
Web Simulator for Service-Oriented Robots

by

Garrett Drown

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved November 2012 by the

Graduate Supervisory Committee:

Wei-Tek Tsai, Co-Chair

Yinong Chen, Co-Chair

David Claveau

ARIZONA STATE UNIVERSITY

December 2012

 i

ABSTRACT

The focus of this document is the examination of a new robot simulator

developed to aid students in learning robotics programming and provide the ability to test

their programs in a simulated world. The simulator, accessed via a website, provides a

simulated environment, programming interface, and the ability to control a simulated

robot. The simulated environment consists of a user-customizable maze and a robot,

which can be controlled manually, via Web service, or by utilizing the Web programming

interface. The Web programming interface provides dropdown boxes from which the

users may select various options to program their implementations. It is designed to aid

new students in the learning of basic skills and thought processes used to program robots.

Data was collected and analyzed to determine how effective this system is in helping

students learn. This included how quickly students were able to program the algorithms

assigned to them and how many lines of code were used to implement them. Students'

performance was also monitored to determine how well they were able to use the

program and if there were any significant problems. The students also completed surveys

to communicate how well the website helped them learn and understand various

concepts. The data collected shows that the website was a helpful learning tool for the

students and that they were able to use the programming interface quickly and

effectively.

 ii

TABLE OF CONTENTS

 Page

LIST OF TABLES .. iv

LIST OF FIGURES .. v

CHAPTER

1 INTRODUCTION .. 1

 1.1. Computer Science Teachers Association ... 1

 1.2. Motivation and Research Questions... 2

 1.3. Background .. 5

2 EXAMPLES OF ROBOTICS SIMULATORS .. 9

 2.1. Microsoft Robotics Developer Studio .. 9

 2.2. Alice ... 11

 2.3. Features .. 13

 2.4. Other Types of Simulators ... 15

3 WEB SIMULATOR FOR SERVICE-ORIENTED ROBOTS 16

 3.1. Web Service ... 20

 3.2. Client Application .. 22

 3.3. The Silverlight Website.. 23

 3.3.1. Silverlight .. 24

 3.3.2. The Maze, Robot, and Physics .. 24

 3.3.3. Web Programming Interface ... 25

4 DATA COLLECTION AND ANALYSIS .. 29

 4.1. Research Objectives ... 29

 4.2. Problems to be Solved by Students .. 30

 4.3. Types of Data Gathered ... 31

 iii

CHAPTER Page

 4.4. Possible Outcomes of Student Projects .. 33

 4.4.1. Questions 1-4 .. 33

 4.4.2. Questions 5-6 .. 34

 4.4.3. Questions 7-8 .. 35

 4.4.4. Questions 9-10 .. 36

 4.5. Data Collected .. 36

 4.6. Evaluation .. 41

5 SUMMARY .. 43

6 FUTURE WORK ... 45

REFERENCES .. 46

APPENDIX

A RAW DATA COLLECTED .. 48

B SAMPLE STUDENT SURVEY .. 51

C CRC CARDS .. 53

 iv

LIST OF TABLES

Table Page

1. Research Questions and Related CSTA Topics .. 3

2. Designing of the Experiment ... 4

3. Feature Comparison of Programming Interfaces .. 14

4. Brief Descriptions of Other Select Simulators .. 15

5. Evaluation Process During Data Collection .. 32

6. Data Collected Per Algorithm ... 36

7. Instructor Observations and Analysis .. 38

8. Summary ... 43

9. Raw Data - Student Survey Results .. 49

10. Raw Data - Time Taken to Solve Each Algorithm (in seconds) 50

11. CRC Card for the Animation Component ... 54

12. CRC Card for the Manual Control Interface ... 54

13. CRC Card for the Web Programming Interface .. 54

14. CRC Card for the executeProgrammingButton ... 55

15. CRC Card for the addNewLineButton .. 55

16. CRC Card for the Web Service Communication Component 55

 v

LIST OF FIGURES

Figure Page

1. Example Web Service Workflow .. 5

2. An Example of the Format and Logic Used in RDS Using VPL 10

3. SetDrivePower Parameters .. 10

4. Activities Provided by RDS ... 11

5. Pre-defined Methods Provided for groundRoamer .. 12

6. Control Flow Tiles Available in Alice ... 12

7. An Example of the Format and Logic Used in Alice ... 13

8. Simulator Component Hierarchy ... 17

9. Primary Components of the Silverlight Application.. 18

10. Component Communications .. 20

11. Receiving Data from the Simulator ... 21

12. Simulator Receiving Commands from the Client Application 21

13. A Screenshot of the Silverlight Website .. 23

14. Results of the "Add New Line" Button .. 25

15. Options Available to Check Various Conditions ... 25

16. Actions Available to be Executed .. 26

17. Example Delayed-type Action ... 27

18. If-then-else Structure of the Web Programming Interface 27

19. Example Program .. 28

20. Right-Wall Following Algorithm .. 31

21. Farthest-Distance Algorithm .. 31

22. A Correct Solution for the Right-Wall Following Algorithm 34

23. A Correct Solution for the Farthest-Distance Algorithm 34

file:///C:/Users/Garrett/Documents/My%20Dropbox/School/Thesis/Masters%20Research_Thesis%20Report_GradFormat.docx%23_Toc342545011
file:///C:/Users/Garrett/Documents/My%20Dropbox/School/Thesis/Masters%20Research_Thesis%20Report_GradFormat.docx%23_Toc342545012
file:///C:/Users/Garrett/Documents/My%20Dropbox/School/Thesis/Masters%20Research_Thesis%20Report_GradFormat.docx%23_Toc342545013
file:///C:/Users/Garrett/Documents/My%20Dropbox/School/Thesis/Masters%20Research_Thesis%20Report_GradFormat.docx%23_Toc342545016
file:///C:/Users/Garrett/Documents/My%20Dropbox/School/Thesis/Masters%20Research_Thesis%20Report_GradFormat.docx%23_Toc342545017
file:///C:/Users/Garrett/Documents/My%20Dropbox/School/Thesis/Masters%20Research_Thesis%20Report_GradFormat.docx%23_Toc342545018
file:///C:/Users/Garrett/Documents/My%20Dropbox/School/Thesis/Masters%20Research_Thesis%20Report_GradFormat.docx%23_Toc342545019
file:///C:/Users/Garrett/Documents/My%20Dropbox/School/Thesis/Masters%20Research_Thesis%20Report_GradFormat.docx%23_Toc342545021
file:///C:/Users/Garrett/Documents/My%20Dropbox/School/Thesis/Masters%20Research_Thesis%20Report_GradFormat.docx%23_Toc342545023
file:///C:/Users/Garrett/Documents/My%20Dropbox/School/Thesis/Masters%20Research_Thesis%20Report_GradFormat.docx%23_Toc342545024

 vi

Figure Page

24. An Incorrect Solution due to Improper Use of the Robot's Commands 35

25. An Incorrect Solution due to Improper Use of a Delayed-type Command 35

26. An Incorrect Solution for the Right-Wall Following Algorithm 35

27. Time to Solve the Right-Wall-Following Algorithm ... 36

28. Time to Solve the Farthest-Distance Algorithm .. 37

29. Breakdown of the Student Ratings Received ... 39

30. Student Survey ... 52

1

CHAPTER 1

INTRODUCTION

Robots that are controlled by Web services become increasingly popular as they

enable computational workloads to be processed on a remote machine. These types of

robots require less local computing power by offloading the work to the remote machine

(similar to cloud computing). Once the remote machine has completed its computations

and reached a decision, the system then sends the selected commands to the robot. This

enables longer battery life for the robot and possibly the use of a smaller robot.

Unfortunately, these types of robots are new and there are limited options available to

developers for testing and simulating programs for their robots. The research presented

here describes a newly developed simulator for testing these types of robots and to aid in

the education of inexperienced programming students.

1.1. Computer Science Teachers Association

The Computer Science Teachers Association (CSTA) provides support for

educators teaching in the field of computer science. They supply recommendations,

examples, and sample materials to help teachers develop and organize their own

curriculum. CSTA is sponsored by Google, Microsoft, Oracle, and others.

