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ABSTRACT  
   

Dye sensitized solar cells (DSSCs) are currently being explored as 

a cheaper alternative to the more common silicon (Si) solar cell 

technology. In addition to the cost advantages, DSSCs show good 

performance in low light conditions and are not sensitive to varying angles 

of incident light like traditional Si cells.  

One of the major challenges facing DSSCs is loss of the liquid 

electrolyte, through evaporation or leakage, which lowers stability and 

leads to increased degradation. Current research with solid-state and 

quasi-solid DSSCs has shown success regarding a reduction of electrolyte 

loss, but at a cost of lower conversion efficiency output. The research 

work presented in this paper focuses on the effects of using nanoclay 

material as a gelator in the electrolyte of the DSSC.  

The data showed that the quasi-solid cells are more stable than 

their liquid electrolyte counterparts, and achieved equal or better I-V 

characteristics. The quasi-solid cells were fabricated with a gel electrolyte 

that was prepared by adding 7 wt% of Nanoclay, Nanomer® (1.31PS, 

montmorillonite clay surface modified with 15-35% octadecylamine and 

0.5-5 wt% aminopropyltriethoxysilane, Aldrich) to the iodide/triiodide liquid 

electrolyte, (Iodolyte AN-50, Solaronix).  

Various gel concentrations were tested in order to find the optimal 

ratio of nanoclay to liquid. The gel electrolyte made with 7 wt% nanoclay 

was more viscous, but still thin enough to allow injection with a standard 
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syringe.  Batches of cells were fabricated with both liquid and gel 

electrolyte and were evaluated at STC conditions (25°C, 100 mW/cm 2) 

over time. The gel cells achieved efficiencies as high as 9.18% compared 

to the 9.65% achieved by the liquid cells. After 10 days, the liquid cell 

decreased to 1.75%, less than 20% of its maximum efficiency. By 

contrast, the gel cell's efficiency increased for two weeks, and did not 

decrease to 20% of maximum efficiency until 45 days. After several 

measurements, the liquid cells showed visible signs of leakage through 

the sealant, whereas the gel cells did not. This resistance to leakage likely 

contributed to the improved performance of the quasi-solid cells over time, 

and is a significant advantage over liquid electrolyte DSSCs. 
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Chapter 1 

INTRODUCTION 

1.1 Purpose 

The most common source of energy today is derived from fossil 

fuels.  While this type of fuel has been an abundant resource since the 

industrial revolution, domestic oil production is now decreasing [1].  This 

creates an urgent need for alternative energy sources. 

While unconventional oil such as oil sands and oil shale supplies 

are still available, the recovery and processing of these fuels have many 

negative environmental impacts including increased emissions, high levels 

of water usage, and groundwater contamination [1].  The increased CO2 

emissions produced when recovering unconventional oil is enough reason 

to render this a less than ideal option as an alternative energy source.  

The Inter-governmental Panel on Climate Change (IPCC) reported in 2007 

that the averaged global surface temperature may increase as much as 

6.4°C by the year 2100 if nothing is done to reduce  our carbon emissions 

[2]. However, within the international scientific community, the generally 

accepted danger limit is perceived to be 2°C above pre industrial 

temperatures, which is only 1°C higher than today.  An International 

Energy Agency (IEA) report released in 2011 states that the global CO2 

emissions increased 3.2% from 2010 and projections for 2012 are not 

much better.  In order to address the rising averaged global surface 

temperature, it is critical that our world begins to transition to renewable 
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energy sources with low to no CO2 emissions, and solar energy is the 

most viable option to reach this goal. 

1.2 Background 

Solar technology converts energy from the sun into electricity.  A 

solar cell can produce electricity without any toxic by-products, and most 

importantly, no CO2 emissions over several decades, utilizing the sun as 

an abundant renewable source of energy.  One of the major factors 

currently limiting the expansion of the solar industry is the high initial cost 

of producing the cells.  Some of the semi conductor materials used in 

traditional solar cell fabrication, like silicon (Si), cadmium (Cd), and 

tellurium (Te), are expensive.  There are other solar technologies 

emerging such as dye sensitized solar cells (DSSCs), which do not 

require the expensive semiconductor material used in traditional solar 

cells, and have the potential to make solar technology affordable for the 

average consumer. 

A typical DSSC consists of two electrodes, comprised of conductive 

glass, sandwiched together and filled with an electrolyte material as 

shown in Figure 1.  The working electrode, also known as the anode, is 

coated with a layer of titanium dioxide (TiO2) semiconducting material.  

The electrode is then soaked in a charge transfer dye, known as the 

sensitizer, which is adsorbed by the TiO2 nanoparticles.  The electrode 

performs the function of absorbing the light and transferring that energy 

into an electron, which can be used by an external circuit.  The counter 
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electrode glass is coated with a thin layer of catalyst material, typically 

platinum (Pt).  This electrode delivers an electron from the external circuit 

back into the cell.  In between the two electrodes, a gasket is used to 

create a small cavity, which is filled with the electrolyte material, generally 

based on an iodide/triiodide redox couple (I-/I3
-).  The electrolyte serves as 

the charge carrier between the two electrodes, which is discussed in more 

detail in chapter 2. This process is very similar to the natural process of 

photosynthesis that occurs every day all around us.  The main difference 

is that instead of light being converted into energy for the plants to survive, 

with DSSCs it is converted to electricity. 

 

Figure 1:  Basic Layered Device Architecture of a DSSC 

The DSSC technology offers many benefits over other solar cell 

technologies including environmental impact, cost, and behavior in non-

ideal settings.  Toxicity is a major issue when it comes to solar cell 

production. There have been concerns that the production, use and 

TCO Glass 
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TiO
2
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Electrolyte 
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disposal of solar panels may have a harmful impact to the environment. 

