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ABSTRACT

One explanation for membrane accommodation in response to a slowly ris-

ing current, and the phenomenon underlying the dynamics of elliptic bursting

in nerves, is the mathematical problem of dynamic Hopf bifurcation. This

problem has been studied extensively for linear (deterministic and stochastic)

current ramps, nonlinear ramps, and elliptic bursting. These studies primarily

investigated dynamic Hopf bifurcation in space-clamped excitable cells. In this

study we introduce a new phenomenon associated with dynamic Hopf bifurca-

tion. We show that for excitable spiny cables injected at one end with a slow

current ramp, the generation of oscillations may occur an order one distance

away from the current injection site. The phenomenon is significant since in

the model the geometric and electrical parameters, as well as the ion chan-

nels, are uniformly distributed. In addition to demonstrating the phenomenon

computationally, we analyze the problem using a singular perturbation method

that provides a way to predict when and where the onset will occur in response

to the input stimulus. We do not see this phenomenon for excitable cables in

which the ion channels are embedded in the cable membrane itself, suggesting

that it is essential for the channels to be isolated in the spines.

i



ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Steven M. Baer, for his outstanding

guidance and support during this research. I would also like to thank Drs.

Sharon Crook, Ranu Jung, Zdzislaw Jackiewicz, and Carl Gardner for their

invaluable expertise.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Membrane accommodation and dynamic Hopf bifurcation . . . 1

1.2 Previous results on dynamic Hopf bifurcation in excitable sys-

tems from neuroscience . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Main result of this work . . . . . . . . . . . . . . . . . . . . . 5

2 TWO FITZHUGH-NAGUMO SPINES COUPLED VIA A PASSIVE

CABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Review of results for the space-clamped FitzHugh-Nagumo model

injected with a slowly rising current ramp . . . . . . . . . . . 8

2.2 Two FitzHugh-Nagumo spines coupled via a passive cable, with

slow current ramp injected at one end . . . . . . . . . . . . . . 10

Reduced model obtained via the quasi-static approximation . 12

Numerical solutions of reduced model and WKB prediction for Ij 14

WKB prediction for location at which oscillations arise . . . . 19

2.3 Effect of varying stem conductances . . . . . . . . . . . . . . . 22

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 RESPONSE OF THE FITZHUGH-NAGUMO SPINY CABLE TO

A SLOW CURRENT RAMP . . . . . . . . . . . . . . . . . . . . . 30

3.1 Continuum model of the FitzHugh-Nagumo spiny cable . . . . 30

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

WKB prediction for Ij . . . . . . . . . . . . . . . . . . . . . . 34

WKB prediction for the location at which oscillations arise. . . 38

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iii



CHAPTER Page

Low spine stem conductance . . . . . . . . . . . . . . . . . . . 41

Intermediate spine stem conductance . . . . . . . . . . . . . . 43

High spine stem conductance . . . . . . . . . . . . . . . . . . 51

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 RESPONSE OF FITZHUGH-NAGUMO AND HODGKIN-HUXLEY

AXONAL CABLES TO A SLOW CURRENT RAMP . . . . . . . 62

4.1 FitzHugh-Nagumo axonal cable . . . . . . . . . . . . . . . . . 62

4.2 Results: FitzHugh-Nagumo axonal cable . . . . . . . . . . . . 63

Response to a slow current ramp . . . . . . . . . . . . . . . . 63

Complete accommodation to a slow linear current ramp from

I0 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Complete accommodation to a slow linear current ramp from

I0 = 0 in the Hodgkin-Huxley axonal cable . . . . . . . . . . . 70

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Comparison of responses of high-stem-conductance FitzHugh-

Nagumo spiny dendritic cable and FitzHugh-Nagumo

axonal cable to a slow current ramp . . . . . . . . . . . 75

Complete accommodation to a slow linear current ramp from

I0 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 DISCUSSION AND FUTURE DIRECTIONS . . . . . . . . . . . . 79

5.1 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Remarks on boundary conditions . . . . . . . . . . . . . . . . 82

5.3 Possible applications and directions for future work . . . . . . 83

Slow-rising synaptic currents into the dendritic shaft . . . . . 83

Pain and ectopic firing . . . . . . . . . . . . . . . . . . . . . . 84

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
iv



CHAPTER Page

APPENDIX

A DERIVATION OF ONSET CONDITION . . . . . . . . . . . . . 88

v



LIST OF FIGURES

Figure Page

1 Gss1 = 0.05, Gss2 = 0.01. Re(λ(I)) versus I for the four eigenvalues

associated with the system. . . . . . . . . . . . . . . . . . . . . . 14

2 Gss1 = 0.05, Gss2 = 0.01. WKB prediction for Ij in response to

the slow linear current ramp I(t) = 0.5 + εt. . . . . . . . . . . . . 15

3 Gss1 = 0.05, Gss2 = 0.01. I(t) = 0.5 + εt. Top: Ij obtained from

numerical solutions. Bottom: Time course of spinehead potentials

for the ramp speed ε = 0.001. . . . . . . . . . . . . . . . . . . . . 16

4 Gss1 = 0.01, Gss2 = 0.05. Re(λ(I)) versus I for the four eigenvalues

associated with the system. . . . . . . . . . . . . . . . . . . . . . 17

5 Gss1 = 0.01, Gss2 = 0.05. WKB prediction for Ij in response to

the slow linear current ramp I(t) = 0.5 + εt. . . . . . . . . . . . . 17

6 Gss1 = 0.01, Gss2 = 0.05. I(t) = 0.5 + εt. Top: Ij determined from

numerical solutions. Bottom: Time course of spinehead potentials

for the ramp speed ε = 0.001. . . . . . . . . . . . . . . . . . . . . 18

7 Top: WKB prediction for Ij in response to the slow linear ramp

I(t) = 0.5 + εt. Gss1 = 0.05, Gss2 = 0.01. Bottom: Same, for the

case Gss1 = 0.01, Gss2 = 0.05. . . . . . . . . . . . . . . . . . . . . 20

8 Gss1 = 0.05, Gss2 = 0.01. I(t) = 0.5 + εt. Top: WKB prediction

for Ij. Middle: Ij determined from numerical solutions. Bottom:

Time course of spinehead potentials for the ramp speed ε = 0.001. 21

9 Values of I satisfying Re(λ(I)) = 0; Gss1 is held fixed at 0.01

while Gss2 is allowed to vary. The two spines remain relatively

independent, each possessing its own two Hopf points. . . . . . . 23

10 Values of I satisfying Re(λ(I)) = 0; Gss1 is held fixed at 0.2 while

Gss2 is allowed to vary. . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



Figure Page

11 Gss1 = Gss2 = 0.2. Re(λ(I)) versus I. The system has two Hopf

points for these choices of stem conductance. . . . . . . . . . . . . 24

12 Gss1 = Gss2 = 0.2. WKB prediction for the apparent firing thresh-

old Ij and the location at which oscillations arise in response to the

slow linear current ramp I(t) = 0.42 + εt. . . . . . . . . . . . . . . 25

13 Gss1 = Gss2 = 0.2. I(t) = 0.42 + εt. Top: Ij obtained from

numerical solutions. Bottom: Time course of potential in the two

spineheads for the particular ramp speed ε = 0.0001. . . . . . . . 26

14 Gss1 = Gss2 = 0.2. WKB prediction for the apparent firing thresh-

old Ij and the location at which oscillations will arise in response

to the slow linear current ramp I(t) = 0.3 + εt. . . . . . . . . . . . 27

15 Gss1 = Gss2 = 0.2. I(t) = 0.3+εt. Top: Ij obtained from numerical

solutions. Bottom: Time course of potential in the two spineheads

for the particular ramp speed ε = 0.0001. . . . . . . . . . . . . . . 28

16 Re(λ(I)) for the eigenvalue responsible for the onset of instability

under the WKB prediction. 75 uniformly distributed spines on a

passive cable of length L = 3. Gss = 0.1 for all spines. . . . . . . . 36

17 WKB prediction for Ij in response to the slow current ramp I(t) =

1.25 + εt, ε→ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

18 Ij obtained from numerical solutions of the FitzHugh-Nagumo spiny

cable’s response to the slow current ramp I = 1.25 + εt. . . . . . . 38

19 WKB prediction for the location along the FitzHugh-Nagumo spiny

cable at which oscillations arise. . . . . . . . . . . . . . . . . . . . 40

20 Spatial profiles of the potential in the spineheads at a few instants of

time near the onset of instability, obtained from numerical solutions. 41

vii



Figure Page

21 Spiny cable of length L = 3 with 75 uniformly distributed spines

and uniform Gss = 0.02. Top: Real portion of all eigenvalues with

nonzero imaginary part. Bottom: Zoomed-in view. . . . . . . . . 42

22 Uniform Gss = 0.02. Left : WKB prediction of Ij in response to the

slow ramp I(t) = 3 + εt, ε → 0. Right : Ij observed in numerical

solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

23 Uniform Gss = 0.02. I(t) = 3 + εt. Top: WKB prediction of

the location at which oscillations arise. Bottom: Time courses of

spinehead potential. Ramp speed ε = 0.007. . . . . . . . . . . . . 44

24 Spiny FitzHugh-Nagumo cable of length L = 3 with 75 uniformly

distributed spines and uniform Gss = 0.1. Top: Re(λ) versus I.

Middle: Zoom-in. Bottom: Eigenvalue satisfying onset condition. 46

25 Uniform Gss = 0.1. Left : WKB prediction of Ij in response to the

slow current ramp I = 2.25 + εt, ε → 0. Right : Ij observed in

numerical solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

26 Uniform Gss = 0.1. I(t) = 2.25 + εt. Top: WKB prediction

for the location at which oscillations will arise. Middle/Bottom:

Comparison with numerical solutions, for the ramp ε = 0.0025. . 48

27 Uniform Gss = 0.1. Left : WKB prediction of Ij in response to the

slow current ramp I = 1.25 + εt, ε → 0. Right : Ij observed in

numerical solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

28 Uniform Gss = 0.1. I(t) = 1.25 + εt. Top: WKB prediction

for the location at which oscillations will arise. Middle/Bottom:

Comparison with numerical solutions, for the ramp ε = 0.0025. . 50

viii



Figure Page

29 Uniform Gss = 0.1. Left : WKB prediction of Ij in response to the

slow accelerating current ramp I = 2.25 + (εt)2, ε → 0. Right : Ij

observed in numerical solutions. . . . . . . . . . . . . . . . . . . . 51

30 Uniform Gss = 0.1. I(t) = 2.25 + (εt)2. Top: WKB prediction

for the location at which oscillations will arise. Middle/Bottom:

Comparison with numerical solutions, for the ramp ε = 0.001. . . 52

31 Spiny FitzHugh-Nagumo cable of length L = 3 with 360 uniformly

distributed spines and uniform Gss = 0.35. Top: Re(λ) vs. I.

Bottom: Re(λ) vs. I for the only eigenvalue crossing imaginary axis. 53

32 Uniform Gss = 0.35. WKB prediction of Ij in response to the slow

current ramp I = 5.5 + εt, ε→ 0. . . . . . . . . . . . . . . . . . . 54

33 Uniform Gss = 0.35. Ij observed in numerical solutions of the spiny

cable’s response to the slow current ramp I(t) = 5.5 + εt. . . . . . 55

34 Uniform Gss = 0.35. I(t) = 5.5 + εt. Top: WKB prediction

for the location at which oscillations will arise. Middle/Bottom:

Comparison with numerical solutions, for the ramp ε = 0.0002. . 56

35 Gss = 0.35. Left : WKB prediction of Ij in response to the slow

current ramp I(t) = 4.25 + εt, ε → 0. Right : Ij observed in

numerical solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

36 Gss = 0.35. I(t) = 4.25+εt. Top: WKB prediction for the location

at which oscillations will arise. Middle/Bottom: Comparison with

numerical solutions, for the ramp ε = 0.0005. . . . . . . . . . . . 58

37 FitzHugh-Nagumo cable of length L = 2.5, where a = 0.02, b =

0.05 and γ = 0.04. Shown is the real portion of the one complex-

conjugate eigenvalue pair with nonzero imaginary part. . . . . . . 64

ix



Figure Page

38 FitzHugh-Nagumo cable of length L = 2.5. Left : WKB prediction

of Ij in response to the slow current ramp I = 3.5 + εt, ε → 0.

Right : Ij observed in numerical solutions. . . . . . . . . . . . . . 65

39 L = 2.5 cable. I(t) = 3.5 + εt. Top: The WKB method pre-

dicts that oscillations will arise over the full length of the cable.

Middle/Bottom: Numerical solutions for ε = 0.001 . . . . . . . . . 66

40 L = 2.5 cable. Left : WKB prediction of Ij in response to the slow

current ramp I = 2.5 + εt, ε→ 0. Right : Ij observed in numerical

solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

41 Cable length L = 2.5. I(t) = 2.5 + εt. Top: The WKB method

predicts that oscillations will arise over the full length of the cable.

