent on which ranking is

the prediction and which is the ground truth. For example, there may be

two rankings, X and Y . There is also a function f that evaluates the

differences between these two rankings. In Equation 2.4, it is evident that

the order of the parameters of the function do not matter and this

constitutes a metric.

f(X, Y ) = f(Y,X) (2.4)

However, in Equation 2.5, it is seen that if the the parameters of the

function are ordered one way with a result of some constant c, it is not

implied that swapping the parameters will also yield this same constance.

f(X, Y ) = c 6⇒ f(Y,X) = c (2.5)

Weighted vs. Unweighted

A commonly desired characteristic of a measure or metrics is weighting

the most preferred items more heavily. This is because it is most likely

that users will only care about the top ranked items. Mistakes at the top

ranked items could be costly to the system while making mistakes on

very low ranked items may have little to no system impact. Unweighted

evaluation techniques will not care about this characteristics while

weighted ones will. Weighted measures and metrics will penalize a

system heavily on the most preferred items and will penalized a smaller

amount for the lesser preferred items.

Besides characteristics regarding the evaluation technique, the are also

characteristics regarding what type of data a measure or metric can evaluate.
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Total Order v. Partial Order

Another characteristic is the ordering of the ranking data. In the case of a

total order, there exists a relative order between each pair of items in the

ranked set of items. However, in the case of a partially order list, they

may be some pairs of items where no order exists. For example, assume

the succeeds operator, �, denotes that a relative order exists between

two items and there is a set of fmy items, A, B, C, and D. In the total

ordered list below, there is order between each pair of item. In the

partially ordered list, there is not order between the items B and C. This

means the relative order of these two items is unknown.

Total Order A � B � C � D

Partial Order A � {B,C} � D

The ordering for a particular system is a result of the input data given to

the system. If the input data has total order information, then it is

reasonable for the system to output a total order. On the other hand, if

the system has incomplete ordering information in the case of a partial

ordering, then the system most likely will only produce a partially ordered

ranking as an output.

Known Relevance vs. Unknown Relevance

Relevance is another characteristic of the ranking data. Known relevance

is when each item to be ranked has an explicit value associated with it.

For example, in the Netflix dataset, each user-movie pair has a numerical

rating associated with it on a scale from 1 to 5. However, there are cases

where users can give an explicit feedback and there is still unknown

relevance. This is the case where users are rating on an ordinal scale
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such as A, B, C, D, F. Unknown relevance also occurs when the user

gives implicit feedback or only pairwise preferences are collected by the

system.

2.11 Existing Measures and Metrics

There are currently an overwhelming large number of measures and metrics

for evaluating rank accuracy of information retrieval systems. Below is a list of

commonly used measure or those proposed to address issues with others.

Some work on a variety of problem settings while others only work on very

limited problem settings.

Pairwise Loss A very common evaluation technique that often comes with a

different name such as Area under the Curve (AUC) [60] or Frequency of

Concordant Pairs (FCP) [35]. In all cases, it measures the number of

pairwise inversions in a list.

Normalized Discounted Culumlative Gain [29] A weighted measure that

works with only explicit relevance feedback on a cardinal scale.

Normalized Distance-Based Performance Measure (NDPM) [76] A

non-weighted measure that also requires explicit relevance feedback on

a cardinal scale.

Spearman’s Rho (ρ) [71] and [Kendall’s Tau (τ ) [31] Highly correlated

measures that can handle ties in ranking orders based on two list of

ranked items.

R-Score [12] Weighted measure that handles cases where users are

presented with a long list of items, but they will only interact with one item

or a very small set of items that are highly ranked on the list. It uses
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exponential decay to yield a worse results if the user interacts with an

item ranked low on the list.

Mean Reciporcal Rank (MRR) [6] Similar measure to Average Reciprocal Hit

Rank (ARHR) [16] that look at the index of an item in a ranked list that is

chosen by the user. It then uses the reciprocal value (e.g. 1
n

for index of

n) for its evaluation.

AP Correlation [77] Weighted metric that requires total ordered ranked lists

and then takes the average precision at every index in the list.

Now I will examine three measures and metrics that can be useful on

my particular problem settings.

Pairwise Loss

Pairwise loss is a metric that determines the number of pairwise inversions

between two ranked lists. It is also sometimes referred to as the area under the

curve or frequency of concordant pairs. Pairwise loss is also an easy way to

measure whether a preference is held when considering a set of pairwise

preferences and can be used to evaluate only a single preference. The

function that can measure the loss of a single preference is given in

Equation 2.6. The loss function is denoted be l with the input being a

preference p. If the preference is held, then the output is 0. If the preference is

not held, or is violated, the output is 1.

l(p) =


0 : preference held

1 : preference violated
(2.6)

I can calculate loss based on the set of preferences given by a ranked list. For

example, I can look at the preference generated in Table 2.3. I can see that the
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Table 2.3: Example Preferences

Predictions Ground Truth
A � B A � B
A � C A � C
C � B B � C

Table 2.4: Example Rating and Preference Data

I rel(i) index(i) ̂index(i)
A 5 1 2
B 4 2 1
C 3 3 3
D 2 4 4

only violated preference is based on the ground truth is B � C as the

prediction is C � B. Based on this I know that one third of the preference are

violated and the loss for this list is 1
3
.

Normalized Discounted Cumulative Gain

Cumulated gain-based evaluation was proposed by Jarvelin and Kekalainen in

2002 [29] to evaluate rank accuracy when the ground truth is a set of user

ratings. The intuition is that it is more important to correctly predict highly

relevant items than marginally relevant ones.

nDCG is formally defined in Equation 2.7. I denote I as a set of items

suggested by the system, rel(i) is the relevance of item i according to the user,

index(i) is the index of item i sorting the items based on the user’s relevance

score, and ̂index(i) is the index of item i sorted by the system’s prediction.

nDCG =
1

Z
·
[∑
i∈I

2rel(i) − 1

log2(1 + ̂index(i))

]
(2.7)

Z gives the maximum possible discounted cumulative gain if the items were

correctly sorted, and is used as a normalization to ensure the result is between
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0 and 1.

Z =
∑
i∈I

2rel(i) − 1

log2(1 + index(i))
(2.8)

For example, I look at the sample data in Table 2.4. If I look at item A, rel(A) =

5, index(A) = 1, and ̂index(A) = 2. Below is the full sample calculation for

nDCG.

nDCG = 1
Z
·
[

24−1
log2(2)

+ 25−1
log2(3)

+ 23−1
log2(4)

+ 22−1
log2(5)

]
≈ 1

Z
· 39.351

Z = 25−1
log2(2)

+ 24−1
log2(3)

+ 23−1
log2(4)

+ 22−1
log2(5)

(2.9)

This gives a value of .870 for the example.

nDCG assumes that I know an actual relevance for each item. It does

not directly support the case when an item is preferred to another item, but the

magnitude of the preference is unknown. When there is a total order on item

preferences, I may assign rating scores with equal magnitude and then use

nDCG. However, the absence of total order will result in such score

assignments to be impractical, thus showing inapplicability of nDCG.

AP Correlation

AP (average precision) correlation (τap) was proposed by Yilmaz et al. [77] as a

modification to Kendall’s τ which penalizes mistakes made for highly relevant

items more than less relevant items. AP correlation finds the precision between

two total orders at each index in the list and then takes the average of these

values, as defined in Equation 2.10.

τap =
2

N − 1
·
[∑
i∈I

C(i)

index(i)− 1

]
− 1 (2.10)

N is the number of ranked items in the list and C(i) is the number of items at

an index less than index(i) that are correctly ranked according to the ground

truth. Consider the data in Table 2.4. For item A, C(A) = 0 because A comes
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after B in the prediction, but A is preferred to B in the ground truth. Below is a

sample calculation.

τap = 2
4−1
·
[

0
1

+ 2
2

+ 3
3

]
− 1 = 1

3
(2.11)

AP correlation is measured on scale of -1 to +1, where -1 means the lists are in

reverse order and +1 means the list are the same. AP correlation assumes that

each list, the ground truth and the system’s prediction, gives a total order of

items. There is no simple modification of AP correlation to support partial

orders.

2.12 Preference Elicitation and CP-nets

Preference elicitation is an important issue in the field of recommender

systems. An overview of these methods are found in [15]. Traditional elicitation

methods try to give a value proposition to the user to determine which features

they most value by asking questions to determine user’s preferences. This is

very time consuming on the part of the user as it requires then to think about

how they value many different features. Another type of elicitation is mentioned

where the the system may make recommendations and then give the user

options to say the features in the item they most value and how they value

them (e.g. larger value or smaller value). This allows the system to learn a

user’s preferences and present better items. The paper also briefly mentions

on the typical elicitation methods such as a user rating. There is also another

work, [20], that looks at trying to elicit minimal feedback in order to maximize

preference learning. This work assumes that only partial orders are known

over a set of items. In order to better learn user’s preferences, they try to elicit

only small amounts of user feedback to better make predictions for which items

a user will value the most. There has also been work done in [14] that allows

users to explicitly give negative feedback. Although the paper looks at
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ontologies, they could easily be considered preference graphs where edges

are used to designate a user’s preference. The negative feedback used in the

paper would be explicit user feedback so it goes beyond the scope of my work.

However, there may be special cases of implicit negative feedback (e.g.

session with no user interaction) where this work could be applicable as

discussed later in future work.

CP-nets are a representation of conditional preferences that can be

used to determine how a user may value an in given contexts. They can

capture user’s preferences based on different decisions that user has

previously made. For example, a user needs to make two different decisions:

one for which wine to order and the other regarding which entree to order. If

the user has previously made the decision to order beef as an entree, this will

have an effect on which type of wine they will order. CP-nets can capture this

by saying that if a user has order beef, then they will value red wine more than

white wine. CP-nets are very useful in the case of sequential decisions where

the outcome of one decision has an impact on future decisions. However, in

my work, I consider each decision to be independent. Work on CP-nets can be

found in [11, 64].

Preference elicitation and CP-nets go beyond the scope of my work, but

may be applicable for future work which is discussed in Chapter 7.
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Chapter 3

GLOBAL METHODS

3.1 Introduction

As mentioned previously, traditional work with recommender systems looks at

using cardinal relevance values, or numerical ratings, to learn a user’s

preferences. Newer work has relaxed this constraint by working on ordinal

relevance values such as a letter grading scale. However, there is a more

general problem setting that will work for both of these cases and allow for

more expressibility for user’s preferences.

Implicit user feedback is easily available in large quantities as user’s

generate this information each time they interact with the system. Sparsity of

explicit user feedback, such as ratings, is a known and active problem in the

recommender system community [1, 9, 26]. Implicit user feedback can alleviate

the sparsity problem and provide more input data for a system to learn user’s

preference. Since implicit user feedback does not collect explicit relevance

values, it is natural to generate pairwise comparisons of items, or pairwise

preference, from this feedback.

As mentioned previously, pairwise preferences can be generated based

on implicit user feedback. For example, I can look at the sample feedback

generated in Table 3.1. Here I can see that some movies were purchased,

others were clicked on, and some have no user interaction. Based on this

implicit feedback, I could generate the preferences: Forrest Gump is preferred

to Green Mile and Catch Me If You Can is preferred to Toy Story, among others.

Pairwise preferences is a more general problem setting than working

work ordinal or cardinal relevance feedback. Ordinal and cardinal feedback is

restrictive in terms of their scales. Pairwise preferences are more general in
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Table 3.1: Sample User Query “Tom Hanks actor ”

Movie User Action
Forrest Gump purchased

Cast Away purchased
Green Mile clicked

Catch Me If You Can clicked
Toy Story no interaction

Saving Private Ryan no interaction

the sense that they allow for more possibilities for relevance. For example, if I

have 100 items, a cardinal or ordinal scale can only given them a certain

number of relevance values (e.g. 1, 2, 3, 4, 5, or A, B, C, D, F). However,

pairwise preferences can be constructed such that I know the relative order of

all 100 items. This can create a challenge in how to handle the possibility

where a system can know a relative order between every item. This is because

unlike cardinal or ordinal values, which can easily be stored in a rating matrix,

pairwise preferences cannot. A rating matrix consists of rows and columns

representing users and items. Each entry is a user’s rating on a given item. In

order to have pairwise preferences in a rating matrix and use existing

techniques, I would have to add another dimension to the matrix. This extra

dimension would be for items and the two dimensions for items could be used

to record preference. However, this increases the size of the rating matrix by

the cardinality of the set of items offered by the systems. This would also be

susceptible to sparsity which is not handled well by collaborative filtering.

Because of this, additional effort is needed to be able to handle pairwise

preferences as input.

This chapter will look at the unique proposed problem setting, the new

pairwise opportunity cost model, and its associated learning techniques.
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3.2 Problem Definition

The input of this type of system is a set of users, set of items, and users’

pairwise preferences regarding the items. The output of the system is a

ranking order for the active user interacting the system. This user comes to the

system seeking recommendations on a new set of items and the system will

return these items in ranked order. The set of users is denoted as U , the set of

items is denoted as I, and the set of pairwise preferences is denoted as P .

Definition (Pairwise Preference). A pairwise preference is a relationship

between two items that captures how a user’s relative value for the items. For

example, if two items, i and j, are considered by a user, there are three

possible relationships: i is preferred to j, j is preferred to i, or there may not

exist any relationship. A preference between two items is denoted using the

succeeds operator (�). This means that i being preferred to j is denoted as

i � j and j being preferred to i is denoted as j � i. It is possible that no

relationship exists between two items because the relationship is unknown. For

example, in Table 3.1, both Forrest Gump and Cast Away are purchased by the

user. There is no way for this system to determine the relationship between

these items. Because of this, no preference regarding these two items would

existing in the set of pairwise preferences. Note that if explicit feedback is

used, it may be possible to say that these two items are equally valued so a

relationship is known, but this is not the case for implicit user feedback.

Preferences can be generated based on implicit user feedback. For

example, I can look at the preferences found in Table 3.2 generated from the

sample user query “Tom Hanks actor.” I use FG for Forrest Gump, CA for Cast

Away, GM for Green Mile, CMIYC for Catch Me If You Can, TS for Toy Story
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Table 3.2: Preferences Generated from Sample Query – “Tom Hanks actor ”

Movie Less Preferred Movies
FG GM, CMIYC, TS, SPR
CA GM, CMIYC, TS, SPR
GM TS, SPR

CMIYC TS, SPR
TS –

SPR –

and SPR for Saving Private Ryan. I can see that there are 12 preferences that

can be generated from the user actions collected from this session. I can see

that the movies that are purchased are preferred to all other movies and their is

an unknown relationship among the two movies that were purchased.

The output of such as system would be a ranking order among a set of

items. I choose to create a system that minimizes the pairwise loss between

the preferences found in the predicted ranking order. I choose pairwise loss

because other alternatives, such as nDCG, require explicit relevance values to

be known. Pairwise preference are more general where explicit relevance

values are not known. Therefore, I use pairwise loss as the objective in my

optimization function. It is also a commonly used metric to evaluate such

systems as seen in [35, 57].

