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ABSTRACT 

 This study focuses on implementing probabilistic nature of material 

properties (Kevlar® 49) to the existing deterministic finite element analysis 

(FEA) of fabric based engine containment system through Monte Carlo 

simulations (MCS) and implementation of probabilistic analysis in engineering 

designs through Reliability Based Design Optimization (RBDO).  

First, the emphasis is on experimental data analysis focusing on 

probabilistic distribution models which characterize the randomness associated 

with the experimental data. The material properties of Kevlar® 49 are modeled 

using experimental data analysis and implemented along with an existing spiral 

modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric 

based engine containment simulations in LS-DYNA. MCS of the model are 

performed to observe the failure pattern and exit velocities of the models. Then 

the solutions are compared with NASA experimental tests and deterministic 

results. MCS with probabilistic material data give a good prospective on results 

rather than a single deterministic simulation results. 

 The next part of research is to implement the probabilistic material 

properties in engineering designs. The main aim of structural design is to obtain 

optimal solutions. In any case, in a deterministic optimization problem even 

though the structures are cost effective, it becomes highly unreliable if the 

uncertainty that may be associated with the system (material properties, loading 

etc.) is not represented or considered in the solution process. Reliable and optimal 
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solution can be obtained by performing reliability optimization along with the 

deterministic optimization, which is RBDO. In RBDO problem formulation, in 

addition to structural performance constraints, reliability constraints are also 

considered. This part of research starts with introduction to reliability analysis 

such as first order reliability analysis, second order reliability analysis followed 

by simulation technique that are performed to obtain probability of failure and 

reliability of structures. Next, decoupled RBDO procedure is proposed with a new 

reliability analysis formulation with sensitivity analysis, which is performed to 

remove the highly reliable constraints in the RBDO, thereby reducing the 

computational time and function evaluations. Followed by implementation of the 

reliability analysis concepts and RBDO in finite element 2D truss problems and a 

planar beam problem are presented and discussed.  
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1. INTRODUCTION 

 The traditional deterministic optimization (DO) can be used to obtain 

optimal solutions to structural design problems involving considerations such as 

cost, serviceability, strength etc. A typical design optimization problem is posed 

as follows. 

 

Find    { }

to minimize f( )

subject to ( ) 0 for i=1,..,n

                 h ( ) 0 for j=1,..,(n )

subject to 

i c

j tc c

l u

g

n



 

 

x

x

x

x

x x x

 (1.1.1) 

Vastly different solution techniques are available to solve such problems - 

gradient-based techniques that find the closest local optimal design point in a 

continuous design space to population-based techniques that can potentially be 

used to find the global optimal design point in continuous and discontinuous 

design space. In any case, in a deterministic optimization problem formulation the 

uncertainty that may be associated with the system (material properties, loading 

etc.) is not represented and considered in the solution process.  

 RBDO incorporates the stochastic nature of the random variables in 

evaluating the response of the system and an appropriate solution is found. In the 

problem formulation, in addition to structural performance constraints, reliability 

constraints are considered. The problem statement is posed as follows. 



  

 2   

   

 

Find    { }

to minimize f( )

subject to ( ) 0 for i=1,..,n

                 h ( ) 0 for j=1,..,(n )

                 ( )  for k=1,..n

                  

                  

i c

j tc c

a

k k rc

l u

l u

g

n

 



 



 

 

x

x

x

x

X

x x x

X X X

 (1.1.2) 

In the above problem formulation, additional reliability based constraints are 

imposed that are computed from the random variables associated with the 

problem.  

 Structural analysis is an integral part of the design optimization problem 

statement and today, the analysis method of choice is the finite element method. 

In this thesis, two design examples are considered. The first is the design of planar 

trusses that serves to illustrate how RBDO can be potentially used in the optimal 

design of structural systems. The second example deals with implementation of 

the concept in fabric based engine containment system. Woven fabrics are widely 

used in the propulsion engine containment systems to mitigate the damaging 

effects from the fan blade out events. Kevlar® 49 is widely used in industrial 

products where large deformation and high energy absorption are required. A 

simple fabric weave using Kevlar® 49 fabric is shown in the Figure 1-1. It 

consists of warp yarns (in horizontal direction) and fill yarns (in vertical 

direction). 
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Figure 1-1. Kevlar® 49 fabric 

 To understand the deformation of the fabric under impact system and 

build a finite element model, many aspects have to be studied such as material 

properties of the constituent parts, projectile geometry, impact velocity, friction 

between fabric and projectile, friction between fabrics plies, and boundary 

conditions associated with the system. Material properties form the basis of the 

constitutive model. Tension tests on the material in warp and fill yarns show that 

the material is quite similar in both the directions and other tests such as picture 

frame shear test, friction test are conducted to characterize the shear and friction 

properties of the material [1]. Previous analyses [2, 3, 4, 5, 6 & 7] were based on 

the use of deterministic material properties (mean value from a set of 

experimental results) in the material model. In this study, some of the important 

material properties are modeled using probabilistic distribution models that are 

then used to randomly assign material properties to elements in the finite element 

model.  

1.1 Literature Review 

Considerable amount of research has been carried out by other researchers to 

analyze structural systems considering the stochastic nature of material properties, 

geometric nonlinearities or loading conditions.  
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1.1.1 Probabilistic Distribution Models  

 Basu et al. [8] studied the effects of using different types of statistical 

models in modeling the strength of ceramic materials such as monolithic ZrO2 and 

ZrO2-TiB2 composites, glass and Si3N4. Goodness of fit tests are used with 

cumulative distribution function (CDF) and probability distribution function 

(PDF) of various distribution models to distinguish between a good fit and a 

better fit. The researcher used Weibull, Gamma, generalized exponential, normal 

and lognormal distributions with goodness of fit tests such as Kolmogorov 

Smirnov test, Anderson Darling test, Maximum likelihood criterion test and Chi-

square test. 

 Cousineau [9, 10, 11] studied the importance of three parameter Weibull 

distribution by focusing on the change in the skew of the model with the change 

in the shape parameter. He compared the Weibull 2-parameter with Weibull 3-

parameter model showing that for some data, model parameters are poorly 

estimated when the Weibull 2-parameter model is used instead of 3-parameter 

model. The studies also include different methods for estimating the parameters 

such as method of moments, maximum likelihood and mixed method (involving 

both method of moments and maximum likelihood). The results show that the 

mixed method which involves minimizing two equations simultaneously 

containing location and shape parameters is the one that consistently produces 

more accurate results. An unbiased estimation method for the Weibull 3-

parameter distribution is demonstrated using MCS technique. 
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 Gupta et al. [12, 13, 14 & 15] developed the generalized exponential 

distribution as a particular member of Weibull exponential distribution. The 

authors studied the closeness of the distribution with the other existing 

distributions frequently used in carrying out lifetime data analysis. They also 

compared the distribution with Gamma, lognormal and Weibull distributions, and 

the study reveals that the generalized distribution provides more accurate results 

compared to other distributions. The accuracy estimates are carried out using 

Maximum Likelihood Estimators (MLE), Method of Moment Estimators (MME), 

Least Square Estimators (LSE) and Unbiased Estimator (UBE) with UBE, MLE 

and MME being the superior methods. 

1.1.2 Probabilistic Finite Element Analysis through Weibull Models 

 Dooraki et al. [16] studied the role of Weibull parameters on the strength 

of different yarns. Quasi-static tests and high rate tests were performed on Kevlar 

129, Kevlar KM2, Kevlar LT, Twaron and Zylon with the gage length effect on 

Kevlar 129. The results from the study shows that the scale parameter obtained 

for various gage lengths is associated with the average strength of the yarn and the 

shape parameter is related to variation of the strength among the specimens. In 

addition, (a) Weibull parameters are dependent on the number of specimens that 

are used to model the data and (b) probability of defects increases with the 

increasing gage length. Finally, an exponential 3 parameter growth model is 

developed by considering the normalized volume and normalized failure stress of 

the material. 
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 Bimodal Weibull distribution of strength of Kevlar-KM2 fabric has been 

used by Wang et al. [17] to determine the effect of fiber friction coefficient during 

ballistic impacts. Digital element approach, also known as sub-yarn modeling, is 

used where each yarn is divided into number of digital fibers. MCS is used to 

assign a unique material property at the element level based on the concept that 

the statistical property varies along the length and thickness of the yarn. The 

developed finite element model using MCS showed good results when compared 

with the experimental results using residual velocities. 

 Nilakantan et al. [18] used Monte Carlo approach at yarn level modeling 

(Kevlar KM2 fabric) in which all the elements modeling a yarn are assigned a 

unique set of material properties based on the probabilistic nature of elastic 

modulus, strength and failure strain. The FE model is broken into 50 zones and 

each zone is assigned a set of material properties. They do not specify the number 

of MCS runs made. However, they compare the MCS results with deterministic 

runs made using low, mean and high strength of the material.  

 Gu [19] simulated the ballistic penetration of conical steel projectile 

through plain Twaron fabric. The finite element method used the actual fabric 

structure (warp and weft yarns) in which yarns are modeled using three-

dimensional elements having probabilistic-based material properties (Young's 

modulus). The results from the simulation show that the residual velocities are 

comparable to experimental results (varying number of fabric layers and projectile 

velocities).  
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1.1.3 Reliability Analysis and Implementation  

 Mahadevan and Haldar [20] illustrated the stochastic analysis of structures 

using first-order reliability method (FORM), second-order reliability method 

(SORM) and MCS. Various types of FORM analysis were studied such as 

Hasofer-Lind [21] method and Rackwitzer & Fiessler [22] method. The Hasofer-

Lind method can be applied to the problems involving only linear functions and 

normal variables whereas the Rackwitz and Fiessler approach can be applied to 

problems involving non-normal variables and nonlinear functions. Rackwitz and 

Fiessler explain the analysis using second order approximation where curvature of 

the associated performance function is considered. The second order 

approximation provides for a more accurate representation of nonlinear functions. 

 Kiureghian et al. [23] proposed the point-fitting method for computing the 

curvature of the nonlinear limit state functions. The method is based on fitting a 

paraboloid at discrete points. Erroneous results that are produced in curvature 

fitting method due to noise are reduced in this method. Kiureghian and Stefano 

[24] developed a better method for estimating the curvatures using the 

performance function gradient in an iterative way. The method computes the 

principal curvatures of the limit state function in the order of decreasing 

magnitude. The researchers show that both the above mentioned methods are 

efficient for problems involving large number of random variables.  

 Liu and Der Kiureghian [25] use various optimization methods for solving 

reliability analysis problem formulation. The optimization methods include 
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gradient projection method, penalty method, Augmented Lagrangian method, 

sequential quadratic programming, HL-RF method and modified HL-RF. The 

optimization techniques are compared based on accuracy, efficiency and 

robustness. Five test cases involving explicit functions of random variables were 

used, and the modified HL-RF method was found to be best considering number 

of function evaluations, gradient evaluations and time required for the analysis as 

the metrics. 

1.1.4 Reliability Based Design Optimization  

 There are two types of approaches in RBDO and they are described next.  

Mono-Level Approach (or) Double-Loop Approach: In this approach, reliability 

optimization (RO) is carried out within the DO (see Eqn.(1.1.10)). The process is 

stopped once the results converge. 

Decoupling Approach: In this approach the RO and DO are carried out separately. 

DO is used to solve the optimization problem given by Eqn.(1.1.2) but without the 

reliability constraints. Once the DO solution is obtained, a reliability-based 

optimization problem (see Eqn.(1.1.8) and Eqn.(1.1.9)) is solved. Results from the 

DO are updated in the RO and vice versa. The iterative procedure is stopped once 

the results converge. 

 Thanedar and Kodiyalam [26] replaced deterministic constraints with 

probabilistic constraints as follows. 

 

Find    { }

to minimize f( , )

subject to 1-P ( ( , ))  for i=1,..,na

i i i rcg R

x

X x

X x

 (1.1.3) 
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where 
a

iR , the allowable reliability level between 0 and 1, is specified for all the 

constraints involving random variables and iP  is the probability function. Truss 

and cantilever beam problems involving linear functions, nonlinear functions, 

non-normal variables are solved using the proposed approach and the results are 

compared with results from deterministic models.  

 Royset et al. [27] proposed three different problem formulations with 

probabilistic constraints. They are (a) minimize the cost subject to reliability 

constraints, (b) maximize the reliability subject to cost and structure constraints 

and (c) minimize the initial cost and expected cost of failure subject to reliability 

and structural constraints. The last problem is reformulated by replacing the 

reliability constraints with the function that captures the minimum of limit state 

function within a ball of specified radius. In this approach, DO and RO are 

decoupled, and a series of system failure is considered in which failure of one 

constraint leads to the failure of the structure. 

 Enevoldsen and Sorensen [28] show the different formulations of 

reliability based design involving reliability constraints, reliability inspection and 

planning. Reliability based estimation is based on FORM analysis. Sensitivity of 

objective function, optimal design and constraints with respect to optimization 

variables and other deterministic parameters of the problem are also performed as 

post-analysis to study the effect of optimal solution.  
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 Kuschel and Rackwitz [29] proposed mono-level formulation of reliability 

based cost optimization with the measure of reliability based on FORM analysis. 

The problem formulation is modification of the one proposed by Polak et al. [30]. 

 

0

1

Find    { }

to minimize f( ) C ( ) ( ) ( || ||)

subject to ( || ||)

                 g ( ) 0

                 ( ) || |||| ( ) || 0

                 H( ) 0

rcn

i

i

a

i i

i i

T

i U i i U i

C p L p

p

g g







    

  



   



x

x U

U

U

U U U U

x

 (1.1.4) 

where 
0C  is the fixed cost, ( )C p  is the variable cost, L  is the failure cost 

associated with each failure mode and H  is the structural equality and inequality 

constraints. This approach is used to design portal frames using sequential 

quadratic programming. The disadvantages of the method are that the method is 

not robust (final solution is a function of the initial guess) and that the second 

order derivative of response function ( ( )g U )is required. 

 Agarwal [31] shows how to use a combination of deterministic and 

probabilistic optimization in a decoupled RDBO approach. The deterministic 

optimization problem is posed as follows. 

 

Find   { }

to minimize f ( , )

subject to ( , ) 0 1,..,

                 ( ) 0 j 1,..,

                 

rc

i rc

j soft

l u

g i n

g n

 

 

 

x

X x

X x

x

x x x

 (1.1.5) 

The probabilistic optimization problem is posed as follows. 
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Find  { }

To minimize g ( )

subject to 0

|| ||

rc

j j

a

j j

j j

 



 



X

U

U

 (1.1.6) 

The random variable from probabilistic optimization is updated in the 

deterministic optimization as follows. 

 1 1

rc

1

( ) for i=1,..,n
dvn

k k k k

i i j j

j j

 




  




U
U U x x

x
 (1.1.7) 

The steps are repeated until the results converge.  

 Tu et al. [32] studied two different types of reliability optimization 

formulations - Reliability Index Approach (RIA) and the Performance Measure 

Approach (PMA). The former is described as follows. 

 
 

RIA:    minimize || ||

            subject to g 0

j

rc

j j 

U

X
 (1.1.8) 

The latter is described as follows (see Eqn.(1.1.6)). 

 
 PMA:   minimize g

             subject to || ||

rc

j j

a

j j

X

U
 (1.1.9) 

The study shows that the RIA approach is more suitable for violated constraints, 

PMA for inactive constraints and both the approaches yield the same results when 

the constraint is active. 

 Mahadevan and Haldar [33] proposed new methodology for RBDO 

involving reliability based constraints at system level and component level in an 
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iterative manner. Element level reliabilities are also estimated using Monte Carlo 

(variation reduction technique). The problem formulation is as given as follows. 

 

Find   { }

To minimize f( ) Weight

subject to  for i=1,..,n

                 g ( )  0 for j=1,..,n

l u

i i i rc

j c

  



 



x

x

x

 (1.1.10) 

where ,l u

i i   are the lower and upper bounds on reliability corresponding to the 

i
th

 constraint. The proposed method is based on linear objective function and 

nonlinear reliability constraints. Design examples include the design of portal 

frames.  

 Zou and Mahadevan [34] proposed a variation of the decoupling approach. 