The arsenic and cadmium used in the high efficiency cells described 

above are toxic materials. In standard high efficiency PV technology, 

these harmful materials such as telluride and arsenide are used.  

However, TiO2 is non-toxic, safe enough to be used in nutritional 

supplements consumed by humans.  The DSCC fabrication methodology 

is very simple and the waste generated is far less than compared to the 

matured silicon solar technology.  

The simple process, coupled with inexpensive raw materials, 

results in a much lower fabrication cost estimated at about 20-30% of the 

cost it takes to fabricate traditional Si solar cells. While the technology is 

fairly new it is difficult to get good data to project the cost of DSSC and 

has not been commercially produced long enough to gather good data.  

However, rough estimates show the cost of DSSC is around $48-64/m2 

and less than $ 1 per peak watt and may even come down to as low as 

$0.48 Wp [3].  This is much cheaper than CdTe cells, which are estimated 

to cost about $130/m2 and $1.65 Wp [4]. 

TiO2, the most commonly used semiconductor material in DSSCs, 

provides many advantages over the materials used in p-n junction cells.  

In fact, most of the materials used in DSSC manufacturing are very 

inexpensive, which adds to the lower cost when compared to traditional Si 

solar cells.  TiO2 is readily available compared to silicon, which has to be 

grown from crystals is a very time consuming process, especially for pure 
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single crystal Si.  Gallium arsenide (GaAs) and cadmium telluride (CaTe) 

p-n solar cells are high in efficiency, but gallium and tellurium are very rare 

materials, which results in a much higher cost.   TiO2 on the other hand, is 

abundant enough that it is used in common household products like 

toothpaste, sunscreen, and paint pigmentation.   

When looking at many practical applications of solar technology 

such as building integrated photovoltaics (BIPV) and indoor use, DSSCs 

significantly outperform traditional Si based solar cells.  This is because 

DSSCs accept smaller angles of incident light, are less sensitive to 

fluctuations in irradiance, and can withstand greater temperature ranges.  

When panels were placed 90° from horizontal and tes ted at various sun 

positions, the DSSCs exhibited 20-60% increase in performance over Si 

modules [5].  Unlike traditional Si cells, which can experience significant 

drops in performance without full sun, DSSCs perform well and produce 

power under shade and with cloudy skies.  Most commercial panels are 

rated at 25°C, but temperatures outside of the labo ratory are usually 

higher, which results in a performance drop at the consumer level.  With 

DSSCs, the temperature increase has a much smaller effect, which offers 

a significant advantage for the consumer. An increase from 20°C to 50°C 

results in a 19.5% max power (Pmax) drop for c-Si panels, but only a 5% 

max power drop for DSSC panels [5]. 

There are challenges facing the DSSC technology that need to be 

overcome in order to make it competitive with Si modules. One major 
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issue is the lower energy conversion efficiency output compared to 

standard Si cells.  While DSSCs are now showing results similar to 

amorphous silicon cells, they have yet to achieve the high efficiency 

output of c-Si cells.  There are several components of the DSSC that have 

the potential to improve the efficiency of the light to power conversion, 

such as material used for the anode, cathode, and electrolyte, as well as 

the fabrication procedure itself.   

One of the major challenges facing DSSCs is leakage of the liquid 

electrolyte, which lowers stability and leads to increased degradation.  

This can occur during fabrication or simply with prolonged exposure to the 

sun.  During fabrication, if the cell is not completely sealed, there can be 

leaks, which quickly drain the cell’s efficiency.  Even with a successfully 

sealed cell, liquid electrolyte material will eventually be evaporated when 

exposed to the sun, and will need to be replenished periodically to 

maintain its high efficiency.  To circumvent this challenge, earlier research 

work attempted to fabricate the DSSCs with non liquid electrolyte material, 

but significant decrease in efficiencies of up to 60% was observed.  
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1.3 Scope 

This thesis project will examine alternatives to liquid electrolyte 

material, specifically quasi-solid electrolyte, to see if its application can 

solve the problems observed with liquid electrolytes, without sacrificing the 

efficiency.  The intent of this paper is to present information obtained via 

research and experimentation regarding the performance of quasi-solid 

dye sensitized solar cells fabricated in a laboratory environment.  It will 

deal with the experimental setup, the various materials used, and the 

performance results. Chapter 2 provides a review of the most relevant 

literature regarding alternatives to liquid electrolyte material. The 

fabrication process as well as testing methods will be covered in Chapter 

3.  The experimental results are presented in Chapter 4, as well as an 

analysis of the data.  Chapter 5 summarizes the experimental results and 

states final conclusions for the project as well as suggestions for further 

research. 
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Chapter 2 

LITERATURE REVIEW 

While the fundamental electrochemical process has been used in 

photography since the beginning of the 19th century, studies of the 

electron transfer process of a semiconductor oxide material picked up 

much later in the 1960s.  These cells consisted of single crystal TiO2 

surrounded by chlorophyll, which resulted in less than 1% efficiency.  This 

design was improved upon by using smaller 20 nm nanoparticles of the 

TiO2 semiconductor, which increased the surface area thereby increasing 

the amount of electrons transferred.  A sensitizing dye material replaced 

the chlorophyll, which was able to quickly inject electrons when excited by 

sunlight.  With more absorption and surface area for the transfer of 

electrons, the efficiency increased significantly.  In 1991 Michael Grätzel 

and Brian O’Regan first introduced DSSCs as we now know them, with a 

conversion efficiency of 7.1% [6].  Since that time, new innovations with 

materials and design processes have resulted in a recorded efficiency of 

12.3%, from a cell using a porphyrin dye and a Co(II/III)tris(bipyridyl)-based 

redox electrolyte [7].  DSSCs were introduced to the market globally in 

2007, with companies like Sony, 3G, and G24 Innovations being a few of 

the key market players. Now that cells are being produced that have 

efficiencies higher than some amorphous silicon cells, there is great 

potential for the DSSC market to expand even further. 
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2.1 Fundamental Operation 
DSSCs are different than traditional p-n junction cells in that they 

separate the light absorption and charge carrier transport functions, 

whereas the semi conductor material does both in traditional photovoltaic 

cells.  

