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ABSTRACT  
   

DehaloR^2 is a previously characterized, trichloroethene (TCE)-

dechlorinating culture and contains bacteria from the known dechlorinating genus, 

Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, 

Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-

trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-

dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE 

dechlorination ability due to 2,6-DBP and 2,6-DCP exposures were also 

investigated. 

DehaloR^2 did not dechlorinate TCC or TCEP. After initial exposure to 

TCA, half of the initial TCA was dechlorinated to 1,1-dichloroethane (DCA), 

however half of the TCA remained by day 100. Subsequent TCA and TCE re-

exposure showed no reductive dechlorination activity for both TCA and TCE by 

120 days after the re-exposure.  

It has been hypothesized that the microbial TCE-dechlorinating ability 

was developed before TCE became abundant in groundwater.  This dechlorinating 

ability would have existed in the microbial metabolism due to previous exposure 

to biogenic halogenated compounds. After observing the inability of DehaloR^2 

to dechlorinate other anthropogenic compounds, DehaloR^2 was then exposed to 

two naturally occurring halogenated phenols, 2,6-DBP and 2,6-DCP, in the 

presence and absence of TCE. DehaloR^2 debrominated 2,6-DBP through the 

intermediate 2-bromophenol (2-BP) to the end product phenol faster in the 
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presence of TCE. DehaloR^2 dechlorinated 2,6-DCP to 2-CP in the absence of 

TCE; however, 2,6-DCP dechlorination was incomplete in the presence of TCE. 

Additionally, when 2,6-DBP was present, complete TCE dechlorination to 

ethene occurred more quickly than when TCE was present without 2,6-DBP. 

However, when 2,6-DCP was present, TCE dechlorination to ethene had not 

completed by day 55. 

The increased dehalogenation rate of 2,6-DBP and TCE when present 

together compared to conditions containing only 2,6-DBP or only TCE suggests a 

possible synergistic relationship between 2,6-DBP and TCE, while the decreased 

dechlorination rate of 2,6-DCP and TCE when present together compared to 

conditions containing only 2,6-DCP or only TCE suggests an inhibitory effect. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Anthropogenic, or man-made, sources of pollution have inevitably existed 

as long as mankind, but did not occur in such a significant quantity until the 

Industrial Revolution [1]. Since then, innumerable compounds not found in the 

natural environment have been created to solve a wide range of natural and man-

made dilemmas, often resulting in unforeseen complications. The organochlorine 

insecticide (OC), dichlorodiphenyltrichloroethane (DDT), was originally seen as a 

scientific breakthrough and the chemist credited with the discovery and 

application of DDT, Paul Hermann Müller, even won a Noble Prize, until the 

negative impacts of the insecticide were realized [2]. However, DDT is still 

recognized as the synthetic compound that may have saved the most lives in the 

history of mankind and is still used in developing countries with widespread 

malaria. 

Chlorinated ethenes—or chloroethenes—are compounds created for use as 

solvents in dry cleaning, metal degreasers, and in various applications in the 

textile industry [3]. The wide range of uses for chloroethenes combined with past 

careless disposal has made chloroethenes one of the most common classes of 

pollutants at hazardous waste sites [4]. Many of these chlorinated ethenes 

including trichloroethene (TCE) are highly toxic and known or suspected 

carcinogens [5]. TCE is present at around 60% of the United States 

Environmental Protection Agency’s (USEPA) National Priority List (NPL) or 
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Superfund sites [6]. Although TCE is naturally produced by marine algae [7], its 

extensive anthropogenic production and use as a degreasing and cleaning solvent 

far outweighs the biogenic production.  

Anaerobic bioremediation has been established as an efficient means for 

removing TCE [8-13]. This is not only due to the occurrence of TCE pollution, 

especially in groundwater where anoxic conditions exist, but also to the difficulty 

in removing TCE under aerobic conditions [14]. Throughout the various research 

efforts, many mixed [12, 13, 15-17] and pure [18-21] cultures capable of 

dechlorinating TCE have been discovered. The bacteria in these cultures use TCE 

as an electron acceptor and gain energy through dehalorespiration and are 

sometimes referred to as anaerobic halorespirers [22]. 

Among these halorespiring bacteria is a unique group known as 

Dehalococcoides spp. Currently, Dehalococcoides spp. are the only known 

bacteria capable of completely dechlorinating PCE and TCE [23]; however, not 

all strains of Dehalococcoides are capable of this complete dechlorination [13]. 

Some strains incompletely dechlorinate TCE to trans- [24, 25] and cis-

dichloroethene (DCE) [26-28] and vinyl chloride (VC) [29, 30]. Additionally, 

there are other species of bacteria capable of dechlorinating TCE to the first 

intermediate product, cis-DCE such as Dehalobacter [31-33], Desulfuromonas 

[34, 35], and Geobacter [35, 36]. Dehalococcoides spp. have also shown the 

ability to dehalogenate other compounds such as chlorinated phenols 

(chlorophenols, CPs) [37], brominated diphenyl ethers [38], and chlorinated 

benzenes [20, 39]. 
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In addition to anthropogenic sources of halogens, there are also biogenic 

sources [40]. These biogenic compounds are produced naturally by species such 

as ticks [41-46], which produce 2,6-dichlorophenol (2,6-DCP), and marine 

hemichordates [47, 48], which produce 2,6-dibromophenol (2,6-DBP). Extensive 

research has been done on CPs and bacteria capable of degrading CPs [37, 49-70] 

while bromophenols (BPs) have not been studied quite as thoroughly [48, 71-77].  

Despite the lack of research, by looking at the periodic table a few 

hypotheses can be generated: (1) it should take less energy to remove a bromine 

compared to a chlorine, (2) the bromines should not be bonded as strongly as the 

chlorines on a halogenated compound, and (3) because bromine and chlorine have 

such similar chemical properties, an organism capable of reductive dechlorination 

could perform reductive debromination [38, 39].  

Although brominated compounds are not as abundant as chlorinated 

compounds, studies have shown that polybrominated compounds are just as toxic 

to humans [78, 79] and animals [80, 81] and recalcitrant in the environment [82] 

as polychlorinated compounds. Studies examining toxicity of lesser-brominated 

compounds (such as di- and monobromophenols) are not available [73]. 

 As mentioned previously, Dehalococcoides spp. have exhibited a wide 

range of dehalogenation ability in regards to multiple anthropogenic compounds. 

However, Dehalococcoides has most likely existed in the environment much 

longer than the discovery and mass production of anthropogenic compounds. The 

biggest questions here are: (1) How were these bacteria living and thriving before 

anthropogenic sources of halogenated compounds? And (2) How does 
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Dehalococcoides have the necessary metabolic machinery to dehalogenate 

compounds given that developing such metabolic machinery through evolution or 

gene transfer events would theoretically take more than a few centuries?   

1.2 RESEARCH OBJECTIVES 

Using the summary presented in section 1.1, the following objectives for 

this research were developed. The specific aims were: 

(1) To determine if the TCE-dechlorinating culture, DehaloR^2 [13] is 

capable of dechlorinating three additional chlorinated organics of 

anthropogenic origin: a chlorinated solvent, 1,1,1-trichloroethane (TCA), 

an antimicrobial agent, triclocarban (3,4,4’-trichlorocarbanilide, TCC), 

and an organophosphorus flame retardant, tris(2-chloroethyl) phosphate 

(TCEP); 

(2) To examine the ability of DehaloR^2 to dehalogenate two model biogenic-

like compounds: 2,6-dibromophenol (2,6-DBP), which can be produced 

by a marine hemichordate, and 2,6-dichlorophenol (2,6-DCP), which in 

nature is a sex pheromone secreted by multiple tick species; 

(3) To explore the effects of 2,6-DBP and 2,6-DCP on the TCE-

dechlorinating ability of DehaloR^2. 

This thesis is divided into six chapters. Important background information 

regarding the various anthropogenic and biogenic-like compounds and previous 

research related to bioremediation using the anaerobic bacteria Dehalococcoides 

is presented in Chapter 2. Research findings are presented in Chapters 3, 4, and 5. 

Chapter 3 examines the results of an initial screening exposing the DehaloR^2 
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culture to the three anthropogenic compounds: TCA, TCC and TCEP. The results 

and implications of reductive dehalogenation of the model biogenic-like 

compounds 2,6-DBP and 2,6-DCP are presented in Chapter 4. In Chapter 5, I 

investigate the effects of 2,6-DBP and 2,6-DCP on the previously established 

TCE-dechlorinating ability of DehaloR^2. Finally, the major conclusions from 

these studies, recommendations for future researchers, and personal next research 

steps are presented in Chapter 6. 
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CHAPTER 2 

BACKGROUND 

2.1 ANTHROPOGENIC SOURCES OF HALOGENATED COMPOUNDS 
 

Anthropogenic compounds are human-made materials not found in the 

natural environment [83] and are used in “agriculture, industry, medicine, and 

military operations” [84]. These compounds can be further categorized into sub-

classes such as persistent organic pollutants (POP), polycyclic aromatic 

hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated 

biphnyls (PBBs), polychlorinated dibenzodioxins (PCDDs), polychlorinated 

dibenzofurans (PCDFs), organochlorine insecticides (OCs), organophosphorus 

insecticides (OPs), volatile organic compounds (VOCs), organophosphate flame 

retardants (OFRs), and contaminants of emerging concern (CECs) [85]. Many of 

these anthropogenic compounds are recalcitrant in the environment and harmful 

to various animals and biota. Three such anthropogenic compounds are 

triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-

trichloroethane (TCA). 

2.1.1 Triclocarban (TCC) 

TCC is a polychlorinated phenyl urea often used as an antibacterial and 

antifungal component in pharmaceuticals and personal care products (PPCPs) 

[86]. TCC has become a focus for both public attention and the scientific 

community due to its widespread use [87-90], persistence in the environment [91-

98], and its toxicity to some babies [99, 100] and many environmental species 

[101-107]. TCC is most often found in antimicrobial soaps, and a study performed 
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by Perencevich (2001) demonstrated TCC in ~29% of bar soaps [87]. As of 2012, 

TCC is solely an anthropogenic compound and not produced by natural means. 

The chemical structure of TCC is shown in Figure 2.1. A summary of chemical 

properties of TCC is shown in Table 2.1. 

 
 
 

 
 
 
 

Figure 2.1 Chemical structure of TCC [108]. 
 
Table 2.1 Chemical properties of TCC ((SciFinder) and [109]). 
 

Property TCC DCC NCC Units Conditions 
CAS 101-20-2 1219-99-4 102-07-8   
Molecular 
Formula C13H9Cl3N2O C13H10Cl2N2O C13H12N2O   

Molecular 
Weight 315.58 281.14 212.25 g/mol  

Density 1.534±0.06 1.450±0.06 1.249±0.06 g/cm3 at 20°C 
Viscosity NA (solid) NA(solid) NA( solid) cP at 25°C 
Solubility 1.0E-04 5.1E-04 0.03 g/L at 25°C 
Vapor Pressure 6.67E-05 3.64E-04 0.0112 torr at 25°C 
Henry’s Law 
Constant < 1E-08 1 -- -- atm-

m3/mol  

Bioconcentration 
Factor 24300 8520 115  at 25°C 

KOC 48000 22600 1040  at 25°C 
Log KOW 4.902 4.33    

 
TCC is a hydrophobic compound and sorbs to particulate matter [93, 95, 

112-114]. This is evidenced by high KOC and KOW values, and causes it to 

primarily accumulate in digester sludge and, consequently, biosolids. TCC has 

also been found in river, wastewater, groundwater and freshwater sediments [98]. 

                                                
1 Estimated by USEPA using Estimation Programs Interface SuiteTM v3.20 [110] 
2 Estimated using KOWINv1.67[111]] 
3 [112] 
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Table 2.2, summarizes concentrations of TCC previously reported in various 

matrices in the environment. 

 

Table 2.2 Concentrations of TCC found in various matrices in the environment. 
 

Matrix River 
Water4 Wastewaterd Groundwater5 

Dewatered, 
Digested 
Sludge6 

Biosolidsf 

Concentration 5600 6750 12 51.15±15 51,000 

Units ng/L ng/L ng/L mg/kg dry 
wt. ng/g 

 
 

Few toxicological studies have been done on the toxicity of TCC to 

humans; however, TCC has been shown to bioaccumulate in aquatic species. The 

most well known health concern regarding TCC is that it causes 

methemoglobinemia in children [99, 100]. Additionally, studies have shown that 

TCC interferes with mammalian reproduction [105, 116] and “amplifies 

transcriptional activity of steroid sex hormones in the estrogen and androgen 

receptors of humans”[117-119]. 