In order to achieve this, I set an optimization goal for my system, I look

at minimizing the pairwise loss over each preference found in the set of

preferences. I look at doing this for each user and their individual set of

preferences denoted as u and Pu respectively. This can be achieved by

changing the parameters of the chosen learning and prediction model. I

denote the set of parameters of any model as Θ. Pairwise loss is measured by

the Heaviside loss function seen in Equation 3.2. This function measures the

loss for a single preference, pui|j . This preference consists of two items, i and
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j, where i is preferred to j. In order for the preference to hold, the predicted

relevance value for i being preferred to j must be greater than j being

preferred to i. The predicted relevance for i being preferred to j is denoted as

r̂ui|j and the predicted relevance for j being preferred to i is denoted as r̂uj|i.

min
Θ

∑
u∈U

∑
pui|j∈Pu

l(pui|j) (3.1)

l(pui|j) =


0 : r̂ui|j > r̂uj|i

1 : r̂ui|j ≤ r̂uj|i

(3.2)

Looking back at the example preference found in Table 3.2, I would like to show

the set of inequalities that I would like to enforce based on this optimization

goal. I simplify the names of the movies to improve readability in the following

set of inequalities. I use FG for Forrest Gump, CA for Cast Away, GM for

Green Mile, CMIYC for Catch Me If You Can, TS for Toy Story and SPR for

Saving Private Ryan. Below is the set of inequalities I would like to hold.

r̂uFG|GM > r̂uGM |FG (3.3)

r̂uFG|CMIYM > r̂uCMIY C|FG (3.4)

r̂uFG|TS > r̂uTS|FG (3.5)

r̂uFG|SPR > r̂uSPR|FG (3.6)

r̂uCA|GM > r̂uGM |CA (3.7)

r̂uCA|CMIYM > r̂uCMIY C|CA (3.8)

r̂uCA|TS > r̂uTS|CA (3.9)

r̂uCA|SPR > r̂uSPR|CA (3.10)

r̂uGM |TS > r̂uTS|GM (3.11)

r̂uGM |SPR > r̂uTS|SPR (3.12)
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r̂uCMIY C|TS > r̂uTS|CMIY C (3.13)

r̂uCMIY C|SPR > r̂uTS|CMIY C (3.14)

Notices that there are no inequalities relating the movies Forrest Gump and

Cast Away. This is because there is not a pairwise preference based on the

implicit user feedback to suggest this. Only generated pairwise preference will

show up in the list of inequalities.

There are two things worth mentioning about this problem setting. First,

I do not handle or worry about the possibility of cyclical preferences (e.g.

A � B, B � C, C � A). These may be present in the input set of pairwise

preferences. However, I do not change my learning methods to use this

knowledge. The second item to mention is that I do not prune any pairwise

preferences. That is to say if I know the order of three items, A, B, and C, it

may generate the preferences A � B, A � C, B � C. I keep the preference

A � C although it can be implied based on the other two preferences. I do this

as it reinforces the preference A � C as the relative order of items A and C

will be evaluated during my experiments.

3.3 Opportunity Cost Model

Models are used in the learning and prediction process of a recommender

system. For the learning process they are learned in accordance with the

optimization goal. The model is then used to predict relevance values for the

active user at the time of recommendation.

I introduce a new model that can be used to determine which of two

items is more preferred. My model attempts to give the value of an item given

another item for a particular user. For example, given two items, i and j, my

model would assign a relevance value to choose i over j and one for choosing
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j over i. The larger of these relevance value predicts which decision the user

will make. This model borrows the idea of opportunity cost in economics.

Definition (Opportunity Cost). Opportunity cost is the cost associated with

passing up the next best choice when making a decision [22].

Opportunity cost is used in many decision making processes. For

example, I may be determining what to do during a one hour period on a

Saturday afternoon. I may have two options: sit in front of the TV or workout in

the park. It is assumed that I can only perform one of this actions during this

one hour period. If I choose to sit in front of the TV, I will have to give up being

able to workout and vice versa. In choosing one of these opportunities, I will

gain some benefit, such as the pleasure of watching TV or health benefits from

exercise. However, to gain this benefit, there is an associated opportunity cost

which is the benefit from the passed up opportunity. I have to make a decision

by weighing which alternative gives me the most benefit while passing up the

other activity. If an activity has a large benefit, then passing up that opportunity

shows that the chosen activity must have a lot of value to me.

I now introduce the opportunity cost model which borrows its name from

the idea of opportunity cost in economics. In the context of this model, the

relevance (or value) of an item is based on its own benefit to the user and the

opportunity cost of passing up another. It is assumed that users make good

economic decisions which are those that show the user preferring items with a

higher relevance with respect to other items. When comparing items, a user

will prefer the item with more value with respect to other items. Looking at two

items, I try to assign a relevance value to each item. For a particular item, its

relevance value is its benefit to the user and the opportunity cost of giving up
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the other item. Looking at Equation 3.15, the relevance value of item i is being

assigned based on item j. This is denoted as r̂ui|j . The benefit of item i is

denoted as bui and the opportunity cost of item j is denoted as cuj .

r̂ui|j = bui + cuj (3.15)

I extend this model to allow for each item and user to have a vector of features.

These features will be the traditional latent features used in other works such

as [19, 59, 75]. The latent features do not correspond to any real world

attributes, but rather are used to reduce the number of parameters in the

model. To do this, the length of each vector is set to the same length, k. Each

index of an item’s latent feature vector represents to what extent the item

exhibits that particular feature. Each index of a user’s latent feature vector

represents to what extent the user cares about that feature. In order to find the

benefit that an item has to a user, I can take the dot product of these two

vectors. Below in Equation 3.16, I show the extension of the opportunity cost

model that allows for latent feature vectors. The latent feature vector for user u

is denoted as φu and for item i, φi. The benefit of an item for a particular user

is combination of traditional latent feature vectors for item i and user u where

the benefit bui is equal to φu · φi. When the dot product of this two vectors is

computed, a single scalar value representing the benefit of this item is output.

The opportunity cost of the other item j is also related it its benefit. However,

directly taking that value does not make intuitive sense because when giving

up an item, the user is not weighing its benefit the same as the item being

chosen. This is because the user will not directly receive the benefit from the

other item without taking it (e.g. purchasing). Therefore, there is an opportunity

cost discount factor denoted as αu which is applied to the benefit of j. So the
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opportunity cost of item j is cuj and is equal to αu (φu · φj).

r̂ui|j = φu · φi + αu · [φu · φj] (3.16)

3.4 Learning the Model

Before the model can be used to make predictions, the parameters must be

learned. There are many different ways that this can be done based on various

learning to rank methods. A classic learning to rank method is RankSVM [23].

RankSVM is used for ranking search results based on feature vectors for each

item (or page) that is being ranked. However, this cannot be used for items as

the number of features for items would be difficult to limit to a reasonable

amount because of the vast number of actors, directors, genres, and other

features. Because of this, latent features are used which are not compatible

with RankSVM which needs a fixed feature vector as the input to the system.

Additionally, there are other alternatives which require the same set of input

feature vectors. However, there are some alternatives such as stochastic

gradient descent [32] and stochastic gradient boosting trees [18]. Both of these

method would be applicable on my model. Stochastic gradient descent is

widely used in recommender systems to learning the parameters of a model as

seen in [19, 34, 35, 33, 59, 75]. I choose stochastic gradient descent as

boosting method would use weighting which is not necessary or applicable

with my particular problem setting. It is also worth mentioning that math and

statistic software, such as MatLab [48] and Mathematica [74], have packages

to solve these types of problems. However, they are similar to RankSVM as

they are regression based and would require input features with explicit values.

In order to learn the parameters of my new opportunity cost model

model, found in Equation 3.16, stochastic gradient descent [32] is employed on

the model. Stochastic gradient descent slowly learns the model based on a set
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of update rules. It trains each of the k features of each feature vector. For each

feature, it trains over a given number of passes. On each pass, every training

instance is updated according to a set update rules. For each update, a small

learning rate, λ, is used. This value is usually set to a relatively small value

(e.g. .001). In order to prevent over-fitting of the model and to allow for each of

the k features to be significant, a regularization parameter, ρ, is added to the

model. For each training instance, the error, ε, is found and determines to what

extent each parameter will be updated. The higher value tells which is the

predicted preference in the ranking order.

Each parameter, θ, of the model is updated based on the same method

as shown in Equation 3.17. The parameters of my model are φu, φi, φj , and

αu. Equation 3.17 defines how any of these parameters can be updated. For

each parameter, the change involves the learning rate, λ, the error, ε, the

interaction of the parameter with respect to other parameters (done using the

partial derivate), the regularization weight, ρ, and the current value of the

parameter, θ. I define error based on the pairwise loss function found in

Equation 3.2. This is more commonly referred to as Heaviside loss as the

output of the function is always 0 or 1. The error is multiplied with the partial

derivative of the model from Equation 3.16 with respect the parameter as found

in the definition of stochastic gradient descent. The regularization weight is

multiplied with the current value of the parameter to prevent over-fitting of the

model. The difference between these values is multiplied by the learning rate

to make sure the model is updated gradually.

θ := θ + λ

(
ε ·
∂r̂ui|j
∂θ
− ρ · θ

)
(3.17)
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An example of the partial derivative of the model with respect the parameter αu

is shown below is Equation 3.18.

∂r̂ui|j
∂αu

=
∂ (φu · φi + αu · [φu · φj])

∂αu
= φu · φj (3.18)

The update rules found in Table 3.3 are used in the overall update algorithm

found in Algorithm 1. The algorithm takes in the set of pairwise preferences, P ,

that relates items and users. This algorithm goes over each each index of the

latent feature vectors from 1 to k. For each feature, it take a predetermined

number of training passes. On each training pass, each preference in the set of

preferences is updated according the update rules. A preference involves as

user u and two items, i and j where it is known that i is preferred to j.

Table 3.3: Update Rules for Parameters of the Opportunity Cost Model

Parameter Update Rule

αu λ ·

ε ·
 k∑
f=1

φu[f ] · φj[f ]

− ρ · αu


φu[f ] λ · (ε · [φi + αu · φj[f ]]− ρ · φu[f ])
φi[f ] λ · (ε · φu[f ]− ρ · φi[f ])
φj[f ] λ · (ε · [αu · φu[f ]]− ρ · φj[f ])

Algorithm 1 Update Algorithm for the Opportunity Cost Model
LEARN(P)

1: for all f = 1→ k do
2: for all pass = 1→ passes do
3: for all p ∈ P do
4: ε = l(p)

5: αu+ = λ ·

ε ·
 k∑
f=1

φu[f ] · φj[f ]

− ρ · αu


6: φu[f ]+ = λ · (ε · [φi + αu · φj[f ]]− ρ · φu[f ])
7: φi[f ]+ = λ · (ε · φu[f ]− ρ · φi[f ])
8: φj[f ]+ = λ · (ε · [αu · φu[f ]]− ρ · φj[f ])
9: end for

10: end for
11: end for
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The time complexity of running this learning method is a function of the

number of training passes, passes, the length of the latent feature vector, k,

and the number of preferences in the training set, |P|. This makes the time

complexity of using stochastic gradient descent be O(passes · k · |P|). It is

important to note that in comparison to other methods the complexity of the

input data, in my case preferences denoted as P , is larger as preferences in

my case are I × I × U in comparison to other methods which is I × U . In my

case, items are accounted for twice because I am making pairwise comparison

of item/item pairs where traditionally only ratings on user/item pairs are made.

3.5 Ranking Items for Output

After the model is learned offline using the pairwise preferences, the system

will need to make predictions based on the model to make recommendations

to the user. When a user comes to the system to ask for a recommendation, it

will be done on a set of items. For each possible pair of items generated from

the set of items, I can check the relevance values of each item given the other

item and know the predicted preference using Equation 3.16. This can be done

for each pair of items to derive a ranked order.

It is worth noting that it is possible that deriving a ranked order based on

pairwise preferences can induce cyclical preferences (e.g. A � B, B � C,

C � A). These are not desirable as they make it difficult to display a ranked

order to the user. If this happens, the system would have to make a decision to

display either A,B,C or C,A,B. In either case, there is one pairwise inversion

being introduced based on the set of determined preferences.

Deterministically, the system should choose the order that reduces the number

of inversions for the other preferences.
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3.6 Alternative Method for Numerical Optimization

There are some drawbacks to using the pairwise loss function to assign the

error used in stochastic gradient descent. The main problem is that the result is

always either 0 or 1 which may not be good in some cases. For example, if the

difference between the predicted relevance values for Forrest Gump and

Green Mile is .001. In the first case, Forrest Gump may be predicted to be .001

higher than Green Mile. For example, the predicted relevance for Forrest

Gump may be .5001 and Green Mile may be .5. For this, the model captures

the users preference, but does not differentiate between the two very well

which may be bad for the generalization of the model beyond the training data.

In this case, it may be smart to update the model such that the relevance

values are more spaced out. This would try to make the .5001 value for Forrest

Gump be larger and the .5 value for Green Mile be smaller. In the other case

where Green Mile is preferred to Forrest Gump, Green Mile may be .001

higher than Forrest Gump. In this case, the loss will be 1 and the model will be

update the same way as if Green Mile was predicted to be .5 higher than

Forrest Gump. In this case, it may be smart not the have loss at 1, but a

smaller value because the difference between values (.5 and .5001) is

negligible. Furthermore, the lack of quality for results using the other Heaviside

loss method can be shown in [75] where other loss methods were explored.

The use of Heaviside loss directly correlates to the optimization goal for

the output. However, it does not always produce the best results as seen in

other work such as [75]. Because of this, I offer a surrogate objective that can

be used to solve the same problem. The only difference with the alternative

method is how error is calculated for the update rules. Previously, the error was

44



always assigned based on the Heaviside loss of the current preference as

seen in Equation 3.2. With the alternative method, each training instance is

updated twice. The first update looks at the more preferred item and tries to

optimize r̂ui|j to have a value of 1. This is done by assigned the error such that

I look at the current value of r̂ui|j with respect to the value of one as seen in the

below equation.

ε = 1− r̂ui|j (3.19)

In this case, the error will be assigned the value of 1 - r̂ui|j . After the error is

calculated, I again update the 4 parameters of the model, φu, φi, φj , and α,

with this error value. This is done using lines 5 to 8 of Algorithm 1. After this, I

consider the lesser preferred item and try r̂uj|i to have a value of 0 which is

done using the below equation.

ε = 0− r̂uj|i (3.20)

For this, I reassign the error value to be 0 - r̂uj|i and update the parameters of

the model again with the new error term.

The time complexity of this method does not change from my previous

explanation. Although more parameters are added to the model, this

calculations and updates can be done in linear time.