The problem formulation is based on minimization of cost function subject to 

reliability constraints and structural performance constraints. RO is done 

separately before each DO and it is updated by its first order approximation.  

  1

1

1

To find    { }

minimize C( )

subject to ( ) 0 for i=1,..,n

                 ( ) 0 for j=1,..,(n )

                  for i=1,..,n

                 

dv

dv

i rc

j tc c

n
jk k k a

i j j i rc

j j

n
jk

s

j j

g

h n


   
















 


  












x

x

x

x

 1

                 x x x

                 

k k a

j j s

l u

j j j

l u

j j j

  

  

  

 

 

 (1.1.11) 
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where s is the reliability index at the system level and  is the mean of the 

random variables. The methodology employs RIA for reliability analysis and 

MCS for nonlinear reliability constraints. The problem also employs identification 

of potentially active constraints and thereby significantly reducing the 

computational time involved. Here the random variables and design variables are 

common (same) in both the deterministic and probabilistic optimization. And the 

proposed method is more efficient than the decoupled approach based on PMA 

approach. 

 Chen and Du [35] proposed another variation of the decoupled approach - 

sequential approximation and reliability assessment. In each cycle, the DO is 

updated based on the information from the most probable point of failure (MPPF). 

The problem formulation is as follows. 

 

Find   { }

to minimize f( )

subject to ( , - ) 0 for i=1,..,nrc

i i rc

k k

i

g 

 

x

x,μ

x μ s

s μ X  (1.1.12) 

where s is the shifting distance updated after PMA based reliability assessment to 

increase the feasibility on the deterministic constraints. The mean of the random 

variable from the reliability based assessment is used. The method is implemented 

in vehicle crashworthiness problems and truss problems [36]. 

 Frangopal [37, 38] presented different problem formulations for life cost 

and utility optimization concepts with applications in civil and aerospace 

structures, the history of probabilistic structural optimization, its applications in  
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life cycle cost analysis and how the problem formulations can be used to solve 

problems in the future. The survey papers shed light on the available methods for 

reliability based optimization and provide a comprehensive view of probabilistic 

structural optimization.  

1.2 Thesis Objectives & Overview 

1.2.1 Thesis Objectives 

The major objectives of the research works are as follows. 

a. Study available statistical models and develop the relevant equations and 

algorithms in implementing them as a computer program. 

b. Develop a computer program to obtain parameters (scale, shape, location) 

associated with various distribution models.  

c. Use the developed program for selection of suitable statistical model for 

different types of material properties that are obtained from Kevlar® 49 

uniaxial tension test. The material properties include Young’s modulus, crimp 

strain, strain at ultimate stress, stress at nonlinear post-peak region, failure 

strain, etc. 

d. Implement FORM, SORM and MCS in a computer program to obtain the 

reliability of a given structural system. 

e. Develop a computer program to perform RBDO using planar truss and 

beam finite elements involving linear constraints, nonlinear constraints, 

normal and non-normal random variables. 
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f. Use MCS to carry out the analysis of fabric-based engine containment 

system that is typically modeled using deterministic FE model in LS-DYNA.  

1.2.2 Thesis Overview 

 Chapter 2 provides an introduction to probabilistic analysis, discusses the 

available probabilistic distribution models (normal, lognormal, gamma, 

generalized exponential, Weibull), compares the goodness of fit tests that are 

performed to select the best distribution models, shows how estimation of 

reliability using FORM, SORM, and MCS can be carried out, and discusses the 

theory and implementation of the RBDO procedure. 

 Experimental data used in this thesis in discussed in Chapter 3. First, 

measurement error and sampling of experimental data are discussed. Then, results 

from uniaxial tension test of Kevlar® 49 fabrics and yarns are presented, analyzed 

and discussed.  

 In Chapter 4, finite element modeling, material modeling of Kevlar® 49, 

recent improvements to the existing model, comparison of material parameters 

over various phases of the research, and energy checks are explained. 

 In Chapter 5, several numerical examples are presented.  First, the fabric 

model data used with engine containment systems is analyzed. This data is then 

used in the MCS of two NASA-GRC ballistic tests. Second, five planar truss 

models are used in illustrating the developed FORM, SORM, MCS & RBDO 

procedures. Finally, a planar beam model is used to illustrate the RBDO 

procedure.  
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2. PROBABILISTIC FINITE ELEMENT ANALYSIS & DESIGN 

In this chapter the background on probabilistic analysis is presented followed by 

available probabilistic distribution models (normal, lognormal, gamma, 

generalized exponential, Weibull), comparison of various the goodness of fit tests, 

estimation of reliability using FORM, SORM, and MCS, and the theory and 

implementation of the RBDO procedure. 

2.1 Introduction 

 The classical way of designing steel structures is to follow the provisions 

of either Allowable Stress Design (ASD) or Ultimate Strength Method. In ASD 

method, the yield stress of the material is divided by a factor of safety, i.e. factor 

of safety is used for resistance alone. In the Ultimate Strength Method, the 

maximum load is multiplied by a factor of safety, i.e. factor of safety is used for 

the load acting on the system. In Load Resistant Factor Design (LRFD) method, 

factor of safety is used for both the load and resistance provided by the structure. 

Some of the quantities such as load acting on the system and material properties 

that are used in the system are random in nature and cannot be accurately captured 

using factor of safety as in deterministic analysis. By considering the random 

nature of these values, we can more accurately capture the response of the 

structure and hence decrease the probability of failure. Examples of the random 

variables are shown below. 

Load: Live loads, wind loads and seismic loads are random in nature. 
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Material Properties: Material properties such as Young’s modulus ( E ), strain at 

ultimate stress ( ult ), yield stress (
y ) and ultimate stress (

ult ) are random. 

 These properties are either computed using experiments (material 

properties) or are obtained from historical data (wind and seismic loads). The 

distribution of these values can be modeled as explained later in Section 2.2. 

 Failure of the system is defined based on the performance functions. The 

performance functions are based on service limit states and strength limit states 

failure criteria. Service limit states correspond to the performance of system 

considering occupancy of the structures (e.g. maximum displacements, cracking, 

vibrations etc.), and strength limit states are concerned with load carrying 

capacity of the structure (e.g. allowable compressive stress, allowable tensile 

stress, Euler buckling criteria etc.). A structure (or) system is considered to have 

failed if any of the performance criteria is violated. A typical performance 

function is given by 

 ( , ) ( , ) ( , )g R S R S x X x X  (2.1.1) 

 
( , )  0  Safe

( , )  0  Failure

g R S

g R S

 

 
 (2.1.2) 

where R  is resistance of the structure and S  is the load acting on the structure. 

Figure 2-1 explains the difference between failure and safe zones. The reliability 

index   is the distance of the design point (MPPF) from the origin when the 

random variables are expressed in standard normal space. The closer the limit 
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surfaces are to the origin, the higher the probability of failure. The probability of 

failure is computed as follows (assuming the variables are independent) 

 1 2 1 2
( ) 0

( ) ( )
g

f U f U dU dU
 U

 (2.1.3) 

The probability of failure is based on the joint probability density function 

of the variables that are random in nature. Joint probability density function is the 

probability function when there is more than one random variable associated with 

it. Since the computation of joint probability density function is extremely 

complicated, the probability of failure is computed using either reliability 

methods involving Taylor series approximation (1
st
 & 2

nd
 order) of the 

performance function or simulation techniques are used. The commonly used 

reliability methods and simulation techniques include the following: 

I. First Order Reliability Method (FORM) 

II. Second Order Reliability Method (SORM) 

III. Monte Carlo Simulation (MCS) 

 

Figure 2-1. Limit surface [20] 
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Procedure in Probabilistic Analysis 

In a typical probabilistic analysis, the following steps are used in the 

computations. 

1. Problem-specific random variables are identified. 

2. Random variable data are collected based on the experiments or historical 

data. A distribution that best fits the data is selected and parameters 

associated with the distribution are computed (Section 2.2 &2.3).  

3. Performance of the structure is described using service limit state or 

strength limit state criterion.  

4. Performance evaluation and computation of reliability and probability of 

failure of the system can then be undertaken (Section 2.4 through Section 

2.6). 

These steps are discussed next. 

2.2 Probabilistic Distribution Models 

 Using experimental data in analytical or numerical models requires a 

careful analysis of the underlying data. This section explains how one can 

categorize and analyze this data using probabilistic analysis. Specifically, 

examples are taken from solid mechanics but the ideas and procedures are 

applicable for other data sources. Some of the terms used in this section are 

defined first before they are used in data analysis. 

Cumulative Distribution Function 
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 Cumulative Distribution Function (CDF), ( )F x  is the probability that the 

variable takes a value less than or equal to x .  

 
 ( )F x prob X x   

 (2.2.1) 

CDF plot for a normal distribution is shown in Figure 2-2. For continuous 

distributions, the above function is expressed mathematically as 

 
( ) ( )

x

F x f d 


   (2.2.2) 

where   corresponds to the dataset values and the integral represents the area 

under the curve up until x . 

 

Figure 2-2. CDF F(x) [39] 

Probability Density Function  

 Probability Density Function (PDF) ( )f x  is a function that describes the 

relative likelihood for this random variable to occur at a given point. The 

probability for the random variable to fall within a particular region is given by 
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the integral of this variable’s density over the region. The PDF is nonnegative 

everywhere, and its integral over the entire space is equal to one
1
.  

 

( ( ))
( )

d F x
f x

dx


 (2.2.3) 

 

 Prob ( )
U

L

x

L U
x

x X x f x dx   
 (2.2.4)

 

The PDF plot for a normal distribution is shown in the Figure 2-3.
 

 

Figure 2-3. PDF f(x) [39] 

Survival Function 

 Survival function S(x) (Figure 2-4) is the probability that the variate takes 

a value greater than x  and is given as  

 
 ( ) 1 ( )S x prob X x F x   

 (2.2.5) 

                                                 

 

1
 http://en.wikipedia.org/wiki/Probability_density_function. 

 

http://en.wikipedia.org/wiki/Integral
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It captures the probability that the system will survive beyond a specified time. 

The term reliability function is common in engineering while the term survival 

function is used in a broader range of applications, including human mortality
2
. 

 

Figure 2-4. Survival function S(x) [39] 

Maximum Likelihood Estimation 

 Maximum Likelihood Estimation (MLE) is one of several methods of 

estimating the parameters of a statistical model. When applied to a data set and 

given a statistical model, MLE provides estimates for the model's parameters
3
. 

MLE starts with the likelihood function of a given data. For example 

( 1,2,..., )ix i n  constitutes a sample size with relative frequency 1( , ,..., )kf x   , 

where 
1,..., k   are the unknown parameters. The likelihood function is given as 

                                                 

 

2
  http://en.wikipedia.org/wiki/Survival_function 

3
 http://en.wikipedia.org/wiki/Maximum_likelihood_estimation 

http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Survival_analysis
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Statistical_method
http://en.wikipedia.org/wiki/Estimation_theory
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Estimate
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1 2 1 2

1

( , ,..., ) ( , , ,..., )
n

k k

i

L f x     



 (2.2.6) 

The unknown parameters are the ones that maximize the likelihood function. The 

parameters are estimated by taking natural logarithm of the likelihood function, 

then differentiating with respect to the unknown parameters and equating the 

result to zero, e.g. 

 

ln
0j

j

d L

d



 

 (2.2.7) 

Scale Shape and Location Parameters 

 Scale, shape and location parameters are the three parameters that are 

associated with the distribution function.  

 The shape parameter allows the distribution to take variety of shapes, and 

this helps in modeling a variety of datasets. Figure 2-5 shows the effect of shape 

parameter in Weibull distribution. 
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Figure 2-5. Effect of shape parameter in Weibull distribution [39] 

 The scale parameter helps to stretch out the graph. The greater the 

magnitude, greater the stretching effect. A scale parameter (Figure 2-6) value less 

than 1.0 compresses the PDF and a value equal to 1.0 leaves the PDF unchanged.  

 

Figure 2-6. Effect of scale parameter in normal distribution [39] 
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 The location parameter helps to translate the graph. It shifts the graph right 

or left depending on the value. Figure 2-7 shows the effect of location parameter 

in a selected distribution.  

 

Figure 2-7. Effect of location parameter in normal distribution 

 In the distributions explained in the subsequent sections, unless otherwise 

specified, the location parameter is assumed to be zero. 

2.2.1 Normal Distribution 

 Normal distribution is the one that resembles a bell shaped curve. The 

curve is symmetric with most of the data situated around probability’s mean value 

and decreasing values on the either side (Figure 2-8). It has less of tendency to 

produce extreme values. Observation error in experimental data is a good example 

of normal distribution. 
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Figure 2-8. Normal distribution - PDF 

 Normal distribution is sometimes called Gaussian distribution or bell 

curve. The PDF of the normal distribution is given as 

  

2

2

( )

2
1

( )
(2 )

x

f x e





 

 



 (2.2.8) 

where   is the location parameter and   is the scale parameter. The values of the 

parameters are found by differentiating the log-likelihood function with respect to 

the parameters and equating to zero. The log-likelihood function is given as 

 
2

2

2
1

( )
ln(2 )

2 2

n
i

N

i

xn
L







    (2.2.9) 

Using Eqn.(2.2.9), the parameters that maximize the function can be computed as  

 

1

n

i

i

x

n
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

 (2.2.10) 
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n


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






 (2.2.11) 

The CDF of the normal distribution is given as  

 
2

2

0

1 ( )
( ) exp

2(2 )

x
x

F x dx


 

 
  

 
  (2.2.12) 

2.2.2 Log-Normal Distribution 

 Lognormal distribution is a probability distribution of a random variable 

whose logarithm is normally distributed. The distribution is skewed with a lower 

mean value and large variance (Figure 2-9).  

 

Figure 2-9. Log-normal distribution - PDF 

 The main difference between normal and lognormal distributions is that 

the effect is additive and multiplicative for normal and lognormal distributions, 

respectively. The PDF of the lognormal distribution is given as 
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 (2.2.13) 

The log-likelihood function is given as 
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 (2.2.14) 

 The values of the parameters are found by differentiating the log-

likelihood function with respect to the parameters and equating to zero. This 

results in the following equations: 

 1

2 2

ln
ln( )
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LN i

x
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 (2.2.15) 
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 (2.2.17) 

Substituting the scale parameter in Eqn.(2.2.14), we get the shape parameter as 
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 (2.2.18) 

The CDF of the lognormal distribution is given as
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 (2.2.19) 

2.2.3 Weibull Distribution 

 Weibull distribution (Figure 2-10) is a widely used distribution that can be 

used for modeling data in reliability and lifetime modeling. The function is 

extremely versatile and several types of distributions can be modeled (see Figure 

2-5). For example, with 1   is Weibull distribution is identical to the 

exponential distribution, with 2   the distribution is identical to Rayleigh 

distribution, with 2.5   the distribution approximates lognormal distribution, 

with 3.6   the distribution approximates normal distribution, and with 5   

the distribution approximates peaked normal distribution.  

