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ABSTRACT

Motion capture using cost-effective sensing technology is challenging and

the huge success of Microsoft Kinect has been attracting researchers to uncover the

potential of using this technology into computer vision applications. In this the-

sis, an upper-body motion analysis in a home-based system for stroke rehabilitation

using novel RGB-D camera – Kinect is presented. We address this problem by

first conducting a systematic analysis of the usability of Kinect for motion analysis

in stroke rehabilitation. Then a hybrid upper body tracking approach is proposed

which combines off-the-shelf skeleton tracking with a novel depth-fused mean shift

tracking method. We proposed several kinematic features reliably extracted from

the proposed inexpensive and portable motion capture system and classifiers that

correlate torso movement to clinical measures of unimpaired and impaired. Exper-

iment results show that the proposed sensing and analysis works reliably on mea-

suring torso movement quality and is promising for end-point tracking. The system

is currently being deployed for large-scale evaluations.
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Chapter 1

INTRODUCTION

1.1 THE RESEARCH PROBLEM

Every year, about 795,000 people in the United States suffer from stroke [40], and

about 60% of stroke patients experience minor to severe upper extremity motor

deficits, resulting in a decline quality of post-stroke life [41]. Stroke rehabilitation

is the process that helps stroke survivors return to normal life as much as possible by

regaining and relearning the skills of everyday living, which lasts from immediately

after stroke to over a year. Physical therapy (PT) is one of the important aspects of

stroke rehabilitation which focuses on regaining motor functionality by performing

exercises and relearning functional tasks [26].

Conventional rehabilitation train motor function using labor-intensive (ther-

apist) and expensive facilities. It is dependent on patient compliance and also suf-

fers from limited availability depending on geography [42]. Further, clinical in-

tervention alone is not effective for activities at a home [28][49][18][19]. Virtual

reality (VR) is a computer-based technology that allows users to interact with a

multisensory simulated environment and receive "real-time" feedback on perfor-

mance [42]. Compared to the conventional rehabilitation, VR rehabilitation applied

relevant concepts based on neuroplasticity leading to benefits in motor function im-

provement [42]. Also, it can be tailored to the needs of the patient, by providing

feedback that fits the individual’s cognitive and physical impairments, in order to

promote positive learning experience while being fun and motivating [25].

VR has been widely applied in designing novel rehab systems for physi-

cal therapy. Based on the types of VR systems [17], they can be divided into two

groups: 1) immersive VR rehab systems [21][56]; 2) nonimmersive VR rehab sys-

tems [41][34]. Research has shown that the use of VR systems may have improved
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motor function, although the results is still not universally accepted, it is worthy and

promising to further develop the VR-based stroke rehabilitation. In order for ther-

apy to be effective, there is a need for tools that a patient can take home after they

leave the clinic [5][46]. In recent years, there has been increasing interest to devise

mixed-modal interventions that can assist a person at their home [46][6][14], for en-

couraging reflection on one’s movement with the goal of supplementing traditional

therapy.

An adaptive mixed reality rehabilitation (AMRR) [13][20] and motor learn-

ing theories [43][53] with motion capture and activity analysis technologies, and

multimedia feedback, can result in effective and portable rehabilitation systems to

be deployed at one’s home. Over the past a few years, an ASU research team has

investigated the benefits of an AMRR system, and shown its efficacy in helping im-

prove the kinematic and functional performance of upper extremity [20]. However,

this system was designed for a clinical setting, with high-end motion capture tech-

nologies with various markers and rigid-bodies attached to the wrist, arm, shoulder,

torso etc, resulting in very rich data about the activities. However, this marker-

based solution is unrealistic in a home-based environment. First, the heavy duty

camera system and the complexity of marker setup inhibits participants to start up

a physical session daily without assistance. Second, AMRR is not affordable to

at home therapy. Third, the long-term at home therapy aims to transfer the train-

ing and assessment of clinician-led therapy sessions into daily experience at home.

Thus, less constrained physical tasks and a multi-layered feedback hierarchy call

for a simpler motion capture, which makes the old marker-based solution cumber-

some. Therefore, a low-cost motion capture system should be employed in the

home-based system. What low-cost sensing devices could be served as an ideal so-

lution for our application? Is the low-cost motion capture module reliable enough

for the motion analysis of impaired patients?
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1.2 CHALLENGES AND MOTIVATION

A number of pressing challenges are yet to be addressed for designing low-cost

motion capture module of home-based stroke rehab system. First, patients are ex-

pected to run the whole session of tasks unassisted. As a result, the system should

be easy to setup, and user friendly. In particular, it is unrealistic to rely heavily on

a marker-based solution due to their cumbersomeness. As well, inaccurate place-

ment of markers can negatively effect the activity analysis modules. Second, in

stroke rehab, many calculations of kinematic features requires a high tracking ac-

curacy and high sampling rates. For example, computing deviation from expected

speed profiles requires higher accuracy because speed is more sensitive to tracking

errors than the trajectories. Also, the relative low sample rates (20-30Hz) is hard to

provide a very detailed representation of movements. Third, the reduction of data

requires a remodeling motion analysis in terms of proper kinematic representation

and evaluation.

The recent advent of low-cost motion capture systems such as the Microsoft

Kinect [1] emerge as excellent solutions. Kinect is a motion sensing device by

Microsoft which enables hands-free control by tracking and interpreting user’s body

movement in three dimension using an infrared projector and RGB camera [1]. It

enables a 3D presentation of the object, as well as off-the-shelf skeleton tracking

algorithm, which greatly facilitates tracking of human body movement. Also, its

low-cost, easy to use and natural human computer interaction leads us to throw the

discussion on whether and how it could be applied as an effective solution for our

at home system.

1.3 CONTRIBUTIONS

There are three key contributions in this thesis.
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1. We conduct a comprehensive analysis of Kinect sensing technology and then

discuss the usability of the Kinect in the stroke rehabilitation system. Also,

we show how different sensing components are integrated in order to provide

reliable and accurate data for further motion analysis.

2. Discuss the effect of accuracy for endpoint (wrist), torso and arm tracking

during reaching physical tasks. A hybrid tracking approach using RGB-D

camera is presented. We explicitly explain how we use the benefit of off-

the-shelf skeleton tracking algorithm for torso and arm tracking. Also, an

depth-fused mean shift tracking approach is described for endpoint tracking.

3. Propose an approach on evaluating torso compensatory movement quality

on torso and endpoint (wrist) kinematic function during long-term therapy.

The proposed evaluation framework evaluation of torso movement quality on

reaching tasks or the progress of a certain session, and also provides quanti-

tative measures for long-term therapy adaptation.

1.4 ORGANIZATION

The rest of the thesis is organized as follows: In chapter 2, related work and the-

oretical background are introduced. In chapter 3, we present the design of multi

sensory motion capture system and present a novel upper body tracking approach

using Kinect. In chapter 4, we introduce torso motion analysis for quantitative

kinematic evaluation. We present system implementation and experimental results

in Chapter 5, and concluding remarks in chapter 6.
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Chapter 2

BACKGROUND AND RELATED WORK

2.1 HOME-BASED ADAPTIVE MIXED REALITY SYSTEM

Home-based adaptive mixed reality system (HAMRR) [6], integrates rehabilitation

and motor learning theories, motion capture and activity analysis technologies, and

multimedia feedback. HAMRR aims to provide a purposeful, engaging, hybrid (vi-

sual, auditory and physical) scene, which encourages patients to improve their per-

formance on constraint induced repetitive tasks in stroke rehabilitation and promote

learning of generalized movement strategies [12]. The system uses low-cost multi-

modal sensing components to track patients’ upper body movement and provides a

dynamic feedback environment to help stroke survivors self-assess their movement

and improve the motor function in long-term adaptive task-specific therapy at home

[6]. Below, we provide a brief introduction of HAMRR.

The HAMRR system integrates five computational subsystems: (a) multi-

modal Sensing; (b) motion analysis; (c) multimodal feedback; (d) archiving; and (e)

adaptation. All these five subsystems are controlled by a media center computer.

Figure 2.1 shows the system structure.