3.7 Comparison with Related Work

In this chapter, I presented a novel opportunity cost model to handle pairwise

preferences as a general form of user feedback. This model predicts a

relevance value for an item based on a comparison with another item.

This chapter presented a new problem setting previously unseen in

existing work. The traditional problem setting of recommender systems, as

seen in Section 2.5, involves a set of items, a set of users, an a set of ratings
45



which are given by users on items. These ratings are usually cardinal

relevances values (e.g 1, 2, 3, 4, 5). Other work, such OrdRec, in Section 2.6,

extend this idea by allow for ordinal relevance values (e.g. A, B, C, D, F). These

values can be interpreted such that there is a relative order between each

value (e.g. A is better than B, etc...). In my problem setting, I allow for an even

more general form of input data in the form of pairwise preferences (e.g. item i

is better than item j). These can be induced from ordinal or cardinal values,

but they can also be generated otherwise by implicit feedback as seen in

Table 3.2. This is more general as it does not restrict a relevance scale such as

only 1 to 5 or A to F which both only have 5 relevance classes.. There may

exist enough pairwise preferences to induce a total order of all items which

would be up to the cardinality of the set of items number of relevance classes.

Because this is the first work to handle pairwise preferences, it requires

different recommendation techniques to find the parameters of the model.

Looking at the optimization goal of RSVD in Equation 2.1, it looks at minimizing

the difference between the prediction relevance value and the rating provided

by the user. This is case for cardinal values. OrdRec, described in Section 2.6,

operates on ordinal data, but takes a different route by first having to generate

a probability distribution. Because of this, OrdRec attempts to optimize to

making the probability distribution rather than a predicted value. CCF,

described in Section 2.8, using binary relevance and attempts to optimize by

looking at the difference the relevance of the chosen item and the non-chosen

items. My optimization goal, as seen in Equation 3.1, looks are directly

minimize the amount of pairwise loss, a common evaluation technique for

ranking. The is not seen in other techniques as they do not look at trying to

optimize for ranking, even if they attempt to evaluate on ranking.
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Additionally, this idea of exploring opportunity cost has only been

studied by one other work, [75], which was done only which respect to

feedback collected in user sessions. I generalized this approach to the case of

only having two items that are being compared.
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Chapter 4

CONTEXT-AWARE METHODS

4.1 Introduction

Beyond allow for pairwise preferences, there is the possibility to exploit

information about the context of a user choice in terms of the offer set of items

shown to a user at the time of recommendation. For example, active user may

come to a movie recommender system and pose the query “Tom Hanks actor.”

The system will then find all of the movies in which Tom Hanks was an actor

and then attempt to rank them for the active user. The movies constitute the

offer set of movies. After the system returns these items to the user, the user

will interact with the returned items accordingly. For example, the system may

return the movies found in Table 3.1 and the user may have the corresponding

actions. In this example, I consider three different user actions, but these could

be differentiated or changed accordingly for each individual system. The

possible user actions in the example are watching the movie, clicking the movie

to examine details such as actors or plot, or there may be no user interaction. I

can interpret this implicit user feedback to say that any movies the user

watches are preferred to the movies the user only clicks. I can also say that

any movies that the user watches or clicks are preferred to the movies that the

user has no interaction. Our system will use the log of all of these user session

interactions to train the parameters of a model to make new predictions for the

active user’s current session.

It is important to leverage the feedback given from users found in

sessions. For example, knowing that a user choose to purchase Forrest Gump

over a set of drama movies may tell us that the user likes Tom Hanks.

However, if the user chooses Forrest Gump over a set of other Tom Hanks
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movies, it may tell us that the user prefers the genre or other actors starring in

the movie. However, only one previous work, Collaborative Competitive

Filtering (CCF) [75], looks at leveraging this session information to make

recommendations.

As the only existing work, CCF [75], works on this type of setting is

limited to binary preferences, I attempt to handle any number of levels of user

preference. Binary relevance is limited as it only allows to have a set of

preferred items and a set of non-preferred items. As described above, there is

a possibility to generate finer grained preferences based on implicit user

feedback. The challenge in extending binary user feedback is how to handle

any number of levels of user preference. Binary preferences are limiting in how

to interpret as they can be either cardinal (e.g. 0 or 1) or ordinal (e.g. good or

not good). The challenge comes with allowing for a dynamic relevance scale

that is up to the size of the offer set. This means that a total order of items

could be made as the number of possible relevance values is always the

number of items in the offer set. This is difficult as sometimes there may be two

levels of relevance within a session (e.g. clicked, not clicked) and sometimes

there by up to the number of items.

Another limitation of CFF [75] is that predictions are not

context-dependent. Even though learning methods of existing work may take

into consideration the context of the user’s choice, no existing work on

sessions look at exploiting this information. The challenge is to create a model

that incorporates the context of the offer set of a session and can handle

context-dependent relevance values. Currently, the only prediction model for

work on sessions is the traditional combination of latent features as seen in

Section 2.5. The difficulty is how to extend this model to take in the offer set as
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a parameter and use it to create a context-dependent relevance value for each

item.

In this chapter I discuss a new problem setting relating to user sessions,

an updated opportunity cost model allowing for context-dependent relevance

values, and look at the associated learning techniques.

4.2 Problem Definition

In contrast to the previous problem setting, I now assume that user’s

preferences are collected in a specific time-frame which is called a user

session. This changes the problem setting from the previous chapter. There is

still a set of users and a set of items. However, now there is a set of user

sessions which the preferences are contained. This set of user sessions is

denoted as S.

The previous chapter looked a using user feedback in terms of pairwise

preferences. These pairwise preferences may be generated from the union of

many different user sessions. However, when looking at feedback found in

sessions, I can change my problem setting to account for a special property

found with the specific case of session feedback which collect feedback that is

disjoint across session. Instead of pairwise preferences, I introduce the idea of

a relevance class.

Definition (Relevance Class). A relevance class is a set of items with the

same perceived value to the user. These classes are ordinal in nature meaning

that the relative value to the user can be determined between any two

relevance classes (e.g. items that are watched or preferred to those that with

no interaction).
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Relevance classes are used instead of pairwise preferences because

there is a finite number of user actions that can be distinguished within user

sessions (e.g. purchases, clicks, non-interaction). Instead of generating

pairwise preferences based on the knowledge from these different user

interactions, I just cluster them into relevance classes. This is done because

for small sessions (e.g. 6 items), it is possible to generate up to 15 pairwise

preferences and would be common to see 10 to 12. Note that pairwise

preference can still be inferred based on relevance classes, but I treat them

differently to account for the special property found with user sessions.

Using relevance classes, each session consists of a user, an offer set of

items, and a set of relevance classes. A single session is denoted as s an

which is denoted as (u,O, {C1, C2, ..., Cn}) where u is the user who the

interacted with the system during the session, O is the offer set of items for the

session, and {C1, C2, ..., Cn} is a set of n relevance classes. The items in the

offer set are all contained in exactly one relevance class so that O is equal to

{C1 ∪ C2 ∪ ... ∪ Cn}. The highest relevance class is C1 which the items

contained within this class are preferred to all other classes. This means that

all items in Ci are preferred to those in Ci+1 to Cn for all values of i from 1 to n -

1.. Note that the number of relevance classes, n, is session specific and will

not be the same value across all sessions. This is because some sessions

may have two classes (e.g. purchased and no interaction), while others may

have 3 or more (e.g. purchased, clicked, and no interaction).

Using the same sample query, “Tom Hanks actor,” and user interactions

from the previous section, I look at Table 4.1 to see the relevance classes that

the items would be in for this problem setting. Each relevance classes consists

of items that the system does not know any pairwise relationship. For example,
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Table 4.1: Session Preferences Generated from Sample Query – “Tom Hanks
actor ”

Movie Relevance Class
Forrest Gump C1

Cast Away C1

Green Mile C2

Catch Me If You Can C2

Toy Story C3

Saving Private Ryan C3

since both Forrest Gump and Cast Away were purchased, the system does not

differentiate between the two movies. Furthermore, I can see that both of these

two movies will fall into the highest relevance class, C1, which is preferred to all

of the other movies in the offer set.

The output of this type of session is similar to the global problem

setting. Based on the active offer set, the offer set for the active user, the

system wants to output a ranking order that minimizes the pairwise loss

between the preferences implied by the ranking order. I look at doing this for

each user and their set of session. A user is denoted as u and their set of

session is denoted at Su. This again can be achieved by changing the

parameters of the chosen learning and prediction model. I denote the set of

parameters of any model as Θ. This time, I still look at pairwise loss, but this

time this is done within a session, rather than over the set of user preferences.

The loss within a session is shown in Equation 4.6. This is done by generated

the possible preferences found within session s and using the Heaviside loss

function found in Equation 4.3 which evaluates the loss for preference pui|j , for

user u preference of item i over item j. I look at going from the most preferred

relevance class, C1, down to the least preferred relevance class, Cn. This is

done by comparing relevance classes with two different indexes, c and d. I start

with c being 1 which is for the most preferred class and d starts at c+ 1. Since
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d always starts larger than c, relevance class Cc is always preferred to Cd.

min
Θ

∑
u∈U

∑
s∈Su

lsession(s) (4.1)

lsession(s) =
n−1∑
c=1

n∑
d=c+1

l(pui|j) : ∀i ∈ Cc∀j ∈ Cd (4.2)

l(pui|j) =


0 : r̂ui|s > r̂uj|s

1 : r̂ui|s ≤ r̂uj|s

(4.3)

Looking back at the preferences shown in Table 4.1, I would like to talk about

the set of inequalities that I would like to enforce based on this optimization

goal. In Section 3.2, I generated the set of pairwise preferences based on the

implicit user feedback. This was because I needed to make a relevance

prediction for a particular item based on only one other item. For this problem

setting, I need to generate a predicted relevance value based on a set of items.

For this, I do not need to generate a full set of preferences. I attempt to make

sure that the predicted relevance value for a movie is less than those values for

more preferred relevance classes and greater than items in lesser preferred

relevance classes. For example looking at the movie Green Mile, I will make

sure that its predicted relevance is less than that of Forrest Gump and Cast

Away while it is also greater than Toy Story and Saving Private Ryan. Note that

I do not compare it with Catch Me If You Can as it is in the same relevance

class.

4.3 Contextual Opportunity Cost Model

I further extend the opportunity cost model to handle the context of a user

session with many items. Below is the extend opportunity cost model. Now, I

look at an offer set of items to try to assign a relevance value to each item. For

a particular item, its relevance value is its benefit to the user and the

opportunity cost of giving up the other items. Looking at Equation 4.4, the
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relevance value of item i is being assigned based on the remaining items in the

offer set of session s which is denoted as j ∈ O \ {i}. This is because I am

trying to assign a relevance value to an item assuming that the user is only

trying to value this item and would have to give up the other items. The benefit

of item i is denoted as bui and the opportunity cost of item j is denoted as cuj .

r̂ui|s = bui +
∑

j∈O\{i}
cuj (4.4)

Again, I extend this model to allow for each item and user to have a vector of

features as seen below. The sum of the opportunity costs are averaged to

allow for differing sized offer sets across sessions. If the average is not taken,

then the opportunity cost for session containing 10 items would be drastically

greater than those with only 4 items. This technique was also used in [75].

r̂ui|s = φu · φi + αu ·

 1

|O| − 1

∑
j∈O\{i}

φu · φj

 (4.5)

The key advantages of this model are that it directly accounts for the context of

the offer set. This means it will generate a session-specific relevance value for

each item in a session. If an item appears in multiple sessions for the same

user, then the item will be given a new relevance value for each session based

on the other items in the session.

4.4 Learning the Model

As in Section 3.4, stochastic gradient descent is employed on the model to

learn its parameters, φu, φi, φj , and αu. The update rules for the model

presented in the previous section are given in Table 4.2 where λ is the learning

rate, ε is the error, and ρ is the regularization rate.

The error, ε, for each update is assigned as in Equation 4.6. I iterate

from the most relevant class down to the class of the current item i which is
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Table 4.2: Update Rules for Parameters of the Contextual Opportunity Cost
Model

Parameter Update Rule

αu λ ·

ε ·
 1
|O|−1

∑
j∈O\{i}

k∑
f=1

φu[k] · φj[k]

− ρ · αu


φu[k] λ ·

ε ·
φi + αu

|O|−1

∑
j∈O\{i}

φj[k]

− ρ · φu[k]


φi[k] λ · (ε · φu[k]− ρ · φi[k])

φj[k] λ ·
(
ε ·
[

αu

|O|−1
· φu[k]

]
− ρ · φj[f ]

)

denoted as class(i). I then go from the next class to the lowest preferred class.

For each of the other classes, I compare the Heaviside loss, as seen in

Equation 4.6, with the current item i and each item in the other class. If the

errors occur with more relevant classes, then the value of this item need to go

down so the error will be negative. If the errors occur with less relevant

classes, then the value of the item will need to get larger so the error will be a

positive value.

ε = −
class(i)−1∑

c=1

∑
j∈Cc

l(pui|j) +
n∑

c=class(i)+1

∑
j∈Cc

l(pui|j) (4.6)

Looking at an example using the sample relevance values in Table 4.3, I can

make a sample error calculation for Catch Me If You Can.

ε = −(0 + 0) + (1 + 0) = 1 (4.7)

Catch Me If You Can will first be compared with both Forrest Gump and Cast

Away. Since its relevance value is lower than both of the other movies

relevance values, both loss values will be 0. Next, it will be compared with Toy

Story and Saving Private Ryan. Since the relevance value of Toy Story is

greater than Catch Me If You Can, the loss is 1. This results in a total error of 1.

This means that the value of Catch Me If You Can needs to be larger in order to
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Table 4.3: Sample Relevance Values

Class Movie Relevance
C1 Forrest Gump .87
C1 Cast Away .96
C2 Green Mile .57
C2 Catch Me If You Can .32
C3 Toy Story .44
C3 Saving Private Ryan .31

become greater than Toy Story. Likewise, when updating Toy Story, the error

would be -1 which would try to make Toy Story have a lower relevance value.

The time complexity of running this learning method is again function of

the number of training passes, passes and the length of the latent feature

vector, k. However, I now look at user sessions instead of preferences. This

changes the previous time complexity analysis as this method is based on the

size of the offer set, |O|, and the number of items, |I|. This makes the time

complexity of using stochastic gradient descent be O(passes · k · |O| · |I|). This

is better than the previous method where the set of preferences was |I2|

whereas this method is only |O| · |I| as the offer set size is much smaller than

the number of items in the system.

4.5 Predictions for the Active Session

Predictions for the active session are made when a user comes to the system

to ask for a recommendation. Based on the set of items the user wants a

recommendations, the system can make calculations for the prediction

relevance values according to the model presented in the previous sections.

Items are then ranked based on their predicted relevance.

