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ABSTRACT  

   

Complex samples, such as those from biological sources, contain valuable 

information indicative of the state of human health.  These samples, though 

incredibly valuable, are difficult to analyze.  Separation science is often used as 

the first step when studying these samples.  Electrophoretic exclusion is a novel 

separations technique that differentiates species in bulk solution.  Due to its 

ability to isolate species in bulk solution, it is uniquely suited to array-based 

separations for complex sample analysis.  This work provides proof of principle 

experimental results and resolving capabilities of the novel technique. 

Electrophoretic exclusion is demonstrated at a single interface on both 

benchtop and microscale device designs.  The benchtop instrument recorded 

absorbance measurements in a 365 µL reservoir near a channel entrance.  Results 

demonstrated the successful exclusion of a positively-charged dye, methyl violet, 

with various durations of applied potential (30 – 60 s).  This was the first example 

of measuring absorbance at the exclusion location.  A planar, hybrid glass/PDMS 

microscale device was also constructed.  One set of experiments employed 

electrophoretic exclusion to isolate small dye molecules (rhodamine 123) in a 250 

nL reservoir, while another set isolated particles (modified polystyrene 

microspheres).  Separation of rhodamine 123 from carboxylate-modified 

polystyrene spheres was also shown.  These microscale results demonstrated the 

first example of the direct observation of exclusion behavior.  Furthermore, these 

results showed that electrophoretic exclusion can be applicable to a wide range of 

analytes. 
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The theoretical resolving capabilities of electrophoretic exclusion were 

also developed.  Theory indicates that species with electrophoretic mobilities as 

similar as 10
-9

 cm
2
/Vs can be separated using electrophoretic exclusion.  These 

results are comparable to those of capillary electrophoresis, but on a very different 

format.  This format, capable of isolating species in bulk solution, coupled with 

the resolving capabilities, makes the technique ideal for use in a separations-based 

array. 
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Chapter 1 

Introduction 

1.1  Complex samples 

 The world around us could be considered as being composed of complex 

samples, rich in information, though often difficult to analyze and understand.  To 

obtain the valuable information from these samples, molecules of interest must be 

quickly isolated, analyzed, and sometimes concentrated.  One field used to study 

these samples is analytical chemistry.  The ability to isolate and differentiate 

specific analytes of interest can be extremely useful when examining samples 

from the environment and from biological sources.  Its applicability to healthcare, 

for example, could have far-reaching effects that can lead to better understanding 

of disease and health states in humans. 

 To illustrate, human plasma is an example of a biological matrix that is 

rich in information and often biochemically examined to identify various 

maladies, including liver disease, malnutrition, and infection.  As valuable as the 

information gleaned from plasma is, it is notoriously difficult to analyze due to its 

complexity.  It contains thousands of proteins, with hundreds having been 

distinctly identified [1].  Not only does the number of proteins make examination 

difficult, varying abundances contribute to its intricacy.  The concentration 

abundances cover at least 10 orders of magnitude, with serum albumin being one 

of the most abundant (concentrations at mg/ml) and interleukin 6 being an 

example at the lower end of the scale (concentrations at pg/ml) [2].  Because these 

specific proteins from complex matrices lead to better understanding of health 
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states (in biological samples) and the world around us (in environmental samples), 

it is essential to have methods to identify and discover these important molecules. 

1.2  Complex sample analysis 

Samples that contain as many analytes and cover as large of a 

concentration range as those in human plasma are difficult to examine.  To 

interrogate these samples, ligand-binding technology has been used since the 

1950’s, while immunoassays, in particular gained widespread popularity in the 

late 1960’s [3].  Immunoassays are so attractive for analysis because they can 

bind to specific molecules, providing sensitivity and selectivity [3, 4].  Both of 

these features are of great value when isolating molecules of interest from 

complex matrices. 

After the popularity of immunoassays, “microspot assays” were developed 

and reported in 1986 [3].  These assays not only maintained the selectivity and 

sensitivity of ligand assays, but are also able to address multiple analytes 

simultaneously.  This is incredibly useful when studying biological samples and 

identifying several markers simultaneously.  These microspot assays or 

microarrays are so useful due to their high-throughput capabilities, decreased 

sample sizes, and decreased analysis time.  Micro immunoassays have been 

valuable in biological sample analysis and have been developed for cancer and 

proteomic research [3, 5-7]. 

Due to their capability to selectively isolate species of interest, 

immunoassays, and other arrays, have been successfully employed for the study 

of complex samples.  This ability is the result of the direct binding interactions 
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between ligand and analyte.  Though successful, this required binding step is the 

limiting step, if you could call it that, of the technology.  By using a binding step, 

it is essential to know beforehand exactly what molecules are of interest in the 

sample so that specific binding agents can be used and/or fabricated.  Another, 

albeit more subtle, drawback is that because it necessary to know what molecules 

are being targeted by a specific binding step, only those molecules are designed to 

be identified, while similar molecules can be overlooked all together.  

Additionally, unidentified and unknown species will not be interrogated or 

discovered using this technology, since binding agents are only created for known 

analytes; if there is not a binding agent, species will not be selected.  Although 

arrays have many advantages, including high throughput, selective, sensitive, and 

fast analyses, they have the potential to be even further improved by introducing 

an adjustable property:  specifically, a recognition step that allows for adjustments 

and isolation of molecules without binding steps.  Separations science can be used 

to accomplish this. 

In separations science, species are isolated relative to each other in time or 

space based upon the properties of the analytes.  These techniques, such as 

chromatography and capillary electrophoresis (CE), use forces to manipulate 

molecules and particles, as opposed to probing for specific epitopes of 

biomolecules as in arrays.  In chromatography, species are differentiated based 

upon how they interact with the stationary phase while flowing through the 

column, whereas CE separates species based upon their electrophoretic mobilities.  

Because forces influence the separations process, manipulations can be made to 
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accommodate different experiments, such as changing stationary phases or flow 

rates in chromatography or changing buffer pH and electric field strength in CE.  

Furthermore, unlike arrays, separation science designs can also isolate species 

without knowing their specific properties, and in some cases, without knowing 

they exist.  For example, if a sample is injected onto a CE column, exact 

electrophoretic mobilities are not needed to perform a successful separation; as 

long as species have different enough mobilities, they will be isolated in the 

column [8].  Also, in addition to known analytes, unexpected species can also be 

identified, such as impurities, or in some cases, other molecules of interest.  The 

ability to discover analytes is due to fact that specific binding agents are not used 

for isolation of identified molecules, but instead forces influence the separation, 

exploiting the properties of the species in a sample.  This, along with the dynamic 

properties of separation science, make it especially appealing for studying 

individual analytes from multifaceted matrices. 

Accordingly, separation schemes have been used to study plasma and 

other complex biological samples.  Chromatography [9], gel electrophoresis [1], 

capillary electrophoresis (CE) [10], and isoelectric focusing (IEF) [11, 12] have 

all been extensively used for species differentiation.  Even with all of the valuable 

array and separations techniques, it is thought that many of the lower abundance 

proteins have yet to be identified in human plasma [13].  This is due to the 

difficulty associated with isolation of species from complex matrices.   

Combining the benefits of arrays with the benefits of separations, could 

allow for better isolation and identification of molecules.  This is because all of 
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the positive features of arrays (high throughput, fast, sensitive, and selective 

analyses) with the advantages of separations science (using forces to manipulate 

species), could allow for dynamic and fast analyses.  One separations technique 

that is particularly applicable to arrays is electrophoretic exclusion.  

Electrophoretic exclusion is a separations design related to CE and equilibrium 

gradient techniques, which will be discussed in this chapter. 

1.3  Capillary electrophoresis 

 Many of the well-established separation schemes that have been used for 

complex sample analysis are based upon exploiting electric fields.  Although gel 

electrophoresis is the most popular, CE, an electrophoretic separations technique 

that became commonplace in the 1990’s, has been used for many types of 

applications, including biological samples [14-16].  Traditional CE separates 

species in a long thin channel, or capillary, based on differing electrophoretic 

mobilities.  The CE instrument is constructed from two buffer vials, a capillary, a 

power supply, and a detector (Fig. 1.1).  The velocity (v) at which species move 

through the capillary is the product of the electrophoretic mobility and applied 

electric field (E): 

                (1) 

When potential is applied to the system, species move along the channel 

according to the ratio between their charge and frictional forces [8]: 

               (2) 

where µep is electrophoretic mobility, q is ionic charge, ɳ is solution viscosity and 

r is ionic radius. 
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Figure 1.1.  Schematic of the capillary electrophoresis instrument. 

 

 

At physiological pH, most species in the capillary move toward the 

cathode due to electroosmotic flow (EOF).  At pH values above 3, the inside of 

the capillary wall is negatively charged as a result of the deprotonation of the 

silanol groups on the interior of the capillary wall.  The negatively-charged walls 

attract a layer of positively-charged ions in solution.  This layer, called the diffuse 

layer, moves under the influence of the electric field and causes the general 

motion of buffer towards the cathode, with positively charged species eluting 

first, followed by neutral species, and finally by negatively charged species [14-

16]. 

1.4  Equilibrium gradient techniques 

 CE, though a useful and versatile technique, suffers from poor 

concentration detection limits.  To overcome this, researchers have developed 
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sample concentration methods, including moving reaction boundary [17], sample 

stacking [18, 19], and counterflow electrophoresis [20], for enhancing samples in 

CE analysis. 