Figure 2.1: HAMRR System Architecture.
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2.1.1 SENSING AND MOTION ANALYSIS

The HAMRR system utilizes multiple sensing modalities to extract kinematic fea-

tures of a participant’s movement, providing a cost-effective and robust sensing

solution for unsupervised, private home training [6]. The physical environment in-

cludes a chair, a table, tangible objects, a 27-inch imac, two Bose speakers, and four

Natural Point Opti-Track cameras. The sensing module includes:

• Opti-track camera system: the Opti-Track cameras, which run at 100fps, and

tracking tools, which are used to track participants’ joint 3D positions by

tracking the reflective markers mounted on participants’ body. The current

Opti-track system is a scaled-down tracking solution as compared to the high-

end camera system in our system at hospital.

• Chair: The chair is used in torso movement tracking.

• Tangible objects: The object interaction is sensed throughout different sen-

sors setup on different objects, such as button object (used in reach-to-touch

tasks), cone object (used in reach-to-grasp tasks), and lift object (used in

reach-to-lift-to-transport tasks).

The motion analysis module calculates kinematic features based on the

tracking data from sensing module. The kinematic features are used to train a va-

riety of classifiers that evaluate the movement quality and then gives descriptive

results to generate multimedia feedback, and also sent to adaptation framework for

the selection of future tasks.

2.1.2 MULTIMEDIA FEEDBACK

HAMRR is designed to provide long-term at-home training and rehabilitation dur-

ing the 12-24 months after clinic therapies. Thus, the basic idea of multimedia
6



feedback system is to provide a dynamic environment which helps a stroke sur-

vivor restore motion function through self-assessment and distanced supervision by

therapists. A multi-layer feedback hierarchy is proposed to help stroke surveyor

evolve over time and regain self-confidence. Details can be seen in [29].

2.1.3 ADAPTATION

HAMRR is designed to provide a long-term, distanced semi-supervised therapy.

During the weekdays, the participants are expected to conduct physical tasks at

home by themselves, and in the weekend, a therapist reviews the participant pro-

gression and adjust tasks and goals dynamically. The types of tasks, tangible objects

and locations, feedback streams, and feedback sensitivities and all designed to be

adaptable in order to offer challenging and engaging tasks based on the progress of

specific participants. HAMRR employs a utility function to determine the sequence

of sets and parameters based on 1) a prior established week-long sequence of tasks;

2) the history of foci and tasks for each set; and 3) the participant’s performance.

Details for adaption framework can be found in [10].

2.2 KINECT SENSING TECHNOLOGY

Novel motion-sensing technology has been leading a revolutionary change in the

gaming industry by creating an engaging and interactive environment. During the

past few years, the remarkable success of Nintendo Wii and Microsoft Kinect has

been attracting researchers to uncover the potential of using these technologies into

applications. The idea of applying these motion-sensing devices to the development

of home-based stroke rehab system is intuitive. This is because motion-sensing

devices are designed for at home video game applications, low-cost and easy-setup

are prerequisites. Also, they use human motion as one of the inputs in this game.

This requires a reliable motion sensing for real-time human body representation.
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Table 2.1: Kinect for Windows Specifications

Kinect Specifications

Sensor Color and Depth Cameras
IR projector
Voice microphone array
Tilt motor for sensor adjustment

Field of View
Angle Ranges (Horizontal) 57 degrees

(Vertical) 43 degrees
(Physical tilt range) +/- 27 degrees

Distance Ranges (Default Mode) 0.8 to 4 m
(Near Mode) 0.4 to 3m

Resolution 320×240 or 640×480 Depth
320×240 or 640×480 or 1280×960 Color

FrameRate 30 fps Depth
30 fps @ 320×240 , 640×480 Color
15fps @ 1280×960

Skeleton Tracking System Tracks up to 6 players ( 2 active players )
(Default Mode) 20 joints per active player
(Seat Mode) 10 joints per active player

2.2.1 DEVICE SPECIFICATIONS

Kinect contains a USB hub with three different devices: A camera device with an

IR projector, a depth camera and a RGB camera; an audio device equipped with

a multi-array microphone; a motor/LED device. In this system, the datastream

obtained from the depth and RGB camera is used as input. Table 2.1 shows the

specification for the Kinect device [4][2].

Depth maps are created by continuously projecting an infrared ‘static pseu-

dorandom’ pattern onto a 3D environment and further using stereo triangulation

[27]. Body parts are then inferred from depth maps using random decision forest

classifiers, which are trained from one million training samples [45].
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2.2.2 PROS AND CONS OF KINECT

The reasons why Kinect is beneficial for motion capture applications are three-fold:

1. Kinect sends out RGB and depth data with the resolution of 640 × 480 at

each 30 ms, which provides rich data for real-time applications.

2. Kinect can track up to two skeletons without markers and for each skeleton

20 joints can be tracked, which greatly simplified the motion capture setup.

Compared to the marker-based system, the markerless upperbody solution

significantly enhances the participant’s experience.

3. Kinect is easy to set up and use. Compared to the multi-camera system,

Kinect is a portable single camera. It doesn’t require stereo imaging among

different cameras. The hands-free control could provide also possibilities for

designing an engaging and interactive environment.

However, Kinect sensing also has certain limitations and problems which

are discussed as follows.

1. Lighting: Lighting is important for image quality because high illumination

makes depth tracking less reliable while low illumination works for depth but

degrade the RGB. Since the depth image is generated by ‘light coding’ using

IR projector, it works poorly when items or clothing materials are reflective.

2. Distance: Depth Camera works well within very limited range of distances.

It will lead to unstable and incorrect skeleton representations and slow cali-

brations at out-of-range distances.

3. Image Quality: Depth Image contains many noises on the edges between the

background and user body contours. This requires preprocessing work on

data smoothing and denoising.
9



2.2.3 RELATED WORK

Kinect [30][45], as an inexpensive motion capture device, has impacted many com-

puter vision applications, such as tracking [38][35], activity and gesture recognition

[48][36][23]. The applications of Kinect in rehabilitation and related healthcare ap-

plications have recently been investigated [37][8]. However, these investigations

were focused on the accuracy of tracking alone, and they found that the Kinect of-

fered reasonable accuracy as measured in terms of pure trajectory level error. They

did not, however, report whether trajectory errors have any impact on higher-level

movement quality classifiers that form the core of any rehabilitation application.

2.3 MEANSHIFT TRACKING

Object tracking is an important task in the computer vision domain. The rapid

growth of computing capability, along with the emergence of high quality and inex-

pensive camera and the increasing need for automated object tracking algorithms,

has been attracting researchers to conduct a variety of research. There are primarily

three key steps in activity and motion analysis: the detection of moving objects,

or frame-to-frame object tracking, and analysis of object tracks to recognize their

behaviors [57]. From a bottom-up perspective, an object tracking problem starts

from how to represent and model interesting object. The next step is to segment

the object from its background. The last step is to locate the object frame-to-frame.

The first step is called target representation, while the second step is called target

localization.

An object can be represented in different ways, such as points, geometry

shapes, silhouette, contour and skeletal models, depending on its applications. For

example, single small objects can be regarded as points, while for tracking articu-

lated objects, skeletal models are commonly applied. Colors, edges, optical flows

and textures are most common features that are selected to build object models.
10



Most tracking approaches combine different types of features for object detection.

Object tracking is a difficult problem because of: 1) the loss of information

caused by projection of the 3D world on a 2D image; 2) complex object motion; 3)

object shape deformation; 4) real-time processing requirements; and 5) partial and

full object occlusions.

Mean shift tracking [16] uses feature histogram-based target representations

regularized by spatial masking with an kernel. The tracking problem is formulated

by finding the local maxima, or mode in the feature space. A Bhattacharyya co-

efficient as similarity measure is used for algorithm optimization. Mean shift is a

fast, efficient tracking approach and has been widely used in different tracking ap-

plications. However, the mean shift is sensitive to background noises and rotations,

neither the global optimality is guaranteed [44]. A large amount of research has

been proposed to improving the approach by combining other tracking algorithms,

such as Kalman filter [60], Particle filter [44], or better object detection solutions

[59].