Ying et al., observed aerobic dechlorination of TCC [120]. However, to 

date, anaerobic bacterial species have not been identified which dechlorinate 

TCC. In 2008, Miller et al. theorized that reductive dechlorination may be 

responsible for observed degradation by-products of TCC (4,4’-

dichlorocarbanilide (DCC) and carbanilide (NCC)) in aged deep sediment [95]. 

                                                
4 [91] 
5 [115] 
6 [93] 
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Miller (2010) later discovered Alcaligenaceae bacteria in activated sludge which 

consume TCC and NCC as the sole carbon source[121]. 

2.1.2 Tris(2-chloroethyl) phosphate (TCEP) 

 TCEP is a colorless to pale yellow liquid with a slight odor mainly used in 

the production of liquid unsaturated polyester resins as a flame retardant [122]. In 

1995, TCEP was placed on the European Commission second priority list 

[123]:[124]. To date, TCEP is classified as an anthropogenic compound produced 

by natural means. The chemical structure of TCEP is illustrated in Figure 2.2. A 

summary of chemical properties for TCEP is provided in Table 2.3.  

 
Figure 2.2 Chemical structure of TCEP [108]. 

 
 

Table 2.3 Chemical Properties of TCEP (SciFinder) and [122]). 
Property TCEP Units Conditions 
CAS 115-96-8   
Molecular Formula C6H12Cl3O4P   
Molecular Weight 285.5 g/mol  
Density 1.392±0.067 g/cm3 at 20°C 
Viscosity 348 cP at 25°C 
Solubility Slightly, 7.4e g/L at 25°C 
Vapor Pressure 1.08E-04d torr at 25°C 
Henry’s Law Constant 3.30E-06e atm-m3/mole  
Bioconcentration Factor 7.69d  at 25°C 
KOC 150d  at 25°C 
Log KOW 1.7e   

 

                                                
7 SciFinder.org 
8 [122] 
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 TCEP has been found in a wide range of environmental matrices, 

including indoor [125-132] and outdoor air [130, 133], water [130, 134-142], 

sediments [143, 144], soils [142, 145], and landfill leachate [146, 147]. A cause 

for concern is the possibility for long transport [137, 148-150]. Due to this 

phenomenon, TCEP has been detected in: Antarctica [148], pine needles in the 

Sierra Nevada Mountains [149], precipitation in remote areas in Ireland, Poland, 

and Sweden [150], and rainwater in Germany [137]. Table 2.4, summarizes 

typical concentrations of TCEP found in various matrices in the environment. 

 

Table 2.4 Concentrations of TCEP found in various environmental matrices [123] 

Matrix Urban Rivers 
[136] 

WWTP Effluent 
[135] 

Marine 
Sediment 

[144] 
Indoor Air 

[125] 

Concentration 0.5  30 1 250 
Units µg/L µg/L ng/g ng/m3 

 

TCEP contamination is a cause of concern due to the risk posed to the 

environment and the possible toxicity to humans from exposure to the substance 

[123], as established from animal studies. Table 2.5 summarizes some key TCEP 

toxicity studies performed and their findings. 
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Table 2.5 Key studies on toxicity effects from TCEP 
 

Type Year Study Key Findings Reference 

Neurotoxicity 

1990 
Rats given 275 
mg TCEP/kg 
body weight 

High doses in Rats 
caused brain lesions, 

convulsions (within 60-
90 minutes), and 

impaired performance in 
water maze 

[151] 

1993 

2 year study, 
focusing on 
chronic 
exposure 

• Principal toxic effects 
occurred in the brain 
and kidney 

 

[152] 

Reproductive 
Toxicity 1991 

Male and 
female rats 
exposed to 
TCEP  

• Adversely effects male 
fertility in rats and 
mice 

• Reduced fertility due 
to TCEP exposure 
occurs at doses of 175 
mg/kg body weight or 
more 

[153] 

Carcinogenicity 

1989, 
1990 

Rats and mice 
exposed to 
varying levels 
of TCEP 

Causes benign tumors in 
rats and mice [154, 155] 

2006 

Various 
cultures were 
dosed with 
TCEP 

Findings suggest non-
genotoxic carcinogen. 
Not cytotoxic, anti-
estrogenic 

[156] 

 

 Takahashi et al. (2012) recently published an article showing complete 

detoxification of TCEP using the bacterial strains Sphingobium sp. strain TCM1 

and Xanthobacter autotrophicus strain GJ10 [157]. While Takahashi et al. (2008), 

reported the mixed culture capable of TCEP degradation, these finds have yet to 

be reproduced [158, 159].  

2.1.3 1,1,1-Trichloroethane (TCA) 

TCA, an anthropogenic, colorless liquid with a sweet, sharp odor [160] is 

used as a cleaning solvent and a degreaser. While initially developed as a “safer 
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alternative” to TCE, TCA was as toxic to the environment as TCE. However, 

TCA is not as toxic to humans and is not a known human carcinogen [161]. Like 

TCE, TCA most often appears in groundwater; the daughter products of TCA, 

1,1-DCA (DCA) and chloroethane (CA), appear where TCA contamination has 

occurred due to various natural abiotic and biotic transformations [161]. Figure 

2.3 shows the chemical structure of TCA, and Table 2.6 provides a summary of 

the chemical properties of TCA and its daughter products.    

 
Figure 2.3 Chemical structure of TCA[108]. 
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Table 2.6 Chemical Properties for TCA and daughter products DCA and CA 

(Unless otherwise specified, all properties were obtained from Scifinder [162]). 

Property TCA DCA CA Units Conditions 
CAS 71-55-6 75-34-3 75-00-3   
Molecular 
Formula C2H3Cl3 C2H4Cl2 C2H5Cl   

Molecular 
Weight 133.40 98.96 64.51 g/mol  

Density 1.393±0.06c 1.168±0.06c 0.884±0.06c g/cm3 at 20°C 
Viscosity 0.7909 0.464e 0.25910 cP at 25°C 
Solubility 1.511 2.1c 3.7e g/L at 25°C 
Vapor Pressure 122c 232c 1170c Torr at 25°C 
Henry’s Law 
Constant 1.7E-0212 6.2E-03g 1.2E-02g atm-

m3/mole  

Bioconcentration 
Factor 35.8c 12.8c 10.1c  at 25°C 

KOC 450c 215c 182c  at 25°C 
Log KOW 2.4913 1.45-1.4814 1.4315   

  

 TCA has been found in urban, rural, and indoor air, groundwater, 

wastewater, surface water, sediments, and soil [160]. In 2006, the US Department 

of Health and Human Services (USDHHS) published a oxicological profile for 

TCA, which is summarized in Table 2.7. 

 

 

 

 

                                                
9 [163] 
10 [164] 
11 [160] 
12 [165, 166] 
13 [160] 
14 [167] 
15 [168] 
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Table 2.7 Concentrations of TCA found in various matrices in the environment 

[160] (All concentrations are given in ppb unless otherwise specified). 

Matrix Concentration 

A
ir 

Urban 0.1-1 
Indoor 0.3-0.4 

Outdoor 0.11-0.92 

W
at

er
 Ground 0-18 

Drinking 0.01-3.5 
Surface 0-9.7 

Sediment and Soil 0.01-2500 
 

 While it is not classified as a carcinogen [76], numerous reports state that 

TCA causes negative health effects upon exposure. Symptoms of TCA exposure 

include: “central nervous system depression, hypotension, cardiac arrhythmia, 

diarrhea and vomiting, mild hepatic effects, and dermal and ocular irritation.” 

 Dehalobacter sp. is the only identified dehalorespiring, anaerobic bacteria 

capable of TCA dechlorination[161, 169, 170]. TCA can also inhibit TCE 

dechlorination until all TCA is dechlorinated to DCA [170, 171] [172]. 

2.2 BIOGENIC SOURCES OF HALOGENATED COMPOUNDS 

Biogenic compounds are naturally occurring materials. Biogenic, 

halogenated compounds, known as organohalides, are comprised of primarily 

chlorinated and brominated compounds, with iodinated compounds and 

fluorinated compounds less prevalent. By 2003, over 3000 organohalides had 

been identified. Many brominated biogenic compounds are produced by marine 

biota and may serve as a chemical defense against predators and may inhibit 

biofouling in sea sponges [40]. Biogenic chlorinated compounds are rarely seen in 

sponges but are found in many tick species [41-46]. 



   15 

2.2.1 2,6-Dibromophenol (2,6-DBP) 

2,6-Dibromophenol (2,6-DBP) is a halogenated phenol known more 

specifically as a bromophenol. 2,6-DBP is naturally produced by various species 

of marine hemichordates [40, 47, 48] and sponges [72, 77]. Figure 2.4 illustrates 

the chemical structure, and Table 2.8 provides the chemical properties of 2,6-

DBP. 

 
Figure 2.4 Chemical structure of 2,6-DBP [108] 
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Table 2.8 Chemical Properties of 2,6-DBP (Scifinder) 
 

Property 2,6-DBP Units Conditions 
CAS 608-33-3   
Molecular Formula C6H4Br2O   
Molecular Weight 251.9 g/mol  
Density 2.095±0.06 g/cm3 at 20°C 
Viscosity NA cP  
Solubility 0.76 g/L at 25°C 
Vapor Pressure 9.49E-03 torr at 25°C 
Henry’s Law Constant 1.202E-0516 atm-m3/mole at 25°C 

Bioconcentration Factor 

Varies based on pH 

 at 25°C 
pH Value 
6 158 
7 78.2 
8 13 

KOC 

Varies based on pH  

at 25°C 
pH Value 
6 1260 
7 624 
8 104 

Log KOW 3.36  at 25°C 
 

Few investigative studies of 2,6-DBP and its fate in the environment are 

available. Since 2,6-DBP is produced by marine species, it is present in marine 

environments. 

While studies examining toxicity of 2,6-DBP are not available [73], 

studies of polybrominated compounds have demonstrated they are as toxic to 

humans [78, 79] and animals [80, 81] as polychlorinated compounds. 

The majority of research into biodegradation of bromophenols (BPs) has 

focused on higher substituted brominated compounds and polybrominated 

diphenyls (PBBs) [38, 78, 79, 81, 82, 174-176]. Ahn et al. (2003) reported 

complete debromination of 2,6-DBP to phenol by bacteria present in a marine 

                                                
16 Estimated using Exper. Database match and HENRYWIN v3.10, respectively [173] 
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sponge [77]. Figure 2.5 shows the experimentally observed and theoretical 

biodegradation pathways for the debromination of 2,6-DBP. 

 

Figure 2.5 Pathways for reductive debromination of 2,6-DBP [108]. The 

experimentally observed pathway is represented by the bold, green arrows [77]. 

The theoretical formation of 6-bromophenol (6-BP) is shown with a dashed, black 

arrow. 

 

2.2.2 2,6-Dichlorophenol (2,6-DCP) 

2,6-Dichlorophenol (2,6-DCP) is a halogenated phenol known more 

commonly known as chlorophenol. 2,6-DCP is a biogenic [41, 177] and, to a 

lesser extent, anthropogenic source of chlorine [178]. Biogenically, 2,6-DCP is a 

sex pheromone secreted by numerous tick species including the Lone-Star tick. 

[40]:[41-46, 68, 179]. Anthropogenically, 2,6-DCP is an intermediate in the 

production of insecticides, herbicides, preservatives, antiseptics, and disinfectants 

[178]. The chemical structure of 2,6-DCP is provided in Figure 2.6, and its 

chemical properties are provided in Table 2.9. 
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Figure 2.6 Chemical structure of 2,6-DCP [108]. 

 
 
Table 2.9 Chemical Properties of 2,6-DCP (Scifinder). 
 

Property 2,6-DCP Units Conditions 
CAS 87-65-0   
Molecular Formula C6H4Cl2O   
Molecular Weight 163 g/mol  
Density 1.458±0.06 g/cm3 at 20°C 
Viscosity    
Solubility 0.52 g/L at 25°C 
Vapor Pressure 0.0828 torr at 25°C 
Henry’s Law Constant 4.308E-0617 atm-m3/mole at 25°C 

Bioconcentration Factor 

Varies based on pH  

at 25°C 6 85.5 
7 48 
8 8.95 

KOC 

Varies based on pH  

at 25°C 6 819 
7 459 
8 85.7 

Log KOW 2.80q  at 25°C 
 

 

Being biogenic, 2,6-DCP is found in many environmental matrices 

including surface water, groundwater, drinking water, food, and indoor and 

ambient air. Table 2.10 summarizes reported concentrations of 2,6-DCP in these 

matrices.  

