
Model Based Safety Analysis and Verification of Cyber-Physical Systems

by

Ayan Banerjee

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2012 by the
Graduate Supervisory Committee:

Sandeep K.S. Gupta, Chair
Radha Poovendran
Georgios Fainekos
Ross Maciejewski

ARIZONA STATE UNIVERSITY

December 2012

ABSTRACT

Critical infrastructures in healthcare, power systems, and web services, in-

corporate cyber-physical systems (CPSes), where the software controlled comput-

ing systems interact with the physical environment through actuation and monitor-

ing. Ensuring software safety in CPSes, to avoid hazards to property and human

life as a result of un-controlled interactions, is essential and challenging. The prin-

cipal hurdle in this regard is the characterization of the context driven interactions

between software and the physical environment (cyber-physical interactions), which

introduce multi-dimensional dynamics in space and time, complex non-linearities,

and non-trivial aggregation of interaction in case of networked operations.

Traditionally, CPS software is tested for safety either through experimental

trials, which can be expensive, incomprehensive, and hazardous, or through static

analysis of code, which ignore the cyber-physical interactions. This thesis considers

model based engineering, a paradigm widely used in different disciplines of engi-

neering, for safety verification of CPS software and contributes to three fundamen-

tal phases: a) modeling, building abstractions or models that characterize cyber-

physical interactions in a mathematical framework, b) analysis, reasoning about

safety based on properties of the model, and c) synthesis, implementing models

on standard testbeds for performing preliminary experimental trials.

In this regard, CPS modeling techniques are proposed that can accurately

capture the context driven spatio-temporal aggregate cyber-physical interactions.

Different levels of abstractions are considered, which result in high level architec-

tural models, or more detailed formal behavioral models of CPSes. The outcomes

include, a well defined architectural specification framework called CPS-DAS and a

novel spatio-temporal formal model called Spatio-Temporal Hybrid Automata (STHA)

for CPSes.

i

Model analysis techniques are proposed for the CPS models, which can sim-

ulate the effects of dynamic context changes on non-linear spatio-temporal cyber-

physical interactions, and characterize aggregate effects. The outcomes include

tractable algorithms for simulation analysis and for theoretically proving safety prop-

erties of CPS software.

Lastly a software synthesis technique is proposed that can automatically

convert high level architectural models of CPSes in the healthcare domain into im-

plementations in high level programming languages. The outcome is a tool called

Health-Dev that can synthesize software implementations of CPS models in health-

care for experimental verification of safety properties.

ii

DEDICATION

To my Dadu (Grandfather) and Thakuma (Grandmother) for providing me with the

inspiration to be a scientist. To my parents for all their sacrifices. To my brother for

being ever so charming. To my wife for her endless support.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Sandeep K.S. Gupta for his guidance.

Throughout my PhD, he has continuously instilled in me an urge to perform ground

breaking research. His grooming has helped me pass the stern tests of failure and

emerge successful.

I am immensely grateful to my seniors Dr. Krishna Kumar Venkatasubrama-

nian (Krishnaji) and Dr. Tridib Mukherjee (Tridibda) for their precious advice through-

out my doctoral studies. With Krishnaji, I share my first publication, which was a

landmark experience in my graduate life. Working late nights with Tridibda was so

enjoyable even under immense pressure of deadlines. Special thanks to Dr. Geor-

gios Vasamopoulos for his feedback and guidance on research and introducing me

to LATEX, which has helped me throughout my PhD career. I would also like to thank

all my lab-mates, Sailesh, Sunit, Zahra, Priyanka, Joseph, Robin, and many others

with whom I have shared such memorable times at ASU. I am proud to be a mem-

ber of the IMPACT lab at ASU, which has produced several outstanding PhDs over

the years. I also thank Science Foundation of Arizona, National Science Foundation

grants CNS # 0831544 and IIS # 1116385, and Intel for supporting me financially

during my doctoral studies. Special thanks to Food and Drugs Administration for pro-

viding experimental data, case studies and an internship opportunity. I also thank

my committee members Dr. Poovendran, Dr. Fainekos, and Dr. Maciejewski for

providing useful comments on my research.

I dedicate all my success to my grandparents and parents who have instilled

in me the constant quest for knowledge. They have shielded me from all the re-

sponsibilities allowing me to concentrate on my studies. In my wife, I found a strong

support at difficult times and near important milestones in my graduate life. I thank

her for being such a patient and understanding partner.

iv

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . v

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF SYMBOLS . xix

CHAPTERS

1 INTRODUCTION . 1

1.1 Safety in CPSes . 1

1.2 Approaches for CPS Software Safety Assurance 4

1.3 Model Based Software Analysis and Verification 6

1.4 Related Work . 7

1.5 Challenges of MBSV for CPSes . 9

1.6 Thesis contributions . 12

Modeling Stage . 13

Analysis Stage . 14

Synthesis . 15

2 CPS DOMAINS AND SAFETY ISSUES 17

2.1 Safety in CPS . 19

2.2 Ayushman Pervasive Health Monitoring System (PHMS) 24

Home Context . 24

Roaming Context . 27

Hospital Context . 29

Context changes . 29

2.3 Artificial Pancreas . 30

Discrete Control Algorithm . 31

v

Chapter Page

Brake Mode . 32

Correction Bolus Mode . 33

Meal Bolus Supervision Mode 33

Blood Glucose Predictor Model 33

2.4 Data Center Cooling Control . 36

Equipment Safety . 38

Job and Machine Environment . 38

CRAC Behavior . 40

CRAC Power Consumption 41

Inter-dependency of Cooling and Job Management 41

HTS Algorithm Design . 44

Server Ranking . 44

Job Placement . 46

Dynamic Thermostat Setting 46

3 BACKGROUND ON MODEL BASED ENGINEERING 48

3.1 Modeling Phase . 48

Architectural model . 51

Behavioral model . 52

Mathematical equations . 52

Transfer function model . 53

Computational model . 54

3.2 Analysis Phase . 59

Simulation Analysis . 59

Reachability Analysis . 60

vi

Chapter Page

3.3 Synthesis Phase . 62

4 ARCHITECTURAL MODELING FOR FAST SIMULATIONS 63

4.1 Motivation and Related Works . 63

4.2 CPS-DAS: Analysis and Design of CPSes 65

CPS-DAS Modeling Framework 65

Requirements Modeling . 66

Abstract Modeling of CPSs 66

Analysis Parameter Modeling 72

CPS-DAS Analyzer . 72

Implementation . 74

Model Specification . 75

Analysis framework . 77

4.3 Case Study for Design and Analysis with CPS-DAS 78

Safety Analysis of a Single Wearable Medical Device 79

CPS-DAS Inputs . 80

CPS-DAS Model . 81

Safety Verification . 82

Safety Analysis of Network of Devices 83

CPS-DAS Inputs . 84

CPS-DAS Model . 84

Safety Analysis . 85

Thermal Safety of Servers in a Data center 86

CPS-DAS modeling of data centers 86

Safety analysis of data centers 88

vii

Chapter Page

5 SAFETY ANALYSIS UNDER DYNAMIC CONTEXTS 90

5.1 Dynamic Contexts . 91

Representation of context . 92

5.2 Effects of Context changes . 93

5.3 Related Works . 97

5.4 Specification Phase . 101

5.5 Profiling Phase . 106

Power Profiling . 106

Thermal Profiling . 108

5.6 Modeling Phase . 109

Power model of PHMS . 109

Thermal model of PHMS . 110

Model of Infusion Control . 111

5.7 PHMS Analysis . 112

Effect of context change on medical control systems 114

Context driven safety violation: . 115

6 FORMAL MODELING AND ANALYSIS OF CPSES 117

6.1 Motivation and Related Works . 119

6.2 Preliminaries and Overview of Approach 123

Overview of Approach . 125

Safety in CPSes . 126

6.3 Linear 1-D Space Spatio-Temporal Hybrid Automata 128

6.4 L1STHA execution model . 133

6.5 Defining the ε reach set of a DTL1STHA 137

viii

Chapter Page

Solving the PDE . 138

Notations . 140

6.6 Time and space bounded epsilon reach set of a DTL1STHA with a

single discrete location . 141

6.7 ε reach set for a set of initial configurations 145

6.8 Determining exit condition from an invariant set 147

6.9 Algorithm for bounded ε reach set of a single location DTL1STHA . . 148

6.10 Algorithm for computing ε reach set for multiple location DTL1STHA . 153

DTL1STHA bounded time and space reachability analysis algorithm . 155

6.11 Formal Analysis Case-Studies . 157

BSN Safety Verification . 159

STHA model for BSN Safety verification 160

Formal BSN Safety Verification 160

Drug infusion using infusion pumps 162

Analgesic Infusion Pump 162

Infusion Pump Formal Model 163

Formal Infusion Pump Safety Verification 164

7 TACKLING NON-LINEARITIES IN CPS SAFETY ANALYSIS 167

7.1 Non-linear dynamics in Artificial Pancreas 167

7.2 Modeling Artificial Pancreas with Hybrid Automata 168

Linear Hybrid Automata . 169

Hybrid Modeling of Artificial Pancreas 171

Linearization of Bergman Minimal Model 171

Artificial Pancreas Hybrid Automata Model 172

ix

Chapter Page

7.3 Patient Safety Analysis . 173

Reachability Analysis . 173

Error Bounds on the Linear Approximation 174

8 SYNTHESIS OF CPS MODELS . 178

8.1 Motivation and Related Works . 178

8.2 Health-Dev: Model Based Synthesis of BSNs 179

Specification Module . 179

Parser Module . 182

Code Generation Module . 184

9 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 186

9.1 Conclusions . 186

9.2 Immediate extensions . 186

Integrated Tool for CPS Safety Analysis, Verification, and Design . . 187

Synthesizing STHA Models in Hardware 188

9.3 Future research directions . 190

Modeling Stage . 190

Analysis Stage . 193

Synthesis Stage . 193

BIBLIOGRAPHY . 195

BIOGRAPHICAL SKETCH . 210

x

LIST OF TABLES

Table Page

2.1 Definition of different safety categories in a CPS is listed. The safety

categories are further classified as CPS specific, non-CPS or applicable

to both . 24

2.2 Power available from different scavenging sources in the environment

and the human body. The scavenging hours indicated are gross esti-

mates for the case study based on the study by Paradiso [1]. 28

2.3 Scalar Symbols and Definitions. 39

4.1 Skin temperatures after eight hours of pulse oximeter operation at differ-

ent device temperatures (Burn threshold 39 °C) 83

4.2 Timing and power consumption values used for the Ayushman workload

and the experimental methodology . 85

4.3 Tissue temperature rise for different leadership sequences (Burn thresh-

old 39 °C) . 86

5.1 Classification of existing work on model based safety analysis 98

5.2 Power profiling of sensors (TelosB, iMote, BSN node v3, shimmer) 107

5.3 Atom Power Usage for PKA computation in Ayushman 107

5.4 Thermal Profile Data for different frequency throttling modes of the Intel

Atom N270 processor . 108

6.1 Notations for reachable states and over approximations 141

6.2 Safety Verification Results (HA = Hybrid Automata) 160

8.1 Specifiable properties in Health-Dev 182

xi

LIST OF FIGURES

Figure Page

1.1 Cyber-physical systems, with tight coupling between computing and

physical environment through interaction parameters. Solid lines indicate

effect of computing operations on interaction parameters, dashed lines

indicate effect of physical operations on interaction parameters, and thick

solid lines indicate cyber-physical interactions. 2

1.2 Safety assurance approaches for CPS software. The principal contribu-

tion of this thesis is facilitating cyber-physical interaction modeling and

verification in MBSV for CPSes. 3

1.3 Typical deployment of two representative CPSes showing the distributed

nature of the computing nodes, intentional and un-intentional interac-

tions with the physical environment, and the aggregate effect of these

interactions because of concurrent operations in the distributed nodes. . 11

1.4 Stages of model based safety verification of CPS software and thesis

contributions. The MBSV consists of three stages modeling, analysis

and synthesis. The thesis has contributions in each of the three stages. . 13

2.1 Ayushman workload with varying computation and communication re-

quirements. Computation includes sensing and signal processing for

physiological value based security. The sensor processor is duty cy-

cled and the frequency throttled while the radio is kept off during the

computation phase. 25

2.2 Generative Model based Resource Efficient Monitoring. The sensor and

the base station uses a model to reduce communication. The sensor

only transmits model parameters to the base station which in turn uses

the model to reconstruct the data. 26

xii

Figure Page

2.3 Finite State Automata representation of contexts and context changes,

ContextFSM, for the Ayushman PHMS. The transitions are governed by

random models of contexts such as mobility or occurrence of physiolog-

ical conditions such as epilepsy. 30

2.4 Generic Architecture of Artificial Pancreas, which consist of an infusion

pump, a glucose monitor and a remote controller. The controller receives

feedback from the glucose meter and computes the future infusion rate

using a model predictive control algorithm. It transfers the infusion rate

to the infusion pump. Communication between the pump, controller, and

the glucose meter takes place through the wireless channel. 31

2.5 Anesthesia pump simulation with no bolus and at different levels of bolus

showing overshoot, settling time, stable, and unstable behavior. Bolus

administration marked by red lines. 36

2.6 Heat transfer mechanisms in data center. The cool air from the CRAC is

non-uniformly distributed among the servers. The heated air is recircu-

lated throughout the data center and finally reaches the CRAC where it

is again cooled. 37

2.7 Variations in the CRAC input and output temperature based on actual

sensor measurements in the ASU HPC data center. The difference in

these temperatures indicates the two operational modes of the CRAC. . 42

xiii

Figure Page

2.8 Architecture and work-flow of HTS. Each server is assigned a high CRAC

threshold temperature that it requires to avoid redlining. The workload

manager prefers servers with high CRAC thresholds and sets the CRAC

threshold temperature to the lowest high threshold temperature among

the chosen servers. 45

3.1 System is a combination of interacting components with inputs and out-

puts. Any parameter affecting the operation of the system and is outside

the system boundary is an input. Any parameter observable from outside

the system boundary is an output. 48

3.2 Visual model of Pulse Oximeter with components, subcomponents, and

connections indicating flow of data in between them. 50

3.3 Specification of the architectural model of Pulse Oximeter in Architectural

Analysis and Design Language (AADL). 51

3.4 R-C Circuit system where the voltage Vin is the input and voltage across

the resistor Vout is the output. 54

3.5 Hybrid Automata model of a cooling control system with two states each

having different dynamics and state transitions governed by constraints

on the inlet temperature. 58

3.6 Simulation of a bouncing ball showing the height of the ball with respect

to time for different values of the coefficient of restitution parameter, γ. . 60

3.7 Reachability analysis of the CRAC hybrid automata in Example 9, which

shows the values that Tin and Tout can possibly assume at any arbitrary

time. 61

xiv

Figure Page

4.1 CPS modeling requirements and mapping of related works based on the

requirements that they address with highlighting of CPS-DAS contributions 64

4.2 CPS-DAS tool architecture consisting of two parts: CPS-DAS model-

ing framework, which is used to specify a CPS and CPS-DAS Analyzer,

which analyzes a CPS model. 65

4.3 BSN as a Global Cyber-Physical System (CPS) with several Local

CPSes each having region of interest and a region of impact. Over-

lapping of ROIn and ROIm indicate cyber-physical interactions. 67

4.4 Hierarchical view of the generic constructs of a GCPS which is used to

specify a CPS high level architectural model. 69

4.5 Global Interactions between two local CPSes. Intersection between the

ROIn of two LCPS indicate intended interactions while that between

ROIms of two LCPS indicate unintended interactions. 71

4.6 Pseudocode for CPS-DAS Analyzer, which first parses the GCPS model,

computes interactions within an LCPS, and then computes global inter-

actions between LCPSes. Finally, the system properties obtained from

the computation is chacked with requirements for safety verification. . . . 73

4.7 AADL specification of the GCPS model (a more detailed model can be

found in the publication [2]) . 76

4.8 Implementation logic for Peak Detection (a more detailed discussion can

be found in the publication [3]) . 80

4.9 Summary of case studies showing CPS-DAS usage for safety evalua-

tions that are further discussed in detail in Section 4.3 81

xv

Figure Page

4.10 Thermal map of fingertip skin for 8 hrs of pulse oximeter operation at 44

°C temperature . 84

4.11 GCPS specification of Data center using the AADL language. The spec-

ification is for a data center with 50 chassis however only a snippet of the

entire specification is shown in the thesis for ease of readability. 87

4.12 Maximum chassis inlet temperature for 80 % utilization under linear cool-

ing model for different energy management policies. Only CM, JPM, and

JPCM as representative of non-coordinated cooling, no cooling man-

agement, coordinated cooling management, respectively. JPCM allows

highest maximum inlet temperatures temperatures (without violating the

redline) among all the policies. 89

5.1 A computer controlled wearable infusion pump system. 94

5.2 Random way point and Levy walk mobility models used as different mod-

els for the same context. Levi walk model captures the human nature of

restricting their movements to specific regions. 96

5.3 a) Drug concentration have different overshoots for different mobility pat-

terns, b) drug concentration profile may depend on the sequence of con-

text changes . 97

5.4 Approach for analysis of SMCS under dynamic context changes. 100

5.5 PHMS analysis methodology is shown in the Figure. The context sensors

post events in the event queue, the events cause state transitions in the

ContextFSM. Each state has a different configuration of PHMS, which

are analyzed using the analysis engine. 110

xvi

Figure Page

5.6 Analysis of infusion pump safety under dynamic context changes. The

levy walk model predicts higher concentration of insulin than the random

walk model, the difference increases with higher probabilities of outdoor

excursions. 114

5.7 Skin thermal map for two modes of smart phone operation. Typically

temperatures are higher when the smart phone is executing the epilepsy

detection algorithm. 116

6.1 Thermal map of human skin for two sensors placed at locations 5 and

15. The sensors were sensing at 60 Hz and were transmitting the sensed

value to the base station using ZigBee radio. This workload is typical of

a pulse oximeter sensor. The power consumption values are measured

from a Smithsoem pulse oximter while the temperature rise is governed

by the Penne’s bioheat equation [4] . 120

6.2 Assumed system model for Cyber-Physical Systems. 123

6.3 Computation of image from an initial state. A boundary of the initial state

is assumed and the dynamic equations are evaluated on the vertices of

the boundary. The reachable state at the next time or space step is the

convex hull of the images of the vertices. 125

6.4 Conceptual illustration of L1STHA with two modes l1 and l2 and two con-

tinuous variables v1 and v2 . 127

6.5 The L1STHA model of single channel infusion pump. 130

6.6 The normal and aggregate effect modes in the L1STHA model of multi-

channel infusion pumps. 132

xvii

Figure Page

6.7 Example execution of the L1STHA model of a multi-channel infusion

pump, for 1000 seconds and over a 50 mm spatial region. 132

6.8 Figure shows STHA model of the infusion pump. PKA model denotes

Eqn 6.47. The state transitions are spatio-temporal in nature. 163

6.9 Safe and unsafe initial configurations of the infusion pump. The shaded

region includes the initial configurations of the infusion pump that result

in drug concentration above prescribed safe values at any point in time

and space. 165

7.1 Hybrid automata modeling of artificial pancreas with non-linear

Bergmann minimal model governing the continuous dynamics. 171

7.2 Reachable states for the linearized artificial pancreas hybrid automata

model. 173

7.3 Variation of linearization error with respect to the discretization time in-

terval. 177

8.1 Architecture of the Health-Dev which has three modules: specification,

parser, and code generator. 180

8.2 AADL specification of a sensor and smart phone and their TinyOS and

Java codes . 183

9.1 Resistor grid and diffusor network synthesis of second order differential. 189

9.2 Probabilistic timed automata composed with mobility models, STHA

models, and scavenging source models. 192

xviii

LIST OF SYMBOLS

Symbol Definition Page

Chapter 2

C Set of computing properties . 17

P Set of physical properties . 17

I Set of interaction parameters .17

G Mapping from computing properties to interaction parameters 17

t current time . 17

H Mapping from physical properties to interaction parameters18

x A point on the x - spatial coordinate axis .18

y A point on the y - spatial coordinate axis .18

z A point on the z - spatial coordinate axis .18

K Cyber-physical interactions .18

R(t) Risk parameter in artificial pancreas .32

τ time increment interval . 32

BG(t) Predicted blood glucose concentration . 32

BGpres
thresh Prescribed blood glucose concentration . 32

BGhigh
thresh High blood glucose concentration threshold . 33

k1 constant for risk calculation . 32

k2 constant for risk calculation . 32

k3 constant for risk calculation . 32

k4 constant for risk calculation . 32

Jattn attenuated insulin delivery rate . 32

Jbasal basal insulin delivery rate . 32

k patient specific parameter for infusion . 32

xix

Symbol Definition Page

θ patient specific parameter for infusion . 33

Jcorr corrected infusion rate . 33

Jbolus bolus infusion rate . 33

θT DI total insulin intake . 33

MS meal size . 33

X(t) remote compartment insulin action . 34

Isc1(t) interstitial insulin concentration in the first compartment 34

Isc2(t) interstitial insulin concentration in the second compartment 34

Ip(t) plasma insulin concentration in the first compartment 34

BGsc(t) interstitial glucose concentration .34

Q1 stored glucose level in first compartment . 34

Q2 stored glucose level in second compartment .34

δ difference from reference values . 34

uin(t) injected insulin at time t . 34

β(t) meal intake of the patient . 34

A predictor parameter . 34

B predictor parameter . 34

E predictor parameter . 34

n total number of chassis . 39

h inter event interval or event period .39

ctot
k the number of servers (blades) job k requires .39

rac thermal capacity of air flowing out of the CRAC per unit time39

rroom thermal capacity of air in the data center room .39

fii cold supply air fraction going from CRAC to chassis i 39

xx

Symbol Definition Page

di j heat recirculation coefficient from chassis i to j .39

m mode of operation of CRAC, m ∈ {high, low} . 39

tsw time taken by the CRAC to switch from one mode to the other 39

ω idle chassis power consumption . 39

α power consumption of a chassis per unit of utilization39

u chassis utilization . 39

Nh total number of jobs in event period h .39

T sup(t) air temperature as supplied from the CRAC at time t39

T sen(t) air temperature at the input of the CRAC at time t 39

T red manufacturer’s redline inlet temperature . 39

T th
high high thermostat setting for the CRAC . 39

T th
low low thermostat setting for the CRAC .39

(T th
high)max upper bound on high thermostat setting for CRAC 39

(T th
high)i CRAC high thermostat setting requirement for server i39

∆T th
temperature difference between the CRAC high and low thermostat set-

tings . 39

Pm
ex power extracted by the CRAC in mode m . 39

P f ull
j power dissipation of chassis j at 100 % percent utilization. 39

Pcomp
h total computing power at inter-event period h . 39

PAC(t) power consumption of CRAC at time t . 39

Ey energy consumption for algorithm y . 39

Em
y energy consumption of CRAC in mode m for algorithm y39

Chapter 3

h height of the ball . 52

xxi

Symbol Definition Page

g acceleration due to gravity . 52

γ coefficient of restitution .53

s laplace transform variable . 53

Vin input voltage . 53

S finite state automata . 55

X set of states in an FSM .55

X0 set of initial states . 55

U Set of inputs to an FSM . 55

Tr transition set mapping .55

u an input in the set U . 55

x1 a state in the set X . 55

Y set of possible outputs . 55

H mapping from state to output . 55

y0 an output in the set Y . 55

HA symbol for hybrid automata .57

L set of modes for a hybrid automata . 57

L0 set of initial modes . 57

R set of real numbers . 57

Inv invariant set .57

li a mode in the set L . 57

φ null set .57

Invo interior of the invariant set . 57

δInv boundary of the invariant set . 57

F mapping from a mode to a function in a compact real set 57

xxii

Symbol Definition Page

n number of continuous variables . 57

Chapter 4 & Chapter 5

n number of nodes in a body sensor network . 74

Pc maximum power of a sensor node with radio on . 78

Pproc processing power with radio off .78

Pradio power consumption by the radio . 78

d number of sleep cycles .78

ts time taken in the sensing phase . 78

tT X time spent in transmitting packets . 78

TPKA time spent in performing physiological value based key agreement . .79

PPKA

power consumption of the sensor during physiological value based key

agreement execution . 79

ρ density of tissue .82

Cp specific heat of tissue . 82

K thermal conductance of tissue .82

T temperature of the skin .82

b blood perfusion constant . 82

Tb temperature of blood . 82

S AR specific absorption rate of the skin . 82

Chapter 6

V continuous states space . 123

n dimension of continuous state space . 123

R set of real numbers . 123

J set of cells composing the continuous state space124

xxiii

Symbol Definition Page

Ji a cell in the set J . 124

J�j the interior of the cell J j . 124

J�j boundary of the cell J j . 124

L1S T HA Linear 1-D space Spatio Temporal Hybrid Automata 125

L set of locations . 128

li a particular location in the set L . 128

Inv invariant set mapping from a location to a set of cells128

φ null set . 128

A n × n matrix of real numbers . 128

B n × n matrix of real numbers . 128

C n × n matrix of real numbers . 128

u n × 1 vector of real numbers . 128

t temporal point . 128

s spatial region . 128

η(t, x) trajectory at a give time t and a given spatial point x 129

τ τ time interval . 135

x a spatial point .129

η|x.dur duration of a trajectory at a given space point x 129

η|t.range range of a trajectory at a given time point . 129

ht time discretization interval ht . 141

hx space discretization interval hx . 141

sl spatial region for a given location l . 134

T time bound for reachability analysis . 133

S space bound for reachability analysis . 133

xxiv

Symbol Definition Page

αt temporal execution .134

xt spatial point at which the temporal execution is considered 136

Re(.) reset conditions for a temporal execution . 170

αt.dur duration of a temporal execution . 134

ηk|x

trajectory of the kth location at a given space point xt where the temporal

execution is considered . 134

αs spatial execution . 135

x0 boundary of the spatial region corresponding to location l0 134

αs.range range of the spatial execution . 135

ηk|
t the spatial trajectory at a location lk for a given time τs 135

τ′ time at which a temporal discrete transition occurs 171

x′ space point at which a spatial discrete transition occurs 136

ε approximation error for reach set determination 137

M epsilon reach set . 138

dH(P,Q) hausdorff distance between two sets P and Q . 138

Ib initial condition for the partial differential equation 138

I0 boundary condition for the partial differential equation 139

ψ laplace paramter .139

Dt,x(P) the state reachable from the initial polygon P . 141

Dt,x(P, γ) γ approximation of the state reachable from the initial polygon P . . 141

RTS (V0)
the reach set at a give temporal and spatial bound starting from an initial

configuration V0 . 145

H a constant parameter . 146

xxv

Chapter 1

INTRODUCTION

Increasingly embedded computing systems in smart and context-aware mission-

critical infrastructures are exhibiting tight coupling with their physical environment

(Figure 1.1). Examples include: (1) physiological sensors deployed on human body

that continuously monitor health and enable fast detection of medical emergencies

and subsequent delivery of therapies [5–7], (2) smart buildings that detect absence

of occupants and shut down the cooling unit to save energy [8], (3) data-centers

or cloud computing infrastructures that use solar energy for cooling purposes [9],

and (4) unmanned aerial vehicles (UAVs), that use an image of a terrain to perform

surveillance [10]. In such systems either, a) context information from the physical

environment is used by the software to improve performance or energy efficiency

of the computing units (as in the case of sensors scavenging energy from the hu-

man body), or b) feedback from the dynamically changing physical environment is

used for automated control of the environment itself (as in the case of artificial pan-

creas [11], where glucose meter readings from a patient is used to control blood

glucose levels). Systems in which the software controls the physical environment or

uses context information from the environment for computing operations are called

Cyber-Physical Systems (CPSes) (Figure 1.1).

1.1 Safety in CPSes

The context driven tight-coupling between the cyber and the physical in CPSes,

though advantageous, is subject to new forms of risks that have not been consid-

ered adequately in the traditional computing domain. These new types of risks in-

clude the cyber element adversely affecting the physical environment (e.g., delivery

1

Duty cycle

Symmetric
Key

Server
Utilization

Control
Algorithm

Infusion Rate

Power
Available

Heat
Dissipated

Temperature

Light intensity

Physiological
Signals

Drug
concentration

Time variant
features

Computing Units Physical UnitsPhysical Property

Set P

Computing

Property Set C

Interaction

Parameter Set I

Computing properties affecting interaction
parameters, member of mapping G

Physical properties affecting interaction
parameters, member of mapping H

Cyber-physical interactions,
members of mapping K

Data centers UAV

BAN

Medical Devices

Sensors

Data center room

Human Body Smart grid

Computing Aspects Physical AspectsTight Coupling

UAV Terrain

Power
Lines

Figure 1.1: Cyber-physical systems, with tight coupling between computing and
physical environment through interaction parameters. Solid lines indicate effect
of computing operations on interaction parameters, dashed lines indicate effect of
physical operations on interaction parameters, and thick solid lines indicate cyber-
physical interactions.

of excessive medication) or vice versa (e.g., throttling of servers in a data center

due to overheating and lack of cooling). Indeed according to a report published by

Networking and Information Technology Research and Development (NITRD) pro-

gram [12], CPSes are by definition safety critical in nature. Since risks in CPSes may

have direct hazardous consequences on the physical environment, CPSes have to

be analyzed and guaranteed for safety even before deployment.

CPSes are complex systems with many interacting components exhibiting

aggregate behavior [13,14], i.e. properties that are only observed when components

operate in coalition and not stand alone. Hence, safety violations may occur due to

faults in different components of the CPS including the computing hardware, soft-

ware, communication medium, physical environment, and the interaction between

different components, which often cause unwanted aggregate effects. A classifica-

tion of CPS safety violations with respect to sources of faults is discussed in Section

2.1 of Chapter 2. Although safety assurance research has an elaborate history dat-

ing back to 1970s when the US army declared their verification and validation pro-

2

Cyber-Physical System Software

Static Testing
Analysis or
Verification

Black Box
Testing

White Box
Testing

1. Statement Coverage
2. Edge Coverage
3. Condition Coverage
4. Path Coverage

1. Logic Specifications
2. Syntax Driven
3. Decision Tables
4. Cause effect graphs

Experimental
Testing

Module
Testing[17]

Integration
Testing[23]

System
Testing[22] Deploy CPS in a real setting

and run
experiments[16,41,83]

Correctness
Proofs

Symbolic
Execution

Model Based Software
Verification

1. Backwards
Substitution

2. Loop Invariants[24]

Execute code for a class
of inputs

Analysis Verification or
Model Checking

Static Assumptions on
Physical

Environment[30,31,32]

Characterizing
Interactions

1. Spatio-temporal Cyber
physical interactions

2. Interactions affected by
dynamic context changes

Formal Models
and Reachability
Analysis[33,34,35

,36,38]

Formal
Interaction
Modeling

1. Spatio-Temporal
Hybrid Automata

2. Reachability Analysis

Figure 1.2: Safety assurance approaches for CPS software. The principal contribu-
tion of this thesis is facilitating cyber-physical interaction modeling and verification in
MBSV for CPSes.

gram for the safety of their Anti-Ballistic Missile [15], only recently there have been

several cases of failures in CPS operation that have been attributed to software

faults while interacting with the physical environment. The flight control software

of Airbus A320 have been reported to behave erroneously when flying strips are

altered (http://catless.ncl.ac.uk/Risks/8.77.html#subj6). The GRASEBY infusion

pumps have been recalled after cases of potentially fatal over-infusions [16] due to

software failures, which were not detected on subsequent testing of the software in

isolation.

Although there has been several efforts to verify the software safety of med-

ical devices including Food and Drug Administration’s (FDA) recent endeavors at

static testing [17], most of them consider software in isolation and ignore the cyber-

physical interactions. Similarly safety research in other CPS domains such as UAVs

limit to static testing of the software [18–20].

This thesis focuses on the complications introduced by cyber-physical inter-

actions in assuring safety of the physical environment from hazards caused by faulty

operation of CPS software.

3

1.2 Approaches for CPS Software Safety Assurance

Over the years several approaches for verification of software of a system [21] has

been undertaken as shown in Figure 1.2, which have been also applied to CPS soft-

ware safety but with little success. CPS software often undergoes post-manufacture

safety analysis through experimentations on selected test cases in controlled envi-

ronments. Although experimental safety evaluation is incomprehensive due to lim-

ited test cases, regulatory agencies such as FDA depend on such evidences of

safety for approving CPSes in healthcare (medical devices). The inaccuracy in ex-

perimental safety evaluation is evident from the large number of recalls faced by

several approved and marketed medical device. Reported hazards for such recalls

include serious fatalities caused by malfunctioning of surrogate devices or life sup-

port systems such as infusion pump control systems. A case in point is the sudden

unpredicted over-infusion of drug by the SMITHS MEDICAL Graseby 3300 Auto-

mated injection system recently listed in the Maude database [16]. The device was

recalled and it underwent the same set of tests and no hazards were reported. Thus,

experimental evaluation although necessary, is not sufficient to prove safety.

Static testing of software is another approach that is widely used in evaluat-

ing the correctness of code [17,22,23]. In this approach, each software component

of CPS is first tested in module testing, then the integration of different components

are tested for faults, then the CPS is tested as a whole system. Each module can

be tested in two ways: a) white box testing, where the internal code of a module is

analyzed by testing the execution of every statement (statement coverage), every

branch of execution (branch testing), every condition (condition testing), and every

possible path taken by the input during the code execution (path testing), and b)

black box testing, where the specification of the code as an algorithm is used to

4

derive logic specifications, decision tables, test syntax, and cause effect graphs for

analyzing the correctness. This approach is extensively being pursued by the regu-

latory agencies such as FDA. FDA has recently suggested the use of static testing

tools such as CodeSonar to medical device manufacturers for proving safety of their

software [17]. Note that often such testing are infeasible, e.g., the number of paths

taken by an input may be infinite as in the case of while loops and hence traversing

every possible path may not be feasible. Thus, such testings are inherently limited.

While experimental and static testing work on individual test cases or config-

urations of the system, analysis operates on a set of test cases at a time and hence

are typically faster and more comprehensive than the testing process [21]. Once the

implementation of the software is available correctness proofs using loop invariants

or backward substitution techniques and symbolic execution of the code can be per-

formed. Correctness proofs are typically complex and obtaining loop invariant is not

feasible for several software implementations. Although researchers have devised

automated loop invariant deduction techniques [24], they are mostly for synthesized

code and impractical for manual implementations. Symbolic execution of the code

involve classifying inputs based on their effects on faults in the software. A subset

of inputs are then derived, which covers all the faults in the software. Representa-

tive inputs from the subset are then used to execute the code and check for faults.

Such combinatorial analysis technique is prevalent in VLSI system design [25] and

has been recently suggested for software analysis by National Institute of Standards

and Technology (NIST) [26].

All the abovementioned techniques however, consider the software of CPSes

in isolation and ignore the cyber-physical interactions. Further, sole reliance on

these testing techniques for safety assurance is not cost effective, since they ne-

cessitate the presence of CPS software implementations, which are typically expen-

5

sive. Any safety hazard detected after implementation may lead to costly redesigning

and re-manufacturing. Finally, hazards in case of faults during experimentation may

cause irrecoverable loss of property and life. Hence, CPS software safety has to

be analyzed before implementation at an early design stage. An approach that is

widely used in this regard is model based software analysis and verification (Figure

1.2).

1.3 Model Based Software Analysis and Verification

The notion of model based software analysis and verification fall under the generic

paradigm of model based engineering (MBE). MBE is a methodology for reasoning

about the properties of a system using simplifying abstractions. Such reasonings

aide in the development of a system by eliminating flaws and checking adherence

to preferences at an early design stage. MBE has been used extensively to de-

velop, manage, and verify, different components of a system. Some of the common

usages of MBE include: a) developing system as a whole, model based systems

engineering (MBSysE) [27], b) managing processes in a system, model based pro-

cess engineering (MBPE) [28], and c) developing the software of a system, model

based software engineering (MBSE) [29].

MBSE involves stages representative of the life cycle of software [29]. It in-

cludes: a) requirements analysis - when constraints such as safety, and preferences

such as development platform for the software implementation are gathered and an-

alyzed, b) development - when the software is implemented in the chosen platform,

c) verification - when the operation of the software is checked for conformity to the

constraints and preferences set forth in the requirements analysis stage, d) deploy-

ment - when the implemented and tested software is customized and installed on

real systems, and e) maintenance - when the software is modified or enhanced to

be compatible with new systems or to cope with newly occurring faults. Model based

6

safety analysis and verification (MBSV) stage of MBSE, is applicable to the problem

of software safety verification of CPSes and have recently received considerable

focus [18–20,30,31].

MBSV depends on an abstract representation of a software design in a

mathematical form or as an algorithm. Any such abstract representation is called a

model. The requirements of the system such as safety, is expressed as constraints

on the system properties, which are variables in the model. Mathematical models

can then be used for theoretical analysis (verification) while algorithmic models can

be used in simulations (analysis) for checking compliance with the requirements.

Once the models are analyzed or verified against the safety requirements, they are

converted into implementations, which are again verified through experimentation.

Thus, MBSV provides early feedback that can be used to eliminate flawed design

before implementation. This quickens the process of development, reduces the cost,

and potentially guarantees safety.

This thesis considers model based software analysis and verification for

CPSes in presence of context driven cyber-physical interactions. First, the chal-

lenges to modeling CPS software are investigated by studying several examples

in two specific domains - healthcare and cloud computing. Secondly, a number of

safety analysis and verification solutions are proposed.

1.4 Related Work

MBSV has been widely used for analyzing and verifying the software of CPSes.

In the medical device domain, FDA is performing collaborative research to apply

MBSV theories for comprehensively proving safety properties of medical devices

before marketing. Several efforts [30, 31] have used MBSV in this regard. Also in

other CPS domains such as UAVs, there has been considerable work [18–20] in

guaranteeing software safety using MBSV. However, such efforts isolate the device

7

software and physical dynamics with which it interacts through static assumptions

on the properties of the environment. Such isolated analysis may be valid for eval-

uating harmful side effects of CPS operation on the physical environment. But for

CPSes where the computing unit incorporates information from the environment in

its decision making (e.g., artificial pancreas), such isolated analysis fail to provide

accurate safety evaluations. To this effect, there has been a considerable push to-

wards hybrid approaches for modeling and analysis of CPSes where the discrete

time operation of the software and the continuous dynamics of the cyber-physical

interactions can be modeled in a single framework. For example, for smart infu-

sion pump control systems simplified hybrid models are used for verifying drug over-

dose [32]. Another hybrid modeling technique with timed automata has been used to

verify pulse oximeter and infusion pump feedback control systems for administering

analgesic [33]. Hybrid modeling has been of great interest in the UAV CPS domain

where the cooperation of the computing logic and the aerodynamics are modeled

and verified [34, 35]. Several work in the more generic context of CPS has been

proposed, where the authors have developed new hybrid models such as O-minimal

models [36], or applying control theory to CPS safety assessment [37] or online ver-

ification techniques [38], or incorporating real time guarantees in CPS design [39].

However, such research efforts either attempt to use the existing modeling construct

such as hybrid automata or timed automata in the new domain of CPS or consider

the CPS operations with only temporal dynamics. In doing so simplifying assump-

tions to the cyber-physical interactions are made, which introduces inaccuracies in

their safety conclusions.

These assumptions ignore at least one of the five salient properties of CPSes

identified in this thesis. These properties, discussed in the following section, neces-

sitate new modeling and analysis techniques. Solutions to a subset of these require-

8

ments are provided in this thesis, while others are open problems worthy of doctoral

research. This need for new modeling and analysis techniques for CPS has been

recognized by the National Science Foundation (NSF), which has invested billions of

dollars on CPS modeling and analysis. The research efforts in this thesis has been

largely funded by three such funding sources.

1.5 Challenges of MBSV for CPSes

Following are the five salient properties of CPSes:

• Hybrid nature: To achieve safety in a CPS, the computing unit needs to ex-

tract diverse types of information, related to say thermal, mechanical, and

electrical properties of the environment. Design and analysis of CPS thus re-

quires in-depth understanding of the characteristics of these information and

their effects on the computing operation. As Willems has aptly pointed out [40],

systems researchers should incorporate detailed behavioral characterizations

of the physical environment in the theories and techniques of computer sci-

ence. Lack of such considerations result in serious violations of safety prop-

erties. For example, in case of a pulse oximeter in a Body Sensor Network

(BSN), if the control of the sampling frequency is not aware of the tempera-

ture rise on human skin, severe burn hazards can occur [41]. This stresses the

need for a unified inter-disciplinary approach towards CPS design for achiev-

ing safety, that combines theories from computer science with other disciplines

of science and engineering. Computing systems typically have discrete oper-

ations with several states or modes of operation while physical environment is

continuous in nature modeled using differential equations. Hence, an unified

approach will necessitate hybrid models that can capture both discrete and

continuous operations in a single construct.

9

• Aggregate effects: Many CPSes, such as BSNs and data centers, are fur-

ther distributed in nature, i.e. they comprise of more than one computing

entities (henceforth referred as the computing nodes) distributed across the

environment. Figure 1.3 shows the deployment of the aforementioned two

representative CPSes. As shown in the figure, the heating effects, caused by

the operations in the sensors and the computing servers in BSNs and data

centers, respectively, are the unintended interactions. The distributed nodes

often perform concurrent operations; thus causing aggregation of the detri-

mental impact on the environment from multiple nodes. For example, in data

centers, the recirculation of accumulated heat (referred as heat recirculation in

Figure 1.3b) from multiple servers can cause higher increase in the operating

temperature than the heat from a single server. Similarly, in BSNs, concurrent

operations in more than one sensors can have accumulated heat effect on

certain parts of the body depending on the deployment of the sensors (Figure

1.3a). Thus, CPSes may have aggregate energy interactions, which exist only

in presence of a network. Any modeling solution of CPSes should be capable

of characterizing aggregate effects in case of networked operation.

• Spatio-temporal interaction: The interactions in a CPS, are spatio-temporal

in nature. For example, in case of infusion pumps in a BSN, that inject a

given drug (e.g., insulin) into the human body, the effect of the drug on the

physiological parameters (e.g., blood glucose concentration) vary over space

as well as time. The effect is maximum at the sight of infusion and de-

creases at locations away from the sight being affected by the blood perfusion.

Capturing spatio-temporal effects requires multiple independent variables that

determine the evolution of the model. Researchers have extensively stud-

ied models that evolve over a single independent variable, most commonly

10

Human
Body (Skin)

BSN Node
(Sensors)

Scavenging
Sources
(Body Heat)

Thermal
Interaction

(a) BSN with on body physiological
sensors (EKG, PPG and SPO2).

Cool Air coming from CRAC (Intended Interaction)

Hot Air coming

out of chassis

(Unintended

Interaction)

Heat Recirculation

(Aggregate Effect)

(b) Data Center with two rows of racks
each containing several thousands of

servers.

Figure 1.3: Typical deployment of two representative CPSes showing the distributed
nature of the computing nodes, intentional and un-intentional interactions with the
physical environment, and the aggregate effect of these interactions because of con-
current operations in the distributed nodes.

time [18–20, 30, 31, 34, 35, 42, 43]. However, there exist limited efforts to cap-

ture model evolution over both space and time.

Most of the current research in spatio-temporal modeling concentrate on dis-

cretization of space and time, which introduces error in estimation [44–47].

For CPS modeling such discretization errors can lead to wrong safety conclu-

sions. Further, fine grain discretization of space and time leads to explosion of

variables to the point of becoming intractable. Hence, analysis of CPS models

should consider a continuous evaluation of spatio-temporal dynamics.

• Non-linear interaction: Non-linearities are inherent in the physical environ-

ment, e.g., the infused drug concentration variation over time inside human

body follows an error function curve. Hence, CPS models can be non-linear

in nature. Non-linearities are embodied in many different forms in a model in-

cluding delays and multiplicative terms. Theoretical analysis techniques only

exist for specific types of non-linearities which may not apply to a large class

of CPSes.

11

• Dynamic context changes: The physical system in a CPS is constantly un-

dergoing change in context, e.g., weather changes, change in temperature,

change in physiological condition. Mobility, for example, is an primary cause

of such context changes in the system. These changes affect the operation

of the computing units in the CPS, for example, movement from indoor to

an outdoor environment changes the packet delivery rate (PDR) of the wire-

less medium, which can trigger a radio power management algorithm in the

sensors of a BSN. Safety analysis of CPSes should consider such dynamic

changes in the environment as a part of the model.

Hence, MBSV for CPSes needs to consider the five above-mentioned characteris-

tics of CPSes. Current techniques and modeling abstractions lack in several aspects

to be applicable to CPSes. A Federal Networking and Information Technology Re-

search & Development (NITRD) report has indeed identified the importance of new

design abstractions for CPS [48]. The research in this doctoral study investigates the

available modeling and analysis approaches for CPSes and evaluates their capabil-

ities to capture the five salient properties of CPSes. To this effect, new modeling ab-

stractions and analysis techniques are proposed and evaluated by applying them to

two CPS domains - healthcare and cloud computing infrastructure. A brief overview

of contributions to MBSV for CPSes is discussed in the following subsection.

1.6 Thesis contributions

The thesis focuses on model based safety analysis and verification of CPS software

in presence of dynamic context driven cyber-physical interactions. Any MBSV ap-

proach toward CPSes should be able to capture the five salient properties - a) hybrid

operation, b) spatio-temporal evolution of system dynamics due to cyber-physical in-

teraction, c) aggregate effects due to concurrent operation of networked systems, d)

12

Computing
System

Physical
Processes

Cyber-Physical System

Hybrid
Models

Safety
require
ments

Model
Analysis

Architectural
Models

Formal
Behavioral

Models

Fast
Simulation

Theoretical
guarantees

Verified
Models

Automated
Synthesis

Software Hardware
Chap 2

(Chap 4 & 5) (Chap 6 & 7) (Chap 4 & 5) (Chap 6 & 7) (Chap 8) (Chap 9)

Chap 2

Figure 1.4: Stages of model based safety verification of CPS software and thesis
contributions. The MBSV consists of three stages modeling, analysis and synthesis.
The thesis has contributions in each of the three stages.

non-linear dynamics, and c) dynamic context changes due to random environment

and human mobility. This section discusses three principal stages of MBSV and the

contributions of this thesis in each of the stages. Three principal stages of MBSV,

as shown in the Figure 1.4, are - a) Modeling, b) Analysis, and c) Synthesis.

Modeling Stage

MBSV depends on models, which are abstract representation of the system compo-

nents and processes. Models can be of various kinds but can be principally classified

into two different types - a) Architectural models and b) Behavioral models.

