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ABSTRACT

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smart-

phones, etc., capturing position data in the form of trajectories has become easy. Moving object

trajectory analysis is a growing area of interest these days owing to its applications in various do-

mains such as marketing, security, traffic monitoring and management, etc. To better understand

movement behaviors from the raw mobility data, this doctoral work provides analytic models for

analyzing trajectory data.

As a first contribution, a model is developed to detect changes in trajectories with time. If the

taxis moving in a city are viewed as sensors that provide real time information of the traffic in

the city, a change in these trajectories with time can reveal that the road network has changed. To

detect changes, trajectories are modeled with a Hidden Markov Model (HMM). A modified training

algorithm, for parameter estimation in HMM, called m-BaumWelch, is used to develop likelihood

estimates under assumed changes and used to detect changes in trajectory data with time. Data

from vehicles are used to test the method for change detection.

Secondly, sequential pattern mining is used to develop a model to detect changes in frequent

patterns occurring in trajectory data. The aim is to answer two questions: Are the frequent patterns

still frequent in the new data? If they are frequent, has the time interval distribution in the pattern

changed? Two different approaches are considered for change detection, frequency-based approach

and distribution-based approach. The methods are illustrated with vehicle trajectory data.

Finally, a model is developed for clustering and outlier detection in semantic trajectories. A

challenge with clustering semantic trajectories is that both numeric and categorical attributes are

present. Another problem to be addressed while clustering is that trajectories can be of different

lengths and also have missing values. A tree-based ensemble is used to address these problems.

The approach is extended to outlier detection in semantic trajectories.
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CHAPTER 1

INTRODUCTION

Trajectories are collected by recording the location of motion in two or three dimen-

sional space of human beings, animals etc., at multiple instants of time. Moving object

trajectory analysis is a growing area of interest these days owing to its applications in var-

ious domains. Some of the areas where trajectory analysis plays an important role are

marketing, production systems, surveillance for security purposes, traffic monitoring and

management, social media etc.

Analysis of movement data in security applications like analysis of data from the sen-

sors, analysis of images produced by security cameras can be useful to detect anomalies

among the various trajectories for intrusion detection. RFID technology installed in goods

can improve the service quality of e-business with better tracking of shipment. Collecting

urban trajectories of vehicles can be used to derive useful knowledge for optimizing traffic

management like predicting areas of high traffic so as to reroute the traffic for lesser con-

gestion in these areas. Trajectory analysis can also be used to derive useful knowledge from

social media like popular photo sharing websites like Facebook, Flickr etc. Spatio-temporal

information is captured in the form of GPS coordinates and time the photograph was taken

by the low-cost GPS chips in cell phones and cameras and is saved in the header of im-

age files. Trajectory pattern mining of this user generated spatio-temporal data can be used

to explore the wisdom of the crowd embedded in the social media. Another application

of trajectory analysis is relating to non-physical movement in a metaphorical sense where

an object is moving in an abstract space whose points change with different values of a

time-varying attribute. For example, time series data of price attribute of a product can be

modeled as a trajectory.
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Trajectories can be viewed as a line that a moving object traces in the geometric space

with time. This notation of a trajectory in space and time focuses on the spatio-temporal

features of the trajectory. Apart from the geometric features of a trajectory, there are high

level semantic features also associated with it. Modern GPS, mobiles and wireless sensing

technologies allow us to record the continuous movement of an object as a function of time,

in a specific time interval of the object’s lifespan. The travelling object thereby produces

countless spatio-temporal trajectories during its lifespan e.g. employees commuting from

office to home on a daily basis. From an application perspective, a trajectory has semantic

features associated with it apart from the geometric features. For example, the semantic in-

formation associated with the daily trip of employees would be related to the transportation

means used during the trip and whether any carpool facilities were used in the trip. A con-

ceptual model is needed for describing the trajectories which would include both trajectory

as a sequence of spatio-temporal records of a moving object as well as associating semantic

annotations to trajectories like attributes of the trajectory, links between trajectory and other

objects (like obstacle in the path) etc.

Research on trajectory analysis has enabled us to develop tools and techniques for var-

ious tasks. Some of the areas of significant research include

• Trajectory classification: Model construction for prediciting the class labels of mov-

ing objects based on their trajectories and other features.

• Trajectory clustering: Grouping a set of moving objects into clusters based on the

similarity of their trajectories, thus discovering common trajectories.
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• Trajectory anomaly detection: Automatic identification of abnormal or suspicious

moving objects from a massive set of moving object trajectories.

• Trajectory ranking and diversification: Ranking the frequent trajectory patterns to

identify the important trajectories and diversification to explore diverse routes in tra-

jectories.

• Trajectory convoy detection: Finding moving object clusters i.e to find a group of

moving objects that are travelling together sporadically.

• Trajectory anonymization: Properly anonymizing the trajectories before being re-

leased to public use to secure sensitive information as removing personally identify-

ing information would not be enough.

• Semantic annotation: Enriching trajectories with semantic annotations allowing users

to attach semantic data to specific parts of the trajectory.

• Mining periodic behavior: Finding repeating activities at certain locations with regu-

lar time intervals.

• Trajectory prediction: Predicting with certain accuracy the next location of moving

object.

• Trajectory location correlations: Learning location correlation from human trajec-

tories that states the relations between geographic locations in the space of human

behavior.

Trajectory analysis finds applications in a wide range of areas from bioengineering to

traffic management. Understanding the existing techniques and developing new methodol-
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TABLE 1. Applications of various trajectory techniques

Method Applications
Trajectory clustering Finding similar multiple attribute response curves in

drug therapy, Common behavior of hurricanes near
coastline, Common behavior in animal movement data
with varying traffic rate, Vehicle position data.

Trajectory classification Vessel classification from satellite images, Classifica-
tion of trace gas measurements, Video surveillance, Pat-
tern recognition e.g in sign language and gesture recog-
nition, Bioengineering for gene expression classifica-
tion.

Trajectory outlier detection Detection of credit card fraud, Monitoring criminal ac-
tivities in electronic commerce, Hurricane tracking ,
Animal movement tracking, Detect breaks or delays in
supply chain

Trajectory pattern ranking Trip planning, Search result diversification, Recom-
mendation systems.

Location correlation Location recommendation, Sales promotion (Supply
chain), Bus routes design, Mobile tour guides.

Swarm pattern detection Animal tracking, Carpooling, Throughput planning of
trucks in supply chain, Military applications to mon-
itor the troop that move in parallel and merge/evolve
over time, Intelligence and counterterrorism services to
identify suspicious activity of individuals moving simi-
larly.

Semantic annotation Mining user similarity based on location history,
Tourism applications like finding frequent visited
places, relation between visited places, sequence of
tourist places visited.

Trajectory pattern mining Traffic management, Homeland Security (e.g., border
monitoring), Location-based service, Recommendation
systems (e.g., suggesting trajectories of frequently vis-
ited places to tourists), Law enforcement (e.g. video
surveillance).

ogy for trajectory analysis are gaining increasing importance due to the numerous applica-

tions. Table 1 summarizes the different trajectory analysis methods and their applications

in various domains.
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1. CONTRIBUTIONS

This section provides an overview of the scientific contributions of the thesis to trajec-

tory analysis.

Contributions to trajectory change detection: We have proposed a novel algorithm,

m-BaumWelch for parameter estimation in Hidden Markov Models. The Baum-Welch al-

gorithm is a class of expectation-maximization algorithms, which computes the maximum

likelihood estimates of the parameters (transition and emission probabilities) of a HMM,

when given only emissions as training data. The m-BaumWelch algorithm that we have

proposed enforces constraints for parameter estimation in a HMM. Unlike the original al-

gorithm which estimates all the parameters of the HMM, the m-BaumWelch algorithm fixes

the specific parameters which have to be estimated and leaves the remaining parameters

unaltered. The m-BaumWelch algorithm is based on the principles of the original Baum-

Welch algorithm. It uses the expectation-maximization principle and computes the parame-

ter estimates by maximizing the likelihood values for the parameters of the HMM given the

observation sequence. We have integrated the m-BaumWelch algorithm to develop a model

for detecting changes in trajectory data with time. For the purpose of change detection in

trajectories, we have modeled trajectories using a Hidden Markov Model (HMM). The fre-

quent regions in the trajectories are modeled as hidden states and the observation sequences

are the observations of the HMM. Real trajectory data obtained from vehicles was used to

test the method for change detection.

Contributions to frequent pattern mining: We have proposed a technique, by making

use of various statistics like support, confidence etc. for detecting changes in frequent tra-

jectory patterns occurring in streaming data. Our technique is used to detect if the frequent
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sequential patterns occurring in a data stream change when new data arrives. We aim to

answer two important questions: Are the frequent patterns still frequent in the new data? If

they are frequent, has the distribution of items in the pattern changed? We have illustrated

our method to detect changes in frequent trajectory patterns occurring in vehicle data. We

have addressed this problem using the following two approaches. In the frequency based

approach, the statistics such as relative support, relative confidence etc. for each frequent

sequential pattern in the original data are used to distinguish the patterns in the new data.

This method is used to detect if the previously found frequent patterns are still frequent in

the new data. In the distribution based approach, the distribution of the time between the

items in the frequent patterns is used to detect changes in the new data. Using the distri-

bution based approach, we can detect if the time interval distribution between items in the

patterns in the new data has changed from the distribution in the original data.

Contributions to semantic trajectories: A trajectory is typically represented as a dis-

crete sequence of points. Recently a new trajectory concept, called semantic trajectory, has

been introduced in [20] which defines trajectories from a semantic point of view. A seman-

tic trajectory is defined as a sequence of stops and moves. Stops are the important parts of

a trajectory where the moving object has stayed for a minimal amount of time. Moves are

the sub-trajectories describing the movements between two consecutive stops. Based on

the concept of stops and moves, the user can enrich trajectories with semantic information

according to the application domain. In this thesis, we propose a modeling framework for

analyzing semantic trajectories. We have used classification techniques such as decision

trees for developing a framework to cluster semantic trajectories. The most important chal-

lenge with clustering semantic trajectories is that they have both numeric and categorical
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attributes. Another problem to be addressed while clustering such trajectories is that tra-

jectories can be of different lengths and also have missing values. Our method was able

to overcome these challenges as decision trees can efficiently handle mixed attributes and

missing values. We had extended this method for outlier detection in semantic trajectories.

Decision trees were not able to detect outliers in trajectories due to the bias introduced in

selecting variables while splitting. Alternate tree growing strategies were explored to detect

the outlying trajectories.
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CHAPTER 2

BACKGROUND

In this chapter, we give an overview of the related work on trajectory analysis. With a

constant increase of moving object data, a lot of work has been done for modeling, process-

ing and mining trajectories, to understand and find patterns in this data.

1. PREPROCESSING TRAJECTORY DATA

Trajectories can be viewed as a line that a moving object traces in the geometric space

with time. This notation of a trajectory in space and time focuses on the spatio-temporal

features of the trajectory. The trajectories are thus represented as a sequence of points

ordered in time i.e. (xt, yt) where t = 1, 2, · · ·n. A lot of data mining tasks can be

performed on the trajectory data which is represented as sequence of points ordered in

time. Some of them include trajectory clustering, trajectory classification, trajectory outlier

detection, trajectory pattern mining and mining periodic behavior in trajectories. To better

understand mobility data, applications need to apprehend the semantics of the trajectory.

The geometric points (x, y) in a trajectory can be transformed using the concept of stops and

moves. For example, a move from (x1, y1) to (x2, y2) can be transformed to a move from

(Tempe) to (Phoenix) by incorporating the geographic knowledge into the trajectory data.

Preprocessing of trajectories is required for analyzing the data depending on the application.

A trajectory may have a long and complicated path. Hence, even though some portions

of trajectories show a common behavior, the whole trajectories might not. Discovering

common sub-trajectories is very useful in many applications, especially if we have regions

of special interest for analysis. Spatio-temporal trajectories can be segmented to partition

the trajectory into a number of sub trajectories, so that the movement characteristics in each

segment are uniform in some sense. In [1], Buchin et al. have addressed the problem of
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Figure 1. Representation of trajectory in a 2D space as points sampled at equal time inter-
vals [1].

segmenting a trajectory into homogeneous segments based on velocity, speed, curvature,

sinuosity, and curviness. The idea of the segmentation is to obtain segments where move-

ment characteristics like speed, curviness etc. are uniform in some sense. They have repre-

sented the trajectory as a sequence of points sampled with equal time intervals as shown in

Fig.1 [1].

Li et al. [2] have proposed a framework for anomaly detection in trajectories, where

object trajectories are expressed using discrete pattern fragments called motifs. A motif is a

prototypical movement pattern, which include additional spatiotemporal attributes. Exam-

ples of motifs include e.g. right turn, u-turn, and loop. Fig.2 [2] explains their approach of

motif extraction from trajectories represented in a two dimensional space. Consider the two

trajectories in Fig.2(a) [2], which have similar shapes except for an extra loop for the one

on the right. Such trajectories would be difficult to be differentiated by distance measures

like Euclidean distance. Once the motifs are extracted from the trajectories, they are used

as features to develop a rule based classifier to classify the trajectories. This classifier is
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Figure 2. Motif based feature extraction of trajectories [2].

used to classify the trajectories into two classes - normal and abnormal, thereby detecting

the anomalous trajectories.

Another important preprocessing step for trajectory data is to compress the trajectory

data for data reduction. Given a trajectory or a curve composed of specific number of points,

the DouglasPeucker (DP) [3] algorithm tries to find a similar curve with fewer subset of

points. The algorithm recursively divides a trajectory. The input to the algorithm is all the

points between the first and the last point of the trajectory. The details are as follows: the

algorithm first marks the first point f and last point l of the trajectory. It then finds the point

p that is furthest from the line segment formed by the first and the last points as the end

points. The distance of the farthest point p, is compared to a threshold, and if this distance
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Figure 3. Approximate representation of a trajectory using DP algorithm [3].

is greater than the threshold, the algorithm recursively calls itself by joining the first point f

and the worst point p, and then with the worst point p and the last point l. At the end of the

recursion, a new curve is outputted which consists of only a subset of the initial points. An

example of reducing the size of a trajectory using the DP algorithm is shown in Fig. 3 [3],

where Fig. 3(a) [3] shows the original trajectory and Fig. 3(b) [3] shows the approximated

trajectory after the DP algorithm is applied.

2. ANALYTICS FOR TRAJECTORIES

A lot of techniques have been discovered in data mining literature for performing vari-

ous tasks like clustering, anomaly detection, classification etc. These techniques have been

applied to trajectory data to extract useful information and patterns in the data. Most of

these techniques were developed by considering trajectories as a sequence of points or-

dered in time i.e. (xt, yt) where t = 1, 2, · · ·n, of a moving object. In this section, we

discuss the analytic models developed for the trajectories which are represented as a se-
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Figure 4. Examples of 2D trajectories [4].

quence of geometric points. Detailed discussion about semantic trajectories will follow in

the later sections.

2.1. TRAJECTORY CLUSTERING

Clustering is a process of grouping a set of similar objects together. There has been

a lot of research in the clustering algorithms which include k-means [21], BIRCH [22],

DBSCAN [23], OPTICS [24], STING [25] etc. Preliminary research on clustering dealt

with clustering of point objects. There is an increasing interest to cluster trajectories of

moving objects so as to find groups of objects that moved in a similar way.

Vlachos et al. [4] have investigated techniques for discovering similar multidimensional

trajectories, where they have considered trajectories as a sequence of points in a three-

dimensional space i.e. (xt, yt, zt) where t = 1, 2, · · ·n. They modelled the trajectory as

a sequence of consecutive locations in a multidimensional (generally two or three dimen-
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Figure 5. Trajectories of estimated vertical position of moving hand as a function of time,
estimated from six different video sequences [5].

sional) Euclidean space as shown in Fig.4. Trajectories of the form represented in Fig.4 [4]

arise in many applications where an object motion is recorded over time. Examples include

features extracted from video clips, tracking animal motion, mobile phone usage data etc.

Since trajectory data consists a lot of noise, they formalized non-metric similarity func-

tions based on the Longest Common Subsequence (LCSS), which are very robust to noise,

to measure similarity between trajectories. They also compared their method with widely

used Euclidean and Dynamic Time Warping (DTW) [26] distance.

Gaffney et al. [5] proposed a model-based clustering algorithm for trajectories where a

set of trajectories is represented using a mixture of regression model. The measurements of

a specific quantity (e.g. vertical postion of a moving hand) is considered to be the response
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Figure 6. An example of partition and group framework for trajectory clustering [6].

variable y , which is measured as a function of an independent variable t (e.g. time). An ex-

ample of such data is shown in Fig.5 [5] for a set of 6 different y measurements. Each curve

represents the estimated trajectory of a particular individual performing a particular hand

movement. This type of data can occur in variety of applications where repeated measure-

ments are available on individual objects over time. Some of the complications that arise in

this kind of data which make it difficult to apply standard clustering techniques are that the

trajectories are of different length. Hence, because of the varying length of the trajectories,

one cannot simply convert the trajectories to fixed length vectors and apply a clustering

technique such as the K-means algorithm in a fixed dimensional space. Gaffney et al. [5]

have introduced a probabilistic mixture regression model for such data and specifically used

EM algorithm [27] to cluster the trajectories. Given the measurements y which are a func-

tion of some known t, each trajectory is described using a conditional regression model

fk(y|t, θk) which gives the probability that y belongs to the kth group with parameters θk.
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The existing trajectory clustering techniques group similar trajectories as a whole. But

Lee et al. [6] proposed that clustering trajectories as a whole could miss common sub-

trajectories. Clustering sub-trajectories finds applications in many areas e.g. meteorologists

are interested in common behavior of hurricanes near the coastline or at the sea which

requires analyzing only a part of the hurricane trajectory in the regions of interest. They

have represented trajectories as a sequence of multidimensional points i.e TR = {pt}

for t = 1, 2, · · ·n , where pt∀t is a d-dimensional point i.e. they can be either two or

three dimensional. The length of the trajectory len can be different for various trajectories.

Lee et al. [6] have developed a partition-and-group framework as shown in Fig.6 [6] for

clustering trajectories, which partitions a trajectory into a set of line segments, and then

groups similar line segments together into a cluster. They developed a trajectory clustering

algorithm TRACLUS which consisits of two phases: partitioning and grouping. In the first

phase, partitioning is done using Minimum Description Length (MDL) principle [28]. In

the second phase, a density based line-segment clustering algorithm based on DBSCAN is

presented for clustering the trajectories. This algorithm discovers common sub-trajectories

from trajectory data unlike the previous work where trajectories are clustered as a whole.

They have employed a density based clustering technique as density based methods are

suitable for line segments because they can discover clusters of arbitrary shape and filter

out noises.

2.2. TRAJECTORY CLASSIFICATION

Trajectory classification has many important, real-world applications. It is broadly de-

fined as model construction for predicting the class labels of moving objects based on their

15



Figure 7. A sample ASL dataset showing one representative trajectory for each class [7].

trajectories and other features. As an example consider Fig.7 [7] where trajectories are

classified into different classes from an Australian Sign Language (ASL) dataset. The fig-

ure depicts one representative trajectory for each class for 8 different classes (e.g. ‘Alive’,

‘Crazy’ etc.) in the dataset.

Most proposed methods employ the Hidden Markov Model(HMM) [29] and use whole

trajectories for classification. Bashir et al. [7] presented a framework of classifying human

motion trajectories, which uses the HMM with a mixture of Gaussians. In their classifi-

cation system, trajectories are segmented at points of change in curvature and the subtra-

jectories are represented by their Principal Component Analysis (PCA) [30] components.

They have addressed two major issues with regard to post processing of the trajectory data.

In most cases e.g. video tracking applications, full trajectory information is often unavail-

able due to occlusions. As a result of this limitation, trajectory representation methods

should be able to perform well even in the case of partial trajectory information. Bashir et

al. [7] have addressed this problem by segmenting the trajectories at points of perceptual

discontinuities. The discontinuities in the trajectory are detected with the help of velocity

(first derivative) and acceleration (second derivative). The other concern while modeling
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Figure 8. Trajectory representation in 2D image cordinates [8].

trajectories is its compact representation for efficient distance computation. For this pur-

pose, they use PCA to represent trajectories using a compact set of features to obtain a

reduced-dimensional space.

Fraile et al. [31] classify the trajectories of vehicles using HMM to detect accidents or

abnormal events. Their method aims at finding low curvature approximations to segments

of the trajectories of vehicles. In each segment, the trajectory is approximated by a smooth

function and then assigned to one of the four categories: ahead, left, right or stop. In this

way the list of segments is reduced to a string of symbols drawn from the set {a, l, r, s},

where each letter corresponds to the appropriate category. Once a sequence of measure-

ments is obtained, the trajectory classified using a HMM. The Viterbi algorithm [32] is than

used to find the sequence of internal states for which the observed behaviour of the vehicle

has the highest probability.

Trajectory classification has been an active research topic in the fields of bioengineering

and video surveillance. Many of proposed methods employ the neural network such as the
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Figure 9. Classifying vessel trajectories based on the types of features extracted [9].

Self-Organizing Map (SOM) [33] and use whole trajectories for classification. Sbalzarini et

al. [34] have compared various machine learning techniques used for classifying biological

motion trajectories. In their work, machine learning techniques, k-nearest neighbors(KNN),

support vector machines and HMMs, were applied to the task of classifying trajectories

of moving keratocyte cells. The have represented trajectories of moving cells as position

readings at equidistant sampling intervals.

Owens and Hunter [8] proposed a method of detecting suspicious behaviors of pedestri-

ans using a video surveillance system. Trajectories are represented in 2D image coordinates

as shown in Fig.8 [8]. The input to the decison maker module is the trajectory of an object,

which consists of a series of centroid positions. Each trajectory is encoded to a feature vec-

tor using its summary information (e.g., the maximum speed). The trajectory sequence is

recorded into a trajectory description vector, and this vector is used as an input for the self

organizing feature map neural network. If a trajectory is very complicated, some valuable

information could be lost due to this encoding. They have developed a “model-free” ap-
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proach i.e. there is no explicit modeling of normal or abnormal behavior, which is instead

learned by the neural network.

Recent work on trajectory classification by Lee et al. [9] classifies trajectories by ex-

tracting a hierarchy of features by partitioning trajectories. Unlike the previous methods

in the literature which use the shapes of whole trajectories for classification, their method

addresses classification when discriminative features appear at parts of the trajectories (not

at whole trajectories). Also, they address the issue of classification when discriminative

features appear not only as common movement patterns but also as regions e.g. trajectories

which visit a specific region like a fishery in their path belong to the same class even though

their trajectories may not have a long common path. Features are extracted by perform-

ing region-based as well as trajectory-based clustering. Region-based clustering is used to

discover regions that have trajectories mostly of one class regardless of their movement pat-

terns. Trajectory-based clustering is used to discover sub-trajectories that indicate common

movement patterns of each class. An example of classification using vessel trajectories that

move from port A to port B is shown in Fig.9 [9] where (1) parts of the trajectories near

the container port and near the refinery enable us to distinguish between container ships

and tankers even if they share common long paths; (2) the trajectories in the fishery enable

us to recognize fishing boats even if they have no common path there. They have used the

MDL [28] principle for extracting region-based features. The region extraction algorithm

based on MDL principle is computationally expensive and further research lies in exploring

algorithms for effective classification.
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Figure 10. An example of an outlying sub-trajectory [10].

2.3. TRAJECTORY OUTLIER DETECTION

For many applications like detecting criminal activities in E-commerce, detecting rare

instances or outliers would be more interesting than detecting the common or frequent pat-

terns. There are many outlier detection algorithms reported in literature. They can be

classified into distribution-based [35], distance-based [36] [37] [38], density-based [39],

and deviation-based [40] algorithms. But most of these algorithms have been designed to

detect outliers from multidimensional point data.

Markus et al. [39] have introduced a quantitative measure called local outlier factor

(LOF) for each object in multidimensional dataset, indicating its degree of outlier-ness.

Their method is loosely related to density based clustering to detect outliers, where outliers

are objects (noise) not belonging to any cluster of the dataset. In [40], Aggarwal et al.

developed methods to detect outliers in high-dimensional data. In high dimensional data

the notion of proximity is meaningless and every point can be considered to be an outlier
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from the perspective of proximity based definitions. They have defined outliers as points

which behave very differently or deviate from the average behavior. Their method works

by finding lower dimensional projections of the data which are locally sparse.

Very few attempts for trajectory outlier detection exist in the literature. Knorr et al. [37]

have developed a method for trajectory outlier detection for 2D motion tracking in video

surveillance. They represented trajectory by a set of key features instead of a sequence

of points. That is, trajectory is summarized by the coordinates of the starting and ending

points; the average, minimum, and maximum values of the directional vector; and the av-

erage, minimum and maximum velocities. The distance function is defined as the weighted

sum of the difference of these values. A distance-based algorithm is than applied for de-

tecting trajectory outliers. This method however compares the trajectory as a whole.

Li et al. [2] have proposed a trajectory outlier detection algorithm based on classifi-

cation. Trajectories are represented as a sequence of spatiotemporal records of a moving

object e.g. GPS records. They extracted common patterns of movement e.g right turn, u-

turn, and loop from trajectories using clustering. These patterns form a feature space for

the trajectories, which are than fed into a classifier. This algorithm needs a training set to

build a classification model, and a new trajectory is classified into “normal” or “outlier”

based on this model. It is not always practical to obtain a good training set.

Lee et al. [10] proposed a partition-and-detect framework for trajectory outlier detec-

tion. This framework allows us to discover outlying sub-trajectories, whereas previous

works do not. A trajectory is partitioned into a set of line segments, and the outlying line

segments are detected as trajectory outliers as shown in Fig.10 [10]. Their trajectory out-

lier detection algorithm takes advantage of both distance-based [36] [37] [38] and density-
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based [39] approaches for outlier detection. However they have considered only the spatial

information to detect outliers and ignored the temporal information.

2.4. DISCOVERY OF TRAJECTORY SWARM OR CONVOY PATTERNS

An important analysis of trajectory data involves finding moving objects that travel

together. The discovery of such a close cluster of moving objects can find applications in

study of animal behaviors, routes planning, and vehicle control. A moving object cluster

is defined as a group of moving objects that are geometrically close to each other and

are together for some minimum time duration. The difference between finding moving

clusters compared to clustering trajectories is that the identity of a moving cluster remains

unchanged while its location and content may change over time, e.g. a group of animals

migrating in search of food can be thought of as a moving cluster. While searching for food,

the group of animals move from place to place, hence the location of the moving cluster

of animals changes with time. Also, some animals may leave the group or new animals

may enter the group and hence the content of the moving cluster of animals changes i.e.

increases or decreasing over time.

Mining moving object clusters has gained attention recently. Research has been done in

find moving object clusters including moving clusters [41], flocks [42], and convoys [43].