Middle/Bottom: Numerical solutions for ε = 0.001 . . . . . . . . . 68

42 Ij observed in numerical solutions of the axonal cable PDE subject

to the ramp I(t) = εt versus inverse ramp speed, for FitzHugh-

Nagumo cables of several lengths. . . . . . . . . . . . . . . . . . . 69

43 FitzHugh-Nagumo cable with parameters a = 0.14, b = 0.05, γ =

2.54. Re(λ) versus I. Left : L = 1. Ij is predicted to exist. Right :

Cable of length L = 2.5. Complete accommodation predicted. . . 70

44 Ij observed in numerical solutions of the axonal cable PDE subject

to the ramp I(t) = εt versus inverse ramp speed, for Hodgkin-

Huxley cables of several lengths at temperature 6.3 ◦C. . . . . . . 73

45 Plot of Hopf points versus cable length L, for a Hodgkin-Huxley

cable at 6.3 ◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

46 Plot of Hopf points versus cable length L, for a Hodgkin-Huxley

cable at 18.5 ◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



Chapter 1

INTRODUCTION
1.1 Membrane accommodation and dynamic Hopf bifurcation

Nerve membrane exhibits a property known as excitability: a constant in-

jected current elicits sustained, large-amplitude oscillations in the membrane

electrical potential provided that the current falls into a specific range [IL, IU ],

called the firing range. In 1849 Emil du Bois-Reymond found that injecting

a nerve fiber with a very slowly rising current ramp raises the firing thresh-

old [7]. In 1908 Walther Hermann Nernst named this phenomenon “accom-

modation” [21]. In 1964, Vallbo [28] demonstrated the existence of a minimal

ramp speed (increase in current per unit time) below which certain excitable

tissues will not fire, no matter how large the value of injected current becomes;

I refer to this situation as “complete accommodation.”

In 1952, Hodgkin and Huxley published a mathematical model of an ex-

citable nerve fiber developed from their experiments with the squid giant axon,

which established that the phenomenon of excitability is caused by the open-

ing and closing of voltage-gated ion channels embedded in the nerve mem-

brane [11]. In the standard Hodgkin-Huxley model, as well as the simpler

FitzHugh-Nagumo model [9], there exists an interval I1 < I < I2 for repet-

itive spiking, where I1 and I2 denote Hopf bifurcations. At a Hopf point,

there is an abrupt onset of repetitive spiking at a nonzero firing frequency.

This is called type 2 dynamics [27]. Hence, for Hodgkin-Huxley-like excitable

systems, with type 2 dynamics, the transition through the constant-current

firing threshold by means of a slow current ramp is mathematically a case

of slow passage through a Hopf bifurcation, also known as “dynamic Hopf

1



bifurcation.”

The problem of dynamic Hopf bifurcation has been investigated by many

authors; for early theoretical treatments see [20] and [14]. Baer, Erneux and

Rinzel [1] took a different approach and applied the WKB (Wentzel, Kramers,

and Brillouin) method, a technique for obtaining an asymptotic expansion for

the solution to a linear homogeneous differential equation with slowly-varying

coefficients [4]. These authors obtained the following result. Suppose that one

has an analytic system with constant parameter I which undergoes a Hopf

bifurcation at I = IH , such that for I < IH the steady state is asymptotically

stable. Then if I is not constant but instead made to slowly vary according

to I(t) = I0 + εt, where I0 < IH and the ramp speed ε > 0 is very small, then

the onset of large-amplitude oscillations will not occur as soon as I attains

IH , but will be delayed by some amount of time, and appear at Ij > IH .

This phenomenon persists no matter how small the ramp speed ε becomes: as

ε→ 0, Ij does not approach IH .

The problem of determining the apparent firing threshold Ij is a singular

perturbation problem with small parameter ε, the ramp speed; this is why

Ij does not approach the static firing threshold IH as ε → 0. The formula

specifying Ij as a function of initial current I0 (the “onset condition”) was

derived by Baer, Erneux and Rinzel in [1] for the FitzHugh-Nagumo model

subjected to a slow linear current ramp. The onset condition dictates that

the further back I0 begins from IH , the larger will be the value Ij at which

the system actually loses stability; this was called the “memory effect” [1].

In [2] Baer and Gaekel considered slow monotonic current ramps of general

functional form and found that “accelerating ramps” such as I = I0 + (εt)2

result in a firing threshold exceeding that for a linear ramp, while “decelerating
2



ramps” such as I = I0 +
√
εt result in a lower firing threshold than for a linear

ramp.

Dynamic Hopf bifurcation is the proposed mechanism underlying elliptic

bursting, a firing pattern seen “in thalamic neurons, rodent trigeminal neu-

rons, and certain neurons found in the basal ganglia” [8]. It also arises else-

where in nature; for example, it is the proposed mechanism underlying the

spontaneous formation of targets in the unstirred Belousov-Zhabotinsky (BZ)

chemical reaction [10,24].

1.2 Previous results on dynamic Hopf bifurcation in excitable systems from

neuroscience

The first investigation of dynamic Hopf bifurcation in a model of an excitable

cell was Jakobsson and Guttman, 1980 [12], followed by Rinzel and Baer in

1988 [22]. In 1989, Baer, Erneux and Rinzel investigated the space-clamped

(no spatial extension) FitzHugh-Nagumo model subjected to a slowly rising

linear current ramp I = I0+εt, ε→ 0. They found that in general the apparent

firing threshold Ij exceeds the the constant-current firing threshold given by

the first Hopf point of the system [1]. In [2] Baer and Gaekel investigated

the FitzHugh-Rinzel model of elliptic bursting, in which the slow subsystem

describing the evolution of the current variable is bidirectionally coupled to the

FitzHugh-Nagumo fast subsystem. Dynamic Hopf bifurcation is responsible

for the alternation between silent and bursting phases in this model. Baer and

Gaekel noted that during the silent phase, the time course of the current is

of the form of a slow monotonic ramp, not necessarily linear, and derived an

onset condition to compute the duration of the silent phase; these estimates

were in excellent agreement with numerical solutions. Su [25] investigated the

3



response of a FitzHugh-Nagumo cable with sealed ends to a non-uniform linear

current ramp applied transversally to the entire cable membrane (the current

density varied over the length of the cable) and found that the delay effect

still holds.

An apparent counterexample to the delay effect was described in [12] by

Jakobsson and Guttman. They found that numerical solutions of the space-

clamped Hodgkin-Huxley model fail to accommodate to a slow linear current

ramp for very small ramp speeds. The apparent firing threshold initially in-

creases with decreasing ramp speed, consistent with the delay effect, but as

the ramp speed is further reduced the apparent firing threshold comes down

again; this same trend was seen in physical experiments on squid axon in-

jected with a linear current ramp. In [22] and [1] Baer, Erneux and Rinzel

showed that this apparent counterexample is due to roundoff error resulting

from the very large number of time steps needed to simulate a slow current

ramp. Jakobsson and Guttman used single precision arithmetic; when double

precision was used, numerical results consistent with the delay effect persisted

for much smaller values of the ramp speed. However, noise is present in phys-

ical systems such as axons, in part due to fluctuations in conductances caused

by the opening and closing of ion channels, explaining the failed accommoda-

tion in the squid axon for very small ramp speeds [22]. The impact of noise on

dynamic Hopf bifurcation is important, and treatments of this can be found

in [17, 18, 26]. Here, I restrict myself to a deterministic study and execute all

numerical solutions in quadruple precision arithmetic to minimize the issue of

roundoff error.

4



1.3 Main result of this work

With the exception of Su [25], previous work on dynamic Hopf bifurcation

has focused on systems with no spatial structure, for example, an ordinary

differential equation model of an isopotential excitable cell. In the present work

I investigate dynamic Hopf bifurcation in some spatially extended excitable

systems from neuroscience. The first system I consider models a dendritic shaft

that has only passive electrical properties, but which is studded with excitable

dendritic spines, tiny evaginations of the dendritic membrane. Dendritic spines

consist of a bulbous “head” attached to the shaft by means of an elongated

“neck” [3, 23]. I refer to this model as the spiny cable. The second system I

consider models an excitable nerve fiber such as an axon in which the channels

responsible for excitability are embedded in the membrane; I refer to this as

an axonal cable. For each system, I investigate the response to a slowly rising

current ramp injected into one end of the cable while the other end is sealed

to current. I note the difference here from Su’s investigations: here, I model a

situation in which current is injected into one end of the cable while the other

end is sealed, while Su studied a model in which a nonuniform current density

was applied over the cable’s surface and both ends were sealed.

My main result is as follows: isolating the ion channels in spineheads can

cause the oscillations in membrane potential that arise at the onset of insta-

bility to occur at a location along the cable which is quite distal from the

current injection site; in particular, the greater the amount by which the ap-

parent firing threshold exceeds the constant-current firing threshold (the first

Hopf point), the farther from the injection end of the cable will the oscillations

arise. Both the spiny and axonal cables show the firing-threshold memory ef-

5



fect, but only the spiny cable shows distal initiation of oscillations. This result

holds even for a uniform cable studded with identical, uniformly distributed

spines with uniform stem conductances, and in response to a linear current

ramp. Following the earlier work of Baer, Erneux and Rinzel, I obtained the

apparent firing threshold Ij via the WKB method, and found that the WKB

method provides not only Ij, but also with the location along the cable at

which oscillations arise once Ij is attained.

With the exception of the simple ODE model considered in chapter two,

all models considered are partial differential equations. For the spiny cable, I

used a modified version of the PDE model due to Baer and Rinzel [3], in which

the spines are treated as a continuum. Although spines are discrete, Baer

and Rinzel found that this approximation is good for sufficiently large spine

density. For both the spiny and axonal cables, I wrote an approximating ODE

system which was obtained by viewing the cable as consisting of a large number

of isopotential compartments, and it is to this approximating ODE system

that I applied the WKB method. All WKB predictions were compared with

numerical solutions of the actual PDE equation obtained via finite difference

methods.

The thesis is organized as follows. In chapter two I consider a model of

a passive cable with two excitable FitzHugh-Nagumo spines, each located at

one end of the cable. I inject a slow current ramp into one end of the cable

and seal the other end to current. I make the simplifying assumption that the

potential in the cable evolves on a much faster time scale than the dynamics

in the spineheads, so that at each instant of time the cable potential is what it

would be if the spinehead potentials were held constant at their instantaneous

values; this is known as the quasi-static approximation, and I refer to such a
6



model as the “reduced model,” in contrast to the “full model” [18,30,31]. This

reduced model of a passive cable with two excitable spines is a very simple

excitable system featuring spatial extension, and I demonstrate the ability of

the WKB method to determine in which spine oscillations in potential arise

when the apparent firing threshold is reached. In chapter three I investigate

the response to a slow current ramp of a passive cable studded with a large

number of excitable FitzHugh-Nagumo spines; here I do not make the quasi-

static approximation. In chapter four I investigate the response of FitzHugh-

Nagumo and Hodgkin-Huxley axonal cables to a slow current ramp. In chapter

five I review my findings and consider possible implications and directions for

further work.
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Chapter 2

TWO FITZHUGH-NAGUMO SPINES COUPLED VIA A PASSIVE

CABLE
2.1 Review of results for the space-clamped FitzHugh-Nagumo model

injected with a slowly rising current ramp

The FitzHugh-Nagumo model of nerve excitability features two dependent

variables. u represents membrane potential, and w is a slow recovery variable

which serves to return u to its resting value. A review of the FitzHugh-Nagumo

model is given in the Appendix. Baer, Rinzel and Erneux [1] investigated

the response of the FitzHugh-Nagumo model to a slow linear current ramp

I(t) = I0 + εt and used the WKB method to derive the onset condition,

which gives the apparent firing threshold as a function of the initial current

I0 in the limit ε → 0. By “apparent firing threshold” I mean the value of

injected current at the moment large-amplitude oscillations in the u variable,

representing membrane potential, appear. Baer and Gaekel [2] extended the

onset condition to the case of general monotonic current ramps. A detailed

derivation of the onset condition for a linear current ramp and a description of

the FitzHugh-Nagumo model can be found in the Appendix. Here I summarize

the key points.

When injected current I is constant, the FitzHugh-Nagumo model has a

unique steady state (for the parameters I use, given in the Appendix) which

is a function of the injected current. To determine the firing threshold, one

linearizes about the steady state and determines the value of I at which it

changes from being stable to unstable, as indicated by an eigenvalue attaining

positive real part. This occurs at the lower Hopf point IH ; hence, IH is the

8



firing threshold in response to a constant current.

When the injected current is a slowly-varying function of time, there is no

longer a steady state, but there is an analogue to it which is called the slowly-

varying solution. The slowly-varying solution stays close to the constant-

current steady state viewed as a function of I. In order to determine the

value of I at which firing commences, one must linearize about the slowly-

varying solution. This yields a linear homogeneous differential equation with

time-varying coefficients and small parameter ε multiplying the highest-order

derivative. Assuming the WKB expansion for the solution, one obtains the

following onset condition [2]: in the limit that ramp speed ε → 0, large-

amplitude oscillations will be evoked by a monotonic current ramp I(t) =

I0 + g(εt) when the current attains the value Ij, where Ij is the smallest

current value satisfying

∫ Ij

I0

[g−1(I − I0)]′Re(λ(I))dI = 0 (2.1)

for some eigenvalue λ(I). As detailed in the Appendix, the eigenvalues ref-

erenced in the onset condition are eigenvalues of the Jacobian of the system

with constant current evaluated at the steady state. As I varies, so does the

constant-current steady state; hence, the eigenvalues are functions of I.

