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ABSTRACT  

   

This dissertation addresses the research challenge of developing efficient 

new methods for discovering useful patterns and knowledge in large volumes of 

electronically collected spatiotemporal activity data. I propose to analyze three 

types of such spatiotemporal activity data in a methodological framework that 

integrates spatial analysis, data mining, machine learning, and geovisualization 

techniques. Three different types of spatiotemporal activity data were collected 

through different data collection approaches: (1) crowd sourced geo-tagged digital 

photos, representing people's travel activity, were retrieved from the website 

Panoramio.com through information retrieval techniques; (2) the same techniques 

were used to crawl crowd sourced GPS trajectory data and related metadata of 

their daily activities from the website OpenStreetMap.org; and finally (3) 

preschool children's daily activities and interactions tagged with time and 

geographical location were collected with a novel TabletPC-based behavioral 

coding system. The proposed methodology is applied to these data to (1) 

automatically recommend optimal multi-day and multi-stay travel itineraries for 

travelers based on discovered attractions from geo-tagged photos, (2) 

automatically detect movement types of unknown moving objects from GPS 

trajectories, and (3) explore dynamic social and socio-spatial patterns of preschool 

children's behavior from both geographic and social perspectives. 
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Introduction 

This dissertation contributes to addressing the research challenge of 

discovering useful patterns and knowledge in increasingly ubiquitous, large-scale, 

electronically collected, spatiotemporal activity data. Digital spatiotemporal data 

of human activities, much of it accessible online, has been increasing 

exponentially. For instance, the technologies of location-aware devices, such as 

GPS and WiFi, are becoming more pervasive. Such devices are now prevalent in 

vehicles, cellular phones and personal mobile devices and can track and record 

people’s location or record locations of events (e.g. crime). 

Meanwhile, with the development of Web 2.0, which focuses on user-

centered design for interactive information sharing, many people are sharing their 

geolocation movement traces on public websites. This makes this type of directly 

collected data widely accessible (Haklay and Weber 2008). In indoor 

environments, where GPS systems do not work, radio frequency identification 

(RFID) and Bluetooth can be used to position people’s geographic location. 

Further, as shown in chapter 3 in this dissertation, TabletPCs can be configured to 

track children’s movement in a preschool (indoor and outdoor) by coders using 

digital pens. 

Beyond these direct methods of collecting spatiotemporal activity data, 

these data can also be retrieved indirectly from location proxies. For example, 

people’s space-time consumption behavior can be extracted based on their ATM 

transactions as “location proxies”. Digital photos that are images of places people 

visited can also serve as “location proxies” to represent their space-time tourism 
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behavior if listed in chronological order. Thanks to Web 2.0, the large numbers of 

geo-tagged photo data are also publicly available for researchers (Goodchild 

2007).  

Such indirectly collected spatiotemporal data are often an abstract 

representation of people’s actual movement in physical space. These enormous 

amounts of directly and indirectly collected types of spatiotemporal data of 

human activities become a new data source for studying human socio-spatial 

behavior. How to collect these data and efficiently and accurately discover useful 

social and geographic patterns and knowledge from these data is the research 

question of this dissertation.  

The three research essays in this dissertation address the following gaps in 

existing data mining research: 

(1) To make travel recommendations for travelers based on discovered 

popular places and travel patterns from large numbers of online geo-tagged 

photographs, existing research has applied spatial analysis, data mining, machine 

learning and dynamic programming techniques to address the research challenges. 

However, several research gaps remain in this context that still need to be 

addressed: The first gap is that, due to the additional complexity involved, little 

existing research focuses on real-life travel itinerary planning problems, such as 

making multi-day and multi-stay (different accommodations during travel) travel 

itineraries for inexperienced tourists with limited time. The second gap is that the 

discovered travel knowledge and patterns, such as attractiveness scores, average 
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visiting times of points-of-interest (POIs) and travel reoccurrences between POIs, 

are usually isolated from tackling travel itinerary planning problem. Such data 

mined travel knowledge and patterns contain important information for making 

quality travel itineraries. However, no current research takes advantage of this 

information to build an intelligent travel itinerary planning system. 

(2) To train a trajectory classification model from trajectories and 

automatically detect movement types of unknown trajectories, existing research 

classifies trajectories based on classic geometric shape-based approaches by 

utilizing the geometric characteristics of movement. However, a major limitation 

of this approach is that it restricts trajectory comparisons to the same geographic 

region since all predefined trajectory categories are tied to this region. 

Classification methods based on movement parameters can overcome this 

problem but the accuracy of classification depends heavily on selecting 

appropriate movement features from trajectories. Recent research attempts to 

extract local movement profiles to improve the accuracy of classification but is 

restricted to fixed-size trajectories. 

(3) To find social and spatial patterns of preschool children’s behavior 

from micro-social spatiotemporal activity data, existing studies on preschool 

behavior have applied GIS, statistical analysis, spatial analysis, and social 

network analysis techniques. However, most of these studies are restricted to 

either a social context or a spatial context. For instance, geographic data and 

methods are usually used for discovering spatial patterns (spatial heterogeneity, 

spatial externalities and spatial spillovers) while social data and methods are 
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mostly used for discovering social network patterns in preschool behavior. This 

research gap in simultaneously applying spatial and social methods to preschool 

children's behavior limits research on the joint relationship between geographic 

and social settings and the socialization of preschool children. 

 

 

Figure 1: Proposed methodological framework for spatiotemporal data mining, 

analysis, and visualization of human activity data. 

To address these three research gaps, I propose to analyze three types of 

such spatiotemporal activity data in a methodological framework that integrates 

spatial analysis, data mining, machine learning, spatial optimization and 
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geovisualization techniques (see figure 1). The main contributions of the three 

essays are as follows: In essay 1, a hierarchical region-of-interest (ROI) based 

graph model is first applied to automatically discover attraction places and related 

properties, and travel patterns from geo-tagged photos at different spatial scales. 

Then, this research proposes a modified Iterated Local Search (ILS) heuristic 

algorithm to efficiently find an approximate optimal solution for the multi-day 

and multi-stay travel itinerary recommendation problem by using additional travel 

information, such as the attractive score of a POI, reoccurrence weights of trips 

etc., which are mined from geo-tagged photos. Crowd sourced geo-tagged digital 

photos, representing people’s travel activity, were retrieved from the website 

Panoramio.com through information retrieval techniques to test this model.  

In essay 2, I propose a trajectory classification model based on movement 

parameters that I introduce, which are geometric complexity measures of 

trajectories and structural complexity measures of movement parameters. This 

model automatically detects movement types of unknown moving objects from 

GPS trajectories. The performance of this model is evaluated in an experiment 

that applies the same techniques as in 1) to crawl crowd sourced GPS trajectory 

data and related metadata of daily activities from the website OpenStreetMap.org. 

In essay 3, exploratory spatial data analysis with social weights is applied 

to explore dynamic social and socio-spatial patterns of preschool children’s 

behavior from both geographic and social perspectives. The data for this project 
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were collected by a team of researchers as part of a larger NSF-funded project!: 

preschool children’s daily activities and interactions, tagged with time and 

geographical location, were collected with a novel Tablet-PC based behavioral 

coding system that the author helped to implement. 

The first essay is titled "Building an Intelligent Travel Trip Plan System 

based on Geo-tagged Photos", followed by an essay on "Introducing Complexity 

Measures to Trajectory Classification Modeling to Automatically Detect Different 

Movement Types with Unknown GPS Trajectories." The dissertation concludes 

with an essay on "Using ESDA with Social Weights to Analyze Spatial and Social 

Patterns of Preschool Children’s Behavior." 

 

  

                                                
1
 This work was funded by the National Science Foundation (NSF) as part of the 

project “Modeling time, space, and behavior: Combining ABM & GIS to create 

typologies of playgroup dynamics in preschool children” by William Griffin, Paul 

Torrens, Jennifer Fewell (2006-2011). The data were collected by Casey Sechler, 

Jillian Smith and other ASU undergraduate and graduate students who have 

participated in this project. 



  7 

References 

 

Goodchild, M. F. (2007) Citizens as sensors: the world of volunteered geography. 

GeoJournal, 69, 211-221. 

Haklay, M. & P. Weber (2008) OpenStreetMap: User-generated street maps. 

Pervasive Computing, IEEE, 7, 12-18. 

 

 



  8 

ESSAY 1 

Building an Intelligent Tourist Trip Plan System based on Geo-tagged 

Photos 

Abstract 

By utilizing large amount of public available geo-tagged photos, existing 

research can successfully discover attractions places and travel patterns, and make 

simple travel recommendations for travelers. However, few of them focuses on 

complicated real-life travel plan problems, such as making multi-day and multi-

stay (different places of accommodation) travel itinerary for inexperienced 

tourists with limited time budget. By integrating and extending the state-of-the-art 

techniques in spatiotemporal data mining and solutions of orienteering problems 

in operational research, this research develops a novel intelligent tourist trip plan 

system based on geo-tagged photos to automatically generate useful travel 

knowledge and make travel itinerates. Specifically, this system addresses an 

important challenge in existing research: to efficiently solve the tourist trip plan 

problem in a way that can benefit actual travel planning by leveraging massive 

geo-tagged photos.  

First, the Order Points To Identify the Clustering Structure (OPTICS) 

clustering algorithm is applied to explore attractive places and points-of-interest 

(POIs) from geo-tagged photos. Properties of POI, such as attractive score and 

suggested visiting time, are also extracted from geo-tagged photos. Then, a 

traveling graph model is generated through reconstructed individual travel trips 

using geo-tagged photos. The reoccurrence weight of trips between POIs is 
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computed using a sequential pattern recognition algorithm. Further, travel patterns 

at different spatial scales are mined for travel references using this graph model 

and the hierarchical clustering results of OPTICS. Finally, I develop a modified 

Iterated Local Search (ILS) heuristic algorithm to efficiently find an approximate 

optimal solution to the multi-day and multi-stay tourist trip plan problem using 

discovered POIs and travelling graph model as additional travel information. To 

demonstrate the utility of this approach, I retrieve geo-tagged photos that were 

taken in Australia from the online photo sharing website Panoromia.com to 

develop optimal multi-day and multi-stay travel itineraries for tourists.   
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1.1 Introduction 

Volunteered geographic information provides researchers with great 

opportunities and challenges to develop new methods for discovering underlying 

geographical knowledge of travel behavior (Goodchild 2007). Photos shared 

through websites are one example of volunteered geographical information. 

Several technological advances have enabled the widespread availability of 

electronic photos tagged with geographical location. For one, accurate location-

aware chips are widely manufactured and embedded in digital cameras and smart 

phones with cameras. Further, location-aware techniques can detect accurate 

geographical location of cameras in both outdoor (e.g. GPS) and indoor (e.g. 

cellular network, WiFi, RFID) environments. With these technologies, 

geographical location and time information can be automatically written into 

digital photos when people take pictures. Meanwhile, with the rapid development 

of Web 2.0, more and more people are publishing or sharing their digital photos 

with friends via photo sharing websites. For example, at Panoramio.com and 

Flickr.com, several billion geo-tagged photos are publicly available for browsing 

and searching. For instance, I experimented with retrieving 36 million geo-tagged 

photos from Panoramio.com for this dissertation.  

 Photo-sharing websites generally provide an online mapping system for 

Internet users to interactively understand what a specific place in the world looks 

like by browsing the photos mapped at that place. Moreover, these geo-tagged 

photos not only contain visual information of places, but also provide rich spatial 

and temporal information of people’s travel behavior. In recent years, publicly 
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available geo-tagged photos have been successfully used in studies of tourism, 

computer graphics, mobile research and geography. As discussed in more detail in 

the literature review in section 1.2, existing work mainly focuses on manipulating 

the spatial information of geo-tagged photos to discover landmarks, find attractive 

areas in a city or explore the borders of city center neighborhoods. Other studies 

simultaneously utilize the spatial, temporal and visual information of geo-tagged 

photos to mine travel patterns, automatically determine the location of un-tagged 

photos, reconstruct three-dimensional scenes of landmarks, and provide travel 

recommendation services. 

For people who are going to visit a region or a city, such useful travel 

information and recommendations can help them to get a better sense of a place 

and how to plan their travel trip. However, there are often more attractions in a 

city than can be visited within limited travel time. To determine which places to 

go in what time during their available travel days, tourists need to incorporate 

several pieces of information simultaneously, such as the airport where they arrive 

and leave, the number of days available for travel, the attractiveness of travel 

destinations, the travel time between destinations or even the opening and closing 

times of destinations. Since this is complicated, inexperienced tourists often solve 

such problem by seeking guidance from travel guidebooks, traveling experts, such 

as travel agents or local residents, or finding answers from social media resources, 

such as Lonely Planet
2
 or TripAdvisor

3
. However, it can take tourists a lot of time 

                                                
2
 http://www.lonelyplanet.com"

3
 http://www.tripadvisor.com"
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to process large amounts of travel information and translate this info a feasible 

travel plan.  

To solve this travel trip-planning problem efficiently, research based on 

geo-tagged photos utilizes various approaches to develop intelligent travel trip 

planning systems for automatically recommending travel plans for travelers. 

When incorporating temporal information with geo-tagged photos, the 

spatiotemporal representation of photos actually provides a “digital footprint” that 

can be used to reconstruct travel trips traversed by photographers (Girardin et al. 

2008). By utilizing these photo-based travel routes and experiences, current 

research tries to find classical travel routes, recommend best travel destinations 

and itineraries for travelers. A common feasible approach to build a travel 

planning system is to first discover travel attractions and related information, such 

as attractive score, average visiting hours etc., from geo-tagged photos, and then 

develop algorithms to find and recommend best travel routes for tourist based on 

their travel premise (e.g. start/end locations and travel time), Section 1.2.4 

reviews the existing research in this research area.  

However, a remaining challenge of this approach that needs to be 

addressed is related to not only solving the travel planning problem efficiently but 

also in a way that takes time and budget constraints travelers into account. Since 

travel recommendation research based on geo-tagged photos is still in the early 

stages, most research has focused on relatively simple travel planning problems 

that does not consider the available traveling time of tourists, the opening and 

closing times of attractions, or different places of accommodation for multi-day 
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travel. Therefore, their applicability to real-life traveling situations is limited. 

Besides, when tackling more complex travel planning problems, slow 

performance becomes another challenge because exponentially increased 

complexity. Recent research on the Orienteering Problem (OP) provides efficient 

heuristic algorithms to tackle similar complex travel planning problems. In this 

case, attractions are usually provided by places like tourist offices and the 

attractive scores are predefined categorically according to the types of attractions. 

Borrowing such efficient algorithms to solve a travel-planning problem based on 

geo-tagged photos in a way that more realistically models with traveler’s budget 

and time constraints remains a research gap. The orienteering problem and its 

extensions are discussed in section 1.3.5. 

 To address this challenge in this essay, I develop an intelligent tourist trip 

plan system based on geo-tagged photos that mines useful travel knowledge and 

finds optimal multi-day and multi-stay travel route plans. I achieve this through 

data mining and knowledge discovery while making use of spatial clustering, 

pattern recognition, meta-heuristic solutions for the orienteering problem, and 

geovisualization. Specifically, I use the ordering points to identify the clustering 

structure (OPTICS) algorithm (Ankerst et al. 1999) to explore the attractive places 

as POIs from geo-tagged photos. Then, I construct a traveling graph model to 

mine travel patterns from different spatial scales. With the discovered POIs and 

travel graph model, I develop a modified Iterated Local Search (ILS) heuristic 

algorithm to efficiently find and approximate optimal solution. The usefulness of 

this system is demonstrated in an application of Australia, using geo-tagged 
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photos retrieved from the website Panoramio.com. The potential broader impacts 

of this work include the study of automatic and intelligent travel planning, 

tourism patterns and related economic activities as well as the provision of 

location-based services as travel guides, web recommendation system, or personal 

travel assistant for smart phone applications and other devices.  

1.2. Related Work 

The spatiotemporal information embedded in large amount of user 

generated geo-tagged photos implicitly provides rich travel-related information 

for tourists. In recent years, by leveraging publicly available online geo-tagged 

photos and related meta-data, much research tried to discover useful travel 

information (e.g. landmarks/attractions and their visiting time preferences, travel 

behaviors and travel patterns) and develop intelligent and expert system to 

recommend travel destinations and travel itineraries to potential users. In general, 

existing work has focused on three tasks: (1) exploring travel attractions from 

geo-tagged photos; (2) mining travel patterns from geo-tagged photos;(3) 

recommending travel destinations based on geo-tagged photos and (4) 

recommending travel itineraries based on geo-tagged photos. The method 

proposed in this essay builds on and advances this foundation to overcome some 

of the key remaining challenges in current research. 

1.2.1 Exploring travel attractions with geo-tagged photos 

People take photos at the places that attracted them (Zheng et al. 2011b). 

Travel attractions could be some specific geographical locations/areas that have 
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prominent features, including cultural, natural (e.g., landmarks and endangered 

species) or geographic features. Recently, many studies have investigated 

landmarks or attractive regions from photos tagged with geographical locations. 

Despite using different types of case studies, most research applied similar 

methodologies: first, spatial clusters are discovered from geo-tagged photos using 

various spatial clustering algorithms; then, representative photos or locations are 

generated as landmarks for each spatial cluster. Regarding the types of clustering 

algorithms utilized, current studies can be classified into those applying the 

partitioning clustering approach; the density based clustering approach and the 

hierarchical clustering approach. These clustering methods and their applications 

in the context of this essay's research are discussed next. 

 In partitioning clustering approach, the k-means algorithm (MacQueen 

1967) that takes the number of clusters as an input parameter, and uses the mean 

value of the points in a cluster as the centroid is popular in research based on geo-

tagged photos. Ahern et al. (2007) applied k-means to explore geographical 

clusters of geo-tagged photos in equal-sized “tiles” at two different geographical 

scales. In Chen et al. (2009), k-means was used to find spatial clusters from geo-

tagged photos in selected metropolitan areas. However, k-means is a fixed-cluster 

approach and the value of k is difficult to predefine. Besides, the clusters explored 

by k-means are spherical -- hence it is not suitable for finding arbitrary shaped 

clusters, which are common in natural environments. 

 The collective behavior of photographers is represented by an uneven 

geographic distribution of geo-tagged photos: more photos are taken at more 
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popular places. Therefore, density-based approaches become natural solutions for 

finding POIs or ROIs from geo-tagged photos. For example, Hoashi et al. (2009) 

applied the DBSCAN algorithm to find clusters from 12,498 geo-tagged photos in 

the Tokyo metropolitan area. For each cluster, the centroid with the highest photo 

density is used to query a list of names from travelogues to describe this area. 

Kisilevich et al. (2010b) apply the same clustering method to find attractive 

regions from 20,200 geo-tagged photos in the city of Munich. Kisilevich and 

colleagues (2010c) further developed a modified DBSCAN algorithm, called P-

DBSCAN, to explore attractive regions from 28,707 geo-tagged photos of 4,160 

photographers in the Washington D.C. area. In their algorithm the density 

threshold MinPts is defined as the minimum number of photographers in the 

neighborhood, so that all points in the cluster have equal weight.  

 Another popular density based approach applied in geo-tagged photo 

research is Mean Shift clustering (Fukunaga and Hostetler 1975), which is a non-

parametric technique that does not require prior knowledge of the shape or the 

number of clusters. It assumes that the distribution of points can be approximated 

via kernel density estimation, so that dense clusters can be found as the mode of 

the probability density functions. In Lu et al. (2010), Mean Shift clustering was 

successfully applied to automatically detect 300,000 clusters in the world from 

near 20 million geo-tagged photos. To avoid the number bias of the photos taken 

by different people, Crandall and colleagues (2009) divided the space into 1 

degree and .001 degree buckets to represent metropolitan scale (100km) and 

landmark scale (100m). In each bucket, only one photo for each photographer is 
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sampled. After mean shift clustering, the photos in the buckets that are located at 

the corresponding clustering centers are selected for finding statistically 

significant landmarks.  

 The hierarchical clustering algorithms decompose points into several 

levels of nested clusters. The result is usually organized as a tree where the root is 

the whole point set and each node is a sub point set. Zheng et al. (2009) used the 

agglomerative hierarchical clustering approach to find spatial clusters from geo-

tagged photos. It is worth noting that the structure of hierarchical clustering 

results is useful for map-based browsing because it is convenient to organize and 

display POIs or ROIs at different zoom levels on a limited computer screen. In 

Jaffe et al. (2006), a modified Hungarian hierarchical clustering algorithm 

(Goldberger and Tassa 2008) is used to find spatial clusters from geo-tagged 

photos and organize them in a tree structure. For each node (sub-cluster) on a 

different hierarchical level, representative photos and textual tags are identified. 

Therefore, in their map-based system, the corresponding representative photos 

and tags can be displayed at different zoom levels.  

1.2.2 Mining travel patterns from geo-tagged photos  

The large online database of publicly shared geo-tagged photos also 

provides researchers with opportunities to discover individual and collective 

travel patterns, which are important for tourism research and the tourist industry. 

Individual geo-tagged photo collections represent a type of “digital footprint” 

(Girardin et al. 2008) that can reflect the spatial-temporal movement of tourists 

who take photos. Therefore, travel patterns can be revealed from the collective 
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behavior of photographers. Several researchers (Clements et al. 2010, Gao et al. 

2010, Cao et al. 2010) tried to develop various approaches to mine travelers’ 

collective behavior or travel patterns from their geo-tagged photos and then 

making travel recommendations for Internet users based on the queried 

information.  

 Girardin et al. (2008) used geo-visualization techniques to statically and 

qualitatively analyze tourist patterns from geo-tagged photos taken by 753 

travelers in Rome, Italy over a three-month period. In their approach, they 

manually explored spatial travel preference clusters from photos. Then, the travel 

patterns were generated and visualized as weighted desire lines by aggregating 

individual travel paths, which were captured as the sequential travel preference of 

users. An advanced geo-visualization technique is proposed by Jankowski et al. 

(2010) to discover movement patterns from geo-tagged photos. In their approach, 

the area is divided into Voronoi tessellations by using a density based convex 

shape clustering algorithm developed by Adrienko and Adrienko (2010). Then, 

the collection of photo sequences was converted to aggregate flows among 

compartments to Voronoi polygons. To explore the movement patterns, they used 

the flow mapping technique (Tobler 1987) to visualize aggregate flows at 

different time periods. The number of actual movements of photographers 

between two compartments defines the width of travel flow. They defined a 

popularity threshold to filter out travel flows with a number of actual movements 

that is lower than certain values as well as a distance threshold to analyze either 

long travel flows (>=3km) or short travel flows (<=1500m). In their following 



  19 

work (Andrienko et al. 2009), they applied density based clustering algorithm to 

find popular travel places based on geo-tagged photos from Panoramio.com, and 

built flow maps to show aggregated travel patterns between places. 

 Kisilevich et al. (2010a) proposed a novel approach to mine travel patterns 

from geo-tagged photos in two European cities. In their approach, each photo was 

assigned a textual tag named based on its nearby POI. For photos without nearby 

POI, they applied the DBSCAN algorithm to generate spatial clusters and 

manually assigned names to those photos. Then, individual travel routes were 

represented by photo tag sequences. To discover travel patterns from these travel 

routes, they used the Teiresias algorithm (Rigoutsos and Floratos 1998), a 

combinatorial pattern discovery algorithm for analyzing DNA sequences in 

bioinformatics used to discover recurrent maximal patterns within sequences. The 

results of frequently appearing travel routes were textually described as POI 

sequences.  

 In Zheng et al. (2011a), the authors first used DBSCAN to explore 

regions-of-attractions (ROAs) in order to mine travel pattern from geo-tagged 

photos in Paris and London. Travelers’ spatiotemporal movements were 

represented as visit sequences of ROAs. Then, they applied the Markov chain 

model (Diaconis 2008) to analyze the transition probabilities of traveling between 

ROAs. The tourist traffic flow among different ROAs with higher transition 

probability was further explored and visualized on an online digital map.   
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1.2.3 Recommending travel destinations 

The travel history that is embedded in travelers' photos, combined with the 

aggregated travel information in photos, enable researchers to recommend 

possible travel destinations for tourists. The basic idea is to find the most likely 

favored landmarks for a given user in a new place based on similar users with 

similar travel experiences in other places in the past. A variety of approaches have 

been developed to make recommendations of travel destinations for tourists from 

geo-tagged photos. 