 

                                                
17 [180] Estimated using HENRYWIN v3.10 and KOWWIN v1.67, respectively 
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Table 2.10 Concentrations of 2,6-DCP found in various environmental matrices 
[68] 
 

Matrix Surface 
Water Groundwater Drinking 

Water Food Indoor 
Air 

Ambient 
Air 

Concentration 0.1 ≤27,300 0.2-267 2-105 <1-165 0.3 

Units µg/L µg/L µg/L µg/kg µg /m3 µg /m3 
 

Although multiple studies have been performed examining toxicity of 

chlorophenols [68, 181-186], 2,6-DCP has not been included [68]. However, 

Keith and Telliard (1979) reported another dichlorophenol, 2,4-dichlorophenol 

(2,4-DCP), and the intermediate 2-chlorophenol (2-CP) were included on the list 

of priority pollutants in 1979 due to “their toxicity and suspected carcinogenicity” 

[187].  

There have been numerous investigations into the anaerobic and aerobic 

biodegradation of 2,6-DCP [188-190]. Multiple researchers have observed 

reductive dechlorination of chlorinated phenols in methanogenic conditions, 

resulting in methane and carbon dioxide [49, 51, 53, 54, 56, 58, 59, 191, 192] 

production. Varying results have been reported for DCP reduction when sulfur is 

present.  Häggblom, et al. (1993) [58, 59] observed biodegradation under sulfate-

reducing conditions and three other types of reducing conditions, and these 

findings further supported reports of 2,6-DCP reduction by sulfidogenic cultures 

[52, 75, 192], including consortia from an anaerobic reactor [49]. However, the 

chlorophenol degradation decreased when one research group added sulfur to an 

established 2,6-DCP reducing methanogenic culture[75]. Another well-

documented occurrence is that the preferred aromatic chlorine position for these 

methanogenic cultures is the ortho position, compared to the meta- and para- 
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positions, where dechlorination is less readily observed [50, 55, 192-194]. Figure 

2.7 shows the experimentally observed and theoretical biodegradation pathways 

for 2,6-DCP. A summary of previously isolated and identified bacterial strains 

capable of degrading 2,6-DCP is presented in Table 2.11. 

 

Figure 2.7 Pathways for reductive dechlorination of 2,6-DCP [108]. The 

experimentally observed pathway is represented by green arrows. The bold, green 

arrow represents dechlorination by the strain Dehalococcoides mccartyi str. 

CBDB1 [37], and the dashed, green arrow represents dechlorination by 

Anaeromyxobacter dehalogenans [67, 195, 196].  The theoretical formation of 6-

chlorophenol (6-CP) is shown with a dashed, black arrow. 
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Table 2.11 Previously isolated and identified bacterial strains capable of 

degrading 2,6-DCP [69] 

Bacterial Strain Condition 
Cell 

Yield, 
g dtw/g 

Electron 
Donor Products Reference 

Anaeromyxobacter 
dehalogenans 

Anaerobic 
(Halorespiring)  

Acetate, 
H2, 

succinate, 
pyruvate, 
formate 

Phenol [67, 195, 
196] 

Desulfitobacterium 
chlororespirans 

Co23 

Anaerobic 
(Halorespiring)  

Formate, 
butyrate, 

H2, 
pyruvate, 

lactate 

2-CP [195] 

Desulfitobacterium 
dehalogenans     [197] 

Desulfitobacterium 
hafniense PCP-1 

Anaerobic 
(Halorespiring)  Pyruvate 2-CP [63] 

Desulfovibrio 
dechloracetivorans 

SF3 

Anaerobic 
(Halorespiring) 0.033 

Acetate, 
pyruvate, 
lactate, 

fumurate, 
propionate, 

ethanol 

Phenol [66] 

Sphingomonas sp. 
P5 Aerobic 0.210 2,6-DCP  [198] 

Unidentified strain 
2CP-1 

Anaerobic 
(Halorespiring)  

Formate, 
acetate, 
yeast 

extract 

 [199] 

 
 
 
2.3 BIOGENIC AND ANTHROPOGENIC SOURCES OF HALOGENATED 
COMPOUNDS 
 

As mentioned above, some compounds are both biogenic and 

anthropogenic sources of halogenated compounds.  Additionally, certain biogenic 

compounds are now produced in such large quantities that they are considered 

more anthropogenic source than biogenic contamination. Such is the case with 
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chlorinated solvents such as chlorinated ethenes and ethanes (discussed 

previously) [200].  

At ambient temperature, chlorinated solvents are liquids which are denser 

than water, resulting in deep penetration into groundwater aquifers [3]. 

Chlorinated solvents have been used in a wide variety of processes throughout the 

last century including cleaning and degreasing of clothes, electronic parts, and 

machinery, intermediates in chemical manufacturing, in textile processing, as 

adhesives, and in pharmaceuticals [3]. According to Figure 2.8, peak total 

chlorinated solvent usage in the United States occurred around 1970, with ~3 

billion pounds of carbon tetrachloride (CT), 1,1,1-trichloroethane (TCA), 

tetrachloroethene (PCE) and trichloroethylene (TCE).  
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Figure 2.8 United States yearly production of chlorinated solvents (from [201] 

and [202], respectively) [3] . 

The United States Environmental Protection Agency’s (USEPA) Clean 

Water Act of 1977 resulted in the formation of a priority pollutant list including 

CT, PCE, TCA, and TCE. By 1980, proposed drinking water quality criteria for 

these chemicals were published. Today, these four chlorinated solvents are the 

most widely found contaminants at USEPA Superfund sites [3]. 

Chlorinated ethenes are composed of two carbon centers joined by a 

double bond. These two carbons can bond to one or two chlorine or hydrogen 

substituents on one or both of the carbons. These compounds are slightly water 

soluble, dense, very stable, and highly volatile [3]. Chlorinated ethenes include, in 

order of decreasing chlorine substituents, tetrachloroethene (PCE), trichloroethene 
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(TCE), 1,1-dichloroethene (1,1-DCE), trans-dichloroethene (trans-DCE), cis-

dichloroethene (cis-DCE), and vinyl chloride (VC). The specific chemical 

properties of these compounds are presented and discussed later. 

Chlorinated ethanes are the single-bonded form of chlorinated ethenes. 

These compounds have similar chemical characteristics to chlorinated ethenes 

(i.e. are slightly water soluble, relatively dense, highly volatile, etc.). Chlorinated 

ethanes include, in order of decreasing chlorine substituents, hexachloroethane 

(also called perchloroethane), pentachloroethane, tetrachloroethene, 

trichloroethene, dichloroethane, and chloroethane. The single bond present in 

chlorinated ethanes allows for a greater number of chlorinated substituents and 

isomeric arrangements. The specific properties of trichloroethene, dichloroethane, 

and chloroethane were discussed previously. 

2.3.1 Trichloroethene (TCE) 

Trichloroethene (TCE), also called trichloroethylene, is a chlorinated 

ethene most often used in industrial dry-cleaning and as a degreasing agent [14]. 

It is naturally produced by some marine algae [7] but is more widely produced as 

an anthropogenic compound. TCE is classified as a volatile organic chemical 

(VOC) that is colorless or blue with a sweet odor similar to chloroform [203]. 

TCE was used as a general anesthetic prior to 1977 [4, 204]. TCE is used in 

chemical production as a chemical intermediate and is found in consumer 

products such as correction fluid, paint removers, adhesives, and spot removers 

[205]. Peak TCE production in the US occurred in 1970 (280 million kilograms or 

616 million pounds) and has declined since then due to regulation [206]. Sites 
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with TCE contamination usually contain its lesser-chlorinated daughter products 

of cis-dichloroethene (DCE) [28], trans-dichloroethene, and vinyl chloride (VC) 

[29]. Previously, this blend of contaminants is shown to be the product of abiotic 

[207, 208] and biotic [10, 11, 209] transformations. Figure 2.9 demonstrates the 

chemical structure of TCE, and Table 2.12 shows the chemical properties of TCE, 

DCE, and VC. 

 
Figure 2.9 Chemical structure of TCE [108] 

Table 2.12 Chemical Properties of TCE, DCE, and VC (Unless otherwise stated, 

properties were obtained from, Scifinder [162]). 

Property TCE DCE VC Units Conditions 
CAS 79-01-6 156-59-2 75-01-4   
Molecular 
Formula C2HCl3 C2H2Cl2 C2H3Cl   

Molecular 
Weight 131.39 96.95 62.5 g/mol  

Density 1.474±0.06 1.243±0.06 0.918±0.06 g/cm3 at 20°C 
Viscosity 0.5318 0.4819 0.0107b cP at 25°C 
Solubility 0.39 1.1 3.6 g/L at 25°C 
Vapor Pressure 72.4 333 2580 torr at 25°C 
Henry’s Law 
Constant 9.9E-03a 3.37E-03b 2.78E-0220 atm-

m3/mole  

Bioconcentration 
Factor 52.4 24.7 11.3  at 25°C 

KOC 592 346 198  at 25°C 
Log KOW 2.421 1.86b 1.58c   

                                                
18 [210] Estimated using PHYSPROP and EPI, respectively 
19 [211] 
20 [212] 
21 [213] 



   26 

TCE is found almost everywhere in the environment including, surface 

water [214, 215], groundwater [216-218], drinking water [216, 219, 220], food 

[216, 221], indoor [222] and ambient air [223] and in the atmosphere [224]. 

Typical concentrations are listed in Table 2.13.  

 

Table 2.13 Previously reported environmental concentrations of TCE [206].
 
 

Matrix Concentration Units 

Surface 
Water 0.1v µg/L 

Groundwater ≤27,300w µg/L 
Drinking 

Water 0.2-267x µg/L 

Food 2-105y µg/kg 
Indoor Air <1-165z µg /m3 

Ambient Air 0.3aa µg /m3 
Atmosphere 3.18bb pptv 

 

 

The fate of TCE depends on the method by which it is released to the 

environment. Its low vapor pressure of 72.4 torr (0.01 atm) results in a portion of 

the TCE released to surface soils being volatilized in the soil void space rather 

than being sorbed to particulates. TCE also has a moderate water solubility of 1.1 

                                                
v Median value based on studies done in the United States in 1983 [216]. More recent 
measurements have shown TCE concentrations in the 0.03-0.04 µg/L range with only three detects 
in 150 samples [206]. 
w Range was the highest given in the USEPA report and encompasses all other values presented 
[216-218]. 
x Values summarized from pre-1990 studies [216, 219, 220]. 
y Foods tested included: cheese, butter, nuts, peanut butter, various meats, and various pastries 
with the highest concentrations found in beef frankfurters [216, 221]. 
z Locations tested included the United States, Canada and Europe [225-228]. 
aa Mean level concentration. [206] In 2006, 258 ambient air monitors recorded means ranging 
from 0.03 to 7.73 µg /m3 [223]. 
bb “During pollution incidences” [224] 
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g/L, so TCE released into soils via landfills migrates through the soil and 

dissolves in groundwater [214]. In the atmosphere, most TCE is present in the 

vapor phase and can be removed by precipitation (due to the moderate solubility) 

[206] and by photo-oxidation by hydroxyl radicals [229]. High concentrations of 

TCE found in indoor air are typically the result of groundwater contamination 

below the building. A 2007 article on TCE vapor intrusion in Cortlandville, New 

York, reported groundwater TCE concentrations up to 22 µg/L with 

corresponding indoor air concentrations up to 34 µg/m3 [230]. 

TCE is a lipophilic compound with oral, dermal and inhalation routes of 

exposure. The highest concentrations of TCE are typically found in the kidney 

and liver [206]. With the 2011 release of the USEPA Toxicological Review of 

Trichloroethylene, TCE was reclassified as “carcinogenic in humans by all routes 

of exposure” [206]. This reclassification is in accordance with the USEPA 

Guidelines for Carcinogenic Risk Assessment [231] and supported by enumerable  

studies linking significant health hazards posed to humans to TCE exposure. TCE 

is associated with numerous incidences of liver cancer [232, 233], kidney cancer 

[232-264], non-Hodgkin’s lymphoma [222, 265-281], prostate cancer [232-235, 

237, 240-242, 244-246, 249, 251, 252, 254, 256, 261, 282-286], and multiple 

myeloma [232, 233, 240, 242, 244-246, 256, 261, 268, 287-290], as well as 

elevated risks of death from Hodgkin’s disease, multiple myeloma, and cervical 

and liver cancers [291, 292]. 