Equilibrium gradient techniques, on the other hand, are capable of 

overcoming low sample concentration in separations (along with potentially 

improving resolution) [21, 22].  In these procedures, species migrate through a 

capillary or channel until counteracting forces balance each other.  At this 

location, the focusing point, species collect, and those with unique properties 

collect at different positions along the channel, due to some type of velocity 

gradient.  Here, at the focusing point, the counteracting forces concentrate species 

and additionally limit the effects of diffusion.  These methods are considered 

steady-state methods [23] and focusing forces counteract dispersive forces during 

the course of separation, allowing for simultaneous concentration and 

differentiation. 

A traditional equilibrium gradient technique, IEF, separates species in the 

presence of a pH gradient and electric field, using a combination of the charge 

state and electric field to induce a velocity gradient [24].  More recently, 

equilibrium gradient techniques have begun using hydrodynamic flow to 

counteract electrophoretic migration (with electric fields varying along the length 

of the channel to create differential transport) (Fig. 1.2).  These counterflow 

electric field gradient focusing techniques include temperature gradient focusing 

(TGF) [25-27], conductivity gradient focusing [28, 29], dynamic field gradient 

focusing [30-32], gradient elution moving boundary electrophoresis (GEMBE) 
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[33, 34], and gradient elution isotachophoresis (GEITP) [35, 36].  In all of these 

devices, separation occurs in-channel.  Even in GEMBE & GEITP experiments, 

separations are initiated outside of a channel, but the hydrodynamic flow is then 

slowly decreased, and allows differing species to enter the channel, where 

detection occurs. 

 

 

Figure 1.2.  Fluid and electrophoretic velocities in equilibrium gradient techniques 

[37]. 

 

 

1.5  Electrophoretic exclusion  
 

Electrophoretic exclusion, originally developed to address sample 

concentration concerns in CE [38], is a separations scheme that, like CE and some 

of the equilibrium gradient techniques, separates species based upon their charge 

and radius, described by their electrophoretic mobilities.  In addition to utilizing 

electric fields for separation, electrophoretic exclusion takes advantage of a 

hydrodynamic flow through a channel that opposes the movement of the charged 

species being differentiated.  The way that electric fields are applied in the device 
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causes separation in bulk solution, instead of in the channel as seen in CE, IEF, 

GEMBE, and GEITP.  The advantage of being able to differentiate species in bulk 

solution is that it allows for the possibility of several individual compartments for 

species to be isolated.  The compartments can be in parallel and/or series and 

permit sample components to travel in many different paths through the device, as 

opposed to only being allowed to travel one way through a channel.  This 

variation, differentiation in bulk solution instead of in a channel, and the 

advantages of separation science mentioned previously, make electrophoretic 

exclusion ideal for complex sample analysis, specifically in an array format where 

many species can be isolated simultaneously. 

 It is also important to note electrophoretic exclusion can be used in 

conjunction with existing arrays and detection elements.  Because species are 

separated in bulk solution, based upon their native properties, without a binding 

step, it can be combined with various techniques for detection, such as mass 

spectrometry, electrochemistry, spectroscopy, etc.  This adds an additional layer 

of diversity to the technique. 

 In this method, differentiation occurs when the electrophoretic velocity of 

the species out of the channel is greater than or equal to the countering 

hydrodynamic flow.  Successful exclusion requires three variables: hydrodynamic 

flow, an electric field, and species with an electrophoretic mobility in the buffer 

conditions.  Assuming a constant hydrodynamic flow velocity and buffer 

conditions, electric fields can easily be manipulated to allow for selective 

distinction of species with different electrophoretic mobilities.  When selecting an 
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electric field strength, it must be large enough for one species to be excluded, but 

allow the other to flow freely through the device with the fluid flow (Fig. 1.3).  

Before potential is applied to the system (top), all species are allowed to flow 

through the system with the hydrodynamic flow.  When an appropriate potential 

is applied to the second channel, the species with the larger electrophoretic 

mobility that can oppose the hydrodynamic flow (represented with black circles) 

is prevented from entering the second channel and is excluded in the bulk solution 

reservoir (middle).  If the electric field is removed, the collected species is again 

permitted to travel through the second channel (bottom). 

 

 

Figure 1.3.  Principles of electrophoretic exclusion.  In the presence of an 

appropriate electric field, species are excluded in bulk solution, near the entrance 

of a channel. 
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As previously mentioned, electrophoretic exclusion is a unique separations 

scheme because differentiation occurs in bulk solution.  This is due to the nature 

of the electric field gradient.  Unlike in CE and the equilibrium gradient 

techniques, the gradient is not in the channel, but instead is formed as a sharp 

gradient at the channel entrance (due to the electrode design).  This sharp gradient 

allows for species with specific mobilities to be collected just outside of the 

channel entrance instead of inside the capillary.  Current studies in the Hayes Lab 

indicate that this unusual microgradient leads to better separation resolution. 

Resolution (R) is used to determine the efficiency of a separation scheme.  

Although methods for determining resolution may differ between experimental 

designs, it can generally be thought of as the ratio of the distance between the 

eluted peaks (ΔX) and the standard deviation (σ) of the peaks [21]: 

          (3) 

The larger the value of R, the better the separation, but an R value of 1 is 

considered a good separation, with R = 1.5 being baseline resolution.  Resolution 

theory for chromatography [39, 40] and CE [41] has been well-established and 

other equilibrium gradient techniques, such as equilibrium gradient focusing [29, 

42], IEF [21], and GEMBE [43] have been explored.  The resolving capabilities 

of electrophoretic exclusion have been preliminarily explored and results indicate 

that it is competitive with CE.  These preliminary resolution numbers also 

indicate that electrophoretic exclusion can be used in an array format for complex 

separations, where analytes with similar properties will need to be differentiated. 



  12 

Though electrophoretic exclusion has been studied extensively over the 

last few years as a method for complex sample analysis, it was initially used in the 

work performed by Polson et al., demonstrating the ability to preconcentrate 200 

nm polystyrene microspheres [38].  Later studies modeled the exclusion behavior 

[44] and investigated the electrode/solution interface [45].  The versatility of the 

scheme was also demonstrated on a benchtop design by showing the exclusion 

and concentration of small dye molecules and proteins, indicating that 

electrophoretic exclusion can be applied to varying sample types [46, 47].  

Microdevice experiments showed the first direct visualization of exclusion and 

showed the separation of small particles and dye molecules [48]. 

1.6  Dissertation objectives 

This dissertation is dedicated to describing an electrophoretic separations 

technique that is envisioned as a tool for complex sample analysis.  

Electrophoretic exclusion, the novel separations method presented here, was 

initially performed on a bench-top device, with concentration enhancements of up 

to 1200 times in 60 s when differentiating proteins in a flow-injection device [47].  

However, the bulk of the work presented in this document discusses the use of 

electrophoretic exclusion on a microdevice, demonstrating differentiation of small 

dyes and molecules.  A discussion of its applicability for an array and resolution 

theory is also addressed, focusing on the importance of the electrode-solution 

interface. 
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1.7  Dissertation summary 

To first introduce the field of electrophoretic separations on microdevices, 

a review of novel techniques is included as Chapter 2.  This chapter covers 

practices that innovatively exploit the microfluidic format and increase separation 

efficiency by using continuous sampling and/or concentration enhancement on-

chip.  Schemes included in this chapter are those that have external fields acting 

directly on analytes, those that have behaviors defined by the physical structure of 

the microdevice, and those that have the separation defined by local solution 

properties.  Articles that are reviewed in this chapter are from January 2008 to 

July 2010. 

 Chapters 3 – 5 present experiments using electrophoretic exclusion.  

Chapter 3 presents proof-of-principle data with a small dye molecule.  Results 

were obtained on a benchtop design with exclusion and detection occurring in a 

central reservoir.  A discussion for adapting the technique to a microdevice is also 

included.  Chapter 4 demonstrates the ability to adapt electrophoretic exclusion to 

a microdevice and presents data differentiating polystyrene spheres and 

fluorescent dye molecules, as well as the separation of fluorescent dye from 

polystyrene beads.  Chapter 5 develops the theory of resolution of electrophoretic 

exclusion at an interface and includes a brief analysis of experimental results from 

benchtop and microdevice designs.  Chapter 6 details to development of a 

prototype array device and includes thorough trouble-shooting steps. 
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 Chapter 7 will summarize the goals and results of the electrophoretic 

exclusion technique that were presented in Chapters 3 – 6.  Conclusions and 

future directions will also be discussed. 
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Chapter 2 

Recent Developments in Electrophoretic Separations on Microfluidic Devices 

2.1  Introduction 

Separations science is often a necessary first step in performing a chemical 

analysis.  Separations has received significant attention as older, more established 

techniques such as chromatography are leveraged, or entirely new techniques are 

developed.  Separation techniques that exploit the electrostatic and 

electrodynamic properties of analytes have become increasingly popular.  Many 

of these focus on unique properties of the analytes that have not been fully 

examined for separations.  Several of the new methods are related to 

electrophoresis and some of the standard bearers include isoelectric focusing 

(IEF) [1-3] and free-flow electrophoresis (FFE) [4, 5].   Various processes, such 

as FFE, are well-known on the preparative-scale, while others, such as IEF, have 

been well-characterized for analytical-scale separations.  There have been many 

innovative areas of development on the smaller-scale, including: taking advantage 

of hydrodynamic counterflow [6, 7], different channel designs [8], and applying 

electric fields perpendicular to the flow of the sample [9-13].   