 

Figure 1:  DSSC structure (a) Electrodes in circuit; (b) Cross sectional 

view of cell; (c) Enhanced view of TiO2/dye/electrolyte interface 
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Figure 1a-c breaks down the DSSC structure starting with a 

simplified view of the cell, highlighting the working electrode, which is 

coated with the TiO2 and is the electrode exposed to light, and the counter 

electrode, which is coated with the catalyst material, usually platinum (Pt).  

Figure 1b depicts the view of the electrolyte filled gap between electrodes, 

and the electron flow from working electrode to external circuit back to the 

counter electrode.  The image is further magnified in Figure 1c to show the 

TiO2 nanoparticles coated with the dye, which is surrounded by the 

iodide/triiodide (I-/I3
-) redox couple electrolyte material.  When the dye 

absorbs photons from the sun, it becomes photo excited, and injects an 

electron into the conduction band of the TiO2.  Within the electrolyte a 

redox reaction takes place at the working electrode, which donates an 

electron to the dye, and at the cathode, the triiodide (I3
-) accepts an 

electron from the Pt coated conductive glass, a reduction reaction takes 

place regenerating the redox couple, and the cycle is completed without 

causing permanent chemical transformation of any material involved. 

2.2 Role of the Electrolyte 

The electrolyte facilitates two important tasks in the DSSC process. 

It serves as the transport mechanism for the redox mediator from the TiO2 

electrode to the counter electrode where electron transfer will occur and 

the triiodide ions will be reduced to iodide as shown by the following 

reaction: 

 



  11 

Because there are no minority charge carriers involved, the bulk 

recombination losses normally associated with lattice defects in Si based 

solar cells do not occur in DSSCs [6].  At the TiO2 side, the electrolyte 

serves to regenerate the dye molecule, which has been oxidized following 

the electron injection into the conduction band of the TiO2.  This 

regeneration is represented by the following reaction: 

 

This is very important because it prevents the dye molecule from 

being reduced via recombination of a TiO2 electron.  There are two 

methods of recombination of TiO2 electrons.  One is with the oxidized dye 

molecules, but this is unlikely because the regeneration from the iodide is 

very fast.  The second more likely method is recombination of the 

electrons in the TiO2 with the acceptors in the electrolyte.  The electron 

lifetime refers to the recombination of the TiO2 electrons with electrolyte 

acceptors.  The iodide/triiodide redox couple exhibits longer (1-20 ms) 

lifetimes than other redox couples that have been tried before, for example 

cobalt-based and organic systems, and that is why it remains the 

preferred electrolyte material [8].  For this reason, the I-/I3
- redox couple 

was used as the basis for the quasi-solid electrolyte tested in the 

experiments discussed in this paper.  

2.3 Electrolyte Requirements 

There are several characteristics that an electrolyte must exhibit in 

order to achieve good performance from the DSSC.  In addition to serving 
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as a solvent for the redox couple, it must be chemically stable so that it 

doesn’t have any unintended reactions with any of the other materials in 

the cell including the sealant.  It shouldn’t absorb light as this would result 

in filtering effects.  In order for the dye regeneration to occur, the 

difference between the oxidation potential of the dye and the redox 

potential of the electrolyte, given as (∆G0), has to be sufficient.  For a 

typical ruthenium (Ru) based dye and a standard I-/I3
- electrolyte, the 

driving force is given by ∆G0 = 0.75 eV.  The following example shows 

how this is calculated: 

Oxidation potential of dye, Ru(dcbpy)2(NCS)2 = +1.10 V 

Redox potential of I-/I3
- electrolyte = +0.35 V 

Therefore, ∆G0 = 1.10 V – 0.35 V = 0.75 eV 

Based on experimentation of different dye chemistry, it was found that 

using osmium (Os) instead of Ru resulted in ∆G0 =0.54 eV, that causes 

slow regeneration [9].  However, black dye, Ru(tcterpy)(NCS)3, results in 

∆G0 = 0.6 eV, and exhibits high regeneration rate [10].  This driving force 

must be taken into account when choosing an electrolyte material, 

because if the redox potential is too high, the driving force is reduced, and 

if it falls much lower than 0.6 eV, the performance of the DSSC will be 

greatly reduced.  Ionic conductivity is also important in electrolyte material 

and it must be high so that the electron transfer can occur at the 

electrodes fast enough to keep up with the electron injection of the dye, 

and do so with negligible ohmic loss.  This generally means that the 
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electrolyte must be highly viscous, which is why liquid electrolyte material 

is most commonly used.  However, there are drawbacks to using liquid as 

the electrolyte material such as desorption of the dye, corrosion of the Pt, 

overall stability, and leakage of the electrolyte itself. 

2.4 Drawbacks of Liquid Electrolyte 

Liquid electrolyte cells struggle to meet the rigorous reliability 

testing required to become commercially viable because the liquid 

material because they often fail to meet the long term stability 

requirements at temperatures above 80°C as seen in Figure 2:  Evolution 

of: (a) current-density vs. time; (b) open-circuit voltage vs. time; (c) and 

the efficiency vs. time [11]Figure 2.  This figure shows how current and 

efficiency are greatly affected by higher temperatures, though open circuit 

voltage (VOC) is only slightly reduced.  The decrease in current was 

attributed to degradation of the dye material and to a loss of electrolyte via 

evaporation or leakage [11]. 
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Figure 2:  Evolution of: (a) current-density vs. time; (b) open-circuit voltage 

vs. time; (c) and the efficiency vs. time [11] 

Evaporation and leakage is a major problem facing DSSCs with 

liquid electrolyte material.  If the cell is not perfectly sealed, the electrolyte 

material will escape through evaporation, which will cause the cell to 

degrade.  This requires careful sealing methods during fabrication, which 
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can increase fabrication time and costs.  Even cells that are sealed 

perfectly may experience evaporation of the electrolyte material over time, 

as the sealant wears out due to environmental factors like temperature 

and internal factors like reactions with electrolyte material. 

