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ABSTRACT

One dimensional (1D) and quasi-one dimensional quantum wires have been

a subject of both theoretical and experimental interest since 1990s and before.

Phenomena such as the “0.7 structure” in the conductance leave many open

questions. In this dissertation, I study the properties and the internal electron

states of semiconductor quantum wires with the path integral Monte Carlo

(PIMC) method. PIMC is a tool for simulating many-body quantum systems

at finite temperature. Its ability to calculate thermodynamic properties and

various correlation functions makes it an ideal tool in bridging experiments

with theories.

A general study of the features interpreted by the Luttinger liquid theory

and observed in experiments is first presented, showing the need for new PIMC

calculations in this field. I calculate the DC conductance at finite temperature

for both noninteracting and interacting electrons. The quantized conductance

is identified in PIMC simulations without making the same approximation in

the Luttinger model.

The low electron density regime is subject to strong interactions, since the

kinetic energy decreases faster than the Coulomb interaction at low density.

An electron state called the Wigner crystal has been proposed in this regime

for quasi-1D wires. By using PIMC, I observe the zig-zag structure of the

Wigner crystal. The quantum fluctuations suppress the long range correla-

tions, making the order short-ranged. Spin correlations are calculated and

used to evaluate the spin coupling strength in a zig-zag state. I also find that

as the density increases, electrons undergo a structural phase transition to a

dimer state, in which two electrons of opposite spins are coupled across the
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two rows of the zig-zag. A phase diagram is sketched for a range of densities

and transverse confinements.

The quantum point contact (QPC) is a typical realization of quantum

wires. I study the QPC by explicitly simulating a system of electrons in and

around a Timp potential (Timp, 1992). Localization of a single electron in the

middle of the channel is observed at 5 K, as the split gate voltage increases.

The DC conductance is calculated, which shows the effect of the Coulomb

interaction. At 1 K and low electron density, a state similar to the Wigner

crystal is found inside the channel.
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Chapter 1

INTRODUCTION

At first glance, one dimensional (1D) physics may be simple and trivial

in comparison to its two and three dimensional counterparts. Indeed, in the

three dimensional world, particles can play a wide variety of tricks: they can

rotate around a certain center; they can change their momentum greatly while

change their energy slightly; in many cases, they are many, but they act one,

etc. All of these devils—or angels depending on one’s view—are gone, if they

are restricted to the configuration of a straight line. They can now only move

either left or right.

As particles move in 1D, they cannot avoid pushing or being pushed by

their neighbors. Particles in one dimension are in a status of constantly in-

teracting with each other. Due to the strong coupling between neighboring

particles, a little local perturbation can be passed down, demanding the re-

sponse of every particle. It means that the particle ensemble can no longer be

considered as a single particle wandering around in a mean-field background

potential. The motion is always collective, which gives birth to distinct fea-

tures in one dimension and needs special treatment. In this dissertation, I

investigate techniques for simulating electrons in and quasi-1D situations.

1.1 Introduction to Nanowires

The interest in one-dimensional (1D) systems in the last century was de-

layed until the development of new experimental techniques in the 1980s.
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Thanks to the new growth methods, e.g. molecular beam epitaxy, physicists

were able to build nano scale structures with few impurities. This led to the

discovery of many interesting properties of 1D electron systems and made the

study of nanowires a hot topic in 1990s.

Conductance is one of the most important properties of nanowires. The 1D

ballistic transport of charge carriers results in quantized conductance. Modern

growth methods are able to control impurities and defects in semiconductors,

especially gallium arsenide. The greatly reduced probability of scattering ex-

tends the mean free path of electrons to microns. Therefore, the motion of

electrons in a nanowire of tens of nanometers long is ballistic.

The typical conductance is shown in Fig. 1.1. The gate voltage controls the

electron density. The more positive the gate voltage, the higher the electron

density. As the density increases, the subbands are filled gradually. Each

subband contributes a conductance quanta 2e2/h , so the conductance appears

as plateaus in the unit of 2e2/h. At finite temperature as the experiments are

conducted, thermal fluctuation softens the edges of the plateaus, connecting

them with smooth ramps.

The interaction in 1D causes a peculiar conductance at low density, that

is, the “0.7 structure” (Thomas et al., 1996). In a quasi-1D wire, the small-

est conductance becomes 0.7 × 2e2/h under certain conditions. This unusual

plateau has been observed in different types of nano-structures (Cronenwett

et al., 2002; de Picciotto et al., 2004; Crook et al., 2006), which shows that it

is a common characteristics in 1D quantum wires. In a typical wire, it exists

up to 4.2 K and becomes weaker at very low temperatures. It vanishes in

the presence of a magnetic field, indicating its relation with electron polariza-
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0.7 structure

Figure 1.1: Typical quantized conductance and the “0.7 structure”, from
Thomas et al. (1998). As the gate voltage increases, the chemical potential
increases and more and more subbands are filled. Each subband contributes
2e2/h to the conductance, which explains the quantized conductance in exper-
iments.

tion. It is still not fully understood despite of more than 10 years of research,

exemplifying challenges in 1D physics.

In addition to the conductance, other aspects of 1D physics are also in-

triguing, such as the spin-charge separation. An electron has two spin states.

The coupling between spins invokes spin waves, while the motion of electrons

forms charge waves. In 1D, interactions change the speed of the two waves, so

that they can be separated. The separation has been observed in experiments

(Auslaender et al., 2005). Spin-charge separation can be understood by the

Luttinger liquid theory (Tomonaga, 1950; Luttinger, 1963; Deshpande et al.,

2010). More details of Luttinger liquid theory are given in Section 2.3.1.

Theoretical physicsts began studying the 1D electron system in the middle

of last century, before experiments were feasible. The most successful model

3
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Figure 1.2: Shaded regions show allowed energy at given momenta of exci-
tations of Fermi gas for (a) two or three dimensions and (b) one dimension.

was Luttinger liquid theory (LLT). We know that the motion of electrons

in 1D is always collective, so many-body physics is inherent in 1D electron

systems, and the elementary excitations are collective modes. LLT describes

the low energy excitations of quantum wires. The key assumption in LLT is

the linearization of the dispersion relations. In two or three dimensions, for a

given excitation momentum |~q| < 2kF , one can create excitations of vanishing

energy by scattering an electron right below the Fermi surface to a state right

above the Fermi surface, for some direction of ~q. This freedom of direction

is restricted to left and right in 1D, which leads to a significantly different

momenta distribution for energy excitations, as is shown in Fig. 1.2.

If only the low energy excitations are concerned, the linearization of the

Fermi surface is consistent with the excitation spectrum. Including Coulomb

interactions, the LLT can be solved exactly by bosonization, showing that

elementary excitations are collective modes acting as bosonic quasiparticles.

In other words, the 1D interacting system of electrons can be mapped to a

system of free bosons, as long as backscattering is forbidden.

LLT predicts several unique new phenomena as the consequence of the

many-body physics, such as the power law dependence of the conductance on

4



temperature and the applied bias, and the separation between charge density

wave and spin density wave. LLT has been applied to carbon nanotubes (Egger

and Gogolin, 1997; Kane et al., 1997), and the above predictions have been ob-

served in experiments on metallic carbon nanotubes (Bockrath et al., 1999; Yao

et al., 1999; Postma et al., 2000), semiconductor nanowires (Auslaender et al.,

2000, 2002, 2005; Jompol et al., 2009), and even self-organized atomic gold

chains on the surface of Germanium (Blumenstein et al., 2011). Meanwhile,

deviations from LLT have also been observed (Auslaender et al., 2002, 2005),

triggering the development of a nonlinear theory beyond LLT (Imambekov and

Glazman, 2009). However, the theory is still far from complete. On the other

hand, LLT is only quantitatively valid in the high electron density regime,

or in other words, the weak interacting regime. As the density decreases,

the kinetic energy decreases as ∼ n2, while the Coulomb potential decreases

as ∼ n. When the density is below the inverse of the effective Bohr radius

aB = ε~2/mee
2, the Coulomb potential dominates over the kinetic energy and

the system enters the strong interaction domain, where non-perturbative the-

ory has to be employed. This kind of theory is still a difficult challenge to

physicists.

1.2 Application of Computer Simulations

The fast advancement of computer science has ushered in another way of

attacking questions in physics. The solvable or integrable questions are only

a small portion of the physics world. As for many complex systems, currently

computer simulations are still the only way of obtaining the details. For exam-

ple, density functional theory simulations of materials demonstrate the ability

of computational physics. Beyond mean field theory, modern physics involves
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more and more strongly interacting, or strongly correlated systems, such as

the high Tc superconductivity and Wigner crystal phases. Analytic methods

may be limited, while methods based on Monte Carlo algorithms are able to

work straightforwardly. In this dissertation, I perform computer simulations

using the path integral Monte Carlo method.

1.3 Path Integral Monte Carlo

Path integral Monte Carlo (PIMC) (Ceperley, 1995) is designed especially

for simulating non-relativistic quantum many-body systems at finite temper-

ature. The basic procedure in PIMC is making random walks (quantum tra-

jectories of particles), then selecting from the walks according to the accep-

tance/rejection rate determined by the metropolis Monte Carlo algorithm.

This procedure is repeated until the results converge.

PIMC uses random walks in configuration space to sample the density ma-

trix. The density matrix, ρ = 1
Z
e−βĤ , in statistical physics can be formulated

as a path integral over the configuration space (Feynman, 1972), Thus each

particle in the configuration space is represented by a random walk or a path.

By comparing this expression of the density matrix with the path integral for-

mulation of quantum dynamics, people found that they could be related by

the Wick rotation transformation t → t = −iτ , that is, the density matrix

is an imaginary time path integral. The density matrix has an exponentially

decaying factor e−βH , so the integral converges well and is suitable to evaluate

in computers. The imaginary time τ ranges from 0 to β~, where β = 1/kT .

Calculating tr(ρ) is equivalent to making closed paths. PIMC discretizes imag-

inary time into slices, and uses a bead on each slice to represent a particle

at that instant. The kinetic energy can be considered as springs connecting
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beads along a path. Time-independent many-body interactions, such as the

Coulomb interaction, are imposed between beads on the same slice. Measur-

ing physical properties is equivalent to evaluating averages over an ensemble

of closed paths. The calculation of correlation functions at finite temperature

is also straightforward, which is the main analysis tool which I apply in this

dissertation. More details about PIMC can be found in Chapter 3.

1.4 Summary of my Results

By simulating a model in the regime of LLT and calculating the current-

current correlation, I show that PIMC results are in good agreement with LLT

in the high density regime. By making fewer approximations than LLT, PIMC

calculations can be extended to lower densities.

To go beyond LLT, I study the quasi-1D quantum wires with very low

electron densities. I find the zig-zag structure of the Wigner crystal and find

that the long range correlation is diminished by quantum fluctuation. A look

into the spin correlation in the zig-zag provides an estimation of the spin

coupling strength. As the density increases, a dimer state emerges from the

zig-zag.

The knowledge from the study of zig-zag is then applied to a simulation

of a quantum point contact, which is a typical geometric configuration used

in experiments. I first find the localization of single electron in the middle of

the channel at 5 K by increasing the split gate voltage. The conductance is

calculated by means of the method in Chapter 5. At 1 K and a lower electron

density, the zig-zag state is found inside the channel between the split gates.
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1.5 Outline of Dissertation

This dissertation is organized as follows: Chapter 2 discusses experimental

and theoretical aspects of quantum wires. Chapter 3 describes the computa-

tional tool I use for the results, that is, the path integral Monte Carlo method.

Chapter 4 provides the configurations of quantum wires and rings, on which

my simulations are based. The next three chapters, 5, 6 and 7, are the main

part of this dissertation, and show the results of my study on 1D electron

systems. The conclusion is placed in Chapter 8. Supporting materials de-

scribing Coulomb interaction, density-density fluctuations and parallelism can

be found in the Appendix.
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Chapter 2

BACKGROUND

Thanks to the great efforts in the study of quantum wires, new techniques

have been invented and new quantum wire physics has been discovered and

understood in the past two decades. In this chapter, I review the realization of

quantum wires in experiments and the techniques for measuring the transport

properties. The theoretical approaches are discussed thereafter.