 
Figure 2-10. Weibull distribution – PDF 
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Weibull 2-Parameter Model 

 The PDF of Weibull 2-parameter distribution is given as 
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( / )( ) xx
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
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 


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   (2.2.20) 

The Weibull distribution with 1   characterizes a life that deteriorates 

with time. On the other hand, when 1  , Weibull becomes an exponential 

distribution and the failure rate is constant. When 1  , there is reliability growth 

where the failure rate decreases with the time. Maximum log-likelihood function 

is given as  
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     
 (2.2.21) 

MLE of the parameters are found by differentiating the maximum log-

likelihood function with respect to the parameters and equating to zero, resulting 

in the following equations [9]  
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The shape parameter can be obtained by solving Eqn.(2.2.22) and the scale 

parameter is obtained using Eqn.(2.2.23). The CDF is given as  
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[ ( / )]( ) 1 xF x e

   (2.2.24) 

Weibull 3-Parameter Model 

 Additional flexibility in modeling the data is available in the Weibull 3-

parameter model. Sometimes the first value or observation of the data occurs at 

the location other than zero. Such a shifted distribution can be modeled using the 

Weibull 3-parameter distribution [11]. In addition to shape and scale, the location 

parameter is used in the model (Figure 2-7). The PDF is given as 
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where  is the location parameter. The MLE function for this distribution is given 

as 
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 (2.2.26) 

From Eqn.(2.2.26) the shape and location parameters which minimize the 

function are obtained and from those parameters, scale parameter is computed as 

follows. 
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The CDF is given as 

 
[ ( )/ )]( ) 1 xF x e

     (2.2.28) 

Estimation of Weibull Parameters 

The Weibull parameters can be estimated using Eqn.(2.2.22) and Eqn.(2.2.26) 

with or without weights ( 1 2 3, &W W W ). 

a) Two-step iterative MLE method with no weights: Eqn.(2.2.22), (2.2.23), 

(2.2.26) and (2.2.27) are used without any change and the parameter 

values are obtained through iterative procedure. 

b) Weighted two-step iterative MLE method: In this method Eqn.(2.2.22), 

(2.2.23), (2.2.26) and (2.2.27) are modified by introducing weights as 

shown below. 
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The weights ( 1 2 3, &W W W ) used in the above equations are given as follows [9]. 
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 (2.2.35) 

The estimation of weights depends on the CDF ( ( )iF x ) which can be obtained 

using cumulative frequency. However, the results are indeterminate when ( )iF x
 

is 1 (See Eqn.(2.2.33) through Eqn.(2.2.35)). Hence the weights are assumed as 
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random variables and assigned a suitable distribution model and then MCS is 

performed. The mean/median/geometric mean value of the random variable from 

MCS can be used as weights [9]. In this study the median value from MCS is used 

as weights for further calculations. The weight 3W (median) and the MLE weights 

approach the same value as the shape parameter increases. For 2.5  , 

3
1

W






is used. The weights used are given in Table 2-1 and Table 2-2. 

Table 2-1. Weights of W1, W2 [9]. 

n 1 2 3 4 5 6 7 8 9 10 

W1 0.693 0.839 0.891 0.918 0.934 0.945 0.953 0.959 0.963 0.967 

W2 0 0.275 0.517 0.638 0.711 0.759 0.791 0.817 0.838 0.853 

Table 2-2. Weights of W3[9]. 

n 
γ 

0.5 1.0 1.5 2.0 2.5 

8 7.150 3.114 2.105 1.722 1.525 

10 8.643 3.365 2.180 1.758 1.552 

2.2.4 Generalized Exponential Distribution 

 Generalized exponential distribution has a more recent history [12, 13] 

and its PDF (Figure 2-11) defined as  

 ( ) (1 )x xf x e e       (2.2.36) 

When 1  , then the distribution is exponential. One major advantage of a 

generalized exponential distribution is the simple structure of distribution and 

survival function.  
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Figure 2-11. Generalized exponential distribution - PDF 

Log-likelihood function is given by Eqn.(2.2.37). 
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MLE of the parameters are found by differentiating the log-likelihood function 

with respect to the parameters and equating to zero.  
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From Eqn.(2.2.39), the shape parameter can be obtained as 
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By substituting the Eqn.(2.2.40) in Eqn.(2.2.38), the scale parameter can be 

obtained. The obtained scale parameter is used to estimate the shape parameter. 

The CDF is given by 

 ( ) (1 )ix
F x e

 
   (2.2.41) 

2.2.5 Gamma Distribution 

 Gamma distribution, like the lognormal distribution, can be used to 

represent a skewed distribution. The PDF (Figure 2-12) of two parameter gamma 

distribution is given as 

 

1

( )

x

G

x
e

P







 


 

 
 

 (2.2.42) 

where ( )  is given by 
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 (2.2.43) 

The Figure 2-12 shows a sample gamma distribution.  
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Figure 2-12. Gamma distribution - PDF 

The log likelihood function from which the parameters are estimated is given as 
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Differentiating the Eqn.(2.2.44) with respect to scale parameter and equating to 

zero we obtain 
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The shape parameter is estimated by substituting the scale parameter in 

Eqn.(2.2.44). 
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The shape parameter is obtained by maximizing the above function and then is 

used in Eqn.(2.2.45) to compute scale parameter. The CDF of the gamma 

distribution is given by 
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 (2.2.47) 

2.3 Goodness of Fit Tests 

 Goodness of fit tests are used to find quality of fit arising from the 

distribution functions. Some of the tests that are used to compare the models [14, 

15,40] are presented in this section and all the tests explained here can be applied 

to the various distribution functions.  

2.3.1 Kolmogorov-Smirnov (KS) Test 

 Among competing models, it is natural to choose a particular model for a 

given sample which has the distribution function closest to the empirical 

distribution function (EDF) of the data according to some distance measure 

between the two distribution functions. KS test is measure of that distance 

between EDF and CDF of the selected distribution.  Empirical distribution 

function is given as 

 

( )i

N

n
E

N


 (2.3.1) 

where )(in  is the number of points less than 
ix , where ix  is the ordered data from 

smallest to largest value. K-S distance [39] is defined as 

 0
ˆsup( ( ) ( ))D F x F x 

 (2.3.2) 
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where  0F x  is the CDF of the selected distribution and ˆ ( )F x  is the empirical 

cumulative distribution for the given dataset. The distribution with the smallest K-

S distance is considered as the best fit. Eqn.(2.3.2) can be written as  
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2.3.2 Chi-Square test 

 This is one of the oldest methods used for goodness of fit test or for model 

discrimination. The basic idea is very simple. First divide the samples into 

different groups and count the number of observations in each group. Second, 

compute the corresponding frequencies and then compare against its distribution 

function. The Chi-square formula is given as 
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 (2.3.4) 

where 
2  is the Chi-square test statistic. The distribution with the least Chi-square 

value is the best fit model for the data. 

2.3.3 Anderson-Darling (AD) Test 

 AD test is used to test if a sample of data came from a specific 

distribution. It is modification of K-S test and gives more weight to the tails than 

the KS test.  The AD test makes use of critical values of each specific distribution, 

and the computed distance is then compared with the critical value which is given 

in the Table 2-3. The AD test statistic is defined as 

 
2A N S    (2.3.5) 
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where N  is the number of samples and S  is given as 
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where ( )iF Y  is the theoretical CDF and iY
 
 are the ordered data. The test statistic 

2A  is compared with the critical values (see Table 2-3) corresponding to the 

specific distribution. If the test statistic is greater than critical value then the 

distribution is rejected.  

Table 2-3. Anderson-Darling Test - Critical Values. 

Statistic (T) 
Percentage Points for T 

15 10 5 2.5 1 
2A  1.610 1.933 2.492 3.070 3.857 

 

2.3.4 Maximum Likelihood Criterion 

 Cox (1962) [41] proposed choosing the model which yields the largest 

likelihood function as the optimal model. Maximum likelihood criterion compares 

the given two distributions and finds the best fit between the two as shown in 

Eqn.(3.45).  
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where ( )if x  and ( )ig x  are the PDF from two distributions. If 0T  , then the 

distribution ( )f x  is considered as the best fit, else the distribution ( )g x  is taken 

as the best fit. 
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2.4 FORM Method 

 The FORM method uses first order Taylor series approximation of the 

performance function. The algorithm, developed by [42] is being used along with 

Method of Feasible Directions (MFD) to compute the reliability and probability 

of failure.  

Normal to Standard Normal Space: The given random variables are always in 

their respective space, i.e. original space. For FORM analysis, the random 

variables have to be expressed in standard normal space as 
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i N
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 (2.4.1) 

Non-Normal to Standard Normal Space: Computation of mean and standard 

deviation for the non-normal variable is given by [43]. CDF and PDF of the non-

normal variables and standard normal variables are equated to find the statistical 

data for non-normal distribution as 
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 (2.4.2) 
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 (2.4.3) 

Based on the above relations, mean and standard deviation computed are then 

used to express the variables in standard normal space as given by Eqn.(2.4.1). 

Reliability Index & Probability of Failure: Reliability index (  ) is used to 

compute probability of failure ( fp ) and is called distance from the origin to the 

design point (MPPF) which is computed as follows. 
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 ( )  ( ) T Tor  U U α U  (2.4.4) 

 
1 ( )fp  

 (2.4.5) 

Reliability Problem Formulation: The reliability analysis focuses on minimizing 

the reliability subject to the active limit surface ( 0g  ) and the solution gives the 

probability of failure, reliability index along with the most probable point of 

failure of random variables corresponding to the performance function. The 

problem formulation focuses on finding the most probable point of failure by 

minimizing the distance ( )  from the origin. Available two types of reliability 

analysis problem formulation have already been explained in Eqn.(1.1.8) and 

Eqn.(1.1.9).

 Method of Feasible Directions: MFD is used for the reliability analysis to find the 

variables. The steepest descent direction is used in MFD which is based on the 

performance function gradient and given as 
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 ( ) ( )
i

N

i Xg g  U X  (2.4.7) 

 The search direction is updated based on the Taylor series approximation 

of the performance function. The approximated performance function is used to 

compute the new design point by equating it to zero. This gives the new point in a 

single iteration provided the performance function is linear.  

 1 1( ) ( ) ( )( ) 0k k k k kg g g    U U U U U  (2.4.8) 
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Direction is computed based on the new point and old point in standard normal 

space 
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where k  is the iteration number, from the above Eqn.(2.4.10), direction for given 

set of variables are computed. New design point is calculated based on the search 

direction ( )d  and step size ( )s . The s  is between 0 and 1 and is computed based 

on the merit function as given below. 

 1k k k k  U U s d  (2.4.11) 

 
2( ) 0.5 || || | ( ) |m k kf C g U U X  (2.4.12) 
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Step size is selected such that 1( ) ( )m k m kf f U U . Initial value for s  is 

1.0. The overall algorithm for the FORM analysis is shown in Figure 2-13. 
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Figure 2-13. Flowchart for FORM method 

2.5 SORM Method 

 The results from the FORM analysis holds true for all the linear limit state 

functions, but it fails to provide accurate results when the function is highly non-
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linear. The accuracy can be increased by taking into account the curvature of the 

functions. In the SORM method, second order Taylor series approximation of the 

response function is done [20 & 43]. Nonlinear response function 

increases/decreases the failure domain based on the type of the curvature (see 

Figure 2-1). The response function becomes nonlinear when there are non-normal 

variables or the function by itself is nonlinear. The closed form expression for 

computing probability of failure [44] is given as 
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where n  is number of random variables,   is the curvature of the response 

function associated with each variable. And from the probability of failure, SORM  

is updated as 

 ( )SORM fp    (2.4.15) 

In order to compute the curvature, the variables (U ) are rotated to ( 'U ) so that the 

last variable coincide with (  ) of the minimum distance point. The rotation 

matrix used for transformation is given as 
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Gram-Schmidt Orthogonalization procedure is carried out to obtain R matrix. 
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where D is second order derivative of the response function in the standard 

normal space and is computed based on the variable in normal space as follows 
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D  (2.4.18) 

 Since the last variable coincide with  , the last row and last column of the 

matrix A  is removed and eigenvalues correspond to the curvatures of the 

function.  Flowchart of the SORM procedure is given in Figure 2-14. 

 
Figure 2-14. Flowchart for SORM method 
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2.6 MCS Method 

 Monte Carlo Simulation method is used to calculate the probability of 

failure of the system using just the values of performance functions (doesn’t 

depend whether the performance function is explicit or implicit). The accuracy 

depends on the number of simulations that are carried out to determine the failure 

probability. Clearly this is computationally expensive procedure since a finite 

element analysis needs to be carried out for every simulation.  

 A set of random numbers is generated for each random variable. The 

random number generated values combined with the CDF of the respective 

random variables are used to obtain the random variable values. The process is 

repeated for each random variable and the probability of failure is computed as  

 
f

f

N
p

N
  (2.5.1) 

where 
fN is number of failures and N is total number of simulations.  

2.7 RBDO Method 

 In deterministic based design optimization, the design is primarily based 

on deterministic variables without taking into account any uncertainties. As a 

result in most cases the design results have a high chances of failure because of 

the uncertainties associated with the material properties being used, load acting on 

the structure etc.., In RBDO, the system along with the DO considers the 

uncertainties resulting in low probability of failure or high reliability. In RBDO, 

two types of optimizations DO and RO are done simultaneously to obtain the 

optimized values. The optimizations are decoupled and the method is Decoupled 
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methodology, implementation of the procedure is followed as proposed by [31]. 

The procedure is shown n Figure 2-15. 

 

Figure 2-15. Flowchart for RBDO method 

Sensitivity Analysis 

 In this RBDO procedure after the first design optimization, random 

variables associated with each constraint are identified by performing sensitivity 

analysis. Sensitivity of a single constraint with respect to one random variable is 

computed as  

 
( ) ( )g X g X X

S
X

 



 (2.5.2) 

where S is the sensitivity value, if 0S   then the corresponding random variable 

 X  is not considered for the given constraint in RO.  
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Reliability Optimization 

 Two types of approaches are available to implement the reliability analysis 

- RIA and PMA that were introduced in Eqn.(1.1.8) and Eqn.(1.1.9). Both the 

methods yield same results when the respective constraints are active, different 

results if the constraints are not active. If there are multi-constraints in a problem, 

both the approach yields singularity if the failure probability is zero or the 

obtained reliability index is greater than the allowable reliability index (
a ). In 

this study the RIA index approach is modified to include the
a  in the objective 

function and it is given as follows. 

 
 

minimize 

subject to g 0

a

j j

rc

j j

 

X
 (2.5.3) 

Usually the results obtained from the DO provide good reliability indices for 

constraints, but not all the constraints fall below the target reliability value and in 

that case either PMA or RIA yields singularity. So, the constraints with the high 

reliability value are not considered for the RO. After DO, reliability analysis 

FORM (or) SORM (or) MCS can be performed to find the reliability indices 

associated with each constraint and from then on only the concerned constraints 

which are less reliable are considered to avoid singularity results. The complete 

flowchart of the RBDO formulation is given in Figure 2-16. 
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Figure 2-16. Flowchart for RBDO with sensitivity analysis 

Algorithm:  

1. Problem statement with design variables, random variables, inequality 

constraints and/or equality constraints with a target reliability value for 

each constraint is presented. 

2. Conduct a deterministic optimization to find the design variables 

minimizing the given objective function subjected to constraints. 

3. Perform sensitivity analysis on each constraint and identify the random 

variables associated with each constraint. 
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4. Conduct a reliability analysis using FORM/SORM/MCS on each 

constraint to find the constraints whose reliability values are less than their 

respective target reliability value. 

5. Identify the less reliable constraints and conduct reliability optimization 

only to each of those constraints and find random variables of that 

concerned constraint following a reliability optimization problem 

formulation (see Eqn.(2.5.3)).  

6. Once all the reliability optimizations (one for each constraint) are 

performed, update the random variables in each of the less reliable 

constraints that are obtained from their corresponding reliability 

optimization. Carry out design optimization. 

7. Perform reliability optimization in the initially identified less reliable 

constraints same as step 5. 

8. Perform convergence check by comparing design variables values in 

current and previous iteration. Steps 1 to 5correspond to first iteration and 

steps 6 and 7 to second iteration. Repeat steps 6 and 7 until the design 

results converge. 
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3. EXPERIMENTAL DATA 

Experimental data used in this thesis in discussed in this chapter. First, 

measurement error and sampling of experimental data are discussed. Then, results 

from uniaxial tension test of Kevlar® 49 fabrics and yarns are presented, analyzed 

and discussed. 

3.1 Introduction 

 Measurement in any kind of experiment or process is always subject to 

uncertainties and errors. These errors are due to the following reasons. 

Experimental/Systematic Error: This error is due to the uncertainties in the bias of 

the data. A simple example is initialization of the experiment, i.e., if the initial 

time or displacement is not set to zero. In tension test, improper aligning of the 

sample or improper gripping at the ends leads to the experimental error. The 

experimental error implies that all the measurements for a set of data in the same 

experiment are always shifted in same direction and by same amount. This is in 

contrast to the random error, where each measurement varies independently of 

other. There is no particular method for analyzing or eliminating systematic 

errors. It depends on the instrument/system and each has to be individually 

analyzed. 