Architectural models represent a system as a connected graph components

or subsystems. Each subsystem may have properties associated with them. A con-

nection between two component may denote flow of information or a subcomponent

relationship. Architectural models are useful for easy specification and fast simula-

tion of test cases.

Behavioral models represent the internal process of a system using different

types of abstractions. It can be transfer function representation, which views the

system as a black box and gives the variation of output for a given input as a mathe-

matical function or a formal model that represents the system behavior using states

and transitions between them.

13

Contributions: To capture the five salient properties of CPSes in models the thesis

makes the following contributions -

• An architectural modeling solution BAND-AiDe [2] for BSNs or CPS-DAS for

CPSes in general is proposed that can capture linear or non-linear aggre-

gate spatio-temporal physical dynamics as well as computational aspects of

CPSes.

• The CPS-DAS is then extended with capability to model cyber-physical inter-

actions under dynamic contexts [49].

• On the behavioral modeling front, a novel hybrid model, spatio-temporal hy-

brid automata (STHA) is proposed that can model linear aggregate spatio-

temporal effects of cyber-physical interaction as well as the discrete computa-

tional operations of a CPS in a single construct.

• For non-linear CPSes having only temporal dynamics, an error bounded linear

approximation technique is proposed to convert the non-linear system into

linear one dimensional hybrid automata.

Analysis Stage

The models in MBSV are used to analyze system parameters and verify safety re-

quirements before implementation or deployment. Model analysis can be broadly

divided into two categories - a) simulation of test cases, and b) reachability analysis.

Simulation analysis is necessary for fast testing of given configurations of the

CPS. This is typically helpful to test worst case operating conditions or for estimating

the amount of resource required for a given operation.

Reachability analysis is more comprehensive in the sense that it takes a

set of configurations of the CPS model and outputs the possible values that the

14

system parameters can reach at any arbitrary time. Reachability analysis is helpful

for providing guarantees on system behavior.

Contributions: The thesis explores both simulation and reachability analysis solu-

tions for analyzing safety of CPSes. Following are the contributions -

• The architectural models are used for simulation through a CPS-DAS analyzer

proposed in the thesis.

• Reachability analysis is performed on the formal models discussed in this the-

sis to provide safety guarantees on the CPS models. CPS models have non-

linear and spatio-temporal dynamics for which there are limited reachability

analysis techniques. In this thesis, two real world case studies are considered

- i) artificial pancreas, where the cyber-physical interactions are non-linear in

nature but not spatio-temporal, and ii) infusion pump drug diffusion or pulse

oximeter thermal effects, where the dynamics is linear but spatio-temporal.

The non-linear case is handled using suitable linearization techniques and

then applying existing reachability analysis techniques for linear hybrid mod-

els. For STHA models, a novel reachability analysis algorithm is proposed.

Synthesis

The output of the analysis stage is a model which meets the safety requirements.

The synthesis stage takes the architectural or behavioral model and converts it into

an implementation in a standard testbed. The synthesis can be in hardware or soft-

ware. Automated hardware synthesis necessitates a standardized prototype testbed

such as a field programmable gate array (FPGA) or field programmable analog array

(FPAA). Software synthesis on the other hand necessitates a code generator.

Contributions: This thesis discusses an automated code generator from high level

specification, Health-Dev [50], in the healthcare CPS domain for implementing wire-

15

less health systems such as body sensor networks controlled by a smart phone. On-

going extension of this thesis includes emulation of cyber-physical interactions using

hardware. In this regard, field programmable analog arrays (FPAA) are used for syn-

thesizing differential equations in hardware that represent the continuous dynamics.

Such synthesis is helpful in fast estimation of the cyber-physical interactions, which

can be used to profile CPS properties to be used in simulation or reachability anal-

ysis. It can also serve as a physical system emulator using which the CPS software

can be tested for interaction safety.

In the next few chapters, the thesis gives a detailed description of its contri-

butions with examples in different CPS domains, analyzes the usefulness and draw-

backs of the proposed solutions, and also discusses open research problems worthy

of PhD level research on CPS safety verification. Let us begin with a generic defini-

tion of CPS, some example CPSes, and associated safety issues.

16

Chapter 2

CPS DOMAINS AND SAFETY ISSUES

A CPS, as shown in Figure 1.1, consists of embedded computing units, which tightly

interact with their physical environment to provide critical functionalities such as early

detection of health problems, securing sensitive data, and enabling long term unin-

terrupted operation. The computing units of a CPS can be characterized by a set of

quantitative properties, C. These properties are related to the computing operation

and are functions of the type of application executed. For example, members C can

be the utilization of a server in a data center, the initial concentration input to a drug

infusion control algorithm [51], the duty cycle of a sensor, or a 128 bit key for en-

cryption during communication. The physical environment in a CPS can be similarly

characterized by a set of quantitative properties,P. Examples of physical properties

include time varying physiological and environmental signals such as, temperature,

humidity, and amount of sunlight.

In a CPS, the properties in C are closely related to those in P through phys-

ical processes that cause variation of the properties in the physical environment.

Such physical processes can be characterized by a set of interaction parameters,

I. The interaction parameters can be associated with both the computing and phys-

ical properties in a CPS. Typical examples of interaction parameters include heat

transferred from the servers in the data center to the ambient air, amount of energy

harvested from the environment, or frequency domain features of physiological sig-

nals. Both the physical and computing properties affect the interaction parameters.

The computing properties are time varying. Hence the mapping between the sets C

and I can be represented by G : C×t → I (thin solid arrows in Figure 1.1), where t is

17

time. The properties of the physical environment vary over both space and time. For

example, temperature varies from place to place in a data center and the intensity of

sunlight is low under shade and also has diurnal variation. Hence the mapping from

the physical properties to the interaction parameters, H : P × t × {x, y, z} → I, is

spatio-temporal in nature (dashed arrows in Figure 1.1), where {x, y, z} represents a

point in the coordinate space.

In practice mappings in G either have to be determined by performing profil-

ing experiments, e.g., utilization to power curves for a server in the data center [52],

or can be a result of the execution of an algorithm. On the other hand, the mappings

in H can be determined either by building of models of the physical processes, e.g.,

electro-mechanical models of energy obtained from piezoelectric devices [53], or

can be obtained through signal processing, e.g., extracting security keys from phsyi-

ological signals [54]. The interaction parameters define cyber-physical interactions

as follows:

Definition 1 A cyber-physical interaction is an inverse mapping K from a subset of

I to a subset of P or C.

Example 1 Pulse-oximeter thermal effects: In case of a fingertip pulse oximeter

operation [41], the sampling frequency (C) affects the amount of heat dissipated

(I). Heat dissipated as a function of frequency (G) can be obtained through power

profiling of the pulse oximeter. The effect of the dissipated heat on the temperature

rise of the human body (P) is characterized by the Penne’s bioheat equation [4].

Such a mapping is an example of K. The specific heat and skin conductance of the

human body also affect the temperature rise through mapping H, which has to be

experimentally characterized. ..

18

Example 2 Drug infusion: Infusion pumps operate in close loop with physiological

sensors such as glucose meter or SPO2 sensor to control drug infusion. The in-

fusion rate (C) affect the drug concentration in the blood (I) through the diffusion

process. The diffusion process (G) can be characterized by the pharmacokinetic

model [55]. The drug concentration then affects physical properties (P) such as

blood oxygen level, unconsciousness, or cell death rate in case of chemotherapy

through physiological processes (K) such as change in action potential. A control

algorithm in the infusion pump takes the physical properties as input and adjusts

the infusion levels so as to achieve the desired physiological effects while avoiding

hazards such as respiratory distress [55]. ..

Broadly, cyber-physical interactions can be of two types: a) intended interac-

tions, which refer to the usage of information from the physical environment for per-

forming useful computing operations (Example 2) and b) unintended interactions,

which refer to the side effects of operation of the computing units on the physical

environment (Example 1). Further, in case of networked CPSes, there are often

combined effects of the individual interactions called aggregate effects, as observed

in multi-channel drug infusion. A case in point is the increased death rates of cancer

cell when α monoclonal antibody and mathotrexate drugs are infused simultane-

ously rather than when infused sequentially [56]. According to a recent report by

NITRD [12], CPSes are safety critical infrastructures. Safety hazards can occur due

to failures in different components of CPSes. In the following section, let us consider

some of the major types of safety issues occurring in a CPS.

2.1 Safety in CPS

Safety is a property of any system by virtue of which it can be guaranteed that there

will be no harm to the infrastructure and to the physical environment during normal

19

or faulty operation of the system. In the literature, researchers have concentrated on

different components of a system and have defined safety in specific contexts of the

computing hardware, network, and software. One of the unique features of a Cyber-

Physical System (CPS) is the interaction of the computing unit with the physical

environment. Hence, for CPSes the safety concerns are related to the interaction

between the computing device and the physical environment.

The most generic definition of safety for a CPS can be found in the ISO

60601 standard for safety of medical electrical equipment. ISO 60601 defines safety

as the avoidance of hazards due to the operation of a medical device under nor-

mal or single fault condition [57]. This definition can also be applied to a CPS in

general non-medical domains by broadening the scope of hazards considered, in-

cluding faulty operation of the computing unit, radiation leaks, thermal effects, bio-

compatibility issues, software failures, mechanical, and electrical hazards. Hence,

safety for CPS has to be considered in both CPS (hazard due to interaction) and

non-CPS (hazard due to failure in computing devices) sense. In the literature, sev-

eral research endeavors have considered different safety aspects of a CPS, which

are listed below.

Scenario safety: It considers the safety of the CPS and its environment from a the

high level decision making perspective. It considers how the CPS handles random

hazardous events occurring in the environment potentially causing harm to life and

infrastructure if not mitigated called criticalities. Ensuring scenario safety guarantees

that under a given number of critical scenarios the CPS will mitigate all of them

and return to a normal state, where there are no more critical events. This notion

of scenario safety can be applied to any system (CPS or non-CPS) and involves

identifying critical situations of a system, developing methodologies to handle critical

conditions, and a framework to manage multiple criticalities occurring at the same

20

time. Example research in this regard includes the criticality response planning,

evaluation, and actuation [58] [59] framework developed at the IMPACT Lab, ASU.

Network safety: CPS generally involves a network of computing units communicat-

ing with each other through wireless or wired channels to achieve mission critical

and smart operations. Network channels have problems of contention when the

number of communicating devices increase. Further, the wireless channel is prone

to errors such as bit errors, burst errors, and multi-path fading errors. Under this

circumstances the network safety ensures that information transfered from one de-

vice to the other is not corrupted, reaches within a given amount of time, and is not

lost due to errors in the channel. Ensuring such network safety involve an in depth

analysis of the characteristics of the communication channel and the operation of

the computing device under loss of information due to network errors. This form of

safety is also not limited to a CPS and is applicable to non-CPSes also since it does

not require analyzing the interaction between the computing device and physical en-

vironment. Many medical responses would involve network of medical devices and

it is important to analyze the impact of network delays and packet drops on criti-

cal care operations. Such evaluation of network safety in medical device networks

has been performed by Gehlot in Villanova University [60]. However, in recent years,

there has been an increased interest in using the human body as the communication

channel in several medical applications, where in-vivo sensors are deployed [61]. In

such cases, the network safety will involve characterizing the human body as the

communication channel. However, such analysis is also not CPS specific, as it only

characterizes the properties of the human body and does not analyze the interaction.

Software safety: This is a broad area of research and is related to the operation

of the software of the CPS computing devices. It is applicable for both CPS and

non-CPS systems. For non-CPS systems several notions of software safety exists:

21

1. Code safety, which considers safety from coding errors such as infinite while

loops, unreachable conditions etc [62].

2. Control system safety, which considers safety from undershoot, overshoot,

unstability and long settling times (investigated as part of the design of infusion

pumps [63]).

3. Interaction safety: For CPS specific software safety a new domain of interac-

tion safety has been defined in this thesis, which considers the cooperation

of the software of a CPS with the dynamic physical environment. Traditionally,

researchers have focused on bypassing this cooperation characterization and

transforming the safety assurance problem into a well understood problem in

computer science such as formal model reachability analysis. In this regard,

several static assumptions on the physical environment has been considered,

which abstract out the dynamic nature of the physical environment. For ex-

ample, in works such as [30, 31], infusion pump software has been modeled

using a timed automata. The diffusion process is simplified so that the drug

concentration in the blood is incremented by the infusion rate instantaneously.

The problem of safety assurance is consequently reduced to developing bug

free software or a control system analysis problem, which are essentially the

non-CPS approaches discussed before. Such simplified notion of safety, how-

ever, may not entirely capture the hazards resulting from the dynamic cyber-

physical interactions. For example, infusion pumps for chemotherapy require

characterization of the spatial extent to which the drug diffuses. In case of

pumps used for anesthesia [55], the safety analysis requires the time taken

for the drug to reach a particular concentration. Hence in order to guarantee

safety of CPS software it is necessary to accurately characterize the spatio

22

temporal dynamics of the physical environment and its tight coupling with the

computing units. In essence more focus is needed on the interaction safety.

Interaction safety hazards can occur due to different kinds of cyber-physical

interactions:

• Interaction between two computing units: Cyber-physical interactions of

two computing units in different CPSes may affect each other’s opera-

tion in hazardous ways. Recently headphones are reported to interfere

with pacemakers of heart patients (http://www.medicaldevicesafety.org/

). The electromagnetic interaction of the headphone with the patient’s

body gets coupled with the electromagnetism induced by the pacemaker

on the patient’s heart and deactivates it.

• Interactions from computing units to the physical environment: Cyber-

physical interaction between the computing units and the physical envi-

ronment may have harmful effects on the physical environment.

• Interaction from the physical environment to the computing units: The

operation of the physical environment may impose hindrance to the op-

eration of the computing unit. For example, tissue growth around the

implanted sensors can hamper sensing and communication capabilities.

Addressing interactions safety is a challenging task. Principally, it requires exact

understanding of the physical processes of the environment and the properties of

the computing unit that affect the physical processes. The Table 2.1 summarizes the

different definitions of safety and also identifies, CPS specific ones. In this thesis,

special focus is given on interaction safety of CPSes.

This thesis considers interaction safety in CPSes and provides MBE solu-

tions to safety analysis and verification. Before going into the details of the solutions

23

Table 2.1: Definition of different safety categories in a CPS is listed. The safety
categories are further classified as CPS specific, non-CPS or applicable to both

Definition of Safety CPS specific non-CPS both

Scenario Safety 4

Network Safety 4

Code Safety 4

Control Safety 4

Interaction Safety 4

let us first discuss in detail some CPS examples that will be considered as case

studies for illustrating the proposed solutions.

2.2 Ayushman Pervasive Health Monitoring System (PHMS)

Ayushman is a smart health infrastructure developed in the IMPACT Lab for privacy

ensured continuous health monitoring of ambulatory individuals. The Ayushman

has a multi-tier architecture enabling management of sensors, secure storage and

dissemination of data, access control of user health history, query processing, ser-

vice discovery and context processing. At the core of the Ayushman PHMS is a

BSN consisting of a number of physiological as well as environmental sensors such

as photoplethysmogram and humidity sensors and a smart phone serving as the

computation and communication hub. In Ayushman we consider three different con-

texts which vary in their hardware software configurations, communication protocols,

power management techniques, and energy sources.

Home Context

In this context, the user is being monitored in a home environment.

Requirements: The principal requirements from the PHMS are: 1) thermally safe

operation of wearable device, 2) low energy consumption so as to prolong battery

life, and 3) early detection of health emergency such as arrhythmia.

24

Sensor
CPU
Utilization

Time

Sensing Phase

Transmission Phase

Security Phase
Sleep Cycle

Ayushman WorkloadEnables
processor duty
cycling (sleep
states)

Frequency
Throttling during
security phase

Figure 2.1: Ayushman workload with varying computation and communication re-
quirements. Computation includes sensing and signal processing for physiological
value based security. The sensor processor is duty cycled and the frequency throt-
tled while the radio is kept off during the computation phase.

Hardware Configuration: The PHMS consists of physiological sensors such as elec-

trocardiogram (ECG), photoplethysmogram (PPG), and galvanic skin resistance

(GSR) sensors, and environmental sensors such as temperature and humidity.

The Shimmer sensors (www.shimmer-research.info) is used for ECG and GSR,

and the TelosB sensors used for environmental signals are commercially available

programmable sensor platforms, which have a micro-controller, such as MSP430

(xbow.com) for computation and a radio for communication, such as Chipcon

(www-inst.eecs.berkeley.edu/~cs150/Documents/CC2420.pdf) or Bluetooth radio.

The PPG sensor is medical grade and is not programmable. The smart phone is

assumed to have an Atom processor interfaced with a Bluetooth radio for commu-

nication purposes. The Intel Atom processor provides six sleep stages of which the

deep sleep state (C6) consumes the least amount of power. It also supports eight

throttling modes in which the processor operating frequency can be modulated. The

sleep states and the throttling modes are controlled through operating system Ad-

vanced Configuration and Power Interface (ACPI).

Software Configuration: In Ayushman (as shown in the Figure 2.1) the sensors in the

PHMS sense physiological data for ts seconds and store them in local memory. After

25

Raw signal
updates

Feature
updates

G

Server

Raw ECG
samples

Align
Output

ECG

Sensor

G

Sensed
ECG

Compare
Match

?

Figure 2.2: Generative Model based Resource Efficient Monitoring. The sensor and
the base station uses a model to reduce communication. The sensor only transmits
model parameters to the base station which in turn uses the model to reconstruct
the data.

ts seconds they transfer the data to the base station in a single burst. Every com-

munication is secured by encryption with a secret key, which is established between

each pair of PHMS devices. Key agreement between two sensors is performed fol-

lowing the Physiological value based Key Agreement (PKA) [64] protocol. In this

protocol the two participating sensors sense the same physiological value (Photo

plethysmogram signals [64]) and perform complex signal processing including FFT

computation, peak detection, polynomial evaluation and quantization to derive fea-

tures. The features are used to hide a secret key using the fuzzy vault paradigm

and is exchanged between the two sensors (known as Vault transfer). This secret

key is used for further communications between the two sensors. To maintain key

freshness PKA execution is required every 24 hrs.

Energy Source: Since the user is at home, we assume that all the PHMS devices

are charged using batteries. While at home this should be easy and noninvasive.

Radio Communication Protocol: In the home context, the sensors can communicate

with the smart phone using either ZigBee or Bluetooth. The smart phone commu-

nicates with a laptop using the wifi. To save communication energy and enable

long term monitoring with prolonged battery life, the sensors use model based data

transmission paradigm [65]. In such a technique as shown in Figure 2.2, the sensor

26

compares the sensed signal with a model. If it matches it does not send any data,

in which case the base station uses the model to regenerate the signal. If it does

not match the sensor sends the sample by sample data which is used by the base

station to learn a new model. Employing this technique an energy savings of 42:1

for ECG [65] and 300:1 for PPG [66] can be obtained. The model based communi-

cation technique can be applied here since the physiological signals have a definite

structure.

Human Body: The safety of the PHMS depends on the thermal effects of the individ-

ual nodes on the human body. The physical properties of the human body are ob-

tained from previous literature (http://niremf.ifac.cnr.it/tissprop/) where the authors

had done experimental measurements in clinical trials. The physical phenomenon

governing the transfer of heat from the PHMS nodes to the human body is given by

the mathematical formulation by Penne [4].

Roaming Context

In this context the user is either in travel or is out for a jog doing exercise.

Requirements: The principal requirements are: 1) reliable data communication un-

der wireless errors and low packet delivery ratio (PDR), which is typical of outdoor

environments [67], and 2) batteryless operation since recharging is not possible

when outdoor.

Hardware Configuration: Same as the Home context.

Software Configuration: The application workload is the same as in Home context.

However, since there scarcity of energy source several power management tech-

niques are applied in software: 1) employing radio sleep scheduling techniques,

2) enabling processor duty cycling in individual PHMS nodes, and 3) enabling pro-

cessor frequency scaling in PHMS nodes. The workload for Ayushman consists of

intermittent high computation and communication phases followed by longer periods

27

Table 2.2: Power available from different scavenging sources in the environment and
the human body. The scavenging hours indicated are gross estimates for the case
study based on the study by Paradiso [1].

Scavenging
Source

Available Power
(W)

Scavenge Time
(Hrs)

Body Heat 0.1 - 0.15 24
Ambulation 1.5 2
Respiration 0.42 6
Sun Light 0.1 3

of inactivity. In periods of low computation and communication, when the sensors

are sensing data (Figure 2.1 short and wide block), the processor can be put to a

low power sleep state and the radio can be shutdown. However, during data trans-

mission phases (Figure 2.1 tall and narrow block) both the processor and the radio

has to operate simultaneously. In phases where only computation is required, as in

the security phase (Figure 2.1 tall and wide block), the radio can be shutdown while

the processor frequency can be modulated to control the energy consumption.

Energy Source: We consider four sources of scavenging energy based on their ease

of use for the host: 1) body heat, 2) respiration, 3) ambulation and 4) sun light. The

authors in [1] provide energy models of scavenging sources which we use in our

case-study. Table 2.2 gives the available power from the scavenging sources and

also the time duration for which they can perform the scavenging operation.

Radio Communication Protocol: The basic radio protocols used are the same for the

Home context. However, given the low PDR, high wireless channel errors are pos-

sible. Hence, techniques such as retransmissions and dynamic power management

are used which reduces the energy savings of the model based data communication

protocol.

28

Hospital Context

In this context, a medical emergency has occurred and the user has to be admitted

to a hospital.

Requirements: The principal requirements are: 1) high fidelity data sampled at rec-

ommended sampling rates, and 2) hazard free operation of medical device control

systems such as infusion pumps.

Hardware Configuration: Medical grade devices and control systems are used in-

stead of commercially available sensor platforms. An example is the infusion pump

drug control system, where an infusion pump diffuses analgesic into the user. The

pump receives feedback on the level of consciousness of the user from the blood

oxygen level through a pulse oximeter sensor. The control algorithm of the infusion

pump maintains a safe level of analgesic concentration in the blood so that it does

not cause respiratory distress in the user [55].

Software Configuration: The infusion pump has a specialized control algorithm pro-

grammed in it, which continuously sends state information and receives control in-

puts from the server.

Energy Source: Energy is obtained either from the batteries or directly from the

mains.

Radio Communication Protocol: Bluetooth, Wifi, and ZigBee are most common pro-

tocols. Often the devices are wired directly to the server.

Context changes

Context changes occur due to random events triggered by: 1) user mobility, modeled

using mobility models such as random way point and Markovian model, 2) emer-

gency events such as detection of fall, epileptic seizure, arrhythmia, and 3) user

settings, such as activation and deactivation of the PHMS. The different contexts

29

HOME
ROAMING

HOSPITAL

INACTIVE DEACTIVATE

EMERGENCY EMERGENCY

MITIGATION

DEACTIVATE

ACTIVATE

PD

PE PE

PM

PA

PD

Figure 2.3: Finite State Automata representation of contexts and context changes,
ContextFSM, for the Ayushman PHMS. The transitions are governed by random
models of contexts such as mobility or occurrence of physiological conditions such
as epilepsy.

can be represented as states in the ContextFSM and the events can cause transi-

tion from one state to the other. The events can be generated using random number

generators or using the mobility models as generative functions. The ContextFSM

for the Ayushman PHMS is shown in Figure 2.3.

2.3 Artificial Pancreas

Artificial pancreas are wireless control systems, which infuse insulin to control the

blood glucose level of a type 1 diabetes patient and in the process obtain feedback

using glucose sensors. On careful review of several device design submissions, we

derive a generic architecture of artificial pancreas as shown in Figure 2.4. Artificial

pancreas consist of an infusion pump, a glucose meter, and a remote base station

operating as a closed loop control system. The remote base station runs a discrete

control algorithm that takes the glucose meter reading as feedback and the required

blood glucose level as the set point and computes the future infusion rate. This

future infusion rate information is transfered to the insulin pump over the wireless

channel, which then administers insulin at the requested rate. The glucose meter

senses the blood glucose level at specified sampling rates and sends it back to the

base station using the wireless channel. In the following subsections we describe

30

Glucose Monitor

Infusion Pump

Control Algorithm

Discrete Computing Operation

Continuous Human Physiology

Figure 2.4: Generic Architecture of Artificial Pancreas, which consist of an infusion
pump, a glucose monitor and a remote controller. The controller receives feedback
from the glucose meter and computes the future infusion rate using a model predic-
tive control algorithm. It transfers the infusion rate to the infusion pump. Communi-
cation between the pump, controller, and the glucose meter takes place through the
wireless channel.

the most commonly used control algorithms and models of glucose meter feedback

for artificial pancreas.

Discrete Control Algorithm

An artificial pancreas control algorithm is mostly inactive and relies on the patient’s

own insulin management characteristics such as basal insulin rates and activities

causing carbohydrate intake or burn. However, it continuously monitors or predicts

the blood glucose level based on insulin injection and glucose intake or burn his-

tory, and takes action only when the blood glucose level reaches dangerous levels

31

such as hypo- or hyper- glycemia. The control algorithm has three active modes of

operation: i) Brake, ii) Correction bolus, ii) Meal bolus supervision modes.

Brake Mode

In the brake mode the control algorithm first estimates the risk of hypo-glycemia of

the patient, R(t + τ), at a future time t + τ from the present time t. Based on this risk

parameter, the braking module attenuates the basal insulin infusion rate. Three risk

conditions are defined in most artificial pancreas configuration: a) no risk stage,

when the predicted blood glucose level at time t + τ, BG(t + τ), is greater than

a prescribed threshold BGpres
thresh, b) low risk stage with slow attenuation of basal

insulin rate, when BGlow
thresh ≤ BG(t + τ) ≤ BGpres

thresh, where BGlow
thresh is a lower bound

on the glucose concentration and c) high risk stage with large attenuation of insulin

infusion rate, when BG(t + τ) < BGlow
thresh. The risk parameter for these three ranges

is given by Equation 2.1:

= 0, no risk (2.1)

R(t + τ) = k1(k2(ln(BG(t + τ)))k3 − k4)2, low risk

= 100, high risk

where, k1, k2, k3, and k4 are parameters of the artificial pancreas system. According

to these risks the basal insulin delivery rate is attenuated using the Equation 2.2:

Jattn(t) =
Jbasal

1 + kR(t + τ)
, (2.2)

where Jattn(t) is the attenuated insulin delivery rate, Jbasal is the basal infusion rate

and k is a patient specific parameter. Note that the braking mode and the subse-

quents modes need a glucose concentration predictor, which will be discussed in

later sections.

32

Correction Bolus Mode

Correction bolus mode is only active when four conditions are met: a) the braking

mode is inactive, b) there has not been a meal bolus for the last 2 hours, c) it has

been one hour since the last correction bolus, and d) the predicted blood glucose

level one hour hence is greater than a high threshold value of BGhigh
thresh. If all the

above mentioned conditions are met, then a correction bolus as given by Equation

2.3 is administered.

Jcorr =
BG(t + 60|t) − BGhigh

thresh

2θ
, (2.3)

where θ is also a patient specific parameter and Jcorr is the corrected infusion rate.

Meal Bolus Supervision Mode

The meal bolus supervision mode is activated by the patient at meal times. This

bolus is to ensure that the patient’s blood glucose level does not exceed dangerous

levels during a meal intake. The bolus is computed by the control algorithm using

Equation 2.4.

Jbouls =
0.4θT DI

2MS
, (2.4)

where Jbolus is the bolus infusion rate, θT DI is the total insulin intake required by the

patient and MS is the meal size. The meal size is categorized into three levels:

heavy (MS = 2.5), medium (MS = 3), and small (MS = 5) meals.

Blood Glucose Predictor Model

In each of the supervisory modes the control algorithm requires a predictor to es-

timate future blood glucose levels. The most commonly used predictor is a state

space model [68] proposed by Chase. Several variants of this model exists in liter-

ature and are used extensively in proposed artificial pancreas model. The insulin

diffusion process is represented using a three compartmental model. In this model,

33

it is assumed that the injected insulin diffuses into the blood through three different

membranes. There are two gut compartments where glucose is stored and the in-

sulin is used up in the resulting interaction. Further, the insulin also diffuses into a

remote compartment due to the continuous flow of the blood. The insulin concen-

tration and stored glucose volumes at the different compartments are represented

as the state parameters of the model and a state vector S (t) is formed as shown in

Equation 2.5.

S (t) = [δBG(t), δX(t), δIsc1(t), δIsc2(t), δIp(t), δBGsc(t), δQ1(t), δQ2(t)]T , (2.5)

where BG(t) is the blood glucose concentration in mg/dl, X(t) is the remote com-

partment insulin action in min−1, Isc1(t) and Isc2(t) are the interstitial insulin concen-

tration in the first and second compartments, respectively in mU, Ip(t) is the plasma

insulin concentration in mU, BGsc(t) is the interstitial glucose concentration in mg/dl,

and Q1(t) and Q2(t) are the stored glucose levels in the first two compartments in

mg. δ indicates the difference from some reference values.

Given this state vector, a discrete time state predictor is employed, which

expresses the current state of the insulin glucose interaction in terms of the state at

a previous time, the injected insulin uin(t), and the meal intake of the patient β(t).

The discrete state predictor is implemented as a Kalman filter with the state space

equation given in Equation 2.6.

S (t) = AS (t − 1) + Buin(t − 1) + Eβ(t − 1), (2.6)

where, A, B, and E are the parameters for the predictor and can be determined from

insulin-glucose interaction profiles obtained using T1DM simulators [69]. In many

of the submissions for artificial pancreas the daily meal intake by the patient β(t) is

modeled using a zero mean Gaussian white noise process. The first element in the

34

state vector S (t) is the predicted blood glucose level, based on which the control

algorithm decides on the future infusion rate.

The discrete control algorithm decides on an infusion rate at a chosen sam-

pling period. The effect of that insulin infusion is measured by a glucose meter and

is fed back to the control algorithm, which it uses to build the state vector history. But

in a formal model this glucose meter has to be represented using some mathemati-

cal formulation. In this thesis, we discuss a well studied mathematical model of the

infusion diffusion process that we use to represent the glucose meter in the closed

loop operation of the infusion pump.

Let us assume that the infusion pump has a safety verified software. Ac-

cording to the infusion pump safety criteria as listed in the generic infusion pump

project [62], the infusion rate should not exceed p% of a preset value. However,

this safety criteria does not correspond directly to patient safety. Further, when

the medical device operates in a control loop with the human body as a feedback

the drug concentration in the blood can become unstable and reach unacceptably

high values even if the infusion rate remains within p% of the preset value, hence

hampering patient safety. Simulations on a Simulink model of the infusion pump

confirms such patient safety violations. The parameters for the pump and the phar-

macokinetic model were obtained from a case study on anesthesia infusion [55].

Figure 2.5(a) shows the infusion rate and the drug concentration in the blood over

time for anesthesia infusion. From Figure 2.5(a) it can be seen that the infusion rate

over time has significant overshoot and undershoot before it reaches a stable point.

Further, significant amount of time, settling time, is required for the drug concentra-

tion in blood to reach the reference level set by the operator. A large settling time

may lead to delay in the therapeutic effect of the drug. In case of mission critical

operations such as drug infusion to prevent cardiac arrest [70], a short settling time

35

0 100 200 300 400 500
0

500

1000

Time (minutes)

In
fu

s
io

n
 R

a
te

 (
u

g
/m

in
)

(c) Bolus at 650 ug/min

0 100 200 300 400 500
0

500

1000

1500

Time (minutes)

D
ru

g
 C

o
n

c
e
n

tr
a
ti

o
n

 (
u

g
/l
)

0 100 200 300 400 500
0

500

1000

Time (minutes)

In
fu

s
io

n
 R

a
te

 (
u

g
/m

in
)

(b) Bolus at 600 ug/min

0 100 200 300 400 500
0

500

1000

1500

Time (minutes)

D
ru

g
 C

o
n

c
e
n

tr
a
ti

o
n

 (
u

g
/l
)

In
fu

s
io

n
 R

a
te

 (
u

g
/m

in
)

0 50 100 150 200 250 300
0

500

1000

1500

Time (minutes)

D
ru

g
 C

o
n

c
e
n

tr
a
ti

o
n

 (
u

g
/l
)

0 50 100 150 200 250 300
0

500

1000

Time (minutes)

(a) Without Bolus

Setting Time

Undershoot

Overshoot Bolus

Request

No stability

Reference

Input
Reference

Input
Accuracy

Bolus

Request

Reference

Input

Figure 2.5: Anesthesia pump simulation with no bolus and at different levels of bolus
showing overshoot, settling time, stable, and unstable behavior. Bolus administration
marked by red lines.

is essential to provide therapeutic effects within a window of opportunity. Figures

2.5(b) and (c) show the case when bolus is requested by a patient. From figure

2.5(b) it can be seen that after bolus administration the pump dynamics becomes

unstable. However, after some time the control actions brings the infusion rate and

the drug concentration to a stable value. Figure 2.5(c) shows the same pump but

now with a higher bolus rate (50 ul/min higher) causes the system to be unstable.

Due to this unstable behavior the infusion rate can go above the limits and the safety

criteria can be violated. Further, in case of an unstable operation the reference level

of drug concentration is never reached. This causes over infusion of drugs affecting

the accuracy of the pump to maintain the desired drug level. Thus, violation of the

overshoot, undershoot, stability, settling time and accuracy properties can lead to

patient safety hazards even though the software of the pump is certified safe.

2.4 Data Center Cooling Control

Contemporary HPC data centers use raised floors and lowered ceilings for cool-

ing air circulation, with the computing equipment organized in rows of 42U racks

arranged in an aisle-based layout, with alternating cold aisles and hot aisles (Fig-

36

Supply
Temp (Tsup)

Input
Temp (Tsen)

C
R

A
C

Power
Removed

CRAC Supply Air

CRAC Input Air

Hot Aisle Cold Aisle Hot Aisle

Room

Rack

Chassis with
Blade Servers

Figure 2.6: Heat transfer mechanisms in data center. The cool air from the CRAC is
non-uniformly distributed among the servers. The heated air is recirculated through-
out the data center and finally reaches the CRAC where it is again cooled.

ure 2.6). The computing equipment is usually in blade-server form, organized in 7U

chassis. Often, in data centers, server racks are provided with chiller doors, which

cool down the hot air coming out of the blade servers before it enters the data center

room [71].

The cooling of the data center room is done by the CRAC, a.k.a the heat-

ing and ventilation air conditioner (HVAC). They supply cool air into the data center

through the raised floor vents. The cool air flows through the chassis inlet and gets

heated up by convection from the computing equipments and hot air comes out of

the chassis outlet. The hot air goes to the inlet of the CRAC which cools it down.

However, depending on the design of the data center, parts of the hot air may recir-

culate within the room affecting the thermal map at various positions including the

inlet of the CRAC and the chassis.

37

Equipment Safety

The CRAC has to supply cold air so that the inlet temperature of each chassis does

not exceed the redline temperature (T red), which otherwise would lead to throttling

of the operation of the computing unit—an undesirable phenomenon with respect to

HPC job performance (throughput and turnaround time). For the safe operation of

each chassis, the inlet temperature should be below the redline temperature. Thus,

chassis inlet temp 6 redline temp

=⇒
(
cold supply temp from CRAC +temp increase by recirculated heat

)
6 Tred

=⇒ FTsup(t) + DP(t) 6 Tred, (2.7)

where Tred is an n dimensional vector {T red
i }n, T red

i is the redline temperature for

chassis i, n is the total number of chassis in the data center, D is an n × n matrix

derived from the recirculation among the n chassis [72], and F is an n × n diagonal

matrix where each diagonal element, fii (1 6 i 6 n), is derived from the amount of

cold supply air going to the inlet of chassis i. Note that in absence of recirculation D

becomes a matrix populated with all zeroes [72] and F becomes an identity matrix;

thus the inlet at each chassis is same as the supply temperature. Table 2.3 lists the

scalar symbols used.

Job and Machine Environment

The state-of-the-art in commercially available data center management software fol-

lows a conventional job queuing and issuing paradigm that focuses on optimizing

performance policy metrics, those usually being throughput and turn-around time.

The user front-end of a data center is the submission interface, i.e. the interface of

the scheduler, which decides when and where (i.e. what servers) the jobs to be run

at. A job submission usually provides: a) the executable, b) the input data, c) the

38

Table 2.3: Scalar Symbols and Definitions.

Symbol Definition

n total number of chassis
h inter event interval or event period
ctot

k the number of servers (blades) job k requires
rac thermal capacity of air flowing out of the CRAC per unit time
rroom thermal capacity of air in the data center room
fii cold supply air fraction going from CRAC to chassis i
di j heat recirculation coefficient from chassis i to j
m mode of operation of CRAC, m ∈ {high, low}
tsw time taken by the CRAC to switch from one mode to the other
ω idle chassis power consumption
α power consumption of a chassis per unit of utilization
u chassis utilization
Nh total number of jobs in event period h

T sup(t) air temperature as supplied from the CRAC at time t
T sen(t) air temperature at the input of the CRAC at time t
T red manufacturer’s redline inlet temperature
T th

high high thermostat setting for the CRAC
T th

low low thermostat setting for the CRAC
(T th

high)max upper bound on high thermostat setting for CRAC
(T th

high)i CRAC high thermostat setting requirement for server i
∆T th temperature difference between the CRAC high and low thermostat settings

Pm
ex power extracted by the CRAC in mode m

P f ull
j power dissipation of chassis j at 100 % percent utilization. For any variable z,

z f ull denotes the value of z at 100 % utilization and zempty denotes that at empty
data center.

Pcomp
h total computing power at inter-event period h

PAC(t) power consumption of CRAC at time t
Ey energy consumption for algorithm y
Em

y energy consumption of CRAC in mode m for algorithm y

number of servers it requires and the estimated runtime, and d) other constraints

such as a priority, and specific computing node preferences. A computing node is

a chassis containing multiple blade servers. The job run-times are normally overes-

timated by the users [73]. We consider user estimated job turnaround times as the

jobs’ deadlines. The scheduler aborts the jobs that do not complete by the deadline.

Thus, a scheduling algorithm has to ensure meeting of the job deadlines to avoid job

abortion. There are two types of decision making for job scheduling: i) temporal (i.e.

when to start the execution of the jobs), which directly impacts the job throughput

39

and turnaround times; and ii) spatial (i.e. where to execute the jobs), which can

also impact the job throughput and turnaround times if jobs are assigned to servers

with low computing capabilities (e.g., processor speed). To ensure no degradation

in throughput and turnaround time, this thesis focuses only on energy-aware spatial

scheduling decision making among the servers requested by the users.

Further, an event based decision making for job scheduling is considered. An

event comprises of arrival of new jobs (job arrival), beginning of job execution (job

start) and end of job execution (job completion). Inter event interval, also referred

to as event period (denoted by the symbol h), is the time between two consecutive

job start and completion events. Computing power in a data center changes when

a job starts or ends execution on a machine. Therefore, the computing power in

any inter-event interval is constant over time. The following sections will describe

the behavior of the CRAC unit in the data center and the inter-dependency of the

cooling behavior with the computing power consumption.

CRAC Behavior

The CRAC can have many different modes of operation. For simplicity, in this thesis,

we assume two operational modes viz. high and low modes. During its operation

the CRAC oscillates between the high and low modes. In each mode, the CRAC

extracts a constant amount of power Phigh
ex and Plow

ex , respectively. Figure 2.7 shows

the variations in the CRAC input (i.e. ceiling temperature) and output (i.e. supply

temperature) over time from temperature sensor measurements in the ASU HPC

data centers. The difference between these two temperatures (that determines the

power extracted by the CRAC unit) clearly shows two distinct values indicating two

operational modes.

A mode epoch is the time duration for which the CRAC operates in a particu-

lar mode. In a CRAC mode, the input temperature linearly varies with time. The line

40

gradient depends on: i) the difference of power generated in the data center, Pcomp
h ,

and power extracted by the CRAC [74]; and ii) the thermal capacity of air in the data

center room. Since the extracted power is different for different CRAC modes, the

temperature rise depends on which mode the CRAC is in. The temperature of the

supply air from the CRAC linearly varies with the input temperature based on the

power extracted by the CRAC.

CRAC Power Consumption

The CRAC power consumption depends on the CRAC power mode (i.e. the power

extracted by the CRAC) and Coefficient Of Performance (COP) of the CRAC. The

COP of the CRAC to supply air at temperature T sup(t) at an instance t is normally

given by COP(T sup(t)) =
T sup(t)

T sen(t)−T sup(t) , where T sen(t) is the CRAC input temperature

(Figure 2.6) at the instance t [75]. The above assumption on the COP of the CRAC

unit enables the computation of the energy dissipated by a cooling unit in the op-

erating mode m. The COP is given by racT sup(t)
Pm

ex
. The power consumption to run the

CRAC at time t is given by:

PAC(t) =
Pm

ex

COP(T sup(t))
=

(Pm
ex)2

racT sup(t)
. (2.8)

Any technique to reduce the CRAC power consumption has to operate in lower

modes, reducing the Pm
ex, and increase the T sup(t) as far as possible.

Inter-dependency of Cooling and Job Management

As the data center utilization increases, power consumption at the chassis in-

creases; requiring lower supply temperature to meet the redline (Equation 2.7) [73].

The supply temperature is maximum for 0% utilization and minimum for 100% utiliza-

tion. Generally, however, if there is heat recirculation, the heat input to the chassis

increases; thus requiring lower T sup(t) to keep the temperature within the redline

temperature [73]. Therefore, it is important to predict the maximum supply tem-

41

 40

 45

 50

 55

 60

 65

 70

 75

 80

12/18
00:00

12/18
12:00

12/19
00:00

12/19
12:00

12/20
00:00

12/20
12:00

12/21
00:00

12/21
12:00

12/22
00:00

 0

 5

 10

 15

 20

 25

 30

 35

 40

te
m

pe
ra

tu
re

 (
ºF

)

te
m

pe
ra

tu
re

 d
iff

er
en

ce
 (

ºF
)

time (month/day)

CRAC supply and input temperature over time

CRAC input temperature (left axis)
CRAC supply temperature (left axis)

difference (right axis)

Figure 2.7: Variations in the CRAC input and output temperature based on actual
sensor measurements in the ASU HPC data center. The difference in these temper-
atures indicates the two operational modes of the CRAC.

perature from the CRAC. In a particular CRAC mode, the supply temperature also

changes linearly at the same rate as the CRAC input temperature. It should be noted

that the maximum temperature can be reached when the power extraction from the

CRAC is low, i.e. when it is operating in the low mode.

The CRAC switches mode when the CRAC input temperature reaches the

thermostat set temperatures. When the input temperature goes below a low ther-

mostat set temperature, T th
low, the CRAC mode is changed from the high to low.

Similarly, when T sen(t) reaches the high thermostat set temperature T th
high, the CRAC

mode is changed from low to high. The CRAC does not change modes instanta-

neously. After the T sen(t) crosses a set temperature the CRAC takes tsw amount of

time to change mode. The maximum input temperature to the CRAC and hence the

42

maximum supply temperature, T sup
max, is therefore dependent on the high thermostat

set temperatures and any temperature increase during the switching time, tsw, as

follows:

max supply temp = max CRAC input temp − temp reduction due to CRAC cooling in low mode

=⇒ T sup
max = max CRAC input temp − Plow

ex /rac

=⇒ T sup
max =

(
high thermostat temp + input temp increase at low CRAC mode for tsw

)
− Plow

ex /rac

=⇒ T sup
max = T th

high +
Pcomp

h − Plow
ex

rroom
tsw −

Plow
ex

rac
, (2.9)

where rac is the thermal capacity of the air flowing out of the CRAC per unit time.

It can be concluded from Equation 2.9 that the maximum supply temperature from

the CRAC depends on the high thermostat settings and the computing power in the

data center. Hence, job management (i.e. scheduling and placement) and server

power management, both of which determine the computing power consumption, in

conjunction with the CRAC management (i.e. dynamically updating the thermostat

settings) need to be performed in such a way that for the maximum supply temper-

ature, the redline temperature is not violated (Equation 2.7).

A programmable thermostat is typically available in data centers where the

set temperatures can be dynamically changed. However, the CRAC maintains

a constant difference, ∆T th, between the high and low thermostat settings1 (i.e.

∆T th = T th
high − T th

low). Depending on this difference, the minimum possible supply

temperature, T sup
min , from the CRAC can be determined (in the same way as T sup

min in

Equation 2.9) when the input temperature reaches the low thermostat set point and

the CRAC operates at a high mode (i.e. the power extraction by the CRAC is higher):

1In the rest of the thesis, changing the high thermostat set temperature refers to changing both
the set temperatures.

43

T sup
min = T th

low +
Pcomp

h − Phigh
ex

rroom
tsw −

Phigh
ex

rac

=⇒ T sup
min = T th

high − ∆T th +
Pcomp

h − Phigh
ex

rroom
tsw −

Phigh
ex

rac
. (2.10)

Equation 2.10 shows how an increase in the high thermostat set temperature can

increase the supply temperature; thus potentially reducing the CRAC power con-

sumption (from Equation 2.8). The design of cooling-aware spatial job scheduling

algorithm, HTS, allows higher thermostat set temperatures.

HTS Algorithm Design

This is a cyber-physically oriented energy management algorithm developed in this

thesis. The principal intuition behind the algorithm is to: i) statically rank the servers

from best to worst (according to the potential load, i.e. the required thermostat

setting, incurred on the CRAC); ii) place (i.e. assign) temporally scheduled jobs

to the best ranked servers; and iii) dynamically set the thermostat to the required

value. Figure 2.8 presents the intuitive operational flow showing the aforementioned

four operations and their inter-dependencies. The following subsections describe

these three operations.

Server Ranking

The ranking of the servers is necessary for the job placement to assign jobs based

on the server ranks. To counter the energy inefficiencies because of the dependency

on the CRAC thermostat setting, the HTS algorithm ranks the servers based on their

requirement on CRAC thermostat to keep the inlet temperature within the redline

temperature. The servers are ranked from highest to lowest thermostat temperature

requirement. The jobs are then placed according to the server ranking; thus allowing

the CRAC thermostat setting to be increased.

44

Courtesy: www.liebert.com

CRAC Unit thermostat
setting

T
th

high

T
th

low

Temporal Job
Scheduler

Incoming Jobs

Scheduled Job
Queue

Highest Thermostat
Setting (HTS) Algorithm

HTS Server Ranking

Data Center

Spatial Job Scheduler

Job Management

Computing Servers

Determine Thermostat
Requirement

Dynamically Set CRAC
Thermostat

Flow of Jobs from
submission to execution

Static One-time
Information Flow

Dynamic Event-based
Information Flow

Figure 2.8: Architecture and work-flow of HTS. Each server is assigned a high CRAC
threshold temperature that it requires to avoid redlining. The workload manager
prefers servers with high CRAC thresholds and sets the CRAC threshold tempera-
ture to the lowest high threshold temperature among the chosen servers.

