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ABSTRACT 
 

Millions of Americans live with motor impairments resulting from a 

stroke and the best way to administer rehabilitative therapy to achieve 

recovery is not well understood. Adaptive mixed reality rehabilitation 

(AMRR) is a novel integration of motion capture technology and high-level 

media computing that provides precise kinematic measurements and 

engaging multimodal feedback for self-assessment during a therapeutic 

task. The AMRR system was evaluated in a small (N=3) cohort of stroke 

survivors to determine best practices for administering adaptive, media-

based therapy. A proof of concept study followed, examining changes in 

clinical scale and kinematic performances among a group of stroke 

survivors who received either a month of AMRR therapy (N = 11) or 

matched dosing of traditional repetitive task therapy (N = 10). Both groups 

demonstrated statistically significant improvements in Wolf Motor Function 

Test and upper-extremity Fugl-Meyer Assessment scores, indicating 

increased function after the therapy. However, only participants who 

received AMRR therapy showed a consistent improvement in their 

kinematic measurements, including those measured in the trained 

reaching task (reaching to grasp a cone) and in an untrained reaching task 

(reaching to push a lighted button). These results suggest that that the 

AMRR system can be used as a therapy tool to enhance both functionality 

and reaching kinematics that quantify movement quality. Additionally, the 

AMRR concepts are currently being transitioned to a home-based training 
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application. An inexpensive, easy-to-use, toolkit of tangible objects has 

been developed to sense, assess and provide feedback on hand function 

during different functional activities. These objects have been shown to 

accurately and consistently track hand function in people with unimpaired 

movements and will be tested with stroke survivors in the future. 
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Chapter 1  

INTRODUCTION 

 Millions of people are currently living in the US with residual 

disabilities stemming from a previous stroke. Hundreds of thousands of 

people will also have a new or recurrent stroke each year.1 While swift 

medical attention can lessen the effects of a stroke, many stroke survivors 

either cannot or do not seek prompt medical attention, resulting in a 

greater impact on their health. Currently, once the stroke has occurred, 

the most common treatment of motor impairments is physical and 

occupational therapy for a short period, followed by discharge to the home 

or to a care facility. Exercises or self-initiated physical therapy tasks may 

be prescribed to the patient to complete at home, but there are few 

resources or incentives to ensure compliance.  

 Many times the amount of therapy covered by the stroke survivor’s 

insurance or by his or her own funds is inadequate to restoring enough 

function to live independently. The completion of activities of daily living 

with the affected limb at the same frequency and with the same movement 

quality as before the stroke is also greatly impacted. While the traditional 

clinical belief was that a recovery plateau (no additional improvement 

probable) was inevitable after approximately six months post-stroke,2 

recent research show that ongoing recovery can occur for years post-

stroke.3-7 Clinicians are being urged to reconsider the idea of a plateau 

and instead utilize novel, engaging therapies8 to help stroke survivors 
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regain motor function in the long-term. However, most data comes from 

fairly small research studies and have not been sufficient to convince 

third-party insurance payers to continue funding therapy for stroke 

survivors extending beyond 6 months. Other research and clinical 

experience shows that providing an exciting and engaging environment for 

rehabilitation can help to encourage patients to be more involved in their 

recovery.9-11 Many times repetitive therapy or therapy done without 

feedback or encouragement can become boring and if progress towards 

recovery is not outwardly evident, the patient may lose motivation. 

Traditional repetitive therapy also has the potential to be performed 

without full cognitive engagement by the user, which limits the possibility 

for active motor learning.10  

 Providing therapy for the upper-extremity is especially challenging 

because of highly varied combinations of impairments such as spasticity,12 

weakness, movement inefficiency,13,14 joint discoordination,13 limited 

ranges of motion, increased trunk compensation15 and reduced movement 

speed16 that may be present. Because each stroke survivor has a unique 

array and severity of impairments, as well as potentially confounding 

neurological and mobility conditions caused by the stroke or other 

concurrent conditions, prescribing one therapy to adequately address 

movement behaviors throughout the recovery period is difficult. This may 

also explain why there has been little conclusive evidence that any one 

type of rehabilitation has been consistently effective during chronic stroke. 
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The evidence needed to convince both the rehab community and the 

insurance companies that ongoing therapy is both useful and necessary 

will have to demonstrate improvements for a diverse group of 

impairments, lesion locations, and post-stroke durations. Ideally, results 

could be combined across research and clinical groups to create 

evidence-based therapy choices for each patient, as individualized 

medicine becomes more of the accepted norm.17 Alternatively, therapy 

regimes and systems that can accurately track and adjust the therapy to 

the person’s recovery patterns would provide similar benefits. Tracking 

rehabilitation improvements in a standardized, objective way could also be 

extremely useful in providing confirmation of progress,18 which may help 

support continued funding of the therapy, as well as provide an incentive 

strategy to the patient receiving therapy. Standardization of therapy 

applications, evaluations and results can also help in creating large 

databases of patient characteristics, response to therapy type and 

therapist opinion on a variety of different therapies.  

 Rehabilitation systems created to address the problems above 

would utilize individualized therapy protocols, provide encouragement and 

feedback related to the therapy that promotes active learning, 

quantitatively and accurately track the recovery of motor impairments and 

demonstrate the ability to induce functional and quality of movement 

improvements over a diverse group of stroke survivors (in terms of age, 

gender, impairment, stroke site, time post-stroke, etc). A research group at 
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the School of Arts, Media and Engineering at ASU has developed an 

adaptive, mixed reality rehabilitation (AMRR) system that incorporates 

these key features. The AMRR system uses high-resolution motion 

capture and smart sensing objects to track kinematics and forces of the 

stroke survivor’s torso, right arm and right hand while they perform a 

functional task. Figure 1 shows a stroke survivor using the clinical version 

of the AMRR system. The data collected from the person’s movements 

are used to drive an audio and visual narrative feedback reflective of 

motor performance. The data are also transformed into a kinematics-

based score of impairment, which can be used to track progress and 

create adaptations to the feedback or physical environment. An initial pilot 

study showed kinematic improvements in a short two-week period. This 

result led to a control group study performed at a local rehabilitation clinic 

that compared functional and kinematic outcomes of a group of stroke 

survivors receiving AMRR therapy to control group of stroke survivors 

receiving traditional repetitive reaching task therapy. This study showed 

that both groups had similar functional improvements, but the group 

receiving AMRR therapy demonstrated significantly better changes in 

movement quality.   
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Figure 1. A photo taken during one of the AMRR training sessions. The 
therapist, right, monitors and instructs the subject, left, during the entire 
interactive session. 
 

The AMRR system has advanced from a small pilot study in a 

research laboratory to a control group study in a rehabilitation clinic. 

However, the ultimate goal of AMRR therapy is to fill the void of low-cost, 

easy to use, effective therapy that can be done at home. Current work is 

being done to scale down the size and cost, while retaining the basic 

feedback and task structures, to create a home-based AMRR system. 

Future work will include a study that will introduce stroke survivors to the 

adaptive mixed reality rehabilitation therapy in the clinic, under the 

supervision of a therapist, and continue with self-directed, self-evaluated 

therapy at home, while still ensuring relevant motor improvements are 
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being consistently made. This research will happen over three sites to 

demonstrate that AMRR therapy can be used in different environments 

with different clinical and study staff.  

The work presented here focuses on how I used the outcomes of 

the initial pilot study to advance the way AMRR therapy is administered in 

a clinical setting. I also took the lead in developing the study procedures 

and data analysis for the control group study that explored the differences 

in clinical and kinematic changes seen after stroke survivors received 

either AMRR or traditional reaching therapy. My final contribution was in 

creating a physical sensing environment that utilizes tangible objects to 

evaluate and provide feedback on different hand functions during 

unsupervised AMRR therapy. The following elaborates on the three main 

areas of my work: 

Guidelines for implementation of the AMRR system in the clinic  

 The system was first piloted with three stroke survivors to develop 

strategies for adapting the therapy procedures and evaluating outcomes 

during the intervention period and to measure functionally relevant 

changes as a result of the therapy. My work on the pilot study involved 

observation of therapy appointments, analysis of kinematic and clinical 

scale data collected before and after the intervention and data 

interpretation. The pilot study results demonstrated that the AMRR system 

had the potential to be a useful therapy tool and was easily used and 

understood by all three participants. However, the real-time kinematic 
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evaluation was too difficult to understand to be of significant use to the 

therapist in adapting the therapy in real time. The two-week intervention 

period was also too short to address the participants’ full range of 

impairments. The system also lacked a consistent implementation protocol 

for using physical objects as a therapy end goal and the physical objects 

that were used were limited in the types of hand function they could train. 

Outcomes were also impossible to generalize due to the small sample 

size and could not be compared to outcomes from other types of therapy. 

Before beginning the control group study, I collaborated with the therapist 

to create strategies to help her understand and direct the therapy protocol 

based on the subject’s individual abilities and the available feedback 

streams. This also led to developing standardized kinematic-based 

evaluation measures the therapist could easily use to track progress 

during the therapy and adapt the task based on the subject’s progress.  

The protocol and evaluation measures are now being used to create semi-

automated adaptive therapy in the home and will continue to be honed as 

the study expands to include different clinical locations and additional 

treating therapists.  

Testing the outcomes of the AMRR therapy as compared to traditional 

reaching therapy  

The pilot study results suggested that AMRR therapy could induce 

specific changes in a stroke survivor’s kinematic performance during a 

reaching task. To further validate this claim and explore the specific 
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functional and kinematic benefits gained by AMRR therapy, a study with a 

group of stroke survivors who received AMRR therapy and a control group 

that received traditionally administered repetitive task reaching therapy 

was developed. During this study, I took the lead in helping the therapist 

understand how to administer AMRR therapy, overseeing the evaluation 

visits and developing the data analysis protocols. Two groups of 

participants with chronic stroke (6 months or more post-stroke) received 

either a month of AMRR therapy (N = 11) or matched dosing of traditional 

repetitive task therapy (N = 10). Participants were right-handed, between 

35 and 85 years old and could independently reach to and at least partially 

grasp an object in front of them. Upper extremity clinical scale scores and 

kinematic performances were measured before and after treatment. Both 

groups showed increased function after therapy, demonstrated by 

statistically significant improvements in Wolf Motor Function Test and 

upper extremity Fugl-Meyer Assessment (FMA) scores, with the traditional 

therapy group improving significantly more on the FMA. However, only 

participants who received AMRR therapy showed a consistent 

improvement in kinematic measurements, including those measured in the 

trained reaching task (reaching to grasp a cone) and in an untrained 

reaching task (reaching to push a lighted button). These results offer an 

initial suggestion that the AMRR system may be useful in improving both 

functionality and reaching kinematics that quantify movement quality. 

However, further work is needed to determine if AMRR therapy induces 
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long-term changes in movement quality that foster better functional 

recovery. 

Creating a modular physical sensing environment and tool-kit for use in a 

long-term, home-based AMRR system 

Although results from the clinical study demonstrate that the AMRR 

system show promise, it is still unclear if these kinematic and functional 

results translate to activities of daily living. Research on mixed reality 

rehabilitation needed to evolve to include a system that incorporates 

strategies from the clinical system to provide long-term, unsupervised 

therapy at home. The home-based system is much lower cost, but still has 

the capability to provide real-time and summary feedback on kinematic 

parameters based on the hand’s movement (e.g. trajectory efficiency, 

movement speed and how the hand interacts with the object). My focus 

has been on expanding the ability of the system to train hand function 

during different functional tasks through a tool-kit that integrates tangible 

objects and analysis software that can sense interactions with the object, 

evaluate the function compared to unimpaired interaction and provide 

feedback based on the evaluations. The physical targets were specifically 

designed to help the user mentally connect what she is practicing during 

therapy to activities of daily living, provide the correct visual input to help 

plan for the physical interaction and provide feedback to the user about 

hand posture and pressure exerted during grasp. Physical objects that can 

sense features related to the desired interaction (such as sensing 
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magnitude and spatial location of applied forces) are also important to 

evaluating and providing ancillary feedback on how well the task is being 

performed. The tool-kit of objects and related analysis software can also 

be utilized independently of the AMRR system in different therapy 

environments. The physical objects were all created from digital files 

through rapid prototyping techniques, which means they can be easily 

modified or reproduced by anyone wanting to utilize the tool-kit during 

therapy. The objects create unique therapy workspaces without therapist 

intervention, offer multiple hand functions to practice, and integrate 

sensing, evaluation and feedback into the physical environment. 
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Chapter 2 

GUIDELINES FOR IMPLEMENTATION OF THE AMRR SYSTEM IN THE 

CLINIC 

      Mixed reality rehabilitation is just one of many recent 

rehabilitation techniques that employs novel technologies to enhance 

therapy. Such techniques may use advanced custom technologies, such 

as virtual reality scenarios and robotics, modified existing technologies, 

such as video game based therapy, or a combination of custom and 

existing hardware and software. Many of these techniques use theories 

similar to those employed in the AMRR therapy, such as creating an 

engaging, rewarding environment for training and evaluating the 

kinematics of the movement with high-resolution motion capture or 

electromechanical sensors. 

 One of the most popular ways to use robotic therapy is as a 

physically assistive device. This involves a robotic device that interfaces 

directly with the affected limb(s) and either assists the movement or 

moves the passive limb without any action from the user. Robotic devices 

such as these can be used as a stationary device that the person interacts 

with or as an ambulatory, wearable exoskeleton, or a combination of both 

types.4,19-23 Assistive wearable robotic devices have been created to 

address issues of the hand, arm and gait. Many of these robots also use a 

computer screen to provide some feedback to the user and create 

incentive for use. The Hand Mentor (KMI) is a commercially available 
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repetitive task robot that passively moves or actively assists the hand in a 

way to practice wrist flexion/extension movements.24,25 This product has a 

small computer screen associated with the exercise so the user can play a 

game with the movements of the hand. The same company has also 

created the Foot Mentor, which uses very similar principles to train ankle 

range of motion (http://www.kineticmuscles.com). The MIT Manus is hand 

and arm robot where the user grasps a cylinder and the user’s forearm is 

strapped onto the robot. The user can perform active anti-gravity 

movements, or if needed, be assisted by the robot, while they are playing 

a rehabilitation game.26 The Lokomat uses robotic exoskeletons around 

each leg that are connected to a treadmill, anti-gravity support and bar 

apparatus. The patient can use the Lokomat to practice walking, even if 

they do not yet have the strength or control to fully complete the 

movement on their own.20 While assistive robotics can be extremely useful 

in augmenting a therapist’s ability to help patients produce repetitive 

movements with a high frequency, they have also tended to focus on the 

technology, rather than the specific clinical benefit. Many robots were 

designed to passively move the limbs of severely impaired patients, which 

greatly limits the patients’ opportunity to engage in active motor learning. 

The robots may also fail to adapt to the patient’s specific movement 

impairments or to change the assistance based on improvements in 

movement or function. Because repetitive movements can become 

tedious even with assistive robots, robotic protocols often include visual 
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feedback or games to incentivize the user to practice more often and for 

longer time periods. The feedback can also help the patient actively self-

assess and improve their movement in conjunction with the passive 

intervention of the robot. 

 Other current research focuses on creating more immersive 

rehabilitation experiences, with or without the aid of robotics, that use 

virtual reality techniques to provide real-time feedback to the user about 

his or her movement. Research at Rutgers has shown greater 

improvements in aspects of gait when a virtual feedback environment was 

used with their Ankle Rehabilitation robot than when the robot was used 

alone.27 Another group showed improvements in gait parameters following 

a virtual and traditional therapy program when compared to solely 

traditional therapy, although the experimental group received more 

therapy than the control group, suggesting virtual reality should augment, 

rather than replace traditional therapy.28 Other virtual reality regimes, such 

as that developed at USC,29 have shown promise in improving hand 

function. However, the evidence in most cases is severely limited by the 

small cohort sizes. The current results are very promising, but more work 

is needed to determine exactly how and when to present the feedback, 

what form the feedback should take, how a reward system should be 

structured to entice patients to play for extended times and many other 

aspects of the systems before these can be widely used and accepted by 

clinics and by insurance companies. Questions also remain about how 
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virtual reality therapy differs from traditional therapy of a matched dosage 

and whether the improvements are sustained in the long-term. 

 While custom-made, advanced technologies have shown great 

promise, other groups have also been looking at using readily available 

games or environments for rehabilitation. There have been recent 

anecdotal reports of nursing homes and clinics using the Wii console to 

encourage upper body and hand movements among people who are in 

therapy.30 Studies have yet to be done on the efficacy of this, but while 

unsupervised practice may help with general activity level functions, the 

movement quality will most likely not get better without specific feedback 

about the involved body structures. Additionally, repetitive practice without 

correction can lead to increased compensatory movements or strain. A 

group in Italy examined three types of rehabilitation video games and 

actually reported an increase in compensatory movements following the 

intervention.31 Other groups have used commercially available video 

games, and modified hardware to provide rehabilitation. One such group 

uses a racing game and a force-feedback steering wheel controller to 

provide upper extremity therapy.32,33 While the participants improved in the 

task, no significant clinically relevant changes were reported. This may be 

due to the non-specific feedback received (based only on accuracy of 

steering) or because of the short intervention period. Another group used 

the Sony Playstation and EyeToy games that involved upper extremity 

movements to supplement traditional rehabilitation. This group found that 
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significant functional improvements to the impaired side were seen 

immediately following the intervention, as compared to patients receiving 

just traditional therapy, but those changes were not retained at the 3 

month follow-up.34 Many of the therapy techniques discussed above all 

have potential benefits that can advance stroke rehabilitation, and mixed 

reality rehabilitation combines many of the benefits seen in these 

therapies. 

Principles of adaptive mixed reality rehabilitation  

 My lab has developed an adaptive, mixed reality rehabilitation 

(AMRR) system that integrates traditional rehabilitation and motor learning 

theories with state of the art motion capture and sensing technologies, 

smart physical objects, and interactive computer graphics and sound. This 

unique configuration provides real-time, intuitive, and integrated audio and 

visual feedback representative of goal accomplishment, activity 

performance, and body function during a reach and grasp task. The 

AMRR system provides kinematic measurements derived from high-

resolution motion capture data that is used to create feedback related to 

the movement, evaluate the participant’s progress and to adapt the 

therapy accordingly. The therapist can adapt the system between sets of 

reaches to individualize the therapy based on the participant’s individual 

impairment and progress, as informed by the therapist’s observations and 

the quantitative assessment. During the course of the rehabilitation, the 

therapist can also adapt the focus of the therapy task and corresponding 
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audiovisual feedback. However, the nature of the audiovisual feedback 

places each component in the context of the full action, resulting in 

integrated, instead of isolated, improvements among the movement 

features.  

Motion analysis sensing protocol 

 The AMRR system is driven by 3-dimensional motion capture data 

from 14 markers placed on the right (impaired) hand and arm and the 

torso, seen in Figure 2. Kinematic parameters (e.g. hand speed, elbow 

joint angle, etc) related to the reach and grasp task are then derived from 

the movement data. All of the kinematic parameters are used to assess 

impairment and progress throughout the therapy, and many are directly 

mapped to the audio and visual feedback streams as part of the AMRR 

therapy.  

 
Figure 2. Marker configuration for the right hand, arm, shoulder and torso. 
 
Kinematics-driven audio and visual feedback  

 The AMRR system uses audio and visual feedback to intuitively 

communicate to the stroke survivor levels of his performance and direction 

for improvement. Individual audio and visual feedback mappings 
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correspond to different kinematic attributes within the selected parameters 

related to the reach and grasp task (i.e. the action representation). While 

each feedback mapping communicates performance of an individual 

kinematic attribute, all feedback mappings together create one audiovisual 

narrative, which communicates the stroke survivor’s overall performance 

in an integrated manner. Artistic and perceptual principles from interactive 

media, music, dance, animation and film are utilized for the design of the 

audio and visual feedback mappings. This integrative approach facilitates 

the stroke survivor’s self-assessment of the reach and grasp action. 