TCE has noncancerous acute and chronic effects, including headache, 

confusing, sleepiness, fatigue, dizziness, nausea, blurred vision, facial numbness 
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and weakness [5, 293]. Additionally, occupational TCE exposure has shown a 

reported increase in the incidence of miscarriages in females, and animal studies 

have reported developmental effects resulting from exposure to TCE and its 

aerobic metabolites (trichloroacetic acid and dichloroacetic acid) [5, 293-295]. 

Biodegradation of TCE has been a research topic of increasing interest 

over the past three decades due to its persistence and prevalence [296]. Three 

metabolic processes appear to be involved in the biological degradation of 

chlorinated ethenes: co-metabolism, direct oxidation, and reductive dechlorination 

[297].  

 While it may occur aerobically [298], co-metabolism is generally an 

anaerobic process (i.e., degradation occurs due to biochemical interactions, but 

does not provide growth or a co-factor benefits to the bacteria) [299]. Co-

metabolism is generally a slow process, and the dechlorination of VC is an 

example of a co-metabolic step. Aerobic and anaerobic direct oxidation utilizes 

chlorinated ethenes as electron donors [300-302].  

Reductive dechlorination is an anaerobic process which occurs when 

chlorinated ethenes are used by microorganisms as electron acceptors[300, 303]. 

During reductive dechlorination, microorganisms sequentially remove chlorine 

atoms from the electron acceptor TCE and replace them with hydrogen provided 

from the electron donor [304]. As the chlorine atoms are removed, TCE is 

transformed to primarily cis-DCE (with lesser amounts of trans-DCE and 1,1-

DCE), followed by VC. VC may then be transformed to ethene [305], as 

illustrated in Figure 2.10. 
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Figure 2.10 Pathways for the reductive dechlorination of TCE [172, 296, 304, 

306]. The experimentally observed pathway is represented by the bold arrows, 

with the desired final step represented by a green arrow. The undesired, but 

necessary, second step is represented by a red arrow. Dashed arrows represent the 

theoretical formation of 1,1-DCE. The minor formation of the by-product trans-

DCE is shown with a thinner, black arrow.  

While anaerobic conditions are required for biological degradation of TCE 

[19, 26, 307], the rate of reductive dechlorination processes decrease as the 

number of chlorine atoms on a chlorinated molecule decrease [308].  

Consequently, the rate decrease results in accumulation at a contamination site 

[309-312] of cis-DCE, a probable human carcinogen, and VC, a known human 

carcinogen more toxic than TCE. 

Reductive dechlorination is particularly interesting as certain bacteria 

generate energy for growth from TCE biodegradation. This respiratory metabolic 

process, known as dehalorespiration [305], uses TCE as an electron acceptor and 
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can produce a growth yield exceeding 108 rRNA gene copies/µmol Cl- [30]. This 

is especially advantageous because greater amounts of TCE are degraded as the 

bacterial population grows. 

 Dehalococcoides are the only bacterial strains demonstrated to 

dechlorinate TCE to ethene[13, 23]. Several pure strains of Dehalococcoides [18-

21] and mixed [12, 13, 15-17] cultures containing Dehalococcoides have been 

characterized, although not all of these pure and mixed cultures can completely 

dechlorinate TCE to ethene. An example is the newly designated 

Dehalococcoides mccartyi sp., capable of completely dechlorinating 

tetrachloroethene (PCE) (the fully substituted ethene containing four chlorines) 

[16, 19, 171, 313-316] and TCE [8, 12, 13, 15, 26, 27, 171, 313, 317-324]. Figure 

2.11 shows the isolated strains of Dehalococcoides sp. and the chlorinated ethenes 

they transform. 
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Figure 2.11 Isolated Dehalococcoides spp. and the chlorinated ethenes they 

transform [23]. 

A few key gene expressions relating to TCE dechlorination are: TCE 

reductive dehalogenase encoding gene (tceA), which dechlorinates TCE to ethene 

[325, 326], TCE reductive dehalogenase associated B protein encoding gene 

(tceB) [327, 328], the VC reductive dehalogenase encoding gene (vcrA), which 

dechlorinates VC to ethene and is co-transcribed with vcrB, a hydrophobic 

protein, and vcrC, a protein similar to transcriptional regulators of the NosR/NirI 

family [329]. 
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CHAPTER 3 

EFFECTS OF SELECT ANTHROPOGENIC COMPOUNDS  ON A 

TRICHLOROETHENE-DEGRADING MIXED CULTURE 

 
3.1 INTRODUCTION 
 

DehaloR^2 is a novel anaerobic microbial consortium capable of 

biotransforming the carcinogenic compound trichloroethylene (TCE) to a non-

harmful end product, ethene. This sediment-free culture, maintained in the 

laboratory for four years, was enriched from sediments of the Back River, a 

tributary of the Chesapeake Bay [13]. A map showing the location of Chesapeake 

Bay, as well as, the Back River, is shown in Figure 3.1.  

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 3.1 Sediment sampling in Chesapeake Bay near Baltimore, MD. Inset: 

The Back River Tributary [330]. 
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 The sediment sampling location was selected, because it receives effluent 

from the Back River Wastewater Treatment Facility. The location, as well as, the 

plant has been detailed previously [95, 331].  Analyzed sediment samples from 

this location showed the presence of 3,4,4’-trichlorocarbanilide—more commonly 

known by the trade name Triclocarban and abbreviated TCC—and 

dichlorocarbanilide (DCC), monochlorocarbanilide (MCC), and the non-

chlorinated congener, carbanilide (NCC). The last three compounds are possible 

products of biological reductive dechlorination [95].  

 Previous DNA extraction and quantitative real-time polymerase chain 

reaction (qRT-PCR) has shown the presence of the dechlorinator 

Dehalococcoides in the sediment and subsequent sediment-free culture [13, 332].  

 Because of the fast rates achieved for TCE dechlorination and previous 

exposure to TCC and other anthropogenic compounds, one of the main goals of 

this study was to test the potential of DehaloR^2 for biodegradation of TCC and 

two additional anthropogenic, halogenated compounds.   

 The three compounds selected to be tested were TCC, tris(2-

chloroethyl)phosphate (TCEP), and 1,1,1-trichloroethane (TCA). TCC is often 

found in sediments and biosolids. The sediment sampling location contained TCC 

and its lesser-chlorinated congeners, and the initial purpose of the sediment 

sampling was to enrich for microorganisms capable of dechlorinating TCC [93, 

95]. TCEP has been detected in sediments [142-145] and surface and groundwater 

[130, 135-138, 140, 141]. TCA is typically a groundwater contaminant and is 

often a co-contaminant with TCE at Superfund sites [160].  
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 Additionally, these three compounds represent three differing partitioning 

situations (detailed in Chapter 2) as shown in Figure 3.2. TCA has the highest 

Henry’s law constant (by over three orders of magnitude compared to TCEP and 

six orders of magnitude compared to TCC) and is the most likely to volatilize. 

TCEP has the highest solubility and will most likely occur in water. TCC has a 

very small solubility and Henry’s law constant, but has the highest Log KOW value 

(two orders of magnitude greater than TCA or TCEP) and will appear in solids 

and sediments. 

 

Figure 3.2 Solubility, Log KOW, and Henry’s Law Constants for TCA, TCEP, and 

TCC 

 The second chlorinated compound selected was TCEP. TCEP is an 

organophosphate flame retardant.  Organophosphate flame retardants (OFRs) are 

a class of pollutants, which have been at the forefront of remedial research [123, 
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125, 138, 139, 152, 156]. OFRs have a high consumption volume (around 

186,000 tons used annually worldwide was reported in 2001 [123, 129]) and have 

been observed in multiple environmental samples [123, 125, 135-138, 333, 334]. 

Within this class of pollutants lies the flame retardant TCEP, a banned substance 

[335] previously used in polyurethane foams.  

 The third compound selected was TCA. TCA is a common groundwater 

contaminant generally found at industrial facilities and waste disposal sites, as 

well as, at 29% of the active and proposed sites listed on the U.S. EPA National 

Priorities List (NPL) (calculated by performing a search of the USEPA database 

in October 2012). Of the 394 sites contaminated with TCA, 80% have TCE as a 

co-contaminant. As was stated previously, TCA falls under the category of 

chlorinated solvents and, more specifically, chlorinated ethanes or chloroethanes).  

 The aim of the initial study was to assess the ability of the DehaloR^2 

enriched culture to dechlorinate three additional anthropogenic sources of 

chlorinated organic compounds. 

3.2 MATERIALS AND METHODS 

3.2.1 Chemicals 

Neat TCA and DCA, and TCC (99% purity), DCC, NCC and TCEP (98% 

purity) were purchased from Sigma-Aldrich Co. (St. Louis, MO).  

3.2.2 Mixed Cultures Set-Up 

For this study, mixed culture is defined as an anaerobic, airtight serum 

bottle containing the following: anaerobic media, DehaloR^2 culture, electron 

donor, chlorinated compound used as the electron acceptor (TCC), and vitamins. 
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A complete summary of constituents is provided in Appendix A 

In duplicate, 10 mL of DehaloR^2 culture previously grown in a 160-mL 

serum bottle was added to 50 mL anaerobic media (prepared via the Hungate 

technique and fully defined by Löffler, et al [336], see Appendix B) in 160-mL 

serum bottles. The bottles were capped with rubber stoppers and crimped with 

aluminum crimps. The two bottles were injected with a varying volumes of 1 M 

lactate stock solution, ATTC vitamin mix, vitamin B-12, and stock solutions of 

electron acceptor (TCC, TCEP, or TCA) in methanol. 

3.2.3 Analytical Methods 

3.2.3.1 Gas Chromatography with Flame Ionization (GC-FID) 

A Shimadzu GC-2010 (Columbia, MD) with an RtTM-QSPLOT capillary 

column (30 mm x 0.32 mm x 10 µm, Restek, Bellefonte, PA) was used to analyze 

changes in TCA and concentration, as well as, formation of TCA and TCE 

degradation by-products (DCA and CA and cis-DCE and VC, respectively) and to 

measure methane for all experiments. A 500-µL gas-tight syringe (Hamilton 

Company, Reno, NV) was used to withdraw a 200-µL gaseous sample from the 

headspace of the serum bottle (Figure 3.3). 
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Figure 3.3 Anaerobic media bottle showing headspace used in GC-FID analysis 

 The initial oven temperature was 110 °C and was held for one minute, 

and was then raised with a gradient of 50°C/min to 200 °C. Lastly, the oven 

temperature was raised with a final gradient of 15°C/min to 240 °C, where it was 

held for the last 1.5 minutes. Ultra High Purity (UHP) helium was used as the 

carrier gas and UHP hydrogen and zero grade air were used as the FID gases. The 

injector and FID temperatures were both 240°C, the pressure was 89.5 kPa, and 

the linear velocity was 35.1 cm/sec. The column flow was 1.72 mL/min and the 

total flow was 19.9 mL/min. 

Calibration curves for the chlorinated compounds and methane were 

determined by adding a range of known masses of each compound to 160-mL 

serum bottle containing 100 mL of anaerobic media. The bottles were shaken 

overnight. Various volumes (200-µL, 150-µL, and 100-µL) of headspace gas from 

these serum bottles were injected in triplicates into the GC-FID and the 

corresponding concentrations were graphed versus signal area. The concentrations 

Syringe 
Withdrawal Site 

Headspace 

Anaerobic 
Media 
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were determined using a solvent partitioning Excel worksheet and the reported 

Henry’s law constants [337]. 

The GC-FID calibration parameters and retention times for each 

constituent of interest are summarized in Table 3.1. 

 

Table 3.1 Calibration parameters and retention times for GC-FID 

Constituent R2 Slope Intersect 
Retention 

Time 
(minutes) 

Methane 1 1.67E-05 1.45 1.7 
Chloroethane 0.982 5E-09 0.0023 3.69 

1,1-Dichloroethane 1 5E-05 -0.9074 5.17 
1,1,1-Trichloroethane 0.999 3E-05 5.7475 5.79 

Ethene 0.999 1E-05 0.253 1.8 
VC 0.99995 3E-05 1.1206 3.1 

cis-Dichloroethene 0.99994 1E-04 -1.6076 5 
Trichloroethene 0.99995 5E-05 -1.9831 5.9 

 
 

3.2.3.2 Solid Phase Extraction (SPE) 

Solid phase extraction (SPE) was used to separate TCC, DCC, and NCC 

from sediments and culture. The protocol is included in Appendix C. 