2.5 Other Electrolyte Possibilities 

Solid state DSSCs using hole transport material (HTM) offer an 

alternative to using liquid electrolyte and do not suffer many of the 

drawbacks like leakage, desorption, and corrosion.  P-type solid 

semiconductor material has been used as a HTM in solid state DSSCs 

with recorded efficiencies of 3.8% for a cell using Cu (I) [12].  However, in 

addition to having much lower conversion efficiency than its liquid 

electrolyte counterpart, the stability of the solid state DSSC remains an 

issue, as it does with most inorganic HTMs.  This brought focus to organic 

HTMs, which initially showed efficiencies less than 1%, but through more 

experimentation like that of Cai et al, now have recorded efficiency values 

of 6.08% using organic hole transporter spiro-MeOTAD [13].  While this is 

a significant improvement over the Cu(I) efficiency value, it still remains 

lower than DSSCs using liquid electrolyte because HTMs have lower 

intrinsic conductivity, experience higher recombination rates with TiO2 

electrons, and don’t penetrate as well into the dye as liquid electrolyte 

does [12]. 

The other liquid electrolyte alternative currently gaining attention is 

quasi-solid DSSCs, which use gel electrolyte material usually based on a 
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redox couple similar to liquid DSSCs.  Quasi-solid cells also offer solutions 

to the problems facing liquid electrolyte cells, but have an even greater 

advantage in that they have shown greater stability.  Similar to solid-state 

DSSCs, a common drawback with quasi-solid electrolyte material has 

been a decrease in the efficiency due to higher viscosity, which results in 

a restriction of ionic mobility.  Different materials have been researched as 

possible gelators in quasi-solid cells, even common household items like 

SuperGlue®, which was mixed with a triiodide/iodide redox couple, and 

successfully produced DSSCs with efficiencies of 4% [14].  Polymer 

electrolytes are a popular quasi-solid material, but at lower temperature, 

the polyethylene oxide (PEO) solvent crystallizes, which decreases 

conductivity and lowers efficiency output [15].  This led to research into 

using inorganic fillers to improve the low conductivity of the PEO.  

Meneghetti et al used high molecular weight polymethymethacrylate 

(PMMA) and montmorillonite (MMT) clay to create a polymer 

nanocomposite gel electrolyte that increased conductivity from 7.6 x 10-4 

S/cm2 to 9.1 x 10-4 S/cm2 [16].   

DSSCs already have lower efficiency output than many Si solar 

cells; therefore, it is very important to find a method of gelling the 

electrolyte to increase stability without compromising any of its 

performance characteristics.  Researchers are now attempting to improve 

on the efficiency of DSSCs using quasi-solid electrolytes.  Yu et al used a 

cyclohexanecarboxylic acid-[4-(3-octade-cylureido)phenyl]amide-based 
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gel electrolyte with Ru dye C105 to achieve quasi-solid cell efficiency of 

9.1% that shows stability at 60°C [17].  Grätzel et al were able to show 

that using fumed silica nanoparticles, mixed with an MPII-based 

electrolyte, allowed the electrolyte to penetrate the TiO2 layer, resulting in 

efficiencies matching the corresponding liquid electrolyte cells [18]. 

This paper documents research work done with a quasi-solid DSSC 

made from MMT clay and an iodide based high viscosity electrolyte, in an 

effort to compare the performance characteristics and stability over time 

with liquid electrolyte DSSCs.  The following chapter details the evolution 

of the DSSC fabrication process, and the reasoning behind changes that 

were made.  The methods utilized to test and evaluate the cells are also 

presented in Chapter 3. 
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Chapter 3 

EXPERIMENTAL METHODS 

The fabrication of a DSSC can have a great impact on the 

performance of the cell.  The materials used as well as the fabrication 

procedure are critical to ensuring a cell that not only performs well, but 

also sustains consistent performance.  Therefore, various materials and 

methods were experimented with, and the resulting cell performance was 

evaluated. Many improvements were made to the original process, 

resulting in a refined, efficient fabrication process, using the best suited 

materials.  Testing methods were also evaluated and adjusted in an 

attempt to minimize unwanted variables and obtain accurate results. The 

following sections describe the fabrication procedures of the DSSCs, 

provide information about the materials used, and the detailed testing 

methods employed. 

3.1 Fabrication Procedures of DSSC 

The fabrication procedure of the DSSCs consisted of 9 steps, 

completed over three (3) days as shown in Figure 3.  On the first day, the 

electrodes are coated with TiO2 material and then sintered overnight.  The 

following day, the counter electrode is coated with Pt and then sintered 

overnight, and the TiO2 electrodes are soaked overnight in the dye.  The 

third day, the two electrodes are assembled, the cell is filled with 

electrolyte, and then it is sealed.  
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There was also preparation that had to be done prior to fabrication.  

This included preparing the substrates, cutting the sealant, and mixing the 

dye and gelled electrolyte material. These processes as well as the 

fabrication steps are described in detail below. 

 

Figure 3: Fabrication Procedures of DSSC 

3.1.1 Glass Substrate Preparation 

The substrate used for the DSSC electrodes was a 2mm thick, 

transparent conducting oxide coated (TCO) glass, (TCO22-7, Solaronix), 

coated with a fluorine doped tin oxide (FTO) layer.  Each 5 cm x 5 cm 

piece of glass was cut into smaller pieces in order to reduce the sheet 

resistance, thereby improving efficiency.  Using a cutting/engraving laser 

machine, (Universal Laser Systems), 16 pieces of 13 mm x 13 mm were 

cut from each sheet of glass.  Originally, the glass was cut in several 

stages, which required lifting & replacing pieces off the metal tray, which 



  20 

sometimes led to scratches on the conductive coating.  To reduce 

scratching, a template was created and a program written for the laser 

machine software, which made all of the cuts without ever having to move 

the glass.   