For example we can look at the sample benefit, φu · φi, values in

Table 4.4. Assume that we want to make a prediction for the value of Forrest

Gump based on the offer set of items in Table 4.4 with an opportunity cost
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Table 4.4: Sample Benefit Values

Movie Benefit
Forrest Gump .5

Cast Away .4
Green Mile .3

Catch Me If You Can .3
Toy Story .2

Saving Private Ryan .1

discount factor, αu, of .3. The sample calculation is done in Equation 4.8. The

prediction relevance value, r̂ui|s, is the benefit of Forrest Gump plus the product

of the discount factor and the sum of the other item’s benefits.

r̂ui|s = .5 + .3 · 1

5
· (.4 + .3 + .3 + .2 + .1) = .578 (4.8)

This can also be shown for the movie with the lowest benefit, Saving Private

Ryan, for comparison as shown below.

r̂ui|s = .1 + .3 · 1

5
· (.5 + .4 + .3 + .3 + .2) = .202. (4.9)

Note that in some cases, it would be sufficient to rank items solely based on

the benefit to the user as it would produce the same ranked order. However,

there are other cases where larger values of αu would not yield the same

ranking order.

4.6 Alternative Method for Numerical Optimization by Relevance Classes

Similar to the previous chapter, I can create surrogate objectives to solve the

same problem. Using a surrogate objective in this case has the same

motivation as seen in Section 3.6 which is based on the problems of using

Heaviside loss. This alternative treats the same relevance class as equals and

attempts to optimize each of their relevance values to the same value.

I could use a simply objective function where each relevance class is

equidistant from each other. However, user’s do not value each relevance class
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in the same manner. That is to say that the different between the most relevant

class and the next most relevant class may be different for different users.

Because of this, I introduce a new set of parameters for each user.

This new parameters of this approach determine the value that each

relevance class will be optimized. That is to say I attempt to optimize the

prediction value of each item in the same relevance class to be the same

value. This parameter is denoted as δu,i,j which is for user u and the distance

between class i and class j. Items in the most relevant class, C1 are always

optimized to the value of 1. This is done to establish a scale in which the

optimization is done. Item in lower classes get assigned an optimization value

according to the below equation. The prediction relevance value for item i,

r̂ui|S , should be equal to the right side of the equation. The numerator defines

the distance between the most relevance class and the class of item i, denoted

as class(i). The denominator is the distance between the most relevant class

and the lower relevance class. The combination of these two gives the relative

distance for the relevance class that i belongs which is on the scale of 0 to 1.

Again, this scale is arbitrarily chosen to have some scale for a basis of

optimization. The below equation is related to Equation 4.5 as they share a

common predicted value, r̂ui|s. That is to say that I want the prediction

relevance value based on the parameters of r̂ui|s to equal to optimization goal

value as define by the parameters of the below equation.

r̂ui|s = 1−

class(i)∑
c=1

δu,c,c+1

n−1∑
c=1

δu,c,c+1

(4.10)

For example, I may want to find the optimization goal value for Green Mile

which is in C2. A visual example of how these δ values are used can be seen in
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Figure 4.1: Sample for 3 Relevance Classes

Figure 4.1. For this, δu,1,2 may equal 1.15 and δu,2,3 may equal .95. In this case,

all items in relevance class C2, including Green Mile, would be optimized to

1− 1.5
1.5+1

which is equal to .4. As always, all items in relevance class C1 would

be optimized to 1 and since n = 3, all items in relevance class C3 would be

optimized to 0 as the numerator and denominator would be equal.

The main change for using this type of numerical optimization with the

previous learning method is how the error term is calculated. The error is now

based on how far the optimization goal is away from the current predicted

relevance value. For this, the error term, ε, is assigned as follows:

ε = 0−

r̂ui|s −
1−

class(i)∑
c=1

δu,c,c+1

n−1∑
c=1

δu,c,c+1



 (4.11)

When using this method, this error replaces the error based on Heaviside loss

as seen in Equation 4.6. This is assigned because the ideal value for the

difference between these the current prediction and the optimization goal is 0.

So I compare this value with the difference between the numerical optimization

goal and the current predicted relevance value for the model.
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Along with using the other set of update rules found in Table 4.2, there

needs to be a new update rule for how to update each δu,∗,∗ in the model.

Below is the update rule for doing this type of update. Note that instead of

adding to the current value I subtract. This is because in the error term, the

optimization goal value is being subtracted from the current prediction for the

relevance value, r̂ui|S , as seen in Equation 4.11.

δu,i,i+1 := δu,i,i+1 − λ ·
(
ε ·

∂r̂u,i|S
∂δu,i,i+1

− ρ · δu,i,i+1

)
(4.12)

∂r̂u,i|s
∂δu,i,i+1

=

n−1∑
c=1

δu,c,c+1 −
class(i)∑
c=1

δu,c,c+1(
n−1∑
c=1

δu,c,c+1

)2 (4.13)

4.7 Alternative Method for Numerical Optimization by Item/Item Pairs

The second alternative does not treat all items in the same relevance class as

equals and allows for each item to be optimized to a different value. This is

because I am trying to work with pairwise preferences which does not enforce

optimizing all items in a single relevance class to be the same value. This

methods looks at interpreting preferences as a graph where a directed edge

between two nodes (or items) can been seen as preference. I can construct a

graph based on the relevance classes where edges are only found between

adjacent relevance classes and following a path between any two items can

show their relative preference.

I again introduce a new set of parameters for this technique. The new

parameter is denoted as δu,i,j where its value is for user u between items i and

j. This parameter represents the difference in value between two items. The

below equation equation shows how these parameters can be used to find the

optimization value for a given item i. Again, this is done on a scale of 0 to 1

which is done arbitrarily to establish a scale for the optimization. This approach
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again looks from going from the most relevant class down to the relevance

class of item i. It does so finding the average distance for paths from C1 down

to the class before the class of i. However, instead of taking the average of all

possible path which is exponential in time complexity, it only looks at finding the

average distance to the relevance class before the class of the item we are

trying to optimize denoted as class(i). Then it finds the average distance

between all items in the class preferred just more than item i to item i. For the

denominator, it is the average distance to the least relevant class.

r̂ui|s = 1−

class(i)−2∑
c=1

1

|Cc × Cc+1|
∑

a∈Cc,b∈Cc+1

δu,a,b +
1

|Cclass(i)−1|
∑

a∈Cclass(i)−1

δu,a,i

n−1∑
c=1

1

|Cc × Cc+1|
∑

a∈Cc,b∈Cc+1

δu,a,b

(4.14)

A visual representation of this method and its parameters can be seen

in Figure 4.2. In this figure, there are four relevance classes. To see how

Equation 4.14 works, I offer the sample parameters in Table 4.5 to show an

example calculation. The vertical column represents the first items in the

subscript of the δ and the horizontal column represents the second. I use a ?

to denote values that are not shown in the sample figure. Note that these

parameters would have a value, but I do not show them to make it easier to find

the values needed for the calculation. Also note that all – values are for those

combination where no parameters existing as there is no distance between an

item and itself. Below I show the sample calculation for the value of r̂ui5|S .

r̂ui5|s = 1−
[12(δui1i2 + δui1i3)] + [12(δui2i5 + δui3i5)]

1
2(δui1i2 + δui1i3) +

1
4(δui2i5 + δui3i5 + δui2i4 + δui3i4) +

1
2(δui4i5 + δui5i6)

(4.15)

r̂ui5|s = 1−
[1
2
(.9 + .8)] + [1

2
(.7 + .9)]

1
2
(.9 + .8) + 1

4
(.7 + 1.1 + .9 + 1) + 1

2
(.6 + .9)

≈ 0.653 (4.16)
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Table 4.5: Sample Delta Values for Figure 4.2

i1 i2 i3 i4 i5 i6

i1 – .9 . 8 ? ? ?
i2 ? – ? ? .7 1.1
i3 ? ? – ? .9 1
i4 ? ? ? – ? .6
i5 ? ? ? ? – .9
i6 ? ? ? ? ? –

Figure 4.2: Sample for 4 Relevance Classes

4.8 Comparison with Related Work

In this chapter, I presented an extension to my novel opportunity cost model to

handle user feedback generated from user session. This model predicts a

context-dependent relevance value for an item based on an offer set of items

given to the user.

First, I would like to discuss how session are different from other types

of context enough to make it difficult to use those techniques. Traditional forms

of context are time, location, or weather. I could use a technique similar to that

of the user profiling discussed in Section 2.7. However, in my consideration of
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context, there are many values than just the number of days in a week or types

of weather. I would have to enumerate all of the possible offer set combinations

which would be exponential in size in relationship to the number of items. This

would makes this method undesirable and not efficient.

Sessions have only been studied in one other existing work, CCF [75].

This work was limiting as it only allow for binary relevance feedback with only

one item in the offer set being the most preferred item. I present a problem

setting allow for any number of relevance classes up to the size of the offer set.

It also does not restrict the most relevant class to only one item.

Since I change the problem setting of CCF, it required changes to the

learning techniques. Looking at Equation 2.3 which is the optimization goal for

CCF, I can see that it is strongly tied to to only allowing for one item in the most

relevant class and makes the assumption that all other items are in the lesser

preferred class. I can see this as it clearly differentiates the chosen, or most

relevant item, i∗. I could make the change of having more than one item in the

most preferred relevance class by taking the summation of the items

not-chosen and subtracting the summation of the chosen items. However, I

want to allow for a dynamic number of relevance classes which does not limit it

to only two type of items. This means I cannot make a simple change in

Equation 2.3 to work for more relevance classes.

Additionally, I differ from CCF in terms our prediction model. CCF uses

the same prediction model as RSVD, seen in Section 2.5. This does not allow

for context-independent relevance values as the model only considers one item

at a time. When only considering one item at a time, it is impossible to create a

context-dependent relevance value because it does not look at the context of
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the offer set. I present a contextual model that incorporates the context of the

offer set to provide a context-dependent relevance value.
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Chapter 5

EXPECTED DISCOUNTED RANK CORRELATION

As mentioned in Section 2.9, evaluation of recommender systems is an

important issue. My work specifically look at accuracy with an emphasis on

ranking. Most of the existing work looks at improving the prediction accuracy

which means optimizing to an explicit relevance value. However, there are

many times when only implicit feedback is collected and in these cases,

existing measures and metrics fail to work. In these cases, rank accuracy

measures and metrics can be used. However, some of them require

information that might not also be provided using implicit feedback such as

nDCG [29] needing explicit relevance values.

I propose expected discounted rank correlation (EDRC) [2] to measure

the similarity between two sets of pairwise preferences. EDRC is a weighted

measure that handles partially ordered lists derived from implicit user feedback

based on the classifications seen in Section 2.10. Pairwise preferences are a

generalize form of user input that can be easily generated from implicit user

feedback or based on cardinal or ordinal feedback. When looking at pairwise

preferences as ground truth, a common question would be how to evaluation

such data.

Given a set of ground truth pairwise preferences from the user G, and a

set of predicted pairwise preferences output by the system Ĝ, EDRC calculates

the expected correlation the two sets. Note that I may have user preferences

on a large set of items based on many different user sessions. However, I only

consider preferences relating items currently recommended by the system.

That is, the set of items in G and Ĝ are the same. Please note that it is possible
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based on historical preferences, that cycles may exist (e.g. A � B, B � C,

C � A.. This is the case for the global, or pairwise preference, problem setting

in Chapter 3. However, in the session problem setting, presented in Chapter 4,

cycles are not possible within an individual session which would be at the level

evaluation is conducted. Therefore, my method does not handle the case of

cycles in user’s preferences.

Similar to AP correlation and nDCG, EDRC emphasizes preserving the

order of the user’s most preferred items and enforcing a smaller penalty for

less preferred items. Different from nDCG whose ground truth is a set of

relevance scores, the ground truth supported by EDRC is a set of pairwise

preferences. Different from AP correlation which requires complete pairwise

preferences, EDRC allows incomplete pairwise preferences.

Two challenges must be addressed when thinking about how to

evaluate rank accuracy based on incomplete pairwise preferences. How does

one assign a rank to an item when a total list cannot be constructed? In

Equation 2.10, index(i) is the rank index in the list, but when a total order is

unknown, such as the sample data in Table 5.1, a new method is needed to

give a rank index. Second, how does one consider the cases where a user’s

preference between items is unknown? In that example, I don’t know user’s

preference between items A and B. How to evaluate a system that makes a

predication A � B? Next, I look at the first problem.

Assigning Rank and Computing Weight. In the spirit of discounted

gain, I want to give different discount (weight) for different items. If I know the

rank of an item, R(v), in the ground truth, I may set the weight linearly,

logarithmically, or exponentially. However, the problem is how to compute the

rank of an item given incomplete pairwise preferences. From a set of pairwise
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Figure 5.1: Topological Order based on Ground Truth (left) and System Predic-
tion (right) in Table 5.1

Table 5.1: Example Pairwise Preference Data

Preferences
Ground Truth A � C, A � D, A � E, C � D, B � D

Prediction
C � A, C � B, C � D
A � E, B � E, D � E

preferences as ground truth, I first derive a topological order among the items.

Consider a graph where a vertex represents an item, and a directed edge

represents a pairwise preference. The item corresponding to the source vertex

is preferred to the item corresponding to the target vertex. In the following

discussion, I use item and vertex interchangeably.

For example, the ground truth in Table 2.4 can be represented by the

graph in Figure 5.1, where the fact that item A is preferred to item C is shown

by a directed edge from vertices A to C. In this graph, an item is preferred to

any item reachable following a directed path. For example, A is preferred to

both C and D in the ground truth of Table 5.1.

Now I discuss how to leverage the graph to compute item rank. I initiate

the rank of every vertex to be 1 and traverse the graph beginning for the start

nodes. Whenever I follow an edge from a vertex u to v, I update v’s rank to
67



Algorithm 2 Setting Rank Value
SETRANKS(G)

1: S = all nodes in G without an incoming edge
2: for all v ∈ S do
3: R(v)← 1; VISIT(v, 1)
4: end for

VISIT(v, rankin)
1: R(v)← max(R(v), rankin + 1)
2: for all w ∈ OUT (v,G) do
3: VISIT(w, R(v))
4: end for

max(R(v), R(u) + 1). I chose maximum because choosing minimum does not

guarenteed that lesser preferred item have lower rank than more preferred

items. Note that here I consider every user specified pairwise preference as

equally important, and is assigned a unit weight of 1. I allow the rank of a

vertex to weight the preference. Thus I keep the maximum score of node

among the different paths that can reach this node from a start node. The

procedure is defined in the procedure SETRANKS(G) in Algorithm 2.

The ranks for the items in the graph of Figure 5.1 are as follows: R(A) =

1, R(B) = 1, R(C) = 2, R(D) = 3 and R(E) = 2. As I can see, nodes A and B

have the same rank, since I don’t know user’s preferences between the two.

