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ABSTRACT

In this thesis, quantitative evaluation of quality of movement during

stroke rehabilitation will be discussed. Previous research on stroke rehabilita-

tion in hospital has been shown to be e�ective. In this thesis, we study various

issues that arise when creating a home-based system that can be deployed in

a patient's home. Limitation of motion capture due to reduced number of

sensors leads to problems with design of kinematic features for quantitative

evaluation. Also, the hierarchical three-level tasks of rehabilitation requires

new design of kinematic features. In this thesis, the design of kinematic fea-

tures for a home based stroke rehabilitation system will be presented. Results

of the most challenging classi�er are shown and proves the e�ectiveness of the

design. Comparison between modern classi�cation techniques and low com-

putational cost threshold based classi�cation with same features will also be

shown.
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Chapter 1

INTRODUCTION

1.1 stroke rehabilitation

Stroke is a disease which a�ects the arteries leading to and within brain. It is

the No.4 cause of death and a leading cause of disability in the United States

[2]. Between 55% and 75% survivors remain to experience impairment on

upper body movements [11]. Stroke rehabilitation aims to help patients who

survive strokes return to normal life through systematic therapy and relearn

the skills of everyday living [16]. Traditional stroke rehabilitation requires

expensive facilities and intensive guidance from therapists, which is not af-

fordable and accessible to many patients. To improve this condition, modern

stroke therapy methods, such as combining training in virtual reality with tra-

ditional physical therapy, are currently growing as a hot spot in the �eld of

physical therapy research.

Di�erent from the traditional methods, each modern stroke rehab method

comes with its own physical setup and functional task design. Robotic device

which can provide real time interaction with patients have been designed [14].

Virtual reality along with haptics and modern sensing technique (VHS) [18]

were developed in the University of Southern California. Customizable games

are another modern aproach to stroke rehabilitation [1]. All these new tech-

niques have their advantages. However, robotic devices are too expensive

and so is VHS. Customizable games are a good low-cost solution to stroke

rehabilitation, while it makes quantitative evaluation di�cult due to lack of

constraints.

The stroke rehabilitation research team in the School of Arts Media

and Engineering in Arizona State University(ASU) has designed and imple-

1



mented an adaptive mixed reality rehabilitation system for hospital use. This

system, which was designed for a clinical setting, with high quality motion cap-

ture technologies with various markers and rigid-bodies attached to the wrist,

arm, shoulder, torso etc, captured and computed very profound data about

the human movement. The system provided an adaptive constraint induced

movement therapy(CIMT) [12] with virtual and mixed reality environment

[8]. This system has shown e�cacy in helping to enhance the kinematic and

functional performance [4].

A home-based adaptive mixed reality rehabilitation system for stroke

survivors [3] has also been designed and implemented by the same research

team in ASU. This system aims to provide assistance to stroke survivors to

continue therapy at their homes. Low-cost sensing and fewer markers to be

attached on the body are of special need in this situation.

In this thesis, I designed the kinematic features for the home system

and compute the related quantitative evaluation. I also tested the features

with experienced researchers in the �eld of stroke rehabilitation to ensure their

validity.

1.2 previous work

The quantitative evaluation and kinematic analysis during stroke rehabilita-

tion are of cardinal signi�cance. In traditional therapy, quantitative and quali-

tative clinical measures are used to access patient's movement quality [7]. The

Motor Activity Log(MAL) [13] was designed and developed to provide mea-

surement to progress in daily living activities. The Arm Motor Activity Test

is another approach with high consistency and sensitivity to patient's change

in performance [9]. The Wolf Motor Function Test(WMFT) [17] is a method

to evaluate the upper extremity performance with insight to joint related and
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total limb movement. All these aproaches to stroke rehabilitation are based

on the judgement of therapist, thus the results can be biased by:

• therapist's mood

• various individual interpretation by di�erent therapists

In modern stroke rehabilitation systems, kinematic analysis is compu-

tational in nature by using of Mocap data. This makes the analysis reliable,

repeatable and independent of human judgment. The Mocap data can re-

veal more subtle changes in movement with accurate detection and measures.