2.3.1 BACKGROUND

Define a set of normalized pixel locations {x?i }i=1...m centered at 0 as the target

model. An kernel function k(x) is applied to assign smaller weights to pixels farther

from the center. The function b : R2→ {1 . . .m} associates to the pixel at location

x?i the index of b(x?i ) of its bin in the quantized feature space. The probability

distribution of the feature u = 1 . . .m in the target model is then computed as [16]

q̂u =C
n

∑
i=1

k(‖ x?i ‖
2)δ [b(x?i )−u] , (2.1)

where δ is the Kronecker delta function, and C is the normalization constant which

is derived by imposing the condition ∑
m
u=1 q̂u = 1. Let the {xi}i=1...nh

be the nor-

malized pixel locations of the target candidate, centered at y in the current frame.
11



The probability distribution of the feature u = 1 . . .m in the target candidate is given

by

p̂u(y) =Ch

nh

∑
i=1

k(‖ y−xi
h
‖)2

δ [b(xi−u)] (2.2)

The maxima of the similarity function is achieved by minimizing the Bhat-

tacharyya coefficient between p and q:

ρ[p̂(y), q̂] =
m

∑
u=1

√
p̂u(y)q̂u. (2.3)

Using Taylor expansion around the values p̂u(ŷ0), the Bhattacharyya coef-

ficient could be represented by

ρ[p̂(y), q̂]≈ 1
2

m

∑
u=1

√
p̂u(ŷ0)q̂u +

Ch

2

nh

∑
i=1

wik(‖
y−xi

h
‖

2
), (2.4)

where

wi =
m

∑
u=1

√
q̂u

p̂u(ŷ0)
δ [b(xi)−u]. (2.5)

To minimize, mean shift procedure is employed, the kernel is recursively

moved from the current location ŷ0 to new location ŷ1 according to the relation

ŷ1 =
∑

nh
i=1 xiwig(‖ ŷ0−xi

h ‖
2
)

∑
nh
i=1 wig(‖ ŷ0−xi

h ‖
2
)
, (2.6)

where g(x) = −k
′
(x), assuming that the derivative of k(x) exists for all x ∈ [0,∞),

except for a finite set of points.

2.3.2 KALMAN FILTER

Kalman Filter [52] is commonly applied in mean shift approach to solve the prob-

lem of losing tracking caused by fast motion and occlusions. The Kalman filter

model assumes the space state of a discrete-time k evolves from the state at k− 1

by the linear stochastic difference equation [52]

xk = Axk−1 +Buk−1 +wk1, (2.7)
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with a measurement zk that is

zk = Hxk + vk, (2.8)

where wk and vk are independent, white, and with normal probability

p(w)∼ N(0,Q), p(v)∼ N(0,R), (2.9)

where A is the state transition model applied to the previous state xk−1, B is the

control-input model, and H is the observation model which maps the true state

space into the observed space. The models A,B,H may change between states, but

they are assumed to be stable here. The Kalman filter estimates a process by using

a form of feedback control - the filter estimates the process state at some time and

then obtains feedback in the form of measurements. The Kalman filter algorithm

includes two updates stages:

• time update (Predict):

x̂
′
k = Ax̂k−1 +Buk−1 (2.10)

P
′
k = APk−1AT +Q (2.11)

• measurement update (Correct):

Kk = P
′
kHT (HP

′
kHT +R)−1 (2.12)

x̂k = x̂
′
k +Kk(zk−Hx̂

′
k) (2.13)

Pk = (I−KkH)P
′
k (2.14)

2.3.3 RELATED WORK

A number of methods have been addressed to overcome the limitations mentioned

above. There are primarily two lines of research based on the different steps of the

object tracking problem.
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Target Representation: Extensive work on target representation can be di-

vided into two groups. In the first line of research, a handful of research has aimed

to modify the feature models or kernel formulation to improve the tracker’s perfor-

mance. Traditional mean shift method requires a symmetric kernel and assumes

constancy of the objet scale and orientation during tracking. Asymmetric kernel

based on mean shift methods is presented to improve the robustness in terms of

scale and orientation changes [57][51]. A Difference of Gaussian (DOG) mean-

shift kernel enables efficient tracking of blobs through scale space [15]. Others

attempt to modify the feature models. In [31], the author presented an adaptive bin-

ning color model for mean shift tracking in order to chi eve the number of subspaces

automatically. This was different from the conventional mean shift which lacked a

systematic way to determine bin number. In [50], an online updating appearance

generative mixture model for mean shift tracking is proposed. A new spatial color

histogram is applied in [54]. In the second line, efforts have been devoted to re-

placing the color histogram model with other features and objection detectors. In

[59][9], they combined the benefits of SIFT features and color features based mean

shift and evaluate them in an expectation-maximization scheme in order to achieve

a maximum likelihood estimation of similar regions. This was similar to the ap-

proach used In [55].

Target Localization: Extensive work on target localization has generally

involved adding Kalman filters or particle filters to improve the tracking robustness

when partial or full collusion of the objects occurs. In [44], a mean shift embedded

particle filter method is proposed. This approach produces reliable tracking while

effectively handling rapid motion and distraction. In [60], a real time eye tracking

method combing Kalman filter and mean shift tracking is presented. The experi-

ment shows that the robustness has significantly been improved in term of handling

occlusion.
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2.4 3D CARTESIAN COORDINATE SYSTEM AND CAMERA CALIBRATION

3D coordinate system uses a geometric 3-parameters model to represent three-

dimensional space [3]. Since our physical universe is three- dimensional, the 3D

coordinate system is used to represent the locations in real world. Cartesian coor-

dinate system describes every point in 3D space by means of three orthogonal axes

labeled x,y, and z. In the motion analysis domain, xandy are used to represent the

image plane and z to represent the vertical or depth. A coordinate system is com-

prised of an origin O, and three orthogonal unit vectors i, j, and k. The direction of

these three vectors follows the right-handed rule [3].

2.4.1 COORDINATE REPRESENTATION

In this section, the 3D representations of some basic geometric objects are pro-

vided using the Cartesian coordinate system. These basic geometric objects are as

follows:

Point: A point P in the coordinate system F is represented by the (signed)

lengths of the orthogonal projections of the vector
−→
OP onto the vector i, j, and k,

with 
x =
−→
OP · i

y =
−→
OP · j ⇐⇒ −→OP = xi+ yj+ zk

z =
−→
OP ·k

(2.15)

Distance between points: Cartesian coordinate system follows Euclidean space and

thus the distance D between two points P1(x1,y1,z1),P2(x2,y2,z2) is

D =
√
(x1− x2)2 +(y1− y2)2 +(z1− z2)2 (2.16)

Plane: The points lying in ∏ are characterized by

−→
AP ·n = 0 (2.17)
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, where the coordinates of point P is x,y,z and the coordinates of n are a,b, and c,

and a more general representation of plane ∏ is

ax+by+ cz+d = 0, (2.18)

Distance from a point to a plane: the shortest distance from a point P1 to a plane

∏ : ax+by+ cz+d = 0 is

D =
|ax1 +by1 + cz1 +d|√

a2 +b2 + c2
(2.19)

Intersection Angles between Planes: The intersection angle θ between two planes

∏1,∏2 is defined by

θ = arccos(
a1a2 +b1b2 + c1c2√

a2
1 +b2

1 + c2
1

√
a2

2 +b2
2 + c2

2

). (2.20)

2.4.2 COORDINATE SYSTEM CHANGES AND RIGID TRANSFORMATION

It is common to change coordinate system in order to get different representations

of a point, line or plane. In motion analysis system, the computation module gets

2D representations of a real-world object from a camera, and transform the posi-

tion into a calibrated 3D global coordinate system, while the visualization module

projects the 3D position into a 2D image plane. Also, using different coordinates

are needed in order to compute the space correlation between points, lines or planes.

Any coordinate system can be considered the production of rigid transformations

from another coordinate system [22]. Two transformations that preserve distances

between points - translations and rotations - are particularly helpful in this study.