The power consumption of the servers impact the upper bound on the CRAC

thermostat settings (Equation 2.12). Finding the optimal placement is NP-complete

and may require hours of operation [73]. As such HTS performs a static ranking of

the servers based on full utilization of the data center, which yields the thermostat

setting requirement for a server i as follows:

(T th
high)i =

T red −
∑

j di jP
f ull
j∑

j fi j
+

Plow
ex

rac
−

(Pcomp
h) f ull − Plow

ex

rroom
tsw, (2.11)

where P f ull
j is the power consumption of chassis j at 100% utilization. The servers

45

are then statically ranked in the decreasing order of (T th
high)i. The server ranking, is

an one-time initialization process (performed in procedure Initialization in Algorithm

2.1). The ranks are represented by ranking vector R.

Job Placement

As shown in Figure 2.8, the Spatial Job Scheduler takes the jobs from the sched-

uled job queue2 and places them to the servers based on their ranks (procedure

HTS in Algorithm 2.1). Such rank-based job placement can be easily incorporated

in the current job management softwares. For example, the widely used Moab job

management software allows setting up server priorities in the software’s configu-

ration [76]. The server ranking presented in the previous section can be used to

prioritize the servers in Moab. The priority-based job assignment can then be en-

abled for job placement.

Dynamic Thermostat Setting

After placing the jobs, EDF-HTS sets the thermostat setting to the highest possible

value given by Equation 2.12. As shown in Figure 2.8, first the required thermo-

stat set temperature is determined followed by actually setting the thermostat to the

required value. Equation 2.12 is used to determine the required thermostat set-

ting after the job placement is performed. Unlike the server ranking in Section 2.4

(where the data center was assumed to be fully utilized), the thermostat requirement

is computed based on the actual server utilization after job placement.

With the CPS perspective in mind let us now focus on the paradigm of model

based engineering to better understand how such a technique can be useful for CPS

safety analysis and verification.

2Here the assumption is that the jobs are already temporally scheduled, i.e. the jobs’ start times
are decided by some temporal scheduling algorithm.

46

Algorithm 2.1: HTS integrated in the spatio-temporal job scheduling

procedure INITIALIZATION()
Group nodes with respect to power specifications.
Sort groups with respect to computing efficiency
(i.e. MIPS/watt).
Perform server rankings, R, according to the
requirement of thermostat set temperature to
meet the redline for 100% utilization (Equation 2.11).

end procedure
procedure HTS()

Place job to available node(s) with the lowest rank in R.
Determine the power distribution vector,Ph.
Set the CRAC thermostat using SETTHERMOSTAT(Ph).

end procedure
procedure SETTHERMOSTAT(Ph)

Set high thermostat setting (T high
th) as

F−1Tred −
[Pcomp

h − Plow
ex

rroom
tsw −

Plow
ex

rac

]
− F−1DPh (2.12)

end procedure
procedure UPONJOBCOMPLETION()

Dispatch the next job in this group’s queue using HTS ().
Determine the power distribution vector,Ph.
Remove the job from the queue.
Set the CRAC thermostat using SETTHERMOSTAT(Ph).

end procedure
procedure UPONJOBARRIVAL()

if job comes with node restrictions then
Insert the job in the queue of the specified node group based on a scheduling policy (e.g.

FCFS or EDF).
else

Insert the job in the most energy-efficient group queue based on a scheduling policy (e.g.
FCFS or EDF).

end if
for each node group, from the most to least efficient node do

if job’s finish estimation > deadline then
(1) Insert the job in an “opening” having enough free servers for enough time. Continue

with next job.
(2) If Step 1 fails, push-fit the job at an earlier “time” if shifting jobs still make the deadline.

Continue with next job.
(3) If Step 2 fails, add the job to next group’s queue.

end if
if required nodes in this group are idle then

Dispatch the job in this group’s queue using HTS ().
Remove the job from the queue.

end if
end for

end procedure

47

Chapter 3

BACKGROUND ON MODEL BASED ENGINEERING

This chapter gives a brief background of model based engineering and the different

types of models and analysis that can be carried out on models with examples. An

overview of the model based engineering methodology is provided in Section 1.6 of

Chapter 1. MBE has three phases - a) modeling, b) analysis, and c) synthesis phase

and we will provide a background on each of the phases in the following sections.

3.1 Modeling Phase

The basic component of MBE is a model. However, before defining a model let us

first consider the definition of a system for which we are building the model.

Definition 2 System: A system is a collection of interacting components each hav-

ing a given behavior and the system exhibits an aggregate behavior expressed as a

System
Boundary

System

Interacting
Components Interactions

Input Output

Figure 3.1: System is a combination of interacting components with inputs and out-
puts. Any parameter affecting the operation of the system and is outside the system
boundary is an input. Any parameter observable from outside the system boundary
is an output.

48

combination of the individual component behavior. A system has a system bound-

ary. Any variable with a source outside the boundary affecting the system behavior

is an input to the system. Any observable property of the system is the output of the

system.

Figure 3.1 shows a system with interacting components. A system boundary is used

to identify the components within the system and the inputs and outputs. Any vari-

ation with source outside the system boundary affecting components of the system

is denoted as input. Any observable system property outside the system boundary

is called output. Given this definition we consider the definition of a model.

Definition 3 Model: A model is a simplified representation of a real system.

This definition includes a large number of possibilities that model can mean. A model

thus can mean a mathematical representation using equations, or a physical model,

which can be a mock up of the real system using off-the-shelve components, or

a visual model, including drawings and plans, or textual models, such as English

text specification. However, any representation of a real system is not useful unless

certain properties or requirements are satisfied. These requirements are related

to how close the model is to the real system and whether the model satisfies con-

straints set by the designer. If a model is close to the real system to the satisfaction

of the designer then the model is called a validated model. If the model satisfies

constraints set by the designer then the model is called a verified model. A vali-

dated and verified model, i.e. a model built to the satisfaction of the requirements,

represents the real system and shows a conceptual implementation that can satisfy

constraints. The requirements on the model that validates it are called functional

requirements, while the constraints that a verified model satisfies are called non-

functional requirements.

49

LED

Photo
Detector

LED Driving
Circuit

Analog Front
End

Processor

Display Unit

Clock

Memory

Powering Unit

Radio

Core/IO
Power

Power

To LED Driving Circuit

Driving Power

System Power

Figure 3.2: Visual model of Pulse Oximeter with components, subcomponents, and
connections indicating flow of data in between them.

Example 3 Model of a pulse oximeter: A pulse oximeter is a medical device that

is installed on the index finger or on the ear lobe of a person, and it measures the

blood oxygen level and pulse rate by passing light through the ear lobe or index

finger. A visual model of the pulse-oximeter is shown in the Figure 3.2. The heat

dissipation in the pulse-oximeter due to transfer of light through the human body

can be modeled using a mathematical equation, Penne’s bioheat equation [4]. If the

temperature rise predicted by the model matches that from the real system then the

model is validated. If the temperature rise predicted by the model is within limits

such that it wont burn the skin, a safety requirement, then it is verified for safety. ..

50

Figure 3.3: Specification of the architectural model of Pulse Oximeter in Architectural
Analysis and Design Language (AADL).

Models can be classified into two basic types - architectural models and

behavioral models.

Architectural model

Architectural model is a representation of a system using components and subcom-

ponents and connections between them. The connections represent subcomponent

relationship and data flow between components. Unified modeling language (UML)

and system modeling language (SysML) are means for architectural modeling of

systems. An architectural modeling language extensively used in this thesis is the

Architecture Analysis and Design Language (AADL) and Example 4 shows one such

case.

51

Example 4 Pulse oximeter model: Figure 3.3 shows the AADL model of the pulse

oximeter. The AADL model shows that a pulse oximeter has a computing unit, which

is attached to the human body part (skin). Within the computing unit component

there is a radio, processor, and LED subcomponents. There is also a subcomponent

for the human skin which is connected to the computing component. The connection

represents heat transfer from the computing unit to the human skin. ..

Architectural models thus represent the what components the system is

made of. They do not explain how the system behaves.

Behavioral model

The system behavior is described by a behavioral model. A behavioral model is

a representation of the processes inside a system that causes observable outputs

for given inputs. Often it is a mapping of the input to an observable output through

mathematical equations, computational models, or transfer functions. There are

several types of behavioral models as discussed below -

Mathematical equations

Mathematical equations represent the output of a system as a function of its inputs.

Example 5 Bouncing ball: Consider the system with a ball and a floor. The system

consists of the ball and gravity, while the floor is outside the system boundary. The

ball is bouncing on the floor. The behavior of bouncing is represented by kinematic

equations -

ḧ = −g, if ḣ ≥ 0 (3.1)

ḣ = −γḣ, at h = 0,

where, h is the height of the ball from the ground and is an observable parameter

and hence is the output of the system, g is the acceleration due to gravity and is a

52

system property, and γ is a damping factor and is a property of the floor and hence

is an input to the system. ..

Mathematical models thus express the system behavior with respect to an inde-

pendent variable for different inputs. Mathematical models of systems can become

abstract and may seem removed from the real system due to several assumptions.

Hence, it is of utmost importance to validate a mathematical model such that it cor-

responds to the real system.

Transfer function model

A transfer function model views the system as a black box and expressed the output

as a function of the input. The transfer function model abstracts the system behavior

in a single reversible function. Thus it is very easy to obtain the output for a given

input and also the input for an observed output by just inverting the transfer function.

Thus instead of representing the system behavior with respect to an independent

variable the transfer function expresses the nature of system behavior for different

inputs. Thus for a given input the transfer function has to solved or transformed to

obtain variation with respect to independent variables such as time or space.

Example 6 R-C circuit: Consider an R-C circuit as shown in Figure 3.4 where the

input is a voltage source and the output is the voltage across the resistor. The

transfer function is obtained by applying Kirchoff’s law in the Laplace domain as

given in Equation 3.2.

Vout(s) =
VinR

R + 1
sC

(3.2)

Here s is the laplace transform parameter and an inverse transform is needed for

a given value of the input voltage Vin to obtain the time variation of the output

voltage. ..

53

R

C

Vin

+

-

Vout
+
- I

Figure 3.4: R-C Circuit system where the voltage Vin is the input and voltage across
the resistor Vout is the output.

Computational model

Computational models express the behavior of a system using a finite number of well

defined steps. Possible computational models are algorithms, or constructs having

a well defined execution method such as Turing machines. The usefulness of such

models is that the behavior of the system can be classified into types and theorems

on the properties of the model can be proven.

Algorithmic model: An algorithmic model is a representation of the behavior of a

system as an algorithm or a finite number of well defined steps.

Example 7 Consider a binary search engine that searches a given element from a

sorted array. The behavior of this search engine can be expressed in the form of an

algorithm as shown in Algorithm 3.1 Note that the algorithm finished in a finite num-

ber of steps when CurrentIndex becomes 0. None of the steps are non-deterministic

and do not have ambiguous implications. ..

54

Algorithm 3.1: Index = BinSearch(Sorted Array A, Number N)

1: CurrentIndex = length of A/2;
2: CurrentArray = A;
3: if CurrentIndex == 0 then
4: Number N not found
5: end if
6: if (CurrentArray(CurrentIndex) = N) then
7: Index = N;
8: return(Index);
9: else if (CurrentArray(CurrentIndex) > N) then

10: Index = BinSearch(A(0 - CurrentIndex -1),N);
11: else
12: Index = BinSearch(A(CurrentIndex + 1, length of A),N);
13: end if
14: return(Index)

Algorithmic models can be used to simulate a system using software and can also

be used to prove theorems on the response time of the system.

Finite state automata: A finite state automata is a computational construct with a

definite execution process and can be used to represent discrete time behavior of a

system with random events causing changes in the behavior of the system.

Definition 4 A finite state automata can be defined as a tuple S =

{X, X0,U,Tr,Y,H} where,

1. X is a set of states or as we will call them in this thesis, modes,

2. X0 ⊆ X is a set of initial modes,

3. U is a set of inputs,

4. Tr ⊆ X × U × X is a transition relation such that if (x0, u, x1) ∈ Tr then given

a mode x0 ∈ X on input u ∈ U the FSM S goes to mode x1 ∈ X.

5. Y is a set of possible outputs

6. H : X → Y is an output mapping of a mode into a possible output y0 ∈ Y

55

Example 8 Password validity checker: Consider a system that verifies whether

the password entered by an user is a valid one or not according to the rule that

there has to be atleast one integer in the password. The finite state automata

representation of this system can have two modes X = {x1, x2}. The initial mode

X0 = x1. The set of inputs can be U = {(a, b, c − − − − − z, A, B,C,− − − −

−Z, 0, 1, 2, 3,− − − − 9)}. The transition set can be Tr = {(x1, (a, b, c − − − − −

z, A, B,C,− − − − −Z), x1), (x1, (0, 1, 2 − − − −9), x2), (x2,U, x2)}. The set of out-

puts Y = {Valid, Invalid} and the mapping H is such that H(x1) = Invalid and

H(x2) = Valid. Thus this FSM describes the operation of the password validity

checker and it will only consider a password valid if it has atleast one integer in it. ..

There are several types of FSM. If the output map of the FSM has only yes and no

values then the FSM is called a Deterministic Finite Automata (DFA). If a DFA is

allowed to have a stack as a memory then it is called a Push Down Automata (PDA).

If the DFA now has an infinite tape as memory where it can write and can read at

any possible location without erasing any other location on the tape then it is called

a Turing machine. A Turing machine is the model of our current computing systems.

Hybrid Automata: A hybrid automata model is a mix of a finite state automata and

a mathematical equation model. Such models are useful for representing systems

which have an underlying dynamic behavior which causes changes in modes. Fur-

ther, with mode changes the nature of dynamic behavior also changes.

56

Definition 5 A hybrid automata is a tuple HA = {L,L0, Inv, F}, where

1. L is a set of modes of the HA. A state of an HA is an element of the state

space L × Rn, where n is the number of continuous variables in the system.

2. L0 is a set of initial modes.

3. Inv : L → Rn is a mapping from the set of locations L to a subset in real

space. The invariant set for a location has the following properties -

- Inv(li) for a given mode li is a compact set.

- for any two locations li and l j, Inv(li)o ⋂
Inv(l j)o = φ, where Inv(li)o

is the interior of the set Inv(li)o, which does not include the boundary

δInv(li) of the set and Inv(li)o ⋃
δInv(li) = Inv(li).

-
⋃
∀l∈L Invl = Rn

4. F : L→ Rn, is a mapping from L to a set of functions on the compact set Rn.

Thus for each mode there is a function governing the time variation of each of the n

continuous variables.

Example 9 Cooling control system: Consider a cooling control system (CRAC),

which receives hot air as input and provides cold air as output. The CRAC oper-

ates in two modes {m1,m2} and in each mode extracts a constant amount of power

Pac(mi) from the incoming air at temperature Tin. The outgoing cold air at tempera-

ture Tout of the CRAC gets heated by heat sources in a room generating power Pgen.

The CRAC changes mode based on a threshold on the inlet temperature Tthresh.

Whenever the inlet temperature becomes higher than a high threshold value, the

CRAC switches from mode m1 to a mode m2, and when the CRAC inlet temperature

57

m1 m2

1()ac
out in

p

gen

in out

air air p

P m
T T

mC

Pm
T T

m m C

2()ac
out in

p

gen

in out

air air p

P m
T T

mC

Pm
T T

m m C

in threshT T

in threshT T

Figure 3.5: Hybrid Automata model of a cooling control system with two states each
having different dynamics and state transitions governed by constraints on the inlet
temperature.

becomes lower than the high threshold value, it changes back to mode m1. The dy-

namic equations governing the inlet and outlet temperatures of the CRAC at a given

mode mi are given by Equation 3.3.

Tout = Tin −
Pac(mi)

ṁCp
(3.3)

Ṫin =
ṁ

mair
Tout +

Pgen

mairCp
,

where, ṁ is the mass flow rate from the CRAC, mair is the mass of air inside the

room, and Cp is the specific heat of air. Given this CRAC system its hybrid model

is as shown in the Figure 3.5. The hybrid model of CRAC consists of two modes

L = {m1,m2} and the initial mode can be m1. The invariant set can consist of

Inv = {Inv(m1), Inv(m2)}, where Inv(m1) = [0,Tthresh] and Inv(m2) = [Tthresh,∞].

The F function can be the equations 3.3 where for each mode the power drawn by

the CRAC Pac(mi) changes. ..

There are several variants of hybrid automata two of which is most commonly used

- timed automata and a linear hybrid automata. A timed automata assumes that

58

the dynamic equations can only be of the form ṫ = constant, and hence there is a

notion of clock. A linear hybrid automata assumes that the dynamic equations can

only be of the form of linear first order differential equations. Given this overview on

modeling techniques we now discuss how these models can be used for analyzing

a system in the next section.

3.2 Analysis Phase

Given any model analysis is performed for two objectives - a) validation, to prove

the closeness to the real system that the model represents, and b) verification, to

prove that the model satisfies constraints set forth for the system. Validation is the

first objective with which a model is analyzed and once closeness to the real sys-

tem is proven then verification for satisfaction of non-functional requirements are

performed.

Given the objectives, analysis of models can be broadly classified into two

types - a) simulation analysis, and b) reachability analysis.

Simulation Analysis

Simulation analysis considers a given set of configurations of a system and a time

bound. For each configuration the simulation analysis executes the system for time

t and outputs the values of the observable outputs.

Example 10 Consider the bouncing ball model in Example 5. The set of configura-

tions can include configurations with different values of the damping factor γ. The

equation 3.1 is solved for different values of γ for a time period of 100 seconds and

the results are shown in the Figure 3.6. ..

Thus a simulation analysis can be done on a limited number of case studies for

a limited amount of time. With simulation analysis no guarantees on the system

59

0 20 40 60 80 100 120 0

50

100

150

200

250

300

350

400

450

500

Time in seconds

H
e

ig
h

t
o

f
th

e
 b

al
l

 = 0.9
 = 0.8

Figure 3.6: Simulation of a bouncing ball showing the height of the ball with respect
to time for different values of the coefficient of restitution parameter, γ.

behavior can be established but for a given time and a given configuration actual

values of the system parameters can be estimated.

Reachability Analysis

A reachability analysis takes a neighborhood of a given configuration of the system

and outputs an over estimation of all possible values that the system parameters

can take. The set of all possible values that the system parameters can take is

called the reach set. The reach set computation is intensive and requires closed

form equations representing the system behavior. As an example we take the hybrid

automata model of the CRAC and perform reachability analysis on it using an open

source reachability analysis tool Phaver [77].

Example 11 Consider the hybrid automata in Example 9. We will perform the

reachability analysis of this model starting from a neighborhood of the initial state

335 ≤ Tin ≤ 350 and 305 ≤ Tout ≤ 320. Figure 3.7 shows the reach set starting

60

Figure 3.7: Reachability analysis of the CRAC hybrid automata in Example 9, which
shows the values that Tin and Tout can possibly assume at any arbitrary time.

from the defined neighborhood. This figure shows that given any time the values

of Tin and Tout for the CRAC will always remain in the shaded region. The gen-

erated power in the room is taken to be 200 W. In the highest power setting the

CRAC extracts 75 W while in the lowest power state the CRAC extracts 50 W. The

results show that the Tin increases to high values even if the Tout is within acceptable

ranges. This is because the amount of power extracted by the CRAC is less than

the amount generated in the room and hence the room gets heated up. Thus, us-

ing such arguments some values of the system parameters can be deemed unsafe.

Using the reachability analysis, existence of such unsafe states can be determined.

Such results can be used to conclusively prove whether a system is safe or unsafe.

..

61

Unlike a simulation, a reachability analysis can provide guarantees on the

system properties for arbitrary time, however, it over estimates the system param-

eters. Hence, one does not get an exact estimate of the system parameters at a

given time.

3.3 Synthesis Phase

Synthesis is the process of generating either the software implementation or the

hardware emulation of a system from its model in a generic programming language

or hardware platform, respectively. The software generated may often be used di-

rectly in the system. While the hardware emulation can be used for experimental

verification of the system. Software synthesis generally requires a code generator

that takes a model as input and converts into code in some generic programming

framework such as C,C++, embedded C and so on. Hardware emulation takes a

specification of a model using high level hardware design language (HDL) such as

VHDL, PSpice, Verilog and System C.

Synthesis cannot be assumed as an optimized implementation of the sys-

tem. But it is an implementation that can be used for experimentation in order to

check requirements satisfied by the envisioned system.

62

Chapter 4

ARCHITECTURAL MODELING FOR FAST SIMULATIONS

Architectural models present an intuitive and fast way of representing CPSes. Such

models represent the CPS as a set of connected components and subcomponents.

Each component or subcomponent has properties associated with them. The con-

nections represent data communication between the components or a subcompo-

nent relationship. Architectural models are useful for fast simulation of a given test

case. Generally they can be used to test the worst case operation of the CPS. The

main contribution of this thesis in this front is the development of the CPS Design

Analysis and Simulation CPS-DAS tool that provides a systematic intuitive specifi-

cation format for CPSes and fast light weight analysis algorithm for various types of

safety evaluations.

4.1 Motivation and Related Works

Figure 4.1 depicts the modeling requirements of CPSes, maps the related work to

address the specific modeling requirements, and puts the contributions of CPS-DAS

into perspective. There are three basic modeling requirements for CPSes: i) cy-

ber entities, i.e. the application software (e.g., health monitoring software) and net-

worked computing units (e.g., embedded medical devices), ii) physical environment,

i.e. the human body, and iii) interactions between the physical environment and

the cyber entities (both intentional and un-intentional). Intentional interaction model-

ing would involve sensor and actuator behavior modeling. Un-intentional interaction

modeling require modeling the physical processes and the physical behavior of the

cyber entities.

63

Software design tools

(e.g. UML, PetriNets, AADL)

Embedded system design

tools (eg. AADL, Pspice)

Physical Process Modeling tools

(e.g. SysML, Simulink, Flovent)

Existing Modeling Approaches

Intended Interaction (Karsai et al)

Unintended Interactions

Unintended

Interactions

A
c
tu

a
to

rs

S
e
n

s
o
rs

P
h
y
s
ic

a
l

B
e
h
a

v
io

r

CPS Modeling Requirements

Already

Existing Tool
CPS-DAS

contributions

Cyber-entity Modeling using AADL

Threads, subprograms,

constructs in AADL

System, component, port

 constructs in AADL

Modeling of both the intended and

unintended interactions

Representation of Physical

Processes in the model

CPS Extension of AADL

CPS-DAS

Intended

Interactions

Cyber Entities

Physical Environment

P
h

y
s
ic

a
l

P
ro

c
e
s
s
e
s

Modeling Cyber Entities

Modeling Cyber-Physical Interactions

Application Software

Network of

Computing Unite

Novel Modeling

Requirement

Figure 4.1: CPS modeling requirements and mapping of related works based on the
requirements that they address with highlighting of CPS-DAS contributions

A large number of tools are available that model and analyze hardware of

computing systems such as Pspice [78] and AADL (http://www.aadl.info/), and ap-

plication software such as UML (http://www.uml.org/) and Petrinets [79]. The model

based approach is also used to study the behavior of physical systems through tools

such as SysML (http://www.sysml.org/), Simulink (http://www.mathworks.com/),

and Flovent (http://www.mentor.com/). However, none of these tools can model the

cyber-physical interactions. A generic framework to perform model based engineer-

ing of CPSes has been proposed in [80]. However, the framework only considers

the intentional interactions for the proper functioning of the CPSes. The proposed

CPS-DAS tool provides a uniform model specification and analysis platform that ad-

dresses all the three salient modeling requirements of CPSes.

64

Requirements – threshold

on computing performance

and physical properties of

CPSes (e.g. temperature

thresholds)

CPS system – GCPS

description of the system

(e.g. network of n nodes

placed on different parts of

the body)

Analysis parameters –

specific parameters for

requirement verification

(e.g. spatial granularity, time

steps)

CPSDAS

Framework
CPSDAS Analyzer

Model

Parser

Requirem

ents

Parser

GCPS

Parser

Analysis

Parameter

Parser

Requireme

nts Verifier

1. Calculate

Physical

property

variation

2. Calculate

Computing

property

variation

Input to CPSDAS

Model

Variants

Analysis

Parameters
Analysis

Parameter
Model

GCPS Model

Requirements
Model

CPS

System

Properties

Requireme

nts Compute

interactions between

computing unit and

physical system

Compute aggregate

effects due to

interactions between

computing units Results

Input to processes

Flow of information

between processes

Figure 4.2: CPS-DAS tool architecture consisting of two parts: CPS-DAS modeling
framework, which is used to specify a CPS and CPS-DAS Analyzer, which analyzes
a CPS model.

4.2 CPS-DAS: Analysis and Design of CPSes

This section presents the CPS-DAS tool. Figure 4.2 shows the architecture of the

tool and depicts how it enables the execution of the different phases in MBE. As

shown in the figure, CPS-DAS consists of a model development framework, called

the CPS-DAS Modeling Framework (Section 4.2), and a model analysis engine,

called the CPS-DAS Model Analyzer (Section 4.2).

CPS-DAS Modeling Framework

The modeling framework helps in the model development phase of MBE. There are

three inputs to the framework:

1. CPS Requirements: These are usually a set of limits or thresholds on the

system parameters. For example, an upper limit on the maximum body tem-

perature (system parameter) ensures safety.

2. CPS System: This includes CPS deployment information such as the number,

types, spatial distribution, and communication topology of the nodes.

65

3. Analysis Parameters: These are specific parameters for the model analysis.

Example of such parameters include time steps, spatial granularity of differ-

ential equation solvers (e.g., Finite Difference Time Domain (FDTD) [81]), and

functions determining the aggregate effects (e.g., summation function to com-

bine heat effects from multiple computing units).

Given these inputs, the following subsections describe modeling methodologies in

the CPS-DAS modeling framework.

Requirements Modeling

The thresholds on the system parameters, which characterize the CPS require-

ments, can be modeled in CPS-DAS by providing a set of constants. These con-

stants will be used in the requirements verification phase to check if the CPS behav-

ior is suitably constrained.

Abstract Modeling of CPSs

CPS-DAS envisions a CPS as a set of computing (i.e. cyber) components (medical

devices or servers or UAVs) and a physical environment (human body or recirculated

air or UAV terrain). Figure 4.3 shows a typical deployment of the BSN CPS with both

implanted and wearable (i.e. on the skin) sensor nodes. Both the intentional and

un-intentional interactions are further depicted in the figure. Figure 4.4 shows all the

modeling constructs in a hierarchical form. Following are the modeling constructs:

Global CPS (GCPS): A CPS is considered as a GCPS (Figure 4.3), i.e. a collection

of distributed and networked cyber-physical subsystems. Each of these subsystems

consists of a single worker node. The GCPS construct can also correspond to the

portion of the physical environment observed for analysis, e.g., the portion of human

body monitored by the BSN.

66

SkinHuman
Tissue

Environment

Region of Impact (ROIm)

Region of Interest (ROIn)

Unintended Interaction

Intended Interaction

Overlapping of ROIn and ROIm
indicate global interactions

Wearable Worker Nodes
Implanted Worker Nodes

Global CPS

Local CPS

Figure 4.3: BSN as a Global Cyber-Physical System (CPS) with several Local
CPSes each having region of interest and a region of impact. Overlapping of ROIn
and ROIm indicate cyber-physical interactions.

Local CPS (LCPS): Each individual subsystem in a GCPS is referred to as an LCPS.

The LCPS construct models each computing unit in a CPS as a single CPS. This

enables modeling and analysis of the interactions between each individual node and

the physical environment in a modular fashion. Each LCPS consists of three types

of constructs:

• Computing unit : This construct corresponds to the computing units capable of

sensing, computation, and communication. The construct facilitates the mod-

eling of both computing and physical behavior of the computing units through

the following two properties:

– Computing property : This property characterizes the computing behav-

ior, e.g., the processor speed of a worker node or the amount of mem-

ory space available. The computing properties depend on the hardware

configuration of the computing unit and the design of the application soft-

ware. The hardware and the application software should be designed

67

such that CPS operations are accurate and have low latency. These de-

sign requirements specific to BSNs have been addressed in [3]. Trade-

offs between these design requirements with safety are demonstrated in

the specific case studies on BSNs(Section 4.3).

– Physical property : This property characterizes the physical behavior,

e.g., the power dissipation, of the computing unit. These properties of-

ten depend on the computing behavior of the nodes and can cause un-

intentional interactions. For example, the processor speed determines

the power dissipation of the sensor nodes in a BSN. This in turn causes

un-intentional temperature rise of the human body.

• Physical unit : This construct is used to model the portion of the physical en-

vironment with which the computing unit interacts. These interactions usually

affect the system parameters, for which the thresholds are provided in CPS

requirements. For example, the heat dissipation (un-intentional interaction)

from the nodes affects the body temperature (system parameter). The model-

ing paradigm of CPS-DAS hypothesizes that any interaction of the comput-

ing unit with the physical world will take place within a bounded region.

Therefore, all interactions are limited within a region defined in the LCPS. To

this effect, two types of regions for intentional and un-intentional interactions

are specified in the physical unit. These regions are described below:

– Region-Of-Interest (ROIn): This construct facilitates the modeling of the

intentional interactions, e.g., the sensing and the wireless communica-

tion region. A ROIn has two attributes:

* Monitored parameter: This construct models the system parame-

ters that are affected by the intentional interactions. For example,

68

Global CPS

Local CPS 1

Computing Unit

Local CPS nLocal CPS i . . .

Physical Unit

Computing

Property

Physical

Property
Region Of

Interest

Region Of

Impact

Region

Boundary

Monitored

Parameter

Region

Boundary

Physical

Dynamics

CPS Architecture
hierarchy branches

Cyber-Physical Interactions

Physical

Property

mutually

affects

. . .

Figure 4.4: Hierarchical view of the generic constructs of a GCPS which is used to
specify a CPS high level architectural model.

the physiological signal sensed by a sensor node can be a moni-

tored parameter, which is affected by the nodes’ sensing capabilities

(electro-magnetic interaction [http://www.quasarusa.com/]).

* Region Boundary: This attribute represents the limits of the

bounded region, within which the intentional interactions are con-

fined. The region boundary depends on the variation of the moni-

tored parameters. For example, when the sensed signal is the mon-

itored parameter, the sensing range of the sensor node becomes

the region boundary.

– Region of impact (ROIm): This construct is used to model the un-

intentional interactions. The ROIm consists of three attributes:

* Physical Property: This attribute characterizes the properties of

the physical system such as blood glucose level, tissue temperature

etc. These properties depend on the location of the node, physio-

logical conditions, and environmental factors such as temperature,

and pressure (http://urwhatueat.org/carb5.html).

69

* Physical Dynamics: This construct enables modeling the physical

processes. These processes are normally expressed in terms of

partial differential equations. For example, the process of body tem-

perature variation is governed by the Penne’s bioheat equation [4].

* Region Boundary: This is similar to region boundary in ROIn.

However, the region boundary of ROIm depends on the physical

properties and dynamics. Since the physical dynamics are gov-

erned by differential equations, the region boundary can be speci-

fied by boundary conditions on the equations. These conditions are

generally limits on the physical properties outside the ROIm. For

example, in case of temperature rise in human body, we can as-

sume that the body temperature is 37 °C outside the ROIm. We can

then employ this boundary condition to the associated differential

equation [4] to obtain the region boundary.

• Local Interactions: The local interactions are cyber-physical interactions be-

tween the computing unit and the physical unit within an LCPS (denoted by

the dashed lines in Figure 4.4). The intentional and un-intentional interactions

are modeled using the following constructs, respectively:

– Intended interactions: These are modeled as transfer of information

between the computing unit and the ROIn. For example, the sensing of

physiological signals from the human body by a node can be modeled

by this construct.

– Unintended Interactions: These interactions as modeled as transfer of

energy between the computing units and the ROIm. For example, heat

transfer from the computing unit can be modeled by this construct.

70

Region Of Impact
(Heat Dissipation)

Region Boundary of
ROIm
Region Of Interest
(Communication Range)

Region Boundary of
ROIn

Intended Global Interactions

Unintended Global Interactions
Figure 4.5: Global Interactions between two local CPSes. Intersection between the
ROIn of two LCPS indicate intended interactions while that between ROIms of two
LCPS indicate unintended interactions.

Note that an interaction is also defined between the ROIn and the ROIm of

an LCPS. These are used for representing certain special cases, where there

are inter-dependencies between the ROIn and ROIm.

Interactions among the LCPSs: In the GCPS model, interactions between differ-

ent LCPSs can also take place. For example, the wireless communication between

two sensor nodes in a BSN is a form of information transfer between two different

LCPSs. This phenomenon can be modeled by introducing the concept of intercon-

nections between the LCPSs. These interconnections are called global interactions

(as depicted by the two way dashed arrows in Figure 4.4). Global interactions be-

tween two LCPSs normally occur whenever there is an overlap in the ROIn or the

ROIm of the two (as shown in Figure 4.5). This notion of global interaction facilitates

the modeling of a network of nodes in a CPS (through overlapping ROIns) or the

cumulative thermal effect of the nodes on a particular area of the physical environ-

ment (overlapping ROIms). Global interactions can be intended or unintended due

to overlapping of ROIns or ROIms of the interacting LCPSs, respectively.

71

Analysis Parameter Modeling

Analysis of a model generally involves specific methodology to solve equations that

govern the physical dynamics. The solution techniques often require a configuration,

i.e. assigning values to certain specific parameters determining the quality of the

solutions. For example, solving the Pennes’ equation will require the FDTD time

and space discretization approach. The granularity of such discretization can be

specified in the model as sets of constants. Further, the aggregate functions can be

specified as a set of equations combining the physical dynamics of different LCPSs.

CPS-DAS Analyzer

The CPS-DAS analyzer determines the CPS behavior from the GCPS model. The

behavior is then verified against the requirements given as input to the CPS-DAS

modeling framework. Figure 4.2 shows the work flow of the CPS-DAS analyzer.

The models from the CPS-DAS modeling framework are first parsed into a

suitable format by a Model Parser. There are three different components of the

parser: 1) requirements parser, 2) GCPS parser, and 3) analysis parameter parser.

Each of these components correspond to the three modeling aspects of the mod-

eling framework (Section 4.2). The output of the Requirements Parser is a set of

constants indicating the thresholds on different system parameters. Analysis Parser

provides parameters (a set of constants) related to the analysis methodology (e.g.,

configuration for equation solvers, time step and spatial granularity). The GCPS

Parser extracts the hierarchical organization of the GCPS model in a structure us-

ing which interactions and aggregate effects can be computed. The outputs of the

parsers are called the Model Variants.

The pseudocode of the analyzer is shown in Figure 4.6. The EvaluatePhys-

icalProperty and EvaluateMonitoredParameter routines evaluate the variations of

72

Process: CPSDAS Analyzer (CPSModel)

Model Parser /* Parse model and extract the Model Variants */

GCPS = Model Parser(CPSModel.GCPSModel);

[Performance Thresholds] = Requirements parser(CPSModel.RequirementsModel);

[Analysis Parameters] = Analysis Parameter parser(CPSModel.AnalysisParametersModel);

Interactions between computing unit and physical system

for each i from 1 … n

 GCPS.LCPS(i).ROIm.Physical Property = EvaluatePhysicalProperty(GCPS.LCPS(i).ROIm, AnalysisParameters)

for each i from 1 … n

 GCPS.LCPS(i).ROIn.Monitored Parameter = EvaluateMonitoredParameter(GCPS.LCPS(i).ROIn, AnalysisParameters)

Interaction between different computing units

for each i from 1 … n

for each j from 1 … n

 if GCPS.LCPS(i).ROIm.RB overlap with GCPS.LCPS(j).ROIm.RB

IntFm(i,j) = 1;

else

 IntFm(i,j) = 0;

if GCPS.LCPS(i).ROIn.RB overlap with GCPS.LCPS(j).ROIn.RB

IntFn(i,j) = 1

else

 IntFn(i,j) = 0;

for each IntFm(i,j) == 1

GCPS.LCPS(i).ROIm.Physical Property = Compute the aggregate effect in the intersecting region;

GCPS.LCPS(j).ROIm.Physical Property = Compute the aggregate effect in the intersecting region;

for each IntFn(i,j) == 1

GCPS.LCPS(i).ROIn.Monitored Parameter = Compute the aggregate effect in the intersecting region;

GCPS.LCPS(j).ROIn.Monitored Parameter = Compute the aggregate effect in the intersecting region;

Requirements Verification

for each Param.time step

for each Param.space step

Compare Monitored Parameter with performance thresholds

Return Verification Results

Figure 4.6: Pseudocode for CPS-DAS Analyzer, which first parses the GCPS model,
computes interactions within an LCPS, and then computes global interactions be-
tween LCPSes. Finally, the system properties obtained from the computation is
chacked with requirements for safety verification.

the physical properties and monitored parameters within the Region Boundaries (de-

noted by RB) of the ROIm and ROIn of each LCPS, respectively. These evaluations

essentially compute the local interactions within an LCPS. Note that the represen-

tation of the Region Boundary by the notation GCPS.LCPS(i).ROIm.RB reflects the

hierarchical nature of the constructs (Figure 4.4). Similar notations for the other

constructs are also used.

The next process is to identify and compute the interactions between differ-

ent computing units. This process involves the computation of the global interac-

tions. In the pseudocode, this is achieved by iterating through all n2 possible pairs

73

of LCPSs (where n is the number of nodes in the BSN) and checking whether the

RBs of LCPS pairs overlap. These overlapping regions are tracked by the parame-

ters, IntFm and IntFn, for ROIm and ROIn, respectively. The aggregate variation of

the physical properties and the monitored parameters are then evaluated for these

regions of intersections. To this effect, the aggregation functions provided in the

analysis parameter model are used.

After computing the interactions and aggregate effects, the analyzer checks

the monitored parameters and the physical properties against the requirements.

This process is called the requirements verification process.

Implementation

Given the modeling framework and the analysis work flow in the previous subsec-

tions, this subsection presents the current implementation of CPS-DAS. CPS-DAS

is currently implemented for BSNs and is known as BAND-AiDe [2]. However, the

same implementation can be used to specify any CPS. The modeling framework

of CPS-DAS is developed using the Abstract Architecture Description Language

(AADL). AADL is an industry standard language to model real time embedded sys-

tems and is suitable for implementing CPS-DAS due to the following reasons:

• AADL specifications are hierarchical in nature, which helps in specifying the

GCPS model.

• AADL has dedicated construct to model hardware and software of embed-

ded computing devices. This will be helpful in modeling the behavior of the

computing units in the CPS.

• AADL has been used to model CPSes such as wireless sensor networks [82],

UAVs (aadl.info).

74

• AADL provides facilities for language extension through development of an-

nexes. These facilities can be used to incorporate the generic constructs of

the GCPS model in AADL.

Model Specification

The GCPS in the GCPS model (Figure 4.4) can be represented using the system

construct in AADL (as shown in Figure 4.7) and is named Global CPS (GCPS). In

the GCPS, the monitored region of the human body is specified as a grid. The origin

and the units of the grid are specified using the properties construct. The constants

for the requirements specification and the analysis parameters can be provided in

the GCPS specification using separate property sets, which are AADL constructs

to specify system attributes. The GCPS consists of several subcomponents called

Local CPS (LCPS). These are also modeled using the system construct. Each

LCPS consists of three subcomponents: 1) Computing Unit, which models a sin-

gle worker node, 2) Region of Interest, which models the ROIn, and 3) Region

of Impact, which models the ROIm. The system construct is used to model these

subcomponents. The Computing Unit has two property sets, Computing Prop-

erty Set and Physical Property Set, to model its cyber and physical behavior, re-

spectively. The Computing unit can be modeled in a conventional way, containing

subcomponents such as processor, memory, radio, and bus [82].

The location of the computing unit is specified using the Location property

set. This property set gives the coordinates of the computing unit with respect to

the origin and grid units defined in the GCPS. Within an ROIm, the position of the

computing unit is considered to be the origin. The ROIm consists of properties from

the Physical Property Set. The dynamics of the physical system which involves

specification of complex analytical expressions is specified with the help of the CP-

75

features

properties

Declaration - Computing Unit

port group Cyber2ROIn
port group Cyber2ROIm

Computing Property Set
Physical Property Set

Implementation - Computing Unit

subcomponents
Subcomponents instantiation

properties

Connection between components
via ports and devices

connections

Specific values

annex

Customized functionalities

properties

Declaration – GlobalCPS (GCPS)

Control Volume Specification
• coordinates
• Grid Units

Implementation - GlobalCPS

subcomponents

LCPS 1, LCPS 2, …… , LCPS n

Connection between LCPS via
port groups

connections

(, ,)x y z

features
Declaration – LocalCPS (LCPS)

port group LCPSROIn
port group LCPSROIm

Implementation - LocalCPS

subcomponents

Computing Unit
Region of Interest
Region of Impact

Connection between Computing
Unit and Region Of Interest
Connection between Computing
Unit and Region Of Impact

connections

port group ROIn2Cyber

Implementation – Region Of Interest

features

Declaration – Region Of Interest

properties
Location

. . .
annex

Customized functionalities

Implementation – Region Of Impact

features

Declaration – Region Of Impact

port group ROIm2Cyber

properties

Physical Property Set
Location

annex BAN-CPSAnnex

Specify boundary condition equations
Specify equations for physical process

LEGENDS:
1. Port group are a collection of connections

that model the cyber-physical interactions
a) Cyber2ROIn – Computing to Region of

Interest Interaction
b) Cyber2ROIm – Computing to Region of

Impact Interaction
c) ROIn2Cyber – reverse of Cyber2ROIn
d) ROIm2Cyber – reverse of Cyber2ROIm
e) LCPSROIn – interaction between LCPSs’

ROIns
f) LCPSROIn – interaction between LCPSs’

ROIms
2. Property Sets

a) Computing Property Set – Computing
behavior

b) Physical Property Set – Physical behavior

annex

Aggregation Equations

Figure 4.7: AADL specification of the GCPS model (a more detailed model can be
found in the publication [2])

SAnnex. This annex is extends AADL with customized constructs for specification

of partial differential equations. The Region Boundary of the ROIm is represented

by boundary conditions on the properties of physical unit. Similar approach is taken

to implement the ROIn of the LCPS.

The global and local interactions in the GCPS model are specified with the

help of port group AADL construct. The port group construct is an assembly of dif-

ferent types of ports. These ports, along with their interconnection using the connec-

tions construct, models information transfer among the subcomponents. The Com-

puting Unit has two port groups: 1) CyberToROIn, which specifies the intended in-

teraction of the computing unit with the ROIn and 2) CyberToROIm, which specifies

the unintended interaction of the computing unit with the ROIm. The global interac-

tions are modeled using two types of port groups, LCPSROIn and LCPSROIm, in

76

each LCPS. These port groups signify interactions between a computing unit of an

LCPS and the ROIn and ROIm of some other LCPS, respectively.

Analysis framework

The analysis framework is developed on the OSATE platform, which supports AADL

model specification and analysis through java plug-ins in eclipse. The analysis

framework uses the parsers provided by the OSATE platform to parse the AADL

constructs. A new parser was developed for the customized differential equation

constructs in the CPSAnnex. In GCPS Annex specific constructs were declared for

denoting differential equations. The construct DeltnXY represents the mathematical

operator δnX
δnY . The differential equations were then parsed using the following context

free grammar:

Operator =

Variable * DeltnXY * Operator + Variable * Operator |

Variable * DeltnXY * Operator - Variable * Operator

| null

DeltnXY = Delt1XY | Delt2XY

Variable = any string | null

The parsed differential equations are represented in the form of a parse tree.

In the Analysis plug-in, the parse tree representation of the equations was converted

into a mathematical form. Currently, the GCPS Annex converts the parsed equations

into FDTD form which can be solved using any FDTD solver. To this effect, the

analysis plug-in is integrated with domain specific tools such as Matlab. The analysis

results were provided in a graphical format through Matlab.

77

4.3 Case Study for Design and Analysis with CPS-DAS

This section shows the usage of the CPS-DAS tool to model and analyze BSN CPS.

To this effect, the following case studies are considered: i) a BSN with wearable

and implanted sensor nodes, and ii) a secure health monitoring application, Ayush-

man [5]. The sensor nodes are assumed to be capable of:

• sensing temperature, humidity, sound, and physiological signals (e.g., Photo-

Plethysmogram (PPG));

• data communication through wireless radio; and

• communication security through Physiological value based Key Agreement

(PKA) [64].

Figure 2.1 shows the Ayushman workload highlighting the three operations. As

shown in Figure 2.1, the operations in the worker nodes have different CPU uti-

lization profile. These utilization profiles determine the nodes power consumption.

Hence, proper duty-cycling and communication scheduling can be employed to re-

duce the nodes’ power consumption. The nodes are assumed to be always expend-

ing the maximum power, Pc, if duty-cycling is not employed. On the other hand,

when duty-cycling is employed, then the nodes do not always consume maximum

power. In such a case, the power consumption of the sensor node when radio is

turned off is given by Pproc. During the communication operation, the processor

consumes Pproc amount of power. The radio transmitter will also be active during

this operation (Pradio being its power consumption). In a single day, there will be d

number of sense and transmit periods (sleep cycles) for each sensor node in the

BSN, with a duration of (ts + tT x) seconds each, where ts and tT X denote the time

required to perform the sensing and communication operations, respectively..

78

The symbol tPKA denotes the duration to execute the PKA. The total number

of nodes is assumed to be n, and the nodes execute pairwise PKA (once everyday)

to ensure freshness of keys. In PKA, frequency domain features are derived from

the sensed physiological signals and are used to facilitate key agreement between

two sensors. The feature extraction process involves several complex computa-

tions such as Fast Fourier Transform (FFT) and peak detection. The node power

consumption during the PKA operation is comprised of the power required for the

aforementioned computation, PPKA, and the power required to keep the radio on, i.e.

Pradio. In general, duty-cycling is not considered for safety verification to analyze the

thermal effects of worst-case node power characteristics.

To obtain the model parameters for CPS-DAS through experimental evalua-

tions, Ayushman was implemented in a BSN consisting of TelosB motes interfaced

with temperature, humidity, and physiological sensors. The implementations were

performed to meet the design requirements of accuracy and low latency. Figure 4.8

shows the implementation strategy of the peak detection stage of the PKA protocol1.

The usage of the CPS-DAS tool is demonstrated through safety verifications for: i) a

single medical device, and ii) a network of sensor nodes, as summarized in Figure

4.9 and described in the following subsections.