 

 

 

Figure 4 shows how the smaller 

electrodes are made from the larger 

piece of glass after the laser program 

has been run.  The time required to 

make 16 pieces of glass was greatly 

reduced and the quality of those pieces 

increased, resulting in less wasted 

material. 

 

 

 

 

 

 

 

Figure 4:  TCO glass electrodes cut from 5 cm2 piece of glass 
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The counter electrode was drilled with a single hole for liquid 

electrolyte filling and two holes for gel electrolyte filling.  Using two holes 

was necessary for the gel because the increased viscosity made it difficult 

to use the vacuum plunger that was used with liquid electrolyte.  A syringe 

was used to inject the gel electrolyte, so the second hole provided a vent 

for air, which prevented air bubbles and ensured the gap was completely 

filled with electrolyte.  The drill bit size was reduced to 0.45 mm in order to 

prevent Pt from draining during application and electrolyte from draining 

out after final assembly. 

3.1.2 TiO2 Active Area 

The working electrode was coated with a 100µm layer of TiO2 (Ti-

Nanoxide D, 15-20 nm, Solaronix) using the Coatema® Easy Coat 

machine with a precision doctor blade attached.  Originally, a glass rod 

was attached to the Coatema tool, but it was very difficult to accurately 

calibrate the rod over the entire surface of the template.  Therefore, the 

rod was replaced by the blade, which produced even TiO2 layers that were 

consistently repeatable. 

A mask was created by cutting a 7mm x 7mm square out of 3 

layers of Scotch® Magic™ Tape applied to a template, which was created 

using a thickness equal to that of the glass substrate.  The automated 

laser machine was used to make the electrode cuts, which ensured 

identical active areas for every cell.  
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The pieces of glass are then cleaned with isopropyl alcohol (IPA) 

and placed under the mask, which was firmly adhered to the FTO layer 

with slight pressure.  The plastic template consisting of four masked 

substrates was then placed on the Coatema tool in a calibrated position as 

shown in Figure 5a.  The height of the blade was calibrated by placing a 

0.04 mm shim between a precise location on the plastic template and the 

blade.  This calibration method was tested repeatedly, and the resulting 

layers were examined under a microscope until all four cells in the 

template displayed uniformly thin layers.  To ensure consistency, the 

calibration was performed prior to each coating. 

a)  b)  

c)  
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Figure 5: Working electrode coating process (a) Substrate prior to coating; 

(b) Coated TiO2 layers; (c) TiO2 electrodes prior to assembly 

The TiO2 material was then applied to the mask and the blade was 

moved slowly across the template resulting in an even consistent 

thickness of TiO2 active area as shown in Figure 5b.  The electrodes were 

immediately covered with Petri dishes to prevent any impurities and 

allowed to dry.  The masks were then removed and the electrodes are 

sintered for 1 hour at 400°C and then left in the o ven to cool overnight.  

The following day, the electrodes were removed from the oven and placed 

in the Ru dye, Ru(II)L2(NCS)2 : 2 TBA (tetrabutyl ammonium) ( L=2, 2′-

bipyridyl-4, 4′-dicarboxylate, N719, Solaronix) with ethanol solution, where 

they were left to soak for a minimum of 12 hours.  At the end of these 

operations, the completed working electrodes were obtained as shown in 

Figure 5c. 

The initial calibration procedure was highly dependent on the 

person performing the calibration, which resulted in inconsistent thickness 

from one batch to the next.  Also, the template was wide enough that the 

height of the cell on one side was not the same as that on the other side, 

which also resulted in layers that were too thick causing cracking, depicted 

in Figure 6a.  Modifying the template and positioning it in the same place 

on the Coatema machine each time, as well as developing an accurate 

repeatable calibration method improved the TiO2 layers as shown in 

Figure 6b. 
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a)  b)  

Figure 6:  TiO2 coating as seen at 10x magnification 

(a) cracking of thicker layer; (b) thin even layer 

3.1.3 Platinum Counter Electrode 

The counter electrode was coated with a Pt catalyst layer (Platisol 

T/SP, Solaronix). The Pt coating was done by hand using the doctor blade 

technique as shown in Figure 7a, and only two layers of tape were used 

resulting in about a 67µm layer of Pt. Similar to the TiO2 procedure, the Pt 

electrodes were immediately covered with Petri dishes, dried, and sintered 

for 1 hour at 400°C, remaining in the oven to cool overnight.  The result 

was the counter electrode, ready for assembly as shown in Figure 7b. 

a)  b)  

Figure 7:  Counter electrode (a) during Pt application; 

(b) Pt layer after sintering 
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3.1.4 Cell Assembly  

The most critical part of cell fabrication is the assembly, and so a 

good amount of effort went into this part of the process.  Cell assembly 

consists of 3 steps; sealing the two electrodes, injecting the electrolyte, 

and then sealing the injection hole.  Sealant material is cut in masks of 5.5 

mm x 5.5 mm to lie just inside the active area as shown in Figure 8a.  

Various methods of sealant cutting were tried first, including using a 

scalpel, which was hard to control, the laser machine, which was too hot, 

and finally the punch blade, which produced the best results.  The sealant 

material was also changed from a 25 µm thick Surlyn® sealant, (Meltonix, 

1170-25, Solaronix) to a 60 µm thick Bynel® sealant, (Meltonix, 1162-60, 

Solaronix), because the increased thickness made the sealing more 

consistent around the active area of the cell.  The sealant is then 

sandwiched between the two electrodes, which has to be carefully placed 

so that the active areas are aligned correctly as shown in Figure 8b.  

a)   b)  

Figure 8:  Cell assembly a) sealant on working electrode; 

b) Counter electrode placement 
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Originally, binder clips were used to hold the electrodes together 

while the sealant melted, however this allowed for a significant risk of 

human error as the electrodes tended to shift during placement of the 

binder clips.  A specially designed press shown in Figure 9a replaced the 

binder clips and automated the trickiest part of the sealing process.  