Then I define the discount term, D(v), which can take various forms

depending on what type of discount is desired. For example, for a simple linear

discount, D(v) = R(v). For exponential discount, D(v) = 2R(v) and for

logarithmic discount, D(v) = log2(1 +R(v)).

Handling Unknown Preferences between Items. Another problem is

computing the score, C(v), of an item in the system’s output in the presence of

incomplete pairwise preferences in the ground truth. I propose the following

formula to define the score of an item where OUT (v,G+) is the set of outgoing
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edges from v in the transitive closure, G+, of G, and W , the set of items that

are more preferred or have an unknown relationship with v where

W = V (G) \ [{v} ∪OUT (v,G+)]. EP checks for the expected score regarding

the relationship between v and all items in W .

C(v) =
∑
w∈W

EP (v, w) (5.1)

For a pair of items (v, w), suppose v preferred over w, that is, v � w in G.

There are three cases. I have v � w in Ĝ. In this case, EP (v, w) = 1. The

second case, I have w � v in Ĝ. Since the system prediction contradicts to the

ground truth, I have EP (v, w) = 0. The third case, the system cannot predict a

preference between v and w. Then I need to compute the expected score. By

default I may assume there is 50% likelihood for v � w and 50% likelihood for

w � v. I then let EP (v, w) = .5. Alternatively, I may have a more accurate

likelihood estimation based on collaborative filtering. Assuming I have a set of

equally similar users, if 70% of the users have v � w and 30% of similar users

have w � v, then the expected score of v � w is 0.7. For example, below are

samples for C and EP based on Table 5.1.

C(C) = EP (C,A) + EP (C,B) + EP (C,E) = 0 + .5 + .5 = 1

C(D) = EP (D,A) + EP (D,B) + EP (D,C) + EP (D,E) =

.5 + .5 + 1 + .5 = 2.5

C(E) = EP (E,A) + EP (E,B) + EP (E,C) + EP (E,D) =

1 + 1 + .5 + .5 = 3

Putting Things Together. Based on the discussion of how to compute

a score for an item, C(v), and the discount (weight) of an item, D(v), I now put

these together for an evaluation measure EDRC. I denote the set of all vertices
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in G without an incoming edge as S.

EDRC(G, Ĝ) =
2

Z
·
[ ∑
v∈V (G)\S

C(v)

D(v)

]
− 1 (5.2)

Here, Z is a normalization factor to ensure the value is between +1 and -1.

Z =
∑

v∈V (G)\S

|W |
R(v)

(5.3)

Considering the example data in Table 5.1, I now show how to put together the

sample calculation for EDRC using a linear discount method.

EDRC(G, Ĝ) =
2
29
6

·
[

1

2
+

2.5

3
+

3

2

]
− 1 =

5

29
(5.4)

When both the ground truth and prediction is a complete set of pairwise

preferences and the discount term is D(v) = R(v)− 1, the values for EDRC

and AP correlation will be the same.
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Chapter 6

EXPERIMENTS

6.1 Introduction

I conduct experiments on our methods to show their effectiveness. I run

experiments on the different problems settings in Chapters 3 and 4 along with

the various methods discussed in each problem setting. I choose to evaluated

on rank-oriented evaluation techniques. These techniques include pairwise

loss, normalized discounted cumulative gain (nDCG), and my new measure,

expected discounted rank correlation (EDRC). The remainder of this chapter

discusses our datasets, the evaluation techniques, and our experimental

results.

6.2 Datasets

I use three different data sets, two for the first problem setting and one for the

second problem setting. The first two datasets that I look at are MovieLens

100K and are MovieLens 1M [21]. The other dataset is based on a user study I

conducted using Amazon Mechanical Turk [7]. I conducted my own user study

for the session problem setting because not publicly available datasets contain

the session information. Publicly available datasets only contain rating

information, but lack any information regarding offer sets. Since my methods

needs both of these pieces of information, I decided to conduct a user study to

gather this information. Below are descriptions of both of these datasets.

Please note that although I choose to use a publicly available dataset

that consists solely of cardinal ratings, this does not imply that this is the only

way to result in pairwise preferences. Pairwise preferences may be the result

of implicit user feedback, as discussed in Section 3.2. I only generate pairwise
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preferences based on cardinal ratings because there are not publicly available

datasets consisting of pairwise preference data.

MovieLens 100K

The MovieLens 100K dataset is a publicly available dataset from the

GroupLens research group from the University of Minnesota. MovieLens

is a movie recommendation engine freely available for public use. This

dataset contains 100,000 ratings that are whole numbers on a scale of 1

to 5 from 943 users on 1682 movies. Each user in the dataset has rated

at least 20 movies.

MovieLens 1M

The MovieLens 1M dataset is a publicly available dataset also from the

GroupLens research group from the University of Minnesota. This

dataset contains 1,000,209 ratings that are whole numbers on a scale of

1 to 5 from 6,040 users on 3952 movies. Each user in the dataset has

rated at least 20 movies.

Amazon Mechanical Turk

Our dataset was a user study I conducted using Amazon Mechanical

Turk. Our goal was to collect information to interpret as log data that

would be implicitly gather from users in a recommender system. I

collected results from 100 users. Each user was presented the same 5

queries and each query contained a set of 6 movies. Users were asked

to give their preferences on the movies based on the query by moving

the movies horizontally on the screen. A screen shot of query 1, “Tom

Hanks actor ”, can be seen in Figure 6.1. This method was chosen as it

would be difficult to build a non-commercial system that could be used to
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determine the most relevant movies because I could no allow users to

purchase or view the movies. Additionally, I did not want to design a user

study that only asked a user if they would watch or click on a movie. This

would limit the number of different user interactions and would not show

how well our methods can handle varying sizes of ordinal relevance

classes. The directions given to users along with the 5 queries and

movies can be found in the Appendices.

The queries used in the study were chosen from a list of sample queries

provided by students a database management course for a course

assignment. The chosen queries were selected for their ability to display

movies that the majority of users would be familiar. Choosing queries

that display movies that users would be familiar with is important as

otherwise users would not be able to give accurate and usable feedback.

The queries were issued to IMDB and then sorted based on the

popularity of the movie. Popularity was defined by the number of ratings

a movie received on IMDB. The top 6 movies in terms of popularity were

chosen. For each movie, I found the genres, as defined by IMDB, and the

first 3 actors listed for the movie. The movie name, genres and actors

were displayed to the user in the study. I felt this information is sufficient

for a user to be able to give their feedback on a movie.

Interpreting the Amazon Mechanical Turk User Study

Since the user study did not directly ask for the user’s pairwise preferences, I

must interpret these user preferences by pre-processing the data. Since this

data was used to evaluate the session problem setting, results need to be

clustered into relevance classes. For this, I directly use the data collected from

the user study. Each movie was dragged by a user to a certain point on the
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Figure 6.1: User Study Screenshot for Query 1

screen relative to other movies and can be assigned a value associated with

the x-position on the screen. I denote a movie as m and the x-position as

x(m). Within each session, I normalized the x-position values to be on a scale

of 0 to 1 to allow for fair comparisons between each user session. This

normalization is done to account for varying screens sizes of users. The

smallest x-position was assigned the value of 0 and the largest was assigned

the value of 1. All other movies will fall somewhere within this range.

Because of the imprecision of users with dragging the various movies

around the screen, I generate relevance classes allowing for movies that are

very close together being in the same class. In order to generate the relevance

classes of the session problem setting, I used a modified version of bisecting

k-means clustering algorithm to place items in relevance classes. In our

approach, I do not try to find k clusters, but rather try to ensure the distance

similarity within in each cluster. This is done as I do not need to guarantee that

each session will always have k relevance classes. I choose to ensure

similarity within clusters to have similarity values movies in the same relevance

class. First, I find the minimum and maximum x-position values within the set
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of movies. If the span of the minimum and maximum is less than a particular

delta value, I stop splitting this cluster. Otherwise, I then find the centroid,

which for one-dimensional data is just the average value. I then generate a

random number, z, between the maximum and minimum values. From this

value z, I create two new points, one for the left side of the centroid and the

other the right side. Depending on which side of the centroid the random value

falls, I assign the left and right values accordingly. Whichever variable is

unassigned, left or right, gets assigned the mirror image of the other with

respect to the centroid. For example, if the centroid is .5 and z is equal to .25, I

assign the left value to be .25 and assign the right value to be |centroid− z|, or

|.5− .25| = .25 larger than the centroid meaning right is .75. I then see

whether each movie’s x-position if closer to the left or right value and assign

the movie to a new cluster accordingly. Then I run the same splitting technique

on both the left and right clusters.

After the clusters are generated, they can easily be ordered based on

the x-positions found within each cluster. The cluster with the greatest values

will be assigned as the most preferred cluster C1. Then each cluster can be

assigned in descending order.

Analysis of User Study

I tried to analyze the possible effect of the offer set in the user decision making

process. To do this, I have two pairs of movies that showed up in different user

sessions. The first pair of movies was Forrest Gump and Cast Away which

show up for both the queries of Tom Hanks actor and Robert Zemeckis

director. The second pair is Saving Private Ryan and Catch Me If You Can

which show up for both the queries of Tom Hanks actor and Steven Spielberg

director. I do this because it is possible that a user may prefer one movie in a
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given context and the other movie in another context. For example, it is

possible that a user prefers Forrest Gump over Cast Away when comparing

results for Tom Hanks actor, but they prefer Cast Away over Forrest Gump for

the results of Robert Zemeckis director. This could be because they are

thinking about Tom Hanks for the first query and evaluating his acting while in

the other, they are thinking about the direction of the movie.

I notice that there were few users where this a change in preference

occurred between sessions. A changed in preference between Forrest Gump

and Cast Away was observed in 3 users and a changed in preference between

Saving Private Ryan and Catch Me If You Can occurred in 2 users. It is worth

noting that these users were not the same for both changes in preference. That

is to say that there are 5 different users of the total 100 that had a change in

preference between sessions. However, it is worth noting that beyond a

change in preference, they were also occurrences of where a preference was

held in one session and no preference was found in the other session. This

occurred for 8 users for Forrest Gump and Cast Away and 6 users for Saving

Private Ryan and Catch Me If You Can. It is worth noting that again, these

users were not the same for both cases. That is to say that this happened to 14

different users. Additionally, only 2 of the users fell into both cases meaning

there is only a 2 user overlap between the 5 users with preference reversal and

the 14 with a preference in one session and no preference in the other. This

means that these cases are seen in 17 users which is 17% of all users.

6.3 Evaluation Measures and Metrics

Since I are attempting to improve the rank accuracy, I choose to evaluate on

rank-oriented measures and metrics. I evaluate on the three measures and

metrics discussed in detail in Chapter 5: pairwise loss, nDCG, and EDRC.
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Pairwise loss is chosen for evaluation as it is the loss function used in our

optimization goals for both problem settings. nDCG is used as it is a weighted

measure which tells how well the system can rank highly preferred items. As

nDCG requires explicit relevance values, it can only be used on the MovieLens

100K dataset that has these explicit relevance values. Additionally, nDCG is

used to compare with Collaborative Competitive Filtering (CCF) [75] using the

same modifications laid in their evaluation. This will be discussed in detail in

the subsection of Section 6.4 discussing this comparison. I use our measure,

EDRC, to evaluate the session problem instead of nDCG because EDRC can

handle implicit user feedback. EDRC gives the same weighted characteristic

as nDCG. Further discussion of how these measures and metrics will be used

is found below.

Pairwise Loss

Pairwise loss is used to evaluate both problem settings and all methods.

The general optimization goal for all methods is the minimize the pairwise

loss over all preferences. To evaluate this goal, I use the average loss

over all preferences. For the global problem setting this evaluation is

done using Equation 6.1 where P̂ is the set of predicted pairwise

preferences. The loss function is the same as in Section 6.4 where the

result is 1 is the preference is violated by the prediction model and 0

otherwise.

l(P̂) =
1

|P̂|
∑
p∈P̂

l(p) (6.1)

The same technique can be used on the session problem, but all

possible pairwise preferences must be enumerated based on the

relevance classes such that any preference found in relevance class Ci is
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preferred to all items in Ci+1 to Cn where n is the number of relevance

classes in a session.

nDCG

nDCG is used to evaluate the pairwise preference problem setting and to

compare with CCF. To evaluate on the pairwise preference problem

setting, I can use the technique in Equation 6.2. I again look at the set of

predicted pairwise preferences, P̂ , but I iterated them on a per-user

basis where U is the set of users and P̂u are the preferences for user u. I

take the average of all nDCG calculations on a per-user basis. For each

user, the items are ranked based on the preferences and this is used to

find the discounted cumulative gain which is divided by the ranked list of

items based on the user ratings.

nDCGglobal(P̂) =
1

|U|
∑
p∈P̂u

nDCG(P̂u) (6.2)

EDRC

EDRC is used to evaluate the session problem setting explicit relevance

values are not known. Evaluation is conducted on each user session and

the average is taken on over all users and and sessions. I iterate over

each user u in the set of users,U , and each session from the user u’s set

of sessions, Su. Within each session, the set of preferences are

generated based on the method described in the description for pairwise

loss. EDRC is calculated based on the different between the set of

known preferences, P and the set of predicted preferences, P̂ .

EDRC(U) =
1

|U| · 5
∑
u∈U

∑
s∈Su

EDRC(P , P̂) (6.3)
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6.4 Experimental Results

I ran a variety of experiments to test both the pairwise preference and session

problem settings against other methods and variations of my methods.

Evaluation Methodology

For each of the experiments being ran on my methods, I adopt the same

methodology. Please note that for comparison against related work, I adopt the

same methodology as mentioned in the original paper. For all methods,

including those used as a comparison system, I always use a 5-fold cross

validation technique. I first partition the dataset into 5-folds. For the SVD-based

methods (both RSVD and SVD++), the dataset consists of user ratings on

items where each point is one user, one item, and the user’s rating on that

item. The folds for SVD-based methods consists of this type of rating. For the

pairwise preference problem setting, each fold consists of preferences. To

generate these preference folds, I generate all preferences based on the the

folds for the SVD-based methods such that all ratings with a higher value are

preferred to those of a lower value. For example, for a given user, all items

rated 5 are preferred to those rated 4, 3, 2, and 1. For the session problem

setting, each fold consists of one user session. These folds are randomly

generated. Folds for the session problem setting are randomly shuffled to

ensure each user’s folds correspond to different queries. I run all methods five

different times withholding each of the folds into the test set on each run. For

example, for the first run, the second, third, fourth, and fifth folds make up the

training set and the first fold is the test set. Our methods are used to train the

models based on the training set and then evaluation is conducted on the test

set.
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Pairwise Preference Problem Setting Results

First, I look at the pairwise preference, or global, problem setting as seen in

Chapter 3. I ran experiments to compare with related work with respect to loss,

nDCG, EDRC, learning time, and prediction time on both MovieLens datasets.