Computational kinematic features using Mocap data have been used in stroke

rehabilitation [15]. In our hospital and home system, a marker based Optitrack

motion capture system has been used to provide accurate 3D position informa-

tion [6]. A video based motion capture system using Kinect is introduced to

the home system to provide additional motion information for analysis. The

data collected by Mocap module is used to compute di�erent features related to

quality of movement. Reference data is computed from the data correspond-

ing to non-impaired people. The reference data serves as baseline for later

evaluation. How the reference data and the data collected with patents will be

described in next Chapter. In the hospital system, a computational framework

for quantitative evaluation is introduced. In this framework, kinematic fea-

tures are designed in detail. A Kinematic Impairment Measure(KIM) method

[5] is introduced to make the analysis results normalized and independent of

speci�c kinematic features. In our home system, the evaluation structure is

inherited from the evaluation structure in the hospital system, while the scale

is reduced so that it can �t the need of fast and low-cost computation with

fewer markers and sensors.
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The evaluation and analysis of the movement are required mainly for

two purposes, to drive the feedback on one hand and to support long term

research on the other. The analysis to drive feedback desires high speed and

low computation complexity. Coarse threshold measurement is implemented in

this part. KIM provide a reliable , feature and task independent measurement

to patients' movement after the therapy is completed and it is used for long

term research.

1.3 overview

This thesis is organized into �ve chapters. In Chapter 2, I will brie�y present

the system architecture, notations, concept and tools that will be used in the

thesis. In Chapter 3, I will �rst brie�y describe how the quantitative evaluation

structure is designed in the hospital system and then present how the concept

is inherited and developed in the home system. Then, I will present how the

kinematic features are designed in the home system. The advantages and

disadvantages of current design will be discussed with the previous work, KIM

[5]. After that I will state the advantage of the combination of current design

over the previous. Finally, I will discuss that how the modern classi�cation

techniques can be implemented in the evaluation system and the advantages

and disadvantages. In Chapter 4, result of the evaluation system will be shown.

The �nal chapter concludes the work and discusses the potential improvement

of the analysis and evaluation system and future work.
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Chapter 2

METHOD AND TOOLS

2.1 system architecture and physical set up

2.1.1 system architecture

The stroke rehabilitation system that our research group designed and devel-

oped is an adaptive mixed reality system. The system is composed of mainly

�ve parts:

1. motion capture module

2. motion analysis module

3. adaptation module

4. feedback module

5. archive module

Data is �rst collected with motion capture module and passed to the motion

analysis module. Motion analysis module computes features from the raw

data, and then all the features are used by the classi�ers which embedded in

the motion analysis to classify the movement. Tangible objects on the table

provide additional information to help the motion analysis. The classi�cation

result is then sent to the feedback module. Pre-designed and programmed

visual and audio feedback is played after the classi�cation result is received.

The feature data is stored by archive module. All the other modules in the

system are controlled by the adaptation module so that they work in a desired

way. In this thesis, I mainly focus on the motion analysis module.
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2.1.2 hospital system

The hospital system is an adaptive mixed reality stroke rehabilitation system

designed for hospital use. A adjustable table is provided to the patient so

that he/she can sit comfortably. The table's surface extends out to support

the patients a�ected arm [7]. Eight infrared-cameras are placed around and

above the table. Re�ective markers are placed on the a�ected wrist, elbow,

shoulder as well as back of the patient during therapy. The infrared-cameras

detect and capture the 3D position of each marker. A screen and a speaker

is placed in front of the table to provide visual and audio feedback. Objects

with tangible sensors embedded are placed on the table as the target in the

task for the patient. The hospital system trains on the following:

• reach and grasp task

• against gravity task

• button box task

Therapist and technical support are required during the therapy. A novel

kinematic analysis framework, Kinematic Impairment Measure(KIM), is in-

troduced in this system and will continue to be used in the home system. I

will describe the concept of KIM in the next section of this chapter.

2.1.3 home system

The home system is an adaptive mixed reality stroke rehabilitation system

designed for home use. The system structure inherits from the hospital system.

We still have the adjustable table so that the patient can sit down with comfort.

The motion capture module in the home system is signi�cantly scaled down.

This is due to the requirement that the system should be implemented in
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patients home with ease. The number of infrared-cameras is reduced to four.

Instead of placing the cameras around and above the table, the cameras are

placed above and behind the screen. Re�ective makers are still used in the

home system, but the number is reduced to one and it is placed on the patient's

wrist. With this change, the patient can put on the marker by himself/herself

at home. The disadvantage of this change is that the accurate Optitrack

system now can only get the 3D position of the end point, the wrist, during

the therapy. This leads to the change of design of kinematic features and

classi�ers in the motion analysis module. In compensation to this, a Kinect

camera is introduced to the system to capture torso data. A screen and a

speaker are placed in front of the table to provide visual and audio feedback

and physical objects with tangible sensors embedded are placed on the table

as the target in the task for the patient. The design of tasks in the home

system has novel development. A three-level architecture is introduced in the

system:

1. level one task contains simple tasks such as reaching and grasping, reach-

ing and touching and provides detailed feedback

2. level two contains repetitive simple tasks and provides summary feedback

3. level three contains complex functional tasks and provides descriptive

feedback

This three level design aims to help patients build relationship between ther-

apy and everyday life. This requires the kinematic analysis and quantitative

evaluation to keep in accordance to the information desired to convey to the

patients. I will describe in detail how the kinematic features are designed for
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level two and three in Chapter 3. I will present the performance of the most

challenging features and the related classi�er in Chapter 4.