2.1 Physical Realization of Semiconductor Quantum Wires

There are several ways of realizing quantum wires in experiments, such as

single wall carbon nanotubes, ultra-cold dilute atom chains, and a great variety

of metallic and semiconducting nanostructures. In this dissertation, I focus on

semiconductor quantum wires. The general idea of fabricating semiconductor

quantum wires is to confine electrons from donors into a very thin layer, so

that in the z-direction the electron gas is considered always in the ground

state, and the layer becomes a 2D electron gas (2DEG). Then various metallic

gates are used to shape the 2D electron gas into wires. To form the 2DEG,

the most widely used structure is the GaAs/AlGaAs heterojunction.

2.1.1 GaAs/AlGaAs heterojunction with top gates.

One way to realize wires is to take advantage of the GaAs/AlGaAs het-

erostructure fabricated by molecular beam epitaxy (MBE) (Cho, 1971). Al-

GaAs has nearly the same lattice constant as GaAs, but the band gap is larger

dependent on the concentration of Al. The fractional Al concentration is con-
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Top gate

Split gates

Dielectric layer

AlGaAs

GaAs
2DEG

Figure 2.1: A quantum point contact formed at a GaAs/AlGaAs heterojunc-
tion. The quantum wire is the channel in the 2DEG defined in-between the
two split gates.

trolled to be less than 0.4 so that the AlGaAs is still a direct band material.

Then, at the interface between GaAs and AlGaAs, electrons are trapped in a

V-shaped potential in the GaAs side. With a density around 1011 cm−2, the

Fermi wavelength of electrons is longer than the thickness of the electron gas,

approximating a two-dimensional electron gas. The dopant is usually embed-

ded by means of modulation doping, in order to keep the donor impurities far

away from the heterointerface (Dingle et al., 1978).

Once the 2DEG is formed, its shape can be controlled by top gates with

negative voltage (Thornton et al., 1986). To obtain one-dimensional electron

gas (1DEG), the gates are made into the shape of split-gate point contacts,

leaving a channel between them. Electrostatic repulsion causes electrons to be

depleted from below the gates. The source and drain supplying bias voltage

are made of common ohmic contacts deposited on two sides of the channel.

Thus the electrons are driven through the channel and act like 1DEG. This is

illustrated in Fig. 2.1.
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2.1.2 GaAs/AlGaAs heterojunction with cleaved edge overgrowth.

The cleaved edge overgrowth method (Pfeiffer et al., 1997), shown in Fig. 2.2

is another method of fabricating quantum wires out of quantum wells, which

is convenient for studying the coupling between wires. It begins with an MBE

and modulation doping process to obtain a GaAs layer sandwiched by AlGaAs

along (001) direction. A long and narrow tungsten stripe stretched along (110)

is then deposited on top of the [001] plane, acting as a top gate. With a neg-

ative voltage, this top gate depletes electrons below it, separates the 2DEG

into the source and drain regions. It also helps define the quantum wire along

the [110] edge of the GaAs layer.

Next, the [110] plane of the whole wafer is cleaved inside the MBE chamber

and is overgrown immediately with a second modulation doping MBE process

to form AlGaAs layer parallel to (001). This growth introduces extra electrons

at the edge of the GaAs layer, which become 1DEG in direct contact with the

2DEG. A Ti-Au side gate is sometimes deposited over the overgrown [110]

layer in order to control the electron density in the 1DEG. An appropriate

voltage on the top gate then separates the 1DEG from the 2DEG and defines

a quantum wire.

2.1.3 Other types of wires.

The idea of obtaining the 2DEG by heterostructures can also be used on

other combinations of materials. The alloy In0.53Ga0.47As has the same lattice

constant as InP, while its band gap is smaller. Thus the same technique

mentioned above can be used to fabricate InGaAs/InP quantum wires (Temkin

et al., 1987; Yoji Kunihashi and Nitta, 2009).
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GaAs Bulk

AlGaAs

AlGaAs
GaAs

AlGaAs overgrowth
Top gate

Side gate

2DEG

(001)

(110)

(1-10)

1DEG

Figure 2.2: The GaAs/AlGaAs heterojunction with cleaved edge overgrowth.
The top gate with negative voltage depletes the 2DEG below it and forms the
quantum wire along the GaAs edge to the AlGaAs overgrowth. The side gate
controls the density of electrons in the wire.

On the other hand, there are experiments based on self assembled In-

GaAs/GaAs quantum wires (Gréus et al., 1992; Kunets et al., 2012). Because

of the lattice mismatch between InGaAs and GaAs, the growth is strain in-

duced, and the strain field becomes the cause of potential well for electrons.

It is a widely used technique for growing self-assembled InGaAs/GaAs quan-

tum dots. By elongating quantum dots, quantum wires can be obtained. The

difficulty here is that purity and uniformity of the wires is difficult to achieve.

The measurement of conductance on a single sample of these wires is not

easy, either. Therefore, they are rarely used to study unusual conductivity of

quantum wires.

2.1.4 Erasable electrostatic lithography

The development of the erasable electrostatic lithography (EEL) provides

another way of defining quantum wires based on the GaAs/AlGaAs het-

erostructure (Crook et al., 2003, 2006). The sample is a GaAs/AlGaAs het-

erojunction 97 nm below the surface of the wafer. The junction serves as

the 2DEG. A negatively biased scanning probe then draws negative charges

on the surface. In order that the charges stay in place on the surface, the
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whole experiment is conducted inside a dilution refrigerator cooled down to 20

mK. The surface charges act as top gates depleting the electrons below them,

and define the shape of the desired quantum component. The advantage of

EEL charges over epitaxial top gates is that the gates can be easily removed

by a positively biased scanning probe. This flexibility enables experiments

on different shapes of quantum components in a short period of time. The

shapes can be further controlled by a scanning gate microscopy (SGM) probe

50 nm above the surface. Not only does the SGM probe image the shape of

the quantum electronic device, but it also perturbs the local potential with-

out changing the overall gating pattern. Therefore, the measurement with the

probe at a special position can be considered as a measurement of a special

quantum component.

To define quantum wires, a stripe of negative charges are drawn across the

surface, separating the source and drain reservoirs to which ohmic contacts are

connected. When the SGM probe with positive voltage moves to the center of

the charges, a point contact structure is formed and a quantum wire is defined.

2.2 Transport Measurements on Quantum Wires

The most common measurement on quantum wires is the conductance, and

most of the conductance is obtained by the two-terminal measurement. For

ballistic transport in GaAs quantum wires, the conductance is determined by

the number of transport channels in the wires. Each channel contributes 2e2/h

to the conductance according to the Landauer formula (Landauer, 1957, 1970).

In experiments, the top gates control the density of electrons in the wire, while

the split gates control the transverse confinement which defines the width of the

wire. A two-terminal measurement measures the current and voltage between
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the source and drain electrodes and gives the conductance as the ratio I/V .

The measurement is usually conducted at a fixed split gate voltage, versus a

decreasing top gate voltage that causes an increasing electron density inside the

wire. As the electron density increases, more and more conducting channels

are occupied. To study the change in the number of conducting channels, a

low-frequency AC source-drain bias is applied, and differential conductance

dI/dV is measured (Thornton et al., 1986; van Wees et al., 1991; Thomas

et al., 1996). DC conductance is also measured to understand the detailed

structures in conductance (Kristensen et al., 1998, 2000). Experiments have

shown clear quantized conductance for high electron densities, as well as the

peculiar “0.7 structure”.

Four-terminal measurements are also applied to the study of conductance

and interactions in quantum wires (de Picciotto et al., 2001), in which two

additional electrodes connected to the middle segment of the wire so that the

voltage drop over an inner part of the wire can be measured. The conductance

then becomes the ratio between the current and this inner voltage drop. The

results confirm the ballistic transport in the quantum wire, and rule out the

possibility of impurities as the cause of the “0.7” structure.

2.3 Theoretical Approaches to Quantum Wires

The quantization of conductance for ballistic transport of electrons can be

easily understood from a single-electron model. Consider a quantum wire of

length L at 0 K. Two metallic electrodes are attached, one to each end of the

wire. A small bias V is applied to the electrodes, so that electrons move from

left to right without scattering in the wire. The transport channels in the wire
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are transverse modes, or subbands, in the wire with energy dispersion,

εi = εi0 +
~2k2

2m∗
, (2.1)

where εi0 is the energy level of subband i, and m∗ is the effective mass. The

current can be expressed in Eq. (2.2),

I =
e

L

∑
i

∑
k

vi(k)f(E), (2.2)

where vi(k) = dεi/dk is the group velocity of electrons in subband i near the

Fermi level , f(E) is the Fermi-Dirac distribution. The bias V causes the

chemical potential difference between the electrodes, leading to electron flow

from left to right. The
∑

k can be converted into integral

1

L

∑
k

→
∫

1

2π

1
dεi
dk

dE =
1

h

∫
1

vi
dE (2.3)

where the vi conveniently cancels the group velocity in Eq. 2.2. If we use M(E)

to denote the density of subbands, µR and µL for the chemical potential of

the left and right electrodes, and use Eq. 2.3, Eq. 2.2 can be converted into an

integral,

I =
2e

h

∫ µL

µR

f(E)M(E)dE. (2.4)

where the factor 2 is due to the two spins of an electron. At 0 K, the chemical

potential equals the Fermi energy, and the Fermi-Dirac distribution is a step

function. With a small bias, M(E) can be considered as a constant M . Thus,

Eq. (2.4) can be simplified as in Eq. (2.5),

I =
2e

h
M(µL − µR). (2.5)

On the other hand, we have Eq.(2.6),

µR − µL = eV. (2.6)
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Therefore, the conductance can be obtained as in Eq. (2.7),

G =
dI

dV
=

2e2

h
M. (2.7)

Thus each transport channel contributes 2e2/h to the conductance.

To take into account possible scattering, the transmission probability can

be added into the formula,

G =
2e2

h

∑
n

Tn(EF ), (2.8)

where Tn(EF ) is the transmission probability of channel n near the Fermi

energy.

2.3.1 Luttinger liquid theory

I have already mentioned in the introductory chapter that the one-dimensional

(1D) electron systems inherently require many-body treatment, for which

mean field theory is not a good approximation. If we restrict ourselves to the

case of high electron density and low energy excitations, there is a successful

model for 1D systems, that is, the Luttinger liquid theory (LLT).

As is briefly discussed in the last chapter, the idea of LLT is to linearize

the Fermi surface. Here I follow the discussion in Giamarchi (2004). The

Hamiltonian for spinless electrons is then (atomic units),

H0 =
∑
k,r

vF (rk − kF )c†k,rck,r, (2.9)

where r = −1,+1 denotes the left and right moving electrons repsectively, vF

is the Fermi velocity, ck,r is the annihilation operator of fermions following the

anticommutation relation. The Coulomb interaction in general (omitting the

left and right indices) is,

Hint =
1

2L

∑
k,k′,q

V (q)c†k+qc
†
k′−qck′ck. (2.10)
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Figure 2.3: The three processes of low energy excitations for one-dimensional
Coulomb interaction. Without considering spins, g4 is from terms as
ρL(q)ρL(−q), g2 and g1 are from terms as ρL(q)ρR(−q). They can be han-
dled together with the kinetic term and solved completely. With spins, the
only new term is g1 process involving different spins ∼ ψ†L,↑ψR,↑ψ

†
R,↓ψL,↓, which

needs perturbative treatment.

As far as the low energy excitations are concerned, there are three processes

as in Fig. (2.3) (notations follow Giamarchi (2004)). The parameter g4 the

interaction on one branch of the Fermi sea, g2 denotes the forward scattering,

and g1 denotes the back scattering. The parameters g1 and g2 are equivalent

unless the two electrons involved have different spins, in which case the chiral-

ity is changed and the theory cannot be exactly solved. Since we work with

spinless electrons at present, we ignore g1.