Several groups continue to develop variations on standard electrophoretic 

separation techniques, including Astorga-Wells [14], Gebauer [15, 16], Hayes 

[17, 18], and Ivory [19, 20], but the current paper will center on elements that are 

essentially new or are significant advances in strategies that uniquely exploit 

microfluidic formats.  The advantages of microfluidic devices include lower 

sample consumption, portability, and shorter analysis times.  These qualities are 



  18 

desirable for studying complex samples, especially in the current age where onsite 

and quick analyses are being sought.  One of the advantages of microfluidic 

devices is the small sample size; however, this creates detection limit issues, as 

analytes of interest may actually not be present at concentration or mass levels 

high enough to detect.  This review will discuss techniques that develop ways to 

overcome this limitation, either through continuous sampling or concentration 

enhancement on-chip before separation, or a combination of both. 

Several topics are excluded for clarity and focus.  These include 

chromatographic techniques, as well as channels that contain particle packing, 

membranes, and gels.  Because this chapter aims to describe the separation 

methods themselves, fabrication methods and new chip and electrode materials 

will not be addressed.  Other areas of interest with clear connectivity to the 

current work will also be omitted, such as carbon nanotubes, electrophoresis in 

nanochannels, electrophoretic separations used for immunoassays, and 

dielectrophoretic separations.  The topics that are addressed are categorized into 

three topics:  1) external field directly acting on analytes, 2) behaviors defined by 

the physical structure of the microdevice, and 3) separations defined by local 

solution properties.  Although the papers have been divided into categories to aid 

in organization, not all categories are mutually exclusive and many techniques 

could be placed in more than one designation.  Lastly, the time frame that will be 

discussed is between January 2008 and July 2010.   
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2.2  External field acting directly on target 

 In this section, processes that involve the direct interaction of the electric 

field on the analyte for focusing and differentiation are discussed.  Some of the 

techniques described here include free-flow electrophoresis and its variations, 

temperature gradient focusing, and methods that simultaneously separate anions 

and cations. 

2.2.1  Free-flow electrophoresis 

Free-flow electrophoresis is a continuous separation technique that utilizes 

two components:  hydrodynamic flow and an applied electric field [4], where the 

electric field is applied perpendicularly to the flow.  The sample is introduced into 

the flow via an inlet at one end, and is separated perpendicular to the flow based 

on the species’ electrophoretic mobilities.  At the opposite end, the separated 

species exit through individual outlets.  This technique has more recently been 

applied to microscale devices [21]. 

 The Bowser group from the University of Minnesota has made several 

contributions to FFE since 2008 [10-12, 22].  In one study, Fonslow et al. used a 

microchip with varying depths to study the effects of a buffer concentration 

gradient on separations [10] and in another study, to separate mitochondria [11].  

In the first paper, a concentration gradient in cyclodextrin was created and the 

effect on amino acid separation was examined, as well as an efficient 

determination of the ideal separation conditions [10].  Figure 1 shows the FFE 

system used by Kostal et al.  In the paper, mitochondria were separated using less 

sample and in less time than traditional FFE systems [11].  In both examples, the 



  20 

channel was on a microchip; however, the channel length was 5 cm and the width 

was 3 cm. 

 

 

 

 

 

 

 

 

 

Figure 2.1.  Schematic of the flow and mobility in a micro free-flow 

electrophoresis device.  The dark arrow represents laminar flow while the lighter 

arrow represents the direction of the voltage [11]. 

 

 

Kohlheyer et al. described a new method for preventing electrolysis in a 

microfluidic free-flow device [23].  Quinhydrone (QH), a complex of 

hydroquinone (H2Q) and p-benzoquinone (Q), was added to the system as strategy 

to electrochemically quench hydrolysis.  Instead of the typical generation of 

oxygen and hydrogen when water is oxidized and reduced at their respective 

electrodes, H2Q was oxidized and Q was reduced, which prevented the formation 

of bubbles.  Aside from the addition of QH, the chip design was also slightly 

modified.  Rather than a single inlet channel, there were five inlet channels, two 

of which were used for the injecting HQ solution, another for sample introduction, 

migration distance (d) 
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and the other two for sample focusing as shown in Figure 2.2.  Fluorescein, 

rhodamine B, and rhodamine 6G were successfully separated; however, this 

technique was only effective with low current densities, limited by the depletion 

of HQ. 

 

Figure 2.2.  Image demonstrating free-flow zone electrophoresis. Three 

fluorescent dyes diverge in the free-flow zone electrophoresis microdevice (top), 

and an intensity profile of the separated dyes (bottom) [23]. 

 

 

A variation of FFE was demonstrated in 2009 by the Janasek group from 

Germany [9].  In their apparatus, a microfluidic glass chip with nine outlet 

channels was designed and used for the separation of proteins.  Instead of a single 

inlet, there were a total of 67 inlet channels used for buffer and sample 

introduction.  The 67 channels were formed by branching from two main channels 

that were connected to syringe pumps.  The separation channel had posts 

incorporated to prevent channel collapse and to effectively increase the path 

length.  The main separation channel had 222 shallow side conduits connected on 

each side.  These areas were used to join the main channel to a large buffer 
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reservoir on each side, where the electrodes were placed, as well as prevented 

bubble formation in the main separation chamber by acting like membranes.  

Myoglobin and trypsin inhibitor proteins were labeled with fluorescein 

isothiocyanate (FITC) and temperature gradient focusing (TGF) was used to 

demonstrate separation.  The species were focused to different outlets based upon 

their different electrophoretic mobilities and two concentrated peaks were visible. 

Zalewski et al. performed the first example of synchronized, continuous-

flow zone electrophoresis on a microfluidic device [13].  This technique is also 

related to FFE, except that hydrodynamic flow, as well as separation, is 

electrokinetically-driven.  The boroslicate glass chip contained three inlets and 

three outlets connected to the separation channel.  The sample was introduced into 

the chamber from the center inlet and was focused by buffer streams from the 

inlets on either side.  The position of the sample stream was adjusted by 

manipulating the buffer streams and electric potential was applied 

perpendicularly.  The combination of a varying position of sample stream and the 

axial electric field created a wavelike sample stream path.  The path was then 

manipulated to separate species with different apparent electrophoretic mobilities.  

Theoretical and experimental data were presented and indicate that this method 

was successful.  Rhodamine B and fluorescein were separated, as well as a three 

component mixture of fluorescein, rhodamine B, and rhodamine 6G. 

2.2.2  Temperature gradient focusing 

TGF is part of a novel group of separation techniques that differentiates 

and concentrates species in a channel based on their electrophoretic velocities 
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varying with temperature [24].  In these counterflow techniques a bulk flow 

opposes, or counters, the electrophoretic velocity of the species.  When the bulk 

flow is equal to and opposite of the electrophoretic velocity, the species are 

retarded and focused.  Species move from both directions in the channel to reach 

this focusing point.  Because the electrophoretic velocity of a species is the 

product of the electrophoretic mobility and the electric field, an electric field 

gradient must be created in the channel to allow for the movement and eventual 

retardation of the species.  In TGF, the electric field gradient is created by 

employing buffers whose conductivities vary with temperature.  Typically, one 

end of the channel is heated, while the other is cooled to create a temperature 

gradient, which results in an electric field gradient. 

Studies in this area since 2008 have covered theoretical, simulated, and 

experimental aspects, as well as large-scale and micro-scale devices.  The Ross 

group at NIST has reported on several applications of TGF.  One paper 

emphasized the effects of high ion concentration on separation and focusing [25] 

and another described using scanning TGF for the separation of chiral amino 

acids [26].  These devices, however, all utilized capillaries that were several 

centimeters in length.  Also from NIST were applications of TGF that used the 

technique to prevent species from entering a channel, instead of solely for sample 

concentration [27, 28].  In these examples, biological samples that can damage 

devices by adsorption and those with high concentration sample matrices were 

being used.  By preventing species from entering the channel, reusable devices 

and less sample interference was achieved.  However, these devices also were 
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larger scale, as separations took place in capillaries that were several centimeters 

in length. 

Although TGF commonly utilizes external physical heating or cooling of 

the capillary, there have also been reports of using joule heating to induce a 

temperature gradient [6, 7].  In these papers, the separation channel had a change 

in width at one location.  Tang et al. numerically demonstrated this phenomenon 

in a PDMS microfluidic device [6].  When the channel narrowed, the heat density 

increased in the presence of applied potential, which caused an increase in the 

temperature in the narrow part of the channel.  The group simulated this effect 

and indicated that concentration slowly increases at this interface (Fig. 2.3).  

Results indicated that after 190 s of applied potential, concentration increased by 

350-fold (original concentration of 0.280 M).  Results were compared to work 

performed by Ross et al. [24] and were in good agreement. 
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Figure 2.3.  TGF with joule heating.  Simulation of sample concentrations at the 

junction between wide and narrow microchannels is demonstrated at various 

times for a TGF experiment that uses joule heating to induce a temperature 

gradient [6]. 