Feedback is provided on an LCD screen and two speakers. Each 

reach begins with a digital image appearing on the screen, which breaks 

apart into many minute segments of the image, called particles. As the 

participant moves his hand towards a target location, the hand’s forward 

movement pushes the particles back to reassemble the image and 

simultaneously creates a musical composition (Figure 3). Visual feedback 

communicates spatial aspects of activity level movement features (e.g. 

trajectory deviation stretches the image in the direction of deviation –

Figure 4). Audio feedback communicates temporal aspects of activity 

components (e.g. endpoint speed controls the musical rhythm) and 

provides indicators for body function (e.g. shoulder compensation 

activates a unique sound indicator).35 The amount of error required to 

produce each type of feedback (feedback sensitivity) can be 

independently adjusted to fit the therapy needs of each individual.  
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Figure 3. Correspondence between where the hand is in space during a 
reach and the feedback shown on the screen. 

 
Figure 4. Visual feedback is based on how the arm moves within the 
bandwidth (sensitivity zone). 
 

 Although many of the aspects related to the rehabilitation of a reach 

and grasp movement are mapped to audio or visual feedback, others do 
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not have direct mappings. Some aspects may be trained by focusing on 

related or contributing kinematic aspects. For example, ataxia may be 

reduced after training trajectory efficiency and targeting.  Other aspects 

may be trained implicitly through the combinatory training of related 

movements. For example, trajectory and velocity profile training may 

cause secondary improvements in joint correlation. The remaining 

aspects, such as spasticity and weakness, cannot be addressed by the 

feedback and incorporating these features into the AMRR system is an 

area of further investigation. However, regardless of the feedback 

mappings, the therapist is always present to provide any verbal or physical 

guidance necessary to address the rehabilitation requirements of the 

individual. 

Adaptation of therapy  

 The AMRR system is adaptable to maintain a level of challenge 

and engagement appropriate for the stroke survivor’s impairment and 

progress. Reaches are preformed in sets of 10, and the clinician can 

adapt each set in terms of: the target location, the virtual and physical 

aspects of the training environment, the kinematic attributes to be 

addressed by the feedback, and the sensitivities of each type of feedback. 

Adaptation is essential for greatly enhancing the stroke survivor’s ability to 

create and maintain a generative plan for movement36,37 and ultimately to 

transfer rehabilitation gains to various functional tasks beyond those 

trained within rehabilitation.38 The clinician could use the graphic 
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visualizations of computed kinematic measures (e.g. trajectory, velocity, 

joint angles)18 and direct observation of the stroke survivor’s performance 

to adapt the system as necessary after every set of ten reaching trials.  

The therapist also uses physical or verbal cues to address therapeutic 

aspects not being addressed by the AMRR system or when the feedback 

is not clearly understood by the participant.  

AMRR training can be done at four different target locations. These 

target locations each use unique combinations of joints, increasing from a 

simple to a more complex joint space. The targets are:  ipsilateral and on 

the table (Target 1), to the participant’s midline and on the table (Target 

2), to ipsilateral and 6 inches above the table (Target 3), to the 

participant’s midline and 6 inches off the table (Target 4). Targets 1 and 3 

are set horizontally on a line at half the angle (alpha) between the vertical 

projection of the rest position and midline and vertically to 95% his or her 

active assisted reach to the midline. The second target is set horizontally 

to the midline and vertically to 85% of his or her active assisted reach. 

This is illustrated in Figure 5. The active assisted reaches are on the table 

for Targets 1 and 2 and 6 inches off the table for Target 3 and 4. The 

physical target may either be a cone or a large button to be pressed, both 

of which sense the user's touch. Purely physical (no audio or visual 

feedback and physical target), mixed (audio and/or visual feedback and 

physical target), or purely virtual (audio and/or visual feedback and no 

physical target) training environments may be used. Based on which 
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kinematic attributes are the foci of therapy, the corresponding feedback 

mappings are enabled, and their relative sensitivities can be adjusted. 

 
Figure 5. Target positions as calculated from each participant's active 
assisted reach distance (shown by the star). 
 
 One important advantage of the AMRR system is that it performs 

integrated training for all key aspects of the reach and grasp movement, 

even though the therapy generally only focuses on one or two aspects at a 

time. While the system does allow the therapist to focus on specific 

aspects of recovery, the nature of the audiovisual feedback places each 

component in the context of the full action, which communicates 

performance of the entire task in addition to the focused areas of recovery 

and can lead to integrated improvement. 
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Pilot study – spring 2008 

 In order to provide a proof of principle for the AMRR system, a 

formal study of the system was implemented to test the ability to provide 

beneficial therapy in a standardized way. Because each stroke survivor 

has a very unique baseline impairment profile and will progress at different 

rates, the type of therapy administered needs to be continuously adapted 

to their performance and ability. To test whether the AMRR system could 

provide this adaptation, especially in a way that was easy for the therapist 

to understand and implement, a small pilot study was run in the spring of 

2008. This study also helped us to refine and redefine exactly what the 

system was trying to accomplish and how it could best meet those goals. 

One of the main goals of this preliminary study is to develop better 

guidelines for administering AMRR therapy and to make improvements to 

the system before a larger control group study could be performed. A 

picture of a participant using the system with a therapist at ASU is shown 

in Figure 6.  
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Figure 6. Photo of a stroke survivor (left) and the therapist (right) using the 
AMRR system at ASU. 
 
Study Methods 

Participant selection. Four participants were recruited from direct referrals 

from medical care providers or through previous research studies and 

provided informed consent. The protocol was approved by the Arizona 

State University Institutional Review Board (see appendix A). Participants 

had chronic stroke (6+ months after the stroke at recruitment) and 

presented clinical symptoms consistent with a left-sided motor area 

lesion(s) resulting in right-sided hemiparesis. Participants were 

categorized as having mild or mild-to-moderate impairments by an 
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experienced rehabilitation doctor. Specifically, the participants were 

required to have a right arm active range of motion that met or exceeded 

the following thresholds to ensure they could complete the task:  shoulder 

flexion of at least 45°, elbow flexion/extension of at least 30° to 90°, 

forearm pronation or supination of at least 20°, wrist extension of at least 

20°, and at least 10° extension in the thumb and any two fingers. One 

participant was excluded because he had nearly normal arm kinematics 

and had little potential benefit from the study. The three participants who 

completed the study had the following characteristics at the start of 

training: Participant 1 was a 77 year old male, 14 months post-stroke; 

Participant 2 was a 76 year old male, 20 months post-stroke; and 

Participant 3 was a 71 year old female, 32 months post-stroke. All 

participants were right hand dominant before the stroke, had corrected 

vision of at least 20/40, no confounding mental illness (verified by a score 

greater than 24 on the Mini Mental State Exam) and acceptable levels of 

audio and visual perception, as confirmed by a sensory perception test. 

The sensory perception test includes standard measures of perception 

(i.e. a standard color blindness test and the ability to detect basic 

properties of musical sounds, such as pitch, timbre, loudness39) but also 

tests the participant’s ability to perceive structural characteristics of the 

feedback such as movement of images and rhythm acceleration. In 

addition to being used as a screening criterion, the results of this test were 

also used when adapting the feedback during the training. For example, a 
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participant with limited hearing would very rarely be trained using two 

concurrent audio feedback streams 

Study procedures. Each participant had two evaluation visits and six 

training visits. The pre-training evaluation was performed immediately 

prior to training and the post-training evaluation was performed 

immediately following training. Prior to each evaluation visit, each 

participant and his or her caregiver were asked to complete and return the 

Motor Activity Log (MAL) and the Stroke Impact Scale (SIS), with study 

staff were available to answer any questions by phone. The MAL asks 

participants to rate their more affected arm on the amount of use and 

quality of movement of that arm during various activities of daily living. The 

MAL has been evaluated to be reliable and valid measure of the use of the 

affected arm and hand during activities of daily living in mild to moderate 

stroke survivors.40 The SIS asks participants to rate aspects of their 

recovery such as strength, mobility, social function and emotion. This 

questionnaire has been validated as reliable and sensitive to change over 

recovery for mild to moderate stroke survivors.41 As a standardized 

measure of arm function, participants performed the upper extremity Wolf 

Motor Function Test (WMFT). The WMFT is a series of functional tasks 

relevant to activities of daily living that is timed and rated for quality by a 

trained therapist.42 Participants also performed eight reach and grasp 

movements, using a force sensitive cone for the target, to each of the four 

locations (SI, SM, AGI, AGM) for a total of 32 reach and grasp trials. All 
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reaches were self-paced, but the participant was asked to briefly rest after 

each reach (2 -3 seconds) to discourage mechanical rhythmic movement 

and aid in the segmentation of the data. Participants rested for 2-3 

minutes between targets. The WMFT and reach and grasp movements 

were performed while recording motion capture data, as described above, 

and were conducted by the same therapist who performed the therapy. 

 Each training visit lasted 90 minutes, including 20-30 minutes of 

setup, and consisted of approximately 120 reaches (12 sets of 10 

reaches). Each participant’s therapy protocol was customized to fit their 

personal movement challenges as determined by both the therapist and 

system’s evaluation of the movement. Each participant’s training profile, 

below, shows the movement parameters that were targeted for 

improvement during training. Other parameters were also measured and 

trained as an integrated part of the therapy task, but the therapist 

determined the following aspects of each participant’s movement to be 

fundamental to their rehabilitation. 

 Participant 1 focused on improving the efficiency of his reach to 

grasp movements by increasing his reaching speed, reducing jerkiness, 

and improving the bellness (smoother acceleration and deceleration 

during reaching) and the consistency of his velocity profile. He also 

worked on reducing torso compensation at the end stage of the reach. 

Participant 2 focused on increasing the speed and the consistency of his 

reaches. He also worked on relaxing his elbow and shoulder before the 
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movement started and synchronizing his shoulder and elbow joints during 

the reach to improve his trajectory and target acquisition accuracy. 

Participant 3 focused on increasing her shoulder and elbow ranges of 

motion and improving joint synergy while reducing shoulder and torso 

compensation. 

Data Analysis. Clinical scale scores and reaching kinematic data were 

obtained from each participant at the pre- and post-training sessions. All 

kinematic parameters given in Table 1 were tracked and assessed for 

each participant. The differences in the kinematic performance measures 

from pre- and post-training were analyzed using the Wilcoxon rank-sum 

test. This non-parametric alternative to the t-test was used due to the 

small sample size of eight reaches at each target. Statistical significance 

was measured at two levels: α = .05 and α = .00156, which corrects for 

the multiple comparisons of eight parameters at four different targets. 

Because of the individual nature of each participant’s impairments and 

therapy protocol, statistical comparisons of kinematics are made 

individually for each participant and are not combined across participants. 

Clinical scale results are presented qualitatively with no statistical 

comparisons. 

Results 

Clinical Scale Results. The MAL (scoring range 0-5, with 5 representing 

movement frequency or quality at pre-stroke levels) scores for participants 

1 and 2 show increases in their average amount of use (AOU) of 1.08 and 
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1.16 points, respectively, and quality of movement (QOM) of 1.41 and .52 

points, respectively after training. The third participant had a slight 

worsening in the amount of movement of -.56 points and slight increase in 

the quality of movement of .28 points after training. The SIS scores 

(normalized score of 0-100 with 100 representing full recovery) of all 

participants show an average increase of 5.7 points in their scores after 

training. The Wolf Motor Function Test did not show any consistent trends 

among the three participants. Participants 2 and 3 increased their average 

Functional Ability Score (scoring range 0-5, with 5 representing 

unimpaired movement quality) slightly during the post-test and Participant 

1 decreased slightly. The total time to complete the tasks was slightly 

longer for both Participant 1 and 3 during the post-test while Participant 2 

reduced his time by more than half during the post-test. Average scores, 

across the rated daily activities, for each participant’s amount and quality 

portions of the MAL, normalized SIS scores (Participant 1’s score does not 

include Section 8 of the SIS due to missing data), and the average 

Functional Ability Score (FAS) and total time of the WMFT are shown for 

each participant in Table 1.  
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Table 1. The Motor Activity Log average Amount of Use (AOU) and 
Quality of Movement (QOM), the Stroke Impact Scale normalized scores 
and the Wolf Motor Function Test average Functional Ability Score (FAS) 
and total time of movement.  

 

Kinematic results for reach and grasp. The results presented here are for 

each target, comparing pre- and post-training evaluations, and are 

presented in the context of the participant’s individual training protocol. 

Despite the short training period of two weeks, all three participants 

showed improvement trends in activity recovery combined with partial 

recovery of pre-morbid body function. Specific improvements are 

described below and results for the eight most important aspects for each 

participant are shown in Figure 7. 

 Participant 1 showed significant improvements in velocity aspects 

(bellness and jerkiness) and elbow and shoulder joint correlation during 

reaches to at least two of the targets. Torso and shoulder compensation 

was significantly reduced in most targets, with many of these 

improvements holding even with the stricter significance level. These 

results are shown in Figure 7a. 
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 Target AGI was not included in any analyses for Participant 2 due 

to missing data during the post-training evaluation. Participant 2 

demonstrated improved velocity measures (normalized adjust area, 

number of phases and jerkiness) at most targets, with all normalized 

adjust area being significant at the corrected level. This participant also 

significantly reduced the average reach duration at all targets. Participant 

2 had mixed results for both elbow and shoulder joint correlation and 

compensation measurements, mainly showing significant improvements in 

the supported target reaching. These results are shown in Figure 7b. 

 Participant 3 made the most improvements in body function, both 

joint range of motion and correlation and shoulder and torso 

compensation. Participant 3 increased the extension of the elbow 

significantly (at the corrected level) during the reach at all four targets. 

Elbow and shoulder correlations were all higher during the post-training 

evaluation, with two targets improving significantly. Shoulder and torso 

compensation were significantly reduced for a majority of the targets. 

These results are shown in Figure 7c. 

Discussion 

 The kinematic results show that all three participants improved their 

reaching movements after training with the interactive mixed reality 

system, especially in the targeted parameters. Due to the limited training 

period of only two weeks, however, significant functional changes in the 

clinical assessments were not expected. One possible explanation is that 



31 

the finer changes in movement that are detected by kinematic analysis are 

not reliably detected by the clinical tests.43,44 

 After training, two participants showed an improvement in the 

amount and quality in performing the activities of daily living presented on 

the Motor Activity Log. While the MAL is a validated measure, it may be 

influenced by the participant’s mood or other cognitive biases at time of 

survey completion. The MAL also may not be sensitive to changes in 

recovery after a short intervention period.45 The SIS scores also show a 

trend of improvement, but the underlying cause of these changes is not 

clear. And while improvements seen in the kinematic parameters were 

detected by both the therapist and system, they may not have been 

apparent to the participant, and therefore not reported. Further work will 

be done to determine how and when changes in kinematics become 

functionally relevant and will produce a substantial change in the 

participants’ self-assessments. These scales also do not distinguish 

between compensation and recovery of pre-morbid movement patterns, 

whereas the kinematic and therapist evaluations do. There were no 

obvious trends of improvement in WMFT scores. Participant 2 decreased 

his time to completion by over 100 seconds during the pretest, but this 

was due mainly to being able to complete a task (checker stacking) that 

he was unable to complete during the pretest. However, when this task 

was removed from the totals, he still shows a decrease of about 18 

seconds. The training period may have been too short to induce general 



32 

functional improvement, as the generalization of specific motor task 

training into functional improvement requires extensive training.9,38 

 
Figure 7. Comparison of kinematic parameters during reaching from pre- 
and post-training evaluations for Participant 1 (a), Participant 2 (b), and 
Participant 3 (c). AGM: reaching to a target 6” in the air aligned with the 
trunk midline; AGI: reaching to a target 6” in the air on the ipsilateral side; 
SM: reaching to a target on the table aligned with the trunk midline; SI: 
reaching to a target on the table on the ipsilateral side. 
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Each participant showed significant improvements in their reaching 

kinematics in merely six sessions, specifically for movement parameters 

on which their training was focused. This indicates that the approach of 

customized, adaptable and interactive feedback in a mixed reality 

environment is appropriate and beneficial to the rehabilitation of people 

who have mild-to-moderate hemiparesis resulting from stroke. While 

performing repetitive reaching movements alone46,47 may have improved 

some parameters of the participants’ end effector behavior (velocity, 

trajectory, etc.), each participant’s improvements in activity performance 

were correlated to improvements in relevant body function parameters 

(joint synergy, compensation, etc) for which they had received targeted 

feedback. Furthermore, the improvements in activity recovery parameters 

showed a level of stylization (i.e. consistent velocity profile across targets) 

that can rarely be achieved simply through repetition.46,47 This suggests 

participants used the mixed reality feedback to inform their motor plans 

and make improvements. However, the two-week training period may 

have been too short to fully address issues of the physical apparatus (like 

lack of muscle strength) or complete the full training sequence for each 

target location. There were also inconsistencies in the training due to 

concurrent system developments. For example, because the evolving 

experience with the study were used to finalize the implementation of 

mixed training, the intensity and quality of mixed training increased 

between Participant 1 to Participants 2 and 3. Finally, because 
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participants with only mild and mild-to-moderate impairments were 

recruited, each participant was already performing adequately in some 

parameters prior to training which left little room for improvement in those 

areas.  

Other studies48-50 have shown improvements using constraints of 

the unimpaired limb, trunk restraints or robotic assistive devices. However, 

these methods use external interventions that physically guide the 

participant to move in a certain way or restrain their body such that they 

must use the affected limb. Conversely, the approach taken with the 

AMRR system allows the participant to be free to move as they wish, while 

providing mediated incentives to the participant to move in a more efficient 

way and mediated deterrents from using compensatory or inefficient 

movements. This allows the participant to actively, yet often 

subconsciously, construct his or her own strategies, reducing 

dependencies on external constraints. The AMRR system also helps 

participants progressively integrate strategies learned for each kinematic 

parameter to form a complete movement strategy. Finally, the system 

effectively trains the participant to integrate the motor tasks with input from 

their audio, visual and tactile sensory streams, which could promote 

increased motor learning and neural plasticity. The enthusiastic 

acceptance of the system by the therapist and participants during the pilot 

study suggests that the mixed reality system is suited for therapeutic 

application in the clinic.  
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Alterations to AMRR administration following the pilot study 

Setup 

This study has also led to improvements in the system 

infrastructure. The setup for each visit took 20-30 minutes per participant, 

which became tiresome for both the participant and research team. This 

setup time was prohibitive to running multiple participants in one day or 

running participants for an extended training period. A revised setup uses 

predefined rigid body motion capture markers on the hand and torso, 

which are more easily identified by the motion capture software with less 

calibration (Figure 8 and Figure 9). While this change does prevent 

gathering data from smaller joints, such as the fingers, the smart sensing 

objects are being designed to detect tangible interaction without the data 

provided by detailed hand motion capture. 

 
Figure 8. Revised marker configuration using rigid bodies for the right 
hand, arm and shoulder. 
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Figure 9. Revised marker configuration for the right shoulder and torso. 
 
Physical sensing objects  

The pilot study began with purely virtual environment reaches and it 

was quickly evident that this type of environment was not going to be 

successful in training a reach and grasp task and did not provide enough 

variation for 2 weeks of therapy. Throughout the study, the system was 

successful in integrating mixed (physical-virtual) environments into the 

training to promote motor learning bridging the virtual and physical worlds, 

although the later participants received a higher percentage of mixed 

reality training. Movement improvements made during training in the 

virtual and mixed environments successfully transferred to their post-

training physical reaching tests. Smart physical objects that can sense 

touch and force and serve as the end target to the reach will also help 
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train a variety of interactions from the participant, ensuring the kinematic 

changes are transferrable to different types of tasks. The data collected 

from the objects can also be used to analyze the quality of interaction. The 

next version of the AMRR system allowed for virtual reaches (no physical 

target), button reaches (must touch a flat surface) and cone reaches (must 

grasp a cone-shaped object). These are shown in Figure 10. 

Figure 10. Left - Participant reaching for a virtual target during AMRR 
training. Center – Participant preparing to reach to a button target during 
AMRR therapy. Right – Participant preparing to reach to grasp the cone 
target. 
 
Therapy administration and adaptation 

More advanced control software was also developed to make 

adaptations to the therapy protocol and visualizing data faster and easier. 

This helps to better utilize the therapy time with the patient and ensure 

that the patient will be completely and consistently engaged in the training. 