Furthermore, students will be engaging in some of the activities recommended in

the Career and Technical Education (CTE) Common Core Standards as discussed by

CSTA. These include: (1) “[a]pply appropriate academic and technical skills” (Verno

and Fuschetto) especially in regards to computer programming. (2) “Demonstrate

creativity and innovation” (Verno and Fuschetto). (3) “Utilize critical thinking to make

sense of problems and persevere in solving them” (Verno and Fuschetto). (4) “Use

technology to enhance productivity” (Verno and Fuschetto).

2

1.2. Motivation and Research Questions

Robots controlled via Web services are new and there are limited options

available to developers for testing and simulating programs for their robots. Similarly,

educational institutions have limited options to provide their students with relevant

software tools to aid students in these endeavors. The software presented in this paper

was developed to aid students in the learning of basic programming skills as well as the

writing and testing of robotics applications. Furthermore, this software designed to aid

students in the learning of the topics presented by CSTA. It does this in a variety ways as

described in Table 2.

The experiment presented herein was designed to determine how well students

performed in the areas described by CSTA and to receive feedback regarding the

usefulness of the website. Using the CSTA input as guidelines, the following research

questions were developed:

1. What is the impact of Web-based visual programming in helping

students understand programming logic?

2. Does a user-friendly Web-based interactive tool help students understand

human-computer interaction and program construction?

3. Does the Web-based program provide an interesting feedback

mechanism from which students can evaluate their software?

The table below demonstrates how these questions relate to the CSTA material.

3

Table 1: Research Questions and Related CSTA Topics

Research Questions and Related CSTA Topics

Research Question CSTA Topic

What is the impact of Web-

based visual programming in

helping students understand

programming logic?

Understanding and

exploring the problem

(Madden et al. 7).

Design, code, and test

a solution (Madden et

al. 23).

“The power of

stepwise refinement”

(Madden et al. 7).

“Graphs” (Madden et

al. 12).

Does a user-friendly Web-

based interactive tool help

students understand human-

computer interaction and

program construction?

“Interactive

Programming”

(Madden et al. 8).

Does the Web-based program

provide an interesting

feedback mechanism from

which students can evaluate

their software?

“Identify elements of

user-friendly Web

sites” (Madden et al.

14).

To conduct this experiment the students were given two algorithms and asked to

program them using the Web programming interface on the website. As the students

implemented their individual programs, they were carrying out different actions given in

Table 2. For examples of how students may do this during the experiment, see Table 2.

The experiment described in this paper implements some of the ideas provided

by CSTA. The following table describes some of the topics recommended by CSTA and

how they have been utilized in the experiment. Students are able to learn about and

engage in these various topics and activities while using the website.

4

Table 2: Designing of the Experiment

Designing of the Experiment

Research

Questions
Experiment Design

What is the impact

of Web-based visual

programming in

helping students

understand

programming logic?

Students are given algorithms and asked to implement them using

the Web programming interface provided on the website. Through

this exercise, students will need to come to understand the steps

described by the algorithm to implement a correct working program.

Students are given algorithms and asked to program them using the

Web programming interface provided on the website. Students will

need to design a solution for each algorithm and implement the

solution via the Web programming interface. After students

implement their programs they will need to test each one, identify

any bugs, and correct any problems.

After students are presented with the algorithm, they will need to

break the algorithm down into basic steps which can be programmed

via the Web programming interface.

The simulated robot, which the students will be programming, is

located in a maze. The algorithms presented to the students are able

to successfully lead the robot to the other end of the maze. As the

students implement the algorithms provided to them, they will be

able observe the robot carry out the algorithms and the different

paths taken by each algorithm.

Does a user-friendly

Web-based

interactive tool help

students understand

human-computer

interaction and

program

construction?

Students will be utilizing the Web programming interface, which

provides them with an interactive development environment (IDE),

to program the robot. Additionally, the website enables the students

to see the robot in real-time and see how changes to their program

affects the behavior of the robot.

Does the Web-based

program provide an

interesting feedback

mechanism from

which students can

evaluate their

software?

After students have completed their assigned tasks, they were asked

to rate their experience as well as provide any positive or negative

feedback they may have regarding the website. This feedback was

used to determine possible future work on the website. The time

taken by the students to solve the algorithms can also be used as an

indicator as to how well the students were able to utilize the website.

Before the experiment was conducted, the following was hypothesized. (1)

Students will find the Web programming interface a useful educational tool and it will aid

them in their learning of various programming concepts. (2) Students will be able to

efficiently program using the Web programming interface and quickly implement correct

5

solutions to the programming problems presented to them. (3) Students will find the

website helpful, easy to use, and be able to use it with little to no assistance.

1.3. Background

According to the World Wide Web Consortium (W3C), “[a] Web service is a

software system designed to support interoperable machine-to-machine interaction over a

network” (Web Services Architecture Working Group). Functionally speaking, a Web

service is similar to a normal function used in programming. A standard programming

function generally has at least one input parameter and an output that it returns. For

example, a function that sorts a string of characters to be in alphabetical order would have

a string as an input parameter and the function would return the sorted string. However,

Web services are not restricted to providing only a single function. Web services are

capable of supplying an entire set of functions that may be useful to a developer for a

particular use case. In the end, “[a]ll components are wrapped with open standard

interfaces to form services or Web services, so that application builders can use those

services across the Internet” (Tsai et al., “An Introductory Course on Service-Oriented

Computing for High Schools” 318).

Figure 1: Example Web Service Workflow

Web services are similar to standard programming functions. However, “[t]hese

services are platform-independent. They can be published in public or private directories

or repositories for software developers to reuse and to compose their applications” (Chen

6

and Tsai, “Towards Dependable Service-Oriented Computing Systems” 1361). This also

enables Web services to be hosted on a server that is more powerful than the client

computer. An example of a Web service is one that solves a complex and

computationally expensive problem. Additionally, assume that this Web service is

hosted on a powerful server. It will not be feasible for a slow computer to perform this

computation itself. Instead, by utilizing a Web service the computational workload is

passed on from the weak computer to the powerful system, which can compute the

solution in substantially less time. Arizona State University hosts a collection of Web

services at the ASU Repository of Web Services and Web Applications (“ASU

Repository”), which includes a variety of examples of possible uses for Web services.

Using the simulator developed for this thesis project, developers can develop and

test robots that are controlled via Web services. Because the simulator can be hosted

online, developers are not required to install any new applications on their local

computers to begin using the simulator. “Using [service-oriented computing] for robotics

has certain inherent advantages over the traditional methods of building a robot. The

main benefit is to have a layer of common services with standard interfaces” (Chen and

Tsai, Service-Oriented Computing and Web Software Integration 395). This is an

important characteristic, as it enables developers to use the simulator without requiring

significant changes to their code. A developer is only required to modify his/her

program’s Web services to communicate with the simulator’s Web service instead of the

Web service hosted on the real physical robot.

Similar work has begun on a Service-Oriented Computing (SOC) environment

for developers to generate and execute code developed specifically for smart homes.

“Service-oriented computing is considered today as a key technology for the

development of robust and high quality intelligent distributed and embedded

7

applications” (“Call for Papers”). One of the key characteristics of SOC is that “[r]ather

than building static applications, SOC approach composes applications by discovering

and invoking services based on published interfaces” (Lee et al. 1).

This simulator focuses on service-oriented robots and provides many of the

common features provided by other such simulators. For example, it provides the ability

to test the robot’s programming in a virtual world without endangering people, robots, or

other property. It also gives developers the convenience of testing their program on a

simulated robot, even before they have a physical robot in their possession.

The simulator also provides a simple graphical programming interface directly on

the website. This interface is designed to be an intuitive method for new and

inexperienced programmers to be introduced to the field of robotics programming. By

using a series of dropdown boxes, the user is able to create simple programs to be carried

out by the robot. The dropdown boxes offer simple programming functions, such as

move forward, move backward, stop, etc. and are executed when specified logical

statements are true. After entering his/her instructions, the user can see the robot in

action and, if need be, reset the robot to try again after modifying the program.