However, over time the press material warped, resulting in an uneven 

sealing of the cells and subsequent electrolyte leaking.   In order to control 

the sealing better, a hot plate, heated to about 140°C, was used to heat 

the sealant, and pressure was manually applied continuously for about 5 

minutes or until it was observed that the sealant had evenly melted and 

adhered to the electrodes.  This process is illustrated in Figure 9b. 

a)  b)  

Figure 9:  Sealing process using (a) assembly press; (b) hot plate 

3.1.5 Liquid Electrolyte Injection 

After the two electrodes were sealed together, the liquid electrolyte, 

(Iodolyte AN-50, Solaronix) was injected by using the vacuum plunger as 

shown in Figure 10a.  Initially a syringe was used to inject the electrolyte, 

but this method made it difficult to eliminate all the air bubbles.  There was 
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also the risk of the needle making contact with the working electrode, 

which reduced conversion efficiency due to a damaged TiO2 layer.  The 

plunger had the added advantage of greatly reducing waste, because only 

the needed amount of electrolyte was used.  

a)  b)  

Figure 10:  Electrolyte injection for (a) Liquid electrolyte with vacuum 

plunger; (b) Gel electrolyte with syringe 

3.1.6 Gel Electrolyte Injection 

The vacuum plunger did not work well with the thicker gel 

electrolyte; therefore a syringe was used.  The gel injection process can 

be observed in Figure 10b, where the cavity is partially filled with 

electrolyte. Because a syringe was used, two drill holes were needed to 

provide an air vent and reduce any air bubbles.  The gel was prepared by 

adding 7 wt% of Nanoclay, Nanomer® (1.31PS, montmorillonite clay 

surface modified with 15-35% octadecylamine and 0.5-5 wt% 

aminopropyltriethoxysilane, Aldrich)  to the liquid electrolyte and using a 

magnetic stirrer for at least 24 hours to ensure complete dispersion of the 

nanoclay particles.  The resulting gel electrolyte was more viscous, as 
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seen in Figure 11, but was still thin enough to allow injecting with a 

standard syringe. 

 

Figure 11:  Higher viscosity of gel electrolyte 

3.1.7 Sealing Drill Hole 

Immediately after the cells were filled with electrolyte, the surface of 

the glass was dried and the drill holes were sealed with hot glue.  While it 

served the purpose of sealing the hole, the hot glue did not seem to create 

a strong enough bond with the glass to prevent slow evaporation over 

time.  Glass lids were experimented with, however, the sealant used to 

affix the lid had to be heated to melt.  This was problematic due to the 

effect on the electrolyte material, and the results did not show a significant 

improvement.  Super glue was attempted as well, but it reacted with the 

electrolyte causing damage to the cell.  This is one part of the process that 

could still be improved with further research and experimentation with 

alternative methods.  The final product is the DSSC shown in Figure 12. 
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Figure 12:  Completed DSSC 

3.2 Evaluation of DSSC 

The testing setup seen in Figure 13 was comprised of the Oriel 

500W Universal Lamp Housing with F/1 (UV grade fused silica collimating 

condenser) and 152 W Xe OF Arc Lamp (Newport), which was used to 

simulate the sunlight with AM 1.5.  Newport Arc Lamp Power Supply 

Model 69907 powered the lamp.  The I-V curves were obtained using the 

PARSTAT 2273 Advanced Electrochemical System.  The cell was 

consistently positioned at a height and location under the simulator where 

it would receive full sun, which is defined as 100 mW/cm2.  The incident 

light intensity was measured using a daystar meter, which was calibrated 

using a reference cell from TUV Rheinland PTL (Tempe, AZ).  One issue 

discovered during testing was that pressure from fixed probes making 

contact with each electrode was causing stress to the sealant and lead to 

leaks over many testing sessions.  Attempts were made to develop an 

alternate testing station, but reducing pressure consequently reduced 
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contact with the glass, and therefore, data was affected negatively.  The 

final method used was alligator clips, and caution was taken to reduce any 

pressure on the electrodes. 

 

Figure 13:  PARSTAT and solar simulator used for testing cells 

The PARSTAT testing equipment was set up to sweep the input 

voltage from VOC to 0 V with a 10 mV interval and the corresponding 

current at each step was measured. As the voltage decreased to 0 V, the 

current increased to open circuit current (ISC) forming the I-V curve.  In 

order to reduce the amount of time the cells were under the simulator in 

order to minimize cell heating, the step time was reduced from 1 sec to 

0.065 sec.  This change affected the ISC of the curve as the cell degraded, 

and therefore, further evaluation was performed to determine the ideal 

step time.  When all factors were considered, the decision was made to 

use a step time of 0.5 sec.  