Consider 2 coordinate systems: (A) = (OA, iA, jA,kA), (B) = (OB, iB, jB,kB).

If (iA, jA,kA) and (iB, jB,kB) are parallel to each other, and OB can be described as

−−→
OBP =

−−−→
OBOA +

−−→
OAP (2.21)
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, the two systems thus are separated by a pure translation; If OB and OA are identical

and the two systems thus are separated by a pure rotation. The rotation matrix ARB

as the 3×3 is defined as the array of numbers

ARB =


iA · iB jA · iB kA · iB

iA · jB jA · jB kA · jB

iA ·kB jA ·kB kA ·kB

 (2.22)

. The rotation matrix ARB is computed as follows:

ARB = [MB
x ,M

B
y ,M

B
z ], (2.23)

, where MB
x , MB

y , MB
z are orthogonal unit vectors of the OB. They can be easily

computed as follows:

MB
x =

v12

‖v12‖
,MB

′

y =
v23

‖v23‖
, (2.24)

MB
z = MB

x ×MB
′

y ,MB
y = MB

x ×MB
z , (2.25)

v12 = (x2− x1)~i+(y2− y1)~j+(z2− z1)~k, (2.26)

v23 = (x3− x2)~i+(y3− y2)~j+(z3− z2)~k (2.27)

, where (x1,y1,z1),(x2,y2,z2) and (x3,y3,z3) are 3D coordinates of any three points

that are not in a line in coordinate system OA. Without loss of generality, we assume

(x2,y2,z2) as the origin of OB. The translation vector AtB is computed by

AtB = [−x2,−y2,−z2] (2.28)

2.4.3 EULER JOINT ANGLE COMPUTATION

The rotation matrix ARB can be considered a sequence of three rotations, corre-

sponding to three axises, respectively. The three rotation matrices are defined as

Rx(ψ),Ry(θ), and Rz(φ), where ψ,θ , and φ represent the rotation radians. These

three angles are called Euler angles [47].
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The rotation matrix varies across different rotation orders. If rotate first from

A to B around x-axis, then the y-axis, and finally the z-axis, the rotation matrix can

be represented as,

ARB = Rz(φ)Ry(θ)Rx(ψ)

=


cosθ cosφ sinψ sinθ cosφ − cosψ sinθ cosψ sinθ cosφ + sinψ sinθ

cosθ sinφ sinψ sinθ sinφ + cosψ cosθ cosψ sinθ sinφ − sinψ cosθ

−sinθ sinψ cosθ cosψ cosθ


(2.29)

, then the three angles can be computed using the algorithm in [47].

2.4.4 CAMERA CALIBRATION

The goal of camera calibration is to find the transformation matrix that transforms

a 2D point position in pixel coordinates into a defined 3D point position in world

coordinates. Homogeneous coordinates are used to represent the transformation


xp

yp

1

= sMW



xw

yw

zw

1


(2.30)

, where s is an arbitrary scale factor, M is an intrinsic camera matrix which is rep-

resented by

M =


fx 0 cx

0 fy cy

0 0 1

 (2.31)

, where fx and fy are focal lengths on x and y axes, and cx and cy is the center of the

image plane. W is the extrinsic camera matrix which is represented by

W =

[
R t

]
(2.32)
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, where R is a 3× 3 rotation matrix from the 2D pixel coordinate to the 3D world

coordinate, and t is a 3×1 translation vector from the origin of 2D pixel coordinate

to the origin of 3D world coordinate. Without loss of generality, we assume the

plane on which all the points satisfy Z = 0 as the global coordinate. Then


xp

yp

1

= sM
[

r1 r2 t
]

xw

yw

1

 (2.33)

, we denote H =

[
h1 h2 h3

]
, and then we have[

h1 h2 h3

]
= λM

[
r1 r2 t

]
(2.34)

Because the rotation vectors are orthonormal, thus

rT
1 r2 = 0 (2.35)

‖ r1 ‖= ‖ r2 ‖ (2.36)

. From we can get

r1 = λM−1h1,r2 = λM−1h2 (2.37)

and 2.35 can be written as

hi
T MT M−1hj = 0,i 6= j (2.38)

hi
T MT M−1hi = hj

T MT M−1hj,i 6= j (2.39)

Set B = MT M−1, since M is the intrinsic matrix, B can be represented as

B =


1
f 2
x

0 −cx
f 2
x

0 1
f 2
x

−cy
f 2
y

−cx
f 2
x

−cy
f 2
y

c2
x

f 2
x
+

c2
y

f 2
y
+1

 (2.40)
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Because B is symmetric, then hT
i Bhj = vT

i jb, and the 2.38 can be written as vT
12

(v11− v22)
T

b = 0 (2.41)

this linear equation can be solved if 2 images of chessboards together, and all the

parameters in both the intrinsic and extrinsic matrices can be solved. Please see

[58] for details.
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Chapter 3

A LOW-COST DESIGN OF MOTION CAPTURE USING KINECT FOR

AT-HOME MIXED REALITY REHABILITATION SYSTEM

In this chapter, the design of the upper body motion capture using inexpensive

RGB-D camera is introduced for home-based adaptive mixed reality rehabilitation

system (HAMRR). HAMRR aims to help restore the motion function of stroke

survivors by providing an engaging rehab physical therapy at home at a low cost

[46]. It is a scaled-down version based on the theories and results obtained from

the Adaptive Mixed Reality Rehabilitation System (AMRR) [12]. HAMRR tracks

movement of the wrist and torso and provides real-time, post-trial, and post-set

feedback to encourage stroke survivors to self-assess their movement and to engage

in active learning of new movement strategies.

Motion capture plays an important role in mixed reality system, as continu-

ously providing reliable and accurate information on joint trajectories of upper body

for feature calculation and feedback control. In the AMRR system [13], a commer-

cial tracking system called Opti-Track is used as a solution for motion capture. 12

reflective markers are equipped on patient’s upper body, tracked by 6 infrared cam-

eras with 100 frames per seconds. The Opti-Track system provides rich information

on movements of hands, wrists, arms, and torso. However, when the system is re-

quired to be transferred from hospital environment to home environment, motion

capture needs to be remodeled in order to find in a lower cost and easy-to-setup

solution.

It is challenging to design a low-cost but reliable motion capture module for

the mixed reality rehabilitation applications because:

• Compared to high quality sensors, low-cost sensors provide noisy and unreli-
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able data with a lower sampling rate which may lead to problems on motion

analysis. For example, when the movement quality is evaluated in terms of

its speed profile and segmentation in previous system, about 200 frames are

sampled for the calculation of the features, but only 70 frames are collected to

represent the same reaching in low-cost system. The loss of data may cause

inconsistency in representing a fast movement.

• In order to provide comprehensive kinematic representations of upper ex-

tremity, different types of sensors are required to be integrated. The system

aims to help participants get rid of complex assistive robot arms and markers

to bring long-term supervised therapy into daily experience, thus it is diffi-

cult to get motion data for the whole upper body using any single sensing

component. Sensor selection and integration are challenging.

In this chapter, we discuss the design of a multimodal sensing module to

address the problem mentioned above. Specifically, it includes: 1) How to integrate

different types of sensors in order to combining the benefits of high-end and inex-

pensive motion capture technologies, and 2) a presentation of a hybrid upper body

tracking approach as well as a study of the effect of accuracy for endpoint and torso

tracking during reaching and grasping tasks.

3.1 MULTIMODAL SENSING SYSTEM

The HAMRR system utilizes multiple sensing modalities to extract kinematic fea-

tures of a participant’s movement, providing a cost-effective and robust sensing so-

lution for unsupervised, private home training [6]. In this section, we first introduce

how different sensing components integrate to provide reliable movement data, and

then discuss the usability of Kinect camera. Previously, the end-point tracking was

achieved by tracking a reflective marker wearing on a wristband through Opti-Track
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camera system. Torso tracking was achieved by sensors from chair, while tangible

sensors are applied for generating tangible feedback.

Practically, several problems are found with the existing motion capture so-

lution:

• Although the Opti-Track camera system is reduced to a 4 camera setup, it is

still expensive.