As technology becomes more commonplace, pervasive, and familiar to an ever-

growing market it is not surprising that computers are becoming popular as an

educational tool. “An emerging Web-based platform trend can be seen in the amount of

educational materials … currently available via the Web. Students can also take

examinations via the Web and work on joint projects using Web-based collaboration

tools such as Google Docs” (Tsai et al., “Collaborative Learning Using Wiki Web Sites”

114). This trend is due to more than simply the growth and utilization of technology.

“Computers are highly interactive and provide a variety of tools to accomplish

meaningful tasks. Hence, they are more aligned with the ‘learning by doing’ view of

8

education, than with the ‘absorption of cultural knowledge’ view of education that

permeates schooling” (Collins and Halverson 20). This ‘learning by doing’ method of

education is one of the reasons why computers can be such a valuable tool in the

classroom and a part of the motivation behind the development of the programming

interface available on the website. This is further seen by the plans being made at

Arizona State University to use this simulator in future courses as well as Arizona State

University’s Robotics Camp in 2013. The Robotics Camp is designed for middle to high-

school students to learn about designing and programming robots. The Web

programming interface provides the simple high-level programming instructions that can

be useful when teaching new programmers.

9

CHAPTER 2

EXAMPLES OF ROBOTICS SIMULATORS

Currently, there are many simulators available to developers. Existing robotics

simulators generally include a virtual world, physics, and a programmable simulated

robot. However, these simulators typically have their own complex application

programming interface (API) and interactive development environment (IDE) that the

developer must learn in order to use the simulator. These key components provide the

user with the ability to simulate and test a robot with their own programs. Below are

examples of simulators that are freely available.

2.1. Microsoft Robotics Developer Studio

Robotics Developer Studio (RDS) is a free program developed by Microsoft that

includes both an IDE and a simulator. RDS utilizes Microsoft’s Visual Programming

Language to program the simulated robot. “Visual Programming Language (VPL)

provides a relatively simple drag-and-drop visual programming language tool that helps

make it easy to create robotics applications” (Microsoft Robotics Developer Studio).

RDS provides the user with several robots to simulate, such as the iRobot, a robotic arm,

and other simple robots. After choosing a particular robot, the user can then program the

robot using the tools provided by the Visual Programming Language.

Users can drag-and-drop blocks (i.e. variables, program control flow logic, etc.)

and connect them to other blocks to send and receive data to and from other blocks to

build their program. RDS refers to these blocks as activities or services. Services

include blocks which contain the configuration and physical details (if applicable) of a

robot or robotic component. Services also include user-defined functions which have

been consolidated into a single new block. Activities include user-defined activities as

well as basic activities which drive the program’s control flow or construct data,

10

variables, or structures. These activities (possibly in conjunction with other services) can

be used to construct additional user-defined activities. These user-defined activities are

analogous to functions in text-based programming languages, such as C#. Below is an

example of a user-defined activity that can be constructed using VPL in RDS.

Figure 2: An Example of the Format and Logic Used in RDS Using VPL

 The logic in Figure 2 shows the activities and services used in a VPL function to

make a 90
o
 right-turn. The program flows from the left to the right, beginning at the

large triangle on the far left. The “GenericDifferentialDrive” block is used to control the

motors of the simulated robot. The first instruction in this example sets the drive power

of the motors. The parameters passed to the block are shown in Figure 3.

Figure 3: SetDrivePower Parameters

11

By passing these parameters, the left wheel will turn forward as the right wheel turns

backwards, causing the robot to turn right. The value 602 is then passed to a timer block.

This causes the program to wait for 602 milliseconds before continuing to the next block

of the program. During this time, however, the robot is still turning. After the timer has

expired, the robot is commanded to stop by passing zeros to the left and right wheel

powers in a similar manner as shown in Figure 3. Another timer is used to make sure the

robot comes to a complete halt before returning from the function.

Figure 4: Activities Provided by RDS

Microsoft RDS provides many more blocks than what was shown in the previous

example. Figure 4 shows all of the basic activities provided by RDS. Note the item

named “Activity.” This is the object used to create user-defined activities. There are also

many more pre-defined services available in RDS. These services range from different

robot templates to various types of sensors and pre-defined functions.

2.2. Alice

Alice is a free program developed by Carnegie Mellon University in collaboration

with other universities to help students learn and explore programming in a 3-D

simulated environment. “In Alice's interactive interface, students drag-and-drop graphic

tiles to create a program, where the instructions correspond to standard statements in a

12

production oriented programming language, such as Java, C++, and C#” (What is Alice?).

The graphic tiles provide different functions and program control flow operations to the

user. Users develop their code by dragging and dropping these tiles into the provided

workspace. Below is an example of the pre-defined methods available for

groundRoamer (a pre-defined object in Alice) and the different control flow tiles

available in Alice.

Figure 5: Pre-defined Methods Provided for groundRoamer

Figure 6: Control Flow Tiles Available in Alice

Alice also includes a 3-D virtual world. “In Alice, 3-D objects (e.g., people, animals,

and vehicles) populate [this] virtual world and students create a program to animate the

objects” (What is Alice?). The student is able to customize the world by dragging and

dropping pre-defined objects into the virtual world workspace. Objects in the virtual

world are then able to be referenced in the programming area. For the following

example, a robot (called groundRoamer) and a fence (named wall1) have been placed in

13

the virtual world. After adding the objects, an algorithm similar to the right-wall-

following algorithm was coded using the programming tiles provided by Alice.

Figure 7: An Example of the Format and Logic Used in Alice

The outermost layer and first line of the logic in Figure 7 is an infinite while-

loop. The first if-statement determines if there is a large distance to the right of the

groundRoamer and wall1. If a large distance is detected, then the groundRoamer will

make a 90
o
 right turn. Otherwise, the nested if-statement will determine if there is some

room between the groundRoamer and wall1 so that the robot can continue moving

forward. If there is not, then the groundRoamer will make a 90
o
 left turn. Otherwise, the

robot will move forward some before the program repeats itself (due to the infinite while-

loop).

2.3. Features

Below is a comparison of some of the key features of the programming interfaces

provided by the simulators described above and the simulator developed for this project.

14

Both of the programming methods provided by the simulator are included in the table.

These methods include programming the robot utilizing the Web service provided by the

simulator and programming the robot using the programming interface on the website.

Table 3: Feature Comparison of Programming Interfaces

Feature Comparison of Programming Interfaces

Programming via Project

Simulator
Microsoft

Robotics

Developer

Studio’s IDE

Alice’s IDE
C#/Java Web

Service

Web

Programming

Interface

Key

Features

Support for

simulating

robots controlled

via Web

services.

Ability to use

the same

program to

control a

physical robot

and the

simulated robot.

Provides an

easy-to-use API.

Provides an

intuitive and easy

to learn interface

for new

programmers to

learn about

robotics

programming.

Straightforward

dropdown boxes

provide the users

with simple

instructions used

to program the

robot.

Accessed via

Web browser,

thus easily

accessible and

presenting it in an

environment

familiar to

students.

Utilizes

Microsoft’s

Visual

Programming

Language,

enabling users to

drag-and-drop

blocks

(instructions)

and connect

them together to

develop their

program.

Provides pre-

defined

templates for

some of the

most popular

robots and

robotic

components.

The

programming

interface

includes drag-

and-drop tiles.

Designed to

enable

programmers

to program

simple movies

or games.

The

programming

tiles provide

simplified

instructions

for easier

programming.

Required

Software

Any IDE

supporting the

use of WSDL

Web services.

Internet Explorer

9 with Silverlight

5.1 (or later)

plug-in installed.

Windows 7

.Net Framework

4.0

Microsoft

Robotics

Developer

Studio

Java

Development

Kit

Alice

15

2.4. Other Types of Simulators

A wide variety of simulators (not related to robotics) have been developed,

spanning a broad range of categories. As computers grow in their ability to solve

complex problems, simulators will be used to help model and solve these

problems. A few select simulators are listed below which provide a glimpse into

the variety of available simulators.

Table 4: Brief Descriptions of Other Select Simulators

Simulator

Name
Description Type

X-Plane 10

“X-Plane 10 Global is the world’s most comprehensive and

powerful flight simulator for personal computers, and it offers

the most realistic flight model available. … Because X-Plane

predicts the performance and handling of almost any aircraft, it

is a great tool … for engineers to predict how a new airplane

will fly, and for aviation enthusiasts to explore the world of

aircraft flight dynamics” (“What is X-Plane?”).