Additionally, I show a comparison of changing learning parameters for the

learning rate and regularization rate for my model which shows these changes

for loss and nDCG. The work I compare against is RSVD [19] and SVD++ [33].

For both loss and nDCG, I look at comparing varying lengths of latent feature

vectors which is denoted as k. I use the best parameters for my model which is

a learning rate of .002 and regularization rate of .02 unless otherwise noted.

For the length of the latent feature vectors, I use 3, 6, 12, 25, 50, 100, and 200.

Note, I truncate results for MovieLens 1M at 100 latent features due to the

large learning time. Additionally, I use 15 training passes which is cited in

literature, [19], to be enough for learning a model using stochastic gradient

descent. For RSVD and SVD++, I used a learning rate of .001, a regularization

rate of .02, and 15 passes per features as used in [19].

Figures 6.2, and 6.3 show the results comparing against related work

for loss. I used the label of GPW for my global pairwise model with HVS used

for the Heaviside loss technique and OPT for numerical optimization. Looking

at the Figure 6.2, which is for evaluation on loss on the smaller dataset, I see

that all methods improve slightly when increasing the number of latent features,

k. It is apparent that the Heaviside loss technique performs the worst. RSVD

and SVD++ also performs worse than my model with a numerical optimization.

At k=200, my method performs around .04 for MovieLens 100K and MovieLens

1M.
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Figure 6.2: Pairwise Loss Comparison for Pairwise Preferences on MovieLens
100K

Figure 6.3: Pairwise Loss Comparison for Pairwise Preferences on MovieLens
1M

Figures 6.4, and 6.5 show the results comparing against related work

for nDCG. I again use the same labels as pairwise loss for the various

methods. Please note that a higher value for nDCG indicates a better quality

results with 1 being the best and 0 being the worst. For these figures, I used a

different learning and regularization rate in order to beat RSVD and SVD++.
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Figure 6.4: nDCG Comparison for Pairwise Preferences on MovieLens 100K

Figure 6.5: nDCG Comparison for Pairwise Preferences on MovieLens 1M

For these figures, the learning rate was .00075 and regularization rate was

.014. The combination allowed me to beat the related work. Better results are

also seen with increasing the number of latent features, k. For MovieLens

100K my method consistently holds a lead of around .03 all the way to k=200

where the lead is .04. For MovieLens 1M, my method takes until k=25 to match
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Figure 6.6: EDRC Comparison for Pairwise Preferences on MovieLens 100K

Figure 6.7: EDRC Comparison for Pairwise Preferences on MovieLens 1M

the result of RSVD or SVD++ and holds a small lead of again around .0015 up

to .006 for k=200.

Figures 6.6, and 6.7 show the results comparing against related work

for EDRC. Similar to pairwise loss and nDCG, the same relative order for

results occurred in all instances. For EDRC, the maximum value is 1 and the

lowest value is -1. For the MovieLens 1M figure, I again used a different
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Figure 6.8: Learning Time Comparison for Pairwise Preferences on MovieLens
100K

learning and regularization rate in order to beat RSVD and SVD++. For the

MovieLens 1M figure, the learning rate was .00075 and regularization rate was

.014. The combination allowed me to beat the related work. For MovieLens

100K, my method takes until k=6 to beat RSVD or SVD++ and holds a steady

lead of .05 to .065 all the way to k=200. For MovieLens 1M, it take until k=25 to

beat RSVD or SVD++ with a margin of around .01 increasing up to .02 for

k=200.

Figures 6.8 and 6.9 show the results for the learning times of the

different approaches. Learning time is only the time it takes to learn the

parameters of the model. Learning time is measured in seconds. The same

labels are used on the table and the graph for the different methods. Notice

that RSVD has a very negligible learning time on this dataset. Both of my

methods have a learning time of around 2 hours for MovieLens 100K with 200

latent features. For MovieLens 1M with 100 latent features, this increases up to

17 hours. This is because although the increase of ratings is only 10 fold, the
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Figure 6.9: Learning Time Comparison for Pairwise Preferences on MovieLens
1M

number of preferences generate is much greater. Although this time seems to

be very long, this is only associated with learning the parameters of the model.

Prediction for a single user on a small set of items can occur almost instantly

as prediction can happen in constant time. Knowing this, the time it takes to

learn the model is not as important as the quality of result.

It is also worth noting that some optimizations to implementation

needed to occur in order to achieve linear increase in time for increasing the

number of latent features, k. Since there are many times where a prediction

value needs to be calculated to determine loss, caching of predictions was very

important to save time. For each set of 15 passes, one feature is being

updated. I would cache the value of a prediction up to the current feature for all

of the dot products of user and item vectors. Note that I only cache these dot

products as other things cannot easily be cached such as multiplying the dot

product of two vectors. I would cache the dot products and would perform the

multiplication each time. I did not cache with the multiplication because when
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Table 6.1: Prediction Time for MovieLens 100K in Seconds

RSVD SVD++ GPW-HVS GPW-OPT
k=3 0.1248002 0.1404002 2.4172043 4.9608086
k=6 0.1404 0.1092001 2.6020042 2.4164043

k=12 0.1716002 0.1872003 2.6800037 2.580804
k=25 0.2340003 0.2652004 2.7980045 2.4500034
k=50 0.4056007 0.4212006 2.9796053 2.9484052
k=100 0.639601 0.7488015 3.74400669 3.7120061
k=200 1.3572025 1.3884025 3.7440066 4.8204084

Table 6.2: Prediction Time for MovieLens 1M in Seconds

RSVD SVD++ GPW-HVS GPW-OPT
k=3 0.9204017 1.092002 49.9200877 41.527273
k=6 1.0452018 1.107602 49.6284805 41.5584728
k=12 1.1700022 1.27920233 50.9652896 44.9428757
k=25 1.4976027 1.6068027 49.7796875 45.3346797
k=50 2.1372037 2.1996038 53.7264943 50.7836853
k=100 3.6192064 3.8532066 65.2861146 60.1849057

the the scalar factor which is being multiplied changed, you would have to

recalcuate the dot product in order to have the correct prediction. When

calculating the prediction, I would use the cached value, then calculate the

value for the current feature, and then I could carry out the calculation by

adding the dot product for the additional features in one line because of my

knowledge of the initial value of each feature. This would save the extra loops

that are unnecessary as for all features beyond the feature currently being

learned.

Prediction times are reported in Tables 6.1 and 6.2. The reported

predictions times are the total for predicting every rating or preference in each

of the 5 folds. Looking at both SVD-based methods, there is not a statistical

difference between predictions times for RSVD and SVD++. Predictions

increase with the increase in number of latent features and for k=200, the

average is around .01 milliseconds. The difference in prediction time between
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ratings and preferences is due to system overhead such as loading data into

memory or setting up data structures. For MovieLens 1M, there still is an

average prediction time for each preference to be far less than 1 millisecond.

This shows that although the learning time for my model is rather large,

prediction can be done online with a delay unnnoticeable by the user.

Prediction for RSVD and SVD++ can be done by taking the dot product

of the item and user vectors. This would require k number of multiplications

and k − 1 addition operations which can be done in under 1 millisecond for

reasonable values of k. Given a set of items to rank for my method, the benefit

of each item may be precomputed with the same number of operations. In

order to make pairwise comparisons, these precomputed values can be used

with one additional multiplication operation for αu and one additional addition

operation to find the value of one item given the other item. The total number of

these operations depends on the number of preferences needed to be

predicted, but only required two extra arithmetic operations per preference.

Overall, these can still be completed in under 1 millisecond which is negligible

to the user.

Figure 6.10 shows the results for varying the number of pairwise

preference with respect to the total number of preferences generated for the

MovieLens 100K dataset. Experiments were run for learning time on 20%

40%, 60%, 80%, and the entire set of pairwise preferences. It is evident that

the system linearly scales with the number of pairwise preferences while

holding k constant.

Next, I look at varying the parameters of the model to see what effect it

has on quality. Figures 6.11 and 6.12 look at varying the learning rate and its

effect on loss and nDCG. Figures 6.13 and 6.14 look at varying the
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Figure 6.10: Learning Comparison for Varying Number of Pairwise Preferences

Figure 6.11: Pairwise Loss Comparison of Changing Learning Rate for Pairwise
Preferences

regularization rate and its effect on loss and nDCG. For results on pairwise

loss, the range for learning rates was .0001, .005, .001, .002 to .02 with a step

of .002 for this span and regularization rates was from was .001 and .002 to

.024 with a step of .002 for this span. The number of latent features was 50.

For results on nDCG, the span of learning rates was .0005, .00075, .001, and
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Figure 6.12: nDCG Comparison of Changing Learning Rate for Pairwise Pref-
erences

.002 to .01 with a step of .002 and for regularization rates the range was .002

to .02 with a step of .002. The number of latent features was 200. All results

are shown based on the MovieLens 100K dataset.

Figures 6.11 and 6.12 look at the learning rate. First, please note there

are missing data points for GPW-OPT from a learning rate of .012 to .02.

These learning rates were too large and cause the system to behave

unpredicately yielding features whose values who went outside the range of

possible values for the data type used for features. To save on RAM, I used a

32-bit floating point number to store features. Although a float has a rather

large range of possible value, when the system consistently overcorrects, pass

over pass, the values for a float can quickly be very large or small. This occurs

when the learning rate is so large that it updates the model too far in one

direction. The next time this is updated, it updates it too far in the other

direction. This will continue until the updating goes beyond the range of

possible values for its datatype. This can be fixed by increasing the
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reguarlization rate to a larger value. These values are omitted for that reason.

For pairwise loss, I use a regularization rate of .02 and for nDCG, I used a

regularization rate rate of .014. For both graphs I see that the best results

occur at or near where I presented results in the previous figures, learning rate

of .002 and regularization rate of .02. For GPW-HVS, the best results occur at

different places in the range of learning rates and have increasing and

descreasing results moving within this span. Heaviside loss proves to be

instable by not producing smooth results as seen in GPW-OPT. The drawbacks

of Heaviside loss are discussed in Section 3.6. The error calculation in Line 4

of Algorithm 1 will always be either 0 or 1 for Heaviside loss whereas for

GPW-OPT, it will be the difference between the current prediction and the

optimization goal. Heaviside loss may be 1 when the difference between the

current and desired prediction is very small (e.g. .001). This will change the

model more drastically that it needs to and cause unexpected results for

varying values for learning rate since each passes does not try to make the

prediction value be any specific value like GPW-OPT. Instead, it just cares that

one value is greater than another value. See Section 3.6 for further discussion

on this topic. Looking at the results for nDCG, the best results occurs at a

learning rate of .00075 with results sloping away from this point with the

change in learning rate. Results seem to decrease more quickly as the

learning rates increase closer to .01.

Figures 6.13 and 6.14 look at the regularization weight. For pairwise

loss, I use a learning rate of .002 and for nDCG a learning rate of .0075. Again,

for both graphs I see that the best results occur at where I presented results in

the previous figures. For loss the best regularization rate is .02. For nDCG, the

results are best at .014 and slope away from this point. Again, the same trend
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Figure 6.13: Pairwise Loss Comparison of Changing Regularization Rate for
Pairwise Preferences

Figure 6.14: nDCG Comparison of Changing Regularization Rate for Pairwise
Preferences

of results sloping away faster as the regularization rate more farther from .014

is also seen in this figure.

Modified Pairwise Preference Problem Setting Results

For this section, I modifed the way preference folds are generated to be closer

to the problem setting I am trying to work on. In order to do this, I generate
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rating folds seperately from preference folds. Nothing changes to the way that I

generate rating folds and I use the exact same random rating folds for the

experiments of this section. The difference is in how I generate preference

folds. To generate the new preference folds, I first generate all preferences

based on the original dataset such that all ratings with a higher value are

preferred to those of a lower value. For example, for a given user, all items

rated 5 are preferred to those rated 4, 3, 2, and 1. After these preferences are

generated, I then randomly move them into each fold. The difference of having

folds of preferences versus folds of ratings, like RSVD and SVD++, is done as

there is a difference in problem setting between my methods and that of the

SVD-based methods. The figures of this section reflect the different way of

generating preference folds.

Again, I first look at the pairwise preference, or global, problem setting

as seen in Chapter 3. I ran experiments to compare with related work with

respect to loss, nDCG, EDRC, learning time, and prediction time on both

MovieLens datasets. Additionally, I show a comparison of changing learning

parameters for the learning rate and regularization rate for my model which

shows these changes for loss and nDCG. The work I compare against is

RSVD [19] and SVD++ [33]. For both loss and nDCG, I look at comparing

varying lengths of latent feature vectors which is denoted as k. I use the best

parameters for my model which is a learning rate of .001 and regularization

rate of .004. For the length of the latent feature vectors, I use 3, 6, 12, 25, 50,

100, and 200. Note, I truncate results for MovieLens 1M at 100 latent features

due to the large learning time. Additionally, I use 15 training passes which is

cited in literature, [19], to be enough for learning a model using stochastic
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Figure 6.15: Pairwise Loss Comparison for Pairwise Preferences on MovieLens
100K

Figure 6.16: Pairwise Loss Comparison for Pairwise Preferences on MovieLens
1M

gradient descent. For RSVD and SVD++, I used a learning rate of .001, a

regularization rate of .02, and 15 passes per features as used in [19].

Figures 6.15, and 6.16 show the results comparing against related work

for loss. I used the label of GPW for my global pairwise model with HVS used

for the Heaviside loss technique and OPT for numerical optimization. Looking
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at the Figure 6.15, which is for evaluation on loss on the smaller dataset, I see

that all methods improve slightly when increasing the number of latent features,

k, except for GPW-OPT which increases more rapidly with the increase in

features. It is apparent that the Heaviside loss technique performs the worst.

RSVD also performs significantly worse than my model with a numerical

optimization technique. RSVD also doesn’t appear to rank items better by

increasing the number of latent features which is attributed to RSVD being for

prediction accuracy. This is consistent with literature providing results on

pairwise loss for SVD-based methods. In [35], the provide results for loss on

SVD++ in Table 2 for 50, 100, and 200 features. From 50 to 100 features, loss

improves .2 and from 100 to 200 features, loss improves .0014. Note that

results are provided for FCP (frequency of concordant pairs) which is another

form of pairwise loss, where 1 is the best result and 0 is the worst. Looking at

my results for SVD++, the change for 50 to 100 features is .0017 loss and for

100 to 200 features, it is .0012 loss. This values are consistent with [35] with a

better results increasing the number of features from 50 to 100 is not quite as

good as 100 to 200. Looking at the larger dataset, there is a decrease in quality

of the result for the same number of latent features. The difference is only .033

loss when k=3, but the difference is around .12 when k=100. There difference

between these two figures is the dataset. Figure 6.15 is for MovieLens 100K

and Figure 6.16 is for MovieLens 1M. This two datasets are disjoint in their sets

of users. However, this does not explain why each of the other methods

increase consistently between the two datsets by .03 to .05. The most

probable explanation for this discrepancy is that I tuned my parameters for

MovieLens 100K and used the exact same parameters for MovieLens 1M

experiments. Since there are 10 times as many ratings in MovieLens 1M, there

are at least that many more preferences as well. This large increase in
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preferences may require a larger regularization to prevent overfitting and/or a

smaller learning rate to update the model less quickly because of the larger

increase in training data points. Additionally, with both datasets, it can be seen

that with smaller values of k, most of the methods converge to similar pairwise

loss values. This is also reasonable because with fewer latent features, there is

less ability for any model to capture users’ preferences.