A moving cluster as defined earlier is a set of objects that move close to each other for a

long time interval. A flock is a group of objects that move together for a long time interval

within a disk of some user-specified size. The chosen disk size has a substantial effect on

the results of the discovery process. Also, the selection of a proper disc size turns out to

be difficult, as situations can occur where objects that intuitively belong together or do not

belong together are not quite within any disk of the given size or are within such a disk.
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A convoy is used to discover a group objects that move together for a long time interval,

by avoiding the rigid restrictions (e.g. disk size as in the case of flocks) on the sizes and

shapes of the trajectory patterns to be discovered. Convoys are thus able to capture generic

trajectory patterns of any shape and any extent. However, all these patterns require the

group of moving objects to be together for at least k consecutive timestamps, which might

not be practical in the real cases. Enforcing the consecutive time constraint may result in

loss of interesting moving object clusters.

Li et al. [44] have proposed a general movement pattern of moving object clusters called

swarm. A swarm is a group of moving objects that move within arbitrary shape of clusters

for certain timestamps that are possibly nonconsecutive. They enable the discovery of in-

teresting moving object clusters with relaxed temporal constraint. The constraint that the

objects should stick together for consecutive timestamps is relaxed. This is the case in real

life, where a set of moving objects (e.g., birds, flies, and mammals) hardly stick together

all the time- they actually diverge temporarily and congregate at certain timestamps. They

have represented moving objects as a set of points in a 2D space at different timestamps. As

time progresses, the clusters rearrange themselves due to movement of objects to different

locations. Discovering swarm patterns in such a dataset involves finding objects that travel

together (or belong to same cluster) for most of the time.

2.5. MINING PERIODIC BEHAVIOR IN TRAJECTORIES

Periodicity is a frequently happening phenomenon for moving objects. A periodic be-

havior can be loosely defined as repeating activities at specific locations for certain time

intervals. Such periodic behavior provide an insightful and concise explanation over the

long moving history. Periodic behaviors are also useful for compressing movement data
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Figure 11. Example depicting the issues related to finding periods from movement data
[11].

and hence save space. They also are useful for future movement prediction and anomaly

detection i.e if an object fails to follow a regular periodic behavior it could be an anomaly

caused by an accident.

Li et al. [11] have addressed the problem of mining periodic behaviors for moving

objects. They have considered various issues while mining periodicity in movement. As

an example consider the Fig.11 [11] which translates the raw movement of a person called

David into periodic behavior. There are many complications that arise from the periodic

behavior. There are multiple periods like “day” and “week” for David’s movement as shown

in Fig.11 [11]. Also, periodic behaviors may interleave with each other like the time span

from Sept to May which appears in both the periodic behaviors 1 and 2 in Fig.11 [11]. Prior

to their work, there has been no previous work to detect multiple periods from noisy moving

object data, except for Bar-David et al. [45], who directly applied the fourier transform on

moving object data by transforming a location onto a complex space, to detect periods.

In [11], Li et al., have used the movement data of the form (xt, yt) where t =

1, 2, 3, · · ·n. The raw data is linearly interpolated with a constant time gap such as hour or
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Figure 12. Real bald eagle data [11].

day. Their method for detecting periods involves first finding the observation spots, which

are the frequently visited locations with higher density than a random location. At each

observation spot the movement is transformed into a binary sequence, e.g. giving a value

of 1 for the time period the object is present at that particular spot and a value of 0 when the

object is not at that spot. Then a fourier transform and autocorrelation measure is used to

detect the periods for each observation spot. The overall movement is than partitioned into

segments by the period detected. Each segment is than clustered to form a behavior. As an

example, consider the movement data of bald eagle in Fig.12 [11] where the observation

spots are first extracted. By applying period detection to each observation spot, the periods

for each observation spot were found to be 363, 363 and 364 days, respectively.

2.6. PROBABILISTIC MODELING OF TRAJECTORIES

Jueng et al. [46] have used a HMM based representation of trajectories for mining tra-

jectory patterns. They have modeled the frequent regions in the trajectories where an object

frequently visits, as hidden states, and the observed positions as the observed states. They
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have employed grid based partitioning of the data space to partition the various positions

into disjoint cells and assign each position to a distinct cell. Each frequent region is than

associated with a set of one or more possible partitioned cells. A HMM based on this ob-

served and hidden states is used to explain the relationships between the frequent regions

and partitioned cells. Thus, the discovery accuracy of trajectory patterns according their

approach doesnot depend on the space granularity of the partitioning method used.

Bashir et al. [47] have segmented the trajectories into subtrajectories which are rep-

resented in a principal component analysis subspace. Once the trajectories are represented

using PCA-based method, the underlying class distribution is modeled as a mixture of Gaus-

sian using the training dataset. Once the Gaussian Mixture Models(GMM) for all classes are

trained, the classification of new trajectories can be performed by computing the likelihood

for each GMM and the class with the highest likelihood represents the trajectory. Since all

the subtrajectories of a specific class are modeled as a mixture of Gaussian, the order of

occurrence of subtrajectories in a trajectory is not considered. Therefore, the GMM based

modeling of trajectories only allows to model classes where contents are time-invariant.

Modeling trajectories using subtrajectory-based representation should emphasize the

temporal ordering of subtrajectories in a trajectory. A first order Markov chain is used to

model this temporal ordering. A HMM is used, where the number of states for each class

is equal to the maximum number of subtrajectories in all the training set trajectories for

that class. Once the HMM’s for all classes are trained the classification of new trajectories

is performed by computing the maximum likelihood that a particular HMM best describes

the test trajectory. More details about HMM and modeling trajectories using HMM are

provided in Chapter 3.
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Figure 13. Example of a Markov Process [12].

3. HIDDEN MARKOV MODEL

A Hidden Markov Model (HMM) is a statistical tool for modeling generative sequences

that can be characterized by an underlying process generating an observable sequence. Con-

sider a HMM with a finite state space S, with N states i.e. S is the set containing the sym-

bols for allN states. LetO be the observation space i.e. O is the set containing the symbols

for all the M observations:

S = (s1, s2, · · · , sN )

O = (o1, o2, · · · , oM )

Let the pair (xt; yt) where t = (1, 2, · · ·n) be the Hidden Markov process where xt is a

homogenous Markov chain such that xt ∈ S and yt is the observation sequence such that

yt ∈ O.
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Let the parameters of the HMM be θ = (A,B, π). The transition probability matrix, A,

is the matrix consisting of transition probabilities from state i to state j in one step aij :

A = [aij ], aij = P (xt = sj |xt−1 = si)

Each state in a HMM can generate an observation according to specified probabilities. For

each state si and each possible output ok, bi(k) gives the probability that observation ok is

emitted in state si. B is the observation array, storing the emission probabilities:

B = [bi(k)]

bi(k) = P (yt = ok|xt = si)

π is the initial probability array:

π = [πi]

πi = P (q1 = si)

Two assumptions are made by the model. The first, called the Markov assumption,

states that the current state is dependent only on the previous state, this represents the mem-

ory of the model:

P (xt|xt−1, xt−2 · · ·x1) = P (xt|xt−1)

The independence assumption states that the output observation at time t is dependent

only on the current state, it is independent of previous observations and states:

P (yt|yt−1, yt−2, · · · y1, xt, xt−1, · · ·x1) = P (yt|xt)

Figure 13 [12] depicts an example of a Markov process, which presents a simple model

for stock market index. There are three states in the model - Bull, Bear and Even, and there
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Figure 14. Example of a Hidden Markov model [12].

are three index observations - up, down, unchanged. Given a sequence of observations,

example: up-down-down we can easily verify that the state sequence that produced those

observations was: Bull-Bear-Bear. However, a HMM is one where the states are unknown

or hidden. Figure 14 shows an illustration of converting the previous model into a HMM.

The new model now allows all observation symbols to be emitted from each state with a

finite probability. They key difference is that now for a given observation sequence, say up,

down, unchanged, one cannot directly tell the state sequence.

Only the observations are the visible to an external observer and the states are “hidden”

to the observer, hence the name Hidden Markov Model. A HMM is therefore characterized

by the number of states, the transition probabilities between the states and the emission

probabilities corresponding to the observations. The likelihood of a set of parameters λ of a

HMM given some observations O, is the probability p(O|λ) of observation sequence given

the model.
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3.1. BAUM-WELCH ESTIMATION

The BaumWelch (BW) algorithm is used to estimate the unknown parameters of a

HMM. In general, for a given observation sequence Y = (y1, y2, · · · yn), if the state se-

quence is known, we can obtain the parameters of a HMM using maximum likelihood

estimation. But for a HMM, the state sequence is unknown. The BW algorithm is used to

estimate the model parameters in a HMM, where the state sequence is unknown and only

observation sequence is given. Given an observation sequence, Y , BW algorithm estimates

the parameters θ of the HMM.

The BM algorithm used for estimating the parameter values belongs to a family of algo-

rithms called Expectation Maximization (EM) [27] algorithms. They all work by guessing

initial parameter values, then estimating the likelihood of the data under the current param-

eters. These likelihoods can then be used to re-estimate the parameters, iteratively until a

local maximum is reached.

The steps involved in the algorithm are as follows:

1. Choose some initial values for θ i.e for (πi, aij , bi(k))∀i, j ∈ {1, 2, · · ·N} and k ∈

{1, 2, · · ·M}.

2. Choose an initial probable state path X = (x1, x2, · · ·xn)

3. Count the expected number of transitions, āij , from state si to state sj , given the

current estimate of θ.

4. Count, b̄i(k), the expected number of times the observed value is ok, given the hidden

state is si.

5. Re-estimate θ from āij and b̄i(k).
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6. If not converged, go to step 2.

For a given observation sequence, Y = (y1, y2, · · · yn), probability of transiting from state

si to sj at time t is

P (xt = si, xt+1 = sj |Y, θ) =
P (xt = si, xt+1 = sj , Y )

P (Y )
=
αt(i)aijbj(yt+1)βt+1(j)

P (Y )

The term αt(i) is the probability that the model has emitted symbols y1, y2, · · · yt and is

in state si at time t. This probability can be obtained using the Forward algorithm [29].

The Forward algorithm is used to calculate the probability of being in a particular state at

certain time, given the history of the observations upto that time. Similarly, the Backward

algorithm [29] yields βt+1(j) the probability of emitting the rest of the sequence if we are

in state sj at time t+ 1. The remaining two terms, aij and bj(ot+1) give the probability of

making the transition from si to sj and emitting the t+ 1st character.

By summing up P (xt = si, xt+1 = sj |Y, θ) over all values of t, we can estimate āij

i.e.

āij =

∑
t αt(i)aijbj(yt+1)βt+1(j)

P (Y )

The probability P (Y ) can be estimated using current parameter values using the Forward

algorithm.

Similarly,

b̄i(k) =

∑
{t|yt=ok} αt(i)βt(i)

P (Y )

From āij and b̄i(k) we can re-estimate the parameters.
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3.2. CHANGE DETECTION IN HIDDEN MARKOV MODEL

LeGland et al. [48] have proposed statistical tests for fault detection in HMMs. They

considered the case where the parameters of the HMM after the change are known. Their

method specifically is used for detecting a change in the transition probability matrix of a

HMM. Hypothesis testing is used to design a test to decide, on the basis of the observations

(y0, y1, · · · yn), between the following two hypothesis:

H0 : θ = θ0

H1 : θ ∈ θ1, where θ0 6∈ θ1

If ln(θ) denotes the log-likelihood function for the estimation of the parameter θ based on

the observations (y0, y1, · · · yn), the score function, sn(θ), is defined as the derivative of the

log-likelihood function ln(θ) w.r.t the parameter θ i.e.

sn(θ) =
dln(θ)

dθ

. The central limit theorem yields that the score function evaluated at the nominal value θ0

follows a Gaussian distribution. The original problem of designing a test for change de-

tection in the transition probability matrix of a HMM was replaced by the simpler problem

of designing a test to detect the change in mean of the score function which is a Gaussian

random variable.

Gerencser et al. [49] consider the problem of change point detection for HMMs when

the parameter after change is unknown by using fixed gain or forgetting rate. The transition

probability matrix and emission probabilities of finite state HMM with a state space S

and observation space O, where |S| = N and |O| = M , was parameterized by θ. They

consider a system in which the dynamics change slowly in time. Hence the estimation
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procedure was modified as, instead of cumulating past data, it is gradually forgotten by

using an exponential forgetting in the off-line case. Let the initial parameter of the HMM

be denoted as θ0. Inorder to detect change in the parameter θ0, an MLE estimate of θ0 is

used, which gives more weight to the recent observations. Let θ̂λ denote the MLE of θ0

with fixed gain or forgetting rate λ. Consider a specific time t at which the parameter of

the HMM changes. Before the time t, the difference between the estimated value of θ0

i.e. θ̂λ and the actual value θ0 would be small. But after time t, this difference would start

increases. Gerencser et al. [49], have analyzed the variation of the error term θ0 − θ̂λ with

different forgetting rates and established an explicit formula for the same.

In [50], Gerencser et al. considered the problem of change detection in the statistical

pattern of a hidden markov process when the parameters of the HMM, before and after the

change are known, unlike in [49] where the dynamics of the HMM were unknown. The

specific change detection problem they address is as follows:

θ∗ = θ0 for n ≤ τ∗ − 1

= θ1 for n ≥ τ∗

for an unknown τ∗, but for given θ0 and θ1. Their goal was to estimate τ∗. They proposed

an upper bound for the false alarm frequency assuming that there is no change in the pa-

rameters of the HMM. A basic method for detecting temporal changes in an independent

sequence of observations called the Cumulative Sum algorithm or Hinkley-detector [51]

was adapted by them for the change detection process.

Fuh et al. [52] considered the problem of change detection in HMMs when the parame-

ter after change is given. Let y1, y2, · · · yw−1 be the observations from a HMM with proba-

bility distribution P θ0 , and let yw, yw+1, · · · be observations from a HMM with probability
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distribution P θ1 . They consider that parameters θ0 and θ1 are given, while the change point

w is unknown. They addressed the problem of raising an alarm as soon as possible after

the distribution changes from P θ0 to P θ1 , but by avoiding the false alarms. They inves-

tigated the performance of the Shiryayev-Roberts-Pollak (SRP) [52] rule for change point

detection in the dynamic system of HMMs.

We propose a novel method for change detection in the parameters of HMM, which is

different from the previous methods proposed in the literature. We address the problem of

change detection of specific parameters in a HMM. Our method allows specific elements

of the transition probability matrix and the emission probabilities to remain unchanged,

while others can change. In order detect such changes, we have proposed a new modi-

fied Baum-Welch (m-BaumWelch) algorithm. The m-BaumWelch algorithm that we have

proposed enforces constraints for parameter estimation in a HMM. Unlike the original algo-

rithm which estimates all the parameters of the HMM, the m-BaumWelch algorithm fixes

the specific parameters which have to be estimated and leaves the remaining parameters

unaltered.

4. SEMANTIC TRAJECTORIES

A trajectory is typically represented as a discrete sequence of points. Recently a new tra-

jectory concept, called semantic trajectory, has been introduced which defines trajectories

from a semantic point of view [20]. They have incorporated the semantic data by decom-

posing trajectories into a sequence of stops and moves. Their conceptual model allows one

to associate any kind of semantic annotations to trajectories like attributes of the trajectory

and links between trajectories and any other object in the database. Many applications such

as daily trips of employees going from home to work and back, weekly journeys of trucks
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Figure 15. An example explaining the SMoT algorithm [13].

delivering goods to customers distributed within a given region, annual migrations of birds

in search of longer daylight, need a more structured recording of movement. For daily trips

of employees applications may wish to know which transportation means have been used

during the trip and whether the trip used carpool facilities. For bird migrations an important

information is which weather conditions the birds faced during their flight, and where, why

and how long birds stopped on their way. Spaccapietra et al. [20] developed a conceptual

model for trajectories that allows us to associating any kind of semantic annotations to tra-

jectories, be it as attributes of the trajectory or via links between the trajectory and any other

object in the database. They segment the trajectories to identify stops and moves within a

trajectory which is described later, thereby representing a trajectory as a sequence of stops

and moves.

4.1. IDENTIFYING STOPS AND MOVES OF TRAJECTORIES

A lot of research has been done to transform trajectory data into a sequence of stops

and moves. Luis et al. [13] proposed a preprocessing method for trajectories to integrate
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trajectories with geographic information. They have built upon the model proposed by [20]

where trajectories are modeled as sequence of stops and moves. They have focussed on

stops aspect of the trajectory by identifying points of interest. They have proposed an

algorithm called SMoT(Stops and Moves of Trajectories) to identify stops and moves in

a trajectory. The outline of the algorithm is as follows: Each point of a trajectory T is

checked for if it intersects the geometry of a relevant feature type C, such as a restaurant,

building etc. The geometries of the features are represented as polygons. If it intersects, the

algorithm checks if the duration of intersection is at least equal to a given threshold δC and

if that is satisified, the intersected candidate stop is considered as a stop, and is recorded.

Moves are those parts of the trajectory that donot intersect a candidate stop for δC .

Fig. 15 [13] illustrates the concept of SMoT algoritm. There are three candidate stops

which are regions in x − y space with geometries RC1 , RC2 and RC3 respectively. The

candidate stops are specified by the user or depend on the application. Consider the trajec-

tory T to be represented a points in a two dimensional space ordered with respect to time as

points p0, p1 · · · p18. At first, T is outside any candidate stop, so we designate it as a move.

Then T enters region RC1 at point p1, corresponding to the time t1. The time for which

the trajectory T is inside RC1 is computed and since the time is long enough, RC1 , t1, t6 is

the first stop and < p0, p1 > is its first move. Next, T enters region RC2 at point p9 but

for a time interval shorter than δC2 , hence this is not considered as a stop. The path from

< p6, p7, · · · p13 > is considered to be a move and the same condition is checked if RC3 is

qualified to be a stop when T enters region RC3 . Since it fulfills the time constraint to be a

stop, RC3 , t13, t17 is the second stop, and the trajectory ends with a move. Hence, the two

stops of the trajectory are RC1 , t1, t6 and RC3 , t13, t17.
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The SMoT algorithm proposed by Luis et al. [13], however has a drawback that it com-

putes only the stops and moves which are expected by the user. In [14], Palma et al. have

proposed a speed-based spatio-temporal clustering approach to find important places of tra-

jectories. As an example consider Fig.16 [14] which shows a trajectory and its intersections

with geographical objects in the x−y space, corresponding to A, B and C. If the time spent

at each of the geographic locations A, B and C is greater than the threshold (say 30 min-

utes), SMoT algorithm identifies them as stops as shown in Fig.16(1) [14]. But the method

proposed by Palma et al. [14] also identifies X and Y as stops, as shown in Fig.16(2) [14],

which are not identified by SMoT. The algorithm proposed in [14], called CB-SMoT, identi-

fies important places as those parts of the trajectory in which the speed is lower than in other

parts of the same trajectory. In a first step the algorithm discovers the low speed clusters us-

ing a variation of the DBSCAN [53] algorithm. Instead of searching for a minimal amount

of points inside a neighborhood to find clusters, the modified DBSCAN algorithm searched

for a minimal duration, thereby taking speed into account to find slow moving points in a

trajectory. In the second step, the algorithm compares the clusters identified in the previous

step with the candidate stops. If a cluster doesnot intersect any of the given candidate stops,

it can still be an interesting place and hence the algorithm labels such places as unknown

stops.

Fig.17 [14] illustrates the method CB-SMoT. Consider a trajectory T, which is denoted

by the points < p0, p1 · · · , pn > as shown in Fig.17 [14]. Firstly, the clusters of slow mov-

ing regions within a trajectory are computed using a variation of DBSCAN [53] algorithm.

Let the clusters be denoted as G1, G2, G3 and G4, as shown in the Fig.17. There are four

candidate stops (C1,C2, C3 and C4), denoted by the ellipses RC1 , RC2 , RC3 and RC4 . The
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Figure 16. Example showing unknown stops identified by CB-SMOT [14].

Figure 17. An example explaining the CB-SMoT algorithm [14].

clusterG1 intersects the geometry of the candidate stopC1 for a time greater than δc1, hence

the first stop is RC1 . Similarly cluster G2 is labeled as RC3 and is the second stop of the

trajectory. The clusters, G3 and G4, do not intersect any candidate stops and are labeled as

unknown stops. If SMoT algorithm was used for this trajectory, G3 and G4, would not be

identified as stops since SMoT algorithm only considers regions in trajectory intersecting a

candidate stop to be a potential stop.

The two methods SMoT and CB-SMoT have varied areas of applications. Since speed is

not a consideration in SMoT, it is important in applications like tourism and urban planning

where the presence or absence of a moving object in relevant places is more important. In
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Figure 18. Semantic annotation of raw trajectories [15].

other applications like traffic management etc. where the speed is an important factor, CB-

SMoT, would be more appropriate, where CB-SMoT would find roundabouts, traffic lights

and velocity controllers even if they are not given as candidate stops by the user. CB-SMoT

would also be able to generate clusters in some parts of the trajectory where some points are

missing, as the average speed between two points of the trajectory corresponding to such

points would be minimal. This is very common in areas like hotels, buildings etc. where

the GPS signal would be lost.

A body of work exists in the area of semantic annotation of trajectories [54] [15].

In [55], Yan et al. presented a framework called SeMiTri which is a multi-tiered approach

towards semantic enrichment of raw trajectories. SeMiTri framework enables annotating

trajectories for any kind of moving objects. The framework and its algorithms have been
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Figure 19. The location category hierarchy graph [16].

designed to work on trajectories with varying data quality and different structures, with the

objective of covering abstraction requirements of a wide range of applications. Algorithms

for integrating information from geographic objects (with the spatial extent of point, line

or regions) were designed to be generic and accommodate most existing geographic infor-

mation sources. Fig.18 [15] depicts the semantic trajectory computation methodology. The

stop and move computation in SeMiTri framework is explained in [15], where velocity-

based approach is used to compute the episodes(stops and moves). They have computed

the instant speed for each GPS point p, (x,y), and if the instant speed of p is lower than

δspeed, it is a part of a stop, otherwise it belongs to a move.

After the trajectory is structured into a sequence of stops and moves, SeMiTri [55] ex-

ploits the geographical context to annotate stops and moves with geographic objects(such
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as regions, lines and points) as shown in Fig.18 [55]. The semantic annotation framework

consists of three layers, semantic region annotation layer, semantic line annotation layer

and semantic point annotation layer. The semantic region annotation layer forms a coarse

grained view of the trajectory by using a spatial join algorithm to pick up regions that the

trajectory has passed through. As shown in Fig.18 [55], the stop and move episodes of the

trajectory are transformed into regions like residential area, business area, market area and

residential area after being annotated with semantic region layer. The move episodes are

processed in the semantic line annotation layer where apart from mapping the move seg-

ments to road networks, the transportation modes (such as on foot, by bus, by metro) are also

inferred by exploiting the geometric properties (e.g velocity, acceleration) of the segment.

The stops are than funneled to the semantic point annotation layer which annotates them

with information about suitable points of interest(POIs). Examples of POIs are restuarant,

bars, shops, movie theaters etc. A HMM is used for semantic annotation of stops. The

novelty of this approach is that it works for densely populated area with many possible POI

candidates. It also enables identifying the activity(behavior) behind the stop thus providing

information related to the purpose of the stop.

4.2. ANALYTICS FOR SEMANTIC TRAJECTORIES

The semantic information attached to the spatio-temporal path of a moving object re-

veals useful application knowledge. Consider the trajectory data of tourists visiting various

locations during a trip. The kind of semantic knowledge from these trajectories would allow

us to answer questions like which are the places most frequently visited by tourists in the

morning?. A pattern of the form [Hotel Cascade] (s= 90%) would imply that 90% of the tra-
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Figure 20. Examples of three semantic trajectories [17].

jectories have hotel cascade in them. Similarly, a pattern [TouristP lace,Hotel](s = 80%)

would mean that 80% of the trajectories stop at a tourist place as well as a hotel.

Association rule mining [56] can be applied over such stops data to find a relation

between the various stops in the semantically enriched data to answer questions like is there

any relation between visited touristic places and hotels? A rule of the form {[Hotel1 ⇒

[TouristP lace1]}(s = 20%)(c = 70%) expresses that tourists that stop at Hotel1 also

stop at TouristP lace1. This happens in 20% of the trajectories, and with a confidence of

70% [57]. The confidence measure implies that for 70% of the times a person visitsHotel1,

he visits TouristP lace1 as well.

Sequential pattern mining [58], which is discussed later in Section 2.5, can be used

to extract patterns from the stops dataset. Which is the sequence of tourist places most

frequently visited and when these visits occur. A pattern of the form {[Louvre]morning,

[NotreDame]afternoon} (s=8%) would mean that visitors go to the Louvre in the morning

and goto the Notre Dame church in the afternoon. Sequential pattern mining can also be ap-

plied over the move data set. A pattern of the form {[Orsay−EiffelTower], [Invalides−
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NotreDame]} (s= 5%) would imply that trajectories that have a move from Orsay museum

to Eiffel tower also have a move from Invalides to Notre Dame church in this order [57].

Clustering techniques can be applied to semantically enriched trajectories to find user

similarity. Consider Fig. 20 [17] where trajectories are tagged with a number of semantic la-

bels like school, park etc. We can see that both Trajectory1 and Trajectory3 can be repre-

sented as the sequence {School, Park, Restaurant}. The semantic behavior of Trajectory1

and Trajectory3 are quite the same and they are more similar to each other than that of

Trajectory2. But if we only considered the geographic distance, Trajectory1 is more

geographically close to Trajectory2.

In [16], Lee at al. proposed a method to calculate the user similarity based on the

semantics of the location. In their method, locations and their categories are used to form

a hierarchical graph structure as shown in Fig. 19. By considering only the relevant nodes

and computing similarity at necessary nodes, the proposed method generates the similarity

results. Only the top-k visited locations of each user are considered. An example of similar

users by their method is as follows: user A and user B live in very different locations, but

they are similar because they are both students (since they visit the university frequently)

and they like to go to shopping (as they often visit the mall). However, their method did not

consider the sequential knowledge of the trajectories to cluster the users.

In [17], Josh et al. have defined a novel similarity measure, Maximal Semantic Trajec-

tory Pattern Similarity (MSTP-Similarity), which measures the semantic similarity between

trajectories. This similarity measure is used as a basis for recommending potential friends

to a user. To transform GPS trajectories into semantic trajectories, they use a cell based ap-

proach. To deal with cell trajectories, they treat a cell station as a geographic region. Then,
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the stay time can be derived by calculating the difference between the time a user arrives

and leaves the cell. A user-specified time threshold is used to filter the cells with stay time

shorter than the threshold. The remaining cells (i.e., their stay time is equal or greater than

the threshold) are called stay cell. Therefore, we can transform each cell trajectory as a stay

cell sequence. Then, a geographic information database was used to assign semantic terms

to the discovered stay cells. After transforming each geographic trajectory to a semantic

trajectory, each users geographic trajectory set was transformed as a semantic trajectory

dataset. The semantic trajectories of a user may be quite diverse since the user movements

may change time to time. Sequential pattern mining algorithm Prefix-Span [59] was used

on each user’s semantic trajectory dataset to mine maximal frequent semantic trajectory

patterns. The Longest Common Sequence (LCS) of these two patterns to represent their

longest common part. Techniques related to information theory like TF-IDF [60] are used

to find the similarity between users by treating a pattern set of a user as a document and

each pattern in a pattern as a word.