One can see that the apparent firing threshold Ij depends on the initial

current I0 as well as the shape of the ramp, as dictated by g. For a linear

ramp, the onset condition simplifies to

∫ Ij

I0

Re(λ(I))dI = 0. (2.2)

One can understand the onset condition intuitively by considering that during

9



dynamic Hopf bifurcation, time is spent winding in to the slowly-varying solu-

tion when I is in the range [I0, IH ]. Once I > IH , the solution starts winding

out. For large-amplitude oscillations to appear, the solution must first wind

out by the same amount that it has wound in; Ij is the value of the current at

the moment this occurs.

The 2-variable FitzHugh-Nagumo model lacks spatial extension. I now

consider a very simple spatially extended excitable system, dealt with by [31]

in her studies of its response to constant injected current. I find that the WKB

method can be used to determine not just the apparent firing threshold in re-

sponse to a slow current ramp, but also where the large-amplitude oscillations

will arise.

2.2 Two FitzHugh-Nagumo spines coupled via a passive cable, with slow

current ramp injected at one end

Consider a model of a segment of passive dendritic cable to which are attached

two excitable dendritic spines, one at either end. I model the spines as obey-

ing FitzHugh-Nagumo dynamics, and the cable as obeying the passive cable

equation. Suppose that one injects a slow current ramp I = I0 + εt into one

end of the cable and seals the other end to current. No current is applied

directly to the spines. Let the spine at the end of the cable where current is

injected have stem conductance Gss1, and let the stem conductance for the

other spine be Gss2; here I ignore the cable properties of the spine stems and

model them as a lumped Ohmic resistance. This system obeys the following

equations:

10



τ∂V

∂t
=

∂2V

∂X2
− V (2.3)

du1
dt

= −f(u1)− w1 −Gss1(u1 − V (0, t)) (2.4)

dw1

dt
= b(u1 − γw1) (2.5)

du2
dt

= −f(u2)− w2 −Gss2(u2 − V (L, t)) (2.6)

dw2

dt
= b(u2 − γw2) (2.7)

with boundary conditions

∂V (0, t)

∂X
= −R∞(I(t) +Gss1(u1 − V (0))) (2.8)

∂V

∂X
(L, t) = R∞Gss2(u2 − V (L)). (2.9)

The boundary conditions are statements of conservation of current at the two

ends of the cable. Here, R∞ is defined as

R∞ = λ
Ri

πd2/4
(2.10)

= (2/π)
√
RiRm/d3. (2.11)

In the system equations and boundary conditions, λ is the space constant for

the cable (not to be confused with the eigenvalues), τ is the time constant for

the cable, d is the cable diameter, Ri is the axial resistivity of the cable, and

Rm is the transverse resistivity of the cable. Here, I have nondimensionalized

the cable equation with respect to space but not time. That is, the length X

is the electrotonic length, equal to the physical length x divided by the cable

space constant λ, while time is measured in seconds.
11



Reduced model obtained via the quasi-static approximation

If b is small in the FitzHugh-Nagumo equations then the potential in the

spineheads undergoes relaxation oscillations and for most of the time changes

on a much slower time scale than does the potential in the cable [18, 30, 31].

Then one is justified in using the quasi-static approximation, in which one

approximates at each point in time the potential in the cable V (X, t) as being

at the steady state Vs(X) that would eventually be reached if the spinehead

potentials were held constant at their values at time t, u1(t) and u2(t); for

a detailed explanation and examples of the quasi-static approximation, see

[18, 30, 31]. Then one can replace the above partial differential equation with

an ordinary differential equation:

du1
dt

= −f(u1)− w1 −Gss1(u1 − Vs(0)) (2.12)

dw1

dt
= b(u1 − γw1) (2.13)

du2
dt

= −f(u2)− w2 −Gss2(u2 − Vs(L)) (2.14)

dw2

dt
= b(u2 − γw2). (2.15)

One must compute Vs(X). Suppose that the potentials in the spineheads at

time t are u1 and u2. Then

Vs(X) = A coshX +B sinhX (2.16)

where A and B are constants depending on u1 and u2, and determined from

the boundary conditions. One has that
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Vs(0) = A (2.17)

∂Vs
∂X

(0) = B (2.18)

Vs(L) = A coshL+B sinhL (2.19)

∂Vs
∂X

(L) = A sinhL+B coshL (2.20)

and from the boundary conditions,

∂Vs
∂X

(0) = −R∞(I +Gss1(u1 − Vs(0))) (2.21)

∂Vs
∂X

(L) = R∞Gss2(u2 − Vs(L)). (2.22)

Combining these equations, one obtains the following equations relating A and

B to u1 and u2:

−R∞(I(t) +Gss1u1) = −R∞Gss1A+B (2.23)

R∞Gss2u2 = (sinhL+R∞Gss2 coshL)A+ (coshL+R∞Gss2 sinhL)B. (2.24)

Vs(0) and Vs(L) are linear combinations of u1, u2, and the applied dendritic

current I(t). Hence, equations (2.12-2.16, 2.23-2.24) constitute a well-defined

ODE in the four spinehead variables, and one may abandon explicit reference

to the cable variables. I shall refer to this system, obtained by the quasi-static

approximation, as the “reduced model” [18,30,31], in contrast to the full model

of equations (2.3-2.9).
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Figure 1: Gss1 = 0.05, Gss2 = 0.01. Re(λ(I)) versus I for the four eigenvalues
associated with the system.

Numerical solutions of reduced model and WKB prediction for Ij

The two-spine system has four variables and hence four eigenvalues for each

value of I. As discussed in the Appendix, when there are several eigenvalues

attaining positive real part for some I, the prediction for the apparent firing

threshold is the smallest Ij > I0 such that the onset condition is satisfied for

one of the eigenvalues. Figure 1 shows the real portions of the four eigenvalues

(two complex-conjugate pairs) as a function of I for the L = 0.5 cable with

stem conductances Gss1 = 0.05, Gss2 = 0.01. Figure 2 shows the WKB pre-

diction for Ij in response to the slow ramp I(t) = 0.5 + εt. Ij is such that the

signed area under the graph of Re(λ(I)) (shown shaded) between I = I0 = 0.5

and I = Ij is zero.

I numerically solved equations (2.12-2.16, 2.23-2.24) using the fourth order

Runge-Kutta method, for cable length L = 0.5 and injected current ramp
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Figure 2: Gss1 = 0.05, Gss2 = 0.01. WKB prediction for Ij in response to the
slow linear current ramp I(t) = 0.5 + εt.

I(t) = 0.5 + εt; trials were done for a large number of small ramp speeds ε.

Figure 3 shows the results of these numerical solutions. The top panel is a

plot of the apparent firing threshold Ij observed in a trial, defined as the value

of injected current at the time the potential in one of the two spines exceeds

0.5, versus the inverse of the ramp speed used in that trial. As one moves to

the right across the graph, the ramp speed ε → 0 and one enters the regime

in which the WKB prediction is valid. The bottom panel plots the potentials

in the two spines as a function of time (spine one in black, spine two in red),

for the specific choice of ramp speed ε = 0.001.

One sees that there is good agreement between the WKB prediction of Ij =

1.023 and the numerical solution of the ordinary differential equation. The

“jitter” pattern that is observed is characteristic of this plot and is discussed in

[22]. I note that the large oscillations in membrane potential which commence

at Ij are found only in spine one.
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Figure 3: Gss1 = 0.05, Gss2 = 0.01. I(t) = 0.5 + εt. Top: Ij obtained from
numerical solutions. Bottom: Time course of spinehead potentials for the
ramp speed ε = 0.001.

I now switch the stem conductances, and consider Gss1 = 0.01, Gss2 = 0.05.

Figure 4 shows the plot of Re(λ) versus I; one sees that it is very similar to

Figure 1. Figure 5 shows the WKB prediction for Ij in response to the same

slow current ramp I = 0.5 + εt. The system is predicted to go unstable at

Ij = 1.233, very similar to the prediction for the case Gss1 = 0.05, Gss2 = 0.01.

Figure 6 shows that numerical solutions yielded good agreement with this

prediction. The graph of the time course of potentials in the two spines shows
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Figure 4: Gss1 = 0.01, Gss2 = 0.05. Re(λ(I)) versus I for the four eigenvalues
associated with the system.

Figure 5: Gss1 = 0.01, Gss2 = 0.05. WKB prediction for Ij in response to the
slow linear current ramp I(t) = 0.5 + εt.
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Figure 6: Gss1 = 0.01, Gss2 = 0.05. I(t) = 0.5 + εt. Top: Ij determined
from numerical solutions. Bottom: Time course of spinehead potentials for
the ramp speed ε = 0.001.

the one major difference between this case and that ofGss1 = 0.05, Gss2 = 0.01:

now, the large-amplitude oscillations arise in spine two, at the end of the cable

opposite the site of current injection.

These two cases indicate that with a spatially extended excitable system it

is possible that the instability will not arise uniformly throughout the system

once I attains Ij. In the next section I show that a closer analysis of infor-

mation obtained from the WKB method indicates where the instability will

18



arise.

WKB prediction for location at which oscillations arise

Consider the 4-dimensional u1, w1, u2, w2 phase-space in which solution trajec-

tories evolve when one injects the cable with a slow current ramp. A given

solution trajectory is attracted to the slowly-varying solution at t = 0, and

remains close to it until the apparent firing threshold Ij is attained. Once this

occurs, the trajectory shoots away from the slowly-varying solution in a direc-

tion in phase space dictated by ~vj, where ~vj is the eigenvector associated with

the eigenvalue responsible for the onset condition being satisfied, evaluated at

I = Ij. This suggests that by inspecting ~vj one can determine where the insta-

bility will arise. To be precise, I note that the onset condition is satisfied by

a complex conjugate pair of eigenvalues, associated with a complex conjugate

pair of eigenvectors. Figure 7 shows one of the ~vj for the cases Gss1 = 0.05,

Gss2 = 0.01 (top) and Gss1 = 0.01, Gss2 = 0.05 (bottom).

For the case Gss1 = 0.05, Gss2 = 0.01, the components of ~vj are such that

the initial movement away from the slowly-varying solution once I attains Ij

are nearly confined to the u1w1 plane in phase space, associated with the first

spine. For the case Gss1 = 0.01, Gss2 = 0.05, the components ~vj are such

that the initial movement away from the slowly-varying solution are nearly

confined to the u2w2 plane, corresponding to spine two.

Returning to the case Gss1 = 0.05, Gss2 = 0.01 I note that the second

spine does eventually fire, but for a much larger value of current as indicated

by Figure 8. One may predict the current value at which spine two fires by

another application of the WKB method. I note that while spine one is firing,

which goes on for a bit even after the second Hopf point is reached, the state
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Figure 7: Top: WKB prediction for Ij in response to the slow linear ramp
I(t) = 0.5 + εt. Gss1 = 0.05, Gss2 = 0.01. Bottom: Same, for the case
Gss1 = 0.01, Gss2 = 0.05.

of the system is not near enough to the slowly-varying solution for the linear

WKB analysis to be valid. However, near I = 1.75 the system has settled

down once more. At this point, one may view the problem as being restarted,

this time with the slow current ramp I = 1.75 + εt. Another application

of the WKB method indicates that the system will again become unstable

at Ij = 5.171. This time, the other complex conjugate pair of eigenvalues

is responsible for satisfying the onset condition. An inspection of one of the

eigenvectors associated with it indicates that now the instability arises in spine

two. This is confirmed in Figure 8.
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Figure 8: Gss1 = 0.05, Gss2 = 0.01. I(t) = 0.5 + εt. Top: WKB prediction for
Ij. Middle: Ij determined from numerical solutions. Bottom: Time course of
spinehead potentials for the ramp speed ε = 0.001.
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I note that for the cases of stem conductance so far considered, the func-

tional dependence of the eigenvalues on I is such that there are four crossings

of the imaginary axis as I increases from zero: one complex conjugate pair is

responsible for the first two crossings, and another is responsible for the sec-

ond two crossings. Furthermore, inspection of the eigenvectors for all I in the

range considered (not shown) indicates that the eigenvalue responsible for the

first two crossings of the imaginary axis is associated almost exclusively with

the spine having stem conductance Gss = 0.05, and the eigenvalue responsible

for the second two crossings is associated almost exclusively with the spine

having the lower stem conductance Gss = 0.01. This indicates that for these

conductances and a cable of electrotonic length L = 0.5, the two spines behave

relatively independently of each other. In the next section I investigate the

extent to which this continues to hold as the stem conductances are varied.

2.3 Effect of varying stem conductances

In Figure 9 I fix the stem conductance of the first spine at Gss1 = 0.01 and

plot the values of I satisfying Re(λ(I)) = 0 as Gss2 varies.

For each value of Gss2, the situation is as described in the previous sec-

tion: the two spines behave relatively independently, each being associated

with a single complex conjugate pair of eigenvalues as indicated by inspecting

the eigenvectors. The two curves which are increasing with I and are nearly

straight are associated with spine one; as Gss2 increases, more current is di-

verted into spine two for a given value of I, which causes an increase in the

Hopf points associated with spine one. For the same reason, the Hopf points

associated with spine two decrease as Gss2 increases (the two curved lines). I

note that the Hopf points associated with spine two eventually coalesce and
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Figure 9: Values of I satisfying Re(λ(I)) = 0; Gss1 is held fixed at 0.01 while
Gss2 is allowed to vary. The two spines remain relatively independent, each
possessing its own two Hopf points.

disappear; at this point the conductance load due to the passive cable pre-

cludes the onset of oscillations in spine two for any value of injected current;

cf. Fig. 3-4 in Wu and Baer [30]. It is not surprising that the two spines

behave relatively independently even for large values of Gss2, as spine one has

a low value of stem conductance. Contrast this with Figure 10, in which I hold

the stem conductance of spine one fixed at the much larger value of Gss1 = 0.2.