 

 

Ge et al. also presented experimental and numerical studies of joule 

heating-induced TGF in microchannels [7].  Several factors were investigated 

using fluorescein-Na, including channel width ratio, applied potential, and buffer 

concentration on TGF in PDMS/glass and PDMS/PDMS devices.  It was found 

that increasing the applied potential, buffer concentration, and channel width ratio 

all lead to greater concentration enhancement.  Overall, it was found that the 

PDMS/PDMS device required lower potential and shorter time to accomplish the 

same concentration enhancement as the PDMS/glass device, due to the lower 

thermal conductivity of the PDMS/PDMS device.  In addition to the experimental 

data, numerical data using COMSOL Multiphysics were presented and were 

supported by the experimental data. 
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2.2.3  Separation of anions and cations 

Reschke et al. from West Virginia University described devices that were 

used for the separation of ions [29, 30].  In the first paper, a glass microfluidic 

device where flow is controlled by electrophoresis was used for anion and cation 

separation and detection [29].  The results showed both theoretically and 

experimentally that ions could be “electrophoretically extracted” from the 

hydrodynamic flow stream at the intersection between two channels.  A sample 

was pumped through the main channel and a potential was then applied at the 

intersecting channel.  When the charged species came under the influence of the 

electric field, they were extracted from the main channel to the intersection 

channel based on their electrophoretic mobilities.  Cations moved towards one 

side of the intersecting channel, while anions moved toward the opposite side.  

The behavior of fluorescein was analyzed and had nearly complete extraction. 

In a subsequent paper by the Reschke et al. [30], the glass microfluidic 

device for simultaneous cation and anion detection was modified.  The device 

retained the single, hydrodynamically-pumped sample stream, but separation and 

detection occurred in two separate channels, one for anions and one for cations.  

When the sample stream passed the intersection where the injection channel 

meets the separation channels, the anions traveled towards the anode, while the 

cations traveled toward the cathode in different channels with separate outlets.  A 

sample containing rhodamine 123 (cation), FLCA (anion), and FL (anion) was 

separated in the individual channels, and the analytes were only detected in the 

appropriate channels, indicating that the ions were successfully “extracted.”  
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Additional experiments with a positively-charged peptide (TMRIA) and 

negatively-charged proteins (bovine serum albumin, casein, and avidin) showed 

similar results.  Separation efficiencies were all greater than 300 and at least 87% 

of the ions were extracted. 

2.2.4  Other Designs 

 In work by Kawanata et al., a new design was investigated that employs 

electroosmotic pumping for particle separation and collection [31].  The method, 

termed pinched flow fractionation, uses a microdevice with two inlets and five 

outlets.  With the method, flow rates can be controlled and adjusted by varying 

the voltages of the inlets and outlets of the channels.  Using the multi-channel 

scheme, 0.50 - 3.0 m diameter particles were separated. 

 Baker et al. presented a paper on the development of a glass microfluidic 

chip that incorporated continuous electrophoretic separation of an amino acid 

mixture followed by collection of the species [32].  The chip was designed with a 

separation channel, connected to seven small columns used for collection of the 

separated samples.  At the end of the separation channel, there were two sheath 

flow channels and two shaping channels used to focus the separated species into 

the collection columns.  It was demonstrated that the amino acids could be 

separated and detected after optimization of the device design with COMSOL 

Multiphysics. 

2.3  Physical structure of the microdevice 

 Here, we will summarize techniques that rely on the actual structure of the 

device for concentration enhancement and separation.  In some cases, a physical 
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element was used to prevent samples from entering the channel, while in other 

instances, electrode placement and/or channel shape influenced the concentration 

enhancement. 

2.3.1  Physical elements for trapping 

As stated in the introduction of this chapter, this review focuses on 

recently developed electrophoretic techniques on the microfluidic format that both 

concentrate and separate in free solution (in the absence of gels, particle packing, 

etc.).  Recently, device designs have been developed that utilize physical features 

in the device to aid in concentration enhancement before separation.  These chip 

modifications include valves, nanofissures, and ion-selective membranes. 

An example of a nanofissure used for preconcentration is described by Yu 

et al. [33].  The PET-toner microfluidic device consisted of two mirror image V-

shaped channel designs that were printed on transparency film with a laser printer 

(PET-toner chip).  Between the mirror images was a 100 μm gap.  Additional PET 

films were then laminated over the toner chip.  The nanofissures were formed at 

the gap between the two mirror images.  When potential was applied across the 

mirror image V-shaped channels, protein was concentrated in the gap.  At the pH 

used in these experiments, the channels and nanofissures were negatively charged, 

causing them to be selective for cations.  Because the proteins were negatively 

charged, they were excluded from entering and were concentrated.  An 

enhancement of 10
3
-10

5
-fold was achieved for a FITC-labeled protein in 8 

minutes.  Additional experiments using rhodamine B (positively-charged) and 

fluorescein (negatively-charged) demonstrated that there was no concentration 
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increase of the positively-charged species because it was allowed to travel 

through the nanofissures.  Fluorescein, however, was not allowed to enter the 

nanofissures, so it was concentrated near the entrance of the structures.  Further 

experiments with FITC-DSA and rhodamine B demonstrated that the device could 

be used for sample purification.  The positively-charged rhodamine B was 

allowed to pass through the nanofissures while the negatively-charged FITC-DSA 

was concentrated in front of the fissures. 

Kuo et al. fabricated a PDMS chip for electrophoretic DNA separations 

that contained a PDMS valve to concentrate the DNA before electrophoresis [34].  

The chip had a sample reservoir, buffer reservoir, buffer waste reservoir, a DNA 

preconcentration area (nanoscale channel), a valve, and a separation channel.  The 

valve was connected to an area linked to a pneumatic pump.  For 

preconcentration, DNA was first introduced into the reservoir and then potential 

was applied between the sample reservoir (ground) and the buffer waste (anode).  

During this step, the DNA migrated toward the anode, but the valve remained 

closed, so the DNA became concentrated in front of the closed valve.  After the 

DNA was concentrated, the normally closed valve was opened via pneumatic 

suction and the concentrated DNA flowed to the separation channel.  The valve 

was then closed, potential was applied between the buffer reservoir (ground) and 

the buffer waste (anode), and separation of DNA occurred according to size in the 

separation channel.  Laser-induced fluorescence (LIF) detection was used, and a 

3750-fold enhancement of all DNA fragments (initial concentration of 5 μg/mL) 

was achieved in under 2 min. of preconcentration time.  Separation of 11 DNA 



  30 

fragments took approximately 2.8 minutes in a 40 mm separation channel.  

Preconcentration times for separations ranged from 20 – 100 s.  Signal 

enhancement was observed for all preconcentrated fragments and an inverse 

relationship between concentration time and separation time was observed. 

Lastly, a proteomic sample electrophoretic preconcentrator using PDMS 

and a surface patterned ion-selective membrane was developed by Lee et al. [35].  

A thin-printed Nafion membrane was integrated between a PDMS chip and glass 

substrate to create a simple means for preconcentration.  The ability of the chip to 

concentrate species was dependent on the voltage difference across the sample 

channel, with higher voltages resulting in larger preconcentrations.  The chip was 

able to concentrate -phycoerythrin almost 1000 times in 5 min. 

2.3.2  Physical structure used to define local fields 

Borofloat glass microfluidic chips were used to separate and trap particles 

of interest in two different types of channels [8].  One study used straight 

channels with a uniform diameter to better understand the behavior of the 

particles, followed by the use of elements with converging and diverging 

dimensions.  The technique presented is referred to as flow-induced electrokinetic 

trapping (FIET), and particles were trapped with pressure-induced flow, 

electroosmotic flow (EOF), and their electrophoretic motion.  In both channel 

designs, the cathode was at the inlet and EOF transport was towards the inlet, 

while pressure-induced flow was in the opposing direction.  Experimental data 

was gathered with polystyrene microspheres that were similar in size but had 

varying zeta-potentials.  All particles had a negative zeta-potential, so their 
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electrophoretic migration was opposite to EOF.  Particles with a given zeta-

potential were trapped, while those with a higher zeta-potential were carried 

through the device by EOF.  In the channels with converging and diverging 

elements, most trapping occurred in the diverging areas.  The main advantage of 

this technique is that no physical barriers were needed for particle trapping. 

The Henry group at Colorado State University implemented an expanded 

detection area, or a bubble cell, during electrophoretic separations with contact 

conductivity detection [36].  The bubble cell allowed for increased separation 

field strengths, which lead to shorter separation times.  Initial experiments 

included testing the separation efficiency with fluorescein, followed by 

experiments with inorganic anions.  Results indicated separation efficiency 

remains statistically the same with or without the bubble cell three times the 

diameter of the capillary.  Bubble cell size was also investigated using sulfamate, 

percholorate, and iodate.  Results indicated that as the size increased above 

fourfold, separation efficiency decreased proportionally with the bubble size.  

Amongst other experiments, threefold bubble cells were used with dilute 

background electrolyte concentrations, allowing for field-amplified stacking.  

Detection limits for dithionate (9 ± 1 nM), perchlorate (22 ± 5 nM), and sulfamate 

(44 ± 10 nM) were lower than the non-stacked methods. 

Discontinuous bipolar electrodes (BPEs) were used for both concentration 

and separation in a glass/PDMS microfluidic device [37].  In this technique, 

anions were both concentrated and separated when their electrophoretic velocities 

were equal to and opposite of the EOF.  Once immobilized, the focused species 
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were then moved through the channel.  Fluorescence was used to determine the 

concentration enhancement of BODIPY disulfonate.  The electric field was 

monitored in each experiment to ensure it remained constant and to determine 

where and how much concentration takes place.  Current was monitored through 

the BPEs, noting that when current increased, concentration enhancement began.  

Concentration increased approximately 70 times in 180 s.  Once the anion was 

concentrated, it was directed within the channel by switching the electrodes where 

potential was applied. 