Flight

Simulator

Algodoo

“ALGODOO is a unique 2D-simulation software from Algoryx

Simulation AB. Algodoo is designed in a playful, cartoony

manner, making it a perfect tool for creating interactive scenes.

Explore physics, build amazing inventions, design cool games or

experiment with Algodoo in your science classes. Algodoo

encourages students and children’s own creativity, ability and

motivation to construct knowledge while having fun” (“About”).

Physics

Simulator

The Virtual

Cell (VCell)

“The Virtual Cell is a unique computational environment for

modeling and simulation of cell biology .[sic] It has been

specifically designed to be a tool for a wide range of scientists,

from experimental cell biologists to theoretical biophysicists.

The creation of biological or mathematical models can range

from the simple, to evaluate hypotheses or to interpret

experimental data, to complex multi-layered models used to

probe the predicted behavior of complex, highly non-linear

systems. Such models can be based on both experimental data

and purely theoretical assumptions” (“Virtual Cell Modeling &

Analysis Software”).

Living

Cell

Simulator

LogicWorks

5

“LogicWorks is an interactive circuit design tool intended for

teaching and learning digital logic. … The package gives you

the power, speed and flexibility to create and test an unlimited

number of circuit elements on-screen. This means that you can

study advanced concepts much more quickly and clearly using

on-screen simulation than you can by spending time wiring up

expensive and damage-prone parts in a lab” (“What is

LogicWorks 5?”).

Circuits

Simulator

16

CHAPTER 3

WEB SIMULATOR FOR SERVICE-ORIENTED ROBOTS

The simulator developed for this project provides many of the features of the

simulators described above, including a virtual world, simulated physics, and a

programmable object (i.e. a robot) to control and program. However, this simulator

provides many new features. For example, the simulator provides the user with the

ability to simulate robots controlled via Web services and can be used as a tool for

teaching new students how to program robots using the Web programming interface.

Additionally, the simulator can be hosted on the Internet and therefore users are not

required to install any additional software on their local computer.

The simulator consists of the following three parts: a client application, the Web

service, and the Silverlight website. The client application is the term used here to

represent any application using a Web service to communicate with a physical robot or

the simulator. In the context of the simulator, the client application is the component that

can drive the simulator and is to be developed and provided by a developer. This

program sends commands and receives data to and from the Web service. The data

received from the Web service is used to determine the appropriate commands to send to

the robot.

The Web service provides the means for the client application to communicate

with and drive the simulator (i.e. the simulated robot). It does this by supplying the client

application and the Silverlight website with functions that provide the ability to send and

receive sensor updates and commands for the simulated robot. In a non-simulated

environment, the Web service is normally hosted on a physical robot.

17

The third component of the simulator is the Silverlight website, a website which

hosts a Silverlight application. By hosting and providing the Silverlight application to

clients, the website itself implements client-server architecture, or more specifically

thick-client architecture. The Silverlight application is hosted on the website and is

downloaded and executed on the client machine via a Web browser.

The Silverlight application is a multithreaded object-oriented application. There

are individual threads for sending and receiving updates from the Web service, executing

the program written via the Web programming interface, and more. See Figure 9 for an

overview of the application’s components and how they perform their functions.

Although the Silverlight application utilizes a Web service, it does not offload a

computational workload to it. From the simulator’s perspective, the Web service is only

used as a means of communication for sending data to, and receiving commands from,

the client application. The Silverlight application provides the GUI components of the

simulator. These components include the virtual world (the maze, robot, physics, sensor

data, etc.), manual control interface, sensor readout, and the Web programming interface.

Website

Silverlight Application

Graphical User Interface

Virtual World
Web Programming

Interface
Manual Controls

Figure 8: Simulator Component Hierarchy

18

Figure 9: Primary Components of the Silverlight Application

19

 The primary components of the Silverlight application are shown in Figure 9.

CRC cards describing these components have been created and can be found in Appendix

C. The Silverlight application has a thread which manages the animations that are to take

place. These animations are dictated by other components of the simulator setting the

current robot action. Based on the currently set robot action, the motion required to

animate the action is calculated. After calculating the motion, new location, and

orientation of the robot, the physics of the operation are evaluated. If the robot can move

to the new location and be re-oriented as necessary without colliding with any objects,

then the animation will continue. However, if it is determined that the robot would

collide with an object, the robot is not moved. This simulates the robot colliding with an

object. This entire process is constantly repeated as quickly as possible to help display a

smooth animation, with up to a maximum frame rate of thirty frames per second.

The manual control interface primarily consists of buttons, each representing an

action the robot can perform. When a button is pressed, the corresponding action for that

button is set within the simulator. Similarly, when a user releases the button the current

robot action is set to “stop”, halting the robot until the next button is pressed.

 The thread that manages the Web programming interface is used primarily for

evaluating and executing the instructions specified by the user. Starting with the first

instruction given, the condition specified with each instruction is evaluated. If the

condition is true, the user-specified action for this instruction is set in the simulator.

Furthermore, the subsequent instructions are not evaluated and, instead, the thread begins

evaluating each of the instructions from the beginning. However, if an instruction’s

condition is evaluated to be false, the next instruction given is evaluated.

 Yet another thread is used to carry out the communication between the

Silverlight application and the Web service. First, the thread checks if the data from the

20

Web service is being requested by the user. If not, the thread does nothing but wait until

this condition is met. If the data from the Web service is needed, then the thread calls

one of the Web service’s functions, which returns the current robot action requested by

the client application. Once this data is received from the Web service, the simulator’s

current robot action is set as requested by the client application.

3.1. Web Service

The sole purpose of the Web service is to receive, store, and fulfill requests for

data. This is seen in two scenarios.

First, when the client application sends commands to the robot and second when

the robot sends data (i.e. sensor readings) back to the client application. In a real world

scenario, outside of the simulation environment, the Web service is usually hosted on the

robot itself to reduce overhead and increase battery life by removing the need for the

robot to regularly push/pull updates to/from the Web service. With the Web service

hosted on the robot, as soon as a command is received by the Web service, it can directly

call the code required to carry out the requested instruction.

Silverlight Web Site

Client Application

Web
Service

Figure 10: Component Communications

21

Figure 11: Receiving Data from the Simulator

From the perspective of the Silverlight application developed for this project, the

simulated robot’s sensor readings are periodically pushed to the Web service by the

Silverlight application. When the readings are received by the Web service, the data is

available to be pulled by the client application. This is analogous to the program (which

hosts the Web service) running on a physical robot. The program is able to poll the

robot’s sensors and sends these values back to the client application via the return value

of a function call.

Figure 12: Simulator Receiving Commands from the Client Application

The reverse data path is also possible and is taken when the client application

sends a command to the robot. This occurs when the client application makes a function

call to a function provided by the Web service. In the case of the simulator, when the

client application’s function call is received by the Web service with a command for the

robot, the command is stored and made available to be pulled by the Silverlight

application where it will then executed by the simulated robot. This situation is

22

equivalent to the client application executing a function call to the Web service hosted on

a physical robot. When the command is received by the Web service it can immediately

begin executing the command on the robot.

The Web service is a key component of service-oriented robotics and this

simulator. “Web services make functional building-blocks accessible over standard

Internet protocols independent of platforms and programming languages. These services

can represent either new applications or just wrappers around existing legacy systems to

make them network-enabled” (Wikipedia contributors). In this case, the Web service is

used primarily to wrap the existing functionality of the robot (i.e. movement) into a

service that can be accessed by a client application via the Internet. The Web service also

provides a means for the client application to receive data from the robot.

3.2. Client Application

The third component of the system is the client application. While the client

application is not technically a part of the simulator itself, it is the application that utilizes

the Web service provided by the simulator. The client application is what contains the

logic and algorithms that drive the (simulated) robot to complete a particular task. The

client sends each of its commands to and receives updates (such as sensor readings) from

the Web service. As the client application receives updates from the robot it can then

perform the (possibly very complex) calculations required to determine what the robot

should perform next.

One of the valuable features of the simulator is that it can be simple to switch

between controlling the physical robot and the simulated robot in the client application.