Random Error: Random errors are due to the instrument imprecision and inherent 

statistical nature of the phenomenon being observed. A particular parameter that 

is being observed in a specimen is not always a single value, and it is randomly 

distributed. For example, as Table 3-4 shows the material parameters are not the 
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same across replicates. This is due to the random distribution of defects in the 

samples. 

3.2 Sampling 

 Before one starts carrying out the experimental tests, one has to determine 

the minimum sample size (or replicate data to generate). More reliable results are 

available with the larger sample size. Determining the sample size starts with 

identification of the effects of a particular experimental parameter on the test 

results, e.g. size of the specimen, gage length of the specimen, the compliance of 

the test machine etc. Null Hypothesis ( 0H ) is an theory 
4
 put forward as  

 0 1 2:H    (3.2.1) 

where 1 2,  are the parameters corresponding to two separate data which are 

normally distributed. 

 Two kinds of errors are associated with the hypothesis. Type I error occurs 

if the null hypothesis is rejected when it is true and type II error occurs if null 

hypothesis is not rejected when it is false. 

 
 

 

0 0

0 0

(Type I Error) Reject | is true

(Type II Error) fail to Reject | isfalse

P P H H

P P H H





 

 
 (3.2.2) 

 Operational characteristics curve is used to estimate the sample size which 

is the plot of type II error probability of a statistical test for a particular sample 

                                                 

 

4
 http://www.stats.gla.ac.uk/steps/glossary/hypothesis_testing.html#h0 
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versus a parameter that reflects the extent to which null hypothesis is false [45]. 

The type II error is given as 

 
 0 01 Reject | is falseP H H  

 (3.2.3) 

A sample characteristic curve is shown in the Figure 3-1 and its parameters are 

explained in the Table 3-1. The parameter in the operating characteristic curve 

that type II error is plotted against is defined as 

 

2
2

22

nD

a
 

 (3.2.4) 

 

Figure 3-1. Operational characteristic curve [45]. 

where D  is the smallest difference between any two treatments means, a  is the 

total number of treatments, n  is the sample size and   is the standard deviation of 

all the treatments. The minimum value   for which null hypothesis is rejected 

would represent the sample size. The degree of freedom associated with sum of 
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squares between treatments and is called numerator degrees of freedom. The 

degree of freedom associated with the sum of squares of error within treatments is 

called denominator degrees of freedom.  

Table 3-1. Operational Characteristic Curve Parameters. 

Parameters Φ
2
 

Numerator Degrees of 

Freedom 

Denominator Degrees of 

Freedom 

A 
2

22

nD

a  

1a    1a n
 

 Using Kevlar® 49, the minimum number of samples for the swath data 

can be calculated by considering the results from the tension tests on single yarn 

with gage length as the controlling parameter. Results are shown in Table 3-2. 

Table 3-2. Yarn Experimental Data (psi). 

Modulus (psi) 
Gage length (in) 

5 8 11 14 

Mean 6341903 8399659 9740908 10702479 

Standard Deviation 212750 174497 300843 388645 

 

 From the data above, we can compute D which is 961570,   is taken as 

400000 (based on the maximum value from Table 3-3 which is 388645), number 

of treatments is 4 (5, 8, 11 & 14 in specimens) and number of degrees of freedom 

is 3. Table 3-3 shows the calculation of sample size with level of significance as 

0.05  . 

Table 3-3. Sample Size Calculation With . 

Sample size Φ
2
 Φ a(n-1) β (1-β) 

5 3.61 1.90 16 0.18 0.82 

6 4.33 2.08 20 0.12 0.88 

0.05 
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7 5.06 2.25 24 0.09 0.91 

8 5.78 2.40 28 0.04 0.96 

 

3.3 Experimental Results 

 Experimental results of Kevlar® 49 both the swath and yarn are presented 

and analyzed in this section. The load-deformation results from the experimental 

results were used to calculate the true stress-strain response. The stress-strain 

curve of Kevlar® 49 is nonlinear and it is divided into four regions - crimp, 

elastic region, post peak linear and post peak nonlinear (see Figure 3-2). Details 

of the calculation of the various material properties from the true stress-strain 

curve are explained below. 

Young’s Modulus 

 The Young’s modulus value is calculated based on the maximum slope in 

the linear elastic region. 

 2 1

2 1

E
 

 





 (3.3.1) 

where E is Young’s modulus, 1 2, 
 
and 1 2, 

 
are the stress and strain at points 

1 and 2 respectively in the elastic region. 

Toughness 

 Toughness is the measure of the energy that is absorbed by the material 

and is computed by calculating area under the stress-strain curve. 

Ultimate Stress 
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 This is the maximum stress in the stress-strain curve and is also the end 

point of the linear elastic region. 

Strain at Ultimate Stress 

 The strain value corresponding to the ultimate stress value is the strain at 

ultimate stress. 

 

 
Figure 3-2. Piecewise linear approximation of true stress vs. true strain curve 

True Stress and Strain 

 True stress and true strain are calculated from the engineering stress and 

strain as 

 (1 )t     (3.3.2) 

 ln(1 )t    (3.3.3) 
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where ,t t 
 
are true stress and true strain and ,  are engineering stress and 

engineering strain.  

3.3.1 Kevlar® 49 -Swath Data 

 In this sub-section, tests results of Kevlar® 49 swath are presented and 

discussed. Quasi-static tests were conducted as per American Society for Testing 

Material (ASTM) procedure, Tensile Testing of Polymer Matrix Composites – 

ASTM D 3039 “Standard Test Method for Tensile Properties of Fiber-Resin 

Composites” with the rate of loading as 0.1 in/min. The test was continued until 

complete failure of the specimen was achieved. In order to ensure that slipping of 

the specimens did not influence the deflection values, flat steel plates 2.5 in wide, 

2 in long and 0.25 in thick (see Figure 3-3) are used to grip the specimen at both 

ends. At each end, one of the two pieces has a curved groove at the center of the 

plate throughout its width, which is half the thickness of the plate. The other plate 

has a V-notch cut in the same position about half the thickness of the plate.  

 

Figure 3-3. Grip plates a) side view b) inner view 

A special step was taken during the specimen preparation. To create a strip of 

specimen, the fabric was first cut into rectangular strips, and then a number of 
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yarns along the fabric length are removed from both sides of the fabric width, 

thereby producing a sample without yarn crossovers along the edges. This step is 

necessary to ensure that the effects of edge defects are minimized and that the 

loaded yarns will not slip out of the cross yarns during the test. The total cross-

sectional area of a specimen was defined as the cross-sectional area per yarn 

multiplied by the number of yarns within the width.  

 The specimen is clamped to the instrument using grip plates. One end of 

the specimen is fixed and the other end is subjected to the controlled displacement 

rate. The experiment is stopped once the load acting on the specimen falls below 

5 lb. Experimental results and stress vs. strain plot of different specimen size are 

given in Figure 3-4 through Figure 3-7 and Table 3-4 through Table 3-6 

respectively.  

Table 3-4. Kevlar® 49 Swath (2” x 8”). 

Specimen # 

Max 

Load 

(lb) 

Modulus E
(psi) 

Toughness 

(psi) 

Ultimate 

Stress 

ult (psi) 

Strain at Ultimate 

Stress, ult  (in/in) 

1 1701 18770712 4674 286864 0.0204 

2 1725 15556700 5654 291612 0.0229 

3 1699 15940125 5597 286803 0.0219 

4 1511 17881351 4731 255000 0.0215 

5 1467 17052266 4558 247401 0.0203 

6 1593 19323498 5791 268694 0.0209 

7 1504 17425902 5348 253569 0.0204 

8 1640 17168903 5495 276893 0.0215 

Average 

Value 
1605 17389932 5231 270855 0.0212 

Standard 

Deviation 
101 1282496 497 17250 0.0009 
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Figure 3-4. True stress vs. true strain curve -Kevlar® 49-swath (2” x 8”) 

Table 3-5. Kevlar® 49 Swath (2” x 11”). 

Specimen # 

Max 

Load 

(lb) 

Modulus E
(psi) 

Toughness 

(psi) 

Ultimate 

Stress 

ult (psi) 

Strain at Ultimate 

Stress, ult  (in/in) 

1 1440 18107096 4215 242699 0.0200 

2 1670 18565086 4050 281595 0.0205 

3 1609 18527485 3876 270852 0.0187 

4 1500 20287396 3382 251887 0.0162 

5 1539 20125640 3793 247401 0.0203 

6 1546 19323498 3913 259542 0.0207 

7 1486 20901273 4002 249938 0.0178 

8 1684 18466929 4013 283374 0.0186 

Average 

Values 
1559 19288050 3906 260911 0.0191 

Standard 

Deviation 
88 1033304 711 15807 0.0016 
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Figure 3-5. True stress vs. true strain curve -Kevlar® 49-swath (2” x 11”) 

Table 3-6. Kevlar® 49 Swath (2” x 14”). 

Specimen # 

Max 

Load 

(lb) 

Modulus E
(psi) 

Toughness 

(psi) 

Ultimate 

Stress 

ult (psi) 

Strain at Ultimate 

Stress, ult  (in/in) 

1 1605 20210093 4022 288454 0.0175 

2 1648 20482200 3527 276976 0.0167 

3 1548 19241991 3580 267070 0.0173 

4 1600 22207602 4282 274173 0.0176 

5 1523 20413049 4166 277472 0.0189 

6 1564 21038781 3902 265868 0.0193 

7 1678 20483410 3981 284646 0.0186 

8 1545 19786473 3930 261559 0.0179 

Average 

Values 
1589 20482950 3924 274527 0.0180 

Standard 

Deviation 
54 877315 261 9334 0.0009 
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Figure 3-6. True stress vs. true strain curve -Kevlar® 49-swath (2” x 14”) 

 

Figure 3-7. True stress vs. true strain curve - various gage lengths (Kevlar® 49-

Swath) 
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3.3.2 Yarn Data 

 The samples for single yarn tensile tests were prepared by removing warp 

direction yarns from the woven fabric. Utmost care was taken to ensure that the 

yarns were removed without any damage [2]. To remove the warp yarns 

following steps were taken. 

1. Cut the length of the fabric based on gage length required for the test 

sample. 

2. Cut the sample from sides along the warp direction of the fabric so as to 

remove stitches on the fabric sample. 

3. Remove fill yarns from both ends of the fabric. This ensures easy removal 

of warp yarns. 

4. Apply crazy glue on both sides of the warp yarns to allow removal of the 

yarns without any damage and after glue is dried remove the warp yarn 

one by one with care. 

The single yarn test specimen tested on MTS test frame under displacement 

controlled condition such that the strain rate for the specimen is 0.025 /min. Tests 

were conducted using 8”, 11”, 14” specimens [2] and the results are compared 

against the swath data. Experimental results and stress vs. strain plot of different 

specimen size are given in Table 3-7 through Table 3-9 and Figure 3-8 

respectively. 
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Table 3-7. Kevlar® 49 Yarn (8”). 

Specimen # 
Max 

Load (lb) 

Modulus 

E (psi) 

Toughness 

(psi) 

Ultimate 

Stress 

ult (psi) 

Strain at 

Ultimate 

Stress, ult  

(in/in) 

1 43 8740502 4773 241582 0.0410 

2 43 9591447 5131 246909 0.0395 

3 46 9941755 5129 260772 0.0405 

4 43 9057741 4826 245310 0.0381 

5 48 9304931 5629 273417 0.0447 

6 44 9776610 5397 248641 0.0425 

7 48 9479348 5838 271245 0.0441 

8 47 10423857 5256 267427 0.0408 

9 46 9369251 5167 261424 0.0437 

10 42 10064157 4805 241077 0.0403 

Average Values 45 9574960 5195 255780 0.0415 

Standard Deviation 2 497061 353 12471 0.0021 

 

Table 3-8. Kevlar® 49 Yarn (11”). 

Specimen # 

Max 

Load 

(lb) 

Modulus 

E (psi) 

Toughness 

(psi) 

Ultimate 

Stress 

ult (psi) 

Strain at Ultimate 

Stress, ult  (in/in) 

1 41 10718934 4042 231409 0.0299 

2 47 10803698 4330 264975 0.0353 

3 43 10363548 4027 242727 0.0318 

4 44 10146075 4412 247469 0.0354 

5 41 10830259 4056 235178 0.0340 

6 49 11120894 4553 275696 0.0361 

7 38 10877193 3749 216658 0.0337 

8 45 10534750 4411 256674 0.0343 

9 40 11078822 3789 229625 0.0319 

10 45 10817346 4384 258351 0.0348 

Average Values 43 10729152 4175 245876 0.0337 

Standard Deviation 3 304183 280 18197 0.0019 

 

 

 



  

 65   

   

Table 3-9. Kevlar® 49 Yarn (14”). 

Specimen # 

Max 

Load 

(lb) 

Modulus 

E (psi) 

Toughness 

(psi) 

Ultimate 

Stress 

ult (psi) 

Strain at Ultimate 

Stress, ult  (in/in) 

1 37 10770298 3910 208621 0.0246 

2 46 11477332 4916 261403 0.0326 

3 38 11628819 4274 217109 0.0271 

4 50 11929564 5316 281943 0.0321 

5 46 14396653 5087 263909 0.0323 

6 37 12546649 3439 212425 0.0288 

7 46 13282857 3732 263447 0.0291 

8 42 14212865 3806 241275 0.0300 

9 42 13042560 3804 241235 0.0300 

10 43 14228247 3690 247081 0.0288 

Average Values 43 12751585 4197 243845 0.0295 

Standard Deviation 4 1287399 667 24750 0.0025 

 

 
Figure 3-8. True stress vs. true strain – various gage lengths (Kevlar® 49-yarn) 
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3.4 Parameter Response of Swath 

 Experimental data from the swath and yarn specimens are considered for 

further analysis. Response of various parameters such as maximum load, Young’s 

modulus in linear region, ultimate stress, strain at ultimate stress, toughness with 

respect to the gage lengths are plotted using Box plot (Figure 3-9, Figure 3-10 & 

Figure 3-11). 

Kevlar® 49-Swath Data 

 

Figure 3-9. Parameters vs. gage length (Kevlar® 49-swath) (load, modulus, 

toughness & strain at ultimate stress – clockwise) 
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Figure 3-10. Ultimate stress vs. gage length (Kevlar® 49-swath) 

From the above plots, the following points are observed. 

1. Modulus increases as the gage length increases and bounds corresponding 

to each gage length are above the average value from the previous gage 

length. 

2. Strain at ultimate stress decreases as gage length increases and bounds 

corresponding to each gage length are below the average value from the 

previous gage length.  

3. Maximum load and ultimate stress decreases and then increases as the 

gage length increases. 

4. Toughness decreases as the gage length increases from 8” to 11” and then 

remains the same when the gage length is increased to 14” 

 

 



  

 68   

   

Kevlar® 49-Yarn Data 

 

Figure 3-11. Parameters vs. gage length (Kevlar® 49-yarn) (load, modulus, 

ultimate stress, strain at ultimate stress & toughness- clockwise) 
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From the above plots, the following points are observed. 

1. Modulus increases as the gage length increases and bounds corresponding 

to each gage length are above the average value from the previous gage 

length. 

2. Strain at ultimate stress decreases as gage length increases and bounds 

corresponding to each gage length are below the average value from the 

previous gage length.  

3. Mean value of toughness and load decreases as the gage length increases. 

4. Mean value of ultimate stress decreases with the gage length from 8” to 

11” and then remains the same. 

Comparison:  

1. Young’s modulus and strain at ultimate stress follow same pattern in both 

the swath and yarn data. 

2. Decreasing trend (as the gage length increases) is observed in load and 

toughness parameters with respect to yarn data. Whereas in swath data, 

both the parameters decreases till the gage length 11”. 

3. Wide range of bounds in parameters value is observed in all the yarn data 

corresponding to the gage length of 14” and no such wide range trend in 

swath data of particular gage length.  

3.5 Compliance Test 

 The machine compliance is calculated based on the ASTM Standard 3379-

75 “Standard Test Method for ASTM Standard and Young’s Modulus for High 
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Modulus Single-Filament Materials”. The inverse of the load-displacement slopes 

were plotted as a function of gage length. The plotted values are fitted using linear 

fit and equation from the fit is used to calculate the compliance. The equation of 

fit is given as 

 y mx c   (3.5.1) 

where m  is slope and c  is the intercept. The c  value gives the test machine 

compliance. Compliance calculations using Kevlar® 49 swath and yarn tests are 

given below. 