3.2.3.3 Liquid Chromatography-Negative Electrospray Ionization Tandem Mass 

Spectrometry (LC-ESI-MS/MS) 

After SPE, an API 4000 mass spectrometer (Applied, Biosystems, 

Framingham, MA) coupled to a Shimadzu Prominence HPLC (Shimadzu 

Scientific Instruments, Inc., Columbia, MD), method previously detailed [98], 

was used to analyze TCC, DCC, and NCC concentrations.  
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3.3 RESULTS AND DISCUSSION 

3.3.1 TCC Exposure 

Figure 3.4 depicts results for the duplicate serum bottles containing active 

DehaloR^2 culture and TCC. This DehaloR^2 culture was also used in parallel 

experiments where TCE dechlorination was observed. The TCC concentration 

does not decrease and is virtually identical to the concentration of TCC in the 

abiotic control duplicates.  

 
Figure 3.4 TCC concentration over time in serum bottles containing DehaloR^2 

culture.  

Previously, Ying et. al. (2007) reported observed TCC degradation via 

aerobic soil microorganisms, but no degradation under anaerobic conditions 

[120]. As evidenced by Figure 3.5, TCC dechlorination did not occur in the 

DehaloR^2 culture bottles over a period of 110 days. Reductive dechlorination 

did not take place. 
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3.3.2 TCEP Exposure 

The second anthropogenic chlorinated compound we tested using 

DehaloR^2 was TCEP. Figure 3.6, shows the average concentration of TCEP in 

duplicate DehaloR^2 cultures with TCEP as the only electron acceptor, and in 

abiotic controls containing TCEP.  The concentration of TCEP was nearly 

identical to the abiotic control and did not change over 92 days. 

 
Figure 3.5 TCEP concentration over time in serum bottles containing DehaloR^2 

culture.  

Takahashi, et al., isolated two bacterial strains belonging to Sphingomonas 

sp. and Sphingobium sp. capable of degrading TCEP [159]. As these bacteria are 

aerobic, neither are contained in the DehaloR^2 mixed culture. The TCEP 

concentration in the DehaloR^2 bottles stay nearly identical to the TCEP 

concentration in the abiotic control bottles. Again, no reductive dechlorination 

takes place. 
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3.3.3 TCA and Subsequent TCE Exposure 

Figure 3.6 shows TCA degradation by DehaloR^2 in duplicate serum 

bottles. Figure 3.6 shows that TCA is slowly converted to DCA. At day 100, half 

of the initial TCA is still present and around 0.1 mM of DCA has been formed.  

 
Figure 3.6 TCA concentration over time in serum bottles containing DehaloR^2 

culture.  

After day 100, the duplicate bottles were transferred into four more bottles 

to observe if DehaloR^2 could (1) again dechlorinate TCA to DCA in the same 

manner and (2) dechlorinate TCE after TCA exposure. We observed that no TCA 

daughter products had formed after 120 days when the DehaloR^2 culture was 

transferred to duplicate serum bottles containing fresh media and was then 

injected with TCA again (results not shown). Additionally, once the TCA-

exposed, DehaloR^2 culture was amended with TCE (the electron donor this 

culture grew on and prefers), the culture could no longer dechlorinate TCE 
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(results not shown).  Therefore, reductive dechlorination initially occurred when 

DehaloR^2 was first exposed to TCA, but the TCA acted as an inhibitor to 

subsequent TCE and the initial results could not be replicated.  

3.4 CONCLUSION 

An overview of these studies is provided in Table 3.2. DehaloR^2 was 

exposed to three anthropogenic sources: TCC, TCEP, and TCA. Our results show 

that the DehaloR^2 culture, which was grown on, and can reductively 

dechlorinate TCE, could not reductively dechlorinate the additional chlorinated 

compounds of anthropogenic origin tested in this study. Furthermore, once we 

added TCA to a DehaloR^2 culture, it was no longer able to dechlorinate TCE. 

TCC inhibition on the DehaloR^2 cultures TCE dechlorinating ability has 

previously been studied in depth [296, 332]. However, further studies could be 

done to examine if TCEP causes TCE-dechlorinating inhibition for the 

DehaloR^2 culture. This would be important if DehaloR^2 was to be used for in 

situ bioremediation as undetected TCEP contamination could negatively effect 

any TCE-remediating goals. 
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Table 3.2 Summary of studies examining DehaloR^2 and anthropogenic 

chlorinated compounds 

Constituent Concentration 
Length of 

Time Studied 
(days) 

Result 

TCC 10 µM 100 No reductive 
dechlorination 

TCEP 10 µM 92 No reductive 
dechlorination 

TCA 

0.5 mM 100 

Dechlorination of half the 
initial TCA and 

formation of 0.1 mM 
DCA after 100 days 

0.5 mM TCA 
or 

1 mM TCE 
120 

No reductive 
dechlorination of TCA of 

TCE 
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CHAPTER 4 

DEHALOGENATION OF 2,6-DIBROMOPHENOL (2,6-DBP) AND 2,6-

DICHLOROPHENOL (2,6-DCP) BY A TRICHLOROETHENE-DEGRADING 

MIXED CULTURE 

4.1 INTRODUCTION 

In Chapter 3, I observed that an anaerobic culture, DehaloR^2, enriched in 

our laboratory and capable of reductive dechlorination of the priority pollutant 

trichloroethene (TCE), did not have the capacity to dechlorinate the 

anthropogenic compounds 3,4,4’-trichlorocarbanalide (TCC), tris(2-

chloroethyl)phosphate (TCEP), or 1,1,1-trichloroethane (TCA). Dehalogenating 

bacteria such as Dehalococcoides have been around for a long time, while TCE 

has been anthropogenically released in increasing quantities into the environment 

only in the last century.  Two important ecological questions are:  1) How were 

these microorganisms making a living before high concentrations of halogenated 

solvents were present in the environment due to anthropogenic input? And 2) 

How do microorganisms such as Dehalococoides have the necessary metabolic 

machinery to dehalogenate halogenated compounds given that developing these 

metabolic machinery through evolution or gene transfer events would take more 

than a century?  

It has been hypothesized that anaerobic bacteria might have the ability to 

dechlorinate TCE due exposure to naturally occurring, or biogenic compounds, 

containing chlorine or bromine. In this chapter I explore the ability of the 
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DehlaoR^2 culture to dechlorinate and debrominate two biogenic-like 

compounds: 2,6-dichlorophenol (DCP) and 2,6-dibromophenol (DBP). 

4.2 MATERIALS AND METHODS 

4.2.1 Chemicals 

TCE was purchased from Sigma-Aldrich Corporation (St. Louis, MO) and 

cis-DCE was purchased from Supelco Coporation (Bellefonte, PA). Gaseous 

vinyl chloride was purchased from Fluka Chemical Corporation (Ronkinkoma, 

NY) and ethene was purchased from Scott Specialty Gases (Durham, NC). Neat 

2,6-DBP and 2,6-DCP were purchased from Sigma-Aldrich Corporation (St. 

Louis, MO), as well as, 2,6-DBP at 99% purity and 2,6-DCP at 99% purity. 2,CP 

and phenol were purchased from Fluka Chemical Corporation (Ronkinkoma, NY) 

at 99.9% purity for use as analytical standards. Sodium lactate and vitamin B-12 

were purchased from Sigma Aldrich Corporation (St. Louis, MO) and the mixed 

vitamin solution was obtained from ATCC (Catalog No. MD-VS, Manassas, VA).  

4.2.2 Culture and Initial Experimental Set-Up 

Reduced anaerobic mineral medium was prepared using the Hungate 

technique described previously by Löffler et al. [336] and provided in Appendix 

B. The medium was prepared in a 2-L batch flask and then allocated into 160 mL 

serum bottles. These bottles were then capped with butyl rubber stoppers and 

crimped with aluminum crimps as shown in Figure 4.1. 
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Figure 4.1 Anaerobic medium in 160 mL serum bottle. 

 
Abiotic controls for this experiment were prepared by adding 10 mL of 

DehaloR^2 culture to anaerobic media (for a total volume of 100 mL) and 

autoclaving the serum bottles for 1 hour at 121°C with a sterilization time of 15 

minutes. The experimental set-up is summarized in Figure 4.2. All 21 bottles 

contained the following: 50 µL vitamin B-12 and 1 mL ATCC vitamin mix. All 

bottles contained 0.5 mL of 1 mM lactate to be used as an electron donor. TCE 

was delivered to the necessary bottles via a 1000 mM stock solution in methanol. 

A volume of 50 µL was added for a final concentration of 0.5 mM TCE. 2,6-DBP 

and 2,6-DCP were delivered to the necessary bottles from 100 mM stock 

solutions in methanol. A volume of 100 µL was added for a final concentration of 

0.1 mM. The methanol provided to the cultures via the stock solutions served as 

an additional electron donor. The serum bottles were incubated at 30°C, inverted, 

and shaken at 200 rpm on an orbital shaker. The serum bottle triplicates and their 

constituents are summarized in Appendix D. 
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Figure 4.2 Experimental set-up showing the conditions tested and the number of  
 
replicates.  
 
4.2.3 Analytical Methods 
  
4.2.3.1 Ultra High Performance Liquid Chromatography (UPLC) 
 

An Acquity Waters Ultra High Performance Liquid Chromatograph 

(UPLC) equipped with an Acquity UPLC BEH Shield C18 column (50 mm x 2.1 

µm x 1.7 µm, Milford, MA) and an Acquity Waters PDA detector (model number 

GOTWPD601M, Milford, MA) was used to measure 2,6-dibromophenol (2,6-

DBP), 2-bromophenol (2-BP), 2,6-dichlorophenol (2,6-DCP), 2-chlorophenol (2-

CP), and phenol. 
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Liquid samples (0.5 mL volume) were taken from the serum bottles and 

were passed through a 0.2-µm PVDF, HPLC certified membrane filters (Pall 

Corporation, Ann Arbor, MI). The samples were then diluted 1:2 with HPLC 

grade methanol (250 µL of the sample, 250 µL methanol) to ensure a final 

analyzable volume of 0.5 mL. From the liquid sample, 1-µL was injected into the 

column. The conditions employed for the UPLC method are summarized in Table 

4.1. 

 

Table 4.1 Acquity UPLC method conditions for detections of halogenated, 

phenolic compounds. 

Condition Value Unit 
Mobile Phase A Acetonitrile -- 
Mobile Phase B Water -- 

Gradient 

Time Flow Rate Profile 

(Mins) (mL/min) %A %B 
Initial 0.5 50 50 
0.8 0.350 50 50 

2 0.250 100 0 
 

-- 

Temperature 30 °C 
Detection UV @ 272 nm 

 
 

Calibration curves were determined by creating a serial dilution starting 

with 10 mM stock solutions of 2,6-DCP, 2-CP, phenol, 2,6-DBP, and 2-BP. These 

stock solutions were diluted to final concentrations of 50 µM, 25 µM, 5 µM, 2.5 
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µM, 0.5 µM, 0.25 µM, and 0.05 µM. The parameters for the calibration curves are 

presented in Table 4.2. 

 

Table 4.2 Calibration curve parameters for phenolic compounds. 

Constituent R2 Slope Intersect Retention Time 
(minutes) 

2,6-DCP 0.998 0.1761 -0.497 0.69 
2-CP 0.999 0.1371 0.0745 0.5 
2,6-DBP 0.997 0.1506 0.8671 0.87 
2-BP 0.988 0.0167 0.0038 0.54 
Phenol 0.999 0.2087 -0.6955 0.44 

 
 

4.2.3.2 DNA Extraction for Dehalococcoides and Quantitative Real-Time 

Polymerase Chain Reaction (qRT-PCR) 

 The cultures were shaken vigorously and then 1.5 mL of liquid was 

removed from each serum bottle with a sterile syringe and dispensed into 2 mL 

microcentrifuge tubes. The microcentrifuge tubes were then centrifuged at 13,200 

rpm for 15 minutes in order to make pellets. The supernatant was removed and 

the pellets were stored at -20°C until DNA extraction was performed. A Qiagen 

DNeasy Blood  & Tissue Kit with modifications to enhance lysis of 

Dehalococcoides was used for DNA isolation from cultures. The full protocol is 

provided in Appendix E. 