 A technique used for sample concentration in a straight closed-end 

microchannel is presented by the Li group from the University of Waterloo in 

Canada [38, 39].  The device was fabricated with a straight channel connected by 

two reservoirs and three electrodes.  Two electrodes were placed at the ends of the 

reservoirs, while the remaining electrode was located at the exit of the first 

reservoir/entrance of the channel.  Electroosmotic flow and fluid velocity 

variation at the closed end of the channel all contributed to fluid movement.  

Daghighi et al. presented a theoretical model and experimental data on separation 

and concentration in the microchannel [38].  Initially, potential was applied to the 

device so that species were collected and concentrated near one end of the 

channel.  After concentration, a different potential scheme was applied causing 

collected species to migrate down the channel and separate based on their 

electrophoretic mobilities.  After theoretical studies were conducted, two types of 

DNA molecules were concentrated and separated.  The combined processes of 

concentration and separation took just over 200 s, with a concentration increase of 
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over 90 times in 115 s.  Using the same channel design, Jiang et al. also described 

the concentration and separation of a fluorescent dye experimentally and 

theoretically (Fig. 2.4) [39].  Similar results were obtained as concentration 

enhancements of 90 times were achieved in 110 s. 

 

Figure 2.4.  Comparison of simulated and experimental results for the 

concentration of fluorescent dye molecules near an electrode.  Simulated (left) 

and experimental (right) results both indicate that fluorescence intensity increases 

with times of applied potential [39]. 

 

 

2.4  Solution properties influencing local field 
 

Designs that allow for sample separation when an electric field acts 

directly on the analyte of interest and methods that allow for sample concentration 

and separation based on some physical features of the device were described in 
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the above sections.  In this section, isoelectric focusing and isotachophoresis and 

its variations will be described.  These two formats exploit solution properties to 

influence the electric fields. 

2.4.1  Isoelectric focusing 

IEF is an electrophoretic technique that is used to separate and concentrate 

molecules, most notably proteins and peptides [3].  Proteins and peptides are 

examples of amphoteric molecules, or those that are either positively or 

negatively charged depending on the pH of the solution.  During operation, a pH 

gradient is created in the separation channel, and when potential is applied, the 

amphoteric molecules move under the influence of the electric field until they 

reach their isoelectric points (pIs), or the pH at which they have a net neutral 

charge.  At this point, species are focused.  This technique has been adapted to 

capillaries (cIEF) [40] and microdevices [1].  Capillary IEF designs from the last 

two years utilized capillaries in the tens of centimeters range [41, 42], falling 

outside the scope of this review. 

Although there are several applications of IEF in microdevices in the last 

two years, these designs still use channels whose lengths are in the centimeter 

range [43-48].  Shimura et al. presented a microfluidic chip for IEF that 

incorporated a valve for loading each solution in individual channels, followed by 

selective injection, to eventually be incorporated with sample preparation before 

IEF separations [48].  Four tetramethylrhodamine-labeled peptide pI markers 

were used to test the chip and focusing took from 2-4 min., depending on the 

marker.  A comparison between a glass and a PDMS chip design for separation of 
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allergenic whey protein was outlined by Poitevin et al. out of Paris [47].  Two 

coatings, HPC and PDMA-AGE, were tested on both chips and it was determined 

that glass chips coated with HPC resulted in the best IEF separations.  Ou et al. 

presented a paper on a hybrid microfluidic device for IEF, using ultraviolet whole 

channel image detection (UV-WCID) [46].  This design was intended to eliminate 

the step of placing in a metal optical slit when using whole channel detection.  It 

was determined that the device successfully separated pI markers and protein 

samples of myoglobin and hemoglobin and the fabrication process was more 

simple and less costly than the chips typically used for whole channel detection.   

Chou et al. performed IEF simulations using the space-time conservation element 

and solution element (CESE) and Courant-Friedrichs-Lewy number insensitive 

conservation element and solution element (CNI-CESE) for two different types of 

channels:  one with a varying cross-width (contraction-expansion channel) and 

one with a constant width [43].  It was found that performing the simplified 1-D 

model was much faster than the previous 2-D simulations [49].   

Cong et al. presented a modified IEF technique that changes the electric 

field strength during the separation process [44].  In the short communication, 

proteins from Escherichia coli were focused on a glass IEF microchip using 

stepwise increases in electric field strength.  Once proteins were separated, the 

electric field was decreased so that future increases in field strength could be 

incorporated later for more separations.  This step technique resulted in better 

separations than standard IEF.  Dauriac et al. also presented a modified IEF 

design [45].  The group developed a PDMS microfluidic device for separations 
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containing PDMS micropillars.  The micropillars were created as part of the 

original casting of PDMS and the pillar size and arrangement were studied.  The 

separation of a mixture of seven proteins with pI’s ranging from 4.7 – 10.6 took 

less than 10 min.  Although the pillars were part of the original PDMS casting, 

they behaved as a dilute gel, so results were compared to IEF minigel 

electrophoresis.  The minigel separations took 20 min., but resulted in less band 

broadening than the micropillar separations. 

2.4.2  Isotachophoresis 

A common separation technique used for stacking is isotachophoresis 

(ITP) [50].  In this technique, there are three different zones: a leading zone with 

higher mobility ions (LE), a sample zone, and a terminating zone of lower 

mobility ions (TE).  When a voltage is applied, an electric field gradient is 

created, and the field strength in each zone is inversely related to the ion mobility, 

which results in separated zones of ions of decreasing mobility.  Each zone is 

defined by a sharp steady state boundary, and these zones are sustained by the 

differing field strengths. Although ITP is a separation method, it is mostly used as 

a preconcentration technique for other electrophoretic methods.  When ITP is 

used for preconcentration, it is referred to as transient ITP, or tITP.  For a 

successful ITP enhancement, the ITP step must be completed (i.e., all of the 

analytes must be stacked) before the other separations technique is employed. 

Nagata et al. investigated a modified form of tITP, or heterogeneous 

buffer combination, on a microchip [51].  In the method, the DNA sample is 

mixed with the TE, which contains taurine anions.  Because the mobility of the 
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taurine ions is lower than that of the acetate ions in the LE, tITP occurs.  In 

addition, hydroxyethylcellulose (HEC) is utilized in the LE buffer.  HEC is 

commonly used as a sieving matrix, but for this technique it is used to limit the 

diffusion of the sample plug.  The separation length was 10 mm, which is three 

times shorter than the average microchip separation length and DNA ladders, 

where 10-100 bp were separated.  The 10-bp ladders were separated within 60 s 

while the 100-bp ladders were separated within 50 s and resolution was 

comparable to the chips with longer channels. 

In the work by Goet et al., they developed a microfluidic contractor based 

on ITP [52].  It operates similarly to micromixers in that it brings samples into 

contact in order to assist chemical reactions, receptor-ligand interactions, or 

similar processes.  However, micromixers typically use complex channel designs.  

This novel method utilizes two connected cross-style designs, and several types of 

experiments were performed.  After characterizing the ITP zone transportation in 

a simple cross-channel chip, ITP zone synchronization was demonstrated using 

the more complex chip.  Using the same sample at different injection sites, it was 

shown that the zones were able to merge using the method.  Next, the group 

employed two different samples (bromophenol blue and fluorescein-Na).  It was 

found that even if the fluorescein-Na enters the main chamber first, the 

bromophenol blue can overtake it (Fig. 2.5).  Lastly, to demonstrate the utility of 

such a device, the dyes were replaced with two complementary DNA 

oligonucleotide strands.  To image the hybridization, one strand was tagged with a 

fluorophore, while the other was tagged with its corresponding quencher.  Again, 
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the zones appeared to overlap, and in this case, interact, resulting in the 

hybridization of DNA.  Through these series of unique experiments, the group has 

demonstrated a simple means to bring samples into contact using an ITP 

microcontractor. 

 

Figure 2.5.  Example of two different samples contacting in a microchannel.  

Fluorescein-Na and bromophenol blue enter the chamber from separate sample 

ports, then come together in one separation channel [52]. 

 

 

 The group of Hirokawa from Japan contributed several new 

electrophoretic microchip papers, all investigating a method termed electrokinetic 

supercharging (EKS) [53,54].  EKS is a preconcentration method that combines 

electrokinetic injection with tITP.  In a 2008 contribution, Hirokawa et al. 

investigated a novel injection approach using floating electrodes, termed floating 

electrokinetic supercharging (FEKS) [53].  Standard Shimadzu electrophoresis 
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microchips were employed; however, rather than pinched injection, two ports 

were utilized to facilitate a rapid switch from ITP to microchip gel electrophoresis 

(MGE).  Models of the system were developed and examined using a mixture of 

50-bp step ladder DNA.  It was found that his strategy improved LODs ten-fold as 

compared to conventional pinched-injection.  Furthermore, resolution was 

improved over EKS-MGE from 0.77 to 1.62 for 50-100-bp DNA fragments and 

0.89 to 1.32 for 200-250-bp DNA fragments. 

 The FEKS technique was further studied by Xu et al. [54].  In this 

contribution, the microchip for FEKS was modified so that the EKS concentration 

occurred in a curved channel with five U-shaped turns.  This curved design 

allowed for longer ITP prior to MGE.  Some modeling was performed, followed 

by experiments using DNA fragments.  Overall, by extending the ITP steps by 

incorporating a curved channel, LOD was improved to 9.7, 5.0, and 5.5 ng/mL for 

100, 300, and 500-bp DNA fragments, respectively.  These LODs are a significant 

improvement over pinched injection EKS and cross-chip EKS. 