Kevlar® 49-Swath Data 

Equation of the fitted line (see Figure 3-12) is given by 

 
6 5

2

8(10 ) 3(10 )

0.9993

y x

R

  


 (3.5.2) 

Compliance is estimated to be 0.00003 in/lb or the stiffness of the test frame is 

33333.33 lb/in. The R
2
 value is 0.9993 indicating an acceptable fit.  

Kevlar® 49-Yarn Data 

Equation of the fitted line (see Figure 3-13) is given by 

 
2

0.0015 0.0141

0.9958

y x

R

 


 (3.5.3) 

Compliance is estimated to be 0.015 in/lb or the stiffness of the test frame is 67 

lb/in. The R
2
 value is 0.9995 indicating an acceptable fit. 
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Figure 3-12. Compliance test for Kevlar® 49-swath 

 

Figure 3-13. Compliance test for Kevlar® 49-yarn 
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3.6 Digital Image Correlation 

Digital Image Correlation (DIC) is an optical method of measuring 

deformation or strain in 2D and 3D during an experimental test. It is a Non-

interferometry technique (which uses gray intensity for image comparison) for 

measuring the in-plane and out-of-plane deformations using a non-contact optical 

method as opposed to the contact based gauging technique [46]. Deformation and 

full field strain are measured from the digital images captured before and after 

deformations. The schematic setup for DIC is shown in Figure 3-14. 

Loading System

Computer

Light Source

CCD

 
Figure 3-14. Experimental setup for DIC 

The method employs the comparison of random gray intensity distribution 

of the images at different time steps. The basic idea is tracking of points in two 

images by selecting a subset of pixels which helps to track the deformation. The 

tracking of points is shown in Figure 3-15. Some of the careful considerations in 

conducting experiment are 

a) Vertical alignment of the camera and the loading instrument. 
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b) The central horizontal axis from the camera should be perpendicular to the 

specimen to reduce the error in measurement. 

 
Figure 3-15. Image correlation [46] 

The procedure for the DIC is as follows. 

1) Specimen with random gray intensity distribution, if not use some paint 

source to obtain gray pattern in the specimen. 

2) Alignment of CCD camera, light source and specimen vertically. 

3) Record of digital images using CCD camera and correlation is done by 

transferring the image data to the computer. 

4) Measurement of deformation and strain using DIC. 

Out-of-plane deformation is measured using digital volume correlation 

which is called 3D-DIC [46]. Micro-scale and Nano scale measurement can also 

be made capable using DIC by combining it with a high spatial resolution 

microscope. The wider applications of the DIC are measurement of deformations 

and strains in various materials, fracture mechanics and for high speed 

applications. 
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4. FINITE ELEMENT AND MATERIAL MODELING 

In this chapter, finite element modeling, material modeling of Kevlar® 49, recent 

improvements to the existing model, comparison of material parameters over 

various phases of the research, and energy checks are explained. 

4.1 Introduction 

 Creating finite element models of dry fabrics that include yarn geometry 

details at a meso-scale level for use in the analysis is not practical. A more 

practical approach is to create an equivalent continuum model. The effective 

properties are needed for different weaves and weave geometries to be used in the 

model. Figure 4-1 shows the modeling of the fabric as an equivalent continuum 

shell. The experimentally obtained material properties are used in development of 

constitutive model of dry fabrics for use in an explicit finite element program. 

=

Fabric Continuum Equivalent
 

Figure 4-1. Modeling the fabric as continuum 

 Development of ASUumatv1.0 [3] material model started in 2006. In this 

model the stress–strain behavior extended only till the beginning of the post peak 

nonlinear region. Experimental data beyond this point was not available at that 

time. The failure criteria was combined for both the warp and fill directions. Only 

single layer (SL) concentric models were built. Simulations were run using LS-

DYNA 970. Sensitivity analysis was carried out for various parameters assumed 
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in this model and the FE simulation trends were found to be consistent with 

experimental results. 

 In ASUumatv1.1 [4] the failure criteria were decoupled. An element was 

eroded if either the strain in warp or fill direction reached a pre-determined value 

or if the strain in both warp and fill directions reached ultimate strain. The 

simulations were run using LS-DYNA 971 version. Both multiple layer (ML) and 

SL concentric models were built to replicate the results of the ballistic tests. 

Quality assurance (QA) checks were carried out to ensure that the simulation 

results were acceptable. In ASUumatv1.2, the contact formulations were 

improved to include the contact and friction formulations between multiple layers. 

The shear behavior was also revised in the model.  

 In ASUumatv1.3 [5 & 6] regression analysis was used to obtain the values 

of a number of parameters that were difficult to characterize experimentally - 

strain rate behavior in tension, global damping parameters, and contact behavior 

between fabric layers and fabric and the steel ring. A new type of modeling the 

fabric called the Spiral Modeling Scheme (SMS) was implemented. This 

modeling scheme more closely represents the way the fabric is wrapped in the 

ballistic test. The FE model and the boundary conditions of the steel ring in the 

ballistic tests were changed to more closely reflect the experimental setup. The 

erosion criterion was refined. ML and SL simulations were run to validate the 

model. The analysis option was also updated and can be selected between 

probabilistic and deterministic analysis. The distribution model parameters 
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corresponding to the material property and random number generator were 

updated which are then used for probabilistic analysis.  

4.2 NASA Ballistic Tests 

 Ballistic experimental data were generated at NASA-GRC. The tests 

consisted of shooting a steel projectile through multiple fabric layers wrapped 

around a 10.5" wide steel ring with the diameter of 40". A continuous 10" wide 

fabric is wrapped around the ring in one or more layers with the last part of the 

fabric is glued to the layer under it. The tests were repeated by changing the 

projectile orientation, projectile velocity, number of fabric layers and projectile 

geometry. In each test, velocity of the projectile is monitored using high speed 

cameras. Figure 4-2 shows components of the test setup.  

 

(a) 

 

(b) 

 

(c) 

Figure 4-2. High speed NASA-ballistic test setup (a) steel ring with Kevlar® 49 

Wrap. (b) gas gun (c) typical projectile 

4.3 Finite Element Model 

  The fabric is modeled as shell elements, the ring and projectile are 

modeled as solid elements [6]. Two projectiles were used in the tests. The old 

projectile is modeled in two parts - the tip was meshed with 0.15" uniform 

tetrahedral elements and the body with 0.2" x 0.15625" x 0.2023" hexahedral 

elements. The new projectile had a mesh of 0.1" uniform tetrahedral elements for 
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tip and 0.15" x 0.1175" x 0.1495" hexahedral elements for the body. The steel 

ring was meshed with 0.25" x 0.25" x 1" hexahedral elements.  A mesh 

convergence study [6] was conducted to seek a compromise between accuracy of 

the results and the computational time. Element size of 0.25 in was chosen based 

on the results. Figure 4-3 shows the FE model of the projectile, fabric and ring. 

Fixed boundary conditions are used for nodes [7] at the bottom of the ring and the 

two bracings (stiffeners) that are placed on the either side of the opening 

mimicking the exact experimental boundary conditions. Fabric is modeled in two 

parts, flat and curved parts. The flat part represents the fabric portion where the 

projectile makes impact and the curved part represent the fabric which is wrapped 

around the ring.  

 
Figure 4-3. Projectile, ring and fabric FE model 

4.4  Material Model 

 In this composite material each lamina is a thin layer and subjected to 

plane stress condition and the material is transversely orthotropic. We take 

material direction 11 as the main longitudinal direction of the fabric (warp 
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direction), direction 22 as the direction along the width of the fabric (fill 

direction), and direction 33 refers to the direction perpendicular to both warp and 

fill directions. The constitutive behavior suitable for use in an explicit finite 

element analysis in stiffness incremental form is shown in Eqn.(4.4.1). We 

assume that the stress-strain relationships are decoupled so that any stress 

component is a function of only one strain component.  
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 (4.4.1) 

 Strain rate effects are implemented in the model using a modified Cowper-

Symonds model [47] as  

 0 1

P

E E
C

  
   

   

 (4.4.2) 

where E  is rate dependent modulus of elasticity, 0E  is warp or fill quasi-static 

modulus of elasticity,   is the strain rate, C and P are the Cowper Symonds 

factors. Similar equation is used for computing the scaled peak stress and failure 

strain. 

 To validate the developed material model, finite element models are built 

to replicate the experimental ballistic impact tests as closely as possible. In the FE 

model, each layer is wound around the ring in the form of a spiral called spiral 

modeling scheme mimicking the experimental setup which is explained below. 



  

 79   

   

Since the number of physical layers can be extremely large, multiple physical 

layers are modeled as an equivalent FE layer. For example, four physical layers 

are modeled as a single FE layer with an equivalent thickness as 0.044". 

Similarly, an 8 fabric layer model is represented by 2 FE layers each having a 

thickness of 0.044 in (4 x 0.011 in).  

Spiral Modeling Scheme (SMS): In SMS modeling the fabric is wrapped around 

the ring in a continuous form. The wrapping starts at the end diametrically 

opposite of the cut out end in the ring. In this model each layer is connected to at 

least one more layer. Figure 4-4 shows the close up of the wrapping of the fabric 

around the ring. Note that a layer is represented by a single color. It starts at a 

lower radius and as it goes around the ring, the radius increases and it ends at the 

radius where the next layer is starting. 

 

Figure 4-4. Spiral modeling scheme 
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 This model more closely represents the wrapping conditions as different 

layers are connected in it. This is useful in better modeling the force transmission 

between different layers of the fabric. In the actual test the inner and the outer end 

of the fabric is glued to the ring and the fabric respectively. 

*CONTACT_TIRBREAK_NODES card in LS DYNA [48]. In this card a contact 

is defined between a set of nodes and a surface by specifying a shear and tensile 

failure force. These forces define a failure criterion. If the criterion is not violated 

then the nodes and surface are tied together like glue but the moment the criterion 

is violated, they move separately. 

The failure criterion is given by 

 

 1

n sm m

n s

n s

f f

F F

   
   
      
   

   (4.4.3) 

where nf is the normal interface force, sf is the shear interface force, nF is the 

normal failure force, sF is the shear failure force , ,n sm m are the exponents for 

normal and shear force. Regression analysis was carried out [6] to determine the 

tensile force and shear force for tie break and the optimum value of shear and 

tensile force between the ring and fabric is 500 and 1000 lb respectively 

Equivalent Modulus of Elasticity: In computation of equivalent modulus of 

elasticity used in the FE model, we assume that the axial stiffness of the model 

and the material are equivalent.  

 FE FEE A EA
 (4.4.4) 
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where ,FE FEE A  are Young’s modulus and area of the FE model and ,E A are the 

Young’s modulus and area of the material. Area of the material is number of 

yarns per one inch multiplied by area of each yarn and the corresponding area of 

the FE material model is obtained by multiplying width ( FEw ) by thickness ( FEt ). 

 

*17*0.000178

0.01075*1
FE

FE FE

EA E
E

t w
 

 (4.4.5) 

 0.2815FEE E  (4.4.6) 

 The summary of input parameters used in the ASUumatv1.3 is given in 

Table 4-1. The base units are million pounds (Mlb) for force, inches (in) for 

length and milliseconds (ms) for time. 

Table 4-1. Summary of UMAT Parameters. 

No. Material Constant 
UMAT 

Notation 

Symbo

l 

ASU 

UMAT

v.1.0 

ASU 

UMAT

v.1.1 

ASU 

UMAT

v.1.2 

ASU 

UMAT

v.1.3 

1 

Warp Stiffness in 

Elastic Region  

(psi 10
6
) 

Ex 11E  3.2 3.2 3.2 4.68 

2 

Fill Stiffness in 

Elastic Region 

 (psi 10
6
) 

Ey 22E  4.5 4.5 4.5 4.68 

3 

Warp Direction 

Crimp Stiffness 

Factor 

Excrfac 
1

crpE  0.1 0.1 0.1 0.06 

4 

Fill Direction 

Crimp Stiffness 

Factor 

Eycrfac 2

crpE  N/A N/A N/A 0.20 

5 

Warp Direction 

Post-peak Linear 

Region Stiffness 

Factor 

Exsoftfac 1

softE  -2.5 -2.5 -2.5 -2.2 

6 

Fill Direction Post-

peak Linear Region 

Stiffness Factor 

Eysoftfac 2

softE  N/A N/A N/A -5.6 

7 Unloading/Reloadi Eunlfac unlE  1.5 1.5 1.5 1.5 
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ng Stiffness Factor 

8 
Compressive 

Stiffness Factor 
Ecompfac compE  0.005 0.005 0.005 0.005 

9 
Shear Stiffness 

(G23) (psi 10
6
) 

G23 23G
 

0.05 0.05 0.05 0.05 

10 
Shear Stiffness 

(G23) (psi 10
6
) 

G31 31G
 

0.05 0.05 0.05 0.05 

11 

Shear Stiffness 

Linear Region 1 

(G12) (psi 10
6
) 

G121 12G  0.001 0.001 0.001 0.0006 

12 

Shear Stiffness 

Linear Region 2 

(G12) (psi 10
6
) 

G122 12G  0.008 0.008 0.008 0.006 

13 

Shear Stiffness 

Linear Region 3 

(G12) (psi 10
6
) 

G123 12G  0.040 0.040 0.04 0.050 

14 

Shear Stiffness 

Linear Region 4 

(G12) (psi 10
6
) 

G124 12G  0.300 0.300 0.3 N/A 

15 Shear Strain 1 (rad) 
gammaxy

1 12  0.350 0.350 0.35 0.25 

16 Shear Strain 2 (rad) 
gammaxy

2 12  0.500 0.500 0.5 0.35 

17 Shear Strain 3 (rad) 
gammaxy

3 12  0.570 0.570 0.57 N/A 

18 

Warp Direction 

Crimp Strain 

(in/in) 

ecrpx 
11

crp
 

0.0085 0.0085 0.0085 0.0065 

19 

Fill Direction 

Crimp Strain 

(in/in) 

ecrpy 
22

crp
 

0.006 0.006 0.006 0.0025 

20 

Warp Direction 

Strain at Peak 

Stress (in/in) 

emaxx 
11

max
 

0.0295 0.0295 0.0295 0.0223 

21 

Fill Direction 

Strain at Peak 

Stress (in/in) 

emaxy 
22

max
 

0.0210 0.0210 0.021 0.0201 

22 

Stress at Post-peak 

Non-linearity  

(psi 10
6
) 

sigpost *  0.015 0.005 0.01 0.01 

23 

Warp Direction 

Failure Strain 

(in/in) 

efailx 
11

fail
 

0.2 0.1 0.16 0.2 

24 

Fill Direction 

Failure Strain 

(in/in) 

efailx 
22

fail
 

0.2 0.1 0.16 0.2 

25 Cowper-Symonds C(E) CE 0.005 0.005 0.005 0.005 
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Factor for Stiffness 

(ms
-1

) 

26 

Cowper-Symonds 

Factor for Stiffness 

(ms
-1

) 

P(E) PE 40.0 40.0 40 40.0 

27 

Cowper-Symonds 

Factor for Strain 

(ms
-1

) 

C(e) Cε 0.005 0.005 0.005 0.005 

28 

Cowper-Symonds 

Factor for Strain 

(ms
-1

) 

P(e) Pε 40.0 40.0 40.0 40.0 

29 

Post-peak Non-

linear Region 

Factor 

dfac dfac 0.3 0.35 0.3 0.3 

30 
Failure strain of 

element 
fail_e fail  N/A 0.35 0.35 0.35 

31 
Analysis option 

(deterministic – 0) 
- - N/A N/A N/A 0/1 

32 Seed value - - N/A N/A N/A 0  

 

4.5 Finite Element Program 

 The developed constitutive model is implemented in LS-DYNA as a 

UMAT subroutine for use with shell elements. The computer simulations were 

run using the double precision LS-DYNA version 971 (Revision 5.1.1). The Intel 

FORTRAN 10.1 compiler was used for building the executable for Windows 7 

OS. Apart from the mesh and material properties, it is necessary to specify other 

LS-DYNA specific parameters.  