The density operator in momentum space can be defined as follows,

ρr(q) =

∫
dx eiqxρr(x) =

∑
k

c†k+q,rck,r. (2.11)

The interaction term is (up to a chemical potential shift),

Hint =
1

2L

∑
q,r

g2ρr(q)ρ−r(−q) + g4ρr(q)ρr(−q), (2.12)

Define the boson operators,

φ(x) = −(NR +NL)
πx

L
− iπ

L

∑
q 6=0

1

q
e−α|q|/2−iqx(ρR(q) + ρL(q)),

θ(x) = (NR −NL)
πx

L
+
iπ

L

∑
q 6=0

1

q
e−α|q|/2−iqx(ρR(q)− ρL(q)),

(2.13)

where α is a short distance cutoff in order to ignore the large q behavior

since we focus on the low energy excitations, NR and NL are the number of
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electrons in each moving branch. The fermion operator can then be written

as (Heidenreich et al., 1980; Haldane, 1981),

ψr(x) = Ur lim
α→0

1√
2πα

eir(kF−π/L)x)e−i(rφ(x)−θ(x)), (2.14)

where Ur is an non-Hermitian operator commuting with the boson operators

and following the relation,

U †R|NR, NL〉 = |NR + 1, NL〉,

U †L|NR, NL〉 = |NR, NL + 1〉.
(2.15)

It, together with the boson operators, provides a complete Hilbert space. Now

the fermion operators has been expressed in terms of boson operators. The

above transformation is named “bosonization”. Define another boson operator

Π(x) =
1

π
∇θ(x). (2.16)

From Eq. (2.13), one can see that φ(x) and Π(x)) satisfy the canonical com-

mutation relation,

[φr(x1),Πs(x2)] = iδrsδ(x1 − x2). (2.17)

Using the new boson operators, the free fermion Hamiltonian Eq. (2.9) can be

written as,

H0 =
1

2π

∫
dx vF

[
(πΠ(x))2 + (∇φ(x))2

]
. (2.18)

The power of bosonization is that it can diagonalize the interaction simul-

taneously. First of all, when L→∞, from Eq. (2.13) we have,

∇φ(x) = −π [ρR(x) + ρL(x)] ,

∇θ(x) = π [ρR(x)− ρL(x)] .

(2.19)
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The fermion operator has to be separated into the left-moving and right-

moving parts,

ψ(x) = ψL(x) + ψR(x). (2.20)

Then the term concerning the g4 process in Eq. (2.12) becomes,

g4

2
ψ†R(x)ψR(x)ψ†R(x)ψR(x) =

g4

2
ρR(x)ρR(x),

=
g4

2

1

(2π)2
(∇φ−∇θ)2.

(2.21)

The left-moving electrons can be expressed likewise, with the replacement

φ− θ → φ+ θ. And the sum of the left and right moving terms are,

g4

(2π)2

∫
dx
[
(∇φ)2 + (∇θ)2

]
. (2.22)

The term concerning the g2 process becomes,

g2ψ
†
R(x)ψR(x)ψ†L(x)ψL(x) = g2ρR(x)ρL(x),

=
g2

(2π)2
(∇φ−∇θ)(∇φ+∇θ),

=
g2

(2π)2

[
(∇φ)2 − (∇θ)2)

]
.

(2.23)

Eq. (2.22) and Eq. (2.23) can be merged into the boson representation of the

free fermion Hamiltonian Eq. (2.18) as renormalization of the relative weights

between φ and Π,

H =
1

2π

∫
dx
[
uK(πΠ(x))2 +

u

K
(∇φ(x))2

]
, (2.24)

where,

uK = vF

(
1 +

g4

2πvF
− g2

2πvF

)
,

u

K
= vF

(
1 +

g4

2πvF
+

g2

2πvF

)
,

(2.25)
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and u has the unit of velocity, while K is dimensionless. Define y = g/(πvF ),

the expression of u and K is,

u = vF

[(
1 +

y4

2

)2

−
(y2

2

)2
] 1

2

,

K =

(
1 + y4/2− y2/2

1 + y4/2 + y2/2

)1/2

.

(2.26)

Now we have mapped the 1D interacting fermion system to 1D free boson

fields. The remarkable equivalence indicates the uniqueness that distinguishes

1D systems from its higher dimensional counterparts.

The above solution handles the spinless, or rather spin-polarized electrons.

Taking spins into account means adding g4 and g2 terms involving electrons

of different spin states,

H ′int =
1

2L

∑
q,r,s

g′2ρr,s(q)ρ−r,−s(−q) + g′4ρr,s(q)ρr,−s(−q), (2.27)

where s =↑, ↓ is the spin index. The diagonalization is straightforward if we

separate the charge and spin degrees of freedom,

φρ =
1√
2

(φ↑ + φ↓),

φσ =
1√
2

(φ↑ − φ↓),
(2.28)

and the same for θ. This transformation conserves the canonical commutation

relation Eq. (2.17) between the charge operator and spin operator,

[φµ(x1),Πν(x2)] = iδµνδ(x1 − x2), (2.29)

where µ, ν = ρ, σ. Apply transformation Eq. (2.28) to the bosonization

Eq. (2.14), we have,

ψr,σ(x) = Ur,σ lim
α→0

1√
2πα

eir(kF−π/L)x)e
− i√

2
[rφρ(x)−θρ(x)+σ(rφσ(x)−θσ(x))]

. (2.30)
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Following the same procedures of bosonization for the spinless electrons, we can

see that the kinetic term is separated into charge and spin parts H0 = H0
ρ+H0

σ,

and so does the interaction Eq. (2.12) and Eq. (2.27). As a consequence, we

obtain the same expression as in Eq. (2.24), only that the coefficients are

renormalized with respect to charge and spin degrees of freedom,

H = Hρ +Hσ

=
∑
ν

1

2π

∫
dx

[
uνKν(πΠν(x))2 +

uν
Kν

(∇φν(x))2

]
, (2.31)

where ν = ρ, σ, and,

u = vF

[(
1 +

y4ν

2

)2

−
(yν

2

)2
] 1

2

,

K =

(
1 + y4ν/2 + yν/2

1 + y4ν/2− yν/2

)1/2

,

yν =
gν
πvF

.

(2.32)

The g1 interaction for 2 electrons of the same spins is identical to a g2 process

plus a swap of 2 electrons, that is, g1 = −g2. So this process can be incorpo-

rated into the above expression. Considering g4 = g′4, g2 = g′2 and g1 = g′1, we

have gρ = g1 − 2g2, gσ = g1, g4σ = g4, g4σ = 0.

The g1 interaction between electrons of opposite spins needs a little care,

by using Eq. (2.30), we have,

g1

∑
s

ψ†L,sψR,sψ
†
R,−sψL,−s,

=
g1

(2πα)2

∑
s

ei(−2φs(x))ei(2φ−s(x)),

=
2g1

(2πα)2
cos(2

√
2φσ(x)), (2.33)

This term has to be treated perturbatively. Nevertheless, it can be added to

the spin degree of freedom in Eq. (2.31), and we have the complete expression

21



for the boson fields,

H = Hρ +Hσ +
2g1

(2πα)2

∫
dx cos(2

√
2φσ(x)). (2.34)

Eq. (2.34) shows the complete separation between the charge degree of

freedom and the spin degree of freedom in the presence of interaction, and

generally uσ 6= uρ. This is the well-known spin-charge separation.

Since deviations from linear dispersion has been experimentally observed

(Auslaender et al., 2002), theories beyond LLT were proposed (Imambekov

and Glazman, 2009). However, a complete description still needs a lot of

work. On the other hand, the “0.7 structure” in the low density conductance

has not been clearly understood. Theory for 1D electron systems is in need of

new ideas. In the next chapter, we discuss how Path Integral Quantum Monte

Carlo is well-suited to numerically address this problem.
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Chapter 3

PATH INTEGRAL MONTE CARLO METHOD

In the recent three decades, the rising interest in strongly-correlated many-

body systems has given birth to a wide suite of computational tools, to com-

plement the difficult analytic studies. Among them, methods based on the

metropolis Monte Carlo algorithm have become quite popular, due to their

versatility and ease of use. Compared with the widely-used mean-field or sin-

gle particle methods, they make very few approximations to the interactions.

Compared with the exact diagonalization and the density matrix renormal-

ization group methods, they scale much better as the size of the simulating

system increases.

Path integral Monte Carlo (PIMC) is a particular kind of quantum Monte

Carlo method, with some unique features. First of all, the path integral basis

replaces the complexity of many-body wave functions with a useful analogy to

classical systems. One does not have to design a trial wave functions out of a

variety of considerations, as is the case in other quantum Monte Carlo (QMC)

methods, such as variational Monte Carlo or diffusion Monte Carlo. The anal-

ogy to classical systems not only provides helpful insights, but also endows the

complicated simulations with simple physical pictures, as most quantum sys-

tems have a classical limit. Secondly, owing to the mapping between the path

integral formulation and statistical mechanics, PIMC directly provides finite

temperature results, in contrast to most other numerical tools which study the

ground-state quantum wavefunction at zero temperature. Finite temperature

results are often favored by experiments which are always conducted under a
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finite temperature. This is particularly important in extended metallic sys-

tems, like quantum wires, which do not have an energy gap. Finally, PIMC is

able to evaluate the correlation functions straightforwardly, which can lead to

a direct comparison with experimental results. On the other hand, like other

numerical methods, PIMC has its drawbacks. For example, it cannot calculate

the energy to a high accuracy. The main difficulty related to my research is

that the correlation functions are calculated in imaginary time, so we obtain

the imaginary frequency response. The analytic continuation from imaginary

frequency to real frequency with the presence of noise is known to be very diffi-

cult. However, imaginary time correlation functions provide important insight

into the physical systems, which turn out to be very useful. In this chapter,

I first outline the basic algorithm of PIMC, then discuss in detail the special

techniques I used in my study.

3.1 Statistical Mechanics and Imaginary Time Path Integral

Take the Schrödinger equation and do the imaginary time transform t →

−iτ , we obtain the Bloch equation in atomic units, (~ = me = e = 1)

−∂ρ
∂τ

= Hρ. (3.1)

The solution is the density matrix, which in the general form reads,

ρ = e−
∫ β
0 Hdτ , (3.2)

where β = 1/kT and H is independent of time. Now consider a general

interesting, many-body Hamiltonian,

H = T + V = −1

2
∇2 + V (R), (3.3)
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where R represents the coordinates of all particles. Usually the kinetic term

and the potential do not commute, so the Baker-Campbell-Hausdorff formula

applies as we want to separate them,

eT+V+ 1
2

[T,V ]+... ≈ eT eV . (3.4)

However, we can divide the time integral in Eq. (3.2) into equal size of intervals

∆τ = β/M where M is an integer, so that the integral can be approximated

by a sum of M terms. If ∆τ is small enough, we can drop the commutators

since they are high order terms in ∆τ ,

e∆τ(T+V ) ≈ e∆τT e∆τV , (3.5)

which is justified by Trotter (Trotter, 1959) formula,

e−β(T+V ) = lim
M→∞

(
e−∆τT e−∆τV

)M
. (3.6)

By inserting complete sets of position space states into each time interval,

we arrive at the following formula as the beginning step of an N-body discrete

path integral,

〈R0|ρ|RM〉 = ρ(R0, RM ; β)

=

∫
dR1 . . . dRM−1(4πλ∆τ)−3NM/2

× exp

(
−

M∑
m=1

[
(Rm−1 −Rm)2

4λ∆τ
+ τV (Rm)

])
, (3.7)

where Rm is the shorthand for (r1, r2. . . . , rN), λ = 1/2m, and
√
λ∆τ is the

largest diffusion distance for a particle in one move. Each time interval can

be visualized as a link connecting two time slices. The collection of links

from τ = 0 to τ = β forms a path. Each particle is represented by a path.

The kinetic energy can be considered as spring links. Interactions between
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particles become interactions between ends of links on the same time slice.

Statistical mechanics defines the expectation value of an observableO as 〈O〉 =

tr(ρO). In the language of PIMC, it means measuring O on each time slice

and averaging over closed paths, for which R0 = RM . Correlation functions

are estimated in the same manner.