To recommend personalized landmarks in a target city to users, an 

intuitive approach that utilizes their geo-tagged photos in the Flickr community is 

proposed by Clements et al. (2010). For a specified user, their approach tries to 

find all other users who have similar travel habits in other attractive cities. Then, 

it summarizes their favorite landmarks in the target city as the best candidates for 

the specified user. The similarity between two users is defined based on the 

geographical distributions of their photos, and is computed as the sum over the 

minimum of two related Gaussian kernel convolutions, which are generated from 

peaks in the Mean Shift clustering of geo-tagged photos.  

Shi et al. (2011) formulate the travel landmarks recommendation task as a 

collaborative filtering problem by using geo-tagged photos contributed by users to 

Flickr. The landmark for each photo is extracted from user tags and closest geo-

tagged Wikipedia articles. They proposed a category-regularized matrix 

factorization approach to recommend landmarks to users based on user-landmark 

preference and landmark similarity. The user-landmark preference is defined as 



  21 

the number of users’ photos of a landmark, and the similarity between landmarks 

is defined by category-based similarity, where categories of landmarks were 

extracted from Wikipedia.  

Caludio et al. (2010) proposed an approach based on Random Walks with 

Restart (RWR) (Tong and Faloutsos 2006) to tackle the problem of predicting the 

probabilities of visiting other POIs given a user’s visiting history extracted from 

geo-tagged photos. Top-k ranked POIs in the study area will be recommended to 

users. In their approach, RWR is based on a graph model, where nodes are POIs, 

edges are transitions and weights are conditional probabilities of any pair of POIs. 

This graph model is constructed using an accumulative visiting history of all users 

in Flickr.  In their algorithm, the RWR works by sending a set of random walkers 

to the graph from POI based on the visiting history and collecting the conditional 

probability of reaching other POIs that were not part of the visiting history. Then, 

their algorithm selects the most relevant POIs with the highest probabilities for a 

particular user.  

Besides considering the popularity of landmarks for recommendations, 

Van Canneyt et al. (2012) proposed a time-dependent probabilistic approach to 

take the time context into account when recommending landmarks to users. In 

their probabilistic model, the time context (e.g. time interval, day of week and 

month of year) is considered as a combined condition for estimating joint 

probabilities with POIs. By doing so, the same POI could get different 

recommendation probabilities given different visiting times (e.g. visiting a 

museum on Saturday might get a higher probability than Sunday if it is free on 



  22 

Saturday). Therefore, their model can recommend different travel places to users 

given different expected travel time schedules.   

To address the problem of recommending a package of travel landmarks 

given time and money cost budget constraints, Xie et al. (2011) utilize Yelp
4
 and 

Wikipedia
5
 datasets to develop a composite recommendation system for travel 

planning. The POI dataset is extracted from Yelp and the visiting value of POI is 

assigned as the ranking score. The money and time cost for each POI is estimated 

based on the information extracted from Yelp and Wikipedia. In their system, this 

composite recommendation problem is formulized and solved as a variation of the 

classical 0/1 2-dimensional knapsack problem (Kellerer et al. 2004). They 

designed their algorithm to run a knapsack solver iteratively by adding new POIs 

into an existing candidate list. This algorithm can find top-k POI sets, with the 

highest sum of visiting values while constraining the sum of time and money 

expenses under the given budget. 

1.2.4 Recommending travel itineraries  

In tourism, recommending travel itinerary for tourists is a basic but 

complicated task. When tourists visit a city for several days, there are usually too 

many attractions to visit in a limited time. Therefore, an intelligent system that 

can automatically recommend a travel itinerary for tourists becomes an attractive 

solution. By utilizing the rich information contained in social media data (e.g. 

                                                
4
"http://www.yelp.com"

5
 http://www.wikipedia.org"
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travelogues, GPS traces, geo-tagged photos etc.), research developed different 

travel trip planning systems to recommend travel itineraries for users.  

Yoon et al. (2010) developed an itinerary recommendation system by 

utilizing the collective digital trails (e.g. GPS trajectories) provided by 

experienced travelers. Using 17,745 GPS trajectories recorded by 125 users in 

Beijing China, their system data mines 119 POIs from detected stay points along 

these trajectories with a clustering algorithm. A direct graph is then built based on 

transitions between these POIs. To find top-k efficient travel itineraries given a 

start/end location and a time budget, the authors developed a heuristic algorithm 

to compute a candidate trip (sub-graph) by iteratively inserting feasible POI into 

existing trip. The trip that ends up containing the most classic travel sub-

sequences generated by real contributors is selected as the optimal solution.   

Xie et al. (2011) advanced the travel itinerary planning problem by 

developing a composite recommendation system, which can recommend packages 

of items in sequential form under a given budget of time and money. In their 

system, POI information such as ratings, monetary cost and location, were 

extracted from Yelp.com. The system further assume that time spent at a POI is 

proportional to its size and tourism category. Using an exponential-time 

orienteering problem solver to find the optimal solution, their system recommends 

the composite sequence, which reaches a maximum visiting value (rating) of 

certain POIs subject to a budget constraint. Their system also provides a graphical 

user interface (GUI) to allow Internet users to dynamically modify the 
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recommended packages (tours) by setting destinations, cost budgets and travel 

preferences or adding/removing POIs from current solution. 

In recent years, geo-tagged photos and the embedded travel information 

have been used to tackle some simple travel trip planning problems to find and 

recommend travel itineraries for tourists. De Choudhury et al. (2010) presented a 

novel methodology to automatically construct travel itineraries from Flickr photos. 

In their method, individual travel trails are first extracted from Flickr photos, 

which are mapped to existing POIs and connected as timed paths based on a 

photo’s timestamp, geo-location and textual tags. Based on massive travel trails, 

they construct an undirected graph structure where each node is a POI with visit 

time constrains and popularity score and the arc length between nodes represents 

transit time between two POIs. Then, they treat the mine itineraries problem as an 

Team Orienteering Problem, and borrow Chekuri et al’s (2005) recursive greedy 

algorithm to discover multi-day itineraries with maximum possible popularity 

scores in a given time budget. The output of their solution is a text-based daily 

diary to describe which places to visit, how long to stay and when to transit to the 

next place. Their user studies demonstrate that this approach can be successfully 

applied in mining meaningful travel itineraries in 5 tourist cities. 

Based on 20 million geo-tagged photos from Panoramio.com and 200,000 

travelogues, Lu et al. (2010) developed an online trip planning system, which can 

not only recommend popular landmarks but also the visiting order and time to 

spend in each landmark. These landmarks are first mined by using the Mean Shift 

clustering algorithm, and then mapped to destination names based on gazetteers 
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mined from travelogues. These landmarks are then used to reconstruct travelers’ 

discrete travel paths. Based on these travel paths, the authors developed an 

Internal Path Discovering (IPD) algorithm to discover classic travel paths within a 

destination, and a dynamic programming base Travel Route Suggestion (TRS) 

algorithm to find travel routes among destinations. The IPD works by aggregating 

multi travel paths within a destination aggregately into several complete travel 

paths. The TRS is based on a dynamic graph construction. To find travel paths 

with highest visiting scores for a given time budget, each node in this graph is 

defined as a possible stay in a destination (e.g. 2 hours stay in place A, 4 hours 

stay in place A) and is assigned a visiting score (defined by number of visitors) 

weighted by its possibility. Further, the edge between two nodes is assigned with 

a score that is defined by the number actual travelers on this edge.  

Roy et al. (2011) designed an interactive itinerary planning system. This 

system can suggest optimized itineraries based on users; feedback on candidate 

POIs. The POIs are extracted from a Lonely Planet dataset. For a tourist 

destination, top ranked POIs are first delivered to users for an initial review. 

Based on user’s feedback, candidate POIs will be added to an itinerary based on 

conditional pair-wise probabilities Pr(POIi|POIj), which are derived from Flickr 

data and presented to users for further review. To construct an optimal itinerary 

from POIs selected by users, they developed a heuristic greedy itinerary planning 

algorithm to find the optimal itinerary with best scores for plans that use travelers’ 

time budge efficiently. The expected score of an itinerary is calculated based on 
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users’ feedback (“yes/do_not_care/no”) on POIs and the conditional pair-wise 

probabilities between POIs.  

1.3 Methodology 

In this research, I propose an integrated method to build an intelligent 

tourist trip plan system based on geo-tagged photos from the Internet. This system 

advances existing systems in several ways. First, for applicable to real-life 

traveling situation, POIs and related properties, such as attractive score and 

visiting time etc., are discovered using a density based clustering approach from 

traveler contributed geo-tagged photos. Besides, the actual trips, driving distances 

and hours between POIs are used to construct directed traveling graph model. 

Second, for tackling a multi-day and multi-stay travel planning problems 

efficiently, an intelligent algorithm is developed to automatically find the 

approximate optimal travel plan using the discovered POIs and traveling graph 

model.  

The process model of this tourist trip plan system is shown in figure 1.1. 

In this model, all geo-tagged photos are retrieved automatically from the Internet 

using information retrieval techniques in the first module. Then, in the next 

module, POIs are discovered from geo-tagged photos by using a hierarchical 

clustering algorithm (OPTICS). Based on POI information and clustering results, 

a traveling graph model is constructed to describe the connectivity among POIs as 

well as clusters. In the module “Build Tourist Trip Plan System”, a meta-heuristic 

algorithm is designed to find an approximate optimal travel plan given a tourist’s 

travel constraints, which include the start/end locations, the number of traveling 
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days, the time to start/end daily trip and the maximum driving hours between 

destinations, using the POIs and the traveling graph model. In addition, such 

traveling graph model can be used to mine travel patterns to gain important travel 

knowledge in the “Mine Travel Patterns” module. A web-based system of 

intelligent tourist trip plans is developed for users making their travel plans and 

viewing travel knowledge interactively and conveniently.  

Figure 1.1: The process model of discovering popular places and movement 

patterns from geo-tagged photos 

1.3.1 Finding POIs from Geo-tagged Photos 

Popular places form because most people like to visit them and generate 

more photos at them than at other places. This leads to an uneven spatial 

distribution of geo-tagged photos in space (see figure 1.3). Based on this fact, the 

density-based clustering approach becomes a natural solution to mining these 

popular places from geo-tagged photos.  

In this research, a clustering technique that groups objects into a set of 

meaningful and useful clusters is applied to find POIs from photo-based POIs. 

Specifically, I adopt the OPTICS (Ankerst et al. 1999) algorithm to fulfill this 
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task. OPTICS is an extended density-based clustering algorithm that provides a 

hierarchical clustering structure through an augmented ordering of data points. It 

is robust to its input parameters and there is no need to identify the number of 

clusters as input. Since it is a density-based approach, it can filter out the sparsely 

distributed geo-tagged photos as noise data, and can detect clusters of any 

arbitrary shape.  

 The basic idea of OPTICS is to compute the point density around a given 

point for two input parameters: generating-distance ! and MinPts. If there are 

more than MinPts points in the search area with radius equal to ! of point !!, the 

core-distance of !! is calculated as the distance to its MinPts-th neighbor:  

 !"#$ ! !"#$%&'(!!!"#$%& !! !! !! ! !!!!"#$%&!!!!!"#$!!"#
!
 !"#"$%

The reachability-distance of !!  from any other point !!  in the search area is 

calculated as the maximum value between the distance of !! and !! and the core-

distance of !!: 

 !"#$!!"#$#%& ! !"#$%&'( !! ! !! ! !"#!!!"#$ ! !"#$%&'(!!!"#$%&!!!!! !! ! ! !!
!
) (1.2) 

Otherwise, both core-distance and reachability-distance are set to infinity (!). 

Then, OPTICS starts from an arbitrary point whose reachability-distance is set to 

! and visits a candidate list of neighbor points based on the rule that the neighbor 

point with the minimum reachability-distance to the current point will be visited 

next. The value of ! is used to determine the size of the candidate list of neighbor 

points around !!.  
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The results of OPTICS are a set of clusters organized in a tree-like 

hierarchical structure. All leaf nodes in this tree are the smallest clusters that are 

used to describe POIs. The parent node of a set of POIs is the region that contains 

several geographically proximate POIs. Such regions, at different spatial scales 

(e.g. city/province/country), can be used to provide tourists with abstract travel 

information (e.g. travel patterns) for getting a good sense of travel places before 

making travel itinerary recommendations. 

To approximately represent any arbitrary area of POI, this research uses 

the Alpha Shape (Edelsbrunner and Mücke 1992) to describe any convex and 

concave shape as follows: 

 !"!! ! !"#!!"!!"#!!!"#$%&!! !!!"!# !  (1.3) 

where parameter ! is the radius of an empty disc. The Alpha Shape approach uses 

this empty disc to touch point pairs in point space. Given a rational !,the point 

pairs that were only touched by the empty disc should be mostly located at the 

margin of the point cluster. Connecting all point pairs will generate an enveloping 

shape of given points. Different ! values will lead to different output alpha shapes. 

A small ! value will generate an empty space, carving out the entire space except 

for the original points, while a large ! value leads the procedure to ignore inner 

hulls, producing relatively blurry outline sketches of the input points because the 

large disc size constrains the procedure’s ability to traverse and filter multiple 

candidate points.  
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1.3.2 Properties of POI 

From the clustering results, a POI is basically an area that contains a large 

enough number of geo-tagged photos taken by tourists. In order to use these POIs 

to recommend travel itineraries, the POIs need to be assigned popular names and 

visiting locations, so that tourists knows where and how to visit POIs. To name a 

POI, this research applies Mean Shift algorithm to the geo-tagged photos within 

the POI to find the peaks of the geographical distributions of photos. The peak has 

the highest density value is mapped to and labeled based on the nearest feature 

found on a preloaded OpenStreetMap POI
6
 dataset. This research will use the 

locations of labeled POIs for the travel itinerary design. 

For the purpose of tackling the travel itinerary design problem, additional 

properties of the POI need to be generated from the POI geo-tagged photos. The 

first property is the attractive score !!  of a POI. Usually, the goal of travel 

itinerary design is finding a set of routes that generate a maximum attractiveness 

score. In this research, an attractive POI score is defined as the number of unique 

travelers that take photos near the POI. It is computed by using a simple geometry 

intersection (e.g. point inside polygon) test. This definition is based on an 

assumption that more attractive place should attract more photographers to visit.  

The second POI property for designing travel itineraries is the suggested 

visiting time !
!
. Since tourists have limited time to travel per day, knowing how 

long to spend in each POI is important for selecting which POI to visit and for 

                                                
6
 OpenStreetMap POI is a point feature on a map that is not necessary interesting 

for travel (e.g. post box, car parks etc.), see http://www.openstreetmap.org"
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making a proper travel itinerary. Fortunately, nearly all geo-tagged photos have 

timestamps that record when people visited which place. Therefore, it is possible 

to estimate the suggested visiting time of a POI from the statistics of the 

timestamps in photos. In this research, for simplification, the suggested visiting 

time of POI is computed as the average visiting time that photographers spent at 

the POI. The visiting time of each photographer is extracted as the duration 

between the first and last photo that a photographer took within the area of POI.  

The third POI property for designing the travel itinerary is the time 

window (e.g. the opening and closing hours of the POI). Different POIs can have 

different time windows. For example, museums might close earlier than theme 

parks, and national parks usually have longer operating hours than other types of 

POIs. Therefore, when making a travel itinerary, the opening and closing time of 

a POI should also be considered, so that tourists can have enough time to travel 

efficiently and avoid waiting times or rush hours.  

1.3.3 Traveling Graph Model 

Since each unique geo-tagged photo can represent the location that a 

person has visited and has been interested in, individual !’s discrete travel route 

!"!!can be described by connecting the geo-tagged photos in chronologically 

order: 

 !"! ! !!!"!!

!!!

!!!"!!

!!!

!
!!!!!

!!!"!!  (1.4) 

where ! is the identifier of user, !! is the time spent when this user traveled 

between two photos. As shown in the review above, such digital footprints have 
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been approved useful for mining interesting travel information.  This research will 

take advantage of these digital footprints to build up a traveling graph model for 

solving the travel itinerary design problem. The basic idea of this traveling graph 

model is to construct a POI based graph model from individual travel routes based 

on geo-tagged photos. This is then used to find the optimal POI-based travel 

routes for a travel itinerary that matches a user’s travel requirements.  

By using the OPTICS clustering results, each geo-tagged photo can be 

classified into one of the discovered POIs. Based on that, each individual’s photo-

based travel routes can be abstracted to a POI-based travel route. Specifically, a 

travel route can be defined as a sequential structure that connects individual POIs 

visited in chronological order: 

 !"!
!
! !"#!

!!!

!"#!

!!!

!
!!!!!

!"#! (1.5) 

Using these reconstructed POI-based travel routes, this research builds a POI-

based traveling graph model, which is defined as a directed graph model!!: 

 ! ! !!!!! (1.6) 

where node set ! are POIs and edge set ! are actual travels between two POIs. 

Each node !! has an attractiveness score !!, suggested visiting time !!, and a time 

window !!! !!!! for describing opening and closing time. Each edge !!!!  from 

node !! and !! has two values !!!" !!!"!, where !!" is the driving time from node !! 

to !!, and !!" is the weight to measure the reoccurrence that travels from node !! 

to !!. 
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In this research, the traveling time !!"  between two POIs is computed 

based on freely available datasets of the road network from OpenStreetMap. Since 

computing the distance matrix of POIs based on road networks is extremely 

expensive in computational terms, this research uses a local version of the open-

sourced Open Source Routing Machine (OSRM) system developed by Luxen and 

his colleagues (2011) to generate shortest driving distance and estimated driving 

hours between any pair of POIs fast and efficiently. The estimated driving hours 

are calculated based on the speed limitation information of each road segment. 

OSRM applies the Contraction Hierarchies technique (Geisberger et al. 2008) and 

the bi-directional search algorithm (Sint and de Champeaux 1977) to speed up 

search times for the shortest path between two points on a large-scale road 

networks dataset. 

 The weight value!!!" f rom node !! to !! is defined as the importance and 

future occurrence of sub-sequence!!! ! !! !in a travel route. To compute the !!", I 

adopt the algorithm of discovering sequential patterns in Association Analysis 

(Tan et al. 2006) by treating POI-based travel routes as a type of time series data. 

Assuming that!!" ! !!"!!!"!!! !!"!! is a dataset that contains !!POI-

based travel routes extracted from individual geo-tagged photo albums, a travel 

route then becomes a type of sequence data that may contain many sub-sequences. 

For example, given !"! ! !"#!

!!!

!"#!

!!!

!"#!, the sub-sequences of  !"!!can 

be the set !"!!! ! !"#! ! !"#!!,!!"!!! ! !"#! ! !"#!, !"!!! ! !"#! ! !"#!, and 

!"!!! ! !"!!  By using the sub-sequence as the basic element, this research 
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computes the support value of each unique sub-sequence to measure its 

recurrences. The support value of a sub-sequence !"!!! of  !"! is the count of all 

travel routes that contain !"!!! . Given the number of visiting days as time 

constraint !", the support value of a sub-sequence can be computed as: 

 !"##$%& !"!!! ! !
!"#$% !"!!!!!"!!!"!!!!!"#$!!"!!!!!"!!!"

!
! !! ! ! !!!!! (1.7) 

where !"!!! ! !"#$ denotes the time spent on this sub-sequence. A very low support 

value of an item means a very low chance you will see it, while a high support 

value indicates a high chance to see this item. The weight value !!" from node !! 

to !! !is a special case of support value of sub-sequences with length 2: 

 !!" ! !!"##$%&!!! ! !!! (1.8) 

1.3.4 Travel Patterns 

Using this traveling graph model, useful knowledge, such as travel 

patterns and behaviors, can be mined at different spatial scales. In this research, 

classic travel routes can be discovered as top ranked subsequences by their 

support values from all candidate k-subsequences (!"!!!!!, where n is the 

maximum length of POI-based travel routes). This is done by iteratively 

processing candidate k-subsequences where k starts with 2 and increases 1 at the 

next iteration. In each iteration, all candidate k-subsequences will be generated. 

The travel routes with support values lower than min_support will be removed 

until there is no candidate.  

The travel patterns can be detected and visualized by using travel flow 

techniques. The major travel flow is defined as a sub-graph !!!! where all sub-
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nodes !! are connected through sub-edges !! with a support value greater than a 

pre-defined support threshold: minimum support value (min_support). Therefore, 

the task of mining major travel flow is finding all 2-subsequences with a support 

value larger than min_support. Since OPTICS returns a hierarchical clustering 

structure, traveling graph models can be generated at different hierarchical levels, 

which can represent different spatial scales. By applying the same approach, 

travel patterns can be mined from different spatial scales.  

1.3.5 Tourist Trip Design  

Tourist trip design is also a classical problem in operations research and 

has been applied extensively in travel and tourism industry. The basic paradigm 

of tourist trip design problems is called Orienteering Problem (OP) (Hagen et al. 

2005), which is used to solve the problem that, given a set of attractions with 

visiting scores and a time budget, finding a tour to maximize the collected scores 

from selected attractions. It is also called the selective travelling salesperson 

problem (Laporte and Martello 1990), which is a proven NP problem. Many 

heuristics solutions have been developed to solve this problem in a polynomial 

time (see a review in Vansteenwegen et al. 2011b). However, the problem 

described in OP is too simple to handle the complex travel path plan problem in 

real life. Several extensions of OP are proposed to formulize different and more 

complex tourist trip design problem.  

The team orienteering problem (TOP) is used to formulize multi-day 

travel path plan by introducing the days of traveling in the problem to OP. In TOP, 
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each member in a team solves an OP for each day without overlapping their 

selected attractions. The orienteering problem with time window (OPTW) 

introduces the restrictions (e.g. the opening and closing time) of attractions to 

mimic the fact that tourists usually need to consider the service hours of visiting 

places. The team orienteering problem with time windows (TOPTW) is an 

extension of TOP and OPTW to formulize the travel itinerary plan problem by 

taking opening and closing hours of attractions into account and allowing for 

multi-day travel at the same time. Although TOPTW is closer to realistic travel 

path plan problems, a research gap exists to deal with this problem because of its 

complexity. 

In the TOPTW, every attraction is assigned a visiting score, estimated 

visiting time and a time window (e.g. opening and closing hours). The target of 

TOPTW is finding a fixed number of routes, which together contribute the 

maximum sum of visiting scores. The number of routes is set to the days of 

visiting. For each day, the trip/route starts and ends at specific times and at the 

same origination location, and there is no overlapping between visiting time of 

attractions on the route. Since TOPTW is a difficult combinatorial optimization 

problem, exact solution approaches, which require long execution times with 

expensive computation resources to find an optimal solution, are not feasible to 

apply in real-world applications.  

Existing research work develops efficient heuristic approaches to find a 

suboptimal solution with only a small loss in solution quality. Righini and Salani 

(2009) proposed a bi-directional and bounded dynamic programming with 
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decremental state space relaxation to tackle the OPTW problem in polynomial 

time. Montemanniand Gambardella (2009) developed an algorithm based on ant 

colony system to solve the OPTW that outperforms existed algorithms. Then, 

Vansteenwegen et al. (2009) developed an Iterated Local Search based meta-

heuristic to solve the TOPTW running on mobile devices in real-time. In their 

following work (Vansteenwegen et al. 2011a), a meta-heuristic based on Greedy 

Randomized Adaptive Search Procedure (GRASP)(Feo and Resende 1995) is 

proposed to solve an extension of TOPTW, which allows lunch breaks in a daily 

trip.  