 Quantitative real-time polymerase chain reaction (qRT-PCR) was 

performed to enumerate Dehalococcoides 16S rRNA genes using the following 

constituents: forward primer,, Dhc1200F (5’-CTG GAG CTA ATC CCC AAA 

GCT-3’), reverse primer, Dhc1271R (5’-CAA CTT CAT GCA GGC GGG-3’), 
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and probe, Dhc1240Pr (FAM-TCC TCA GTT CGG ATT GCA GGC TGAA/3-

BHQ-1) [338].   

 qRT-PCR was carried out in a spectrofluorimetric thermocycler 

(Mastercylcer, epgradient S, eppendorf). Plasmids containing Dehalococcoides 

strain BAV1 16S rRNA genes were used as standards to construct a calibration 

curve. The calibration curve values were performed in triplicate and a linear range 

of 6 orders or magnitude was obtained. The slope of the calibration curve was -

3.568 and the y intercept was 42.89. The thermocycler program was as follows: 2 

minutes at 95°C followed by 40 cycles of 15 seconds at 95°C, 20 seconds at 

58°C, and 20 seconds at 68°C. 

4.3 RESULTS AND DISCUSSION 
 
4.3.1. Debromination of 2,6-DBP to Phenol by DehaloR^2 
 

Figure 4.3 shows time course 2,6-DBP reductive debromination by 

DehaloR^2 culture in the presence of TCE, and Figure 4.4 shows the time course 

2,6-DBP reductive debromination with 2,6-DBP by DehaloR^2 culture as the 

only halogenated electron acceptor. When DehaloR^2 was exposed to 2,6-DBP in 

the presence of TCE, we observed an increase in the expected debromination 

products 2-BP and phenol from time zero to day 7 (Figure 4.3). However, when 

2,6-DBP was the only halogenated electron acceptor in the culture we observed 

an initial lag in debromination products appearance from time zero to day 7, 

despite an observed decrease in 2,6-DBP (Figure 4.4). Then, we observed an 

increase in 2-BP and phenol from day 7 to day 11 and day 7 to day 15 in the 

replicates with and without TCE, respectively. At day 15, the 2,6-DBP in the 
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triplicates with TCE was almost completely transformed to phenol at a 

concentration of 0.045 mM versus 0.015 mM phenol concentration at day 15 

when 2,6-DBP was the sole brominated electron acceptor. At the final measuring 

point (day 55), we observed only phenol for and neither 2,6-DBP or 2-BP in both 

triplicate conditions (with and without TCE). Furthermore, we observed no 

significant loss of 2,6-DBP or formation of degradation products in the abiotic 

controls. This confirms that the observed activity is biological and not abiotic. 
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Figure 4.3 2,6-DBP debromination in the presence of 0.5 mM TCE. Error bars 

represent triplicates standard deviation. When error bars are not visible, the 

standard deviation is either very small or zero. The abiotic control does not 

contain error bars as only one abiotic control was set-up and analyzed 

 
Figure 4.4 2,6-DBP debromination. Error bars represent standard deviation. 

When error bars are not visible, the standard deviation is either very small or zero. 

The abiotic control does not contain error bars as only one abiotic control was set-

up and analyzed. 
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Ahn et. al., reported complete debromination of 2,6-DBP to phenol and 2-

BP to phenol each within 30 days under methanogenic and sulfidogenic 

conditions by bacteria present in a marine sponge. The bacteria belonged to the 

phyla Bacteroidetes, Chloroflexi, and were similar to the species Desulfovibrio sp. 

strain TBP-1, an uncultured TCE-dechlorinating bacterium, and an uncultured 

DCE-dechlorinating enrichment [77]. Under denitrifying conditions, no 

debromination occurred, whereas debromination occurred under sulfidogenic and 

methanogenic conditions, and transformation rates were lower under sulfidogenic 

compared to methanogenic conditions. Our study took place under methanogenic 

conditions, and similarly to the cultures used by Ahn et al, DehaloR^2 [13] 

contains bacteria belonging to the  Bacteroidetes and Chloroflexi phyla.  However 

it is unknown which bacteria present in DehaloR^2 [13] performed the 

debromination process.  

The debromination pathway reported by Ahn et. al. was different to the 

one observed in DehaloR^2, since the microorganisms present in their culture 

showed a preference for ortho-substituent compared to para-substituent removal 

as their cultures accumulated 4-BP and 4-BP was sequentially debrominated to 

phenol.    

Our results suggest a synergistic relationship occurring when TCE and 

2,6-DBP are both present as electron acceptors compared to when 2,6-DBP is the 

sole electron acceptor. When TCE was present, 2,6-DBP debromination to 2-BP 

and phenol occurred more rapidly (0.045 mM phenol was present at day 15 in the 
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TCE and 2,6-DBP triplicates versus 0.015 mM phenol present at day 15 in the 

2,6-DBP triplicates).  

4.3.2 Dehalococcoides Growth and Yield Results 

Figure 4.5 shows the growth of Dehalococcoides during dechlorination or 

debromination for the cultures grown with TCE as an electron acceptor only and 

the culture grown with 2,6-DBP as an electron acceptor only, respectively. The 

growth was measured using qRT-PCR, hence the results are reported as 

Dehalococcoides (Dhc) 16S rRNA gene copies/L. The TCE only and the 2,6-DBP 

only conditions each showed an increase in the concentration of Dehalococcoides 

(Dhc) 16S rRNA gene copies, although the TCE only condition had a larger 

increase in gene copies (5.81E+11 compared to 1.31E+11 in the 2,6-DBP only 

serum bottle). This difference in final concentration of gene copies could be a 

result of differences in the concentrations of TCE and 2,6-DBP provided to the 

bacteria. The TCE only serum bottles received 0.5 mM of TCE whereas the 2,6-

DBP only serum bottles received only 0.1 mM of 2,6-DBP. 
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Figure 4.5 Growth of Dehalococcoides during TCE and 2,6-DBP dehalogenation. 

Error bars represent the standard deviation of triplicate measurements for one 

DNA extraction. End point is 21 days and 55 days for TCE only and 2,6-DBP 

only, respectively. 

The data presented shows that Dehalococcoides sp. grew on 2,6-DBP. A 

growth experiment starting with low culture densities (around 107 gene copies/L) 

will provide further evidence that growth is actually occurring and will allow us 

to establish growth parameters for Dehalococcoides grown with 2,6-DBP.  

Table 4.3 shows the calculated yield for Dehalococcoides grown on TCE 

only and for Dehalococcoides grown on 2,6-DBP only. The calculated yield was 

higher in the 2,6-DBP only bottles. This is not surprising as a much smaller 

number of µmoles (80 versus 1440) of halogen were initially available for the 
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bacteria in the cultures with 2,6-DBP as electron acceptor. These results are 

exciting because it appears that Dehalococcoides still grew on a smaller amount 

of a new electron acceptor. 

 

Table 4.3 Calculated yield for TCE and 2,6-DBP 

Condition 
∆ Dhc 16S 
rRNA gene 

copies 

µmoles of 
halogen 
released 

Yield 
(Dhc 16S rRNA gene 

copies/ µmoles of 
halogen released) 

TCE Only 5.81E+11 1440 4.04E+08 
2,6-DBP Only 1.31E+11 80 1.73E+09 

 

 

4.3.3 Dechlorination of 2,6-DCP to 2-CP by DehaloR^2 

Figures 4.6 and 4.7 show the results of 2,6-DCP reductive dechlorination 

with and without the presence of TCE, respectively by DehaloR^2 culture. We 

observed an initial lag in dechlorination products from time zero to day 7 (there 

was an unexplained phenol peak at day 7, which is most likely due to analytical 

errors). Then, an increase in 2-CP occurred from day 7 to day 15. At the final 

measuring point (day 55) we observed only 2-CP formation and a non-detect 

(ND) for either 2,6-DCP or phenol. Additionally, at the final measuring point 

there was twice as much 2-CP produced in the triplicates without TCE compared 

to the triplicates containing TCE (0.04 mM and 0.02 mM, respectively). We 

observed no activity in the abiotic 2.6 DCP controls, providing further evidence 

that the activity observed is biological. 
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Figure 4.6 2,6-DCP dechlorination in the presence of 0.5 mM TCE. Error bars 

represent triplicates standard deviation. When error bars are not visible, the 

standard deviation is either very small or zero. The abiotic control does not 

contain error bars as only one abiotic control was set-up and analyzed. 

 
Figure 4.7 2,6-DCP dechlorination. Error bars represent standard deviation. 

When error bars are not visible, the standard deviation is either very small or zero. 

The abiotic control does not contain error bars as only one abiotic control was set-

up and analyzed. 
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It has been documented that different groups of bacteria can reduce 

chlorinated phenols.  For example, Anaeromyxobacter dehalogenans can 

dechlorinate 2-CP to phenol [67, 195, 196]. This bacterial strain is generally 

grown using fumarate as an electron donor [67, 196]. Acetate and lactate can also 

be utilized, but proved to be a poor electron donors [195]. He et al. also found that 

the dechlorination activity had to be induced and, after induction, 2,6-DCP could 

be dechlorinated to 2-CP and then phenol [67]. Additionally, Desulfovibrio 

dechloracetivorans SF3 can dechlorinate 2,6-DCP to phenol [66]. Adrian, et al., 

observed that Dehalococcoides mccartyi strain CBDB1 could dechlorinate 2,6-

DCP to 2-CP, but at slower rates than other dichlorophenols such as 2,4-DCP and 

2,3-DCP. Dehalococcoides mccartyi strain 195 did not dechlorinate 2,6-DCP but 

could dechlorinate other dichlorophenols, though only to 2-CP [37]. Adrian, et 

al., also observed that dechlorination was fastest for the two Dehalococcoides 

strains when the chlorines were situated at the ortho position, but only if the meta 

position was also chlorinated.  

Our results are consistent with these previous studies. To our knowledge, 

DehaloR^2 does not contain Anaeromyxobacter dehalogenans or Desulfovibrio 

dechloracetivorans or close relatives to these bacteria, but, it does contain 

primarily Dehalococcoides bacteria which, thus far, have been shown to only 

partially dechlorinate 2,6-DCP to 2-CP.  

Additionally, the results suggest that TCE presence has an inhibitory 

effect on 2,6-DCP dechlorination. When 2,6-DCP was present as the sole 
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chlorinated electron acceptor, dechlorination of 2,6-DCP to 2-CP, occurred at 

faster rates, as exemplified in Figure 4.7. 

4.4 CONCLUSIONS 

An anaerobic, TCE-dechlorinating culture, DehaloR^2, was exposed to 

two biogenic-like, halogenated phenolic compounds, in the presence and absence 

of TCE, to examine whether the TCE-dechlorinating culture could also 

dehalogenate biogenic-like, phenolic compounds. We observed complete 

debromination of 2,6-DBP to 2,6-BP and, finally, to phenol. We also observed 

dechlorination of 2,6-DCP to 2-CP. Additionally, we observed faster 

debromination of 2,6-DBP in the presence of TCE and slower dechlorination of 

2,6-DCP in the presence of TCE. For both biogenic-like compounds, no 

significant degradation and no formation of degradation products occurred in our 

abiotic controls. 

Further research is needed to confirm that Dehalococcoides does grow on 

2,6-DBP. This can be done with a traditional growth experiment starting with 

very low culture densities.  We should also explore: the effects of varying 

concentrations of these biogenic-like compounds to determine if a threshold 

concentration of 2,6-DBP exists, the use of different electron donors to determine 

if the results are independent of the type of electron donor used, and maximum 

utilization rates. Additional, qRT-PCR should be performed to analyze changes in 

the microbial community in the presence and absence of TCE and each biogenic-

like compound and to examine whether the dehalogenations of 2,6-DBP and 2,6-

DCP are dehalorespiring processes, and to verify a synergistic relationship in the 
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presence of TCE and 2,6-DBP co-contamination, which could help in further 

development of the DehaloR^2 culture for in-situ bioremediation.  
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CHAPTER 5 

EFFECTS OF TWO BIOGENIC, HALOGENATED COMPOUNDS ON TCE-

DECHLORINATION IN A PREVIOUSLY CHARACTERIZED, 

TRICHLOROETHENE-DEGRADING MIXED CULTURE 

5.1 INTRODUCTION 
 

In Chapter 4, I observed that an anaerobic culture, DehaloR^2, enriched in 

our laboratory and capable of reductive dechlorination of the priority pollutant 

trichloroethene (TCE), had the capacity to dehalogenate two biogenic-like 

compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP).  

2,6-DBP was completely debrominated to phenol, with intermediate production of 

2-bromophenol (2-BP). DehaloR^2 was also able to dechlorinate 2,6-

dichlorophenol (2,6-DCP), however, dechlorination stopped at the intermediary 

product, 2-chlorophenol (2-CP). I also observed that TCE increased rates of 2,6-

DBP debromination, and slowed down 2,6-DCP dechlorinatio. In this chapter, I 

explored the effects of, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol 

(2,6-DCP) on DehaloR^2 ability to dechlorinate TCE.  