Safety Analysis of a Single Wearable Medical Device

This subsection presents the safety verification for a single high-power wearable

medical device. To this effect, the medical device considered is a TelosB mote in-

terfaced with a Smith fingertip pulse oximeter (PPG) device (http://www.smithsoem.

com/) deployed on the index finger. The pulse oximeter probe which is in direct

contact with the human finger passes light at a particular intensity through the finger

1The threshold indicated in the figure is specific to the peak detection [3] process and is not the
same as the requirements thresholds discussed in this thesis

79

32 bit

Comparator

RegA

Reg

B

Coeff1Coeff2Coeff3

Clock

A>B

RegB

RegA

32 bit

Subtractor

32 bit

Comparator

B-A

Threshold

32 bit Positive

Edge

Triggered Shift

Register Bank

On block indicates clock input

On block indicates reset that

resets on 0
Anywhere else indicates a

connection

Slope

Detector

Threshold

Detector

Indicates 32 bit word

Figure 4.8: Implementation logic for Peak Detection (a more detailed discussion can
be found in the publication [3])

during its operation. The pulse rates are then derived from the modulations in the

sensed light intensity. Power is consumed by the device to execute the Ayushman

workload, i.e. sensing, transmission, and PKA execution, as shown in Figure 2.1.

CPS-DAS Inputs

The safety requirement input to CPS-DAS is the upper threshold on the skin temper-

ature, which is 39 °C as obtained from the Henriques Moritz equation [83]. Pennes’

bio-heat equation is used to characterize the thermo-dynamic processes. The

thermo-dynamics of the finger comprises of heat transfer mechanisms such as ther-

mal conduction, convection, radiation, and electro-magnetic absorption. The ther-

mal safety analysis parameters include the time steps and space granularity (e.g.,

grid size, where a grid is the smallest volume of the human body within which the

temperature is assumed to be constant) of the solvers for equations (e.g., Pennes’

equation) describing the thermo-dynamic processes.

80

Verification Input Model Analysis

Safety and

sustainability

of a single

wearable

medical

device

(Pulse

Oximeter)

Requirements :

Safety: Threshold Temperature Tth of the

human body which should not be exceeded

[Henriques and R. 1947].

BAN system:

Single sensor node consisting of a TelosB

mote interfaced with the fingertip Pulse

Oximeter device deployed on the index

finger. Scavenging sources are considered

on the human body which charge the nodes

through inductive charge transfer.

Analysis Parameter :

Differential equation solver FDTD

parameters, (time step and space steps)

Requirements Model

Requirement Verification Parameter T th

BAN Model

GCPS - 1 LCPS.

LCPS - Computing Unit (CU) + ROIm

 CU – subcomponents + properties

 subcomponents – LED, Radio, Processor, Scavenging source

 properties – Power dissipation, Temperature

 ROIm – Physical Property + Physical Dynamics + Region Boundary

 Physical Property – Temperature

 Physical Dynamics – Penne’s bio heat equation

 Region Boundary – 30 mm by 30 mm square region

 ROIn – Charging range of the scavenging source

Analysis Parameter

Time Step and Space granularity parameters of FDTD solver

Safety:

Thermal map of

the fingertip skin

for continuous

operation of the

pulse oximeter is

tested against

safety threshold

set by the

requirements.

Safety

evaluation of

Network of

Devices

communicati

ng securely

Requirements :

Safety: Lower bound on the tissue

temperature for the optimal cluster head

selection sequence.

BAN system:

Network of worker nodes implanted within

the human tissue. The worker nodes are

interfaced with EKG sensors.

Communication protocol is cluster based

[Heinzelman et al 2000], where several

nodes form a cluster with a nominated

cluster head. The cluster head collects data

from all the cluster members and sends

them to the wearable worker node. A cluster

head selection sequence is specified, which

denotes the order in which cluster heads are

selected during the data transfer process.

The Ayushman health monitoring application

is executed on each node. The radio of each

worker node can be turned off during

different stages of their operation.

Scavenging sources charging the nodes via

inductive charge transfer are assumed.

Analysis Parameter :

Cluster head selection sequence, differential

equation solver FDTD parameters, (time

step and space steps)

Sensing Rate, data transmission rate, rate of

PKA execution, time interval of observation.

Requirements Model

Upper threshold Tth on the maximum temperature rise of the human

tissue

BAN Model

GCPS – n LCPS

LCPS – Computing Unit (CU) + ROIn + ROIm

 CU –properties

 properties – Power Dissipation

 ROIn – Monitored Property + Region Boundary

 Monitored Property – Radio signal strength

 Region Boundary – Communication Range

 (intersection of ROIn indicate connectivity)

 ROIm – Physical Property + Physical Dynamics + Region Boundary

 Physical Property – Temperature

 Physical Dynamics – Penne’s Equation

 Region Boundary – preset value

 (intersection of ROIm require evaluation of cumulative effect)

LCPS – Scavenging Source + ROIn

 CU – properties

 properties - Available power for scavenging source

 ROIn – A worker node receives power from a scavenging source if

 it falls inside the ROIn.

Analysis Parameter

Cluster head selection sequence

Time Step and Space granularity parameters of FDTD solver

Data transmission time tTX , Sensing time ts and PKA execution time tPKA

Safety:

Each cluster

head selection

sequence is

evaluated to

compute the

thermal map of

the tissue.

Different cluster

head selection

sequences are

compared based

on the maximum

temperature in

the control

volume.

Figure 4.9: Summary of case studies showing CPS-DAS usage for safety evalua-
tions that are further discussed in detail in Section 4.3

CPS-DAS Model

The requirement and analysis parameter modeling involves representation of the

skin temperature threshold, and the time steps and grid sizes (to solve Pennes’

equation) as constants. The GCPS is represented as a system with a single LCPS.

The medical device is modeled as the computing unit, which has several subcom-

ponents such as LED array, radio, and processor. These subcomponents are the

generic components of the pulse oximeter device. Each subcomponent has a set of

81

physical properties (such as power dissipation, operating temperature) that model

their thermal characteristics. The ROIm models the thermodynamics of the human

skin using the Pennes’ bioheat equation as follows:

ρCp
dT
dt

= K 52 T − b(T − Tb) + ρSAR + Pc, (4.1)

where ρ is the mass density, Cp is the specific heat, K is the thermal conductance, T

is the temperature of the skin, Pc is the power generated by any heat source (i.e. the

device), b is the blood perfusion constant, Tb is the blood temperature, and S AR is

the specific absorption rate of the skin (i.e. the amount of electromagnetic radiation

absorbed by unit volume of the skin).

The region boundary of the ROIn is preset to a 30mm × 30mm square

region on the fingertip skin, which is the size of the pulse-oximeter probe (http:

//www.smithsoem.com/) that is in direct contact with the fingertip. The ROIn also

models the range, up to which a scavenging source can charge a sensor node. To

this effect, only body heat and sunlight are considered as the possible scavenging

sources at the fingertip. The operating temperature of the pulse-oximeter probe is

assumed to be constant [41]. This is because the Ayushman workload (Figure 2.1)

is highly repetitive, which causes the probe temperature to reach a steady state

quickly. Given the inputs and the CPS-DAS model, the CPS-DAS analyzer performs

the safety analysis (described in Sections 4.3) based on the work-flow in Figures 4.2

and 4.6.

Safety Verification

CPS-DAS analyzer computes the temperature at different points on the skin by solv-

ing the Pennes’ equation using the FDTD approach.

Table 4.1 shows the maximum skin temperature reached during the eight

hours of operation of the pulse oximeter at different device temperatures. A sample

82

Table 4.1: Skin temperatures after eight hours of pulse oximeter operation at different
device temperatures (Burn threshold 39 °C)

Device Temperature Maximum Skin Temperature
43.0 °C 38.2 °C
43.5 °C 38.5 °C
44.0 °C 39.2 °C
44.5 °C 39.4 °C
45.0 °C 39.7 °C

thermal map of the skin for a pulse oximeter operating temperature of 44 °C is shown

in Figure 4.10. It can be verified that the maximum temperature reached after eight

hours of operation is 39.2 °C, which violates the thermal safety requirement. An ex-

perimental study performed on pulse oximeter thermal safety [41] shows that blisters

are observed in human skin when a pulse oximeter is operated continuously for eight

hours at a device temperature of 44 °C. Our results concur with these experimental

observations and are hence verified.

Safety Analysis of Network of Devices

This section presents the safety verification for a network of sensor nodes in a BSN.

To this effect, we consider low-power devices (as sensor nodes), e.g., EKG sensors,

interfaced with the TelosB motes. High power nodes are not considered since it

has already been verified (in Section 4.3) that even a single such node can cause

safety violations. Cluster based multi-hop communication protocol is used [84] for

the network. In this protocol, the sensor nodes in the BSN form a cluster. Nodes

in a cluster nominate a leader node, a.k.a. the cluster head. All the non-leader

nodes transmit their sensed data to the cluster head. The cluster head then forwards

these data to the base station, and hence has a considerably high communication

workload. The absorption of electromagnetic radiation (because of communication)

can cause heat dissipation, which in turn may lead to significant thermal effects in

the surrounding human tissue [81].

83

00.0050.010.0150.020.0250.03

0
0.01

0.02

310.4

310.6

310.8

311

311.2

311.4

311.6

311.8

312

312.2

Width of the control area (m)

Thermal Map of the skin

Length of the control area (m)

T
e

m
p

e
ra

tu
e

 (
K

)

310.6

310.8

311

311.2

311.4

311.6

311.8

312

Figure 4.10: Thermal map of fingertip skin for 8 hrs of pulse oximeter operation at
44 °C temperature

CPS-DAS Inputs

Similar to the single device verification in Section 4.3, the safety requirement input

for verifying the network of nodes is the upper threshold on the skin temperature, i.e.

39 °C. The exact values use for the analysis are shown in the Table 4.2. Analysis

parameters corresponding to the Pennes’ equation are same as that in Section 4.3.

The control volume was divided into 30 × 30 cells where the cell size was set to

0.005m. The aggregation function for the heat effect from multiple contributing nodes

is provided as follows: i) summation of the SAR values from the contributing nodes;

ii) summation of the power generated from the contributing nodes; and iii) apply the

summed SAR and generated power values in the Pennes’ equation (i.e. Equation

4.1). In addition, the leadership sequence is input as an analysis parameter.

CPS-DAS Model

GCPS consists of multiple LCPSs. The LCPS modeling for each sensor node is

same as in Section 4.3. In addition, the ROIn of each LCPS models the communica-

84

Table 4.2: Timing and power consumption values used for the Ayushman workload
and the experimental methodology

Parameter Value Methodology

ts 5 s Ayushman workload characteristics
tT x 0.39 s Time taken to transfer five seconds of 32 bit data values

sampled at a rate of 60 per second. Transfer rate is 24
Kbps which is standard for Chipcon radio [85]

tPKA 16.36 s Measured time in TelosB motes [85]
Pradio 56 mW Measurements from the Chipcon radio in TelosB

motes [85]
PPKA 3 mW Measured power of the TelosB mote while executing

PKA [85]
Pproc 0.01 mW Idle power of the TelosB mote [85]

tion range of the node. The intersections between the ROIns reflect the connectivity

among the corresponding worker nodes. The leadership sequence is represented

as a string of constant integers. Scavenging nodes are further modeled as LCPSs,

where the ROIn represents the inductive charging range. Intersection of the ROIn

of a worker node and a scavenging source means that the worker node can extract

power from that source.

Safety Analysis

To evaluate the tissue temperature distribution, Pennes’ bio-heat equation is solved

using the FDTD solvers (as in Section 4.3). This aggregate effect was calculated by

summing up the heat contribution of each node to a particular grid, as indicated in

Section 4.3. The power consumption of leader sensor node executing the Ayushman

application was 60mW [85] while that of a non leader sensor node was 12 mW. This

power consumption was experimentally measured for TelosB motes at 0 dB and -7

dB radio attenuation, respectively. For a sample BSN cluster of 10 sensor nodes,

the leaders were changed every second. Each leadership sequence was operated

once for a short period of 1000 seconds and then for a long duration of two days. Our

results for 1000 second of exposure matches with the observations in [81]. Table 4.3

85

Table 4.3: Tissue temperature rise for different leadership sequences (Burn thresh-
old 39 °C)

Leadership Sequence
Maximum Tissue Temperature

1000 Sec Expo-
sure

2 Days Exposure

(5 2 8 6 1 7 3 4 10 9) 37.1145 °C 37.1632 °C
(5 7 4 1 6 10 8 2 9 3) 37.1130 °C 37.1614 °C
(1 6 9 10 2 7 5 4 3 8) 37.1124 °C 37.1757 °C
(5 7 1 9 10 8 4 2 6 3) 37.1130 °C 37.1585 °C

shows maximum tissue temperatures for different leadership sequences at different

exposure times. The maximum temperature is below the safety threshold of 39 °C

for all these cases. It can be seen from the table that for a short duration of exposure,

different leadership sequence does not have much effect on the tissue temperature

rise. However, for longer durations, the temperature rise is significant (around 0.02

°C). This shows that for long term operation of implanted network of medical devices

the leadership sequence plays an important role in thermal safety.

Apart from BSN CPS the CPS-DAS tool is also used on data center CPS as

shown in the following case study.

Thermal Safety of Servers in a Data center

In this section, the usage of CPS-DAS for analyzing safety of servers from redlining

is shown. The recirculation of heat has to be modeled using the GCPS constructs.

CPS-DAS modeling of data centers

Figure 4.11, represents the data center as a GCPS. Each server in the data center

is an LCPS. The GCPS system has 50 port groups that specify the recirculation of

air from the room to the input of each server (lines 3-4). Each LCPS has a port

group that specifies the transfer of heat from the computing units to the environment

(line 8). The heat recirculation matrix is implemented as a data component (lines 10

- 13) and each entry in the recirculation matrix is implemented as ports such that all

86

 1. system GCPS

 2. features

 3. P2C01: port group RecirculationPG;

 4. P2C02: port group RecirculationPG;

 5. end GCPS;

 6. system LCPS

 7. features

 8. C2P: port group RecirculationPG;

 9. end LCPS;

10. data implementation RecirculationMatrix.imp

11. subcomponents

12. A: data behavior::integer;

13. end RecirculationMatrix.imp;

14. port group RecirculationPG

15. features

16. Matrix1: in out data port RecirculationMatrix.imp;

17. Matrix2: in out data port RecirculationMatrix.imp;

18. end RecirculationPG;

19. system Chassis

20. properties

21. PhysicalPropertySet::IdlePowerDissipation => 0.0 W;

22. PhysicalPropertySet::PowerDissipationPerUtilization =>

0.0 W;

23. end Chassis;

24. system BladeServer

25. properties

26. ComputingPropertySet::TypeOfComputingUnit => "";

27. ComputingPropertySet::NumberOfServers => 0;

28. end BladeServer;

29. system implementation ImpactingParam.imp

30. subcomponents

31. Tin: data behavior::float;

32. end ImpactingParam.imp;

33. system implementation ImpactedParam.imp

34. subcomponents

35. Tout: data behavior::float;

36. end ImpactedParam.imp;

37. system implementation RegionOfImpact.imp

38. subcomponents

39. ImpIngParam: system ImpactingParam.imp;

40. ImpEdParam: system ImpactedParam.imp;

41. end RegionOfImpact.imp;

42. system implementation BladeServer.imp01

43. properties

44. ComputingPropertySet::TypeOfComputingUnit =>

"1955";

45. ComputingPropertySet::NumberOfServers => 4;

46. end BladeServer.imp01;

47. system implementation LCPSManagement.imp

48. subcomponents

49. PlacementAlgorithm: process HTSALgo.impl;

50. end LCPSManagement.imp;

51. system implementation PhysicalUnit.Air

52. properties

53. PhysicalPropertySet::Cp => 1005.0 JpkgpK;

54. PhysicalPropertySet::Volume => 290.304 m3;

55. PhysicalPropertySet::Density => 1.19 kgpm3;

56. end PhysicalUnit.Air;

57. system implementation Chassis.imp01

58. subcomponents

59. Blade01: system BladeServer.imp01;

60. Blade02: system BladeServer.imp01;

61. Utilization: data behavior::integer;

62. Power: data behavior::integer;

63. Idle: data behavior::integer;

64. Unit: data behavior::integer;

65. properties

66. PhysicalPropertySet::IdlePowerDissipation => 2420.0 W;

67. PhysicalPropertySet::PowerDissipationPerUtilization => 175.0 W;

68. PhysicalPropertySet::FlowRate => 0.2454147 m3ps;

69. annex CPSAnnex {**

70. states

71. s0 : initial complete state;

72. transitions

73. s0 -[]-> s0 {Power := Idle + Unit * Utilization; };

74. **};

75. end Chassis.imp01;

76. system implementation LCPS.imp01

77. subcomponents

78. ComputingUnit: system Chassis.imp01;

79. ROIm: system RegionOfImpact.imp;

80. annex behavior_specification {**

81. states

82. s0 : initial complete state;

83. transitions

84. s0 -[]-> s0 {

85. C2P.Matrix1 := a1;

86. C2P.Matrix2 := a2;

87. };

88. **};

89. end LCPS.imp01;

90. system implementation ACUnit.imp

91. Model: "Linear Transient Model"

92. end ACUnit.imp;

93. system implementation GCPS.imp

94. subcomponents

95. LCPSManager: system LCPSManagement.imp;

96. LCPS01: system LCPS.imp01;

97. LCPS02: system LCPS.imp02;

98. PhysUnit: system PhysicalUnit.Air;

99. LCPSAC: system LCPS.ACUnit;

100 Tout: data behavior::integer;

101 Tin: data behavior::integer;

102 Recir: data behavior::integer;

103 Power: data behavior::integer;

104 connections

105 Recirc01: port group LCPS01.C2P -> P2C01;

106 Recirc02: port group LCPS02.C2P -> P2C02;

107 annex CPSAnnex {**

108 states

109 s0 : initial complete state;

110 transitions

111 s0 -[]-> s0 {Tout := Tin + Recir * Power; };

112 **};

113 end GCPS.imp;

Figure 4.11: GCPS specification of Data center using the AADL language. The
specification is for a data center with 50 chassis however only a snippet of the entire
specification is shown in the thesis for ease of readability.

87

the components can access them. An LCPS consists of a chassis which consists

of 10 blade servers. Each blade server has computing properties such as type of

servers or number of cores and physical properties such as heat dissipation (lines

19-28). The region of impact is discretized into points of interest, which are the inlets

of the servers. The LCPS has recirculated heat values for all other LCPSes. Such

matrices are specified using the behavior_annex (lines 80 - 88). The GCPS con-

sists of several LCPSes. The port group of each LCPS is connected to appropriate

port groups of all other LCPSes to feed in recirculated heat values. The dynamic

equations governing the temperature rise in the data center are specified using the

CPSAnnex (lines 69-74 and 107-112).

Safety analysis of data centers

Several management strategies for the data center were simulated using this GCPS

modeling. A comprehensive discussion of the algorithms and the results of the com-

parison are available in the publication by Mukherjee [86]. The algorithms simulated

using the GCPS modeling are: i) Cooling Management (CM) - which places a job

in the first available server with an arbitrary ordering and then sets the thermostat

such that no server crosses redline according to the conditions discussed in Chap-

ter 2; ii) Job and Power Management (JPM), which assumes an Earliest Deadline

First (EDF) temporal schedule with a Least Recirculated Heat (LRH) placement al-

gorithm; and iii) Job, Power and Cooling Management (JPCM), which assumes an

Earliest Deadline First (EDF) temporal schedule with a Highest Thermostat Setting

(HTS) placement algorithm. Figure 4.12 shows that for any of the policies the the

peak temperature for any server in the data center never exceeds the redline value

of 40 °C.

88

0 2 4

x 10
5

0

5

10

15

20

25

30

35

40

45

Time (seconds)

Job, Power, and Cooling Management (JPCM)

0 2 4

x 10
5

0

5

10

15

20

25

30

35

40

45

Time (seconds)

Job and Power Management (JPM)

0 2 4

x 10
5

0

5

10

15

20

25

30

35

40

45

Time (seconds)

Cooling Oriented management (CO)

M
a
x
im

u
m

 C
h
a
s
s
is

 I
n
le

t
T
e
m

p
e
ra

tu
re

 (
d
e
g
re

e
 C

)

Redline Temperature Redline Temperature Redline Temperature

Figure 4.12: Maximum chassis inlet temperature for 80 % utilization under linear
cooling model for different energy management policies. Only CM, JPM, and JPCM
as representative of non-coordinated cooling, no cooling management, coordinated
cooling management, respectively. JPCM allows highest maximum inlet tempera-
tures temperatures (without violating the redline) among all the policies.

89

Chapter 5

SAFETY ANALYSIS UNDER DYNAMIC CONTEXTS

The operation of a CPS is characterized by dynamic changes in the environment

e.g., change in user location or the weather changes affecting energy scavenging

or sudden change in workload in a data center. Such changes in context affect the

operation of every subcomponent of a CPS. To illustrate this claim let us consider

the example of the Ayushman PHMS [5] discussed in Chapter 2 developed at the

IMPACT Lab at ASU.

In case of the network controlled infusion pump in the Ayushman PHMS,

the controller sends control inputs to infusion pump over the wireless channel to

maintain the analgesic drug concentration to a particular level. The controller gets

feedback from a pulse oximeter on the human body on the blood oxygen level. The

pump should stop infusing immediately when the blood oxygen level falls below a

certain level to prevent respiratory distress [55]. Since the wireless channel is prone

to errors, the packets containing control information can get corrupted or dropped at

random. If control informations do not reach the infusion pump the pump maintains

the previous control information for a preset time and then shuts down. Further,

if the controller does not obtain an accurate estimation of the blood oxygen level

it can cause unstable or oscillatory infusion rates, which is harmful for the user.

To this effect, the communication protocol is modified to consider dynamic power

control for avoiding packet drop. The design of the technique considered a home

environment and modulates radio power to increase the packet delivery rate (PDR)

of the medium from 0.6 to an acceptable level of 0.8. However, if the user now

moves from home to an outdoor open space such as the balcony, the PDR of the

90

medium drops drastically [67], and the dynamic power control may not increase the

PDR to the acceptable level. If this happens too frequently, a property governed

by the user’s mobility model, a number of control packets may be dropped, which

can lead to overshoot, undershoot and oscillations in the analgesic concentration

in the blood as result causing pathological conditions such as respiratory distress.

Hence, in such a scenario the user mobility pattern may be unsafe for his health!

The operation of a PHMS involves such dynamic context driven interaction between

the embedded computing device and the environment including human physiology.

Thus dynamic context changes may affect the safety of a CPS. Hence it is

essential to consider the modeling of dynamic contexts for analyzing CPS safety.

This chapter focuses on extending the CPS-DAS tool with capabilities to model and

analyze dynamic contexts. The running example that is used in this chapter is the

Ayushman PHMS.

5.1 Dynamic Contexts

Formally a context is defined as a triple {G,M, I} such that G is a set of objects, M is

a set of attributes, and I is a bipartite graph mapping between the sets of objects G

and attributes M. As an example, let us consider that the user of a PHMS is at home.

The set of objects can include the wireless channel, the devices in the PHMS such

as infusion pumps, glucose meter, thermometer, or blood pressure sensor, and the

human physiological parameters. The attribute set may consist of the packet drop

ratio and electromagnetic properties of the wireless channel, sampling frequency of

the sensors, and mathematical models of the physiological processes.

A context change can be represented by a change in the object set G, at-

tribute set M, and bipartite mapping I. This change can occur due to several reasons

and are mostly random in nature. In this work, three causes of context changes are

considered:

91

a Mobility: An user of a PHMS is always in a state of motion in her day to day

life. This leads to change in environmental properties such as temperature and

humidity, or wireless channel properties such as the packet delivery ratio (PDR)

of indoor and outdoor environments. This change is exhibited by a change in

the mapping I where the same set of objects, humidity, temperature, PDR are

mapped to different values.

b Physiology: Random physiological events such as epileptic seizure can cause

changes in the PHMS or the operation of the PHMS. It can introduce new medical

devices such as an EEG sensor, or it can cause execution of a new algorithm for

analyzing epilepsy. This is exhibited through a change in the object set G due to

the introduction of the new sensor and subsequently a change in the set I.

c User activities: Random user activities such as exercise or food intake can cause

changes in the PHMS. For example, during exercise the energy scavenged from

the scavenging source may be sufficient for sustaining the operation of the med-

ical devices. This is exhibited in a change in the attribute set M of the PHMS, in

specific the scavenged energy attribute of the source.

The causes of the context changes are random in nature and hence are to be mod-

eled using random processes. For example, the mobility of human users are gener-

ally modeled using random processes such as Random way point model or the Levy

walk model.

Representation of context

Mathematically contexts can be represented as finite state machines, called the

ContextFSM. The object set G, the attribute set M, and a unique mapping I forms

a state in the ContextFSM. Any change in G, M, or I causes a state transition. The

state transitions are governed by the context changing events. The events can be

92

represented by a random process that outputs a random sequence of 1s and 0s,

where 1s indicate a state transition. The parameters of the random process are

dependent on the user’s mobiliy, physiology and activity patterns. As discussed fur-

ther in the text these random models are not considered for analyzing the safety of

the PHMS in current literature. This thesis provides a methodology to consider the

random context changes in the analysis in a tractable manner.

5.2 Effects of Context changes

Mobility is a basic human nature. Due to this mobility of human beings, its envi-

ronment changes continuously. Associated with this are several other contextual

factors such as physiological condition, mood, and time of the day. Each context

affects the human body parameters in different ways. For example, during hot and

humid summers the body sweats leading to a lower average skin temperature, or

when a person is excited the skin conductance increases. These parameters af-

fect the way a medical device interacts with the human. As an example, consider

a wearable computer controlled infusion pump on a patient as shown in the Figure

5.1.

Infusion Pump Control System: The infusion pump is a medical electrical equip-

ment that obtains commands from a remote computer or a smart phone over the

wireless channel and accordingly injects a dose of drug such as insulin or anaes-

thetic into the human body. The controller obtains feedback from the human body

using sensors such as a glucosemeter and according to a control algorithm com-

putes the future infusion rate and sends it to the pump. In the literature, the feedback

has been modeled by pharmacokinetic diffusion equations, which take the infusion

rate as input and outputs the drug concentration in the blood. The controller then

follows a predetermined algorithm to calculate the infusion rate so that the drug con-

centration reaches a prescribed value without overshooting a safety limit. Algorithm

93

Wearable

infusion

pump

Glucosemeter

Mobile

phone

Pharmacokinetic Model
Input: infusion rate dB(t)

Output: drug concentration map d(t)

Wireless
channel

Wireless
channel

Figure 5.1: A computer controlled wearable infusion pump system.

Algorithm 5.1: Discrete Time Infusion Control (Desired Drug Level (Cpd), Initial In-
fusion (x0), Increment Step (δx), Time Step (δt))

1: NoOfSteps = Total Time / δt
2: for i do = 1 to NoOfSteps
3: Infusion rate xi = xi−1
4: Predicted Present Plasma Drug Level Cpp = Simulation of PKA with infusion rate xi

5: Increment Infusion Rate xitemp = xi + δx
6: Predict Future Plasma Drug Level Cp f = Simulation of PKA with infusion rate xitemp

7: Assume linearity of the PKA model, slope = Cp f−Cpp

xitemp−xi

8: y - intercept Cp0 = Cpp - slope × xi

9: if thenCp0 ≥ Cpd

10: New Infusion Rate xi+1 = Cp0−Cpd
slope

11: else
12: New Infusion Rate xi+1 = xitemp

13: end if
14: end for

5.1 [55] is one such algorithm that the infusion controller follows to derive the future

infusion rate from the past history of drug concentration in the blood. The controller

in this case increments the infusion rate by a small amount δx and estimates the

drug concentration using the pharmacokinetic model. If the estimated drug concen-

tration is greater than the desired level, the controller reduces infusion rate by linearly

94

approximating the model such that the estimated drug concentration remains below

the desired level.

An important factor in this infusion pump device is the transfer of information

from the controller to the pump through the wireless channel. Wireless channels are

prone to errors leading to loss of control information. When the pump fails to receive

a control information the pump maintains the infusion rate obtained in the last suc-

cessfully received information. Mobility affects the wireless channel characteristics

leading to time varying packet delivery ratio (PDR), which may affect the drug con-

centration due to faulty infusion. These effects further, vary with different mobility

patterns. Hence to characterize these effects different models of mobility have to be

studied.

Models of Mobility: Over the years several models of mobility for human has been

studied including the random walk and Brownian motion models. The most popularly

used mobility model is the random walk model. However, recently, the Levy walk

mobility model was found to fit the average human mobility the best [87]. A mobility

model consists of three parameters: a) flight length, which is the distance traveled,

b) flight direction, direction of the movement, and c) pause time, time for which the

person stays at a particular position. The random walk mobility model assumes that

the probability that the flight length is greater than a certain value follows a gaussian

distribution. This says that it is less probable for a person to move further away

from a given spatial location. However, a recent research has shown that the flight

length follows a power law distribution in specific levy distribution. This comes from

the ever inquisitive nature of human being, which compels her to explore remote

regions. Instances of the two mobility models are shown in Figure 5.2, where in

random walk the shorter flight lengths are more frequent, while levy walk model has

more frequent longer flight lengths.

95

Indoor Outdoor

Probability of staying indoors
and outdoors are same

Normal
distribution

of walk
distance

Indoor Outdoor

Probability of staying indoors
and outdoors are not the same

Levy
distribution

of walk
distance

Random way point Levy walk

Figure 5.2: Random way point and Levy walk mobility models used as different mod-
els for the same context. Levi walk model captures the human nature of restricting
their movements to specific regions.

Effect of mobility patterns on infusion pump operation: The infusion pump con-

trol system was simulated under different mobility patterns of the user. Two different

channel properties were considered: a) indoor, with a PDR of 0.8 and b) outdoor,

with a PDR of 0.4 as suggested in [88]. A stretch of 20 feet was considered with

a door separating indoor and outdoor environment at the 10 feet mark and com-

puted the sequence of indoor and outdoor movements for random and Levy walk

models. Packet drops were simulated using the Ricean fading model and the aver-

age case drug concentration for 1000 runs for both the mobility models is shown in

Figure 5.3a). The figure shows that since the Levy walk mobility pattern has more

frequent outdoor visits, it causes more loss of control information and hence causes

drug overshoots due to faulty infusion. On the other hand random walk has shorter

excursions leading less frequent change of environment and hence less overshoot.

Further, apart from the frequency of outdoor visits, different sequences of indoor to

outdoor transitions also affect the drug concentration as shown in Figure 5.3b for

Levy walk model.

96

0 1 2 3 4 5 0

500

1000

1500

Time in minutes D
ru

g
 c

o
n

c
e

n
tr

a
ti
o
n

 i
n
 u

g
/l

 Random Way

Point
Levy Walk

Indoor PDR = 0.8
Outdoor PDR = 0.4

Probability of outdoor
excursions = 0.7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0

500

1000

1500

Time in minutes D
ru

g
 c

o
n

c
e

n
tr

a
ti
o
n

 u
g
/l

 Indoor, Outdoor, Indoor
Outdoor, Outdoor, Indoor

(a) (b)

Figure 5.3: a) Drug concentration have different overshoots for different mobility pat-
terns, b) drug concentration profile may depend on the sequence of context changes

This establishes the importance of considering dynamic context changes in

analyzing PHMSes. Before going into the details of our analysis methodology, let

us first look into the literature for similar research endeavors and distinguish our

approach from others.

5.3 Related Works

Model based engineering is a common development paradigm in the medical device

domain. But only recently there have been efforts to model and analyze the human

body along with the medical device as a closed loop system. This advancement is

mainly due to the classification of medical devices as mission critical cyber physical

systems (CPSes), where computing systems operate in close loop with their physical

environment to accomplish mission critical objectives, such as drug infusion control,

precise chemotherapy. Hence, in the literature there are several tools, frameworks,

and methodologies, that are available for medical device design or CPS design in

general. These works are classified into five categories as shown in the Table 5.1.

Hardware or Software Modeling: Several tools exists to model, analyze and sim-

ulate the hardware and software of medical devices. Some of them model the hard-

ware and electric circuitry of the medical device while others model the system soft-

97

Table 5.1: Classification of existing work on model based safety analysis

Class Approaches Device
Mod-
eling

Physical
Mod-
eling

Interaction
Model-
ing

Domain Dynamic
Con-
texts

Hardware/
Software
Model-
ing

PSpice [78], VHDL
and Verilog [89],
AADL(http:
//www.aadl.info/
), UML [90], AN-
DES [82], Hardware
Testbeds [91,92]

X 7 7 Multiple 7

Physical
Model-
ing

Matlab and
Simulink [93],
SysML [94],
Flovent [95],
TrueTime [96],
Modelica [97], The-
oretical modeling of
human body parts
such as heart mod-
els [98], diffusion
models [99]

7 X 7 Multiple 7

Interfacing
tools

BAND-AiDe [2]
(AADL + Mat-
lab), LabView +
Ptolemy [100],
Matlab + Deter-
Lab [101], Multi-
domain modeling
using architectural
views [102]

X X Limited
capabil-
ity

Mostly Single
physical domain
with the exception
of Ptolemy [100]
and multi-domain
modeling [102]

7

Integrated
Model-
ing

Modelica [103],
BAND-AiDe [2],
Hybrid Quartz [104]

X X X Multiple domain
but often limited
in represent-
ing computing
systems

7

Formal
Model-
ing

Timed Au-
tomata [33,98,105],
Petrinets [106],
Hybrid Sys-
tems [77,97,100]

X X X Multiple 7

98

ware. The main drawbacks of these tools are that they totally ignore the modeling

of the human body and the cyber-physical interactions. Further, they do not support

context modeling and can only do simulations for a given fixed configuration.

Physical Modeling: Models of the human physiological processes and organs has

been considerably researched in the past with efficient solutions. However, exist-

ing tools do not support modeling the cooperation of the computing and physical

environment.

Interfacing tools: To model the interaction, researchers have proposed interfac-

ing tools from computing and physical domains. The interaction between these tools

are typically coarse grain where, simulation results from one tool is used by the other

to perform its own simulations. Such discretization of inter-communication between

tools lead to errors in estimation. Further, with random contexts it is difficult to predict

context changes, which can occur in the middle of a simulation. Hence, such deter-

ministic scheduling of communication may cause difficulties in modeling contexts.

Event based communication between tools on the other hand causes an increase in

simulation time during frequent context changes. Hence, for requirements analysis

of PHMSes a single tool is necessary for simulating computing functions, physical

processes, and random contexts.

Integrated modeling: To simulate the computing and physical processes of a

PHMS researchers have proposed integrated modeling tools, where both the as-

pects are modeled and analyzed in a single framework. However, such tools are

typically used on specific PHMS test cases, and generally involve extreme cases of

operation. To model effects of context changes using such tools, a large number of

test cases will have to be simulated in sequence. Further, since context changes

involve changes in PHMS configurations, automation of simulation may not be pos-

sible leading to inaccuracies and increased time. Hence, tools are required that

99

Analysis
Phase

Modeling
Phase

Profiling
Phase

POWER
CONSUMED

NODE
TEMPERAT

URE

SCAVENGED
ENERGY

RADIO
RELIABILITY

RADIO
MODEL

NODE
POWER
MODEL

THERMAL
INTERACTION

MODEL

AVAILABL
E ENERGY

MODEL

SAFETY
ANALYSIS

Requirements

Specification
Phase

ContextFSM for a
PHMS

Specification of PHMS Hardware and
software for each context

Human Body Model

SUSTAINABILITY
 ANALYSIS

Application requirements
for each state

CONTROL
SYSTEM

PARAMETERS

WIRELESS
CHANNEL

PARAMETERS

MOBILITY OF
USER

HUMAN
BODY

PARAMETERS

CONTEXT 1 CONTEXT 2

DRUG
DIFFUSION

MODEL

CONTROL
SYSTEM
MODEL

WIRELESS
CHANNEL
MODEL

MOBILITY
MODELS

CONTEXT 1 CONTEXT 2

ANALYSIS TOOLS

EXECUTION
TIME ANALYSIS

FSM
SIMULATOR

Out 1

1

Transport

Delay 2

Transport

Delay 1

Transport

Delay

Step State - Space 1

x ' = Ax + Bu

 y = Cx + Du

State - Space

x ' = Ax + Bu

 y = Cx + Du

Gain

- K -

Figure 5.4: Approach for analysis of SMCS under dynamic context changes.

inherently support context modeling and dynamic changes in PHMS models.

Formal modeling: Formal models are used extensively for mathematically charac-

terizing the computing and physical processes. Hybrid systems are used to specify

PHMSes in a single mathematical framework. However, most attempts have been

restricted to modeling stand alone medical devices. Further, there is no theory for

analyzing random contexts in a formal framework. This work proposes an approach

to formally specify contexts using a ContextFSM and describes a simulation method-

ology for random contet changes. The different stages of the model based analysis

as shown in the Figure 5.4 are explained next using the Ayushman PHMS discussed

in Chapter 2 as the example.

100

5.4 Specification Phase

The specification of a PHMS is done using the industry standard AADL language (

www.aadl.info). AADL is a hierarchical model specification tool that provides con-

structs dedicated to modeling embedded software and hardware. However, AADL

inherently does not support specification of context and context transitions and phys-

ical dynamics of the human body. The behavioral annex is used to specify context as

states and context changes as a finite state automata, ContextFSM. Further, AADL

is extended to incorporate specification of complex physical processes as a series

of differential equations through the development of annex (language extensions).

The AADL specifications shown in this thesis denotes the AADL specific constructs

in bold.

A PHMS specification has five subcomponents:

PHMS specification: It has three different contexts and their dynamic transition

logic, AADL Spec 1 (PervasiveHealthMonitoringS ystem). For each context, there

is a different hardware and software implementation indicated by the subcompo-

nents in the AADL Spec 1, and are specified using the system implementation

construct. Each context is specified using the mode construct, and the context tran-

sitions are specified as shown in the AADL Spec 1. The transitions take place on

occurrence of events, which are specified in the features section of the specification.

The events are generated from context sensors specified using the ContextS ensor

system component. In this component, mobility models can be specified, which can

be later used to generate random events that cause state transitions. In this partic-

ular example, there are f our states - home, roaming, hospital, and inactive, and six

events - RoamingActive, AtHome, Emergency, Mitigate, Activate and DeActivate. In

each context, the PHMS consists of context sensor nodes, energy source, the hu-

101

AADL Spec 1: PHMS context specification

system PervasiveHealthMonitoringSystem
features
RoamingActive: in out event port;
AtHome: in out event port;
DeActivate: in out event port;
Activate: in out event port;
Emergency: in out event port;
Mitigation: in out event port;

end PervasiveHealthMonitoringSystem;

system ContextSensor
subcomponents
process RandomWayPointModel

end ContextSensor;

system implementation PervasiveHealthMonitoringSystem.imp
subcomponents
P0: system PervasiveHealthMonitoringSystem;
P1: system PHMS.HomeContext in modes Home;
P2: system PHMS.OutdoorContext in modes Outdoor;
P3: system PHMS.HospitalContext in modes Hospital;
R1: system ContextSensor.RoamingActive;
H1: system ContextSensor.AtHome;
E1: system ContextSensor.Emergency;
M1: system ContextSensor.Mitigation;
UA: system UserInput.Activate;
UA: system UserInput.DeActivate;
connections
event port R1.SensorOutput → P0.RoamingActive;
event port H1.SensorOutput → P0.AtHome;
event port E1.SensorOutput → P0.Emergency;
event port M1.SensorOutput → P0.Mitigation;
event port UA.UserEvent → P0.Activate;
event port UD.SensorOutput → P0.DeActive;
modes
Home: initial mode;
Roaming: mode;
Inactive: mode;
Hospital: mode;
Home: -[P0.RoamingActive] → Roaming;
Roaming: -[P0.AtHome] → Home;
Home: -[P0.DeActivate] → Inactive;
Roaming: -[P0.DeActivate] → Inactive;
Inactive: -[P0.Activate] → Home;
Home: -[P0.Emergency] → Hospital;
Roaming: -[P0.Emergency] → Hospital;
Hospital: -[P0.Mitigate] → Home;

end PervasiveHealthMonitoringSystem.imp;

102

man body specification, and specification of the coordination between the devices

and the human body.

Context sensor node: The context sensor node specification, AADL Spec 2

(PHMS node.ContextS ensorNode1), has the processor, application algorithm, and

the radio. The processor (Processor.Atom) power for different sleep states and the

idle power consumption at various operating frequencies are obtained from the ex-

periments performed in the profiling phase. The busy power consumption of the pro-

cessor for different operating frequencies are dependent on the application threads,

modeled in the Application.Ayushman subcomponent. The model of the applica-

tion workload consists of three main threads: 1) Sensing, 2) Data Transmission and

3) PKA Execution, each of which models the power consumption and thread execu-

tion time for different frequency of operation of the processor. The Radio.CC2420

subcomponent models the power consumption of the radio for three different modes

of operation: 1) Radio transmission, 2) Reception and 3) Radio turned off. The

model based communication algorithm can be specified as a state machine using

the mode construct, where there will be three modes: 1) model match, when the

model matching thread will be executed, 2) feature update, when the thread will

compute features from the signal and send it back to the base station, and 3) raw

signal update, when the sensor will just blindly send sample by sample data. For

each mode the power consumption and data sent properties will capture the com-

pression obtained for each mode. The wireless channel properties for the radio can

be specified using the properties construct, which can change for different modes.

Energy scavenging source: The total scavenged energy can be modeled as a

property of the system implementation,

Human body specification: The modeling of the human body is complex and AADL

is not geared towards it. Property constructs can be used to specify the physical

103

properties (thermal conductance, specific heat, blood perfusion as shown in AADL

Spec 3). However, the complex physical dynamics of human body that controls

its thermal behavior requires specification of differential equations in AADL which it

does not support. In this regard, an annex (CPS _annex) was developed which ex-

tends AADL to incorporate specification of differential (both partial and total) equa-

tions in the model itself. Specific constructs for denoting differentials were developed

in the annex. The annex implementation is described in detail in Section 5.7.

Specification of coordinated operation: The coordinated operation results in

changes in the complex physical processes with events occurring in the comput-

ing domain. In the infusion pump example, the diffusion of drug is governed by the

pharmacokinetic (PCK) process [55], which can be modeled as a set of differential

equations.

However, the equations change with the change in state of the controller.

The controller algorithm takes the drug concentration predicted by the PCK process

as input and varies the infusion rate to keep the drug concentration at a given level.

Such an algorithm can be represented using a state machine, which captures both

the computing and physical behavior of the infusion pump. A hybrid automata can

be used in this regard for to capture the continuous physical dynamics in each state.

However, the mode construct cannot be used since there is no provision to spec-

ify equations for a given state and transitions cannot depend on the variation of a

system variable. Instead a combination of the behavior_annex and the CPS _annex

is used in AADL to specify the control algorithm as a hybrid automata, AADL Spec

4 (NetworkControlledDevice.In f usionPump). As shown in the specification, the

partial differential equations can be specified using CPS _annex, PDE1 and PDE2

and associate them with states s1 and s2 in the behavior_annex. Further, events in

behavior_annex can occur when a variable crosses threshold (Overshoot event).

104

AADL Spec 2: PHMS sensor node specification

system implementation PHMSnode.ContextSensorNode1
subcomponents
S1: system Processor.Atom;
S2: system Radio.CC2420;
A1: process Application.Ayushman;

. . .
end PHMSnode.sensorNode1;

system implementation Processor.Atom
modes
SleepState1 : mode;
Frequency1 : mode;

. . .
properties
IdlePower => 0.160 W in modes SleepState1;
Temperature => 43 °C in modes Frequency1 ;

. . .
end Processor.Atom

system implementation Radio.CC2420
modes
RadioOnTx : mode;

. . .
properties
Power => 0.058 W in modes RadioOnTx;

. . .
end Radio.CC2420

process implementation Application.Ayushman
subcomponents
T1: thread Sensing;
T2: thread PKA;
T2: thread Transmission;

end Application.Ayushman

thread implementation Sensing
modes
Frequency1 : mode;

. . .
properties
Power => 0.030 W in modes Frequency1;
ExecutionTime => 5 s in modes Frequency1;

. . .
end Sensing

105

AADL Spec 3: Human Body Specification

system implementation HumanBody.skin
properties
SpecificHeat => 1.6 J/(Kg.K);. . .
annex
Del1<Temperature><Time> = K(Pdel2<Temperature><x>+
Pdel2<Temperature><y> + Pdel2<Temperature><z>) + . . .

end HumanBody.skin;

AADL Spec 4: Infusion Control Algorithm Specification

system implementation NetworkControlledDevice.InfusionPump
properties
DiffusionCoefficient (D) => 1.6 J/(Kg.K);

. . .
annex CPS_annex {∗∗
PDE1: Del1<DrugConc><Time> =
D(Pdel2<DrugConc><x>+Pdel2<DrugConc><y>) + InfusionRate + . . .
PDE2: Del1<DrugConc2><Time> = D(Pdel2<DrugConc2><x>

+Pdel2<DrugConc2><y>) + . . .

**}
annex behavior_specification {∗∗
states

s0: initial state;
s1, s2, s3: state;

transitions
s0: -[Bolus ?] → s1 {PDE1;};
s1: -[OverShoot ? {PDE1;}] → s2 {PDE2;}; ∗∗}

end NetworkControlledDevice.InfusionPump;

5.5 Profiling Phase

The available energy profiles of the scavenging sources are already obtained

from [1] while the profiling of human body for its thermal properties are obtained

from previous literature. Thus, the power and thermal profiles of the PHMS node are

derived under the Ayushman workload.

Power Profiling

For power measurement of the Atom processor the Mobile Intel 945 GSE (GMCH)

chipset is used. The power measurement setup provides the board power con-

sumption, which includes the CPU power as well as power for driving the chipset

106

Table 5.2: Power profiling of sensors (TelosB, iMote, BSN node v3, shimmer)

Tasks Consumed Power
(mW)

Execution Time
(ms)

Statistics op-
eration (mean,
standard devi-
ation)

5, 162, 6.7, 6.73 230, 220, 207,
200

Fast Fourier
Transform

5.1, 162, 6.5, 6.66 435, 102, 425,
415

Peak Detec-
tion

5.6, 156.6, 6.8, 6.6 100, 160, 90, 88

Table 5.3: Atom Power Usage for PKA computation in Ayushman

Percent Throt-
tling

Power Consump-
tion W

0 0.191
13 0.1864
25, 37 0.17
50, 62, 75, 87 0.167

and other associated components. In order to isolate the CPU power consumption

during Ayushman execution, the idle power of the board is first measured for each

throttling mode by allowing the CPU to run idle for three minutes (for stabilizing the

watt meter). Then the Ayushman workload is executed to measure the average

platform power. The difference between the two power values gives the power con-

sumed by the processor during the execution of the workload, which is shown in

Table 5.3 for different throttling modes.