The differences between OP-related research and travel recommendation 

research based on geo-tagged photos include (1) in OP related research, the 

attractions are normally artificially designed instances in experiments, or usually 

known from existed resources (e.g. tourist offices). In contrast, in travel research 

based on geo-tagged photos, the attractions are discovered from the social media 

data by utilizing the geographical distributions and densities. (2) in OP-related 

research, the attractiveness scores of POIs are normally predefined with 

categorical scores according to the types of attractions (e.g. museum, archaeology, 

nature etc.), or can be customized categorically by users. In travel research based 

on geo-tagged photos, the ranking scores of discovered attractions are generated 

from the photos taken around the attractions. Since research based on geo-tagged 

photo provides more information for traveling it is more applicable for realistic 

solutions. 

 



  38 

1.3.5.1 Problem Definition 

In this research, I define a unique multi-day and multi-stay tourist trip 

design problem as a multi-stay team orienteering problem with time window. This 

problem can be treated as an extension of the well-known TOPTW problem by 

allowing the tourist to start and end a tour at different locations on different travel 

days. If the destinations in all travel days are the same (e.g. tourist stays in a fixed 

hotel during travel days), this problem is the same as in TOPTW. To allow the 

daily tour to end at a different location than the start location (e.g. a tourist can 

stay in different hotels during travel days), I assume that a tourist can always find 

a hotel for accommodation within or near any POI after completing the tour. 

In multi-destination TOPTW, a set of ! POIs, each is assigned with an 

attractiveness score !!, suggested visiting time !!, and a time window !!! !!!! for 

describing opening and closing time, is given. From POIi to POIj, the driving time 

!!", the maximum driving time !!"#, and the trip reoccurrence weight !!" !are also 

given. Every POI can be visited at most once. The goal of multi-destination 

TOPTW is, given a start location, end location, a daily time budget !!"#, and the 

number of traveling days !, to find a travel itinerary that maximizes the total 

attractive score by visiting selected locations under the given daily time budget in 

a given number of travel days.  This multi-destination TOPTW problem can be 

formulated as an integer program in mathematics as follows: 

!"# !!!!"
!!!

!!!

!

!!!  (1.9) 

subject to: 
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!!!!
!

!!! ! !!"#
!!!

!!! ! !  (1.10) 

!!"#
!!!

!!! ! !!"#
!

!!! ! !!" !!!!! ! !! ! !! ! !!! ! !!! !! (1.11) 

!!!" ! !! ! !!" ! !!" ! ! !! !!"# !!!!! ! ! !!! ! !!! ! !! ! !! (1.12) 

!!"
!

!!! ! !!!!! ! !!! !! ! ! (1.13) 

!!!!" ! !!"!!"#
!

!!!
!!!

!!! ! !!"#!!!!!! ! !!! !! (1.14) 

!!"!!"# ! !!"# !!!!!!! ! !!! !!! ! ! !!! !! (1.15) 

!! ! !!" !!!!!!! ! !!! !!!! ! !!! !! (1.16) 

!!" ! !! !!!!!!! ! !!! !!!! ! !!! !! (1.17) 

!!"# ! !!" ! !!! ! !!!!!!! ! ! !!! !!!! ! !! ! ! !! (1.18) 

where !!" means that POIj is visited in !-th day; !!!" is the start time of visiting 

POIj in !-th day; ! is a large constant which is set to the largest positive 4-bytes 

integer; !!"#=1 represents that, on the !-th day, there is a visit of POIj  after POIi, 

otherwise !!"#=0. The objective function (1.9) is to maximize the total attractive 

score in ! days. Constraint (1.10) makes sure the entire tourist journey starts 

from 1
st 

POI 1 and ends at N
th 

POI. The start can be the same as the end. 

Constraint (1.11) ensures the connectivity of the whole tour. Constraint (1.12) 

ensures the starting visiting time of a selected POI is feasible. Constraint (1.13) 

ensures that each POI is visited at most one time. Constraint (1.14) ensures that 

the total traveling time in each day is within a given time budget. Constraint (1.15) 

ensures that the driving time between two POIs does not exceed the maximum 

allowed driving time !!"#. Constraints (1.16) and (1.17) ensure that visiting a 
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POI occurs between its opening and closing time. Constraint (1.18) denotes this is 

an integer program.  

1.3.5.2 Heuristic Solution 

In this research, the proposed multi-stay TOPTW that extends from 

TOPTW is a highly constrained problem, so that the optimal solution can not be 

solved within polynomial time by using exact solutions, such as integer 

programming. Existing research on classic TOPTW proved that developing 

efficient heuristic approaches can be used to find a suboptimal solution quickly 

with only a small loss in solution quality. Based on the existing meta-heuristic 

solutions of TOPTW, this research proposes a modified Iterated Local Search 

(ILS) heuristic algorithm to efficiently find approximate optimal solution of this 

problem by using additional travel information, such as attractive score of POI, 

reoccurrence weights of trip etc., mined from geo-tagged photos.  

 The proposed ILS-based heuristic executes a limited number of local 

searches iteratively to generate a set of local solutions sequentially to find the best 

solution. Each ILS includes two major steps: Construct step and Shake step.  The 

construct step adds new feasible visits to a tour. At each time, the feasible visit, 

which brings the highest visiting benefit (see definition in formula 1.19) when 

adding it to a current tour, will be selected and inserted into a current tour until 

there is no available time for any extra visit. The shake step removes one or more 

visits in a current tour, and then in a next iteration, the insertion step will seek and 

add different feasible visits to generate a different tour. The rule of removing 

visits from a current rule is defined in the shake step, which is to ensure that every 
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visit is removed at least once. By doing so, the heuristic can escape local optima 

and better explore the entire solution space to approach a possible optimal 

solution. The local search will end when the current best solution found so far is 

not improved in a predefined number of iterations.  

1.3.5.2.1 Construct step 

This heuristic algorithm starts with an initialized tour where the given start 

location and end location are placed at the two ends of the tour. !-1 virtual POIs 

are placed equally in the tour to represent the places of accommodation. The 

virtual POI is a dummy POI that has no location information but has time 

information to indicate when to start a day trip (e.g. 8am). Then, each tour 

segment that is divided by virtual POIs represents a one-day trip (see figure 1.2).  

 

Figure 1.2: An illustration of the construct step in the proposed heuristic 

algorithm for multi-day and multi-stay travel trip plan  

To decide which POI is the best candidate to insert into a current tour, for each 

POI that has not been selected for visiting and can be reached within the 

predefined maximum driving time !!"#, a inserting benefit score is calculated at 

every feasible position in every tour segment. The inserting benefit of POIj 

between POIi and POIk is defined as following: 
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 !"#"$%&!!!" !
!!
!!!!"!!!"!

!"#$%&'(!!!!"
 (1.19) 

where !!" ! !!" is the weighted of attractiveness score of POIj based on the 

actual travel data that extracted from geo-tagged photos. The more reoccurring 

travel between POIi, POIj and POIk, the more weight is assigned to the 

attractiveness score. !"#$%&'()! represents the extra time to be consumed when 

inserting POIj  between POIi and POIk. It is defined as follows: 

 !"#$%&'()!!!" ! !!" !!"#$! ! !! ! !!" ! !!" (1.20) 

where !!"#! means possible waiting time at POIj before its opening time because 

of early arrival, and it is defined as: 

 !"#$! ! !"#!!!! !! ! !""#$%!! (1.21) 

where !""#$%!  means the arrival time of POIj. Greater benefits of a tour are 

associated with less time needed for visiting more attractive candidate POIs.  

Calculating benefits for candidate POIs inserting at all possible positions 

on a tour would be computationally expensive, especially when the size of 

candidates and number of given travel days are large. To restrict the size of 

candidate inserting after one POI, the k-nearest candidate POIs that are within the 

distance of !!"# driving time are queried by using a kd-tree index. 

To speed up the evaluation of possible insertion at different positions in a 

tour, for each selected POI in every tour segment, the maximum extra time that is 

allowed for visiting a candidate POI in the travel dayis recorded to evaluate 

candidates fast. For selected POI !, the maximum extra time is defined following: 

 !"#$#%&"! ! !"#!!!! ! !! ! !! !!"#$!!! !!"#$#%&"!!!!  (1.22) 
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where !! ! !! ! !! represents the limited time left for visiting other candidates 

after ensuring a successful visit of the POI itself, which starts at !! and needs !! 

time. When the sum of !"#$ and !"#$#%&" time of the next POI in the same 

tour segment is less than its own maximum extra time, it will use the sum value of 

next POI to satisfy the lower boundary case first. Therefore, when inserting a 

candidate POIj between POIi and POIk, the extra time should be less than the 

maximum extra time allowed by the next POIj plus a possible waiting time at POIj: 

 !"#$%&'()!!!" !!"#$! !!"#$#%&"! (1.23) 

The candidate POI at the candidate position with the highest inserting 

benefit will be inserted into the current tour. After inserting the new POI in a tour 

segment, in this tour segment, all selected POIs after this new POI will update the 

arrival time !""#$%!, starting visiting time !!, possible waiting time !"#$! and 

maximum extra time allowed !"#$#%&"!, while all selected POIs before this new 

POI will just update the maximum extra time allowed !"#$#%&"! since inserting 

a new POI will reduce the maximum extra time allowed in the tour segment. 

When there is no candidate POI that can be inserted into the current tour within 

the maximum extra time allowed by each tour segment, a local search is 

completed and a temporal solution is generated in this iteration. The sum of 

attractive scores of the current tour is recorded for determining the best solution in 

all iterations. 
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1.3.5.2.2 Shake step 

Before entering the next iteration, a shake step is applied to remove a set 

of selected POIs from each tour segment. This research follows the shake 

heuristic developed by Vansteenwegen et al. (2009) for TOPTW. It has been 

proved to be a good technique to explore the entire solution space and correct 

earlier mistaken decisions. There are two parameters in the shake heuristic to 

determine how many POIs will be removed from where in each tour segment: one 

is the start location !"#$"!"#$ and the other is the number of consecutive POIs to 

be removed !"#$%&!"#!. The two parameters are set to 0 and 1 initially in the 

first iteration. After the construction step, the first POI in every tour segment will 

be removed according to these two parameters. In the next iteration, the number 

to be removed in each tour segment will increase by 1: 

 !"#$%&!"#$ ! !"#$%&!"#$ ! ! (1.24) 

while the start location will increase !"#$%&!"#$: 

 !"#$"!"#$ ! !"#$"!"#$ ! !"#$%&!"#$ (1.25) 

The !"#$%&!"#$  POIs that start at !"#$"!"#$  will be removed in every tour 

segment in the following iteration. When !"#$"!"#$  becomes larger than the 

length of the smallest tour segment, it will be reduced by this length: 

 !"#$"!"#$ ! !"#!"!"#$ !!"#!!!"#$%!!"#$! (1.26) 

When !"#$%&!"#$ reaches the maximum number of POIs to remove !!!! ! !!, 

it will reset to 1. As indicated by authors in (Vansteenwegen et al. 2009), this 

heuristic could ensures that every POI inserted on the tour is removed at least 

once. 
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 When iterations are completed after the shake step, the heuristic will enter 

the next iteration so that the construct step can insert new POIs based on the 

previous trimmed tour to generate a different solution. By doing so, the construct 

and shake steps work together in the proposed ILS based heuristic, continuously 

searching for the best solution based on the current solution until the best solution 

does not get updated in a predefined number of rounds. The details of this 

proposed heuristic algorithm is described in algorithm4.  

1.4 Experiments 

1.4.1 Data  

I choose Australia as a study area for this research since tourism is a major 

economic industry in this country that attracts hundreds of thousands of tourists 

every year. I apply the method presented above to build a travel plan system 

based on geo-tagged photos to discover attractive places and travel patterns and 

recommend high quality multi-day and multi-stay travel plans for tourists. To do 

so, I first crawl all geo-tagged photos that have been geo-tagged in Australia from 

the website Panoramio.com. A total of 118,736 geo-tagged photos were retrieved 

from 4,920 registered Internet users of Panoramio.com. On average, each user 

contributes 24 geo-tagged photos. All photos were taken between 2005 and 2011. 

The geographical distribution of these geo-tagged photos is shown in figure 1.3. 
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Figure 1.3: Geographical distribution of 118,736 geo-tagged photos that used in 

this case study of Australia 

1.4.2 POIs based on geo-tagged photos 

In this experiment, the clustering objects are a large number of geo-tagged 

photos. Therefore, a large search radius ! will result in expensive runtime cost of 

OPTICS. It is essential to determine an optimal value for ! in a large data space ! 

that has N points. In this test case, following what Ankerstand colleagues 

suggested in (1999), I use the expected k-nearest neighbors method, which 

assumes that all points are randomly distributed in space, to estimate the optimal 

value of ! that can guarantee a certain number of points can be searched by any 

core object. Based on this theory, the radius ! of subspace !, which contains 
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exactly ! (! ! !"#$%&) points in an N points dataset, is calculated by using the 

following formula: 

 ! ! !
!!!!!!!!!!!!!

!! !!

!!!

 (1.27) 

where!! ! is the Gamma-function, and !! is the volume of subspace !. In this case, 

the volume is the area of the maximum enclosing rectangular of points in !. 

Experimentally, the parameters MinPts is set to 50 and ! is computed equals to 

0.431 for running OPTICS. 

The running time of the OPTICS algorithm is 

!!! ! ! ! !"#$!!"#!!!"#$%&'!, which depends heavily on the running time of 

the !-neighborhood query. Therefore, to accelerate finding neighborhoods in the ! 

search area, I built a kd-tree based on geo-tagged photo data and use the k-nearest 

neighbor (KNN) search algorithm (Mount and Arya 1997) to query the ! 

neighborhoods in OPTICS. By doing so, the average run time of this OPTICS 

algorithm can be reduced to !!! ! !"#$!.  

 Unlike traditional agglomerative hierarchical clustering algorithms that 

produce a tree-like hierarchical structure in the form of dendrograms, OPTICS 

generates a “reachability plot” Ankerst et al. (1999) where hierarchical clusters 

are not explicit and need to be extracted from the “dents” separated by spike bars 

in the plot (see figure 1.4). If drawing a horizontal line (see red horizontal line in 

figure 1.4) crosses valleys in the plot, each valley underneath the horizontal line 

can be interpreted as a cluster. The points above this line will be ignored as noise. 

Moving down the red line, more clusters will emerge as the line crosses more 
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spikes and generates more small valleys. These small valleys and their large 

valley containers form a natural hierarchical relationship.  

Figure 1.4 Reachability plot of OPTICS clustering results on geo-tagged photos. 

The red line is a demonstration for finding DBSCAN clusters at different 

hierarchies. 

To automatically extract the hierarchical clustering structure from the 

OPTICS reachability plot, I use the automatic techniques proposed by Ankerst et 

al. (1999) to convert the reachability plot to a dendrogramand discover POIs from 

all leaf nodes in the tree structure (see algorithm 2). Figure 1.5 is a dendrogram 

that is generated based on the OPTICS reachability plot in figure 1.4. In this tree 

structure, every leaf node is the smallest POI. A group of POIs that have the same 

ancestor at a certain hierarchical level can be treated as regions-of-interest (ROIs) 

at a large spatial scale (e.g. city, province or country). 



  49 

Figure 1.5 The dendrogram that was generated based on the OPTICS reachability 

plot with real geo-tagged photos. 

In this empirical experiment, a prototype based on web mapping is 

developed to visualize the experimental results (e.g. clustering, travel patterns, 

and travel itinerary). It allows users to explore results at different levels of detail 

in a scalable online map system. In this system, each POI is visualized using 

Alpha Shape techniques. Experimentally, I set the parameter ! of Alpha Shape 

equals to the search radius ! of the OPTICS algorithm. The geovisualization of 

clustering results can be seen in figure 1.6. Figure 1.6(A) shows the POI 

discovered at the highest hierarchical level 1 (country scale). Figure 1.6(B) shows 

the POI set, which is shown in a map zoomed to the province scale, detected at 

hierarchical level 9. Figure 1.6(C) shows the POI set discovered at lowest 
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hierarchical level 30. It is displayed in a map zoomed to the city scale. The 

detected POIs are displayed as the red dots in figure 1.6(A). 

 
(A) 
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(B) 

 
(C) 

Figure 1.6 (A) (B)(C) POIs, ROIs and travel patterns (yellow arrow flows) that 

are mined from geo-tagged photos and displayed at different spatial scales in 

Australia: (A) country (B) province (c) city. 

1.4.3 Travel patterns based on geo-tagged photos 

By leveraging the geo-tagged photos and the clustering results, a traveling 

graph model is constructed for discovering the travel patterns as useful for 

tourism knowledge. The algorithm of discovering sequential patterns in 

Association Analysis is used to calculate a probability of reoccurrence of 

traveling between two ROIs. Directional travel routes, with a reoccurrence 

support value that is larger than a predefined threshold (equals to 0.13 in this 

experiment) are treated as important routes. By using Tobler’s (1987) flow 
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mapping techniques, the prioritized travel patterns discovered by the proposed 

system can be visually in aggregate form (see figure 1.6).  

In the figure 1.6 (A)(B)(C), the arrows in yellow represent the travel flow 

generated from an individual’s digital footprints using their geo-tagged photos. 

Thicker flow means higher travel volume and reoccurrence in overall travel, while 

thinner flow means less travel volume. The travel flows that are lower than a 

predefined threshold are not displayed in order to highlight the important 

information on the map. Again, since the prototype system allows users to explore 

different levels of detail in the experimental results of a scalable online map 

system. Thus tourists can quickly gain the tourism knowledge they need at 

different geographical scales by interactively examining travel patterns. For 

example, figure 1.6(A) presents travel patterns at a country scale, (B) shows the 

travel patterns at a city level (by zooming to a specific area), and (C) displays 

travel patterns at city level. 

1.4.4 Travel Path Plan 

In this empirical experiment, the proposed travel path plan algorithm is 

tested based on 2,135 POIs and the traveling graph model is discovered from geo-

tagged photos. Each POI has an attractiveness score and a suggested visiting time, 

which are also extracted from the geo-tagged photos. The time window of a POI 

is setup according to the category of POIs: all parks are simply set to have 

opening and closing time from 00:00 to 24:00; for all other types of attractions, 

this test case simply setup their opening/closing hours to 8:00 am/5:00 pm. This 
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system also allows the user to change the service time for any specific POI in 

configuration. 

I design two test cases for testing the travel path plan: the first test case 

assumes a tourist flies to Sydney International Airport, Sydney, New South Wales, 

Australia, and has two days available for a trip. When she finishes the travel, she 

will come back to the Sydney International Airport to fly back home. The second 

test case is similar to first one, but has 4 days for travel. In these two test cases, 

tourists are assumed to only plan for a road trip (by car, no plane), their daily trip 

is restricted to start no earlier than 8:00 am and end no later than 6:00 pm (10 

hours quota per day), and the configurable maximum driving time between two 

POIs is set to default 3 hours. 

The results of the test cases are shown in figure 1.7 and 1.8. The plots on 

the top are abstract illustration of recommended travel paths: different colors 

represent travel routes on different travel days. The plots on the bottom are 

corresponding map views of recommended travel paths where the detailed driving 

routes and the visited POI are displayed in Bing Maps. The plots below are 

textual travel itineraries to describe the details about where to visit and how long 

to stay during traveling. These good quality travel path plan results demonstrate 

the feasibility of the proposed heuristic algorithm for travel path planning.  

Both experiments can return solutions within 1 minute, which needs 

further optimization to get better performance. Since the program is written in 

Python and similar C++ based TOPTW program developed by Vansteenwegen et 

al. (2009) can find solutions with hundreds POIs within several seconds, there is a 
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potential that refactorize current code using C++ could speed up this program to 

second level. 
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Figure 1.7 A 2-day tourist trip itinerary, which starts and ends at Sydney 

International Airport. 

The detail of the 2-day tourist trip itinerary is shown below: 
 

• Day 1 (pink route):  

start from Sydney International Airport at 8am;  

drive about 0.12 hours to Chinese Garden of Friendship at 8:20, spend 1 hour 

there;  

drive0.01 hours to Sydney Town Hall at 9:30, spend about 2.4 hours there;  

drive 0.01 hours to Sydney Aquarium at 12:00, spend about 1.5 hours there;  

drive 0.03 hours to the Mercantile at 13:40, spend 3.2 hours there;  

drive 0.15 hours to the Gap Park at 16:50, spend 1 hour there;  

drive 0.14 hours to Sydney Harbor Bridge at 18:00, find a hotel nearby to stay. 

• Day 2 (green route): 

start from near Sydney Harbor Bridge at 8am, spend about 3.9 hours there;  

drive 0.01 hours to Sydney Opera House at 11:50, spend about 3.9 hours there;  

drive 0.01 hours to Museum of Contemporary Art at 15:30 and spend about 

1.9 hours there;  

drive 0.15 hours to Sydney International Airport at 18:00. 
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Figure 1.8: A 4-day tourist trip itinerary, which starts and ends at Sydney 

International Airport. 

The detail of the 4-day tourist trip itinerary is shown below: 

• Day 1 (pink route):  

start from Sydney International Airport at 8am; 

drive 0.15 hours to Customs House at 8:15, spend about  4.5 hours there;  

drive 1.8 hours to The Giant Stairway at 14:45, spend about  1hour there; 

drive 0.01 hours to The Three Sisters at 15:40, spend about 1.5 hours there; 

drive 0.02 hours to Scenic World Blue Mountains at 16:50, spend about 1 

hour there; 

drive 1.8 hours to Sydney Aquarium, and find a hotel nearby to stay 

• Day 2 (green route):  

start from Sydney Aquarium at 8am, spend about 1.7 hours there; 

drive0.03 hours to Royal Botanic Gardens at 9:50, spend about 1.6 hours there; 

drive 0.03 hours to Milsons Point at 11:20, spend about 2.5 hours there; 

drive 0.01 hours to Olympic Pool North Sydney at 13:50, spend about 2.5 

hours there; 

drive 0.15 hours to The Gap Park at 16:35, spend about 1 hour there; 

drive 0.14 hours to Sydney Opera House, and find a hotel nearby to stay 

• Day 3 (blue route): 

start from Sydney Opera House at 8am, spend 4 hours there; 

drive 0.01 hours to Sydney Visitors Information Centre at 12:00, spend about 

4 hours there; 
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drive 0.01 hours to Museum of Contemporary Art at 16:20, spend about 1 

hours there; 

drive 0.03 hours to Chinese Garden of Friendship at 17:20, spend about 0.5 

hour there; 

drive 0.05 hours to Sydney Harbour Bridge, and find a hotel nearby to stay 

• Day 4 (light yellow route): 

start from Sydney Harbour Bridge at 8am, spend about 3.5 hours there; 

drive 0.01 hours to the Mercantile at 11:30, spend about 3.2 hours there; 

drive 0.02 hours to the Cenotaph at 14:50, spend about 0.8 hours there; 

drive 0.01 hours to the Sydney Town Hall at 15:30, spend about 2.3 hours 

there; 

drive 0.13 hours to Sydney International Airport at 18:00. 

 

1.5 Conclusion 

In this essay, I presented a methodology for building an intelligent tourist 

trip plan system based on online geo-tagged photos. First, I applied information 

retrieval techniques to collect over one hundred thousand publicly available geo-

tagged photos and related metadata from Panoramio.com. Second, using a 

density-based clustering algorithm (OPTICS), I discovered the attraction regions 

and POIs with useful travel information (e.g. attractiveness score, suggested 

visiting time etc.) from the geo-tagged photos. Third, I constructed a traveling 

graph model to represent the connectivity among POIs and attractive regions. 

Then, travel patterns were mined by using the traveling graph model and the 
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attractive regions over a wide range of spatial scales. Fourth, I developed an 

efficient Iterated Local Search based heuristic algorithm to find an approximate 

optimal solution to the multi-day and multi-stay tourist trip plan problem. I 

demonstrated the efficiency and utility of this approach by representing travel 

patterns and finding travel itineraries for tourists using the knowledge discovered 

from geo-tagged photos in a case study application of Australia. 