Semantic trajectory similarity techniques have been used in many recommendation sys-

tems [17] [16] [61] for recommending friends based on users semantic trajectories for

location-based social networks. In [61], Zheng et al. propose a personalized friend and

location recommendation system. To explore users similarity, the system considers users

movement behaviors in various location granularities. Based on the notion of stay points

which are the geographic regions mobile users stay for over a time threshold, the system

discovers all of the stay points in trajectories and then employ a density-based clustering

algorithm to organize these stay points as a hierarchical framework. To measure two users

similarity, some common sequences, named similar sequence, are discovered by matching
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their stay region sequences in each level of the hierarchical graph. However, this approach

treats every stay region in the similar sequence independently, i.e., without considering the

sequential property of stay regions in the similar sequence.

5. SEQUENTIAL PATTERN MINING

Several classes of data change continuously with time. Hence a time stamp is becoming

essential while collecting data. As an example, consider a transactional database which

consists of transactions made by customers visiting a store. Each transaction consists of

a list of items purchased by the customer during a visit to the shop. A transaction of the

form (A,B,C) implies that the customer has bought items A,B and C in that particular

transaction. Consider a rule of the form A→ B, which implies that a person who buys the

product A also buys product B. However it would have been more useful for organizations

to make sound decisions if it was known that a person who buys product A buys product B

within a week.

Different mining techniques have been designed for mining time series data, and have

identified four kinds of patterns we can get from timeseries data:

• Trend Analysis: Trend analysis is a technical analysis approach that tries to predict

the future trend or pattern based on the past data.

• Similarity search: Unlike normal queries, which find data that match the normal

query exactly, a similarity search find data sequences that differ only slightly (within

a user-defined parameter) from the given query sequence.

• Sequential patterns.
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• Periodic patterns: Periodical patterns are those recurring patterns in the time series

database. Periodicity can be daily, weekly, monthly, seasonal or yearly. Obviously

periodic pattern mining can be viewed as sequential pattern mining.

Sequential Pattern Mining (SPM) [58] is a technique used to find the relationships be-

tween occurrences of sequential events, to find if there exist any specific order of the oc-

currences. It can be thought of as an extension of association rule mining [56], with a time

stamp associated with each transaction, thereby emphasizing on the order of the occurrence

of the events. An example of sequential patterns is that every time Microsoft stock drops

atleast 5%, IBM stock will also drop at least 4% within three days. Business organiza-

tions use sequential pattern mining to study customer behaviors. Sequential patterns can be

extracted from web log analysis, which are very useful to better structure a companys web-

site for providing easier access to the most popular links [62]. It is also used in intrusion

detection [63] and DNA sequence analysis [64].

SPM was first introduced by Agrawal and Srikant [58] based on their study of customer

purchase sequence as follows: “Given a set of sequences, where each sequence consists

of a list of events (or elements) and each event consists of a set of items, and given a user-

specified minimum support threshold of minsup, sequential pattern mining finds all frequent

subsequences, that is, the subsequences whose occurrence frequency in the set of sequences

is no less than min sup.”

A subject or customer does various transactions, with each transaction comprising sin-

gle or many items. A collection of item defines an itemset. The collection of transactions

related to a subject can be thought of as a sequence. If we have a set of items denoted by
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Figure 21. Sequence database of patients visiting a hospital [18].

(i1i2 · · · im), then an itemset sj is a non-empty set of items. A sequence is thus an ordered

list of such itemsets denoted by < s1, s2 · · · sn >.

The sequence < a1a2 · · · an > is said to be contained in the sequence < b1b2 · · · bm >

if there exists integers i1 < i2 < · · · < in such that a1 ⊆ bi1 , a2 ⊆ bi2 , · · · , an ⊆ bin . The

transactions are generally ordered by increasing transaction time T1, T2, · · ·Tn. To repre-

sent a sequence in terms of the transactions, consider the set of items in transaction Ti to be

denoted as itemset(Ti). Let the set of transactions of a particular subject be T1, T2, · · ·Tn

the sequence corresponding to the particular subject is therefore < Itemset(T1)Itemset(T2)

· · · Itemset(Tn)>.

To illustrate the above concepts, consider the example in Fig. 21 [18], which is a se-

quence database storing the information of the treatments undergone by different patients

during their visits to a hospital. The sequence corresponding to the patient “Joe” in Fig.
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21 [18] is<J0102, (90012, G1234), (J0502, 52113), (49991, V2025, 90012)>. It can be

seen that the pattern {G1234, J0502, 90012} exists in the sequences of all the patients.

Support is a measure of importance of a sequence. The support of the sequence s in a

sequence database D, is the number of sequences of D which contain s as a subsequence.

Referring to the previous example, sequence s corresponds to sequence of treatments un-

dergone by the patients, and the database D consists information of treatments undergone

by different patients during their visits to a hospital. If the support of s is greater than

a threshold, than s is a frequent sequence. For the example in Fig. 21 [18] the pattern

<G1234, J0502, 90012> occurs as a subsequence in all the sequences. The support of the

pattern <G1234, J0502, 90012> is computed as the proportion of the patients containing

that pattern i.e support = 4/4.

Numerous algorithms have been proposed for SPM, some of which include

GSP(Generalized Sequential Patterns) [65], PrefixSpan [59], FreeSpan [66], SPADE [67]

etc. In our work, we have used PrefixSpan as it can be used with larger data sets. PrefixSpan

filters the database making it much smaller by employing database projection, to make the

algorithm faster. It also can handle long sequential patterns unlike GSP.

Besides mining sequential patterns in a single dimension, mining multiple dimensional

sequential patterns can further reveal important patterns. Multi-dimensional sequential

pattern mining was first introduced by Pinto et al. [68]. For example, consider a market

database which identifies the following pattern: most people who buy product A also pur-

chase product B within a specific time, by employing general sequential pattern mining.

However, multiple dimensional sequential pattern mining can also reveal important pur-

chasing patterns among various groups of individuals. For example, while students often
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buy A within a week after B, this pattern does not hold true for individuals of other age

groups.

5.1. ANALYTICS FOR SEQUENTIAL PATTERNS

Most of the work related to SPM dealt with finding sequential patterns in static

databases. Some of the works dealt with filtering the large amount of frequent patterns

extracted by imposing constraints like time between the consecutive items in a frequent

sequential pattern, length of the sequential patterns etc [69]. Recently research focused on

extracting sequential pattern in dynamic streaming data where storing the large stream of

incoming data was a concern [70]. Han et al. [71] have used a lexicographic tree to store the

sequences seen in the data stream. They consider the incoming stream of data as arriving

one batch at a time. The data stream is broken into fixed-size batches where each batch

contains L sequences. For each arriving batch, PrefixSpan algorithm was used to extract

frequent sequential patterns corresponding to a specific support. Each frequent sequence is

than inserted into the lexicographic tree and the properties like batchCount and count values

of the corresponding node are updated.

Tsai et al. [72] have addressed the issue of change detection of sequential patterns be-

tween two different datasets. The datasets are obtained by collecting data like customer

purchase data etc. over different time periods. They have compared the sequential patterns

extracted from two datasets based on the similarity of the sequential patterns extracted from

the two datasets. They considered sequential patterns as strings of data and used techniques

from information theory like Levenshtein edit distance [73] to find the difference between

the two strings. Based on a specific threshold they have categorized the patterns as emerg-

ing sequential patterns, unexpected sequence changes and added or perished patterns. Their
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work however dealt with static databases. Also, they compared datasets of approximately

similar size. In our work, we compare datsets of considerably different sizes and the data is

also dynamic.

Laur et al. [74] have addressed the problem of comparing sequential patterns based on

statistical measures like support when the original data has been incrementally updated by

incoming data. The knowledge of the stream is only partial at any time as the whole data

stream cannot be analyzed at the same time. The data stored from the stream is only a

representation at that instant of the data stream and thus the information mined from this

stored data should take into account the uncertainty generated by partial observation of the

whole stream. They address issues related to longer observation of the data stream like

some patterns observed as frequent might become infrequent while some patterns observed

as not frequent might become frequent from a longer history of the data stream. They have

introduced two statistical borders (upper and lower) which would be useful in choosing

sequential patterns in an incremental mining process.

Jacquemont et al. [75] have analyzed SPM from a statistical point of view. They con-

sider the sequential pattern mining process as extracting frequent sequences from a finite

sample set of sequences that have been drawn from an unknown target distribution. They

analyze the statistical bias associated with the sequential patterns extracted from the sam-

ple set by considering the underlying statistical distribution from which the sample set has

been drawn. They have used statistical procedures like hypothesis testing to verify the con-

straints under which a sequential pattern mining process is statistically relevant. They have

also provided a lower bound on the number of sequences needed to guarantee the discovery

of significant knowledge.
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Dong et al. [76] introduced a new class of patterns called Emerging Patterns(EP) for

knowledge discovery from different databases. Emerging patterns are patterns whose sup-

port changes significantly from one dataset to another. Such patterns can be used to capture

emerging trends in timestamped databases and also significant changes and differences be-

tween datasets. When applied to datasets with classes like male vs female etc. such patterns

can be used to capture useful contrasts between classes. Boulesteix et al. [77] have devel-

oped an approach using decision trees for inferring emerging patterns and used them for

classification of micro-array data. They have suggested an alternative definition of a sta-

tistical EP. In the method proposed by Boulesteix et al. [77], EPs are extracted by growing

decision trees. A decision tree [78] is a statistical model, used for classification, that re-

cursively partitions the measurements space into subsets by splitting on a variable. The

agglomerated splitting on several variables is to used to generate rules for a leaf in a tree

which distinguishes one class from another. This rule has a high support in one class (which

it classifies) while a lower support in all other classes. These decision rules are thus equiv-

alent to statistical EPs whose supports vary with different classes or datasets. The EPs

inferred by the tree based approach were subsequently used for classification using linear

discriminant analysis (LDA) [79].

6. RANDOM FORESTS

A decision tree [78] is a model used for classification, which predicts the value of

a target variable based on several input variables. Consider a training set S = (X,Y ),

consisting of instances (xi, yi), i = 1 · · ·n, where xi ∈ X is an input vector and yi ∈ Y

is it’s corresponding class label. xi is made up of a number of features f1, f2 · · · fm ∈

M . A decision tree splits each of the input vector xi based on the values of the features
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f1, f2 · · · fm. At each node of the decision tree, the input data is partitioned into subsets,

such that the impurity of the resulting child node is decreased. This process is repeated to

form a tree.

Let p(c|t) denote the fraction of records belonging to a class c at a given node t. Some

of the impurity measures include

Entropy(t) = −
C−1∑
c=0

p(c|t)log2p(c|t)

Gini(t) = 1−
C−1∑
c=0

[p(c|t)]2

Classificationerror(t) = 1−maxc[p(c|t)]

where C is the number of classes and 0log20 = 0 in entropy calculations.

To determine how well a test condition performs, we need to compare the degree of

impurity of the parent node (before splitting) with the degree of impurity of the child nodes

(after splitting). The larger their difference, the better the test condition. The gain, δ, is a

criteria that can be used to determine the goodness of a split:

δ = I(parent)−
k∑
j=1

N(vj)

N
I(vj)

where I(.) is the impurity measure of a given node, N is the total number of records at

the parent node, k is the number of attribute values, and N(vj) is the number of records

associated with the child node, vj . Decision tree induction algorithms often choose a test

condition that maximizes the gain δ.

The top most node of the tree is called the root node and the bottom nodes are called

leaf nodes. In a decision tree each leaf node is assigned a class label. The non-terminal

nodes, which include the root and other internal nodes, contain attribute test conditions to
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separate records that have different characteristics. Tree nodes are used to determine how

to propagate a given attribute set down the tree. In order to classify a test record, it is

propagated down the tree and decision is made based on the terminal node that is reached.

Random forest [80] uses a collection of decision trees instead of one tree. A random

forest is a collection of trees, where each node in a tree is split based on the greatest infor-

mation gain obtained from only a random sample of attributes. The outline of the algorithm

used to construct a random forest is as follows: Assume the full data set consists of N

observations

1. Take a random sample of N observations from the data set with replacement (this is

called bagging). Some observations will be selected more than once, and others will

not be selected. On average, about 2/3 of the rows will be selected by the sampling.

The remaining 1/3 of the rows are called the “out of bag (OOB)” rows. A new random

selection of rows is performed for each tree constructed.

2. Using the rows selected in step 1, construct a decision tree. Build the tree to the

maximum size, and do not prune it. As the tree is built, allow only a subset of the

total set of predictor variables to be considered as possible splitters for each node.

Select the set of predictors to be considered as a random subset of the total set of

available predictors. Perform a new random selection for each split. Some predictors

(possibly the best one) will not be considered for each split, but a predictor excluded

from one split may be used for another split in the same tree.

3. Repeat steps 1 and 2 a large number of times constructing a forest of trees.
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4. To score a row, run the row through each tree in the forest and record the predicted

value (i.e., terminal node) that the row ends up in. For a classification analysis, use

the predicted categories for each tree as “vote” for the best category, and use the

category with the most votes as the predicted category for the row.

Decision tree forests have two stochastic (randomizing) elements: (1) the selection of

data rows used as input for each tree, and (2) the set of predictor variables considered as

candidates for each node split. One of the main reasons random forests perform better than

a single decision tree is their ability to utilize redundant features. The generalization error

for forests converges to a limit as the number of trees in the forest becomes large [80]. The

generalization error of a forest of tree classifiers depends on the strength of the individual

trees in the forest and the correlation between them [80].

6.1. RANDOM FOREST PROXIMITY MEASURE

Random forests can also be used to obtain a proximity or similarity measure [81] be-

tween any two cases in the data. For a given forest F , we compute the similarity between

two instances x1 and x2 in the following way. For each of the two instances, we first propa-

gate their values down all trees within F . Next, the terminal node position for each instance

in each of the trees is recorded. Let z1 = (z11, z12 · · · z1T ) be the tree node positions in the

T trees for x1 and similarly define z2. Then the similarity between pair x1 and x2 is set to:

(I is the indicator function)

S(x1, x2) =
1

T

T∑
i=1

I(z1i == z2i)

The (i, j) element of the proximity matrix produced by random forest is the fraction of

trees in which instances i and j fall in the same terminal node. The intuition is that similar
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instances should be in the same terminal nodes more often than dissimilar ones. The prox-

imity matrix can be used to identify structure in the data or for unsupervised learning with

random forests. This proximity matrix obtained was used for clustering the trajectories.

6.2. UNSUPERVISED LEARNING WITH RANDOM FORESTS

Random forests are ensembles of decision trees that output the class that is the mode

of the classes output by individual trees. They are mostly used for classification. However,

random forests can also be used for unsupervised learning such as clustering [81]. The first

step is to call the original data “class 0” and construct a “class 1” synthethic data. A label

i.e. 0 or 1, is assigned for each instance based on the type of the data. The combined data

is than classified using the random forest.

There are two ways to simulate the “class 1” data:

1. The “class 1 ” data are sampled from the product of the marginal distributions of the

variables (by independent bootstrap of each variable separately).

2. The “class 1” data are sampled uniformly from the hypercube containing the data (by

sampling uniformly within the range of each variables).

The idea is that real data points that are similar to one another frequently end up in the

same terminal node of a tree. This similarity is measured by the proximity matrix. If two

instances fall in the same leaf node of a tree, their proximity is increased by one. Thus the

proximity matrix can be taken as a similarity measure, and clustering or multi-dimensional

scaling using this similarity can be used to divide the original data points into groups for

visual exploration.
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6.3. CONDITIONAL INFERENCE TREE FORESTS

Random forests select variables for splitting so as to decrease the entropy in the resulting

child nodes. If the child node is pure and consists of a single class, the entropy would be

zero. This method of growing trees induces bias in the variable selection [82]. Random

forests tend to select variables with many splitting values e.g. numeric variables are selected

compared to categorical variables. For data including categorical variables with different

number of levels, random forests are biased in favor of those attributes with more levels.

Alternate tree growing strategies can be used to overcome the bias problem.

Conditional inference trees estimate a regression relationship by binary recursive parti-

tioning in a conditional inference framework [83]. The algorithm works as follows:

1. Test the global null hypothesis of independence between any of the input variables

and the response. Stop if this hypothesis cannot be rejected. Otherwise select the

input variable with strongest association to the response. This association is measured

by a p-value corresponding to a test for the partial null hypothesis of a single input

variable and the response.

2. Implement a binary split in the selected input variable.

3. Recursively repeat steps 1 and 2.

The conditional inference trees thus reduces the bias in variable selection by separating

the variable selection and splitting step unlike decision trees where variables are selected

based on the best split obtained which reduces the entropy in the child nodes.
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6.4. OUTLIER DETECTION USING RANDOM FORESTS

The proximity measure obtained from the random forests can be used to detect outliers

in the data. Outliers are those instances whose proximity to rest of the data is small (or

distance is large). Let the average proximity from instance n to the rest of the data be

P̄ (n) =
∑
k

prox2(n, k)

The raw outlier measure or Breiman outlier score [80] for instance n is defined as

N/P̄ (n)

where N is the total number of instances in the sample. This value is large if the average

proximity is small.

7. ISOLATION FOREST

The anomaly detection method called isolation forest proposed by Liu et al [84], uses

an ensemble of binary trees to detect anomalies. Unlike the other anomaly detection tech-

niques, which construct a profile of normal instances and identify instances that donot con-

firm to the normal profile as normal, their method isolates anomalies rather than profiling

normal instances.

Given a data set, a binary tree which randomly partitions by splitting on the variables in

the data, is used to isolate all the instances in the data. The tree is grown fully so that each

leaf node of the tree contains only one instance. The path length of any instance is defined

as the number of nodes it takes to traverse from the root node to the leaf node to which the

instance belongs to. Since, anomalies are sparse in space, they would need lesser number

of partitions to be isolated from the rest of the data. Hence, the path lengths of anomalies

would be shorter compared to normal instances.
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Figure 22. A typical control chart [19].

A forest of trees are grown and the average path length of each instance is calculated

using these trees. Anomalies are those instances which have shorter path lengths for most

of the trees in the forest. An anomaly score swhich lies between 0 and 1 is proposed, which

aggregates the path length across all the trees in the isolation forest. The instances which

have s very close to 1 are definite anomalies. If instances have s much smaller than 0.5,

than they are quite safe to be regarded as normal instances. If all the instances have s ≈ 0.5,

than the entire sample doesnot have any distinct anomaly.

8. CONTROL CHARTS

A control chart is a graphical display of a quality characteristic that has been measured

or computed from a sample versus time or sample number. A typical control chart is shown

in Fig. 22 [19]. The chart contains a center line which represents the average value of

a quality characteristic when the process is in-control. Two other horizontal lines upper

control limit (UCL) and lower control limit (LCL), called the control limits, are used to

detect an out-of-control signal. If the process is in-control, nearly all of the sample points
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will fall between the UCL and LCL. However, if a point is outside the control limits, there

is considerable evidence that the process is out-of-control.

The control limits are calculated as follows:

UCL : µ+ kσ

LCL : µ− kσ

where µ is the mean and σ is the standard deviation of the in-control data. The value of k

is generally chosen to be 3.

Control charts can also be used to monitor more than one variable at a time. The

Hotelling T 2 control [85] chart is a multivariate extension of the control chart, which can

be used to monitor multiple variables and also takes the correlation among the variables

into account. While plotting a Hotelling T 2 chart, the data can consist of subgroups or indi-

vidual observations. For subgroup data, given p response variables, the subgroup Hotelling

control chart plots the following quantity

T 2 = n(x̄− ¯̄x0)
′S−1(x̄− ¯̄x0)

where n is the sample size, x̄ is the p-dimensional vector of subgroup means, ¯̄x is the

p-dimensional vector of means of the subgroup means, s−1 is the inverse of the pooled

covariance matrix. The T 2 statistic is plotted against the sample number. The upper control

linit for the subgroup Hotelling control chart is

UCL =
knp− kn− np+ p

kn− k − p+ 1
Fα,p,kn−k−p+1

where n is the sample size, k is the number of subgroups and p is the number of variables.
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CHAPTER 3

DETECTING CHANGES IN TRAJECTORIES WITH TIME

With recent advances in GPS, sensing and communication technologies, the position

data of people and vehicles is available easily and increasing rapidly. The vehicles in cities,

such as taxis, are equipped with GPS devices which provide information regarding the

position of the vehicles by analyzing the GPS traces left by them. Analyzing this spatio-

temporal data can be used to gain knowledge about human behavior and the dynamics of

the city.

Detecting changes in the trajectories of vehicles like taxis in a city, have many potential

applications. In developing cities, the road networks change over time. It is important to

update these changes in a digital map. If the taxis moving in a city are viewed as sensors

that provide real time information of the traffic in the city, a change in these trajectories

with time would reveal that the road network has changed with time i.e. either a new road

has been constructed or an existing road has been blocked. Change detection in trajectories

of taxi or cabs in a city can also be used to prevent taxi fraud. Most tourists are victims of

taxi frauds where the taxi drivers overcharge the customers by taking unnecessary detours.

If a mechanism to detect these detours in real time is available, these frauds can be avoided.

Other applications of trajectory change detection include maritime surveillance of ports and

waterways for the purpose of safety in navigation and collision avoidance.

The rest of the chapter is organized as follows. In Section 1, we explain how the tra-

jectories are modeled using a Hidden Markov Model (HMM). In Section 2, experiments

are conducted to illustrate a change point detection method for observations from a HMM,

when the parameter after change is known. Experiments for the case when the parame-

ter after change are unknown are shown in Section 3. A statistical process control based

method using the modified Baum-Welch algorithm, to detect specific parameter changes in
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TABLE 2. Notation table

Notation Description
θ0 Null case parameters of a HMM
θ1 Shifted case parameters of a HMM
θ̂ Estimated parameters of a HMM
r Input parameter denoting row number for change detection using

m-BW algorithm
θ̂r Estimated parameters of a HMM using m-BW with input param-

eter r
N No.of states of HMM
M No.of observations of HMM
A Transition probability matrix (TPM) of HMM with elements aij
B Estimation probabilities of HMM
π Initial probabilities of HMM
S State space of HMM i.e S = (s1, s2 · · · sN )
O Observation space of HMM i.e O = (o1, o2, · · · oM )
xt Variable denoting the state of HMM at time t
yt Variable denoting the observation of HMM at time t
θ Parameters of HMM initially provided as input to m-

BaumWelch(m-BW) algorithm
θ̄ Parameters of HMM in each iteration of the m-BW algorithm
Ā TPM of HMM in each iteration of m-BaumWelch algorithm
B̄ Emission probabilities of HMM in each iteration of m-BW algo-

rithm
π̄ Initial probabilities of HMM in each iteration of m-BW algorithm
δ Threshold used for convergence in m-BW algorithm

L(t) Log-likelihood ratio statistic used for change detection
t0 Time at which the shift occurs

W (t) Sliding window of observations of size w
L0(t) Log-likelihood of observations in window W(t) w.r.t θ0
L1(t) Log-likelihood of observations in window W(t) w.r.t θ1
Ti Trajectory denoted as a sequence of time-ordered observations

i.e. Ti : (xit, y
i
t)

mi Length of trajectory Ti

a HMM, by analyzing the observations from a HMM is presented in Section 4. In Section 5,

we explain how the HMM based modeling can be extended for change detection in a group

of trajectories, each of which consists of a set of time-ordered observations. In Section 5,

the change detection method is evaluated by finding run lengths to obtain an out-of-control
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signal using control charts. The autocorrelation values for the in-control data are also cal-

culated. These metrics are explicitly calculated in Section 5, but are also applicable to the

preceding Sections 1 through 4. The various notations used in this chapter along with their

description are shown in Table 2.

1. MODELING TRAJECTORIES USING HIDDEN MARKOV MODELS FOR

CHANGE DETECTION

We aim to detect two types of changes in trajectories. The first change is change within

a trajectory and the other is change between trajectories. An example of change within

trajectory is the case of taxi-fraud where taxi drivers overcharge customers by taking un-

necessary detours. By monitoring the GPS points in a trajectory, which moves from a

particular source to destination, we aim to detect if the observed GPS points donot follow

the regular pattern of normal behavior.

An example for change between trajectories is the case of road network change. The

road networks in a city change with time and if the taxis moving in a city can be considered

as sensors to monitor the road network, a change in the trajectories of taxis with time in-

dicates a new road being built or an existing road being blocked. We thus aim to detect an

emerging cluster of trajectories with time.

Consider a trajectory Ti which is represented as a sequence of GPS points i.e. Ti =

(xit, y
i
t) where t = 1, 2, · · ·mi denotes the times at which the GPS points in the trajectories

are recorded and mi is the length of trajectory Ti. While detecting the changes within a

trajectory, we aim to find the time t at which GPS points in a particular trajectory show an

abnormal behavior. On the other hand, while detecting the changes between trajectories,

we typically have a sequence of trajectories T1, T2 · · · etc. and each one has a different start
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Figure 23. Translation of trajectory 2 so as to start from time 0.

time. For example, Tj may represent the trajectory of a cab in day j, for j = 1, 2, · · · In

this example, each trajectory occurs in a separate day. In order to focus on similarities (or

dissimilarities) between trajectories, we translate each trajectory along the time axis so that

each is considered to start at time t = 0. That is, if trajectory Tj = (xjt , y
j
t ) starts at time t0,

we translate it to (xjt−t0 , y
j
t−t0). Figure 23 shows two trajectories 1 and 2, where trajectory

2 is translated so as to start from time t = 0. We aim to detect a change in the sequence of

trajectories. This is the time at which a new cluster of trajectories begins to emerge.

For the purpose of change detection in trajectories, we have modeled trajectories using

a Hidden Markov Model (HMM). A HMM is a statistical tool for modeling generative

sequences that can be characterized by an underlying process generating an observable

sequence and satisfy the Markovian property. The system being modeled using a HMM is

assumed to have hidden variables or states. Each hidden state in a HMM can generate an

observation according to specified probabilities. Inorder to model the trajectory data using

HMM, we need to define the states and observations of the HMM.
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Figure 24. Modeling trajectories using HMM. The regions R1, R2, R3, R4 and R5 are the
dense regions in space traversed by the four objects.

To model a set of trajectories using HMM, the dense regions occurring in a set of tra-

jectories are found. The dense regions are clusters of points, which are frequent in most of

the trajectories. These regions are labeled and the labels define the finite states of the tra-

jectories. Fig. 24 gives an illustrative example of sample trajectories being modeled using

a HMM. Consider the four objects with trajectories T1, T2, T3 and T4, which have moved

in the space for three time stamps as shown in the figure. Let there be some dense regions

occurring in the space transversed by the four trajectories. These dense regions are clus-

ters of points from various trajectories which move closer to each other. The dense regions

R1, R2, R3, R4 and R5 are shown in the Fig. 24.
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Figure 25. Learning the parameters of the HMM using the trajectories.