There is now a formalized approach to adaptive training where the overall 

training structure can be repeated across participants but specific 

parameters of the training can be customized to each participant using 

quantitative data. The results suggest the feedback is intuitively and 
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effectively communicating measures of performance and direction for 

improvement to the participants. 

Automated kinematic evaluation 

In planning for a larger control group study, it became obvious that the 

kinematic parameters that were being measured were too complex and 

too confusing for the therapist to understand quickly. To allow the therapist 

to make better informed therapy decisions in real time, we developed a 

novel computational measure – the Kinematic Impairment Measure (KIM). 

Originally, each kinematic parameter being measured was presented to 

the therapist for evaluation as a raw number (such as, number of degrees 

for elbow joint angle). Due to a number of factors, such as the large 

number of tracked kinematic parameters, unique combination of 

impairments of each patient, the nature of improvement specific to each 

parameter, and the non-linearity of the raw data vs. the impairment level, 

this evaluation system was extremely difficult for the therapist to quickly 

and accurately understand and use the data to adapt the therapy. The 

data was also very difficult to present in a way that allowed easy 

comparisons and combinations between parameters and between 

different patients. The statistical comparisons also suffered, as there was 

no good way to get an overall sense of how much improvement was made 

in each of the participants or with the group as a whole. And while it was 

quite easy to determine the value of a certain parameter, there was no 

sense of overall, objective impairment or improvement. The KIM was 
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custom designed to solve a majority of the issues that arose when using 

purely raw data.  

Kinematic feature extraction from the movement based on simplified 

action representation. A simplified action representation was necessary to 

reduce the reach and grasp movement into a manageable number of 

measurable kinematic attributes and to provide general relationships 

among those attributes relative to accomplishing the action goal. The 

simplified representation is derived from principles within rehabilitation 

practice, motor learning research, and phenomenological approaches to 

interactive technology.35 Kinematic attributes were selected to represent 

key movement components used within clinical practice and presented in 

literature on stroke rehabilitation.16,38,51,52 These attributes are organized 

into seven categories, grouped by operational similarities within the reach 

and grasp action, and described as either an activity level category or a 

body function level category. For example, “Compensation” is a body 

function level43 category comprised of measures of shoulder and torso 

compensatory movements and “Temporal Profile” is an activity level 

category comprised of measures of hand speed and reaching duration. 

The categories and their relationships are shown in Figure 11. Activity 

level categories are depicted closer to the action goal based on their 

increased importance in completing the action, as compared to body 

function categories. This visualization presents an illustrative summary of 

category relationships, with overlap among categories showing the 
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potential generalized correlation among categories and their kinematic 

attributes. However, each stroke survivor’s movement patterns will 

produce a distinct visualization (e.g. more or less overlap between 

categories based on the individual correlations between categories), which 

is an area of ongoing research. This action representation is described in 

greater detail elsewhere.35  

Activity Level Categories – The four activity level categories (Temporal 

Profile, Targeting, Trajectory Profile, and Velocity Profile) contain 

kinematic attributes derived from the endpoint activity (movement of the 

hand over time and space). Because these categories have the greatest 

influence on the efficient completion of the reach and grasp action, activity 

attributes form the basis of the interaction design of the AMRR system. 

And since this system provides therapy in the context of performing an 

entire task-based movement, feedback may be provided on activity level 

attributes even when those attributes are not the primary focus of training.   

Body Function Level Categories - The three body function level 

categories (Compensation, Joint Function, and Upper Extremity Joint 

Correlation) include kinematic attributes that are derived from joint angles 

of the torso, arm and hand. The quality of these attributes is less essential 

to the completion of the task, but an improvement of these attributes can 

reflect recovery of pre-morbid movement patterns of specific body 

structures. The three body function level categories are focused on during 
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training at the discretion of the clinician and the related feedback can be 

turned on and off throughout the course of the training.  

 

 
Figure 11. Simplified action representation for a reach and grasp 
movement. Distance relative to the center indicates the importance of 
each category relative to achievement of the action goal. Overlap among 
categories illustrates potential generalized correlation. 
 
Calculation of the KIM. The KIM uses a database of both unimpaired 

person’s movements and stroke survivor’s movements to create a 

mapping function of impairment. While the KIM for each parameter is 

uniquely defined by the data from that parameter, the benefit is that all 

KIMs create a normalized number from 0 to 1 that indicates the level of 

impairment of that parameter. Zero is representative of the idealized 

(unimpaired) data and 1 represents the maximal deviation from that 
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idealized data during performance of the movement. Figure 12 shows how 

the data from the unimpaired movements and the stroke survivors’ 

movements translate to a normalized mapping function. The top graph 

shows the probability density function for both groups of participants and 

the bottom graph shows the cumulative distribution function and modeled 

curves. The model curve is zeroed out where the majority of unimpaired 

data is grouped (at the left of the graph) since this is considered a 

performance level that would be considered ‘normal.’ The graph shows a 

sharp increase as the impairment gets worse and then levels out as it 

approaches 1. This model is based on fairly small sample of stroke 

survivors (n~15) so the ideal model curve may change as data from more 

participants with different types of impairments are collected.  
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Figure 12. Top - An example probability density function of unimpaired 
and stroke survivor movement data. Bottom - The cumulative density 
function that the KIM values are based on. The red fitted curve is the 
model used in calculation. 
 

The KIM also takes full advantage of the movement representation 

presented previously to track both individual and grouped kinematic 

parameters, as well as an overall impairment level. The attribute KIM 

measures different movement features (e.g. trajectory, compensation) and 

the category KIM combines attribute KIMs encompassed within that 

category. The 33 attribute KIMs and 7 category KIMs correspond exactly 

to the attributes and categories of the action representation. Ultimately, 

the composite KIM averages the category KIMs to create an overall 

assessment of the movement. The detailed attribute KIMs allow for 
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identification of how each component of the movement contributes to the 

user’s functional impairment. The KIM values provide the therapist with a 

standard way to calculate and compare performance between and across 

participants and to track the rehabilitation progress quantitatively over time 

and across multiple kinematic dimensions. The emerging data set 

indicates that the KIM measure is highly correlated with clinical scales as 

well as clinical observations and is robust to variations in impairment and 

performance within and between participants. Table 2 shows example 

data of KIM values and raw kinematic values for three parameters. When 

used within the AMRR system, the KIM provides detailed, real-time 

information about the participant’s movement and progress to the 

therapist, and can be used to inform the therapist’s adaptation decisions.18  

Table 2. Ranges of raw kinematic parameter values and their 
corresponding KIM value ranges. A KIM value of 0 means that parameter 
is in the unimpaired range and a KIM value of 1 indicates the maximal 
measured impairment. Note from this table that KIM values may increase 
when the raw value either increases, decrease, or both (raw value is either 
excessively large or small). 

 
 
Evaluating the AMRR system compared to traditional therapy 

While the pilot study has shown that AMRR therapy can elicit 

changes in important movement characteristics in three people with stroke 

with mild to moderate impairments, the study needed to be expanded to a 

larger control group study. The outcomes of the presented pilot study lay 
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the foundation for a clinical study at the Rhodes Rehabilitation Institute at 

Banner Baywood Medical Center. This study was conducted with a stable 

system, using a larger group of subjects and included a matched control 

group who received traditional repetitive task training of equal dosage. 

One of the main study hypotheses was that mediated rehabilitation will 

yield functional improvements equivalent to those seen in traditional 

therapy but will improve movement kinematics more because of the 

integrated feedback, which should also help the participants create 

generalizable movement strategies that can be applied to untrained tasks. 

Another hypothesis is that the AMRR system to be as well received by 

participants as traditional therapy and can be understood and utilized by a 

different physical therapist.  

The pilot study revealed that each participant needed the therapy to 

be customized to his or her performance, and the clinical study quickly 

revealed that the customization had to be made in a complex network 

structure, not according to a pre-planned series of therapy options. 

Administering therapy in this manner has both benefits and disadvantages 

in terms of running a study comparing it traditional therapy in a 

standardized way. The benefit is that AMRR therapy is similar to 

traditional therapy in that the therapist has final say over what type of 

therapy is administered, in terms of target location, therapy focus, time 

spent per task, etc. This flexibility, however, leads to each participant 

receiving largely different therapy regimens from each other and one 
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aspect of the data analysis will be to determine if this greatly influenced 

the outcomes of that group.  
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Chapter 3 

COMPARING THE OUTCOMES OF AMRR THERAPY AND 

TRADITIONAL REPETITIVE REACHING THERAPY IN PEOPLE WITH 

STROKE 

While functional recovery is possible for people with chronic 

stroke,3,53,54 the best way to administer rehabilitation to achieve this 

recovery is still not well understood. Specific challenges to providing 

therapy after stroke for the upper extremity are: addressing highly varied 

combinations of impairments, motivating the participant to perform 

repetitive therapy, promoting active learning, and balancing recovery of 

lost function and motor patterns.35,43,55 The pilot study of the adaptive 

mixed reality rehabilitation (AMRR) system showed that this system is  

attempting to address these challenges using an interactive framework to 

train motor components related to both the completion of an activity and 

the quality of the movement during the task. AMRR integrates repetitive 

task training using a variety of smart objects with real-time motion capture 

and analysis to extract kinematic measurements as a useful quantification 

of arm motor performance56 and provide a systematic assessment of 

typical upper extremity impairments. The kinematic data are also used to 

provide real-time and summary audiovisual feedback to the participant for 

self-assessment of the movement.   The interactions are engaging to 

motivate task completion and promote generalized learning of motor 

elements related to the task. The tasks and feedback may be adapted to 
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focus on activity completion or on performing the activity within the 

additional context of re-establishing pre-morbid movement patterns (i.e. by 

improving movement quality) based on the participant’s therapy needs. 

Feedback is presented within the context of a functional task, and the 

underlying principles for transitioning to different tasks or feedback 

streams are consistently applied to all participants. Details of the design 

principles of the system have been presented elsewhere.35,55   

Other researchers have developed virtual environments to provide 

feedback on therapeutic tasks,31,32,37 which have generally produced 

positive outcomes in people with stroke. While feedback can enhance 

motor learning,57 the extent to which interactive therapies differ from 

traditional therapy is still under investigation. The purpose of the present 

study was to gather fundamental information on the value-added potential 

of the AMRR system by examining functional and kinematic outcomes 

from two groups of participants with chronic stroke, who received either 

traditional repetitive task reaching therapy (performance feedback 

provided by the therapist) or AMRR reaching therapy. While both groups 

should benefit from receiving a month of physical therapy, it was also 

hypothesized that AMRR therapy group would show greater and more 

generalized improvements in overall movement quality (e.g. more efficient 

trajectories, smoother acceleration and deceleration, reduced 

compensatory movements) due to active learning of associated motor 

elements.  The kinematic evaluation paradigm also aims to address an 
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evasive and difficult issue - the quantification of quality of limb movement 

– that represents a substantial step towards discovering the relationship 

between the recovery of motor performance and the recovery of function.  

Methods 
Participants 

 Twenty-five participants with stroke were enrolled from Banner 

Baywood Medical Center and provided informed consent. The protocol 

was approved by the Banner Health and Arizona State University 

Institutional Review Boards (see appendix A). Participants were placed 

into the AMRR group (N= 11) or the Control group (N= 10), based upon 

random group assignments for the first four participants and subsequently 

adaptive randomization in an effort to minimize group differences in 

impairment severity, age, and time post-stroke. Inclusion criteria were: age 

between 35 and 85 years old; currently 6 months to 5 years post-stroke; 

right-sided hemiparesis; right hand dominant pre-stroke. Active range of 

motion criteria (adopted from the EXCITE trial58) were: shoulder flexion of 

at least 45°, elbow ROM of at least 30° to 90°, forearm rotation of at least 

20° pronation or supination, wrist extension of at least 20°, at least 10° 

active extension of the metacarpophalangeal and the interphalangeal joint 

of the thumb and any two fingers. Exclusion criteria were: current or past 

seizure disorder; change in pain medication or alcohol use immediately 

prior to the study; current video game playing exceeding 1 hour/week; 

concurrent participation in another physical therapy program; injections of 
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anti-spasticity drugs within the past 3 months; inability to distinguish depth, 

shape, color, motion, pitch, timbre as measured by a sensory perception 

test; and ≤ 24 on the Mini-Mental State Examination. Table 3 shows 

participant demographics, as well as severity, baseline total upper 

extremity Fugl-Meyer score (maximum score of 126) and lesion location. 

The treating therapist and attending rehabilitation doctor determined the 

severity levels using: estimation of muscle tone; strength (mild: 4- to 5; 

moderate: 3- to 3+; and severe: less than or equal to 2+, as measured by 

the Manual Muscle Test); active range of motion (mild: within functional 

limits; moderate: significantly greater than inclusion criteria but less than 

functional limits; severe: meets inclusion criteria); and subjective 

assessment of the participant’s coordination during finger-to-nose and 

reaching movements.  
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Evaluations 

While previous work (see Chapter 1) has shown that virtual or 

mixed reality rehabilitation environments can produce improvements in the 

movement that is being trained, the training should also impart on the 

stroke survivor a generalizable movement strategy. This means that the 

improvements that the stroke survivor makes during training will be seen 

in similar reaching movements in a context that was not previously trained. 

The evaluations performed on all subjects before and after therapy were 

designed to test both trained and untrained aspects of upper-extremity 

movements. The evaluations also distinguished between functionality (the 

ability to perform a movement) and movement quality (how well the 

movement is performed). Both objective measures, rated by a therapist or 

calculated from motion capture data, and subjective measures, having the 

participants rate their movements and quality of life before and after 

treatment, were measured. These evaluations become extremely 

important when trying to discover the different benefits participants receive 

from AMRR therapy versus traditional therapy. Each participant completed 

an evaluation, consisting of validated clinical tests and reaching tasks, 

within 5 days before starting and within 5 days after completing treatment.  

Clinical outcome measures. The Wolf Motor Function Test (WMFT)42 is a 

therapist-administered validated scale that rates (Functional Ability Score 

of 0 – could not perform to 5 – normal movement) and times complete 

upper extremity movements related to functional tasks. The tasks all have 
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a different end goal to the reach (or joint movement related to a reach), 

such as reaching to manipulating an object (i.e. reaching to grasp and turn 

a key). The movements during this test are externally cued (via a verbal 

‘go’ by the evaluating therapist) and the participants are shown the 

movement and location of the object/equipment prior to starting. The 

subject is allowed 2 minutes to complete the task and the therapist moves 

on to the next task if a task cannot be completed in the allotted time. The 

Wolf Motor Function Test is most useful in measuring the function and 

general quality and time to completion of a wide variety of movements that 

require different joint ranges of motion and coordination.   

 The upper extremity Fugl-Meyer Assessment (FMA)59,60 is a 

therapist-rated validated scale that includes joint range of motion, pain, 

sensation, and proprioception (0 – no function to 60 – full function in all 

areas), and motor function of the affected arm (0 – no function to 66 – full 

function in all areas), for a total possible score of 126. The FMA is used to 

provide a general rating of the physical and sensory abilities of the arm 

(such as feelings of sensation and pain or flexibility during range of motion 

exercises) and how well the arm can perform simple manipulation and 

movement tasks (such as different grasps). While the FM does not provide 

a high-resolution representation of upper arm movement, it does give a 

well-validated overall measure of upper-extremity impairments related to 

stroke.  
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The Motor Activity Log (MAL)40 is a validated scale (0 – not used to 

5 – used as much or as well as before the stroke) that allows stroke 

survivors to self-report their amount of use and quality of movement of 

their more impaired arm during activities of daily living (such as grooming, 

eating and dressing).  The full Stroke Impact Scale (SIS)41 is a normalized, 

validated scale (0% – no recovery to 100% – full recovery) to measure the 

self-reported impact stroke has had on areas such as social interaction, 

emotion, motor function and cognition.  

The evaluating therapist who performed the FM and WMFT was 

blind to the treatment group designation. The researcher who 

administered the SIS and MAL was not blind to the treatment group.  

Reaching tasks. The participants completed a trained and an untrained 

reaching task during which motion capture data from the right hand, right 

arm and torso were collected. The trained task was 4 sets of 10 reach-to-

grasp movements to a stable cone object at 4 locations. The four locations 

used were at the midline with the cone on the table (gravity-eliminated 

movement) and 6 inches off the table (anti-gravity movement), and on the 

right side with the cone on the table and 6 inches off the table. The target 

distance was based on the individual participant’s active-assisted reach. 

These targets were used for both the pre- and post-evaluation, as well as 

the therapy, and gave the participant a therapy goal beyond his or her 

active reach. All reaches started from a consistent rest position (marked 

with tape and monitored by the therapist) and were self-initiated at the 
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participant’s own pace. Reaching to grasp a cone was a therapy task 

available to both groups, although the time spent on that task varied per 

person based on the therapist’s discretion and was more likely to be used 

during AMRR sessions.  

 The untrained movement task was a series of reaches-to-touch one 

of nine 1” buttons embedded within a rectangular upright stand (button 

box test). The nine touch-sensitive buttons were arranged in three rows 

and three columns, equally spaced by 5 inches, placed so that the middle 

button aligned to the participant’s sternal angle and provide a range of 

functional reaching positions both ipsilateral and contralateral to the 

subject's dominant side, as well as to the midline. Each button lit three 

times in a pseudo-random order. The light provided an external stimulus to 

initiate the reach and the light turned off when the button was successfully 

touched. The participant was instructed to reach the target as quickly as 

possible. The location of the target button was unknown to the participant 

until immediately prior to the start of the reach. The elements of this task 

that differentiate it from the trained tasks are unknown target location, 

instruction to move as quickly as possible once the button lights, triggering 

from an external stimulus within a defined latency, smaller targets, and 

greater off-sagittal target locations. A picture of a participant using the 

button box test can be seen in Figure 13. Technical details and further 

rationale for the design of the button box test can be found elsewhere.61 
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Figure 13. A stroke survivor reaching to push the lighted button while 
using the button box test. He is wearing motion capture markers to collect 
simultaneous kinematic data. 
 
Treatment protocols 

 Participants from the AMRR group received 1 hour of therapy (not 

to exceed 120 reaches) three times a week for four consecutive weeks (12 

sessions in total). Participants from the Control group received therapy of 

a matched amount of time on the same schedule. Tasks in both groups 

were performed with the right hand only. The same therapist administered 

treatment to both groups. The Control group received upper extremity 

therapy exemplified by pegboard reaching tasks, bead threading reaching 
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tasks, cone reaching tasks, range of motion and coordination exercises. 

During therapy with more severely impaired participants, the therapist 

focused on real-time instruction based on her perception of movement 

quality, while she tended to summarize feedback to higher functioning 

participants after they finished a set of reaches. If the participant was not 

improving with verbal cues, the therapist guided the arm with active-

assisted movements for a few reaches. The therapist also monitored 

compensation by using her hand to provide a tactile cue related to 

excessive shoulder or torso movement. 

The AMRR group performed reaching tasks to three different 

objects: a virtual point (no physical target), a 3” physical button, or a 

physical cone.  The targets were either on the table or 6 inches above it. 

Motion capture data collected from the participant’s right hand, right arm 

and torso were transformed into kinematic measurements (see Kinematic 

assessments, below) and used to provide audio and visual feedback to 

the participant during the task, evaluate the progress of the participant, 

and adapt the therapy accordingly. The feedback provided real-time visual 

cues about trajectory error and hand rotation and real-time audio 

indications of the speed of the hand’s movement, elbow extension and 

torso and shoulder compensation. The system also provided audio and 

visual cues when the task was successfully completed and provided a 

visual summary of where the trajectory errors had occurred to aid in 

forward planning. A picture of a participant using the system is shown in 
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Figure 14. Further explanation of the feedback theories and 

applications35,55 has been presented elsewhere. 

Figure 14. Picture of a participant (center) using the AMRR system with 
the treating therapist (right) at Banner Baywood Medical Center. 
 