Because the user’s physical robot and the simulator both utilize a Web service to issue

commands and receive data from the robot, the user will need to modify which Web

service is referenced in their client application. Assuming the Web service hosted on the

23

user’s physical robot uses the same function calls as the simulator’s Web service, the user

can simply modify the URL used to reference the Web service to switch between

controlling the physical robot and the simulated robot. For this same reason, “[t]he

languages used in writing the application and the services can be different, which allows

us to write robotics applications using high-level languages such as Java and C#...”

(Chen, Du, and Garcia-Acosta 152).

3.3. The Silverlight Website

The website acts as a graphical user interface (GUI) and window into the virtual

world of the simulator. The website hosts a Silverlight application which provides the

primary functions that are typical in a simulator. The Silverlight application provides all

of the simulator-related functionality provided on the website, including the physics

engine, maze, robot, programming interface, etc. It enables the user to see the virtual

robot, its surroundings, and the values read from the robot’s sensors, as well as watch the

robot carry out the commands it receives in real-time. Another useful feature is the

ability for the user to simply click in the maze to add/remove blocks from the maze to

customize it as needed.

Figure 13: A Screenshot of the Silverlight Website

24

3.3.1. Silverlight

The website is powered by a Silverlight application. Silverlight is described as

“… a powerful tool for creating and delivering rich Internet applications and media

experiences on the Web” (About | Microsoft Silverlight).

Silverlight is provided as a

plug-in to most major browsers and supports many operating systems. Microsoft also

provides an SDK for developers to develop Silverlight applications, which can be run via

a Web browser or directly on a Windows Phone as a Windows Phone Application.

Silverlight’s broad compatibility, available features, and development environment

provided by Microsoft help make Silverlight a valuable component of this project.

3.3.2. The Maze, Robot, and Physics

The Silverlight application powers the maze, robot, and the physics engine. The

physics engine enables the robot to collide with walls and the outer-boundaries of the

simulated world. It also is the key component used to provide accurate sensor readings

from the robot. The maze provides an area in which the robot can travel and can utilize

the developer’s programming. The simulator also gives the user the ability to click in the

maze to add/remove blocks that constitute the walls of the maze. This enables the user to

create a custom maze that may better fit their needs or provide him/her with a more

challenging environment. The robot is the programmable entity within the simulation

environment. The manual controls, commands received from the Web service, and the

Web programming interface can be used to control the robot.

25

3.3.3. Web Programming Interface

The Web programming interface provides the user with the ability to send

instructions to the robot (i.e. “forward,” “turn left 90
o
,” etc.). This programming

interface is designed to easily enable young engineers to create and run simple programs

directly on the website. This provides an intuitive method for new students to be exposed

to programming, testing and debugging code, and the concepts of robotics programming.

The interface will enable new students to learn the challenges and satisfaction of creating

a program that can reliably control a robot and guide it through the maze successfully.

The programming interface is designed to be simple and succinct. As seen in

Figure 14, the Add New Line button provides users with the ability to add as many lines

as they need to program what they wish to implement. After clicking the Add New Line

Figure 14: Results of the "Add New Line" Button

Figure 15: Options Available to Check Various Conditions

26

button, two new dropdown boxes appear. The first dropdown box contains options for

testing various conditions, such as checking whether the forward sensor is reading a value

less than a user-specified value. (See Figure 15 for all of the options available.) This

dropdown box is used in conjunction with the textbox to its right to form a complete

conditional statement. The textbox provides a means for the user to specify particular

distances/conditions to be met.

The second dropdown box (see Figure 16) contains a list of actions that can be

taken when the condition (specified by the first dropdown box and the associated

textbox) is met. Each of the actions available is fairly simple and self-explanatory, with

the exception of the delayed-type actions. The delayed left 90 and delayed right 90

actions perform the same actions as left 90 and right 90 respectively, but with one slight

difference: a delay before executing the turn. These actions are useful, for example,

when the robot is travelling forward and detects that it can and should turn right.

Figure 16: Actions Available to be Executed

27

Figure 17: Example Delayed-type Action

As seen in Figure 17, turning immediately would cause the robot to collide with

the side of the new hallway because the robot did not attempt to center itself, in relation

to the new hallway, before entering it. In this example, by utilizing the delayed right 90

the robot continues moving forward for a short time before turning right. This prevents

the robot from colliding with the side of the new hallway.

Each instruction that is added represents an if-then-else statement. By adding

multiple instructions, users can create a program with the following structure:

As a result, if a condition is met, the corresponding action will be taken and none of the

following instructions will be evaluated. On the other hand, if none of the listed

conditions are met, then the default action will be executed. The program is executed

infinitely (unless stopped by the user), as if in an infinite loop. For example, in Figure

19, the program states that if the forward sensor receives a reading less than 50 it is to

turn around (i.e. turn 180
o
). Otherwise, it is to go forward (the default action). As a

if
then

else-if
then

else-if
...

... else
Figure 18: If-then-else Structure of the Web Programming Interface

28

result, the robot will travel forward until it reaches a wall and then turn around. This will

result in the robot going back and forth, from wall to wall, indefinitely.

Figure 19: Example Program

An easily overlooked feature of this programming interface is its availability via

a Web site. This makes it easy for students to access (from almost anywhere) and from

virtually any computer with an Internet connection. It also provides students with a

familiar environment by being located on a webpage. Most students will have

undoubtedly spent a considerable amount of time on the Internet, so this environment is a

natural one to them. The website’s programming interface also provides an engaging

learning experience, as students are able to execute their program easily on the website

and receive immediate feedback as they watch the simulated robot carry out their

instructions.

29

CHAPTER 4

DATA COLLECTION AND ANALYSIS

Data was collected and analyzed to determine how well inexperienced

programming students could interact with, and learn from, the programming interface on

the website. For the data collection process, a total of 28 students (23 freshman and 5

sophomore) students were studied while completing their assigned tasks. A short

presentation (approximately 10 minutes) was given to introduce the website and the

programming interface. The students were then asked to program, one at a time, two

algorithms: a right-wall following algorithm and a farthest-distance algorithm. Each

algorithm was explained to the students during the presentation before they were asked to

begin programming.

4.1. Research Objectives

This experiment was conducted to answer the following research questions:

1. What is the impact of Web-based visual programming in helping students

understand programming logic?

2. Does a user-friendly Web-based interactive tool help students understand human-

computer interaction and program construction?

3. Does the Web-based program provide an interesting feedback mechanism from

which students can evaluate their software?

To answer these issues, they were broken down into the following questions. The

answers to these questions can be found using data which can be measured and observed

during the experiment. The following lists the research questions and how they have

been broken down for this research.

1. What is the impact of Web-based visual programming in helping students

understand programming logic?

30

a. Do students place their instructions in the correct order in their solutions?

b. Do students have questions regarding the if-then-else structure of their

program?

c. Were there questions regarding the loops in or flow of the program?

d. Was each student able to develop a correct solution?

2. Does a user-friendly Web-based interactive tool help students understand human-

computer interaction and program construction?

a. Did students use proper robot commands to implement their program?

b. Were delayed-type commands used in the proper situations?

c. Is each student’s code correct and complete?

3. Does the Web-based program provide an interesting feedback mechanism from

which students can evaluate their software?

a. Were students able to determine when their code was correct or

incorrect?

b. Were students able to use the programming interface with little to no

help from the instructor?

c. Were the students able to program the algorithms within the given time

limits?

4.2. Problems to be Solved by Students

The right-wall following algorithm is a fairly simple algorithm while the farthest-

distance algorithm is more complex.

31

The right-wall following algorithm states: 1) if a hallway is detected 90
o
 to the right then

turn right 90
o
. 2) If it possible to move forward then move forward. 3) If none of the

other conditions are true then turn left 90
o
. In other words, go forward while turning right

whenever possible, but turning left when it is not possible to go forward any further.

The farthest-distance algorithm states: 1) go forward whenever possible. 2) If

you cannot go forward then turn in the direction in which you can see the furthest. For

example: turn left 90
o
 if the distance to your left is greater than the distance to your right.

Otherwise turn right 90
o
. In other words, go forward until you cannot go forward any

further. When you cannot go forward turn left or right, whichever allows you to travel

the furthest distance without turning again.