Each hidden state emits an observation based on a Gaussian distribution. To learn

the transition probability matrix and the emission probabilities of the HMM, the obser-

vations (xt, yt) from a trajectory are mapped to corresponding hidden state (calculating

the probability using emission probability of each Gaussian distribution). Fig. 25 shows

the HMM modeled using trajectories when the observation space is discretized using grid-

based discretization. The points denoted by (xt, yt) are the points of a trajectory in the

observation space, which are discretized using the grids O1, O2, O3, O4. The regions

R1, R2, R3, R4, R5 shown in Fig. 25 show the dense regions, which are the hidden states.

Each hidden state, gives an observation O1, O2, O3, O4. The transition probabilities and

emission probabilities are learnt from the trajectories.

Once the trajectories are modeled using HMM, the change detection problem in trajec-

tories is mapped to change detection in parameters of a HMM. To illustrate this, consider

Fig. 26 shows the trajectory of a person who commutes from home to work. Fig. 26a
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Figure 26a. Trajectory of daily commute of a person in May

Figure 26b. Trajectory of daily commute of the person in June

shows the trajectory of daily commute of the person in May where he travels from home

to bus stop and to office. However, the person takes the train station instead of the bus in

June, thus leading to a different trajectory as shown in Fig. 26b. For the example men-

tioned in Fig. 26, to model the trajecotries using HMM, the various locations the person

visits such as home, bus stop, train station and office are modeled as the states of the HMM.
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Figure 27a. Transition probabilities in May. The transition probability from state 1 to state
2 is 0.95 and that from state 1 to state 3 is 0.01.

The transition probabilities for various states change as shown in Fig. 27, where home is

considered to be state 1, bus stop as state 2, train station as stop 3 and office as state 4. As

seen in Fig. 27a, the probability of transition from state 1 to state 2 in May is 0.95 while

the same probability in June is 0.01 in Fig. 27b. Similarly, the transition probability from

state 1 to state 3 in May is 0.01 (Fig. 27a) which raises to 0.95 in June (Fig. 27b). The

original problem of change detection of trajectories thus translates to the change detection

in the parameters of a HMM.

The problem of detecting changes within a trajectory is addressed in Sections 2, 3 and

4. The points within a trajectory before the change occurs are assumed to be from a null

case HMM, while the points after the change are from a shifted case HMM. We aim to

detect the time at which the parameters of a HMM change. The change detection between

trajectories is addressed in Section 5. The parameters of a HMM are learnt using a set of

training trajectories which are used to detect the changes in the test trajectories.
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Figure 27b. Transition probabilities in June. The transition probability from state 1 to state
2 is 0.01 (compared to 0.95 in May) and that from state 1 to state 3 is 0.95 (compared to
0.01 in May).

2. CHANGE DETECTION OF A HMM WHEN THE PARAMETER AFTER

CHANGE IS KNOWN

This section deals with detecting changes within a trajectory. The change detection

problem of trajectories is translated to change detection in the parameters of a HMM. We

aim to detect the time at which the parameters of a HMM change, when the parameters after

change are known.

In [50], Gerencser et al. considered the problem of change detection in the statistical

pattern of a hidden markov process when the parameters of the HMM, before and after the

change are known. The specific change detection problem they address is as follows:

θ∗ = θ0 for n ≤ τ∗ − 1

= θ1 for n ≥ τ∗
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for an unknown τ∗, but for given θ0 and θ1. Their goal was to estimate τ∗. Hence, this

is a change-point problem, where the main interest is to find the time at which the change

occurs.

A basic method for detecting temporal changes in an independent sequence of observa-

tions called the Cumulative Sum algorithm or Hinkley-detector [51] was adapted by them

for the change detection process. A cumulative score Sn was calculated from a statistic Rt,

which is used to monitor the process, i.e.

Sn =

n∑
t=1

Rt

The Hinkley-detector gn defined in terms of Sn is gn = Sn − min
0≤k≤n

Sk. An alarm is

generated if gn exceeds a specified threshold.

We aim to detect the time at which the parameter of a HMM changes. We used a concept

similar to Hinkley-detector for change detection. The statistic Rt used by them [50] for

change detection is

Rt = − logP (yt|yt−1, · · · , y0; θ)

We used a similar statistic

Rt = logP (yt, yt−1, · · · y0; θ)

which calculates the logarithm of likelihood of a set of observations given the parameter

values. The statistic is cumulated across the various observations to exactly detect the

change point. The details of the exact statistic L(t) used for change detection are discussed

below.

To detect the change in the parameter of a HMM assuming the value of the parameter

after the change is known, we adopted the following method. Consider a HMM with a finite
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state space S, with N states i.e. S is the set containing the symbols for all N states. Let O

be the observation space i.e. O is the set containing the symbols for all the M observations:

S = (s1, s2, · · · , sN )

O = (o1, o2, · · · , oM )

Let the pair (xt; yt) where t = 1, 2, · · ·n be the HMM where xt ∈ S and yt is the observa-

tion sequence such that yt ∈ O.

Let the parameters of the HMM be θ = (A,B, π). The transition probability matrix, A,

is the matrix consisting of transition probabilities from state i to state j in one step aij :

A = [aij ], aij = P (xt = sj |xt−1 = si)

Each state in a HMM can generate an observation according to specified probabilities. For

each state si and each possible output ok, bi(k) gives the probability that observation ok is

emitted in state si. B is the observation array, storing the emission probabilities:

B = [bi(k)], bi(k) = P (yt = ok|xt = si)

π is the initial probability array:

π = [πi], πi = P (x1 = si)

Let y1, y2, y3, · · · yn be the n observations obtained by the HMM. Let θ0 denote the

parameters of the HMM under the null case and θ1 denote the shifted case, when the pa-

rameters of the HMM have changed. Some of the changes of interest are the change in the

probabilities of the transition probability matrix. The statistic, L(t), used for detecting the

change in the parameter of HMM is

L(t) =

t∑
l=1

log[p(yl; θ0)]−
t∑
l=1

log[p(yl; θ1)] (3.1)
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Figure 28a. Transition probability matrix in terms of Θ for the case when parameter after
change in known.

where L(t) is the difference of log-likelihood value of the observations from 1 to t under

the null case θ0 and the log-likelihood value of the observations from 1 to t under the

shifted case θ1. The variation of statistic L(t) with the observation number t is used for

change detection. The statistic L(t) increases with t if no change occurs. If a change in the

parameter of HMM occurs at time t0, L(t) increases till t ≤ t0 and decreases thereafter.

This happens because for t ≤ t0, the value of
∑t

l=1 log[p(yl; θ0)] would be larger than∑t
l=1 log[p(yl; θ1)] and the difference increases as more points are available for estimation.

Beyond t0, as the observations are more likely to occur from a HMM with parameters θ1,

for t ≥ t0,
∑t

l=t0
log[p(yl; θ1)] would start increasing and hence the value of L(t) starts

decreasing.

2.1. EXPERIMENTS FOR CHANGE DETECTION WHEN THE PARAMETER AF-

TER CHANGE IS KNOWN

We had parameterized the HMM with a single parameter Θ, which determines the tran-

sition probability matrix. For a fixed state HMM with N = 4 states and M = 6 obser-

vations, the parameters of a HMM are shown in Fig. 28, where the transition probability

matrix is shown in Fig. 28a which is dependent on Θ. To simplify the number of pa-
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Figure 28b. Emission probabilities for the case when parameter after change in known.

Figure 29. Likelihood ratio statistic L(t) versus observation number or t. The first 50
observations correspond to null case parameters while the next 50 observation correspond
to shifted case. The statistic L(t) begins to decrease after 50th observation confirming the
change.

rameters, the emission probabilities are assumed to be independent of Θ as shown in Fig.

28b.

To illustrate the above method, 100 points (or observations) were simulated. Let these

100 points (or observations) be denoted as (y1, y2, y3 · · · y100). Consider the case with a Θ

value of 0.3 to be the null case, while the case with Θ value of 0.1 to be the shifted case. The
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first 50 points (y1, y2, y3 · · · y50) were generated from the HMM with emission probability

matrix as shown in Fig. 28b, transition probability matrix as shown in Fig. 28a and a Θ

value of 0.3. The initial probabilities are (0.25, 0.25, 0.25, 0.25) for the 4 states. The next

50 points (y51, y52, y53 · · · y100) were generated from a similar HMM with a Θ value of 0.1.

The statistic L(t), as described above, is plotted against the observation number t as

shown in Fig. 29. It can be seen from the figure that the statistic L(t) for detecting the

change in the parameter Θ reaches a maximum value at value of t approximately equal to

50 and than starts decreasing thereafter. Hence, the statistic is able to detect the change in

the parameter value Θ and the time at which the change occurs.

3. CHANGE DETECTION OF A HMM WHEN THE PARAMETER AFTER

CHANGE IS UNKNOWN

This section deals with detecting changes within a trajectory. The change detection

problem of trajectories is translated to change detection in the parameters of a HMM. We

aim to detect the time at which the parameters of a HMM change, when the parameters after

change are unknown.

Gerencser et al [49] consider the problem of change point detection for HMMs when the

parameter after change is unknown. Let the pair (xt; yt) where t = 1, 2, · · ·n be the HMM

where xt is a homogenous Markov chain such that xt ∈ S and yt is the observation sequence

such that yt ∈ O. Their estimation procedure was as follows, instead of cumulating past

data, it is gradually forgotten by using an exponential forgetting. If λ is the forgetting rate

and θ are the parameters, the quantity they have used for change detection is

n∑
t=1

(1− λ)n−tλ log p(yt|yt−1, · · · , y0; θ)
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The factor (1 − λ)n−t is used for weighing the observations, so that the past observations

have lower weights while the most recent ones have higher weight.

Our method differs from [49] in the way we choose the points and the statistic used

for change detection. Instead of using an exponential forgetting rate, we choose a moving

window of points with fixed window size. We also investigated the effect of window size

on detecting the change.

In the previous section, we have considered the simpler case where the parameter after

change is known. However, in most cases (e.g while dealing with trajectory data), the

parameter after change is generally unknown. In this section, we adopted the following

method for detecting the change in the parameter of a HMM when the parameter after

change is unknown.

Let the parameters of the HMM be θ = (A,B, π). Let y1, y2, y3, · · · yn be the n obser-

vations obtained by the HMM. Consider a window of observations of size w(≤ n) from the

HMM:

W (t) = (yt−w+1, yt−w+2, · · · yt)

where t varies from w to n. Let θ0 denote the parameters of the HMM under the null case.

Let L0(t) denote the log-likelihood of observations in window W (t) with respect to the

parameters of the HMM under null case i.e

L0(t) = log[p(yt−w+1, yt−w+2, · · · yt; θ0)]

Similarly let L1(t) be the log-likelihood of the observations in window W (t) with respect

to the parameters obtained by estimation using Baum-Welch algorithm [29] i.e.

L1(t) = log[p(yt−w+1, yt−w+2, · · · yt; θ̂)]
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Figure 30a. Transition probability matrix under null case (Left) and shifted case (Right)
for change detection when parameter after the change is known.

The statistic L(t) used for detecting the change is:

L(t) = L1(t)− L0(t)

where L(t) measures the difference between the log-likelihood of the window of obser-

vations under null case θ0 and the log-likelihood of the window of observations using the

estimated parameters θ̂. The statistic L(t) is plotted against t, as t varies from w to n to

detect the changes.

If there is a change in the parameters of the HMM, the statistic L(t) would show a

shift as t changes, since the likelihood values are expected to differ significantly, hence the

difference between L1(t) and L0(t) increases. Consider a time t0 at which the parameters

of the HMM change. For t ≤ t0, the estimated value θ̄ and the null value θ0 would be close

to each other. Hence the value of L(t) would be small. For t ≥ t0, the estimated value θ̄

would be significantly different from the null value θ0. Hence the value of L(t) would be

large.

3.1. EXPERIMENTS FOR CHANGE DETECTION WHEN THE PARAMETER AF-

TER CHANGE IS UNKNOWN

Experiments were conducted to illustrate the above method. Consider a fixed state

binary HMM withN = 2 states andM = 2 observations. The transition probability matrix

and the emission probability matrix for the null case are shown in Fig. 30a and Fig. 30b
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Figure 30b. Emission probability matrix under null & shifted case for change detection
when parameter after the change is known.

respectively. The transition probability matrix and the emission probability matrix for the

shifted case are shown in Fig. 30a and Fig. 30b respectively. It can be seen that the emission

probability matrix doesn’t change from the null to the shifted case.

To illustrate the performance of the method with increased number of observations,

2000 points (or observations) were simulated. The first 1000 points simulated with param-

eters of HMM as in the null case and the next 1000 points simulated with parameters of

HMM under the shifted case. The window size is varied from 25 to 50 observations. For

each window size, the statistic Dt as described before, is plotted against the observation

number t.

The results for window sizes of 25 and 50 are shown in Fig. 31a and Fig. 31b. These

plots resemble control charts used for process control. There is a clear indication of process

change at 1000th observation in all the plots. The signal is more stronger but delayed as

the window size increases, since more observations would be available for estimating the

parameters of the HMM if window size is more.

4. DETECTING SPECIFIC PARAMETER CHANGES IN A HMM

This section deals with detecting changes within a trajectory. While detecting changes

within a trajectory, it is of interest to detect specific regions of the trajectory where the

change could have occurred. The change detection problem of trajectories is translated to
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Figure 31a. Likelihood ratio statistic L(t) versus observation number with a window size
w = 25. The first 1000 observations correspond to null case parameters while the next 1000
observation correspond to shifted case. The statistic L(t) begins to increase after 1000th
observation confirming the change.

Figure 31b. Likelihood ratio statistic L(t) versus observation number with a window size
w = 50. The first 1000 observations correspond to null case parameters while the next 1000
observation correspond to shifted case. The statistic L(t) begins to increase after 1000th
observation confirming the change.

change detection in the parameters of a HMM. To detect such changes, we need to detect

specific parameter changes of a HMM i.e. if the state transition probability from only one

state has changed.
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In order to detect such changes, we have proposed a new modified Baum-Welch (m-

BaumWelch) algorithm. To illustrate this change, consider a trajectory being modeled using

a HMM which is described by the pair (xt; yt) where t = 1, 2, · · ·n, xt is a Markov chain

with state space of four states (s1, s2, s3, s4) and yt is the observation sequence belonging

to four finite observations (o1, o2, o3, o4). Let the transition probability matrix of this HMM

be given by a matrix

A = [aij ], aij = P (xt = sj |xt−1 = si)

such that ∑
j

aij = 1 ∀i where i, j ∈ {1, 2, 3, 4}

The proposed method is used to detect specific parameter changes in the transition prob-

ability matrix of HMM. For the above example, if aij for i = 1 changes, while those for

i = 2, 3, 4 remain unchanged, we would be able to detect this change. Since aij’s for a

fixed i are dependent, if aij changes, the other values have to change to satisfy the equation∑
j aij = 1 i.e if a11 changes, a12, a13, a14 also have to change. Hence, the method is

used to detect the particular row in the transition probability matrix of the HMM that has

changed.

4.1. m-BAUMWELCH ALGORITHM

The Baum-Welch (BW) algorithm is a class of expectation-maximization algorithms,

which computes the maximum likelihood estimates of the parameters (transition and emis-

sion probabilities) of a HMM, when given only emissions as training data [86]. The m-

BaumWelch(m-BW) algorithm that we have proposed enforces constraints for parameter

estimation in a HMM. Unlike the original algorithm which estimates all the parameters of
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the HMM, the m-BW algorithm fixes the specific parameters which have to be estimated

and leaves the remaining parameters unaltered.

The m-BW algorithm is based on the principles of the original BW algorithm. It uses the

expectation-maximization principle and computes the parameter estimates by maximizing

the likelihood values for the parameters of the HMM given the observation sequence. The

details of the algorithm including the input and the steps involved are described.

Let y1, y2, y3, · · · yn be the observation sequence that is known, containing n observa-

tions, from which the specific parameters of the transition probability matrix of a HMM

have to be re-estimated. The algorithm takes as input a parameter r which denotes the row

number of the transition probability matrix that has to be estimated. This is the main differ-

ence from the original BW algorithm, where we have the flexibility to change only specific

row of the transition probability matrix while the remaining rows remains unchanged, un-

like in the traditional BW algorithm, where all the rows of the transition probability matrix

and the emission probabilities are estimated.

The steps involved in the algorithm are as follows:

1. Input the initial parameters of an N state HMM i.e. θ = (A,B, π).

2. Let the new parameter being estimated be θ̄ = (Ā, B̄, π̄) where the transition proba-

bility matrix (TPM) is Ā. Re-estimate Ā as follows

aij =

∑n−1
t=1 P (xt = si, xt+1 = sj |Y, θ)∑n−1

t=1 P (xt = si|Y, θ)
∀i = r, j ∈ 1, 2, · · ·N

aij = aij ∀i 6= r, j ∈ 1, 2, · · ·N

3. The values of B̄ and π̄ are as follows

B̄ = B
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π̄ = π

4. Check for convergence:

| log[p(y1, y2, y3, · · · yn|θ)]− log[p(y1, y2, y3, · · · yn|θ̄)]| ≤ δ

i.e. loglikelihood ratio of the observations given the new estimate of θ̄ and the old

value of θ is less than a threshold δ. If converged stop.

5. Else θ ← θ̄, go to step 2.

4.2. CHANGE DETECTION USING m-BAUMWELCH ALGORITHM

In this section, we describe how the new m-BW algorithm is used to detect specific

parameter changes of the transition probability matrix of a HMM. Let y1, y2, y3, · · · yn be

the n observations obtained by the HMM. Consider a window of observations of size w(≤

n) from the HMM

W (t) = (yt−w+1, yt−w+2, · · · yt)

where t varies from w to n. Let θ0 denote the parameters of the HMM under the null case.

Let L0(t) denote the log-likelihood of observations in window W (t) with respect to the

parameters of the HMM under null case

L0(t) = log[p(yt−w+1, yt−w+2, · · · yt; θ0)]

Let θ̂r denote the parameters of the HMM estimated using the m-BW algorithm with input

parameter as r, where r varies from 1 to N . For each value of r, let L1r(t) be the log-

likelihood of the observations in window W (t) with respect to the parameter θ̂r i.e.

L1r(t) = log[p(yt−w+1, yt−w+2, · · · tk; θ̂r)]
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Figure 32a. TPM: Null case (Left) & Emission: Null and Shifted cases (Right) for change
detection using m-BW algorithm with two hidden states.

The statistic Lr(t) used for detecting the change is:

Lr(t) = L1r(t)− L0(t)

where Lr(t) is the log-likelihood ratio of the window of observations. The statistic Lr(t) is

plotted against t, as t varies from w to n, for each value of r to detect the specific changes.

If there is a change in a specific row l of the transition probability matrix of the HMM, the

statistic Lr(t) would show a shift as t changes, when r = l. But for the rest of the values

of r, the statistic Lr(t) would not show any significant shift.

4.3. EXPERIMENTS FOR CHANGE DETECTION USING m-BW ALGORITHM

Experiments were conducted to illustrate the m-BW algorithm. Consider a fixed state

binary HMM with N = 2 states and M = 4 observations. The null case transition prob-

ability matrix and the emission probabilities are shown in Fig. 32a. Two cases of shift in

the transition probability matrix are considered. In case I, as shown in Fig. 32b, only the

transition probabilities from state 1 change while those from state 2 remain unchanged. On

the other hand, in case II shift, as shown in Fig. 32b, only the transition probabilities from

state 2 change while those from state 1 don’t change. We have incorporated a rather large

shift in the transition probabilities to illustrate how our method works.

For case I shift, 200 points were simulated with the first 100 points from the HMM

with parameters under null case, while the next 100 points from the HMM with TPM under
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Figure 32b. TPM: Shifted case I (Left) & Shifted case II (Right) for change detection using
m-BW algorithm with two hidden states.

Figure 33. Likelihood ratio statistic Lr(t) versus observation number for detecting case
I shift. The first 100 observations correspond to null case parameters while the next 100
observation correspond to shifted case I. The statistic L1(t) begins to increase after 100th
observation confirming the change in the first row of the TPM. The statistic L2(t) doesnot
change for the 200 observations because the second row of the TPM doesnot change.

shifted case I. A sliding window of size w = 50 points is chosen. For each position of the

sliding window, the m-BW algorithm is run two times using the input parameters as r = 1

and r = 2 to estimate only the first or second row of the TPM, respectively. The statistic

Lr(t) for r = 1, 2, as mentioned earlier, is plotted against the observation number or t, as t

varies from 50 to 200.
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Figure 34. Likelihood ratio statistic Lr(t) versus observation number for detecting case
II shift. The first 100 observations correspond to null case parameters while the next 100
observation correspond to shifted case II. The statistic L2(t) begins to increase after 100th
observation confirming the change in the second row of the TPM. The statistic L1(t) does-
not change for the 200 observations because the first row of the TPM does not change.

Figure 35a. TPM: Null case TPM (Left) & Shifted case TPM (Right) for change detection
using m-BW algorithm with four hidden states.

The results for case I shift are shown in Fig. 33. From the plot in Fig. 33, it can be seen

that Lr(t) values for r = 1 show a change as the position of the sliding window changes,

while the values for r = 2 remain unchanged.

The results for case II shift, where only the parameters of the second row of TPM

change are shown in Fig. 34. The plot shows the Lr(t) values changing for r = 2 while

those for r = 1 remain unchanged, thus confirming the change.
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Figure 35b. TPM: Null & Shifted case Emission probabilities for change detection using
m-BW algorithm with four hidden states.

Experiments were conducted to test the m-BW algorithm for increasing number of hid-

den states and the observations of the HMM. Consider a HMM with with N = 4 states and

M = 5 observations. The null case TPM and the shifted case TPM are shown in Fig. 35a,

while the emission probabilities used in both cases is shown in Fig. 35b. From Fig. 35a,

it can be seen that only the transition probabilities from state 1 i.e. row 1 change in the

TPM while the other values remaining values remain unchanged. We generated 100 obser-

vations using the HMM with null parameters, followed by the next 100 observations from

the HMM with shifted parameters. The m-BW algorithm was used to detect the change

in the parameters from these 200 observations using a window size of 50. The results are

shown in Fig. 36, where Lr(t) is plotted for r = 1, 2, 3, 4 against the observation number.

The observation number in the figure corresponds to t in Lr(t). The results are shown for

20 observations before the change and 20 observations after change. It can be seen from

the Fig. 36 that the Lr(t) value for r = 1 has a higher value for t = 130, 131, · · · 150 com-

pared to when t = 70, 71, · · · 90, thus confirming that the first row of TPM has changed.

The values of Lr(t) for r = 2, 3, 4 remain unchanged, hence confirming that the second,

third and fourth row probabilities of the TPM did not change.

84



Figure 36. Likelihood ratio statistic Lr(t) versus observation number for r = 1, 2, 3, 4.
The first 100 observations correspond to null case parameters while the next 100 observa-
tion correspond to shifted case. The plot shows the Lr(t) values for only 20 observations
before the change and 20 observations after the change. The statistic Lr(t) when r = 1 is
higher for the 20 observations after the change compared to the 20 before the change, thus
confirming the change.

5. CHANGE DETECTION IN TRAJECTORY DATA

The previous sections dealt with detecting changes within a trajectory i.e. changes in

observations from a HMM. In this section, we describe how the change detection frame-

work for a HMM, explained in the previous sections, is used to detect changes between

trajectories. The modeling framework used in change detection of trajectories is shown in

Fig. 37.

The difference between the change detection framework in this section compared to

other sections is that, in the earlier sections the observations from a single HMM, which

can be considered to be GPS points of a single trajectory, are used for change detection.

In this section, we consider observations from a set of different trajectories and aim to
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Figure 37. Modeling framework for change detection in trajectory data.

detect changes in trajectories as a whole. The difference in the type of HMM used in this

section compared to earlier sections, is that we use a continuous state HMM unlike the finite

state HMM used earlier. Since the trajectories are represented as a sequence of continuous

GPS points ordered in time, we use a continuous state HMM to model the trajectory data.

A set of trajectories T1, T2, · · · , Tn are modeled using a HMM, where the GPS points in

the trajectories are considered to be the observations of the HMM. The dense regions or

clusters occurring in the trajectories are considered to be the unknown or hidden states of

the HMM. The number of states of the HMM are learnt from the training trajectories. A

detailed explanation of the modeling framework is given in Section 3.1. Each trajectory Ti

is represented as follows, Ti = (xit, y
i
t); t = 1, 2, · · ·mi where mi is the length of trajectory

Ti for i = 1, 2, · · ·n. This modeling framework allows the trajectories T1, T2, · · · , Tn to be

of varying lengths.
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The method used for change detection is as follows. A set of training trajectories

T1, T2, · · ·Tk for k ≤ n are used to build a continuous HMM. Let θ0 denote the param-

eters of the continuous HMM modeled using the training trajectories. Consider a new set

of test trajectories Tk+1, Tk+2, · · ·Tn. A new data set consisting of n trajectories is cre-

ated by appending the training and testing trajectories. Consider a window of size w ≤ n,

consisting of w trajectories i.e.

W (t) = (Tt−w+1, Tt−w+2, · · ·Tt)

where t varies from w to n. This window is different from the earlier sections, as the

window in the earlier sections consists of a set of observations but here we use a set of

trajectories. Let L0(t) denote the log-likelihood of the trajectories in window W (t) with

respect to the parameters of the HMM obtained from the training trajectories i.e

L0(t) = log[p(Tt−w+1, Tt−w+2, · · ·Tt; θ0)]

Similarly, let L1(t) be the log-likelihood of the trajectories in sliding window W (t) with

respect to the parameters of the HMM obtained by estimation using Baum-Welch algorithm:

L1(t) = log[p(Tt−w+1, Tt−w+2, · · ·Tt; θ̂)]

The statistic L(t) used for change detection is:

L(t) = L1(t)− L0(t)

where t ≥ w.

To test the efficiency of our method a control chart is built to monitor L(t). The control

charts can be used to test the change detection models used in previous sections as well.
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However, a detailed explanation of how to use the control charts for change detection is de-

scribed only in this sections. The control limits were chosen using the training trajectories.

The control limits are

UCL : µ+ 3σ/
√
w

LCL : µ− 3σ/
√
w

where µ is the mean of the L(t) values of the in-control data or training trajectories, σ is the

standard deviation of the L(t) values of the training trajectories and w is the window size.

Once the control limits are set, the run length for the first out-of-control signal to occur is

found. These run lengths are calculated for different combinations of training and testing

trajectories and different window sizes.

We have calculated the autocorrelation function [85] of the statistic L(t) at different

time lags and found that the autocorrelation for the data used in the experiments was low.

However, if there is autocorrelation in the data, one approach to deal with autocorrelation is

to sample from the process data stream less frequently i.e. by avoiding data from adjacent

windows in the trajectory data. But this would lead to an inefficient use of available data.