 Various aspects of microchip ITP are under investigation by the Treves 

Brown research group [55-58].  A novel means of sample injection is introduced 

for microchip ITP devices [55].  Whereas many sample injections are traditionally 

cross or double-T configurations, their work presents a modified four channel 

injection.  The injection scheme has a wide bore sample loop and narrower side 

arm channels for separation and injection.  The device enables variable volumes 

to be delivered, including smaller volumes (for highly concentrated samples) or 

larger volumes (for dilute samples).  Another ITP microchip modification 
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introduced by the Treves Brown group includes a low-cost, robust polystyrene 

chip that includes both integrated drive and detection electrodes [57].  The 

microchip design contains polystyrene as well as 40% carbon fiber loaded 

polystyrene electrodes.  These electrodes are utilized to drive the separations and 

for conductivity detection.   

 Other ITP microchip research by the group includes detecting magnesium 

as well as cholorate, chloride, and perchlorate anions in inorganic explosive 

residues [56, 57].  For the magnesium studies, various complexing agents were 

employed in the LE, which impacted the mobilities of the cations.  It was 

determined that malonic acid was most effective as a complexing agent in 

microchip ITP for magnesium [56].  In order to analyze chloride, chlorate, and 

perchlorate, various electrolytes were investigated.  These ions are difficult to 

analyze with ITP because of their very high electrophoretic mobilities (often 

making them suitable LEs).  In order to overcome these challenges, a nitrate-

based LE was employed with indium (III) and -cyclodextrin as complexing 

agents.  Inorganic explosive residues were analyzed with the method, and the 

results obtained were confirmed with ion chromatography [57]. 

 The Santiago group has published numerous interesting papers 

investigating electrophoretic methods on a microchip from 2008-2010 [59-77], 

including several that contribute to the theoretical basis of the technique [59, 64, 

67, 69-72, 75, 76, 78] and some novel approaches for indirect detection [77, 66].  

A select group of these works were chosen for discussion here.  In a 2009 

contribution, his group demonstrated an ITP method capable of purifying nucleic 
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acids from whole blood [60].  The LE and TE are chosen based upon their 

compatibility with the contents of blood lysate.  Figure 2.6 shows how the nucleic 

acids are focused while the proteins and other blood lysate contents move slower 

than the ITP interface.  The nucleic acids were collected and interrogated with 

PCR to ensure the fractions were purified DNA.  The efficiency of the method is 

comparable to other microchip purification methods, obtaining 100% efficiency 

for -DNA, and between 30 and 70% for whole blood. 

 

Figure 2.6.  ITP schematic showing a nucleic acid purification from blood lysate.  

The DNA is represented by rods, while the proteins and other content is signified 

by the stars.  When an electric field is applied, the nucleic acids focus between the 

LE (circles) and TE (squares), while the proteins move slower than the ITP 

interface [60]. 

 

 

In another contribution, the group investigated simultaneous 

preconcentration and separation of analyte zones in ITP without the use of spacers 

or further separation steps [68].  Their studies show that carbonate ions formed 

from dissolved atmospheric CO2 and carbamate ions formed from the CO2 and its 
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reactions with primary and secondary amines in the buffer create zones during 

ITP separation.  The carbonate ions were found to interfere with the ITP, resulting 

in a broadening of the TE-LE interface.  Although such zones can have adverse 

effects on ITP preconcentration efficiency, the group demonstrated how these 

zones can improve on-chip CE.  For example, by utilizing these zones, both 

preconcentration and separation can occur simultaneously without the need for 

further buffer exchange steps.  The benefits of these zones were demonstrated on 

25-bp DNA ladders and DNA ladders with green fluorescent protein and 

allophycocyanin. 

Masar et al. presented a commercial PMMA column-coupling device 

design that couples ITP for sample concentration and CZE with contact 

conductivity detection [79].  The chip contained two separation channels and was 

used for the separation of cations commonly found in drinking water:  

ammonium, calcium, magnesium, potassium, and sodium.  It was determined that 

the chip was able to sensitively and reproducibly separate the cations. 

 Wang et al. combined ITP with microcapillary electrophoresis (MCE) for 

the concentration and separation of bovine serumn albumin (BSA) and its 

immunocomplex with mAb [80].  A PMMA microchip with a single cross design 

was utilized in the work.  Six different LEs and six different TEs were studied for 

their ability to enhance the ITP stacking.  By employing tris-H3PO4 as a LE and 

tris--aminobutyric acid, a 2000-fold enhancement of the BSA and mAB was 

obtained. 
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 A microchip ITP method capable of analyzing highly saline PCR samples 

was investigated in a contribution by Wang et al. [81].  The method utilized the 

chloride ions in the PCR buffer to act as the LE and HEPES for the TE in a cross-

style microchannel.  Digested DNA samples and DL-2000 DNA markers were 

shown to have a 20-fold concentration enhancement.  Overall, the technique 

increased the sensitivity of the PCR samples with no loss in resolution. 

 Qi et al. designed a microchip that combined ITP preconcentration with 

gel electrophoretic separation (ITP-GE) [82].  The chip contained a negative 

pressure sampler comprised of a three-way electromagnetic valve and a single 

high voltage power supply.  The ITP step occurred in free solution, and the 

sample stacks between the LE and TE in less than 1 s at the interface between the 

gel and solution.  The samples are then separated by gel CE.  The apparatus was 

examined using DNA fragments.  This ITP-GE method, compared to microchip 

GE alone, was found to enhance sensitivity by 185 times. 

 The theoretical basis of different electrophoretic systems are examined by 

Chou et al. [83] using a space-time conservation element assimilated with an 

adaptive mesh redistribution scheme (AMR-CESE).  By assigning initial 

conditions, such as parameters of analytes, applied voltage, and grid size, the end 

time can be ascertained, as well as the concentration, pH, profile, and conductivity 

distribution within the channel.  Three different electrophoretic techniques were 

investigated: ITP, IEF in an immobilized pH gradient, and IEF of a sample within 

10 background ampholytes. This novel AMR-CESE technique was found to 
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resolve points of discontinuity in the concentration distribution and compared to 

uniform mesh methods, fewer grid points were required for a given resolution. 

Danger and Ross have developed a novel isotachophoretic approach 

termed gradient elution isotachophoresis (GEITP) [84].  In this method, a 

counterflow is applied that opposes the channel entrance and is slowly varied to 

selectively elute the LE, analytes, and TE into the capillary.  Using the GEITP 

method, the group performed chiral separations with fluorescently-labeled amino 

acid mixtures.  Capillary lengths of 3 cm were employed, and various parameters 

including electrolyte pH, pressure scan rate, and chiral selector concentration 

were manipulated to achieve high-resolution separations.  Studies from the 

Shackman group at Temple University have also investigated this technique [85, 

86]. 

A technique similar to GEITP was introduced by Ross and Kralj called 

gradient elution moving boundary electrophoresis (GEMBE) [87].  The method 

utilizes a buffer reservoir with sixteen 3-mm capillaries, each with individual 

sample reservoirs, and conductivity detection.  This combines electrophoresis 

with a gradient counterflow to elute species into the capillary.  To demonstrate the 

technique, the activity of protein kinase A and the inhibition of that activity by H-

89 dihydrochloride were monitored.  The GEMBE technique was further studied 

by Ross and Romantseva both theoretically and through experiments to optimize 

various parameters, including channel length, electric field, and counterflow 

acceleration [88].  Using various organic acids, detection limits of the method 

were found to be in the low micromolar range.  Even though the basic method 
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was 10-20 times slower than CE, fast separations (less than 1 s) can be attained, 

and higher field strengths could be applied with modest voltages due to the short 

capillary lengths. 

2.5  Concluding remarks 

This literature review has focused on elements that are essentially new or 

are significant advances in strategies that uniquely exploit microfluidic formats 

during the time span of January 2008 to summer 2010.  These papers contributed 

new and valuable capabilities to the field by addressing issues such as long 

analysis times and poor detection limits.  These designs kept devices simple, 

allow for an array of sample types, and could be incorporated with several other 

aspects of analysis on a chip.   

In examining the literature over this relatively short period of time, there 

were a large number of papers published in the area of ITP.  This was largely 

driven by the Santiago group and was based on its sample preconcentration 

properties, as well as its feasibility to be incorporated on-chip.  Closely related, 

but with a creative twist, GEMBE and GEITP used counterflow to preconcentrate 

while separating species of interest, much like the ingenious TGF technique.  

TGF, while rather brilliant in its inception, does have the disadvantage of being 

tied to specific buffer systems.  In contrast, IEF a long-standing and well-

established technique, can also focus while separating; however, IEF has limited 

applicability with protein samples, due to their low solubility at their pI. 

Another broad category of techniques, those we classify as relying on the 

direct interaction of the electric field with the analyte, has been used to 
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successfully separate diverse samples.  These techniques are obviously practical, 

as they can be used for many different types of mixtures.  One popular method in 

this area—based on numbers of contributions—is on-chip FFE, given its 

advantage of not requiring elution after separation. Its ultimate limitation (if it 

could be called that) is that analytes must be spatially separated after the 

separative/diffusive processes, resulting in possible design and size constraints. 