5.2 MATERIALS AND METHODS 

5.2.1 Chemicals, Analytical Methods, and Culture Establishment 

Chemicals and analytical methods are previously described in Chapter 4 

and Chapter 3, respectively. Culture establishment is also previously described 

with two adjustments: 
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(1) Re-spike refers to re-injection of: 

a. 0.5 mL of 1 M lactate 

b. 50 µL of 1 M TCE in the TCE only triplicates and the TCE and a 

halogenated phenol sets of triplicates 

c. 100 µL of 100 mM 2,6-DBP in the TCE and 2,6-DBP triplicates 

d. 100 µL of 100 mM in the TCE and 2,6-DCP triplicates  

(2) Two re-spikes were provided to the triplicate serum bottles at time 28 days 

and time 55 days. The days were chosen based on when all TCE-

containing triplicates were done with TCE dechlorination. 

5.3 RESULTS AND DISCUSSION 

5.3.1 2,6-DBP Effect on TCE Dechlorination Ability 

Figures 5.1 and 5.2, show time course TCE dechlorination with and 

without the presence of 2,6-DBP, respectively, by DehaloR^2 culture initially 

grown in batch bottles. For both conditions, TCE was no longer detected around 

day 4.5. The TCE only triplicates showed complete transformation to ethene 

around day 21, whereas, the cultures with TCE and 2,6-DBP showed complete 

transformation to ethene around day 10.5.  
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Figure 5.1 Dechlorination of TCE to ethene in the presence of 0.04 mM 2,6 DBP. 

Error bars represent standard deviation. When error bars are not visible, the 

standard deviation is either very small or zero. 

 

Figure 5.2 Dechlorination of TCE to ethene. Error bars represent standard 

deviation. When error bars are not visible, the standard deviation is either very 

small or zero. 
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TCE and 2,6-DBP could occur as co-contaminants in a marine 

environment since both are naturally produced: TCE by marine algae [7] and 2,6-

DBP by marine hemichordates [47, 48, 77]. However, after a thorough literature 

review, no studies examining the effects of TCE and 2,6-DBP co-contamination 

or the effects of 2,6-DBP on TCE dechlorinating ability were found.  Therefore, 

these results cannot be compared to previous studies and represent the first of 

their kind.  

The triplicates containing 2,6-DBP and TCE completely dechlorinated 

TCE to ethene by day 10.5 and the triplicates with only TCE completed the same 

process by day 21. This was the first time DehaloR^2 was intentionally exposed 

to 2,6-DBP. The increased rate of complete dechlorination from TCE to ethene in 

the TCE and 2,6-DBP bottles is suggestive of synergistic dehalogenation 

occurring in the DehaloR^2 when both compounds are present. The TCE 

dechlorination rates were nearly identical until around day 6.5. At this point, the 

triplicates with TCE and 2,6-DBP contained half as much ethene as the TCE only 

triplicates (0.1 mM and 0.2 mM, respectively). However, after 4 more days (10.55 

days), the TCE and 2,6-DBP triplicates contained only ethene, whereas, the TCE 

only triplicates still contained VC. Additionally, around day 6.5 in the TCE 

triplicates we observed a plateau of methane until day 21 along with slower rates 

of ethene formation. This plateau is indicative of hydrogen limitation and could 

have contributed to the slower ethene formation in the positive controls. 

Hydrogen limitation was not an issue in the triplicates containing TCE and 2,6-

DBP because these bottles received twice as much methanol (used as electron 
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donor) from the two stock solutions (TCE in methanol and 2,6-DBP in methanol) 

compared to the TCE only triplicates. 

5.3.2 2,6-DCP Effect on TCE Dechlorination Ability 

Figure 5.3 shows TCE dechlorination in the presence of 2,6-DCP, by 

DehaloR^2 culture. Figure 5.2 can be used as a comparison of TCE 

dechlorination without the presence of 2,6-DCP. For both conditions, TCE was no 

longer detected around day 4.5. The TCE only triplicates showed complete 

transformation to ethene by about day 21, whereas, in the cultures with TCE and 

2,6-DCP at day 21 only about half of the TCE had been transformed to ethene and 

complete transformation to ethene had not occurred at day 55 (data after day 21 

not shown in Figure 5.3).  

 



   66 

 

Figure 5.3 Dechlorination of TCE in the presence of 2,6 DCP. Error bars 

represent standard deviation. The error bars are representative of varying 

biological activity among the TCE and 2,6-DCP triplicates. Data shown up to day 

21 (when the TCE only triplicates finished dechlorination).  

After a thorough literature review, no studies examining the effects of 

TCE and 2,6-DCP co-contamination or the effects of 2,6-DCP on TCE 

dechlorinating ability were found. Therefore, these results cannot be compared to 

previous studies and represent the first of their kind.  

This was the first time DehaloR^2 was intentionally exposed to 2,6-DCP. 

The TCE dechlorination rates were nearly identical until around day 6.5 between 

the triplicates with TCE and the triplicates with TCE and 2,6-DCP. At day 6.5, the 

triplicates with 2,6-DCP had about half as much ethene as the TCE only bottles  

(0.09 mM and 0.20 mM, respectively), and more VC compared to the TCE only 
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bottles (0.38 mM and 0.28 mM, respectively). The slower VC dechlorination was 

unexpected due to the initial TCE dechlorination speed.   

5.3.3 Comparing Dehalococcoides Growth and Yield Results For All Three TCE 

Conditions 

Figure 5.4 shows the Dehalococcoides growth results for a TCE only serum 

bottle, a TCE and 2,6-DBP serum bottle, and a TCE and 2,6-DCP serum bottle at 

time 0 days and time 7 days. All three conditions showed an increase in Dhc 16S 

rRNA gene copies/L, however, the TCE and 2,6-DBP serum bottle showed the 

largest increase, and the TCE and 2,6-DCP serum bottle showed the smallest 

increase. This is well correlated to the dehalogenation rates discussed previously. 

 

Figure 5.4 Growth of Dehalococcoides during TCE only, TCE and 2,6-DBP, and 

TCE and 2,6-DCP dehalogenation. Error bars represent the standard deviation of 

triplicate measurements for one DNA extraction. 
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It appears that Dehalococcoides sp. replicated more in the presence of 2,6-

DBP (without statistical significance), again supporting the theory of synergistic 

growth and less in the presence of 2,6-DCP supporting the theory of some 

inhibitory process. A growth experiment starting with low culture densities 

(around 107 gene copies/L) will prove whether or not growth and inhibition are 

actually occurring. 

Table 5.1 shows the calculated yield for TCE only, TCE and 2,6-DBP, and 

TCE and 2,6-DCP. The yield was again higher in the presence of 2,6-DBP. In the 

TCE and 2,6-DCP serum bottles, more initial µmoles of halogens are available as 

electron acceptor for the bacteria (1523 µmoles compared to 1440 µmoles in the 

TCE only serum bottle and 1392 µmoles in the TCE and DBP only serum bottle), 

however the yield is almost an order of magnitude lower than the TCE and 2,6-

DBP serum bottle and nearly equivalent to the TCE only serum bottle. 

 

Table 5.1 Calculated yield for TCE only, TCE and 2,6-DBP, and TCE and 2,6-

DCP conditions at time 7 days,  

Condition 
∆ Dhc 16S 
rRNA gene 

copies 

µmoles of 
halogen 
released 

Yield 
(Dhc 16S rRNA gene 

copies/ µmoles of 
halogen released) 

TCE Only 4.70E+11 1210 3.88E+08 
TCE + 2,6-DBP 6.28E+11 1020 1.77E+09 
TCE + 2,6-DCP 2.46E+11 1040 2.37E+08 
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5.4 CONCLUSION 

DehaloR^2 was exposed to halogenated phenolic compounds to examine 

the effects these biogenic-like compounds on TCE-dechlorination. The presence 

of 2,6-DBP resulted in faster TCE dechlorination and the presence of 2,6-DCP 

resulted in slower TCE dechlorination compared to TCE contamination alone.  

Further research is needed to verify if Dehalococcoides does grow on 2,6-

DBP via a growth experiment starting with very low culture densities, to verify if 

2,6-DCP is inhibitory to TCE dechlorination, to examine if expression occurs in 

the dechlorinating genes (tceA, tceB, vcrA, vcrB, and vcrC), to explore the effects 

of varying concentrations of TCE with these biogenic-like compounds to verify if 

the concentration of each constituent affects TCE dechlorination, the use of 

different electron donors to determine if the results are dependent on the electron 

donor used, and to study maximum utilization rates.  
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CHAPTER 6 

SUMMARY AND RECOMMENDATIONS 

6.1 SUMMARY 

 In this study, a previously characterized, TCE-dechlorinating microbial 

consortium, DehaloR^2, was exposed to three anthropogenic, halogenated 

compounds (TCC, TCEP, and TCA), and two biogenic-like halogenated phenols 

(2,6-DBP and 2,6-DCP). DehaloR^2 did not reductively dehalogenate the three 

anthropogenic compounds used in this study.  

 DehaloR^2 was exposed to 2,6-DBP and 2,6-DCP as model naturally 

produced compounds (biogenic-like), each in the presence of absence of TCE to 

examine if the culture could dehalogenate the two biogenic-like compounds. 

DehaloR^2 debrominated 2,6-DBP to phenol in the presence and absence of TCE, 

but the debromination occurred in a shorter time frame in the presence of TCE. 

DehaloR^2 dechlorinated 2,6-DCP to  2-CP in the absence of  TCE, however, 

dechlorination to 2-CP had not completed by day 55 in the presence of TCE. 

These findings suggest a possible synergistic effect occurring when TCE and 2,6-

DBP are present together, and an inhibitory effect occurring when TCE and 2,6-

DCP are present together.  

 Additionally, TCE dechlorination by DehaloR^2 was studied in the 

presence and absence of 2,6-DBP and 2,6-DCP. TCE dechlorination occurred in a 

shorter time frame in the presence of 2,6-DBP compared to the cultures with TCE 

only. TCE dechlorination was not completed by day 55 in the TCE and 2,6-DCP  

cultures compared to a dechlorination end point (to ethene) of 21 days in the 
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culture with TCE only. Again, these findings provide additional evidence of a 

synergistic effect occurring when TCE and 2,6-DBP are present together, and an 

inhibitory effect occurring when TCE and 2,6-DCP are present together. 

 Lastly, qRT-PCR was used to examine changes in Dehalococcoides 

concentrations using the 16S rRNA gene, and determine if growth was occurring 

when the halogenated phenols were present as possible electron acceptors. 

Preliminary results suggest that Dehalococcoides did grow when 2,6-DBP was 

available as the sole electron acceptor. Furthermore, Dehalococcoides grew but to 

a lesser extent when 2,6-DCP was present with TCE compared to TCE only. 

6.2 RECOMMENDATIONS FOR FUTURE STUDIES 

Based on the results from this study, I suggest the following topics should 

be further researched to better understand the dehalogenating abilities of 

Dehalococcoides and DehaloR^2. 

(1) Perform a growth experiment, starting with a diluted culture to 

determine if Dehalococcoides growth is a product of 2,6-DBP 

debromination. 

(2) Determine effects of 2,6-DBP and 2,6-DCP on additional 

microbial members and study shifts in microbial community. 

(3) Investigate effects of various concentrations of 2,6-DBP on TCE 

dechlorination and vice versa. Also, examine effects of these 

concentrations on microbial community. 