The discretization works well if the action is a smooth function. As far

as this dissertation is concerned, most actions comply with the requirement,

except the Coulomb interaction, which is discussed in details in Appendix A.

In the simulation, we make the paths randomly walk through the position

space. It is clear that PIMC only simulates equilibrium states. Therefore, it is

essential to preserve ergodicity and detailed balance during random walks. The

Metropolis algorithm guarantees that the random walks eventually result in

equilibrium states and the trial moves are accepted according to the following

formula,

A(s→ s′) = min

[
1,
T (s′ → s)π(s′)

T (s→ s′)π(s)

]
, (3.8)

where T (s→ s′) is the transition rate from state s to state s′, and π(s) is the

probability of the system in state s.

So far, we have established PIMC for semi-classical particles, since particles

are distinguishable. With regard to a pure classical system, each particle is

just a dot instead of a path, for ~ = 0. In order to simulate bosons and

fermions, we need to take into account of the indistinguishability of particles.
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3.2 Fermi Statistics and the Fixed Node Approximation

To include the permutation between identical particles, we write Eq. (3.7)

as,

ρ(R0, RM ; β) =
1

N !

∑
P

(±1)P
∫
dR1 . . . dRM−1ρ(PR0, R1; τ) . . . ρ(RM−1, RM ; τ).

(3.9)

The (+1)P denotes Bose statistics and the (−1)P denotes Fermi statistics. Di-

rectly calculating each permutation term in Eq. (3.9) is very inefficient, for the

computational amount increases as N !. Instead, one samples the permutation

with random walk.

As a discreet move, the transition rate of a permutation can be determined

by the heat bath rule,

T (s→ s′) =
π(s′)∑

s′′∈N (s) π(s′′)
, (3.10)

N (s) is the collection of states near s. In Eq. 3.7, the potential does not

change under permutations. So permutations only affect the kinetic term,

which can be easily calculated. At the beginning of a simulation, we build up

a table of probabilities of all permutations, then make random walks through

the table to construct permutations involving a certain number of particles.

The acceptance rate of the picked permutation is weighted based on Eq. (3.10),

A(s→ s′) = min

(
1,

∑
s′′∈N (s) π(s′′)∑
s′′∈N (s′) π(s′′)

)
, (3.11)

That implements the Bose statistics.

The above permutation sampling can also be applied to fermions. However,

because of the (−1) in front of every odd permutation, a large portion of the

terms in Eq. (3.9) either cancel out or contribute only a little to the sum. The
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CPU time on those terms are wasted, causing a slow convergence. In other

words, the state space of fermions is much smaller than that of semi-classical

particles or bosons. Trial moves outside the fermion state space are a waste of

time. So a straightforward permutation sampling for fermions only works for

small systems. In order to simulate a large number of fermions, one needs a

method to effectively identify terms of non-zero contribution in series Eq. (3.9).

The fixed node approximation is such a method.

Examining the Bloch equation Eq. (3.1), we can see that locations sat-

isfying ρ = 0 are the fixed points in position space. They are hyperplanes

dividing the 3N-dimensional space into unconnected regions, through which

no paths can pass. They are called the fermion nodes. They do not exist

in semi-classical or bosonic simulations, because we are only concerned about

closed paths and the diagonal terms of a density matrix are always positive. If

we know exactly the fermion nodes, we can use them as boundary conditions

and solve Eq. (3.1) to get the exact density matrix for fermions. For PIMC, we

can restrict paths inside the area between nodes and perform bosonic moves

to the paths, the result is an exact fermionic simulation. To check if the nodes

are crossed, what we need is a reference location R∗. Suppose we want to check

if a bead Ri(τ) crosses the nodes, we choose R∗ = Ri(τ + β/2) and calculate

det[ρ(Ri, R∗; β/2)]. If the determinant changes sign, the nodes are crossed and

the move is rejected. We cannot choose more reference points, because that

would introduce the sign problem back. Since Ri(τ) can be on any time slice,

we preserve the translational symmetry in imaginary time. It is an efficient

sampling method for fermions and is feasible for large systems.

The fixed nodes are determined by the Hamiltonian. In the presence of

complex interactions, obtaining the fixed nodes is not much easier than solving
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the Bloch equation. So we can only approximate the exact fixed nodes. The

exception is one-dimensional systems, where we simple forbid permutation. As

far as quantum wires are concerned, we used the exact density matrix ρ(~r, ~r′; τ)

of Hamiltonian H = p2/(2m) + (1/2)mω2
0y

2 to define the nodes,

1

N
det[ρ(ri, rj; τ)] = 0. (3.12)

The effect of fixed node approximation on correlation functions is studied in

Appendix B.

3.3 Sampling Methods

Since the ergodicity and Metropolis algorithm have taken care of conver-

gence, the major concern on designing a sampling method is the efficiency,

or in other words, the convergence rate given a certain amount of time. One

approach to improve efficiency is the multilevel sampling.

3.3.1 Multilevel sampling

I have already shown that each particle is represented by a path, and each

path is comprised of beads linked by springs. External potentials exert on

single beads, whereas particle interactions exist between beads on the same

time slice. Because of the Gaussian distribution of the spring action, each bead

can not move much farther than a thermal de Broglie wavelength
√
λ∆τ . The

pair interactions about which I am concerned, such as the Coulomb interaction,

shorten the the displacement even more. If each time only one bead is moved,

the time for the path to diffuse throughout the whole space could be very

long in order to achieve ergodicity. So it is necessary to move multiple beads

at the same time. The multilevel sampling selects the moving beads in a
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generally efficient way. Let’s take a path with two fixed ends (Ri, Ri+m)—the

subscript is the slice index—as an example. The multilevel sampling first tries

moving the middle bead Ri+m/2. This bead can be moved furthest, because

the thermal wavelength for it is
√
λ∆τm/2. So the acceptance rate for this

move is generally the lowest. If the move is accepted, the sampling then takes

the bead as fixed and moves the next level of beads which are in-between the

3 fixed ends, that is Ri+m/4 and Ri+3m/4. The 2 beads usually gain a higher

acceptance rate. If the moves are accepted, the sampling continues to bisect

the resulting links until it reaches the level we set. If for some level the move is

rejected, the sampling starts over. The total acceptance rate is the product of

the rate of each level. Since the sampling tries the bead of lowest acceptance

rate first, it avoids the possible waste of time on beads of high acceptance rate

which finally get rejected.

3.3.2 The worm algorithm

The worm algorithm (Massimo Boninsegni and Svistunov, 2006; Boninsegni

and Svistunov, 2006) is able to sample the off diagonal terms in the density

matrix. In other words, it samples the grand canonical ensemble. It is based on

the same path integral expression Eq. (3.7), and the metropolis Monte Carlo

algorithm Eq. (3.8), while it introduces moves that open or close the existing

paths, and moves that generate or remove open paths in vacuum. Its swap

method is able to generating long permutations easily, making it especially

efficient in calculating properties concerning the winding of paths, such as the

superfluidity.

However, I did not use worm algorithm in my research for two reasons.

First of all, there are little applications of the worm algorithm on Fermionic
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systems, due to the difficulty of incorporating the Fermi-Dirac statistics ef-

ficiently. Since I am concerned about electron systems, the worm algorithm

does not help. Secondly, my interest is in the low electron density regime,

where electrons are far apart. The Pauli exclusion and the strong Coulomb

repulsion significantly reduce the probability of long permutations, making the

ability of sampling the winding paths unimportant.

Therefore, instead of implementing the worm algorithm, I introduced some

other sampling methods for our closed paths algorithm.

3.3.3 Other sampling methods for my research

Depending on the specific system, more sampling methods are applied. In

my simulation of quantum wires, the electron density is so low that multilevel

sampling still takes a long time to diffuse the electrons. So we implement

displacement moves, which attempt to shift an entire path of one or more

particles by a uniform displacement. Since all the beads on a path are shifted,

the acceptance rate is determined by the action difference of all the beads

on that path, and is usually adjusted to 50% so that the error bars drop

quickly. For particles involved in permutations, their displace moves are always

rejected. We can move more than one particle at the same time, but the

acceptance rate drops quickly. In my simulation for zig-zag state, to keep

the 50% rate, the largest displacement for 1-particle displace moves is about

1/3 of the average electron spacing, while for 2-particle moves, the largest

displacement drops to about 1/6 of the spacing.

Quantum wires possess translational symmetry, which leads to uniform

distribution of electrons along the wires. With the above sampling methods,

we find that it is difficult for the density of electrons to become uniform.
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To speed up the distribution of electrons along the wire, we apply a special

displace move to all the electrons at the same time. The displacement of

particle i is given by a sine function,

di = A sin(k · ri + ϕ). (3.13)

So some particles are compressed towards each other, whereas others depart

away. Because of the periodic boundary condition, k is chosen to be 2πn/L

where n is an integer. I randomize the phase ϕ during simulations so that the

position of each electron can be stretched and compressed. The amplitude A

is adjusted for each specific system to give an acceptance rate near 50%.

The use of a sine function raises two issues. First of all, sine is not the

inverse function of itself, which means it breaks the detailed balance if we

don’t calculate the inverse moves explicitly. Secondly, sampling from a sine

function with heat bath rule must take into account the change in transition

probability which is 100% for sampling from a uniform distribution.

We follow Maggs (2006) to handle the issues. The inverse function of

sine is calculated explicitly by Newton iteration as the function for backward

moves. The forward moves and backward moves are chosen with 50% proba-

bility respectively. The neighborhood of the forward moves is π(r)dr, and the

neighborhood of the backward moves is now π(r′)drJd where Jd is the Jacobian

of the displacement Eq. (3.13). The acceptance rate Eq. (3.8) becomes,

A(s→ s′) = min

[
1,

T (s′ → s)π(s′)

T (s→ s′)π(s)Js

]
. (3.14)

Thus the detailed balance is conserved.

Since here all the particles are moved, the acceptance rate drops quickly

as the amplitude increases. So the amplitude in Eq. (3.13) is usually less than
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Figure 3.1: Density of spin-up and spin-down electrons respectively without
the swap moves. The result is obtained after one week running on a quad-core
CPU. Clearly it is not convergent, which shows that improvements such as
swap moves are necessary to obtain converged results in a reasonable time.
The physical result with swap moves is shown in Fig. 3.2.

the average particle spacing. I find that to reach 50% acceptance rate, the

amplitude is about 1/5 of the average electron spacing with largest k.

There is another issue concerning ergodicity when there are both spin-up

and spin-down electrons in the simulation of quantum wires. Combining all

the above sampling methods, I get the density shown in Fig. 3.1. The density

does not change much no matter how long I run the simulation, which breaks

the translational symmetry and raises serious concerns about ergodicity. The

reason is in quasi-1D quantum wires with strong Coulomb interaction, it is

very hard for electrons to diffuse along the wire. The collective moves shift

electrons back and forth, but fail to diffuse different spin species towards each

other. The multilevel sampling can do that, but takes a very long time. So the

system is locked in a density distribution, meaning the system is not sampled

well. A new move that can effectively diffuse two spin species is needed.

I therefore introduce the move that swaps a spin-up electron and a spin-

down electron. This move is costly in CPU time, because I need to check the

node crossing for each spin species separately. Furthermore, since there are

no nodes between spin-up and spin-down electrons, the paths of distinguish-
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Figure 3.2: Density of spin-up and spin-down electrons respectively with the
swap moves. The result is obtained after several hours running on a single
processor.

able particles can get close or even overlap. Thus, after a spin-up electron is

replaced by a spin-down electron, it is highly possible that the path of the

new electron touches the paths of nearby spin-down electrons, causing node

crossing and rejection. So in the simulation, the acceptance rate is usually

less than 10%. As the density increases, the rate drops quickly. In order to

make sure the two spin species diffuse sufficiently, I employ a large number of

swap moves and check that this has restored the translational symmetry; the

resulting density is shown in Fig. 3.2.