Another approach in dealing with autocorrelated data is to directly model the correlative

structure with an appropriate time series model, use that model to remove the autocorrela-

tion from the data, and apply control charts to the residuals [87].

5.1. DATA GENERATION

To illustrate the applicability of our method with real trajectory data, we have used a

dataset that contains mobility traces of taxi cabs in San Francisco, USA [88]. The dataset

contains GPS coordinates of approximately 500 taxis collected over 30 days in the San

Francisco Bay Area with a total of 10990 trajectories. Each trajectory consists of approxi-
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Figure 38. Variation of likelihood of trajectory data with number of states of the HMM.

mately 1200 to 1500 GPS points. Each San Francisco based yellow cab vehicle is outfitted

with a GPS tracking device that is used by dispatchers to efficiently reach customers. The

data is transmitted from each cab to a central receiving station, and then delivered in real-

time to dispatch computers via a central server.

The daily trajectories of the cabs in the dataset consist of a large amount of points

i.e. long trajectories. As a first step in analyzing the trajectories, we reduced the size of

the dataset by compressing the original trajectories with minimum loss of information. To

compress the trajectory data we used the line simplification method, specifically, the DP

(Douglas-Peucker) algorithm [89]. Details of the DP algorithm are provided in Chapter

2. After compression of the dataset using DP algorithm, each trajectory consisted of 150
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to 200 GPS points on an average, with a total of 87,2600 points for the 500 cabs. These

compressed trajectories of the cabs were used for further analysis. The first step in change

detection is to train a continuous HMM using the cab trajectories.

To decide on the number of hidden states to be used for a continuous HMM with Gaus-

sian distribution, one month trajectory data of a single cab was used. The states of the

continuous HMM were varied from 2 to 50 and the likelihood of the data was calculated for

each of the state configurations of the HMM. The plot of variation of the likelihood values

with the states is shown in Fig. 38. From the figure, it can be seen that the likelihood value

increases drastically up to 20 states and stabilizes thereafter. Hence, the number of states of

the HMM was chosen to be 20 based on the plot. The emission probability distribution i.e.

mean and variance of the Gaussian distribution are learnt from the observations.

Our trajectory change detection method is used to detect changes in the trajectories of

the cabs with time. Consider the trajectories of a cab for a month. If the trajectories in

the first half of the month follow a specific path, while the trajectories start shifting after

that, our method can prove useful to detect if and when this change occurs. However, the

trajectories of the cabs in the SFO dataset do not follow this pattern of change. We created a

simulated dataset from the cab trajectory data to induce the change, which we aim to detect

later.

As a first step to generate trajectory data with the induced change, we clustered the tra-

jectories of the cabs. Clustering was done to obtain groups of similarly moving trajectories.

The trajectories were clustered using the mixtures of regression model [5]. The details of

the clustering framework are provided in Chapter 2. Trajectory data have certain complica-

tions which make it difficult to apply standard clustering techniques. Trajectories can be of
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different length, hence they cannot be converted to fixed length vectors to apply standard

clustering techniques. Trajectories are also a function of the time variable, hence the clus-

tering algorithm should take this kind of dependance into account. Also, the trajectories can

be measured at different time points. Hence a mixture of regressions approach is used for

clustering the trajectories, where each cluster is modeled as a prototype regression function

with some variability around that prototype.

The representative data for change detection was created as follows. Let two clusters

from the trajectory data be denoted as cluster 0 and 1 respectively. Consider n0 trajectories

belonging to cluster 0 and n1 trajectories belonging to cluster 1. Let the trajectories belong-

ing to cluster 0 be denoted as T 0
1 , T

0
2 · · ·T 0

n0
respectively and the trajectories belonging to

cluster 1 as T 1
1 , T

1
2 · · ·T 1

n1
respectively. A new dataset is created with a total of n0 + n1

trajectories T 0
1 , T

0
2 · · ·T 0

n0
, T 1

1 , T
1
2 · · ·T 1

n1
such that the first n0 trajectories belong to cluster

0 and the next n1 trajectories belong to cluster 1. The order of trajectories in the datset is

important to train the HMM. For the purpose of this experiment, the order of trajectories in

each cluster is random, but in general time-ordered trajectories should be used. The time to

detection would vary with a change in the order of the trajectories in the cluster, which is

explained later.

5.2. EXPERIMENTS

The first step was to obtain clusters of trajectories with induced change. The trajectories

of first 50 cabs were used for clustering. Each cab had approximately 20 to 24 trajectories,

with a total of 1142 trajectories for the 50 cabs. Each trajectory has 90 GPS points on an

average. Hence, the total size of the data set is of the order of approximately 100,000 data

points. The mixture of regressions method was used to cluster the 1142 trajectories into 20
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TABLE 3. Clusters of trajectories of 50 cabs.

Cluster Count of Trajectories
1 59
2 79
3 4
4 39
5 148
6 44
7 52
8 131
9 44

10 41
11 24
12 30
13 69
14 58
15 50
16 81
17 79
18 56
19 49
20 5

clusters. The number of clusters were chosen to be 20, as increasing the number beyond 20

would produce clusters with very few trajectories in them and decreasing the number below

20 would produce fewer replicates to conduct experiments for finding the run lengths which

is discussed later. The count of trajectories belonging to each cluster is shown in Table 3. It

can be seen from the table that some clusters are very dense while the clusters 3 and 20 are

very sparse. The 3D plot of a sample of 9 trajectories belonging to cluster 2 is shown in Fig.

39. It can be seen from the figure that the trajectories can be confined to a cube of specified

dimensions. This behavior was observed in the trajectories from other cabs as well.

Using the 20 clusters, datasets with induced change as described earlier were generated,

by taking two clusters at a time. However, clusters with IDs 3 and 20 were ignored as they

92



Figure 39. Sample trajectories belonging to cluster 2. Clustering is done using the mixture
of regressions model.

were very sparse. To illustrate the method, let the 59 trajectories belonging to cluster 1 be

the training set. A HMM with 20 states is trained using the 59 trajectories belonging to

cluster 1 and is considered to be the null case HMM. The trajectories belonging to each of

the clusters 2 to 20 (excluding clusters 3 and 20) are used as the testing trajectories to detect

the change. Experiments were conducted for two different window sizes - 10 and 25. The

likelihood ratio plot for cluster 1 trajectories as the training set and cluster 2 trajectories
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Figure 40a. Change detection of trajectories from cluster 1 to cluster 2 using window size
of 10. The first 59 trajectories belong to cluster 1 while the next 79 trajectories belong to
cluster 2. An increase in the likelihood ratio value after the 59th trajectory confirms the
change.

Figure 40b. Change detection of trajectories from cluster 1 to cluster 2 using window size
of 25. The first 59 trajectories belong to cluster 1 while the next 79 trajectories belong to
cluster 2. An increase in the likelihood ratio value after the 59th trajectory confirms the
change.
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Figure 41. Sample likelihood ratio i.e. L(t) vs t plots using trajectories from cluster 1 as
the training data and trajectories from other clusters at the testing data.

as test set for different window sizes is shown in Fig. 40. It can be seen from the figure

that the likelihood ratio starts increasing after the 59th trajectory and the mean value of

the likelihood ratio shifts thereafter. Some values of the likelihood ratio are unavailable

for window size of 10 because of the inability of the estimation algorithms such as BW to

converge due to insufficient data in the window. However, as the window size increases

from 10 to 25 it can be seen that lesser values are missing for the likelihood ratio. Some

sample likelihood ratio plots using cluster 1 trajectories as training data and the trajectories

from other clusters as the testing data is shown in Fig. 41. It can be seen from the Fig. 41,

that the general trend of the plots is that L(t) value starts to increase after the 59th point,

thus depicting a change in the nature of the trajectories.
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Figure 42. Run length values to get an out-of-control signal using control charts for differ-
ent combination of training and testing trajectories with window size of 10.

Similar experiments were conducted by varying the training set i.e choosing cluster 1

through cluster 20 (excluding cluster 3 and 20) trajectories as the training set. For each

of the dataset consisting of a set of training and testing trajectories, a control chart is built

using the training trajectories as the in-control data. The run length of the control chart is

the number of points in the testing data till which an out-of-control signal occur i.e. the

point is outside the control limits. The run length is calculated using the testing trajectories

for different window sizes. The results of the run lengths for window size of 10 are shown

in Fig. 42. Similar results for a window size of 25 are shown in Fig. 43. From the figures it

can be seen that the run lengths for a window size of 10 are greater than that for a window

size of 25. The average value of the run lengths for cluster 1 across the clusters 2 through
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Figure 43. Run length values to get an out-of-control signal using control charts for differ-
ent combination of training and testing trajectories with window size of 25.

19 is 5.17 using window size of 10, while the same value is 1.82 for window size of 25.

The maximum value of the run lengths using window size of 10 is 34, while it is only 9

using window size of 25. Also, in Fig. 43 the run length values for cluster ID 11 and 12

are not available because the number of trajectories in the clusters are 24 and 30 which are

comparable to the window size of 25. Hence, the in-control data for these clusters could

not be obtained.

The autocorrelation between L(t) values of in-control data for cluster 1 trajectories

shown in Fig. 40b, for a window size of 25, is shown in Fig. 44. By examining the plot

in Fig. 44, it can be seen that there is low autocorrelation in the data. The autocorrelation

values for rest of the clusters of trajectories was also calculated. It was found that, the auto-
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Figure 44. Autocorrelation between L(t) values of in-control data for cluster 1 trajectories
for a window size of 25.

correlation between the L(t) values for the training data was low, for all the data sets where

the training data was cluster 2 through cluster 19 trajectories

6. CONCLUSIONS

A change detection method was developed to detect changes in trajectories with time.

HMMs were used to model the trajectories, where the GPS points in the trajectories were

considered to be the observations of the HMM. The problem of detecting changes in tra-

jectories with time, was mapped to detecting the changes in the parameters of the HMM.

Real trajectory data obtained from the cabs was used to test the method. Trajectories with
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induced change were simulated using the cab trajectory data. Our method when applied to

these trajectories, was able to successfully detect the changes.
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CHAPTER 4

DETECTING CHANGES IN PATTERNS OCCURRING IN TRAJECTORY DATA

With the advent of technologies like GPS, sensors etc., the movement of people and

vehicles can be observed from the digital traces left by them which are being collected

by wireless devices. For example, the trajectories of moving people can be collected by

analyzing the positioning logs left by the mobile phones. Similarly, vehicles such as cabs in

a region can be traced by the GPS systems present in the vehicles which record the latitude-

longitude position at different time instants. Such information can be useful to discover

usable knowledge about the movement behavior.

Discovering frequent sequential patterns in trajectory data, called trajectory patterns,

would be extremely useful in various domains like traffic management, tourism recom-

mendations etc. Such trajectory patterns which show the cumulative behavior of moving

objects in a specific region can help us understand various mobility-related phenomenon.

A trajectory pattern represents a set of individuals that visit the same sequence of places.

Knowledge gained from such trajectory patterns, can help promote tourism by providing

banners at the frequently visited places about other famous places in the region to visit.

Trajectory patterns extracted from a set of trajectories can change with time. For exam-

ple, the sequence of places visited by tourists last year might change this year. Detecting

such changes in trajectory patterns is important to identify the obsolete patterns and new

patterns that are emerging with time. We have proposed two different methods for detect-

ing changes in the trajectory patterns. We have conducted experiments using real trajectory

data of cabs in San Francisco, to illustrate our method. Our method can be applied more

generally to any sequential data from which frequent sequential patterns can be extracted

e.g. customer market data.
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TABLE 4. Notation table

Notation Description

D0 Original data consisting of R0 sequences

P0 Set of frequent sequential patterns extracted from D0

D1 Test data consisting of R1 sequences

R Number of sequences in a sample obtained from D0 or D1

Dn
0 nth replicate containing R sequences, where each of the R se-

quences are obtained by sampling from the R0 sequences in D0

without replacement

N Number of replicates obtained from the training data D0

Dm
1 mth replicate containing R sequences, where each of the R se-

quences are obtained by sampling from the R1 sequences in D1

without replacement

M Number of replicates obtained from the test data D1

p Frequent sequential pattern in P0, denoted by (p1, p2, · · · pQ)

where pq ∈ I for q = 1, 2 · · ·Q

Q Number of items in pattern p

I Set of items denoted by {i1, i2, · · · iW }

W Total no.of items in the database D0 or D1
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TABLE 4. Notation table

Notation Description

s Sequence denoted by (s1, s2, · · · sL) where sl ∈ I for l =

1, 2 · · ·L

Sn0 (j) jth statistic calculated for a pattern p in replicate Dn
0

Sm1 (j) jth statistic calculated for a pattern p in replicate Dm
1

Cj Control chart built using the jth measure

f(pq′ , pq, s) Function which calculates the average time between occurrence

of the items pq′ and pq of a pattern p in a sequence s

tn0 (q
′
, q) Average time between occurrence of an item pq after item pq′ of

pattern p in a replicate Dn
0 calculated using all sequences in Dn

0

where p occurs

tm1 (q
′
, q) Average time between occurrence of an item pq after item pq′ of

pattern p in a replicate Dm
1 calculated using all sequences in Dm

1

where p occurs

Tn0 Q−1 dimensional vector representing the average times between

the Q items of pattern p in a replicate Dn
0 calculated using all

sequences in Dn
0 where p occurs
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TABLE 4. Notation table

Notation Description

Tm1 Q−1 dimensional vector representing the average times between

the Q items of pattern p in a replicate Dm
1 calculated using all

sequences in Dm
1 where p occurs

t0 Sampling time between items in sequences D0

t1 Sampling time between items in sequences D1, equal to δt0

ε Threshold used in BIRCH clustering

TR Trajectory represented as a sequence of points (xt, yt), where t =

1, 2, · · ·T

TRu uth trajectory among U trajectories represented as a sequence of

points (xut , y
u
t ) where t = 1, 2, · · ·Tu and u = 1, 2, · · ·U

vut Feature vector extracted from a trajectory TRu i.e. vut =

[xut , y
u
t , x

u
t+1, y

u
t+1]

Vu Set of Tu − 1 feature vectors extracted from a trajectory TRu i.e.

Vu : {vut } where t = 1, 2, · · ·Tu − 1

V Set containing feature vectors extracted from all U trajectories

i.e. V : {Vu} where u = 1, 2, · · ·U

C Set ofK clusters obtained by clustering feature vectors belonging

to V i.e. C : {c1, c2, · · · cK}
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TABLE 4. Notation table

Notation Description

Dn
0 (p) Set of all sequences in Dn

0 in which the pattern p appears

g Subgroup size used in hotelling T 2 control chart

In Section 1, we have defined a sequential pattern and the problem of change detection

in sequential patterns. The algorithm for frequency-based approach is described in Section

1.1, and the algorithm for distribution-based approach is described in Section 1.2. In Section

2, we describe the preprocessing technique used for trajectories. The trajectories are first

compressed to reduce the size of the trajectory data. The compressed trajectories are than

discretized to convert the continuous valued GPS points in trajectories to discrete clusters.

The procedure used for converting a trajectory into a sequence of items is described in

Section 2. The real trajectory data that has been used and the discretization parameters

are described in Section 3. Experiments for the frequency-based approach with low level

of discretization are shown in Section 3.1 and those with high level of discretization are

shown in Section 3.2. Experiments for the distribution-based approach with high level

of discretization are shown in Section 3.3 while those with low level of discretization are

shown in Section 3.4. The notation used in the chapter is shown in Table 4.
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Figure 45. Sequence database consisting of 10 sequences and the set of frequent sequential
patterns with minimum support of 0.5 extracted from them.

1. CHANGE DETECTION IN SEQUENTIAL PATTERNS

Sequential Pattern Mining (SPM) [59] is a technique used to find the relationships be-

tween occurrences of sequential events, to find if there exist any specific order of the occur-

rences. An example of sequential patterns is that every time Microsoft stock drops 5%, IBM

stock will also drop at least 4% within three days. SPM finds applications in a wide range of

areas since many types of data have a time-stamp associated with it. Business organizations

use SPM to study customer behaviors. Sequential patterns can be extracted from web log

analysis, which are very useful to better structure a companys website for providing easier

access to the most popular links [62]. It is also used in intrusion detection [63] and DNA

sequence analysis [64].

In our present work we propose a change detection framework for sequential patterns

in streaming data. The specific problem that we address is to detect if a new stream of
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data has the same sequential patterns as that of the original data from which the sequential

patterns are extracted. Consider a dataset consisting of thousands of records from which

sequential patterns are extracted. The frequent sequential patterns are those patterns whose

frequency count is greater than a specified minimum threshold. When a new stream of

sequential data arrives the sequential patterns from this data could be similar to the original

sequential patterns or significantly different. It is of interest to know if the discovered

frequent sequential patterns in the original data are still frequent. Also, if the patterns

continue to exist in the new data, do they occur at similar time intervals as the original

patterns or has the time interval distribution changed. If the patterns are changing in the

new data stream than it would be a concern as the sequential patterns from the original data

would be obsolete and would not provide sufficient knowledge for decision making.

We have addressed this problem using the following two approaches. In the frequency

based approach, the statistics such as relative support, information gain etc. for each fre-

quent sequential pattern in the original data are compared with those from the new data to

detect changes. This method is used to detect if the previously found frequent patterns are

still frequent in the new data. In the distribution based approach, the distribution of the

time between the items in the frequent patterns is used to detect changes in the new data.

Using the distribution based approach, we can detect if the time of occurrence of items in

the patterns in the new data have the same distribution as the original patterns.

Consider a database D0 consisting of R0 sequence. Each sequence in D0 is an or-

dered set of items e.g. the sequence with ID 1 in the figure is the ordered set of items

{a, b, c, e, a, c, f}. Let I be the set of items denoted by {i1, i2, · · · iW } where W represents

the total number of items in D0. Let s be a sequence in D0, denoted by (s1, s2, · · · sL)
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Figure 46. An example depicting a trajectory which is a sequence of GPS points being
denoted as a sequence of items.

where sl ∈ I for l = 1, 2 · · ·L. An example of a sequence database consisting of 10

sequences and the frequent sequential patterns extracted from it are shown in Fig. 45.

Let p be a frequent sequential pattern extracted from D0 and be denoted by

(p1, p2, · · · pQ) where pq ∈ I for q = 1, 2 · · ·Q. The support of the pattern p in the sequence

database D0 is the fraction of sequences, s, that contain the pattern p as a subsequence i.e.

support(p) =

∑
i I(p ⊂ si)
R0

The pattern p is frequent if it’s support is greater than a user specified minimum support.

As an example, the pattern {a, b, c} in Fig. 45 is a frequent sequential pattern. It occurs in

5 out of 10 sequences in the database. Hence the support of pattern {a, b, c} is 5/10.

The general notion of a sequence as a set of items is described here. A trajectory can

also be represented as a sequence of items. A trajectory is a time-ordered sequence of

GPS points. To convert a trajectory which is an ordered sequence of points to a sequence

of items, the GPS points in the trajectory were discretized. A detailed explanation of the
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Figure 47. Modeling framework of the frequency-based method for change detection in
sequential patterns. Subsets are extracted from the training data by sampling without re-
placement. Frequency based statistics obtained from these subsets are compared with the
test data to detect changes.

representation of trajectory as a sequence of items, and the notion of an item in the case of a

trajectory is given in Section 2. Fig. 46 shows an example of a trajectory being represented

as a sequence of items. At each timestamp, the x-coordinate and the y-coordinate of the

trajectory are recorded i.e. at time 12:00, the trajectory with ID 1 in Fig. 46 is at location

(123.51, 67.81). The location corresponding to (123.51, 67.81) is discretized and assigned

an ID L7. The trajectory in Fig. 46 is thus denoted as a sequence of discretized locations

(L7, L11, L15, L22 · · · ), where each of them can be considered to be an item. All the

models developed in this chapter are applicable to data that can be represented as a sequence

of items.
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1.1. FREQUENCY-BASED APPROACH

The frequency-based method is used to detect if the sequential patterns which were

frequent in the original data are still frequent in the new data. There is no restriction on

the size of the new data as the size of the new data can be different from the original data.

A threshold obtained from the control charts is used to make the decision if the sequential

patterns in the new data are significantly different from the original data.

Each row in the databaseD0 is a sequence. LetD1 be the new stream of data containing

a different set ofR1 sequences. An overview of the modeling framework for the frequency-

based method is shown in Fig. 47. The basic idea behind the frequency based approach is

that the frequency based statistics like relative support, information gain etc. of a pattern

obtained using any replicate of the original data donot differ much. A replicate of the data

D0, denoted by Dn
0 , is a subset of data D0 containing R sequences, where each of the R

sequences are obtained by sampling from the R0 sequences in D0 without replacement.

These statistics can be used to detect how the patterns in the new stream of data differ from

the original data. Original data is sampled multiple times without replacement to obtain

replicates from the data. Statistics such as relative support, information gain etc. obtained

from these replicates are used for change detection in the new data stream. The detailed

steps involved in the frequency-based approach for change detection in sequential patterns

are as follows:

1. Frequent sequential patterns are extracted from the original data using PrefixSpan

algorithm [59]. Let the set P0 denote the set containing frequent sequential patterns

from the original data D0 with a support greater than minsup.
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2. Let Dn
0 where n = 1, 2, .. · · ·N , be the nth replicate containing R sequences, such

that each of the R sequences are obtained by sampling from the R0 sequences in D0

without replacement.

3. Consider a sequential pattern p, where p ∈ P0. For the pattern p, J statistics

Sn0 (1), Sn0 (2), · · ·Sn0 (J) are calculated for each replicate Dn
0 where n = 1, 2, · · ·N .

Given the data D0, some of the measures that can be extracted for a pattern p from

replicateDn
0 are relative support, information gain, growth rate etc. [90]. The relative

support of pattern p in sampleDn
0 , is the ratio of the support of the pattern p in sample

Dn
0 to the number of sequences in the original data D0.

Relative Support (RS) =
support(p,Dn

0 )

R0

Information Gain (IG) [90] of a pattern p w.r.t to a replicate Dn
0 is the logarithm of

ratio of the support of a pattern in the replicate Dn
0 to the support of the pattern in the

original data D0 weighted by the number of sequences in both

Information Gain (IG) = log
support(p,Dn

0 )×R0

support(p,D0)×R

The Growth Rate (GR) [90] of a pattern p w.r.t to a replicate Dn
0 is proportional to

the rate of change of the support of the pattern p in the replicate Dn
0 compared to the

support of pattern in D0

Growth Rate (GR) =
R0 −R
R0

× support(p,Dn
0 )

support(p,D0)− support(p,Dn
0 )

4. Let Dm
1 where m = 1, 2, .. · · ·M , be the mth replicate containing R sequences, such

that each of the R sequences are obtained by sampling from the R1 sequences in D1
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without replacement. Similarly J statistics, Sm1 (1), Sm1 (2), · · ·Sm1 (J), for the pattern

p are calculated relative to the new data stream Dm
1 .

5. Each of the measures Sm1 (j) where j = 1, 2, · · · J is compared with the correspond-

ing values of the measure Sn0 (j) where n = 1, 2, · · ·N obtained from Dn
0 . If there

is a considerable difference between the two, a change has occurred. To detect the

change, a 3-sigma control chart [85] is built for each of the J measures i.e. there are

J different control charts. For each chart Cj , where j = 1, 2, · · · J , the control limits

are calculated using Sn0 (j), where n = 1, 2, · · ·N , as the in-control data. The value

Sm1 (j) from new data Dm
1 is plotted on the control chart to check if it falls within the

control limits or is an out-of-control signal thus indicating a change.

1.2. DISTRIBUTION-BASED APPROACH

The distribution-based method is used to detect if the time-interval distribution between

items in the patterns from the new data is different from those in the original data. This

method takes into account the multiple occurrence of items of pattern in the observed se-

quences, while finding an average value of time between items in a pattern. Also, there is

no restriction on the number of items in a pattern, since we use a vector to store the time

intervals between different items in the patterns. There is also no restriction on the number

of times an item can occur in the patterns. To check for changes in multiple patterns, each

pattern needs to be checked for a change in the distribution of items in that specific pattern.

Consider a sequential database D0 as shown in Fig. 45. The sequential database con-

sists of R0 sequences, where each sequence is an ordered list of items. Here we explain the

distribution-based method with respect to items in general, which can be extended to tra-

111



jectory data. Consider I = {i1, i2, · · · , iW } to be a set of W items, as defined earlier. Let

s be a sequence denoted by (s1, s2, · · · sL) where sl is an item, i.e. sl ∈ I for 1 ≤ l ≤ L.

Let D1 be the new stream of data consisting of N1 sequences.

Let the set P0 denote the set containing frequent sequential patterns from the original

data D0 with a support greater than minsup. Let p be a sequential pattern in the set P0. Let

p be denoted by (p1, p2, · · · pQ) where pq ∈ I for 1 ≤ q ≤ Q. Let a sequence s of D0

contain the sequential pattern p. The time between occurrence of the items pq′ and pq in p

with respect to sequence s is calculated as follows: sequence s is scanned to find the item

sl = pq′ , let this occur at l = a and at time ta. The remaining items in the sequence from

l = (a+ 1) to l = L are scanned to find the item sl = pq, let this occur at l = b and at time

tb. The time between occurrence of items pq′ and pq in sequence s is therefore (tb − ta).

In some cases, there might be multiple occurrences of items pq or pq′ in the sequence s.

For example, say sa = pq′ and sb = pq as well as sc = pq where a ≤ b ≤ c ≤ L. In such

cases, the time between occurrence of items pq′ and pq with respect to sequence s would be

(tb − ta) + (tc − ta)
2

Similarly if pq′ occurs multiple times i.e. sx = pq′ , sy = pq′ and sz = pq where x ≤ y ≤

z ≤ L. The time between occurence of items pq′ and pq with respect to sequence s would

be

(tz − ty) + (tz − tx)

2

Let the average time between occurrence of items pq′ and pq of a pattern p, in a replicate

Dn
0 , be denoted as tn0 (q

′
, q), which is calculated as follows. Let f(pq′ , pq, s) denote the

function which calculates the average time between occurrence of the items pq′ and pq of
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Figure 48. Modeling framework of the distribution-based method for change detection
in sequential patterns. Subsets are extracted from the training data by sampling without
replacement. Time-interval based statistics obtained from these subsets are compared with
the test data to detect changes.

a pattern p in a sequence s. Let Dn
0 (p) denote the set of all sequences of Dn

0 in which the

pattern p appears. Hence, the average time of occurrence tn0 (q
′
, q) is∑

s∈Dn
0 (p)

f(pq′ , pq, s)

|Dn
0 (p)|

where |Dn
0 (p)| denotes the number of sequences in Dn

0 (p).