• The chair sensors are so noisy and sensitive that it is difficult to evaluate the

torso movement quality. Additionally , the chair sensors do not work when a

participant’s torso is off the chair. Thus, using a chair is not a feasible solution

for tracking torso compensatory movements. Opti-track can track torso with

rigid-body markers, but additional cameras are needed.

• There is no efficient way for elbow and shoulder joint tracking.

A conclusion is drawn from the pros and cons mentioned in section 2.2, that

is, of great value to conduct a systematic analysis of the tradeoffs encountered in

the richness and accuracy of the acquired data by Kinect as compared to a high-end

multi-camera motion capture system.

In the next section, the usability of Kinect in upper body tracking is dis-

cussed. We also study the effect of tracking of different segments using Kinect and

then determine the integration of different sensing components.

3.2 CAMERA CALIBRATION

Camera calibration is an important pre-stage of tracking. We want to send out

joint positions in a 3D space while the input of a camera is in a projective 2D plane.

Camera calibration can be divided into two stages: intrinsic calibration and extrinsic
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(a) Unaligned Image (b) Aligned Image

Figure 3.1: The images are made by overlaying depth image on color image. We can see a
clear offset between depth and color image on the bottles and books in (a). Note the field
of view of depth camera is smaller than color camera. So the depth imaging is not available
on the edge of the color image.

calibration [7]. Intrinsic calibration refers to calculating the intrinsic matrix param-

eters that enable the transformation from a 2D pixel coordinate to a 3D global coor-

dinate. Extrinsic calibration refers to finding rotation matrix and translation vector

that represent the transformation from the 3D global coordinate to user-defined 3D

local coordinate. Next we describe how these calibrations are conducted.

Calibration for multi-camera system is complex. First, it needs to find the

intrinsic and extrinsic parameters for each camera. Second, image registration work

is required to map each pixel in one camera with the corresponding one in another

camera. The alignment work of the depth camera and color camera is done using

functions in the SDKs. The coordinate of point A in image based the 2D coordinates

of color camera is (xp,yp), and then the coordinate of point A in aligned images can

be represented as (xp,yp,D(x
′
p,y

′
p)), where D(x

′
p,y

′
p) refers to the depth value of

aligned pixel of the color image point (xp,yp) in depth image. Figure 3.1 illus-

trates the depth and color images before and after the image alignment. After the

image alignment, the multi-camera calibration is then transferred into single cam-

era calibration. Next, the calibration is conducted to find the intrinsic and extrinsic

parameters using the color camera.
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3.2.1 INTRINSIC PARAMETERS

Intrinsic calibration refers to calculating the intrinsic parameters that enable the

transformation from a 2D coordinate to a 3D global coordinate. Zhang’s calibration

method [58] is applied here. We use a pattern of black and white squares (e.g.

chessboard as a calibration object), which ensures that there is no bias toward one

side or the other in measurement. OpenCV has wrapped the calibration function so

that we can directly apply it in the system. The chessboard has 6×4 corners and in

practice we rotate the chessboard to obtain a rich set of views. The program could

Figure 3.2: Calibration Object, the three reflective markers are the L-frame for determining
base coordinate system.

automatically detect the corners on the chessboard. Then we used these corners to

fix the unknown parameter in intrinsic matrix according to (2.38), (2.41). In order

to obtain high-quality results, we did the experiment 10 times, and then averaged

across the results. The results are provided in table 3.1.

After the intrinsic calibration, a 3D position is obtained for each correspond-

ing point in the 2D projective plane. Since both the rotation and translation preserve

the euclidean distance between points, we can test the accuracy of intrinsic parame-

ters by taking the opti-track result as ground truth, and compute the distance errors

between two points in Kinect 3D global coordinate.
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Table 3.1: Intrinsic parameters for Kinect color camera

Para Name Value

fx 527.96
fy 530.62
cx 315.94
cy 249.10

3.2.2 EXTRINSIC PARAMETERS

Extrinsic calibration refers to finding rotation matrix and translation vector that

represent the transformation from the 3D global coordinate to user-defined ground

zero coordinate. Because Opti-Track and Kinect system are both used for endpoint

tracking, a unified coordinate system needs to be defined. As shown as figure, three

reflective markers can be seen on the chessboard, which is represented as a L-frame.

The L-frame is used to set up a marker-based coordinate system which takes the legs

and catheti of the marker-based triangular as the x and y axes. The 3D positions of

the three markers labeled A,B, and C in marker-based global coordinate Oi can be

represented as A,B, and C are (xi
A,y

i
A,z

i
A),(x

i
B,y

i
B,z

i
B),(x

i
C,y

i
C,z

i
C), respectively.

In the next step, 3D positions are located in global camera coordinate system

Oc based on the Kinect color camera. The markers’ 2D positions are labelled as

(xp
A,y

p
A),(x

p
B,y

p
B),(x

p
C,y

p
C) in the image plane. Then, the 3D coordinates in Oc are

calculated by 
xc

yc

zc

=


1
fx

0 0

0 1
fy

0

− cx
fx
− cy

fy
1




xp

yp

D(xp
′
,yp

′
)

 (3.1)

Then we compute the rotation matrix cRi and translation vector cT i based on (2.23)
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and (2.28) . The extrinsic parameters are :

cRi =


0.043411 −0.992503 −0.114250

0.209391 0.115218 −0.921350

0.927606 0.016074 0.212823

 , (3.2)

cT i =

[
−164.863846 139.966827 1108.0000

]
(3.3)

3.3 TRACKING

The motion capture module plays an important role in our HAMRR [12] by export-

ing accurate and robust motion data during the repetitive physical therapy. These

motion data consist of a set of important joints that represent the articulated human

body. The motion analysis module evaluates patient’s kinematic representation by

analyzing these joint trajectories and angles. Human upper body consists of several

segments: head, torso, arms and hands. The movements of these segments are cap-

tured by tracking the joint positions and angles on upper body, such as shoulders,

elbows, wrists, neck, and hips.

Both OpenNI and KinectSDK use skeleton tracking algorithms, which can

track up to 20 joints in human body without wearing any markers. Moreover, they

are invariant to scale, rotation, occlusion of the body and light changes. Thus, they

are both sound alternative solutions for tracking. However, most physical rehab

tasks, such as reaching, grasping and lifting, require high accuracy on endpoint

tracking. Therefore, a better endpoint tracking algorithm is needed. Figure 3.3

shows an overview of the tracking approach.

3.3.1 DEPTH BASED TORSO AND ARM TRACKING

The assumption underlying skeleton tracking algorithms is described as follows:

When a participant enters the scene, several consecutive frames are collected for

segmenting the ‘participant pixels’ from ‘background pixels’ in depth images. Then
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Figure 3.3: Tracking approach flowchart. Torso tracking is achieved by using off-the-shelf
skeleton tracking algorithm in Kinect SDKs, and endpoint tracking is achieved by using a
depth-fused mean shift tracking algorithm.

a specific label is assigned to a connected region that is considered the ith partici-

pant’s body. Classification algorithm is used to estimate the centroids of each seg-

mented body parts which construct a skeleton representation of human body.

Both the skeleton tracking algorithms from Kinect SDK and OpenNI can

track up to 20 joint positions and orientations running at 30Hz, providing rich

information on analyzing torso and arm movements. We use the joints named
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SKEL_LEFT_SHOUDLER, SKEL_RIGHT_SHOUDLER, SKEL_TORSO to repre-

sent the torso movement, and SKEL_RIGHT_SHOULDER, SKEL_RIGHT_ELBOW,

SKEL_RIGHT_HAND to represent right arm movement. Next we compare the two

algorithms from the concerned aspects as follows:

• Skeleton Calibration: Skeleton calibration rather than camera calibration is

used to refer to the process through which human body skeleton is estimated

after a participant is tracked. The skeleton calibration is a pre stage of skele-

ton tracking, which is used to estimate the participant’s body postures based

on image sequences. The latest version of OpenNI and Kinect SDK both

complete the calibration process automatically, which means neither of them

require the participant to do a ‘T’ pose for calibration as before. In practice,

however, the calibration in OpenNI takes longer time. Since the system is

expected to be deployed into a patient’s home, it may cause inconvenience on

interaction between the system and the participant.