This research has potential broader impacts for tourism, location-based 

services, behavioral geography and other fields. For tourism research and practice, 

this work provides a new solution for discovering useful travel knowledge and 

recommending travel itineraries based on the online geo-tagged photo collections, 

which contain rich social media data. This work also tackles the multi-day and 

multi-stay tourist trip plan problem by developing an efficient heuristic algorithm. 

It can be used to make customized travel plans for personal guide services. In 

location-based services, this work can be used to provide valuable tourist services 

(e.g. real-time tourist trip plan) on GPS-enabled mobile devices. For behavioral 

geography, this work leverages a new type of behavioral data source for studying 

human movement behaviors. The travel knowledge discovered from online geo-

tagged photos is useful for examining and testing behavioral theory. 

Future work includes extending this work to generate user-friendly tourist 

maps for Internet users generating customized and applicable travel itineraries. To 

achieve this target, some systems that automatic generate destination maps (Kopf 

et al. 2010) or tourist maps (Grabler et al. 2010) can be integrated into this 

proposed system to deliver users with customized thematic travel maps, which 
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can display selected relevant travel routes and layout important 3D POIs nearby, 

for better spatial cognition. Allow user to add personal events, such as lunch 

break or naptime, to current travel itinerary is another important future work for 

applicability. This can be implemented by using virtual POI in proposed 

algorithm, but requires the algorithm can update or recomputed rest of travel 

itinerary on the fly. There is also a potential to apply the proposed method further 

to other forms of spatiotemporal social media data, such as geographically explicit 

GPS trajectories or location implicit social network data. Integrating different data 

sources, this work could discover richer travel information and knowledge that 

can improve the quality of recommended travel itineraries.  

At the same time, the proposed methodology exhibits several limitations 

and remaining challenges for future work. One big challenge is the scalability of 

the proposed approach. In this work, I tested the proposed methodology by using 

a small subset of retrieved geo-tagged photos: travel knowledge is discovered 

from 118,736 geo-tagged photos and the heuristic solution for making a tourist 

trip plan is tested based on 2,136 discovered POIs. The designed case study 

principally supports the claim that the proposed scheme can be used to build an 

efficient tourist trip plan system from digital photographs. However, it is not 

feasible to directly apply the methodology in this essay on a global scale since the 

overall data contain about 36 millions records which are much larger than the case 

study data in this essay. Therefore, to overcome this issue, more efficient data 

structures and algorithms are still needed.  
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Another limitation is that the discovered popular places and tourist 

patterns are not representative of the whole population but are based on Internet 

users with intent to share their geo-tagged photos. Further, even these specialized 

users may only publicly share a subset of all of the landmarks they visited. The 

fact that Internet volunteered data are biased towards a particularly motivated 

subset of Internet users is an important limitation of such data. Hence, the 

resulting analysis might not be representative of the general population. Therefore, 

before utilizing the proposed methodology in real-world applications for tourist 

trip planning purpose, the impact of such limitations on the analysis should be 

considered carefully. 
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Table 1.1 

Algorithm: A k-d tree based OPTICS Algorithm for Massive Datasets 

Algorithm 1: k-d tree based OPTICS Algorithm for Massive Datasets 
1 FuntionLOPTICS (P, EPS, MIN_Pts) 

2     For Each point in P 

3neighbors= kdtree.getNeighbors(obj, e) 

4         obj.setCoreDistance(neighbors, e, MinPts)  

5OrderFile.write(obj) 

6         Ifobj.coreDistance != UNDEFINED      

7orderSeeds.update(neighbors, obj) 

8Forobj in orderSeeds 

9                 neighbors = kdtree.getNeighbors(obj, e) 

10     obj.setCoreDistance(neighbors, e, MinPts) 

11     OrderFile.write(obj) 

12      Ifobj.coreDistance !=UNDEFINED      

13      orderSeeds.update(neighbors, obj) 

14      End If 

15      EndFor 

16  End If 

17End For 

18End Function 

19 

20 FunctionOrderSeeds::update(neighbors, centerObj)  

21     d = centerObj.coreDistance 

22For Each unprocessed objin neighbors 

23         newRdist = max(d, dist(obj, centerObj)) 

24         Ifobj.reachability == UNDEFINED      

25             obj.reachability = newRdist 

26             insert(obj, newRdist) 

27         ElifnewRdist<obj.reachability 

28             obj.reachability = newRdist 

29             decrease(obj, newRdist) 

30        End If 

31    End For 

32 End Function 

 

 

Table1.2 

Algorithm: Extract hierarchical clustering structure from OPTICS reachability 

plot 
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Algorithm 2: Automatically extract hierarchical clustering structure from OPTICS 

reachability plot 
1  FuntionExtract_HClusters (P, RD, t) 

2  Clusters = None 

3  While index <len(P) 

4      If (start = RD[index]*(1-t)) >= RD[index+1] # start of potential steep down area 

5          index = end_of_down_area 

6          Steep_down_area.append([start,index]) 

7      Else If (start = RD[index]) <= RD[index+1]*(1-t) # start of potential steep up area 

8           index = end_of_up_area 

9           steep_up_area = [start,index] 

10         For Each D inSteep_down_area 

11             Ifsuccess_form_cluster(D,steep_up_area) # if D and steep_up_area can form cluster 

12                 Cluster.append(D.start, steep_up_area.end) 

13             End If 

14         End For 

15    End If 

16End While 

17 root = Node(0,len(p),None) #Node(start,end,parent) 

18 root = generate_dendrogram(root) 

19 Return root 

20 End Function 

 

21 Functiongenerate_dendrogram(root) 

22     Range = [root.start, root.end] 

23     largest_cluster = find_largest_cluster(Clusters, Range) 

24     center_part = Node(largest_cluseter.start, largest_cluster.end, root) 

25     root.append_child(generate_dendrogram(center_part)) 

26     Ifroot.start == largest_cluster.start&&root.end == largest_cluster 

27         Return 

28     End If 

29     Left_Range = [root.start, largest_cluster.(start-1)] 

30     left_clusters = find_clusters(Cluster, Left_Range) 

31     For Each cluster inleft_clusters 

32         If cluster in {cluster’ in left_clusters} 

33             left_node = Node(cluster.start,cluster.end,root) 

34             root.append_child(generate_dendrogram(left_node)) 

35         End If 

36      End For 

37     Right_Range = [largest_cluster.end, root.end] 

38     right_clusters = find_clusters(Cluster, Right_Range) 

39     ForEach cluster inright_clusters 

40         If cluster in {cluster’ in right_clusters} 

41             right_node = Node(cluster.start,cluster.end,root) 

42             root.append_child(generate_dendrogram(left_node)) 

43         End If 

44    End For 

45 End Function 
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Table1.3 

Algorithm: Mining Classic ROI based Travel Routes 

Algorithm 3: Mining Classic ROI based Travel Routes 
1 FunctionApriori_Mining_Travel_Routes (Travel_Routes, min_support,max_k=None) 

2     k = 1 

3C = find_frequent_k_candidates(k, Travel_Routes,min_support)  # see formula 1.11 

4     Repeat 

5C_Temp= None 

6      For Each candidate in C 

7For Each candidate’ in C 

8If candidate!=candidate’ &&concatenate(candidate,candidate’) == True 

9                      C_Temp[concatenate(candidate,candidate’)] = 0 

10     End If 

11     End For 

12      End For  

13      k = k+1 

14      For Eachtravel_routeinTravel_Routes 

15           For Each new_candidate in C_Temp 

16                If travel_route.contains(candidate) 

17 C_Temp[new_candidate] += 1 

18End If 

19           End For 

20  End For 

21        C = find_frequent_k_candidates(C_Temp, Travel_Routes, min_support) 

22Until C is empty 

23    Return C 

24    End Function 
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Table1.4 

Algorithm: Iterated Local Search heuristic algorithm for multi-stay TOPTW 

problem 

Algorithm 4: Iterated Local Search heuristic algorithm for multi-stay TOPTW problem 
1 Function MS-TOPTW(start,end,numberOfDays) 

2     Tour = Initialize_Tour (start, end, numberOfDays) 

3     StartShake = 1 

4     ShakeRange = 1 

5     BestSolution = Tour.total_scores 

6     WhileNoImprovement< 100: 

7         // Construct step 

8     While existing feasible visit 

9     ForEach spot in Tour: 

10        Candidates = SearchNearestPOIs(maximum_driving_hours) 

11For Eachpoiin Candidates: 

12    Calculate BenefitScore of inserting poi in spot 

13Selected_POI, Selected_Spot = GetBestVisit(Candidates, BenifitScores) 

14    InsertToTour(Selected_POI, Selected_Spot) 

15For Each POI in Tour: 

16UpdateMaxExtraTime(POI) 

17 IfTour.total_score>BestSolution 

18BestSolution = Tour.total_score 

19Else 

20    NoImprovement += 1 

21                        End If 

22                   End For 

23                End For 

24            End For 

25         End While 

26// Shake step 

27        RemovePOIsFromTour(StartShake, ShakeRange) 

28StartShake += ShakeRange 

29        ShakeRange += 1 

30IfStartShake>= min_length(Tour_Segments): 

31            StartShake = 1 

32        End If 

33IfShakeRange>= length(POIs)/number_visiting_days: 

34ShakeRange = 1 

35        End If 

36    End While 

37End Function 
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Essay 2 

Introducing Complexity Measures to Trajectory Classification Modeling to 

Automatically Detect Different Movement Types with Unknown GPS 

Trajectories 

Abstract 

The application of trajectory classification to automatically detect movement 

types of unknown trajectories has been receiving increasing research attention in 

areas such as video surveillance, traffic management and location-based services. 

This research applies classic geometric shape-based classification approaches to 

classify trajectories by utilizing the geometric characteristics of movement to 

fulfill this task. However, this approach is limited to the geographic context of 

trajectory data. Classification methods based on movement parameters can 

overcome this problem but the accuracy of classification depends heavily on 

selecting appropriate movement features from trajectories. Recent research 

attempts to extract local movement profiles to improve the accuracy of 

classification, but is restricted to fixed size trajectories.  

To overcome this research challenge, I develop an efficient trajectory 

classification model based on several movement parameters. This model 

introduces two new types of complexity measures as new features for classifying 

movements: (1) the geometric complexity measures of trajectories based on 

Fractal Dimensions, and (2) structural complexity measures of movement 

parameters based on Approximate Entropy. I test the feasibility of this proposed 
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classification model with 800 GPS traces that were shared and manually tagged 

with four movement types by Internet users on the website Openstreemap.org. 

The overall 85.4% average accuracy of prediction outperforms the current state-

of-the-art trajectory classification models and demonstrates the applicability of 

this classification model. 
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2.1 Introduction 

In this essay, I develop an approach to efficiently, accurately and 

automatically detect the movement type of unknown objects from trajectories.  

This approach addresses several existing research gaps described below and 

advances the discovery of knowledge and patterns from ubiquitous online 

trajectory data in a spatiotemporal framework. It is part of a new area of research 

in spatial behavioral research (see review in section 2.2.1).  The emergence of this 

research is related to the fact that technologies that extract human movement 

trajectories from various moving object tracking systems are becoming more 

powerful. Further, the amount of trajectory data is increasing rapidly. Trajectory 

data can be directly collected with various location-aware devices such as GPS, 

cell phones (González et al. 2008), WiFi instruments (Torrens 2008) and 

Bluetooth devices (Eagle and Pentland 2006). Trajectories can also be indirectly 

extracted from video cameras (Nguyen et al. 2005) or manually recorded using 

TabletPC (Torrens et al. 2011). Moreover, trajectory data can be reconstructed 

from some location proxies of physical movement (e.g. using geo-tagged digital 

photos to reconstruct people’s travel paths).  

By analyzing very large amounts of trajectory data, scientists can 

successfully classify trajectories based on different human behavioral types 

(Dodge et al. 2009), predict the behavioral type of unknown trajectories (Nguyen 

et al. 2005) and detect abnormal behavior (Makris and Ellis 2002) or critical 

crowd situations (Johansson et al. 2008). Trajectory classification that can detect 

the type of movement or behavior (e.g. driving, running or walking) associated 
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with unknown trajectories, is important for deriving knowledge and patterns of 

movement from trajectory data (Giannotti and Pedreschi 2008). The main task of 

trajectory classification is to use existing knowledge about the movement 

behavior to train a model or classifier. Examples of classifiers include the 

decision-tree model, neural-network, k-nearest neighbors, the hidden Markov 

model (HMM), and the support vector machine (SVM) (see review in section 

2.2). Such classifiers serve as an explanatory tool for distinguishing trajectories of 

different activity types and for predicting, which specific behavior type of any 

input trajectory data belongs to what predefined categories of behavior. 

Trajectory classification plays an important role in many applications of 

trajectory data analysis and mining. In location-based services, detecting the 

behavior of moving objects based on their trajectories is a fundamental task of 

building intelligent systems in smart environments that can determine how to 

deliver what kind of appropriate services to what types of people (e.g. traffic or 

gas information to drivers or landmark information to pedestrian tourists). 

Trajectory classification can also be used to detect abnormal behavior against 

normal movement patterns from an individual’s trajectory dataset in many video 

surveillance systems. In computer visions, trajectory-based video surveillance 

systems apply trajectory classification to detect abnormal movement when 

monitoring traffic, crowds, pedestrians, etc. In artificial intelligence, detecting and 

identifying unknown moving objects is a basic task of robots and robotic devices 

for collision free path planning, and trajectory classification could be an efficient 

approach to achieve this task. In web applications and services, trajectory 
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classification can be used to detect and then automatically tag uploaded raw GPS 

logs for Internet users. In the behavioral sciences, identifying the movement type 

of moving objects from raw trajectory data provides fundamental movement 

information for discovering knowledge of behavioral differences from different 

moving objects.  

Due to the utility and potential wide applicability of trajectory 

classification, many studies in the behavioral sciences, bioengineering, 

transportation and video surveillance exist that classify trajectory data to detect 

the behavior or movement type of moving objects. In general, existing methods 

can be categorized into two types based on what features of trajectory data are 

extracted and used to build the classification model: trajectory classification based 

on (1) geometric shape and (2) movement parameters. The geometric shape 

approach directly manipulates the spatial characteristics to classify trajectories 

into one of several predefined categories with similar geometric properties (see 

review in section 2.2). It is suitable for abnormal behavioral detection from 

trajectories that were generated by similar moving objects (e.g. trajectories of 

vehicle in traffic surveillance analysis). However, this type of classification 

method is limited to the spatial context where all trajectories should be compared 

in the same geographic region since all predefined trajectory categories are tied to 

this region. Besides, temporal information has usually been ignored when treating 

trajectories as two-dimensional line segments since comparing three-dimensional 

space-time trajectories is computational expensive. 



  79 

The other type of trajectory classification is based on movement 

parameters, which are usually descriptive statistics that were extracted from 

trajectory data to discriminate the differences between movements. Several 

movement parameters, such as moving speed, turning angles, acceleration etc., 

have been used in current research as movement features in trajectory 

classification. Since these movement parameters are not correlated with specific 

geometric characteristics of trajectories, this type of approach can be applied to 

any trajectory data regardless of its spatial context. However, the accuracy of 

classification depends heavily on selecting appropriate movement features from 

trajectories. With normal movement parameters it is difficult to fully distinguish 

the differences in movement, especially for similar moving objects. For example, 

people could run as fast as a slow cyclist (same speed) in the same street (same 

turning angle). Recent research extracts local movement profiles, such as the 

amplitude and frequency of movement parameters over time, as new features to 

discriminate different types of movement in trajectory classification. Other 

research combines geometric features and movement parameters to classify 

trajectories. However, these solutions either can only be applied to classify 

trajectories with fixed duration or cannot generate accurate classification results. 

To overcome these research challenges, I develop an efficient approach to 

automatically —and with high accuracy— detect the movement type of unknown 

objects from trajectories. In this approach, I extend the movement parameters 

trajectory classification by introducing two new types of complexity measures as 

new features to classify movement. Specifically, one type of complexity measure 
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is geometric complexity measured by the Fractal Dimensions of trajectories, and 

the other is structural complexity measured by Approximate Entropy (ApEn) of 

the variation in movement parameters. I suggest that ApEn (which provides 

complexity information about the subtle changes that occur in the structure of 

sequential movement parameters of trajectories) and Fractal Dimensions (which 

provide the overall description of geometric complexity) can be used to deal with 

trajectories with any length and improve the accuracy in trajectory classification. 

To demonstrate the utility of this approach, I select 400 GPS traces that 

have been shared and manually tagged with a specific movement type by Internet 

users on the website Openstreemap.org. Experiments are conducted to test the 

feasibility of the two types of movement features introduced in this essay: 

complexity measures of movement parameters (e.g. ApEn of velocity, turning 

angle and acceleration sequence data) and complexity measures of geometric 

shape (e.g. fractal dimensions of trajectory). The performance and accuracy of 

these trajectory classification models, one with and one without complexity 

features, is analyzed and then compared using a confusion matrix and receiver 

operating characteristics (ROC). The overall 85.4% average accuracy of 

prediction demonstrates the applicability of the method I propose for detecting the 

movement type of raw trajectory data. 

 The following sections of this essay are organized as follows: related 

work on trajectory data mining and trajectory classification are reviewed in 

section 2.2. The complexity of movement is then introduced in section 2.3 by 

focusing on two types of complexity measures of movement: ApEn and Fractal 
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Dimensions. Section 2.4 describes the methodology of classification, which 

includes data preprocessing, movement feature extraction and dimensional 

reduction, building the classification model, applying this model in movement 

type detecting, analyzing the results and comparing them with other approaches. 

In section 2.5, two experiments are conducted to validate the performance 

trajectory classification model. The results are compared to evaluate the effects of 

the two proposed complexity based movement features. Section 2.6 presents a 

brief summary and outlines limitations and future research opportunities in this 

area. 

2.2 Related Work 

Discovering knowledge from trajectory data has gained much attention in 

recent years. In Ashbrook and Starner (2003), a Markov model was employed to 

learn the traveling patterns of new residents in Zürich, Switzerland from trajectory 

data. The model was trained using a region-to-region transition matrix where each 

region represents a cluster of a group of fixed points on trajectories. Mamoulis et 

al. (2004) proposed a learning based approach to mine the periodic commuting 

patterns from trajectory data. They clustered the trajectory data into different 

regions, and detected the dependences between regions through association rules. 

Giannotti et al. (2007) developed a T-Pattern to describe aggregate travel patterns 

in urban areas by analyzing individual-level trajectory data. The T-Patterns, which 

are flows between regions of interest (ROIs), were mined from Point of Interests 

extracted from trajectory data. Zheng et al. (2009) proposed an inference model 

based on HITS(Hypertext Induced Topic Search) to mine classic travel sequences 
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in Beijing, China. This model was trained with the trajectories of users’ travel 

experiences. Adrienko and Adrienko (2010) provided a novel approach to mine 

the travel patterns of residents in Milan, Italy and visualized them as aggregate 

flows between areas. Their study area was first divided into several regions as 

Voronoi tessellations, and travel patterns were then mined from trajectory data, 

which were segmented into a sequence of connected regions. These movement 

patterns provide relevant information for traffic management, urban design, local 

facilities design, migration, and crime analysis. 

Trajectory classification, which detects individuals or groups with similar 

or divergent movement behaviors from trajectories, is an important task for 

providing fundamental information for today’s trajectory data analysis and mining 

(Dodge et al. 2008). Further, trajectory classification has been applied in many 

fields. For example, it can be used to detect abnormal pedestrian behavior in 

pedestrian video surveillance systems (Niu et al. 2004), abnormally moving 

vehicles in traffic video surveillance systems (Fu et al. 2005), vessel types for 

fishery control, pollution control and border control from satellite images (Lee et 

al. 2008), and the theft of mobile devices (Yazji et al. 2011). The trajectory 

classification approaches can be divided into two types based on what features of 

trajectory data are used for classification: the first approach is based on geometric 

shapes and the second one on movement parameters. 
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2.2.1 Trajectory Classification based on Geometric Shape 

Intuitively, in trajectory classification based on geometric shape, whole 

trajectory or partitioned trajectory segments can be used to compare the geometric 

similarity between trajectories for further classification. Therefore, the main task 

of this approach is to compute the geometric similarity between trajectories (see 

chapter 10 in Giannotti and Pedreschi 2007). Many approaches were developed to 

compute overall visual distance or similarity between trajectories, such as average 

or perpendicular Euclidean distance (Froehlich and Krumm 2008), Fréchet 

distance (Buchin et al. 20011) and Longest Common Subsequence (Lin and Shim 

1995). Once the distances between trajectories are calculated, generic clustering 

algorithms in data mining, such as k-means, density based models or the Gaussian 

mixture model can be applied to find possible clusters as predefined categories for 

further trajectory classification.  

However, such methods are usually limited to the high complexity of 

geometry computation and inconsistency of spatial context in trajectory data. 

Besides, since trajectory is a physical representation of an individual’s spatial 

behavior that changes simultaneously in space and time, geometric shape methods 

always ignore the temporal constraints of trajectories for simplicity's sake. For 

example, trajectories along the same path might have reverse moving directions 

that might indicate two different moving patterns. Even though researchers 

developed some algorithms for comparing trajectories that take both space and 

time into account (Vlachos et al. 2003), they are still computationally expensive 

and cannot be applied efficiently to large scale trajectory data. 
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 To solve such issues and take the temporal variations in trajectories into 

account, Markov models such as hidden Markov models (HMMs) and 

hierarchical hidden Markov models (HHMMs) can be used to model the 

movement process for classifying each movement class. In these Markov models, 

trajectory data need to be segmented or partitioned to several connected sub-

trajectories. Then, each segmented sub-trajectory can be treated as a state and 

movement can be represented as the transitions between states. The state 

transition probabilities in the Markov models can be learned from training 

trajectory data. When modeling a new trajectory, the Markov model with the 

highest likelihood is used to classify the new input. However, like classic 

geometric shape based approaches, the Markov models are still restricted to be 

applied on trajectories in the same geographic region because all predefined 

trajectory categories are tied to this region. 

In Bashir, Khokhar et al. (2007), a temporal independent Gaussian 

Mixture Model (GMM) and a temporal dependent hidden Markov model (HMM) 

were created and compared for classifying trajectory data extracted from people’s 

signatures and a sports video dataset. The trajectories were firstly partitioned into 

trajectory segments at points of change in curvature and represented as a sequence 

of transitions between sub-trajectories. In GMM-based classification, for each 

trajectory class, the probability density function (PDF) is estimated with GMM 

using the sub-trajectories in this class. The classification of new trajectories can 

be performed by computing the likelihood for each GMM that has been trained 

from trajectory samples of each predefined category. The category with the 
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highest likelihood will be assigned to the input trajectory. In the HMM-based 

approach, a sub-trajectory was used to model the state of the HMM by using a 

mixture of Gaussians. For each class, a HMM was trained with known sub-

trajectories. For a new trajectory, the HMM with the highest likelihood is used to 

describe its class. Their experiments suggest that HMM-based trajectory 

classification gains higher accuracy than GMM.  

To predict the behavioral type of unknown trajectories extracted from 

video surveillance, Nguyen et al. (2005) presented a hierarchical hidden Markov 

model (HHMM) that learns the transition rules of human behavior from 

sequential trajectory data. In their approach, the study area was divided into 

several regions, and then movement trajectories were represented as a connected 

sequence of regions. HHMs of high-level behaviors (e.g. short meal, have snack 

etc.) and their sub-HHMs of low-level movement (transitions between regions) 

were organized hierarchically in a lattice-like structure for building a HHMM.  In 

their model, the internal and external factors that stimulate people’s behaviors are 

treated as hidden factors that force people to change their behavior.  

2.2.2 Trajectory Classification based on Movement Parameters  

Another type of trajectory classification is based on movement parameters. 