Many designs described here use physical elements, such as valves, 

nanofissures, and variable channel geometries to either trap samples or to shape 

electric fields.  Although these devices are effective at capturing species, they 

must be completely reworked to accommodate small changes.  However, these 

methods are to be applicable to a wide range of samples and represent a truly 

unique microfluidic approach to separations.   

A very select group of electrophoretic techniques that uniquely exploited 

the microfluidic format or addressed a significant obstacle of the paradigm have 

been presented here.  These methods have the potential to affect a wide variety of 

research fields that require complex sample analysis.  Overall, this research looks 

to address the challenges of applying basic attributes for separations sciences to 

create portable, fast, and low analyte-consumption devices for better biochemical 

analysis. 
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Chapter 3 

Electrophoretic Exclusion on a Benchtop Device 

3.1  Introduction 

 The role of separations science techniques, such as chromatography [1-4] 

and capillary electrophoresis [5, 6], for complex sample analysis has been 

established (Chapter 1).  To further exploit the capabilities of separations when 

studying complex matrices, equilibrium gradient techniques, first described by 

Giddings and Dahlgreen  in 1971, are often employed to simultaneously 

differentiate and concentrate species [7].  For successful separation and 

concentration, analytes move to a focusing point in a channel, where they are also 

concentrated.  The focusing point is a result of opposing forces and is specific to 

the analytes’ properties.  Therefore, species with dissimilar properties stop at 

different points in the channel.  Isoelectric focusing, described previously 

(Chapters 1 & 2), is an example of a traditional equilibrium gradient separation 

scheme.  Many contributions of capillary isoelectric focusing are reviewed [8]. 

More recently, researchers have begun adding hydrodynamic counterflow 

to equilibrium gradient techniques.  This addition innovatively increases 

concentration factors.  Counterflow was first applied to CE systems in the mid-

1990’s [9], and is now more widely used in equilibrium gradient techniques 

research.  These counterflow equilibrium gradient techniques include electric field 

gradient focusing [10-13], dynamic field gradient focusing [14], temperature 

gradient focusing [15-18], conductivity gradient focusing [19], gradient elution 

moving boundary electrophoresis (GEMBE) [20-23], and gradient elution 



  53 

isotachophoresis (GEITP) [24-26].  Briefly, in the counterflow equilibrium 

gradient techniques mentioned above, species are separated in a channel when 

their electrophoretic velocities are exactly equal to and opposite of the 

hydrodynamic flow through the channel.  Molecules therefore become stationary 

at unique points in the column.  A more thorough description is presented in 

Chapter 1. 

Electrophoretic exclusion takes advantage of a hydrodynamic counterflow.  

As mentioned previously, this separations technique differentiates species based 

upon their electrophoretic mobilites by applying an opposing fluid flow into a 

channel to counteract the velocity of the species exiting the channel in the 

presence of an electric field.  Electrophoretic exclusion differs from the other 

counterflow techniques by separating species in bulk solution, as opposed to in a 

channel.  Work performed by Hori et al. used a similar theory on the macroscale 

[27].  A 1.5 mm diameter tube was used to connect two chambers where samples 

were held, and much larger sample volumes were used (tens of milliliters).  

Additionally, experiments performed by Polson et al. excluded fluorescent 

particles (200 nm in diameter) from the entrance of a 20 μm i.d. capillary when 

potential was applied to the system [28].  More recently, studies have 

demonstrated the successful exclusion of small dye molecules and proteins at the 

entrance of a capillary using a flow-injection method [29, 30]. 

The work summarized here is an investigation of the electrophoretic 

exclusion method at the entrance of one capillary in a central reservoir.  The 

significant differences between what is being proposed here and the flow-
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injection system above is that the apparatus has been modified to include the 

central reservoir and larger bore capillaries.  Larger inner diameter capillaries 

were used as a method for increasing the flow rate so that more fluid could be 

transferred through the system, potentially allowing for a reduced time for 

concentration increase as more of the analyte would be transferred to the reservoir 

in less time.  The central reservoir was added so that exclusion could occur in a 

constrained volume, with flow both entering and leaving the chamber.  The 

advantage of exclusion in a constrained volume is that it allows for the possibility 

of having several reservoirs in a single device where multiple analytes could be 

separated simultaneously simply by applying different potentials.  Here, the 

reservoir design was able to successfully trap methyl violet dye when potential 

was applied to the system for various times. 

3.2  Materials and methods 

3.2.1  Reagent preparation 

DL aspartic acid (FW: 133) and Methyl Violet (FW: 393), purchased from 

Sigma-Aldrich (St. Louis, MO) and hydrochloric acid (HCl), purchased from 

Mallinckrodt (Hazelwood, MO) were used as received.  Aspartic acid buffer was 

prepared to 5 mM using 18 MΩ water and adjusted to pH 2.85 using 1 M HCl.  A 

stock solution of methyl violet was prepared at a concentration of 1 mM in 5 mM 

aspartic acid buffer.  Methyl violet was diluted to 20 μM for individual trials. 

3.2.2  Instrumentation 

The electrophoretic exclusion device was made in-house (Fig. 3.1).  Two 

polyimide-coated fused silica capillaries (5 cm in length, 180 μm i.d., 350 μm 
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o.d.) were expoxied to opposite sides of a 350 μL reservoir that was made by 

modifying a 1.5 mL plastic cuvette (Fig. 3.1A).  An electrode was fabricated on 

one side of the reservoir by sputter-coating one of the capillaries with 30 nm of 

titanium and 50 nm of platinum after removing ~3 mm of the polyimide coating.  

This sputtered portion was then physically connected to a piece of platinum wire 

(~ 0.5 cm in length) with silver conductive epoxy (Fig. 3.1B).  The ends of the 

capillaries not connected to the reservoir were attached to 2 mL glass vials to 

complete the device (Fig. 3.1C). 

The gate system was mounted on a rotatable board that allowed for the 

control of the flow rate by adjusting the height difference between the menisci, 

resulting in pressure-driven flow (Fig. 1C, bottom).  The glass vials were open to 

air, while the central reservoir was sealed using wax.  All experiments used a 

height difference of 0.5 cm between the menisci with a calculated flow rate of 25 

nL/s.  Samples were introduced to the system by using a syringe to add dye to one 

of the glass vials.  Compressed nitrogen was then passed through the system to 

more quickly force the sample through the entire system. 

The exclusion system was built using a CZE1000R high voltage power 

supply (Spellman High Voltage Electronics Corporation, Hauppauge, NY), a 

USB4000 detector, a Mikropak halogen light source (both Ocean Optics, 

Dunedin, FL), and a plastic holder for the reservoir (made in-house).  Fiber optic 

cables were secured on the outside of the central reservoir with the plastic 

reservoir holder and absorbance was measure at 585 nm and 670 nm for all trials 
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(Fig. 3.1C).  Data was recorded using SpectraSuite software (Ocean Optics, 

Dunedin, FL). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.  Benchtop device design.  (A) Schematic of central reservoir.  (B) 

Photograph of the electrode, showing the capillary tip and sputter-coated capillary 

tip. (C) Schematic (top) and top view photograph (bottom) of electrophoretic 

exclusion device (wax on central reservoir is excluded to better show reservoir).  
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3.2.3  Planar prototypes 

Two planar electrophoretic exclusion prototypes were constructed in-

house (Fig. 3.2).  Prototype 1 was assembled with PDMS and capillaries (Fig. 

3.2A).  A 10:1 weight percent ratio of elastomer to curing agent was poured onto 

an unpatterned silicon wafer.  Five short capillaries were then laid in the PDMS, 

followed by another five capillary bundle, so that there was a space of 

approximately 5 mm between the ends of the bundles.  A short piece of platinum 

wire (~ 2 cm) was bent at a 90 degree angle and laid in the PDMS next to each 

end of the capillary bundles.  The PDMS, capillaries, and wires were baked in a 

70ºC oven for 1 hour.  The entire device was then peeled from the silicon wafer.  

Holes were cut using a razor blade at each end of the capillary bundles (air 

bubbles had formed where the air had escaped during the baking process) to 

create entrance, central, and exit reservoirs.  A thin layer of cured PDMS was 

attached with silicone glue to the bottom of the entire device and over the top of 

each of the reservoirs.  Syringes with attached needles were then pushed through 

the sides of the exit and entrance reservoirs. 

Prototype 2 was constructed from a standard glass microscope slide, three 

4 mL plastic cuvettes, and 10 short (~2 cm) capillaries (Fig. 3.2B).  Two of the 

cuvettes were used as entrance and exit reservoirs.  The ends were removed using 

a hacksaw and a small groove (~ 3 mm wide and 1 mm high) was sanded from 

one end on each of these cuvettes so that capillaries were allowed to penetrate into 

the cuvette once attached to the microscope slide.  The third cuvette was used as a 

central reservoir and was modified by removing the upper 4 cm of the cuvette and 

A. 
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flipped upside down on the microscope slide.  Grooves were also sanded in each 

side of the central reservoir to allow for capillaries.  The device was completed by 

laying out the entrance reservoir, followed by a 5 capillary bundle, the central 

reservoir, another 5 capillary bundle, and the exit reservoir to the microscope 

slide.  Silicone epoxy was used to secure the reservoirs and to prevent fluid leaks. 

 

 

 

 

 

 

 

Figure 3.2.  Planar prototypes.  (A) PDMS/capillary hybrid device.  (B) Device 

fabricated using cuvettes. 