2.2 kinematic impairment measure

In greatly developed and diversi�ed �eld of stroke rehabilitation research [10],

kinematic analysis is designed in various ways. This raises several issues such

as:

• comparison between di�erent analysis architectures

• comparison between di�erent tasks

• comparison between di�erent kinematic features

KIM provides a standard evaluation architecture with consistent terminology

and measurement [5] that can be applied to di�erent stroke rehabilitation

systems. This quantitative evaluation framework aims to provide task and

feature independent evaluation result with long term and stable kinematic

features data base.

2.2.1 concept and computation

Assume that we have a stable distribution of values of a speci�c feature and

we have both distribution of non-impaired people and patients with di�erent

levels of impairment. The goal is to compute a score which is normalized

between zero and one regardless of the distribution of the value of the feature

is. Typically, we have three kinds of feature value distribution of non-impaired

people and patients. Within each type of distribution, we need to �nd a

normalize function ϕ(x) to normalize the feature value x. Based on the three
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di�erent types of distribution, the normalization is done in a similar way. How

the KIM value is computed is described in [5].

2.2.2 benefits and limits

KIM is of signi�cant advantages for Kinematic evaluation for the following

reasons:

1. All the evaluation result falls between zero and one, which makes further

analysis easier.

2. The value of evaluation result is relevant only to the distribution feature

value from patients and non-impaired people. The result of individual

movement reveals how bad the quality of movement ranks among the all

the data base. It is reasonable to compare the KIM value of di�erent

features while kinematic feature values can never be compared between

di�erent features. This makes the result feature independent.

3. For the same reason above, the value of the evaluation result is task in-

dependent, which means it is reasonable to compare KIM value between

di�erent tasks.

4. KIM value reveals subtle changes of quality of movement within the

impaired range.

However, KIM also has disadvantages. To get reliable and robust KIM value,

a stable data set with su�cient samples is required. Since the result of KIM is

determined by the distribution of feature value from patients and non-impaired

people, the result will be biased if the data set is biased. This e�ect is most

obvious at the beginning of our research, data from each new patient in�uences

KIM scores, which can not be ignored when the database doesn't contain
9



enough samples. As a result, the distribution of feature values and the KIM

values will not be stable. In our system, the data set keeps updating when the

system is applied to more and more patients. The KIM result will be stable

only after the research last for a adequate period of time.

2.3 classification techniques

In the home system, we design speci�c features to classify the movement to dif-

ferent ine�cient categories. We are using simple low computation cost thresh-

old based classi�ers to give coarse classi�cation result to drive feedback. The

most challenging features for the kinematic analysis will be proven e�cacy

with modern classi�cation techniques. In this thesis, I am using Weka tool

box to classify the movement with the kinematic features.
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Chapter 3

Design of Kinematic Features and Quantitative Evaluation

3.1 basic kinematic features and reference data

3.1.1 pre-processing of trajectory

The end point, which is the position of the marker that is placed on the

patient's wrist, is used to build the baseline for all the kinematic computations.

The raw data for the end point captured from motion capture system is the

3D global position data x, y and z with a time stamp. With the help of

tangible data and calibration data, the starting point and ending point of a

complete trial can be �gured out within a sequence of continuous points. p(t) =

[X(t), Y (t), Z(t)], t = 0, . . . τ . In the hospital system, the motion capture

system also captured the 3D positions of re�ective markers which are placed

on the a�ected elbow and should as well as the back of the patient during

therapy. In total, twelve markers are used. Thus we have p(t), p1(t), . . . p11(t),

where p1(t), p2, . . . p11(t) are the marker positions of markers other than the

one which is placed on the wrist of patient. The next step is to rotate the

coordinate so that p(0) is the origin of the new coordinate, the XZ plane is

the horizontal plane and the straight line connecting p(0) and p(τ) lies in the

new YZ plane. The rotation is shown in �g 3.1

After the rotation, we now have a sequence of continuous points protate(t) =

[Xrotate(t), Yrotate(t), Zrotate(t)], t = 0, . . . τ to present the trajectory of end