In most cases, geometric shape-based descriptors cannot fully discriminate the 

differences between trajectories due to the complexity of geometry shapes and 

their spatial context. For example, a straight trajectory recorded by people 

walking along a crowded street in New York has similar geometric characteristics 
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as a straight trajectory recorded by people drive along the same street, and these 

are two different movement types of trajectory. This could be tackled by using 

movement parameters (e.g.velocity, acceleration, turning angle, etc.) that are 

extracted from trajectories to discriminate the different movement types of 

trajectory. Finding good features from movement parameters to build the 

classification model is key for the accuracy and robustness of trajectory 

classification. 

Niu, Long et al. (2004) used statistical movement properties that are 

extracted from trajectories to detect group movement behavior in video 

surveillance systems, such as following, following-and-gaining and stalking, of 

pedestrians. The movement properties are relative moving position and relative 

moving velocity of one pedestrian vs. a nearby pedestrian. The linear regression 

models of these movement properties against time are then evaluated, and the 

characteristics of the best-fit regression lines, such as slope, intercept and residual 

error, are used as features for building a SVM-based classifier from training data. 

Their experimental results show better classification results than complicated 

Markov models, such as HMM and coupled hidden Markov models.  

 For efficient trajectory classification, Dodge et al. (2009) proposed a 

trajectory segmentation and feature extraction method for detecting movement 

type of moving objects from trajectory data. They used an analytical approach to 

extract descriptive statistics, including speed, acceleration turning angle, 

straightness, etc., as global movement parameters from trajectory data. To extract 

more detailed features of movement, they decomposed trajectories into segments 
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at equal time intervals and measured the amplitude (e.g. using deviation from the 

median) and frequency variations (e.g. using sinuosity) with regard to global 

movement parameters over time for each segment. The deviation and sinuosity of 

movement parameters are then categorized into four predefined low-high 

deviation-sinuosity groups. The statistics of four groups extracted from 

trajectories were used as local movement features. For trajectory classification, 

they first used principal component analysis (PCA) to reduce the dimension of the 

movement features, and then trained a SVM classifier from training data to 

classify trajectories with equal time duration into categories such as pedestrian, 

bicycle, car and motorcycle with a 82% accuracy of multi-label classification. 

However, this is limited to a prerequisite that all trajectory samples need to have 

the same time duration. 

Based on their previous work, Dodge et al. (2012) proposed to assign one 

of the predefined movement parameter classes(MPC) to each trajectory segment 

based on different value ranges of its local movement features (e.g. deviation and 

sinuosity) and symbolically represent each trajectory as a sequence of class labels. 

They measured the similarity between different sequences by using a so-called 

normalized weighted edit distance (NWED). This method can be applied to 

trajectories with different length, which overcomes the deficiency of their 

previous approach. They applied their approach to a similarity-based trajectory 

clustering task using North Atlantic Hurricane trajectory data and GPS traces of 

couriers in London. 
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There are also some researchers tried to utilize both geometric 

characteristics and movement parameters of trajectory to identify different 

movement types. For example, to detect abnormal movements among vehicles in 

real-time traffic videos, Fu et al. (2005) developed a hierarchical clustering 

framework that uses a spectral clustering algorithm to identify normal trajectory 

clusters. A set of decision rules is then defined to detect abnormal vehicles by 

comparing the visual similarity, spatial and velocity constrains of their moving 

trajectories with a template trajectory that is extracted in each cluster. All 

trajectory data were resampled at equal space intervals and represented as line 

segments. The average distance between corresponding comparable segments on 

two trajectories is used as visual features to compare the similarity between 

trajectories regardless of differences in length of trajectories. 

2.3 Complexity of Movement 

A trajectory is a path of connected geometric line segments that can be 

treated as a type of time series data. Therefore, many existing methods in 

computational geometry and time series analysis have been borrowed for 

trajectory analysis and classification. For example, several geometry-based 

approaches are developed to compare geometric similarities between trajectories 

(see review in section 2.2.1). Further, trajectory classification research borrowed 

methods from time series analysis to compare similarities between time series 

data —for instance, to detect change in a time series for trajectory segmentation 

or to extract features of time series (e.g. amplitude, frequency and variations). 

Approaches for investigating time series data have also been used in trajectory 
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classification, such as Markov models or dynamic time warping.  However, to the 

best of this author’s knowledge, none of the existing research introduces 

complexity measures, which have been widely studied in fractal theory (Batty 

1985) and time series research (Feldman and Crutchfield 1998) to describe the 

characteristics of movement for trajectory classification. In this essay, I seek to 

demonstrate that complexity measures of trajectories can provide new and 

discriminative features of movement for trajectory classification.  I introduce two 

types of complexity measures for trajectories: a geometric complexity measure 

using Fractal Dimensions and a structural complexity measure of movement 

parameters using Approximate Entropy. 

2.3.1 Geometric Complexity of Movement and Fractal Dimension  

When trajectories are visually plotted in two-dimensional space (see upper 

figure 2.1), the fundamental feature of trajectories is their geometric shape. Much 

existing research focuses on directly comparing the geometric shape between 

trajectories to identify similar movements with several limitations (see review in 

section 2.2.2). In fact, the geometric shape of a trajectory itself can tell us the 

characteristics of movement via its geometric complexity measure. For example, 

people walking through a crowded street block may generate a trajectory full of 

angles and turns by avoiding collisions or visiting random places, while a car that 

drives through the same street will create a straight trajectory. The geometric 

complexity of these two movement trajectories is significantly different: the 

trajectory of pedestrians in a crowded environment is more complex 

geometrically than the trajectory of vehicles. I argue that such geometric 
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complexity of trajectories can be used as a discriminative feature to describe 

movement.  

 

 

Figure 2.1: 4 different randomly selected GPS trajectories (car, bike, run, walk) in 

2D (upper) and in 3D (lower, with vertical axis representing time) 

To measure the geometric complexity of trajectories, I introduce the 

Fractal Dimension (FD) as a geometric complexity-based feature for trajectory 

classification. Fractal dimension is used to measure the tortuosity of two-

dimensional trajectories (Mandelbrot 1967, Nams 2005). It has been used to 

analyze the trajectories of animals to study their movement patterns and habits 

(Fritz et al. 2003) and to analyze the structure of trajectories of pedestrians (Nara 

and Torrens 2007) to compare the visual similarity between trajectories (Torrens 

et al. 2011). The FD value of a trajectory ranges from 1, which refers to a straight 

line, to 2, which means a trajectory whose tortuosity occupies a whole plane. It is 
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derived from the linear relationship between the logarithm of total distance (!) 

and the logarithm of the inverse of the currently employed measuring scale (!) 

based on the knowledge that the total length is highly dependent on the scale 

adopted (Nams 2005), as follows: 

 !"# !! ! !! ! !! !"# !!!! ! ! !"!!!!!! !!!  (2.1) 

where !  represents the number of different scales employed to calculate the total 

distance of a trajectory. A regression model can be constructed from the (!!,!!) 

pairs, and the FD value is then calculated as (1 + !). One problem that may 

impact the precision of the FD value is a possible underestimation or truncation of 

the path length through different measuring scales. For the purpose of improving 

precision, Nams (2005) proposed a so-called FMean method that computes an FD 

value twice by starting to measure total distance from two ends of a trajectory 

whereby the mean FD value is used as FMean. In this research, FMean will be 

used as a movement feature that describes the geometric complexity of 

trajectories. 

2.3.2 Structual Complexity of Movement Parameters and Approximate 

Entropy 

Besides the geometrical shape, the global characteristics of trajectories can 

be described through some movement parameters, such as average velocity, 

acceleration, turning angle, straightness index etc. (see review in section 2.2.2). 

These descriptors, at a given scale, can differentiate a variety of behaviors. For 

example, in most cases, people are running with higher moving speed than 
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walking; driving a car will be associated with a much higher acceleration than 

riding a bike; the turning angle of a vehicle will be smaller than that of a 

pedestrian. These differences can be seen in table 2.1, where the basic descriptive 

statistics of several global movement parameters were computed empirically from 

four different types of movement trajectories (walk, run, ride bicycle and drive 

car) that are randomly selected from experimental data (see section 2.5). 

However, in some cases these descriptive statistics would not be accurate: some 

people might run very slowly while others might walk very fast, or in a race, a 

bicycle could reach a fairly high speed that is faster than a slowly driven car. 

Therefore, additional features that can distinguish different movement parameters 

of trajectories are needed for a successful classification task. 

By plotting the sequential data of these movement parameters (velocity, 

acceleration and turning angle) against time, we can see that obvious structural 

differences of different types of movement exist: different behavior exhibits 

different amplitude and frequency variations of its movement parameters along 

the time axis (see figure 2.2). In this example, for a velocity-time sequence, 

running behavior has the relatively highest frequency and median amplitude; 

walking behavior exhibits the relatively median frequency and lowest amplitude; 

driving a car is associated with the relatively lowest frequency and highest 

amplitude; and riding a bike has the relatively median frequency and amplitude. 

Many approaches to analyzing movement were designed to quantitatively and 

statistically analyze these time-series data by checking the shifts in mean levels, 

variability, and the autocorrelation structure. For example, Nams (1996) proposed 
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a so-called VFractal to measure the fractal dimension of  the turning angles series 

to evaluate the self-similarity (autocorrelation) of movement. Dodge et al. (2009) 

measured the deviation and sinuosity of these sequential movement parameters 

and categorized them into four predefined low-high deviation-sinuosity groups as 

the local movement features for trajectory classification. However, such methods 

that only take into account the aggregate amount of randomness of the serial data 

may ignore the subtle changes that happened in the structure of sequential data 

(Pincus 2008). 
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!

Figure 2.2: Plots of velocity against time for: car, bike, run, and walk (from top to 

bottom) of 4 randomly selected trajectories with 4 different movement types. 

To address this problem, trajectories were treated as time series data and 

the structural complexity measurement Approximate Entropy (ApEn) was 

introduced as a measure of irregularity of sequential data in time series analysis. 

ApEn is rooted in information entropy developed by (Shannon 1948). It is used to 

quantify the concept of changing complexity, and it has been widely applied in 

time series data analysis in finance, biology, complexity, and other fields (Pincus 

2008, Pincus 1991). The ApEn value varies inversely with complex and 

irregularity of sequential data. It measures if a structure or pattern of change exists 

in sequential data. A higher ApEn value suggests that the sequential data is a 

random series, while a smaller value implies less complexity and more regularity 
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(predictable pattern) in the sequential data. Therefore, this research applied the 

ApEn to measure the structure of sequential data with local movement 

parameters. 

ApEn values reflect the likelihood of how often “similar” patterns of 

observations exist in time series data. Sequential data that contains many 

repetitive patterns (e.g. highly structural and less informative) have a relatively 

small ApEn value, while a less predictable process (e.g. with complex or random 

structure) has a higher ApEn value. Given time sequence data !!, which has ! 

continuous observations, I denote a subsequence of ! observations at location !, 

! ! !!!!!, is a pattern !!!!!. If the difference between two patterns !!!!! and 

!! !  is less than a predefined criterion !, we can conclude that these two 

patterns are similar.  The approximate entropy value !"#$ !! !!! !  can be 

computed with the following equation:
7
 

 !"#$ !!!!! ! ! !!"
!!!!!

!!!!!!!
"" (2.2)"

where ! specifies the pattern length, ! defines the criterion of similarity between 

patterns, and !!!!! is the prevalence of repetitive patterns of length ! in !!, 

which can be computed as: 

 !! ! ! ! !!"!!!
!!!!!

!!! !! !! ! !!!  (2.3)"

where !!"!!! is the frequency count of patterns in !! that are similar to !!!!!. 

For a fixed number of N observations, large m will generate fewer patterns to 

                                                
7
 See http://physionet.org/physiotools/ApEn/"
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measure the ApEn value than small m. As noted by the author of ApEn in (Pincus 

1991), a small m (especially m=2) can distinguish a wide variety of systems, such 

as deterministic systems, chaotic system stochastic and mixed system, with 

relatively fewer points. For similarity criterion !, smaller ! usually leads poor 

conditional probability with more similar patterns been identified, while larger ! 

usually ignore detailed system information with less patterns been detected. As 

suggested by author in (Pincus 1991), choices of  ! ranging from 0.1 to 0.2 

standard deviation of the sequence data !! can avoid a significant contribution 

from noise in an ApEn calculation. 

2.4 Methods 

 To detect the movement type of an unknown object from trajectories, I 

develop a trajectory classification framework based on movement parameters. I 

introduce two new movement features that represent a trajectory’s geometric 

complexity and structural complexity of movement parameters. First, all 

trajectory data will be preprocessed in this framework by removing noise and 

outliers and resampling with a uniform time interval. Then, general movement 

features (e.g. velocity, turning angle, acceleration and straightness) and 

complexity-based movement features are extracted from trajectories (e.g. fractal 

dimension (FMean) and ApEn measures with regard to general movement 

features). Correlation analysis is then applied to study potential interrelationships 

between movement features. To reduce the dimensions of movement feature 

space, principle component analysis (PCA) is used to select a subset of 
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uncorrelated features as principal components. The features and corresponding 

movement types are then used to train a classifier for trajectory classification. 

Different classifiers have been compared and the one with highest accuracy is 

selected to use. This classifier can be used to predict the movement type of an 

unknown trajectory. 

2.4.1 Data Preprocessing 

Before data preprocessing, I establish some definitions for trajectory data 

that can be recorded through location-aware devices (e.g. GPS) at a certain 

sampling interval or instantaneously through user intervention: a trajectory is the 

path of a moving object and it can be composed of a set of quasi-linear segments 

where the points ! ! !!!!!!! !!! are attributed spatial and temporal 

information, e.g. !! ! !"#! ! !"#! !!"#$! ! !"!!! !!. Based on this, a trajectory can 

be represented as follows: 

 !"#$%&'(") ! !!
!!!

!!
!!!

!!
!!!

!
!!!!!

!!  (2.4) 

where !!!", !!!!! ! !!!! ! !!! and !"[1,!]. The total cost in time is ! ! ! !!
!!!

!!!  

and the approximate total length of the trajectory is  

 ! ! ! !"#$%&'( !! !!!!!
!!!

!!!   (2.5) 

. If !!! ! !!!! ! ! ! !!!!, this trajectory has a fixed sampling interval.  

 Usually, real-world trajectory data may not have been recorded at the 

same sampling rate and there may be some noise, such as incorrect locations that 

were recorded when location-aware devices (e.g. GPS) lost signals or were 
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impacted by ionospheric and tropospheric errors in the trajectory data (Hoffmann-

Wellenhof et al. 2001). The different sampling rate should be standardized for 

generating comparable Fractal Dimension and ApEn values. First, all trajectories 

that were recorded using latitude and longitude are simply transformed to a planar 

coordinate system with meters as the unit. To preprocess trajectories to contain 

the same fixed sampling interval, I then adopted a linear interpolation approach to 

resample trajectories at a fixed time interval. To check the noise in trajectory data, 

I applied a simple rule that moving velocity at each original point on the trajectory 

should be less than a predefined maximum velocity in the resample stage. The 

noise point will be simply removed once detected before resampling. If more than 

10 noise points are detected, this trajectory will be ignored.  

2.4.2 Feature extraction and selection 

To find a feature set with distinguishable features to better evaluate the 

characteristics of movement compared to existing work, I propose a movement 

feature set that can be retrieved from trajectories for a classification task. I 

introduce two new types of movement features: geometric complexity of 

movement and structural complexity of the variation of movement parameters. In 

this movement feature set, classic general descriptive statistics of movement 

parameters, which include the mean, standard deviation and skewness of moving 

speed, acceleration, turning angle and straightness index, are extracted from 

trajectories as movement features. At each sampling point !! along trajectory! 

with total ! sampling points, these movement parameters can be calculated as 

follows:  
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 !"##$!!!!! ! !"#$%&'( !!!!! !! !!!, (2.6) 

 !""#$#%&'()*!!!!!
! !"##$ !!!!!!! !!!, (2.7) 

 !"#$%$!"#!$%!!!!! ! !!!!!!! ! !! !!! ! !!!!!, (2.8) 

 !"#$%&!!"#$$!!!!! !
!"#$%&'( !!!!!!! !!"#$%&'( !!!!!!!

!"#$%&'( !!!!!!!!!
.  (2.9) 

 Instant moving speed is calculated as the rate of location change from the 

previous time step. Acceleration is calculated as the rate of speed change from the 

previous time step. Turning angle is calculated as the direction of the movement 

with regard to the previous and next time steps (see figure 2.3).The straightness 

index is calculated as the ratio of the length of two consecutive trajectory 

segments and the displacement from an overall start point to end point of these 

two segments. 

 

Figure 2.3: Illustration of computing general movement parameters such as: 

moving speed, turning angle, displacement etc. 

 To test the potential interrelationships between movement parameters, the 

Spearman correlation coefficient and the p-value for testing non-correlation are 
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adopted. The main reason of selecting Spearman correlation is because it does not 

assume a normal distribution of the variables. It is a nonparametric measure of the 

linear relationship between two variables, and can be used to test the direction and 

strength of the relationship between variables (Chatfield 2004). The correlation 

measure varies between -1 (strong negative correlation) and +1 (strong positive 

correlation). Value 0 means no correlation between two variables. Strong 

correlation between movement parameters implies that some parameters may be 

redundant and need to be removed. 

 The new type of movement feature is the complexity measure of a 

trajectory. I introduce geometric complexity of a trajectory and structural 

complexity of movement parameters of a trajectory. The Fractal Dimension is 

calculated to describe the geometric complexity of a trajectory. To obtain better 

precision, FD is computed twice by measuring the distance of a trajectory in 

opposite directions using different scales. Further, the mean value (FMean) is 

used as a movement feature (see section 2.3.1). ApEn (see section 2.3.2) is 

calculated for each movement parameter (e.g. speed, turning angle, acceleration 

and straightness) to describe how the structural complexity of movement 

parameter varies over time. To capture all subtle changes that occurred in the 

structure of sequential data, the ApEn value of each movement parameter is 

measured at every sample point beginning from a ! trajectory. To calculate ApEn 

values that can distinguish different movement types significantly, the parameters 

of ApEn are defined as m=2 and !=0.2*standard_devation(!!) following by the 
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explanation in section 3.2. Then, the mean, standard deviation and skewness of 

ApEn values are adopted as movement features. 

However, correlations may exist in the above movement features extracted 

from trajectories since some of these features describe similar characteristics of 

movement. For example, the fractal dimension and straightness index are both 

used to measure the geometric characteristics of a trajectory. Meanwhile, 

correlation analysis is difficult to apply to identify and reduce duplicate features 

due to the relative large number of features. A traditional and efficient approach, 

principal component analysis (PCA), is employed to reduce the dimensions of 

feature space by using an orthogonal transformation to reduce a set of possible 

correlated features to a smaller set of values of uncorrelated synthetic features 

(Smith 2002). These uncorrelated features are called principal components that 

contain the most important information of the original features. 

2.4.3 Classification Model 

After the process of dimension reduction, the final feature set and 

movement type of trajectories will be used for trajectory classification. 

Classification is the task that assigns objects to one of a number of predefined 

class labels based on the feature set of objects. The function that maps each 

feature set to a discrete class label is called a classification model or a classifier. 

The classifier is normally trained and evaluated by applying a learning algorithm 

to identify a model that best fits the relationship between features and classes 

from training data. Many classifiers have been developed in data mining and 
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machine learning for the classification task, and many of them have been 

successfully applied in trajectory classification, such as rule-based classifiers, 

decision trees, SVM, Markov models (e.g. HMM and HHMM) and Bayesian 

models (see review in section 2.2).  

In this essay, a cross-model comparison using different classification 

models, such as SVM, decision tree, k-nearest neighbor (KNN) classification, 

linear model, naïve Bayes and Gaussian Mixture model (GMM), is applied to 

select a suitable classification model. As a result, I adopted the SVM as the 

classifier for trajectory classification since it achieves the highest accuracy in 

prediction test and has been successfully applied in many applications (Bishop 

2006). SVM is also robust for high-dimensional and linearly or non-linearly 

separable data. It finds maximal margin hyperplanes as decision boundaries to 

separate input features with different class labels in a multidimensional space. A 

subset of the training data, the support vectors is used to represent such decision 

boundaries. For non-linearly separable data, SVM applies a set of kernels, such as 

linear, polynomial, radial basis function (RBF) and sigmoid kernels, to 

mathematically map input features to a linearly separable space. After the SVM 

classifier has been trained, it can be used to classify trajectories into predefined 

categories and detect the movement type of a trajectory by assigning a class label 

to it.  
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2.4.4 Trajectory Classification, Prediction and Evaluation 

Trajectory classification can be applied in two major tasks. One is 

distinguishing trajectories of different movement types based on the movement 

features that are extracted from trajectories. It can be used to process trajectory 

data for further analysis and data mining work. The other one, which is the main 

focus in this essay, is predicting the movement type (class label) of unknown 

trajectories based on the retrieved movement features from trajectory data. If there 

are only two predefined movement types that need to be detected, such as walk 

vs. run, the corresponding classification model is called a binary classifier. Most 

classification techniques are suited for predicting trajectories with binary 

categories. When there are more than two movement types in classification, the 

corresponding classification model is called a multi-class classifier or multinomial 

classifier. There are some feasible solutions that apply binary classifiers to solve 

this k-classes classification problem, such as a “one-against-one” or “one-against-

rest” strategy (Tan et al. 2002). In a “one-against-rest” strategy, k binary 

classifiers will be trained first and then work together as a multi-class classifier. 

The unknown trajectory will be classified k times using these k classifiers and 

generate k probability values to indicate whether or not it belongs to each one of k 

movement types. The movement type with the highest classification probability 

(“one-against-rest”) will be assigned to the unknown trajectory.  

To select a suitable classification model in the experiments, I apply a 

cross-model comparison using different classification models, which include 

SVM, decision tree, k-nearest neighbor (KNN) classification, linear model, naïve 
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Bayes and Gaussian Mixture model (GMM). According to the results, the support 

vector machine, which achieves the highest prediction precision, is selected to 

fulfill this classification task. To avoid the over-fitting problem and improve the 

estimation of the classification performance, I apply cross-validation to evaluate 

the classifier. Specifically, a k-fold cross-validation method is used. This method 

divides the sample data into k equal-sized groups, from which one group of 

samples is chosen for testing and the rest of the data are used for training at each 

run.  Then, the overall error equals the sum of errors for all k runs. 

To evaluate the performance of the classification model, I use 

classification performance metrics such as accuracy (the ratio of the number of 

correct predictions to the total number of predictions) and error rate (the ratio of 

the number of wrong predictions to the total number of predictions). Further, I 

adopt a receiver operating characteristic (ROC) curve to display the tradeoff 

between true positive rate (TPR equals the ratio of the number of true positive 

cases to the sum of true and false positive cases) and false positive rate (FPR 

equals the ratio of the number of false positive cases to the sum of true and false 

positive cases) (Hanley and McNeil 1983). The area under the ROC curve (AUC) 

can be used to evaluate if the model is accurate (with an AUC value close to 1) or 

inaccurate (with an AUC value close to 0.5), or compare which model performs 

well (with a large AUC value).  
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2.5 Experiments and Results 

2.5.1 Data Collection 

In this research, I retrieved 7,010 GPS tracks that were shared by 478 

Internet users in GPS exchange format (GPX) from the website 

Openstreetmap.org. GPX is an open file format that uses the XML schema to 

describe waypoints, tracks and routes. In the experiments, all trajectories were 

extracted from GPX files by using a Python program. Usually, when Internet 

users upload and share their GPS tracks on a website, most of them also tag their 

GPS traces with some text descriptions, such as the movement type, date or other 

relevant information about the GPS traces. These meta-data were also collected 

with the GPX data at the same time. By using these metadata, I developed another 

Python program to extract trajectory samples that have metadata that match my 

four predefined movement categories. The GPS traces, which were tagged with 

more than one movement type (e.g. GPS trace of commuting or traveling usually 

contains walking and driving car), will be ignored. This program also detects and 

deletes invalid trajectory data, such as empty GPX files or too short GPS traces 

(less than 5 minutes). After cleaning the data, 400 valid trajectories were 

randomly selected so that each movement category contains 100 trajectories. 