3.3 Intended Research Methods 
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The experiments conducted in this study were designed to compare 

a liquid electrolyte DSSC to a similar quasi solid cell created by adding 

nanoclay particles to the iodide based electrolyte.  In order to ensure 

reliable and consistent data, significant effort was taken to refine the 

fabrication process and materials used.  In addition to the process 

improvements, the data collection was set up to eliminate as many 

external variables as possible.  Cells were measured at equal intervals, 

and were exposed to the simulator irradiance for exactly two minutes prior 

to each measurement.  Each batch of four cells was comprised of two 

liquid and two gel electrolyte cells, so that any fabrication variations 

between batches would not affect the comparison results.  These results 

are discussed and analyzed in the following chapter. 
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Chapter 4 

RESULTS AND DISCUSSION 

4.1 Sample Set 

Over the course of this experiment, hundreds of DSSCs were 

fabricated and tested while the process itself was being refined.  Initially, 

there was an extremely high rate of bad cells, defined as cells with 

efficiencies less than 1%, being produced.  Roughly 65% of the cells 

coated were successful.  After the final experimental method was 

established, 102 cells were fabricated and tested half with liquid 

electrolyte and half with nanoclay gel electrolyte.  There were a total of 25 

bad cells, some of which had been fabricated poorly, others which showed 

no obvious failures, but had experienced electrolyte loss and were not 

performing as expected.  The latter cells were re-injected with their original 

electrolyte material in order to assess whether the drill hole had been 

improperly sealed allowing electrolyte to evaporate, or whether a testing 

error had occurred.   Re-injecting the liquid electrolyte cells was simple 

and the efficiency measurements taken following the refill were only 

slightly lower than the initial I-V measurement obtained, but cells with the 

nanoclay gel electrolyte could not be refilled.  The nanoclay electrolyte 

had hardened inside the cell cavity, which prevented additional injection of 

material.  The total number of bad cells after refilled cells were measured 

was reduced to 15, leading to a true failure rate of only 14.7%.  This was a 

significant improvement from the initial fabrication results, which showed 
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that the changes made to the process had in fact improved the quality of 

cells produced. 

4.2 Sealant Issues 

One step of the process that was improved upon, but not perfected, 

was the sealing, which continued to plague the fabrication process 

throughout the experiment.  Even after the hot press replaced the oven as 

the sealing method, cells that initially showed no signs of leaking gradually 

began to leak.  The leaking became visible after several measurements 

had been taken, so the frequency of measurements was reduced, and it 

was determined that storage time was less of a factor, and that the 

measurement procedure itself was weakening the sealant.  When the cells 

were tested under the solar simulator, the counter electrode was fixed and 

the weight of the alligator clip attached to the working electrode resulted in 

a slight force pulling the electrodes apart.  The force was not enough to 

cause any observable effects, but over several applications; the sealant 

was weakened allowing sealant to penetrate.  The quasi-solid cells 

experienced the same force, but because of the thicker electrolyte, the 

leakage was minimized, as seen in  

, which shows liquid and gel cells from the same batch, which were 

tested an equal number of times.  This observation was a clear indicator of 

the advantage to using nanoclay gel electrolyte rather than liquid when it 

comes to minimizing electrolyte loss.   
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Figure 14:  Effects of leakage in liquid and gel cells from the same batch  

4.3 Nanoclay Gel Electrolyte 

Various gel concentrations were tested in order to find the optimal 

ratio of nanoclay to liquid electrolyte.  Concentrations of 10 wt% had high 

viscosity, which made fabrication difficult, and concentrations of 5 wt% did 

not have any significant effect on the viscosity.  Concentrations of 7 wt% 

nanoclay in liquid electrolyte yielded a gel that was more viscous and at 

the same time thin enough to allow injection with a standard syringe. 

4.4 Averaged data 

The results obtained from the I-V measurements indicated other 

advantages exist as well.  Overall, the quasi-solid cells outperformed the 

liquid electrolyte cells in stability, VOC, ISC, and energy conversion 

efficiency (η).  Some cells performed better than other, but this variation is 

the result of a fabrication process involving many human elements.  To 

normalize the variation, all of the data was compiled and averages for the 

performance data were calculated and can be seen in Table .   
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Table 1.  Averaged Characteristic Data for All Cells 

Electrolyte 

Type 

VOC 

(V) 

ISC 

(mA/cm2) 

η 

(%) 

Lifetime 

(days) 

Liquid 0.78 12.88 5.19 8.15 

Gel 0.82 14.92 5.96 19.96 

The most staggering difference observed between liquid and 

nanoclay gel cells was that the gel cells lasted more than twice as long as 

their liquid counterparts.  On average, the liquid electrolyte cells 

maintained their initial efficiency for 2-3 days, but that efficiency decreased 

rapidly to less than 1%, which was used as the minimum efficiency value 

to be considered as a functioning cell, after 8.15 days.  The cells with gel 

electrolyte maintained initial efficiency longer and showed a slower 

decrease, resulting in an average lifetime of 19.96 days.  

4.5 Calculations 

The energy conversion efficiency (η) of the DSSCs was calculated 

using the fundamental equation,  

 

The input power is defined as the intensity of the light on the active cell 

area,  

 

The active area, 38.44 mm2, was measured as the area of the cell within 

the sealant, where the electrolyte material made contact with both 
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electrodes.  1000 W/m2 was the intensity of the simulated sunlight from 

the Oriel simulator. 

Output power is equal to the maximum power point (Pmpp) calculated by 

multiply the maximum voltage (Vmax) and the maximum current (Imax), 

which were obtained from the I-V curve measurements taken for each cell, 

 

Fill factor (FF) data was calculated using the Pmpp and the open circuit 

voltage (VOC) and short circuit current (ISC) values obtained from the I-V 

curve measurements, 
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4.6 Comparison of gel and liquid electrolyte cells 

In addition to the averaged data shown in Table , Figures 16-19 

show the best performing liquid and nanoclay gel cells compared to each 

other.  These two cells lasted the longest within their electrolyte group, 

and had the highest efficiencies, both greater than 9%.  The I-V curves are 

displayed in Figure 15, which shows that for these cells, the gel electrolyte 

had a higher maximum ISC, which was generally not the case as seen in 

the averaged data.  Aside from the ISC, the curves are very similar to each 

other, showing that the gel does not have any noticeable effect on the 

resistances affecting the DSSCs.  The most notable differences occur as 

the cells age, which is further examined in section 0. 