point during a single complete trial during the therapy. Then I normalize

the range of z value to 0 and 1. This in e�ect re-parameterizes the tra-

jectory [X(t), Y (t), Z(t)], t = 0, . . . τ to [X ′(z), Y ′(z)], z = 0, . . . 1. This re-

parameterization works without introducing signi�cant ambiguity in our case

because of the strong directionality of the reach action as illustrated in the
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Figure 3.1: The rotation of the trajectory

above �gure. After that, z-axis is further quantized into N = 50 bins. With

this step, the trajectory is further transformed to [X ′(z), Y ′(z)], z = 0, . . . 1 to

[X ′(n), Y ′(n)], n = 0 . . . N − 1. This transform to a simple vectorial represen-

tation makes it convenient for fast real-time comparisons and computation of

reference data.

3.1.2 computation of reference data and quantitative evalua-

tion for hospital system

After the vectorial representation as described above, the next step is to com-

pute the reference data for further evaluation. As we get the data from the

twelve markers, we are able to compute the feature value [f1(t), f2(t), . . . fM(t)], t =

0, . . . τ , where M = 33 for the hospital system quantitative evaluation [6].

With the same re-parameterization as described in the last subsection, we

can compute [f1(n), f2(n), . . . fM(n)]n = 0, . . . N − 1. This transformation is

12



done only with the data from non-impaired people. The strong directional-

ity of the reach action does not hold for the movement of patients. After we

have the discrete quantized feature value, we are able to compute the mean

value and standard deviation of all the data collected from non-impaired peo-

ple by feature [fmean1 (1), fmean2 (2), . . . fmeanM (n)], n = 0, . . . N − 1. By choosing

a proper threshold [Thre+1 (1), Thre
+
2 (2), . . . Thre

+
M(n)], n = 0, . . . N − 1 and

[Thre−1 (1), Thre
−
2 (2), . . . Thre

−
M(n)], n = 0, . . . N − 1, we are able to compute

the zero zone, an area that any feature value falls inside will be considered

as non-impaired movement[6]. The zero zone and mean value of features of

non-impaired people are used as the reference data. When a new test sequence

comes in, the 3D position X, Y, Z of all the sample points from the start of the

movement to the end are �rst rotated from the global coordinate to the new

coordinate system. Values of Z less than 0 or more than 1 are clamped at 0

and 1 respectively. From this rotated and normalized trajectory, one can now

�nd the corresponding points in the reference trajectory. Thus we are able to

�nd corresponding feature values according to Z.

3.2 kinematic analysis design for home system

In the home system, only one re�ective marker is used and this marker is placed

on the patient's wrist to track the end point. Other than the 3D position of

the end point, the speed is computed as speed(t), t = . . . τ and discretized to

speed(n), n = . . . N − 1. So we have reference as [X ′(n), Y ′(n), speed(n)], n =

0 . . . N − 1.

3.2.1 three-level rehabilitation

The assessment of end-point kinematics is divided into three levels with in-

creasing abstraction. Below, we brie�y describe the three levels of abstraction:

13



• Level 1 consists of simple tasks, such as reaching and grasping, reaching

and touching. This level aims to provide both real time feedback during

the task and detailed feedback after task completion. In this level, real

time kinematic features, such as trajectory-error and speed-error, are

computed from the three dimensional position and speed of the end-

point and compared with a pre-de�ned reference trajectory and reference

speed pro�le, obtained from a set of non-impaired subjects.

• Level 2 consists of multiple repetitions of level 1 tasks. This level pro-

vides summary feedback on a speci�c aspect based on evaluation of a set

of repetitive level 1 tasks. Features are designed to evaluate the move-

ment of patient along �ve aspects: curved/not curved, segmented/not

segmented, too fast/not too fast, too slow/not too slow, smooth/not

smooth.

• Level 3 consists of more complex functional tasks, such as transporting

an object. Level 3 provides descriptive feedback on the overall quality

of movement of the functional task. Descriptive evaluation results are

computed based on completion time, path ratio and speed phases. These

will be described in detail in the following section.

In the home system, rather than giving binary evaluation result, a

con�dence is computed for each feature in each task. Next, I will describe how

the features are designed and how to use them for a rough evaluation to drive

the feedback.