Data Analysis from Pre-Post Evaluations 

Kinematic assessments. The kinematic parameters calculated during the 

trained task (cone reaches) and untrained task (button box) cover both 

activity level and body function aspects of recovery43 and are 

representative of key areas of impairments caused by a stroke.18,55 The 

parameters for the trained task kinematic analysis were grouped by 

common functionality into the following seven categories: 1) Trajectory– 

horizontal and vertical trajectory efficiency and consistency; 2) Targeting– 

error and consistency of hand placement during the manipulation phase of 
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the reach; 3) Temporal– peak reach speed magnitude and consistency 

and time to target; 4) Velocity– smoothness of the reach and how well the 

velocity curve adheres to an ideal bell shape; 5) Compensation – 

excessive shoulder or torso movements during the reach; 6) Joint 

Function – shoulder, elbow and wrist range of motion and consistency; 7) 

Joint Correlation – synergy between key joint pairings of the arm.55 The 

kinematic parameters were further normalized into a Kinematic 

Impairment Measure (KIM) score.18 The KIM maps each parameter onto a 

function that ranges from 0 (within the idealized range of movement) to 1 

(maximal deviation from this metric) modeled on a set of reaching data 

from both able-bodied people and people with stroke at different levels of 

impairments (i.e. mild, moderate, severe). Table 2 (see Chapter 2) 

illustrates of how ranges of KIM values map to raw data for three example 

kinematic attributes: peak hand movement speed, maximum torso flexion 

during the task and the correlation value between two joints. The 

conversion of data from attribute specific units of measurement to a 

common scale allows for parameters to be combined into the seven 

category level KIMs and for category values to be combined as a weighted 

average into one composite KIM, providing higher-level summaries of 

performance. For instance, peak speed (second column, Table 2) of the 

hand is considered unimpaired between .42 and .60 meters per second. 

When the speed either increases (e.g. due to ballistic movement) or drops 

(e.g. due to weakness) indicating an elevated impairment, the KIM 
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correspondingly increases. KIM values were calculated for each location 

of the cone reaches and each button location and respectively averaged 

together to obtain the kinematic assessment for the trained and untrained 

tasks. The percent change in composite KIM for the trained task after 

treatment [(composite KIM post – composite KIM pre) / composite KIM pre 

* 100%, and transformed so a positive change indicates a reduction in 

KIM] was calculated for each subject. This percent change gives a 

normalized measure of the overall change in movement quality for each 

participant. A subset of four parameters, chosen from the parameters 

comprising the seven categories, was used to evaluate the untrained task. 

These categories (2 activity level – Trajectory and Velocity - and 2 body 

function – Torso compensation and Joint correlation) were chosen to 

represent the data because they are most relevant to the button reach 

task. Composite and category KIM for the untrained task were not 

compared because the ideal weights for combining the parameters are still 

under investigation. 

Statistical analysis.  Due to small sample sizes, all statistical analyses 

were performed using non-parametric methods. The demographic data for 

the two groups were compared using the two-sample Wilcoxon ranked 

sums test to demonstrate equivalent participant groups. Data from the 

clinical scales were analyzed within each group using a paired Wilcoxon 

signed-ranks test and between groups with the two-sample Wilcoxon 

ranked sums test. Demographic and clinical scale data were tested for 
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significance withα = .05. The overall composite KIMs and each of the 

seven category KIMs (see previous subsection for details) derived from 

the trained task reach kinematic data were assessed within group using 

paired Wilcoxon signed-ranks tests to determine group changes after 

treatment. Each comparison used a significance level of α = .01875, 

calculated by applying a Bonferroni correction for the 8 comparisons to a 

maximum family-wise error of .15. The distributions of the percent change 

in composite KIM were compared between groups using a Kolmogorov-

Smirnov two-sample test, which is used to determine if two distributions 

are identical in terms of location (mean/median) and variance at α = .05. 

The four kinematic parameters (see previous subsection for details) 

derived from the untrained task kinematic data were also assessed within 

group using paired Wilcoxon signed-ranks tests to determine changes 

after treatment. Each comparison used a significance level of α = .0375, 

calculated by applying a Bonferroni correction for the 4 comparisons to a 

maximum family-wise error of .15. The application of conservative 

Bonferroni corrections to an increased family-wise alpha of .15 was an 

attempt to balance the occurrence of Type 1 errors (false positives) and 

loss of power63 in analyses with multiple comparisons.  

Case Studies – Two subjects’ journeys through using the AMRR 

System 

In order to best understand the use of AMRR, two case studies will 

be presented to show the progress and therapy protocols for two 
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participants that had different clinical characteristics. These case studies 

highlight how the feedback was utilized to address certain aspects of 

movement quality and how the participants’ kinematic results changed in 

response to the different types of audio and visual feedback. 

Individualized training plans, kinematic improvements measured over the 

entire therapy period, and the changes in relevant clinical scales and 

kinematic movement attributes before and after the month-long therapy 

are presented for the two participants. The substantial improvements 

made by both participants after AMRR therapy demonstrate that this 

system has the potential to considerably enhance the recovery of stroke 

survivors with varying impairments for both kinematic improvements and 

functional ability. The case studies are further explained elsewhere as 

well.63 

Prior to starting the 12 therapy sessions, the attending rehabilitation 

physician and therapist determined the participant-specific movement 

impairment profile based upon their observations, clinical scale scores and 

the KIM scores. The movement impairment profile ranks the movement 

aspects (e.g. insufficient elbow extension, inefficient trajectory) that 

require focused training. Using the individual’s impairment profile as an 

overall guide and starting point, the therapist and media specialist create 

and continually adapt a training plan during the therapy. This dynamic 

therapy plan is based on all prior knowledge of the participant’s abilities 

and progress, as well as the anticipated therapy outcome for the 
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participant, as tracked by the therapist’s observations and the KIM scores. 

This plan can utilize focused feedback streams, different physical 

environments and verbal or physical interaction by the therapist. At the 

start of each therapy session, the participant performed 10 reaches to the 

target selected by the therapist, without any audio or visual feedback. The 

therapist used the movement performance during these reaches to decide 

how to begin training that day and to track the retention of improvement 

from the previous sessions. Whenever a new feedback parameter was 

introduced during the training, the participant performed exploratory trials 

to learn the new mapping and the therapist and media specialist provided 

verbal guidance to aid in the participant’s understanding. This section 

presents the training process and results from two stroke survivors 

(Participant 1 & 2) who received AMRR therapy, illustrating how the 

system can be used in the clinic. The participants’ individualized training 

plans, kinematic improvements measured over the entire therapy period, 

and the changes in relevant clinical scales and kinematic movement 

attributes before and after the month-long therapy are presented. The 

substantial improvements made by the participant after AMRR therapy 

demonstrate that this system has the potential to considerably enhance 

the recovery of stroke survivors with varying impairments, in terms of both 

kinematic improvements and functional ability. The results also highlight 

some of the improvements that may increase the benefit provided by the 

AMRR therapy. 
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Participant 1’s Movement Impairment Profile and Training Plan 

 Participant 1 was a 74-year-old male 7 months post stroke who had 

a left-sided middle cerebral artery infarct resulting in mild to moderate 

overall impairment. He is listed as MR5 in Table 3. Participant 1 could 

accurately reach the target, but did so with greatly reduced speed. He also 

had reduced elbow extension and shoulder flexion and horizontal 

adduction throughout the reach and compensated by using increased 

torso flexion and rotation. The rehabilitation doctor and therapist 

determined the elements and ranking of his movement impairments as 

follows: 

1. Insufficient elbow extension 

2.  Insufficient shoulder flexion 

3.  Insufficient speed 

4.  Slow initiation of movement 

5.  Torso compensation 

 However, the rankings of each aspect of impairment do not 

necessarily indicate the sequence of training. The AMRR training is 

combinatorial and the progression of the training plan is completely 

dynamic. In this participant’s training, the therapist started with an 

introduction to the system, which focused on the participant having a basic 

understanding the activity level feedback (targeting, trajectory and speed) 

that is present continuously throughout the therapy. After the introduction, 

the therapist focused on reducing torso compensation by introducing a 
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disruptive sound that is triggered by excessive trunk rotation or flexion. 

The expectation of this approach would be to concurrently increase elbow 

extension since excessive torso compensation is often correlated to 

insufficient elbow extension. To further increase elbow extension, the 

therapist introduced a positive audio feedback that is driven by elbow 

range of motion (as the elbow extension increases, so does the volume, 

range of pitch, and harmonic richness of accompanying orchestral music). 

In addition, the therapist tightened the targeting accuracy constraint for 

successfully reaching the target (the participant’s hand needed to be very 

close to the target to receive an indication of reach completion) and 

moved the target position further from the rest position to encourage 

extension of the elbow. As the participant improved his elbow extension 

and torso compensation, the therapist changed the therapy focus to 

address other impairments such as insufficient speed, slow initiation and 

shoulder flexion/adduction. A complete summary of the training foci and 

sequence can be found in Figure 15b. Although the feedback given to 

address a specific movement attribute is expected to have a strong 

influence on the training of that parameter, secondary and indirect 

influences between movement and feedback parameters need to be 

considered. Because all feedback parameters are components of an 

integrated media composition, these secondary connections are 

continuously used to enhance the training.  
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Figure 15. Participant 1 case study results: (a) composite KIM measures 
(numbers shown in the composite KIM graph indicate which number target 
was evaluated at the beginning of that session. All four targets were 
evaluated during the pre- and posttests and these are all shown as the 
grouped circles in the graph), (b) attribute focus throughout therapy, (c) 
activity level attribute KIMs, (d) body function level attribute KIMs 
throughout therapy, including the pre- and post-test evaluations. All 
measurements made during the initial set of 10 reaches (before training 
started, no audio or visual feedback). 
 
Participant 1’s training protocol and results throughout training  

 Participant 1 spent a majority of his training working on body 

function level parameters, such as elbow extension and torso 

compensation and the activity level parameters of speed and velocity 

profile bellness18 (a measure indicative of smooth acceleration and 
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deceleration, without hesitations, or phases, when approaching a target). 

The adaptive and interconnected nature of the AMRR therapy, and the 

nonlinearity of motor learning64 make extracting direct correlations 

between training foci and local improvements difficult. However, there is a 

trend for consistent improvement in his composite KIM (shown per target) 

throughout the therapy (Figure 15a). The percentage of each training 

focus used during each session, along with the overall training foci across 

all sessions, is shown in Figure 15b. Figure 15c shows how the three 

activity level parameters (Peak speed, Trajectory error and Velocity 

bellness) that were focused on the most during training, along with a 

combined measure of the remaining activity parameters, changed 

throughout the therapy. Figure 15d reveals how the three body level 

parameters (Shoulder flexion, Torso compensation and Elbow extension) 

that were focused on the most during training, along with a combined 

measure of the remaining body function parameters, changed throughout 

the therapy. The definitions and method of calculation of activity level 

parameters (e.g. Trajectory error, Peak speed, Bellness) and body level 

parameters (e.g. Shoulder flexion, Torso compensation and Elbow 

extension) can be found elsewhere.6,18 Note that for KIM values in Figure 

15, a smaller number corresponds to less impairment and therefore better 

movement performance. If the composite KIM value is close to zero, the 

participant’s overall movement performance is close to an unimpaired 

movement. 
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Participant 1’s kinematic and clinical scale pre- and post-test results 

 Participant 1 improved many kinematic parameters substantially, 

resulting in an overall impairment reduction (Figure 16). This participant 

reduced his composite KIM by almost 75% and reduced his category KIMs 

by at least 50% in 6 out of 7 categories. Table 4 also shows pre- and post-

training raw values and KIM values for five kinematic attributes on which 

the training was focused. Participant 1 had a mixed result in his clinical 

scales (see Figure 17). Both self-reported scales, the Motor Activity Log 

(MAL) and Stroke Impact Scale (SIS), had reduced scores after training. 

The MAL amount of use decreased from an average of 3.6 to 2.1 and the 

quality of movement decreased from an average of 2.88 to 2.08. The SIS 

score changed from 67.4% recovery to 61.0% recovery. However, the 

Wolf Motor Function test (WMFT), which is rated and timed by a clinician, 

showed large improvements in both the functional activity score (from an 

average of 3.6 to 4.4) and the task completion time (from 110.8 seconds 

to 74.7 seconds). The Fugl-Meyer had small increases/decreases or no 

change in score, depending on the component.  

Figure 16. Left: improvement in Participant 1’s composite kinematic 
impairment measure (KIM); right: improvement within each of the category 
KIMs. 
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Table 4. Average pre- and post-AMRR therapy raw values and KIM values 
for 5 attributes that were heavily focused on during the training of 
Participant 1 (Number of Phases refers to the number of distinct sections 
in the velocity profile due to hesitations while reaching and % AAR is the 
percentage of range of motion achieved compared to an Active Assisted 
Reaching). 

 

 
Figure 17. Participant 1’s percent change from the pre-test to the post-test 
for four different clinical scales. (a – Motor Activity Log Amount of Use, b – 
Motor Activity Log Quality of Motion, c – Stroke Impact Scale, d – Wolf 
Motor Function Test Functional Activity Score, e – Wolf Motor Function 
Test task completion time, f – Fugl-Meyer Joint Range of Motion score, g 
– Fugl-Meyer Joint Pain score, h – Fugl-Meyer Sensation/Proprioception 
Score, i – Fugl-Meyer Motor Function score; ‡ indicates a change 
associated with improvement) 
 
Participant 1’s kinematic and clinical scale results discussion 

 Participant 1 initially presented with mild-to-moderate impairment, 

mainly attributed to reduced distal joint use and very slow initiation and 
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speed of movement. After 12 hour-long AMRR therapy sessions, he 

showed a substantial improvement in all kinematic parameters on which 

his training was focused. However, as seen in Figure 15, the key attributes 

(e.g. torso compensation, elbow extension, speed) appear to require 8 

sessions to show consistent improvements compared to other attributes. 

This timeline suggests that this participant needed 8 sessions to 

understand what information the feedback was conveying, connect that 

information with how his body was moving, and initiate integrating this 

information into a modified motor plan. The consistency of the 

improvements throughout the last few therapy sessions and in the post-

test indicate that the participant was no longer relying directly on the 

feedback to adjust his motion, but instead had created new movement 

patterns that already integrated those adjustments. This participant’s 

results also highlight the importance for the therapy to adapt in real-time 

based on the participant’s performance throughout the therapy 

intervention. Participant 1 presented with markedly decreased shoulder 

flexion during the pretest. However, the consistently low shoulder flexion 

KIM, indicating very low deficit in that attribute, (Figure 15d) throughout 

the 12 therapy sessions suggests that the initially elevated baseline 

measure was anomalous.   

 Although the magnitude and direction of the correlations between 

the training focus, the target location and changes to attribute KIMs are 

still under investigation Figure 15b-d show some clear overarching 
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relationships between these factors. For example, torso compensation 

was heavily trained during the first seven therapy sessions. While the 

torso compensation KIM did show an improvement during the first four 

sessions, when the target changed from Target 1 (ipsilateral to the right 

hand) to Target 2 (at the midline), shown in Figure 15d, Session number 

5, torso compensation began to worsen. However, with consistent training, 

this attribute began to improve again after session eight and continued to 

be very low throughout the remainder of training and during the post-test, 

regardless of the target location.     

 Overall, the composite KIMs (shown per target in Figure 15a) 

improved during the month-long therapy sessions. The composite 

improvement was driven by improvements in a majority of measured 

kinematic attributes. The improvements were also consistent across all of 

the targets, including Target 1, which was only trained during the first four 

sessions, and Target 3, which was only trained during one session. These 

observations suggest the occurrence of a generalizable, integrated motor 

learning with improvement across most kinematic attributes for all target 

locations. 

 Participant 1 improved substantially on both portions of the WMFT. 

His average Functional Activity Score (FAS) increased by almost 20% and 

his total task completion time was reduced by over 30%. Both results are 

relevant to his training since he focused on improving his movement 

quality and increasing his task speed during the AMRR therapy. The FM 
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showed mixed results, which was not unexpected given the short one-

month duration of the therapy. The FM also measures many aspects of 

the upper extremity that the AMRR therapy was not intended to address 

such as pain and sensation. 

 While Participant 1’s kinematic and WMFT improved, he did not 

seem to be fully aware of his level of improvement. The self-reported scale 

(MAL and SIS) scores both declined from the pre-test to the post-test. The 

AMRR system is designed to make the participant more aware of their 

body, how the body is moving and the impairments related to the 

movements. Participant 1 may have only become aware of his body 

functions after receiving AMRR training, but focused more on his 

impairments than on other behavioral changes that could have resulted 

from the training. Finding intuitive and engaging means to illustrate his 

progress to him throughout the therapy and during the post-test evaluation 

could have more favorably influenced his health related quality of life 

impression.   

Participant 2’s Movement Impairment Profile and Training Plan 

Participant 2 was a 66-year-old male 6 months post stroke who had 

multifocal embolic left hemispheric cerebral infarctions resulting in 

moderate to severe overall impairment. He is listed as MR4 in Table 3. 

Participant 2 presented with an inability to smoothly reach to the target, 

caused by a reduced range of motion, impaired inter-joint coordination, 

and ataxia. He had insufficient elbow extension, shoulder range of motion 
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and supination, and consequently demonstrated compensatory behavior 

of increased use of the torso and elevation and protraction of the shoulder. 

The attending rehabilitation doctor and therapist determined his movement 

impairment profile, ranked in order of importance for influencing recovery 

as follows:  

1. Insufficient elbow extension 

2.  Insufficient shoulder range of motion 

3.  Shoulder and torso compensation 

4.  Ataxia 

5.  Targeting 

 This participant also started training with a system introduction that 

permitted him a basic understanding of how his movement could be 

mapped to the audio and visual feedback. Because the participant 

reached with multiple pauses during the movement rather than a smooth, 

continuous extension of the elbow, the therapist decided to focus on the 

audio feedback that maps end point speed to musical rhythm. This 

approach helped the participant concentrate on creating a smooth 

acceleration and deceleration of musical notes, which can lead to a bell-

shaped velocity curve. The therapist also enabled the positive audio 

feedback linked to elbow extension so the participant would be 

encouraged to increase his elbow range of motion and implicitly learn the 

optimal spatial and temporal relationships between the elbow’s joint angle 

and the location and speed of the hand. To further incentivize the use of 
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the distal joints, the therapist also used the disruptive sound linked to torso 

compensation to discourage usage of trunk rotation or flexion to move the 

hand forward. When the training moved to off-table targets (Targets 3 & 

4), the trajectory error and torso compensation increased as a result of the 

more complex joint space and needing to work against gravity to reach the 

target. To address these issues, the therapist focused the training on hand 

trajectory (by adapting the sensitivity of image particle deviation in both 

the horizontal and vertical direction) and torso compensation (by adjusting 

the amount of torso compensation required to elicit the related audio 

feedback). A complete summary of the training foci and sequence can be 

found in Figure 18b. 
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Figure 18. Participant 2’s case study results: (a) composite KIM measures 
(numbers shown in the composite KIM graph indicate which number target 
was evaluated at the beginning of that session. All four targets were 
evaluated during the pre- and posttests and these are all shown as the 
blue circles in the graph), (b) attribute focus throughout therapy, (c) activity 
level attribute KIMs, (d) body function level attribute KIMs throughout 
therapy, including the pre- and post-test evaluations. All measurements 
were made during the initial set of 10 reaches (before training started, no 
audio or visual feedback). 
 
Participant 2’s training protocol and results throughout training 

Participant 2 spent a majority of his training working on body 

function level parameters, such as elbow extension and torso and 

shoulder compensation, and the activity level parameters of trajectory 
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error and velocity profile bellness (percentages of each training focus is 

shown in Figure 18b). Figure 18 also shows the interconnected nature of 

training: the important body function of elbow extension is trained within 

the context of a strongly related activity parameter (velocity profile) for this 

participant. This participant demonstrated a trend toward improvement in 

his composite KIM throughout the therapy (Figure 18a). Composite KIM 

improved for all targets from pretest to posttest. The three activity level 

parameters (Trajectory error, Jerkiness, and Velocity bellness) that were 

focused on most during training, along with a combined measure of the 

remaining activity parameters, improved throughout the therapy (Figure 

18c). The three body level parameters (Torso compensation, Upper 

extremity joint correlation and Elbow extension) that were focused on most 

during the training, along with a combined measure of the remaining body 

function parameters, also improved throughout the therapy (Figure 18d).  