• Joint tracking accuracy and stability: The skeleton tracking precision drops

in the HAMRR system as compared to normal applications, because during

the motion capture process, the lower limbs are occluded and only partial

skeleton can be tracked. Results show both OpenNI and Kinect SDK provide

robust tracking on torso. However, OpenNI works poorly on tracking arms

while seating.

• Software Compatibility: Kinect SDK only works on natural Windows, while

our Kinect system is running on a virtual machine.

As a result, we choose OpenNI as the better solution for torso tracking.

The process of torso and arm tracking is straightforward. The skeleton algo-

rithm first detect all the active users {P1,P2, . . . ,Pn}. Because the patient is sitting
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in front of the camera. We can find the patient’s userID Puser from the following:

M

∑
i=1

ZPuser(i) = min
j=1,2,...,n

M

∑
i=1

ZPj(i) (3.4)

, where ZPj(i) denotes the depth value of the ith joint of user j, M is the max joints

number. Then we update the joint positions of left shoulder, right shoulder, torso,

right elbow, and right wrist for feature calculations in motion analysis module.

3.3.2 ENDPOINT TRACKING

In HAMRR, endpoint tracking quality is crucial for evaluating participant’s mo-

tor function during repetitive physical tasks, since most feature computations are

derived from the raw endpoint trajectories and movement speed [13]. However,

results are not reliable using skeleton tracking. First, it is known that the skeleton

tracking algorithm exhibits lower precision on limb joints than torso joints [45],

and tracking robustness is even worse when it comes to seated skeleton mode a part

of the body is occluded. Even with the recently released Microsoft SDK for upper-

body tracking, low accuracy is observed in the end-point tracking compared to torso

tracking. Secondly, endpoint tracking is very sensitive to articulations of the palm.

The limitations mentioned above are illustrated in figures 3.4 and 3.5 respectively.

Hence, there is need to develop a more reliable endpoint tracking method.

For real-time applications, it is desirable to keep the tracking complexity as low as

possible in order to allocate system resources to other high-level processing manip-

ulations [32], thus we want to simplify the tracking algorithm by adding constraints

that are making sense for this specific problem.

We adopt a marker-based tracking because, although markerless hand track-

ing approaches are widely proposed, large computation on hand gesture recognition

makes it difficult for real-time applications. Unlike normal hand tracking, marker-

based tracking, through using color, shape or texture, can exhibit good clustering
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Figure 3.4: Illustration of using the OpenNI SDK skeleton tracking. In general, we observe
lower accuracy in arm and end-point (wrist) tracking as compared to torso tracking which
is more stable.

(a) Fully Open (b) Half Open (c) Close

Figure 3.5: Inaccurate end-point localization during articulations of the palm, as obtained
from OpenNI SDK skeleton tracking. The green ‘+’ marks show the estimated end-point
position.

in feature space, which dramatically reduces the tracking complexity. Figure 3.6

shows the marker. We combine the color features extracting from the RGB image

with the depth features from the Depth image.

Depth features significantly simplify the task of object detection. It enables

the reconstruction of shape and appearance of real objects from the 2D projection

plane. Depth value is a remarkable feature for representing objects since objects,

foreground, and background have different distances from the camera. This greatly

reduces the segmentation errors when the background cluster is similar to the fore-

ground in feature space using only color camera. In addition, background models
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Figure 3.6: A cyon marker is adhered on the top of the wristband.

based on color are often influenced by illumination changes, while depth image is

not sensitive to light changes except extreme conditions and can work in complete

darkness.

If the input RGB-D image frame is defined by P, the background subtraction

is defined by a function B : P(x,y,z)→ I(x,y), where I(x,y) represents the RGB

image after background subtraction. The function B is achieved in two stages:

1. The first step aims to segment the potential participant’s body regions from

the background regions. Scene analysis algorithm (L) in OpenNI labels the

region of each participant as a unique integer and we then use (3.4) to select

the participant’s body regions. This operation is expressed as

P
′
(x,y,z) =


P(x,y,z) if L(P) = 1

0 otherwise
(3.5)

2. The second step aims to segment arm and torso parts. Based on our physical

setup, the average depth values of arm pixels are smaller than ones of torso

pixels when doing tasks. With the help of skeleton tracking algorithm, we

could compute the average depth value of torso part Dtorso by averaging the

depth value of joints SKEL_LEFT_SHOUDLER, SKEL_RIGHT_SHOUDLER,

SKEL_TORSO, and the average depth value of arm part Darm by using the

depth value of endpoint location in previous frame Dend point . And the opera-
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tion is expressed as

I(x,y) =


P
′
(x,y) if P

′
(z)> (Dtorso +Darm)/2

0 otherwise
(3.6)

We combine the Kalman filter and mean shift algorithm [32] to track the

end-point. The complete tracking algorithm is presented below.

Given: The target model {q̂u}u=1...m and the location y0 in the previous

frame and the kernel size hprev = (hx,hy):

1. Set the region of interest (ROI) at the location centering at y0, with the size

(2hx,2hy).

2. Run the background subtraction process according to (3.5).

3. Time update (Predict) using Kalman filter. Update the location to y1 accord-

ing to (2.10).

4. Initialize the location of the target in the current frame with y0, then com-

pute {p̂u(y0)}u=1...m, and compute the Bhattacharyya coefficient ρ[p̂(y), q̂]

according to (2.3).

5. Derive the weights {wi}i=1...nhprev
from (2.5).

6. Find the next location of the target candidate according to (2.6).

7. Compute {p̂u(y2)}u=1...m, and evaluate

ρ[p̂(y2), q̂] =
m

∑
u=1

√
p̂u(y2)q̂u. (3.7)

8. If ‖ y2−y0 ‖> ε , set y0← y2 and go to Step 5.

9. If ρ[p̂(y2), q̂]< δ , set y0← y1. Otherwise, go to Step 10.
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10. Measurement Update (Correct) using Kalman filter according to (2.12). Up-

date hcur← hprev. Stop.

Note RGB image is converted into HSV space, and only H and S channels are

adopted. The color is quantified into 32× 16 bins. The experiment results of the

tracking accuracy and robustness will be provided in chapter 5.
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Chapter 4

QUANTATIVE KINEMATIC EVALUATION ON TORSO COMPENSATION

FOR IMPAIRED STROKE SURVIVORS

Stroke survivors usually use their torso to assist arm movements to compensate for

their inadequacies in arm strength. It was recently suggested that excessive torso

movement when reaching may affect their recovery of the ‘normal’ motor patterns

of the arm [39], and torso-restraint method produced greater improvement in arm

impairment [33]. Thus, analysis of a subject’s compensatory movement is key to

the evaluation of arm motor functionality.

The goal of the motion analysis module is twofold: 1) translate tracking

results into kinematic features that represent patients’ motor functionality during

physical tasks. 2) translate kinematic features into quantitative kinematic evalua-

tion, giving descriptive results for generating proper multimodal feedback. In re-

sponse, we first introduce kinematic feature extraction process, and then describe

how these features elicit multimodal feedback.

4.1 KINEMATIC FEATURES FOR TORSO MOVEMENT

Torso compensation, is usually found in the form of unacceptable levels of torso

leaning forward, or torso twisting to the sides. These two kinds of compensatory

movements are defined as including: 1) Leaning forward or backward, termed

‘torso leaning’; and 2) twisting towards or away from the target, termed ‘torso

twisting’. Figure 4.1 illustrates the movements.

A variety of factors contribute to the complexity of the torso movement

evaluation. Different physical tasks and target locations, as one crucial factor, are

prescribed and give rise to different levels of compensation. For example, partic-

ipants use more twisting when they are reaching a cone at midline than the one
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Figure 4.1: Illustration of two classes of compensatory movement that needs to be mea-
sured. (Left) Torso leaning (Right) Torso rotation. Details described in text.

at middle. Further, different subjects adopt different compensatory strategies. For

example, some people perform significant leaning during initial movement, while

others use leaning during the final phase of reaching a target.