Contact Formulation.*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE 

in LSDYNA is used to establish contact between the surfaces. For contact 

between ring and fabric, ring and projectile, fabric is chosen as the slave surface 

while the ring and projectile are chosen as master surface. For contact between the 

fabrics, outer layer of fabric is chosen as slave and inner layer is chosen as master 
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surface. In order to avoid oscillations between the elements, damping coefficient 

is provided. Viscous damping coefficient values of the model are given below in 

Table 4-2. 

Table 4-2. Damping Coefficient Values. 

Region Damping Coefficient vale 

Between flat parts of the fabric 10 

Between curved parts of the fabric 20 

Between ring and fabric 20 

Between projectile and fabric 10 

 

Friction. Static and dynamic coefficient of friction of 0.2 is assigned for the 

contact between fabric layers, 0.1 for contact between fabric and projectile, and 

between ring and fabric. 

Hourglass Properties. A correct hourglass formulation is important in simulation 

to avoid zero energy mode which typically occur in an under integrated element. 

Flanagan-Belytschko stiffness form with hourglass coefficient of 0.1 is used for 

the fabric. 

Shell Theory. The default Belytshcko-Tsay shell theory was used with 1 through 

shell thickness integration point and other parameters related to shell theory were 

taken as default. 

Material Properties. User defined material properties for fabric properties as 

discussed earlier are used. The steel ring and the projectile are characterized as an 

elasto-plastic material model (*MAT_JOHNSON_COOK).  

Time Step. The *CONTROL_ACCURACY card [48] is used to control the time 

steps. This is recommended by LS DYNA for high velocity impact conditions. 
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The time step factor of 0.75 is used which means that the actual time step was 75 

% of the time step computed by LS-DYNA. 

To ensure that spurious results are not obtained, energy checks [3] are carried out 

as a part of the post-processing step.  At any instant during the analysis, the sum 

of energies in the model must be equal to the sum of initial energies as given 

below
5
 

 
0 0

K I S H rw damp K I ExtE E E E E E E E W         (4.5.1) 

where KE  is the kinetic energy, IE  is the internal energy, SE  is the sliding 

interface (contact) energy, HE  is the hourglass energy, TE  is the total energy,  

rwE  is the rigid wall energy, dampE  is the damping energy, 
0

KE is the initial kinetic 

energy, 
0

iE  is the initial internal energy and ExtW  is external work. The total 

energy is the sum of the terms on the left-hand side  

 T K I S H rw dampE E E E E E E       (4.5.2) 

Internal Energy: Energy associated with elastic strain energy and work done in 

permanent deformation. 

Kinetic Energy: Work done due to the motion of the nodes/elements with certain 

velocity. 

External Work: Work done by the applied forces and pressure as well as work 

done by velocity, displacement or acceleration boundary conditions. 

                                                 

 

5
 http://www.dynasupport.com/tutorial/ls-dyna-users-guide/energy-data 
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Sliding Energy: It is the work done by sliding interfaces and is the sum of Slave 

Energy (SE), Master Energy (ME), and Frictional Energy (FE), where slave and 

master energy are associated with the sliding energy of the slave and master parts 

of the model during the impact.  Sliding energy is expected to be positive when 

friction between the surfaces is defined.  Negative contact energy sometimes is 

generated when parts slide relative to each other.  When a penetrated node slides 

from its original master segment to an adjacent though unconnected master 

segment and a penetration is immediately detected, negative contact energy is the 

result.  Abrupt increases in negative contact energy may be caused by undetected 

initial penetrations. 

Hourglass Energy: Under-integrated elements are used mainly to increase the 

computational efficiency and accuracy.  However, in certain problems, spurious 

modes of deformations may result that are associated with the zero-energy modes 

of deformation (zero strain and no stress). To combat this problem, hourglass 

stabilization techniques are used.  LS-DYNA provides several hourglass control 

options and the energy associated with these stabilization techniques can be 

computed.  This nonphysical hourglass energy should be relatively small 

compared to peak internal energy for each part of the model.  

Energy Ratio (ER): It is the ratio of total energy to the initial total energy and 

external work and is given below.  The energy balance is perfect if the ratio is 

equal to 1. 

 
0 0

T

I K Ext

E
ER

E E W


 
 (4.5.3) 



  

 87   

   

If the TE  rises above the right hand side, energy is being introduced artificially - 

for example, by numerical instability, or the sudden detection of artificial 

penetration through a contact surface. The latter condition is often shown by 

sudden jumps in the total energy.  If the left hand side falls below the right hand 

side, energy is being absorbed artificially, perhaps by excessive hourglassing or 

by stonewalls or over-compliant contact surfaces. In Table 4-3 the values used in 

the energy checks are listed.  

Table 4-3. Energy Checks. 

Description 
Acceptable 

Limit 

Energy Ratio, ER > 0.9 and < 1.1 

Max. Sliding Energy Ratio, SER (sliding energy/total energy) < 0.1 

Max. Kinetic Energy Ratio, KER (kinetic energy/total energy) < 1.0 

Max. Internal Energy Ratio, IER (internal energy/total energy) < 1.0 

Max. Hourglass Energy Ratio, HER (hourglass energy/total 

energy) 
< 0.1 
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5. NUMERICAL EXAMPLES 

  In this chapter, several numerical examples are presented. First, the fabric 

model data used with engine containment systems is analyzed. This data is then 

used in the MCS of two NASA-GRC ballistic tests. Second, five planar truss 

models are used in illustrating the developed FORM, SORM, MCS & RBDO 

procedures. Finally, a planar beam model is used to illustrate the RBDO 

procedure. 

5.1 Fabric Based Engine Containment System 

In this section, probabilistic modeling of experimental data and MCS of 

engine containment system are presented. 

5.1.1 Experimental Data - Distributions 

 The EDP program [49] is enhanced with the capability to take 

experimental data and find the appropriate distribution function.  

 The program computes the scale parameter, shape parameter, PDF, CDF 

for each distribution and the goodness of fit tests values. Some results have been 

compared with DataPlot [39] results to make sure that the EDP program generates 

accurate results. The best fit model is selected based on statistics from the 

goodness of fitness tests. The test data from the uniaxial tension test as explained 

in the section 3.3 is considered.  

Test Case I 

 In this test case, the Weibull model presented in the Section 2.2.3 is 

compared with the Weibull results from the source [50],in which CDF of the 
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model is normalized based on the volume of the specimen under consideration 

and is given by 

 
[ ( / )]( ) 1 V xF x e

   (5.1.1) 

In the above Equation V is the characteristic parameter and given as follows. 

 0

3

6( 1)
V V









 (5.1.2) 

where 0V  is the volume of the specimen between the supports. 

 The comparison is done based on the experimental data (maximum stress) 

of the Kevlar® 49-yarn of gage length 8” data [2]. The scale parameter, shape 

parameter and the minimized function value are presented in the Table 5-1. 

Table 5-1. Weibull Comparison Results. 

Method 
Parameter Goodness of fit test 

Function Value 
Scale [psi] Shape K-S Distance AD 

Gage Length - 2 in 

M-1 280130 21.7 0.1632 0.2695 - 

M-2 283880 27.8 0.1503 0.2523 0 

M-3 280692 26.2 0.1253 0.1913 0 

Gage Length - 5 in 

M-1 265140 11.5 0.1951 0.4507 
 

M-2 270530 14.3 0.2004 0.3505 0 

M-3 268981 13.3 0.1760 0.2909 0 

Gage Length - 8 in 

M-1 260160 14.3 0.3473 0.9999 
 

M-2 263756 24.8 0.2689 0.6260 0 

M-3 263706 22.3 0.2393 0.5321 0 

Gage Length - 11 in 

M-1 249790 11.9 0.2002 0.4977 
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M-2 254841 14.6 0.1432 0.2505 0 

M-3 254769 13.4 0.1210 0.2305 0 

Gage Length - 14 in 

M-1 250160 7.9 0.2193 0.4879 
 

M-2 254190 10.9 0.1804 0.3559 0 

M-3 254085 9.9 0.1539 0.1539 0 

Gage Length - 17 in 

M-1 239370 8.8 0.2044 0.4551 
 

M-2 241389 10.9 0.2129 0.5206 0 

M-3 241288 9.9 0.1980 0.4296 0 

 

* M-1 – Model from source [50] 

* M-2 – Weibull-2P Two Step Iterative MLE – No Weights 

* M-3 - Weibull-2P Two Step Iterative MLE –Weighted 

 

 From the above results, it is clear that the weighted Weibull 2-parameter 

model gives good result compared to the other two models. The goodness of fit 

tests (KS and AD) which are associated with CDF of the model alone is 

considered here since only the CDF of the model [50] is available.  

Test Case II 

 In this set of test, distributions such as Weibull, gamma, normal, 

lognormal, generalized exponential are considered, both the swath and yarn 

experimental data are considered for the analysis.  Yarn and swath data are taken 

so that appropriate comparison can be made on the distribution models for 

different set of data.  
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Swath Data 

 Experimental data of Young’s modulus ( E ) and Ultimate Stress ( ult ) 

from Swath specimen (Table 3-4) are analyzed here with results in Table 5-2 and 

Table 5-3. 

Table 5-2. Results Using EDP Software- Kevlar® 49-Swath ( E ). 

Distribution 
Parameter Goodness of fit test 

Scale [psi] Shape K-S Distance Chi-Square AD 

Young’s modulus ( E ) 

Weibull 17953600 15.9246 0.1620 0.1355 0.2460 

Lognormal 17348500 0.0739 0.1580 0.2033 0.1875 

Normal 
1738990 

(Mean/Location) 

1282500 

(Scale/S.D) 
0.1463 0.1823 0.1853 

Gamma 82958 210 0.2125 0.3250 0.2750 

Generalized  

Exponential 
9.18881x10

-7
 5037390 0.2042 0.3178 0.2664 

Ultimate Stress ( ult ) 

Weibull 261509 23.9464 0.2418 0.3903 0.5071 

Lognormal 255508 0.048619 0.2119 0.406 0.4535 

Normal 
255780 

(Mean/Location) 

12470.9 

(Scale/S.D) 
0.216 0.4017 0.4559 

Gamma 545.189 469.159 0.2242 0.1005 0.5343 

Generalized  

Exponential 
 1.02 x10

-4
 1.09 x10

11
 0.2153 0.4836 0.5121 

 

Table 5-3. Maximum Likelihood Criterion Results - Kevlar® 49-Swath ( E ). 

Sample 

The best distribution based on Maximum Likelihood Criterion 

N/ 

LN 

N/ 

WE 

N/ 

GE 

N/ 

G 

LN/ 

WE 

LN/ 

GE 

LN/ 

G 

WE/ 

GE 

WE/ 

G 

GE/ 

G 

E  LN WE GE - WE - LN GE - - 

ult
 

LN WE GE - WE - LN GE - - 
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 The PDF and CDF of all the distributions are shown in Figure 5-1 through 

Figure 5-4. From the results, it is clear that the normal distribution best fits the 

data ( & ultE  ). 

 

Figure 5-1. PDF for Kevlar® 49-swath (E) 
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Figure 5-2. CDF for Kevlar® 49-swath (E) 
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Figure 5-3. PDF for Kevlar® 49-swath ( ult ) 
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Figure 5-4. CDF for Kevlar® 49-swath ( ult ) 

Yarn Data 

 Experimental data of Young’s modulus ( E ) and Ultimate Stress ( ult ) 

from (Table 3-7) are considered for the analysis and the results are presented in 

Table 5-4 and Table 5-5. 

Table 5-4. Results Using EDP Software- Kevlar® 49-Yarn ( E ). 

Distribution 
Parameter Goodness of fit test 

Scale [psi] Shape K-S Distance Chi-Square AD 

Young’s modulus ( E ) 

Weibull 9800430 21.7858 0.1351 0.0484 0.1849 

Lognormal 9563340 0.0519866 0.0993 0.0977 0.0995 

Normal 
9574960 

(Mean/Location) 

497060 

(Scale/S.D) 
0.0936 0.0995 0.0859 

Gamma 23262.1 411.611 0.0874 0.0416 0.1087 

Generalized 

Exponential 
2.26 x10

-6
 1.48 x10

9
 0.1386 0.1942 0.1882 
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Ultimate Stress ( ult ) 

Weibull 261509 23.9464 0.2418 0.3903 0.5071 

Lognormal 255508 0.048619 0.2119 0.4060 0.4535 

Normal 
255780 

(Mean/Location) 

12470.9 

(Scale/S.D) 
0.2160 0.4017 0.4559 

Gamma 545.189 469.159 0.2242 0.1005 0.5343 

Generalized  

Exponential 
 1.02 x10

-4
 1.09 x10

11
 0.2153 0.4836 0.5121 

 

Table 5-5. Maximum Likelihood Criterion Results - Kevlar® 49-Yarn ( E ). 

Sample 

The best distribution based on Maximum likelihood criterion 

N/

LN 

N/ 

WE 

N/ 

GE 

N/

G 

LN/ 

WE 

LN/ 

GE 

LN/

G 

WE/ 

GE 

WE/

G 

GE/

G 

E  LN WE GE - WE GE - GE - - 

ult
 

LN WE GE - WE GE - GE - - 

 

 The PDF and CDF of all the distributions are shown in Figure 5-5 through 

Figure 5-8. From the results, it is clear that the gamma distribution best fits E  and 

normal distribution best fits ult .  
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Figure 5-5. PDF for Kevlar® 49-yarn ( E ) 

 

Figure 5-6. CDF for Kevlar® 49-yarn ( E ) 
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Figure 5-7. PDF for Kevlar® 49-yarn ( ult ) 
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Figure 5-8. CDF for Kevlar® 49-yarn ( ult ) 

Test Case III 

 Young’s modulus as random variable in both the swath and yarn data are 

explained in this section. The test mainly focuses on comparing the different types 

of Weibull distributions with the other distributions. Results of parameters 

associated with each distribution and test statistics are provided below and the 

best fit solution/method is highlighted. The results (see Table 5-6) provide all the 

goodness of fit tests values and the distribution with the least value is the best 

fitted distribution for the data. The function value corresponds to the value of 

minimizing function at the optimum value of obtained parameters. The optimized 

parameters are computed by using a population-based on an optimization 

algorithm called Differential Evolution [42].  
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Table 5-6. Results of Data Analysis Using EDP. 

Distributi

on 
Method 

Parameter Goodness of fit test 

Function 

Value 

Scale [psi] Shape 

K-S 

Distanc

e 

Chi-

Square 
AD 

Swath - E 

Weibull-

2P 

M-1 17953600 15.9246 0.162 0.1355 0.246 0 

M-2 17948400 14.1577 0.1428 0.0687 0.2188 0 

Weibull-

3P 

M-1 44740000 40.0099 0.1690 0.1025 0.2606 1.53 x10
-8

 

M-2 47069800 39.8974 0.1669 0.0824 0.2435 1.18 x10
-5

 

Lognorm

al 
NA 17348500 0.0739 0.1580 0.0954 0.1875 NA 

Normal NA 

1738990 1282500 

0.1463 0.0954 0.1853 NA (Mean/Lo

cation) 
(Scale/S.D) 

Gamma NA 93303.3 209.623 0.2125 0.3250 0.275 NA 

Generaliz

ed 

Exponent

ial 

NA 9.19 x10
-7

 5037390 0.2042 0.1085 0.2664 4.30 x10
-13

 

Yarn – E - 

Weibull-

2P 

M-1 9800430 21.7858 0.1351 0.0484 0.1849 0 

M-2 9798770 19.9279 0.1205 0.0586 0.1812 0 

Weibull-

3P 

M-1 18853700 42.0637 0.1392 0.0485 0.1985 1.83 x10
-8

 

M-2 19604500 41.9678 0.1380 0.0554 0.1974 7.03 x10
-6

 

Lognorm

al 
NA 9563340 0.0519866 0.0993 0.0977 0.0995 NA 

Normal NA 

9574960 497060 

0.0936 0.0859 0.0995 NA (Mean/Lo

cation) 
(Scale/S.D) 

Gamma NA 25585.5 411.611 0.0874 0.0416 0.1087 NA 

Generaliz

ed 

Exponent

ial 

NA 2.26 x10
-6

 1.48 x10
9
 0.1386 0.1942 0.1882 1.28 x10

-9
 

* M-1 - Two Step Iterative MLE – No Weights 

* M-2 - Two Step Iterative MLE –Weighted 

 

 Goodness of fit tests explained was used to validate the model for the 

chosen variable. For the swath data, Weibull 2-parameter (weighted) distribution 
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is found to best fit the data. And in the yarn data, still the gamma distribution is 

the best fit. And moreover the weighted iteration method of the Weibull 2-

parameter model shows even much better results as opposed to the two-step 

iteration method of the Weibull 2-parameter model (without weights).  