3.3.4 Spin-Flip sampling

So far, we have been dealing with systems of a fixed number of spin-up

and spin-down electrons, that is systems of constant magnetization. In other

quantum Monte Carlo method, spin is treated together with wavefunction ex-

plicitly. But in PIMC, spin is in a state space different from the position space

and has no classical analogy. It is somewhat difficult to add spin to a polymer-

like path and include it in interactions. With a fixed-node method, nodes for

spin-up electrons and spin-down electrons are calculated by determinant of

different Slater matrices. Flipping a spin causes both matrices change rank,

34



leading to technical problems for implementation. It is also difficult for PIMC

to deal with arbitrary spin rotation, because of Berry’s phases.

Therefore, we assume that spin is quantized along z-axis and sample spin

flips. Since we are not concerned about interactions that break the global

rotational symmetry, such as nonuniform magnetic fields, spin-flip sampling is

valid. When a spin is flipped, the action difference is only changed by the fixed-

node terms. The fixed node action at the nodes is infinity. When a particle is

near a node at R = 0, the nodal action is determined by the distance between

the particle and the node,

S(Rt, Rt+τ ) = ln[ρ(Rt, Rt+τ )− ρ(Rt,−Rt+τ )], (3.15)

where −Rt+τ represents a many-body configuration with a node crossed. We

use only one Slater determinant to check node crossing for both spin-up and

spin-down electrons. Since the number of electrons is constant, the size of the

Slater matrix is constant. The matrix elements between electrons of different

spins are zero. So the matrix can be diagonalized into 2 blocks—one is the

original matrix for spin-up electrons and one is for spin-down electrons. If

determinant of either one of the blocks changes sign, the nodes are crossed.

Because of the nodal action Eq. (3.15) and the flipping of one spin per each

time, the situation that 2 determinants change sign at the same time hardly

takes place.

The amount of computation is equal to the computation of the same num-

ber of spin-polarized electrons. But the gain is significant. PIMC only simu-

lates canonical ensemble with a certain magnetization Zm, now we are able to

simulate grand canonical ensemble of spins, that is Z =
∑

m Zm. The spin-flip

sampling is more flexible and efficient than the swap moves, for it includes
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Figure 3.3: The distribution of up spins in a zig-zag simulation of 40 electrons
(details in Chapter 6). The smooth curve is the distribution for free spins, the
sharp curve is the spin distribution for 1D free electron gas (rescaled by a fac-
tor of 0.33). The free spin case can be considered as electrons infinitely apart
from each other, the simulation including Pauli exclusion and the Coulomb
repulsion brings electrons closer, and the absence of Coulomb repulsion al-
lows even smaller separation between electrons. The increasing correlation
with decreasing separation causes less susceptibility. The highest probability
at S+

z = 20 indicates the absence of spontaneous magnetization. The small
asymmetry just needs more CPU hours to equilibrate.

more kinds of moves. It also helps reduce the autocorrelation. So far as the

zig-zag simulation is concerned, my test shows that a simulation which pre-

viously took one week now only takes one day to converge. A typical result

is shown in Fig. 3.3. The spin-flip sampling also opens a door to more in-

teractions we can study. For example, we can now study Zeeman splitting in

quantum dots.

3.4 Estimators

Estimators approximate the measurements of physical properties based on

the paths. The evaluation of static thermodynamic properties is straightfor-

ward. We simply measure the properties at each slice, then average them over

the paths. The error is the standard deviation of the mean of the measure-

ments. The static correlation function, such as the pair correlation function,

can be evaluated likewise.
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Since the measurements in quantum Monte Carlo are often correlated,

standard deviation of the mean underestimates the error. To reduce the au-

tocorrelation, the blocking method is used (Nightingale and Umrigar, 1999).

The method averages over the non-overlapping pairs of measurements to gen-

erate new series of measurements, based on which the standard deviation of

the mean is evaluated as the error. The autocorrelation is reduced further af-

ter each averaging, and the measurements approach the true value with more

accurate error bar.

With regard to dynamic properties, e.g. the current-current correlation

function, we first measure the functions on each slice, then Fourier transform

them into frequency domain. Since PIMC is define in imaginary time, the

resulting dynamic correlation functions are also defined in imaginary time. In

principle, an analytic continuation from imaginary time to real time gives the

results in direct comparison to experimental data. However, the existence of

noise/error sets a formidable obstacle between the imaginary domain and its

real counterpart. The continuation is usually unfeasible. Nevertheless, the

dynamic estimators provide insights into properties such as conductance.
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Chapter 4

SIMULATIONS OF MODEL WIRES

4.1 One-dimensional Wires

The most straightforward way to study a wire is a simulation in exactly

one dimension (1D). In this case, the strong repulsion due to the Coulomb

interaction keeps particles apart and forbids permutation. As a consequence,

the 1D boson gas, also known as the Tonks-Girardeau gas (Girardeau, 1960;

Lieb and Liniger, 1963), behaves the same as the 1D electron gas. Also spon-

taneous spin polarization is forbidden according to the Lieb-Mattis theorem

(Lieb and Mattis, 1962). Because of the strong quantum fluctuations, any

electron structures, such as the Wigner crystal, can not exist. PIMC simula-

tions in 1D do not provide many insights beyond those gleaned from theories

or other simulation techniques.

However, strictly 1D simulations are good test cases to check the PIMC

simulations. Without interactions, a PIMC simulation for electrons in 1D is

exact, because the nodes for the fixed node method are known to be in-between

every pair of electrons. I have run some simulations in 1D for non-interacting

electrons and studied the density-density correlation functions. The results

are shown in Appendix B and fit well with theoretical predictions. Since my

research interest is in the strong interaction regime and the spin correlation, I

concentrate on quasi-1D quantum wires.
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4.2 Quasi-1D Wires

A quasi-1D model shares more resemblance with experiments and enables

more interesting physics that is not yet understood in theory. It is essentially

a two-dimensional simulation with a transverse parabolic confinement defining

the quantum wire. The following model of a quasi-1D quantum wire is used

for the study in Chapter 5 and Chapter 6.

I use an effective mass Hamiltonian in two dimensions,

H =
N∑
i

p2
i

2m∗i
+

N∑
i

V (ri) +
∑
i 6=j

v(ri, rj). (4.1)

Since GaAs is the most widely used material for quantum wires, I let m∗i =

0.0667me. The wire is laid along x direction and a parabolic confinement is

imposed along y direction, that is, V (ri) = 1/2m∗iω
2
0y

2
i . The only inter-particle

interaction is the Coulomb interaction. In experiments, there is typically a

metal layer below the wire, providing free electrons. The layer causes screening

image charges at a distance d below the wire. Thus the last term in Eq. 4.1 is

the Coulomb interaction with screening charge,

v(ri, rj) =
e2

ε|ri − rj|
− e2

ε
√
|ri − rj|2 + d2

, (4.2)

where ε = 12 denotes the dielectric constant in GaAs.

4.3 Ring Geometry with Constriction

From a theoretical point of view, quantum wires with periodic boundary

condition can be modeled as quantum rings. The analogy is well established

so long as there are no interactions associated with the specific topology of the

system. One example of such an interaction is a magnetic field perpendicular to

the plane of the ring. Since we are interested in the strong Coulomb interaction
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in the low electron density regime and the crossover from the low density

regime to the high density regime, the ring model works as good as a wire.

The transition between an electron liquid to a Wigner crystal has been the

subject of both experimental and theoretical research (Steinberg et al., 2006;

Jamei et al., 2005). Due to the strong interaction in the Wigner crystal regime,

computational methods beyond mean field approximation have been applied

(Casula et al., 2006; Ghosal et al., 2007; Güçlü et al., 2008; Shulenburger

et al., 2008; Güçlü et al., 2009). In the low electron density regime of a quasi-

1D system, localized electron states were observed, and the pair correlation

function indicated the formation of a Wigner crystal of electrons. Here I use

PIMC to study the inhomogeneous 1D electron gas. PIMC has the convenience

of not constructing the wave function of specific properties. It is thus suitable

for the simulation of this structural transition.

4.3.1 The model

I follow Güçlü et al. (2009) to build up the Hamiltonian for the ring,

H =
N∑
i

pi
2

2m∗
+

1

2

N∑
i

m∗ω2
0(ri − r0)2 +

N∑
i<j

1

ε|ri − rj|

+ Vg{tanh[s(θi + θ0)]− tanh[s(θi − θ0)]},
(4.3)

where m∗ is the effective mass of electrons. Since I deal with GaAs quantum

rings, m∗ = 0.0667me and ε = 12. The second term is a radian parabolic

confinement as the definition of the ring, I set ω = 7.14 meV. The last term is

the potential of a top gate. This function has a smooth edge as can be seen

in Fig. 4.1, so that its implementation in our PIMC code is straightforward.

This top gate excludes electrons from the specified segment of the ring, and

creates a low density regime. In my simulations, I set s = 4.0 and θ0 = 1.5.
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Figure 4.1: The gate potential for the ring. Parameters have been chosen to
be the same as those in my simulations.

The periodic boundary condition is imposed by default. In order to avoid

the undesired interaction between supercells, I make a large supercell of 1.4

micron × 1.4 micron and make the radius of the ring 100 nm. With regard to

the Coulomb interaction, I put a screening layer 50 nm below the ring which

generates image charge 100 nm below the ring. It is a mimic of typical exper-

imental setup. The screening of the long range tail of Coulomb interaction is

not important here, since the ring is an isolated structure.

The fermion sign problem is handled by the fixed node approximation,

I apply the nodes of free fermions. I simulate 16 spin-polarized electrons.

Considering the radius of the ring is 100 nm, the average particle spacing is

about 40 nm, giving rs ≈ 4 a.u.. In this regime of strong repulsive interaction,

one-dimensional bosons behave like fermions, for the interaction keeps particles

away from the nodes.

My results are shown in Fig. 4.2. I run all the simulations at 0.5 K so that

the electrons only occupy the first subband. As the gate voltage decreases,
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Figure 4.2: Different densities of electrons inside the gate. The temperature
is 0.5 K, the total number of electrons is 16, the gate voltage is (a) -10 meV;
(b) -9 meV; (c) -8 meV; (d) -6.5 meV. It is clear that as the gate potential
increases, the number of localized electrons decreases.

electrons localized inside the gate area increases. My results share similar

features as Güçlü et al. (2009) in the low density regime where electrons are

individually localized and separated from the high density regime by a large

gap. However, I observe different phenomena. First of all, with half of their

electron density, I allow stronger interaction in my model. And the localization

inside the gate area is also enhanced by the spin polarization. Therefore, at

the same gate voltage, there is less localization in the low density regime, and

it increases more slowly as the gate voltage decreases. Secondly, even for a

smooth potential step, the connection between the crystal and liquid phases

are not smooth. we can see a clear density peak at the connection. It is

possibly due to the Coulomb blockade effect under strong interaction. This

is clearest in the case of only one localized electron. Finally, the thermal

fluctuation shows its effect. Unlike the quantum Monte Carlo method at zero

42



−100 −50 0 50 100

x (nm)

−100

−50

0

50

100

y
(n

m
)

−12 −10 −8 −6 −4

VG (meV)

−1

0

1

2

3

4

5

〈N
G
〉

Figure 4.3: Dependence of the number of localized electrons on the gate
potential. I calculate the number of localized electrons by summing up the
density to the left of the white dashed line on the right plot.

temperature, the density of electrons in the low-density regime spreads out,

softening the gap between the two regimes.

Fig. 4.3 shows a summary of my results. We can see the quantization of

localization inside the gate potential as a function of the gate voltage. The

plateaus are not strictly horizontal because the method of counting electrons

includes some error if the density in the gap between the two phases is not

exactly zero. The effect of fluctuations is more manifest on the plot. As

the gate potential decreases, the number of electrons increases inside the gate

area, causing an increase in quantum fluctuation. As a consequence, we see

the continuous crossover from NG = 2 to NG = 3. As the potential decreases

more, the plateaus mix up with the crossover and the dependence of localized

electrons on the gate potential becomes linear, indicating that the crystal

phase continuously transforms to the liquid phase. This continuous structural

transformation is in agreement with my results in Chapter 6.
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Chapter 5

CONDUCTANCE

Conductance is one of the most important properties for quantum wires,

and has been intensively studies in experiments. The Luttinger liquid the-

ory (LLT) gives the description in the high-density and low excitation energy

regime, where the linearization of the Fermi surface is valid. Since deviation

from the linear dispersion relation has been observed, theories beyond LLT are

in need, which have not been well established due to the strong fluctuations

and interactions in one-dimensional (1D) fermion systems. On the other hand,

computational approaches have not yet provided concrete conductance results.