A casual inspection of Figure 10 suggests that for large values of Gss2, the

spines no longer behave independently. AsGss2 increases, the upper Hopf point

of spine one and the lower Hopf point of spine two coalesce and disappear, and

one is left with two Hopf points of a single excitable system. To investigate

further, I examined the case Gss1 = 0.2, Gss2 = 0.2. Figure 11 shows a plot of

Re(λ) versus I.

The system now has only a single complex conjugate pair of eigenvalues

which attain positive real part as I increases. Figure 12 shows the WKB
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Figure 10: Values of I satisfying Re(λ(I)) = 0; Gss1 is held fixed at 0.2 while
Gss2 is allowed to vary.

0 5
−1

0

0.1

I

Re(λ)

Figure 11: Gss1 = Gss2 = 0.2. Re(λ(I)) versus I. The system has two Hopf
points for these choices of stem conductance.
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Figure 12: Gss1 = Gss2 = 0.2. WKB prediction for the apparent firing thresh-
old Ij and the location at which oscillations arise in response to the slow linear
current ramp I(t) = 0.42 + εt.

prediction for the firing threshold and location at which oscillations arise in

response to the slow current ramp I = 0.42 + εt. Oscillations are expected to

arise in both spines, but with a slightly larger amplitude in spine one. Figure

13 shows the results of numerical solutions.

The graph of apparent firing threshold versus inverse ramp speed suggests

that the actual value of the firing threshold slightly exceeds the WKB predic-

tion of Ij = 0.487. This is due to the fact that Re(λ) at Ij = 0.487 is very

small, and the exact onset condition (see Appendix) for O(1) deviation from

the slowly-varying solution is
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Figure 13: Gss1 = Gss2 = 0.2. I(t) = 0.42 + εt. Top: Ij obtained from
numerical solutions. Bottom: Time course of potential in the two spineheads
for the particular ramp speed ε = 0.0001.

∫ Ij

I0

Re(λ(I))dI = O(ε). (2.25)

The initial condition was chosen to be near the slowly-varying solution at

I0 = 0.42, and the time course indicates that the predicted value of Ij = 0.487

is where visible deviation from the slowly-varying solution begins. Compare

this with the results for the ramp I = 0.3 + εt: again, the WKB method

predicts that oscillations will arise in both spines (Fig. 14), but this time
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Figure 14: Gss1 = Gss2 = 0.2. WKB prediction for the apparent firing thresh-
old Ij and the location at which oscillations will arise in response to the slow
linear current ramp I(t) = 0.3 + εt.

the amplitude of the oscillations away from the slowly-varying solution are

predicted to be slightly larger in spine two. This is confirmed in Figure 15.

2.4 Discussion

I have investigated a simple system with spatial extension, in which two active

spines are coupled diffusively through a passive cable of electrotonic length

L = 0.5. I confirmed the memory effect for slow current ramps, in which

choosing a smaller value of initial current results in a higher apparent firing

threshold. Interestingly, I found that the onset of sustained oscillations might

arise in the spine located at the cable end opposite the site of current injection.

I found that the WKB analysis from which one determines the apparent firing
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Figure 15: Gss1 = Gss2 = 0.2. I(t) = 0.3 + εt. Top: Ij obtained from
numerical solutions. Bottom: Time course of potential in the two spineheads
for the particular ramp speed ε = 0.0001.

threshold also provides information on where oscillations will arise. This is ob-

tained by inspecting the eigenvector associated with the eigenvalue satisfying

the onset condition.

When the stem conductances are low (Gss1 = 0.01, Gss2 = 0.05 and

Gss1 = 0.05, Gss2 = 0.01), the spines behave relatively independently of each

other, retaining individual Hopf points. When stem conductances are higher

(Gss1 = Gss2 = 0.2), the spines are heavily coupled, and the system has two
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Hopf points. Destabilization then occurs in both spines, but the amplitude of

oscillations away from the slowly-varying solution is slightly larger for spine

one if Ij occurs near the system’s first Hopf point, and slightly larger for spine

two if Ij occurs near the system’s second Hopf point. This corresponds to a

change in the components of ~vj, the eigenvector associated with the eigenvalue

satisfying the onset condition, evaluated at Ij.

The distal initiation of firing for the case of low stem conductances occurs

when spine two has the higher stem conductance and hence experiences a stem

current in its firing range before spine one does. In the next chapter I show a

more interesting example of distal initiation of firing, for a spiny cable in which

all stem conductances are identical. As will be shown, this is a more dramatic

version of the same phenomenon observed for the case Gss1 = Gss2 = 0.2, in

which spine two experiences slightly larger-amplitude oscillations away from

the slowly-varying solution than does spine one when Ij significantly exceeds

the first Hopf point.
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Chapter 3

RESPONSE OF THE FITZHUGH-NAGUMO SPINY CABLE TO A SLOW

CURRENT RAMP
3.1 Continuum model of the FitzHugh-Nagumo spiny cable

I investigated a continuum model of a passive dendritic shaft studded with

excitable dendritic spines. This model, which is due to Baer and Rinzel [3],

treats the spines as being continuously distributed along the length of the shaft

as dictated by the continuous density function n̄(x). This results in a model

which can be succinctly mathematically stated, even when one is dealing with

a large number of spines; this is in contrast to models which handle each spine

via boundary conditions (as in the last chapter), or as a distinct compartment.

I emphasize that although the spines are modeled as a continuum, the model

is such that the spines only interact indirectly via the dendritic shaft.

Baer and Rinzel modeled a dendritic shaft with passive cable properties.

Current flows in an axial direction in response to a potential gradient along the

shaft, and a leakage current flows in a direction transverse to the membrane.

The passive shaft is coupled to excitable spines, which contain voltage-gated

ion channels enabling them to undergo action potentials in response to a cur-

rent impulse. The degree of coupling between the dendritic shaft and the

spines is determined by the spine stem conductance Gss; the cable properties

of the spine stems are neglected and the stem is modeled as a lumped Ohmic

resistance. Baer and Rinzel modeled the spines as obeying Hodgkin-Huxley

dynamics [3]. Several authors have investigated Baer-Rinzel continuum mod-

els in which other dynamics are chosen for the spines; for example, Zhou [32]

and Chen and Bell [5] studied the model for spines obeying Nagumo dynamics
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(FitzHugh-Nagumo without the slow recovery variable). Here I have chosen

to investigate FitzHugh-Nagumo dynamics.

Under the continuum approximation, at time t a cable segment of tiny

length ∆x centered at point x along the shaft receives current n̄(x)∆xIss(x, t)

from the spines. Iss is the current flowing into the shaft from a single spine

through its stem, due to the difference in potential between that spine and

the shaft, and is given by Iss(x, t) = Gss(u(x, t) − V (x, t)), where u denotes

potential in the spines and V denotes the potential in the shaft. Let X be elec-

trotonic length, that is, length measured in units of the cable length constant

λ =
√

Rmd
4Ri

. Then the Baer-Rinzel continuum model for the FitzHugh-Nagumo

spiny cable can be written as

τ
∂V

∂t
=

∂2V

∂X2
− V + n̄(X)R∞Iss(X) (3.1)

∂u

∂t
= −f(u)− w − Iss(X) (3.2)

∂w

∂t
= b(u− γw) (3.3)

where τ is the dendritic membrane time constant, n̄(X) is the spine density

(number of spines per electrotonic length), and R∞ = Rm/πλd. For uniform

distributions of spines along the shaft, the continuum model is a good approx-

imation provided that the spine density is sufficiently large [3].

I considered the case of a spiny FitzHugh-Nagumo cable of dimensionless

length L with current I = I0 + g(εt) injected into one end and the other end

sealed to current. This gives rise to the boundary conditions:
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∂V

∂X
(0, t) = −R∞I(t) (3.4)

∂V

∂X
(L, t) = 0. (3.5)

3.2 Methods

I note that this system is a partial differential equation (PDE) and the WKB

analysis being used applies to ordinary differential equations (ODE). However,

using a compartmental approach one can approximate the PDE as a system of

first-order differential equations. Let the first compartment (i = 1) correspond

to the end at which current is injected. The equations governing compartment

i where 2 ≤ i ≤ n− 1 are

u̇i = −f(ui)− wi −Gss(ui − Vi) (3.6)

ẇi = b(ui − γwi) (3.7)

τ V̇i = −Vi +
(Vi+1 − 2Vi + Vi−1)

∆X2
+ n̄R∞Gss(ui − Vi) (3.8)

where ∆X is the length of one compartment.

The boundary conditions were handled as follows. A finite difference

scheme for solving the PDE would break the length of the cable up into n

equally spaced grid points x1 through xn. The compartments correspond to

the grid points in the following way: compartment i is centered on grid point

i. The finite difference scheme would handle the boundary condition for the

external current by introducing a “ghost point” labeled x0. At each time step,

x0 would be assigned the value V0 that makes the following equation true:
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V0 − V2 = 2RI (3.9)

where R = R∞∆X is the resistance associated with one compartment. In this

spirit, I introduced a “ghost compartment” that acts as a second neighbor to

compartment one, having voltage

V0 = V2 + 2R∞∆XI. (3.10)

Similarly, a ghost compartment was introduced at the far end of the cable,

with voltage

Vn+1 = Vn−1. (3.11)

The equations governing the first and last compartments are as given in (3.6-

3.8) with V0 and Vn+1 defined as above.

The compartmental model with n compartments is a 3n−dimensional ODE

of general form

~̇x = f(~x, I(εt)) (3.12)

and for convenience when analyzing eigenvector components, I chose to arrange

the equations such that for the i′th compartment,

u̇i = xi (3.13)

ẇi = xi+n (3.14)

τ V̇i = xi+2n. (3.15)
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The WKB procedure requires that for each I in some range, one computes

the steady state −→x ss(I), the Jacobian of the system evaluated at this steady

state, the eigenvalues of the Jacobian, and the integral for the onset condition

∫ I

I0

[g−1(I − I0)]′Re(λ(I))dI

for each eigenvalue of the Jacobian. A MATLAB program was written to

carry out these steps. The program uses fsolve to determine the steady state

for each I, the DERIVEST suite of functions to compute the Jacobian via

numerical differentiation, and the function eig to determine the eigenvalues

and associated eigenvectors. A program was also written to keep track of

the separate eigenvalue integrals, and determine the value of I, denoted by

Ij, at which one of these integrals becomes positive. This Ij is the WKB

prediction for the value of injected current at the onset of sustained oscillations

in the spinehead potential. The eigenvector ~vj corresponding to this critical

eigenvalue, evaluated at Ij (notice that the eigenvectors are also functions of

I), provides a prediction of where along the cable the instability will first show

itself.

WKB prediction for Ij

I illustrate my technique for a cable of dimensionless length L = 3, studded

with 75 uniformly distributed FitzHugh-Nagumo spines, with uniform spine

stem conductances Gss = 0.1. I used 75 compartments, corresponding to the

225-dimensional system
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ẋi = −f(xi)− xi+75 −Gss(x1 − xi+150), 1 ≤ i ≤ 75 (3.16)

ẋi = b(xi−75 − γxi), 76 ≤ i ≤ 150 (3.17)

˙x151 = −x151 +
(x152 − 2x151 + V0)

∆X2
+ n̄R∞Gss(x1 − x151) (3.18)

ẋi = −xi +
(xi+1 − 2xi + xi−1)

∆X2
+ n̄R∞Gss(xi−150 − xi), 152 ≤ i ≤ 224 (3.19)

˙x225 = −x225 +
(x224 − 2x225 + V76

∆X2
+ n̄R∞Gss(x75 − x225). (3.20)

In the above system, ∆X = 0.04, n̄ = 25, R∞ ≈ 0.31831, and equations

(3.4-3.5) dictate that V0 and V76 be defined as

V0 = x152 + 2R∞∆XI (3.21)

V76 = x224. (3.22)

All FitzHugh-Nagumo spines are identical, with parameters a = 0.14, b = 0.05,

and γ = 2.54.

My program generated the 225 functions λi(I), 1 ≤ i ≤ 225. Fig. 16

shows the plot of the real portion of the eigenvalue satisfying the onset con-

dition (actually, a complex conjugate pair) versus I. The real portion of the

eigenvalue is responsible for the onset of instability under the WKB prediction.

A note on the number of compartments used: too few compartments will

lead to error as the compartments must be small enough that the three vari-

ables u, w, and V are approximately constant over the length of the compart-

ment. To ensure that 75 was a sufficient number of compartments, I performed

the same computations as above for the case in which the cable was broken
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Figure 16: Re(λ(I)) for the eigenvalue responsible for the onset of instability
under the WKB prediction. 75 uniformly distributed spines on a passive cable
of length L = 3. Gss = 0.1 for all spines.

into 100 compartments; this resulted in 300 functions λ(I), one of which is

responsible for the onset of instability. I found that there was near-perfect

overlap of this λ(I) with that shown in Fig. 16, obtained with 75 compart-

ments. Hence, 75 was a large enough number of compartments to use. It is

computationally efficient to use only as many compartments as needed.