14



Level 1 Kinematic Features

Kinematic features for level one task are horizontal error, vertical error and

speed deviation:

Ehor(i) = X(i)−Xref (i), i = 0 . . . N − 1 (3.1)

Evert(i) = Y (i)− Yref (i), i = 0 . . . N − 1 (3.2)

Espeed(i) = speed(i)− speedref (i), i = 0 . . . N − 1 (3.3)

By comparing the feature value E(i) to corresponding pre-designed threshold,

Threfea+zero (i), Thre
fea−
zero (i), Thre

fea+
hull (i), Thre

fea−
hull (i) for trajectory, wherefea

can be X or Y , and Threspeed+zero (i), Threspeed−zero (i) for speed, the trajectory of

current movement can be classi�ed to three di�erent categories in real time:

• non-impaired when Threfea−zero (i) < E(i) < Threfea+zero (i)

• mild-impaired when Threfea+zero (i) < E(i) < Threfea+hull (i)||Threfea−zero (i) >

E(i) > Threfea+hull (i)

• severe-impaired when E(i) > Threfea+hull (i)||E(i) < Threfea−hull (i)

Where fea can be either X or Y when E(i) is Ehor(i) or Evert(i), and the

speed of current movement can be classi�ed in to three categories in real time:

• normal when Threspeed−zero (i) < Espeed(i) < Threspeed+zero (i)

• too fast when Espeed(i) > Threspeed+zero (i)

• too slow when Espeed(i) < Threspeed−zero (i)

Currently we are using a �xed number for the threshold, which means Thre+zero,

Thre−zero, Thre
+
hull and Thre−hull are used instead of Thre+zero(i), Thre

−
zero(i),
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Thre+hull(i) and Thre
−
hull(i). The threshold will be con�ned during the further

study. The threshold will be listed in Chapter 4. The classi�cation result is

used to drive corresponding feedback.

Level 2 Kinematic Features

In level 2 task, rather than providing real time feedback to the patient during

therapy, the feedback is conveyed to the patient after the completion of a set of

tasks. Each individual movement during the set will be evaluated individually

and all the individual results are used to compute the �nal result of the the

set.

There are �ve classi�ers in the motion analysis for the end point eval-

uation in the home system.

The curved/not curved classi�er, is based on the deviation of the move-

ment from the reference trajectory. For each point in the trajectory, we

take use of the horizontal error Ehor and vertical error Evert as Ehor(i) =

X(i)−Xref (i), i = 0 . . . N − 1, Evert(i) = Y (i)− Yref (i), i = 0 . . . N − 1

A threshold error function is computed to only record those devia-

tions that exceed a threshold. The threshold is the same as Thre+zero(i) and

Thre−zero(i) in Level 1.

Êhor(i) =


Ehor(i) if (Ehor(i) > ThreX+

zero||Ehor(i) < ThreX−zero)

0 otherwise.

(3.4)

Similarly,

Êvert(i) =


Evert(i) if (Evert(i) > ThreY+

zero||Ehor(i) < ThreY−zero)

0 otherwise.

(3.5)
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Con�dence values of the movement being curved/not curved are esti-

mated as

Ccurved
x =

∑N−1
i=0 |Êhor(i)|∑N−1
i=0 |Ehor(i)|

, Ccurved
y =

∑N−1
i=0 |Êvert(i)|∑N−1
i=0 |Evert(i)|

(3.6)

The �nal con�dence of curved movement is a combination of the above

two con�dences,

Ccurved =


λ1 if λ1 > 2λ2

min(1.5λ1, 1) otherwise

(3.7)

where λ1 = max(Ccurved
x , Ccurved

y ), and λ2 = min(Ccurved
x , Ccurved

y ).

By using the con�dence of curved movement, we are able to classify

the movement into three categories:

• non-impaired when Ccurved < 0.4

• mild-curved when 0.4 < Ccurved < 0.6

• severe-curved when Ccurved > 0.6

Con�dence of fastness, which is used to classify a movement as too fast

or not, uses speed pro�les to compute its con�dence values. For a given test

data, �rst we perform a point-to-point comparison of speeds (much in the same

way as the previous classi�er). Let the speed vector for the reference and test

data be denoted by vref (i), v(i), i = 0 . . . N−1. Here too, we use a thresholded

speed vector given by

v̂(i) =


v(i) if v(i)− vref (i) > Threspeed+zero

0 otherwise

(3.8)
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The con�dence of the action being too fast is computed as:

Cfast =

∑N−1
i=0 v̂(i)∑N−1
i=0 v(i)

(3.9)

By using the con�dence of too fast movement, we are able to classify

the movement into three categories:

• non-impaired when Cfast < 0.4

• mild-fast when 0.4 < Cfast < 0.6

• severe-fast when Cfast > 0.6

The slowness feature works similar to the too-fast classi�er.

v̂(i) =


v(i) if (v(i)− vref (i) < Threspeed−zero ||v(i) < Thremin)

0 otherwise

(3.10)

The con�dence of too slow movement is computed as:

Cslow =
num(v̂|(v̂! = 0))

num(v)
(3.11)

where, num() is an operator that counts number of points.