 

 

 

 

 

 

 

 

Figure 15: Comparison of I-V curves for liquid and gel electrolyte cells 



  38 

4.7 Output Characteristics of liquid and gel cells over time 

The increase in VOC is illustrated in  

 

 

 

 

Figure 15: Comparison of I-V curves for liquid and gel electrolyte 

cells, which shows a 9% increase that the liquid electrolyte cell over 10 

days compared to the 16% increase from the nanoclay gel electrolyte cell, 

which took place over 26 days.  VOC is the difference between the Fermi 

level (EF) of the TiO2 and the redox potential (I-/I3
-) of the electrolyte.   

Figure 16: VOC plotted over time for liquid and gel electrolyte cells 
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The TiO2 material is consistent between liquid and nanoclay gel 

cells, so this difference is likely the result of a lower redox potential of the 

(I-/I3
-) when nanoclay is added to the liquid electrolyte. 

 

 

 

 

 

 

 

Figure 17 plots the short circuit current density (ISC/cm2) over time for both 

liquid and nanoclay gel cells.  Similar to the Voc, the liquid ISC rate of 

change is much faster than the gel, but the ISC decreases with time instead 

of increasing like the VOC. 

Both cells initially experience a slight increase in ISC, reaching a 

maximum value of 26.22 mA/cm2 for the liquid cell, and 23.61 mA/cm2 for 

the gel cell, before the steady decline begins.  There is also a much 

greater change with the ISC, which decreases as much as 86% over the 

lifetime of the cell.  This decrease is likely a combination of different 

factors including electrochemical changes within the cell, but the major 

contributing factor is the loss of electrolyte that occurs.   
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Figure 17: ISC current plotted over time for liquid and gel electrolyte cells 

The liquid cells lose electrolyte material faster whether via leakage 

or evaporation, therefore, their ability to transfer charge carriers 

decreases, limiting the current.  The maximum ISC of the nanoclay gel cell 

is only slightly less than the best performing liquid electrolyte cell, which 

combined with the average ISC data in Table , proves that the addition of 

the nanoclay material does not limit the diffusion of ions. 

The energy conversion efficiency follows a similar trend as the ISC, 
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increasing slightly and then steadily decreasing until the cell is dead as 

shown in Figure 18.  The nanoclay gel electrolyte cell maintains a fairly 

steady efficiency of about 8% for several weeks before steadily declining, 

which is due to the increase in Voc during this period.  While the maximum 

efficiency of the liquid cell is slightly higher, it is not stable and decreases 

rapidly.  

Figure 18: Conversion efficiency plotted over time for liquid  

and gel electrolyte cells 
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4.8 Quasi-solid cell I-V Curve 

The I-V curves measured at the beginning, middle, and the end of 

the gel cell’s lifetime are shown in Figure 19.  The FF varied slightly, but 

averaged around 0.61, which was slightly better than the FF of the liquid 

electrolyte cell.  The low FF indicates there were issues with resistance, 

and based on the shape of the curves shown in Figures 16 and 20, the 

internal series resistance was the major contributor.  However, there was 

no significant difference between the liquid and gel cells, therefore this 

was not explored further. 

Figure 19: I-V curve progression for nanoclay gel electrolyte cell 

Chapter 5 will provide an overview of the conclusions drawn from 

these experimental results and suggestions for future research 

opportunities. 
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Chapter 5 

CONCLUSIONS 

5.1 Overview 

The initial fabrication method being utilized was highly susceptible 

to human error.  This resulted in a high learning curve for the fabrication 

process, as well as high failure rates.  Changes made to the glass 

substrate cutting, TiO2 coating process, and final assembly led to a more 

efficient, repeatable process, with an increased number of working cells 

fabricated.  These improvements made to the existing fabrication lowered 

the failure rate of production from 65% to only 15%.   

The experimental results show that nanoclay is a viable gelator for 

quasi-solid DSSCs.  The addition of nanoclay to an iodide based liquid 

electrolyte significantly increases stability and also shows a slight 

improvement of performance characteristics when compared to liquid 

electrolyte cells with an identical fabrication process.  The gel electrolyte 

that was comprised of 7 wt% nanoclay material showed the best viscosity 

for existing fabrication procedures.  

The average lifetime of a nanoclay gel cell, was more than double 

that of the liquid electrolyte cells.  This significant improvement is due to 

the nanoclay gel electrolyte’s resistance to leakage, which is one of the 

major setbacks of liquid electrolyte DSSCs.  The average VOC, ISC, and 

energy conversion efficiency results were also higher for the nanoclay gel 

electrolyte cells, showing that higher viscosity gel electrolyte did not 
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impede the diffusion of charge carriers.  Overall, the quasi-solid cells 

outperformed the liquid electrolyte cells in all categories evaluated for this 

experiment. 

5.2 Future Recommendations 

Leakage into the sealant could be further minimized by improving 

the test setup so that less pressure is applied to the electrodes.  Different 

sealant material may increase the strength of the bond between 

electrodes and resist separation during testing. 

The ratio of nanoclay to liquid electrolyte can be increased provided other 

injection methods are employed.  A higher viscosity could potentially 

simplify the fabrication process by eliminating the need for syringe 

injection and consequently no drilling in the counter electrode would be 

necessary. 

In order to be a viable option for commercialization, the nanoclay 

gel electrolyte DSSCs need to exhibit stability at high temperatures.  High 

temperature testing was not covered in the scope of this project therefore, 

that is something that needs to be researched and tested. 

In addition to the high temperature testing, more research is 

needed to develop relevant standardized tests for DSSCs.  The cells are 

based on electrochemical reactions unlike Si based solar cells, and 

therefore, testing conditions need to reflect these fundamental operational 

differences.  Minor variations in step time resulted in observable 

differences in I-V measurements.  Research is needed to determine the 
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optimal testing conditions so they can be established as standards for 

DSSC research and accurately normalize DSSC performance data. 
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