It is worth noting that in Figure 6.15, pairwise loss for GPW-OPT

approaches 0 loss when k increases past 100 up to 200. This is likely

attributed to a change of problem setting from item ratings to pairwise

preferences amongst items. The folds for SVD-based methods consists of

user, item, and rating tuples while for my problem setting they consists of

tuples with a user and a preference comparing two items. For the SVD-based

methods, for each user the sets of items in each fold are disjoint while in my

problem setting, items may show up in many, if not all, of the folds. This allows

for my model to better learn the features of an item before it has to prediction

how a user will like the item in a different situation. For SVD-based methods,

the only thing stored is a user rating. Since there is not previous information tell

the model how well a user likes an item, predictions for these methods cannot

produce as good of result. This likely explains why GPT-OPT can achieve

almost no loss when k is greater than 100.

Figures 6.17, and 6.18 show the results comparing against related work

for nDCG. I again use the same labels as pairwise loss for the various

methods. Again, the same relative order is seen in the results with numerical

optimization yielding the best results with RSVD and SVD++ being right behind

and Heaviside loss being the worst. Please note that a higher value for nDCG

indicates a better quality results with 1 being the best and 0 being the worst.
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Figure 6.17: nDCG Comparison for Pairwise Preferences on MovieLens 100K

Figure 6.18: nDCG Comparison for Pairwise Preferences on MovieLens 1M

Better results are also seen with increasing the number of latent features, k.

Similar trends show with slight increases with increasing the number of latent

features with the numerical optimization increase more rapidly with increasing

number of latent features.

It is worth nothing that SVD-based methods have better values for

nDCG up to k=12 for Figure 6.17, and and k=100 for Figure 6.18. This is
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Figure 6.19: EDRC Comparison for Pairwise Preferences on MovieLens 100K

because of the difference of problem setting for the two methods as discussed

why pairwise loss can almost reach 0 for GPT-OPT after 100 latent features.

For evaluation of nDCG, I attempted to rank the items involved in the fold being

withheld. For my problem setting, I need to rank those items based on the

predicted preferences for that fold. Since it is possible that there was not

preferences relating each possible pairwise combination of items in the fold,

items may not be able to be ranked as well in comparison to a pointwise

technique such as the SVD-based methods. The explains why it takes longer

for nDCG to improve for my pairwise models.

Figures 6.19, and 6.20 show the results comparing against related work

for EDRC. Similar to pairwise loss and nDCG, the same relative order for

results occurred in all instances. Similar to nDCG, results with a higher value

indicate a higher quality method. However, with EDRC, the maximum value is

1 and the lowest value is -1. With EDRC, similar trends occur with my method

with numerical optimization growing more rapidly. There also seems to be a

slight decrease in results for EDRC for this method when moving from 50 to
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Figure 6.20: EDRC Comparison for Pairwise Preferences on MovieLens 1M

200 latent features. For nDCG, there seems to be a minimal decrease in nDCG

from 100 to 200 latent features, but this is more noticeable for EDRC. Both

nDCG and EDRC should follow similar trends as they are both weighted

measures that discount for mistakes made while ranking based on the

relevance of the item where the most preferred items are more heavily

weighted. EDRC has a larger decrease than nDCG from k=50 to k=200 as

nDCG uses logarithmic discounting as seen in Equation 2.7 and EDRC uses a

linear discount. Additionally, EDRC discount items that have the same

relevance (e.g. rated the same) using the same discount term whereas nDCG

discount each item based on their index in a ranked list. When ranking n items,

nDCG will discount the first item with log2(1 + 1)=1 and the nth item with

log2(n+ 1). For EDRC when using a rating scale of 1 to 5, the largest discount

term is 5. Looking at the results would show that the errors (e.g. pairwise

inversions) for k=50 to k=200 are coming with more relevant items (e.g those

rated 5) as with EDRC for all items rated 5, the discount would be 1 and for

nDCG there would start at 1 and grow. Since the discount term is what is being
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Figure 6.21: Learning Time Comparison for Pairwise Preferences on MovieLens
100K

Figure 6.22: Learning Time Comparison for Pairwise Preferences on MovieLens
1M

dividing, the larger the value would have less of an effect for the less relevant

items and a larger effect for the most relevant items. Because of this, it

appears that the errors are occuring at higher rated items which explains the

larger decrease for EDRC than nDCG.
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Table 6.3: Prediction Time for MovieLens 100K in Seconds

RSVD SVD++ GPW-HVS GPW-OPT
k=3 0.1248002 0.1404002 10.9668194 9.9372173
k=6 0.1404 0.1092001 11.1696195 10.296018

k=12 0.1716002 0.1872003 11.4348201 10.6080186
k=25 0.2340003 0.2652004 11.8872209 11.1852195
k=50 0.4056007 0.4212006 13.2600234 12.4488219
k=100 0.639601 0.7488015 15.5220272 14.6016256
k=200 1.3572025 1.3884025 19.1256336 19.3752341

Table 6.4: Prediction Time for MovieLens 1M in Seconds

RSVD SVD++ GPW-HVS GPW-OPT
k=3 0.9204017 1.092002 229.3360028 189.7899334
k=6 1.0452018 1.107602 219.242785 190.6791349

k=12 1.1700022 1.27920233 222.4573907 194.9379424
k=25 1.4976027 1.6068027 231.0988059 205.1091602
k=50 2.1372037 2.1996038 256.4332505 225.9819971
k=100 3.6192064 3.8532066 289.5053087 266.0272672

Figures 6.21 and 6.22 show the results for the learning times of the

different approaches. Learning time is only the time it takes to learn the

parameters of the model. Learning time is measured in seconds. The same

labels are used on the table and the graph for the different methods. Notice

that RSVD has a very negligible learning time on this dataset. Both of my

methods have a learning time of around 9 hours for MovieLens 100K with 200

latent features. For MovieLens 1M with 100 latent features, this increases up to

3.5 days. This is because although the increase of ratings is only 10 fold, the

number of preferences generate is much greater. Although this time seems to

be very long, this is only associated with learning the parameters of the model.

Prediction for a single user on a small set of items can occur almost instantly

as prediction can happen in constant time. Knowing this, the time it takes to

the learning the model is not as important at its quality of result. Again, I use

the same caching optimizations as found in the previous section.
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Figure 6.23: Learning Comparison for Varying Number of Pairwise Preferences

Prediction times are reported in Tables 6.3 and 6.4. The reported

predictions times are the total for predicting every rating or preference in each

of the 5 folds. Looking at both SVD-based methods, there is not a statistically

difference between predictions times for RSVD and SVD++. Predictions

increase with the increase in number of latent features and for k=200, the

average is around .01 milliseconds. For my methods, there are around 7

million preferences generated from the 100,000 ratings. Predictions for each

preference are magnitudes smaller than a millisecond. The difference in

prediction time between ratings and preferences is due to system overhead

such as loading data into memory or setting up data structures. For MovieLens

1M, there are around 13.7 million preference generate from 1 million ratings.

This still yields the prediction time for each preference to be far less than 1

millisecond. This shows that although the learning time for my model is rather

large, prediction can be done online with a delay unnnoticeable by the user.

Prediction times that are reported in the figures of this section, follow the same

methodology spoken of in the previous section.
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Figure 6.24: Pairwise Loss Comparison of Changing Learning Rate for Pairwise
Preferences

Figure 6.23 shows the results for varying the number of pairwise

preference with respect to the total number of preferences generated for the

MovieLens 100K dataset. Experiments were run for learning time on 20%

40%, 60%, 80%, and the entire set of pairwise preferences. It is evident that

the system linearly scales with the number of pairwise preferences while

holding k constant.

Next, I look at varying the parameters of the model to see what effect it

has on quality. Figures 6.24 and 6.25 look at varying the learning rate and its

effect on loss and nDCG. Figures 6.26 and 6.27 look at varying the

regularization rate and its effect on loss and nDCG. For all of these

experiments, the range for both learning and regularization rates was from was

.0001, .0005, .001 and .002 to .02 with a step of .002 for this span. For each of

the figures looking at varying parameters, I used 50 latent features.

Figures 6.24 and 6.25 look at the learning rate. For both graphs I see

that the best results occur at or near where I presented results in the previous
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Figure 6.25: nDCG Comparison of Changing Learning Rate for Pairwise Pref-
erences

figures, learning rate of .001 and regularization rate of .004. Results degrade

moving away from these points at changing the learning rate affects the model.

A learning rate that is too small does not update the model enough while large

learning rates encourages overfitting. I can see that this is the case for my

experimental results. The best results for the numeric optimization technique is

found with a learning rate of .001 and it degrades by increasing the learning

rate. GPW-OPT greatly improves with the jump from a learning rate of .0001 to

.0005 and gets slightly better up to .001. It then slowly degrades moving up to

a learning rate of .02. This same trend does not occur with GPW-HVS and the

best results do not show up at the same values for learning rate. For

GPW-HVS, the best results occur at the extremes of the range of learning rates

(.0001 and .02) and have increasing and descreasing results moving within this

span. Heaviside loss proves to be instable by not producing smooth results as

seen in GPW-OPT. The drawbacks of Heaviside loss are discussed in

Section 3.6. The error calculation in Line 4 of Algorithm 1 will always be either

0 or 1 for Heaviside loss whereas for GPW-OPT, it will be the difference
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Figure 6.26: Pairwise Loss Comparison of Changing Regularization Rate for
Pairwise Preferences

between the current prediction and the optimization goal. Heaviside loss may

be 1 when the difference between the current and desired prediction is very

small (e.g. .001). This will change the model more drastically that it needs to

and cause unexpected results for varying values for learning rate since each

passes does not try to make the prediction value be any specific value like

GPW-OPT. Instead, it just cares that one value is greater than another value.

See Section 3.6 for further discussion on this topic.

Figures 6.26 and 6.27 look at the regularization weight. Again, for both

graphs I see that the best results occur at or near where I presented results in

the previous figures. Small regularization rates allow for overfitting of the

model, while large regularization weights may also hinder quality by

underfitting the model. It is seen that a rate of .004 provides the best result

while decreasing the rate allow for overfitting and degradation of quality occurs

quickly. By increasing the rate, the loss of quality is not as prominent and

occurs more gradually.
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Figure 6.27: nDCG Comparison of Changing Regularization Rate for Pairwise
Preferences

Session Problem Setting Results

Next, I look at evaluating the quality of my methods for the session problem

settings seen in Chapter 4. I do this by comparing with relating work, CCF [75],

and then evaluating my own methods.

I start by comparing with CCF to show that my methods outperform the

only existing work that handles sessions. However, CCF has some limitations

that require me to make changes to my problem setting in order to make a

comparison. CCF only allows for one item to be the most preferred (e.g.

purchased) and only allows for all items items to be in the less preferred

relevance class. In order to allow for this, I must reinterpret the user study. To

do this, I take the movie for each query that has the greatest x-position. In the

case of having two or more movies with the same x-position value that are the

most preferred, I randomly remove all but one of the movies . This allows for

differing size offer sets. For example, is I remove one movie, the offer set is
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only 5 instead of 6. This is easily handled by taking the average benefit of the

other items which is done in my model. This means that for our methods, there

is always just two relevance classes with the most preferred class only having

one item. Please note that I use Softmax loss for CCF as it was noted as being

the best alternative for their method in their paper.

Additionally, I adopt other settings mentioned in the paper. These

include discounting the learning rate by a factor of .9 after each feature is

learned. Also, I use one of the best regularization rates mentioned in the paper

which is .001. Please not that the best results in the paper are shown to be at a

regularization rate of .0001, but my experiments at this value proved to be

worse so I adopted a new value to allow CCF to be more competitive against

my methods. Also, no learning rate was mentioned in the CCF paper, so I

choose .01 after running some initial experiments. The combination of a

learning rate of .01 and a regularization rate of .001 proved to yield the most

competitive results. They also do not say how many training passes are made

per feature. I used 15 since it is also cited in other literature.

For evaluation, I can use nDCG to compare with CCF as their problem

setting only considers binary responses where user interactions can be

interpreted as 1 and no interaction is 0. Our methods do not attempt to assign

an explicit relevance value to an item and have varying numbers of ordinal

relevance classes in each user session. This makes it difficult to evaluate using

nDCG without making considerable alternatives to the nDCG evaluation

procedure. However, because I am only comparing with CCF to begin with, I

will use 1 for user interaction and 0 for no interaction to for nDCG.

For comparison with CCF, I use only use numeric optimization by

relevance classes. This method outperforms the two other alternatives
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Figure 6.28: Pairwise Loss Comparison of SPW-OPT1 and CCF for Modified
Session Problem Setting

(Heaviside loss and optimization by item/item pairs). I look at comparing

varying lengths of latent feature vectors and I use the best parameters for my

model which is a learning rate of .009 and regularization rate of .007. For the

length of the latent feature vectors, I again use 3, 6, 12, 25, 50, 100, and 200. I

also use 15 training passes.

Figure 6.28 has results for loss comparing with CCF. Looking at

Figure 6.28, I can see that my model significantly outperforms CCF for all

vector lengths. The difference in results between CCF and my model can be

attributed the weaknesses of CCF such as using the traditional RSVD model

for prediction which has context-independent relevance values. Results for

SPW-OPT1 are very flat, never being more than .0016 away from .3 loss. Loss

for CCF is also very flat going down to .3532 for k=12 to k=200. This flatness

beyond k=12 is most likely because of discounting the learning rate by a factor

of .9 after each feature is learned. Since the learning rate approaches 0 with
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increasing the number of features, the changes to model become smaller and

smaller with each additional feature.

It is also worth noting that trends for the session methods appear much

flatter than those of the previous figures for my pairwise preference models.

There are two factors that contribute to this. The first is that for the session

methods, there were no publicly available datasets that contained session data

such as those found in the CCF paper. The user study that I conducted was on

a small scale and only contained 100 users and 25 items. This is much smaller

than other datasets as it only contained 3,000 data points with 100 users, with

6 movies per session, and 5 sessions per user. Because of only having 3% of

the data compared to the smallest MovieLens dataset, there are less features

that can distinguish such as small set of users and items. This explains why

only need a limited number of features to achieve the best results. The second

factor is that both the session pointwise model and CCF are pointwise models

compared to the global pairwise which is pairwise. The pairwise model showed

to be much better than the pointwise counterparts of RSVD and SVD++ in the

previous figures which also has very flat trends. Since RSVD and SVD++, both

pointwise, has flat trends, it makes sense why SPW-OPT1 and CCF did too.