The power consumption of the TelosB motes were experimentally obtained

by running the BSNBench benchmarking suite [107]. The benchmarking suite has

specific tasks for obtaining power consumption due to computation, sensing, and

communication. The sensing and computation power consumption is listed in Ta-

ble 5.2 for benchmark signal processing applications such as Fourier transform,

and peak detection. The power consumption of the Chipcon radio was measured

107

Table 5.4: Thermal Profile Data for different frequency throttling modes of the Intel
Atom N270 processor

Operating
mode (Per-
cent Throt-
tling)

Atom Pro-
cessor
Operating
Temperature
°C

Maximum Skin Tem-
perature °C after 24
Hr of operation

0, 13, 25 43 39.4365
37, 50 42 39.3325
62, 75 41 39.2295
87 39 39.0264

during transmitting packets at a bit rate of 250 kbps, standard for a sensor node (

www.xbow.com). The current consumption of the CC2420 radio used in the PHMS

was measured to be 18.41 mA during transmission and 19.20 mA during reception.

Considering the operating voltage to be 3 V the maximum power consumption of the

radio is 58 mW.

Thermal Profiling

The thermal effects of the TelosB sensors are negligible and hence are not con-

sidered in the analysis. However, the Intel atom based smart phone dissipates a

greater amount of power and hence can cause thermal harm to the human skin.

The temperature of the Intel Atom processor is measured using the on board thermal

sensor of the Mobile Intel 945 GSE development platform (GMCH). The N270 pro-

cessor has dedicated MSR registers (http://download.intel.com/design/processor/

datashts/320032.pdf), which stores the digital thermometer reading. The Atom pro-

cessor was first kept at sleep state (C6) to allow for the core temperature to stabilize

to a low value. Then the processor was brought back to normal state and the Ayush-

man application was run at different throttling modes of the processor. Table 5.4

shows the peak operating temperature attained by the Atom processor during the

execution of the Ayushman application at the different processor throttling modes.

108

5.6 Modeling Phase

From the AADL specification and using the profiling results, abstract models of the

different components of the PHMS can be built as discussed in this section.

Power model of PHMS

Power consumption of hardware components (processor, radio) for execution of dif-

ferent threads (Thread_power) and their timings (Thread_Time) are extracted from

the AADL meta-data. It is contended that during the period of sensing ts = 5 secs,

the micro controller is in idle state, where it consumes Pidle amount of power (≈

1 mW in TelosB motes). For a PHMS with n nodes the sensing process can be

performed in parallel by all sensors. After each sensing period the sensed data is

transferred to the base station. During this transmission period tT x the processor is

in idle state, consuming Pidle amount of power (approximately for 0.39 secs to trans-

mit five seconds of 32 bit data values 60 Hz sampling rate and a transfer rate of 24

Kbps [85]). The radio transmitter will also be active during this period (Pradio ≈ 58

mW being its power consumption). In a 24 hr period there will be x number of sense

and transmit periods (sleep cycles) for each sensor in the PHMS, with a duration of

(ts + tT x) secs each. Further, in a single day of operation of Ayushman the PHMS

nodes under go pairwise PKA execution to maintain the freshness of the encryption

key among two nodes. During this execution of PKA the processor should be in

active state consuming PPKA amount of power for the duration of execution of the

PKA algorithm tPKA. The value of PPKA is around 10 mW and tPKA is around 1 sec

as obtained from actual measurements averaged over all the commercially available

platforms. Further, during the transfer of the vault (tVault = 6.75 secs [85]), the radio

is active. Thus total energy consumption is given by Equation 5.1.

109

CS1

CS2

CSN

ET1,TBNE1

ET2,TBNE2

ET3,TBNE3

ETN,TBNEN

S1
SK

SN
S2

PHMS
MODEL 1

PHMS
MODEL 2

PHMS
MODEL N

R1

AP1

R2

AP2

RN

APN

ANALYSIS
EXECUTION

ENGINE

ANALYSIS
RESULTS

ANALYSIS
PLUG-INS

EXTERNAL
TOOLS

ETi = Event type
for context i

TBNEi = Time before next
event after context i

Ri = System
requirements in
context i

APi = Analysis parameters
for context i

CSi = Context sensor i
Flow of
information

Flow of multi-dimensional
information

State transition Correspondence between
states and models

Figure 5.5: PHMS analysis methodology is shown in the Figure. The context sensors
post events in the event queue, the events cause state transitions in the ContextFSM.
Each state has a different configuration of PHMS, which are analyzed using the
analysis engine.

Total PHMS Energy = Sensing Energy + Data Transmission Energy + PKA computation energy

+ vault transfer energy

⇒ EPHMS = nx(ts)Pidle + nxtT x(Pradio + Pidle) + tPKAPPKA(
n(n − 1)

2
)

+ tVault(Pidle + Pradio)(
n(n − 1)

2
) (5.1)

x is the number of sleep cycle to be sustained in 24 hrs.

Thermal model of PHMS

The operating temperature (Operating_Temperature) of the PHMS node, power

consumption (Component_Power) of each component, human skin proper-

ties (S kin_Properties) and the distances of the components from the skin

(S kin_Distance) are obtained from the metadata information after parsing the AADL

specification. These parameters are used in the estimation of the temperature rise

in the human body parts, which is governed by the following physical phenomenon:

1) radiative heat transfer from the Atom processor which depends on the operat-

ing temperature of the processor (modeled using the Stefan’s Law), 2) conductive

heat transfer from the processor, 3) electro-magnetic radiation absorption by the

110

body part (modeled by calculating the Specific Absorption Rate (SAR) [81]) and 4)

convective heat extraction by blood. These physical processes are combined in a

partial differential equation known as Penne’s equation which gives the temperature

variation of the human body part over space and time (Equation 5.2).

ρCp
dT
dt

= K 52 T − b(T − Tb) + ρSAR + Pc (5.2)

where ρ is the mass density, Cp is the specific heat, K is the thermal conductance

and T is the temperature of the body part, Pc is the power generated by the proces-

sor, b is the blood perfusion constant, Tb is the blood temperature, and SAR is the

specific absorption rate of the body part for electromagnetic radiation.

Model of Infusion Control

The control algorithm of the pump considers an initial infusion rate of x0. The control

algorithm discretizes time and queries the pharmacokinetic model after each dis-

cretized step δt for an estimation of the drug concentration. It then either increases

the infusion rate by δx or decreases it according to a linear approximation of the

diffusion process. The initial infusion rate, time discretization step and the infusion

increment step are the variables of the control system which can be tuned to obtain

different behaviors. Further, the infusion pump can get random Bolus requests (a

step rise in infusion rate). The magnitude of the bolus is also a variable of the sys-

tem. The pharmacokinetic model expresses the drug diffusion process as a set of

multi-variable linear differential equations in state space form (Equation 5.3).

ẏ1 = A1y1 + B1z2 + E1u(t − Ti), z1 = C1y1(t − Tp) (5.3)

ẏ2 = A2y2 + B2z1, z2 = C2y2(t − Tr)

Here y1 and y2 are the state space variables of the equation. A1, A2, B1, B2, C1, C2

and E1 are constants. z1 is the drug concentration in the blood while z2 is the drug

111

concentration of the tissue. The initial infusion rate u = x0 is the input to the model

and the output is the drug concentration in the blood. The differential equations in

the model are time-variant. This is because they consider time delays related to the

infusion input (Ti), cardio-pulmonary transport delay Tp and the arterial, capillary

and venous transport delays Tr. The time-variant nature of the physical process

comes from the consideration of the transport delays.

5.7 PHMS Analysis

The AADL specification of the PHMS is first parsed to hierarchical XML based meta-

data. This XML metadata is now used to extract information for analysis. The

methodology for analyzing a PHMS for requirements verification under the dynam-

ically changing environment is shown in Figure 5.5. The first step in the analysis

procedure is to generate context transition test cases. In this step, a random se-

quence of events are generated according to context models such as mobility mod-

els, arrhythmia occurrence probability, and bolus request frequency. These events

are classified into event types (ETi) and are appended with an estimate of the time

before next event (T BNEi) and arranged into an event queue. The ContextFSM is

then simulated starting from the initial state in accordance with the events. In each

state, the context specific PHMS is parsed to obtain the requirements and analysis

parameters. Depending upon the requirements different analysis plug-ins are em-

ployed to perform the simulation of the PHMS model. Further, domain specific tools

such as Matlab can also be used to analyze the PHMS model. The execution of

the appropriate plug-in for the correct analysis parameters and checking the compli-

ance with the requirements is performed by the analysis execution unit (Figure 5.5).

The output of the analysis execution engine is the compliance results. This analy-

sis methodology is developed in the OSATE simulation environment, a JAVA based

AADL specific software development platform.

112

To specify the human body dynamics an AADL annex called CPS _annex

was developed as discussed in Section 5.4. The CPS_annex parses AADL model

parameters according to a specified grammar, which can be used to specify complex

equations including partial differential equations in the AADL model itself. Specific

constructs were declared for denoting differential operators and the following gram-

mar is proposed which can be used to parse the specified equation in a suitable

format.

Expression := SubExpression {(+ | -)

SubExpression}*

SubExpression := Term {(* | /)Term}*

Term := DerivativeExpression | PortIdentifier

| AADL Property

DerivativeExpression :=

Del<DerivativeOrder><DependentVariable>

<IndependentVariable> |

Pdel<DerivativeOrder><DependentVariable>

{<IndependentVariable>}+

A differential equation is denoted by an Expression. Expressions consist of

one or more SubExpressions which are combined either by addition (+) or subtrac-

tion (-) ({SubExpression}∗ denotes zero or more SubExpressions). Each SubEx-

pression further can consist of one or more Terms which are combined by division

(/) or multiplication (*) operations. Each term can either be a derivative operator (de-

noted by the term DerivativeExpression) or a constant value obtained from a port

communication (PortIdentifier) or an AADL property. Two types of derivatives are

considered in this grammar: 1) absolute derivatives with respect to a single inde-

113

Levy Walk Model
Random Walk Model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0
500

1000
1500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0
500

1000
1500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0
500

1000
1500

Time in minutes

D
ru

g
co

n
ce

n
tr

at
io

n
 (

u
g

/l
)

Probability of going outdoors = 0.9

Probability of going outdoors = 0.5

Probability of going outdoors = 0.1

Outdoor PDR = 0.4
Indoor PDR = 0.8

Figure 5.6: Analysis of infusion pump safety under dynamic context changes. The
levy walk model predicts higher concentration of insulin than the random walk model,
the difference increases with higher probabilities of outdoor excursions.

pendent variable and 2) partial derivatives with respect to multiple variables. For

representing the absolute derivatives the Del operator is used which has three parts

to its specification: 1) derivative order, 2) dependent variable and 3) a single inde-

pendent variable. Partial derivatives are represented by the Pdel operator which has

the same structure as Del but can have multiple independent variables. This gram-

mar allows ordinary and partial differential equation specification in AADL model

itself.

The usage of the analysis framework to analyze the dynamic context driven

interactions between the PHMS devices and the human body is considered in the

next section.

Effect of context change on medical control systems

The usage of our analysis framework is shown considering the infusion pump ex-

ample. The PHMS is in a hospital context. However, the patient wants to move

around in the hospital and goes to the balcony to enjoy the view outside. This will

114

trigger a context change in the PHMS and the system state will transit from hospi-

tal to outdoor. In such a scenario, specifically the wireless channel properties will

change resulting in a different packet delivery ratio (PDR) for the radio communi-

cation. Since the infusion pump is controlled through the wireless channel by the

controller, change in the PDR may cause a drop in communication quality between

the controller and the pump. Low PDR may lead to packet loss from the controller to

the infusion pump. This may cause delay or loss of control inputs to the pump. In the

analysis framework, two different mobility models, random and Levy walk [87], were

used to simulate the context change. The hospital region was divided into two parts:

indoor (PDR = 0.8) and outdoor (PDR = 0.4). The contexts were simulated for 10

cases with probability of outdoor visits varying from 0.1 to 0.9. For each sequence of

control inputs the control algorithm and the pharmacokinetic model were simulated

in coordination. The results of the simulation is shown in Figure 5.6. The results

show that a random mobility pattern is less harmful (causes lower overshoots in the

average case) than a Levy walk pattern. This is because in the Levy walk pattern

the patient is more inclined towards an outdoor visit. However, in random walk pat-

tern the outdoor visits are more uniformly distributed. Such complex simulation of

dynamic context changes and its effect on the medical device and human body coor-

dination cannot be performed in contemporary simulation tools and is only facilitated

by our methodology.

Context driven safety violation:

This example considers the thermal impact of the Intel Atom based smart phone

on the human body. Two contexts are considered: 1) the smart phone is idle, and

2) when it receives data from the ECG sensor and starts online processing of the

signal to detect onset of epilepsy [108]. The epilepsy detection algorithm involves the

computation of Fast Fourier Transform (FFT) of the signal and peak detection. Once

115

0 0.01 0.02 0.03 0.04 310

310.5

311

311.5

312

312.5

Te
m

p
er

at
u

re
 in

 K

(a) Temperature distribution
when smart phone is idle

0 0.01 0.02 0.03 0.04 310

310.5

311

311.5

312

312.5

(b) Temperature distribution while
executing epilepsy detection algorithm

Tsafe

Figure 5.7: Skin thermal map for two modes of smart phone operation. Typically
temperatures are higher when the smart phone is executing the epilepsy detection
algorithm.

the smart phone transits to the epilepsy detection context it stays in that context for

1000 seconds. The thermal map for the operation of the smart phone is shown in

Figure 5.7. The results show that when the smart phone was in the idle state, it was

thermally safe. However, continuous execution of the epilepsy detection algorithm is

not safe since after 1000 seconds of operation the skin temperature reaches safety

limits of 312 K.

116

Chapter 6

FORMAL MODELING AND ANALYSIS OF CPSES

The previous chapters talked about architectural modeling of the CPS and handling

dynamic contexts. With architectural modeling, analysis is limited to only simula-

tions. Theoretical guarantees on the safety of CPS can only be obtained with a

more formal representation of CPS with semantics that represent the evolution of the

cyber-physical interaction between the computing unit and the physical system over

both space and time. This chapter, first reviews existing formal modeling techniques

for applicability to CPSes. It then discusses a novel formal model, Spatio-Temporal

Hybrid Automata (STHA) and develops its approximate reachability analysis tech-

nique. The reachability analysis outputs a comprehensive set of states, or possible

values of the system parameters, that can occur within a given time and space

bound.

Formal models for CPSes should thus capture four salient features: 1) dis-

crete time behavior of the computing nodes; 2) continuous dynamics of the physical

environment; 3) spatio-temporal variation of the continuous physical parameters;

and 4) aggregate effects because of concurrent operations of networked computing

nodes.

Traditionally, hybrid automata [42, 43] are used for capturing both discrete

and continuous behavior of a system. However, current tools to model a hybrid au-

tomata [77] only consider one dimensional variation of parameters, generally over

time, and are hence insufficient for modeling the spatio-temporal variation of physical

parameters in CPSes. Safety analysis of hybrid automata generally involve reacha-

bility study of the state trajectories to analyze whether the designated sets of unsafe

117

states are reached with progression in time. However, for CPSes reachability study

should evaluate state trajectories in both time and space. To this effect, researchers

have considered spatial network of hybrid automata to capture the spatial propaga-

tion of physical parameters across the human body [44–47].

Spatial networks of hybrid automata discretize the space as a grid and stat-

ically allocate hybrid systems at specific points. Thus, they depend on fixed spatial

boundaries to setup the network. However, most of physical dynamics in human

body are Free Boundary Problems [109] where the boundary conditions in space

causes the spatial extent of interactions to expand. For example, the drug concen-

tration due to infusion at a given time is maximum at the site of infusion and gradually

decreases as we move away from the site. A point in space, which has a negligible

concentration at time t1, can have a considerable concentration at a later time t2.

Thus, a space point, which was not considered in the analysis since it was outside

the boundary, will be ignored by a spatial network of hybrid automata, even if at a

later time it has considerable concentration. Thus, they also fail to accurately model

the aggregate effects due to concurrent operations in networked computing units.

Modeling aggregate effects in CPSes, requires new dynamic equations in

the formal model. For example, the coefficients of the equation governing the tem-

perature rise in the human tissue changes when there are multiple heat sources (i.e.

the sensor nodes) [2, 81]. Thus, a single formal specification is necessary for the

entire network where aggregate effects can be expressed by incorporating new dy-

namic equations. Hilbertean transforms [110] have also been used to specify CPSes

formally. However, to the best of our knowledge, no formal verification of safety has

been performed.

Computationally tractable reachability analysis of a hybrid automata is only

possible to date for affine dynamics in one dimension [42, 43], since there exists

118

closed form solutions of the differential equations. For the most commonly occurring

form of spatio-temporal dynamics, linear second order partial differential equations

(PDEs) as observed in Penne’s bioheat equation [4] or infusion pump diffusion dy-

namics [111], there exists no closed form solution even for a single spatial dimen-

sion. Hence, traditional method for reachability analysis with zonotopes [112] do

not apply. For temporal dynamics whose solution cannot be computed with infinite

precision, a time bounded reachability analysis is proposed in [113]. This thesis

takes an approach similar to [113] and proposes a novel bounded time and space

reachability analysis for spatio-temporal hybrid automata, where the interactions are

represented as linear second order PDEs with one space dimension. The thesis

makes the following fundamental contributions:

1. Defines a Linear 1-space dimension Spatio-Temporal Hybrid Automata

(L1STHA) capturing the aggregate spatio-temporal dynamics of cyber-

physical interactions in CPSes;

2. Develops a bounded time and space reachability analysis of L1STHA models

enabling safety verification of CPSes based on their spatio-temporal behavior.

3. Applies the reachability analysis technique to medical CPSes specifically in-

fusion pumps for safety analysis.

In the next section, we discuss some preliminary ideas, an overview of our approach

and the infusion pump example that is used in this thesis.

6.1 Motivation and Related Works

The principal source of complexity in modeling a CPS is the continuous interaction

of the computing system with the physical environment leading to spatio-temporal

variation of the system properties. Figures 6.1 a and b, show the thermal map of the

119

0

5

10

0 2 4 6 8 10 12 14 16 18
310.4

310.6

310.8

311

311.2

311.4

X Axis

Y Axis

 310

310.2

310.4

310.6

310.8

311

311.2

311.4

311.6

311.8

312

T
e
m

p
e
ra

tu
re

 i
n
 K

(a) Thermal map of human skin after 480
seconds of operation.

0

10

0 2 4 6 8 10 12 14 16 18
310.5

311

311.5

312

312.5

X Axis

Y Axis

5

310.6

310.8

311

311.2

311.4

311.6

311.8

312

312.2

312.4

T
e
m

p
e
ra

tu
re

 i
n
 K

(b) Thermal map of human skin after
18720 seconds of operation.

Figure 6.1: Thermal map of human skin for two sensors placed at locations 5 and 15.
The sensors were sensing at 60 Hz and were transmitting the sensed value to the
base station using ZigBee radio. This workload is typical of a pulse oximeter sensor.
The power consumption values are measured from a Smithsoem pulse oximter while
the temperature rise is governed by the Penne’s bioheat equation [4]

human skin governed by the Pennes bioheat equation due to heat dissipated from

two sensors places close to each other. It can be observed that the temperature

rise of the human skin varies over space, indicated by the different intensities of the

temperature rise at different spatial locations, and time, indicated by the change in

the thermal map between part a and b of the Figure 6.1.

Incapability of traditional hybrid automata: As discussed in the Chapter 1, a hy-

brid automata can effectively capture both continuous and discrete time behavior of

systems [42, 43]. In such a system, the discrete time behavior is modeled as dis-

crete states. Associated with each state is a differential equation that governs the

continuous dynamics based on which the state variables (usually the physical pa-

rameters) change over time. Transitions among the states occur with occurrences

of events normally caused by the continuous dynamics, e.g., state variable values

crossing thresholds. These systems can only express continuous dynamics in a sin-

gle (time) dimension. However, for a CPS the continuous dynamics varies over four

dimensions: three dimensions of space and one dimension of time. Hence, single

dimensional hybrid automata cannot directly model a CPS behavior.

120

Drawbacks of spatial networks of hybrid automata: Recent efforts have attempted to

discretize the spatial dimensions in a CPS model and have used spatial network of

hybrid automata to capture the spatial propagation of physical parameters across the

environment [44–47]. However, such efforts have two important drawbacks. Firstly,

the discretization of the spatial dimension leads to errors in the modeling phase.

The solution of the differential equations for analyzing a hybrid automata involves

discretization of the time dimension. If the spatial dimensions are also discretized

then the errors due to quantizations are likely to be amplified during the analysis of

the hybrid automata.

Secondly, such spatial networks of hybrid automata may not capture the

aggregate effects of cyber physical interactions in a CPS. As seen in Figure 6.1 (a),

the temperature rise for both the sensors had died down significantly at the spatial

locations 9 to 10. However as time progressed the temperature at those locations

increased significantly and became comparable to the temperatures at locations 5

and 15 (the locations where sensors were placed). This happened due to aggregate

effects of the interaction between the two sensors, which caused a change in the

continuous dynamics at the spatial locations 9 and 10. Hence, it can be seen that

due to aggregate effects the continuous dynamics in certain spatial regions may

change. If a spatial network of hybrid automata were used in such a scenario, the

continuous dynamics would have been fixed over time at all spatial locations. Hence,

it may fail to capture such aggregate effects.

Model composition and aggregate effects: Hilbertean transforms [110] have also

been used to specify CPSs formally. However, no formal verification of safety has

been performed on them. Further, they do not consider the aggregate effects of

cyber-physical interactions due to network of computing units. Composition of multi-

ple hybrid automata has been studied to synthesize the global behavior of systems

121

from individual sub-components [114]. Such composition can be useful to capture

the effects of the concurrent operations in multiple computing nodes. However, the

aggregate effect of the multiple computing nodes may introduce new dynamic equa-

tions governing the variation of the system parameters. Therefore, composition of

the models has to allow changes in the equations for physical dynamics to capture

the aggregate effects which is not supported in these models.

This research proposed to overcome these challenges with a novel form of

hybrid automata called Spatio Temporal Hybrid Automata (STHA), which can cap-

ture spatio-temporal dynamics in a CPS. Further, a composition relation for STHA is

also defined that can capture the aggregate effects of cyber-physical interactions in

presence of a network of sensors.

Analysis of CPS models: Safety verification in hybrid automata normally involve

reachability study of the state trajectories to analyze if designated sets of unsafe

states are reached with progress in time. However, the continuous dynamics of the

physical parameters, caused by the cyber-physical interactions, is normally driven

by dynamic equations in four-dimensional spatio-temporal domain [4]. As expected,

most of the PDE models will not admit analytical solutions. Hence, it is often ana-

lytically not possible to bound the system parameters governed by these equations.

Therefore, this research focuses on trying to prove bounded time safety guarantees.

Towards that goal, existing reachability analysis techniques [115–125] have to be

adopted and modified and applied to STHA. The reachability analysis for the one

dimensional hybrid automata is also and open area of research given the complexity

of solutions of PDEs and only for very specific classes of equations such as lin-

ear differential equations, techniques to perform accurate reachability analysis exist.

This research also proposes the development of a simulation technique for STHA

that can provide time bounded reachability analysis.

122

Discrete Controller

1l 2l ml

m – modes

Physical System

n –system properties

1v 2v nvV

Spatio-Temporal Dynamics
2

1 1 1 12

V V
A B CV u

t x
2

2 2 2 22

V V
A B C V u

t x

2

2m m m m

V V
A B C V u

t x

Control information
to change physical
dynamics

Physical
processes Variation of system

properties over
space and time

Control
algorithm

configuration
Observable
system
properties

Figure 6.2: Assumed system model for Cyber-Physical Systems.

6.2 Preliminaries and Overview of Approach

Our system model of CPSes consists of a computing unit as a controller of the phys-

ical environment (Figure 6.2). The controller takes feedback from the physical envi-

ronment and makes a decision on the control information, which is sent back to the

physical environment. The control algorithm has m modes of operation, (l1,l2,. . .,lm),

each with a different control policy. The physical system can be represented using n

continuous variables or system properties, which vary according to a second order

PDE. In this thesis, we restrict these PDEs to one space dimension x.

There are three notions of state in our model: a) discrete state, b) continuous

state, and c) state. A discrete state represents the computing modes in a CPS and is

similar to the notion of state in a Finite State Automata. Each point in the continuous

state space (a subset V of Rn) is a value assumed by the continuous variables of

a system and is called a continuous state. A state is a tuple (l, v), consisting of a

discrete state or mode, l and a continuous state v.

123

In this theory, we assume that the continuous state space is compact. That

is each subset J of the continuous state space has a continuous interior denoted

by J�, an open set (e.g., 0 < x < 10), and a boundary denoted as J� given by

boundary conditions (e.g. x = 0, x = 10). The set J = J�∪ J� (e.g. 0 ≤ x ≤ 10). The

entire continuous state space V , is partitioned into a collection of polyhedral subsets

J = {J1, J2, . . .} such that: a)
⋃
∀Ji∈J Ji = V , and b) J�i

⋂
J�j = φ for i , j. Each

polyhedron subset is called a cell and is a non-empty set of real numbers. Further,

two cells are called adjacent if J�i
⋂

J�j = n − 1. Two cells are connected if there is

a sequence of adjacent cells between the two.

Hausdorff distance, dH(P,Q), between two sets P and Q is the maximum

Euclidean distance of any point in P to its corresponding closest point in Q [126].

The main advantage of considering Hausdorff distance is that a δ neighbor-

hood of a point P in Rn, denoted by Bδ(P), computed using Hausdorff distance, is a

hypercube of side length 2δ. The set of vertices of a neighborhood Bδ(P) is denoted

by Vert(Bδ(P)). This is illustrated in Figure 6.3, where the δ Hausdorff neighbor-

hood of a point P in two dimension is a square of side length 2δ. This immensely

simplifies the computation of convex hull of a set of points required for reachability

analysis [127].

Unit vectors are used to denote direction. A unit vector n̂ from a set P to Q

is a vector of unit length along the Hausdorff distance from the set P to Q. The dot

product of the temporal or spatial variation of any variable v with the unit vector n̂

denoted by ∂v
∂t

⊙
n̂ or ∂2v

∂x2

⊙
n̂, is the amount of variation in the direction from set P

to Q. This notion is useful for capturing the transition between L1STHA modes.

The image of any continuous state v, over time t and space x, denoted by

Dt,x(v) is the computation of the solution of the linear 1-space dimensional second

order PDE, for a time t and space x, with v as the initial condition.

124

Inv0

δ neighborhood (b)

Approximate
trajectory (a)

Convex Hull

v0

Inv0
 C complement

of Inv0

transition

0,0
Q2 = (δ,-δ)

Q3= (δ,δ) Q4= (- δ,δ)

Q1 = (-δ,-δ)

Q6= -δ,-gδ
P dH (P,Q6) = max(δ-0,gδ-0) = δ

Q5= (fδ,gδ)
dH (P,Q5) = max(fδ-0,gδ-0) < δ

0<f,g < 1
dH is the Hausdorff distance

1 2 3 4 5 6, , , , , ()Q Q Q Q Q Q B P

Reach set = neighborhood (d)

vert2

vert1 vert4

vert3

Dtx(vert1) (c)

Figure 6.3: Computation of image from an initial state. A boundary of the initial
state is assumed and the dynamic equations are evaluated on the vertices of the
boundary. The reachable state at the next time or space step is the convex hull of
the images of the vertices.

Overview of Approach

The STHA expresses the variation of system parameters of a CPS according to a

control logic specified using the discrete states or modes. In our approach, we first

define the L1STHA, and then define its execution logic, which formalizes how the

L1STHA operates in space and time. The execution is governed by the linear 2nd

order PDE.

The reachability analysis of L1STHA is the method of approximating the con-

tinuous states that can occur during the execution of the L1STHA in space and time

from a given initial state (defined later), or in other words estimating the reach set.

This involves computing the image of an initial state using the solution of the PDE

125

(Figure 6.3). To this effect, we first consider a L1STHA with only a single mode and

develop the algorithm to estimate its reach set (Section 6.9).

The reach set of a single mode L1STHA is computed using the following

steps (marked in Figure 6.3): a) we first find a suitable discretization of time and

space that guarantees that the error in computing the image of the PDE is within

the desired accuracy ε, b) we then consider a δ neighborhood of the initial state

v0, Bδ(v0), c) the image of the vertices of the neighborhood, Vert(Bδ(v0)), is then

computed using the PDE for a given time and space, d) the γ neighborhood of

each point in the image is considered, resulting in a new set of vertices, d) the

convex hull [127], of the new set of vertices gives the γ approximation of the reach

set. As shown later in the formulation the γ and δ are related linearly to ε. The

same algorithm is applicable for estimating the reach set of multi-mode L1STHA

(Section 6.10). The only difference is that in the process of computing the images

of vertices the reachability analysis algorithm keeps track of the transitions made by

the L1STHA into different modes. For safety analysis, a subset of continuous states

is designated as unsafe. If the computed reach set intersects the unsafe set, the

CPS is deemed unsafe.

Safety in CPSes

Safety of CPSes in the medical domain is defined as the avoidance of unwanted

hazards to the human body due to the cyber-physical interactions. Such a definition

is generic and is applicable to CPSes in general. Hazards can be of several types

as listed in ISO 60601 standard for medical electrical equipments. In this thesis, we

consider physiological hazards due to drug overdose in infusion pumps.

Example 12 Drug infusion: Infusion pumps operate in a close loop with a net-

worked controller to keep the drug concentration in the human blood within recom-

126

v1

v2

Inv1

Inv2

Continuous Variables = v1 , v2

Continuous State Space 1 2 2 (,)if v v Inv
Mode Mode

1 2 1(,)v v Inv
1 2 2(,)v v Inv

1 2 1 (,)if v v Inv

Trajectory()

Trajectory() with different A,B,C, and u

2
11 12 1 11 12 1 11 12 1 1

2

21 22 2 21 22 2 21 22 2 2

, , ,

, , ,

A A v B B v C C v u

A A v B B v C C v ut x

1 1

2

Re()

Re() 0

v e

v

1

2 2

Re() 0

Re()

v

v e

2
R

1l 2l

1l

2l

Figure 6.4: Conceptual illustration of L1STHA with two modes l1 and l2 and two
continuous variables v1 and v2

mended limits. The infusion pump has three modes: a) basal, where infusion rate is

I0, b) braking, where infusion rate is a fraction f of I0, and c) correction bolus, where

infusion rate is incremented by Ib. Diffusion dynamics of the drug is spatio-temporal

in nature and can be modeled using multi-dimensional PDE Equation 6.1 [111].

∂d
∂t

= 5(D 5 d) + Γ(dB(t) − d) − λd, (6.1)

where d(x, t) is the tissue drug concentration at time t and distance x from the in-

fusion site, D is the diffusion coefficient of the blood, Γ is the blood to tissue drug

transfer coefficient, and dB(t) is the prescribed infusion rate at time t, and λ is the

drug decay coefficient. A control algorithm in the infusion pump samples Equation

6.1 and adjusts the infusion levels so as to achieve the desired physiological effects

while avoiding hazards such as hyperglycemia.�

127

6.3 Linear 1-D Space Spatio-Temporal Hybrid Automata

The L1STHA expresses the variation of systems properties according to a discrete

control algorithm of the computing units in the CPS. A L1STHA is described as:

Definition 6 L1STHA: It is a tuple {L, Inv, A, B,C, u,Re},

• L is a set of m discrete states or modes {l1, l2, . . . lm}.

• Inv : L → 2J is the invariant set, which maps each discrete state to a set of

cells such that:

– for each l ∈ L the cells in Inv(l) are all connected,

– for any two different modes {li, l j} ∈ L, Inv�(li)
⋂

Inv�(l j) = φ,

–
⋃
∀i∈{1...m} Inv(li) = V ,

• A : L→ Rn × Rn, maps a mode to an n × n real valued matrix,

• B : L→ Rn × Rn, maps a mode to an n × n real valued matrix,

• C : L→ Rn × Rn, maps a mode to an n × n real valued matrix,

• u : L→ Rn, maps a mode to an n × 1 real valued vector,

• Re(.) : L×V → Rn is a reset function that sets initial conditions of the variables

in V at each mode li ∈ L.�

Associated with the definition of L1STHA is the definition of its trajectory that relates

the variables A,B,C, and u.

Definition 7 Trajectory: The trajectory of an L1STHA with n continuous dimensions

for time t ∈ R and within a region s ⊂ R at a discrete mode li ∈ L is defined as the

1-D space spatio-temporal mapping η : [0,T] × S → Rn such that:

128

• η(t, x) for t ∈ [0,T] and x ∈ S follows the PDE:

Ai
∂η(t, x)
∂t

= Bi
∂2η(t, x)
∂x2 + Ciη(t, x) + ui, (6.2)

where Ai, Bi, Ci, and ui are for a mode li.

• and η(t, x) ∈ Invi ∀t ∈ [0,T] and x ∈ S . �

The duration of the trajectory at a given spatial coordinate x is denoted by η|x.dur

and its spatial range at a given time t is denoted by η|t.range. A trajectory ends if

at any space or time point the continuous variables cross invariant set boundaries.

Figure 6.4 shows a conceptual view of a L1STHA. It has two modes l1 and l2. Each

mode is associated with an invariant set, a subset in the real space R2. The invari-

ants are used to determine transitions between modes (discussed later). Each mode

has a reset function (assigning of constant values (e1,e2)), which reflects the effect of

control operation on the system variables “whenever" or “wherever" the L1STHA first

enters a mode. In each mode the trajectory is a linear 1-space dimensional PDE,

with different values of A,B,C, and u. L1STHA is applied on Example 12 as follows:

Example 13 Infusion Pump: The L1STHA model for the infusion pump is shown

in Figure 6.5. The L1STHA model has three modes in the set L - a) correction bo-

lus mode, b) braking mode, and c) basal infusion mode. The L1STHA is initially

at the basal infusion mode l0. The continuous variable for the L1STHA model of

infusion pump is the blood glucose concentration in the blood, which varies over

space and time. The L1STHA is in: a) the basal infusion mode if the blood glu-

cose concentration is within 20 mg/dl and 120 mg/dl with infusion rate I0, b) the

correction bolus mode l1, if the blood glucose concentration is greater than 120

mg/dl with infusion rate (Ib + I0) and c) the braking mode l2, if the blood glucose

129

1 01

1

1
Re() ,

1, ,

,

20
{ [0,]}

B

d I
f

A B D

C u d

Inv d
k

1 01

1

Re()

1, ,

,

20 120
{ [,]}

B

d I

A B D

C u d

Inv d
k k

1 01 1

1

Re()

1, ,

,

120 180
{ [,]}

b

B

d I I

A B D

C u d

Inv d
k k

Braking Basal Correction Bolus

Single channel infusion pump L1STHA model

1 01{ }, {Braking, Basal, Correction Bolus}, infusion increment

 for drug 1, = Basal infusion rate of drug 1.b

V d I

I

 L

1 20 /d k

1 20 /d k

1 120 /d k

1 120 /d k

Figure 6.5: The L1STHA model of single channel infusion pump.

concentration is below 20 mg/dl with infusion rate I0/ f . Thus, the Inv set con-

sists of the mappings {Inv(l0) = ([20/k, 120/k])}, {Inv(l1) = ([120/k,∞])}, and

{Inv(l2) = ([0, 20/k])}. Here k is a constant factor that converts blood glucose

concentration to insulin concentration. Such linear relationship is suggested by the

Bergman Minimal Model [99]. It can be seen that the invariant mapping Inv satisfies

the conditions in Definition 6. In each mode, the reset function Re represents the

decision of the control algorithm to increase or decrease the infusion rate whenever

the L1STHA enters the mode. The A,B,C, and u values can be derived from the

diffusion Equation 6.1 and the trajectory Definition 7 as A = 1, B = D, C = −Γ − λ,

and u = Γdb(t). �

With this definition of L1STHA we can also characterize aggregate effects as

shown in the following example.

Example 14 Multi-channel Infusion with aggregate effects: Infusion pumps

used in chemotherapy [111], often have multiple channels of infusion leading to

aggregate effects of drugs. If we consider a region of the body at a fairly large dis-

tance from the site of infusion of a drug, the concentration decreases to negligible

amounts (below a low threshold) at a given time according to Equation 6.1. How-

130

ever, over time the concentration at that region may increase to such an extent that it

cannot be ignored. In case of a two channel infusion this phenomenon can happen

for both the drugs at a given region. In that case the effective concentration of drug

is a non-trivial combination of the dynamics of the individual drugs. Specifically, the

drug concentration also follows Equation 6.1 but with modified parameters and con-

ditions. To capture this aggregate effects, we first consider L1STHA models similar

to Example 13, for the individual drugs with concentration d1 and d2. The L1STHA of

the mutli-channel pump has a mode set which is the Cartesian product of the mode

sets of the individual L1STHA models. If we consider that the low threshold is 20/k

mg/dl, then aggregate effects can only occur when (d1, d2) ∈ ([20,∞], [20,∞]) i.e.,

when the individual L1STHA models are either in basal or correction bolus modes.

Hence of the nine possible modes that can occur due to the Cartesian product only

four are aggregate effect modes (Figure 6.6). The aggregate effect can be modeled

by introducing a new variable d3 to all the modes. In modes without aggregate ef-

fects d3 = 0, while in modes with aggregate effects d3 follows a new PDE with new

parameters D3, Γ3, λ3, and dB3 as suggested by [111]. The transition to the aggre-

gate effect modes can only occur if both d1 > 20/k and d2 > 20/k. The equation

expressing the aggregate effect has to be specified to the L1STHA, its execution will

determine when and where the aggregate effect occurs and with what intensity. Note

that this condition is spatio-temporal in nature and unlike spatial networks of hybrid

automata, impose no restriction on the space or time at which aggregate effects can

occur. �

The analysis of L1STHA models requires solution to the differential equations, which

depend on initial and boundary conditions and govern mode transitions.

131

Correction Bolus 1 + Braking 2 Aggregate Correction Bolus 1 + Correction Bolus 2

1 01 1

2 02 3

1

2

1 1 1 1

2 2 2 2

1 2

Re()

1
Re() , Re() 0

,0,01,0,0

0,1,0 , 0, ,0 ,

0,0,0 0,0,0

,0,0

0, ,0 ,

0,0,1 0

120 180 20
{ [,], [0,]}

b

B

B

d I I

d I d
f

D

A B D

d

C u d

Inv d d
k k k

1 01 1

2 02 2

3 1 2

1

2

3

1 1 1 1

2 2 2 2

3 3 3 3

1

Re()

Re()

Re() max((,), (,))

,0,01,0,0

0,1,0 , 0, ,0 ,

0,0,1 0,0,

,0,0

0, ,0 ,

0,0,

120
{ [,

b

b

b b

B

B

B

d I I

d I I

d d t x d t x

D

A B D

D

d

C u d

d

Inv d
k

 2

180 120 180
], [,]}d

k k k

Multi channel Infusion pump formal model

{Braking1, Basal1, Correction Bolus1} {Braking2, Basal2, Correction Bolus2}L

Nine states out of which four are aggregate effect states

{Correction Bolus 1 + Correction Bolus2, Correction Bolus 1 + Basal 2,

Basal 1 + Correction Bolus 2, Basal 1 + Basal 2}

aggrL

1 2 3{ , , }V d d d

Figure 6.6: The normal and aggregate effect modes in the L1STHA model of multi-
channel infusion pumps.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

G
lu

co
se

 C
o

n
ce

n
tr

at
io

n
 m

g
/d

l

X-axis Coordinate

Basal mode

Correction bolus mode

Braking mode

Temporal execution

Spatial
execution

Temporal
discrete
transition

Spatial discrete
transitions

Time = 0s Time = 100s Time = 500s Time = 1000s

Aggregate
effects

Lines indicating boundaries
of invariant sets

Variation of the glucose concentration or level over space.
Note that at each space point it also varies over time

Projection of glucose concentrations of individual channels. Aggregate effect
occurs only when both channels have glucose concentration > 20mg/dl

Figure 6.7: Example execution of the L1STHA model of a multi-channel infusion
pump, for 1000 seconds and over a 50 mm spatial region.

132

6.4 L1STHA execution model

The definition of L1STHA is not complete and useful unless we define an execution

and a discrete transition. Figure 6.7 shows a simulation of the multi-channel infusion

pump L1STHA following the execution model to be discussed in this section. The

figure shows three modes of operation of the infusion pump: basal, correction and

braking. The plots show the trajectory, solution of Equation 6.1, with respect to

space at given times (0s, 100s, 500s, and 1000s). It is to be noted that we define

the L1STHA execution model with a time bound T and a space bound S .

Definition 8 Initial State: The initial state of a L1STHA at a given spatial coordinate

x ∈ S , is a continuous state v0,x ∈ Inv0 such that η(0, x) = v0 �

As shown in the graph with time = 0s in Figure 6.7, initial state at the space point x

= 15mm is the value of the glucose concentration, which is 20 mg/dl.

Definition 9 Initial Configuration: The initial configuration of a L1STHA is the func-

tion η(0, .) : x→ Rn, & x ∈ S .�

The initial configuration is the spatial variation of the glucose concentration at time t

= 0s as shown by the thick gray line in Figure 6.7 at time = 0s.

Definition 10 Mode Boundary: The mode boundary for any mode l ∈ L at a time t

is the boundary of a spatial region sl such that η(t, x) ∈ Invl∀x ∈ sl �

As time progresses the L1STHA is at different modes at different spatial regions.

If we consider the time t = 500s, then the spatial region from 0mm to 9 mm is in

braking mode, 9mm to 42mm is in basal infusion mode, and 42mm to 50mm is in

braking mode. Hence, each mode has a spatial boundary at a given time called

mode boundary while sl for a mode l is the spatial region in which the L1STHA is in

mode l. Note that the mode boundary shifts as time progresses.

133

Definition 11 Boundary State: The boundary state of a mode l0 in L1STHA at a

given time t ∈ [0,T], is a continuous state vt,x0 ∈ Inv0 such that η(t, x0) = vt,x0 ,

where x0 is in the mode boundary of l0.�

The value of the glucose concentration at the mode boundary at a given time is the

boundary state at that time. For t = 500s the boundary state of the aggregate basal

mode is with glucose concentration 78.4 mg/dl.

Definition 12 Boundary Variation The boundary variation of an L1STHA is a set of

all functions η(t ∈ [0,T], s�l0). An element in this set is of the form η(t, x), where

t ∈ [0,T] and x ∈ s�l0 .

Definition 13 Temporal Execution: A temporal execution αt of a L1STHA at a given

spatial coordinate x ∈ S from an initial state (l0, v0,x) ∈ L ×Rn, is a concatenation of

trajectories at x, αt = η0|xη1|x . . . where:

• η0(0, x) = v0,x,

• ηk(0, x) = Re(ηk−1(ηk−1|x.dur, x)),

• αt.dur =
∑

i ηi|x.dur,

where ηk is the trajectory defined at a mode lk ∈ L, Re(.) is the reset function

(Definition 6), and αt.dur represents the duration of the temporal trajectory. ηk|x is

the trajectory at a given coordinate x for a mode lk. �

A temporal execution is the variation of a continuous variable at a given space coor-

dinate over time, as shown by the chain-dot lines in Figure 6.7. During the execution

there can be transitions to different modes with changes in the dynamic equations.

The first condition in the definition states that the execution starts from an initial

state, the second condition shows the concatenation, where ηk−1|x.dur denotes the

134

time that the trajectory crossed the boundary of the invariant set for mode lk−1 at

space x.

Definition 14 Spatial Execution: A spatial execution αs of a L1STHA at a given

time t ∈ [0,T] from a boundary state (l0, vt,x0) ⊂ L × R
n is a concatenation of

trajectories at time t, αs = η0|
tη1|

t . . . where:

• η0(t, x0) = vt,x0 ,

• ηk(t, x0) = Re(ηk−1(t, ηk−1|
t.range)),

• αs.range =
⋃

i ηi|
t.range,

where ηk is the trajectory defined at a mode lk ∈ L, and αs.range represents the

range of the spatial execution. ηk|
t is the trajectory at a given time t for a mode lk.�

A spatial execution is the variation of the continuous variables over space at a given

time as shown by the thick gray lines in the four different graphs. At different times

the spatial execution changes (Figure 6.7).

Definition 15 Temporal Discrete Transition: A temporal discrete transition at a

given coordinate x from the mode li to l j occurs at a continuous state v(t′, x) at a time

t′, whenever v(t′, x) ∈ Inv�i
⋂

Inv�j , where v(t′, x) = lim
t→t′

v(t, x) and v(t, x) ∈ Inv�i for

t ∈ [t′ − τ, t′] for some τ > 0.�

Temporal transition at a given space coordinate x occurs at a time t′ if as the time

approaches t′, the continuous state approaches the boundary of the invariant set of

a mode li. The L1STHA transits to the state l j if the invariant sets are connected and

the continuous state approaches the intersection of the boundaries of the invariant

sets of li and l j. An example is shown in Figure 6.7, where the glucose concentra-

tion crosses invariant set boundaries from basal to correction bolus mode as time

progresses (chain and dot line).

135

Definition 16 Spatial Discrete Transition: A spatial discrete transition at a give time

t from the mode li to l j occurs at a continuous state v(t, x′) at a spatial coordinate

x′, wherever v(t, x′) ∈ Inv�i
⋂

Inv�j , where v(t, x′) = lim
x→x′

v(t, x) and v(t, x) ∈ Inv�i for

x ∈ [x − s, x] for some s > 0. �

Spatial transition at a given time occurs similar to a temporal transition when the

spatial execution crosses invariant set boundaries as shown in the leftmost graphs

in Figure 6.7.

It is to be noted that in this theory we consider every transition to be deter-

ministic and transversal. A deterministic transition means that at any time or space

point the L1STHA from a given mode can only transit to a unique mode. This also

guarantees that at a fixed time and space point the L1STHA is at an unique mode.

Further, a transversal transition is assumed, which has the property that given the

L1STHA transits from a mode l1 to l2 it stays at l2 for a finite amount of time. This as-

sumption prevents zeno behavior [128], where in a very small amount of time there

are infinite transitions.