I considered the response of the spiny cable to a slow linear current ramp

given by I(t) = 1.25 + εt, ε→ 0. The WKB prediction for Ij satisfies

∫ Ij

1.25

Re(λ)dI = 0. (3.23)

Figure 17 indicates the region of Re(λ) that was integrated and the resulting

prediction for Ij.
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Figure 17: WKB prediction for Ij in response to the slow current ramp I(t) =
1.25 + εt, ε→ 0.

The WKB method predicts that the spiny cable will go unstable when

the injected current ramps reaches I ≈ 9.01. This prediction was compared

with numerical solutions of equations (3.1-3.5) obtained using the semi-implicit

finite difference method used in [29], for a large number of ramp speeds ε. Fig.

18 plots Ij as observed in numerical solutions versus the inverse ramp speed

1/ε. As one moves to the right along the x-axis, the ramp speed ε → 0

and one enters the regime of applicability of the WKB prediction. One can

see that the observed Ij asymptotically approaches the WKB prediction of

Ij = 9.01 before coming back down again in a way that is indicative of round-

off error [1]; a major difficulty with implementing very slow current ramps

is the very large number of time steps they require; this leads to round-off
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Figure 18: Ij obtained from numerical solutions of the FitzHugh-Nagumo
spiny cable’s response to the slow current ramp I = 1.25 + εt.

error, which causes numerical solutions to destabilize earlier than they would

if infinite precision were available. All numerical solutions in this thesis were

computed in quadruple precision arithmetic.

WKB prediction for the location at which oscillations arise.

The second part of the WKB prediction is where the onset of oscillations will

occur along the cable. To predict this, I inspected the eigenvector associated

with the eigenvalue causing instability, evaluated at Ij = 9.01. This eigen-

vector, which I call ~vj, has 225 components. Components 1-75 correspond to

spinehead potential variables u1 through u75, components 76-150 correspond

to slow recovery variables w1 through w75, and components 151-225 corre-

spond to dendritic shaft potential variables V1 through V75. I performed the

38



following procedure on ~vj: (1) Compute the modulus of each component, |vi|

(note that in general the components are complex numbers). (2) Divide each

of these moduli by |v1|, the modulus of the first component, so that I obtain a

vector of relative moduli |vi||v1| ; this makes the third step easier. (3) Plot these

relative moduli against the vector index, and note whether one of these stands

out as being much larger than all others. If so, the variable corresponding to

that component will undergo the largest-amplitude oscillations away from the

slowly-varying solution once the system loses stability, and the compartment

(equivalently, the location along the cable) associated with that variable will

be where the instability arises.

In practice, the component with largest modulus of ~vj always occurs in

indices 1-75; that is, the instability first shows itself in the spinehead potentials.

In Fig. 19 I show the plot used to predict the location at which oscillations will

begin. One finds that the twelfth component of ~vj has the largest modulus;

it exceeds the modulus of the first component by a factor of more than 60.

The twelfth component of ~vj corresponds to the potential in the spine located

at compartment 12. Since the cable is of length L = 3, this corresponds

to a location x ≈ 0.48. Hence, I predicted that when the cable enters into

sustained oscillations at Ij = 9.01, the instability would first become apparent

at a distance of about 0.5 from the injection point.

I checked this WKB prediction against finite difference solutions of equa-

tions (3.1-3.5), using ramp speed ε = 0.004. From Fig. 18 one sees that this

ramp speed is small enough for the WKB method to be applicable, and not

so small that roundoff error is a problem. Hence, the injected current obeys

I = 1.25 + 0.004t. Fig. 20 provides spatial profiles of the potential in the

spineheads versus distance x along the cable, at a few instants of time near
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Figure 19: WKB prediction for the location along the FitzHugh-Nagumo spiny
cable at which oscillations arise.

the onset of instability. One sees that the finite difference solutions confirm

the WKB prediction of x ≈ 0.48 for the location at which oscillations first

become apparent.

3.3 Results

I investigated the response of a spiny FitzHugh-Nagumo cable of length L = 3

to various slow current ramps, and compared numerical solutions with the

WKB predictions for Ij and for the cable location at which oscillations ensue

once Ij is attained. All cable parameters are as given as in section 3.2 except

where otherwise noted. I found three types of spiny cable response, depending

on the degree of electrical coupling between the excitable spines and the passive

cable as determined by the spine stem conductance Gss.
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Figure 20: Spatial profiles of the potential in the spineheads at a few instants
of time near the onset of instability, obtained from numerical solutions.

Low spine stem conductance

I considered the case of 75 uniformly distributed spines (n̄ = 25), each with

spine stem conductance Gss = 0.02. 75 compartments were used to per-

form the WKB analysis. Of the resulting 225 eigenvalues, 150 (75 complex-

conjugate pairs) have nonzero imaginary part for I in the range considered.

Fig. 21 shows a plot of their real parts. All other eigenvalues are large and

negative.

I investigated the spiny cable response to the slow current ramp I(t) =

3 + εt, ε → 0. According to the WKB method, the eigenvalue responsible

for the first Hopf point is the one responsible for the onset of instability in

response to this current ramp. Fig. 22 compares the WKB prediction of
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Figure 21: Spiny cable of length L = 3 with 75 uniformly distributed spines
and uniform Gss = 0.02. Top: Real portion of all eigenvalues with nonzero
imaginary part. Bottom: Zoomed-in view.
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Figure 22: Uniform Gss = 0.02. Left : WKB prediction of Ij in response to
the slow ramp I(t) = 3 + εt, ε→ 0. Right : Ij observed in numerical solutions.

Ij = 19.02 with the value of Ij as determined from numerical solutions of

the PDE system, with Ij defined as the value of current at the moment the

potential in some spine exceeds 0.5. From Fig. 23 one sees that the oscillations

are predicted to arise almost exclusively at the current injection point, and

that this is confirmed by the time courses of spinehead potential obtained from

the numerical solution of the system for the particular ramp speed ε = 0.007.

Intermediate spine stem conductance

I next investigated the effect of increasing the uniform spine stem conductances

to Gss = 0.1. As before, 75 compartments were used to perform the WKB

analysis, and 150 (75 complex-conjugate pairs) of the resulting 225 eigenvalues

have nonzero imaginary part for I in the range considered. Fig. 24 shows their

real portions. All other eigenvalues are large and negative. One can see the

following differences from Fig. 21 (low stem conductance): the Hopf points

are lower, the maximal value attained by the real portions of the eigenvalues
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the location at which oscillations arise. Bottom: Time courses of spinehead
potential. Ramp speed ε = 0.007.
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are smaller, and most interestingly, the eigenvalue responsible for instability

is now distinct in shape from all the others.

I investigated the spiny cable response to the slow current ramp I(t) =

2.25 + εt, ε → 0. Fig. 25 compares the WKB prediction of Ij = 6.205 with

the value of Ij as determined from numerical solutions of the PDE system,

with Ij defined as the value of current at the moment the potential assigned

to some grid point p exceeds the potential at grid point p− 2 by at least 0.02.

Prior to the onset of instability, the potential in the spineheads monotonically

decreases with distance from the site of current injection; hence, if this con-

dition is satisfied the system has become unstable. This criterion for defining

Ij is preferable to setting an absolute threshold for u because the oscillations

in spinehead potential are rather small in amplitude, due to the significant

conductance load felt by the spines for Gss = 0.1. Fig. 26 compares the WKB

prediction that oscillations will arise at a distance of about x = 0.13 (corre-

sponding to compartments 4 and 5) from the injection end of the cable with

the numerical solution for the particular ramp speed ε = 0.0025. This is inter-

esting because the stem conductances are identical, the spines are uniformly

distributed, and all cable parameters are uniform.

I next investigated the response to a slow linear ramp which starts at

I0 = 1.25, a unit further back from the Hopf point at I ≈ 3.915. Fig. 27

compares the WKB prediction of Ij = 9.01 with the value of Ij as determined

from numerical solutions of the PDE system, with Ij defined as the value of

current at the moment the potential assigned to some grid point p exceeds

the potential at grid point p − 2 by at least 0.02. Fig. 28 compares the

WKB prediction that oscillations will arise at a distance of about x = 0.48

(corresponding to compartment 12) from the injection end of the cable with
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Figure 24: Spiny FitzHugh-Nagumo cable of length L = 3 with 75 uniformly
distributed spines and uniform Gss = 0.1. Top: Re(λ) versus I. Middle:
Zoom-in. Bottom: Eigenvalue satisfying onset condition.
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Figure 25: Uniform Gss = 0.1. Left : WKB prediction of Ij in response to
the slow current ramp I = 2.25 + εt, ε → 0. Right : Ij observed in numerical
solutions.

the numerical solution for the particular ramp speed ε = 0.0025.

Comparing the responses to the ramps I(t) = 2.25+εt and I(t) = 1.25+εt,

one sees that a smaller value of initial current results in a larger value of Ij,

consistent with the memory effect. It also results in the oscillations arising

further away from the current injection point, which fact is captured by ~vj:

when ~vj was evaluated at Ij = 6.205 in the previous trial, an inspection of its

components indicated that it effected the largest change in spinehead potential

variables associated with compartments 4 and 5. When evaluated at Ij = 9.01,

the components of ~vj are such that it effects the largest change in the spinehead

potential variable associated with compartment 12.

Finally, I considered the nonlinear current ramp I(t) = 2.25 + (εt)2, ε→ 0.

This is what is known as an accelerating current ramp, because the ramp speed

dI
dt

= 2ε2t is increasing with time. Recall that under the WKB prediction, Ij

for a cable injected with the ramp I = I0 + g(εt), ε→ 0 satisfies
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Figure 26: Uniform Gss = 0.1. I(t) = 2.25 + εt. Top: WKB prediction for the
location at which oscillations will arise. Middle/Bottom: Comparison with
numerical solutions, for the ramp ε = 0.0025.
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Figure 27: Uniform Gss = 0.1. Left : WKB prediction of Ij in response to
the slow current ramp I = 1.25 + εt, ε → 0. Right : Ij observed in numerical
solutions.

∫ Ij

I0

[g−1(I − I0)]′Re(λ(I))dI = 0.

For the ramp I = 2.25 + (εt)2 this becomes

∫ Ij

2.25

1√
I − 2.25

Re(λ(I))dI = 0.

For this nonlinear ramp, the function one must integrate is not simplyRe(λ(I)),

but a weighted version of it. Fig. 29 (left) shows the graphs of both y =

Re(λ(I)) (dashed line) and y = 1√
I−2.25Re(λ(I)) (solid line), and the WKB

prediction of Ij = 12.365. Fig. 29 (right) shows Ij as determined from nu-

merical solutions, using the same calling method as used for the previous two

ramps. Fig. 30 compares the WKB prediction that oscillations will arise at a
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location at which oscillations will arise. Middle/Bottom: Comparison with
numerical solutions, for the ramp ε = 0.0025.
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Figure 29: Uniform Gss = 0.1. Left : WKB prediction of Ij in response to the
slow accelerating current ramp I = 2.25 + (εt)2, ε→ 0. Right : Ij observed in
numerical solutions.

distance of about x = 0.69 (corresponding to compartments 18 and 19) from

the injection end of the cable with the numerical solution for ε = 0.001.

Of the three ramps considered, the accelerating ramp results in the largest

apparent firing threshold, and the most distal oscillations.

High spine stem conductance

I then increased the spine stem conductances still further, to Gss = 0.35.

Increasing Gss tends to decrease the real portions of the eigenvalues due to

increased coupling to the passive cable load, and for this value of conductance

the cable with 75 spines is not excitable (the Hopf points coalesce and vanish).

Hence, I increased the number of spines to 360; a uniform spine density of n̄ =

120 was used for these trials. A larger number of compartments were needed

for the eigenvalue picture to stabilize; I used 100 compartments, resulting

in 300 eigenvalues. Of them, 200 (100 complex-conjugate pairs) have nonzero

imaginary part for I in the range considered. Fig. 31 shows their real portions.
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Figure 31: Spiny FitzHugh-Nagumo cable of length L = 3 with 360 uniformly
distributed spines and uniform Gss = 0.35. Top: Re(λ) vs. I. Bottom: Re(λ)
vs. I for the only eigenvalue crossing imaginary axis.

As in previous cases, all other eigenvalues are large and negative. Only one

complex conjugate pair of eigenvalues attains positive real part for this large

value of Gss.

Figures 32 and 33 compare the WKB prediction for Ij with numerical
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Figure 32: Uniform Gss = 0.35. WKB prediction of Ij in response to the slow
current ramp I = 5.5 + εt, ε→ 0.

solutions of the spiny cable response to the ramp I(t) = 5.5 + εt as ε→ 0. Ij

determined from numerical solutions is defined as the value of current when

some spine has u > 0.465. The numerically determined Ij slightly overshoots

the WKB prediction, and this is due to the very small value of Re(λ) at Ij, as

discussed in the previous chapter. Fig. 34 confirms the prediction that upon

reaching I = 6.175, oscillations arise over a region of the cable from about

x = 0 to x = 0.75, with amplitude falling off as distance from the injection

point increased. When the stem conductance is lower, the oscillations are

much more localized.
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Figure 33: Uniform Gss = 0.35. Ij observed in numerical solutions of the spiny
cable’s response to the slow current ramp I(t) = 5.5 + εt.