These trajectories will further be used as training and testing data in the 

experiments. !

The main purpose of the experiments is to build a classifier from already 

known trajectory data to predict movement types of unknown trajectories from 
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four predefined movement categories: walk, run, ride bicycle (bike) and drive 

vehicle (car). This trajectory classification approach can be widely applied. For 

example, for GPS data shared on websites, this method can be used to help 

Internet users automatically tag their uploaded GPS traces with correct movement 

labels. It can also be used to analyze the trajectory database to study movement 

behavior and patterns. Finally, it can also be applied to benefits from other 

applications that need to identify people’s movement type from trajectory data, 

such as location-based services, video surveillance, and traffic management.  

2.5.2 Data Preprocessing, Feature Extraction and Selection 

In the data preprocessing stage, outliers in each trajectory, such as points 

with zero latitude and zero longitude or with moving speed larger than 100 meters 

per second were removed. Each trajectory is then re-sampled at a fixed time 

interval (3 seconds) through a linear interpolation approach. As proposed in 

section 2.4.2, the movement features include (1) general features such as the 

mean, standard deviation and skewness of movement parameters (speed, 

acceleration, turning angle and straightness index) and (2) complexity features 

such as the FMean measure of trajectories, and 3) the mean, standard deviation 

and skewness of ApEn measures of the variation of movement parameters. The 

descriptive statistics of movement parameters of four movement types are 

calculated from sample trajectories and are shown in table 2.1 and table 2.2.  
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Table 2.1  

Descriptive Statistics and Structural Complexity Measures of 4 movement 

parameters (Speed (a), Acceleration(b), Turning Angle(c), Straightness(d)) for 4 

Randomly Selected Trajectories (Car, Bike, Run, Walk)  

 Speed (meters/second) ApEn of Speed 

Mean Stddev Skewness Mean Stddev Skewness 

Car 8.503 4.262 -0.001 0.371 0.033 -0.161 

Bike 4.376 2.054 -0.843 0.467 0.026 -0.445 

Run 2.176 0.634 0.080 0.972 0.131 -0.342 

Walk 0.799 0.486 -0.146 0.549 0.101 -0.685 

(a) 

 Acceleration (meters/second
2
) ApEn of Acceleration 

Mean Stddev Skewness Mean Stddev Skewness 

Car -0.007 0.468 -2.079 0.827 0.022 -0.971 

Bike 9.763 9.763 -0.095 0.662 0.037 -0.468 

Run 0.001 0.212 0.256 1.077 0.106 -0.677 

Walk 3.764 0.114 0.045 0.703 0.083 -0.183 

(b) 
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 Turning Angle (-3.14-3.14 

degrees) 

ApEn of Turning Angle 

Mean Stddev Skewness Mean Stddev Skewness 

Car -0.018 0.491 -1.26 0.401 0.030 0.146 

Bike -0.006 0.474 0.039 0.424 0.045 0.069 

Run -0.007 0.337 -0.870 1.026 0.162 -0.464 

Walk -0.059 0.786 0.001 0.437 0.072 0.213 

(c) 

 Straightness ApEn of Straightness 

Mean Stddev Skewness Mean Stddev Skewness 

Car 1.031 0.177 9.419 0.131 0.017 -0.347 

Bike 1.026 0.191 17.447 0.175 0.034 0.174 

Run 1.015 0.064 17.118 0.313 0.022 0.249 

Walk 1.086 0.314 7.004 0.338 0.024 -0.343 

(d) 

  



  109 

Table 2.2 

Geometric Complexity Measures (Fractal Dimensions) of 4 Randomly Selected 

Trajectories with 4 Different Movement Types (Car, Bike, Run, Walk)  

 Car Bike Run Walk 

FMean of Fractal Dimensions  1.089 1.083 1.076 1.122 

The Spearman correlation coefficient is computed to examine the potential 

interrelationships between movement parameters. The results are shown in Table 

2.3. From the results, we can see that there is a slight positive correlation between 

“speed” and “acceleration” in two movement types (“car” and “bike”). Therefore, 

all four movement parameters will be kept for the next stage.  

After the correlation analysis, a total of 25 movement features are derived 

from each trajectory: 12 general movement features (mean, standard deviation 

and skewness of speed, turning angle, acceleration and straightness index) and 13 

complexity movement features (FMean of trajectory, mean, standard deviation 

and skewness of the ApEn measure of speed, turning angle, acceleration and 

straightness index curves). Then PCA is applied for dimensional reduction of the 

above movement features by transforming input features to uncorrelated linear 

combinations. As a result, the original feature set is reduced to 10 principal 

components, which together contribute 90% of the original information. The new 

feature set is then used for the final trajectory classification. 
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Table 2.3 

Correlation Coefficients between Movement Parameters of 4 Movement Types 

Correlation Car Bike Run Walk 

Speed-Acceleration 0.576 0.406 0.254 0.056 

Speed-TurningAngle 0.128 0.098 0.068 -0.216 

Speed-Straightness -0.108 -0.169 -0.196 -0.447 

Acceleration-TurningAngle 0.082 0.120 0.063 -0.099 

Acceleration-Straightness 0.090 -0.033 0.055 0.008 

TurningAngle-Straightness -0.133 -0.354 -0.021 -0.083 

 

2.5.3 Experiments 

To demonstrate the utility of my proposed complexity features of 

movement in trajectory classification, two experiments are designed to evaluate 

the trajectory classification task.  In the first experiment, all proposed movement 

features are used to build a classifier. In the second experiment, all but the 

complexity features are used to build another classifier. The same sample data 

from the data preprocessing stage are used to extract features, and to train and test 

the classification model in both experiments. The performance results of two 

experiments are compared and analyzed in the next section. 
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The goal of the experiments is to assign a correct movement type from 

four predefined categories to an unknown trajectory, which is a typical supervised 

multiclass classification problem. The “one-against-rest” strategy is used to build 

a multiclass classifier based on binary classifiers: four binary classifiers are built 

and each executes a binary classification of one movement type against the rest 

(e.g. walk vs. non-walk). They work together to compose a multi-class classifier 

by assigning the label of the highest prediction probability classifier to the 

unknown trajectory. For better classification performance, a 5-fold cross-

validation approach is applied to evaluate all classifiers. As a result, in each run, 

80% (320 trajectories) of preprocessed data are used to train this multi-class 

classifier, and 20% (80 trajectories) data are used for testing.  

To select a suitable classification model in the experiments, different 

classification models, which include C-SVM (model parameters can be seen in 

next paragraph), Nu-SVM (kernel=radial basis function (RBF), nu=0.5, 

gamma=0.25, tolerance=0.0001, cost parameter=200), k-nearest neighbor (KNN) 

classification model (k=15 and Euclidean distance as weight), Logistic regression 

linear classification model (C=1e4, intercept scaling=2, penalty=12, 

tolerance=0.0001), Gaussian naïve Bayes model and Gaussian Mixture model 

(GMM) (alpha=0.1, number iterations=20, number components=4, 

threshold=0.01), are applied and compared to select the one with best 

performance. The results of cross-model comparisons of classification using 

dataset in first experiment are shown in table 2.4. According to the results, I 
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employ the C-SVM, which achieves the highest prediction precision compared to 

four other classification models, to fulfill this classification task. 

Table 2.4 

Cross-model Comparisons of Classification Models Using Experiment 1 Dataset: 

320 Training Data/80 Testing Data 

 Precision Recall f1 score 

C-SVM (RBF) 0.85 0.88 0.87 

Nu-SVM (RBF) 0.83 0.82 0.82 

KNN 0.71 0.71 0.71 

Linear model (Logistic) 0.73 0.72 0.72 

Naïve Bayes (Gaussian) 0.68 0.68 0.68 

GMM 0.57 0.56 0.56 

According to the form of the error function, there are two types of 

classification SVM: one is classification SVM Type 1 (C-SVM) and the other is 

classification SVM Type 2 (Nu-SVM) (Chang et al. 2001). Since C-SVM 

produces slightly higher prediction precision than Nu-SVM, I use the C-SVM 

empirically in both experiments. The parameters of this classifier are utilized 

automatically by sweeping all parameters within the valid range. Both 

experiments generate highest precision using the radial basis function (RBF) 

kernel. In the first experiment, the cost parameter is 128.0, complexity bound is 

0.6, tolerance is 0.5 and numeric precision is 0.001. In the second experiment, the 
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cost parameter is 32.0, complexity bound is 0.5, tolerance is 0.5 and numeric 

precision is 0.001. 

2.5.4 Results 

The results of the multi-class classification in the first experiment are 

shown in the confusion matrix in Table 2.5. As a result, the overall accuracy of 

prediction is about 85.4%, which is a good prediction result in multi-class 

trajectory classification outperforms much existing work (see review in section 

2.2.2). Each entry in this matrix represents the proportion of true prediction. From 

the results, we can see that if the movement type of input trajectory is “car”, there 

is a 94.12% chance that the classifier assigns the correct label. The movement 

type “walk” also has high prediction accuracy (94.12%). The movement type 

“run” has the lowest prediction accuracy (72.92%). There is 18.75% chance to 

incorrectly predict it as “bike” and a 6.25% chance to incorrectly recognize it as 

“car”. The movement type “bike” also has a relative low accuracy (79.59%). 

Almost all movement types could be misclassified vis-a-vis the rest types, except 

that there is no misclassification of “car” to “run”. Such misclassifications require 

further investigation to improve the accuracy of the classification.  
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Table 2.5 

Confusion Matrix of Accuracy for 4-class Trajectory Classification Problem in 

Experiment 1 (with Complexity Measures as Movement Features) 

 Predicted Class 

Bike Car Run Walk 

 

 

Actual 

Class 

Bike 79.59% 10.20% 4.08% 6.12% 

Car 1.96% 94.12% 0.00% 3.92% 

Run 18.75% 6.25% 72.92% 2.08% 

Walk 1.96% 1.96% 1.96% 94.12% 

In experiment 2, the overall prediction accuracy is 78.39%, which is lower 

than the overall accuracy of the classifier in experiment 1. This means that 

introducing the complexity measures of movement as features for trajectory 

classification can improve the overall prediction accuracy of the classification 

model. Specifically, the prediction accuracy has significant improvement in 

movement type “walk” (94.12% versus 88.24%), “run” (94.12% versus 80.39%) 

and “bike” (79.59% versus 61.22%) (see table 2.6). The ROC curves and area 

under the ROC curve (AUC) values of the two experiments also supports this 

conclusion (see table 2.7 and figure 2.4): the average AUC value of experiment 1 

is higher than experiment 2 (0.917 versus 0.885), which demonstrates the good 

performance of the proposed classification model. The details of model 

comparison can be examined in the ROC curves and AUC values comparison of 
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“one-against-rest” binary classification tests in figure 2.4. The comparison results 

show that the complexity measures of movement can be used to discriminate 

different types of movement and used as important features of movement to 

improve the accuracy of classification model. 

It is also interesting to note that the prediction rate of “run” in experiment 

2 is higher (83.33%) than in experiment 1 (72.92%). This means that 

incorporating complexity measures of movement has a negative effect on 

distinguishing “run” from other movement types. Further investigations are 

required to explain this underperformance. Considering that the differences are 

misclassified as “bike”, it may be because complexity measures cannot 

discriminate “bike” and “run”.  

Table 2.6 

Confusion Matrix of Accuracy for 4-class Trajectory Classification Problem in 

Experiment 2 (without Complexity Measures as Movement Features) 

 Predicted Class 

Bike Car Run Walk 

 

 

Actual 

Class 

Bike 61.22% 4.08% 22.45% 12.24% 

Car 5.88% 80.39% 9.80% 3.92% 

Run 4.17% 6.25% 83.33% 6.25% 

Walk 1.96% 1.96% 7.84% 88.24% 
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Table 2.7 

Comparison of Classification Results of Experiment 1 and 2 

 Overall Accuracy Overall Error Rate AUC (average) 

Experiment 1 85.42% 14.58% 0.917 

Experiment 2 78.39% 21.61% 0.885 

 

Figure 2.4: Receiver operating characteristic (ROC) and area under ROC curves 

comparison of “one-against-rest” binary classification results of Bike, Walk, Run 

and Car in experiment 1 and 2 
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2.6 Conclusion 

In this essay, I presented a classification model based on effect movement 

parameters for automatically detecting movement types with unknown 

trajectories. To overcome some of the problems with the current approach based 

on movement parameters, I introduced the geometric complexity measures of 

trajectories and structural complexity measures of movement parameters as two 

new types of movement features for trajectory classification. These two types of 

complexity measures actually highlight both general geometric characteristics and 

the subtle changes of movement parameters that exist in different moving 

trajectories in a classification model. The results from two experiments 

demonstrate the positive effects of these complexity measure-based features in 

trajectory classification. Besides, this classification model overcomes two major 

problems in current research: (1) trajectory classification is limited to a certain 

spatial context when incorporating geometric shape characteristics in the 

classification model, and (2) trajectory classification can only be applied to the 

same size trajectories when incorporating local features from movement 

parameters. 

Future research could focus on two additional aspects. First, the 

performance of classification related to different number of predefined classes and 

to large-scale data are important evaluating indicators for a multi-class classifier. 

The current essay only used four different movement types for trajectory 

classification. Other movement types, such as riding a motorcycle, should be 

included to assess the performance of this model. It would also be worth testing 
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the performance of classification on large-scale data, since only 400 selected 

trajectories were used in this research. Second, the classification model proposed 

in this research is not sensitive to the length of trajectories. However, this is 

because the trajectory data that were collected for experiments were selected by 

filtering multi-behavior tagged trajectories. In practical applications, trajectory 

data could contain more than one behavior, which is beyond the scope of this 

classification model. Therefore, trajectory segmentation could be studied and used 

in data preprocessing to overcome this challenge. !
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Essay 3 

Using ESDA with Social Weights to Analyze Spatial and Social Patterns of 

Preschool Children’s Behavior 

Abstract 

To study the development of social behavior of preschool children, micro-

social data of preschool children were collected for the first time in both a space 

and time context using a novel behavioral coding system. These unique space-

time micro-level behavioral data enable us to explore the group-level, dynamic, 

social, and socio-spatial patterns of children’s behavior from both a geographic 

and a social perspective. In this essay, GIS, spatial analysis, and social network 

analysis techniques are for the first time employed together to study group-level 

social behavior emerging from children’s everyday activities and interactions. A 

methodology called exploratory spatial data analysis with social weights, which 

can be applied in both geographic and social space, is applied to explore dynamic 

social and socio-spatial patterns of preschool children’s behavior. This 

methodology is used to analyze and visualize group-level dynamic spatial and 

social patterns of preschool children’s behavior based on long-term 

spatiotemporal behavioral observations. The spatial and social analysis generates 

several interesting results of dynamic social and spatial patterns of preschool 

children, which highlights the utility of this approach for analyzing social 

dynamics among preschool children. This research also provides social scientists 

with a powerful software toolkit to study the relationship of preschool’s spatial 

settings and activities in regards to the socialization of preschool children. 



  124 

3.1 Introduction 

 Childhood is recognized as a key stage in the development of human 

social behaviors (Holt 2007). Studying the socialization of children is important 

for investigating how human social behaviors develop and for understanding the 

evolution of complex social phenomena. Children’s social skills and behaviors are 

mostly developed by playing with peers, either spontaneously or guided by 

parents or teachers (Rogers and Sawyers 1988). Children’s play is impacted by 

many factors, including children’s characteristics (Fishbein and Imai 1993, 

Leman and Lam 2008), activity settings (Oden and Asher 1977) and 

environmental settings of play (Barbour 1999). In this context, questions of who 

children play with, how they play, and where they play are relevant. To address 

these questions, children’s characteristics, peer-to-peer interactions, activities and 

social behaviors can be recorded with a space and time dimension. To my 

knowledge such spatiotemporal behavioral data for children has not been 

collected before. Redesigning existing behavioral coding systems to record such 

data could provide new opportunities to explore, analyze, and visualize the group-

level spatial and social patterns of preschool children’s behavior from a joint 

geographic and social perspective.  

 Group-level patterns of human behavior are key for understanding human 

social behavior. They provide insights into how aggregate social outcomes are 

generated. These group-level patterns are also important for validating social 

dynamics in cases where it is questionable to model results at a macro-level 

perspective. Many studies have focused on finding patterns of social behavior 
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using analytical or statistical methods (Sayer 1992). However, existing studies on 

preschool behavior are usually restricted to either a social or spatial context. For 

instance, geographic data and methods are usually used for discovering spatial 

patterns (spatial heterogeneity, spatial externalities and spatial spillovers) while 

social data and methods are mostly used for discovering social network patterns in 

preschool behavior. In this essay, I overcome this gap between methods in this 

literature by jointly applying both spatial and social methods to examine the 

relationship between geographic and social settings and children's social structure.  

 To overcome the limitation of separate spatial and social approaches and 

leverage the strengths of both approaches within the same framework, I build on 

recent research in other fields that combines geographic and social network 

analysis methods (Parker and Asencio 2008, Radil et al. 2010, Tita and Radil 

2011). By doing so, spatial autocorrelation analysis, which is powerful in 

statistical analysis and visualization of spatial patterns, can be applied to analyze 

and visualize patterns of preschoolers' social behavior in new ways. Research 

questions in social and spatial contexts can be answered at the same time in this 

relatively new exploratory manner by providing social scientists a set of useful 

statistical metrics and pattern discovery methodologies for examining aggregate 

level social and spatial patterns of children's social behavior. The gap between 

social data analysis in the social sciences and spatial data analysis in the 

geographic sciences is bridged through an application of this hybrid methodology 

that is emerging in fields such as criminology or education but has not yet been 

applied in research on children's behavior. This essay demonstrates that this 
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hybrid spatial and social methodology allows for an improved study of group-

level socialization patterns that emerge from children's social behavior.  

 This essay adds to this new literature on joint spatial and social analysis by 

proposing a novel scheme for studying social behavior of preschool children. In 

this scheme, a behavioral coding system integrated with space-time GIS is 

designed to record longitudinal micro-social data, including behavior in time and 

space of preschool children. To analyze these spatiotemporal behavioral data as 

part of an exploratory approach to better understand group-level social 

phenomena in preschool children, I apply so-called exploratory spatial data 

analysis (ESDA) with social weights. ESDA with social weights integrates 

geographic space and social space of agents in a joint framework, provides spatial 

autocorrelation pattern analysis in both a spatial and social context, and can be 

used to analyze, discover and visualize spatial and social patterns from micro-

social data. Specifically, I apply ESDA with social weights to explore preschool 

children’s social and spatial patterns to simultaneously examine the influence of 

geographic factors on children’s social behaviors and non-geographic factors on 

children’s social structure. I then compare these patterns for male and female 

preschoolers. 

 This essay is organized as follows: a review of related research of the 

development of social behavior of preschool children is provided first. Then I 

describe the participants, the study area, the design of the space-time behavioral 

coding system and the micro-social data we collected. Next, I present ESDA with 

social weights and how it is applied to explore socio-spatial patterns and social 
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patterns of preschool children's behavior. In the subsequent section, I apply ESDA 

with social weights to real data and analyze the statistical and visualization 

results. The framework for analyzing the relationship between physical 

environment and activity settings in regards to preschool children’s social 

behavior helps to better understand the development of social behavior of 

children. I conclude this essay with a discussion of the findings, possible 

application extensions, and future work. The methodology and software presented 

in this essay is not restricted to the analysis of preschool children's behavior but is 

also applicable to other spatiotemporal micro-social data. 

3.2 Related Work  

 Examining the impact of the development of social skills and behaviors of 

young children has been a long-standing area of research in the social sciences. In 

the last decades, studies have focused on examining the development of children’s 

social behavior from biological, socio-cultural, behavioral and geographical 

perspectives. For example, much research examined the effect of children’s 

characteristics, such as age, and sexuality on their social behavior (see Whiting 

and Edwards 1992, Rose and Rudolph 2006, Turner 1991). Other research studied 

the influence of socio-cultural characteristics, such as race, culture, social 

exclusion (disabilities), on the formation of socialization in children (Whiting and 

Edwards 1992, Gresham et al. 2001, Shores et al. 1993). Further, authors 

demonstrated that activity settings, such as teacher-oriented tasks, collaborative 

tasks and individual tasks of playing (e.g., playing with the computer), have 

significant effects on children's development of (normal/abnormal) social skills 
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and behaviors (see Quilitch and Risley 1973, Oden and Asher 1977,  Rogers and 

Sawyers 1988, Plowman and Stephen 2005). Spatial structure is also significant in 

framing sociality because it can capture the clustering of individuals, dyads, and 

groups, as well as their configurations, such as proximity, spatial cohesion, 

peripherality etc., in space (Griffin et al. 2007). Research has examined the 

significant influence of the environmental settings of play materials on children’s 

social behavior (see Barbour 1999, Gutierrez Jr et al. 2007).  

 The methods in such observational research of children’s social behavior 

usually collect data from longitudinal individual-level behavioral observations, 

and then utilize classic qualitative or quantitative techniques to study the patterns 

of social behavior in children. For example, based on observation of free playing, 

Strayer and Stantos (1996) applied network analysis methods to analyze the social 

structure to assessing the degree of social stratification of preschool children. In, 

Vaughn BE et al. (2001), the analysis of variance (ANOVA) statistical models are 

employed to test the friendship relationship using dyadic observations in a sample 

of preschool children. In Stantos et al. (2008), hierarchical cluster analysis is 

applied for identifying affiliative subgroups in preschool children, and studying 

the social structures. In Griffin et al. (2007), geographic analysis techniques are 

applied to study the micro-social patterns of preschool children. However, to my 

knowledge, relatively little work has been done in studying the dynamics of 

socialization of children, despite the theories and methodologies of studying 

social dynamics of adults are increasingly applied in areas such as public health, 

public safety, urbanization and transportation (Epstein 2006). What has been 
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overlooked is the mechanisms of how individual social behaviors and dyad 

interactions of children translate into social phenomena, such as the social 

structures or spatial structures underlying the everyday practice of children. 

Examining the macro patterns emerging from social behaviors at micro scale is 

important for understanding such social mechanisms by improving knowledge of 

socialization from macro spatial and social perspectives.  

 In regional science, a spatial perspective has been explicitly considered for 

studying social behavior of individual agents in various forms, such as peer 

effects, neighborhood and network effects (Anselin et al. 2004). In these studies, 

spatial correlation is incorporated into spatial models to better deal with 

individual social behavior. For example, research on the clustering patterns of 

human behavior demonstrates that social interactions are not only related to socio-

economic distance but also related to geographic distance between agents (Conley 

and Topa 2002). Other research shows that spatial differentiation of 

neighborhoods plays an important role in spatial patterns (e.g. clustering, 

diffusion, contagion) of social behaviors such as crime (Messner and Anselin 

2004), school performance (Fotheringham et al. 2001) or migration (Boots and 

Kanaroglou 1988).  

 Recently, spatial statistical analysis has been applied to study human 

social behavior in the context of geographic space and its spatial patterns at 

aggregate scales in the social sciences such as criminology, political science, 

public health, and economics (see a review in Anselin 2010). By mapping social 

behavior and other related information in physical space, spatial statistical 
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techniques can be used to examine the geographic characteristics of social 

behavior in space and to study the impact of the geographic context on the 

outcomes of the human behavioral patterns of interest. Patterns that are related to 

processes of diffusion and contagion of human social behavior or that result in 

externalities can be identified and tested using spatial statistical analysis.  

To efficiently explore social behavior data in a geographic context, 

exploratory spatial data analysis (ESDA), a subset of exploratory data analysis, 

has been developed as an important technique to describe and visualize spatial 

distributions, discover spatial patterns and suggest spatial regimes by using spatial 

statistical analytical approaches (Anselin 1994). Key to ESDA is the notion of 

spatial autocorrelation or spatial association: the phenomenon where locational 

similarity (observations in spatial proximity) is matched by value similarity 

(attribute correlation). It can be utilized to measure the overall spatial clustering 

and to detect local clusters and outliers (Anselin et al. 2007). 