4.3. Types of Data Gathered

As the students programmed via the Web programming interface, the mistakes in

incorrect solutions and any questions were noted. The Evaluation table provides a list of

If it is possible to

move forward

Then: Move forward

Else: Turn 90o in the
direction in which the

furthest distance is
detected

Figure 21: Farthest-Distance Algorithm

If there is a
hallway to the

right

Then: Turn

right 90o

Else: if it is
possible to move

forward

Then: Move
forward

Else: Turn left 90o

Figure 20: Right-Wall Following Algorithm

32

various skills, achievements, and specific actions that were to be evaluated by instructor

grading. As other notable events occurred, they too were noted by the instructor. When

each student completed an algorithm, the following information was recorded: the

number of lines of code the student used to implement the algorithm and the time it took

him/her to program a correct solution.

Table 5: Evaluation Process During Data Collection

Evaluation Process During Data Collection

Skill Criteria To Observe Analyze

Program

Control

Flow Logic

Students recognize

and correctly

utilize the if-then-

else structure,

loops, and flow of

the program to

construct software.

Do students become

confused regarding the

control flow of the

program or write invalid

logic by placing their

code in the wrong order?

1) Did students place their

instructions in the correct order in

their solutions?

2) Did students have questions

regarding the if-then-else

structure of their program?

3) Were there questions regarding

the loops in or flow of the

program?

4) Was each student able to

develop a correct solution?

Commands

for Robot

Navigation

Students

understand the

correct uses for the

robot’s commands.

Did students use an

incorrect robot command

in an attempt to complete

an action?

5) Did students use proper robot

commands to implement their

program?

6) Were delayed-type commands

used in the proper situations?

Evaluating

Algorithm

Correctness

Students are able

to determine when

their program is or

is not working

correctly.

Examine each student’s

program for correctness

when they believe they

are finished.

7) Is each student’s code correct

and complete?

How many times do

students believe he/she

has the correct solution

but is incorrect?

8) Were students able to

determine when their code was

correct or incorrect?

Human-

Computer

Interaction

Students learn to

use and interact

with the website

and are able to

quickly understand

the feedback

provided by it.

Do students struggle to

understand the website or

the programming

interface?

9) Were students able to use the

programming interface with little

to no help from the instructor?

10) Were the students able to

program the algorithms within the

given time limits?

33

Each student was also evaluated individually by (1) the student’s ability to solve

the programming problem within the time limit and (2) the time taken to successfully

program the assigned algorithm (if applicable). Comments and feedback received from

the students were also noted. For additional feedback from the students, they were also

asked to complete a survey.

After each of the students finished programming the algorithms, they were given

a rating sheet. Using this survey, each student rated how well the website helped them

learn and understand various skills and concepts. The rating sheet asked the students to

rate these items on a scale from 1 (very little to no help) to 5 (very helpful). The results

from the data gathered can be seen in the following tables and graphs. The raw data can

be found in Appendix A.

4.4. Possible Outcomes of Student Projects

The table above describes what the instructor should look for during the data

collection process. Below are some positive and negative examples that relate to the

questions stated in the previous table. Where applicable, figures have been included

containing possible implementations that demonstrate the respective example.

4.4.1. Questions 1-4

Positive Examples: Students placed their instructions in the correct order (Figure

22 and Figure 23) without asking for help. Students were able to implement correct

solutions for the algorithms (Figure 22 and Figure 23). Students did not ask questions

regarding the if-then-else structure, loops, or flow of their program.

Negative Examples: Students asked for help from the instructor to place their

instructions in the correct order. Students did not implement a correct solution for an

34

algorithm within the time limit. Students asked questions regarding the if-then-else

structure, loops, or flow of their program.

Figure 22: A Correct Solution for the Right-Wall Following Algorithm

Figure 23: A Correct Solution for the Farthest-Distance Algorithm

4.4.2. Questions 5-6

Positive Examples: Students used the correct robot commands in their programs

and utilized the delayed-type commands in the correct situations (Figure 22 and Figure

23). Negative Examples: Students’ programs were incorrect due to the improper use of

robot commands (Figure 24). Delayed-type commands were not used by the students in

the proper situations (Figure 25).

35

Figure 24: An Incorrect Solution due to Improper Use of the Robot's Commands

Figure 25: An Incorrect Solution due to Improper Use of a Delayed-type Command

4.4.3. Questions 7-8

Positive Examples: Students successfully implemented a correct program for

each algorithm (Figure 22 and Figure 23). Students’ programs were correct before asking

the instructor to verify them. Negative Examples: Students were unable to implement a

correct program for an algorithm (Figure 26). The students asked the instructor to verify

their solution, but their solution was incorrect.

Figure 26: An Incorrect Solution for the Right-Wall Following Algorithm

36

4.4.4. Questions 9-10

Positive Examples: Students were able to utilize the Web programming interface

without receiving help from the instructor. Students were able to implement correct

programs for the algorithms (Figure 22 and Figure 23) within the time limit. Negative

Examples: Students required help from the instructor to utilize the programming

interface. Students were unable to implement a correct solution for an algorithm within

the time limit.

4.5. Data Collected

Table 6: Data Collected Per Algorithm

Algorithm Average Time Taken
Average Lines of

Code Used

Student

Success Rate

Right-Wall

Following Algorithm
5 minutes 17 seconds 5 100%

Furthest-Distance

Algorithm
3 minutes 38 seconds 7 100%

Figure 27: Time to Solve the Right-Wall-Following Algorithm

0

1

2

3

4

5

6

<=1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-15

N
u

m
b

e
r

o
f

St
u

d
e

n
ts

Time Taken (in minutes)

Time to Solve the
Right-Wall Following Algorithm

37

 The average time needed to solve the right-wall following algorithm was 5

minutes and 17 seconds. The standard deviation is 3 minutes and 53 seconds. The

maximum time required was 14 minutes, while the minimum time needed was 30

seconds.

Figure 28: Time to Solve the Farthest-Distance Algorithm

The average time needed to solve the farthest-distance algorithm was 3 minutes

and 48 seconds. The standard deviation is 2 minutes and 15 seconds. The maximum

time required was 9 minutes and 30 seconds, while the minimum time needed was 45

seconds.

0

1

2

3

4

5

6

<=1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-15

N
u

m
b

e
r

o
f

St
u

d
e

n
ts

Time Taken (in minutes)

Time to Solve the
Farthest-Distance Algorithm

38

Table 7: Instructor Observations and Analysis

Results

Skill

Average

Rating by

Students*
(1 little to no help

– 5 very helpful)

Observations Analysis

Program

Control

Flow Logic

4.0

Students correctly utilized the

program’s control flow logic.

One case was noted where

instructions were initially

placed in the wrong order.

Each student was successful in

implementing the given

algorithms. The average rating

received from the students was

positive. Only one of twenty-

eight (3.6%) students had a fault

regarding the program’s control

flow logic.
All of the students successfully

implemented the algorithms.

Commands

for Robot

Navigation

4.3

Ultimately, students used the

correct commands to

implement the algorithms

presented to them.

All of the students successfully

developed correct solutions.

The average rating received

indicates that students found the

interface to be helpful to them in

this regard. Improvements

could be considered to help

users understand how the units

of measurement relate to the

virtual world.

Three of twenty-eight (10.7%)

students did not initially use a

delayed-type instruction when

needed.

Some students had trouble

determining the amount of

distance represented by the

sensor readings and

programming inputs.

Evaluating

Algorithm

Correctness

3.9

Ultimately, each student’s code

for each algorithm was correct.
Students did not repeatedly

mistake an incorrect

implementation for a correct

solution. All of the students

successfully implemented the

algorithms. The average rating

by students also illustrates that

the students found the simulator

to be notably helpful when

evaluating their algorithms.

Three of twenty-eight (10.7%)

students mistakenly believed

they had implemented the

correct solution.

None of the students repeatedly

asked questions regarding the

correctness of their program.

Human-

Computer

Interaction

4.1

Students were quick to begin

utilizing the programming

interface and write code.

Students were able to utilize the

programming interface without

the need for asking questions.