Definition 17 Deterministic Transversal Discrete Transitions: A discrete transition

is called deterministic if from a given location li the continuous state v(τs, xt) can

only transit to one unique location l j. A deterministic discrete transition is called

transversal if there exists some ε > 0 such that:

δ
−−−−−→
vi(t, xt)
δt

.n̂i > ε
∧ δ

−−−−−→
v j(t, xt)
δt

.n̂i > ε, (6.3)

δ
−−−−−−→
vi(τs, x)
δx

.n̂i > ε
∧ δ

−−−−−−→
v j(τs, x)
δx

.n̂i > ε, (6.4)

where vi satisfies Ai
δv(τ,x)
δτ

= Bi
δ2v(τ,x)
δx2 + Civ(τ, x) + ui and v j satisfies A j

δv(τ,x)
δτ

=

B j
δ2v(τ,x)
δx2 + C jv(τ, x) + u j, and n̂i is a outward normal unit vector to Inv�i at v(τs, xt).

136

Definition 18 Deterministic Transversal Linear 1-D space Spatio-Temporal Hybrid

Automata (DTL1STHA): Given an L1STHA, a starting state (l0, v0), a time bound T,

a space region S, and a jump bound N, it is called a DTL1STHA if all the discrete

transitions starting from v0 for time T, within space region S, and for a maximum of

N jumps are deterministic and transversal.

6.5 Defining the ε reach set of a DTL1STHA

Given these definitions of DTL1STHA and its execution and trajectory lets define ε

reach set of a DTL1STHA. The determination of the ε reach set is bounded by time

and space and an analysis technique similar to Kim [113] is proposed. However,

Kim did it for only temporal execution of a linear first order hybrid automata. This

thesis considers spatio-temporal execution of a DTL1STHA with linear second order

differential equations.

Definition 19 Reach State of a DTL1STHA: A continuous state V ∈ Rn is reach-

able if it is reached by a spatial or temporal execution at some time t and spatial

coordinate x.

Note that if a continuous state V is reached by a temporal execution given a

spatial point x at time t, then it is also reached by a spatial execution given a time t

at a spatial coordinate x.

Definition 20 Time and Space Bounded Reach Set of DTL1STHA: Given a time

bound T and a spatial region S, the time and space bounded reach set of

DTL1STHA, RTS (V0),from an initial configuration V0 ⊂ Inv0 is the set of continuous

states that can be reached by any spatial execution within the region S or temporal

execution of duration T.

137

Definition 21 ε reach set of DTL1STHA: Given an ε > 0 a set of continuous states

M of a DTL1STHA starting from an initial configuration {l0,V0} ⊂ L×R
n over a time

duration of T and within a spatial region S , is called and epsilon reach set, if:

• RTS (V0) ⊆ M, and

• dH(RTS (V0),M) ≤ ε, where dH(P,Q) is the hausdorff distance [126] between

two set P and Q.

Solving the PDE

In order to compute the reachable states of the DTL1STHA, we need to have the ca-

pability to solve the partial differential Equation 6.2. The initial conditions for solving

this PDE is given by -

η(0, x) = Ib∀x ∈ s (6.5)

where Ib is a constant value over time and space.

It is to be noted that this PDE has to be solved as a free boundary problem.

This assumption comes from the observations in various medical device examples.

Let us consider an infusion pump diffusing insulin into the human body. The insulin

concentration is governed by the PDE of the same form as in Equation 6.2. The

concentration spreads in space reaching different parts of the body through blood

circulation over time. Hence as time progresses the effect of insulin spreads further

away from the site of infusion. Further, at any given position the insulin concentration

increases with time. Hence, it is not intuitive to have a constant boundary condition.

Hence, we will consider this problem as a free boundary problem, where the bound-

ary at which the minimum insulin concentration is observed moves away from the

site of infusion with some velocity. However, one fixed boundary condition exists at

the site of infusion. This corresponds to the constant infusion rate from the infusion

needle. The constant boundary condition is given by:

138

−B
δη(t, x)
δx

= I0, (6.6)

where I0 is a constant that can be the bolus infusion rate in case of infusion pumps.

Given these initial and boundary conditions the free boundary PDE is solved in the

following subsection.

From Equation 6.2, we can rewrite it as:

B
δ2η

δx2 − A
δη

δt
+ C(η + C−1u) = 0 (6.7)

Replacing η by θ = η + C−1u in equation 6.7 we get:

B
δ2θ

δx2 − A
δθ

δt
+ C(θ) = 0 (6.8)

Taking Laplace transform on both sides of Equation 6.8 we get:

B
δ2θ(ψ)
δx2 − (Aψ −C)θ(ψ) = 0 (6.9)

where ψ is the laplace parameter.

To solve the homogeneous second order linear differential equation let us

assume that θ(ψ) = emx. This assumption leads to the following values of m as in

Equation 6.10:

m = ±
√

B−1(Aψ −C) (6.10)

Since plus value indicates exponential increase in space, which is not ob-

served, only consider negative value of m is considered.

Hence the final solution for θ(ψ) is given by:

θ(ψ) = −k1e−[
√

B−1(Aψ−C)]x (6.11)

where k1 is a constant to be found out from the boundary condition.

139

Applying laplace transform to the boundary condition Equation 6.6, and

putting θ(ψ) we get:

θ(ψ) =
B−1I0

ψ
[B−1(Aψ −C)]−1/2e−[

√
B−1(Aψ−C)]x (6.12)

θ(t), the temporal variation can be obtained by performing an inverse laplace

transform of Equation 6.12. Applying the inverse laplace transform on the Equation

6.12 we get,

θ(t) =
1

2π j

∫ j∞

− j∞

B−1I0

ψ
[B−1(Aψ −C)]−1/2e−[

√
B−1(Aψ−C)]xeψt dψ (6.13)

where j =
√
−1.

After performing the integration we get the value of θ(t) as in Equation 6.14:

θ(t) =
1
2

I0B−1C−1[e−(
√

B−1C)xer f c(
(
√

B−1C)x

2(
√

CA−1t)
− (
√

CA−1t)) (6.14)

− e(
√

B−1C)xer f c(
(
√

B−1C)x

2(
√

CA−1t)
+ (
√

CA−1t))]

Hence the value of η after solving the differential equation is given by Equa-

tion 6.15.

η(t, x) = Ib + I0(
√

4BC)−1[e−
√

B−1Cxer f c((
√

4BA−1t)−1x −
√

CA−1t) (6.15)

− e
√

B−1Cxer f c((
√

4BA−1t)−1x +
√

CA−1t)]

η(t, x) can be computed from the Equation 6.15.

Notations

The table 6.1 lists the important notations and their definitions that will be used fur-

ther in the text. With these notations defined and the assumptions on exact compu-

tation, we move on to the time and space bounded epsilon reach set of a DTL1STHA

with a single location or discrete state.

140

Table 6.1: Notations for reachable states and over approximations

Notation Definition

Dt,x(P) It is the set of reachable states at time t and coordinate x from a set P at time 0
and origin.

Dt,x(P, γ) It is an over approximation of the set Dt,x(P) such that i) Dt,x(P) ⊂ Dt,x(P, γ) and
ii) dH(Dt,x(P),Dt,x(P, γ)) ≤ γ for some γ > 0.

D0,0(P, γ) It is the γ over approximation of the set P.

Br(p) It is a hypercubic neighborhood of a point p in the state space i.e. Br(p) = {y ∈
Rn : ||y − p|| ≤ r}

6.6 Time and space bounded epsilon reach set of a DTL1STHA with a single

discrete location

Let us first consider the bounded epsilon reach set computation of a DTL1STHA

with a single discrete location l0 and the associated invariant set Inv0. We want to

find out the epsilon reach set by sampling the time and the space dimension with

time intervals hx at a spatial coordinate x and space grid ht at a given time. Now

sampling will lead to errors in state estimation. Hence, we need to find an epsilon

ε such that from any sampled state η(t, x) the trajectory remains within Bε(η(t, x))

before the next sampled state is considered. We now derive the values of hx and ht.

To ensure that the trajectory stays within a hypercube of dimension length ε

we have to obtain hx and ht such that,

max
τ∈[0,hx]

||η(t + τ, x) − ηt, x||∞ < ε, (6.16)

max
s∈[0,ht]

||η(t, x + ht) − η(t, x)||∞ < ε (6.17)

We first consider the time differential of η -

max
t∈[t,t+hx]

|| ˙η(t, x)||∞ = max
t∈[t,t+hx]

||A−1B
δ2η(t, x)
δx2 + A−1Cη(t, x) + A−1u||∞ (6.18)

141

or,

max
t∈[t,t+hx]

|| ˙η(t, x)||∞ ≤ ||A−1B||∞ max
t∈[t,t+hx]

||
δ2η(t, x)
δx2 ||∞ (6.19)

+ ||A−1C||∞ max
t∈[t,t+hx]

||η(t, x)||∞ + ||A−1u||∞

We need to express maxt∈[t,t+hx] ||
δ2η(t,x)
δx2 ||∞ and the term maxt∈[t,t+hx] ||η(t, x)||∞

in terms of the location invariants so that they can be easily computed. The ab-

solute max of the term maxt∈[t,t+hx] ||η(t, x)||∞ is the maximum value that η can

take while staying in the location. This means that maxt∈[t,t+hx] ||η(t, x)||∞ = ηmax =

maxt∈Tandx∈S Inv0.

To find the maximum of the double differentiation we employ Finite Difference

Time Domain approximation. The double differentiation can be expressed as follows:

δ2η(t, x)
δx2 =

2η(x) − η(x + ht) − η(x − ht)
h2

t
(6.20)

The maximum value of this term is obviously 2(ηmax−ηmin)
h2

t
, where ηmin =

mint∈Tandx∈S Inv0. Hence we get,

max
t∈[t,t+hx]

|| ˙η(t, x)||∞ ≤ ||A−1B||∞
2(ηmax − ηmin)

h2
t

+ ||A−1C||∞ηmax (6.21)

+ ||A−1u||∞

Therefore we can derive maxτ∈[0,hx] ||η(t + τ, x) − η(t, x)||∞ as follows -

max
τ∈[0,hx]

||η(t + τ, x) − η(t, x)||∞ ≤
∫ t+hx

t
max

t∈[t,t+hx]
|| ˙η(t, x)||∞ dt (6.22)

max
τ∈[0,hx]

||η(t+τ, x)−η(t, x)||∞ ≤ ||A−1B||∞
2(ηmax − ηmin)

h2
t

hx+||A−1C||∞ηmaxhx+||A−1u||∞hx

(6.23)

Therefore to ensure that the trajectory stays within the hypercubic bound ε

during the sampling period ht we should have -

||A−1B||∞
2(ηmax − ηmin)

h2
t

hx + ||A−1C||∞ηmaxhx + ||A−1u||∞hx ≤ ε (6.24)

142

Hence, we can take

||A−1B||∞
2(ηmax − ηmin)

h2
t

hx + ||A−1C||∞ηmaxhx + ||A−1u||∞hx = ε/2 (6.25)

Similarly we can write,

max
s∈[x,x+ht]

||
δ2η(t, x)
δx2 ||∞ ≤ ||B−1A||∞

ηmax − ηmin

hx
− ||B−1C||∞ηmin + ||B−1u||∞ (6.26)

Therefore,

max
s∈[0,ht]

||η(t, x + s) − η(t, x)||∞ ≤

∫ x+ht

x

∫ x+ht

x
||B−1A||∞

ηmax − ηmin

hx
dx dx (6.27)

−

∫ x+ht

x

∫ x+ht

x
[||B−1C||∞ηmin + ||B−1u||∞] dx dx

or,

max
s∈[0,ht]

||η(t, x + s) − η(t, x)||∞ ≤
||B−1A||∞(ηmax − ηmin)h2

t

2hx
(6.28)

− ||B−1C||∞ηminh2
t /2 − ||B

−1u||∞h2
t /2

Again to ensure that the trajectory remains within the hypercube of dimen-

sion ε we should have -

||B−1A||∞(ηmax − ηmin)h2
t

2hx
− ||B−1C||∞ηminh2

t /2 − ||B
−1u||∞h2

t /2 ≤ ε (6.29)

Hence we can assume,

||B−1A||∞(ηmax − ηmin)h2
t

2hx
− ||B−1C||∞ηminh2

t /2 − ||B
−1u||∞h2

t /2 = ε/2 (6.30)

The value of ht and hx can be found out by simultaneously solving the equations

6.25 and 6.30.

The simultaneous solution to these equations may not always be feasible,

leading to inapplicability of the fdtd approximation. We see that if the elements of the

143

C vector are positive then the spatial sampling interval is imaginary. Only when all

elements in C are negative there is a feasible value of the spatial sampling interval.

If the elements of C are all positive then the spatial and temporal sampling intervals

can be computed from the equations 6.31 and 6.32.

hx =
ε

BA−1 δ2η

δx2 |max + CA−1ηmax + uA−1
(6.31)

h2
t /2 =

ε

BA−1 δη
δt |max −CB−1ηmin − uB−1

(6.32)

Given these sampling intervals let us now define an epsilon reach set. The

following definition will give us the method to compute the epsilon reach set of a one

location DTL1STHA.

Lemma 6.6.1 Given ε > 0 a bounded ε reach set RTS (V0, ε) of a one location

DTL1STHA from an initial configuration V0 ⊂ Inv0 from time [0,T] and within space

S can be determined as -

RTS (V0, ε) =

m−1⋃
k=0

r−1⋃
j=0

Bε(η(khx, B jht(x0))), (6.33)

where m = T/hx, r = ||S boxdot||/ht, x0 is the origin of the coordinate system, and

hx and ht are derived from the equations 6.31 and 6.32. The set has the following

properties -

i Limε→0RTS (V0, ε) = RTS (V0) and

ii It contains the ε/2 neighborhood of RTS (V0) i.e,⋃
z∈RTS (V0)

Bε/2(z) ⊆ RTS (V0, ε) (6.34)

Proof: For the first property of the set RTS (V0, ε), we observe that, as ε → 0

we have ht → 0 and hx → 0. This establishes that in the limiting case there is no

discretization. Hence, Limε→0RTS (V0, ε) = RTS (V0).

144

Further, we have already selected hx and ht as half of the value required to

guarantee ε reach set. Hence, η(khx, B jht(x0)) is in ε/2 neighborhood of RTS (V0).

Since, RTS (V0, ε) considers the ε neighborhood of η(khx, B jht(x0)) it already contains

the ε/2 neighborhood of any η(t, s). Hence proved.

6.7 ε reach set for a set of initial configurations

In this section, we consider a set of initial configurations which are within a δ ball of

the initial configuration V0, Bδ(V0). First it is shown that there exists a δ ∈ R+ such

that the reach set starting from the set of initial configurations Bδ(V0) is contained in

the ε neighborhood of RTS (V0).

Lemma 6.7.1 Given an ε > 0, an initial configuration V0 of a DTL1STHA, a time

interval [0,T] and a spatial region S, there exists a δ > 0 such that,

RTS (Bδ(V0)) ⊆ RTS (V0, ε), (6.35)

where Bδ(V0) is a δ neighborhood of the initial configuration V0 and RTS (Bδ(V0)) is

the reachable set starting from the set of initial configurations Bδ(V0) upto a time

T and within spatial region S. In particular it will be shown that, δ = ε/2H for an

appropriate H.

Proof: Let us consider a point p within the location boundary of the initial lo-

cation l0. Let the initial state at the point p be v0. A continuous state can be reached

either by traversing in time or through space following the continuous dynamics of

the DTL1STHA:

η(t, x) = Ib +
I0
√

4bc
[e−

√
c/bxer f c(

x
√

4b/at
−

√
c/at)− e

√
c/bxer f c(

x
√

4b/at
+

√
c/at)]

(6.36)

145

If we consider two continuous states v1 and v2 in RTS (Bδ(V0)) then the max-

imum difference between the two is given by -

||v1 − v0||max = (6.37)

max(||Ib1 − Ib2||+
||I01 − I02||
√

4bc
[e−

√
c/bxer f c(

x
√

4b/at
−

√
c/at)

−e
√

c/bx er f c(
x

√
4b/at

+
√

c/at)])

≤ ||Ib1 − Ib2||+ 2
||I01 − I02||
√

4bc

The initial configurations for v1 and v2 were within a δ bound of the initial configuration

V0, ∀x ∈ sl0 . Hence, ||Ib1 − Ib2|| ≤ δ, this is obtained by putting t = 0 in the Equation

6.15. I0 is the impulse bolus at time t = 0. Hence, we can assume that ||I01− I02|| ≤ δ.

For the difference between the continuous states to be less than ε, we should have,

δ(1 +
2
√

4bc
) ≤ ε/2 (6.38)

Hence, we get for an H = (1+ 2
√

4bc
), the reachable states from a δ = ε/2H boundary

of the initial configuration V0 is within an epsilon bound of the reachable states from

V0.

Let us now focus on proving that the γ approximation of the reachable states starting

from a δ ball around the initial configuration is also within ε approximation of the

reachable states starting from V0.

Lemma 6.7.2 Given an ε > 0, a one mode DTL1STHA, an initial configuration

V0, a time interval T , and a spatial region S , there exists a δ > 0 and a γ > 0

such that, RTS (Bδ(V0), γ) ⊆ RTS (V0, ε). In particular we show that, RTS (V0) ⊆

RTS (Bε/4H(V0), ε/4) ⊆ RTS (V0, ε), where H = (1 + 2
√

4bc
).

146

Proof: Let us consider continuous states vm and vp in Bδ(V0) and V0 respec-

tively. The continuous state reached after time t and at spatial location x starting

from vm is η(t, x)|vm . Let vn be a continuous state in RTS (Bδ(V0), γ), then we get,

||vn − η(t, x)|vp || = ||vn − η(t, x)|vm + η(t, x)|vm − η(t, x)|vp || (6.39)

≤ ||vn − η(t, x)|vm || + ||η(t, x)|vm − η(t, x)|vp || (6.40)

≤ γ + Hδ (6.41)

Since the sampling rate accounts for half of the approximation error, we can say that

vn ∈ RTS (V0, 2(γ + Hδ)). Therefore if we choose γ = ε/4 and δ = ε/4H the lemma

is proved.

6.8 Determining exit condition from an invariant set

With a suitable over approximation we can determine the first time the DTL1STHA

crosses the boundary of an invariant set. Let us consider that the first time that the

set of reachable states crosses the continuous domain V at time τ1 < T . Then we

have the following lemma:

Lemma 6.8.1 Given a DTL1STHA, an initial state v0 at a given space point x0 ∈ S , if

the trajectory η(t, x) exits the domain V at time τ1 < T and space point x1 ∈ S , then

for all small enough δ > 0 there exists some hx and ht such that, Bδ(η(mhx, nht)) ⊂

VC for some m and n.

Proof: Let us consider a ball of radius r around η(τ1, x1). Now since the

trajectory is moving to VC at (τ1, x1) then < η(τ1, x1).n̂1 >> 0, where n̂ is the unit

normal vector at η(τ1, x1) outward of V�. Now since the dynamic equations of the

DTL1STHA are continuous then we can say that for an appropriately small r, ∀v ∈

Br(η(τ1, x1))∩V�, < v.n̂1 >> 0. If we consider a larger values of δη

δt and δ2η

δx2 then the

approximation error for the reachable states will be larger which will result in a larger

147

boundary for the reachable states. Let us consider that, δη

δt |max = (b/a)(2 δ2η

δx2 + r) +

(c/a)(2ηmax+r)+u/a and δ2η

δx2 |max = (a/b)(2 δη

δt +r)−(c/b)(ηmin/2−r)−u/b. Then if we

consider 2hx < r/ δη
δt |max and 2h2

t < r/ δη
δx |max then it is assured η(τ1 + 2hx, x1 + 2ht) ∈

VC. Since, the domain is compact we can always find a δ from Lemma 6.6.1, such

that Bδ(η(mhx, nht)) ⊂ VC.

6.9 Algorithm for bounded ε reach set of a single location DTL1STHA

The algorithm computes the approximate image of an initial configuration V0 over

time and outputs the reachable states based on the approximation parameter ε. The

input to the algorithm are: i) a single location DTL1STHA, ii) an initial configuration

V0, iii) an invariant set Inv, iii) the parameter ε, iv) a parameter α, v) the time bound

T , and vi) the space bound S . The algorithm outputs the set of reachable states the

time and spatial location at which the DTL1STHA exits the invariant set Inv and the

γ and δ parameters.

The algorithm 6.1 first considers a δ boundary of the initial configuration V0

and tries to compute the reachable states that are either within V or are in VC. Note

that if a set of reachable state intersects with both V and VC then it means that

at the given space and time the DTL1STHA is in two different locations which is

not feasible. However, since the computed reachable states are an ε approximation

such infeasible cases may occur during execution of the algorithm. Hence, if such

an infeasible case occurs the algorithm updates the values of γ and δ such that the

bounded epsilon reach set is within either V or VC.

The algorithm increments time in steps of hx. For time t = 0, the algorithm

starts with Bδ(V0) and computes its image for different space points starting from x

= 0, to x = S in steps of ht. After each computation of image the algorithm checks

whether the image is within V or not. If it is not within V there can be two cases:

a) it is within VC, in that case the algorithm terminates and the reachable set is

148

the image of Bδ(P0) at the current time and space location, and b) it is not within

VC, in that case the algorithm returns an empty set as the reachable state, updates

the parameters γ and δ by multiplying the previous values with α and restarts the

computation at t = 0 and x = 0. If the image is within V for all x ∈ S , the algorithm

then increments t by hx. It then computes the image of Bδ(P0) at x = 0, and t = t +

hx. The computation of images with respect to spatial dimension is again repeated

until t < T .

We now discuss how the image can be computed in a simple manner with the

help of the theorems and lemmas established in the previous sections. We will first

discuss the methodology of image computation and then prove that the computation

methodology leads to an ε approximation of the image.

Given an initial state the δ neighborhood can be computed by considering

points at a hausdroff distance of δ. This is essentially a box around the initial state

as shown in the Figure 6.3. The images are computed twice, once through time and

for each time interval through space. For every vertex of the box the spatial or tem-

poral image for the next interval is computed by simulating the Equation 6.15 with

approximate values of the error functions. The next step is to create a δ neighbor-

hood of the images of the vertices. This step results in a fresh set of vertices created

from the neighborhood of the images of the vertices of the neighborhood of the initial

state. The convex hull of the new set of vertices gives the ε reachable states after

hx time and at space location x0 + nht for some n > 0.

If the convex hull is entirely within Inv0 then there is no transition between

locations. On the other hand if the convex hull is entirely within InvC
0 , then there is a

transition to a different location. Note that the convex hull cannot intersect both Inv0

and InvC
0 . Intersection means that the DTL1STHA is in two locations at the same

time and space, which indicates that the DTL1STHA is not deterministic.

149

Algorithm 6.1: (Rset,t,x) = CalcReach(DΣ,Inv,V0,T,S,ε,α)

1: Rset = φ;
2: while Rset == φ do
3: γ = αε; δ = αε;
4: hx =

γ/2
b
a
δ2η
δx2 |max+

c
a ηmax+

u
a

;

5: ht =
√

γ
b
a
δη
δt |max−

c
b ηmin−

u
b
;

6: t = 0; Pc = Bδ(V0);
7: while t ≤ T do
8: x = 0;
9: Dt,x(Pc) = Pc;

10: while x ≤ S do
11: x = x + ht;
12: Dt,x(Pc) = Compute the image at x from Dt,x−ht (Pc);
13: if (Dt,x(Pc) 1 Inv) then
14: if (Dt,x(Pc) ⊂ InvC) then
15: Rset = Rset

⋃
Dt,x(Pc);

16: return (Rset,Dt,x(Pc), t, x, γ, δ);
17: else
18: Rset = φ;
19: (Rset,Dt,x(Pc), t, x, γ, δ) = CalcReach(DΣ,Inv,V0,T ,S ,αε,α);
20: end if
21: end if
22: end while
23: t = t + hx;
24: Dt,x(Pc) = Compute the image at t from Dt−hx,x(Pc);
25: if (Dt,x(Pc) 1 Inv) then
26: if (Dt,x(Pc) ⊂ InvC) then
27: Rset = Rset

⋃
Dt,x(Pc);

28: return (Rset,Dt,x(Pc), t, x, γ, δ);
29: else
30: Rset = φ;
31: (Rset,Dt,x(Pc), t, x, γ, δ) = CalcReach(DΣ,Inv,V0,T ,S ,αε,α);
32: end if
33: end if
34: end while
35: end while

150

Formally, the algorithm first computes P0 the δ neighborhood of the initial

state vx0 = V0(x0) within the initial configuration V0. The set Dt+hx,x(P0) or Dt,x+ht(P0)

is computed from the set Dtx(P0) by exploiting the polyhedral structure of P0. The

algorithm first considers the set of vertices Vert(t, x) of the image Dtx(P0). Then for

each vert(t, x) ∈ Vert(t, x), vert(t + hx, x) or vert(t, x + ht) using the solution of the

dynamic Equation 6.15. Hence the set Vert(t + hx, x) or Vert(t, x + ht) can be com-

puted from Vert(t, x), which are essentially the images of the vertices in Vert(t, x).

The image Dt+hx,x(P0) or Dt,x+ht(P0) can then be computed from the convex hull of

the set of vertices in Vert(t + hx, x) or Vert(t, x + ht) respectively. To obtain a γ

approximation of the reachable states we can take γ boundaries of the new vertex

set Bγ(Vert(t + hx, x)) or Bγ(Vert(t, x + ht)) are obtained. Since the ht and hx were

determined such that the computation of the dynamic equations wont result in an er-

ror greater than γ we can conclude that the γ approximation of the reachable states

Rt+hx,x(vx0) or Rt,x+ht(vx0) can be computed by taking the convex hull of the vertices

of
⋃

v∈Vert(t+hx,x) Vert(Bγ(v)) or
⋃

v∈Vert(t,x+ht) Vert(Bγ(v)) respectively.

Lemma 6.9.1 If H is the convex hull of the set
⋃

v∈V Vert(Bγv) then it is the closed

γ neighborhood of the convex hull of the set V .

Proof: Consider a point w in H. Then there exists two points y1 and y2 in⋃
v∈V Vert(Bγv) such that, w = λy1 + (1 − λ)y2 for some λ > 0. There should

exist some v1 and v2 in V such that ||y1 − v1|| ≤ γ and ||y2 − v2|| ≤ γ. Further,

w′ = λv1 + (1 − λ)v2 must be in the convex hull of the set V .

Note that,

||w − w′|| = ||λy1 + (1 − λ)y2 − λv1 − (1 − λ)v2|| (6.42)

≤ λ||y1 − v1|| + (1 − λ)||y2 − v2|| (6.43)

≤ γ (6.44)

151

Hence, w is in the γ neighborhood of V .

Let us consider wv in the γ neighborhood of the convex hull of the set V .

Then there exists an element vc in the convex hull of V such that, ||wv − vc|| ≤ γ.

Further, there exists v1 and v2 in V such that ||vc = λv1 + (1 − λ)v2||. Let ||wc|| =

||vc + αγ||, where α ∈ [0, 1]. Now we can write,

||vc + αγ|| = ||λv1 + αλγ + (1 − λ)v2 + α(1 − λ)γ|| (6.45)

= ||λ(v1 + αγ) + (1 − λ)(v2 + αγ)|| (6.46)

Hence, wc is expressed as a convex sum of two elements in the set⋃
v∈V Vert(Bγv). Thus, wc ∈ H.

We will now show that the algorithm 6.1 terminates in a finite number of steps

and gives the RTS (Bδ(x0), γ) as output.

Theorem 6.9.2 Given the input (DΣ,V,V0,T, S , ε, α) to the Algorithm 6.1, the algo-

rithm terminates in a finite number of steps and outputs the set RTS (Bδ(x0), γ).

Proof: The algorithm terminates whenever the current time is greater than

T and the current space point is outside S . Since the time and space points incre-

ment in fixed steps the algorithm terminates in a finite number of steps for these

conditions. However, if the ε reach set intersects both V and VC then the algorithm

restarts computation with reduced δ and γ. This has the potential of running into

infinite loops with δ and γ reducing to arbitrarily small value.

If there exists a time τ1 < T or a space point x1 ∈ S such that, the tra-

jectory moves to VC then from Lemma 6.8.1 there exists a δ1 > 0 such that

Bδ1(η(nhx,mht)) ⊂ VC for some n and m. Let ta = nhx and xa = mht. Now for

this ta and xa, from Lemma 6.7.2 there exists a γ1 such that Rta xa(Bδ1(V0), γ1) ⊆

Br(η(ta, xa)).

152

Now if t f = min(τ1,T) and x f = min(xa, S), then from Lemma 6.7.2 there

exists δ2 > 0 and γ2 > 0 such that Rt f x f (Bδ2(V0), γ2) ⊆ Rt f x f (V0, ε). If we assume

that δ = min(δ1, δ2) and γ = min(γ1, γ2), then there is a δ > 0 and a γ > 0 such that

the algorithm does terminate and outputs the ε reach set.

6.10 Algorithm for computing ε reach set for multiple location DTL1STHA

The lemma 6.8.1 states that if the trajectory exits a given domain V then there exists

a suitable δ > 0 such that the reachable states from the δ neighborhood of the initial

states, computed using the convex hull methodology, exits the domain V . This fact

along with the assumption that the transitions are all deterministic and transversal

can be used to determine transitions between different locations. If a single location

DTL1STHA exits a domain V at a time τ1 < T or space x1 < S then the Algorithm

6.1 gives us an approximate time and spatial location at which the exit occurred and

the ε reach set. This fact can be utilized to find transitions for the more general case

of the DTL1STHA.

The underlying idea is to use the algorithm 6.1 to find exit condition from an

invariant set Inv0. In the process the δ and γ parameters are changed. On transition

an updated reachable set is obtained, which can intersect multiple invariant sets

of different locations. For a deterministic transition the DTL1STHA can only transit

to one location. We prove subsequently, that by proper adjustment of the δ and γ

parameters it is possible to obtain an ε reach set such that the reach set intersects

only a single invariant set.

The algorithm is similar to the algorithm 6.1, where it starts with the com-

putation of images from the δ neighborhood of the initial configuration. The image

computation procedure follows the same convex hull methodology. The only differ-

ence is that now when the reach set is not in the invariant set of the current location

then the algorithm has to decide on the new location and the new initial configu-

153

ration. The algorithm adjusts the values of δ and γ, to compute the reach set on

transition, the new location after transition, and the time and spatial location of tran-

sition. The new reach set is then considered as the initial state of the new location

and the computation continues.

Hence for the algorithm to function properly we need to find out the time

τ and the spatial location x at which a transition takes place and the value of the

trajectory η(τ, x) at the transition point. In the next lemma we will show that, it is

possible to approximate the time of transition and the value of the trajectory with a

given error bound.

Lemma 6.10.1 Given that at τ1 < T and x < S the trajectory η(τ1, x) ∈ Inv�0

satisfies deterministic transversal transition conditions, there exists a δ > 0 such

that B2δ(η(τ1, x)) ⊂ Inv0 ∪ Inv1 and also there exists ∆t and ∆x such that -

1. η(t, x) ∈ Inv�1 for t ∈ [τ1, τ1 + ∆t] and x ∈ [x, x + ∆x]

2.
⋃

η∈Tr0→1
R[τ1,τ1+∆t],[x,x+∆x](η) ⊂ Inv�1 , where, Tr0→1 = Bδ(η(τ1, x))∩ Inv�0 ∩ Inv�1

Proof: Let us consider that Inv0 ∩ Inv1 ∩ Inv2 , φ. Since the transition is determin-

istic, if η(τ1, x) ∈ Inv0 ∩ Inv1 then η(τ1, x) < Inv0 ∩ Inv2. Hence, η(τ1, x) < Inv2.

Now since Inv2 is assumed to be compact then there exists a δ′ > 0 such that

Bδ′(η(τ1, x)) < Inv2. Hence, Bδ′(η(τ1, x)) ∈ Inv0 ∪ Inv1.

Since, η(τ1, x) satisfies the deterministic transversal transition condition at

Inv�0 , then there exists a unit normal vector n̂1 out of Inv�0 such that < ˙η(τ1, x).n̂1 >>

0. If we consider δη

δt = max((b0/a0)(δ
2η

δx2) + (c0/a0)(ηmax) + u0/a0, (b1/a1)(δ
2η

δx2) +

(c1/a1)(ηmax)+u1/a1), and δ2η

δx2 = max((a0/b0)(δη
δt)−(c0/b0)(ηmin)−u0/b0, (a1/b1)(δη

δt)−

(c1/b1)(ηmin) − u1/b1), then there exists a δ′′ > 0 such that, for all η(t, x) ∈

Bδ′′(η(τ1, x)) ∩ Inv0 ∩ Inv1 < ˙η(τ1, x).n̂1 >> 0. Now for these values of δη

δt and

δ2η

δx2 if we select δ = min(δ′, δ′′) and ∆t = δ/2, ∆x = δ/2 then both the claims satisfy.

154

The above lemma 6.10.1 gives a methodology to over-approximate η(t, x),

where a δ neighborhood of η(t, x) is intersected with the Inv0 and Inv1. Given such

an appropriate δ > 0, an appropriate δ0 neighborhood of v0 = η(0, 0) can also be

found such the reach set at time t and space location x is within a δ neighborhood

of η(t, x).

DTL1STHA bounded time and space reachability analysis algorithm

The Lemma 6.8.1, the resulting Algorithm 6.1, along with the assumption that the

transitions are all deterministic and transversal can be used to augment Algorithm

6.1 to use it for multi-mode DTL1STHA. Using Algorithm 6.1 an updated reachable

set can be obtained on transition, which can intersect multiple invariant sets of dif-

ferent modes. However, a DTL1STHA can only transit to one mode. We prove

subsequently, that by proper adjustment of the δ and γ parameters it is possible to

obtain an ε reach set using Algorithm 6.1 such that the reach set intersects only a

single invariant set on transition.

In this regard, we need to find out the time τ and the spatial location x at

which a transition takes place and the value of the trajectory η(τ, x) at the transition

point. In the next lemma we show that, it is possible to approximate the time of

transition and the value of the trajectory.

The lemma 6.10.1 gives a methodology to over-approximate η(t, x) if it satis-

fies the deterministic transversal transition condition. It takes a similar approach as

Lemma 6.8.1 to estimate the state at the time τ and space x of transition. It approxi-

mates the state η(τ, x) by intersecting the δ neighborhood of η(t, x) with the Inv0 and

Inv1. The lemma further states that if the reach set from Bδ(η(τ, x)) ∩ Inv�0 ∩ Inv�1

is computed for an appropriate ∆t time interval and ∆x space interval then the reach

set lies within Inv1.

155

Given an appropriate δ > 0 from Lemma 6.10.1, an appropriate δ0 neighbor-

hood of V0 can also be found as guaranteed by lemma 6.8.1, which ensures that the

ε reach set computed following the lemma 6.6.1 lies within Inv1.

Lemma 6.10.2 If the reachable states during a deterministic transverse transition at

time τ1 and space location x1 is within a δ neighborhood of η(τ1, x1), there exists a

δ0 such that Dτ1,x1(Bδ0(v0)) ⊂ Bδ(η(τ1, x1)) and Dτ1,x1(Bδ0(V0)) ∩ Inv0 ∩ Inv1 is an

over-approximation of η(τ1, x1), where Dτ1,x1(Bδ0(v0)) is the reach set computed by

Algorithm 6.1.�

The Lemma 6.10.2 states that if for δ > 0 a transition is detected by computing the

reach set using Lemma 6.6.1, as in Algorithm 6.1, a corresponding δ0 boundary of

the initial configuration can be found. The lemma 6.10.2 can then be used in arith-

metic induction to prove that if the reach set for any transition k is computed following

lemma 6.10.1 then a δ0 can always be found such that Algorithm 6.1 can capture

it. This allows us to use the Algorithm 6.1 with some changes for computing reach

set of multi-mode DTL1STHA. The changes include a Transition function that can

output the new mode, and the new initial configuration to be used for each transi-

tion. Further, if the Transition algorithm fails to find the new mode, then Lemma

6.10.2 allows it to reduce the value of δ0 and restart the overall computation with an

increased assurance of finding the new mode in the next iteration.

The reachability analysis algorithm for multi-mode DTL1STHA as shown in

Algorithm 6.2, takes as input: a)the DTL1STHA DΣ, b) initial mode l0, c) the initial

configuration V0, d) the time bound T , e) the space bound S , f) the approximation

parameter ε, and g) the parameter α used to adjust δ and γ. It outputs the reach set

Rset. The algorithm has the following simple steps:

156

a) From an initial state it starts computing the reach set following Algorithm 6.1. On

computation of reach set the algorithm checks whether it is within the invariant set

of the current mode (line 13 to 15).

b) Whenever a reach set computed is not within the invariant set, the Transition

algorithm is called. Transition Algorithm 6.3 checks whether the reach set is within

a unique Invi. If it is within an unique Invi the algorithm returns the reach set, the

new mode, and the new initial configuration for the mode. If not then the algorithm

recalculates δ and γ and returns an empty reach set.

c) If Transition returns a valid transition then the algorithm resumes its computation

from the new initial configuration, new mode, current time and space point.

d) Else it restarts the computation at time t = 0 and space x = 0 with the new values

of δ and γ.

The reachability algorithm for multi-mode L1STHA is given in the Algorithm

6.2. Now from lemma 6.10.2, we know that there always exists a δ0 for which every

transition is captured by the algorithm Transition, hence at some point of time or

space the Transition function will return a non-empty reach set and the algorithm

will proceed in time or space. The complexity of this algorithm is of the order of

O(T
hx

S
ht

logα(δ)) since the there are two loops for time and space and each can be

reiterated at the max logα(δ) times.

6.11 Formal Analysis Case-Studies

Given the STHA model and it reachability analysis algorithm, presented in the previ-

ous chapter, this chapter describes the application of the formal method in two case

studies—BSN safety (Section 6.11), and infusion pump (Section 6.11)—as men-

tioned in Chapter 2. For each of the case studies we first discuss the CPS design

requirements, the STHA formal models and then their reachability analysis.

157

Algorithm 6.2: AlgoReachSet(DΣ,l0,V0,T,S,N,ε,α)

1: Rset = φ; γ = αε; δ = αε;
2: vx = maxi(ai

bi

δη
δt |max −

ci
bi
ηmin −

ui
bi

);

3: vt = maxi(bi
ai

δ2η
δx2 |max + ci

ai
ηmax + ui

ai
);

4: while (Rset == φ) do
5: hx = γ/(2vx); ht =

√
γ/vt;

6: t = 0; Pc = Bδ(V0); lc = l0; jump = 0; Vc = V0; ValidTran = True;
7: while (jump < N) do
8: while (t < T) do
9: x = 0; Dtx(Pc) = Pc;

10: while (x < S) do
11: x = x + ht;
12: Dt,x(Pc) = Compute image at x from Dt,x−ht (Pc);
13: if (Dt,x−ht (Pt) ⊂ Inv(lc)) then
14: Rset = Rset ∪ Dt,x(Pt);
15: else
16: (lc,Vc,ValidTran, γ, δ,Rset) = Transition(DΣ, lc,Vc, l0,V0,ValidTran, ε, α, γ,
17: δ,Dt,x(Pc),Rset);
18: if (!ValidTran) then
19: break;
20: else
21: Pc = Vc; Dt,x(Pc) = Bδ(Vc);
22: jump = jump + 1;
23: if (jump > N) then
24: break;
25: end if
26: end if
27: end if
28: end while
29: t = t + hx;
30: Dt,x(Pc) = Compute image at t from Dt−hx,x(Pc);
31: if (Dt,x(Pc) ⊂ Inv(lc)) then
32: Rset = Rset ∪ Dt,x(Pc);
33: else
34: (lc,Vc,ValidTran, γ, δ,Rset) = Transition(DΣ, lc,Vc, l0,V0,ValidTran, ε, α, γ,
35: δ,Dt,x(Pc),Rset);
36: if (!ValidTran) then
37: break;
38: else
39: Pc = Vc; Dt,x(Pc) = Bδ(Vc);
40: jump = jump + 1;
41: if (jump > N) then
42: break;
43: end if
44: end if
45: end if
46: end while
47: end while
48: end while

158

Algorithm 6.3: (lc,Vc,ValidTran, γ, δ,Rset) = Transition(DΣ,lc,Vc,l0,V0,ValidTran,ε,α,
γ,δ,Dt,x(Pc),Rset)

1: for (i = 1 to n) do
2: Φ(i) = Intersection of Dt,x(Pc) and Inv(li);
3: end for
4: IntersectStates = find the number of nonzero entries in Φ;
5: if (IntersectS tates > 1) then
6: lc = l0; Vc = V0; γ = αε; δ = αε; Rset = φ;
7: ValidTran = False;
8: else
9: lc = li such that Φ(i) > 0;

10: Vc = Inv(li);
11: ValidTran = True;
12: Rset = Rset ∪ Dt,x(Pc);
13: end if
14: return (lc,Vc,ValidTran, γ, δ,Rset)

BSN Safety Verification

As described in Section 6.11 of Chapter 2, thermal safety of BSN operations is

generally characterized by a threshold temperature, which when exceeded causes

thermal damage to human skin. The temperature rise on human skin due to heat

dissipation in a single BSN node is given by the Penne’s bioheat equation [4]. From

Equation 5.2 it can be observed that the temperature rise varies over both time and

three dimensional space; the time differential of the temperature depends on its

spatial gradient. Further, the temperature rise depends on the SAR due to elec-

tromagnetic radiation from the BSN node radio. In case of network of sensors, a

specific region of human skin may be affected by electromagnetic absorption from

multiple sensors. The aggregate effects of electromagnetic radiation on a specific

region for multiple sensors can be obtained by adding the individual SAR values.

Given such spatio-temporal modeling and analysis requirements we next discuss

the STHA modeling.

159

Table 6.2: Safety Verification Results (HA = Hybrid Automata)

Gap between
sensors (m)

Max Skin Temperature Rise
Predicted (°C)

Verification
Results

Elapsed
Time (s)

STHA HA STHA HA

0.005 2.41 2.39 Un-Safe Un-Safe 86400
0.005 2.2 2.19 Un-Safe Safe 1240
0.005 1.56 1.48 Safe Safe 520
0.015 2.3 2.24 Un-Safe Un-Safe 86400
0.015 2.1 1.98 Safe Safe 1240
0.015 1.4 1.37 Safe Safe 520

STHA model for BSN Safety verification

The dynamic equation Eq1 which governs the temperature rise in state I1 is same

as Equation 5.2. In state N1, the sensor power is considered to be zero and Eq2

represents the special case of Equation 5.2 with Pc = 0. Eq3 for the aggregate

effect takes the same form of Equation 5.2, but Pc and S AR values are the addition

of the power and SAR values from both the sensors. Further, the radiation term also

gets added up. Given the STHA model, the formal safety verification is performed in

Section 6.11 using the reachability analysis algorithm.

Formal BSN Safety Verification

For the formal verification of STHA models we use the reachability analysis al-

gorithm. We discretize three of the four spatio-temporal dimensions and use the

PHaver tool for reachability analysis on the remaining dimension. The tool accepts

a hybrid model, a list of forbidden (unsafe) states and an initial set of states and out-

puts whether the execution of the model will transition to unsafe states. To reduce

complexity of the analysis we considered only one dimensional space for this case

study. Thus, in our verification we had only two dimensions: 1) time and 2) one di-

mensional space. We discretized time as discussed in the algorithm and evaluated

the continuous dynamics of the hybrid automata in the one dimensional space.

160

We consider two sensors placed at different distances from each other on

human arm and evaluate the thermal effects on human skin along the line connect-

ing their centers. The Penne’s equation was simplified to consider only one spatial

dimension over which reachability analysis is performed. This reachability analysis

is then repeated over several discrete time steps to determine safety of the BSN

operation. In any time step if the STHA model reaches unsafe states the analysis

is halted and the BSN design is deemed unsafe. The parameters of the Penne’s

equation are obtained from [81].

In order to show the effectiveness of the STHA modeling with respect to a

one dimensional hybrid automata, we develop a one dimensional hybrid automata

model of the BSN. It is to be noted that one advantage of STHA is its capability to

handle multiple space dimensions. But since we have simplified the case study to

have only one spatial dimension, we can use the one dimensional hybrid automata

to model BSN safety over space at a fixed time. The hybrid automata in this case will

look similar to the STHA model but Eq3 will be the same as Eq11. This is because

the one dimensional hybrid automata model cannot capture the aggregate effects

due to network of sensors in the BSN.

The safety threshold temperature is computed to be 39.2 °C from the Hen-

rique Moritz thermal damage parameter [129]. Table 6.2 shows the skin temperature

rise predicted by both the STHA and the hybrid model for different distances between

the sensors and at different time instants. It further shows the results of the reacha-

bility analysis in one dimensional space by the STHA and hybrid automata models.

It can be observed from the results that when the distance between the two sensors

is 0.005 m both the STHA and hybrid automata model predicts reachability to unsafe

states after 86400 seconds of operation. However, STHA model predicts that unsafe

states are reached much before at the time instant of 1240 seconds. Whereas the

161

hybrid model predicts safe operation. Further, it can be observed that for every case

the hybrid automata model underestimates the temperature rise as it ignores the

aggregate effects. However, STHA predicts a higher temperature rise due to aggre-

gate effects. Thus, the STHA model is successful in capturing the aggregate effects

of networked operation in sensors, which a one dimensional hybrid automata fails to

do.

Drug infusion using infusion pumps

In this section we show the usage of CPS-DAS for safety analysis of single and

multi-channel infusion pumps.

Analgesic Infusion Pump

The analgesic infusion pump control algorithm obtains feedback from the human

body and attempts to keep the drug concentration in the blood at a desired value

Cd. The drug diffusion model takes the infusion rate as input and estimates the drug

concentration in blood (Cp) using a spatio-temporal partial differential Equation 6.47.