In this chapter, I study the conductance of an ideal semiconductor quantum

wire, with the aid of our PIMC method based on the model described in

Section 4.2, which allows the release of the linear approximation made in

LLT and is able to calculate dynamic correlations in many-body systems.

The conductance is obtained from the current-current correlation function

according to Kubo formula,

G = lim
ω→0

1

ω
χjj(x, x

′; iω)|x=x′=0, (5.1)

where χjj is the current-current correlation function defined as follows,

χjj(x, x
′; iω) = − 1

β~2
〈j(x, iω)j(x′, 0)〉, (5.2)

where β = 1/kBT . The imaginary time Fourier transform is usually defined

on Matsubara frequencies ωn = 2πn/β~, and,

j(x, iωn) =

∫ β~

0

j(x, τ)eiωnτdτ. (5.3)
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The fermion sign problem is handled by the fixed node approximation. A

study of its effect on dynamic density-density correlation is presented in Ap-

pendix B. The density and current operators are connected by the continuum

equation. The agreement between the theoretical density-density response and

PIMC results support the use of fixed node approximation in my conductance

study.

5.1 Spinless Noninteracting Electrons

I begin with the simplest case, i.e., the spinless noninteracting electrons.

In this case, the theoretical conductance as a function of electron density can

be easily worked out. According to Landauer formula Eq. 2.7, each subband

of spinless electrons contributes e2/h to the conductance. Since interactions

are absent here, the subband density is given by the Fermi-Dirac distribution.

So the DC conductance is given by,

G =
e2

h

∑
n

1

e
(n+1/2)~ω0−µ

kBT + 1
, (5.4)

where µ is the chemical potential determined by the density of electrons.

In order to get the DC conductance with PIMC, I calculate the imaginary

frequency current-current correlation function. In the case of one-dimensional

spinless free electrons, Eq. 5.2 can be calculated analytically (Bokes and Godby,

2004), and the expression is shown in Eq. 5.5,

G(−iω) =
e2

~
1√

2π(1 +
√

1 + (−iω/EF )2)1/2
, (5.5)

which is used to extrapolate the current-current correlation function from

PIMC to ω = 0. A typical result is shown in Fig. 5.1.

With the same parabolic confinement while T = 3 K, several densities of

electrons are calculated and summarized in Fig. 5.2. The data was collected

45



0 5 10 15 20 25 30 35 40

ωn /ω1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

σ
0

(x
,x

;i
ω
n
)
(e

2
/
h
)

Density = 2×105  cm−1

Figure 5.1: Conductance of non-interacting fermions in a parabolic wire with
ω1 = 5 meV, at T = 1.5 K.

by my theoretical collaborator Zachary Estrada at the University of Illinois.

At low densities, the two results fit well. As the density increases, the simula-

tions take longer time to converge, furthermore, the finite size effect begins to

interfere. So we see the digression from the expected curve.

5.2 Spin-Unpolarized Interacting Electrons

The Coulomb interaction, as well as the spin freedom, is added to the sim-

ulations. Two difficulties immediately emerge. First of all, the extrapolation

must be carried out with caution. The exact expression for the imaginary

frequency current-current correlation function of interacting electrons is still

unknown. If the density of electrons are high enough so that the interac-

tion can be treated perturbatively, it often results in shift of poles in the real

frequency correlation function. For imaginary frequency, I assume that the

resulting correlation function can be expressed as superposition of the nonin-

teracting functions, so as to fit the data and extrapolate to ω = 0. A result is
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Figure 5.2: Conductance of quasi-1D spinless noninteracting electrons with
ω0 = 5 meV, T = 3 K. The curve is the expected conductance from Eq. 5.4.
This data was collected by my theoretical collaborator Zachary Estrada at the
University of Illinois. While the agreement between simulation and theory are
close, there are differences that are larger than the statistical error bars that
require future investigation.

shown in Fig. 5.3 (the left plot). Secondly, the long range tail of the Coulomb

interaction is cut off by the finite size effect, leading to uncertainty in the low

frequency data.

This difficulty is aggravated at low temperature, where the sampling be-

comes less efficient, as is shown in Fig. 5.3 (the right plot). We cannot get

the reliable DC conductance in this case. We believe that this difficulty at

low temperature is actually a finite size effect. There are 48 electrons in a

periodic wire of length 1.5 µm. At low temperatures, there may be quantum

coherence across the supercell, leading to periodic boundary artifacts in the

response. We have verified in a few cases that large simulation cells improve

the density-density response, but at a much larger computational cost that

quickly becomes impractical.
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Figure 5.3: Left plot: Conductance of interacting electrons in a parabolic
wire with ω1 = 5 meV at T = 6 K. The extrapolation to ω = 0 is obtained by
fitting the curve to the sum of two conductance functions for noninteracting
1D fermions. Right plot: Conductance of interacting electrons in a parabolic
wire with ω1 = 5 meV at T = 1.5 K. The extrapolation to ω = 0 is obtained by
fitting the curve to the sum of two conductance functions for noninteracting
1D fermions.
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Chapter 6

ZIG-ZAG ORDERING IN A QUASI-ONE-DIMENSIONAL WIRE

I study the zig-zag ordering in quantum wires with the path integral Monte

Carlo (PIMC) method. For experimentally realizable electron densities, quan-

tum fluctuations are quite large and destroy zig-zag order except at very low

density, around 105 cm−1. Zig-zag order is also sensitive to temperature, and is

only visible below 1 K. The nearest-neighbor electrons tend to have antiferro-

magnetic spin coupling, and the next nearest-neighbor incline to ferromagnetic

coupling. I estimate the spin coupling and find that it is much larger than pre-

vious theoretical estimates, which neglect quantum and thermal fluctuations of

the Wigner crystal. At higher electron-density, the zig-zag structure partially

transforms to a dimer state.

6.1 Introduction

It was first predicted by Wigner (Wigner, 1934) that the electrons could

form crystal structure at low densities. As the density decreases, the Coulomb

interaction gradually dominates over the kinetic energy, so that electrons tend

to stay at the minima of the potential. To some extent, their relative positions

become fixed and a crystal of electrons are formed. In three dimensions, elec-

trons have more choices to lower their energy, so the Wigner crystal is hard to

generate. Only in lower dimensions is the crystal easy to see. It is favored by

the development of nanotechnology.
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Interest in the quasi-1D Wigner crystal arises from the well-known “0.7

structure” in the conductance of quantum wires (Thomas et al., 1996, 1998;

Cronenwett et al., 2002). In a strictly one-dimensional quantum wire, the

quantum fluctuations are too strong to allow the existence of any crystal

structure. However, when the transverse confinement is loosened, a quasi-

1D wire makes Wigner crystal possible, so long as the density is sufficiently

low–typically n−1 < aB, where n is electron density and aB is the effective

Bohr radius. When the temperature T is higher than the spin coupling en-

ergy J , electrons can be considered as spinless fermions, and the wire is in the

spin-incoherent regime. Theoretical works (Cheianov and Zvonarev, 2004; Fi-

ete and Balents, 2004) have revealed quite a few interesting properties of this

regime, such as the e2/h plateau in the conductance (Matveev, 2004b,a), the

phonon modes (Meyer et al., 2007), as well as other aspects of transport, the

zero-bias anomaly and deviation from Luttinger Liquid theory that is valid for

high densities (Fiete et al., 2005a,b; Matveev et al., 2007; Fiete, 2007). This

theory is driven by experiments. Using momentum resolved measurement of

the tunneling between parallel wires, the local density of states and other

properties with or without magnetic fields are obtained (Auslaender et al.,

2005; Steinberg et al., 2006). Experiments that measure the conductance un-

der different conditions indicate the effects of the Wigner crystal states (Crook

et al., 2006; Hew et al., 2008; Smith et al., 2009), such as the doubling of the

conductance while weakening the transverse confinement (Hew et al., 2009).

Nevertheless, a complete picture of spin-incoherent quantum wire is not yet

finished.

When T < J , the spin interaction needs to be taken into account based on

Heisenberg model. The quasi-1D structure possesses rich features compared
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to the Heisenberg chain, if the nearest-neighbor and next-nearest-neighbor

coupling is considered (Klironomos et al., 2007). A few methods are proposed

to estimate the exchange constant J (Matveev, 2004a; Klironomos et al., 2005;

Fogler and Pivovarov, 2005), whereas the validity of the approximations needs

further confirmation. On the other hand, due to the relatively small magnitude

of J , experiments on the spin effects are still at an early stage, and the current

results (Chen et al., 2009) needs further study.

The structure of the Wigner crystal in quasi-1D quantum wire has been

determined by numerical calculations (Piacente et al., 2004). The classical

Monte Carlo method reveals a zigzag pattern as the transverse confinement

decreases. Further decreasing the confinement leads to multi-row configura-

tions. The phase diagram is shown in Fig. 6.1. A quantum Monte Carlo

analysis is presented in Shulenburger et al. (2008), where by looking at the

static dynamic structure factor, they observed peaks at 4kF under certain

combination of the electron density and the transverse confinement, which is

the feature of a quasi-Wigner crystal in quasi-1D quantum wires. Their results

partially explained the experiments (Steinberg et al., 2006).

In this paper, I perform quantum Monte Carlo calculations based on path

integral at finite temperature. My simulation conditions are also shown in

Fig. 6.1. I calculate the pair correlation function to study properties of the

zigzag state, and estimate the magnitude of the spin coupling. I also find the

dimer state and the corresponding exchange energy.

6.2 Method
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Figure 6.1: The phase diagram from classical simulations of Piacente et al.
(2004) (the continuous lines) and my simulations around T = 0.2 K (data
points).

The study in this chapter is based on the quasi-one dimensional model

described in Section 4.2.

6.2.1 Classical Monte Carlo

Before simulating the quantum mechanical system, I perform classical sim-

ulations, which are applicable at low electron density. These classical systems

serve as a control system to assess the effects of quantum fluctuations.

In the classical simulation, I put 40 distinguishable charged particles in a

6000 nm wire. I do not have the image particles included, since the long range

tail of the Coulomb interaction does not make a difference here.

In order to compare to the quantum simulation, I put 20 spin-up electrons

and 20 spin-down electrons in the same wire, while leaving the other conditions

unchanged. I have to maintain the low temperature, since the density is so

low that a low temperature is necessary in order not to overcome the Fermi

energy. I put the image electrons 500 nm below the wire.
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6.2.2 Path Integral Monte Carlo

With PIMC, we don’t need to design a trial function as in other quantum

Monte Carlo methods, just to run simulations longer to obtain the desired

error. And we can easily obtain the thermal dynamic properties at nonzero

temperatures.

To deal with the minus sign problem inherent in fermion simulations, we

apply the fixed-node approximation (Reynolds et al., 1982). At 1D, this ap-

proximation is exact. For quasi-1D wires, we use Eq. 3.12 to define the nodes.

To avoid any artificial bias, I initially put all electrons along the center

of the wire. When the zig-zag is present, it is highly possible that the elec-

trons are locked into a special configuration, which causes ergodicity problem.

Therefore, I sample the swap moves between electrons of different spins. I

also sample the collective moves of electrons along the longitudinal direction

of the wire, in order to preserve the translational symmetry. The density is

controlled by the length of the wire, and the width of the wire is determined

by ω in V (r). Periodical boundary condition is applied.