By using the con�dence of too slow movement, we are able to classify

the movement into three categories:

• non-impaired when Cslow < 0.4

• mild-slow when 0.4 < Cslow < 0.6

• severe-fast when Cslow > 0.6
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It can be noticed that, when we compute the con�dence for too fast or too slow

movement, I weigh the points di�erently. When computing the con�dence for

too fast movement, each point is weighed with its speed and when computing

the con�dence for too slow movement, each point is weighed with 1. This is

because the system captured the points at a constant rate, which is 100 frames

per second. By weighing the points with its speed would automatically draw

more attention to those points which are too fast while equally weighing each

point would automatically draw more attention to those too slow points.

When computing the feature for smoothness, we use the feature in speed

pro�le and calculate J for jerkiness [6]. The mean value of jerkiness from non-

impaired people is pre-computed as refjerk. For test data, we compute the

jerkiness as J . Then the ratio of jerkiness can be computed as

rjerk =
J

refjerk
(3.12)

The con�dence of not smooth movement is computed as

Cunsmooth = 1− e−(a·rjerk)b (3.13)

Where the value of a and b are tuned so as to match the judgment of therapist.

By using the con�dence of unsmooth movement, we are able to classify

the movement into three categories:

• smooth when Cunsmooth < 0.4

• mild-unsmooth when 0.4 < Cunsmooth < 0.6

• severe-unsmooth when Cunsmooth > 0.6

The segmented feature is used to measure whether the overall reach

movement is performed using proper co-ordination of the wrist, elbow, shoul-

der joints. If a movement is `segmented', usually it means that the elbow
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is not opening in synchrony with the shoulder moving forward. Instead, the

movement of the shoulder forward and the openness of the elbow are done

in sequence which results in a disjointed movement. An accurate analysis of

this phenomenon requires us to track both the shoulder and elbow in addi-

tion to the wrist. In the proposed home-based system, this was deemed too

cumbersome, instead we consider whether such movements can be described

computationally using only the end-point trajectory. This is indeed challeng-

ing, and proved to be the hardest classi�cation problem in this thesis. How

does one measure movement segmentation simply from the end-point trajec-

tory? After consultation with domain experts, it was found that segmented

movements give rise to notches in the end-point trajectory. These notches can

be quite subtle and often occur towards the end of the movement, making it

hard to detect. We project the 3D trajectory onto the XZ and XY planes

to detect the direction changes (notches) in both planes. The projection of

the trajectory is down sampled, to ensure a distance of at least 2cm to its

adjacent points. This is to ensure that direction change computations are

meaningful. Then we compute three features to calculate the con�dence of

segmented movement in each projection:

1. The number of times that the movement changes its turning direction

2. The magnitude of absolute value of direction change

3. The ratio of magnitude of direction change

In the projection onto the X-Z plane, we �rst compute displacement vectors

r(i) from the spatial locations. The direction change is quanti�ed as the signed

angle αXZ(i) between successive displacement vectors (in the projected and

down-sampled trajectory). The sign of the angle is de�ned as positive if it is
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clockwise from the previous displacement vector, and negative if it is counter-

clockwise. The direction change in the X − Z projection. Next, we compute

the number of times, Nchange, the movement changes its turning direction

signi�cantly and compute the corresponding con�dence as:

Cseg
XZ,feature1 =


1− e−(a1·Nchange)

b1 if Nchange > threchange

0 otherwise

(3.14)

Where a1 and b1 are tuned to match the therapist's judgment. The magnitude

of absolute value of direction change is computed by:

S =
∑
i

|αXZ(i)| (3.15)

This feature is used to compute the corresponding con�dence:

Cseg
XZ,feature2 = 1− e−(a2·λS)b2 (3.16)

λS =


1− S/refDirXZ if S < refDirXZ

0 otherwise

(3.17)

The ratio of magnitude direction change is de�ned as

γ =
|
∑
αXZ(i)|∑
|αXZ(i)|

(3.18)

The corresponding con�dence is computed as:

Cseg
XZ,feature3 =


1 if γ < 0.3

1.47 ∗ (1− γ) otherwise

(3.19)

The �nal con�dence of segmentation of the projected movement on XZ

plane is computed as :