∂d
∂t

+ 5(ud) = 5(D(r) 5 d) + Γ(r)(dB(t) − d) − λd (6.47)

where d(r, t) is the tissue drug concentration at time t and distance r from the in-

fusion site, u(t) is the infusion rate, D(r) is the spatially varying diffusion coefficient

of the blood, Γ(r) is the spatially varying blood to tissue drug transfer coefficient,

and dB(t) is the desired drug concentration level after time t. However, in case of

analgesic infusion only the drug concentration at the infusion site is considered im-

portant [55]. Hence, the spatial region in the human body is discretized into two

compartments: 1) the tissue and 2) the capillary blood. The Equation 6.47 is then

simplified to the pharmacokinetic Equation 5.3 (PKA model) proposed in [55], also

called the two compartment model. In Equation 5.3, the first two lines represent

the diffusion process in the tissue, while the next two lines represent the diffusion

162

Stop
Bolus

Pump Off

PKA
Model2

Increase
Infusion

PKA
Model1

PKA
Model3

Start
Bolus

PKA
Model2

Stop
Infusion

PKA
Model2

Initial
State

Infusion
started

Bolus Stopped

Cp > CM

Cp < Cd

Cp > CM or

Cp < Cd

Bolus Request

Decrease
Infusion

PKA
Model1

Cp < Cd

Cp > Cd

Pump stop

Pump
stop

Figure 6.8: Figure shows STHA model of the infusion pump. PKA model denotes
Eqn 6.47. The state transitions are spatio-temporal in nature.

process in the blood. Also the equations governing diffusion in these to spatial lo-

cations are interrelated and cannot be solved separately. This shows the strong

spatial nature of variation of the drug concentration. u(t) is the infusion rate of the

infusion pump. The differential equations in the model are time-delayed. This is be-

cause they consider time delays related to the infusion input (Ti), cardio-pulmonary

transport delay Tp and the arterial, capillary and venous transport delays Tr. The

controller first considers an initial infusion rate, which is the default infusion rate pro-

vided by the care giver, and estimates the drug concentration Cp using Equation 5.3.

If Cp > Cd then the controller increases the infusion rate by an increment δx, else

it decreases by the same amount. The controller queries the PKA Model every δt

time interval.

Infusion Pump Formal Model

The formal model for the infusion pump control system (Figure 6.8) has six states.

Each state is represented jointly by a discrete state in the infusion pump and a vari-

ant of the PKA model, which governs the state variables - infusion rate and drug

163

concentration. Initially the pump is in Pump Off state with zero infusion rate and

waits for Infusion Start event from the care giver. In this state, the varia-

tion of the drug concentration follows PKA Model 2, which is Equation 6.47 with

dB(t) = 0. On the Infusion Start event the infusion pump model goes to the

Start Infusion state, where the infusion rate is set to a default value x0. In this state,

the PKA Model 1 is used to estimate the drug concentration Cp, where dB(t) is a

non zero constant. If Cp < Cd then the pump transits to the Increase Infusion state

where the infusion rate is increased by an amount δx, else if Cp < Cd, then the pump

transits to the Decrease Infusion state, where the infusion rate is decreased by δx

amount. These two states also use the PKA Model 1 to evaluate drug concentration

in the blood. In the Increased Infusion state if the drug concentration exceeds al-

lowable maximum CM then the model goes to Stop Infusion state where the infusion

rate is zero and drug concentration follows PKA Model 2. However, if Cd < Cp < CM

then the model transits to the Decrease Infusion state and stays there until Cp < Cd

again when it comes back to the Increase Infusion state. When in Increase Infusion

or Decrease Infusion states, if a bolus request event occurs, then the model

transits to the Start Bolus state. In this state, the drug concentration is governed by

PKA Model 3, where the infusion rate in Equation 6.47 is a step input for a short

duration Tb. When the bolus duration elapses or when Cp > CM in the Start Bolus

state the model transits to the Stop Bolus state (infusion rate = 0). The model comes

back to the Increase Infusion state whenever Cp < Cd.

Formal Infusion Pump Safety Verification

Five control parameters of the infusion pump are considered in this case study: 1)

control input delay, the time taken to transmit the control input from the controller to

the infusion pump, 2) set point, the drug concentration that is required to be main-

164

600 700 800 900 1000 100

200

300

400

500

600

700

800

900

1000

10 20 30 40 50 60 70 80 90 100 100

200

300

400

500

600

700

800

900

1000

In

fu
si

o
n

 r
at

e
In

cr
em

en
t

St
ep

 (
u

g
/m

in
)

5 10 15 20 25 100

200

300

400

500

600

700

800

900

1000

Sample Interval (s)

 S
et

 P
o

in
t

(u
g

/m
in

)

Bolus (ug/min) Control Input Delay (s)

In
fu

si
o

n
 r

at
e

In
cr

em
en

t
St

ep
 (

u
g

/m
in

)

D
ru

g
C

o
n

ce
n

tr
at

io
n

Direction of increasing parameter value Safe region of operation for diffusion coefficient 0.26 cm2/s

Figure 6.9: Safe and unsafe initial configurations of the infusion pump. The shaded
region includes the initial configurations of the infusion pump that result in drug con-
centration above prescribed safe values at any point in time and space.

tained, 3) bolus value, the infusion rate when bolus is requested by the patient, 4)

sampling interval, the time interval at which the controller samples the pharmacoki-

netic model, and 5) infusion increment, the maximum amount by which the controller

can increment the infusion rate. A configuration of the infusion pump is a tuple with

numeric values assigned to the above five parameters. In addition to these five con-

trol parameters we model the wireless channel PDR using the log normal shadow

fading model. On the loss of a control information, the infusion pump maintains

the infusion rate at the previous time slot. The reachability analysis as discussed in

Section 6.10 was performed on this model and the safe configurations of the infusion

pump were obtained as shown in Figure 6.9. In the figure, the five parameters were

considered in groups of three with the other two assuming constant values (a total of

100000 simulation runs). The control input delay was varied from 10 to 100 seconds,

the infusion increment step from 100 to 1000 ug/min, the set point from 100 to 1000

ug/l, the bolus from 600 to 1000 ug/min, and sampling interval from 5 to 25 s as rec-

ommended in the Graseby 3300 technical manual [130]. In each of the figure, the

unshaded regions are the unsafe states for the individual with diffusion coefficient

0.26 cm2/sec, where the drug concentration exceeded 1300 ug/min. The shaded

regions bounded by the bold lines are safe for the assumed values of the control

165

parameters. The infusion pump failure example described in Chapter 1, can occur

due to two reasons: a) choice of infusion pump parameters in the unsafe region,

and b) the channel PDR falling in an unsafe region. Both suggest that during the

testing phase of the infusion pump, the environmental context driven cyber-physical

interaction between the pump and the human body were not considered. Further,

the region bounded by the dashed lines show the unsafe configurations for a dif-

ferent individual with a different diffusion coefficient. The overlapping of these two

regions indicates that the safe configurations of the pump for one individual is un-

safe for the other. These results verify our hypotheses set forth in Chapter 1: a)

the consideration of cyber-physical interactions between the human and the BSN

is essential, and b) the characterization of interactions has to account for variance

accross population.

166

Chapter 7

TACKLING NON-LINEARITIES IN CPS SAFETY ANALYSIS

Nonlinearities are inherent in a CPS since it involves a close interaction of the

computing system with the physical environment. Non-linearities impose hurdles

in reachability analysis of CPS models. Over the years researchers have concen-

trated in building the theory of reachability analysis of linear time invariant systems.

However, it is typically hard to tackle non-linearities. The principal hurdle is that non-

linearities can arise in many different forms in the model. It can be of the form of

a multiplicative term of two system parameters if there is internal feedback in the

physical system. It can be a power term for example in case of StefanŠs law [131]

of radiation. Given a type of non-linearity there may not exist a closed form solution

to the input-output relation of the system. Thus there may not be a single reacha-

bility analysis algorithm that can handle all non-linearities. This chapter considers

one type of nonlinearity found in artificial pancreas and shows how it can be tackles

using appropriate linearization and consequent error analysis.

7.1 Non-linear dynamics in Artificial Pancreas

Several models of glucose-insulin interaction have been proposed [132, 133], how-

ever, most frequently used is the Bergman’s Minimal Model (BMM) [99]. The BMM

represents the insulin action process as a set of three differential equations. The

BMM provides a relation between the interstitial insulin concentration X(t), blood

glucose concentration G(t), and the plasma insulin concentration Ip(t) as given in

Equation 7.1 - 7.3.

167

dX(t)
dt = −k2.X(t) + k3.(I(t) − Ib), (7.1)

dG(t)
dt = −X(t).G(t) + k1.(Gb −G(t)) (7.2)

dI(t)
dt = −k4.I(t) + k5.(G(t) − k6)+.t, (7.3)

where k1, k2, k3, k4, k5, and k6 are constants to be determined for a specific patient.

Ib is the basal plasma insulin concentration and Gb is the basal glucose concentra-

tion in the blood. Further, G(0) = G0, X(0) = 0, and I(0) = I0.

The BMM is non-linear in two of the differential equations. The non-linear ef-

fect in Equation 7.2 is due to the interaction of the interstitial insulin with the glucose

in the blood. The non-linearity in the Equation 7.3 is more complex in the sense that

it has a sharp change in slope at time t when G(t) = h. These non-linearities make it

hard to model using currently available formal analysis tools, which can only perform

analysis on linear systems.

7.2 Modeling Artificial Pancreas with Hybrid Automata

Hybrid automata are most suited to model the discrete control algorithms and the

continuous human physiological processes in a single formal definition. The hy-

brid systems have finite number of states to represent operational modes of the

discrete control algorithms. Further, each state has an associated set of differen-

tial equations, which governs the variation of the system properties in the state.

The automata transits from one state to another when the system properties cross

thresholds. This model fits the artificial pancreas system perfectly, since the con-

trol algorithm also switches states depending upon when the glucose concentration

crosses pre-specified thresholds. A Linear Hybrid Automata (LHA), however, as-

sumes that the differential equations are all linear in nature. Theoretical analysis

of hybrid automata is complex and often infeasible with the exception of LHAs. A

168

number of software tools such as PHaver [77], Ptolemy [134], are readily available

for performing the reachability analysis of an LHA. Hence, in this thesis we discuss

the modeling of artificial pancreas using LHAs. But before going into the details of

modeling and analysis, we first formally define an LHA.

Linear Hybrid Automata

An LHA assumes that any system variable ηi is governed by a differential equation

of the form of Equation 7.4.
dηi(t)

dt
= Aηi(t) + u, (7.4)

where, A and u are constants over time. Formally, an LHA is defined as -

Definition 22 Linear Hybrid Automata An n-dimensional Linear Hybrid Automata is

a tuple {L, Inv,A,u} where -

- L is a set of locations or discrete states of the LHA. A state of an LHA is an

element of the set space L × Rn.

- Inv : L → 2C is a mapping from the set of locations L to a set of cells C

and is called the invariant set for a given location. The set C consists of cells

Ci ⊂ R
n, such that for any two cells Co

i
⋂

Co
j = φ and

⋃
∀i Ci = Rn. The

invariant set for a location has the following properties -

- all the cells within Inv(li) for a given location li are connected. Two cells

are connected when there is a path of adjacent cells in between them.

Two cells are adjacent if δCm
⋂
δCn , φ.

- for any two locations li and l j, Inv(li)o ⋂
Inv(l j)o = φ, where Inv(li)o

is the interior of the set Inv(li)o, which does not include the boundary

δInv(li) of the set and Inv(li)o ⋃
δInv(li) = Inv(li).

-
⋃
∀l∈L Invl = Rn

169

- A : L → Rn×n is a function that maps each location to an n × n real valued

matrix.

- u : L → Rn is a function that maps each location to an n-dimensional real

valued vector.

The definition 22 only defines the components of an LHA. But for an LHA

to be executed we need to define three entities: a) trajectory at a given location, b)

execution over a given time, and c) discrete state transition.

Definition 23 Trajectory: The trajectory of an LHA for a location li, for a duration

t > 0 ∈ R is the map η : [0, t]→ Rn such that -

1. η(τ) satisfies Equation 7.4 ∀τ ∈ [0, t] and

2. η(τ) ∈ Inv(li) ∀τ ∈ [0, t]

We denote the duration of a trajectory as η.dur.

Definition 24 Execution: The execution α of an LHA from an initial state (l0, v0) ∈

L × Rn for a duration t is a concatenation of finite or infinite number of trajectories

η0η1η2 . . . such that -

• η0(0) = v0,

• ηk+1(0) = Re(ηk(ηk.dur)) for k ≥ 1, and

• α.dur =
∑
∀k ηk.dur,

where α.dur is the duration of the execution. Re(.) is a reset function, which allows

reseting the values of the system variables after an execution.

170

Correction
Bolus

Braking
Module

Meal
Supervision

Bergman Minimal
Model

Bergman Minimal
Model

Bergman Minimal
Model

Low glucose
level

Glucose level
too high

Glucose intake

Low glucose
level

Figure 7.1: Hybrid automata modeling of artificial pancreas with non-linear
Bergmann minimal model governing the continuous dynamics.

Definition 25 Discrete state transition: For two locations or discrete states (li, l j) ∈

L a discrete transition takes place from li to l j at a state (li, v(τ)) ∈ L × Rn and at

time τ if v(τ) ∈ Inv(li)
⋂

Inv(l j) and v(τ) = Limτ′→τv(τ′) where v(τ′) ∈ Inv(li)o for

some δ > 0 such that τ′ ∈ [τ − δ, τ].

We next show how this definition of LHA is directly applicable to artificial

pancreas modeling in the following section.

Hybrid Modeling of Artificial Pancreas

To apply the LHA theory to the Artificial Pancreas system, the first step is to linearize

the Bergman Minimal Model (BMM).

Linearization of Bergman Minimal Model

To linearize the BMM we consider a small time interval h > 0 such that the changes

in the interstitial insulin concentration ∆x, blood glucose concentration ∆g, and the

plasma insulin concentration ∆i are small enough to neglect the multiplicative terms

∆x∆g and h∆g. We then consider an initial time t0 where we have the measured

171

values of X(t0), G(t0), and I(t0). We can then replace X(t) = X(t0) + ∆x in the BMM

equations 7.1 and neglect the multiplicative terms to obtain the linearized equations

7.5.

d∆X
dh = −k2∆x + k3∆i (7.5)

d∆g
dh = −∆xG(t0) − ∆gX(t0) − k1∆g

d∆i
dh = −k4∆i + k5[G(t0) − k6]h + k5∆gt0, if ∆g > k6 −G(t0)

d∆i
dh = −k4∆i, if ∆g ≤ k6 −G(t0).

Artificial Pancreas Hybrid Automata Model

The artificial pancreas hybrid automata (APHA) can consist of 12 states in a hier-

archical design. At the top level, we can view the APHA as a three state hybrid

automata as shown in Figure 7.1. Each of the three states exactly corresponds to

the three discrete states of the control algorithm. The transition between these three

states are governed by threshold crossing by the glucose concentration. Each of the

three top level states can be divided into two states corresponding to the two differ-

ential equations for the plasma insulin concentration. The transition between these

two states are governed by thresholds on the glucose concentration given in Equa-

tion 7.5. Further, to reduce the approximation errors for the linearization, the time

h has to be small enough. Hence, given a small enough h, to apply the linearized

equations for estimating states over a long time, the glucose and insulin concen-

tration has to be reset to the current value. Reseting can only be done in an LHA

when there is a state transition. Hence, each of the six states in the APHA has to be

further divided into two states. The transition between these states is governed by

thresholds on the time intervals. The time for which the APHA stays in a particular

state is restricted to a small time h.

172

Safe states Unsafe states

m
g

/d
l

mg/dl

m
g

/d
l

m
g

/d
l

mg/dl mg/dl

Figure 7.2: Reachable states for the linearized artificial pancreas hybrid automata
model.

7.3 Patient Safety Analysis

To analyze patient safety we consider reachability analysis of the linearized hybrid

model of the artificial pancreas. Linearization introduces errors in estimation. In this

section, we first discuss the reachability analysis and then find an upper bound on

the error of the analysis.

Reachability Analysis

Reachability analysis of an LHA from an initial set of states {l0,V0} ∈ L × R
n, where

V0 ⊂ R
n, involves finding the set V f inal ⊂ Rn such that ∀v0 ∈ V0 and some time

t > 0 there exists an execution αv0 of duration t such that αv0(t) = v f inal for some

v f inal ∈ V f inal.

In other words, reachability analysis on an LHA results in all the continuous

states that can be reached by the LHA at any time starting from a given set of initial

states. Hence, when applied to artificial pancreas model it gives all possible values

of the interstitial insulin, plasma insulin, and blood glucose concentration that can

occur during its operation. Generally, computation of the exact reachable set is

infeasible. Hence, an over-approximation of the set is obtained through theoretical

173

analysis. A number of LHA reachability analysis tools exist in the literature including

PHaver [77], Ptolemy [134], but we show here the usage of the PHaver tool.

In the reachability analysis we considered initial states with blood glu-

cose, plasma insulin, and interstitial insulin concentration within a range of

{G(t), I(t), X(t)} = {[60, 180], [0, 100], [0, 1]}. The reachable states or the possi-

ble values that the parameters can take at any arbitrary time are shown in lighter

shade in the Figure 7.2. If the glucose concentration crosses 180 mg/dl then it is

considered unsafe which is shown with dark shades in the Figure 7.2. The analysis

shows that for some configurations of the AP the glucose concentration reaches un-

safe levels to cause hyper-glycemia. The specific set of initial states did not cause

any hypo-glycemic cases. Given that we can perform the linearization and subse-

quent formal analysis we are now interested in the accuracy of the formal analysis

in the following section.

Error Bounds on the Linear Approximation

The linearization of the differential equations will lead to error in analysis. It is es-

sential to quantify this error in order to characterize the appropriateness of the lin-

earization. In this section we first derive an upper bound on the approximation error

and then argue that the error can be arbitrarily minimized with proper choice of the

time interval h.

As required for the linearization, we choose an initial time t0 and a time in-

terval h. Assuming that ∆x, ∆i, and ∆g are constant in the small h time interval, we

integrate the equations 7.5 over the interval time. We denote X′(t0 + h), G′(t0 + h),

and I′(t0 + h) as the estimations of X(t0 + h), G(t0 + h), and I(t0 + h), obtained

on linear approximation of the differential equations. Then we get Equations 7.6 on

integration,

174

X′(t0 + h) − X(t0) = −k2[X′(t0 + h) − X(t0)]h (7.6)

+ k3[I′(t0 + h) − I(t0)]h

G′(t0 + h) −G(t0) = −[X′(t0 + h) − X(t0)]G(t0)h

− [G′(t0 + h) −G(t0)]X(t0)h

− k1[G′(t0 + h) −G(t0)]h

I′(t0 + h) − I(t0) = −k4[I′(t0 + h) − I(t0)]h

+ k5[G(t0) − k6]h2/2

+ k5[G′(t0 + h) −G(t0)]t0h

The estimations X′(t0 + h), G′(t0 + h), and I′(t0 + h) can be found by simultaneously

solving the set of three equations 7.6.

Over-approximations Xo(t0 + h), Go(t0 + h), and Io(t0 + h) of the parameters

X(t0+h), G(t0+h), and I(t0+h) can be determined by over-estimating the derivatives

of Equation 7.1. The over estimation is done by neglecting all the negative terms in

the derivative as shown in Equation 7.7.

dXo(t)
dt = k3(Io(t) − Ib) (7.7)

dGo(t)
dt = k1(Gb −Go(t))

dIo(t)
dt = k5(Go(t) − k6)t

Solving the ordinary nonlinear differential equations 7.7 we can obtain an upper

bound on the approximation error for estimating the plasma insulin concentration as

given in Equation 7.8.

175

Io (t0 + h) − I′(t0 + h) (7.8)

= (k5Gb − k5k6)(2t0 + h)
h
2

− k5(Gb −G(t0))[
t0 − (t0 + h)e−k1h

k1
+

1 − e−k1h

k2
1

]

−
k5(G(t0) − k6)h2/2(1 + k2h)[1 + X(t0)h + k1h]

(1 + k4h)(1 + k2h)[1 + X(t0)h + k1h] + k3k5t0h3G(t0)

Similar equations can be found for the variables Xo(t) and Go(t) can be found fol-

lowing the similar process. For a chosen h the error in the values of X(t), G(t), and

I(t) can be computed from the Equation 7.8. Further, given an error bound the value

of h can be chosen from the Equation 7.8 so that the parameter estimation error is

within the desired bounds.

Figure 7.3 shows the linearization error with respect to the time discretization

interval. The initial blood glucose concentration was varied from 120 mg/dl to 180

mg/dl, the interstitial insulin concentration was varied from 0 U/dl to 1 U/dl in steps of

0.1 U/dl while the insulin concentration was varied from 0 mg/dl to 100 mg/dl in steps

of 1 mg/dl. The error curve can be used to obtain the linearization error for a given

discretization interval or to determine a discretization interval for a given error. The

different lines in the graph indicate error curves for different initial configurations of

the AP. The boundary lines limit the maximum linearization error within a band and

is a measure of confidence on the results of the formal safety analysis. As shown

in this example a suitable h = 6.82secs can be selected from this curve so that the

error is within 5%.

176

0 1 2 3 4 5 6 7 8 9 10 0

2

4

6

8

10

12

14

Time discretization interval h (secs) Pe
rc

e
n

ta
ge

 e
rr

o
r

o
f

es
ti

m
at

io
n

 o
f

in
su

lin
 le

ve
l

h = 6.82

ε = 5%

Figure 7.3: Variation of linearization error with respect to the discretization time
interval.

177

Chapter 8

SYNTHESIS OF CPS MODELS

This chapter discusses the contributions and ongoing work on automated synthesis

of CPS models.

8.1 Motivation and Related Works

Software synthesis: Automated synthesis of sensor programs has been a major fo-

cus of research. However, most of the work have concentrated in either developing

APIs or TinyOS specific sensor code generation. There exists several work on API

development for TinyOS to support signal processing, intelligent storage, and en-

ergy efficient communication [135–137]. However, to use these APIs the user has

to write TinyOS code for the sensors, requiring domain specific knowledge. Fur-

ther, the authors [136,137] do not consider the interfacing of the sensors with smart

phone, which is an important component of a BSN used in a PHMS. The mobile

middleware [135] provides basic API for the smart phone to control the sensors.

However, this again requires user effort to write the code.

Researchers have also focused on code generation for sensors from a high

level specification such as Simulink [137], or graphical specifications [138–140]. The

framework proposed in [137] comes closest to Health-Dev since they generate code

for TinyOS based sensors and can also execute sensor algorithms. However, the

supported algorithms are not related to physiological signal processing (required for

a PHMS). They are execution sequences of sensor operations such as sensing,

communicating, and radio duty cycling. The other works such as RaPTEX [138],

Viptos [139], and TOSDev [140] consider the sensor nodes as only a sensing and

communication device and does not allow physiological signal processing. Hence,

178

a framework that can support intuitive high level specification for both sensors and

smart phones with OS and hardware independent code generation, and physiologi-

cal signal processing is missing in the literature. Health-Dev fills this gap.

Hardware Synthesis of Hybrid Models: Several efforts have been undertaken for

the hardware synthesis of physical processes involving continuous dynamics. Two

very common approaches to synthesis are to either develop an Application Spe-

cific Integrated Circuit (ASIC) [141, 142] or to use Field Programmable Gate Arrays

(FPGAs) [143–145]. In both the approaches there is a common theme of discretiza-

tion of the continuous dynamics and approximation of the actual physical behavior.

However, such discretization leads to errors in the synthesis, which are hard to char-

acterize given the complexity of the continuous dynamics. This research proposes

to use the latest reconfigurable analog signal processors (RASPs) to implement the

continuous dynamics in STHA. Such a system uses analog signal processor mod-

ules to implement continuous signal characteristics and can form the building blocks

of any continuous variable, which is governed by a complex differential equation.

8.2 Health-Dev: Model Based Synthesis of BSNs

Health-Dev consists of three modules: 1) specification, 2) parsing, and 3) code

generation (Figure 8.1).

Specification Module

At the front end it provides the user with an interface to provide a high level spec-

ification of the BSN. In the specification module, the user provides three types of

information:

Sensor specification: In Health-Dev , the user specifies the computation, and com-

munication requirements for each type of sensed signal. Multiple sensors can be

implemented in the same sensor platform depending upon hardware capabilities

179

Sp
e

ci
fi

ca
ti

o
n

Sensor A

Type: ECG

Algorithms: ECG
 PeakDetect
HRcal STDcal
Comm
Platform: Shimmer
Comm: Bluetooth

Node ID: M

Sensor B

Type: Temperature

Algorithms:
Temperature
Mean Comm

Platform: TelosB
Comm: ZigBee

Node ID: N

Sensor C

Type: Humidity

Algorithms:
Humidity Comm

Platform: TelosB
Comm: ZigBee

Node ID: N

Smart Phone

Buttons: Start,
Stop

Comm: Bluetooth

Sensor Selection:
Node N, Node M

Text View: Heart
Rate, Humidity
Graph: ECG

Network Info

Routing Table:
Network topology

Energy
Management
Algorithms: Radio
duty cycling

P
ar

se
r

Sensor Platform N

Type: Temperature, Humidity

Platform: TelosB

Algorithm Input Map:
Temperature Mean Comm,
Humidity Comm

Comm Send To: Node K
Comm Receive From: None

Radio Schedule: duty cycle

Sensor Platform M

Type: ECG

Platform: Shimmer

Algorithm Input Map: ECG
PeakDetect HRcal STDcal
 Comm
Comm Send To: Broadcast
Comm Receive From: Broadcast
Radio Schedule: Always On

Smart Phone

Button OnClicks: Start graphing, stop
application, call mean function

Text View Inputs: Heart rate value

Graph Vars: Raw sensed value
Comm: Bluetooth parameters

Comm Receiver: Node N, M

Algorithm Input Map: NodeN data
Mean, NodeM data local storage

C
o

d
e

 G
e

n
e

ra
to

r

TelosB:
-Sensing
-Commun
Ication
-Storage

Shimmer:
-Sensing
-Commun
Ication
-Storage

Platform Specific Database OS Specific
Database

Algorithms
-Mean
-FFT
-Peak detect

Generated Code

TelosB
Code

Shimmer
Code

Sensor Code Smart Phone Code

Smart
Phone Code

Smart Phone
Database

Widgets
Button OnClicks
Graph Initiation
Text declaration
Class repositories

Figure 8.1: Architecture of the Health-Dev which has three modules: specification,
parser, and code generator.

of the platform. For each sensed signal a separate specification module is main-

tained, which has two ports: i) input data, denoting the raw sensed data and 2)

output data, denoting the data that is to be reported via the wireless network. In

this module, three types of information are maintained: 1) Sensor properties: This

class of information includes the type of sensor, e.g., temperature or humidity or

electrocardiogram (ECG) signals, the sampling frequency of the signals, sensitiv-

ity, and the platform type. Health-Dev supports most commercially available sensor

platforms such as TelosB (xbow.com), Shimmer (shimmer-research.info), BSN v3

(http://vip.doc.ic.ac.uk/bsn/a1892.html), and iMote2 (bullseye.xbow.com).

2) Sensor subcomponents: Each sensor has two classes of subcomponents re-

lated to the computation performed on the sensed value and communication of data

180

(Figure 8.2). For computation in a sensor, the Health-Dev provides algorithm sub-

components. An algorithm subcomponent has an input port and an output port.

This subcomponent also has a property to specify the name of the algorithm. A

database of algorithms are maintained in the code generator module. If the algo-

rithm name matches any one of the available algorithms then the database code

is used in the synthesis. Otherwise, the user has to implement the algorithm in the

form of a function in the platform specific programming language and include it in the

database. The communication subcomponent has properties to specify the commu-

nication protocol, which can be either Bluetooth or ZigBee, multi-hop or single hop

communication, and the frequency of packet transmission. This subcomponent also

has four ports pertaining to the source id from which a packet is received, received

data, destination id to which data has to be sent, and send data. Further, there are

two additional data subcomponents in the sensor to specify its node id, and its one

hop neighbor node ids. Sensors with the same node id are implemented in the same

platform.

3) Sensor connections: To facilitate specification of algorithm execution sequence

and type of information transfered to the network, Health-Dev provides two types of

connections (Figure 8.2). Using the algorithm connections the user can specify the

inputs of each algorithm, which can be either the raw signal or the output of another

algorithm. For example, the raw ECG samples from the sensor can be passed

through a peak detector, heart rate calculator (HRCal), and heart standard deviation

calculator in sequence (Figure 8.1). The output can be transmitted to the smart

phone using the communication subcomponent. The communication connections

can then be used to specify the transmission and reception parameters.

Network specification: The routing information and communication energy manage-

ment schemes are specified in this subcomponent. Routing information can be in-

181

Table 8.1: Specifiable properties in Health-Dev

Sensing Computation Communication Phone

1. Node id 1. Physiological pro-
cessing

1. Routing pro-
tocol (Bluetooth or
ZigBee)

1. Buttons onclicks

2. Platform (BSNBench, heart rate 2. destination &
source address

2. text view inputs

3. Sensor type calculator, ECG mod-
els)

3. packet con-
tents

3. graphing variables

4. Sampling frequency 2. Execution sequence 4. radio duty cycle 4. execution sequences

cluded in a routing table, a separate file, and the filename can be specified in the

routing info field. If a routing table file is provided then the user does not need to

specify the destination and source id. The parser will extract those information from

the routing table. If none is specified then a default scheme of flooding is employed.

For communication energy management, three modes of radio operation are sup-

ported - radio is always on, or is only on during transmissions, or duty cycled.

Smart phone specification: Health-Dev allows the user to specify the UI of the smart

phone base station, the sensor nodes in the BSN that can communicate with the

base station, and the algorithms to be run in the base station on the received data.

The user can specify buttons, text views, graphs in the smart phone subcomponent.

In the button OnClick functions Health-Dev currently allows only starting and stop-

ping graphs and running basic algorithms such as computation of mean, standard

deviation of received data. Text view and graph view inputs are specified using con-

nections in the smart phone subcomponents. Currently in Health-Dev only Android

based smart phones are considered, which communicate with the sensors using the

Bluetooth communication protocol (Table 8.1).

Parser Module

The parser module takes the specification of the BSN as input and generates meta

models, which are used in the code generation module for actual code synthesis.

182

AADL Sensor Specification TinyOS Code

 system implementation Sensor.Temp_1
 subcomponents

 Algorithm_Mean: process Algorithm.Mean_1;

 Algorithm_FFT: process Algorithm.FFT_1;

 Comm: system Communication.Sensor_1_SS;

 connections

 AlgInput: data port InputData ->
 Algorithm_Mean.Input;

 AlgOutput: data port Algorithm_Mean.Output ->
 Algorithm_FFT.Input;

 AlgOutput2: data port Algorithm_FFT.Output ->
 OutputData;

 Com: data port OutputData ->
 Comm.Send_Data;

 Destin: data access SendAddress.neighbor ->
 Comm.Destination_ID;

 properties

 SensorParameter::SamplingFrequency => 123 Hz;

 SensorParameter::Sensitivity => 1 g;

 SensorParameter::Platform => telosb;

 SensorParameter::SensorType => "Temperature";

 NetworkParameter::RadioDutyCycle => On;
 end Sensor.Temp_1;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

module{ uses{
#ifdef TEMPERATURE
 interface Timer<TMilli> as TimerTemperature;
 interface Read<uint16_t> as ReadTemperature; }}

 #ifdef DUTYCYCLE call RadioControl.start(); #endif
 if (call AMSend.send(AM_BROADCAST_ADDR, &sendBuf,
sizeof(localTemperature)) == SUCCESS) sendBusy = TRUE;
 #ifdef DUTYCYCLE call RadioControl.stop(); #endif } } }

implementation {
#ifdef TEMPERATURE
 int32_t mean(int32_t *p, int32_t size){ ……..}
 int32_t * FFT256(int32_t *p, int32_t size){………}
 event void TimerTemperature.fired() {
 if (reading == NREADINGS_TEMP){
 meanOutput = mean(localTemperature,reading);
 (int32_t *)fft256Output = malloc(512*sizeof(int32_t));
 fft256Output = FFT256(meanOutput,256); …………………

 configuration{
 components new SensirionSht11C() as Sensirion; }
 implementation{
 #ifdef TEMPERATURE
 OscilloscopeC.TimerTemperature -> TimerMilliC;
 OscilloscopeC.ReadTemperature -> Sensirion.Temperature; ……

 enum {
DEFAULT_INTERVAL_TEMP = 123,
 NREADINGS_TEMP= 10,};……………………

Module File

Wiring File

Header File

// Line 16

// Lines 3 and 4

// Lines
7,8, and 9

// Lines 5,
10, 11,
and 17

// Lines
15 and 16

// Lines 13 and 14

system implementation UI.imp

 subcomponents

 ECGDisplayGraph: system Graph.imp1;

 HeartRateTextView: system TextView.imp1;

 ButtonStartGraph: system Button.impStart;

 ButtonStopGraph: system Button.impStop;

 AlgoHeartRate: process Algorithm.PeakDetection_1;

 AlgoFFT: process Algorithm.FFT_1;

 PatientInfo: system TextView.patientInfo;

 connections

 GraphDisplay: data port InputGraph1 ->
 ECGDisplayGraph.GraphInput;

 HeartRateCompute1: data port InputDataFromSensor ->
 AlgoHeartRate.Input;

 HeartRateCompute2: data port AlgoHeartRate.Output ->
 AlgoFFT.Input;

 HeartRateDisplay: data port AlgoFFT.Output ->
 InputTextView1;

 HeartRateInput: data port InputTextView1 ->
 HeartRateTextView.TvInput;

 end UI.imp;
…………………………………….

system implementation TextView.patientInfo

 properties

 UiParameters::PatientName => “Alice";

 UiParameters::Gender => “F";

 UiParameters::Age => 19;

end TextView.patientInfo;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Button button0, button1;
TextView patientName;
EditText name;
TextView patientGender;
EditText gender;
TextView patientAge;
EditText age; ……………….
graphView = new GraphView(this, values,
"GraphView",horlabels, verlabels,
GraphView.LINE); ………………

Android Java Code

button0 = new Button(this);
button0.setText("Start");
button0.setId(idButton0);
button0.setGravity(Gravity.CENTER);
button0.setOnClickListener(new
View.OnClickListener() {
@Override
public void onClick(View v) {
int cmdId = v.getId();
if (cmdId == idButton0){
flag=false ;
StartReadThread(start); }}});
 ………..

public final BroadcastReceiver
mReceiver = new BroadcastReceiver() {
@Override
public void onReceive
(Context context, Intent intent) {
BluetoothDevice device =
intent.getParcelableExtra
(BluetoothDevice.EXTRA_DEVICE);}};

……………………………………..

AADL Smart Phone Specification Smart Phone Code

// Line 3
- 9

// Line
17 - 22

//
Bluetooth

Figure 8.2: AADL specification of a sensor and smart phone and their TinyOS and
Java codes

Sensor parser: The main function of this parser is to convert the platform indepen-

dent specification of the sensors to a platform specific one. The parser extracts

the node id and sensor platform information from each sensor specification and

groups the sensors with same node id to the same sensor platform and creates a

meta model for that platform or “mote". The parser then parses the sensor types

and gives platform specific names to the sensors for example for TelosB platform

a temperature sensor is named as Sensirion Sht11. For each algorithm the parser

extracts the appropriate filename from the platform specific database and includes it

in the meta model. It then parses the connections in the specification and for each

algorithm extracts the input map. For example, the input to the mean function in

sensor platform N in Figure 8.1, are the temperature readings and the number of

readings. For each communication specification the parser extracts the destination

node id, data to be sent, source node id, data received, and routing information, and

includes them in the meta model.

Smart phone parser: The smart phone parser in Health-Dev is made specific for

Android development and is primarily concerned with setting up the UI. The UI in

Android is an XML specification with specific keywords defined in the Android Java

183

widget. The smart phone parser reads the UI specification and converts it to the

corresponding XML specification.

Code Generation Module

The code generation module takes the parser output and uses code databases to

generate code for sensor platforms and smart phone. There are three types of code

databases:

Sensor platform specific database: The sensor platform program generally follows

an event driven paradigm, where there are event handler functions for sensing and

communication. In these event handlers, computation tasks can be posted for exe-

cution after the processing of the events. This is especially true for TinyOS, which is

the most popular OS used in sensor platforms. Further, the OS has several platform

independent hardware abstraction modules that can be used to handle sensing and

communication hardware. These abstractions are then wired to appropriate hard-

ware units to generate executable code. In the database, for each platform, a basic

module file for handling all available type of sensing and communication hardware

and their event handlers are stored. The different types of sensing and communi-

cation protocols are differentiated using preprocessing directives. Similarly a wiring

file is generated with all possible hardware modules differentiated by pre-processing

directives.

OS specific database: A collection of algorithms related to physiological signal pro-

cessing and health data statistics analysis are kept in this data base. The algorithms

include the BSNBench suite [146], a benchmark specifically designed for BSNs con-

sisting of FFT, peak detection, and statistics operation. Further, it includes physio-

logical signal specific algorithms such as heart rate calculator from ECG signal or

photo-plethysmogram pulse width calculator, signal normalization, correlation com-

putation.

184

Smart phone database: This database consists of parameterized declaration and

call back codes written in Java for Buttons, Text View, and Graph Views. The Java

widgets provided by Android are also kept in the smart phone database.

185

Chapter 9

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

9.1 Conclusions

CPSes are increasingly becoming pervasive and are enabling critical operations in

systems providing improved health care, smart-spaces, green and cost effective

amenities. To enable wide acceptance of CPSes, their safe, secure and sustainable

operation has to be ensured. The tight coupling between computing units and physi-

cal environment in CPS when used intelligently can assure safe, secure and sustain-

able systems. However, the complex nature of the interactions impose several hard

challenges in CPS design. This thesis focuses on the problem of assuring safety

of the physical environment under the operation of CPSes. The thesis considers

the interaction of the CPS software with of dynamically changing physical environ-

ment and proposes analytical and simulation based techniques to estimate harmful

effects of the interaction. The main contributions of the thesis are: a) CPS-DAS tool

for simulation analysis of interaction safety, b) Spatio-Temporal Hybrid Automata for

formal verification of interaction safety, c) a tractable algorithm for analyzing interac-

tion safety under dynamic contexts, and d) Health-Dev tool for automatic synthesis

of healthcare CPS software from models.

9.2 Immediate extensions

Research in the area of MBE of CPSes has recently received considerable attention

and offers several unsolved problems. This thesis attempts to solve some of the

important ones related to safety assurance of CPSes and in the process opens up

new venues of research. Some of these problems are part of ongoing research

which will be discussed first. This section discusses the extensions that are being

186

currently worked on. The extensions include the development of a tool for modeling,

analysis or verification, and development of CPSes and a technique for synthesizing

the STHA models of CPSes in hardware.

Integrated Tool for CPS Safety Analysis, Verification, and Design

An immediate future extension of this thesis, is the development of a tool that takes

intuitive architectural specification of CPSes using the constructs discussed in Chap-

ter 4, and enables both simulation and reachability analysis for safety verification.

However, this will require an automated conversion of architectural models into for-

mal models. Such model conversions are non-trivial and needs to carefully consider

boundary conditions.

Each LCPS in the GCPS model can be represented with a STHA model. The

state parameters for the GCPS model can be derived from the specification of the

computing unit (discrete variables) and ROIm and ROIn (dynamic equations). State

transitions will be affected by events in the computing domain or due to intersection

of the ROIn or ROIm. Separate states will be used to specify cumulative effects

of interactions. Transitions to those states will be governed by events generated in

the spatial domain (intersection of ROIn or ROIm). However, the following problems

arise with such specification:

1. Determination of region boundaries: The region boundaries can be de-

rived from the physical dynamics of the human body specified in the ROIm.

However, in most applications of CPSes the variation of the monitored param-

eter (determined by the physical dynamics) varies asymptotically in space. In

that case the region boundaries are infinite. The region boundaries can be

limited in extent by setting thresholds on the variation of the monitored param-

eter. For example, in case of thermal side-effect evaluation a low threshold

187

on the human tissue temperature rise can be imposed such that temperature

variations below this threshold is neglected. These thresholds can be used

as boundary conditions for the physical dynamics equation to compute the

region boundary. An alternative to this approach is the specification of the

region boundary equation in the model itself. For example, the user considers

the thermal effects within a circular region centered at the medical device lo-

cation. However, this may lead to in accuracies in the estimation of the effects

of the interactions.

2. Computation of aggregate effect: Aggregate effects of interactions can be

evaluated by considering the overlap in the ROIms and ROIns and combin-

ing the physical dynamic equations for the two regions. For special types of

region boundaries (square, circle) closed form equations for determination of

overlap regions is readily available. But in real life scenarios, region bound-

aries can have complex shapes and the determination of overlapping regions

can become mathematically rigorous.

Synthesizing STHA Models in Hardware

Hardware synthesis of STHA models is beneficial due to two important reasons:

1. Simulation of the differential equations governing the physical processes in

hardware is usually orders of magnitude faster than software.

2. CPSs generally consist of several computing systems interfaced together to

form a complex system. A hardware synthesis of the physical system will en-

able experimental testing of individual components of the CPS by interfacing

them with the implemented physical systems.

188

0v1v

2v

3v

4v 1R

2R

3R

4R

(a) Resistor Grid

kI1kI 1kI

1I 2I

[1]aV k []aV k

[1]bV k []bV k [1]bV k

1kV
kV 1kV

(b) Diffusor Network

Figure 9.1: Resistor grid and diffusor network synthesis of second order differential.

Research in this area is ongoing where diffusor networks are used for the

synthesis of differential equations representing the physical system. A diffusor net-

work can be conceptually viewed as a grid of resistors, as shown in the Figure 9.1.

A given 2nd order derivative δ2V
δx2 can be discretized using the finite difference time

domain method [147] and represented as -

Vm+1(i, j) = K × [Vm(i + 1, j) + Vm(i, j + 1) + Vm(i − 1, j) + Vm(i, j − 1)], (9.1)

where the time is discretized into slots indexed by m, the x and y dimensions are

discretized with slots indexed by i and j, respectively and K is a constant. This

differential can be easily represented in the resistor grid if we consider the parameter

Vm+1(i, j) as voltages v0, v1, v2 . . . vn at appropriate nodes in the resistor grid (Figure

9.1(a)). Applying Kirchoff’s law to the resistor grid we get,

v1 =
1

1/R1 + 1/R2 + 1/R3 + 1/R4
× (

v0

R1
+

v2

R2
+

v3

R3
+

v4

R4
), (9.2)

which is similar to the equation 9.1. The value of the resistors can be properly

calibrated based on the constant K.

189

The diffuser network uses CMOS circuits operated in collector mode and can

efficiently emulate the resistor grid circuit. Further, due to the floating gate nature

of the CMOS devices variable capacitors can also be simulated hence enabling a

more accurate representation of differentials. As shown in the Figure 9.1(b) the input

current at the node Vk is given by [148] -

Iink = −
CVT

Ik

dIk

dt
− Ik−1e−κ/VT (Vak−1−Vbk−1) − Ik+1e−κ/VT (Vak−Vbk+1) + Ik (9.3)

+ Ike−κ/VT (Vak−Vbk) + Ike−κ/VT (Vak−1−Vbk)

Here Ik s are the source currents of the CMOSs and Iink is the drain current at

node Vk. κ is a constant depending on the semiconductor device and VT is the

threshold voltage, and Va and Vb are the gate voltages of the corresponding nodes.

Interestingly, the z transform of equation 9.3 has the same form as that of a second

order derivative.

With this theory as background, connections of diffuser networks and resistor

grids are being used to implement the differential equations representing physical

dynamics in hardware.

9.3 Future research directions

This section discusses the future research directions in each of the three stages of

MBSV that are considered in this thesis.

Modeling Stage

This thesis considers modeling the cyber-physical interactions using hybrid models.

However, it makes important assumptions that the computing unit is the principal

active system in the CPS and it responds to context changes in the physical en-

vironment. When such assumptions are lifted interesting research problems may

arise.

190

1. Modeling Interaction with Non-Passive Physical Systems

Most of the case studies considered in the thesis, represent the physical system as a

passive entity expressed by differential equations. This assumption is often not true.

Consider the example where a sensor in a BSN that measures physiological values

from the human body and transfers it to a the base station is implanted in the tissue.

Let the ROIn be defined as the communication range of the sensor node and the

ROIm be defined as the area of the surrounding tissue that receives thermal energy

from the sensor due to its heat dissipation. Implantation often leads to growth of tis-

sue around the computing unit resulting in a change in the ROIm of the system [149].

However, this phenomenon leads to a change in the electromagnetic environment

of the worker node thus altering, maybe reducing, its communication capabilities or

affecting the ROIn. The radio power control algorithm will then increase the transmis-

sion power to increase the communication range. Thus the radio will now heat the

surrounding tissue even more effectively leading to thermal runaway. Thus growth in

the physical system, in this case human body, makes it an active component. There

is no known differential equation model for such effects. Hidden markov model or

neural networks may be used to model such active behavior, but such models are

not specifiable in CPS-DAS. Thus, modeling the interaction with computing units and

an active physical system in a CPS is an open research problem.

2. Hierarchical Formal Models for Dynamic Contexts

Dynamic contexts are probabilistic in nature. A formal approach to modeling dy-

namic contest may thus necessitate a probabilistic timed automata (PTA) [150] as

shown in the Figure 9.2. For example, mobility of an user can be modeled using

PTAs. Each state in the PTA represents the location context of the user. The time

spent in a particular state is determined by different random distributions. Depending

on the nature of the individual certain excursions will be deterministic. For example,

191

Home
Meet

friends
Lunch
Break

Office
Groce

ries

Scavenging
models

Mobility
models

Channel
models

Arrows represent state transitions governed by time obtained from a random distribution

2 2 2

1 1 1 1

1 2 2 2
: ()

dT T T T
T K C

dt x y z

S1

2 2

1 1 1

1 2 2
: ()

dT T T
T K C

dt x y

S2
1
(, , ,)

th
T t x y z T

1
(, , ,)

th
T t x y z T

STHA

S1 S2

P

1-P

Levy
Walk Log

Normal
Tapped

Delay Line

Figure 9.2: Probabilistic timed automata composed with mobility models, STHA
models, and scavenging source models.

the user has to leave home at 8 am to get to his office or during lunch the user might

go to his favorite place often. For states such as meet friends the location of the

user may follow the Levy walk probability distribution as suggested in [87]. Hence

context models are discrete while the models of physiology are continuous. A hybrid

automata approach would intuitively sound feasible for modeling the cooperation.

However, the state transition relations for a hybrid automata do not depend on dis-

crete events. Instead they are governed by system parameter variation according

to the continuous dynamics. In order to model the effect of dynamic contexts and

cyber-physical interactions, composition relations of the context models and physical

models have to be defined. In this regard, hierarchical formal models as shown in

the Figure 9.2, can be investigated. In such a model, a probabilistic timed automata

representation of the context will be considered. In each state, the human physiol-

ogy can be represented using hybrid automata. Given the spatio-temporal nature

of human physiology, a spatio-temporal hybrid automata can be used. Hence, each

state in the finite state automata will have a corresponding STHA to represent the

effect of dynamic contexts on the cyber-physical interaction. Such models are com-

192

plex and theoretical analysis is not guaranteed to be feasible. Nevertheless this is

an important area of research.