6.2.3 Zig-zag order parameter

The pair correlation function is plotted. To quantify the correlation be-

tween particles, I define a parameter ξ as in Eq. 6.1,

ξ(∆x) = −2〈y1(∆x)y2〉
〈y2

1〉+ 〈y2
2〉
. (6.1)

where y1 and y2 are the relative y-direction distance from the two particles to

the center of the wire respectively. With two particles, ξ has a clear meaning:

ξ = 0 when no zig-zag and ξ = 1 when zig-zag is present. For many particles, ξ

displays the correlation with respect to the relative spacing between particles.
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Figure 6.2: Pair correlation function of a classical simulation of a 6-micron
wire with 40 charged particles. The parabolic confinement is 0.2 meV. The
reference particle is placed at the center of the second row.

In my simulations, I collect pair correlation function g(y1, y2,∆x) for evaluat-

ing the numerator of Eq. 6.1, and density ρ for evaluating the denominator of

Eq. 6.1,

ξ(∆x) = − 2
∫
y1y2g(y1, y2,∆x)dy1dy2∫

y2
1ρ(y1)dy1 +

∫
y2

2ρ(y2)dy2

. (6.2)

My results are shown in Fig. 6.2.

6.3 Results

6.3.1 The classical system

My results are not in perfect agreement with Piacente et al. (2004). Under

the same conditions, their results are in the regime of multi-row Wigner crystal.

The discrepancy is probably due to the different treatment of the Coulomb

interaction. For this classical simulation, I calculate the Coulomb interaction
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directly without any approximation. Thanks to the simplicity of classical

systems, it does not cost too much CPU time.

At the density I select, the Coulomb interaction dominates over the con-

finement. Competition between the two potentials gives rise to local minima

in the pattern of zig-zag. Fig. 6.2 illustrates how the zig-zag melts down as

the temperature increases. At low temperature, the classical wire displays long

range ordering. The correlation decays exponentially. The tails are suppressed

at high temperature by thermal fluctuation. At 1 K, the ordering in a single

row is destroyed, but we can still see two rows since the thermal energy is still

below the first subband.

6.3.2 Suppression of zig-zag by quantum fluctuations

I then add the quantum effects into the system. The resulting pair cor-

relation functions are shown in Fig. 6.3. The pair correlation function still

displays a true Wigner crystal, especially in the total correlation plot, whereas

the correlation washes out beyond the sixth nearest electrons. It indicates the

strong effects of quantum fluctuation. As the density increases, the quantum

fluctuations increase so fast that they smear out the crystal structure at a

density around 10 electrons per micron, which is still lower than the densities

in experiments (Steinberg et al., 2006; Hew et al., 2009). On the other hand,

reducing the transverse confinement gradually widens the two rows and finally

leads to three-row Wigner crystal, which is consistent with classical results

(Piacente et al., 2004). The thermal fluctuation behaves the same as in the

classical simulations, the difference is that the zigzag melts earlier with the

presence of the quantum fluctuation, at around T = 0.5 K.
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Figure 6.3: Pair correlation function of a quantum simulation of a 6-micron
wire with 20 spin-up electrons and 20 spin-down electrons. The temperature is
0.2 K and the parabolic confinement is 0.2 meV. The reference spin-up electron
is placed at the center of the second row.

6.3.3 Enhancement of spin coupling

In strict 1D quantum wire, spontaneous spin polarization is forbidden ac-

cording to the Lieb-Mattis theorem (Lieb and Mattis, 1962)d Howevek, in

quasi-1D, it is possible to see spin ordering under certain conditions. Fig. 6.3

also indicates the discrepancy between electrons of different spins. Electrons

of opposite spins tend to stay in the other row, while electrons of the same

spins stay in the same row. That provides a possible way of looking at the

spin interaction. Since I have a true Wigner crystal, I take the data from

Fig. 6.3 and discretize the pair correlation function by separating the area of

each electron from others, then calculate the pair correlation function in each

area, as shown in Fig. 6.4 and Fig. 6.5.
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Figure 6.5: Discretization of the continuum pair correlation function and the
correlation between lattice sites. The left-right symmetry has been used to
reduce the error bar.

Now I have a lattice model, on each site of which there is only one electron

with a certain spin state. The pair correlation function can now be considered

as correlation between spins on different sites. Thus the up-down correlation

function shows antiferromagnetic coupling and the up-up correlation shows

ferromagnetic coupling. By subtracting the up-down correlation from the up-

up correlation, we get the net spin coupling in the zig-zag structure. Note

that at ∆x = 0, the spin correlation is not 0. This is because the fluctuations

smear out the perfect crystal structure and the discretization introduces some

systematic error. It is clear that the nearest-neighbor coupling is antiferro-

magnetic, and the next-nearest-neighbor coupling is ferromagnetic. Frustra-

tion causes the ferromagnetic correlation on the next-nearest-neighbor decays

faster. From Fig. 6.4, I have the data as in Table. 6.1.

Since in my PIMC calculations, the rotational symmetry of spins is pre-

served, the spin coupling is described by the Heisenberg model. I use a lattice
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Table 6.1: Spin correlation and the corresponding coupling constants.

ordering 〈S0S1〉 〈S0S2〉 J0 (meV) J1 (meV)

zigzag -0.279(9) 0.051(9) 0.018(3) 0.0008(7)

dimer -0.236(7) 0.048(7) 0.014(3) -0.0036(9)
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Figure 6.6: Spin correlations with different coupling constants. It is clear that
the zigzag is frustrated, otherwise the correlation between the next-nearest-
neighbor spins are greater than my PIMC results.

quantum Monte Carlo method from the ALPS package (ALP, 2011; Alet et al.,

2005b,a; Troyer et al., 1998) to explicitly simulate the spin interaction in my

model. I tune the coupling constant J0 for the nearest neighbor and J1 for the

next nearest neighbor and run the lattice quantum Monte Carlo simulation

until it gives the same correlations as in my PIMC results. The results are

shown in Fig. 6.6. By comparing the spin correlation, I am able to determine

the exchange energies Table. 6.1, where the error is calculated by error propa-

gation Eq. 6.3. Since J1 > 0.24J0, my results are in agreement with theoretical

phase diagram (Klironomos et al., 2007).

∆J0 =

√(
∂J0

∂χ0

)
(dχ0)2 +

(
∂J0

∂χ1

)
(dχ1)2, (6.3)

χ0 = 〈S0S1〉, χ1 = 〈S0S2〉.
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We see that the nearest-neighbor exchange energy is much greater than

the prediction in Matveev (2004a). It should be noted that Matveev (2004a)

calculates the exchange coupling by assuming the exchange of only two elec-

trons, and does not take into account of the change in the potential due to

correlations of other electrons to the exchanging particles, as well as other

many-body effects. Theoretically it is not easy to evaluate how good their es-

timation is. My result suggests that in the zig-zag state, the exchange energy

between antiferromagnetic electrons is enhanced. It makes sense, considering

the spin coupling can be regarded as localized Coulomb interaction and the

zig-zag is in the strong-interaction regime.

6.3.4 Dimer states

For spin-unpolarized electrons, the formation of zigzag requires a very low

density. As the density and the confinement potential increases, the Coulomb

interaction gradually loses the dominant position, giving way to other interac-

tions. Due to Pauli’s exclusion, there is still strong repulsion between electrons

of the same spin. But a spin-up electron and a spin-down electron could bind

together and form a dimer state, as shown in Fig. 6.7.

Unlike the Cooper pair, which is mediated by electron-phonon interaction,

the dimer state is the result of spin coupling when the Coulomb interaction

is still strong. It is a singlet across the double-row configuration. Thus, I use

the same discretization method as in the analysis of the zigzag spin coupling.

The results are shown in Fig. 6.8.

We can see that the antiferromagnetic coupling, as well as the ferromag-

netic coupling, in the dimer state is nearly as strong as the ones in zigzag. The
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Figure 6.8: Discretization of the dimer state. In the 2nd and the 4th plot,
the x coordinate is the distance from each lattice site to the reference site
which is around (0,-150).
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difference is that the nearest neighbor is in the same row, and the next-nearest

neighbor is in the other row. It is understandable, since the spin interaction

decays fast as two electrons separate, and the low density makes the separa-

tion far enough to be insensitive to the transition from zigzag to dimer. On

the other hand, the increasing density weakens the Coulomb interaction with

respect to the kinetic energy, so that the little preference in the spin pairing

makes a difference. It should be noted that the spin interaction only changes

the ordering in the same row a little, it is not a prominent effect. A spin

Monte Carlo calculation based on ladder structure gives the spin coupling for

the above correlation Table. 6.1. We can see that J0 > −0.24J1, consistent

with Klironomos et al. (2007). My result is near the critical point between the

dimer state and the antiferromagnetic state. This estimation of the coupling

constants is coarse, since the dimer state in my results is a short-range effect

and the interaction between dimers is very weak, not exactly comparable to

a rigid ladder structure in the spin Monte Carlo simulation. So one needs to

be careful how to deal with the interaction in the same row. Nevertheless, it

displays significant differences from the spin coupling in zigzag, where there is

only antiferromagnetic coupling.
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Chapter 7

QUANTUM POINT CONTACT

A quantum point contact (QPC) is a widely used implementation for quan-

tum dots and quantum wires. It allows fine tuning of the electron density and

the transverse confinement, and the conductance measurement under different

conditions. Experiments on QPCs have revealed many interesting features of

quantum wires, such as the properties of the spin-incoherent Luttinger liquid

(Thornton et al., 1986; Hew et al., 2008), the “0.7 structure” in conductance

and its relation to the width of the wire (Smith et al., 2009; Hew et al., 2009),

the external magnetic field (Thomas et al., 1998) or the temperature (Kris-

tensen et al., 1998, 2000; Cronenwett et al., 2002), the spin polarization and

g factor (Patel et al., 1991; Thomas et al., 1996; T.-M.Chen, 2008). The ob-

served jumps of conductance at low density, low confinement regime provides

an indirect evidence of the existence of the zig-zag state (Hew et al., 2009).

With the knowledge obtained in the Chapter 6, I model the QPC with the

Timp potential (Timp, 1992), and study the electron states in this specific

configuration.

7.1 The Model

The Timp potential is defined as follows

V (x, y) =f

(
2x− L

2Z
,
2y +W

2Z

)
− f

(
2x+ L

2Z
,
2y +W

2Z

)
+ f

(
2x− L

2Z
,
−2y +W

2Z

)
− f

(
2x+ L

2Z
,
−2y +W

2Z

)
,

(7.1)
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Figure 7.1: A typical Timp potential for our simulations on QPC. The chan-
nel is 90 nm wide, 200 nm long. The two split gates are z = 10 nm above the
2D electron gas, with a voltage of −0.1 V. The color bar shows the magnitude
of the potential in Hartrees.

where L is the length of the channel between the split gates, W is the width

of the channel, Z is the height of the gates above the two-dimensional electron

gas, and function f is defined as follows

f(u, v) = − VG

2π
(
π
2
− arctan(u)− arctan(v) + arctan( uv√

1+u2+v2
)
) , (7.2)

where VG is the gate voltage. It approximates the solution to the electrostatic

problem with two metallic split gates in a medium. Its shape is shown in

Fig. 7.1. In our simulations, we keep the height of the gates fixed at z = 10 nm

above the 2D electron gas, and tune the width and the voltage to control

the potential between the gates. With a negative voltage, the gates deplete

electrons below them, so that the channel between them can be considered as

a quantum wire. Compared to the parabolic confinement we use in the study

of zig-zag, this model is a better representation of the process in experiments.
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7.2 Localization of Electrons with Increasing Confinement

I use 500× 500 nm supercell, 30 electrons in total and 5 K as the temper-

ature. As the voltage of the split gates increases, electrons are squeezed out

of the channel. The decrease of the electron density inside the channel leads

to strong Coulomb interaction. The localization of electrons in the center of

the channel is formed, which is consistent with the results in the literature

(Güçlü et al., 2009). The high electron density at the entrances of the channel

indicates Coulomb blockade. Fig. 7.2 shows the process of the formation.