An overview of the modeling framework for the distribution-based method is shown in

Fig. 47. The distribution-based approach for change detection in sequential patterns is as

follows:

1. Frequent sequential patterns are extracted from the original dataD0 using PrefixSpan

algorithm [59].
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2. Let Dn
0 where n = 1, 2, .. · · ·N , be the nth replicate containing R ≤ R0 sequences,

such that each of the R sequences are obtained by sampling from the R0 sequences

in D0 without replacement.

3. Consider a frequent sequential pattern p denoted by (p1, p2, · · · pQ) where pq ∈ I for

1 ≤ q ≤ Q. Let tn0 (q − 1, q), where q = 2, 3 · · ·Q, denote the average time between

occurrence of an item pq after item pq−1 in pattern p, calculated usingDn
0 (p), for n =

1, 2, · · ·N . The values tn0 (q − 1, q) are calculated using the function f(pq−1, pq, s)

as described previously.

4. Similarly let tm1 (q − 1, q), where q = 2, 3 · · ·Q, be the average time between occur-

rence of an item pq after item pq−1 in the pattern p, calculated using all the sequences

from the data Dm
1 where p occurs. The values tm1 (q − 1, q) are calculated for all the

Q items of the pattern p. Multiple test sets Dm
1 , can be obtained by varying m, where

m = 1, 2, · · ·M .

5. Let Tn0 be a Q − 1 dimensional vector representing the average times between the

Q items of pattern p in a replicate Dn
0 i.e. Tn0 = [tn0 (2), tn0 (3), · · · tn0 (Q)]. Similarly,

let Tm1 be a Q − 1 dimensional vector representing the average times between the

Q items of pattern p in a replicate Dm
1 i.e. Tm1 = [tm1 (2), tm1 (3), · · · tm1 (Q)]. The

values of the vectors Tn0 , for n = 1, 2, · · ·N are compared with the corresponding

vector Tm1 from the test data. A multivariate Hotelling T 2 control chart is built using

Tn0 , for n = 1, 2, · · ·N as the in-control data and calculating the control limits. The

ordering among the Tn0 is not important while constructing the control chart as each

of Tn0 is obtained from a replicate Dn
0 , which are not ordered. The mean vectorT0 of
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the in-control data is estimated as follows

T0 =

∑N
n=1 T

n
0

N

Similarly, the covariance matrix CV is estimated as follows

CV =

∑N
n=1(T

n
0 −T0)(Tn0 −T0)t

N − 1

The vector Tm1 from new data Dm
1 is plotted on the control chart to check if it falls

within the control limits or is an out-of-control signal thus indicating a change.

2. DETECTING CHANGES IN TRAJECTORY PATTERNS

Our objective is detect changes in the frequent sequential patterns occurring in trajec-

tories. Let TR be a trajectory denoted as a sequence of time ordered GPS points (xt, yt)

for t ∈ {1, 2, · · ·T}. Inorder to represent trajectories as sequences, we discretize the tra-

jectories, where the continuous GPS points (xt, yt) are represented by discrete clusters in

space. The details of the discretization are discussed below. Even prior to discretization,

the trajectory data needed to be compressed owing to its huge size.

The trajectory data was first compressed using the DP algorithm [3]. DP algorithm

is a line-simplification algorithm. The input to the algorithm is a trajectory composed of

sequence of points. The output of the algorithm is a similar simplified trajectory with only

a subset of the original points. The details of the algorithm are discussed in Chapter 2.

The details of representing trajectories as a sequence of items is discussed here. Con-

sider a dataset consisting of U trajectories. Let each trajectory TRu in the dataset be rep-

resented as sequence of points (xut , y
u
t ) where t = 1, 2, · · ·Tu and u = 1, 2, · · ·U , where

Tu denotes the number of points in the trajectory TRu. Let vut be a feature vector extracted
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from the trajectory TRu i.e. vut = [xut , y
u
t , x

u
t+1, y

u
t+1], where t = 1, 2, · · ·Tu − 1. The

vector vut gives information of the path traversed by the trajectory TRu between times t

and t + 1. It says the trajectory starts from (xut , y
u
t ) at time t and ends at (xut+1, y

u
t+1) at

time t + 1. The order of points is thus important in the vector vut . Hence, for a trajectory

TRu consisting of Tu points, Tu − 1 feature vectors are extracted.

Let g(TRu) be a function which outputs all the feature vectors of TRu i.e g(TRu) =

vu1 , v
2
u, · · · vuTu−1. Let V denote the set of feature vectors obtained from all the U trajecto-

ries, which can be obtained by applying the function g(TRu) for each u = 1, 2, · · ·U . The

order of the feature vectors in V is not important. All the feature vectors belonging to V

are clustered using BIRCH clustering [22]. The details of the BIRCH clustering algorithm

are provided in Chapter 2. Given the various feature vectors belonging to the set V as in-

puts, BIRCH generates groups of the feature vectors which are close to each other. Since

each feature vector is a representative of a line segment in a trajectory, the clustering phase

indirectly groups the segments of the trajectories which have similar positions in space.

A threshold ε can be provided to the BIRCH algorithm which determines the closeness

threshold between the feature vectors that are being clustered. If the value of ε is small, the

number of clusters obtained would be more compared to the number of clusters obtained if

the ε is large.

Let C : {c1, c2, · · · cK} denote the set of K cluster IDs obtained after clustering the

feature vectors belonging to set V using BIRCH. Let the feature vector vut of a particular

trajectory TRu belong to cluster ck ∈ C. The trajectory TRu is thus represented as the

sequence of cluster IDs ck, the corresponding feature vectors vut belong to, where t =

1, 2 · · ·Tu − 1.
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The original trajectory data is thus discretized by clustering the feature vectors extracted

from the segments of the trajectories, and the original continuous values in the trajectories

are replaced by the discrete values representing the cluster IDs the feature vectors belong

to. Alternate methods of discretization are (a) grid based discretization, where the two or

three dimensional space is divided into grids and (b) clustering the GPS points (xt, yt) of

the trajectories directly to obtain clusters in space, and representing the trajectories as a

sequences of clusters the corresponding points fall into [3]. An advantage of using our

method over other discretization methods is that when data space is discretized into very

fine granularities, two very similar trajectories may fall into different cells. Also, since the

grid based discretization uses interval splits on each attribute i.e. x or y axis independently,

the spatial correlation among the attributes may be lost. Also, our method of discretization

is proven effective for sequential pattern mining of spatio-temporal data, since it generates

partitions without losing the distributions of patterns in data [3].

The trajectory TRu obtained after discretization, can therefore be represented as a se-

quence of cluster IDs the feature vectors vut belong to. Once the trajectories are represented

as sequences of items (cluster IDs), the frequency and distribution based methods, as dis-

cussed earlier, were used to detect changes in frequent patterns occurring in the discretized

trajectories.

3. EXPERIMENTS

We have used real trajectory data from San Francisco cabs dataset which contains mo-

bility traces of taxi cabs in San Francisco. The trajectory data consists of trajectories of 500

cabs over 30 days with a total of 10990 trajectories. These trajectories were first compressed
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using the DP [3] algorithm, to reduce the size of the dataset to a total of 87,2600 GPS points.

The compressed trajectory data is than discretized using BIRCH [22] clustering.

The trajectories are represented as a sequence of items as discussed in Section 2. The

parameter ε used in BIRCH clustering as discussed earlier can be varied to control the level

of discretization. Experiments were conducted by choosing two different value for ε: 0.1

and 0.0001, thereby leading to two levels of discretization: low and high. At low level

of discretization, the number of items in the sequences are fewer. Hence the noise in the

sequences is greater due to more number of repeating items in the sequences. This allows

us to test the performance of our method to increased level of noise in sequences. At high

level of discretization, the number of distinct items in the sequences are greater.

The discretized data from the cabs was divided into training and testing sets so as to

have sufficient number of trajectory sequences in both of them. Frequent patterns were

extracted from the training set. The testing set was used to test for changes in the frequent

trajectory patterns extracted from the training set.

In Section 3.1, we discuss the experiments using the frequency-based approach for low-

level of discretization. The experiments for frequency-based approach with high-level of

discretization are discussed in Section 3.2. Section 3.3 discusses the experiments using

distribution-based approach for high-level of discretization and Section 3.4 for distribution-

based approach with low-level of discretization.

3.1. FREQUENCY-BASED APPROACH: LOW LEVEL OF DISCRETIZATION

Thousand trajectories belonging to cabs with IDs 1 to 50 were used as training data

D0. The test set D1, comprised of 3000 trajectories belonging to cabs with IDs 51 to 150.

The discretization process as mentioned earlier was used with an ε value of 0.1, to dis-
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TABLE 5. Support count and % support of some patterns in training and testing data.

Pattern Train Sup-
port Count

Train % Sup-
port (of 1000)

Test Support
Count

Test % Support
(of 3000)

(170-150-3) 511 0.511 2334 0.788
(6-150-144) 565 0.565 1186 0.395

(173-3) 533 0.533 2479 0.826

cretize the training and testing trajectories together. The discretization process led to 341

clusters for the data consisting of both training and testing trajectories. The number of

clusters could have been further reduced by increasing the value of ε, but this decreases

the number of distinct items in the database. As a result the sequences have fewer number

of distinct items. As an example, the trajectories would be discretized to the following se-

quence (a, a, a, a · · · ) for higher values of ε, leading to sequences with lesser distinct items.

Prefixspan algorithm was used to extract frequent trajectory patterns from the training data

D0 with a minimum support of 0.4. The minimum support is a parameter in the prefixs-

pan algorithm which specifies a threshold for the support of the sequential patterns being

extracted. The value of minimum support was varied in later experiments. The choice of

the minimum support doesn’t affect the results, but if the patterns chosen for analysis have

very low support, there might not be enough sequences in the replicates to obtain an appro-

priate value of a statistic using the replicate. Also, we are interested in detecting changes in

frequent sequential patterns occurring in the data whose support is significantly high.

Among all the frequent trajectory patterns extracted from the training set, a few patterns

were chosen which showed sufficient change in support from training to testing set. These

patterns were used for further analysis to illustrate our method. The three frequent trajectory

patterns that were chosen from the training data are P1 : (170 − 150 − 3), P2 : (6 −
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Figure 49a. Relative support versus sample index for training data (indices 1 to 25) and
testing data (indices 26 to 50) withR = 25. The change in relative support from the training
to testing data illustrates the pattern change.

150 − 144), P3 : (173 − 3). To understand what these patterns mean, consider pattern

P1 : (170 − 150 − 3), which implies that in more than atleast 40% of the trajectories out

of the total trajectories, the segments designated by cluster IDs 170, 150 and 3, appear in

that order. The support counts of these patterns in the training and testing data is shown in

Table 5. From the table, it can be seen that the change in the support for the patterns from

training data to testing data is relatively small (less than 0.3). For patterns P1 and P3, there

is an increase in the support while for pattern P2, there is a decrease in the support.
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Figure 49b. Relative support versus sample index for training data (indices 1 to 25) and
testing data (indices 26 to 50) withR = 50. The change in relative support from the training
to testing data illustrates the pattern change.

The first step in the algorithm is to sample the training data D0 containing R0(= 1000)

trajectory sequences N times, such that each replicate consist of R sequences. Let these

replicates be designated as Dn
0 where n = 1, 2, · · ·N . The test data D1 consists of R1(=

3000) sequences is sampled M times to obtain replicates Dm
1 where m = 1, 2, · · ·M , such

that each replicate consists of R sequences.

3.1.1. EXPERIMENTS WITH VARYING R. These set of experiments were conducted

to check how our method performs for variation in R. Experiments were conducted for

different values of R = (25, 50, 100). Three patterns P1, P2 and P3 as described earlier
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Figure 49c. Relative support versus sample index for training data (indices 1 to 25) and
testing data (indices 26 to 50) with R = 100. The change in relative support from the
training to testing data illustrates the pattern change.

were used to test the method. The number of training and testing replicates were fixed to

be 25 in each experiment i.e N = M = 25. At each value of R, the variation of each of the

statistics - relative support, information gain, growth rate - is discussed from the training to

testing samples.

Variation of relative support: Relative support of a pattern p, which is defined earlier,

in a replicate Dn
0 is calculated as:

support(p,Dn
0 )

R0
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Figure 50a. Information gain versus sample index for training data (indices 1 to 25) and
testing data (indices 26 to 50) with R = 25. The change in information gain from the
training to testing data illustrates the pattern change.

The relative support is plotted against the sample ID for the 25 training samples and 25

testing samples for different values of R. The variation of relative support from training

to testing samples are shown in Fig. 49a, Fig. 49b and Fig. 49c for R = 25, 50, 100

respectively across all the three patterns. It can be seen from the figures that the shift after

the 25th sample is detectable for different values of R. However, the shift is more apparent

for larger values of R i.e when R = 50, 100 compared to when R = 25.

123



Figure 50b. Information gain versus sample index for training data (indices 1 to 25) and
testing data (indices 26 to 50) with R = 50. The change in information gain from the
training to testing data illustrates the pattern change.

Variation of information gain: Information Gain (IG) [90] of a pattern p w.r.t to a

replicate Dn
0 , which is defined earlier, is calculated as:

log
support(p,Dn

0 )×R0

support(p,D0)×R

The variation of information gain from training to testing samples are shown in Fig. 50a,

Fig. 50b, Fig. 50c respectively for R = 25, 50, 100 across all the three patterns. The

behavior of information gain is similar to the relative support with increasing R i.e the shift

is more detectable with larger values of R.
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Figure 50c. Information gain versus sample index for training data (indices 1 to 25) and
testing data (indices 26 to 50) with R = 100. The change in information gain from the
training to testing data illustrates the pattern change.

Variation of growth rate: The Growth Rate (GR) [90] of a pattern p w.r.t to a replicate

Dn
0 is

N0 −R
N0

× support(p,Dn
0 )

support(p,D0)− support(p,Dn
0 )

The variation for growth rate from training to testing samples for R = 100 is shown in Fig.

51. It can be seen from the figure that the shift is detectable after the 25th sample for all the

three patterns.

3.1.2. EXPERIMENTS TO TEST THE SENSITIVITY BY OBTAINING RUN LENGTHS.

Several simulations were run to test the sensitivity of the method. Control charts were built
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Figure 51. Growth rate versus sample index for training data (indices 1 to 25) and testing
data (indices 26 to 50) withR = 100. The change in growth rate from the training to testing
data illustrates the pattern change.

using the statistics obtained from the replicates Dn
0 as the in-control or training data. The

control limits set using the training data were used to obtain the run length with the statistics

obtained from the replicates Dm
1 . The run length for a specific control chart is the number

of plotted points until a control chart signals i.e. an out-of-control signal occurs. Several

run length measures were obtained by using different replicates of training and test data.
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The 3σ control limits were used to obtain the run lengths. The control limits are

UCL : µ+ 3σ

LCL : µ− 3σ

where µ is the mean and σ is the standard deviation of the training data. The Average Run

Length (ARL) value is calculated by averaging the run lengths from the various control

charts.

We conducted these experiments for the patterns P1, P2 and P3; using different values

of R = (25, 50, 100); and across the various measures i.e. relative support, information

gain and growth rate. For each of the (pattern,R,measure) combination, hundred control

charts were built using different replicates of training and testing data. Each control chart

gave a value for the run length, which was used to estimate the ARL by averaging the

hundred run lengths.

NULL case ARL: The average run length for NULL case, when there is no change in

the pattern is calculated as follows. A particular pattern P2 was chosen. 5000 Replicates

Dn
0 , where n = 1, 2, · · · 5000 were obtained from data D0 (consisting of 1000 sequences)

by sampling without replacement, with each replicate consisting of 100 sequences i.e. R =

100. For each of the replicate Dn
0 , statistical measures such as relative support, information

gain and growth rate for the pattern P2 were calculated relative to D0. Control charts were

plotted for each measure j and an average run length value calculated as described. For

each measure j, the 5000 values of Sn0 (j) where n = 1, 2, · · · 5000 obtained using the

replicates Dn
0 are divided into training and test sets. The first 1000 values were divided into

10 training sets of 100 values. Similarly, the next 4000 values were divided into 10 test sets,

where each test set consists of 400 values. A control chart was plotted for each combination
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Figure 52. Average run length and standard errors calculated for NULL case (no change in
the support of the pattern) using pattern P2. Both the 2σ and 3σ limits are reported using
the different measures. The 3σ limits are calculated by truncating the run length to 400, if
an out-of-control signal doesn’t occur for 400 testing points.

of the training set and the test set, to obtain a total of 100 control charts. The run lengths

obtained from these charts was averaged to obtain the ARL.

In order to get an estimate of the ARL value using the 3σ limits for the NULL case, the

run lengths for the individual charts were calculated as follows. Since in each control chart,

400 test points were used, if an out-of-control signal occurs within the 400 test points, the

run length for that particular chart would be the number of the test point at which the signal

occurs. On the other hand, if an out-of-control signal doesnot occur within the 400 test

points, the run length for that chart is assumed to be 400. The ARLs (as well as standard

errors) with 3σ control limits calculated for the pattern P2 across the three measures is

shown in Fig. 52. This value under estimates the true ARL calculated using the 3σ control

limits. Fig. 52 also has the ARLs (and standard errors) with 2σ control limits. The large

values for ARL using the 3σ limits suggest that there is no change in the statistics of the

patterns between the training and testing data.

ARL for non-null case: Statistics obtained from the replicates Dm
1 were used as the

testing data. The ARL and standard errors were calculated using control charts with statis-

tics Sn0 (j) from replicates Dn
0 as the training data and statistics Sm1 (j) from replicates Dm

1

as the testing data. The number of training (N ) and testing (M ) points to be used in each
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Figure 53. Average run length values for different (pattern,R,measure) combinations.
All the run lengths are calculated using 3σ limits.

replicate of the control chart for a specific value of R, were chosen so as to obtain a run

length value for that chart using 3σ limits. The ARL value is calculated by averaging the

run length values for 100 control charts. The number of training and testing points in each

replicate of the control chart for a specific value of R are shown in Table 6. For R = 25,

in order to obtain the run lengths using information gain measure for patterns P1 and P3,

we had to use a large number of testing points (500) in each replicate of the control chart as

shown in Table 6.

Experiments were conducted for different combinations of (pattern,R,measure).

For each (pattern,R,measure), the ARL is calculated by averaging the run lengths from

100 control charts. The standard errors were calculated by first calculating the standard

deviation of the hundred run length values and than dividing it by square root of sample

size i.e.

StdError =

√∑100
i=1(RLi − R̄L)2

10
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TABLE 6. Number of training and testing points used to build each replicate of the control
chart using low level of discretization.

R N M
25 75 500
50 50 50
100 50 50

whereRLi is the run length obtained from the ith control chart and R̄L is the average value

of the 100 run lengths. The ARL values for each combination of (pattern,R,measure)

are shown in Fig. 53.

• It can be seen from Fig. 53, that as the value of R increases from 25 to 100, the

average run length value decreases. Hence, our method performs better for larger

values of R.

• The ARL value for a particular value ofR, using information gain measure is consid-

erably lower than that obtained using relative support or growth rate for pattern P2.

This means, for patterns with a negative change (i.e. decrease in support) from the

train set to test set (e.g. pattern P2), information gain measure is a better measure to

detect the changes quickly.

• The ARL value for a particular value of R, using information gain measure is con-

siderably higher than that obtained using relative support or growth rate for patterns

P1 and P3. This means, for patterns with a positive change (i.e. increase in support)

from the train set to test set (e.g. pattern P1, P3), relative support or growth rate are

better compared to information gain to detect early changes.
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TABLE 7. Support count and % support of some patterns in training and testing data.

Pattern Train Sup-
port Count

Train % Sup-
port (of 3363)

Test Support
Count

Test %
Support (of
5703)

(1130-1123-1138) 1695 0.504 2132 0.374
(85-1130-1123) 1669 0.496 2271 0.398

(1130-1138) 2143 0.637 2811 0.493
(1123-1130-1123) 1728 0.514 2236 0.392

TABLE 8. Number of training and testing points used to build each replicate of the control
chart with high level of discretization.

R N M
25 100 250
50 100 100
100 100 100

3.2. FREQUENCY-BASED APPROACH: HIGH LEVEL OF DISCRETIZATION

The trajectory data consists of trajectories of 500 cabs over 30 days with a total of 10990

trajectories were discretized using a BIRCH parameter ε of 0.0001 to obtain 1538 clusters.

Larger training and test sets were used to check how our method scales to larger data sets.

The discretized data from cabs 1 to 150 consisting of R0 = 3363 trajectories was used

as training data D0. Prefixspan algorithm was used to extract frequent trajectory patterns

from the training data D0 with a minimum support of 0.4. The test data D1, comprised of

R1 = 5703 trajectories from cabs 152 to 414.

The patterns chosen for analysis were P1 : (1130− 1123− 1138), P2 : (85− 1130−

1123), P3 : (1130 − 1138) and P4 : (1123 − 1130 − 1123). The support count of these

patterns in the training D0 and testing data D1 are shown in Table 7.

The ARL and standard errors were calculated using control charts with statistics Sn0 (j)

from replicates Dn
0 as the training data and statistics Sm1 (j) from replicates Dm

1 as the
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Figure 54. Average run length values for different (pattern,R,measure) combinations
and high level of discretization. All the run lengths are calculated using 3σ limits.

testing data. The number of training (N ) and testing (M ) points to be used in each control

chart for a specific value of R, were chosen so as to obtain a run length value for that chart

using 3σ limits. The number of training (N) and testing (M) points for different values of

R are shown in Table 8. The ARL value is calculated by averaging the run length values

for 100 control charts. The average run length values and the standard errors for the four

patterns are shown in Fig. 54.

Similar conclusions can be drawn for high-level of discretization as was the case with

low-level of discretization. As it can be seen Fig. 54, information gain measure performs

better compared to other measures for all the patterns, when the support decreases for all

the patterns. Also, the change is better detectable with larger values of R.

3.3. DISTRIBUTION BASED APPROACH: HIGH LEVEL OF DISCRETIZATION

One thousand discretized trajectories belonging to cabs with IDs 1 to 50 were used as

training data D0. The discretization process as mentioned earlier was used with an ε value

of 0.0001. Prefixspan [59] algorithm was used to extract frequent trajectory patterns from

the training data D0 with a minimum support of 0.3.
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Inorder to induce change in the distribution of the times in the trajectory sequences,

synthetic data was created by changing the sampling frequency of the items in the sequences

of D0. Let the items in the sequences from the training data D0 be sampled at regular

intervals of time t0. New data sets were created using the same 1000 sequences from D0

but by changing the interval of sampling times for items in the sequences of the original

data D0. For example, consider a sequence (a, b, c, d) in the original data D0 with time

intervals (tab, tbc, tcd) between the items a, b, c, d respectively. Inorder to create a testing

data set D1, the times between the items in the sequence (a, b, c, d) were changed to (δ ×

tab, δ × tbc, δ × tcd) respectively. Let the test data be D1, with the sampling time between

items in the sequences being t1, where t1 = δt0, δ denoting the amount of change in the

sampling frequency between items in the sequences in the test data D1 compared to the

original data D0. The purpose of the synthetic data creation is to check if our method is

able to detect the change in the time interval distribution of the patterns which continue to

be frequent in the test data.

In the distribution-based method we are mainly interested to detect if the distribution of

times between items in a pattern have changed. The number of statistics monitored in this

method depend on the number of items in the pattern as described earlier. Hence we have

chosen patterns with varying length i.e. patterns with 3 items and 4 items. The two frequent

trajectory patterns that were chosen from the training data are P1: (85-1130-1123) and P2:

(523-1445-1442-1123) with supports of 0.48 and 0.39 respectively.

3.3.1. EXPERIMENTS WITH VARYING δ. Experiments were conducted for different

values of δ = 1.2, 1.3, 1.5, to check the sensitivity of our method to different levels of

change in the time interval distribution between items in the patterns. Also, the value of R
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Figure 55a. Hotelling T 2 chart of group statistic versus sample index for pattern P1 using
δ = 1.2 and R = 100. The change in the statistic value from the training data (indices 1 to
25) to the test data (indices 26 to 50) indicates the time interval distribution change.

was varied i.e. R = 50, 100. Different combinations of N and M were used for various

control charts to obtain an out-of-control signal. The results for varying values of δ and R

are discussed below.

We have used a Hotelling T 2 control chart to detect changes in the distribution of the

time between occurrence of various items in the pattern. We have used a confidence level of

0.999 to determine the control limits for all the charts. In a Hotelling T 2 chart, we can have

more than one response variable as it is a multivariate control chart. Consider the pattern

P1: (85-1130-1123), since there are three items in the pattern, we have two variables to be

monitored. Similarly for the four item pattern P2, three variables need to be monitored.
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Figure 55b. Hotelling T 2 chart of group statistic versus sample index for pattern P1 using
δ = 1.3 and R = 100. The change in the statistic value from the training data (indices 1 to
25) to the test data (indices 26 to 50) indicates the time interval distribution change.

We used Hotelling T 2 control charts with subgroup data as well as individual obser-

vations for the purpose of change detection. First set of experiments were conducted by

plotting Hotelling T 2 control charts with subgroup data. Experiments with individual ob-

servations are discussed later.

The subgroup size g for plotting the control chart is chosen as follows. Each sequence

in Dn
0 , where a pattern p occurs, is considered to be a subgroup. The number of subgroups

in a replicate Dn
0 therefore depend on the support count of the pattern p in the replicate.

The subgroup size g is therefore chosen to be the minimum support count of the pattern p

among all the replicates Dn
0 where n = 1, 2, · · ·N . The average time interval values from
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Figure 55c. Hotelling T 2 chart of group statistic versus sample index for pattern P1 using
δ = 1.5 and R = 100. The change in the statistic value from the training data (indices 1 to
25) to the test data (indices 26 to 50) indicates the time interval distribution change.

the first g sequences where the pattern p occurs in Dn
0 , are considered to be belong to that

subgroup. For a replicate Dn
0 , the average times between occurrence of items in the pattern

p are calculated for each sequence in Dn
0 , which contains the pattern p.

Hotelling T 2 chart with sub-group data: For the pattern P1, the Hotelling T 2 chart

with sub-group data is shown in Fig. 55a, which is built using N = 25 training points and

M = 25 test points. The value of δ is 1.2 i.e. sampling times between the items in the

trajectory sequences are increased by 20% in the testing data and the value of R = 100.
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Figure 56. Hotelling T 2 chart of group statistic versus sample index for pattern P1 using
δ = 1.2 and R = 50. The change in the statistic value from the training data (indices 1 to
25) to the test data (indices 26 to 50) indicates the time interval distribution change.

For the pattern P1, the Hotelling T 2 chart with sub-group data using the same parameter

values of R = 100, N = 25 and M = 25 but a different value of δ = 1.3 is shown in Fig.

55b.

The Hotelling T 2 chart with sub-group data using the same parameter values of R =

100, N = 25 and M = 25 but δ = 1.5 for pattern P1 is shown in Fig. 55c

It can be seen from the figures that our method is able to detect the changes in the

distribution for all values of δ in the test data. The more the change in the time interval

distribution i.e. the higher the value of δ, the better the detection capacity.
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Figure 57a. Hotelling T 2 chart of group statistic versus sample index for pattern P2 using
δ = 1.2 and R = 100. The change in the statistic value from the train data (indices 1 to 25)
to the test data (indices 26 to 50) indicates the time interval distribution change.