Participant 2’s kinematic and clinical scale pre- and post-test results 

Participant 2 improved in many kinematic parameters, resulting in 

an overall impairment reduction, as seen in Figure 19. This participant 

reduced his composite KIM by 40% and reduced his category KIMs by at 

least 40% in 5 out of 7 categories. Table 5 also shows pre- and post-

training raw values and KIM values for five kinematic attributes on which 

the training was focused. Participant 2 also had positive changes in a 

majority of his clinical scale results (Figure 20). His MAL amount of use 

increased from an average score of 0.8 to 1.36 and his quality of use 
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increased from an average score of 0.88 to 1.12. His SIS improved from a 

76.7% recovery to an 83.1% recovery. The Wolf Motor Function test 

(WMFT), which is rated and timed by a clinician, showed improvements in 

the average functional activity score (from 2.6 to 3.1) and the task 

completion time (from 409.3 seconds to 380.5 seconds). The Fugl-Meyer 

had a small decrease or no change in most sections, except motor 

function, which improved from a score of 37 to 41 (out of 66). 

 
Figure 19. Left: participant 2’s overall kinematic impairment measure 
(KIM) improves from the pre- to post-test; right: change in each KIM 
category from the pre- to post-test. 
 

Table 5. Average pre- and post-AMRR therapy raw values and KIM values 
for 5 attributes that were heavily focused on during the training of 
Participant 2 (Number of Phases refers to the number of distinct sections 
in the velocity profile due to hesitations while reaching and % AAR is the 
percentage of range of motion achieved compared to Active Assisted 
Reaching).
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Figure 20. Participant 2’s percent change from the pre-test to the post-test 
for four different clinical scales. (a – Motor Activity Log Amount of Use, b – 
Motor Activity Log Quality of Motion, c – Stroke Impact Scale, d – Wolf 
Motor Function Test Functional Activity Score, e – Wolf Motor Function 
Test task completion time, f – Fugl-Meyer Joint Range of Motion score, g 
– Fugl-Meyer Joint Pain score, h – Fugl-Meyer Sensation/Proprioception 
Score, i – Fugl-Meyer Motor Function score; ‡ indicates a change 
associated with improvement) 
 

Participant 2’s kinematic and clinical scale results discussion 

Participant 2 initially presented with moderate to severe impairment, 

mainly attributed to reduced distal joint use, excessive compensatory use 

of his torso and shoulder and ataxia. After 12 hour-long AMRR therapy 

sessions, he showed a substantial improvement in most kinematic 

parameters on which his rehabilitation was focused. While his 

improvements were not consistent throughout the therapy, with many 

attributes varying in KIM values from session to session, most of the 

attributes trended towards overall improvement. Inconsistencies could be 

due to target and feedback adaptations during the training or to personal 
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learning patterns. When the target was raised off the table (Targets 3 and 

4), this participant showed a poorer trajectory KIM, most likely due to 

increased error in his vertical trajectory. However, the therapist adjusted 

the system to focus on this problem, and trajectory error returned to levels 

comparable to those observed during gravity-eliminated training. The 

upper extremity joint correlation was also affected when the targets were 

placed in off the table locations, which required a more complex joint 

coordination, but showed an overall improvement of over 50% during the 

post-test. The category KIM results from the pre- and post-test evaluation 

sessions also show that this participant had improvements over a majority 

of the categories, even categories that include kinematic attributes that 

were never the focus of training. The composite KIMs (shown for each 

target in Figure 18a) improved during the month-long therapy sessions for 

all targets and in all category KIMs except the targeting category. This 

finding suggests that the system promotes integrated generalizable 

learning, caused by the integrative nature of the feedback. Also, focused 

training of a movement component at one target corresponds to the 

improvement the trained component, as well as related components, at 

multiple target locations.  

Although Participant 2 saw substantial progress in many aspects 

(including the velocity profile, compensation and joint function categories), 

he still had residual moderate impairments in many of the category KIMs 

at the post-test (Figure 19). He achieved improved movement patterns 
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through better distal joint function and decreased compensation but the 

targeting aspect of his movement may have been negatively influenced y 

the development of these new patterns. Because the AMRR system tracks 

and displays such detailed kinematic data, this information can be used to 

assess whether additional therapy is needed and upon which aspects of 

the movement consequent therapy should focus. For example, additional 

training sessions may have addressed the targeting category KIM more 

effectively.   

Participant 2 showed improvements in several clinical scales including 

an almost 20% improvement on his average FAS of the WMFT and over 

5% decrease on his total task completion time (results shown in Figure 

20). The completion time improvement is relatively low because this 

participant was unable to perform two of the complex tasks of the WMFT 

during both the pre- and post-test, due to the severity of impairment. The 

AMRR is not yet designed to train fine motor control, which is the basis for 

completing many of the complex tasks. Removing the tasks Participant 2 

was unable to perform would have resulted in a 17% decrease in total task 

completion time. 

Participant 2’s self-reported scales (MAL and SIS) showed that the 

MAL amount of use improved by over 40%, the quality of use improved by 

almost 30% and his SIS recovery score increased by about 8%. Although 

his scores on both sections of the MAL were relatively low, the detailed 

scale results show that he reported now performing two tasks that he 
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could not do in the pre-test. Additionally, he increased his ratings on many 

other tasks by one point. Anecdotal evidence from this participant 

indicates that he was very self-motivated and would often practice therapy 

tasks at his home, which may have contributed to the improvements 

recorded in his health related quality of life measures. 

Impact of the two case studies 

The AMRR system provides a useful tool for therapists in structuring 

therapy based on kinematic parameters and enhancing therapy outcomes 

through engaging, interactive audio and visual feedback. The two case 

studies presented here show that the AMRR system allows the therapist 

to adapt the training in real-time based on the participant’s progress. The 

AMRR system provides a platform for integrated therapy, meaning that 

even while one or two attributes may be the focus of each set of therapy, 

the other attributes relating to the movement are being trained as well, as 

measured by the KIM improvements for both participants. The AMRR 

system also enables the participants to transfer the improvement from the 

trained reach and grasp task to functional tasks and arm movements 

related to functional tasks, such as those measured in the Wolf Motor 

Function Test (WMFT). Compared to the pre-test, both participants 

improved their functional scores and time to task completion, as measured 

by the WMFT, substantially.  

However, the AMRR system had a less obvious positive impact on the 

self-reported evaluations. Because the MAL and SIS are quality of life self-
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reports, these mixed results indicate that each participant may need more 

individualized dialogue and encouragement, and tools for intuitive self-

monitoring of their progress to ensure that their daily activities and internal 

sense of quality of life is also being positively impacted by the therapy. 

Participants who are not self-motivated may also need a clear 

demonstration of their progress and improvements and possibly direction 

on how to use strategies learned in the clinic in activities of daily living. 

Incorporation of these features into the AMRR system is an area of future 

research.   

The evaluation and feedback frameworks established within the clinic-

based system are now being applied to the development of a low cost 

home-based system that participants can use at their convenience with 

regular consultations and therapy adaptations made by a trained therapist. 

This home-based system has the potential to provide a low-cost way to 

extend training and can help empower the stroke survivor to become the 

driving force behind his or her recovery. A key challenge in creating a 

home-based system is developing an effective and efficient automated 

adaptation of the feedback based on real-time analysis of participant 

performance. Current research involves modeling the therapist’s decision-

making process (e.g. determining the training foci of each session and 

adapting which feedback streams are necessary and how sensitive each 

stream should be to error) based on clinical data from the current study.  
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Group comparison results 

 This section will present the full statistical analysis of the two 

groups. These results highlight the consistent changes in many 

parameters of movement quality seen in the AMRR group that are absent 

from the Control group’s results. These results also hold over an untrained 

task that employs different cognitive strategies. Clinical scale results are 

also shown, highlighting that while the two groups make improvements in 

function (as measured by the WMFT and the motor function section of the 

FMA), the Control group has significantly better improvements in both the 

motor function and passive arm measurement sections of the FMA. 

Four participants (2 from the AMRR group and 2 before group 

assignment) withdrew from the study for unrelated medical reasons or 

because of unreliable transportation. The resulting two groups that 

completed treatment were not significantly different in age, time post-

stroke or baseline Fugl-Meyer (all p-values > 0.05, data shown in Table 3). 

Clinical scale results 

 Median values and 1st and 3rd quartiles (shown in parentheses) for 

the Wolf Motor Function Test (WMFT), Fugl-Meyer Assessment (FMA), 

Motor Activity Log (MAL) and Stroke Impact Scale (SIS) are shown in 

Table 6 with significant P-values bolded. Both the AMRR group and 

Control group significantly improved their WMFT FAS score. Neither group 

had a significant change in their median time to completion of the WMFT 

tasks. Both groups increased their FMA Motor Function scores 
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significantly, but only the Control group significantly increased the scores 

in the Range of Motion / Pain / Sensation sections. Neither group had a 

significant increase in the MAL for either the Amount of Use or Quality of 

Movement sections. The Control group significantly improved their Stroke 

Impact Scale score from a reported 64.41% recovery to a 76.48% 

recovery. Between group analysis of the FMA scores shows that the 

Control group’s increase was significantly greater than that of the AMRR 

group in both sections. No other between group analyses of the clinical 

scores was significantly different. 

Table 6. Clinical scale data for the AMRR and Control groups (median 
values and (1st, 3rd) quartiles) measured pre- and post-treatment. Within 
group comparisons are shown immediately after the group data and 
between group comparisons shown in the last column. Significant p-
values are bolded. 

 

 
Kinematic results – trained task (cone reaches) 

 The median values (filled circle) and 1st (bar below the median) and 

3rd (bar above the median) quartiles for the composite KIMs, histograms of 

the percent change of the composite KIMs of all participants, and category 

KIMs for each group for both groups are shown in Figure 21a, 21b and 

21c, respectively. The AMRR group showed a significant reduction (p < 
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.001) in composite KIM (indicative of an improvement in overall movement 

quality), whereas the Control group’s improvement was not statistically 

significant (p = .065). The distributions of the percent change in composite 

KIM were mean improvements of 50.76% (±13.59%) and 15.69% 

(±54.47%) for the AMRR and Control groups, respectively. The two 

distributions were significantly different (p = .023). The AMRR group 

showed a significant reduction in KIM for 6 of 7 kinematic categories (p < 

.001 for Velocity, Compensation, Joint Function and Joint Correlation 

categories and p < .005 for Trajectory and Temporal Profile categories). 

Targeting was unchanged. The Control group showed a significant 

reduction in only Joint Correlation KIM (p < .01).  
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Figure 21. Kinematic Impairment Measure (KIM) scores for the trained 
cone reach task performed during the pre- and post-intervention 
evaluation. The composite KIM values (Figure 21a) and category KIM 
values (Figure 21c) for the AMRR group (solid dark line) and for the 
Control group (light dashed line) are shown as median values (filled dot) 
and the 1st and 3rd quartiles (upper and lower horizontal bar). Figure 21b 
shows histograms for the participants’ percent changes in composite KIM 
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score following treatment. The AMRR group’s distribution is shown with 
dark, solid bars and the Control group is shown with light, striped bars.  
 

Kinematic results – untrained task (button box reaches) 

 The kinematic results from the button box reaches were analyzed 

similarly to the cone reaches and are shown in Figure 22. The AMRR 

group improved in Trajectory (p<.001), Torso Compensation and Joint 

Correlation (both with p<.005). The Control group significantly improved 

in only Trajectory (p = 0.027). 

 
Figure 22. Kinematic Impairment Measure (KIM) scores for the untrained 
button reach task performed during the pre- and post-intervention 
evaluation. The category KIM values for the AMRR group (solid dark line) 
and for the Control group (light dashed line) are shown as median values 
(filled dot) and the 1st and 3rd quartiles (upper and lower horizontal bar).  
 
Discussion of control group study results 

This study examined kinematic and clinical outcomes of an 

adaptive mixed reality rehabilitation (AMRR) system compared to 

traditional reaching therapy. AMRR participants showed statistically 

significant improvements in 6 of 7 kinematic categories (excluding 

Targeting) that are representative of upper limb impairments seen after 
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stroke. The Targeting category uses end-point error during the grasping 

phase as a metric of accuracy, adapted from previous studies.11,65 

However, those studies investigated a reach-to-touch or reach-to-point 

task to a small target, while studies that explored reach-to-grasp 

movements did not use end-point error as a measure of grasp 

accuracy.66,67 A successful grasp of the cone object required consistent 

hand placement, resulting in both groups having low initial Targeting KIMs 

and very little room for improvement. The simplified motion capture setup 

also removed all markers from the fingers, allowing different finger 

postures to accompany the same location and orientation of the hand. 

This lack of resolution may have also contributed towards the ambiguity in 

the Targeting measurements. Future analyses will look more closely at the 

sensors that are activated during the cone grasping to determine if the 

hand is in the correct position during grasp.  

The composite KIM (weighted average of category KIMs) results 

show that AMRR therapy can induce highly consistent improvements in 

movement quality, even though each participant received a unique training 

regimen. Previous studies have questioned how factors such as gender,68 

age,69 lesion location,70 impairment severity71,72 and time post-stroke8,67 

affect motor recovery; however, the low variance among participants’ 

change in KIM scores after treatment suggests that AMRR therapy would 

be effective for participants with different demographic and clinical 

characteristics. Further data must be acquired to definitively state that the 
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positive outcomes related to AMRR therapy are sufficiently robust to apply 

to participants with variable attributes. 

The two participants from the Control group with composite KIMs 

that got worse (negative change) were the first two participants run in the 

study and the two participants with the highest improvements in composite 

KIM (positive changes at over 70%) were the 3rd to last and last participant 

run in the study. This indicates that the therapist was also changing her 

approach to addressing movement quality during the traditional therapy. 

She may have also become more aware and attuned to finer points of 

kinematics and how the kinematic movements aligned to the severity of 

the impairment from her exposure of the KIM results and feedback 

responses during the AMRR therapy. One therapist performed both types 

of therapies as to not introduce the potential confound that the therapist 

skill was influencing the results. However, it was not anticipated that the 

kinematics training she received during the administration of AMRR 

therapy would affect her administration of the Control therapy. Although 

the sample size is too small to make definitive statements as to whether 

the ordering of the group significantly affected the composite KIM results, 

the results do establish an issue for future research. Even if AMRR 

therapy is not available at every clinic, training therapists (using a system 

such as AMRR) to be more attentive to addressing issues of movement 

quality may have a positive effect in all types of therapy. 
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Kinematic improvements were also seen in the untrained button 

reaching task, indicating that motor strategies learned during AMRR 

therapy were applied to a movement condition in which the participant can 

anticipate neither the initiation nor the specific direction of movement, both 

of which require different motor and cognitive abilities than were 

trained.73,74 Traditional therapy did little to induce favorable changes in 

overall kinematic-based impairment measures, among the trained task 

(Figure 21) or in the untrained task (Figure 22). A possible explanation for 

this failure to impact KIM scores is that traditional therapy often focuses on 

regaining function and less on reducing compensatory movements or 

recovering pre-morbid movement patterns. Even if a therapist wished to 

provide information on certain motor elements, assessing and providing 

feedback on multiple movement aspects in synchrony with the movement 

would be impossible. Although the exact relationship between increased 

movement quality and improved long-term recovery is still unknown, many 

researchers and clinicians speculate that addressing issues of movement 

quality and compensation is essential to sustaining and enhancing 

functional gains made during therapy.55,75,76   

 Both the AMRR group and the Control group demonstrated similar 

statistically significant improvements in the Wolf Motor Function Test, 

likely because both groups received the same dosage of therapy and both 

focused on repetitive training of varying tasks and target locations. Both 

groups also had significant increases in the motor function portion of the 
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Fugl-Meyer Assessment, with the Control group demonstrating a larger 

change in that section. The Control group also improved more in sections 

rating sensation, pain and passive joint function. Control therapy 

participants had more flexibility in the target locations of their reaches to 

utilize a greater combination and magnitude of arm joint movements and 

may have also received manual therapy to the arm (such as range of 

motion exercises, active-assisted reaches or stretching). During the 

AMRR intervention, reaches were restricted to four designated locations in 

order to accurately calculate the KIM and provide feedback, thus 

minimizing alternative directions of movement or therapist manual 

guidance. Future AMRR systems could include an increased number of 

target locations or could be used in conjunction with traditional therapy 

methods to address sensory compromise within the arm.  

The Control group also had a preferentially greater improvement in 

SIS score. Because the AMRR group was challenged to continuously 

improve their kinematics, the focus may have inadvertently shifted from 

how much they had progressed to how much more they could improve, 

resulting in lower perceptions of health related quality of life. The AMRR 

system would likely benefit from a graphical interface that reflects therapy 

progress and provides motivation to continue making improvements. 

Neither group had significant increases in either section of the Motor 

Activity Log, possibly because the MAL reporting time (2 weeks prior to 

evaluation visit) overlapped too much with the intervention time (4 weeks 
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prior to evaluation visit). Alternatively, this result could reinforce current 

evidence that arm performance during laboratory measurements is not 

necessarily predictive of use and functionality at home.77-80 In order to help 

participants better transfer the skills learned in the clinic towards everyday 

activities of daily living, the AMRR system is being transitioned to a home-

based therapy system81 that will continue to reinforce the recovery of pre-

morbid movement patterns as well as offering a wider variety of functional 

tasks to practice.  

Limitations 

 Although the AMRR system appears to be a promising tool to 

deliver therapy focused on function and movement quality, the study 

presented had some limitations. This study used the same therapist to 

administer both therapy types, so the group results would not be skewed 

by the skills of the therapist. Future studies will include several therapists 

trained to administer both types of therapy and have them randomly 

assigned to participants. Further study is also needed on a larger, 

randomized sample, which will allow for a better generalization of the 

results and correlation analysis between the participants’ clinical profiles 

and their responses to therapy. The study also recruited an older 

population, as well as people with lesions at any location resulting in right-

side hemiparesis or multiple strokes. These liberal criteria may have 

confounded kinematic or clinical improvements due to pre-existing joint, 

neurological, or movement impairments. The study also lacked a follow-up 
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evaluation so although short-term movement quality improvements were 

made in the AMRR group, the extent to which changes persisted after 

treatment ended is unknown. Lastly, although the KIM scores have been 

positively correlated with validated clinical scores20, the relationship 

between movement quality and long-term recovery is still under 

investigation, making it difficult to truly determine how much improvement 

in movement quality is needed to become relevant to a person’s recovery 

after stroke.  

Conclusions to the control group study 

 The AMRR system provides a unique method of monitoring and 

addressing movement quality by providing integrated and adaptive 

feedback based on high-resolution motion capture during a therapy task. 

The AMRR therapy generated improvements in validated clinical scales 

and in kinematic measures during trained and untrained tasks. While 

Control therapy of matched dosage resulted in greater gains in the Fugl-

Meyer Assessment, it failed to produce significant improvements in most 

of the kinematic parameters in any task. AMRR therapy appears to be an 

effective way to improve both function and movement quality, in an effort 

to enhance and sustain overall recovery. 
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Chapter 4 

CREATING A MODULAR PHYSICAL SENSING ENVIRONMENT AND 

TOOL-KIT FOR USE IN A LONG-TERM, HOME-BASED AMRR SYSTEM 

 While the results from the above studies indicate that AMRR 

therapy can provide beneficial therapy in a clinical setting, supervised by a 

therapist and researchers, this type of interaction is not feasible for long-

term therapy. Many stroke survivors lack the financial resources to 

continue to work with a therapist and may also find it extremely difficult to 

find reliable transportation to visit a clinic frequently. Improvements in 

function and movement quality were seen after AMRR therapy; however, 

there was no significant increase in the participants’ self-reported amount 

of use or quality of movement of the affected arm during their daily lives. 

The evaluation of long-term motor learning was also unavailable, so 

participants may lose the learned strategies once the reinforcement of 

regular therapy is no longer present. In order to best enhance the recovery 

of a person following stroke, a long-term plan to receive easy-to-use, fairly 

inexpensive beneficial therapy must be in place. Our group is working 

towards the development of a home-based therapy system that uses the 

theories and design principles from the clinic-based system, with scaled 

down the complexity and cost to make it appropriate to be installed in any 

home. The feedback and adaptation will also be uniquely created to fit the 

environment and communicate the intent of the therapy to the patient 

without the need for a therapist or researcher to be constantly present.  
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An initial version of the home system was constructed and installed 

in two patients’ homes and an improved version is currently under 

development. Research on the current home-based AMRR system will be 

conducted at several research sites to test: the ability of multiple therapists 

to administer AMRR therapy; how well the therapy concepts transfer from 

the clinic to the home; the ability of people with stroke to setup and use 

the system reliably; and the validity of the feedback and physical 

environment comprising the therapy to improve function and movement 

quality during reaching tasks.  