5.1.2 Monte Carlo Simulations 

 Probabilistic analysis is implemented in the finite element models using 

MCS. Some of the test cases with the MCS are provided here. Before running the 

test cases, the random number generated for a single random variable is verified 

by running a sample test case. The CDF plot for the model was generated and is 

shown in Figure 5-9. The distribution shows that the random number generator is 

satisfactory. 

 

Figure 5-9. CDF plot for probabilistic analysis 

Test Case I 
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 This case is to validate the probabilistic analysis implementation in the 

UMAT subroutine. Some simple checks were performed to validate the model. 

 The probabilistic analysis is carried out on one model - LG612 [7] that 

were arbitrarily selected.  

 Several analyses are carried out to understand the differences between 

deterministic and probabilistic analyses - (a) all the fabric elements have the 

lowest E value, (b) all the fabric elements have the highest E value, and (c) finally 

the E values are as per Weibull distribution. The results are shown in Table 5-7. 

Table 5-7. Test Case I Results. 

Model (LG612) Exit Velocity (ft/s) 

Low E value 877.8 

High E value 701.3 

Deterministic  773.4 

Probabilistic  737.2 

Experimental 822.7 

 

 The trends in the results are as expected. However, a more detailed study 

is needed to develop a methodology for design of containment systems using 

probabilistic analysis. In the same way, probabilistic nature of the other material 

parameters such as crimp strain (warp & fill direction), strain at ultimate stress 

(warp & fill direction) and stress at post peak region are also implemented in the 

Engine containment model.  

Test Case II 

 LG964 model [7] is considered for the further analysis involving MCS. 

The LG964 model, because the FE simulation results of this model closely match 
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with the experimental results and projectile is also contained in this model, so 

there is no penetration of the model through any layer. Since the difference in the 

experimental and simulation results is very minor, we expect to see a similar kind 

of behavior/results using MCS. Different sets of simulations are run and the 

probability of failure is calculated based on the number of failures over total 

number of simulations. For each simulation, FE analysis is done in which each 

shell element is assigned an individual modulus value based on the random 

number generated. Different simulations are performed by changing the seed 

value; both the positive and negative seed values are considered. Results for the 

different sets of simulations are given in Table 5-8. If the projectile exits the 

fabric, then it is counted as a failure.  

Table 5-8. Simulations vs. Probability of failure. 

Number of Simulations Probability of Failure 

20 0.0 

30 0.0 

40 0.0 

50 0.0 

 

 In all MCS, the projectile is contained and there is no penetration of 

projectile seen through any layer. This shows that the simulation of LG964 under 

probabilistic modeling closely matches with the experimental and FE simulation 

(without probabilistic data) provided the given set of loading conditions, initial 

projectile orientations, number of fabric layers around the fabric, boundary 

conditions, initial rigid body acceleration are unaltered when modeling with 
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Young’s modulus ( E ) as random variable using Weibull 2-parameter 

distribution. 

Test Case III 

 A small scale impact problem is considered to see the individual and 

combined effect of material parameters when used as random variable, before 

actually being implemented in the engine containment model. The impact 

problem is based on the material model and projectile model as described in the 

Chapter 4. The schematic diagram of the model (Flat_Impact) and other details 

are explained below in Figure 5-10 and Table 5-9. 

 

Figure 5-10. Schematic diagram of the FE model 

Table 5-9. Flat_Impact Model Description. 

FEA Model Information 

Nodes 3421 

Solid elements 629 
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Solid materials 1 

Parts 3 

Number of shell layers 1 

Fabric layers per shell 1 

Fabric material 
*MAT_USER_DEFINED_MODELS 

(ASU v 1.3) 

Projectile mass (g) 317.8 

Initial velocity (in/ms) 2.225 

Initial kinetic energy (J) 507.5 

Contact damping 2 

Partial damping (Fabric 

only) 
10.0 

Unit system 
in (length), ms (time), lbf (force), msi (stress), lbf-in 

(energy) 

 

Boundary Conditions: The fabric is completely fixed in all six degrees of freedom 

along sides A-B and C-D. 

Material Card: The material properties used in the analysis are given in the Table 

4-1. 

 The material parameters such as Young’s modulus, crimp strain, strain at 

ultimate stress and stress at post peak region are obtained from the experimental 

data [51]. The appropriate distribution model for the parameters and the 

corresponding data are explained in Table 5-10. The parameters and the 

corresponding probabilistic models are given below 

Table 5-10. Parameters and Distribution Models. 

Parameter Probabilistic Model 

Young’s Modulus Weibull 2-parameter 

Crimp Strain Weibull 2-parameter 

Strain at Ultimate Stress Weibull 2-parameter 

Stress at Post-Peak Region Normal 

 

Probabilistic distribution models of all the parameters are provided below  

Young’s Modulus 

 

45.906

0

( ) 1 exp 1 exp
4.726

m

FEE E
F E

E

      
          

        

 (5.1.3) 
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Crimp Strain 

 11 11

11

11

5.407

0

( ) 1 exp 1 exp
0.0089

m
crp crp

FEcrp

crp
F

 




      
                     

 (5.1.4) 

 22 22

22

22

2.320

0

( ) 1 exp 1 exp
0.0029

m
crp crp

FEcrp

crp
F

 




      
                     

 (5.1.5) 

Strain at Ultimate Stress 

 11 11

11

11

18.7019
max max

max

max

0

( ) 1 exp 1 exp
0.0228

m

FE
F

 




      
                     

 (5.1.6) 

 22 22

22

22

21.749
max max

max

max

0

( ) 1 exp 1 exp
0.02056

m

FE
F

 




      
                     

 (5.1.7) 

Stress at Post-Peak Linear Region 

 
* 2

*

2

0

1 ( )
( ) exp

2(2 )

x

FEF dx
 


 

 
  

 
  (5.1.8) 

 
* 2

*

2

0

1 ( 0.00956)
( ) exp

2(0.00045)(2 )0.00045

x

FEF dx





 
  

 
  (5.1.9) 

where m is the shape parameter and 0X  is the scale parameter ( X  corresponds to 

the random variable). Results for the different sets of simulations are given in 

Table 5-10. If the projectile exits the fabric, then it is counted as a failure. The 

number of Monte Carlo simulations is 50 and the exit velocity from the 

deterministic analysis is 69.6 ft/s.  

Table 5-11. Simulation Results of Flat Impact Model. 

Probabilistic Parameter Probability of Lowest Exit Highest Exit 
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Failure Velocity (ft/s) Velocity (ft/s) 

Young’s Modulus 0.84 10.9 123.1 

Crimp Strain 0.74 32.5 122.7 

Strain at Ultimate Stress 1.0 61.7 131.6 
Stress at Post-Peak Linear 

Region 
0.98 81 101.36 

All 0.74 57.8 138.6 

 

 The table provide the individual effect of probabilistic parameter and the 

total effect of the all the parameters. The probabilistic failure is greater than 0.7 in 

each case showing greater chances of failure. As opposed to deterministic 

analysis, the probabilistic analysis gives the range of exit velocities along with the 

probability of failure. The range of exit velocities is huge in all the cases and 

hence all the parameters are implemented in the engine containment analysis. 

Test Case IV 

 Based on the previous analysis on individual effect of parameters on the 

model, two LGXXX models are considered from the engine containment system 

for the further analysis with one showing close resemblance with the NASA 

experimental data and the other which shows greater deviation from the NASA 

experimental data in terms of absorbed energy. The two models are LG594 and 

LG620 and their exit velocity from the deterministic analysis are 484.5 and 580.8 

ft/s respectively. Results from MCS are provided in Table 5-12. 

Table 5-12. Simulation Results of Engine Containment Models. 

Probabilistic Parameter 
Probability of 

Failure 

Lowest Exit 

Velocity (ft/s) 

Highest Exit 

Velocity (ft/s) 

LG594 1.0 186.9 715.0 

LG620 1.0 503.3 779.4 
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 The following graph (see Figure 5-11 and Figure 5-12) provides the clear 

view on the exit velocity from probabilistic analysis, deterministic analysis and 

NASA experimental data. In both the cases, the deterministic analysis under 

predict the results. The probabilistic analysis provides the range of exit velocity in 

which the deterministic and probabilistic analysis results fall.  

 
Figure 5-11. CDF plot of exit velocity for LG594 
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Figure 5-12. CDF plot of exit velocity for LG620 

5.2 Truss Designs 
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reliability algorithm is coupled with finite element analysis and Engineering 

Design Optimization (EDO) [49] library. The EDO library has a number of 
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(NLP) - method of feasible directions (MFD), genetic algorithm (GA) and 

differential evolution (DE). 

Reliability Analysis using FORM and SORM 

 Reliability analysis is carried out using FORM, SORM and MCS  (1000 
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model, random variables) is explained. Once the problem is solved, the final 

values, reliability and probability of failure of the each constraint and for the 

system are listed. Series failure of system is considered in which the system is 

considered as failed if any one of the constraints is not satisfied. Only the normal 

distribution of variables is considered for each problem. Reliability analysis is 

performed on the DO results by varying the random variable's standard deviation 

value represented as a percentage of the mean value (such as 2%, 5%, 10% & 

15%). Finally, probability of failure versus standard deviation is plotted. The 

number of random variables range from 8-12 and type of random variables used 

are load, allowable/yield tensile stress, allowable/yield compressive stress, and 

Young’s modulus with response function as maximum member stress and nodal 

displacements. 

Problem Formulation for Design Optimization 

 

Find    ={A}

to minimize   f( )=Volume

Subject to   

                   

                    

i =1,..,members

k=DOF at node k

t t

i a

c c

i a

a

k

 

 

 







x

x

 (5.2.1) 

where A  is the area of the member, ,c t

a a   
are the allowable compressive and 

tensile stresses, a  is allowable deflection at a particular node. 
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Test Problem 1: 2-Bar Truss [52] (Units: in, lb) 

For this problem (Figure 5-13) material properties of steel (0.2% C HR, A36 

Steel) are used. Material & load data (Table 5-13), problem formulation 

(Eqn.(5.2.2)) and results (Table 5-14 & Figure 5-14) of this problem are given 

below. 

 
Figure 5-13. 2-bar truss FE model 

Table 5-13. 2-Bar Truss Problem Data. 

Property Value 

1 2,E E  30x10
6
 

1 2,t t

y y   36300 

1 2,c c

y y   36300 

a  0.05 

P 10000 
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1 2

1 1 2 2

1 2

Find       = {A ,A }

              ={ , , , ,E ,E ,P}

to minimize  f( )=Volume

subject to      for i=1,2

                     for i=1,2

                       for i=1,2 at 

c t c t

y y y y

t t

i y

c c

i y

i a

   

 

 

 







x

X

x

node 2

 (5.2.2) 

Results of the design optimization are as follows: 

 

2

3

 = {2.208, 2.640}

Volume = 322.842 

Active Constraint : y-displacment constraint at node 2

in

in

A

 (5.2.3) 

 These optimized values are then used with FORM, SORM and MCS to find the 

reliability and probability of failure of each constraint.  

Table 5-14. 2-Bar Truss Results  5%X  . 

Constraint Information 
Reliability Index Probability of Failure 

FORM SORM MCS FORM SORM MCS 

Stress in element 1 5.0 5.0 5.0 0 0 0 

Stress in element 2 5.0 5.0 5.0 0 0 0 

X-Displacement at node 2 5.0 5.0 5.0 0 0 0 

Y-Displacement at node 2 0.0087 0.01055 -0.0569 0.4965 0.4957 0.5051 
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Figure 5-14. Probability of failure vs. X  (% of mean)-2-bar truss 

From Table 5-14 it can be seen that all the constraints except the y-displacement 

constraint (critical constraint) at node 2 have high reliability values and less 

probability of failure. And also difference in results (probability of failure) 

between FORM and SORM is negligible whereas the difference is huge when the 

comparison is made between FORM and MCS or SORM and MCS. The Figure 

5-14 plots the probability of failure value for the critical constraint versus the 

standard deviation. Difference in results (probability of failure) computed by 

MCS and FORM/SORM increases as the standard deviation increases. 

Test Problem 2: 6-Bar Truss [42] (Units: in, lb) 

For this problem (Figure 5-15 ) material properties of aluminum are used. 

Material & load data (Table 5-15), problem formulation (Eqn.(5.2.4)) and results 

(Table 5-16 & Figure 5-16) of this problem are given below. 
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Figure 5-15. 6-bar truss FE model 

Table 5-15. 6 Bar-Truss Problem Data. 

Property Value 

E  10x10
6
 

,t c

y y   21000 

P 21000 

 

 

1 2 3 4 5 6Find      ={A ,A ,A ,A ,A ,A }

             = { , ,E,P}

to minimize  f( )=Volume

subject to        for i=1,..,6

                       for i=1,..,6

                     0.005 for i=1

c t

y y

t t

i y

c c

i y

i

 

 

 









x

X

x

,2 at node 2

 (5.2.4) 

Results of the design optimization are as follows: 

 

2

3

 = {3.934, 5.569, 7.057, 4.993, 0.0108, 3.938}

Volume = 11854.3 

Active Constraint : Stress constraint in element 2

                                y-displacement constraint at node 2

in

in

A

 (5.2.5) 
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The optimized values are then used with FORM, SORM and MCS to find the 

reliability value and probability of failure of each constraint. 

Table 5-16. 6-Bar Truss Results  5%X  . 

Constraint Information 
Reliability Index Probability of Failure 

FORM SORM MCS FORM SORM MCS 

Stress in element 1 to 4 & 6 5.0 5.0 5.0 0 0 0 

Stress in element 5 0.0213 0.0233 0.0212 0.4915 0.4907 0.4915 

X-Displacement at node 2 5.0 5.0 5.0 0 0 0 

Y-Displacement at node 2 0.2490 0.2508 0.2464 0.4017 0.4010 0.4027 

 

 
Figure 5-16. Probability of failure vs. X (% of mean) - 6-bar truss 

Discussion: 

From Table 5-16 it can be seen that all the constraints except the displacement 

constraint at node 2 and stress constraint in element 5 (which are critical 

constraints) have high reliability values and less probability of failure. Difference 
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in results (reliability value/probability of failure) between FORM/SORM and 

MCS is negligible. The Figure 5-16 plots the probability of failure value for the 

critical constraint versus the standard deviation.  

Test Problem 3: 31-Bar Truss [42] (Units: N, m) 

Material & load data (Table 5-17), problem formulation (Eqn.(5.2.6)) & element 

data (Eqn.(5.2.7)) and results (Table 5-18 & Figure 5-18) of this problem (Figure 

5-17) are given below. 

 
Figure 5-17. 31-bar truss FE model 

 

1 2 3 4Find       = {A ,A ,A ,A }

             = { , ,E,P}

to minimize   f( )=Volume

subject to        for i=1,..,31

                       for i=1,..,31

c t

a a

t t

i a

c c

i a

 

 

 





x

X

x  (5.2.6) 

 

1

2

3

4

A Element 1 to 6

A Element 7 to 12

A Element 13 to 19

A Element 20 to 31









 (5.2.7) 
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Table 5-17. 31-Bar Truss Problem Data. 

Property Value 

E  20x10
6
 

,t c

y y   2.502 x10
8
 

P 100000 

 

Results of the design optimization are as follows: 

2

3

={2.942, 10.663, 2.227, 6.489} 

Volume = 1112.09 

Active Constraint = Stress constraint in element 1,6,8,9,10,11,13,19,21 & 30

in

in

A

(5.2.8) 

These values are then used with FORM, SORM and MCS to find the reliability 

value and probability of failure of each constraint. 