The value of R was decreased from 100 to 50 to check the sensitivity of our method to

lower sampling sizes. The control chart for N = 25 training points and M = 25 testing

points using R = 50 and δ = 1.2 is shown in Fig. 56. Comparing it with Fig. 55a, it can

be seen that larger the value of R, the better the detection capacity.

Hotelling T 2 chart with single observations: Another set of experiments were con-

ducted by plotting the T 2 control chart using single observation from Dn
0 . In order to plot

these control charts, an average value for the time interval tn0 (q − 1, q) between items in a

pattern p obtained fromDn
0 was used to derive the statistic to be plotted on the control chart.
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Figure 57b. Hotelling T 2 chart of group statistic versus sample index for pattern P2 using
δ = 1.3 and R = 100. The change in the statistic value from the train data (indices 1 to 25)
to the test data (indices 26 to 50) indicates the time interval distribution change.

This average value tn0 (q − 1, q) is calculated using the function f(pq−1, pq, s) as described

earlier.

The Hotelling T 2 control chart plotted using single observations is shown in Fig. 58.

This chart is plotted for pattern P1 using a 20% increase in the the time interval distribution

between the items i.e. δ = 1.2. The value of R = 100 and N = 25 training, M = 25

testing points were used. It can be seen from the figure that, our method was able to detect

the changes using single observations as well.
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Figure 58. Hotelling T 2 chart of single observation versus sample index for pattern P1
using δ = 1.2 and R = 100. The change in the statistic value from the training data
(indices 1 to 25) to the test data (indices 26 to 50) indicates the time interval distribution
change.

3.4. DISTRIBUTION BASED APPROACH: LOW LEVEL OF DISCRETIZATION

We used 1000 discretized trajectories belonging to cabs with IDs 1 to 50 as training

data D0. The discretization process as mentioned earlier was used with an ε value of 0.1.

Prefixspan [59] algorithm was used to extract frequent trajectory patterns from the training

data D0 with a minimum support of 0.3.

3.4.1. PATTERNS WITH NON-REPEATING ITEMS. The pattern chosen for analysis

was P1 : (170 − 150 − 3). Time-interval statistics obtained from the replicates Dn
0 were

used as the training data and statistics from the replicates Dm
1 were used as the test data

for a hotelling T 2 control chart. Hundred control charts were built using different training

and testing points for each control chart. The ARL is calculated by averaging the hundred

run length values. The values of N (number of training points) was fixed to 50 for each

control chart. The values of M were varied for each control chart, until we obtained an

out-of-control signal. The ARL values were obtained from 100 replicates of the Hotelling
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Figure 59. The ARL values obtained for pattern P1 using the distribution based method
for different combinations of (R, Control chart method, % Change in time between items in
the pattern).

T 2 control chart for each combination of (R, Control chart method, % Change in time

distribution).

The results are shown in Fig. 59 for different combinations of (R, Control chart method,

% Change in time distribution). The columnM in the figure, is the number of testing points

in each replicate of the control chart to obtain an out-of-control signal. The ARL values

shown in the Fig. 59, are obtained by averaging the 100 run length values obtained from the

100 replicates of the control chart. The standard errors, as shown in Fig. 59, were calculated

as described earlier.

From the experiments and the run length values in Fig. 59, the following conclusions

can be made.

• The patterns with higher % change are easily detectable compared with the ones with

lower % change. For example, the ARL value using R = 50 and single observation

method for pattern with 20 % change is 14.4, while that for a pattern with 30 %

change is only 4.16.
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Figure 60. The ARL values obtained for pattern PR1 and PR2 with repeating items, using
the distribution based method for different levels of % change in time between items in the
patterns.

• As the value of R increases, the same % change in the distribution becomes easy

to detect. For example, the ARL value for a 20 % change using single observation

method is 14.4 when R = 50, while it is 10.36 when R = 100.

• Control charts using single observations perform better compared to control charts

using subgroup data. For example, the ARL value for a 20 % change using R = 50

is 34.37 using subgroup data, while it is only 14.4 using single observations.

3.4.2. PATTERNS WITH REPEATING ITEMS. Further experiments were conducted,

to test our method on patterns with repeating items. If the item that is repeating in a pattern,

is also a repeating item in a sequence, the noise further increases while calculating the

average time between the items of a pattern in a sequence. To illustrate this, consider the

sequence (3-4-4-3-3), and the two patterns (3-3) and (3-4) that are contained in it. The

pattern (3-3) occurs 3 items in the sequence, but the pattern (3-4) only occurs 2 items.

The following two patterns with repeating items and varying lengths were chosen, PR1:

(144-3-144) and PR2: (144-144-3-3).

Experiments were also conducted by decreasing the time interval distribution between

items in the test data to test the efficiency of the distribution-based method to detect such

changes. The T 2 control chart with single observations was used to detect the changes.
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The results of the experiments are shown in Fig. 60. In each control chart, N = 50

training and M = 50 testing points were used, an run length value calculated. The ARL

was calculated by averaging the run lengths from 100 control charts. A confidence level of

0.999 was chosen and the upper control limit was 12.22993. A value of R = 50 was used

for analysis.
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CHAPTER 5

CLUSTERING AND OUTLIER DETECTION IN SEMANTICALLY ENRICHED

TRAJECTORIES

Research in movement data is booming and is focusing on providing rich information

service tailored for the application at hand. Most of these services build upon some semantic

interpretation of movement data. Raw data stream (collected by GPS) is first turned into a

set of trajectories, which are than enriched with semantic data from the application world.

Trajectory semantics can be inferred from spatio-temporal properties of the raw data stream

(e.g. when and where the object stops or moves, its track orientation or movement pattern),

from the geographical information related to the region traversed by the trajectory (e.g. its

road network), as well as from application objects stored in the application databases and

related to the trajectory (e.g. the list of customers visited by a company salespersons).

Semantic annotation refers to the additional data attached to the spatio-temporal posi-

tions in the trajectory. Examples of annotation include recording the observed “activity” of

a moving animal (with activity values “feeding”,“resting”,“moving”etc.), computing and

recording the instant speed of the moving object, inferring and recording the “means of

transport” used by a moving person (e.g. “by foot”, “bus”, “metro”, “bicycle” etc.).

Some of the examples of semantically enriched trajectories involve trajectories of trucks

or other vehicles transporting goods in a supply chain. The attributes describing the flow of

product in a vehichle include time at a stop (e.g. 60 mins), activity at a stop (e.g. Loading),

speed of travel for a move (e.g. 25 mph), mode of transport used for the move (e.g. Truck)

etc. Another example of a semantically enriched trajectory is the web browsing pattern of

a person, where the various websites visited by the person can be thought of the stops. The

attributes that describe the trajectory of web browsing pattern of a person who is trying to

purchase goods from website like Ebay, include activity of the person on the webpage (e.g.
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Logging in), product purchased (e.g. Shoe), time between clicks from one page to another,

price of the product purchased (e.g. $50) etc.

Semantic enrichment of trajectories benefits many applications compared to raw trajec-

tory obtained from GPS feeds. A few examples include for daily trip of employees, it would

be important to know the transportation means used during the trip and also if the trip used

carpool facilities. Similarly, analyzing the migratory patterns of birds, it would be impor-

tant to have information about the weather conditions the bird faces during the flight and

also where and how long the bird stopped during the journey. The flow of goods in a supply

chain can be modeled as a semantic trajectory i.e. a sequence of stops and moves. The

trajectory of objects (like vehicles, goods etc.) in a supply chain has a lot of semantic infor-

mation associated with it. Hence apart from representing these objects as a point moving

in space, there is a need for semantically enriched trajectories. Detecting outliers during

the flow of goods in a supply chain using trucks enables us to detect accidents or break-

down occurring during transportation. The information to semantically enrich the flow of

goods in a supply chain involves weather conditions like wind direction, speed of wind,

sky condition (rainy, cloudy, foggy) while transporting goods using ships. Also shipment

involving trucks would require information about the natural objects (e.g. higher elevation

due to mountains) or artificial objects (e.g highways, bridges over water bodies) that the

truck would encounter in its trajectory.

Consider a case where we are analyzing people trajectories, rather than using the raw

GPS data, it would be more informative to view a trajectory as the following semantic en-

coded sequence of triples (let us call it as reference trajectory):

(home, -10am, )
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→ (road, 10am-11am, on car)

→ (office, 11am-5pm, work)

→ (road, 5pm-5:30pm, on bus)

→ (market, 5:30pm-6pm, shopping)

→ (road, 6pm-6:20pm, on foot)

→ (home, 6:20pm-, ) [55]

It can be observed that the first and last triples respectively denote the first (Begin) and

last (End) spatio-temporal positions delimiting the trajectory. The spatial coordinates

(xt, yt) donot appear in the triples as they are encoded with semantic information like

“home”,“office”, “road”, “park”, giving detailed information about the location. The sec-

ond element denotes the time period when the other two elements (location and annotion)

remain constant e.g. consider the second triple which says that person was on road traveling

in a car from 10 am to 11 am. The third element in the triple provides additional semantic

annotation, related to the activity performed (work, shopping) or the mode of transporta-

tion used (on car, on bus, on foot). Such information can be extracted based on statistics

like amount of time spent at a location like market, speed of motion while traveling on

road e.g. higher speeds might imply traveling by bus or car, while lower speed would im-

ply that the person is walking. Such semantic representation of trajectories would enable

a better understanding of the semantic behavior. Analyzing such semantically enriched

trajectories would further help to discovery knowledge like semantic similarity, clustering

semantically enriched trajectories to find user similarity, semantic pattern mining, mobility

analysis/statistics.
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Analyzing semantically enriched trajectories is a challenging area of research due to

the various factors to be considered. The trajectory data may not be continuous e.g. when

a person enters an indoor location the GPS signal would be lost. The algorithms used for

trajectory analysis should not have any application specific data encoded in them e.g. move-

ment of cars is constrained by road network, while walking is unconstrained and follows

unplanned paths. Also, the algorithms should be able to handle variations in data quality.

The framework also needs to filter out the data which is not required for annotation and

should be able to select the most relevant kind of annotation data for the various segments

of the trajectory e.g. while annotating a walking person it doesn’t make sense to annotate

all the restaurants which he quickly passes by, unless he does an activity like dining at one

of these restaurants and spends considerable amount of time at one place.

TABLE 9. Notation table

Notation Description

N Number of semantic trajectories

T Semantic trajectory represented as a finite sequence <

I1, I2, · · · IK > where Ik for k = 1, 2, · · ·K is either a stop or

move

Tn nth semantic trajectory out of the N trajectories represented as

finite sequence of stops or moves i.e. Tn :< In1 , I
n
2 , · · · InKn

>

Kn Number of stops and moves in a trajectory Tn
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TABLE 9. Notation table

Notation Description

Ink kth element of the trajectory Tn such that Ink ∈

{S1, S2 · · ·SP ,M1,M2, · · ·MQ} ∀k ∈ {1, 2, · · ·Kn}

P Number of stops that can be used to represent all the N trajecto-

ries

S Set of P stops S : {S1, S2, · · ·SP }

Q Number of moves that can be used to represent all the N trajec-

tories

M Set of Q moves M : {M1,M2, · · ·MQ}

A Number of attributes describing each stop of a trajectory

B Number of attributes describing each move of a trajectory

sij Variable to denote the jth attribute of the ith stop

muv Variable to denote the vth attribute of the uth move

T
′
n Trajectory Tn after transformation using variables corresponding

to the stops and moves i.e. sij and muv

C0 Data consisting of N records from trajectories T
′
n where n =

1, 2 · · ·N belonging to class 0

C1 Synthetic data consisting of N records created using C0 and be-

longing to class 1
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TABLE 9. Notation table

Notation Description

CT Data consisting of N records from C0 and N records from C1

r Parameter used for creating synthetic data C1

RF Random forest consists of L trees constructed using the data CT

i.e. RF : {rf1, rf2, · · · rfL}

zn The terminal node positions in the L trees for T
′
n i.e. zn =

(zn1, zn2 · · · znL)

S(T
′
n1
, T

′
n2

) Similarity between pair of trajectories T
′
n1

and T
′
n2

PR Proximity matrix obtained from the random forest RF where the

ijth element is S(T
′
i , T

′
j)

CF Conditional inference forest (cForest) consisting of L trees con-

structed using the data CT i.e. CF : {cf1, cf2, · · · cfL}

PC Proximity matrix obtained from the cForest CF

P̄C(n) Average proximity from trajectory T
′
n to the rest of the trajectories

calculated using the proximity matrix PC

On Outlier score for trajectory T
′
n
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TABLE 9. Notation table

Notation Description

δ A parameter used to simulate trajectories belonging to a cluster.

The values of the numeric variables for trajectories belonging

to the cluster, deviate from the mean value of the cluster by an

amount δ

Considering the semantic information attached to the spatio-temporal path of a moving

object would reveal useful application dependant knowledge. Consider the trajectory data

of tourists visiting various locations during a trip. The kind of semantic knowledge from

these trajectories would allow us to answer questions like which are the places most fre-

quently visited by tourists in the morning? A pattern of the form [Hotel Emperor] (s= 90%)

would imply that 90% of the trajectories have Hotel Emperor in them. Similarly, a pattern

[TouristP lace,Hotel](s = 80%) would mean that 80% of the trajectories that have a stop

at a tourist place also have a stop at a hotel.

The trajectories have two facets: a geometrical facet and a semantic facet. The geo-

metrical facet is representation as a continuous function of time in a geographical space

i.e. (xt, yt) where t = 1, 2, · · ·T . The semantic facet includes two types of the semantic

characteristics of the trajectories, the first type is specific to requirements of the application
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(like arrival time, weight of a product etc.) and the second includes standard semantics and

uses the components of the trajectory like stop, move, begin and end of the trajectory. The

notation table used in the chapter is shown in Table 9.

1. SEMANTICALLY ENRICHED TRAJECTORIES

A semantic trajectory T is a finite sequence < I1, I2, · · · IK > where Ik for k =

1, 2, · · ·K, is either a stop or a move. A semantically enriched trajectory is a semantic

trajectory where each of the stops and moves have attributes describing them. Some exam-

ples of semantic trajectories are, trajectories of trucks transporting goods in a supply chain,

trajectories of web browsing pattern of a person etc. which can be modeled as a sequence

of stops and moves.

We propose a model for clustering and outlier detection in semantically enriched trajec-

tories. Clustering aims to group trajectories that have the same movement behavior. Outlier

detection can be used to detect trajectories that donot follow the common pattern as most

of the trajectories. The details of the method used for clustering semantically enriched tra-

jectories are in Section 2. The method used for outlier detection in semantically enriched

trajectories is explained in Section 3. The experiments are shown in 4, with specific exper-

iments for clustering in 4.1 and those for outlier detection in Section 4.2. An overview of

the method used for clustering and outlier detection in sematic trajectories is shown in Fig.

61.

2. CLUSTERING SEMANTICALLY ENRICHED TRAJECTORIES

Clustering semantic trajectories aims to group similar trajectories having the same

movement behavior. It is an unsupervised learning technique, and hence deals with finding

structure in a collection of unlabeled data. A cluster is a collection of trajectories which

151



Figure 61. Modeling framework for clustering and outlier detection in sematic trajectories.

are more “similar” to each other and are “dissimilar” to the trajectories belonging to other

clusters. Clustering therefore requires a similarity measure.

The example in Fig. 62 shows the semantic trajectories of two people, which are con-

sidered to be similar. The sequence of the stops and moves in the two trajectories have to be

same i.e. [home → park → theater]. It can be seen that in trajectory 1 the person starts

from home at 8:00 am, while in trajectory 2 he starts from home at 9:00 am. Hence, the

starting time of the two trajectories need not be same but the time taken for travel, mode of

transport, time at each of the stops and the sequence of stops and moves have to be similar

for the trajectories to be considered similar. Such similarity can be used in recommendation

systems to recommend friends based on similar movement behavior.

Each trajectory, which is a sequence of stops and moves, is transformed using a set

of variables to capture the important characteristics of the trajectory. To cluster the tra-
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Figure 62. Two similar semantic trajectories belonging to a cluster.

jectory data, which is now represented using a set of variables, we start by converting the

unsupervised learning problem to a supervised learning problem.

Consider a set of N semantic trajectories where each trajectory is denoted as Tn where

n = 1, 2, · · ·N . Let the path taken by all these N trajectories be represented by a set of

P stops and Q moves. Let these P stops be denoted as S = {S1, S2, · · ·SP } and the

Q moves be denoted as M = {M1,M2, · · ·MQ}. Each trajectory can be represented

using a subset of the P stops and Q moves. Each of the trajectory Tn can be repre-

sented as sequence of the stops and moves visited in its path i.e. each semantic trajec-

tory Tn is a finite sequence < In1 , I
n
2 , · · · InKn

> where Ink is either a stop or move i.e.

Ink ∈ {S1, S2 · · ·SP ,M1,M2, · · ·MQ} for k ∈ {1, 2, · · ·Kn}, n ∈ {1, 2 · · ·N}. There

are algorithms in literature, SMoT [13], CBSMoT [14] to decompose a set of trajectories

into a sequence of stops and moves which are discussed in Chapter 2.
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Figure 63. Representation of a semantic trajectory using the variables sij and muv corre-
sponding to the stops and moves of the trajectory.

At each stop of a trajectory, let A attributes be recorded, e.g. time at the stop, activity at

the stop etc. Similarly, for each move of a trajectory let B attributes be recorded e.g. speed

of travel, mode of transport etc. The number of attributes recorded at a stop or a move can

differ depending on the stop or move, but we explain using constant number of attributes

for simplicity. Let sij for i ∈ {1, 2, · · ·P}, j ∈ {1, 2, · · ·A} denote the jth attribute

of the ith stop. Similarly, let muv for u ∈ {1, 2, · · ·Q}, v ∈ {1, 2, · · ·B} denote the vth

attribute of the uth move. Each trajectory Tn is represented by the variables sij andmuv that

correspond to the stops and moves in the path of the trajectory Tn. As an example, suppose

the path of a particular trajectory consists of the stops S1, S2, S3, S4, S5, S6 and moves

M1,M2,M3,M4,M5 in a specific order. The variables which have a non-null value for this

trajectory are sij where i = 1, 2, · · · 6 and j = 1, 2, · · ·A and muv where u = 1, 2, · · · 5

and v = 1, 2, · · ·B, while the rest of the variables have a null value.

An example of this transformation for the trajectories of trucks transporting goods in a

supply chain is shown in Fig. 63. Consider the trajectory of a vehicle which starts from

S1 and moves to S2. Let the vehicle stop at stop S1 for 12 mins to load goods and then

move to stop S2 with the time for the move M1 being 70 min while traveling at a speed of

60 mph. The first row in Fig. 63, shows this trajectory being represented using variables

154



Figure 64. Transforming the trajectory data to a two class problem. Data C0 belonging to
class 0 consists of 100 records and data C1 belonging to class 1 consists of 100 records.
The values for the variables in data C1 depend on the corresponding variables in C0.

s11, s12,m11,m12 etc. which correspond to the stop S1 and move M1, respectively. This

kind of representation of the trajectories can capture the important characteristics like time,

speed etc. of a trajectory, which are stored as attributes of the respective stops or moves.

The representation can also capture the direction of motion, e.g., a move from stops S1 to

S2 would be different from a move from stops S2 to S1, as new variables for the moves

would be created. The special case of circles in trajectories i.e. trajectories starting from a

particular stop and returning to the same stop, was not considered was analysis.

The trajectories are thus represented in terms of the variables sij and muv as described

above. Let each trajectory after transformation using the variables be denoted by T
′
n where

n = 1, 2, · · ·N and the set of N trajectories be denoted by C0. New synthetic data denoted

by C1 was created of same size as C0 i.e. the synthetic data C1 also consists of N rows.
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The problem is converted to a supervised learning problem by creating a target variable y.

The value of the target variable y for each row is defined as follows

yi = 0 if row i ∈ C0

yi = 1 if row i ∈ C1

The target variable y thus assigns a class label to each row. The records in C0 belong to

class 0 while those is C1 belong to class 1.

Each record in data C1 contains the same number of variables as those in data C0.

The values for variables in C1 are generated from the corresponding variables in C0 as de-

scribed. Consider a specific numeric variable X ∈ {sij ,muv}, which could be related to

either a stop or move in the data C0. Let the values of X range from xmin (minimum) to

xmax (maximum) across all the trajectories in C0, and the standard deviation be xstd. The

values for the corresponding variable X in the synthetic data C1 are chosen to be uniformly

distributed in the interval {xmin − r×xstd, xmax + r×xstd}, where r is an integer and can

take values like 1, 2, 3 etc. Consider a specific categorical variable Y ∈ {sij ,muv}, which

can be related to either a stop or move in the data C0. Let the values of Y belong to one of

|Y | categories among all the trajectories inC0. The values for the variable Y in the synthetic

data C1 are randomly chosen to be one among the |Y | categories. An example to illustrate

this is shown in Fig. 64. The value of r chosen to generate the synthetic data is r = 2. Con-

sider the variable s11 Fig. 64, and let σ be the standard deviation of s11 across all the rows

in C0. The value for the numeric variable s11 in data C1 is therefore uniformly distributed

between [90− σ, 850 + σ], assuming 90 and 850 are the minimum and maximum values of

the s11 in data C0. Similarly, the values for the categorical variable s21 in data C1 are cho-
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sen randomly to be one of the categories [“Loading′′, “QualityCheck′′, “Distribution′′],

assuming the values for variable s21 in C0 belong to one of these categories.

The purpose of creation of synthetic data C1 is to break the dependency structure be-

tween variables in the original data C0. As an example, consider the variable s11 which

denotes the activity at a stop and another variable s12 denoting the time taken at that par-

ticular stop. For most trajectories in the original data C0, if the activity of Loading, takes a

specific time i.e. approximately 1 hr. This means there is a dependency between the vari-

ables s11 and s12, because whenever the value of s11 = Loading, the value of s12 = 1hr.

However, since the values for variables s11 and s12 in data C1 are obtained by randomly

choosing among the corresponding values of the variables in C0, the dependency between

the variables no longer exists.

Let the combined data containingN records fromC0 andN records from synthetic data

C1, be denoted by CT . The data CT containing 2N records is thus a two class problem,

with the target variable y denoting the class trajectory belongs to, which can be either class

0 or 1.

2.1. CLASSIFICATION USING RANDOM FORESTS

We have a chosen decision trees to classify the two class dataCT . A decision tree [78] is

a model used for classification, which predicts the value of a target variable based on several

input variables. Alternate classification techniques such as support vector machines [91],

neural networks [91] etc. could have been used to classify the two class data CT . We

chose decision trees taking into consideration the challenges encountered while clustering

the trajectory data.
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Traditional clustering techniques cannot be applied to cluster semantic trajectories due

to various reasons. The most important challenge with clustering semantic trajectories is

that they have both numeric and categorical attributes e.g. consider the semantic trajectories

arising in supply chain while transporting goods in trucks, the attributes such as time for

the transport are numeric, while the attributes such as mode of transport are categorical.

Distance measures such as Euclidean distance cannot be used for this kind of data, since

Euclidean distance can be calculated only between numeric values.

Another problem to be addressed while clustering such trajectories is that trajectories

can be of different lengths. In order to use distance measures such as Euclidean distance to

compute distance between multi-dimensional vectors, the vectors need to be of equal size.

Trajectories can also have a large number of variables depending on the number of stops

and moves in a trajectory. As a result, the trajectory data can be high dimensional. As the

dimensionality of the data increases, the volume of space increases so fast that the available

data becomes sparse. Hence, in high dimensional data all objects appear to be sparse and

dissimilar in many ways. The sparsity can be problematic for any method that requires

statistical significance. This phenomenon is referred to as curse of dimensionality [92].

The desirable characteristics of the supervised learner are to handle mixed data types,

missing values, large feature space etc. Decision tress handle such data very well. Single

tree classifiers are unstable due to high variance. Ensemble methods use multiple models to

obtain better predictive performance [93]. We have used ensembles of trees to classify our

data.

Let RF denote the random forest [78] that is constructed consisting of L trees

rf1, rf2 · · · rfL and using data CT . A detailed explanation of random forests is provided in
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Chapter 2. The purpose of classifying the two class data CT using random forest RF is to

obtain a similarity measure between the N trajectories in the original data as the traditional

distance measures such as Euclidean distance cannot be used to measure the similarity be-

tween the trajectories. This similarity measure obtained from the random forest RF was

used later for clustering the trajectories in the original data C0.

The similarity measure can be calculated using the random forest RF for any two tra-

jectories say T
′
1 and T

′
2 in the data C0 as follows. For each of the two trajectories, we first

propagate their values down all the L trees within RF and a terminal node is assigned to

them. Next, the terminal node position for each trajectory in each of the trees is recorded.

Let zn1 = (zn11, zn12 · · · zn1L) be the terminal node positions in the L trees for T
′
n1

and

similarly define zn2 . Then the similarity between pair T
′
1 and T

′
2 is set to:

S(T
′
n1
, T

′
n2

) =
1

l

L∑
i=1

I(zn1i == zn2i)

where I is the indicator function.

The similarity measure is calculated between all pairs of the N trajectories in C0, and

a proximity matrix PR is created. The ijth element of the proximity matrix PR, produced

by random forest RF is the similarity measure S(T
′
i , T

′
j) between trajectories T

′
i and T

′
j

in C0. The intuition is that similar trajectories should be in the same terminal nodes more

often than dissimilar ones. The proximity matrix PR can be used to identify structure in

the data or for unsupervised learning with random forests. This proximity matrix obtained

was used for clustering the trajectories.

The similarities obtained from the proximity matrix PR, were used to cluster the tra-

jectories using hierarchical clustering [91] technique, as any clustering algorithm needs a

similarity to group objects into clusters. The linkage criteria used for the hierarchical clus-
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tering was average linkage. In the average linkage method the distance between the two

clusters is defined as the average of the distances between all pairs of objects, where one

member of the pair is from each of the cluster. This type of linkage was preferred over other

methods like single and complete linkage, since it uses information on all pairs of distance,

not merely the minimum or maximum distances [91].

3. OUTLIER DETECTION IN SEMANTICALLY ENRICHED TRAJECTORIES

Outliers in semantic trajectories can be of various types. One kind of outliers is a

trajectory which has a different path i.e. a different stop and move sequence compared to

the rest of the trajectories. These outliers are extreme, since they follow a different path

altogether compared to the rest of the trajectories. The other kind of outliers are those

trajectories which have the same stop and move sequence but the attributes describing the

motion vary at these stops or moves. These outliers are more subtle in nature and are

difficult to identify. An example of this outlier is a follows: consider trucks which are

transporting goods from point A to point B, if most of the trucks take approximately one

hour to transport the goods, an outlying trajectory is one which takes a considerably larger

amount of time to transport the goods. We focus on detecting such outlying trajectories,

which are more subtle in nature.