Finally, I considered the cable response to a ramp with a somewhat smaller

initial current, I(t) = 4.25 + εt. Fig. 35 compares the WKB prediction for

Ij with numerical solutions. Ij is defined as the value of current when some

spine has u > 0.685. From Fig. 36 one sees that the component of ~vj with

the largest modulus corresponds to the cable location x = 0.24, and hence

has shifted away from the injection point. However, the maximum modulus

is only about a factor of 2 greater than the modulus corresponding to the

injection point; hence, the amplitude of oscillations away from the slowly-

varying solution near x = 0.24 is expected to be only slightly larger than the
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Figure 34: Uniform Gss = 0.35. I(t) = 5.5 + εt. Top: WKB prediction for the
location at which oscillations will arise. Middle/Bottom: Comparison with
numerical solutions, for the ramp ε = 0.0002.
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Figure 35: Gss = 0.35. Left : WKB prediction of Ij in response to the slow
current ramp I(t) = 4.25+εt, ε→ 0. Right : Ij observed in numerical solutions.

amplitude of oscillations near x = 0. Numerical simulations confirmed this.

From Fig. 32 and 35 one sees that Ij = 6.175 is quite close to the first

Hopf point, while Ij = 8.76 is approximately halfway between the two Hopf

points; however, little difference exists between the moduli of components of

the vector ~vj evaluated at the two values of I. Although the cable location

corresponding to the maximum-amplitude oscillations does shift away from

the injection site, it does not shift far, and the maximum amplitude is only

about a factor of 2 larger than at the injection site.

3.4 Discussion

The spiny cable I considered is a system consisting of two components, an

excitable component (the spines) and a passive component (the cable shaft).

The stem conductance Gss modulates the degree of electrical coupling between

these components. Furthermore, since the spines communicate only diffusively

via the cable, Gss determines the degree of this communication. For the case
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Gss = 0.02, 75 of the 225 eigenvalues of the compartmentalized system are real

and negative, while the other 150 (75 complex conjugate pairs) have nonzero

imaginary part and have a functional dependence Re(λ(I)) on I like that seen

for the 2-variable FitzHugh-Nagumo model. This suggests that Gss = 0.02

(low stem conductance) is small enough that the spines behave like isolated

FitzHugh-Nagumo systems, and that each of the 75 complex conjugate pairs

of eigenvalues is almost exclusively associated with a single spine, while the 75

real, negative eigenvalues are associated with the passive cable. Eigenvector

inspection confirmed this, and indicated that spine one is associated with the

first eigenvalue pair to cross the imaginary axis as I increases, spine two is

associated with the second eigenvalue pair to cross the imaginary axis, etc. The

graphs of Re(λ(I)) for the eigenvalues crossing the imaginary axis appear to

be related to each other through a horizontal stretch; this reflects the fact that

some current leaks out of the passive cable membrane en route to the spines,

and this loss is greater for spines further from the site of current injection.

When I increase Gss to 0.1 (intermediate stem conductance), the eigenvalue

pair λ(I) governing stability becomes functionally distinct from all others. I

call the eigenvector (technically, one of the two complex conjugate eigenvec-

tors) associated with this eigenvalue pair ~vj(I). In contrast to the situation

for Gss = 0.02, ~vj(I) is not overwhelmingly associated with one spine, reflect-

ing the fact that a larger stem conductance results in greater communication

among the spines. However, for each value of I the eigenvector ~vj is much

more strongly associated with one particular spine (or a few adjacent spines)

than with all the others, as indicated by an inspection of its components. At

IH1 = 3.915, the dominant spine is the one at the site of current injection. I

found that as I increases, the location of the dominant spine moves toward the
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other end of the cable. Hence, the greater the amount by which Ij exceeds the

first Hopf point for a given current ramp, the farther from the site of current

injection oscillations arise. These results suggest that for Gss = 0.1 the spines

maintain some degree of independence: each has an interval of I (current in-

jected into the cable), determined by its position, over which it fires, and as

Ij moves away from the first Hopf point the identity of the spine into whose

range of firing Ij squarely falls shifts away from the injection site.

For the stem conductance Gss = 0.35 (high stem conductance), the spines

feel heavily the passive cable’s load; I increased the number of spines to 360

because at this stem conductance the system with 75 spines is not excitable.

For 360 uniformly distributed spines and Gss = 0.35, the range of repetitive

firing is [5.82, 11.63]; the second Hopf point is an order of magnitude smaller

for this conductance than for the cases of Gss = 0.1 and Gss = 0.02, even

though many more spines are present in this case. It may be that the cable

load felt by the spines is large enough that only currents I which fall into

the excitable ranges for a large number of spines can excite the system, and

adjacent spines located near the injection point have the greatest overlap in

their ranges of excitability. In contrast, when Gss = 0.02, the spines are nearly

decoupled from the cable, and as long as even one spine receives current in its

excitable range the system experiences sustained oscillations. For example, I

near the second Hopf point at IH2 = 277.2 might excite only a few spines near

the far end of the cable.

I found that for the case Gss = 0.35, when the system becomes unstable

significant oscillations in spinehead potential arise over a large range of the

cable, for both Ij = 6.175 and Ij = 8.76. Although Ij = 8.76 is closer to

the second Hopf point than the first, the location of the largest-amplitude
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oscillations only shifts to x = 0.24 on a cable of length L = 3. This supports

the idea that the excitable range of [5.82, 11.63] is associated only with those

spines close to the site of current injection.
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Chapter 4

RESPONSE OF FITZHUGH-NAGUMO AND HODGKIN-HUXLEY

AXONAL CABLES TO A SLOW CURRENT RAMP
4.1 FitzHugh-Nagumo axonal cable

I now consider the FitzHugh-Nagumo axonal cable, where the ion channels

responsible for the generation of action potentials are embedded in the shaft

membrane. The model equations are as follows:

∂u

∂t
=

∂2u

∂x2
− f(u)− w (4.1)

∂w

∂t
= b(u− γw). (4.2)

I consider a FitzHugh-Nagumo cable of dimensionless length L with current

I(t) = I0 + εt injected into one end and the other end sealed to current. The

boundary conditions are

∂V

∂X
(0, t) = −I(t) (4.3)

∂V

∂X
(L, t) = 0. (4.4)

As with the spiny cable, I compartmentalize in order to apply the WKB

analysis. Let the first compartment (i = 1) correspond to the end at which

current is injected. For n compartments, the equations governing compartment

i, 1 ≤ i ≤ n are

u̇i = −f(ui)− wi +
ui−1 − 2ui + ui+1

∆X2
(4.5)

ẇi = b(ui − γwi) (4.6)
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where ∆X is the length of one compartment. The boundary conditions are

handled with “ghost” compartments:

u0 = u2 + 2∆XI (4.7)

un+1 = un−1. (4.8)

Each compartment has associated with it two variables, u and w. For conve-

nience when analyzing eigenvector components, I choose to arrange the equa-

tions such that for the i′th compartment,

u̇i = xi (4.9)

ẇi = xi+n. (4.10)

Hence, the approximating ODE to which I apply the WKB analysis is 2n-

dimensional. The first n variables correspond to the potential in the cable,

and the second n variables are the slow recovery variables.

4.2 Results: FitzHugh-Nagumo axonal cable
Response to a slow current ramp

For the parameters used by Baer and Gaekel [2], a = 0.02, b = 0.05, γ = 0.04,

I investigated the response of a FitzHugh-Nagumo cable of length L = 2.5 to

slow linear current ramps injected at one end, while the other end is sealed

to current. I used 125 compartments to perform the WKB analysis, resulting

in 250 eigenvalues. Of them, only one (complex-conjugate) pair of eigenvalues

had nonzero imaginary part. Figure 37 shows the real portion of this pair. All

other eigenvalues are large and negative.
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Figure 37: FitzHugh-Nagumo cable of length L = 2.5, where a = 0.02, b =
0.05 and γ = 0.04. Shown is the real portion of the one complex-conjugate
eigenvalue pair with nonzero imaginary part.

Figure 38 compares the WKB prediction for Ij in response to the slow

current ramp I(t) = 3.5 + εt, ε→ 0 with that observed in numerical solutions

of equations (4.1-4.4), with Ij defined as the value of current at the moment

the potential at some point in the cable exceeds 0.75. I note that there appear

to be two plots of Ij versus 1/ε, but this is not the case. This peculiarity is the

result of the number of oscillations the system undergoes before the threshold

is attained. If more data points had been collected, the usual jitter pattern

would be seen. Figure 39 compares the WKB prediction that oscillations will

arise all along the cable with the numerical solution for the particular ramp
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Figure 38: FitzHugh-Nagumo cable of length L = 2.5. Left : WKB prediction
of Ij in response to the slow current ramp I = 3.5 + εt, ε → 0. Right : Ij
observed in numerical solutions.

speed ε = 0.001. Consistent with the WKB prediction, oscillations arise all

along the cable once Ij = 6.46 is attained, and there is little difference in

amplitude for different points along the cable.

The next ramp I considered was I(t) = 2.5 + εt, ε→ 0. Fig. 40 compares

the WKB prediction for Ij in response to the slow current ramp I(t) = 2.5+εt,

ε→ 0 with that observed in numerical solutions, with Ij defined as the value

of current at the moment the potential at some point in the cable exceeds 0.93.

The jitter pattern seen differs from that in Fig. 38 in a way that suggests fewer

data points were used. This is not the case, and is due to the fact that the

frequency of oscillations away from the slowly-varying solution depends on I.

Fig. 41 compares the WKB prediction that oscillations will arise all along the

cable with the numerical solution for the particular ramp speed ε = 0.001.

Although this second ramp results in Ij = 8.58, a value closer to the

second Hopf point than the first, there is no difference in the location at which
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Figure 39: L = 2.5 cable. I(t) = 3.5 + εt. Top: The WKB method predicts
that oscillations will arise over the full length of the cable. Middle/Bottom:
Numerical solutions for ε = 0.001
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Figure 40: L = 2.5 cable. Left : WKB prediction of Ij in response to the slow
current ramp I = 2.5 + εt, ε→ 0. Right : Ij observed in numerical solutions.

oscillations arise; oscillations still arise all along the cable once Ij is attained.

Complete accommodation to a slow linear current ramp from I0 = 0.

Hodgkin and Huxley [11] speculated that for a sufficiently slowly rising current,

their model would never fire, regardless of how large the value of current

became. I call this phenomenon “complete accommodation.” To demonstrate

complete accommodation in the FitzHugh-Nagumo cable, I used the FitzHugh-

Nagumo parameters used for the spiny cable, a = 0.14, b = 0.05, γ = 2.54;

these parameter values reduce the interval for repetitive firing, i.e. move the

upper and lower Hopf points closer together.

Fig. 42 shows Ij versus the inverse ramp speed ε−1 obtained from numerical

solutions for cable lengths L = 0.5, L = 1, L = 2.5, and L = 3. As one

moves to the right across the graph, ε → 0 and one enters the regime of

validity for the WKB approximation. For the two shorter cables, L = 0.5 and

1, the WKB method predicts a value of Ij at which the cable will become

unstable, and numerical solutions confirmed this. However, for the two longer
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Figure 41: Cable length L = 2.5. I(t) = 2.5 + εt. Top: The WKB method
predicts that oscillations will arise over the full length of the cable. Mid-
dle/Bottom: Numerical solutions for ε = 0.001
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Figure 42: Ij observed in numerical solutions of the axonal cable PDE subject
to the ramp I(t) = εt versus inverse ramp speed, for FitzHugh-Nagumo cables
of several lengths.

cables, L = 2.5 and 3, the WKB method predicts that the cable will never

go unstable no matter how large the injected current becomes. Numerical

solutions confirmed this: as 1/ε becomes large, one enters into the WKB

regime and the graph ceases to exist (no Ij is observed by the time the second

Hopf point is passed). This suggests the existence of a minimal cable length

for complete accommodation.

The dependence of complete accommodation on cable length can be un-

derstood from Fig. 43. Increasing the cable length causes the graph of Re(λ)

to change in such a way that it is impossible for the WKB onset condition to
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Figure 43: FitzHugh-Nagumo cable with parameters a = 0.14, b = 0.05,
γ = 2.54. Re(λ) versus I. Left : L = 1. Ij is predicted to exist. Right : Cable
of length L = 2.5. Complete accommodation predicted.

be satisfied.