Furthermore, students were able

to solve each algorithm in less

than six minutes on average.

The average student rating was

positive.

No questions were asked

regarding the use of the

interface or for explanations of

the robot’s actions.

* See the figures below for a breakdown of the ratings received.

39

Figure 29: Breakdown of the Student Ratings Received

 The research questions were broken down into ten new questions. These

questions, and relevant data collected during the research, are presented in the following

text. (1) Did students place their instructions in the correct order in their solutions? It

was observed, during the research, that the students did accurately use the program’s

control flow logic. Only one of twenty-eight (3.6%) students believed they had a correct

solution when instructions were placed in a wrong order.

40

 (2) Did students have questions regarding the if-then-else structure of their

program? (3) Were there questions regarding the loops in or flow of the program?

Students did not ask questions regarding these topics. However, as noted above, one

student did believe he had a correct solution, but his program contained instructions in

the wrong order. This error may have occurred due to an incomplete understanding of

the topics presented in questions (2) and (3). However, in regards to question (4) (was

each student able to develop a correct solution?); all of the students were able to

successfully implement the algorithms presented to them.

 (5) Did students use proper robot commands to implement their program? (6)

Were delayed-type commands used in the proper situations? Three of twenty-eight

(10.7%) students did not initially use a delayed-type instruction in their solutions when

needed. However, these students learned from their mistakes and, in the end, all of the

students used the proper commands to implement the algorithms. (7) Is each student’s

code correct and complete? Ultimately, each student implemented a correct solution for

each of the algorithms presented to them.

 (8) Were students able to determine when their code was correct or incorrect?

During the experiment, none of the students repeatedly believed they had implemented a

correct solution when they had not. Students were able to regularly determine when their

programs were or were not correct.

(9) Were students able to use the programming interface with little to no help

from the instructor? (10) Were the students able to program the algorithms within the

given time limits? Students immediately began working with the Web programming

interface without any significant problems. None of the students asked questions with

regards to interaction with the programming interface. Additionally, students solved each

of the algorithms presented to them in less than six minutes on average.

41

4.6. Evaluation

For this experiment, students were monitored while they utilized the simulator

and its Web programming interface. Initially, students were given a short presentation to

introduce them to the website, the simulator, and the programming interface. Students

were then shown two different algorithms and were asked to program each algorithm

using the simulator’s Web programming interface. As the students programmed the

algorithms, they were supervised and helped answer any questions they had. Other

statistics were also recorded, such as how long each student needed to implement a

correct solution for each of the given algorithms as well as the number of lines used.

From the data gathered and surveys received, the results indicate that the students

appreciated the programming interface provided on the website. Few questions were

asked by the students regarding the Web programming interface.

A few students had some trouble in a couple of areas. A small number of

students communicated that they had trouble determining what part of their code was

causing the error they were experiencing. While this type of problem appears in any

programming language or environment, improvements to the Web programming interface

may be possible to help students locate an error in their code. With regards to delayed-

type instructions, only a few students used an improper instruction where a delayed-type

instruction was needed. This may be reduced by placing greater emphasis on these

instructions during the presentation used to introduce the students to the website.

In almost every category, the students found the website particularly helpful to

them in understanding and learning various principles and skills. Furthermore, many

expressed interest in using the software again. Some students said that they enjoyed

using the software, a number of them calling it “fun.”

42

The data also reveals that students were able to successfully program the second,

and slightly more complex, algorithm in significantly less time, on average, than the first

algorithm. This is possibly due to the students becoming more familiar with the

programming environment as they completed their first program. As a result, students

were able to more efficiently design, implement, and test their second program.

43

CHAPTER 5

SUMMARY

As service-oriented robots become more popular and are utilized in new

applications, there will be a greater need for a simulator which supports such robots. The

simulator described in this document not only provides such support, but also includes a

Web-accessible programming interface which aids new students in learning topics which

are related to robotics programming. To determine the effectiveness of this Web

programming interface, students were monitored while programming algorithms using

this interface. The results from the data gathered were positive.

Table 8: Summary

Summary

Research Question CSTA Topic Major Finding Recommendations

What is the impact of

Web-based visual

programming in

helping students

understand

programming logic?

Understanding and

exploring the problem

(Madden et al. 7). The website was found

to be an effective tool

in teaching new

students many of the

foundational concepts

in the field of robotics

programming.

To help introduce the

basic concepts of

programming logic,

students and educators

should utilize visual

programming

languages instead of

text-based languages.

Design, code, and test

a solution (Madden et

al. 23).

“The power of

stepwise refinement”

(Madden et al. 7).

“Graphs” (Madden et

al. 12).

Does a user-friendly

Web-based interactive

tool help students

understand human-

computer interaction

and program

construction?

“Interactive

Programming”

(Madden et al. 8).

The students were able

to start using the

interactive

programming interface

quickly and program

different algorithms,

each in a matter of a

few minutes on

average.

Students and

educators should

employ an interactive

tool which encourages

‘learning by doing’ to

aid students in the

understanding of

program construction

and human-computer

interaction.

Is the Web-based

program useful in

providing an

interesting feedback

mechanism for

students to evaluate

their software?

“Identify elements of

user-friendly Web

sites” (Madden et al.

14).

The website provided

clear feedback to the

students enabling them

to have little trouble

while solving the

algorithms and

correcting any

mistakes they made.

Students and

educators should

consider using a

program with apparent

and immediate

feedback to aid

students in software

evaluation.

44

As seen in the above table, by answering the research questions, developed using

CSTA guidelines, interesting findings were discovered. The initial question considered

was: what is the impact of Web-based visual programming in helping students understand

programming logic? By exploring this issue, it was found that the website was an

effective tool and aided students in learning programming concepts. As a result, it is

recommended that students and educators employ a visual programming language, rather than

a text-based language, to aid the learning of basic concepts of programming logic.

 The second question asked was: does a user-friendly Web-based interactive tool

help students understand human-computer interaction and program construction? By

observing the way in which students utilized the interactive programming interface, it

was determined that the students were able to quickly begin programming and rapidly

implement correct solutions for the algorithms. Consequently, it is recommended that

while educating students regarding program construction and human-computer

interaction, interactive tools be used which engage students and promote user

involvement.

 Lastly, the final question considered was: is the Web-based program useful in

providing an interesting feedback mechanism for students to evaluate their software? By

examining this, it was discovered that students were able to easily solve the algorithms

and correct any mistakes. This was promoted by the clear and instant feedback provided

by the website. Therefore, when evaluating software, students and educators should select

educational programs which employ immediate and understandable feedback.

45

CHAPTER 6

FUTURE WORK

Development has already begun on a lightweight version of the simulator that

runs on Windows Phones. The lightweight version does not provide the programming

interfaces available in the full version. The Windows Phone version does, however,

provide the user with the ability to modify the maze and manually control the robot.

Additionally, this version will provide the user with several pre-programmed algorithms

and mazes to choose from. This allows the students to experiment with and explore

different scenarios and configurations and learn how these algorithms perform in various

situations. Progress been made by Arizona State University students on a similar project

that runs on a website and enables students to see how the robot navigates a maze when

using any of the four algorithms available (“HexCrawlerSim2”).

In the future, additional features could be added to the simulator presented in this

paper. By evaluating the feedback received from students, it was determined that it may

be beneficial to add a feature that would enable students to see what code is currently

being executed. This would provide greater feedback to the student and help them debug

their code. The comments received also revealed that some students had trouble relating

the scale of the units of measurement to the maze. A scale could be added to the

simulator (similar to a legend on a map) that would show the physical representation of

the distance depicted by different amounts of measure.

46

REFERENCES

“About.” About - Algodoo. Algoryx Simulation AB. 2012. Web. 1 December, 2012.

<http://www.algodoo.com/wiki/About>.

“ASU Repository.” Arizona State University. n.d. Web. 5 November, 2012.

<http://venus.eas.asu.edu/WSRepository/repository.html>.

“Call for Papers.” SOCA 2012. IEEE International Conference on Service-Oriented

Computing and Applications. n.d. Web. 26 November, 2012.

<http://conferences.computer.org/soca/2012/cfp.htm>.