 Spatial effects and spatial association have also recently been extended 

and successfully applied to study network correlated behavior in non-geographic 

space--this is aided by similarities between the conceptualization and 

measurement of spatial correlation and network correlation (Leenders 2002). For 

example, Black (1992) discusses extending Moran’s I to assess the existence of 

network autocorrelation in transport network and flow system network space; 

Yamada and Thill (2007) extend the local Moran’s I statistic to observations on a 

network as part of network-based spatial analysis and local-scale spatial data 

analysis on road networks. In social network analysis, Marsden and Friedkin 
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(1993) argue that social influence between agents in a social network should be 

considered a “network effect” in modeling autocorrelated social processes. These 

“network effects” are similar to “spatial effects”. Leenders (2002) further 

discusses a series of operationalizations of the weight matrix W  and parameter 

estimates and inferences of such social autocorrelation models. Further, Farber, 

Páez et al. (2009) investigate the ability of spatial dependency tests to identify a 

spatial or network autoregressive model. The increasing number of new 

applications of spatial autocorrelation and network autocorrelation in the social 

sciences (Anselin 2010, Tita and Radil 2011) indicates the potential of using this 

joint spatial-social framework for an improved understanding of preschool 

children’s social behavior. 

 However, there is a research gap in jointly considering spatial and social 

patterns in a space-time context. Many existing data analysis methods in spatial 

analysis and social network analysis have been developed to discover patterns 

related to specific social behaviors such as crime, epidemic, or Internet-based 

social media. Such research tends to focus on either spatial or social patterns and 

either space or time. Although joint space-time, spatial-social pattern detection is 

seen as useful and important for better understanding socialization and social 

dynamics, these dimensions are nevertheless often viewed in isolation (Radil et al. 

2010). These two aspects of data analysis have rarely been employed together for 

studying aggregate-level human behavior from a geographic and social 

perspective, and have not been used to study preschool children’s social behavior 

to the author's knowledge. 
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3.3 Methods 

 ESDA with social weights as applied in this essay utilizes a collection of 

graphical and statistical techniques to visualize social and spatial distributions, 

and to discover group-level social and spatial patterns of preschool children’s 

behavior over time. By focusing on both social and spatial aspects of the social 

behavioral data, this hybrid methodology has several benefits for better 

understanding the socialization development of preschool children. First, it 

provides a toolset with functionalities to analyze potential patterns statistically 

and visualize them graphically for ease of interpretation. Second, mature 

techniques in spatial analysis and geovisualization are used to focus on studying 

the spatial dimensions of children's social behavior. Third, the relatively recent 

extension of spatial association to network association provides a powerful 

statistical and visualization approach to examine the non-geographic factors of 

socialization. Finally, a combination of social and spatial analysis makes it 

possible to answer the questions of social behavior development in an integrated 

social and spatial context. 

 In ESDA with social weights, spatial autocorrelation extended to social 

space using social distance weights is the core technique to explore spatial and 

social cluster patterns at a global and local level. Cluster detection is one of the 

most common aggregate-level patterns in both spatial and social space, and can be 

used to examine important aspects of social behavior such as identifying outliers, 

finding group structures, determining similarities and discovering hotspots. 

Further, ESDA with social weights as applied in this essay also provides tools for 
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traditional exploratory data analysis plus a social and spatial density surface 

analysis and space-time visualization for all patterns. 

3.3.1 Spatial Autocorrelation and Local Indicators of Spatial Association 

When spatial autocorrelation is present, observations with similar values 

are also proximate in space.  Global spatial autocorrelation is a measure of overall 

spatial clustering in the observations. It is evaluated by testing against a null 

hypothesis of a random spatial pattern of observations. Rejection of this null 

hypothesis suggests spatial structure, which in this context means a propensity for 

social activities to correlate with other social activities in space. This is significant 

for examining the effect of environmental settings on social behavior, as social 

interactions are often catalyzed by affinities in behavior in the same place.  

 Moran’s I is a classic measure for spatial autocorrelation. The global 

version of this statistic can be used to diagnose the presence of overall clustering 

in a study area. The global Moran index is calculated as follows (Anselin 1996): 

 ! ! !!" ! !! ! ! ! !!! ! !!! !!! ! !!
!

!!!   (3.1) 

where !!" is the row-standardized contiguity matrix, !! is the frequency count of 

a certain behavior at location ! , and ! is the average frequency count of this 

behavior. Its statistical significance can be evaluated based on a comparison to a 

reference distribution obtained by randomly permuting the observed values in 

space several times. The values of Moran’s I are not constrained by –1 and +1 

since they depend on the weights matrix. A zero value indicates that no spatial 

autocorrelation is present. In this study, it means that a given social activity would 
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tend to be randomly distributed over space, and has no clustering effects. 

Negative/positive values indicate negative/positive spatial autocorrelation. 

Negative spatial autocorrelation, which reflects a checkerboard pattern, means 

that social activities tend to repel themselves in space. Positive spatial 

autocorrelation means that social activities tend to cluster in space. 

 The spatial weights !!" are a central component of the Moran’s I test.  

They define which locations are neighbors, i.e. spatially connected. Three popular 

spatial weights include contiguity-based weights, distance based weights and 

kernel weights.  

 To determine the location of clusters or spatial outliers, local indicators of 

spatial association (LISA) are employed by applying a local Moran statistic for 

evaluating spatial autocorrelation at the level of every observation. A local 

version of the Moran’s I statistic is calculated as follows (Anselin 1995): 

 !! !
!!!!!!

!!!!!!
!

!

!!" ! !!! ! !!!   (3.2) 

The local Moran allows us to examine the presence of local spatial patterns by 

classifying the local Moran statistic into four groups: high-high and low-low 

(values were found to be surrounded by similar neighboring values above or 

below the mean) which represent local spatial clusters, and high-low and low-high 

(values were found to be surrounded by dissimilar neighbors) which represent 

local spatial outliers. A map highlighting the significant local spatial clusters at 

geographic locations is called a LISA cluster map, which is useful for identifying 

interesting locations (geographical settings) and to evaluate spatial heterogeneity 

of attributes (social behavior). In this research, high-high and low-low clusters are 
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particularly useful for studying children’s social behavior. High-high values are 

also called “hotspots” to reflect that certain behaviors frequently occur in these 

cluster areas. In a social setting, “hotspots” indicate spatially correlated social 

behaviors. Low-low values are called “coldspots”, which means lower-than-

average social activity levels can be found in a cluster area, possibly implying that 

the spatial settings in this area might have an inhibiting impact on social behavior. 

 In this essay, I first apply spatial autocorrelation tests with traditional 

geographic weights to study children's engagement in four different behaviors, 

which are solitary behavior, teacher oriented interaction, social interaction and 

parallel interaction, in indoor classroom and outdoor playground settings for two 

selected semesters. Specifically, to test traditional global and local spatial 

autocorrelation, the geographical study area (preschool in this research) is first 

divided into a lattice structure (see “geographical space” in figure 3.1). Then, for 

each behavior and each semester, children’s space-time records will be mapped to 

cells in this lattice space (see table (a) and (b) in figure 3.1). The number of 

records in each cell is the input value for the subsequent spatial analysis of these 

data. Each behavior type is characterized by a unique spatial distribution in this 

lattice space. Last, global and local spatial autocorrelation tests with spatial 

weights are used to analyze possible global clustering and local LISA clusters of 

each behavior for each semester in the study area (see graph (a) and (b) in figure 

3.1). 
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3.3.2 Global and Local Spatial Autocorrelation with Social Weights 

 Further, I apply global and local spatial autocorrelation tests with social 

network weights to determine if the frequency of engaging in an activity is 

autocorrelated. However, in contrast to the case illustrated in figure 3.1, here the 

autocorrelation test is not applied in geographic space but in social network space, 

i.e. based on children's frequency of playing with each other. Hence, in contrast to 

the typical geographic applications of spatial autocorrelation tests, I define spatial 

relations with social distance weights. And, diverging from the typical social 

network analysis, I do not consider whether children engage in an activity with 

each other but ask whether children who play a lot with each other engage in 

similar activities (but not necessarily with each other). In more technical terms, 

my application of spatial autocorrelation with social weights tests whether the 

frequency with which children engage in an activity (independently of who they 

play with) is correlated with the frequency with which children play with each 

other. This test can be used to answer the research question: is what children’s 

intra-person propensities associated with their inter-person social relationship? 
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Figure 3.1: Process diagram to illustrate global and local spatial autocorrelation 

with spatial weights as applied in this essay. 

 Specifically, to test global and local spatial autocorrelation with social 

weights, a spring-layout graph structure in social space is first created to represent 

the social network (see “spring-layout graph” in figure 3.2). It is based on the 

frequency data of social interactions between children (see table (i) in figure 3.2). 

This social network structure will be used as a “base map” in social space. 

Observations in this “base map” are node values that represent the frequency 

counts of children engaged in a specific activity (see table (ii) in figure 3.2).  For 

each activity, a unique set of node values is presented for the same social network 
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structure. Last, global and local spatial autocorrelation tests with social weights 

are used to analyze possible global clustering and local LISA clusters to examine 

the correlation between activity frequency counts and the underlying social 

network structure (see graph (a) and (b) in figure 3.2). 

3.3.2.1 Social Distance and Social Networks 

 To extend the concept of spatial autocorrelation to the social network 

domain, some concepts in a social context should be clarified. In a social context, 

social agents are the units of analysis. They are socially connected with others to 

form a specific social structure, or in another words, a social network. The 

distance between two agents in a social network is called social distance, which 

represents how socially close they are. There are many ways to calculate social 

distance (Bogardus 1925, Brewer et al. 1987, Leenders 2002). In this research, an 

inverse normalized frequency count of social interactions between observations is 

used to calculate social distance. This is based on an intuitive assumption that 

more interactions happened between children, the closer they are with shorter 

social distance. For example, for a child A, whom played with B 50 times, D 40 

times, and E 10 times, the normalized data, which are 50%, 40%, and 10%, 

represents the relative social relationship of A with his/her friends B, C and D. 

The social distances from A to his/her friends are simply calculates as the inverse 

values: (50%)
-1

=2, (40%)
-1

=2.5, and (10%)
-1

=10. 

 Then, this social network can be represented in form of a graph structure 

(see figure 3.2) where N is a set of nodes (social agents) and E is a set of edges 

where each edge: edge(i, j) connects two nodes (nodei and nodej). For 
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visualization purpose, the length of the edge is defined by the average social 

distance between agent i and j: {edge(i, j), edge(j, i)}. This base graph represents 

interactions between children where children with the most cumulative 

interactions per time period are close to each other in the center of the graph and 

children with the fewest interactions are on the periphery. If children interacted 

with each other during the given time period, this interaction is marked by a line 

(e.g. in figure 3.2, A had 3 lines, i.e. interacted with B, D and E, while G has 1 

line, i.e. only interacted with C). No lines between children means there were no 

interaction. There is a separate base graph for each semester since the number of 

children and their interactions varies between semesters. At the same time, the 

number of interactions between children impacts the position of them in the 

graph: more interaction means children are closer but there is only one line to 

connect two children if more than one interaction occurred. 
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Figure 3.2: Process diagram to illustrate the application of global and local spatial 

autocorrelation with social weights in this essay. 
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 To visualize this social network, I use a “spring layout” force-based graph 

drawing technique, where the position of nodes are impacted by the weight 

(length) of an edge and a random initial direction. Springs connect these nodes, 

place them in a location and then adjust the positions of nodes until their relative 

positions reach a balance on the spring force, which connects agents in the 

following way: socially close agents are also closely related to each other in the 

graph. This graph layout represents the basic social structure of social agents, in 

this case, preschool children. I apply a “spring layout” algorithm to visualize the 

children’s social network since it is particularly popular in representing social 

networks. However, how to visualize the social network doesn’t impacts the 

underlying social structure and the weights matrix (the latter is computed based 

on the social structure). Therefore, the “spring layout” algorithm may generate 

different network layouts because of using different initial direction that impacts 

the angle from which the spring layout is viewed, but the relative positions of 

nodes remain the same in the social structure. In this sense, the layout of the 

social network is relatively "robust" for social distance weights since these 

weights only take the relative position into account.  

3.3.2.2 Spatial Autocorrelation with Social Weights 

 In this application of spatial autocorrelation (Moran's I) with social 

weights, I test whether activity engagement is correlated among children who are 

socially close but do not necessarily engage in an activity together. A significant 

Moran's I value suggests similarity in activity engagement for children who play a 

lot with each other, i.e. social proximity of agents is matched by their propensity 
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similarity of activities. This is relevant for examining the relationship between 

agents' activity preference and social structure because children’s intra-person 

propensity of activities could be associated with the formation of inter-person 

social structures. If there is a significant positive spatial autocorrelation for a 

specific activity among children who are socially close, then this type of activity 

might also cluster in social network space. In other words, it suggests the 

hypothesis, which could be tested in further research, that this activity plays a 

positive role in regards to socialization. Therefore, spatial autocorrelation with 

social weights can be a useful statistical metric to inform subsequent tests of 

which activities can lead to more social interactions (form social structures) and 

are conducive for developing social skills. 

 To compute the Moran’s I statistic for spatial autocorrelation with social 

weights, social weights need to be defined since the social context is based on 

social rather than geographic proximity. For the social weights, the base graph of 

a social network is used similarly to a base map of geographically defined nodes 

except that connectivity is defined with a social rather than geographic weights 

matrix. Each node is associated with the frequency that child i engaged in an 

activity (15 fields of activities) in a certain time period. The relative position of 

each node is determined by connectivity that is measured as inverse normalized 

frequency counts of social interactions with other children. This measure is the 

weight value from one node to another node. Connections in this social weights 

matrix indicate that children interact with each other.  
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 It is worth noting that popular methods for deriving spatial weights, such 

as contiguity-based weights, cannot be applied directly in our social network 

because every child usually interacted (is contiguous) with every other child. Two 

different social distance-based weights for comparison purposes are considered in 

this research. The first are k-nearest neighbors (KNN) weights. In this approach, 

for each child, I sort her/his friends by interaction frequencies, then pick the first k 

friends as neighbors. Other common options include distance bands and inverse 

distance. I hence also apply inverse distance weights which assume that every 

child plays with every other child but less so with more distant children (where 

distance is defined as having fewer interactions between children). Since distance 

bands would be based on a threshold of how many friends a child interacts with in 

social space, this metric is similar to the k nearest neighbor approach used above 

and hence not included. Therefore, I adopted the k-nearest neighbors (KNN) 

weights in the experiments. After defining social weights, the global Moran’s I 

statistic can be calculated to examine if the frequency with which children engage 

in a particular activity (regardless of who they play with) is correlated with the 

frequency with which children play with each other. 

3.3.2.3 LISA with Social Weights 

 In the original definition of LISA, space can be defined geographically, 

socially or in terms of other metrics (Anselin 1994). In this essay, LISAs are 

applied in a social context by using social weights as defined above to examine 

activity clusters for children who are socially close. Again, this differs from 

traditional social network analysis that tries to study which children engage in a 



  144 

particular activity with each other. The local Moran statistic, an example of a 

LISA, is used for locally evaluating the significance of activity autocorrelation for 

every social agent. The local Moran's I is calculated in the same way as in the 

geographic case but using social instead of spatial weights (see section above). 

LISAs with social weights can detect the location and the type of activity cluster 

patterns in a social network. More specifically, in the case of this study of 

children’s behavior, LISAs with social weights can be used to indicate what 

activity is associated with which part of the social network and where activity 

“hotspots”, “coldspots” and outliers are located. For example, for child i with k 

neighboring children, one determines if child i's activity engagement values are 

correlated with the average activity values of its closest k neighbors (i.e., the k 

children s/he interacts with most but not necessarily in this activity) beyond what 

one would expect under conditions of social randomness. If this is the case, the 

LISA map core is displayed as significant.  

The LISA map cores are classified into four categories that represent four 

different activity patterns. In this research, these activity clusters for socially 

connected children are used for studying children’s social behavior. A network 

graph that highlights social agents with significant local Moran indices and 

corresponding activity cluster patterns in a spring layout formis referred to as a 

LISA cluster graph here. It can be used to identify interesting social groups 

(agents in social proximity) and to assess the extent to which activity behavior 

exhibits heterogeneity in a social network graph (with clusters of high interactions 

and low interactions). 
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3.4 Data, Experiments and Results 

3.4.1 Data  

 For collecting spatiotemporal micro-social data of preschool children in a 

single urban American preschool (see figure 3.3), a TabletPC based behavioral 

coding systemis originally developed by Griffin et al. (2007). This system allows 

coders to use a digital pen to record preschool children’s behavior in a GIS-based 

graphic user interface (see figure 3.4). The data collection took place over a five-

semester period (from Fall 2007 to Spring 2009) generating 184,000 observations 

of interactions that traced the dynamic development of sociality in 84 preschool 

children
8
. For the experiment in this research, I select a subset of data from last 

two semesters (Fall 2008 and Spring 2009), which I think has relatively high 

quality because of the maturity of coding procedures. This experimental data 

contains 34,657 records observed from 38 preschool children.   

 Children’s behavior data were collected for five-and-a-half hours each day. 

Approximate three observers worked simultaneously. Observers identified 

children in a randomized list and observed a child for ten seconds and then 

recorded data. This procedure is then repeated for the next randomly selected 

child. Specifically, coders recorded the time and geographical location of the 

child, whether the child was alone (solitary behavior), with a teacher (teacher 

                                                
8
 This work was funded by the National Science Foundation as part of the project 

“Modeling time, space, and behavior: Combining ABM & GIS to create 

typologies of playgroup dynamics in preschool children” by William Griffin, Paul 

Torrens, Jennifer Fewell (2006-2011). The data were collected by Casey Sechler, 

Jillian Smith and other ASU undergraduate and graduate students who have 

participated in this project."



  146 

interaction), directly engaged in a group (social interaction), interacted with other 

children (peer interaction), passively or loosely engaged in group behavior 

through parallel play (parallel interaction, where children are playing in proximity 

to each other, but not with each other) and the activity the child was engaged in.  

 For four different behaviors, the target child was observed for one of 15 

activities (see table 3.1). In this study, the data were divided into two parts for two 

semesters. In each semester, the proposed method will be applied to analyze 

spatial and social patterns of children’s behavior. For an overview of these data, 

figure 3.5 presents a separate kernel density map of all observed children's 

behaviors for the Fall 2008 and Spring 2009 semester. In each density map, the 

output cell size is defined as 0.1 feet and the search bandwidth is 3.0 feet. 
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Table 3.1 

15 Observed Activities with Brief Definitions 

 Task Name Description 

1 Art coloring, painting, collage, gluing 

2 Board Games candyland, ants in the pants, connect four, playing cards 

3 Digging digging sandbox, garden 

4 Figure Play dolls, action figures, people figures, toy animals 

5 Language Arts books, writing, books on tape 

6 Large Motor running, climbing, swinging, bikes, wagon 

7 Manipulatives blocks, legos, lincoln logs, connects, puzzles 

8 Math/Science magnets, counting bears, space theme, balance scale 

9 Molding play-dough, goop, clay 

10 Music/Singing listening to the radio, singing, dancing to music, playing 

instruments 

11 Physical Games ring around the rosey, red rover, tag, sports 

12 Pretend Play “getting married”, “being Superman”, playing kitchen, 

dress up with a theme 

13 Sensory Play shaving cream, water, bubbles, dump and pour materials 

like corn kernels 

14 Talk conversation – if they are talking about what they’re 

doing 

15 Walking moving between locations – do not have to know the 

destination, just distinguish from aimless walking 
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Figure 3.3: A map of the preschool structure
9
 

 

Figure 3.4: A TabletPC based behavioral coding system: Coders use a digital pen 

to record preschool children’s behavior in a GIS-based graphic user interface 

                                                
9
"This map is reused from NSF project “Modeling time, space, and behavior: 

Combining ABM & GIS to create typologies of playgroup dynamics in preschool 

children” by William Griffin, Paul Torrens, Jennifer Fewell (2006-2011)."
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Figure 3.5: Kernel density maps of all observed indoor social activity for semester 

2008 Fall (Upper), and 2009 Spring (Lower). 

3.4.2   Case Study Applications 

 ESDA is used to explore social and spatial clusters of preschool children's 

behavior through the relationship of (1) physical places to children’s social 

behaviors (spatial weights) and (2) the above-mentioned activity settings and 
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children’s social structure (social weights).  

 To explore the spatial autocorrelation patterns, a global measure of spatial 

autocorrelation (Moran’s I index) is applied to diagnose the presence of spatial 

autocorrelation of children’s different behaviors for different gender in the study 

area. The results of standardized global Moran’s I indexes and their pseudo 

significance levels are shown in table 3.2, table 3.3 and summarized in figure 3.6. 

This research also tested local spatial autocorrelation by sweeping through the 

data, lattice-by-lattice and testing for autocorrelation around each lattice, with a 

Queen contiguity weights matrix. This allows us to examine the presence of 

“hotspot” relationships (high-high clusters) in which high frequencies of a 

variable were surrounded by similar neighbors in a statistically significant 

relationship, and “coldspot” relationships (low-low clusters) in areas with below-

average values situated next to neighbors with below-average values. Interesting 

spatial patterns of children's behaviorand differences between boys and girls are 

shown in figure 3.7, 3.8 and 3.9. 

 To explore the patterns of spatial autocorrelation with social weights, global 

Moran’s I indices are measured to diagnose the presence of spatial autocorrelation 

of children’s 15 different activities in this social network by using social weights. 

To assess the sensitivity of the results to different social distance weights 

matrices, I chose k equal to 3, 4 and 5 for KNN weights. The results of 

standardized global Moran’s I indices and pseudo significance levels for children 

in two different classrooms are shown in table 3.4 and 3.5. To identify what 

activity is autocorrelated for which part of the social network, local spatial 
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autocorrelation tests with social distance weights are applied to all 15 activities. 

The social distance at which the first quartile of all distance values is reached is 

selected experimentally as the bandwidth.  The “hotspot” clusters may suggest a 

positive correlation between current activity settings and the underlying social 

network structure, while “coldspot” clusters may suggest a negative correlation 

(see figure 3.10 and 3.11). Although the results of spatial autocorrelation with 

social weights provide useful information, further research is still needed to 

address the question of which children interact on which activities. 

3.4.3 Results 

3.4.3.1 Spatial Patterns of Preschool Children’s Behavior 

The results for the global Moran’s I test reveal strong positive spatial 

autocorrelation for all four behaviors indoor and outdoor (see table 3.2 and 3.3 in 

appendix, almost all behaviors over the entire study period are significant with 

pseudo-p values equal to 0.001). Comparing the Z values of Moran’s I tests for 

indoor and outdoor separately, we can see that non-social behavior (solitary) 

shows less spatial autocorrelation indoor (comparing to social behaviors indoor, 

see figure 3.6 upper, lighter color for solitary and darker color for rest 3 

behaviors), while non-social behavior shows more spatial autocorrelation outdoor 

(comparing to social behaviors outdoor, see figure 3.6 lower). This could indicate 

that, when children played alone, they preferred to play outdoors. It is also 

interesting that, for both indoor and outdoor, the combined observations of social 

and teacher oriented behaviors shows more spatial autocorrelation than boy or girl 
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only observations. This may indicate that, when boy and girl play together either 

socially or oriented by teachers, their activities are more associated with space 

than they play with same-sex friends. 

The related LISA maps indicate that indoor environmental settings such as 

the study corner and bookshelf (see “hotspots” located indoor in figure 3.7) are 

positively associated with children’s social behavior: children are using these 

resources for socialization. Meanwhile, significant “coldspots” are mostly located 

in corridors and corner areas. An interesting phenomenon is that table, which 

should be used for socialization, showed more teacher interaction, solitary and 

parallel hotspots and less social peer interaction “hotspots”. In outdoor 

environment, play resource settings such as sand box, tent area and “play house” 

area in front of classroom door host most “hotspots” that are positively correlated 

with children’s social behaviors.  