Analysis Stage

3. Extending STHA Reachability Analysis to Multidimensional Space

The STHA reachability analysis presented in the thesis is only for a single dimen-

sional space. An important extension is to convert this algorithm for multidimensional

space. However, such extensions may not be a direct corollary of the one dimen-

sional case. If the partial differential equation expressing the physical dynamics is

such that the variation in each spatial dimension is independent of the other, then

replicating the spatial image computation technique in Algorithm 6.2 for the other

two dimensions will suffice. Otherwise, a closed form approximation similar to the

Equation 6.15 for the one dimensional case will have to be derived. The discretiza-

tion parameters for each dimension will have to be chosen separately such that the

ε approximation still holds. Non-linear spatio-temporal dynamics further aggravates

the problem since non-linearities may arise in several forms necessitating solutions

targeting special forms of differential equations.

Synthesis Stage

4. Online verification

The analysis and verification technique proposed in this thesis are all offline and

performed before implementation of the CPS. Moreover, the verification is done as-

suming a range of input parameters that can occur a real setting. The analysis or

verification results are not valid if the input parameters are out of the assumed range.

However, the physical environment is random and may have unexpected variations

which may not be taken into account in the verification stage. In such a scenario, a

static design of the system may not have the same safety properties as promised in

193

the verification stage. Hence, different inputs to the CPS has to be reverified for the

new set of physical properties. Thus an online verification approach is necessary,

which takes the current physical parameters of the CPS and verifies each control

input before applying it to the system on-the-fly.

Online verification has received recent focus in the domain of transportation

and medical CPS [38, 151]. Researchers have demonstrated online verification us-

ing linear hybrid automata in theory and simulation but not in practice. However,

several fundamental research issues need to be solved before online verification

can be realized in practice.

1. Is online verification of more complex models of CPS such as STHA feasible?

Online verification requires fast execution of the synthesized formal models.

The complexity of the execution of STHA model depends on the desired accu-

racy or over estimation and can be time consuming for very accurate results.

2. What type of synthesis of formal model will make online verification feasible?

There can be two types of synthesis: a) in software, and b) in hardware. Syn-

thesis in software can be added as a module to the existing software of the

CPS, however its execution will be much slower. Synthesis in hardware has a

faster execution but it can make the CPS bulky, which can be a major concern

for applications such as UAV or medical devices.

194

BIBLIOGRAPHY

[1] J. A. Paradiso et al, “Energy scavenging for mobile and wireless electronics,”
Pervasive Computing, IEEE, vol. 4, no. 1, pp. 18–27, Jan.-March 2005.

[2] A. Banerjee, S. Kandula, T. Mukherjee, and S. K. S. Gupta, “Band-aide: A tool
for cyber-physical oriented analysis and design of body area networks and
devices,” ACM Trans. Embed. Comput. Syst., vol. 11, no. S2, pp. 1–29, 2012.

[3] A. Banerjee, K. Venkatasubramanian, and S. Gupta, “Challenges of imple-
menting cyber-physical security solutions in body area networks,” in BodyNets
’09: Proceedings of International Conference on Body Area Networks, 2009.

[4] H. H. Pennes, “Analysis of tissue and arterial blood temperature in the resting
human forearm,” in Journal of Applied Physiology, vol. 1.1, 1948, pp. 93–122.

[5] K. Venkatasubramanian, G. Deng, T. Mukherjee, J. Quintero, V. Annamalai,
and S. K. S. Gupta, “Ayushman: A Wireless Sensor Network Based Health
Monitoring Infrastructure and Testbed,” in Distributed Computing in Sensor
Systems, July 2005, pp. 406–407.

[6] I. Korhonen, J. Parkka, and M. Van Gils, “Health monitoring in the home of the
future,” Engineering in Medicine and Biology Magazine, IEEE, vol. 22, no. 3,
pp. 66–73, May-June 2003.

[7] R. Paradiso, G. Loriga, and N. Taccini, “A wearable health care system based
on knitted integrated sensors,” Information Technology in Biomedicine, IEEE
Transactions on, pp. 337–344, Sept. 2005.

[8] V. Hartkopf, V. Loftness, A. Mahdavi, S. Lee, and J. Shankavaram, “An
integrated approach to design and engineering of intelligent buildings–
the intelligent workplace at carnegie mellon university,” Automation in
Construction, vol. 6, no. 5-6, pp. 401 – 415, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0926580597000198

[9] A. Haywood, J. Sherbeck, P. Phelan, G. Varsamopoulos, and S. Gupta, “A
sustainable data center with heat-activated cooling,” in Thermal and Ther-
momechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE
Intersociety Conference on, june 2010, pp. 1 –7.

[10] T. Mukherjee and S. K. S. Gupta, “Mcma+cret: A mixed criticality management
architecture for maximizing mission efficacy and tool for expediting certifica-
tion of uavs,” in IEEE Workshop on Mixed Criticality: Roadmap to Evolving
UAV Certification, CPSWeek’09.

195

[11] B. K. et al, “Control to range for diabetes: Functionality and modular architec-
ture,” Journal of diabetes Science and Technology, 2012.

[12] T. N. I. T. Research and D. Program, “Different definition of cyber physical
systems.” [Online]. Available: http://www.nitrd.gov/about/blog/white_papers/
16-Importance_of_Cyber-Physical_Systems.pdf

[13] Y. Bar-Yam, Dynamics of Complex Systems, ser. Studies in Nonlinearity.
Westview Press, jul 2003. [Online]. Available: http://www.amazon.com/exec/

obidos/ISBN=0813341213/newenglandcompleA/

[14] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. 8, pp. 231–274, June 1987. [Online]. Available:
http://dl.acm.org/citation.cfm?id=34884.34886

[15] H. of U.S. Missile Defense Efforts 1945-Present, “Anti ballistic missile,” 2012.
[Online]. Available: http://www.mda.mil/news/history_resources.html

[16] FDA, “Maude database,” http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfmaude/detail.cfm?mdrfoi__id=2287727.

[17] Food and D. Administration, “Fda uses grammatech to analyze recalled
medical devices.” [Online]. Available: http://www.grammatech.com/products/
codesonar/GrammaTech_FDA_Profile.pdf

[18] M. Whalen, D. Cofer, S. Miller, B. H. Krogh, and W. Storm, “Integration
of formal analysis into a model-based software development process,” in
Proceedings of the 12th international conference on Formal methods for
industrial critical systems, ser. FMICS’07. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 68–84. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1793603.1793612

[19] C. Jean-Charles, B. Eric, and S. Christel, “Model based safety analysis for an
unmanned aerial system,” Dependable Robots in Human Environments, June
2010.

[20] J. T. Luxhøj and A. Öztekin, “A regulatory-based approach to safety analysis
of unmanned aircraft systems,” in Proceedings of the 8th International
Conference on Engineering Psychology and Cognitive Ergonomics: Held
as Part of HCI International 2009, ser. EPCE ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 564–573. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-02728-4_60

[21] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engi-
neering, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2002.

196

[22] Y. Zhang, P. L. Jones, and R. Jetley, “Journal od diabetes science and tech-
nology,” A Hazard Analysis for a Generic Insulin Infusion Pump, pp. 263 – 283,
March 2010.

[23] E. N. Johnson and S. Fontaine, “Use of flight simulation to complement flight
testing of low cost uavs,” American Institute of Aeronautics and Astronautics,
2001.

[24] S. Kong, Y. Jung, C. David, B.-Y. Wang, and K. Yi, “Automatically inferring
quantified loop invariants by algorithmic learning from simple templates,” in
Proceedings of the 8th Asian conference on Programming languages and
systems, ser. APLAS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 328–
343. [Online]. Available: http://dl.acm.org/citation.cfm?id=1947873.1947904

[25] V.-K. Kim, T. Chen, and M. Tegetho, “Fault coverage estimation for early stage
of vlsi design,” in Proceedings of the Ninth Great Lakes Symposium on VLSI,
ser. GLS ’99. Washington, DC, USA: IEEE Computer Society, 1999, pp.
105–. [Online]. Available: http://dl.acm.org/citation.cfm?id=795678.797355

[26] R. Kuhn, Y. Lei, and R. Kacker, “Practical combinatorial testing: Beyond
pairwise,” IT Professional, vol. 10, no. 3, pp. 19–23, may 2008. [Online].
Available: http://dx.doi.org/10.1109/MITP.2008.54

[27] A. Wymore, Model-Based Systems Engineering, ser. Systems Engineering
Series. Taylor & Francis, 1993. [Online]. Available: http://books.google.com/

books?id=CLgsYC3K2yAC

[28] B. Cott, R. Durham, P. Lee, and G. Sullivan, “Process model-based
engineering,” Computers and Chemical Engineering, vol. 13, no. 9, pp. 973 –
984, 1989. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/0098135489870401

[29] G. Bruno, Model-based software engineering, ser. ITCP Computer
Science Series. Chapman & Hall, 1995. [Online]. Available: http:
//books.google.com/books?id=L7JQAAAAMAAJ

[30] R. Jetley, S. P. Iyer, and P. L. Jones, “A formal methods approach to medical
device review,” Computer, vol. 39, no. 4, pp. 61–67, 2006.

[31] D. E. Arney, R. Jetley, P. Jones, I. Lee, A. Ray, O. Sokolsky, and Y. Zhang,
“Generic infusion pump hazard analysis and safety requirements version 1.0,”
2009. [Online]. Available: http://repository.upenn.edu/cis_reports/893

[32] S. Sankaranarayanan, H. Homaei, and C. Lewis, “Model-based dependability
analysis of programmable drug infusion pumps,” in Proceedings of the 9th

197

international conference on Formal modeling and analysis of timed systems,
ser. FORMATS’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 317–334.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2044973.2045003

[33] D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and O. Sokolsky,
“Toward patient safety in closed-loop medical device systems,” in ICCPS ’10:
Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical
Systems. New York, NY, USA: ACM, 2010, pp. 139–148.

[34] A. Karimoddini, H. Lin, B. Chen, and T. H. Lee, “Developments in hybrid mod-
eling and control of unmanned aerial vehicles,” in Control and Automation,
2009. ICCA 2009. IEEE International Conference on, dec. 2009, pp. 228 –
233.

[35] S. Bayraktar and G. E. Fainekos, “Hybrid modeling and experimental
cooperative control of multiple unammned aerial vehicles,” Tech. Rep., 2004.
[Online]. Available: http://repository.upenn.edu/cgi/viewcontent.cgi?article=

1022&context=cis_reports

[36] G. Lafferriere, G. Pappas, and S. Sastry, O-minimal Hybrid Systems,
ser. Memorandum (University of California, Berkeley. Electronics Research
Laboratory). Electronics Research Laboratory, College of Engineering,
University of California, 1998. [Online]. Available: http://books.google.com/

books?id=-rWZGwAACAAJ

[37] H. Fawzi, P. Tabuada, and S. N. Diggavi, “Secure estimation and
control for cyber-physical systems under adversarial attacks,” CoRR, vol.
abs/1205.5073, 2012. [Online]. Available: http://dblp.uni-trier.de/db/journals/
corr/corr1205.html#abs-1205-5073

[38] L. Bu, Q. Wang, X. Chen, L. Wang, T. Zhang, J. Zhao, and X. Li,
“Toward online hybrid systems model checking of cyber-physical systems’
time-bounded short-run behavior,” SIGBED Rev., vol. 8, no. 2, pp. 7–10, jun
2011. [Online]. Available: http://doi.acm.org/10.1145/2000367.2000368

[39] Y. Zhao, J. Liu, and E. A. Lee, “A programming model for time-synchronized
distributed real-time systems,” in Proceedings of the 13th IEEE Real Time
and Embedded Technology and Applications Symposium, ser. RTAS ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 259–268. [Online].
Available: http://dx.doi.org/10.1109/RTAS.2007.5

[40] J. C. Willems, “The behavioral approach to open and interconnected systems,”
Control Systems Magazine, pp. 46–99, 2007.

198

[41] D. G. M. Greenhalgh et al, “Temperature threshold for burn injury: An oximeter
safety study,” Journal of Burn Care and Rehabilitation, vol. 25, no. 5, pp. 411–
415, 2004.

[42] S. Coleri, M. Ergen, and T. J. Koo, “Lifetime analysis of a sensor network
with hybrid automata modelling,” in WSNA ’02: Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications. New
York, NY, USA: ACM, 2002, pp. 98–104.

[43] L. Junsoo et al, “Modeling communication networks with hybrid systems,” Net-
working, IEEE/ACM Transactions on, vol. 15, no. 3, pp. 630–643, June 2007.

[44] A. Schafer et al, “Conceptional Modeling and Analysis of Spatio-Temporal Pro-
cesses in Biomolecular Systems,” in Sixth Asia-Pacific Conference on Con-
ceptual Modelling (APCCM 2009), ser. CRPIT, S. Link and M. Kirchberg, Eds.,
vol. 96. Wellington, New Zealand: ACS, 2009, pp. 39–48.

[45] E. Bartocci et al, “Spatial Networks of Hybrid I/O Automata for Modeling Ex-
citable Tissue,” Electronic Notes in Theoretical Computer Science (ENTCS),
vol. 194, no. 3, pp. 51–67, 2008.

[46] R. Ghosh et al, “A query-based technique for interpreting reachable sets for
hybrid automaton models of protein feedback signaling,” in Proceedings of the
American Control Conference, June 2005, pp. 4417–4422.

[47] Y. Qin et al, “Hybrid cellular automata model for railway transportation system
and its implementation on GIS,” in IEEE Proceedings of Intelligent Vehicles
Symposium, 2003., June 2003, pp. 543 – 546.

[48] NITRD, “High-confidence medical devices: Cyber-physical systems for 21st
century health care.” [Online]. Available: http://www.nitrd.gov/Publications/
PublicationDetail.aspx?pubid=31

[49] A. Banerjee and S. Gupta, “Your mobility can be injurious to your health: Ana-
lyzing pervasive health monitoring systems under dynamic context changes,”
in Pervasive Computing and Communications (PerCom), 2012 IEEE Interna-
tional Conference on, march 2012, pp. 39 –47.

[50] A. Banerjee, S. Verma, P. Bagade, and S. K. Gupta, “Health-dev: Model based
development pervasive health monitoring systems,” Wearable and Implantable
Body Sensor Networks, International Workshop on, vol. 0, pp. 85–90, 2012.

[51] J. Jacobs, “Algorithm for optimal linear model-based control with application to
pharmacokinetic model-driven drug delivery,” Biomedical Engineering, IEEE
Transactions on, vol. 37, no. 1, pp. 107 –109, 1990.

199

[52] G. Varsamopoulos, Z. Abbasi, and S. K. S. Gupta, “Trends and effects of
energy proportionality on server provisioning in data centers,” in International
Conference on High performance Computing Conference (HiPC2010), Dec.
2010.

[53] C. Green, Z. Ounaies, and E. Hughesa, “Harvesting energy using a thin uni-
morph prestressed bender: Geometrical effects,” Journal of Intelligent Mate-
rial Systems and Structures, 2005.

[54] K. Venkatasubramanian, A. Banerjee, and S. K. S. Gupta, “Pska: Usable and
secure key agreement scheme for body area networks,” IEEE Transactions on
Information Technology in Biomedicine SI Wireless Health, vol. 14, no. 1, pp.
60–68, Jan 2010.

[55] D. Wada and D. Ward, “The hybrid model: a new pharmacokinetic model for
computer-controlled infusion pumps,” Biomedical Engineering, IEEE Transac-
tions on, vol. 41, no. 2, pp. 134 –142, feb. 1994.

[56] R. N. Maini, F. C. Breedveld, J. R. Kalden, J. S. Smolen, D. Davis, J. D. Mac-
Farlane, C. Antoni, B. Leeb, M. J. Elliott, J. N. Woody, T. F. Schaible, and
M. Feldmann, “Therapeutic efficacy of multiple intravenous infusions of anti-
tumor necrosis factor a monoclonal antibody combined with low-dose weekly
methotrexate in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 41, no. 9,
pp. 1552 – 1563, 1998.

[57] “ISO 60601 safety standard,” http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm\\?csnumber=45605.

[58] K. Venkatasubramanian, T. Mukherjee, and S. K. S. Gupta, “Caac - an adap-
tive and proactive access control approach for emergencies for smart infras-
tructures,” ACM Transactions on Autonomous and Adaptive Systems Special
Issue on Adaptive Security, 2011.

[59] T. Mukherjee, K. Venkatasubramanian, and S. K. S. Gupta, “Performance
modeling of critical event management for ubiquitous computing applications,”
in MSWiM ’06: Proceedings of the 9th ACM international symposium on Mod-
eling analysis and simulation of wireless and mobile systems. New York, NY,
USA: ACM, 2006, pp. 12–19.

[60] V. Gehlot and E. B. Sloane, “Ensuring patient safety in wireless medical device
networks,” Computer, vol. 39, pp. 54–60, April 2006.

[61] N. Cho, J. Yoo, S.-J. Song, J. Lee, S. Jeon, and H.-J. Yoo, “The human body
characteristics as a signal transmission medium for intrabody communication,”

200

Microwave Theory and Techniques, IEEE Transactions on, vol. 55, no. 5, pp.
1080 –1086, may 2007.

[62] U. of Pensylvannia, “Generic infusion pump project,” http://rtg.cis.upenn.edu/

gip.php3.

[63] L. Bleris and M. Kothare, “Implementation of model predictive control for glu-
cose regulation on a general purpose microprocessor,” in Decision and Con-
trol, 2005 and 2005 European Control Conference. CDC-ECC ’05. 44th IEEE
Conference on, dec. 2005, pp. 5162 – 5167.

[64] K. Venkatasubramanian et al, “Plethysmogram-based secure inter-sensor
communication in body area networks,” Military Communications Conference,
2008. MILCOM 2008. IEEE, pp. 1–7, Nov. 2008.

[65] S. Nabar, A. Banerjee, S. Gupta, and R. Poovendran, “Gem-rem: Generative
model-driven resource efficient ecg monitoring in body sensor networks,” in
Body Sensor Networks (BSN), 2011 International Conference on, may 2011,
pp. 1 –6.

[66] ——, “Resource-efficient and reliable long term wireless monitoring of the
photoplethysmographic signal,” in Wireless Health (WH) accepted for publi-
cation, 2011 International Conference on, October 2011, pp. 1 –6.

[67] A. Natarajan, B. de Silva, K.-K. Yap, and M. Motani, “To hop or not to hop:
Network architecture for body sensor networks,” in Sensor, Mesh and Ad Hoc
Communications and Networks, 2009. SECON ’09. 6th Annual IEEE Commu-
nications Society Conference on, june 2009, pp. 1 –9.

[68] J. G. Chase, K. Mayntzhusen, P. D. Docherty, S. Andreassen, K. A. McAuley,
T. F. Lotz, and C. E. Hann, “A three-compartment model of the c-peptide-
insulin dynamic during the dist test,” Mathematical Biosciences (15 Septem-
ber), 2010.

[69] T. E. Group, “T1dm simulator,” 2012. [Online]. Available: http://www.
tegvirginia.com/T1DM.htm

[70] Y. Ozier, P. Guéret, F. Jardin, J. Farcot, J. Bourdarias, and A. Margairaz,
“Two-dimensional echocardiographic demonstration of acute myocardial de-
pression in septic shock,” Critical Care Medicine, vol. 12, no. 7, pp. 596 – 599,
1984.

[71] S. R. LaPlante, N. Aubry, L. Rosa, P. Levesque, B. S. Aboumrad, D. Porter,
C. Cavanaugh, and J. Johnston, “Liquid cooling of a high density computer
cluster,” [online], 2006.

201

[72] Q. Tang, T. Mukherjee, S. Gupta, and P. Cayton, “Sensor-based fast ther-
mal evaluation model for energy efficient high-performance datacenters,” in
Intelligent Sensing and Information Processing, 2006. ICISIP 2006. Fourth
International Conference on, 15 2006-Dec. 18 2006, pp. 203–208.

[73] T. Mukherjee, A. Banerjee, G. Varsamopoulos, S. K. S. Gupta, and
S. Rungta, “Spatio-temporal thermal-aware job scheduling to minimize
energy consumption in virtualized heterogeneous data centers?” Computer
Networks, June 2009. [Online]. Available: http://dx.doi.org/10.1016/j.comnet.
2009.06.008

[74] G. Varsamopoulos et al, “Energy efficiency of thermal-aware job scheduling
algorithms under various cooling models,” in International Conference on Con-
temporary Computing IC3, Noida, India, Aug. 2009.

[75] M. J. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynam-
ics, 6th Edition. Wiley, 2007.

[76] “Moab grid suite of ClusterResources Inc.” http://www.clusterresources.com/.
[Online]. Available: http://www.clusterresources.com/

[77] G. Frehse, “Phaver: Algorithmic verification of hybrid systems past hytech,” in
HSCC, 2005, pp. 258–273.

[78] P. W. Tuinenga, Spice: A Guide to Circuit Simulation and Analysis Using
PSpice. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1991.

[79] G.-M. Elena and M. José, “Argospe: Model-based software performance en-
gineering,” in ICATPN, 2006, pp. 401–410.

[80] . Karsai et al, “Model-integrated development of cyber-physical systems,” in
SEUS ’08: Proceedings of the 6th IFIP WG 10.2 international workshop on
Software Technologies for Embedded and Ubiquitous Systems. Berlin, Hei-
delberg: Springer-Verlag, 2008, pp. 46–54.

[81] T. Qinghui et al, “Communication scheduling to minimize thermal effects of im-
planted biosensor networks in homogeneous tissue,” Biomedical Engineering,
IEEE Transactions on, vol. 52, no. 7, pp. 1285–1294, July 2005.

[82] V. Prasad et al, “Andes: An analysis-based design tool for wireless sensor
networks,” in Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE
International, Dec. 2007, pp. 203–213.

[83] F. C. J. Henriques et al, “Studies of thermal injury: I. the conduction of heat to
and through skin and the temperatures attained therein. a theoretical and an
experimental investigation,” in Am J Pathol., July. 1947, pp. 530–549.

202

[84] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,” in HICSS
’00: Proceedings of the 33rd Hawaii International Conference on System
Sciences-Volume 8. Washington, DC, USA: IEEE Computer Society, 2000,
p. 8020.

[85] K. Venkatasubramanian et al, “Green and sustainable cyber-physical security
solutions for body area networks,” in BSN ’09: Proceedings of the 2009 Sixth
International Workshop on Wearable and Implantable Body Sensor Networks.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 240–245.

[86] T. Mukherjee, A. Banerjee, G. Varsamopoulos, and S. K. S. Gupta,
“Model-driven coordinated management of data centers,” Comput. Netw.,
vol. 54, no. 16, pp. 2869–2886, nov 2010. [Online]. Available: http:
//dx.doi.org/10.1016/j.comnet.2010.08.011

[87] I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong, “On the levy-walk nature
of human mobility,” in INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE, april 2008, pp. 924 –932.

[88] A. Natarajan, B. de Silva, K.-K. Yap, and M. Motani, “To hop or not to hop:
Network architecture for body sensor networks,” in Sensor, Mesh and Ad Hoc
Communications and Networks, 2009. SECON ’09. 6th Annual IEEE Commu-
nications Society Conference on, June 2009, pp. 1–9.

[89] Altera, “Vhdl,” http://www.altera.com/support/examples/vhdl/vhdl.html.

[90] OMG, “Unified modeling language,” http://www.uml.org/.

[91] C.-L. Fok, A. Petz, D. Stovall, N. Paine, C. Julien, and S. Vishwanath, “Pharos:
A testbed for mobile cyber-physical systems,” Univ. of Texas at Austin, Tech.
Rep. TR-ARiSE- 2011-001, 2011.

[92] D. Acharya, V. Kumar, and H.-J. Han, “Performance evaluation of data
intensive mobile healthcare test-bed in a 4g environment,” in Proceedings of
the 2nd ACM international workshop on Pervasive Wireless Healthcare, ser.
MobileHealth ’12. New York, NY, USA: ACM, 2012, pp. 21–26. [Online].
Available: http://doi.acm.org/10.1145/2248341.2248353

[93] Mathworks, “Matlab and simulink,” http://www.mathworks.com/.

[94] SysML, “Systems modeling language (sysml),” http://www.sysml.org/.

[95] “Flovent.” [Online]. Available: http://www.mentor.com/products/mechanical/
products/flovent

203

[96] A. Cervin and K.-E. Arzen, Model-Based Design for Embedded Systems.
CRC Press, 2011, ch. TrueTime: Simulation Tool for Performance Analysis
of Real-Time Embedded Systems, pp. 93–119.

[97] Modelica and the Modelica Association, “Modelica,” https://modelica.org/.

[98] Z. Jiang, M. Pajic, and R. Mangharam, “Model-based closed-loop testing
of implantable pacemakers,” in Proceedings of the 2011 IEEE/ACM Second
International Conference on Cyber-Physical Systems, ser. ICCPS ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 131–140. [Online].
Available: http://dx.doi.org/10.1109/ICCPS.2011.28

[99] K. E. Andersen, “A bayesian approach to bergmanŠs minimal model,” in in:
C.M. Bishop, B.J. Frey (Eds.), Proceedings of the Ninth International Work-
shop on Artificial Intelligence,, 2003.

[100] J. C. Jensen, D. Chang, and E. A. Lee, “A model-based design methodology
for cyber-physical systems,” in Wireless Communications and Mobile Com-
puting Conference (IWCMC), 2011 7th International, July 2011, pp. 1666 –
1671.

[101] W. Yan, Y. Xue, X. Li, J. Weng, T. Busch, and J. Sztipanovits,
“Integrated simulation and emulation platform for cyber-physical system
security experimentation,” in Proceedings of the 1st international conference
on High Confidence Networked Systems, ser. HiCoNS ’12. New
York, NY, USA: ACM, 2012, pp. 81–88. [Online]. Available: http:
//doi.acm.org/10.1145/2185505.2185519

[102] A. Bhave, B. Krogh, D. Garlan, and B. Schmerl, “Multi-domain modeling of
cyber-physical systems using architectural views,” in Proceedings of the 1st
Analytic Virtual Integration of Cyber-Physical Systems Workshop., 30 Novem-
ber 2010.

[103] D. Henriksson and H. Elmqvist, “Cyber-physical systems modeling and simu-
lation with Modelica,” in Proceedings of the 8th International Modelica Confer-
ence, Dresden, Germany, 2011, pp. 502–509.

[104] K. Bauer, “A new modelling language for cyber-physical systems,” Ph.D. dis-
sertation, Department of Computer Science, University of Kaiserslautern,
Germany, Kaiserslautern, Germany, January 2012.

[105] D. Arney, R. Jetley, P. Jones, I. Lee, and O. Sokolsky, “Formal methods based
development of a pca infusion pump reference model: Generic infusion pump

204

(gip) project,” in HCMDSS-MDPNP ’07: Proceedings of the 2007 Joint Work-
shop on High Confidence Medical Devices, Software, and Systems and Medi-
cal Device Plug-and-Play Interoperability. Washington, DC, USA: IEEE Com-
puter Society, 2007, pp. 23–33.

[106] W. Reisig, Petri nets: an introduction. New York, NY, USA: Springer-Verlag
New York, Inc., 1985.

[107] S. Nabar, A. Banerjee, S. K. S. Gupta, and R. Poovendran, “Evaluation of
body sensor network platforms: a design space and benchmarking analysis,”
in Wireless Health 2010, ser. WH ’10. New York, NY, USA: ACM, 2010, pp.
118–127. [Online]. Available: http://doi.acm.org/10.1145/1921081.1921096

[108] H. Veld and M. Ordelman, “Context aware algorithm for epileptic seizure de-
tection,” in Awareness deliverables, 2005.

[109] C. Cortazar, M. Elgueta, and J. D. Rossi, “A nonlocal diffusion equation
whose solutions develop a free boundary,” Annales Henri Poincare,
vol. 6, pp. 269–281, 2005, 10.1007/s00023-005-0206-z. [Online]. Available:
http://dx.doi.org/10.1007/s00023-005-0206-z

[110] M. C. Bujorianu et al, “An integrated specification logic for cyber-physical sys-
tems,” in ICECCS 2009, 2009, pp. 291–300.

[111] T. L. Jackson and H. M. Byrne, “A mathematical model to study the ef-
fects of drug resistance and vasculature on the response of solid tumors to
chemotherapy,” Mathematical Biosciences, vol. 164, no. 1, pp. 17 – 38, 2000.

[112] A. Girard and C. Guernic, “Zonotope/hyperplane intersection for hybrid
systems reachability analysis,” in Proceedings of the 11th international
workshop on Hybrid Systems: Computation and Control, ser. HSCC ’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 215–228. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-78929-1_16

[113] Dr. KYOUNG-DAE KIM, “Phd dissertation middleware and control of cyber-
physical systems: Temporal guarantees and hybrid system analysis,” under
Dr. P.R. Kumar.

[114] T. Henzinger, “The theory of hybrid automata,” Logic in Computer Science,
Symposium on, vol. 0, p. 278, 1996.

[115] M. Althoff, O. Stursberg, and M. Buss, “Computing reachable sets of hybrid
systems using a combination of zonotopes and polytopes,” Nonlinear Analy-
sis: Hybrid Systems, vol. 4, no. 2, pp. 233–249, 2010.

205

[116] R. Alur, T. Dang, and F. Ivancic, “Reachability analysis of hybrid systems
via predicate abstraction,” in Hybrid Systems: Computation and Control, ser.
LNCS, vol. 2289. Springer, 2002, pp. 35–48.

[117] E. Asarin, T. Dang, and A. Girard, “Reachability analysis of nonlinear systems
using conservative approximation,” in Hybrid Systems: Computation and Con-
trol, ser. LNCS, vol. 2623. Springer, 2003, pp. 22–35.

[118] T. Dang, “Approximate reachability computation for polynomial systems,” in
Hybrid Systems: Computation and Control, ser. LNCS, J. P. Hespanha and
A. Tiwari, Eds., vol. 3927. Springer, 2006, pp. 138–152.

[119] A. Girard, “Reachability of uncertain linear systems using zonotopes,” in Hy-
brid Systems: Computation and Control, ser. LNCS, vol. 3414, 2005, pp. 291–
305.

[120] Z. Han and B. H. Krogh, “Reachability analysis of hybrid control systems using
reduced-order models,” in Proceedings of the American Control Conference,
2004, pp. 1183–1189.

[121] A. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for hybrid dynamics:
the reachability problem,” in New Directions and Applications in Control The-
ory, ser. LNCIS, W. P. Dayawansa, A. Lindquist, and Y. Zhou, Eds., vol. 321.
Springer, 2005, pp. 193–205.

[122] G. E. Fainekos, S. Sankaranarayanan, F. Ivančić, and A. Gupta, “Robustness
of model-based simulations,” in IEEE Real-Time Systems Symposium, 2009,
to appear.

[123] A. Chutinan and B. Krogh, “Verification of polyhedral invariant hybrid automata
using polygonal flow pipe approximations,” in Hybrid Systems: Computation
and Control, ser. LNCS, vol. 1569. Springer, 1999, pp. 76–90.

[124] A. Girard and G. J. Pappas, “Verification using simulation,” in Hybrid Systems:
Computation and Control (HSCC), ser. LNCS, vol. 3927. Springer, 2006, pp.
272–286.

[125] B. I. Silva and B. H. Krogh, “Formal verification of hybrid systems using Check-
Mate: a case study,” in Proceedings of the American Control Conference,
vol. 3, Jun 2000, pp. 1679–1683.

[126] N. Grégoire and M. Bouillot, “Hausdorff distance between convex polygons.”
[Online]. Available: http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/
98/normand/main.html

206

[127] H. Alt, J. BlÃűmer, and H. Wagener, “Approximation of convex polygons,”
in Automata, Languages and Programming, ser. Lecture Notes in
Computer Science, M. Paterson, Ed. Springer Berlin / Heidelberg,
1990, vol. 443, pp. 703–716, 10.1007/BFb0032068. [Online]. Available:
http://dx.doi.org/10.1007/BFb0032068

[128] A. Lamperski and A. Ames, “On the existence of zeno behavior in hybrid sys-
tems with non-isolated zeno equilibria,” in Decision and Control, 2008. CDC
2008. 47th IEEE Conference on, dec. 2008, pp. 2776 –2781.

[129] S. Weininger et al, “Factors to consider in a risk analysis for safe surface
temperature,” in Product Safety Engineering, 2005 IEEE Symposium on, Oct.
2005, pp. 83–91.

[130] S. Medical, “Graseby 3300 technical manual,” http://www.
frankshospitalworkshop.com/equipment/documents/infusion_pumps/
service_manuals/Graseby_3300_Syringe_Pump_-_Service_manual.pdf.

[131] Stefan and Botlzman, “Stefan-boltzman law.” [Online]. Available: http:
//hyperphysics.phy-astr.gsu.edu/hbase/thermo/stefan.html

[132] E. Lehmann and T. Deutsch, “A physiological model of glucose-
insulin interaction in type 1 diabetes mellitus,” Journal of Biomedical
Engineering, vol. 14, no. 3, pp. 235 – 242, 1992, <ce:title>Annual
Scientific Meeting</ce:title>. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/014154259290058S

[133] F. Erzen, Studies on Modeling Glucose Insulin Interaction in Human Body and
Development of a Simulation Package. Illinois Institute of Technology, 2000.
[Online]. Available: http://books.google.com/books?id=bKJyNwAACAAJ

[134] E. Lee, “Ptolemy project.” [Online]. Available: http://ptolemy.eecs.berkeley.
edu/

[135] X. Chen, A. Waluyo, I. Pek, and W.-S. Yeoh, “Mobile middleware for wireless
body area network,” in Engineering in Medicine and Biology Society (EMBC),
2010 Annual International Conference of the IEEE, 31 2010-sept. 4 2010, pp.
5504 –5507.

[136] G. Fortino, A. Guerrieri, F. Bellifemine, and R. Giannantonio, “Spine2: devel-
oping bsn applications on heterogeneous sensor nodes,” in Industrial Embed-
ded Systems, 2009. SIES ’09. IEEE International Symposium on, july 2009,
pp. 128 –131.

207

[137] M. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago, and S. Olivieri, “A frame-
work for modeling, simulation and automatic code generation of sensor net-
work application,” in Sensor, Mesh and Ad Hoc Communications and Net-
works, 2008. SECON ’08. 5th Annual IEEE Communications Society Confer-
ence on, june 2008, pp. 515 –522.

[138] J. B. Lim, B. Jang, S. Yoon, M. L. Sichitiu, and A. G. Dean, “Raptex: Rapid pro-
totyping tool for embedded communication systems,” ACM Trans. Sen. Netw.,
vol. 7, pp. 7:1–7:40, August 2010.

[139] E. Cheong, E. A. Lee, and Y. Zhao, “Viptos: a graphical development and
simulation environment for tinyos-based wireless sensor networks,” in Pro-
ceedings of the 3rd international conference on Embedded networked sensor
systems, ser. SenSys ’05. New York, NY, USA: ACM, 2005, pp. 302–302.

[140] W. P. McCartney and N. Sridhar, “Tosdev: a rapid development environment
for tinyos,” in Proceedings of the 4th international conference on Embedded
networked sensor systems, ser. SenSys ’06. New York, NY, USA: ACM,
2006, pp. 387–388.

[141] M.-C. Hsiao, C.-H. Chan, V. Srinivasan, A. Ahuja, G. Erinjippurath, T. P.
Zanos, G. Gholmieh, D. Song, J. D. Wills, J. LaCoss, S. Courellis,
A. R. Tanguay, J. J. Granacki, V. Z. Marmarelis, and T. W. Berger, “Vlsi
implementation of a nonlinear neuronal model: a neural prosthesis to restore
hippocampal trisynaptic dynamics.” Conf Proc IEEE Eng Med Biol Soc, vol. 1,
pp. 4396–9, 2006. [Online]. Available: http://www.biomedsearch.com/nih/

VLSI-implementation-nonlinear-neuronal-model/17946244.html

[142] Y.-H. Kuo, C.-I. Kao, and J.-J. Chen, “A fuzzy neural network model and
its hardware implementation,” Fuzzy Systems, IEEE Transactions on, vol. 1,
no. 3, pp. 171 –183, aug 1993.

[143] B. Bishop, T. Kelliher, and M. Irwin, “Hardware/software co-design for real-time
physical modeling,” in Multimedia and Expo, 2000. ICME 2000. 2000 IEEE
International Conference on, vol. 3, 2000, pp. 1363 –1366 vol.3.

[144] J.-G. Juang and W.-K. Liu, “Hardware implementation of a hybrid intelligent
controller for a twin rotor mimo,” in Innovative Computing Information and Con-
trol, 2008. ICICIC ’08. 3rd International Conference on, june 2008, p. 185.

[145] E. Motuk, R. Woods, and S. Bilbao, “Fpga-based hardware for physical mod-
elling sound synthesis by finite difference schemes,” in Field-Programmable
Technology, 2005. Proceedings. 2005 IEEE International Conference on, dec.
2005, pp. 103 –110.

208

[146] S. Nabar, A. Banerjee, S. K. S. Gupta, and R. Poovendran, “Evaluation of
body sensor network platforms: a design space and benchmarking analysis,”
in Wireless Health 2010, ser. WH ’10. New York, NY, USA: ACM, 2010, pp.
118–127. [Online]. Available: http://doi.acm.org/10.1145/1921081.1921096

[147] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-
Difference Time-Domain Method, Third Edition, 3rd ed. Artech House Pub-
lishers, jun 2005.

[148] P. Smith and P. Hasler, “A programmable diffuser circuit based on floating-
gate devices,” in Circuits and Systems, 2002. MWSCAS-2002. The 2002 45th
Midwest Symposium on, vol. 1, aug. 2002, pp. I – 291–4 vol.1.

[149] D. Paul, L. Nathan, Y. Bazhang, M. Yvonne, and F. Moussy, “Study of the ef-
fects of tissue reactions on the function of implanted glucose sensors,” Journal
of Biomedical Materials Research Part A, pp. 699–706, 2007.

[150] J. Sproston and A. Troina, “Simulation and bisimulation for probabilistic timed
automata,” in FORMATS, 2010, pp. 213–227.

[151] L. Bu, D. Xie, X. Chen, L. Wang, and X. Li, “Demo abstract: Bachol - modeling
and verification of cyber-physical systems online,” in Cyber-Physical Systems
(ICCPS), 2012 IEEE/ACM Third International Conference on, april 2012, p.
222.

209

BIOGRAPHICAL SKETCH

Ayan Banerjee graduated from the School of Computing, Informatics, and
Decision Systems Engineering at Arizona State University. He received his Bache-
lor’s degree in Electronics and Telecommunication Engineering from Jadavpur Uni-
versity, India, in 2007, and began his Ph.D. in Computer Science under Dr. Sandeep
Gupta later that year. His research interests include formal modeling and analy-
sis, sensor networks, embedded systems, pervasive health monitoring, and energy
efficient cloud computing.

His research focuses on the safety of Cyber-Physical Systems (CPSes).
CPSes are control systems, which require a closed loop interaction with their en-
vironment for their operation. Examples include sensor networks and data centers.

Specially two important characteristics of CPSes render the current tech-
niques inapplicable:

a Spatio-temporal multi-dimensional variation of the effect of interactions e.g. the
drug concentration due to infusion pump operation varies over time as well as it is
different at different points in the body.

b Non linear dynamics due to feedback from different components of the system.

He has defined novel hybrid systems that can capture the spatio-temporal ef-
fects of CPS interactions and developing techniques to perform reachability analysis
on them for proving safety properties. In this regard, he has proposed a SpatioTem-
poral Hybrid Automata in his PhD dissertation and has developed a time bounded
reachability analysis technique for it. The modeling has been applied to the medi-
cal domain and used several examples such as the infusion pump and the artificial
pancreas to validate my technique.

Below is a list of his publications:
Conferences:

1 Sunit Verma, Joseph Milazzo, Yu Xie, Priyanka Bagade, Ayan Banerjee, and
Sandeep K.S. Gupta, "Model-based Wireless Health System Design Tool", In
Proccedings of 3rd Conference in Wireless Health ’12, San Diego, CA

2 A. Banerjee, S. Verma, P. Bagade, and S.K.S. Gupta ,Health-Dev: Model Based
Development of Pervasive Health Monitoring Systems, The 9th International Con-
ference on Wearable and Implanted Body Sensor Networks 2012, London UK,
May 9 - 12

3 A. Banerjee and Sandeep K.S. Gupta ,Your Mobility can be Injurious to Your
Health: Analyzing Pervasive Health Monitoring Systems under Dynamic Context
Changes , IEEE International Conference on Pervasive Computing and Commu-
nication (PerCom) 2012

210

4 Ayan Banerjee, Sandeep K.S. Gupta, Georgios Fainekos, and Georgios
Varsamopoulos ,Towards Modeling and Analysis of Cyber-Physical Medical Sys-
tems , Isabel 2011, Barcelona, Spain

5 A. Banerjee, S. Nabar, S.K.S. Gupta, and R. Poovendran ,Energy-efficient Long
Term Physiological Monitoring , Wireless Health Demo 2011, San Diego, Califor-
nia

6 S. Nabar, A. Banerjee, S.K.S. Gupta, and R. Poovendran ,Resource-efficient and
Reliable Long Term Wireless Monitoring of the Photoplethysmographic Signal,
Wireless Health 2011 (Accepted for publication), San Diego, California

7 Sandeep K.S. Gupta, Rose Robin Gilbert, Ayan Banerjee, Zahra Abbasi, Tridib
Mukherjee, Georgios Varsamopoulos, GDCSim - An Integrated Tool Chain for
Analyzing Green Data Center Physical Design and Resource Management Tech-
niques , International Green Computing Conference, 2011, Orlando.

8 S. Nabar, A. Banerjee, S.K.S. Gupta, and R. Poovendran GeM-REM: Generative
Model-driven Resource-efficient ECG Monitoring in Body Sensor Networks. To
appear in IEEE BSN 2011

9 S. Nabar, A. Banerjee, S.K.S. Gupta, and R. Poovendran Evaluation of Body Sen-
sor Network Platforms: A Design Space and Benchmarking Analysis , Wireless
Health 2010, San Diego, CA, 2010, Accepted for publication

10 Ayan Banerjee, Tridib Mukherjee, Georgios Varsamopoulos, and Sandeep K. S.
Gupta. Cooling-Aware and Thermal-Aware Workload Placement for Green HPC
Data Centers. International Conference on Green Computing Conference (IGCC),
Chicago, IL, August 2010.

11 Georgios Varsamopoulos, Ayan Banerjee, Sandeep Gupta. Energy Efficiency of
Thermal-Aware Job Scheduling Algorithms under Various Cooling Models. In-
ternational Conference on Contemporary Computing (IC3), Noida , India, August
2009.

12 K. Venkatasubramanian, A. Banerjee, S. K. S. Gupta, Green and Sustainable Cy-
ber Physical Security Solutions for Body Area Networks In Proc of 6th Workshop
on Body Sensor Networks (BSN’09), Berkeley, CA, June 2009.

13 A. Banerjee, K. Venkatasubramanian, S. K. S. Gupta, Challenges of Implementing
Cyber-Physical Security Solutions in Body Area Networks In Proc of International
Conference on Body Area Networks (BodyNets’09), Los Angeles, CA, April 2009.

14 K. Venkatasubramanian, A. Banerjee, S. K. S. Gupta, Plethysmogram-based Se-
cure Inter-Sensor Communication in Body Area Networks In Proc of IEEE Military
Communications Conference, (MILCOM’08), San Diego, CA, November 2008.

211

15 K. Venkatasubramanian, A. Banerjee, S. K. S Gupta, EKG-based Key Agreement
in Body Sensor Networks,In Proc. of 2nd Mission Critical Networks Workshop,
IEEE Infocom Workshops, Phoenix, AZ, April 2008.

16 G. Varsamopoulos, S. K. S. Gupta, A. Banerjee, and K. K. Venkatasubramanian
,Integrating Cyber-Physical Research and Thinking in College Education , In Proc.
International Symposium on Integrating Research, Education, and Problem Solv-
ing (IREPS 2011)

Journals:

1 A. Banerjee, K. Venkatasubramanian, T. Mukherjee, and S.K.S. Gupta Ensuring
Safety, Security and Sustainability of Mission-Critical Cyber Physical Systems,
IEEE Proceedings special issue on cyber-physical systems

2 Ayan Banerjee, Tridib Mukherjee, Georgios Varsamopoulos, and Sandeep K. S.
Gupta Integrating Cooling Awareness with Thermal Aware Workload Placement
for HPC Data Centers , Elsevier Comnets Special Issue in Sustainable Computing
(SUSCOM) 2011 .

3 Sandeep K. S. Gupta, Tridib Mukherjee, Georgios Varsamopoulos, and Ayan
Banerjee Research Directions in Energy-Sustainable Cyber-Physical Systems ,
Elsevier Comnets Special Issue in Sustainable Computing (SUSCOM) 2011 (In-
vited Paper).

4 A. Banerjee, S. Kandula, T. Mukherjee, and S.K.S. Gupta BAND-AiDe: A Tool for
Cyber-Physical Oriented Analysis and Design of Body Area Networks and De-
vices , ACM Transactions in Embedded Computing Systems, Special Issue on
Wireless Health 2010, Accepted for publication

5 Tridib Mukherjee, Ayan Banerjee, Georgios Varsamopoulos, and S. K. S. Gupta,
Model-driven Co-ordinated Management of Data Centers. (Elsevier) Com-
puter Networks, Special Issue on Managing Emerging Computing Environ-
ments(ComNet), accepted (2010).

6 T. Mukherjee, A. Banerjee, G. Varasamopoulos, and S. K. S. Gupta, Spatio-
Temporal Thermal-Aware Job Scheduling to Minimize Energy Consumption in Vir-
tualized Heterogeneous Data Centers. Elsevier Computer Networks (ComNet) ,
Vol. 53, Issue 17, Pages 2888-2904, December, 2009.

7 K. Venkatasubramanian, A. Banerjee, S.K.S Gupta, PSKA: Usable and Secure
Key Agreement Scheme for Body Area Networks in Transaction in IEEE Transac-
tions on Information Technology in Biomedicine (TITB).

212

Book Chapters:

1 Zahra Abbasi, Michael Joans, Ayan Banerjee, Georgios Varsamopoulos and
Sandeep K. S. Gupta, Evolutionary Green Computing Solutions for Distributed
Cyber Physical Systems, Springer book on Evolutionary based Solutions for
Green Computing, 2012

213