Cseg
XZ = Cseg

XZ,feature1 · C
seg
XZ,feature2 · C

seg
XZ,feature3 (3.20)
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. In the same manner, we can compute Cseg
Y Z in the Y-Z plane. Let β1 =

max(Cseg
XZ , C

seg
Y Z), β2 = min(Cseg

XZ , C
seg
Y Z). The �nal con�dence of segmented

movement is de�ned as

Cseg =


β1 if β1 > 2β2

min(1.5β1, 1) otherwise

(3.21)

By using the con�dence of segmented movement, we are able to classify

the movement into three categories:

• non-impaired when Cseg < 0.4

• mild-segmented when 0.4 < Cseg < 0.6

• severe-segmented when Cseg > 0.6

Level 3 Kinematic Features

The level three task contains:

• Combination of lower level tasks. e.g. Reaching di�erent objects in

sequence

• Transporting objects from one location to another

The level 3 tasks are functional tasks which aims to judge the overall quality of

movement. The constraints during the therapy are reduced signi�cantly than

those in the lower level. We attempt to access the quality of the movement in

three aspects:

1. Completion time

2. Path ratio
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3. Speed phases

To access the quality of completion time, we compare the completion timetimetotal

of patient during each task to reference data reftime, which is the mean value

of completion time of non-impaired people. The con�dence is calculate as:

Ctime =


0 if timetotal ≤ reftime

1 if timetotal ≥ λtime · reftime

timetotal/reftime−1
λtime−1 otherwise

(3.22)

Path ratio is the ratio between the length actual trajectory during a

task and the length of straight line between the desired positions that the

patient is expected to reach. The speed phases are the number of signi�cant

local minimums of speed during the task. In the same manner of Ctime, we

can compute CPathRatio and CSpeedPhase. The con�dence leads to following

judgement:

• non-impaired when C < 0.4

• mild-impaired in the speci�c aspect when 0.4 < C < 0.6

• severe-impaired in the speci�c when C > 0.6

After the con�dence of each aspect is computed and the classi�cation is done

in every aspect, we categorize the movement into three descriptive categories,

e�cient, mild-ine�cient and severe ine�cient in the following manner:

• The movement is e�cient if we have three non-impaired classi�cation

results or two non-impaired classi�cation results and one mild-impaired

classi�cation result.
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• The movement is mild-ine�cient if 1)we get two or three mild-impaired

classi�cation results without any severe-impaired classi�cation result,

and 2)we get two non-impaired classi�cation results and one severe-

impaired classi�cation result.

• The movement is severe-ine�cient for other situations.

3.2.2 trial evaluation and set evaluation

In both Level 2 and Level 3 therapy, there are repetitive tasks which are

considered as a set. This is due to:

• The basic threshold classi�cation with con�dence that is implemented in

the system is not reliable enough on individual task.

• The quality of movement varies with the same people and individual

evaluation result is usually biased to rate the level of impairment.

The set evaluation would compensate to this lack of reliability. For any aspect,

the set con�dence is computed as:

Cset =

∑
iw(i) · C(i)∑

iw(i)
(3.23)

where

w(i) =


0.05 if C(i) ≤ 0.25

C(i)− 0.2 otherwise

(3.24)

3.2.3 evaluation across features

There are �ve aspects of interest in Level 2 and three aspects of interest in

Level 3 as described above. Evaluation of individual aspect can be done prop-

erly. However, in some cases, evaluation across di�erent features is required.
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At this point, comparison of con�dence across di�erent features is conducted

to decide the more signi�cant factor. However, the validation of comparison

of con�dence across di�erent features with current design is not guaranteed.

KIM, as described in Chapter 2, is of signi�cant advantages to compare be-

tween di�erent features. It is believed that using the features designed above to

compute KIM would help to �gure out the aspect that is of most signi�cance.
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Chapter 4

EXPERIMENT AND RESULT

In this chapter, I will present experimental results which demonstrated the

e�cacy of the proposed features and classi�ers.

4.1 evaluation results for hospital system

Since the home system inherits many concepts from the hospital system, I

would like to begin this chapter with some quantitative evaluation results from

the hospital system and discuss the possibility that those evaluation methods

a�ect the design of quantitative evaluation of the home system.

Comparing �g 4.1 and �g 4.2 it is not di�cult to �gure out:

• The same feature value varies when the location of objects in the task

varies, while the KIM value is much more stable when with this variation.

• The KIM is more sensitive to subtle improvement of movement quality.

There is very little change in button 8, group 2 in �g 4.1, which are

plotted with the feature value. In �g 4.2 the di�erence between pre-task

and post-task has been quite obvious with the same data set computed

into KIM.