The outdoor environment settings such as the sandbox, tent area and area 

near “play house” (see “hotspots” located outdoors for solitary behavior in figure 

3.") are also associated with solitary behavior. This indicates that such 

environmental settings geared towards both individual and group activities. The 

characteristics of outdoor environmental settings, such as the large sandbox and 

area near “play house) that can contains children with various behaviors) and 

large tent area that servers different play resource (e.g. self-task designed climber 

and cooperation designed slider) also match the above results.  This may lead to 

more outdoor social activities, which matches the results that more “hotspots” 

were detected. 
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 The analysis of LISA also indicates that spatial patterns of children’s 

behavior observed in this study were not necessarily constant over time. By 

comparing the LISA maps of the 4 different behaviors across 2 different 

semesters (see figure 3.7), the overall change of clusters over time for all 

activities shows that children played in different areas at different times. For 

example, the indoor clusters vary at each semester for all behaviors. This could be 

because of the change of classroom settings in each semester (e.g. reorganized 

furniture in classroom), and children’s major activities are closely associated with 

these classroom settings. The clusters that are at fixed positions over time are 

associated with children playing in stationary environmental settings. For 

example, “high-high” clusters are always observed in the outdoor sand box for the 

4 different types of behavior, which indicates that the sandbox is important for 

various activities. We can also discover the gradual development of children’s 

parallel behavior in the outdoor environment over time from the LISA maps in 2 

time periods. These maps indicate that the hotspots of parallel behavior grow 

outdoors and settle in several fixed places. This could suggest that environmental 

settings contribute to developing children's social behavior. 

 To examine the sex differences of children’s behavior regarding specific 

environmental settings, spatial analysis is also applied separately to behavioral 

data of boys and girls. Standardized global Moran’s I tests can be found in table 

3.4 and LISA maps of boys' and girls' 4 different behaviors are displayed in figure 

3.7 and 3.8. One interesting difference between boys’ and girls’ “hotspots” of 

“solitary” behavior can be observed indoors: in every semester, when boys 
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formed hotspots in the free space of one classroom, girls formed hotspots around 

tables in another classroom. The position of boys’ hotspots is opposite to girls’ 

hotspots. The same separation pattern can be observed in “teacher oriented” 

behavior: when boys formed hotspots around the teacher in one classroom, girls 

did not do the same, and vice versa. This suggests that there are distinct spatial 

differences between boys and girls when they play by themselves or with the 

teacher. These separation patterns indicate that children prefer to be around other 

children of the same gender for some non-social activities. 
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Figure 3.6: The plots of Global Moran’s I Z values of four behaviors in two 

semesters from observations of mixed gender, boy only and girl only. (Upper plot 

is for indoor Z values of Global Moran’s I tests, lower plot is for outdoor Z values 

of Global Moran’s I test.) 

 Unlike the distinct separation of spatial clustering in “solitary” and 

“teacher oriented” behavior, “social” and “parallel” social behaviors exhibit more 

overlap in hotspots formed by both boys and girls in an indoor environment. This 
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overlap in spatial clusters of social behavior suggests that boy and girl interactions 

are part of children’s social behavior. It is also interesting that there are fewer 

overlapping and more separate hotspots in social behavior than in indirect peer 

interacting behavior (“parallel”). This could mean that children played more with 

same-sex playmates but they were learning to play with opposite-sex playmates. 

However, in outdoor environments, such distinct differences cannot be identified. 

Boys appear to favor more outdoor areas than girls since more outdoor hotspots 

can be observed for boys than girls. Still, they shared a lot of hotspots for 4 

different behaviors. This could be because the outdoor space is larger than the 

indoor space, so that children can maintain their private space easier outdoors. 
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Figure 3.7: LISA maps by type of behavior and date, for all children in semester 

2008 Fall and 2009 Spring (only cluster cores are shown). 
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Figure 3.8: LISA maps by type of behavior and date, for boys only in semester 

2008 Fall and 2009 Spring (only cluster cores are shown). 
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Figure 3.9: LISA maps by type of behavior and date, for girls only in semester 

2008 Fall and 2009 Spring (only cluster cores are shown). 
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3.4.3.2 Spatial Autocorrelation of Preschool Children’s Activities 

 The results for the global Moran’s I test of spatial autocorrelation with 

social weights reveal the positive to negative autocorrelation of children’s 

activities. Spatial autocorrelation with social weights differs by group of children 

and also varies across time. The significant standardized spatial autocorrelation 

test results with p-value less than 0.05 for 15 tasks in two different classrooms 

(classroom 1 and 2) and two different time periods (2008 Fall and 2009 Spring 

semester) are highlighted in table 3.4 and 3.5.  

In general, children’s propensities of specific tasks (activities) have a 

positive correlation with their social clusters in every semester. For example, in 

classroom 1, significant clustering patterns can be identified at “Figure Play”, 

“Music/Sing” and “Sensory Play” (sorted from high to low significant spatial 

autocorrelation) in the spring Fall 2008; while in same semester, in classroom 2, 

significant clustering patterns can be identified at “Molding”, “Manipulatives”, 

“Art” and “Pretend Play”. This means that children who are friends (frequently 

play together) also have same preference of these activities. Whether children 

played together during engaging in these activities would require further 

investigation. For example, by checking the time series of children’s activities and 

interactions together at micro-scale, we can get the details about if these activities 

happened at same space and time between children.  

Some tasks, such as “Pretend Play”, “Figure Play” and “Sensory Play”, are 

designed to be accomplished with a lot of social cooperation and communication 

for several children. Therefore, children’s preference for these activities may 
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positively associated with forming their social groups. However, other tasks, such 

as “Art”, “Manipulatives” and “Language Arts”, seem to be more individual-

based activities but are also have positive autocorrelation with social weights. 

This result may demonstrate that having similar taste on some individual oriented 

activities is positively correlation with children’s friendship.  

However, such correlation is not fixed for all children and at all the time. 

For example, “Figure Play”, “Music/Sing” and “Sensory Play” exhibit positive 

correlation among friends in classroom 1 in 2008 Fall, but in 2009 Spring, “Art” 

replaces “Figure Play”. For children in classroom 2, the patterns are totally 

different: socially close children are associated with having similar propensity in 

“Art”, “Manipulative”, and “Pretend Play” etc. in 2008 Fall, and further changes 

to “Art”, “Board Games”, “Digging sand” etc. in 2009 Spring. An interesting 

result, which requires further investigation, is that the “Music/Sing” activity has 

positive correlation among socially close children in classroom 1, but has negative 

correlation for children in classroom 2 in the 2008 Fall semester. 

To further examine where are the “significant” activity clusters for which 

socially close children, the LISAs with social weights provide more detail 

information. The results of the top 3 activities with positive spatial autocorrelation 

among socially close children for each classroom are shown in LISA maps (see 

figure 3.10 and 3.11). The LISA clusters in figure 3.10 provide information about 

which children form “high-high” clusters for engaging a specific activity. For 

example, the “Figure Play” LISA cluster graph in semester Fall 2008 identifies 
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“hotspots” among children #23, #232, #233and #299
10

 in classroom 1. These 

children are socially close in social network space based on their interactions, and 

they all attend "Figure Play" more frequently than other children at a statistically 

significant level. This shows a similar propensity of doing “Figure Play” exists 

among these socially close children. Similar “high-high” clusters can be found in 

“Music/Sing” among child #110, #116, #250 and #274, and in “Sensory Play” 

among child #110, #250, #274 and #140. It is interesting that some playmates 

appear as “high-high” clusters in several tasks, showing a strong shared 

preference for similar activities. For example, child #274, #250 and #110 in 

classroom 1 form clusters in both “Music/Sing” and “Sensory Play” in the 2008 

Fall semester (see figure 3.10).  

 It is also worth noting that “low-low” clusters in blue can be used to 

identify children who are socially connected but infrequently engage in a 

particular activity. For example, in 2008 Fall semester, child #137 and #135 

playing “Molding” in classroom #2; in Spring 2009, child #121 playing 

“Music/Sing” in classroom 1 and child #27 playing “Art” in classroom 2 (see 

figure 3.10 and 3.11). These “low-low” clusters may indicate that children with 

their socially close friends were rarely participating or not interested in these 

activities. Meanwhile, “low-high” clusters represent that some children who play 

a lot with their friends but have opposite engagement frequencies or preferences 

in regards to a particular activity. For example, in the “Figure Play” LISA graph 

                                                
10
"The number in each node represents the identifier (ID) of a child. The arbitrary 

ID has been randomized for protecting the children’s privacy."
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(2008 Fall in classroom 1), child #121, who is located at the “margin” (means this 

is a less social child) of the social network, is a significant “low-high” cluster, 

which means this child is not interested in “Figure Play” activity while his/her 

friends participated significant frequently in this activity (see the “hotspots” 

around). 

 Moreover, sex differences in activity engagement can be observed from 

the results of the LISA graphs. In this case study, all girls were set to have even 

ID numbers and all boys were set to have odd ID numbers. It is interesting that all 

identified “high-high” clusters in all significant tasks in both classrooms are either 

“boys’ cluster” or “girls’ cluster” (see figure 3.10 and 3.11). Why this happens 

requires further investigation, but this may suggest a stratification of activity 

engagement by sex.  
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Table 3.4 

Testing Results for Global Spatial Autocorrelation with Social Weights using the 

Moran’s I Statistics (Classroom 1). The Values with p-value <= 0.05 are 

Highlighted in Gray Color. 

Classroom1 

 

 

2008 Fall 

  

2009 Spring 

  

Global Moran's I Pseudo P-value Z-value Global Moran's I Pseudo P-value Z-value 

Art -0.120 0.338 -0.360 0.252 0.023 2.063 

Board games -0.181 0.14 -0.748 -0.095 0.402 -0.272 

Digging sand 0.092 0.31 1.085 -0.147 0.239 -0.627 

Figure play 0.366 0.003 2.759 -0.044 0.463 0.115 

Language arts 0.079 0.153 0.842 -0.011 0.39 0.265 

Large motor 0.015 0.319 0.480 -0.153 0.261 0.659 

Manipulatives 0.183 0.046 1.682 -0.064 0.49 -0.107 

Math/science -0.082 0.499 -0.123 -0.050 0.479 0.043 

Molding -0.056 0.477 0.069 -0.068 0.444 -0.109 

Music/sing 0.361 0.006 3.133 0.400 0.004 3.327 

Physical games -0.166 0.249 -0.731 0.023 0.236 0.748 

Pretend play 0.082 0.144 1.092 -0.055 0.454 0.033 

Sensory play 0.207 0.042 1.744 0.180 0.037 1.769 

Talk -0.105 0.412 -0.287 -0.118 0.333 -0.441 

Walking -0.005 0.319 0.415 -0.181 0.202 -0.858 
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Table 3.5 

Testing Results for Global Spatial Autocorrelation with Social Weights using the 

Moran’s I Statistics (Classroom 2). The Values with p-value <= 0.05 are 

Highlighted in Gray Color) 

Classroom 2 

 

 

2008 Fall 

  

2009 Spring 

  

Global Moran's I Pseudo P-value Z-value Global Moran's I Pseudo P-value Z-value 

Art 0.231 0.003 2.968 0.816 0.001 5.983 

Board games -0.022 0.388 0.247 0.473 0.003 3.625 

Digging sand 0.019 0.285 0.532 0.221 0.042 1.904 

Figure play 0.110 0.135 1.105 0.094 0.165 0.952 

Language arts -0.144 0.259 -0.631 -0.258 0.059 -1.448 

Large motor -0.225 0.187 -0.953 0.148 0.077 1.568 

Manipulatives 0.319 0.012 2.333 -0.079 0.459 -0.130 

Math/science -0.139 0.338 -0.523 -0.014 0.371 0.239 

Molding 0.330 0.018 2.486 -0.032 0.4 0.209 

Music/sing -0.401 0.015 -2.133 0.044 0.231 0.639 

Physical games 0.049 0.251 0.640 0.222 0.025 2.074 

Pretend play 0.306 0.017 2.007 0.344 0.01 2.682 

Sensory play 0.049 0.204 0.835 -0.068 0.487 -0.057 

Talk 0.138 0.12 1.135 0.408 0.008 2.976 

Walking 0.191 0.078 1.511 0.160 0.065 1.466 
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Figure 3.10: Top 3 local social network autocorrelation graphs by type of 

activities in classroom 1 in 2008 Fall and 2009 Spring semesters   
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Figure 3.11: Top 3 local social network autocorrelation graphs by type of 

activities in classroom 2 in 2008 Fall and 2009 Spring semesters  
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3.5 Conclusion 

In this essay, by integrating GIS, spatial analysis and social network 

visualization techniques, I applied ESDA with spatial and social weights to 

examine group-level spatial and social patterns of preschool children’s behavior. I 

use this methodology along with contemporary observation methods to 

demonstrate that the spatial and social patterns discovered from spatiotemporal 

micro-social data are useful for studying the socialization in preschool children at 

aggregate levels. Spatial autocorrelation with spatial weights enables us to explore 

the association between preschool’s environment and children’s play behaviors. 

Spatial autocorrelation with social weights enables us to explore the association 

between preschool children’s preference on school activities and children’s social 

relationship by examining their correlations in a social network context. This new 

perspective provides a better understanding of the development of children’s 

social behavior by answering questions related to preschool children's research 

such as “who is playing with each other, how do they play and where do they 

play”.  

First, the spatial autocorrelation analysis of children’s socio-spatial 

behavior indicated that children clustered their different types of daily activities in 

specific locations with special resources. Some resources are associated with 

particular behaviors (e.g. desks for solitary and parallel behavior), while other 

resources are places for all types of behaviors (e.g. sand box). These clustering 

patterns also changed over time and varied based on different groups of children. 

Different socio-spatial clusters formed at different time periods in this study. 
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Moreover, these clustering patterns geographically differentiate boys from girls 

for certain behaviors. In particular, boys with solitary and teacher oriented 

behaviors formed clusters in one classroom while girls formed clusters in another 

classroom.  

Second, from the analysis of children’s social behavior using spatial 

autocorrelation with social weights, the activity settings for preschool children 

also have a significant correlation with children’s social networks. This approach 

can statistically identify which tasks (activities) assigned to children have a 

positive correlation with social ties among children. Examining the LISA with 

social weights for these activities reveal which children are socially close and 

spend more time on specific activities (although not necessarily with each other). 

Activity outliers among playmates are identified from LISA clusters (“low-low” 

and “low-high”). These tasks also have different spatial correlations in different 

time periods. Sex differences in activity engagement are observed from the results 

of LISA graphs.  

In summary, a socio-spatial approach as applied in this essay introduces 

analysis methods from geography and spatial analysis by investigating the 

relationship between environmental settings and preschool children’s social 

behavior. Although I use preschool children to illustrate the use of these methods, 

this methodology and toolkit can be more broadly applied in the social sciences 

for studying human social behavior and human socialization. However, this 

approach also has limitations. For one, it does not allow us to directly test the 

relationship between activities and socialization. Further, selecting an appropriate 
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geographic, social and temporal scale is difficult because there are many scale 

options and these choices directly impact the final results. For example, choosing 

semester as a time scale will involve more children (considering preschool 

children are an unstable group) and more observations than using month as a time 

scale. Therefore, choosing month as time scale could lead different social weights, 

which will impact the results of spatial autocorrelation test. Questions like, what 

is the best size of spatial observation unit for spatial analysis, is this unit suitable 

for both indoor and outdoor, or what is the best size of time period for studying 

children’s socialization, need further investigations. Other issues like how to 

define appropriate social weights are important for a fruitful analysis of spatial 

autocorrelation with social weights. There are several discussions about how to 

define social distance (see section 3.3.2.1) but none of them are targeting 

preschool children and applying LISAs with social weights. 
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APPENDIX B 

ADDITIONAL GLOBAL MORAN’S I TEST RESULTS 
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Table 3.2 

Testing Results for Global Spatial Autocorrelation of Children’s Spatial 

Behaviors using the Moran’s I Statistic (Queen Weights Matrix) 

 Indoor  Outdoor  

Moran’s 

I 

Pseudo 

P-value 

z-value Moran’s 

I 

Pseudo 

P-value 

z-value 

Teacher 

interaction 

2008 Fall  0.386 0.001 9.034 0.338 0.001 17.957 

2009 Spring  0.410 0.001 10.257 0.234 0.001 12.672 

Social 

interaction 

2008 Fall  0.385 0.001 9.312 0.317 0.001 16.818 

2009 Spring  0.337 0.001 7.848 0.242 0.001 13.132 

Parallel 

Interaction 

2008 Fall  0.305 0.001 7.724 0.281 0.001 14.859 

2009 Spring  0.254 0.001 6.300 0.304 0.001 16.484 

Solitary 

Behavior 

2008 Fall  0.252 0.001 5.917 0.355 0.001 19.411 

2009 Spring  0.257 0.001 6.200 0.372 0.001 20.070 
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Table 3.3 

Testing Results for Global Spatial Autocorrelation of Boys' and Girls' Spatial 

Behaviors using the Moran’s I Statistic (Queen Weights Matrix) 

 

 

Indoor Outdoor 

Moran’s 

I 

Pseudo 

p-value 

z-value Moran’s 

I 

Pseudo 

p-value 

z-value 

Teacher 

interaction 

2008 

Fall 

Boy 0.219 0.001 5.222 0.204 0.001 11.058 

Girl 0.163 0.002 3.932 0.217 0.001 11.815 

2009 

Spring 

Boy 0.186 0.001 4.506 0.167 0.001 9.136 

Girl 0.179 0.001 4.216 0.177 0.001 9.703 

Social 

interaction 

2008 

Fall 

Boy 0.363 0.001 8.374 0.274 0.001 14.642 

Girl 0.362 0.001 8.515 0.222 0.001 12.052 

2009 

Spring 

Boy 0.272 0.001 6.855 0.212 0.001 11.119 

Girl 0.433 0.001 10.401 0.180 0.001 9.899 

Parallel 

Interaction 

2008 

Fall 

Boy 0.340 0.001 8.137 0.223 0.001 12.738 

Girl 0.245 0.001 5.915 0.186 0.001 9.967 

2009 

Spring 

Boy 0.271 0.001 6.627 0.242 0.001 13.342 

Girl 0.214 0.001 5.324 0.214 0.001 11.031 

Solitary 

Behavior 

2008 

Fall 

Boy 0.296 0.001 7.220 0.288 0.001 15.786 

Girl 0.247 0.001 5.810 0.278 0.001 15.371 

2009 

Spring 

Boy 0.253 0.001 6.143 0.307 0.001 16.694 

Girl 0.283 0.001 6.416 0.331 0.001 17.437 
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Conclusion 

To address the research challenge of discovering useful patterns and 

knowledge in increasingly ubiquitous, large-scale, electronically collected, 

spatiotemporal activity data, this dissertation collects three different new types of 

spatiotemporal data and targets three different research objectives: (1) using the 

spatiotemporal information embedded in massive online geo-tagged photos to 

build an intelligent travel trip plan system for automatically recommending multi-

day and multi-stay travel itineraries to travelers, (2) training a classification model 

to automatically determine the movement type of unknown trajectories from 

massive crowd sourced GPS trajectories, and (3) discovering the group-level 

spatial and social patterns of preschool children’s playing behaviors for studying 

the socialization in preschool children at aggregate levels from spatiotemporal 

micro-social data collected using TabletPCs. 

Results of the three objectives in this dissertation have led to the 

development of the methodological framework for spatiotemporal data mining, 

analysis and visualization of new forms of human activity data. 

For the first objective, the first essay develops an intelligent travel trip 

plan system based on discovered attractions, travel patterns, and traveling graph 

models from geo-tagged photos. Extending existing data mining, spatial 

optimization and geovisualization techniques, this system can automatically 

recommend multi-day and multi-stay travel itinerary that generates the 

approximate maximum attractiveness score for inexperienced travelers, who only 

know the travel origination and destination, and available time. The generated 
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travel itinerary includes a text description of when to start the trip, where to visit, 

how long to stay and how long to drive to the next attraction for every travel day, 

as well as driving directions and a related map to help tourists travel. 

The second essay provides a new machine-learned classification model for 

automatically determining the movement type of unknown trajectories. This 

model introduces two new types of complexity measures as new features for 

classifying movements: the geometric complexity measures of trajectories based 

on Fractal Dimensions, and structural complexity measures of movement 

parameters based on Approximate Entropy. These two types of complexity 

measures highlight both general geometric characteristics and the subtle changes 

of movement parameters that exist in different moving trajectories in the 

classification model. The overall 85.4% average accuracy of prediction 

outperforms the existing state-of-the-art classification model, and demonstrates 

the applicability of this classification model. 

For the third objective, the third essay applies ESDA with spatial and 

social weights along with GIS, spatial analysis and social network analysis 

techniques to micro-social data to examine group-level spatial and social patterns 

of preschool children’s play behaviors. Spatial autocorrelation with spatial 

weights enables this research to explore the association between preschool’s 

environment and children’s play behavior in a spatial context, while spatial 

autocorrelation with social weights enables this research to explore the association 

between children’s preference on school activities and preschool children’s social 

behavior by examining their correlations in a social network context. This 
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combined perspective provides a better understanding of the development of 

preschool children’s social behavior than previous approaches. 

The proposed methodological framework integrates spatial analysis, data 

mining, machine learning, spatial optimization and geovisualization techniques to 

discover useful knowledge and patterns from three types of experimental human 

activity space-time data, and can be easily extend to other types of spatiotemporal 

data to benefit other research fields. 

The intelligent travel trip plan system has potential broader impacts for 

tourism (e.g. to make customized travel plans for personal guide services), and 

location-based services (e.g. to provide real-time touring services on GPS-enabled 

mobile devices). The trajectory classification model can benefit location-based 

services (e.g. to deliver different services to different moving objects, such as 

traffic/gas to drivers, landmark/shopping information to pedestrians), trajectory-

based video surveillance systems (e.g. to detect abnormal movement when 

monitoring traffic, crowds, pedestrians etc.), and robotics (e.g. to detect and 

identify unknown moving objects for collision free path planning). ESDA with 

spatial and social weights can be applied in the social sciences for studying 

human social behavior and human socialization using other types of 

spatiotemporal data (e.g. to study Internet social behavior using micro-social data 

in social media websites, such as Facebook or Twitter).  

 Meanwhile, the proposed methodological framework contains several 

remaining challenges for future work. One challenge is scale (see also the 

Modifiable Areal Unit Problem): selecting an appropriate geographic, social or 
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temporal scale is difficult due to the characteristics of spatiotemporal data. There 

are many scale options and these choices directly impact the final results. For 

example, for the travel trip planning problem, travelers who want to visit a city 

would have a detailed travel itinerary to visit attractions within the city while 

travelers who plan to visit a country would have a different travel itinerary to visit 

the most famous landmarks in this country.  For studying socio-spatial pattern of 

preschool children’s behavior, choosing semesters as a time scale will involve 

more children (considering that the number of preschool children in a class often 

changes) and more observations than using months as the time scale. It could also 

lead to different social weights, which will impact the results of the spatial 

autocorrelation tests. 

 Another challenge is performance: dealing with very large and 

complicated spatiotemporal data needs more efficient and scalable algorithms that 

run fast and accurately. For example, the case study in the first essay uses 118,736 

geo-tagged photos and the heuristic solution for making a tourist trip plan is tested 

based on 2,136 discovered POIs. However, it is not feasible to directly apply the 

algorithms on a global scale since the overall data contain about 36 millions geo-

tagged photos that are much larger than the case study data. In the second essay, 

the 85.4% accuracy of classification model relates to only four predefined classes 

and to a relative small dataset. Other movement types, such as children walking, 

riding a motorcycle etc., should be included to assess the performance of this 

model. Finally, it would also be worth testing the performance of classification on 

large-scale data, since only 400 selected trajectories were used in this research.  