4.3 Complete accommodation to a slow linear current ramp from I0 = 0 in

the Hodgkin-Huxley axonal cable

I then turned to the Hodgkin-Huxley cable. In the following equations, V

corresponds to electrical potential, and m, n, and h are “gating variables”

which govern the opening and closing of sodium and potassium ion channels

embedded in the cable membrane. The gating variables vary between 0 and

1. ḡNa and ḡK are the maximal specific conductances associated with the

sodium and potassium ion channels. gL is the specific conductance associated

with the leakage current and is due to the passive properties of the cable

membrane. ENa, EK , and EL are the reversal potentials for the sodium,

potassium, and leakage currents. Cm is the specific membrane capacitance, d

is the cable diameter, and Ri is the axial resistivity. The equation for V is a

current-balance equation. The sodium and potassium channels are modeled
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as voltage-gated, which is captured by the voltage-dependent functions α and

β (not given here) associated with each gating variable. φ = 3
T−6.3

10 , and

alters the speed with which the gating variables respond to changes in cable

potential. The equations for the Hodgkin-Huxley cable subject to a current

ramp I(t) injected at x = 0 are

Cm
∂V

∂t
=

d

4Ri

∂2V

∂x2
− ḡNam

3h(V − ENa) − ḡKn
4(V − EK) − gL(V − EL) (4.11)

∂m

∂t
= φ(αm(V )(1 −m) − βm(V )m) (4.12)

∂n

∂t
= φ(αn(V )(1 − n) − βn(V )n) (4.13)

∂h

∂t
= φ(αh(V )(1 − h) − βh(V )h), (4.14)

with boundary conditions

∂V

∂x
(0, t) = −4Ri

πd2
I(t) (4.15)

∂V

∂x
(L, t) = 0. (4.16)

Here, L is the length of the cable in centimeters, and the current I is in µA.

The compartmentalization of the system was as follows. Let the first com-

partment (i = 1) correspond to the end at which current is injected. For n

compartments, the equations governing compartment i, 1 ≤ i ≤ n, are

CmV̇i = −ḡNam3
ihi(Vi − ENa)− ḡKn4i (Vi − EK)− gL(Vi − EL)

+
(Vi+1 − 2Vi + Vi−1)

R
(4.17)

ṁi = φ(αm(Vi)(1−mi)− βm(Vi)mi) (4.18)

ṅi = φ(αn(Vi)(1− ni)− βn(Vi)ni) (4.19)

ḣi = φ(αh(Vi)(1− hi)− βh(Vi)hi) (4.20)
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where R is given by

R =
4(∆x)2

d
Ri (4.21)

and ∆x is the length of one compartment. I define

V0 = V2 +
2RI

πd∆x
(4.22)

Vn+1 = Vn−1 (4.23)

to handle the boundary conditions.

Each compartment has associated with it four variables, the potential vari-

able V and the three gating variables m, n, and h. Hence, for n compartments,

the approximating ODE is 4n−dimensional. For convenience when analyzing

eigenvector components, I chose to arrange the equations such that for the i′th

compartment,

u̇i = xi (4.24)

ṁi = xi+n (4.25)

ṅi = xi+2n (4.26)

ḣi = xi+3n. (4.27)

The first n components of an eigenvector correspond to the potential in the

cable, and components n + 1 through 4n correspond to the gating variables.

Except where noted otherwise, cable parameters were taken from Cooley and

Dodge’s 1966 paper [6]. In checking the WKB prediction against finite differ-

ence solutions of equations (4.11-4.16), I defined the observed Ij as the value
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Figure 44: Ij observed in numerical solutions of the axonal cable PDE subject
to the ramp I(t) = εt versus inverse ramp speed, for Hodgkin-Huxley cables
of several lengths at temperature 6.3 ◦C.

of injected current at the moment the potential at some point along the cable

exceeds 40 mV.

I confirmed the phenomenon of complete accommodation for the Hodgkin-

Huxley cable. Fig. 44 shows Ij versus the inverse ramp speed ε−1 obtained

from numerical solutions for the cable lengths L = 0.5, L = 1, L = 2, and

L = 3. The temperature was chosen to be 6.3◦C.

As with the FitzHugh-Nagumo cable, the occurrence of complete accom-

modation for long but not short cables is due to the effect lengthening the

cable has on the graph of Re(λ(I)). Integration of Re(λ) versus I for various

cable lengths indicates that the minimum length for complete accommodation
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Figure 45: Plot of Hopf points versus cable length L, for a Hodgkin-Huxley
cable at 6.3 ◦C.

in the Hodgkin-Huxley cable is approximately Lmin= 1.45 cm for temperature

6.3◦C. Fig. 45 plots the lower and upper Hopf points of the cable as a function

of cable length; one can see that they approach limiting values as the cable

length approaches infinity. Hence, no matter how long the cable is, there is

always some excitable range of constant current I. Fig. 46 shows the same

plot for the larger temperature 18.5◦C. For the higher temperature, the Hopf

points coalesce and vanish for large enough cable length; indeed, integration

of Re(λ) versus I indicates that the minimum length for complete accommo-

dation of a linear current ramp from zero is about Lmin=0.7 cm, significantly

shorter.
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Figure 46: Plot of Hopf points versus cable length L, for a Hodgkin-Huxley
cable at 18.5 ◦C.

4.4 Discussion
Comparison of responses of high-stem-conductance FitzHugh-Nagumo spiny

dendritic cable and FitzHugh-Nagumo axonal cable to a slow current ramp

There are significant similarities between the responses of the FitzHugh-Nagumo

spiny dendritic cable with uniform Gss = 0.35 and the FitzHugh-Nagumo ax-

onal cable to a slow current ramp. (1) There is one systemic Hopf bifurcation,

caused by only one complex-conjugate eigenvalue pair crossing the imaginary

axis. (2) At the onset of instability, significant oscillations in potential arise

over a range of the cable; they are not highly localized as in the case of the

spiny cable with Gss = 0.1.
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A spiny dendritic cable with a very high spine density (n̄=120 was used,

corresponding to 360 spines) and high stem conductance is similar to an axonal

cable, in which the excitable channels are embedded in the cable shaft itself.

However, there are differences. In the spiny cable with Gss = 0.35 significant

oscillations in the spinehead potential arise over the first quarter of the cable

from the current-injection end, past which point they are insignificant in am-

plitude. In contrast, oscillations in potential arise all along the axonal cable

shaft, with little attenuation as distance from the injection end increases. The

WKB analysis yields the following insight: in the Gss = 0.35 spiny cable, only

one complex-conjugate eigenvalue pair attains positive real part (see Fig. 31);

however, there are many complex-conjugate pairs with Re(λ(I)) having the

same characteristic concave-down shape. Intuitively, even at this high value of

stem conductance the spines still retain some of their independent character,

and these complex eigenvalues with negative real part are mainly associated

with the spines far from the injection point, in which significant oscillations do

not arise. In contrast, for the FitzHugh-Nagumo (and the Hodgkin-Huxley)

axonal cable, all eigenvalues are real except for a single complex-conjugate

pair, which pair is responsible for the Hopf bifurcation. This indicates that

the axonal cable behaves fully as a single system, which is to be expected as

any compartments one wishes to view the cable as consisting of are directly

coupled, in contrast to spines which are coupled diffusively via their spine

stems.

Complete accommodation to a slow linear current ramp from I0 = 0

For both the FitzHugh-Nagumo and Hodgkin-Huxley axonal cables, length-

ening the cable stabilizes the system against oscillations provoked by a slow
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current ramp in the sense that it reduces the real portion of the eigenvalue

responsible for the onset of instability, which is integrated in computing the

apparent firing threshold. This is not surprising, as external current is deliv-

ered only at one end of the cable, and as length increases the conductance

load associated with the cable membrane increases. This reduction in the

real portion of the eigenvalue governing stability with increasing cable length

results in a minimum length for complete accommodation in response to a

slow linear current ramp from I0 = 0, for both the FitzHugh-Nagumo and

Hodgkin-Huxley cables.

Whether the stabilizing effect of lengthening the cable eventually saturates

(the two Hopf points asymptote as L → ∞) or not (the two Hopf points

coalesce and disappear for some value of L) can be intuitively viewed as a

competition between the stabilizing effect of additional membrane load and

the destabilizing effect of additional ion channels embedded in the membrane.

For the Hodgkin-Huxley cable at temperature 6.3 ◦C, the Hopf points continue

to exist and approach limiting values as L → ∞; hence, there is always an

excitable range of constant current (although a slow current ramp I(t) = εt

fails to provoke firing beyond a certain length). For the Hodgkin-Huxley cable

at temperature 18.5 ◦C, there is a length beyond which the two Hopf points

coalesce: not even a constant injected current I, of any value, can provoke the

cable to fire. Furthermore, the minimum length for complete accommodation

of the current I(t) = εt is much shorter for the higher temperature.

One can understand the stabilizing effect of increased temperature on the

Hodgkin-Huxley cable by noting that temperature only impacts the dynamics

via the parameter φ multiplying the gating variables. For the temperature of

18.5 ◦C, φ is extremely large and the gating variables are practically at their
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steady-state values dictated by the instantaneous potential V . Hence, there

is very little time lag in the response of the gating variables to the potential;

in terms of the physical nerve cell being modeled, this means that the sodium

current flows into the membrane for very little time before its channels close,

and the potassium current quickly responds to bring the voltage down again.

Both of these factors stabilize the system against action potentials.
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Chapter 5

DISCUSSION AND FUTURE DIRECTIONS
5.1 Summary of findings

I have investigated dynamic Hopf bifurcation in spatially-extended excitable

systems using models from neuroscience. The two systems considered were the

spiny cable, modeling a passive dendritic shaft studded with excitable spines,

and axonal cables, modeling a nerve fiber in which the ion channels responsible

for excitability are embedded in the shaft itself, such as an unmyelinated

axon. For simplicity, I have focused on FitzHugh-Nagumo dynamics, although

I did examine the phenomenon of complete accommodation to a slow linear

current ramp from I0 = 0 in the Hodgkin-Huxley axonal cable. In all cases,

the slowly rising current ramp was applied by injecting it into one end of

the cable while the other end was sealed to current. In order to predict the

apparent firing threshold Ij in response to a slow current ramp, I applied the

WKB method to the approximating ODE obtained from viewing the cable

as consisting of a large number of isopotential compartments. I discovered

that the WKB method also provides a prediction of the location along the

cable at which the largest-amplitude oscillations in membrane potential arise

(spinehead membrane potential for the spiny cable, cable shaft membrane

potential for the axonal cable) once I(t) = Ij. All WKB predictions were

compared with numerical solutions of the PDE model, executed in quadruple

precision arithmetic.

I investigated a model of a spiny dendritic cable in which 75 excitable spines

are uniformly distributed on a passive shaft of length L = 3, with uniform stem

conductances. For the intermediate stem conductance Gss = 0.1, I found that
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slow current ramps provoke oscillations which, although small in amplitude,

are still significant and are highly localized at a point on the cable distal from

the site of current injection. At first glance this appears counterintuitive.

However, one can see why this is by considering the results for the case of

very low stem conductance, Gss = 0.02. Each of the 75 complex-conjugate

pairs of eigenvalues, whose real portions are plotted in Fig. 21, was found to

be primarily associated with one spine for I throughout the range considered,

as indicated by an inspection of the associated eigenvectors. For each spine,

the real portion of the complex-conjugate eigenvalue pair crosses the I−axis

twice, at IL and IU Here one approaches a situation in which the spines are

decoupled, each having its own interval of injected current [IL, IU ] over which

it fires; for spines further from the injection point, IL and IU are larger and

the interval [IL, IU ] wider due to leakage losses through the passive shaft and

the current that is diverted by spines nearer the injection point.

I found that when Gss is increased to 0.1, a dominant eigenvalue pair

arises which is responsible for satisfying the onset condition in response to

a slow current ramp (Fig. 24). An inspection of the components of one of

the eigenvectors ~vj associated with this dominant pair indicates that it effects

potential oscillations away from the slowly-varying solution in all spineheads.

However, the identity of the spine for which the oscillations are largest in

amplitude shifts away from the injection point as Ij increases, indicating that

information about the individual firing ranges each spine would possess if

coupling with other spines were negligible is contained in ~vj. By manipulating

the current ramp used (initial condition and/or functional form of the ramp) I

can select Ij and hence select the location along the cable at which oscillations

would arise.
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The WKB method suggests that no slow current ramp can give rise to

distal oscillations in spinehead potential for the very low stem conductance of

Gss = 0.02, because the eigenvalue which would first satisfy the onset condition

is associated with the spine at the current-injection end for all I. In the spiny

cable with large stem conductanceGss = 0.35 and the axonal cable, oscillations

are predicted to be highly delocalized, and this was confirmed with numerical

solutions. This suggests that in order for a slow current ramp injected at one

end of a cable to give rise to localized distal oscillations in potential, (1) the

ion channels responsible for excitability must be isolated in spineheads rather

than embedded in the shaft membrane, and (2) an intermediate value of spine

stem conductance is required.

I have shown that a slow current ramp injected at one end of a spiny

dendritic cable can provoke localized distal oscillations in the spinehead mem-

brane potential, even when all geometric and electrical parameters, as well

as the distribution of ion channels, are uniform. The effect is even easier to

get if one has the more physically realistic situation of nonuniform spine stem

conductances, as shown in chapter two. The results of chapter two suggest

that for a continuous distribution of spines (uniform or not), distal oscillations

in spinehead membrane potential can be provoked even by a ramp with initial

current very close to the first Hopf point, if the distal spines have large enough

stem conductances. Although the geometry of the system dictates a natural

firing order for the spines, it is easily overcome by the effect of differing stem

conductances.