For more information regarding pairwise versus pointwise, please refer to

Section 2.3.

Figure 6.29 have results for nDCG comparing with CCF. nDCG follows a

similar trend to pairwise loss for both methods. Results for SPW-OPT1 are

very flat never moving away from .675 more than .0025. CCF gets slightly

better from k=3 to k=50 and then stays flat at .66.

Figure 6.30 has results for loss comparing with CCF. Again, trends are

very flat for both methods. For SPW-OPT1, values never get more than .003
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Figure 6.29: nDCG Comparison of SPW-OPT1 and CCF for Modified Session
Problem Setting

Figure 6.30: EDRC Comparison of SPW-OPT1 and CCF for Modified Session
Problem Setting

from .22. For CCF, results increase up to k=12 where the value stays flat at

.163.

Figure 6.31 show the results for the learning times for my model and

CCF. Again, learning time is only the time it takes to learn the parameters of
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Figure 6.31: Learning Time Comparison of SPW-OPT1 and CCF for Modified
Session Problem Setting

Table 6.5: Prediction Time for CCF and SPW-OPT1 in Seconds

CCF SPW-OPT1
k=3 0.0156 0.0156
k=6 0.0312001 0.0780001
k=12 0.0468001 0.0156001
k=25 0.0780001 0.0156
k=50 0.0780001 0.0312001

k=100 0.0936001 0.0468002
k=200 0.1716003 0.1092001

the model. Prediction time is the time it takes to predict the relevance of one

item. Learning time is measured in seconds. Like RSVD, CCF has negligible a

learning time compared to my method. This can be attributed to the simple

update rules of CCF. However, I note that learning time for my learning

methods are associated with offline computations which are not as important

as they are not experienced by the user.

Prediction times for session methods are shown in Table 6.5. The

general trend is that the prediction time increases with an increase in k,

however this is not always the case. Predictions times for k and both methods
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are always less than .2. The variation for non-linearly increasing predictions

times is most likely due to other system operations interrupting prediction time.

However, with the total prediction time being at most .2, this means that one

session can be predicted in at most .4 milliseconds. This value is very

negligible and would not be perceived by the user.

Prediction time for all methods and all values of k are negligible as they

are under 1 millisecond which was the smallest amount of time I was able to

measure. This is same as the global problem setting. Prediction for CCF is the

same as RSVD and SVD++ which can be done by taking the dot product of the

item and user vectors. This would require k number of multiplications and k− 1

addition operations which can be done in under 1 millisecond for reasonable

values of k. Given a set of items to rank for my method, I can precompute the

benefit of each item with the same number of operations. In order to make a

value prediction for each item, I can take these precomputed values and do

n− 2 addition operations to get the sum for the opportunity cost where n is

then number of items in the offer set. To finish the value prediction, one

multiplication operation for αu and one additional addition operation to find the

total sum is needed. Overall, this can again be completed in under 1

millisecond which is negligible to the user.

Next, I look at evaluating the various alternatives for my opportunity cost

model. I look at all three alternatives: Heaviside loss, numeric optimization by

relevance classes and by item/item pairs. On all figures, Heaviside loss is

denoted as HVS, numeric optimization by relevance classes by OPT1, and

numeric optimization by item/item pairs by OPT2. I again compare at varying

lengths of the latent features vectors and use the best parameters for my

model which is a learning rate of .009 with regularization at .007. Again, I use
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Figure 6.32: Pairwise Loss Comparison for Sessions

Figure 6.33: EDRC Comparison for Sessions

15 training passes. I evaluation on both loss and EDRC. I used EDRC instead

of nDCG because nDCG requires explicit relevance values which are not found

in this problem setting. EDRC shows its true value in this circumstance where

nDCG is inapplicable due to limitations in which problem settings work and that

explicit relevance is needed for its calculation.
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Figure 6.34: Learning Time Comparison for Sessions

Figures 6.32 and 6.33 show the results for loss and EDRC for my

various techniques. Looking at Figure 6.32, it is seen that Heaviside loss is by

far the worst alternative because of the way it assigns error. Out of the two

remaining methods that both use numeric optimization, optimization by

relevance classes (SPW-OPT1) outperforms optimization by item/item pairs

(SPW-OPT2). This can be attributed to a reduction in the number of

parameters of the model. Fewer parameters reduces model complexity and

usually produces better results. Like previous figures, I see that trends are flat

for SPW-OPT1 and SPW-OPT2 and that SPT-HVS is less stable. Both of these

trends were described with the previous results for comparison with CCF. Note

that EDRC is on a scale of -1 to 1 where 1 is the best and -1 is the worst.

Figures 6.34 show the results for learning times for my various

techniques. Again, learning time is only the time to learn the model. Learning

time is measured in seconds. I can see that all alternatives have almost

identical running time. This is because they all gs through roughly the same

process and the only different is the number of parameters to update which is
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Figure 6.35: Pairwise Loss Comparison of Changing Learning Rate for Ses-
sions

negligible with respect to all update actions. For 50 features, the learning time

is roughly 5 seconds. For 100 features, the learning time is roughly 10 to 11

seconds and for 200 features, the learning time is roughly 20 to 25 seconds.

Prediction for this method is exactly the same as discussed in the

previous analysis for the comparison with CCF.

Next, I again look at varying the parameters of the model to see what

effect it has on quality. Figures 6.35 and 6.36 look at varying the learning rate

and its effect on loss and EDRC. Figures 6.37 and 6.38 look at varying the

regularization rate and its effect on loss and EDRC. For all of these

experiments, the range of the learning rate and regularization is from .005 to

.015. I look at different values for this set of experiments than previous ones

because this dataset is much smaller and requires different parameters to find

the best results. For each of the figures looking at varying parameters, I used

50 latent features.
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Figure 6.36: EDRC Comparison of Changing Learning Rate for Sessions

Figures 6.35 and 6.36 look at the learning rate. For both graphs I see

that the best results occur at or near where I presented results in the previous

figures, learning rate of .009 and regularization rate of .007. Results degrade

moving away from these points at changing the learning rate affects the model.

As mentioned before, small learning rates do not update the model sufficiently

while large learning rates encourage overfitting. The best results for the

numeric optimization by relevance classes (SPW-OPT1) technique is found

with a learning rate of .009 and it quickly degrades by increasing the learning

rate. This phenomena can be see for all methods while Heaviside loss is not as

prominent. The trend for Heaviside loss is not stable as described previously

because of its limitations on how it assigns error for the update rules.

Figures 6.37 and 6.38 look at the regularization rate. Again, it can be

seen that that the best results occur at or near where I presented results in the

previous figures, learning rate of .009 and regularization rate of .007. Results

away from these points at not as good as small regularization rates allow for
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Figure 6.37: Pairwise Loss Comparison of Changing Regularization Rate for
Sessions

Figure 6.38: EDRC Comparison of Changing Regularization Rate for Sessions

overfitting of the model, while large regularization weights may also hinder

quality by underfitting the model.
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Chapter 7

CONCLUSION

7.1 Conclusion

Recommender systems are a useful type of information filtering system. This is

because they allow for results to be tailored to specific users. Existing work on

recommender systems allows for input data in the form of cardinal and ordinal

user feedback. However, there is possibility to use a more general form of user

feedback, pairwise preferences. Pairwise preferences can be generated from

cardinal and ordinal data, but can also be found using implicit user feedback.

Additionally, there is the possibility to leverage context data in the form of the

offer set of items in a user session.

In this thesis, I offer solutions to operate on pairwise preference data

found globally and within session. Additionally, I offer a new evaluation

technique that allows for evaluation this type of data. My proposed solutions

are in this thesis are outlined below:

Pairwise Preference Model

Cardinal and ordinal user feedback is restrictive because of the finite

levels of preferences that can be expressed. Pairwise preferences solves

this problem by allowing for any number of levels of user preference. I

offer a new model to handle pairwise preference data that borrows the

idea of opportunity cost from economics. This model can prediction a

preference between two items which can be used to rank items for a user

when they need a recommendation. This model can be altered to

additionally handle preference found within user sessions.
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Leveraging Context Data

Existing work leveraging the context of the offer set of item in a user

session has been limited to CCF [75]. However, in this work came with

certain limitations such as only allowing for one chosen items with the

other items being less preferred which is only binary relevance feedback.

This offered the possibility to work on a more general problem for any

number of ordinal relevance classes. Additionally, CCF only generated

context-independent relevance values. I offered an extension of the

opportunity cost that handled any number of ordinal relevance classes

and also could generate context-dependent relevance values.

New Evaluation Techniques

Finally, I noticed that there was not an existing weighted measure or

metric to handle pairwise preference data. The only existing metric to

handle pairwise preferences that induce a partial order was pairwise

loss. However, this was not weighted which is desirable to weight more

relevant item more heavily than less relevant items. I proposed expected

discounted rank correlation or EDRC as a weighted measure that

handles partially ordered lists derived from implicit user feedback which

is commonly pairwise preferences.

7.2 Future Work

In this section, I discuss areas for possible future work.

Improvements for Efficiency

Looking at the running time for the experiments done in the global

problem setting, it is easily seen that there is room for improvement. A

possibility for improvement would be to create different models for
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prediction and learning as seen in [75]. This drastically improves the

running and learning times of their approach and could be employed to

make my model more efficient.

User Budget

My model assumes that a user has an unlimited budget to take

opportunities and does not assume any user constraints (e.g. time or

money). It is possible to exploit this information in my model and learning

techniques. It would also help to understand why some sessions do not

have any user interaction as the user may not have time to watch a 3

hour movies or buy a $50 book.

System Strategy

Another area for future work is having adaptive strategies for the system

based on system constraints such as inventory or sponsored items.

Research in this area is likely to come with the offering of the RecLab

Prize from Overstock.com [54] which encourages research to maximize

revenue for the system.

Handling Negative Feedback

My methods for context-aware recommendation do not allow for sessions

where no user interaction occurs. This can be seen as negative user

feedback, meaning the user is saying that is not does value any of the

items being displayed. New methods may be proposed to handle this

case and update the model accordingly to lower the value of each item in

the session based on the context of the other items.
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Further Experimental Evaluation

It is possible to run more experiments using the methods presented in my

work. This would include using other datasets and performing a larger

scale user study. Additionally, further evaluation can be performed to use

other rank correlation measures such as Spearman’s ρ or Kendall’s τ .
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APPENDIX A

User Study
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Directions to the User

Instructions (please read): In this user study, you will be asked about your

preferences for movies given five different queries (e.g. "Leonardo DiCaprio").

• Click and drag movies anywhere between least and most preferred to

express differing levels of your preferences

• DO NOT just drag some movies over to most preferred, leaving the rest

on least preferred

• If you are unsure of a movie, use genres and actors to make your best

judgement

NOTE: Results from irresponible users will be rejected. Please take your time

and give your honest preferences. Users only dragging movies to one side or

the other will be rejected!

Queries
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Table 7.1: Query 1 – “Tom Hanks actor ”

Forrest Gump
Comedy | Drama | Romance

Tom Hanks, Robin Wright and Gary Sinise
Cast Away

Adventure | Drama
Tom Hanks, Helen Hunt and Paul Sanchez

Saving Private Ryan
Action | Drama | History

Tom Hanks, Matt Damon and Tom Sizemore
Green Mile

Crime | Drama | Fantasy
Tom Hanks, Michael Clarke Duncan and David Morse

Toy Story
Animation | Adventure | Comedy

Tom Hanks, Tim Allen and Don Rickles
Catch Me If You Can

Biography | Comedy | Crime
Leonardo DiCaprio, Tom Hanks and Christopher Walken

Table 7.2: Query 2 – “Steven Spielberg director ”

Schindler’s List
Biography | Drama | History

Liam Neeson, Ralph Fiennes and Ben Kingsley
Saving Private Ryan

Action | Drama | History
Tom Hanks, Matt Damon and Tom Sizemore

Raiders of the Lost Ark
Action | Adventure

Harrison Ford, Karen Allen and Paul Freeman
Jaws

Thriller
Roy Scheider, Robert Shaw and Richard Dreyfuss

Jurassic Park
Adventure | Sci-Fi

Sam Neill, Laura Dern and Jeff Goldblum
Catch Me If You Can

Biography | Comedy | Crime
Leonardo DiCaprio, Tom Hanks and Christopher Walken
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Table 7.3: Query 3 – “Tom Cruise actor ”

Minority Report
Action | Mystery | Sci-Fi

Tom Cruise, Colin Farrell and Samantha Morton
War of the Worlds

Action | Adventure | Drama
Tom Cruise, Dakota Fanning and Tim Robbins

Rain Man
Drama

Dustin Hoffman, Tom Cruise and Valeria Golino
Mission: Impossible

Action | Adventure | Thriller
Tom Cruise, Jon Voight and Emmanuelle BÃl’art

Top Gun
Action | Drama | Romance

Tom Cruise, Kelly McGillis and Val Kilmer
Jerry Maguire

Comedy | Drama | Romance
Tom Cruise, Cuba Gooding Jr. and RenÃl’e Zellweger

Table 7.4: Query 4 – “Leonardo DiCaprio actor ”

Inception
Action | Adventure | Sci-Fi

Leonardo DiCaprio, Joseph Gordon-Levitt and Ellen Page
The Departed

Crime | Drama | Mystery
Leonardo DiCaprio, Matt Damon and Jack Nicholson

Titanic
Adventure | Drama | History

Leonardo DiCaprio, Kate Winslet and Billy Zane
Shutter Island

Drama | Mystery | Thriller
Leonardo DiCaprio, Emily Mortimer and Mark Ruffalo

Catch Me If You Can
Biography | Comedy | Crime

Leonardo DiCaprio, Tom Hanks and Christopher Walken
Blood Diamond

Adventure | Drama | Thriller
Leonardo DiCaprio, Djimon Hounsou and Jennifer Connelly
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Table 7.5: Query 5 – “Robert Zemeckis director ”

Forrest Gump
Comedy | Drama | Romance

Tom Hanks, Robin Wright and Gary Sinise
Cast Away

Adventure | Drama
Tom Hanks, Helen Hunt and Paul Sanchez

Back to the Future
Adventure | Comedy | Sci-Fi

Michael J. Fox, Christopher Lloyd and Lea Thompson
Beowolf

Animation | Action | Adventure
Ray Winstone, Crispin Glover and Angelina Jolie

Contact
Drama | Mystery | Sci-Fi

Jodie Foster, Matthew McConaughey and Tom Skerritt
Who Framed Roger Rabbit
Animation | Comedy | Crime

Bob Hoskins, Christopher Lloyd and Joanna Cassidy
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