Table 5-18. 31 Bar Truss Results  5%X  . 

Constraint Information 
Reliability Index Probability of Failure 

FORM SORM MCS FORM SORM MCS 

Stress in element 1 & 6 0.0568 0.0589 0.0593 0.4774 0.4765 0.4764 

Stress in element 2 to 5 5.0 5.0 5.0 0 0 0 

Stress in element 7 5.0 5.0 5.0 0 0 0 

Stress in element 8 & 11 3.910 3.920 3.808 0
 

0 0 

Stress in element 9 & 10 0.112 0.114 0.115 0.4554 0.4558 0.4542 

Stress in element 12 5.0 5.0 5.0 0 0 0 

Stress in element 13 & 19 0.098 0.099 0.102 0.4610 0.4606 0.4593 

Stress in element 14 to 18 5.0 5.0 5.0 0 0 0 

Stress in element 21 & 30 0.146 0.148 0.148 0.4420 0.4412 0.4412 

Remaining 5.0 5.0 5.0 0 0 0 
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Figure 5-18. Probability of failure vs. X (% of mean) - 31-bar truss 

Discussion: 

 The Figure 5-14, Figure 5-16 and Figure 5-18 give a good view on 

probability of failure versus index versus S.D (% of mean). The probability of 

failure increases when the standard deviation increases and this result is reverse 

when we look in terms of reliability index which decreases when the standard 

deviation increases. Similar results from the all the methods show that, in all the 

above problems FORM method works well.  The FORM method is preferred over 

the other two methods due to the following observations a) the drawback of 

SORM method is that, the method requires lot of function 

evaluations/computational time in finding the curvature associated with second 

order approximation b) accuracy of MCS depends on the number of simulations, 

so the simulation time increases when the random variables and the constraints in 

the problem increases. From the results (Figure 5-14 - Figure 5-18), we can see 
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that difference in results (reliability (or) probability of failure) using FORM, 

SORM and MCS is negligible. So, the FORM method is preferred over the other 

two methods as there is less number of computational time and function 

evaluations. 

Reliability Based Design Optimization 

 Example problems involving implementation of the RBDO method as 

explained in Section 2.7 are illustrated here. RBDO is implemented and tested 

with (a) truss problems [26] involving linear and nonlinear constraints with 

normal variables and (b) beam problem [53] involving nonlinear constraints with 

non-normal variables such as Weibull and lognormal. 

Test Problem 4: Cantilever Beam Problem (Units: lb, in) 

 The cantilever beam (see Figure 5-19) subjected to fatigue loading is 

discussed here. The problem deals with non-linear constraints, non-normal 

variables and multi-constraints. Results obtained from the developed algorithm 

are compared with publicly available results [53].  

 
Figure 5-19. Cantilever beam problem [53]. 
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 The beam is subjected to a fatigue loading. The problem is to minimize the 

weight of the structure subjected to maximum stress constraint, fatigue failure and 

plate buckling. The problem formulation and the random variables associated 

with the problem are provided below. Random variables are described by their 

mean and coefficient of variation (COV). 

 

Find              =(b,h)

to minimize   f( )=

subject to       g1 to g2

                      0.1 15

                      0.1 15

bhl

b

h



 

 

x

x

 (5.2.9) 

 1 2

6
g  0 (Stress constraint)

Ql
R

bh
    (5.2.10) 

 1 0g  0 (Fatigue failure)m

RA N S    (5.2.11) 

 
3

3 2

0.3Eb
g 0 (Plate buckling)

h
Q

l
    (5.2.12) 

Table 5-19. Beam Problem-Random Variable Data 

Random Variable Distribution Mean COV Scale Shape 

R , yield strength Weibull 50
 

0.12 52.58 9.81 

A, Fatigue strength 

coefficient 
Lognormal 1.632x10

10 
0.5 - - 

E, Young’s modulus Normal 30000 0.5 - - 

 

A static load ( Q =0.5 kips) is applied and considered in Eqns. (5.2.10) and 

(5.2.12). An oscillatory loading of 0.4kips is applied for ( 0N ) 2x10
6
 cycles and is 

considered in Eqn. (5.2.11). The beam is made of ASTM A572-50 High Strength 

Low Steel Alloy with density of 0.3 lb/in
3
 and the allowable probability of failure 

of the structure is 3.333x10
-4

. The DO results are {0.234393, 3.91691} in
2
. 
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Results from the RBDO analysis are given below and the results show good 

comparison with the reference results. 

Table 5-20. Beam Problem RBDO Results. 

Method Weight {b,h} 
1 of gfp  2 of gfp  3 of gfp  

Source [53] 11.2608 {0.2463,5.08} 2.41x10
-6 

3.23x10
-4 

3.51x10
-8 

RBDO 12.067 {0.2687,4.99} 1.41x10
-6 

9.33x10
-5 

2.94x10
-5 

 

Test Problem 4: 3-Bar Truss Problem (Units: lb, in) 

 The problem is shown in Figure 5-20. The design variables are the cross-

sectional area of the members. The random variables are material properties (see 

Table 5-21) and allowable deflection. Random variables are normal and are 

described by their mean and coefficient of variation (COV) as given in Table 

5-22.  

 
 

Figure 5-20. 3-bar truss FE model(RBDO) 

Table 5-21. 3-Bar Truss Problem Data (RBDO). 

Property Value 

1E  10x10
6
 

1 1,t c

y y   5000 

,x yP P  28284 
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 The problem is to minimize the volume of the structure subjected to stress 

and displacement constraints. 

 

1 2

1 2

1 5

1

2

Find              =(A ,A )

to minimize   f( )=L(2 2A A )

subject to       g  to g                     

                      0.1 A 15

                      0.1 A 15



 

 

x

x

 (5.2.13) 

 1

1

2
g 0.005 0

A

xP L

E
    (5.2.14) 
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 (5.2.18) 

Table 5-22. 3 Bar Truss-Random Variable Data. 

Random Variable Distribution Mean COV 

E Normal 1x10
7
 0.05 

,c t

a a   Normal 5000 0.05 

,x yP P  Normal 28284 0.05 
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 Area of the member 1 ( 1A ) is assumed to be same as area of member 3 and 

the constraints 1 2 3 4 5,  ,  ,   &  g g g g g correspond to displacement-x, displacement-

y, stress constraint-member-1, stress constraint-member-2 and stress constraint-

member-3 respectively.  Since the functions are provided explicitly, the number 

of random variables that control each constraint can be easily identified.  Young’s 

modulus doesn’t have any impact on stress constraints as there is no E  value 

associated with any of the stress constraints (see Eqn.(5.2.16) through 

Eqn.(5.2.18)) So load is the only random variable which is associated with all the 

constraints. Results from the design optimization are {7.999, 0.1} in
2
 with the 

volume as 114.12 in
3
 and from the FORM, SORM and MCS, reliability of the 

constraints corresponding to the optimized results are as provided below. 

Table 5-23. 3 Bar Truss-Reliability Analysis Results. 

Technique\Constraint g1 g2 g3 g4 g5 

FORM -0.0014 0.2476 0.1428 02476 >5.0 

SORM -0.0021 0.2497 0.1441 0.2497 >5.0 

MCS -0.0044 0.2460 0.1478 0.2522 >5.0 

 

 From the above reliability analysis it can be seen that, from the optimized 

values through design optimization doesn’t provide good reliability with the all 

the constraints. The most critical constraint (with the least reliability) is the 

displacement constraint along x-direction. Reliability index value is not provided 

for 5g , since the probability of failure is negligible beyond the value of 5.0. The 

fifth constraint is not considered any further. Results of the structures with various 

target reliability indices are given in Table 5-25. 
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Table 5-24. 3 Bar Truss-RBDO Results 

Reliability Index Design Variables 
Reliability Index of Constraint 

g1 g2 g3 g4 

0.5 {8.288, 0.1} 0.5 0.739 0.709 0.739 

1.5 {8.897, 0.1} 1.5 1.721 1.825 1.721 

2.5 {9.557, 0.1} 2.5 2.703 2.915 2.703 

3.0 {9.910, 0.1} 3 3.194 3.452 3.194 

 

 From the above results, we can clearly see the effect of random variables 

on the constraint for the various target reliability index values. As the target 

reliability index value increases the minimized values also increases and thereby 

making it more reliable. Since the critical constraint is 1g , reliability index of the 

remaining constraints are greater than the target value. In RBDO, reliability index 

of the critical constraint of the structure is made more reliable by considering 

reliability constraints. 

Test Problem 6: 6-Bar Truss Problem (Units: lb, in) 

 The problem is same as explained in the Figure 5-15 with the addition of 

random variables to the problem as given in Table 5-25.  

Table 5-25. 6 Bar Truss-Random Variables Data. 

Random Variable Distribution Mean COV 

E Normal 1x10
7 

0.05 

,c t

y y   Normal 21000 0.05 

Load Normal 21000 0.05 

 

 From the sensitivity analysis it was found that the stress constraint 

depends on the random variable allowable stress and load, and the displacement 

constraints depend on the Young’s modulus and load. Reliability analysis results 
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are shown in Table 5-26 and RBDO result in Table 5-27 for only the critical 

constraints whose reliability index values are less than 3.5. 

Table 5-26. 6 Bar Truss-Reliability Analysis Results. 

Technique\Constraint g5 g8 

FORM 0.0023 0.0011 

SORM 0.0043 0.00211 

MCS 0.0016 -0.00403 

 

 The constraint 5g and 8g  are associated with the stress constraint of 

member-5 and displacement along y-direction. The RBDO results of the structure 

is provided which follows the same kind of trend as explained in the previous 

problem, but the obtained reliability index is greater than the target value. 

Table 5-27. 6 Bar Truss – RBDO Results 

Reliability 

Index 
Volume Design Variables 

Reliability Index of 

Constraint 

g5 g8 

DO 10594.2 
{4.094, 5.809, 6.403, 4.551, 

0.01, 3.504} 
0.002 0.001 

0.5 10786.8 
{4.259, 5.591, 6.260, 4.753, 

0.01, 4.182} 
0.518 0.500 

1.5 11252.9 
{4.289, 6.022, 6.20, 4.307, 

0.01, 4.736} 
1.515 1.553 

2.5 11788.1 
{4.745, 7.042, 6.901, 3.999, 

0.01, 4.272} 
2.550 2.580 

3.5 11959.6 
{5.089, 6.802, 6.425, 4.507, 

0.01, 4.909} 
3.052 3.038 

 

 All the problems provide insight into the importance of RBDO in 

engineering designs. The problems involved nonlinear constraints and non-normal 

variables.  
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

The following are the conclusions based on the current study. 

1. The experimental data from the uniaxial tension tests were analyzed and 

modeled using available statistical models. From the results, it is clear that a 

majority of the data can be modeled using Weibull distributions. However, for 

some of the material properties, other distribution models show a better fit. 

2. Reliability of the structural designs obtained using DO are computed using 

the FORM, SORM and MCS techniques. The results indicate that the reliability of 

some of the constraints are small with a high probability of failure when 

considering the material properties or/and load acting on the system as being 

random in nature. 

3. From the RBDO examples involving linear and nonlinear constraints, and 

normal and non-normal variables, it can be seen that the optimized design 

variable values are different from the DO results. Typically, the objective function 

value increases with increase in the desired reliability.  

4. MCS technique is implemented in finite element model where the 

experimental properties of the material are modeled as random variables and the 

probability of failure associated with the structure is computed.  
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6.2 Future Work 

1. Accuracy of MCS purely depends on the number of simulations that were 

performed to obtain the probability of failure. So, as the simulations increases the 

accuracy of the method also increases. At the same time, as the simulation 

increases the computational time associated with it increases and thereby it 

becomes computationally expensive. More advanced Monte Carlo methods are 

available [54] in which simulations are performed by selecting the points away 

from the specified ball of radius. Radius is the reliability value computed by 

approximation methods. Sampling is done outside the circle shown in Figure 

6-1and the distribution function for the sampling is described below. 

 

Figure 6-1. Advanced MCS method 

The probability density function becomes 
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where k is the cumulative chi-square distribution with k degrees of freedom 

which are actually number of random variables. MCS with the above mentioned 

sampling distribution produces accurate results even with less number of 

simulations. 

2. The random variables considered for the reliability analysis and RBDO 

study is all assumed to be independent, but practically in some cases there exist 

correlation among variables. Correlation is incorporated in the FORM or SORM 

analysis by transforming the correlated variable to uncorrelated variable [20]. The 

uncorrelated variable is given as 

 
1( )TY L U  (6.2.3) 

where Y  is the uncorrelated variable, L  is the lower triangular matrix obtained 

from corrected correlation coefficient matrix ( 'C ) which is calculated as follows 
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 
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where a bX X is the correlation coefficient of aX and bX variables. So if the 

variables are correlated, it is first transformed to uncorrelated variable and then 

the usual reliability analysis procedure are carried out as explained in the sections 

2.4 and 2.5. Incorporating the random variables along with correlation would give 

a more clear idea on behavior or response of the structure with increases in 

accuracy. 
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3. Function evaluation in reliability analysis and RBDO method involves 

solving finite element related simultaneous equations ( KD F ) each time which 

increases the computational time if the number of iterations or populations used in 

optimization technique increases. Use of response surface method for handling 

constraint would decrease the computation time enormously. Response surface 

method creates a response surface (a nonlinear equation) for each of the function 

evaluation in a problem. Regression runs are performed with lower and upper 

limit of random variables to obtain the response surface. This method highly 

depends on the upper and lower limits assumption, so careful considerations have 

to be taken before assuming the bound limits. 

Using the response surface method reduces the function evaluations and 

computational time, because solving the simultaneous equation is carried out only 

during the regression analysis. Only the response surface function is called in the 

subsequent iterations for the function evaluations. 
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APPENDIX A 
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Input file format is discussed below. It should be noted that the input needs to be 

in consistent units. The sample input format for the experimental data analysis is 

given below.  

*heading  

a suitable heading describing the data 

 

*data 

Strength or any parameter corresponding to the sample one per line.  
 

*estimates 

 

Weibull2p (or) Weibull3p, 0 (or) 1 (1 represents weighted method) 

GeneralizedExponential, upper limit (shape parameter) 

 

For other distributions such the distribution name is sufficient and they are gamma, normal, 

lognormal 
 

*end 

The sample input format for the reliability analysis (FORM, SORM, MCS) and 

RBDO are given below.  

*Reliability_Analysis 

This input signals the beginning of reliability analysis data. The input corresponding to reliability 

analysis must be specified between reliability_analysis and end_reliability_analysis. 

 

*Reliability_Technique 

Signals the type of reliability technique and followed by number of iterations for each 

performance function, number of line search, and target reliability value if RBDO is specified as 

reliability technique. Other types of technique are FORM, SORM and Monte Carlo. 

 

*Random_Variable 
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Signals the next few lines of input contain the random variable information. Each data line 

contains the random variable type and the associated information, and if required, the lower bound 

the upper bound and the precision. If the type is XSECTION (for element cross sectional area) or 

MODULUS (for Young’s modulus) or COMPRESSIONALLOBALE/TENSIONALLOWABLE 

(allowable stresses), the next input is the type of distribution 

(normal/lognormal/weibull/gamma/generalized exponential) then property group number followed 

by lower bound, upper bound, mean value, standard deviation and parameters for non-normal 

distribution (scale and shape parameters). If the type is LOAD, the next input is the distribution 

type followed by load case, node number, direction (1 for x and 2 for y, -ve values for opposite 

direction), the remaining order is same as other random variables. 

 
*Constraint 

This signals that next few lines of input contain constraint information. Each data line contains the 

constraint type and the associated information. If the type is STRESS (for stress constraint) the 

next input is the material group number. If the type is DISPLACEMENT (for nodal displacement 

constraint) the next inputs are the node number, the degree-of-freedom to use (1 for x, 2 for y) and 

the allowable displacement value. 

 
*End_Reliability_Analysis 

Specify the end of reliability analysis data 
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