Review of other types of in home therapy 

 Because people who have had a stroke may lack the accessibility, 

mobility or resources to continually attend therapy sessions, especially 

after insurance no longer covers the sessions, a long-term plan to receive 

therapy at home at a low-cost is crucial to achieving full recovery. 

However, when performing therapeutic tasks at home, with no therapist 

present, it may be more difficult to self-correct issues of movement quality 

or function and to stay motivated to complete the full range of exercises 

prescribed. Many research groups are attempting to bridge modern 

technologies with home health care to create home-based or 

telerehabilitation therapy systems.  

 Most home based upper-extremity therapy systems fall into three 

basic categories – traditional therapy tasks assigned to be performed at 

home, with either in person or video conference check-ins by a therapist; 
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custom or off the shelf video games or other technological devices used 

by the stroke survivor for a prescribed amount of time; or compulsory use 

of the impaired limb during every day activities, as in constraint induced 

movement therapy. Unfortunately, very few studies included large, 

randomized groups to show how effective home-based therapy systems 

were in comparison to no intervention or to usual care, especially in terms 

of long-term recovery. However, many systems were demonstrated to be 

safe and feasible for home-based therapy. 

   The simplest way to transition therapy from the clinic to home is to 

assign the stroke survivor various therapeutic tasks to perform at home. 

Specialty exercise programs have been developed to maximize functional 

recovery,82 which have been shown to improve lower-extremity function 

when performed at home. However, these exercises were not completed 

by the participants unsupervised, but were specifically directed by a 

therapist who physically visited the stroke survivor at home. Although this 

type of arrangement would be ideal for stroke survivors of limited mobility, 

it is still resource intensive. Other research has done83 to examine if home 

visits where the therapist encourages the stroke survivor to engage 

themselves in continuous exercises at home, as opposed to providing 

direct therapy, were feasible and preferred by the stroke survivor and 

caregivers. Home visits were effective and accepted by the participants, 

but were not shown to be better than regular outpatient therapy. 
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 Other attempts have been made to enhance the traditional physical 

therapy exercises performed at home with novel or commercial 

technologies. Effectiveness of using the Wii gaming system (a video game 

system that uses a motion-based controller) has been tested84 compared 

to usual care. This study, however, only showed an decrease in time to 

perform tasks in the Wolf Motor Function Test, which shows no evidence 

that the participants were performing functional tasks better, just that they 

were performing them more quickly. Although video games can help 

increase reaction and movement times, as those aspects are crucial to 

game play, there is little evidence that they lead to better long-term 

recovery.  

 The last widely used method of home-based intervention is 

constraint induced movement therapy (CIMT). During CIMT, the more 

functional hand is encased in a mitt or restrained, making it difficult to use. 

This forces the stroke survivor to engage with their environment using the 

more impaired hand. Forced use can increase dexterity of the arm,54 

decrease the time to perform functional tasks,55 and improve self-reported 

measures of arm use,54,55 probably because the person had previous not 

used the impaired arm much during activities of daily living. However, 

immobilizing an entire upper extremity is not practical for long-term 

therapy and reduces the ability to perform other functions that may require 

both hands. CIMT also does not address the movement quality aspect of 

recovery, just the increased use of the impaired limb.  
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 Any type of therapy that can safely and successfully used at home 

will offer more benefit to stroke survivors than doing no therapy at all. 

However, certain aspects can be assembled from the existing home 

therapies to determine what is important when designing such a system. 

Traditional therapy exercises generally use task-driven repetitive 

exercises that mimic activities of daily living, the completion of which is the 

end goal of most therapy. Technology-driven interventions use exciting 

gaming and narrative structures to motivate the stroke survivor to use their 

impaired arm to complete the tasks and sensing technologies to track how 

the arm or hand are moving during the game. Constraint induced 

movement therapies force the use of the impaired limb, compelling the 

stroke survivor to practice movements with their arm that they may have 

not otherwise done.  

 Adaptive mixed reality rehabilitation (AMRR) has proven to be 

effective in providing repetitive task therapy to the impaired arm in the 

context of a media-rich feedback environment in the clinic attempting to 

aggregate the characteristics that have proven effective in stroke therapy. 

As the system is transitioned to the home, all of these aspects must be 

maintained and adapted to the new unsupervised environment. The 

system must be easy to use by someone with impairments to one side of 

their body, but complex enough to provide effective therapy that can be 

tailored to a diverse population stroke survivors and remain effective 

throughout the progression of recovery. And as the recovery progresses, 
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both function and movement quality should improve as a result, ideally 

both within the context of the therapy system and during activities of daily 

living.  

 During the development of the home-based AMRR systems, my 

work has focused on creating sensing environments that can track hand 

position and function. With the first version of the home system that was 

piloted with two stroke survivors, this involved creating stationary cone 

objects used as targets to the grasp and contributing to the development 

of the Wii-mote based motion capture system. In the current version of the 

home system, my work has included creating a tool-kit of tangible objects 

that have embedded sensors and require different hand postures and 

forces during manipulation. The objects sense hand function unobtrusively 

and can provide feedback to the stroke survivor about aspects of the 

movement. All of the objects can also be interchanged within the 

workspace to create environments tailored to the type of therapy required 

by the individual participant.   

 Home system pilot study 

 A study with the initial version of the at-home system followed the 

pilot study of the AMRR system (see Chapter 2). This system is comprised 

of a tabletop overlay, that can be used on top of any flat surface such as a 

dining room table, that had three permanent target cone positions and a 

rest position based on each participant’s reaching ability. A low-cost 

motion capture setup monitored end point (wrist) trajectory during the 
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reach and low-cost sensors track reaction and reaching times, as well as 

relative grasping force. A microcontroller and small computer collected 

information from the sensors and motion capture cameras and provided 

simple cues to the participants about the start and end of the movement. 

This system was tested with two participants with the expectation that it 

was an easy to use and minimally intrusive assessment tool that could 

provide informative data during and after upper extremity rehabilitation 

interventions for under $1000. 

 This home system was a purely assessment tool to track reaching 

kinematics over time and to track the retention of motor learning from the 

participants’ improvements during AMRR therapy in the lab. The system 

used lighted targets to initiate a reach to grasp to three force-sensitive 

cones. Consistent reaching distance was maintained by monitoring the 

rest position with a sensor. A low-cost, custom-built motion capture 

system using two Wii Remotes captured the trajectory of the wrist over the 

movement. A small, hidden computer collected data for tracking patient’s 

progress over time. The system was a low cost way to track reaching 

trajectory, reaching time, reaction time and relative grasp force that 

requires minimal setup and was constructed from easily available off the 

shelf components and software.  

Physical Setup 

 This system is portable, fits over any table and is easily modified to 

meet any patient’s reaching abilities. The form factor mimics the table 
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used in the clinical and laboratory versions of the system has a grid of 

holes to secure the targets at locations best suited for individual reaching 

abilities (Figure 23). The armrest on the unaffected side has a hinge that 

opens for easy exit and the entire surface is overlaid with softly textured 

beige plastic (Sintra) covering the grid and provide a smooth reaching 

surface. The targets are based on the cones used during the clinical 

version of the AMRR system and were rapid prototyped in ABS plastic. 

 
Figure 23. Physical setup of the underlay of the first home system. The 
black cone can be placed in any of the holes to accommodate different 
reaching distances, the hand’s spatial location is tracked by the marker on 
the wrist, and wrist and elbow position at rest is tracked by the blue and 
red pad at bottom left. 
 
Electronic Design 

 A Wiring (http://wiring.org.co/) microcontroller board controls the 

home system’s inputs and outputs, monitors when the target has been 

grasped, when the hand is in the correct rest position, and controls the 
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lighted stimulus presentation. The data is transmitted to a small Mac Mini 

computer (http://www.apple.com) computer via USB-serial connection. 

High intensity red and green LEDs embedded in the top of each cone 

provide visual stimulus to elicit a reach. All electronics components are 

readily available off the shelf. 

 Each cone target was covered in sixteen 0.5” circular force-sensing 

resistors (FSR) to detect successful grasps (http://www.arduino.cc). Each 

FSR was part of a voltage divider circuit with a 2.2 kΩ resistor, which 

provides the largest range of voltages for forces normally seen in 

grasping. The FSRs were attached to the cone using the factory provided 

adhesive. The outputs from the force sensors for each cone were 8 to 1 

multiplexed into two analog inputs on the microcontroller. 

 A bright red foam pad marks a consistent rest position, where the 

subject's wrist will be between target reaches. The foam pad has two 

conductive cloth contacts on its surface, which comprise a switch. The 

subject wears a wristband (Figure 24) with a piece of conductive cloth 

sewn onto it, which closes the rest position switch when in contact. A 

sound plays if the hand is not resting in the correct position and the target 

stimulus will not light until the hand returns to the correct position. To 

ensure proper relaxation of the arm between reaches, a second 

embedded switch monitors if the forearm is applying pressure to the rest 

pad while the wrist is in the correct position. 
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Figure 24. Wristband with reflective motion capture marker and conductive 
cloth used for rest position contact switch. 
 
 The audio feedback was provided using the Mac Mini computer and 

its built-in speakers. A Max/MSP (http://www.cycling74.com) patch 

communicated with the microcontroller using the serial protocol and 

received flags from the microcontroller to trigger sounds for audio 

feedback. The patch also logged and time stamped the reaction and 

reaching time data. The Max/MSP patch then communicated with custom 

motion capture software to begin recording from the IR cameras. IR 

camera data was logged using a custom program. The system 

architecture is presented in Figure 25. 
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Figure 25. System architecture for hardware interactions of the first 
version of the home system. 
 
Motion Capture 

 End point trajectory measurements are important to assessing 

stroke patients’ reaching patterns, in terms of efficiency and smoothness 

of the trajectory and end point velocity. These measurements may be 

made using costly and cumbersome motion capture systems, but for this 

first home system version, an inexpensive camera setup using controllers 

for the Nintendo Wii gaming system (http://www.nintendo.com) was 

developed. The remote control for the Wii gaming system (the Wii 

Remote) contains an embedded infrared camera with 1024x768 resolution 

and an approximately 40° x 30° field of view for only $39.99. The controller 

uses Bluetooth to connect with the Wii game console and was easily 

interfaced with the Mac Mini computer’s Bluetooth protocol. Open source 

software was used to connect to and record data from the Wii Remote. 

The Wii infrared (IR) camera is a proprietary system-on-a-chip from PixArt 
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(http://www.pixart.com.tw) that is able track 4 infrared sources at 100 Hz 

and returns their planar coordinates and intensity. A wristband with a 

single marker (Figure 24) was tracked by the two Wii Remotes and the 

data was used to reconstruct three-dimensional trajectory and velocity 

measurements using the open-source DarwiinRemote code 

(http://sourceforge.net/projects/darwiin-remote). To avoid relying on AA 

batteries powering the Wii Remotes, the power terminals of the Wii 

Remotes were connected to a 3V regulator. 

 Since the passive reflective marker required a source of infrared 

light to reflect, an array of TSAL6400 (http://www.vishay.com) infrared light 

emitting diodes (LEDs) was designed and mounted on the Wii Remote. 

The array dimensions (8 LEDs by 6 LEDs) maximize the number of LEDs 

that can be powered on two arrays from a single12V, 1500mA power 

supply. The LEDs have an optimal combination of intensity (40 mW/sr) 

and angle of half intensity (25 degrees). The remote and array is 

presented in Figure 26. 
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Figure 26. Wii Remote with attached IR LED array. Two such setups were 
used to recreate the 3D position of the reflective marker on the wrist. 
 
 To convert the standard camera coordinates returned by the two 

Wii Remotes (Wiimotes) into global coordinates, a camera calibration was 

performed using a trapezoidal frame. The intensity values returned by the 

cameras were not used due to their low 4-bit resolution. By capturing the 

location of four markers using a trapezoidal calibration frame at various 

locations in space, a transformation to the global coordinate system can 

be created based on Zhang’s method.85 

Data collection 

 The system was installed in the homes of stroke patients that have 

taken part in the pilot study for testing AMRR therapy to determine the 

feasibility and usefulness of the home based system. The participants 

were asked to use the assessment system three times a week for eight 

reaches to each cone at a specified time of day to monitor their reaching 
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abilities for one month. The game begins when a subject presses the start 

button. A sound plays to indicate that their hand should move to the rest 

position. Once on the rest position, one of the cones is selected as the 

target for that reach and a red LED on that cone lights up for a 

pseudorandomized rest period between 3.5 to 5 seconds. This provides 

an adequate period of relaxation between reaches for the subject and 

allows the subject knowledge of what cone he will be reaching to. The 

required duration on the rest position is variable and pseudorandom so 

that the subject performs discrete reaches and does not form a "rhythm" 

since there are different neural bases for rhythmic and discrete arm 

movements.86 Varied rest times also reduce the subject’s tendency to 

anticipate the movement before the stimulus appears. 

 After this rest period, a green LED turns on to indicate that the 

subject may initiate a reach. Sudden feedback near a grasp can affect a 

grasp or cause a jerk, thus, no feedback is given for a successful grasp 

other than the physical feedback from contacting the cone. If the subject is 

unable to reach the cone within 6 seconds, the light turns off to prevent 

frustration and proceeds to the next rest period and light after the subject 

returns to rest. If the subject anticipates the stimulus and comes off the 

rest position while the red light is on, the timer resets and the subject has 

to return to the rest position for another 3.5 to 5 seconds before the next 

light turns on. These timing values are based on the START assessment 

device data.61 Wrist trajectory, relative grasp force, reaction time, and 
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movement time were recorded and stored locally on the password-

protected computer.  

System Validation 

Patient acceptance. Figure 27 shows the home system installed in a 

stroke survivor’s home. Both participants that used the home system were 

patients who had previously completed the pilot study (Subject 2 and 

Subject 3 – Chapter 2) and were familiar with the type of task. Since the 

home system is less complicated than the rehabilitation training that they 

have already participated in, both subjects were easily able to complete 

the month-long home assessment period. Initial reactions from both 

subjects were positive and both played the game at least 3 times a week. 

Both subjects reported some improvement in daily functional ability during 

their weekly status questionnaires. One subject reported an increase in 

writing with her right hand during her month of playing the home system 

game. The other subject played the game almost every day that it was at 

his house and his only complaint was that he wished the game was more 

challenging and had some sort of feedback to tell him how he was doing. 

Both of those issues will be addressed in the subsequent versions of the 

home system. 
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Figure 27. A stroke survivor using the home system in his home. 
 
Motion capture. The motion capture data after 3-D reconstruction was 

cross-validated with a 12 camera Eagle RealTime motion capture system 

and EvaRT software from Motion Analysis 

(http://www.motionanalysis.com) as reference. Data was smoothed using 

a five-point moving average window in Matlab 

(http://www.mathworks.com). Mean squared error was calculated for each 

direction for displacement and velocity. The mean squared error was 

greater for displacement than for velocity. However, for this system, since 

the reach completion is detected by the touch sensor, the motion capture 

can be used to study velocity and acceleration with some degree of 

accuracy. Data from the trajectory (top) and velocity (bottom) for the x-

direction is shown in Figure 28.  
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Figure 28. Example Wiimote data (blue line) versus Motion Analysis 
camera data (red line) for displacement and velocity in the x-direction. 
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Data storage. To test the robustness of the data storage software and 

avoid memory leaks, the system was left recording motion capture data for 

several days. There were no software errors during this duration. 

Discussion of issues present in the original design 

 The installation and data collection from the first version of the 

home system revealed a number of design issues that need to be 

reconsidered. This system used a Bluetooth protocol to send the data 

from the motion capture cameras to the computer, which caused a 

number of issues. The Bluetooth needs to be specifically paired to the 

computer that it is communicating with to effectively send the data. The 

pairing of the Wiimote camera to the computer requires interaction with 

both the computer and Wiimote. The cameras can become unpaired 

during an interruption of the power supply to the cameras or computer or 

simply due to software glitches. During the period over which the home 

system was in one subject’s home, the cameras became unpaired twice, 

which required a researcher to drive to the subject’s home to simply re-

pair the Wiimotes to the computer. The data collection software was also 

written in such a way that the data coming from the Wiimotes was 

continuously collected as it streamed from the cameras (not prompted for 

collection at a specific sampling rate), causing a discontinuous and 

inconsistent sampling of data between both cameras, and was not 

synchronized with the data coming from the tangible objects (cones). Both 

cameras need to produce data at the exact same time to create an 
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accurate three-dimensional picture of the arm’s movement and the 

seemingly random loss of data caused the 3D reconstruction of the 

reaches to become impossible. The kinematic data was subsequently 

unable to be analyzed. However, it was clear that the tangible objects and 

rest position sensors did work and collected data throughout the entire 

month-long installations. 

 This version of the system also did not offer any evaluation or 

feedback on the reaching performance to the participant. The lack of 

evaluation left the participants to wonder if they were making any progress 

and if there was any point to continuing to use the system. Because there 

was no real time evaluation of the performance, there was also no 

feedback given. The participants had no way to assess and improve their 

performance without feedback. The lack of feedback also made 

performing the reaches extremely boring. There was no motivational factor 

to ensure the participant would continue to use the system. The physical 

set up also stayed consistent throughout the month of use, making the 

therapy very monotonous. The lack of other physical targets also meant 

the task difficulty was constant and did not allow any reduction or increase 

in movement complexity during the month. The study with these two 

participants suggests that the basic design of the home system is viable; 

however, aspects need to be improved to make the system a viable 

therapy option such as: developing hardware and software that is reliable 

and robust; assessing the movement kinematics in real-time; using the 
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kinematics to provide useful feedback during the reaching and as a 

summary after sets of reaches; introducing a wider variety of physical 

objects that can be adjusted throughout therapy to train a wide variety of 

functionally based tasks. 

Current version of the home system 

 The current version of the home system advances the system from 

a purely assessment device to a longer-term full assessment and training 

system. This system incorporates additional and more complex tasks and 

instructive audio feedback and visual feedback on the movement. The 

audio and visual feedback will expand to become a long-term engaging 

narrative that the participant will interact with over the course of months. 

The amount of real-time feedback given to the participant will be reduced, 

compared to the clinical system, as a way to help them to create 

strategies that tend to rely less on external feedback and become able to 

self-assess the movement. The amount of real time feedback is also 

limited by the kinematic parameters that are being measured, which at 

present are aspects of the wrist and torso movement. The new system will 

also feature different tangible objects that can assess hand function during 

a variety of tasks. The objects can easily be moved around or 

interchanged in the reaching space by the participant. The participant’s 

visual attention during the reach is on the physical environment, instead of 

an immersive screen or display as in the clinical system, which creates a 

stronger tie to reality. However, the participant will still be receiving real-
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time information about their reach through the audio feedback and visually 

through the tangible objects. A picture of the current prototype of the home 

system is shown in Figure 29. The therapy will also be regulated with a 

semi-automated adaptation of the difficulty and nature of the physical task 

and the kinematic foci of each session (i.e. the sensitivity and activation of 

each feedback stream). The next sections will describe the overall 

structure of the new home-based AMRR system, but will focus on my work 

on the tangible object design.   
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Figure 29. Current home AMRR system: Custom table with three 
embedded tangible object targets and rest position; three Optitrak 
cameras to track the wrist marker position; and a computer with speakers 
to analyze the data and present the audio and visual feedback. 
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Measuring hand interactions  

 Measuring the posture and kinetics of the hand during rehabilitation 

can be extremely useful in training fine motor control movements. 