To detect the outliers, the model should be able to capture the interactions between

variables e.g. the interaction between the numeric and categoric variable. For example, if a

particular activity (categorical variable) takes a specific amount of time (numeric variable)

in most trajectories, an outlying trajectory would be one where that particular activity takes

more or lesser time than the usual.
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3.1. WHY RANDOM FORESTS FAIL?

Outliers are those trajectories whose proximity to rest of the trajectories is small (or

distance is large. Let the average proximity from trajectory T
′
n to the rest of the trajectories

be

PC(n) =
N∑
r=1

prox2(T
′
n, T

′
r)

where prox(T
′
n, T

′
r) is the proximity between trajectory T

′
n and trajectory T

′
r . The raw

outlier measure On or Breiman outlier score [80] for trajectory T
′
n is defined as

On =
N

PC(n)

The model developed using random forests was used to obtain a proximity matrix PR.

The ijth element of the matrix gives the proximity between trajectory T
′
i and trajectory T

′
j ,

which was used to calculate the Breiman outlier score as described earlier. However, the

score obtained using the matrix PR did not prove useful to detect outliers in the trajectories.

Consider a training set S = (X,Y ), consisting of instances (xi, yi), i = 1 · · ·n, where

xi ∈ X is an input vector and yi ∈ Y is it’s corresponding class label. xi is made up of

a number of features f1, f2 · · · fm ∈ M . A decision tree splits each of the input vector

xi based on the values of the features f1, f2 · · · fm. At each node of the decision tree, the

input data is partitioned into subsets, such that the impurity of the resulting child node is

decreased. Some of the impurity measures that can be used are discussed in Chapter 2. This

process is repeated to form a tree.

In order to select the best variable to be used to split at a node, the degree of impurity

of the parent node (before splitting) is compared with the degree of impurity of the child
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nodes (after splitting). The gain, δ, is a criteria used to determine the goodness of a split:

δ = I(parent)−
k∑
j=1

N(vj)

N
I(vj)

where I(.) is the impurity measure of a given node, N is the total number of records at

the parent node, k is the number of attribute values, and N(vj) is the number of records

associated with the child node, vj . Decision tree algorithms often choose a variable that

maximizes the gain δ.

This introduces a bias while selecting variables for splitting, as the variables with more

number of values when selected lead to a larger value for δ. The trees in the random

forest thus tend to select variables with many splitting values e.g. numeric variables are

selected compared to categorical variables. Due to this bias introduced by random forest,

they cannot capture the interaction between categorical and numeric variables, which is

essential for detecting outliers in trajectories.

3.2. OUTLIER DETECTION USING CONDITIONAL INFERENCE FOREST

For the purpose of outlier detection, alternate ways of growing the trees were explored.

The conditional inference trees [83], described in detail in Chapter 2, use a different criteria

for tree growing which reduces the bias in variable selection. They separate the variable

selection and splitting step unlike decision trees where variables are selected based on the

best split obtained which reduces the entropy in the child nodes. We build a forest of

conditional inference trees [83] using the trajectory data. The proximity measure obtained

from the trees in the conditional inference forest (cForest) is used for outlier detection.

The details of the method are as follows. The data CT , consisting of N records from

C0 and N records from C1 was classified using a forest of L conditional inference trees
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denoted by CF : {cf1, cf2, · · · cfL}. A proximity matrix PC is obtained from CF , for the

N trajectories in C0 by recording the terminal node positions in each of the L trees of CF ,

as described in the previous section.

The proximities obtained from the matrix PC, were used to calculate the outlier scores

On, as described earlier. Once the Breiman scores On were obtained for all the N trajecto-

ries, a threshold was chosen to distinguish outliers from normal trajectories. This threshold

was chosen using two methods - Isolation Forest (IF) and Control Chart (CL) method.

The threshold for CL method was chosen as follows. Let µN denote the mean of the N

Breiman scoresON and σN denote their standard deviation. The threshold ε used for outlier

detection was µN + 3σN . Any trajectory Tn with score On greater than ε was considered

to be an outlier.

In IL method, a forest of isolation trees were grown using the scores On. The details

of isolation forest are provided in Chapter 2. Each of the On values were mapped to an

equivalent value sn, where 0 ≤ sn ≤ 1 by the isolation forest. The trajectories Tn for

which sn ≥ 0.6 were considered to be outliers.

4. EXPERIMENTS

The experiments for clustering semantic trajectories are shown in Section 4.1, while the

experiments for outlier detection in semantic trajectories are shown in Section 4.2

4.1. EXPERIMENTS FOR CLUSTERING

Data was simulated similar to semantic trajectories containing a sequence of stops and

moves. Variables were created corresponding to the the stops and moves of the trajecto-

ries as described in the previous section. A dataset consisting of 300 trajectories and 23

163



Figure 65. Heat map of the trajectory data represented using the variables sij and muv.
The rows corresponds to the trajectories and the columns correspond to the variables. Only
first 20 trajectories belonging to three clusters are shown, where each cluster consists of
100 trajectories.

variables, which correspond to eight stops and seven moves, was used for clustering. The

numeric variables used are shown in Table 11, while the categoric variables are shown in

Table ??. This method is easily scalable with trajectories consisting of larger number of

stops and moves. If the stops and moves increase, the number of variables would increase

and hence the feature space to be used for classification increases. Decision trees can han-
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TABLE 10. Numeric variables used in clustering experiments

Variable Mean in cluster 1 Mean in cluster 2 Mean in cluster 3
s11 31.13 31.13 31.13
s21 81.44 81.44 81.44
s31 21.63 59.7 59.7
s41 51.34 101.3 101.3
s51 70.96 96.7 96.7
s61 100.85 100.85 100.85
s71 30.5 78.6 78.6
s81 - - 12.45
s91 26.3 26.3 26.3
m11 16.99 16.99 16.99
m21 29.8 29.8 29.8
m31 51.1 51.1 51.1
m41 61.4 61.4 61.4
m51 27.3 27.3 27.3
m61 73.8 73.8 73.8
m71 49.1 49.1 49.1

TABLE 11. Categoric variables used in clustering experiments

Variable Category in cluster 1 Category in cluster 2 Category in cluster 3
s22 Loading Packing Packing
s32 Eating Fuelling Fuelling
s42 OrderProcessing Neworder Neworder
s52 QualityCheck ReManufacturing ReManufacturing
s62 Unloading Unloading Unloading
s72 OrderAcknowledgement Finance Assesment Finance Assesment
s82 - - OrderCheck

dle data with large number of features very well, since only a subset of features are used

while splitting at each of the tree.

The trajectory data was simulated as to have three clusters. The first and the second

clusters of trajectories have the same sequence of stops and moves but they differ in the

activities and the time at the stops. The third cluster differs from the first and second in

the sequence of places (or stops) visited, but these trajectories have approximately simi-
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Figure 66. Dendrogram of the clusters obtained by hierarchical clustering. The three clus-
ters in the trajectory data are clearly visible in the dendrogram.

lar times at the similar stops visited. The values of the numeric variables, for trajectories

belonging to the same cluster, were simulated as follows: the values are chosen to be uni-

formly distributed between {µCj − δ, µCj + δ}, where µCj is the mean value of the variable

xj corresponding to Cth cluster and δ is amount of the noise induced. We had conducted

experiments with different values of δ. The mean values of the numeric variables in the

three clusters are shown in Table 11.

A heat map of the trajectory data, consisting of the first 20 trajectories from the three

clusters is shown in Fig. 65. The rows in the figure correspond to the trajectories and the

columns correspond to the variables in each trajectory. A heat map is a graphical represen-

tation of data where each individual value in the data matrix is represented as a color. The

first 20 trajectories with trajectory IDs 1 to 20 in the heat map shown in Fig. 65 correspond

to trajectories from the first cluster, the next 20 trajectories with IDs 101 to 120 belong to

second cluster and the last 19 trajectories with IDs 202 to 220 belong to the third cluster.
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Let the data consisting of 300 trajectories after variable creation using δ = 0.5 be

denoted as C0, and the class label be 0. Synthetic data C1 was created consisting of 300

rows using r = 1 as described earlier, and a class label of 1 was assigned to them. RFs

were used to classify the two class data CT . The proximity measures obtained from the

RFs were used to cluster the trajectories in the data C0. Hierarchical clustering method

was with average linkage was used to cluster the trajectories. Hierarchical clustering does

not require us to prespecify the number of clusters and also it outputs a hierarchical tree-

like structure which is more informative than the unstructured set of clusters. The cluster

dendrogram is shown in Fig. 66. The dendrogram in the figure shows the three clusters

present in the trajectory data. Hence our method, is able to identify the clusters in the data.

4.2. EXPERIMENTS FOR OUTLIER DETECTION

To detect outlying trajectories, data was created similar to the trajectories generated

while transporting goods in a supply chain. Here, 100 trajectories were created having

eight stops and seven moves. The activities at the the six stops excluding the first and

last are loading, eating, order processing, order acknowledgement, quality checking and

unloading respectively. Each activity is associated with its corresponding time. Another 100

trajectories were created having the same stop sequence as the previous trajectories but with

different activities at the corresponding stops. The activities at the six stops excluding the

first and last are packing, fueling, new order loading, re-manufacturing, finance assessment,

unloading respectively.

Seven outlying trajectories with IDs 201 to 207 were added to the 200 trajectories.

These outliers were created so as to vary the time duration (increase or decrease) at the

stops or moves of the trajectories. Quality check activity at stop 4 generally takes around 70
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Figure 67a. Breiman outlier scores of 207 trajectories with δ = 0.5 and r = 1. The scores
for the 7 outlying trajectories with IDs 201 to 207 are higher than the rest of the trajectories.

minutes. Two outliers were generated with time for quality check activity being increased to

85 and 120 minutes respectively. Order processing activity at stop 3 generally takes around

50 minutes. Two outliers were generated with time for order processing activity decreased

to 45 and 15 minutes respectively. The time for moving from stop 2 to stop 3 generally takes

approximately 60 minutes. Three other outliers were generated with the time for move from

stop 2 to stop 3 increased in steps of 10 minutes to 70, 80 and 90 minutes respectively.

The method to detect outlying trajectories using conditional inference trees, as de-

scribed earlier, was tested at different levels of noise δ in the data C0, and for values of

r for generating the synthetic data C1. The noise in the trajectory data C0 was added at two

different levels relative to the average value i.e. δ = 0.5, 2.5. At each of the noise levels δ,

the Breiman outlier score was plotted for the 207 trajectories. A plot of the Breiman outlier

scores for the two noise levels δ = 0.5 and δ = 2.5 are shown in Fig. 67a and Fig. 67b

respectively. The trajectories are ordered in terms of decreasing outlier score, and the top

10 trajectories with highest outlier scores were plotted for the different noise levels in the
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Figure 67b. Breiman outlier scores of 207 trajectories with δ = 2.5 and r = 1. Comparing
with Fig. 67a, higher noise in the trajectories (δ = 2.5), makes it difficult to identify the
outlying trajectories with IDs 201 to 207, compared to lower noise (δ = 0.5).

Figure 68a. 10 trajectories with highest outlier scores for δ = 0.5 and r = 1. The outlying
trajectories with IDs 201 to 207 are among the 10 trajectories with highest scores.

data. The plots for the ordered outlier scores for two noise levels δ = 0.5 and δ = 2.5 are

shown in Fig. 68a and Fig. 68b respectively. It can be seen from Fig. 67 and Fig. 68 that

our method was able to detect outliers at both the noise levels δ. However, our method is
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Figure 68b. 10 trajectories with highest outlier scores for δ = 2.5 and r = 1. The outlying
trajectories with IDs 201 to 207 are among the 10 trajectories with highest scores.

sensitive to the noise in the data, and the results are better with lesser noisy data i.e when

δ = 0.5.

Further experiments were conducted to check how our method performs with the vari-

ation in noise in the synthetic data C1 created i.e. r, as described previously. A value of

r = 2 was used, hence the variables in the data C1 are now chosen such that they are be-

tween minimum - 2σ and maximum + 2σ of the corresponding variables in data C0. The

outlier scores for the 207 trajectories are shown in Fig. 69a. The outlier scores are ordered

in decreasing order and the trajectories with 10 highest scores are shown in Fig. 69b. It can

be seen from the Fig. 69 our method performs better with lower value of r. As the value

of r increases, the synthetic data C1 created would have a higher variance and would be

170



Figure 69a. Breiman outlier scores for 207 trajectories with δ = 0.5 and r = 2. Comparing
with Fig. 67a, higher value of r(r = 2), makes it difficult to identify the outlying trajectories
with IDs 201 to 207, compared to lower value of r(r = 1).

more sparse in space compared to when r is small. Hence, the capability of the classifier to

differentiate between normal points and anomalies decreases.

4.2.1. MODEL EVALUATION. In order to evaluate the outlier detection method and

the parameter settings of r and δ, the True Positive Rate (TPR) and the False Positive Rate

(FPR) were calculated. Two different thresholds using the IF and CL method as described

earlier were used to detect the outliers. The results for various parameter setting are shown

in Fig. 70.

The following conclusions can be drawn from the Fig. 70

• As the value of r or δ increases, the FPR increases i.e. the tendency of outliers to be

considered normal increases with higher values of r or δ.

• The TPR using CL threshold is always higher than the IF threshold i.e. the tendency

for normal points to be considered as outliers is lesser if CL threshold is used com-

pared to IF threshold.
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Figure 69b. 10 trajectories with highest outlier scores with δ = 0.5 and r = 2. Out of the
7 outlying trajectories with IDs 201 to 207, only 6 are among the top 10 trajectories with
high outlier scores.

Figure 70. TPR and FPR values obtained for different thresholds and varying parameter
values r and δ.

• The FPR using IF threshold is always lower than the CL threshold i.e. the tendency

for outliers to be considered normal is lesser in the case of IF threshold compared to

CL threshold.
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1. Modified Baum Welch Algorithm Implementation (MATLAB CODE)

tol = 1e-6;

trtol = tol;

etol = tol;

maxiter = 5000;

% changeRow is the index of the row to be changed

changeRow = 1;

count = 1;

% guessTR is the initial transition probability matrix

[numStates, checkTr] = size(guessTR);

% guessE is the initial emission probability matrix

[checkE, numEmissions] = size(guessE);

[numSeqs, seqLength] = size(seqs);

TR = zeros(size(guessTR));

% loglik is the log likelihood of all sequences

given the TR and E

loglik = 1;

logliks = zeros(1,maxiter);

for iteration = 1:maxiter

oldLL = loglik;

loglik = 0;

oldGuessE = guessE;

oldGuessTR = guessTR;
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seq = seqs(count,:);

[p,logPseq,fs,bs,scale] = hmmdecode(seq,guessTR,guessE);

loglik = loglik + logPseq;

logf = log(fs);

logb = log(bs);

logGE = log(guessE);

logGTR = log(guessTR);

seq = [0 seq];

for k = 1:numStates

for l = 1:numStates

for i = 1:seqLength

if k == changeRow

TR(k,l) = TR(k,l) + exp( logf(k,i)

+ logGTR(k,l) + logGE(l,seq(i+1))

+ logb(l,i+1))./scale(i+1);

else

TR(k,l) = guessTR(k,l)

end

end

end

end

totalTransitions = sum(TR,2);

guessTR = TR./(repmat(totalTransitions,1,numStates));
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logliks(iteration) = loglik;

if (abs(loglik-oldLL)./(1+abs(oldLL))) < tol

if norm(guessTR - oldGuessTR,inf)./

numStates < trtol

fprintf(’Algorithm converged after

\%d iterations.’,iteration)

fprintf(’Loglikelihood value is

\%d.’,logliks(iteration))

converged = true;

break

end

end

end

2. Creating daily trajectories of cabs (R CODE)

cabid <- 1

while(cabid <= 100)

{

name <- sprintf("Cab_%d.txt",cabid)

d = read.table(name,sep="",

col.names=c("long","lat","occupancy","time"),

fill=FALSE,strip.white=TRUE)

doc <- 1
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while(doc <= 24)

{

subname <- sprintf("Cab%d_%d.txt",cabid, doc)

ref <- d[1,4]

ref <- as.Date(ISOdatetime(1970,1,1,7,0,0,"MST") + ref)

df1 <- subset(d, as.Date

(ISOdatetime(1970,1,1,7,0,0,"MST")+

d[,4]) == ref)

d <- subset(d, as.Date

(ISOdatetime(1970,1,1,7,0,0,"MST")+

d[,4]) != ref)

if(nrow(df1) != 0)

{

write.table(df1, file = subname)

}

doc <- doc + 1

}

cabid <- cabid + 1

}

3. Compressing trajectory data using DP algorithm (R CODE)

full = NULL

it <- 1

cabid <- 101
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while(cabid <= 500)

{

doc <- 1

while(doc <= 24)

{

name <- sprintf("Cab%d_%d.txt",cabid, doc)

d = try(read.table(name,sep="",

col.names=c("long","lat","occupancy","time"),

fill=FALSE,strip.white=TRUE), silent = TRUE)

if(inherits(d, "try-error"))

{

//Do Nothing

}

else

{

points <- list(x=d$long,y=d$lat)

simpleLine <- dp(points, 0.01)

m1<- as.matrix(simpleLine$x)

m2 <- as.matrix(simpleLine$y)

newm <- cbind(m1,m2)

ind1 <- apply(d[,1:2], 1, paste, collapse = "/")

ind2 <- apply(newm, 1, paste, collapse = "/")

newtime <- as.matrix(d[match(ind2, ind1),4])
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newtime <- newtime - min(newtime)

m3 <- cbind(m1,m2,newtime,it,cabid)

colnames(m3) <- c("long","lat", "time","trajID","CabID")

full <- rbind(full, m3)

it <- it + 1

}

doc <- doc + 1

}

cabid <- cabid + 1

}

4. Discretizing trajectory data using BIRCH clustering (R CODE)

obj <- birch(trajdata[,1:4],0.1, keeptree = TRUE)

obj <- birch.getTree(obj)

mem <- obj$members

size <- 1

appended = NULL

while(size <= length(mem))

{

m1 <- unlist(mem[size])

m2 <- cbind(m1,size)

appended <- rbind(appended,m2)

size = size + 1

}

179



appended <- appended[sort.list(appended[,1]), ]

newfull <- cbind(full,appended[,2])

colnames(newfull) <- c("long1","lat1",

"long2","lat2", trajID","CabID","ClusterID")

5. Clustering trajectories using mixture of regression (R CODE)

trajdata <- data.frame(full)

ex1 <- flexmix(˜time|trajID,

data=trajdata, k = 4,

model=list(FLXMRglm(long˜.),FLXMRglm(lat˜.)))

table(trajdata$trajID, clusters(ex1))

ex1@cluster

6. HMM for change detection in trajectories (R CODE)

*****Creating Learning Sample******

sampnew <- vector("list", 24)

doc <-1

sampcount <-1

while(doc <=24){

name <- sprintf("Cab2_%d.txt",doc)

d = read.table(name,sep="",fill=FALSE,strip.white=TRUE)

sampnew[[sampcount]] <- as.matrix(d[,1:2])

doc <- doc + 1

sampcount <- sampcount + 1
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}

********Learning****

it <- 1

fit <- 1

learn <- matrix(rep("NA"), ncol=2,nrow=30)

while(fit <= 30)

{

fitted <- HMMFit(obs=fitsamp, nStates = fit,

asymptMethod = "optim")

learn[it,1] <- fit

learn[it,2] <- fitted$LLH

fit <- fit + 1

print(it)

it <- it + 1

}

plot(learn[,1],learn[,2], xlab = "No.of States",

ylab = "Log-Likelihood",

main = "Variation of likelihood with no.of states",

col = "red")

*****Testing *****

tnum <- 2
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while(tnum <= 20)

{

print(****tnum***)

tsubdata <- fullclust[[tnum]]

tuniquevals <- unique(tsubdata$trajID)

trainset <- vector("list", length(tuniquevals))

i <- 1

while (i <= length(tuniquevals))

{

trainset[[i]] <- subset(tsubdata, trajID ==

tuniquevals[i])

trainset[[i]] <- trainset[[i]][,1:2]

i <- i + 1

}

fitted <- HMMFit(obs=trainset, nStates = 20,

asymptMethod = "optim")

num <- 1

results <- matrix(rep("NA"),nrow = 250, ncol = 20)

while(num <= 20)

{

if(num == tnum)
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{

num = num + 1

}

else

{

print(num)

subdata <- fullclust[[num]]

uniquevals <- unique(subdata$trajID)

testset <- vector("list", length(uniquevals))

it <- 1

while (it <= length(uniquevals))

{

testset[[it]] <- subset(subdata, trajID == uniquevals[it])

testset[[it]] <- testset[[it]][,1:2]

it <- it + 1

}

fullset <- c(trainset,testset)

est <- 0

fbLog <- NULL

tfitted <- NULL

test <- 25
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totallen <- length(uniquevals) + 59

while(test <= totallen)

{

est <- 0

low <- test - 24

tfitted <- NULL

tfitted <- HMMFit(obs=fullset[low:test], nStates = 20,

asymptMethod = "optim")

while(low <= test)

{

fbLog <- NULL

fbLog <- forwardBackward(fitted, fullset[[low]])

est <- est + fbLog$LLH

low <- low + 1

}

results[test,num] <- tfitted$LLH - est

test = test + 1

}

num <- num + 1

}

}

outfile <- sprintf("Cluster_%d_vsRest.csv", tnum)

write.csv(results, file = outfile)
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tnum <- tnum + 1

}

7. Sequential Pattern Mining (R CODE)

***Preparing data for Prefixspan algorithm ****

prefixdata <- NULL

it <- 1001

while(it <= 4000)

{

temp <- as.integer(trajfull[which(trajfull$trajID ==it),9])

temp <- append(temp, c(-1,-2))

prefixdata <- append(prefixdata,temp)

it <- it + 1

}

write.table(prefixdata, file = "SampData.txt")

x <- scan(file="SampData.txt",what="integer")

x <- as.integer(x)

x

zz<-file("prefixinput.data","wb")

writeBin(x,zz,size=4)

close(zz)

zz<-file("prefixinput.data","rb")

readBin(zz,integer(),1000,size=4)

close(zz)
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****CreatingSequences*****

seqlist <- list()

count <- 1

it <- 1

while(it <= 3363)

{

temp <- as.integer(trajfull500_discrete

[which(trajfull500_discrete$trajID ==it),6])

seqlist[[count]] <- temp

it <- it + 1

count <- count + 1

}

maxLen <- max(sapply(seqlist, length))

newseqlist <- lapply(seqlist,

function(.ele){c(.ele, rep(NA, maxLen))[1:maxLen]})

seqs <- do.call(rbind, newseqlist)

write.csv(seqs, file="Seq_Cabs1To150_B0.0001_2.csv")

****CreatingSubsets****

mydata <- read.csv("Seq_traj4000_341clusters.csv")

mydata <- mydata[1001:4000,]

z <- 26
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while(z <= 1000){

name <- sprintf("TestSample_25_%d.csv",z)

mysample<- mydata[sample(1:nrow(mydata), 25, replace=FALSE),]

write.csv(mysample, file = name)

z <- z + 1

}

8. Distribution Based Method (R CODE)

****Creating sequences with increased time

intervals between items *****

seqlist <- list()

count <- 1

it <- 1

while(it <= 1000)

{

temp_item <- as.integer(trajfull500_discrete

[which(trajfull500_discrete$trajID ==it),6])

full <- NULL

k <- 1

while(k <= length(temp_item))

{

z <- 1.2*k

temp_list <- append(2000+ z,temp_item[k])

full <- append(full, temp_list)
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k <- k + 1

}

seqlist[[count]] <- full

it <- it + 1

count <- count + 1

}

maxLen <- max(sapply(seqlist, length))

newseqlist <- lapply(seqlist,

function(.ele){c(.ele, rep(10000, maxLen))[1:maxLen]})

seqs <- do.call(rbind, newseqlist)

write.csv(seqs, file="Seq_Test_Time1.1.csv")

***Constructing multivariate control chart*******

z <- 1

train1 <-NULL

train2 <- NULL

while(z <= 25)

{

name1 <- sprintf("1-2_TrainFile_%d.csv", z)

name2 <- sprintf("2-3_TrainFile_%d.csv", z)

t1<- read.csv(file = name1, header = FALSE)

t2<- read.csv(file = name2, header = FALSE)

t1 <- mean(t1)
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t2 <- mean(t2)

train1 <- rbind(train1, t1)

train2 <- rbind(train2, t2)

z = z + 1

}

traindata <- cbind(train1, train2)

z <- 1

test1 <-NULL

test2 <- NULL

while(z <= 25)

{

name1 <- sprintf("1-2_TestFile_%d.csv", z)

name2 <- sprintf("2-3_TestFile_%d.csv", z)

t1<- read.csv(file = name1, header = FALSE)

t2<- read.csv(file = name2, header = FALSE)

t1 <- mean(t1)

t2 <- mean(t2)

test1 <- rbind(test1, t1)

test2 <- rbind(test2, t2)

z = z + 1

}

testdata <- cbind(test1, test2)

qq = mqcc(traindata, type = "T2.single",
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newdata = testdata, confidence.level = 0.999,

pred.limits = TRUE)

9. Clustering and Outlier detection using random forests (R CODE)

**Random Forests****

FD <- read.csv("Traj_Clust.csv", header=TRUE)

FD$Class <- as.factor(FD$Class)

rf <- randomForest(formula = Class ˜ .,

data = FD,nodesize=0.05, proximity = TRUE,ntree=500)

rfProx <- as.dist(rf$proximity[1:300,1:300])

rfDist <- as.dist(1-rfProx)

hc <- hclust(rfDist, "ave")

plot (hc, hang = -1, labels = FALSE)

rect.hclust(hc, k=3, border="red")

groups <- cutree (hc, k = 3)

plot(outlier(rf$proximity[1:42,1:42]),type="h",col=c("blue"),

main="Outlier Detection using Random Forest",

xlab="Data Points",

ylab="Breiman’s Outlier Measure")

FD_matrix_2 <- data.matrix(FD[202:220,])

FD_heatmap <- heatmap(FD_matrix, Rowv=NA, Colv=NA,

col = cm.colors(1256), scale="column",margins=c(5,10))

FD_heatmap <- heatmap(FD_all, Rowv=NA,

Colv=NA,scale="column",margins=c(5,10))
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FD.dist <-dist(FD_matrix)

mds <- isoMDS(FD.dist, k=2)

mds <- isoMDS(cfDist, k=2)

plot(mds$points[,1],mds$points[,2],

xlab=’Dimension1’,ylab=’Dimension2’, col = "red")

****Conditional Inference Forests***

cf <- cforest(Class ˜ ., data = FD)

o <- outlier(proximity(cf)[1:207,1:207])

plot(o, type="o",col=c("brown"),

main="Outlier Detection using Conditional Forest",

xlab="TrajectoryID",ylab="Breiman’s Outlier Score")
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