Another physically realistic feature which might result in distal oscillations

in spinehead membrane potential is a nonuniform distribution of spines along

the cable (nonuniform spine density). When stem conductance and spine
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density are uniform, increasing the number of spines on the cable increases

the two current values at which Hopf points occur; this is because the current

coming down the shaft is now divided among more spines. Although I did

not make a study of it, this suggests that decreasing the spine density at a

given point along the cable may have an effect similar to increasing the stem

conductance there, and cause such sparse patches to fire first in response to

current ramps starting close to the first Hopf point. Future work will have to

determine whether this is the case. I note that any nonuniformity in the system

may be introduced without complicating the WKB compartmental analysis;

indeed, it even applies to systems which cannot be written as a simple ordinary

or partial differential equation.

5.2 Remarks on boundary conditions

In this dissertation I have assumed that one end of the cable is sealed to cur-

rent, and the other end is injected with a slowly-rising current ramp. One

could have considered other boundary conditions; for example, rather than

sealing the far end to current, one could fix its potential at V = 0. For long

cables one would not expect this to make much difference, as little current

reaches the far end. One interesting alternative boundary condition would

be to replace the slowly-rising injected current with a slowly-rising command

potential V (εt). This could describe a cable attached to an active soma whose

potential is slowly rising. If different boundary conditions were used but the

problem remained such that (1) at each point along the cable, the potential

in the shaft increased slowly with time and (2) at each moment of time, the

potential in the shaft decreased monotonically from the stimulus end, I spec-

ulate that similar qualitative results would be obtained; this was the situation
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in the cable shaft for the boundary conditions considered. In particular, I

speculate that the nonlocal effect would be preserved for the spiny cable with

intermediate stem conductance.

5.3 Possible applications and directions for future work

I emphasize that although I have demonstrated the interesting nonlocal effect

for systems taken from neuroscience, the conditions for it to occur are very

general. This effect could arise in any reaction-diffusion system experiencing

a slowly ramped parameter p in which (1) there is some degree of decoupling

between the reactive and diffusive portions of the system, (2) in the limit that

they become decoupled, each reactive element undergoes two Hopf bifurcations

with respect to p and hence has an “excitable range.” In general, the differing

physical locations of the reactive elements will result in differences in their

excitable ranges of p, which makes the nonlocal effect possible. I now consider

two physiological systems in which the nonlocal effect might arise.

Slow-rising synaptic currents into the dendritic shaft

NMDA receptors embedded in the dendritic shaft provide a possible scenario

by which a segment of spiny dendritic cable might encounter a slowly-rising

injected current. NMDA channels open in response to glutamate, the primary

excitatory neurotransmitter, and give rise to an excitatory post-synaptic cur-

rent with a slow rise-time and decay of several hundred milliseconds [19]; in

contrast, the time course of an action potential is a few milliseconds. There

is great morphological variance among dendritic spines, and an accompany-

ing wide range of stem resistances, which are estimated to range from 107

to 1010Ω [23]. As was seen in chapter two, the stem conductance (inverse of

resistance) has a profound impact on which spine fires first in response to a
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slowly rising current, and can easily cause spines distal from the site of current

injection to fire first, bypassing spines physically closer to the injection site.

This may play a role in the computational properties of the dendritic process.

Pain and ectopic firing

Distal initiation of oscillations were not observed in the axonal cable, which

models a structure such as an unmyelinated axon. However, in a myelinated

axon the excitable components are the nodes of Ranvier, separated from each

other by myelinated segments which act as resistors [15]. This segregation of

the reactive and diffusive elements of the system might enable the interesting

phenomenon of distal initiation of firing in response to a slow current ramp to

arise.

Pseudounipolar neurons, such as dorsal root ganglion neurons, have no

dendrites and instead have an axon with two branches, the peripheral branch

and the central branch [13]. At the end of the peripheral branch are sensory

receptors, stimulation of which causes a signal to be conducted down the axon,

past the cell body, and ultimately to the spinal cord. The natural stimuli likely

to be experienced by dorsal root ganglion neurons are well modeled as slow

current ramps [16], making DRG cells a potential application of the results

outlined here. In addition, the generation of action potentials at abnormal

locations (“ectopic firing”) which is seen in damaged dorsal root ganglion cells

has been implicated in neuropathic pain [16].
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APPENDIX A

DERIVATION OF ONSET CONDITION
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A very simple, highly idealized model of an excitable cell is provided by the

FitzHugh-Nagumo system of equations. This a two-dimensional ODE system

which captures some of the qualitative features of the more realistic Hodgkin-

Huxley system while remaining analytically tractable. Its two variables are

u and w, where u represents membrane potential and w is a slow recovery

variable which acts to restore u to its resting value of zero after an action

potential; hence, w serves the same purpose as the potassium current in the

Hodgkin-Huxley system. I represents injected current.

u̇ = −f(u)− w + I (1)

ẇ = b(u− γw) (2)

Here, f(u) = u(u−a)(u−1); this term is responsible for the threshold behavior

of the model, which is accomplished via the sodium current in the Hodgkin-

Huxley model. Let a = 0.1, b = 0.05, and γ = 1. For these parameters, the

system has a unique steady state (uss(I), wss(I)) for all values of I, and the

system undergoes a supercritical bifurcation at the two Hopf points.

I switch to the vector form of the system and denote the steady state by

−→xss(I). To determine the stability of −→xss(I) one must linearize the system

about the steady state. So long as the Jacobian J of the system evaluated at

the steady state is nonsingular, the behavior of small deviations from −→xss(I)

under the linear system will be qualitatively equivalent to their behavior under

the full system.

J(−→xss(I)) =

 −3u2ss + 2(a+ 1)uss − a 1

b −bγ
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The eigenvalues of the above matrix determine the local stability of −→xss(I).

Since the current I appears additively in the equations, it falls out of the

linearization. However, it impacts the Jacobian indirectly through its deter-

mination of the point −→xss(I) at which the Jacobian is evaluated. To emphasize

this dependence, I write J(I).

Hence, each value of I determines a set of eigenvalues governing the local

stability of the steady state −→xss(I). The FitzHugh-Nagumo model with the

chosen parameters undergoes two supercritical Hopf bifurcations at I1 and I2,

0 < I1 < I2. In particular: for I < I1, the two eigenvalues lie in the left open

half of the complex plane. For I in (I1, I2) there is one complex conjugate pair

of eigenvalues with positive real part. For I > I2 the two eigenvalues again

lie in the left open half-plane. When the eigenvalues cross the imaginary

axis at the Hopf points, they do so transversally, that is, dRe[λ(I1)]
dI

> 0 and

dRe[λ(I2)]
dI

< 0. Finally, Im[λ(I1)] 6= 0 and Im[λ(I2)] 6= 0, that is, the Hopf

bifurcations are nondegenerate.

Now consider the situation in which I is not static but rather is a slowly-

varying function of time. For the moment consider a “slow linear ramp,”

in which I increases linearly from initial value I0 < I1 at a very slow rate

0 < ε� 1, called the ramp speed. The model is

u̇ = −f(u)− w + I(εt) (3)

ẇ = b(u− γw) (4)

I switch to the slow time variable τ = εt and rewrite the system. By the

prime symbol I denote differentiation with respect to the slow time variable
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τ . Defining U(τ) = u(t) and W (τ) = w(t), the system becomes

εU ′ = −f(U)−W + I (5)

εW ′ = b(U − γW ) (6)

I ′ = 1. (7)

Writing the system in this form, one sees that this system is actually a singular

perturbation of the system with static I. In the parlance of multiple-scale

methods, the equations governing
−→
X (τ) = (U(τ),W (τ)) constitute the fast

subsystem while the equation governing the current is the slow subsystem.

Recall that for the case of static parameter I, the system’s steady state was

given by the function −→xss(I). For the perturbed system, the function −→xss(I(τ))

constitutes the quasi-static solution. It is not a true solution to the problem

for nonzero ε: since I varies with τ , so too do the values of U and W given

by −→xss(I), but those values are precisely the ones which cause U ′ and W ′ to

be zero. Hence, −→xss(I(τ)) does not satisfy the perturbed differential equation.

However, singular perturbation theory for dynamical systems ensures that for

small enough ε, there will be a true solution to the system which closely tracks

the quasi-static solution [14, 20]. I denote this solution by −→xsv(τ), where “sv”

stands for “slowly varying.” It is slowly varying because it evolves on the

slow time scale τ . For the case of static current, one needed to determine the

behavior of deviations from the steady state −→xss(I). Here, one must determine

the behavior of deviations from −→xsv(τ). To do this, one linearizes about −→xsv(τ).

Switching to vector form, the system linearized about −→xsv(τ) is

ε
−→
X ′ = J(−→xsv(τ))

−→
X (8)
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where
−→
X (τ) represents a deviation from −→xsv(τ). If b and γ are O(1), an in-

spection of the equations for U ′ and W ′ indicates that −→xsv(τ) must be ε away

from the curve −→xss(τ); this follows from the fact that −→xsv(τ) varies as O(1) on

the τ time scale.

In general, one cannot obtain an explicit formula for −→xsv(τ). However, one

may write the following regular perturbation expansion for it [1, 2, 22]:

−→xsv(τ) ∼ −→xss(I(τ)) + ε−→x1(τ) + ... (9)

as ε → 0. The −→xi (τ) are unknown functions. Since J(−→xsv(τ)) ∼ J(−→xss(I(τ)))

as ε→ 0, the qualitative behavior of deviations from −→xsv(τ) is given by

ε
−→
X ′ = J(−→xss(I(τ)))

−→
X (10)

for small enough ε > 0. This is a linear homogeneous equation with slowly-

varying coefficients. An approximate analytic solution for such problems can

be obtained via the WKB method [4], which assumes that there is scalar

function σ(τ) and vector functions
−→
Xi(τ) such that

−→
X (τ ; ε) ∼ e

σ(τ)
ε

[−→
X0(τ) + ε

−→
X1(τ) + ...

]
(11)

as ε→ 0.

Substituting this expansion into the equation and solving for the leading-

order term, one obtains the algebraic problem

[J− σ′(τ)I]
−→
X0(τ) =

−→
0 (12)

where by assumption
−→
X0(τ) 6= −→0 . One sees from this equation that

−→
X0(τ) is an

eigenvector −→v (τ) of J(−→xss(I(τ)) with corresponding eigenvalue λ(τ) = σ′(τ).
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A fundamental solution to leading order is then

−→
X (τ) ∼ e

1
ε

∫ τ
0 λ(I(τ))dτ −→v (I(τ)) . (13)

The motivation behind the WKB expansion can be understood by con-

sidering that for the scalar differential equation εx′ = f(τ)x, the solution

(up to an arbitrary multiplicative constant) is given by x(τ) = e
1
ε

∫ τ
0 f(s)ds.

For a first-order system of equations ε
−→
X ′ = F(τ)

−→
X the analogous formula is

−→
X (τ) = e

1
ε

∫ τ
0 λ(s)ds−→V (τ), where λ(τ) is an eigenvalue of F(τ) with correspond-

ing eigenvector
−→
V (τ). Because of the time derivative of the eigenvector, this is

not a solution to the problem, however, it satisfies it asymptotically as ε→ 0

and hence gives the solution to leading order. Higher-order corrections are

obtained by solving for the vector functions
−→
X i, i = 1, 2, ....

For the FitzHugh-Nagumo system, there are two (up to multiplication by

nonzero complex conjugate constants) fundamental solutions. For an ODE in

n variables, there are n fundamental solutions, one for each eigenpair of the

Jacobian. A given fundamental solution becomes O(1) away from −→xsv(τ) at

the smallest τ > 0 satisfying

∫ τ

0

Re [λ(I(τ))] dτ = O(ε) (14)

which for simplicity is approximated in this dissertation as

∫ τ

0

Re [λ(I(τ))] dτ = 0. (15)

The general solution to (10) is a linear combination of the fundamental

solutions. Hence, it follows that the slowly-varying solution −→xsv(τ) becomes

unstable at the smallest value of τ > 0 such that, for some 1 ≤ i ≤ n,
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∫ τ

0

Re [λi(I(τ))] dτ = 0. (16)

For a linear ramp, I(τ) = I0 + τ , one can replace (16) with

∫ I

I0

Re (λi(I)) dI = 0. (17)

In contrast to the case of constant bifurcation parameter I, the slowly-

varying solution is not predicted to lose stability the moment I attains the

value I1. Rather, it is predicted to remain stable until a value of I is reached

such that one of the eigenvalues λi satisfies the above integral. When this

happens, the fundamental solution associated with that eigenvalue has “wound

away” from the slowly-varying solution as far as it “wound in” towards it while

λi had negative real part. I denote the smallest value of I > I0 for which (17)

is satisfied for some 1 ≤ i ≤ n as Ij. Hence, Ij is the WKB prediction for the

onset of instability.

I note that Ij exceeds the first Hopf point I1 by a finite value as ε→ 0. That

is, as ε→ 0, one does not recover the static current behavior. This arises from

the fact that (8) is a singular perturbation problem. In general, to determine

Ij one must keep track of
∫ I
I0
Re(λi(I))dI for each of the eigenvalues. For the

simple FHN model both integrals will be the same because the eigenvalues

are a complex conjugate pair. In contrast to the case for static I, one cannot

speak simply of the stability or instability of the slowly-varying solution. The

current at which the system becomes unstable depends on the initial current

I0 when the ramp began. One must keep in mind that there is no unqualified

Ij for the onset of sustained oscillations: Ij is a function of I0.
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