Based on the idea of multi-layer feedback hierarchy, the feedback envi-

ronments of HAMRR [6] are divided into three levels – real-time, post-trial, and

post-set feedback. The dynamic feedback hierarchy calls for robust motion anal-

ysis strategies. Real-time feedback aims to give patients intuitive and immediate

response on adjusting movement during the task, while the post-trial and post-set

feedback focus on providing a comprehensive and reflective evaluation of the par-

ticipant’s movements that can be played back and help the participant self-assess

their motor functionality and plan for improvement in future long-term therapy. As

a result, we compute two kinds of features - real-time based features and trial based

features - to generate different levels of feedback.

4.1.1 REAL-TIME BASED FEATURES

The first set of features are termed ‘real-time features’, as they are used to elicit

multimodal feedback in real-time when the reaching action is performed.

Assume that torso segment is a plane on articulated skeleton body represen-

tation. All the movements related to the torso plane can be categorized into two

major aspects: rRc - Rotation from rest plane local coordinate system Oc to current
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plane local coordinate system Or; cRa - Rotation from Oc to arm plane coordinate

system Oa.

First, two angles are used to specifically measure the two compensatory

movements described above:

• Leaning angle θ L(t) : Leaning angle measures how much a participant leans

forward or backward. In the global coordinate system, leaning angle is the

rotation angle between current torso plane and rest torso plane around x axis.

• Twisting angle θ T (t) : Twist angle measures how much patient twist towards

or away from the target. In the global coordinate system, twisting angle is the

rotation angle between the current torso plane and rest torso plane around y

axis.

Below, we first focus on the first group of movements. Then we introduce

how to calculate θ L(t) and θ T (t). If a point position is rotated by θ , it is equal

to a −θ rotation of coordinate. θ L(t) and θ T (t) are both Euler joint angles from

rotation matrix. Thus, they can be calculated by calculating the rotation matrix rRc

from the rest torso local coordinate system Or to the current torso local coordinate

system Oc. rRc can be calculated by

rRc = rRg(cRg)−1, (4.1)

where rRg is the rotation matrix from Or to global coordinate system, cRg is the ro-

tation matrix from current torso local coordinate to global coordinate. We compute

the rotation matrix rRg according to (2.22). The torso local coordinate system is es-

tablished by 3D coordinates of the three joints, which are SKEL_LEFT_SHOUDLER,

SKEL_RIGHT_SHOUDLER, and SKEL_TORSO in global coordinate system. Then,

we compute the rotation matrix cRg in the same manner. According to [47], we can
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Figure 4.2: Illustration of correlation between torso leaning angles and the end-point dis-
tance in Z-axis away from the rest position

compute the Euler joint angles θ ,ψ,φ from the rotation matrix cRg. As a result, we

get the two angles by θ L(t) = φ ,−90◦ < φ < 90◦, θ T (t) = θ ,−90◦ < θ < 90◦.

A ‘reference’ movement is trained for each target. Figure 4.2 shows the

correlation between torso leaning angles, and the end-point in Z axis away from the

rest position.

In conclusion, they are approximately linear. The reference angles are de-

scribed as

θ
L
re f (z

′
(t)) = z

′
(θ L

re f (z
′
tar)−θ

L
re f (z

′
rest))+θ

L
re f (z

′
rest) (4.2)

θ
T
re f (z

′
(t)) = z

′
(θ T

re f (z
′
tar)−θ

T
re f (z

′
rest))+θ

T
re f (z

′
rest) (4.3)

where θ L
re f (z

?(t)),θ T
re f (z

′
(t)) refer to the reference leaning and twisting angles at

z
′
(t). z

′
(t) refer to the normalized distance from rest position in z axis of a rotated

2D coordinate Or, which is generated by first projecting Obase in XZ plane and then

rotating it so that the rest-to-target direction as the z axis. ztar,zrest refer to the z

values of target and rest position in coordinate Or. Thus, ztar = 1,zrest = 0.

4.1.2 TRIAL BASED FEATURES

The second set of features are termed ‘trial features’, which are computed post-trial.

The trial features are dedicated to providing a comprehensive quality evaluation of

movement and also helping the participant see the progress of repetitive tasks and
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plan movement in future tasks. Based on real-time features, we proposed the fol-

lowing trial features, for evaluating the quality of compensatory movements: 1)

mean leaning angle, θ
L; 2) mean twisting angle, θ

T ; 3) max leaning angle differ-

ence, θ L
max; 4) max twisting angle difference, θ T

max; 5) standard deviation of leaning

angle, σL; 6) standard deviation of twisting angle, σT ; 7) maxOffsetX, ∆X ,max; and

8) maxOffsetZ, ∆Z,max.

Where ∆X ,max, ∆Z,max are the offsets from rest positions to current endpoint

positions in X and Z axes. θ
L, θ

T are calculated by

θ
L
=

∑
N
t=tstart ,...,tend

θ L(t)K(z
′
(t))

N
(4.4)

θ
T
=

∑
N
t=tstart ,...,tend

θ T (t)K(z
′
(t))

N
(4.5)

where K(z
′
(t)) is an exponential kernel which is added based on the fact that com-

pensatory movements are most likely to be initiated either at initial or near the

target. K(z
′
(t)) is given by

K(z
′
(t)) = eα|z′(t)−0.5| (4.6)

4.2 MAPPING FEATURES TO FEEDBACK

4.2.1 REAL-TIME FEEDBACK

In order to generate real-time feedback, a descriptive result needs to be provided

on excessive leaning or twisting actions are detected and the overall compensation

profile for each sample. We use normalized angle values to calculate the confidence

scores to trigger feedback. The normalized angles are given by:

θ̂ L(t) =
|θ L(t)−θ L

re f (z
′
(t))|

T HL , (4.7)

θ̂ T (t) =
|θ T (t)−θ T

re f (z
′
(t))|

T HT , (4.8)
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where T HL and T HT are thresholds. If the variance is larger than T HL,T HT , the

normalized angles are set at 1. The real-time torso compensation score is given by

CTC(t) = wL
θ̂

L(t)+wT
θ̂

T (t) (4.9)

where wL,wT are two weights. The values of thresholds and weights are shown in

the table.

4.2.2 POST TRIAL FEEDBACK

In order to get post trial feedback, confidence scores for the whole trial are cal-

culated by applying off-the-shelf classification technologies. The feature selection

process is explained on Section 4.1.2, and the classification results will be provided

in Chapter 6.
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Chapter 5

IMPLEMENTATIONS AND EXPERIMENT RESULTS

In experiments, a system is tested along two primary dimensions. One is to measure

the tracking accuracy and robustness of the torso and end-point using Kinect. We

first compare the torso and arm tracking accuracy and robustness between OpenNI

and Kinect SDK. Then compare end-point tracking accuracy and robustness be-

tween our approach and results from OpenNI and Kinect SDK. Both of the evalua-

tion consider the Opti-Track results as ground truth data. The other is the classifi-

cation accuracy in measuring anomalies in torso compensation using Kinect.

Next, we first introduce the system setup, and then give the evaluation re-

sults for both the end-point tracking performance and also torso movement.

5.1 SYSTEM SETUP

Figure 5.1 shows the physical setup of HAMRR system [6]. The media center

includes 1) a 27 inch iMac with 3.4GHz Intel i7 CPU, 20GB memory, and 320GB

SSD hard drive; and 2) Two Bose Companion 2 speakers. They are utilized for

computing, system GUI, and providing audio and visual feedback. Four Natural

Point Opti-Track Infrared cameras and Kinect for Windows are mounted on the

media center, supported by an aluminum frame.

A table is utilized to give support for the hand and arm during movements.

The location of three predetermined target slots (midline, Ipsilateral Straight, and

Ipsilateral Right) are designed according to the [5]. Different kinds of objects can

be plugged in or removed using a button: a) Virtual and button objects - designed

for reaching tasks; b) cone objects - designed for reaching-to-grasping tasks; and

c) transport objects - designed for reaching-to-lifting-to-transporting tasks. The

table also houses a contact switch rest position pad, ensuring the reaching task is
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Figure 5.1: Physical setup of HAMRR system.

initiated from approximately the same location, and two capacitive touch buttons,

for interaction between participants and media center. A chair covered with 1.5

inch square FSRs is applied for providing alternative torso information, especially

for determining if the participant is in the rest position.