In order to compared with my results for the zig-zag state in last chapter,

I estimate the equivalent parabolic confinement for each gate voltage. I take

the transverse density profile at the center of the channel, assume that it

is the ground state density of a one-dimensional simple harmonic oscillator,

calculate the spread of the density 〈y2〉, which should then be equal to the

quantum width of a simple harmonic oscillator
√

~/mω0. The resulting ω0 is

shown on each density plot.

With the presence of localization, the conductance of the QPC is reduced

to e2/h theoretically. I calculate the imaginary current-current correlation

function, and use Kubo formula to obtain the DC conductance at the center

of the channel. As is shown in Chapter 5, when extrapolating the correlation

function to ω → 0, I use the linear combination of the correlation functions for

one-dimensional noninteracting electron gas Eq. 5.5. It turns out that a sum

of two of the noninteracting functions is able to give nice fit. Fig. 7.3 shows

the conductance for Fig. 7.2(c). Fig. 7.4 shows the one-dimensional electron

density inside the channel and the conductance as a function of gate voltage.

As the voltage on the gates increases, the linear density decreases. In the

64



−200

−100

0

100

200

y
(n

m
)

density=1.3×105 cm−1, ω0=7.67 meV density=1.2×105 cm−1, ω0=8.09 meV

−200 −100 0 100 200

x (nm)

−200

−100

0

100

200

y
(n

m
)

density=1.0×105 cm−1, ω0=9.37 meV

−200 −100 0 100 200

x (nm)

density=0.2×105 cm−1, ω0=10.69 meV

(a) (b)

(c) (d)

Figure 7.2: Density of electrons. 500× 500 nm supercell, 30 electrons, T =
5 K. For the QPC: width = 90 nm, length = 200 nm, height of split gates
= 10 nm. Gate voltage for each plot is (a) -0.07 V; (b) -0.08 V; (c) -0.11 V;
(d) -0.16 V. The one-dimensional electron densities inside the channel and the
estimated parabolic confinements are show on top of each graph.
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Figure 7.3: Current-current correlation function for Fig. 7.2(c) and the ex-
trapolation to ω → 0. The fitting curve is the sum of two correlation functions
for noninteracting electron gas.

middle range where the single localization takes place, the decrease is a little

slower, indicating the effect of Coulomb interaction. In this regime, a plateau

at 0.4(2e2/h) is formed. The deviation from 0.5(2e2/h) implies the effect of

interaction on conductance.

7.3 The Possible Zig-Zag State

Based on my study for the zig-zag state in a parabolic confinement, I lower

the electron density in the channel while tuning the separation between the

split gates to search for the zig-zag state in QPC. The difficulty here is that

one cannot control the density in the channel directly, which results from the

density of the two-dimensional electron gas outside the gates, the voltage of

the gates and the separation between the gates. I keep the voltage fixed at

−0.1 V and the number of electrons at 30. By enlarging the supercell, I can

lower the density of the whole system. For each size of supercell, I run a series

of simulations with different separation between the gates. The temperature is
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Figure 7.4: The one-dimensional density inside the channel and the DC
conductance as a function of the gate voltage. For localization states, the
conductance is around 0.4(2e2/h). As the voltage decreases, the electrons
in the channel become more and more as free electrons, so the conductance
increases.

first set to 5 K, so that the simulations converge fast. Once the desired density

and confinement is reached, the temperature is then set to 1 K to begin a new

simulation with less thermal fluctuation, to which the zig-zag is sensitive.

I first note that when the separation is set to 180 nm, two rows of electrons

are formed in the channel at 5 K, as is shown in Fig. 7.5. The conductance is

shown in Fig. 7.6.

I then set the temperature to 1 K. Due to the increasing imaginary-time

length of paths, the simulation converges slowly. The density is shown in

Fig. 7.7. To identify the zig-zag state, I look at the pair correlation function.

Fig. 7.8 shows the probability distribution of spin-down electrons when a refer-

ence spin-up electron is placed at the white crossing. A pattern of zig-zag can

be identified, although it is not a strong feature. It should be noted that at

1K in the parabolic confinement, zig-zag state is destroyed by the fluctuations.

So the electron crystal is actually enhanced a little in quantum point contact.
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Figure 7.5: Electron density for 500 × 500 nm supercell and 30 electrons
at 5 K. The two-row structure with the density and confinement suggests a
possible zig-zag state at lower temperature.
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Figure 7.6: Current-current correlation function for Fig. 7.5.
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Figure 7.7: Electron density for 500× 500 nm supercell and 30 electrons at
1 K.

This feature is supported by the latest study on the surface electron state on

liquid helium (Rees et al., 2012) The conductance is shown in Fig. 7.9. It is

interesting to note that this conductance is very near 0.7(2e2/h).

69



200 150 100 50 0 50 100 150 200
x(nm)

60
40
20
0

20
40
60

y 1
(n

m
)

Figure 7.8: The pair correlation function for Fig. 7.7. A reference spin-
up electron is placed at the white crossing, and the plot is the probability
distribution of finding a spin-down electrons with respect to the reference
electron. Although it is not a strong signal, we can still see the pattern of
zig-zag.
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Figure 7.9: Current-current correlation function for Fig. 7.7, for a zig-zag
state in a quantum point contact. The extrapolation to the DC limit, ωn → 0,
gives a conductance very near 0.7(2e2/h).
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Chapter 8

CONCLUSION

In this dissertation, I study the physics of quantum wires by means of the

path integral Monte Carlo (PIMC) method. PIMC allows me to calculate the

finite temperature responses of electron systems under specified conditions.

I first study the general properties of quantum wires that can be interpreted

by the Luttinger liquid theory. I calculate the imaginary time current-current

correlation function. By extrapolating it to the zero response frequency ω = 0,

I obtain the conductance according to the Kubo formula. The conductance of

a one-dimensional (1D) electron gas fits well with the theoretical prediction.

Secondly, I study the low electron density regime for quasi-1D quantum

wires. Since the Coulomb interaction dominates over the quantum fluctua-

tions in this regime, it is believed that an electron state called Wigner crystal

is formed in wires. Although in 1D, an electron crystal is impossible due to

the strong quantum fluctuations, in quasi-1D, my results show the existence

of a zig-zag structure, as is predicted by classical simulations. The quantum

fluctuations make the the zig-zag only a local effect. I define an order pa-

rameter ξ(x) in order to quantitatively describe the transition from a single

line to a zig-zag. A look into the correlation between electrons of different

spins shows that the nearest spin correlation is anti-ferromagnetic, and the

next-nearest correlation is ferromagnetic. The correlation provides a way to

estimate the spin coupling strength, which turns out to be much less than

the pencil-and-paper estimation. It should be noted that the pencil-and-paper

estimation does not take the many-body effect into account, and thus is a
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rough approximation. By tuning the transverse confinement and the electron

density, I find a dimer state in which electrons of opposite spins are coupled

across the double rows of zig-zag. I plot a phase diagram to summarize the

results.

Finally, I study the quantum point contact by building up a model of the

same configuration using a Timp potential. I first find that as the split gate

voltage increases, the narrowing of the channel culminates in localization of

single electrons in the middle of the channel at 5 K. This localized electron

causes Coulomb blockade, which is consistent with the results in the literature.

I calculate the conductance of this state with the method from Chapter 5. A

clear plateau around 0.4(2e2/h) is shown, indicating the effect of the Coulomb

interaction. I then try to search for the possible zig-zag state in quantum

point contact. In order to use the results from Chapter 6, I estimate the

equivalent parabolic confinement from the density profile. In the regime of

zigzag according to the phase diagram from Chapter 6, I find the pattern

of Wigner crystal at 1 K. The temperature here is higher than it is for the

parabolic confinement, indicating the enhancement of the robustness. The

estimated conductance of this zig-zag state is very close to 0.7(2e2/h).
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APPENDIX A

COULOMB ACTION

73



The Coulomb action is considered as

SC = − log(ρ)− Sfree (A.1)

where Sfree is the free particle action, ρ is the density matrix satisfying the

Bloch equation

− ∂

∂τ
ρ =

(
− ∇

2

2mij

+
qiqj
rij

)
ρ (A.2)

where mij is the reduced mass of particle i and j. Here we only consider SC as

a pair action, ignoring the higher order terms. We assume that the Coulomb

action takes the form

SC =
∑
i,j

u(|ri − rj|,∆τ) (A.3)

where

u(r,∆τ) =
a0 + a1r + a2r

2

1 + b1r + b2r2 + b3r3
(A.4)

The coefficients ai and bi are determined by fitting the action to numerical

solutions of Eq. A.2 as well as the known values at r → 0 (Pollock, 1988) and

r →∞ (Vieillefosse, 1994a,b).

In experiments, the top gates can be mimicked by image charges in simu-

lations. So the Coulomb action we use becomes

SC =
∑
i,j

[
u(|ri − rj|,∆τ)− u(

√
|ri − rj|2 + d2,∆τ)

]
, (A.5)

where d is the distance from the image charges to the 2D electron gas. The

image charges also cut off the long range tail of the Coulomb interaction.
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APPENDIX B

DENSITY-DENSITY RESPONSE OF NON-INTERACTING ELECTRONS
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The retarded density-density response function for a homogeneous system

is defined as

χnn(~x, t) ≡ − i
~

Θ(t)〈[n̂(~x, t), n̂(0)]〉 (B.1)

where the 〈〉 means thermal average, and Θ(t) is the step function. It is usually

studied in the momentum and frequency domain:

χnn(~q, ω) ≡ 1

Ld

∫
ddrχnn(~x, t)e−i~q·~x+iωt (B.2)

where d is the dimension.

For non-interacting electrons, χnn can be calculated analytically, and the

expression is (Giuliani and Vignale, 2005)

χnn(~q, ω) =
1

Ld

∑
~k,σ

n~k,σ − n~k+~q,σ

~ω + ε~k,σ − ε~k+~q,σ + i~η
(B.3)

where n~k,σ is the Fermi-Dirac distribution, ε~k,σ is the energy of a single electron,

η is an infinitesimal. At finite temperature, usually one cannot work out the

summation in Eq. (B.3). However, it can be evaluated easily with numerical

method for imaginary frequency (ω → iω), thus can be compared with our

PIMC results directly.

In PIMC, the simulation of fermionic system is achieved by the fixed node

method. In 1D, it is exact. So it is expected to show the same density-density

response as B.3. In higher dimensions, we can obtain a sense of how good the

approximation is, as far as the density-density response is concerned.

I plot χnn/N(0) vs. qx/kF for the first Matsubara frequency ω = 2π/β~

and qy = qz = 2π/L, where N(0) is the density of states per volume at the

Fermi energy(Giuliani and Vignale, 2005),

N(0) =



mkF
2π2~2 , 3D

m
2π~2 , 2D

m
π~2kF

. 1D

(B.4)
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Figure B.1: The density-density response for (a) 1D with T = 2 K and
L = 320 nm; (b) 2D with T = 0.5 K and L = 200 nm; (c) 3D with T = 0.5
K and L = 200 nm. Because of the finite size effect in both the theoretical
evaluation and the PIMC simulation, the long wavelength response is cut off,
so that χnn(~q = 0) = 0. For the 2D and 3D results, the nonzero behavior at
q = 0 in PIMC result is because of the nonzero qy and qz.

The results are summarized in Fig. B.1. In every dimension, the two results

show good fit. The fixed node approximation does not have much effect in

evaluating the density-density correlation. This is also a good support to my

results on correlation functions.
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APPENDIX C

PARALLELISM

78



The PIMC algorithm can easily take advantage of parallel computing. We

clone the model on each CPU core involved. That is, we initiate the same

simulation on each CPU core, but the random number seed is different, so

that the simulations come out differently. Each clone then runs independently,

until the measurements are collected. Thus by using clones, we increase the

number of samplings and measurements per unit time, so that the simulations

converge faster. We use the Message Passing Interface (MPI) to collect the

results between clones.

My simulations run on Saguaro, the cluster of the Arizona Advanced Com-

puting Center (A2C2). The typical number of clones is 16. Since error is de-

pendent on 1√
N−1

, where N is the number of measurements, 16 clones reduce

the error bar by about a factor of 4.
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