4.2 results for home system

The prior goal of the design of kinematic features is to give coarse classi�cation

result to drive the feed back in the home system at this point. Most of the

features are tested with experienced researchers in the �eld of stroke rehabili-

tation to ensure their validity. Various experimental thresholds and constants

that are described in the Level 2 tasks in previous section are listed in table

4.1.
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Figure 4.1: The distribution of vertical trajectory error in button box task. Group

1 are the distribution of a group which received the therapy without multimedia

feedback. Group 2 are the distribution of a group which received therapy with

multimedia feedback. Each error bar shows the mean value and standard deviation

of the feature during the button box task. For every adjacent pair of error bars, the

left present the data with pre-therapy task and the right present the data with the

post-therapy task.

The sensitivity parameters in Level 3 tasks are listed in table 4.2

The segmented features and related classi�er are the most challenging

part in this thesis because there is no previous work on this problem with

just end point information. How the features are designed has already been

shown in Chapter 3. I will show how the features work with threshold based

classi�cation that is implemented in the system and how the features work

with widely used modern classi�cation tools. We have a training set with 10

segmented movements and 20 non-segmented movements and this set is used to

design the features. We also have a testing set with 12 segmented movements
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Figure 4.2: The distribution of KIM value vertical trajectory error in button box

task.

Feature Notation Threshold a b

Curvedness

ThreX+
zero 20mm NA NA

ThreX+
hull 40mm NA NA

ThreX−zero −20mm NA NA
ThreX−hull −40mm NA NA
ThreY+

zero 50mm NA NA
ThreY+

hull 110mm NA NA
ThreY−zero −50mm NA NA
ThreY−hull −110mm NA NA

Fastness Threspeed+zero 0.20m/s NA NA
Slowness Threspeed−zero −0.15m/s NA NA

Smoothness refjerk 70000mm2/s2 −0.693 1

Segmented
threshchange 2 0.3046 −5.4449
refDirXZ 60◦ 3.0908 −2.7530
refDirY Z 40◦ 3.0908 −2.7530

Table 4.1: Threshold and parameters for Level 2 various features and con�dence

value estimation.
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Feature Notation Value
Completion time λtime 2.5

Path ratio λPathRatio 2.0
Speed phases λSpeedPhase 2.5

Table 4.2: Sensitivity for Level 3 con�dence estimation.

and 20 non-segmented movements. With the threshold based classi�er which

are implemented in the system, we classi�ed 5 individual movements out of 12

as not segmented and 7 segmented. 1 of the 20 non-segmented movements is

classi�ed as segmented while the other 19 are correctly classi�ed. By using the

set evaluation, which is discussed in Chapter 3, we are able to get satisfactory

results to drive the feedback. There are totally 62 movements, each presented

by features that are discussed in the design of segmented features. Various

combinations of features and classi�ers, such as using just features obtained

from X − Z features, Y − Z features, and a combination of both are tested.

The results of 10-fold cross-validation are presented in tables 4.3 and 4.4. The

results show that:

• Current design of segmented features leads to a satisfactory classi�cation

result.

• Modern classi�cation techniques produce better results than threshold

based classi�cation which is implemented in the system.

• A combination of X − Z and Y − Z features leads to better results.

Classi�ers Naive Bayes Nearest Neighbor SVM
X-Z features 87.1% 96.77% 83.87%
Y-Z features 75.8% 98.38% 87.09%
Joint features 88.71% 98.38% 91.93%

Table 4.3: Results of cross-validation for classifying end-point trajectory into `Not

Segmented' and `Segmented'.
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Naive Bayes Nearest Neighbor SVM

X-Z features
34 6 40 0 34 6
2 20 2 20 4 18

Y-Z features
36 4 40 0 34 6
11 11 1 21 2 20

Joint features
36 4 40 0 39 1
3 19 1 21 4 18

Table 4.4: Confusion matrices for classifying end-point trajectory into `Not Seg-

mented' and `Segmented'.

30



Chapter 5

CONCLUSION

Quantitative access to the quality of movement during stroke rehabilitation

is discussed in this thesis. Current design of features for kinematic analysis

is presented. The result of classi�cation using these features currently meets

the request of �eld experts. The validity of the design will be further tested

in future research. The sensitivity and threshold will be re�ned in the future

work. The need of evaluation across features requires feature independent

analysis, and this would also be studied in the future work. KIM has shown

its advantages in the hospital system, and will also be implemented in the

home system after we collect enough data from patients.
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