For the software setup, the main system control program runs in Mac OSX

and the Kinect sensing program and Tracking Tools, which is a commercial soft-

ware for Opti-Track both runs under Windows 7 in virtual machine. Parallels are

employed to get the environments running simultaneously, and the cross-platform

communication is achieved by Multicast. OpenNI v1.5.4.0, SensorKinect v0.93,

and NITE v1.5.21 are installed for driving Kinect sensor, and OpenCV v2.3.1 is

also applied in basic image processing functions.

Various experimental parameters, thresholds, and constants are shown in
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Table 5.1: Threshold and parameters for various features computation

Para Names Value

α −0.5
T HT 15◦

T HL 13◦

wT 0.4
wL 0.6
δ 0.6

table 5.1.

5.2 TRACKING PERFORMANCE EVALUATION

Tracking evaluation is to compare end-point tracking accuracy and robustness be-

tween the approach and results from OpenNI. Video sequences of 320× 240 pixels

are recorded, and during the sequences, reaching, grasping, and lifting tasks to dif-

ferent targets with normal or abnormal movement are recorded as well. The target

was initialized with a preset rectangle region which referred to the rest position

of size 26 × 26. Figure 5.2illustrates the tracking robustness to partial occlusion,

rotation.

We also computed the tracking errors during reaching movements to dif-

ferent targets. For each target, we computed the x-axis and z-axis error separately.

We recorded the data of four groups, covering different kinds of possible move-

ments to three objects. The four groups were normal reaching, normal reaching

with torso leaning, normal grasping, and curved reaching. We captured over 3500

Kinect frames and also over 10000 Opti-Track frames. The data were synchronized

using Timestamp. The data included 36 trials, with 12 trials for each objects. We

computed the maximum and mean tracking errors for each trial in X and Z axis,

and gave the result in figure 5.3.

The proposed end-point tracking approach showed promising results on
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Figure 5.2: The top line shows the sequences of input RGB frames. The sequences show
the tracking under different rotations, occlusions. The second line shows the segmentation
results. The last line shows the tracking results. The green cross refers to the endpoint
location obtained from our proposed approach, while the red cross refers to the result from
OpenNI skeleton tracking.
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Figure 5.3: Tracking errors for end-point tracking approach.

44



tracking accuracy. In both the x-axis and z-axis, the mean error was under 2mm,

which was proved to be practical in our application. Torso tracking showed solid

accuracy and stability.

5.3 TORSO MOVEMENT EVALUATION

This evaluation was difficult to implement due to several reasons. The most im-

portant challenge lied at its extensive comparative testing with patients. The goal

was to design a system that can be shipped to a patient’s home for a long-term ther-

apy. However, design decisions on motion capture (Optitrack vs. Kinect), had to be

made without extensive data from use of the system by patients at the home. An ex-

tensive data of patients was obtained from a recently completed clinical study [11].

This data was used to construct the classifiers. However, this data was captured

using an eight camera Optitrack system and a significant amount of body markers

during supervised therapy. It is not yet clear how this data will be aligned with

data from the simpler set up of the home system which is used without a therapist’s

supervision. The prior clinical trial did not use a Kinect, either. The home system

is currently being deployed at patients’ homes for a multisite pilot trial. Data from

this trial will allow to further improve the classifiers and study more extensively the

comparative performance of Kinect and marker based capture for the extraction of

movement quality classifiers.

In this study, data was collected in controlled settings using simulated move-

ments by experienced members of a research group. The acquired database of vari-

ous reach movements for this experiment consists of 23 different sets, and each set

contains several trials. The trials cover rehabilitation physical tasks such as grasp-

ing, reaching and lifting to different targets – midline, ipsilateral straight out, and

ipsilateral at a right angle – which correspond to three different placements of the

reaching target. Details of physical placement can be found in [5]. In the dataset,
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we have a total of 134 trials, and for each trial the features proposed in section 4.1.2

are extracted.

We used Weka [24], to train and evaluate the classifiers in our experiments.

We used Naive Bayes, nearest neighbors and support vector machines (SVM) as

the classifiers to compare with. We use 10-fold cross validation to compare various

classifiers. Classification accuracies for various choices of features and classifiers

and individual tasks are shown in table 5.2. In table 5.3, we provide the overall

confusion matrices for the various feature and classifier combinations.

Table 5.2: Results of cross-validation for classifying torso movements. Two types of move-
ments ‘Leaning’ and ‘Twisting’ actions are classified into classes ‘Normal’ and ‘Impaired’.
Group I and Group II features are discussed in section 4.1.2.

Classifier Features Midline Ipsilateral
Straight

Ipsilateral
Right

Total

Torso Leaning

Naive Bayes
Group I 72% 100% 80% 87.31%
Group II 72% 100% 82% 88.06%

1-NN
Group I 96% 83.01% 86% 86.56%
Group II 100% 98.30% 98% 98.51%

SVM
Group I 78% 88.13% 96% 88.81%
Group II 78% 88.13% 96% 88.81%

Torso Twisting

Naive Bayes
Group I 84% 93.20% 84% 88.06%
Group II 88% 93.20% 84% 88.81%

1-NN
Group I 88% 83.01% 86% 87.31%
Group II 88% 93.20% 90% 91.05%

SVM
Group I 92% 88.13% 84% 87.31%
Group II 96% 88.13% 84% 88.06%

It is arguably obvious that classification rates are stable across classifiers.

However, an improvement was found in the result - when the extra end-point fea-

tures i.e. {∆X ,max,∆Z,max} were added to Group I features - becoming Group II

features. In the absence of accurate capture of the end-point, we would have relied

solely on Group I features, which is still sufficiently reliable. These results indicate

that the quality of data from Kinect combined with carefully crafted features and
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Table 5.3: Confusion matrices for classifying torso movements into ‘Normal’ and ‘Im-
paired’. Group I and Group II features are discussed in section 4.1.2.

Leaning Action
Naive Bayes Nearest Neighbor SVM

Group I
43 9 40 12 38 14
8 74 6 76 1 81

Group II
43 9 52 0 38 14
7 75 2 80 1 81

Twisting Action
Naive Bayes Nearest Neighbor SVM

Group I
75 7 74 8 77 5
9 43 9 43 12 40

Group II
76 6 77 5 78 4
9 43 7 45 12 40

classifiers is sufficient for torso compensation analysis of the home-based rehabili-

tation system.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this thesis, we presented a motion/activity analysis for a home-based stroke re-

hab system, with a detailed analysis of the pros and cons of choosing a high-end

motion capture technology (Opti-Track) versus an inexpensive one (Kinect). While

it is possible to obtain reasonable tracking accuracy of various joints in terms of

tracking errors, it does not necessarily translate to robust activity classification for

measuring impairment. Although torso movement classifiers were able to produce

robust results using the Kinect, the end-point tracking did not show satisfactory

confidence score for robust end-point kinematics. There, thus, is need to combine

the use of a four-camera Opti-Track setup with a single marker on the wrist for

end-point tracking, with the use of low-cost depth camera Kinect for torso tracking.

This research points to several interesting directions of future work. From a

sensor fusion perspective, one can explore the utility of multiple Kinect sensors and

study its effect on obtaining high fidelity tracking results. Accuracies of such multi-

Kinect systems and their efficacy for rehabilitation systems are still unknown. For

the computer vision and machine learning communities, this application area raises

several interesting questions related to robust features and classifiers for movement

analysis. Significant research in computer vision has focused on activity and ges-

ture recognition and not much on measures of ‘quality’ of the movement. While

this problem is traditionally addressed in the bio-mechanics community, the tools

developed in that community are based on precise clinical measurements of motion

or expensive equipment, such as EMG and pressure sensors. Thus, one needs to

rely on large datasets and advanced feature selection and machine learning tools

to devise quality measures. This can form the basis of several interesting research

questions in the future.
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