Chen, Yinong, Zhihui Du, and Marcos Garcia-Acosta. "Robot as a Service in Cloud

Computing.” In Proceedings of the Fifth IEEE International Symposium on

Service Oriented System Engineering (SOSE). Nanjing: June 4-5, 2010. Pages

151-158.

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5570010&isnumber

=5569889>.

Chen, Yinong, Wei-Tek Tsai. Service-Oriented Computing and Web Software

Integration. 3rd edition. Iowa: Kendall Hunt Publishing. 2011.

Chen, Yinong, Wei-Tek Tsai. “Towards Dependable Service-Oriented Computing

Systems.” Simulation Modelling Practice and Theory, vol. 17, 2009. Pages

1361-1366.

<http://www.public.asu.edu/~ychen10/fullpaper/ChenTsaiSimpat09.pdf>.

Collins, A., and R. Halverson. “The second educational revolution: rethinking education

in the age of technology.” Journal of Computer Assisted Learning, vol. 26, no.1.

Blackwell Publishing Ltd. 12 January, 2010.

<http://onlinelibrary.wiley.com.ezproxy1.lib.asu.edu/doi/10.1111/j.1365-

2729.2009.00339.x/full>.

“Frequently Asked Questions.” About | Microsoft Silverlight. n.d. Web. 4 November,

2012. <http://www.microsoft.com/silverlight/what-is-silverlight/>.

“HexCrawlerSim2.” Arizona State University. n.d. Web. 5 November, 2012.

<http://venus.eas.asu.edu/WSRepository/RaaS/Hexcrawler/>.

Lee, Yann-Hang, et al. "A code generation and execution environment for service-

oriented smart home solutions." Service-Oriented Computing and Applications

(SOCA), 2009 IEEE International Conference on, 14-15 Jan. 2009. Pages 1-8.

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5410277&isnumber

=5410249>.

Madden, Bill, et al. A Model Curriculum for K-12 Computer Science Level III Objectives

and Outlines. Computer Science Teachers Association (CSTA). Computer

Science Teachers Association (CSTA), 2007. Web. 30 November, 2012.

<http://csta.acm.org/Curriculum/sub/CurrFiles/L3-Objectives-and-Outlines.pdf>.

47

“Microsoft Robotics Developer Studio.” n.d. Web. 3 November, 2012.

<http://www.microsoft.com/robotics/#Product>.

“Robotics Camp.” Arizona State University. n.d. Web. 5 November, 2012.

<http://venus.eas.asu.edu/roboticscamp/>.

Tsai, Wei-Tek, et al. “An Introductory Course on Service-Oriented Computing for High

Schools.” Journal of Information Technology Education, vol. 7, 2008. Pages

315-338. <http://jite.org/documents/Vol7/JITEv7p323-346Tsai378.pdf>.

Tsai, Wei-Tek, et al. "Collaborative Learning Using Wiki Web Sites for Computer

Science Undergraduate Education: A Case Study," Education, IEEE

Transactions on, vol.54, no.1. February 2011. Pages 114-124.

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5454284&isnumber

=5705620>.

Verno, Anita and Brian Fuschetto. CSTA National Standards and their Impact on the

Future of K-12 Computer Education. Computer Science Teachers Association

(CSTA). N.p. n.d. Web. 30 November, 2012.

<http://cs4hs.cs.rutgers.edu/Fuschetta_Rutgers-

NationalCSTAStandards%20(2).pptx>.

“Virtual Cell Modeling & Analysis Software.” VCell – The Virtual Cell. University of

Connecticut Health Center. n.d. Web. 1 December, 2012.

<http://www.nrcam.uchc.edu/>.

Web Services Architecture Working Group. “Web Services Architecture.” 11 February,

2004. Web. 3 November, 2012. <http://www.w3.org/TR/ws-arch/>.

“What is Alice?” Carnegie Mellon University. n.d. Web. 3 November, 2012.

<http://www.alice.org/index.php?page=what_is_alice/what_is_alice>.

“What is LogicWorks 5?” Capilano Computing Systems. Capilano Computing Systems

Ltd. 2011. Web. 1 December, 2012. <http://www.capilano.com/lww_5>.

“What is X-Plane?” Meet X-Plane | X-Plane.com. N.p. n.d. Web. 1 December, 2012.

<http://www.x-plane.com/desktop/meet_x-plane/>.

Wikipedia contributors. "Service-oriented architecture." Wikipedia, The Free

Encyclopedia. Wikipedia, The Free Encyclopedia, 31 Oct. 2012. Web. 6 Nov.

2012.

48

APPENDIX A

RAW DATA COLLECTED

49

Table 9: Raw Data - Student Survey Results

Program
Control Flow

Logic

Logic for
Robot

Navigation

Evaluating
Algorithm

Correctness

Human-
Computer
Interaction

5 5 5 4

5 5 4 3

5 5 4 3

4 4 5 4

4 3 4 4

4 4 4 5

5 5 3 5

5 5 5 5

3 5 3 3

4 3 3 4

5 5 5 5

2 5 4 4

4 2 2 4

2 4 1 5

3 3 3 3

4 4 5 5

3 5 4 5

5 5 4 5

3 4 5 3

4 3 3 4

5 4 4 4

3 4 2 2

4 4 4 3

2 4 4 4

4 5 5 5

5 5 5 5

5 5 5 5

5 5 4 5

50

Table 10: Raw Data - Time Taken to Solve Each Algorithm (in seconds)

Right-Wall Following
Algorithm

Farthest-Distance
Algorithm

30 240

30 240

40 360

60 240

60 270

60 240

135 120

150 570

180 70

180 425

180 425

210 100

240 480

240 90

300 90

300 180

330 360

360 180

360 120

420 45

450 45

480 300

540 180

540 300

600 180

780 225

780 60

840 240

51

APPENDIX B

SAMPLE STUDENT SURVEY

52

(Note: Some of the topics in the survey were later removed from the scope of this paper.)

Figure 30: Student Survey

(Circle one) Year in school: Freshman Sophomore Junior Senior Graduate

Please feel free to add comments/suggestions in the space provided. Please provide feedback for
ratings less than 5.

On a scale from 1 (very little to no help) to 5 (very helpful), how well does this software help you learn
or better understand:

1. Program Control Flow Logic (if-then-else, loops)

2. Composing Code

3. Logic for Robot Navigation

4. Evaluating Algorithm Correctness

5. Debugging

6. Human-Computer Interaction

7. Software Engineering Design Process
(i.e. Define the problem, design a solution, test the solution (repeat))

53

APPENDIX C

CRC CARDS

54

Table 11: CRC Card for the Animation Component

Animation Component

Responsibilities Collaborators

Get the currently assigned

robot action/motion

motion

Calculate the requested

motion of the robot

theRobot

Perform collision detection theRobot

theWorld

Move the robot on screen theRobot

Table 12: CRC Card for the Manual Control Interface

Manual Control Interface

Responsibilities Collaborators

Provide users with buttons

from which they can control

the simulated robot

forwardButton

leftButton

rightButton

reverseButton

stopButton

Set the current robot motion to

the action described by the

button clicked by the user

motion

Stop the robot when the user

releases their currently

selected button

motion

Table 13: CRC Card for the Web Programming Interface

Web Programming Interface

Responsibilities Collaborators

Provide users with an

interface from which they can

develop a program capable of

controlling the robot

executeProgrammingButton

addNewLineButton

defaultActionComboBox

addedDropdowns

addedTextBoxes

Execute the program,

developed by the user,

described in the Web

programming interface

motion

addedDropdowns

addedTextBoxes

55

Table 14: CRC Card for the executeProgrammingButton

executeProgrammingButton

Responsibilities Collaborators

Executing the code developed

by the users via the Web

programming interface

defaultActionComboBox

addedDropdowns

addedTextBoxes

motion

Table 15: CRC Card for the addNewLineButton

addNewLineButton

Responsibilities Collaborators

Adding a new pair of

dropdown boxes for the user

to use in the development of

their program

addedDropdowns

addedTextBoxes

Table 16: CRC Card for the Web Service Communication Component

Web Service Communication Component

Responsibilities Collaborators

Poll the Web service for up-

to-date instructions

Web service

Set the current robot motion in

accordance to the instruction

received from the Web service

motion