However, methods for recording joint angles of or force exerted by the 

fingers can be restrictive to natural movement and extremely time-

consuming to set up. Wearable gloves or exoskeletons have been 

developed to directly record hand movements using bend of sensors at 

each of the finger segments. CyberGlove 

(http://www.cyberglovesystems.com/), a company that produces 

commercially-available force, angle and touch sensing gloves, uses 

sensors that have high resolution and accuracy and can transmit the data 

wirelessly for unencumbered use. Unfortunately, such gloves have proved 

to be somewhat unsuitable for stroke patients to use, although some 

groups have used them in rehabilitation systems.11,87,88 The gloves are stiff 

due to the underlying sensing structures and can restrict normal ranges of 

motion in the fingers. They are also designed to fit snugly and may be 

difficult for someone with weakness or ataxia to independently put on 

easily and correctly, making them problematic for unsupervised therapy.  

 Another method that is widely used in a laboratory setting is 

tracking individual finger segments using IR or other motion capture 

systems.89-92 This method is extremely accurate and can provide high-

resolution data about the finger joint angles and kinematics. However, the 

systems used to track such small, close together markers are prohibitively 
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expensive for home-based rehabilitation systems and require a great deal 

of time and knowledge to apply the markers correctly and consistently. 

The markers also need to be placed on each segment of the fingers, some 

of which are inaccessible on a patient with flexed hand posture. The lack 

of control a stroke patient has over the movement and flexion of their hand 

may also contribute to markers being scraped off or shifted during 

movements. 

 Many of the issues presented with tracking the posture and 

movements of the hand can be overcome in a supervised laboratory or 

clinical setting. The ultimate goal for the AMRR system, however, is to 

translate to long-term, unsupervised training in the home. This means that 

any hand sensing must be done in a way that is extremely easy for the 

patient to set up, but can still consistently track interaction in an accurate 

way and measure information relevant to the activities of the hand that are 

being trained. The systems must also balance cost with accuracy. The 

solution for these issues is to combine a low-level motion capture of parts 

of the hand with smart sensing objects. The ultimate aim is to be able to 

detect enough hand functioning to provide feedback on the action. The 

development of the objects and the first stage of developing a hand 

function analysis paradigm are presented here. 

Measuring hand – environment interactions using tangible objects 

 Research has been done to measure grasping forces and tangible 

interaction both in stroke patients and able-bodied control subjects. Some 
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groups have used expensive load cells to create grasping objects that 

measure forces of the hand and fingers. Some of these objects require 

that the grasp orientation of the hand to produce force along a common 

axis,93 or the full force may not be read. Other groups have used 

sensors94 or gloves on the hand to measure forces.11,87,88 While these 

systems can be an accurate way to measure tangible interactions, the 

sensors may register false readings to due deformation (not force) and the 

gloves can be bulky and restrictive to a normal movement. Because no 

currently available hardware met the needs of the system, custom-built 

instruments were designed, allowing us more control over the cost and 

parameters of each object. Custom building allowed full control over the 

shape, size and weight of each object, to ensure that different types of 

interactions could be sensed. The objects also use sensor sets that are 

tailored to measure the hand function being trained. The objects also all 

have the same base shape and size, to allow the objects to be 

interchanged at the same locations. The following sections show how the 

interchangeability was designed and then detail each of the objects types. 

The types of visual feedback presented in the objects and on the screen 

are also explained in context of each task.  

Design of interchangeable tangible objects and table for use in home-

based therapy 

 The physical location of the targets each participant reaches to 

during home-based AMRR therapy will be set at the beginning of therapy 
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based on their individual abilities and will be consistent throughout the 

training. As in the first home system version, the underlying layer of the 

table will be allow the targets to be positioned at the correct distance from 

the subject. However, the new version will now use sockets at each of the 

target locations, into which tangible objects may be placed. These sockets 

are bolted to a recessed chamber in the table and provide a way for the 

objects to be latched into place, and will also have a mechanism for the 

objects to be easily exchanged. The sockets electronically interface with 

the objects to provide power to the inner electronics and transmit data to 

and from the objects. Each socket (and correspondingly the object bases) 

is hexagonal in shape. This shape was chosen to approximate a circle but 

to allow flat sides to accommodate the latching structure and provide a 

secure fit into the socket. Figure 30 shows a prototype of the socket. 
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Figure 30. Prototype of the socket that will hold the tangible objects in the 
home-based system table. The latches secure the object in place and the 
motor withdraws the latches when the touch-sensitive switch is activated. 
 
 The socket secures the object with two small slanted pieces on 

either side of the hexagon. These latches are released through a 

motor/pulley mechanism that is controlled by a touch sensitive button. A 

visual interface on the system’s screen guides the participant through 

interchanging the objects before the start of each therapy session.  The 

touch sensitive button also has embedded LEDs that diffuse through the 

table as a lighted circle. The user simply has to touch the lighted circle 

through the table and the pulley will rotate enough to pull lengths of 

monofilaments attached to each of the slanted latches. A spring loaded 
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circular piece at the bottom of the socket both provides a secure electrical 

connection between the socket and object and pushes the object out of 

the way of the latches when the person has touched the release button to 

interchange objects. A close ups of the socket’s slanted latches and 

circular spring-loaded connection piece are shown in Figure 31. Figure 32 

shows one latch mechanism. The monofilament pulls the latch to release 

the object and the spring pushes the latch in when the object is being 

inserted. All pieces were 3d modeled in Rhino3d 

(http://www.rhino3d.com/) and rapid prototyped in ABS plastic or 

machined from MDF board.  

 
Figure 31. A close up of the latch that holds the object in the socket. The 
circular piece in the middle acts to push the object out of the socket when 
it is being removed and will be the site of the electrical connections 
between the socket and object. 
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Figure 32. Close up of one of the latches. The latches are retracted by the 
monofilament when the release button is pressed and are pushed into the 
object to hold it into the socket by the spring. 
 
 Each of the objects also provides feedback to the user about their 

movement through the base of the object. The feedback area is lit from 

underneath by high-power LEDs that provide a color-coded cue to the 

participant about the error in their trajectory. The feedback area is an 

embedded circle inside the hexagon. Visual feedback is presented within 

this shape gives the impression of an overall, continuous color, without 

obvious sides or anything that could be misconstrued as information about 

location or spatiality of the error.  

Tasks being trained in the AMRR Home System 

 The objects were designed to accommodate therapy for people 

with impairments ranging from moderately severe (unable to perform 

complex movements due to difficulty in controlling the arm in space, 
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increased weakness in the arm and high reduced ranges of motion in the 

arm and hand) to mild (able to perform movements, including grasping, 

but with weakness or reduced speed or control). Tasks were derived from 

both the clinical AMRR therapy system (reach to a virtual target tasks – no 

physical manipulation required; reach to touch a button tasks – hand must 

touch a flat surface perpendicular to the table; reach to grasp tasks – hand 

must grasp a cone) and were newly developed for the home system 

(reach to grasp a cylinder – hand must grasp a cylinder and reach to 

grasp and transport a cylinder – hand must grasp a cylinder and move it to 

a different location on the table). Although each task uses a different 

shaped object, the feedback was consistently presented to allow 

strategies learned during any task to be genralizable to a different task. 

The main focus is train the motor components comprising the task, 

regardless of the end goal, in a way that can be used as a strategy during 

a variety of movements.  

Reaching movement for virtual, touch and grasp tasks 

 The virtual, reach to touch and reach to grasp tasks all follow the 

same basic movement pattern, and thus provide the participant with 

similar feedback. These reaches can be done sets of 10 with summary 

visual feedback presented after each reach, or in sets of 5 with summary 

visual feedback presented after each set of 5. The different levels of 

feedback allow the therapist to taper off the amount of real time feedback 

and for the participant to begin to have a higher-level understanding of the 
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movement over the course of multiple reaches. When real-time feedback 

is being used, the object presents a set of lighted feedback to 

communicate different states of the reach and aspects of movement. 

Figure 33 shows a pictorial representation of a reach in the context of the 

home system environment. 

Figure 33. Table (grey square) view of an example reach from the rest 
position to a target. 
 

The participant starts each reach with his hand on the rest position 

pad (State 1). State 1 is used to provide the participant with a break from 
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the task and requires no attention to the physical environment and all 

objects in the space are unlit. When a sufficient rest period has passed, 

the computer selects the target that the participant should reach to and 

turns on a green light within the main feedback space of the object, 

located in base, as an indication to ‘go.’ This light remains green as long 

as no trajectory error is detected. Each object has a reference trajectory 

associated with it for each location, as calculated from an average of a 

cohort of unimpaired movement data. This reference trajectory is shown in 

Figure 33 as the black dotted line between the rest position and target. 

The sensitivity of the trajectory feedback is determined by two spatial 

boundaries. The ‘zero zone,’ shown as the black lines surrounding the 

reference trajectory, is the area in which the movement is considered to 

have no error, and consequently no negative feedback. If the movement is 

within the hull, but outside of the ‘zero zone,’ a category 1 error is detected 

and yellow light feedback is provided to the participant. If the movement is 

outside of the hull (State 3), a category 2 error is detected and 

corresponding red feedback is given through the base of the tangible 

object. The design has to effectively communicate the information about 

the trajectory while not overloading the stroke survivor cognitively or 

distracting them from the movement. The error colors are distinctly 

different from the object color and the go cue and can be easily seen 

through peripheral vision during the reach, which allows them to continue 

to focus on the task instead of shifting their visual attention to understand 
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the information. The colored feedback is created by RBG LEDs embedded 

under the objects’ surfaces, which is composed of white, semi-translucent 

ABS plastic.  

The size of the hull is based on the sensitivity assigned by either 

the therapist or the adaptation protocol (based on previous input from the 

therapist). For all reaches, left and right sided errors are not uniquely 

displayed. This allows for the participant to be aware that some part of 

their trajectory is outside of the acceptable range, but does not burden 

them with real-time, detailed information about how the trajectory varies 

from the ideal model. The additional spatial information can either be 

extracted by the patient’s own visual and proprioceptive feedback or 

through the summary on-screen visual feedback presented after the 

reach.   

As the subject approaches the target, and enters the ‘grasping 

zone,’ the trajectory feedback stops responding to new errors in trajectory 

and remains fixed at the last category of error recorded (State 4). This 

allows the participant to focus on the manipulation portion of the reach 

without having to process additional feedback. When the task is 

successfully completed, a green light (separate from the trajectory 

feedback) turns on (State 5). This light is positioned in a place where it is 

easily visible to the participant during normal manipulation of the object 

and can be used to indicate quality of manipulation (dim green light 

represents the task was completed but with quality problems and a bright 
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green light represents the task was completed within the parameters set 

by the therapist. If the task is not completed after a certain period of time, 

all lights are turned off and the participant is instructed to return to rest). 

As the participant returns to rest, all feedback is turned off (State 6) and 

has a short rest between reaches. The reaching cycle repeats itself as 

dictated by the therapy protocol.  

Reach to touch a virtual point task. The virtual object requires a simple 

reach to touch (on the plane of the table) task. The participant must make 

contact with the center of the object to complete the task and they may do 

the entire task without lifting their hand from the table. This task requires 

the least complex joint movements and does not require a specific 

configuration of the hand during touch. This object is completely flat with a 

touch-sensitive center. The touch sensor electrode is comprised of 

aluminum mesh that is connected to a capacitive touch sensor IC (Atmel 

AT42QT1011-TSHR), chosen for its automatic calibration, drift 

compensation, and ease of use. Currently the sensitivity is set to require 

at least two fingers touching the object to constitute a touch, (i.e. the IC 

sends out a 5V signal when the capacitance has changed consistent with 

at least two fingers being in contact with the plastic top of the object) but 

this sensitivity can be adjusted through changes in the electronic circuit 

components. The electronics and feedback LEDs of the object is 

controlled by an embedded Arduino Pro Mini microcontroller 

(http://www.arduino.cc/), which transmits sensor and receives state data to 
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and from the system computer. Task start and trajectory feedback is 

shown the main circular area of the object and task completion feedback 

is shown in a thin ring around the feedback area, which allows the 

participant to see the feedback regardless of their hand position at the end 

of the reach. Figure 34 shows the virtual object highlighting each of the 6 

states as described above. 

 
Figure 34. Six states shown for the virtual object - Rest (State 1), Go/no 
trajectory error (State 2), Category 2 error (State 3), Entering the grasping 
(touching) zone (State 4), Task completion (State 5), Return to rest (State 
6). The spatial arrangement of these states during the reach can be seen 
in Figure 33. 
 
Reach to touch a button task. The button object requires a reach to touch 

to a surface above and perpendicular to the plane of the table. This object 

is raised, flat, 3” circular object with a touch-sensitive front. The touch 

sensor and accompanying electronics are exactly the same those of the 

virtual object described above. The participant must make contact with the 
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sensor to complete the task and they must at least raise part of their hand 

from the table to complete the task, making this task slightly more complex 

than the virtual task, but the hand may still be in a variety of postures to 

activate the sensor. If deemed necessary by the therapist, the sensor data 

can be combined with the hand position during the task to train targeting 

accuracy during touch. The large area in the base provides feedback on 

the trajectory and the task completion feedback is shown in an angled ring 

around the button, which allows the participant to see the feedback 

regardless of their hand position at the end of the reach. Figure 35 shows 

the button object in each of the 6 states described above. 

 
 

 
Figure 35. Six states shown for the button object - Rest (State 1), Go/no 
trajectory error (State 2), Category 2 error (State 3), Entering the grasping 
(touching) zone (State 4), Task completion (State 5), Return to rest (State 
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6). The spatial arrangement of these states during the reach can be seen 
in Figure 33. 
 
Reach to grasp a cone task. The cone target is based on a shape widely 

used in traditional rehabilitation therapy that encourages hand supination 

and grasping, which makes this task more complex than the previous two 

touch tasks.  The shape of the cone allows for a number of aperture sizes. 

Users who cannot extend their fingers fully can grasp the smaller top, 

while users who have a greater range of finger extension can grasp 

anywhere on the cone. The shape also allows users with a smaller range 

of motion in their fingers to use the shape to extend their fingers by sliding 

down the length of the cone while grasping. The cone is covered in 16 

force-sensitive resistors each in part of a voltage divider with a 2.2kOhm 

resistor (chosen to maximize sensitivity and range). The participant must 

exert the magnitude and spatial layout as determined by the therapist and 

system algorithm (described in section Classifying hand function). FSRs 

were chosen due to their low cost, ease of use and physical flexibility. The 

FSR sensors (via a 16-1 multiplexer) are read by an Arduino Pro Mini, 

which also controls the feedback LEDs and data communication. The 

large area in the base provides feedback on the trajectory and the task 

completion feedback is at the very top of the cone, which allows the 

participant to see the feedback when they have correctly grasped the 

cone. Figure 36 shows the cone object in each of the 6 states described 

above.  
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Figure 36. Six states shown for the cone object - Rest (State 1), Go/no 
trajectory error (State 2), Category 2 error (State 3), Entering the grasping 
zone (State 4), Task completion (State 5), Return to rest (State 6). The 
spatial arrangement of these states during the reach can be seen in 
Figure 33. 
 
Reach to grasp a cylinder task. The cylinder target also encourages hand 

supination and grasping, but it is a consistent diameter and requires the 

hand to fully achieve a certain aperture prior to grasp. The size of the 

cylinder is representative of a can or drinking glass that would be picked 

up during activities of daily living. The cylinder is covered in 32 force-

sensitive resistors. The grasp analysis and feedback are analogous to that 

of the cone but are described in more detail below (section Reach to grasp 

and transport task and section Classifying hand use). The large area in 

the base provides feedback on the trajectory and the task completion 

feedback is at the very top of the cylinder, which allows the participant to 
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see the feedback when they have correctly grasped the cone. The cylinder 

can be grasped on the table or 6 inches off the table to provide anti-gravity 

reach training. Figure 37 shows a picture of the cylinder object.  

 
Figure 37. Picture of the cylinder object. This object can be used to do 
reach and grasp tasks or reach to grasp and transport tasks.  
 
Reach to grasp and transport task. Although the reach to touch and grasp 

tasks provide a variety of hand positions and actions for the stroke 

survivor to practice, in reality most interactions humans have with their 

physical environments are not with stationary objects. Most objects 

generally can be picked up, transported, moved, or manipulated in a way 

that is much more complex than a simple grasp or touch. And the 

consequences of not having the strength, coordination or other ability to 

complete the manipulation are that the object may tip over, fall or have 

another undesirable outcome. The successful negotiation of these objects 

is how stroke survivors can relearn the activities of daily living that they 

may not currently be able complete and an effective stroke rehabilitation 

system must incorporate this type of task.  
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 Previously, all physical objects used in the AMRR system have 

been securely fastened to the table. Because the challenges faced by the 

stroke survivor in using their affected hand may have discouraged them 

from use or negatively affected their outlook on their rehabilitation, the 

system was designed to avoid any negative consequences for the 

participant as a result of not successfully completing the task. When the 

objects were securely attached to the table (both in the hospital system 

and initial versions of the home-based systems), the participant felt free to 

explore their movement and coordination abilities without risking 

damaging the object or knocking it down. This gives them a greater 

confidence in their movements. However, as the participants gains new 

strategies and confidence in their movements during training and can 

accurately and consistently reach the stationary objects and perform a 

grasp, there must be a next stage of training, especially in a home-based 

system that is intended for multiple months of use.  

 The next step in training will use an object that facilitates multi-

stage movements (e.g. grasping, lifting, transporting and placing/releasing 

an object). Although the task will be different, the feedback should remain 

consistent to encourage use of generalizable strategies, so the 

transportable object is the cylinder object that was previously described. 

Creating an object that can be moved unencumbered required a rethinking 

of the power and data transfer protocols used in the stable objects. The 

electronics related to sensing and task completion feedback are now 
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controlled through a separate Arduino Pro Mini that is embedded in the 

cylinder object. Power to the electronics is provided through a 

rechargeable 9-Volt battery and the data is transmitted through an X-Bee 

wireless module. The transportable cylinder is set into a base (consistent 

with the bases of the stable objects) that houses the trajectory feedback 

LEDs and a separate Arduino Pro Mini. The receptacle also has an 

embedded electromagnet that lines up to a steel disc in the bottom of the 

transportable cone when the cone is placed correctly in the receptacle. 

The electromagnet is used to keep the cone securely in place while the 

participant grasps the cone. The electromagnet can be activated at all 

times to provide a stable object during reach to grasp a cylinder task or 

turned periodically on and off during the transport task. Figure 38 shows 

the receptacle for on table reaches (left) and off table reaches (right).  

 
Figure 38. On and off table receptacles for the transportable Cylinder 
object, showing the electromagnet that bonds the object to the receptacle, 
providing a stable target 
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 The transportable cylinder is part of a more advanced task in the 

home system that requires multi-stage planning and execution. This task 

moves the participant from doing repetitive task reaches to a stable target 

to a more realistic, functionally relevant task. Because of this, the real-time 

feedback provided to the participant is greatly reduced. The participant no 

longer receives trajectory feedback from the base of the object and solely 

relies on the feedback for location information and state changes 

(completing a successful grasp in order to lift and transport the object. 

Similar to the stable grasp task, the transport task has a rest period 

between tasks where no lights are present (State 1). The receptacle with 

the cylinder in it then lights up green to signal the task has started (State 

2) and stays green throughout the reach, regardless of the trajectory 

performance. State 3 and 4 are exactly the same as the stable cylinder, 

with the top of the cylinder lighting up green when the grasp is 

successfully completed. State 5 is the stage of lifting and transporting the 

cone from one receptacle to the 2nd target location (which lights up green 

to indicate that is the location of the end goal of the task). Once the cone 

has been correctly placed in the receptacle, all lights are turned off to 

indicate the person should return their hand to the rest position. The task 

can then be performed in reverse (Target location 2 to target location 1). 

The spatial arrangement of the states for this task is shown in Figure 39. 

The top of the cylinder is also outfitted with 3 reflective markers (to create 

a rigid body). This will allow us to track the movement and orientation of 
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the cylinder throughout the transport. The cylinder motion capture data, 

combined with the wrist motion capture data will provide information about 

the relationship between the position of the hand and the cylinder, which 

will also provide information as to if the object was dropped. The cylinder 

may be transported between two receptacles that are on the plane of the 

table or between one receptacle on the plane of the table and one that is 6 

inches off the table.  

 
Figure 39. Table (grey square) view of an example reach and transport 
from the rest position to grasping the cone at Target 1 and transporting it 
to Target 2. 
 