(4) Investigate dehalogenating ability of DehaloR^2 in regards to other 

brominated, and possibly iodinated and fluorinated, compounds.  
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APPENDIX A 

CONSTITUENTS FOR ANTHROPOGENIC EXPERIMENT  

(TCC, TCEP, AND TCA) 
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DehaloR^2 culture + TCC 

 
          

Constituent Final Conc. Stock Soln. 
100 mL Solution                  
(160 mL serum 

bottles) 
Anaerobic Media 

  
50 mL 

DehaloR^2 Culture 
  

10 mL 
ATCC Vitamins 

  
0.5 mL 

cyanocobalamine (B12) 5 mg/L 10,000 mg/L 25 µL 
Lactate 5 mM 1 M 0.25 mL 
TCC 10 µM 10 mM 50 µL 

 
 
DehaloR^2 culture + TCEP 
	  	   	  	   	  	   	  	   	  	   	  	  

Constituent Final Conc. Stock Soln. 
100 mL Solution                  
(160 mL serum 

bottles) 
Anaerobic Media 

  
90 mL 

DehaloR^2 Culture 
  

10 mL 
ATCC Vitamins 

  
1 mL 

cyanocobalamine (B12) 5 mg/L 10,000 mg/L 50 µL 
Lactate 5 mM 1 M 0.5 mL 
TCEP 10 µM 10 mM 10 µL 

 
 
DehaloR^2 culture + TCA 
	  	   	  	   	  	   	  	   	  	   	  	  

Constituent Final Conc. Stock Soln. 
100 mL Solution                  
(160 mL serum 

bottles) 
Anaerobic Media 

  
90 mL 

DehaloR^2 Culture 
  

10 mL 
ATCC Vitamins 

  
1 mL 

cyanocobalamine (B12) 5 mg/L 10,000 mg/L 50 µL 
Lactate 5 mM 1 M 0.5 mL 
TCA 0.5 mM (neat) 5 µL 



APPENDIX B 

PROCEDURE FOR MAKING MEDIA 
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(1) Collect ice and fill metal coil cooler next to reflux cooler so that the ice 

completely covers the wire coil 

(2) Clean a 2-L Bulb Flask, rinsing with DI water 

(3) Fill the 2-L Bulb Flask with 2 L of DI water 

(4) Add the following constituents: 

 (a) 20 mL of Salt Stock Solution—Swirl to mix 

 (b) 2 mL of Trace Element Solution A—Swirl to mix 

 (c) 2 mL of Trace Element Solution B—Swirl to mix 

 (d) 0.5 mL of 0.1% Resazurin stock solution—Swirl to mix 

(5) Hook up to reflux cooler 

(a) Turn reflux cooler on counterclockwise (gas bubble should begin at the 

bottom of the cooler and travel to the top) 

 (b) Turn on gas (N2 or CO2/N2 mix) 

 (c) Ensue gas tubing is flushing surface of media with gas 

(6) Turn on H gas and light a burner under the Bulb Flask (ensure there is a 

metal screen to protect the flask from the flame)  

(7) Once the liquid has reached a rapid boil, allow boiling for 30 minutes 

(8) Collect additional ice 

(9) After boiling, move the flask to half-full bucket of ice (Using autoclave 

gloves) and cover with remaining bucket of ice. (Continue flushing with 

gas) 

(10) Cool to room temperature 

(11) Add the following compounds: 
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 (a) 5.04 g NaHCO3 (Final Conc.: 30 mM) 

 (b) 0.096 g L-cysteine (Final Conc.: 0.2 mM) 

 (c) 3 mL of Na2S x 9H2O stock solution (Final Conc.: 0.2 mM) 

(12) Once solids have dissolved, measure on pH meter 

(13) Adjust pH to between 7-7.5 (bottle with opposite gas as used during 

boiling) 

(14) Follow the bottling protocol: 

 (a) Flush 2 bottles with gas for about 30 seconds – 1 minute 

 (b) Add 50 mL of media to each bottle 

 (c) Add 40 mL of media to each bottle 

(d) Close with stopper and aluminum crimp immediately following 

addition of 40 mL of media 

(15) Autoclave bottles 

Stock Solutions 

• Salt Stock Solution 

Add the following to 1 L of DI water: 

Salt Amount (g) 
NaCl 100 

MgCl2 x 6H2O 50/5 
KH2PO4 20 
NH4Cl 30 

KCl 30 
CaCl2 x 2H2O 1.5/0.5 
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• Trace Element Solution A 

Add the following to 1 L of DI water: 

Chemical Amount 
HCl (25% solution) 10 mL 

FeCl2 x 4H2O 1.5 g 
CoCl2 x 6H2O 0.19 g 
MnCl2 x 4H2O 0.1 g 

ZnCl2 70 mg 
H3BO3 6 mg 

Na2MoO3 x 2H2O 36 mg 
NiCl2 x 6H2O 24 mg 
CuCl2 x 2H2O 2 mg 

 

• Trace Element Solution B 

Add the following to 1 L of DI water: 

Chemical Amount 
Na2SeO3 x 5H2O 6 mg 
Na2WO4 x 2H2O 8 mg 

NaOH 0.5 g 
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APPENDIX C 

SOLID PHASE EXTRACTION (SPE) PROTOCOL 
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(1) Use Waters Oasis HLB 60 mg 3 cc cartridges 

(a) Label cartridge and insert into SPE with the label facing out and the 

effluent opening closed 

(2) Adjust waste holder and place waste tubes into holder underneath the 

cartridge 

(3) Condition using 3 mL of MeOH:Acetone/10 mM Acetic Acid—stop at 

interface 

(4) Equilibrate using 3 mL MS-grade Water/10 mM Acetic Acid—stop at 

interface 

(5) Load 2.4 mL MS-grade Water/10 mM Acetic Acid and add 200 µL of 

sample in cartridge—stop at interface 

(a) When pooling samples divide 200 µL by the number of samples (i.e. 2 

samples = 100 µL of each sample) 

(b) 1/17/12: Add 20 µL of 50 ppb* 13C TCC standard (*Concentration can 

change based on expected concentration of TCC in sample) 

(6) Rinse cartridge using 3 mL MS-grade water/10 mM Acetic Acid—do not 

need to stop at interface 

(7) Dry cartridge for 1 hour 

 (a) Open cartridges one full turn 

 (b) Pressurize SPE to 15” Hg 

(8) Remove waste tubes and replace with labeled sample vials 

(9) Elute sample using 3 mL MeOH:Acetone/10  mM Acetic Acid 

(10) Blow down sample to dryness for 1 hour 
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 (a) Place sample vials in Styrofoam holder 

 (b) Insert/remove needles based on number of samples and re-cap any 

unused ports 

 (c) Clean needles using Acetone wash 

 (d) Insert needles into sample vials near the opening of the vial 

 (e) Turn on gentle N2 gas stream (automatically regulated, will not exceed 

2 psi) 

(11) Reconstitute sample in 1 mL Acetonitrile 

(12) Vortex briefly and sonicate sample for 30 minutes in the sonication bath 

using the purple floaters 

(13) If necessary, filter sample using a 0.2 µm PTFE filter and PP syringe in a 

fresh vial 

(14) Take 750 µL sample and add 750 µL MS-grade water in labeled LC/MS vial 

Final Conc.: 200 µL sample1 mL acetonitrile ½ dilution with water 

10 x dilution 

Analytes 

(1) Methanol:Acetone (1:1) / 10 mM Acetic Acid—Organic solvent used to 

clean and condition cartridge 

• Equal parts LC/MS grade Methanol and Acetone 

• 10 mM LC/MS grade Acetic Acid 

• Example: 50 mL Methanol, 50 mL Acetone, 34 µL Acetic Acid 

Total Volume: 100 mL, Final Concentration of Acetic Acid: 10 mM 

(2)  MS-Grade Water / 10 mM Acetic Acid—Matrix used to equilibrate sample 
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• 1 L LC/MS grade Water (in storage cabinet) 

• 343 µL Acetic Acid 

• Total Volume: 1 L, Final Concentration of Acetic Acid: 10 mM 

(3)  MS-Grade Acetonitrile   
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APPENDIX D 

CONSTITUENTS FOR BIOGENIC EXPERIMENT 
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TCE Only 
	  	   	  	   	  	   	  	  

Constituent Final Conc. Stock Soln. 100 mL Solution                  
(160 mL serum bottles) 

Anaerobic Media 
  

90 mL 
DehaloR^2 Culture 

  
10 mL 

ATCC Vitamins 
  

1 mL 
cyanocobalamine 

(B12) 5 mg/L 10,000 mg/L 50 µL 

Lactate 5 mM 1 M 0.5 mL 
TCE 0.5 mM 1 M 50 µL 

 
 

TCE + 2,6-DBP 
	  	   	  	   	  	   	  	   	  	   	  	  

Constituent Final Conc. Stock Soln. 100 mL Solution                  
(160 mL serum bottles) 

Anaerobic Media 
  

90 mL 
DehaloR^2 Culture 

  
10 mL 

ATCC Vitamins 
  

1 mL 
cyanocobalamine 

(B12) 5 mg/L 10,000 mg/L 50 µL 

Lactate 5 mM 1 M 0.5 mL 
TCE 0.5 mM 1 M 50 µL 

2,6-DBP 0.1 MM 100 mM 100 µL 
 

TCE + 2,6-DCP 
	  	   	  	   	  	   	  	   	  	   	  	  

Constituent Final Conc. Stock Soln. 100 mL Solution                  
(160 mL serum bottles) 

Anaerobic Media 
  

90 mL 
DehaloR^2 Culture 

  
10 mL 

ATCC Vitamins 
  

1 mL 
cyanocobalamine 

(B12) 5 mg/L 10,000 mg/L 50 µL 

Lactate 5 mM 1 M 0.5 mL 
TCE 0.5 mM 1 M 50 µL 

2,6-DCP 0.1 MM 100 mM 100 µL 
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2,6-DBP Only 
            

Constituent Final Conc. Stock Soln. 100 mL Solution                  
(160 mL serum bottles) 

Anaerobic Media 
  

90 mL 
DehaloR^2 Culture 

  
10 mL 

ATCC Vitamins 
  

1 mL 
cyanocobalamine 

(B12) 5 mg/L 10,000 mg/L 50 µL 

Lactate 5 mM 1 M 0.5 mL 
2,6-DBP 0.1 mM 100 mM 100 µL 

 
 

2,6-DCP Only 
            

Constituent Final Conc. Stock Soln. 100 mL Solution                  
(160 mL serum bottles) 

Anaerobic Media 
  

90 mL 
DehaloR^2 Culture 

  
10 mL 

ATCC Vitamins 
  

1 mL 
cyanocobalamine 

(B12) 5 mg/L 10,000 mg/L 50 µL 

Lactate 5 mM 1 M 0.5 mL 
2,6-DCP 0.1 mM 100 mM 100 µL 
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APPENDIX E 

DNA EXTRACTION FOR DEHALOCOCCOIDES 
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(1) Set the temperature on two incubators or water baths (one at 56°C, one at 

37°C)  

(2) Make pellets with 10 mL of culture, freeze overnight 

(3) Remove all supernatant from solution 

(4)  Add 180 µL Enzyme lysis buffer, mix by pipetting up and down 

(5) Incubate at 37°C for 60 minutes 

Periodically check the incubations and flick tubes if necessary to keep cells 

in suspension 

(a) Thermomyxer: 500 rpm every 3 minutes for 30 seconds 

(6) Add SDS to 1.2% v/v and vortex briefly. 

(7) Incubate at 56°C for 10 minutes (The suspension will clarify) 

 Begin following Step 4 of the Qiagen-DNeasy Blood & Tissue kit 

pretreatment protocol for Gram positive bacteria) 

(8) Add the following and vortex briefly (the suspension will further clarify): 

 (a) 25 µL proteinase K 

 (b) 200 µL buffer AL (without ethanol) 

(9) Incubate at 56°C for 30 minutes 

(10) Spin the lysate at 10,000 x g for 1 minute 

(11) Check for any intact cell material or debris and remove the supernatant to a 

separate tube 

(12) Add 200 µL molecular grade ethanol (96-100%) and mix thoroughly by 

vortexing 
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(13) Spin down briefly (1 minute at 10,000 x g) to remove lysate from the lid of 

the microcentrifuge tube 

(14) Carefully pipet (avoid bubbling) the entire lysate onto the DNeasy spin 

column placed in a 2 mL collection tube 

 (a) Centrifuge at 8,000 x g for 1 minute 

 (b) Discard the flow-through and the centrifuge tube 

(15) Place the spin column onto a clean collection tube 

 (a) Add 500 µL buffer AW1 

 (b) Centrifuge at 8,000 x g for 1 minute 

 (c) Discard the flow-through and the centrifuge tube 

(16) Place the spin column into a clean collection tube 

 (a) Add 500 µL AW2 

 (b) Centrifuge at 17,000 x g for 3 minutes to dry the DNeasy membrane 

 (c) Discard the flow-through and the centrifuge tube 

(17) Place the spin column into a clean microcentrifuge tube 

 (a) Add 100 µL buffer AE to the membrane 

 (b) Let stand for 1 minute 

 (c) Centrifuge at 10,000 x g for 1 minute 

(18) Apply the eluent back onto the same spin column and centrifuge again at 

10,000 g for 1 minute 

(19) Store DNA at -20°C 
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DNA Extraction Solutions 

• Lysis Buffer (Add the following per 1 mL DI water) 

o 20 µL Tris-HCl (Final Conc.: 20 mM) 

o 0.6 mg EDTA (Final Conc.: 2 mM) 

o 0.2 mg Achromopeptidase 

o 20 mg lysozyme 

• 10% SDS Solution (7 mL) 

o 0.7 g SDS 

o 7 mL DI water 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