Software modularity for interfacing with custom hardware 

 The objects were designed to work as a larger software system and 

my contribution was in creating a modular program that could work within 
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the structure of the overall home system software architecture or could be 

easily modified to work independently. The main goals of the software 

were to collect data via serial communication from the objects’ 

microcontrollers, synchronize the data received from the microcontrollers 

to the data received from the motion capture system, to evaluate the hand 

function in context of the task required by the specific object being used 

and to pass messages from the computer software to the object hardware. 

All code was written in Objective C through Cocoa for use on Mac OSX 

systems. Specific issues that were addressed were: determining ideal 

sampling and baud rates for the objects based on hardware limitations 

and communication protocols (i.e. wired USB connection vs. wireless 

XBEE connection); using the preprogrammed motion capture data 

sampling and time stamping verification to ensure the two data streams 

were being collected concurrently; integrating the object toolkit data 

collection and analysis software into the larger modular software of the 

home system; and creating classification schemes for evaluating hand 

function during manipulation of different objects.  

Classifying hand function based on object interaction  

 During interpretation of the control group study, it was discovered 

that while targeting was an important measure during reach to point or 

touch tasks, it became less important to measure during reach to grasp 

tasks. Since the home system uses both types of tasks, the evaluations 

will be subsequently be adapted to better reflect the aspects of movement 
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quality important to the specific task being performed. During the reach to 

touch tasks (as in with the virtual object and the button object), the 

evaluation will involve measuring both if the hand activated the sensor by 

coming in contact with the object and where the hand was during the 

activation, as measured by the motion capture data from the wrist. This 

measure of targeting will reflect how well the participant was able to create 

a movement strategy to accurate get to the target. As the person becomes 

more accurate and stable in their reach, the error at the manipulation 

phase of the reach should be reduced.  

 During reach to grasp tasks, targeting became less of an issue, 

presumably because participants had a target that they were actually 

holding on to. The sensor layout on the cone and transportable cylinder 

objects allow for a reading of relative forces exerted on the object in 

multiple locations. This sensor data can be used to measure the amount 

of force and the orientation of the force exerted to determine if a grasp 

was successfully applied to the object. This analysis is especially 

important when determining the quality of a grasp before transport. The 

grasp needs to be stable, with an equal and opposite amount of force 

applied by the thumb and at least one finger, before the object can be 

lifted. The transportable cylinder also uses motion capture markers 

embedded into the top of it to track the stability and efficiency of the path 

taken during the transport. 
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 All of the evaluations are made in the context to unimpaired subject 

data to provide a reference of impairment, similar to the KIM evaluations. 

This evaluation is then used to provide feedback to the participant in 

hopes of training a more accurate and efficient reach and object 

manipulation. The objects all have a lighted section that is specifically 

used for manipulation feedback. This light can be bright green – indicating 

the evaluation fell within therapist specified limits in all aspects (i.e. both in 

sensor activation and end point error), dim green – indicating the 

evaluation fell within the limits for one aspect (i.e. touched the object, but 

with a large end point error), or no light – indicating the evaluation was not 

met for either aspects. This type of feedback give the participant a rough 

idea of how well they are doing but expects them to self-evaluate to 

determine the cause of the specific feedback they are receiving.  

One of the main features of the hand evaluation is that it is 

extracted solely from external sensing solutions, both a smarter motion 

capture system and the sensors on the objects, instead of requiring 

additional sensing or equipment put on the hand. The ultimate aim of this 

analysis will be to provide therapists with an informative measure of hand 

function without introducing additional burden on the clinical staff or 

participant during the therapy. This information can be used as a measure 

of therapy effectiveness and also to drive task adaptation, as the reaching 

KIM is currently used.  

Future work - Validity and reliability testing with a person with stroke 
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 While I have designed the tangible object tool-kit with knowledge of 

the limitations faced by stroke survivors during home-based therapy, the 

system has not yet been fully user tested. This next step is crucial to 

finalizing the designs and ensuring a smooth and easy workspace set up 

by someone with stroke or by their caregiver. A pilot study with stroke 

survivors could be used to answer the following questions.   

Usability. The physical environment was designed to be able to be 

interchanged using a one-handed approach. However, some stroke 

survivors have impairments to both sides of their body and it needs to be 

determined if the objects require too much dexterity to interchange. All 

possible scenarios for incorrect object placement need to be explored and 

safeguards and alerts should be put in place. The participant will also be 

lead through setting up the physical environment through screen based 

prompts and it is yet to be shown that these prompts lead to correct set up 

with minimal frustration or error. 

Reliability of software and hardware performance and task evaluation 

 The system, as a whole, has not yet been used in someone’s 

house for an extended period of time. Further study is needed to ensure 

that the software and hardware can run for an extended period without 

crashing or malfunctioning. The sensors also need to be evaluated for the 

ability to detect and evaluate the performance of stroke survivors of many 

different types of impairments and to integrate those varying performances 

into the evaluation algorithm. Along those same lines, while the objects 



141 

were designed to provide tasks of different degrees of complexity and 

function, it needs to be shown that the objects can provide challenging 

therapy to a wide range of stroke survivors over the long-term, without the 

therapy becoming too easy or too repetitive. 

Feedback comprehension 

 The objects are embedded with trajectory feedback in their bases 

and task completion feedback in the site of the manipulation. Although 

unimpaired subjects easily understand this feedback, it needs to be shown 

that people with stroke can connect the trajectory of their arm to the 

feedback seen in the base of the object. This feedback should also be 

intuitively linked to the summary, screen-based feedback of the trajectory 

after the reach. Successful knowledge of inaccuracy both during and after 

the reach will maximize the ability of the stroke survivor to correct their 

movement. The same logic needs to be applied to task completion, so the 

participant can distinguish between the dimmed and bright green lights 

and correct the hand manipulation accordingly.  

Conclusions  

 My work on creating a modular toolkit of tangible sensing objects 

represents a key contribution to more fully integrating virtual reality 

environments with physical tasks to provide a optimally enriched mixed 

reality environment for stroke rehabilitation. The toolkit provides a way for 

stroke survivors to perform a variety of tasks at a variety of locations within 

the comfort of their own home. These tasks are also integrated into a 



142 

larger system that tracks and provides feedback on multiple aspects of 

movement quality and function. Although this dissertation only describes 

my development of the objects, the built-in modularity and ease of 

reproducibility by exploiting digital rapid prototyping techniques will allow 

my work to be carried on to explore the remaining unanswered questions 

or to be used in other rehabilitation environments.  
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Chapter 5 

CONCLUSIONS AND FUTURE WORK 

 Administering effective therapy to people who have had a stroke 

remains a huge challenge in health care. Although stroke is the leading 

cause of disabilities in the US and upper extremity impairments can 

greatly reduce a person’s quality of life and ability to perform activities of 

daily living, the best approach for achieving recovery is still poorly 

understood. The advent of new motion sensing systems, computational 

models of movement and greater understanding on how to best achieve 

motor learning has led to an increased interest by the rehabilitation 

community in using novel, technology driven therapy interventions. The 

AMRR system is one such intervention that has been shown to effectively 

improve measures of movement quality and function during a control 

group study and also shows promise as a home-based therapy system. 

Conclusions 

 This dissertation describes the work I have done to formalize the 

administration of adaptive mixed reality rehabilitation (AMRR) based on 

the results of a small pilot study. The complexity of analyzing the pilot data 

demonstrated a need for metrics of movement quality that could be easily 

and accurately combined across subjects. During the pilot study, the 

therapist increasingly chose to employ physical objects to provide a target 

to the reach, which led me to begin development on a larger suite of 

objects that are suitable for use in the clinic and during home based 
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therapy. The pilot study results demonstrated positive outcomes on a per 

participant level, but a larger study to compare changes in movement 

quality and function made by stroke survivors who had received AMRR 

therapy or tradition upper extremity therapy was needed. During this 

control group study, I took the lead in developing the assessment metrics 

and in overseeing the evaluation visits. I also developed the data analysis 

and statistical comparison procedures to successfully evaluate the validity 

of the hypothesis that administering abstract audio and visual feedback 

about kinematic elements of the therapy task would be more effective in 

improving movement quality than traditional therapy. The data showed 

evidence that AMRR therapy could increase function and movement 

quality after 4 weeks of therapy, however the data failed to show an 

increase in participant-perceived usage or movement quality of the upper 

extremity during activities of daily living. This result reinforced the need for 

a home-based system that could provide effective mixed reality therapy at 

a low-cost and at increased comfort and convenience to the participant. 

As part of the development of the home-based system, I designed a 

collection of physical objects that provide targets for multiple kinds of 

therapy task and an integrated hardware and software structure that 

provides feedback on kinematic performance during the reach and senses 

and evaluates hand function during manipulation of the object.  

 Therapists and researchers are beginning to embrace quality of 

movement alongside functional ability as important components of the 
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recovery process after stroke; however, how to measure movement 

quality in a nuanced, objective, and repeatable way has not become 

standardized. This dissertation outlines a first attempt to use kinematic 

data to evaluate movement quality in the context of a pilot study using 

mixed reality rehabilitation. Although a detailed analysis of kinematic 

attributes was extremely helpful in pinpointing areas of impairments and 

tracking the participants’ progress throughout therapy, the data could not 

be easily combined to provide aggregate descriptions of impairment. The 

raw data values also provided no context to the researchers or therapists 

about where that data fell in the spectrum of impaired and unimpaired 

movement, like most other clinical scales are able to do. Raw kinematic 

values were informative to researchers who were already familiar with 

their significance, but were too complex for most people to quickly 

understand or utilize during therapy. 

 The development of the Kinematic Impairment Measure attempted 

to address the issue of presenting kinematic data in a standard 

straightforward way that could be used by people with only a basic 

understanding of the algorithm used in the calculations. My work on the 

KIM was contributing towards the theoretical basis underlying its 

development and to evaluate its use in the control group study. During that 

study, I facilitated the therapist’s understanding of the KIM and advised 

her on how to use the values in tracking the participants’ progress as well 

as in making real-time adaptations to the therapy. The data analysis I 
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performed for the control group study also demonstrated the KIM could be 

used to successfully describe the detailed impairments of individuals, as 

well as the overall characteristics of groups of stroke survivors. The 

measure proved useful in combining multiple parameters prior to statistical 

analyses, even if the parameters had very different raw value scales. The 

use of the KIM as a measure of movement quality in a control group study 

represents the first example of a standardized kinematic-based evaluation 

for stroke and demonstrates the value these types of measures afford to 

studies of stroke rehabilitation.  

 The control group study, carried out in partnership with Banner 

Baywood Medical Center, provided the data I have used to demonstrate 

that AMRR therapy can be successfully administered in the clinic and can 

promote gains in both movement quality and function in trained and 

untrained tasks among a diverse group of stroke survivors. The study was 

a collaborative effort between many researchers and clinicians and the 

main focus of my work was in the study design, evaluation metrics and 

data analysis and interpretation. Originally, the therapist was asked to use 

a guideline of measured milestones and therapy progressions to 

administer AMRR therapy in an attempt to provide equivalent dosage and 

intensity of therapy to all participants receiving AMRR therapy. However, 

as I observed the therapist performing her work, it became clear that the 

impairments of stroke survivors are not best addressed with a regulated 

schedule of therapy. The therapist had to be free to change the feedback 
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parameters that were not achieving desired outcomes and to tailor the 

tasks and therapy foci to meet the specific therapy needs of the individual 

in real time. The case studies presented in this dissertation show that two 

participants, stroke survivors who entered therapy with extremely different 

initial impairments and received AMRR therapy that addressed their needs 

through adaptive manipulation of the tasks and feedback, both saw 

remarkable improvements in movement quality measured by the KIM. 

Function, as measured by the Wolf Motor Function Test, was also 

increased in both participants. Allowing the therapist to be flexible in her 

application of certain therapy features lead to an experiment where the 

intervention group received therapy that was equal in dosage among all 

participants, yet varied based on the needs of the individual. The results 

shown here demonstrate that a rigorous scientific evaluation of the AMRR 

system is possible, even if each participant did not receive the exact same 

therapy. Stroke survivors require highly adaptive and personalized therapy 

to advance their recovery most effectively and this study has shown that 

this is possible, even within a controlled experiment. 

 Participants in the traditional therapy group also received 

individualized therapy guided by the therapist but without the added audio 

and visual feedback driven by kinematic performance. The evaluation 

measures that were used to determine outcomes in both groups during 

the pre- and post-evaluation visits were carefully selected to elucidate 

improvements in multiple areas, from multiple perspectives and included 
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kinematic assessments, therapist rated clinical scales and participant 

answered questionnaires. The AMRR group demonstrated improvements 

in their kinematic measures for both the trained task (reach to grasp a 

cone) and an untrained task (reach to touch a lighted button). This 

indicates that the motor learning that occurred during AMRR therapy was 

able to generalize to performing tasks that were similar (both involved 

reaching) but had different physical or cognitive requirements (the buttons 

were located in a space that required larger joint movements and the 

location of the target button was unknown until directly prior to the 

movement). Providing participants with genralizable opportunities for 

motor learning is extremely important to ensuring that they can utilize the 

strategies in a variety of everyday situations. The group who received 

traditional reaching therapy did not have significant improvements in 

measures of movement quality during the trained or untrained tasks.  

 The clinical scale results demonstrated that the AMRR and Control 

groups similarly improved their ability to perform the tasks comprising the 

Wolf Motor Function Test, indicating an increase in overall function. 

However, while the AMRR and Control groups both increase their scores 

on the Fugl-Meyer Assessment scale, the Control group had a significantly 

larger increase. Although the AMRR therapy was highly adaptable in 

terms of what feedback could be used and which of the three types of 

targets could be used, it was limited in terms of the target locations and 

because of the lack of fine manipulation used in interacting with the 
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objects. This may have contributed to the lesser increase in the FMA since 

the FMA uses measures of range of motion and many different types of 

grasps and movements in the evaluation. Traditional therapy had a wider 

range of physical tasks and objects available to the therapist, allowing her 

to provide therapy targeted towards hand function and range of motion 

better than she could in the AMRR environment.  

 After evaluating the participant-answered questionnaires, 

especially the MAL, it was also clear that participants were not necessarily 

transferring the strategies they had learned during therapy to activities of 

daily living or that they were either unaware that they were doing so or 

unable to accurately gauge how much and how well they were using their 

arm throughout the day. The clinical AMRR system focuses on movement 

quality related to the arm and torso, but lacks a way to provide detailed 

feedback on the hand function. And although the targets could be raised 

off of the table to provide a reach against gravity, there were no instances 

of tasks that required the participant to lift an object or work on any 

strength training. In daily life, most activities of daily living involve exerting 

force on a tangible object in specific way to produce a desired translation 

or rotation of the object. Because these movements were not practiced 

during AMRR therapy, the participants may not have felt comfortable 

performing those types of tasks at home. Further versions of AMRR 

therapy need to take this limitation of the clinical system into account to 

make sure the therapy tasks more closely mimic useful activities of daily 
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living and require the use of corresponding muscles to connect to the 

kinematic feedback being received. However, incorporating additional, 

more complex tasks to the system will require long-term training that may 

not be feasible in an inpatient or outpatient clinic. 

 Therefore, the next step in the AMRR rehabilitation project was to 

transition the principles of the clinical system to a low cost and easy to use 

system for home rehabilitation. Acknowledging that the AMRR therapy 

could be enhanced by additional tasks and by better connecting the 

therapy to every day life, I focused my efforts on creating a toolkit of 

physical objects that could be used in the home AMRR system. The first 

version of the home system featured three stationary cone objects. These 

objects also did not offer any feedback or interaction beyond a lighted go 

cue. Participants reported that this set up was very boring and did not 

provide much motivation to continue the therapy. I integrated the 

participants’ feedback into my new designs to create a system of objects 

that can be easily interchanged by the participant and provide a variety of 

tasks that relate to everyday activities. This tool kit allows for feedback to 

be given in the physical space to start better transferring strategies outside 

the therapy environment, yet could also be easily modified to work with a 

variety of mixed reality environments. The entire tool kit was designed to 

be modular and all the physical aspects were created from digital files, 

allowing other users to easily change or reproduce the designs. The toolkit 

also contains an integrated hardware / software solution that allows for the 
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objects to sense and evaluate hand function and receive messages from 

the system to provide feedback based on evaluations of the reach. The 

object toolkit will be used in an upcoming study to determine the 

participant usability, effectiveness of the hand function evaluation 

algorithms and ensure that both function and movement quality can be 

successfully improved using the home-based mixed reality rehabilitation 

system. 

Future work 

 The work I have done with the AMRR system was focused 

towards proving that AMRR could be successfully administered in a 

clinical setting and would contribute to increases in function and 

movement quality among a small convenience sample of stroke survivors. 

While this objective was accomplished, the AMRR system needs further 

validation and development before it could become widely used at a 

clinical level. Successful use of AMRR depends on the administering 

therapist correctly utilizing the KIM evaluations and collaborating with 

researchers to select the optimal feedback streams and sensitivities and 

therapy environments to induce the desired improvements. The control 

group study only used one therapist to administer the therapy. Future work 

must expand the study of AMRR therapy to different locations to ensure 

that the AMRR system is easy to use and understand by therapists with a 

variety of backgrounds and training. Careful evaluations of the data must 
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also be performed to determine if and how the administering therapist 

influences the study outcomes.  

 Additional work also needs to be done on the physical object 

toolkit to provide the best possible therapy. Currently, grasp is only 

detected by opposing forces being applied to the object, with very crude 

thresholds for vertical force application and force magnitude having been 

garnered from unimpaired subjects. This classification is useful in giving 

the participant a general idea if the grasp is adequate or not, but does not 

provide any amount of detail on what parts of the grasp (such as which 

fingers are not applying enough force, specific placement of the fingers vs. 

the object’s center of gravity, or insufficient pre-grasp aperture of the 

fingers) need to be addressed. Similarly to the KIM calculations for the 

arm movement, additional data can be collected from a number of 

participants with varying hand impairments to create a more detailed 

evaluation for the hand.  

 The current version of the home system also only utilizes a limited 

joint space (all targets are directly in front of the participant and require the 

hand to approach from the front to complete the proper manipulation). 

Additional objects could be created that require more complex sets of joint 

movement or that require more fine manipulation by the fingers. Since the 

objects were designed to be modular and the feedback is generalized 

across all tasks, the expansion of the toolkit should be straightforward. As 

the manipulations become more complex, following the logic of grasp 
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classification above, more data would need to be collected from 

unimpaired and impaired subjects to provide the hand function evaluations 

that provide useful information about the task being performed. 

 If impairments of hand function are being adequately addressed 

through a variety of tasks and feedback during AMRR therapy, the 

strategies learned during therapy should begin to better transfer to 

activities of daily living. Full recovery after stroke can be characterized by 

normal usage of the affected body structures with the same frequency and 

using the same motor strategies as before the stroke. Participants should 

be encouraged, motivated and empowered to use the skills learned during 

therapy in their everyday lives to better enhance their recovery. The best 

way to track hand and arm usage and provide the participant with the 

proper information and feedback is a very important issue to tackle in the 

future.  

 Finally, while the AMRR system is based on a strong foundation of 

motor learning, media theory, and physical rehabilitation principles, it has 

only been proven effective in a small group proof of principle study. A full 

randomized control trial is needed to confirm that AMRR provides an 

added benefit to therapy following a stroke beyond what is normally 

gained through usual care. A large clinical trial will also include stroke 

survivors with different lesion locations, times post stroke and impairment 

profiles, allowing correlations and relationships to be drawn between 

clinical and demographic parameters and the effectiveness of certain 
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therapy and feedback types. This would be a huge step towards 

establishing engaging, effective, semi-automated adaptive therapy that 

can improve both the function and movement quality of people following 

stroke.  

 Once the system has been thoroughly investigated through a 

larger study to determine the best clinical practices for administering 

mixed reality rehabilitation in the home and in the clinic, more practical 

matters will have to be considered. Specifically, the commercial viability of 

producing a system to be used unsupervised in the home will need to be 

analyzed, as well as demonstrating that the system has the potential to 

augment overall recovery enough to justify the cost. Additional work can 

also be done to incorporate this system into currently installed 

technologies in the home, such as a television or computer, to reduce 

overall costs and ensure the system is affordable to all who would like to 

use it.  
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