 

 

3.3  Results and discussion 

 

3.3.1  Exclusion criteria 

 

Electrophoretic exclusion uses counterflow and the electrophoretic 

velocity of species to prevent molecules from entering a channel.  Briefly, a 

species is excluded or captured when its electrophoretic velocity is greater than or 

equal to the opposing hydrodynamic flow.  In this benchtop design, exclusion of 

methyl violet dye in the central reservoir occurred when an electric field of an 

appropriate magnitude was applied at the second capillary entrance (Fig. 3.1).  

Based upon this description, the three parameters necessary for exclusion are 

(A) (B) 



  59 

applied electric field, hydrodynamic flow, and the electrophoretic mobility of the 

species of interest.  Methyl violet was used in 5 mM aspartic acid buffer for all 

experiments, so the electrophoretic mobility (μep = 1.7 x 10
-4

 cm
2
/Vs) was 

assumed to remain constant in all trials.  Additionally, the hydrodynamic flow rate 

was held constant throughout all experiments, so varying the applied electric field 

allowed for the control of exclusion from the capillary. 

3.3.2  Calculated concentration enhancement model 

A simple model of the concentration change in the reservoir was 

constructed (Fig. 3.3A).  In the absence of an electric field, the only force acting 

on the system is the hydrodynamic flow, which is induced by creating a height 

difference between the menisci in the sample vials and the central reservoir.  

Under these conditions, the amount of methyl violet entering the central reservoir 

is equal to the amount leaving the central reservoir.  The amount of methyl violet 

in the central reservoir was determined by calculating the flux of methyl violet 

into and out of the central reservoir at a specific time, using the equation:   

J = cxA,                                                                 (1) 

 where J is the mass flux, c is equal to concentration, x is equal to linear flow 

velocity, and A is the cross sectional area of the channel.  Because the flux into 

and out of the central reservoir is equal before potential is applied, the 

concentration is expected to remain constant.  

Once a large enough electric field is applied to the system, the amount of 

methyl violet entering the reservoir remains constant; however, there is no methyl 

violet leaving the central reservoir (though buffer is still allowed to leave and is 
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unaffected by the electric field).  This is expected to cause a concentration 

increase in the central reservoir, as predicted in the model.  Immediately after 

potential is applied, the concentration of methyl miolet begins to increase.  Once 

the potential is removed the concentration of methyl violet in the reservoir 

asymptotically returns to baseline, suggesting that the excluded dye is allowed to 

again flow through the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.  Curves representing electrophoretic exclusion of methyl violet dye.  

(A) Model of concentration increase and decrease calculated using the flux into 

and out of the central reservoir when potential is applied to the system for 60 s.  

(B) Absorbance curve showing the change in absorbance when potential was 

applied to the system for 60 s. 

(A) 

(B) 
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3.3.3  Exclusion of methyl violet 

Initial experiments included the exclusion of cationic methyl violet from 

the entrance of the second capillary. A representative example of an absorbance 

curve for 60 s of applied potential is shown (Fig. 3.3B).  Similar to the model 

(Fig. 3.3A), before potential is applied to the system, the absorbance, 

(concentration in the model), remains constant in the central reservoir.  Once 

potential is applied, the methyl violet collects near the tip of the capillary and 

results in an increase of absorbance.  This increase in absorbance can be 

interpreted as the methyl violet being captured in the central reservoir, as 

expected, and predicted, by the concentration model.  When the potential is 

removed, the absorbance decreases in the same manner that the concentration 

decreases in the model.  As a control, in addition to recording absorbance at 585 

nm (λmax for methyl violet), the absorbance at 675 nm was also measured.  Methyl 

violet does not absorb at 675 nm, so these wavelengths were monitored 

simultaneously to ensure that the absorbance increase was due to exclusion of 

methyl violet and not physical disturbances to the system.  Based upon the 

unchanging absorbance observed at 675 nm, it is concluded that the absorbance 

change at 585 nm is the result of methyl violet being excluded, and therefore, 

causing a concentration increase, in the central reservoir. 

 In addition to a control wavelength being simultaneously monitored, other 

control experiments were performed to ensure that the pattern of absorbance 

increase in the presence of an electric field and decrease in the absence of an 

electric field were a result of methyl violet being excluded due to the 
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counteracting forces of electrophoretic velocity and hydrodynamic flow (not 

shown).  In the first control experiment, hydrodynamic flow was absent from the 

system, but the cationic dye and the electric field were still present.  The rotatable 

board was adjusted so that there was no height difference between the menisci.  In 

the second control experiment, the normal hydrodynamic flow rate was present, 

as well as the applied field; however, there was no methyl violet, or other cationic 

species, in solution.  For the final control experiment, methyl violet and 

hydrodynamic flow were present, but there was no potential applied to the system.  

In all three controls, no absorbance increases were observed.  This supports that 

the exclusion of methyl violet was due to the opposing forces in the system. 

 Initial experiments measured the absorbance when potential was applied 

to the system for 30 s and 60 s (Fig. 3.4).  The curves were of the same 

characteristic shape as earlier data (Fig. 3.3B).  The ratio between the max 

absorbance and initial absorbance was calculated between the top of the curve 

(immediately before potential was removed from the system) and the initial 

absorbance (before potential was applied).  The error bars represent the standard 

deviation of the measurement.  For 30 s of applied potential, the absorbance 

change was 5.88 ± 1.68, while for 60 s, the ratio was 45.7 ± 13.4.  Due to the 

observed larger increase in absorbance with the longer time of applied potential, it 

is suggested that more dye is excluded when potential is applied for a longer 

period of time. 
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Figure 3.4.  Change in absorbance.  Error bars represent standard deviation (n = 3).  
Differences in absorbance observed in the absence of a stir bar. 

 

 

3.3.4  Stir bar experiments 

 

When compared to the model (Fig. 3.3A), the shapes of the experimental 

absorbance curves (Fig. 3.3B) are similar.  However, according to the model, 

once the potential is removed, it takes approximately 1000 min for the 

concentration of the reservoir to return to baseline.  Experimentally, it was 

observed to take only 1000 s for the absorbance to nearly reach baseline, tens of 

times faster than predicted.  The likely explanation for this difference in time is 

that when the model was constructed, it took into account the entire volume of the 

reservoir.  In actuality, the methyl violet was likely being concentrated in a bolus 

near the tip of the capillary and was not being evenly distributed in the entire 

volume of the solution.  Therefore, when potential was removed, the material 

collected near the capillary tip was able to quickly (in comparison to evacuating 
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the entire reservoir) flow down the second capillary, and out of the path of light, 

resulting in an initially faster-than-anticipated decrease in absorbance. 

 For the second set of experiments, a stir bar was added to the system to aid 

in distributing the bolus throughout the entire solution during the exclusion 

process (Fig. 3.5).  For all stir bar experiments, the solution was stirred only when 

potential was applied.  Under these conditions, it was predicted that the entire 

bolus would be evenly distributed in solution, so that the absorbance curve would 

look more similar to the time-scale of the model.  A curve from these experiments 

(not shown) showed that the time-scale was still more similar to the original data 

set than the model.  This was probably due to the inefficient stirring method, so 

the bolus was not being broken up thoroughly and dispersed in the entire central 

reservoir volume.  Because it was not broken up completely, it was still vacating 

the reservoir more quickly than if it had been distributed throughout solution.  

 A graph representing the change in absorbance for the stir bar experiments 

was constructed as described above.  Potential was applied to the system for 30, 

45, and 60 s and the data was recorded (Fig. 3.5).  As can be seen from the graph, 

there is a general linear trend.  As the amount of time potential was applied to the 

system increased, the change in absorbance increased.  However, it is also evident 

that the error bars overlap, and therefore, there is no significant difference 

between the ratios.  Even though there is overlap in error bars, the increase in 

signal supports the prediction that methyl violet is being successfully trapped 

when all three parameters for exclusion are present.  Additionally, there is 

evidence that the bolus was being at least somewhat distributed in solution due to 
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the decreased change in absorbance values recorded for the stir bar experiments 

(Fig. 3.5) compared to the experiments without the stir bar (Fig. 3.4). 

 

 

Figure 3.5.  Change in absorbance in presence of stir bar.  Error bars represent standard 

deviation (n = 3). 

 
 

3.3.5  Limitations of benchtop design 

 

Although the data support the hypothesis that methyl violet can be trapped 

outside the tip of a capillary in bulk solution, the percent increase in concentration 

was very low.  For example, as shown in the model (assuming distribution 

throughout the entire reservoir), only a 0.5% increase in the concentration of 

methyl violet when potential is applied for 60 s is possible.  Experimentally, due 

to the formation of a bolus, concentration enhancements were approximately 

100% in 60 s.  In comparison to several of the equilibrium gradient techniques, 

this is a small increase.  An electric field gradient technique using a polymeric 

device demonstrated an enhancement of fluorescent green protein as large as 
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10,000-fold in 40 minutes [31].  However, the early work in electric field gradient 

methods only produced a 2-3 times enhancement of hemoglobin over the course 

of several hours.  Although the concentration enhancement demonstrated in the 

initial experiments for electrophoretic exclusion is small in comparison to some of 

the more recent counter-flow gradient techniques, there is the potential to greatly 

increase the concentration factors.  For example, using the flow injection 

electrophoretic exclusion method, a 1200 times increase of myoglobin was 

observed in 60 s.  Other factors, including the size-scale of the current benchtop 

design, can be considered.  The central reservoir, where detection occurs, is 365 

μL in volume, and although there is a relatively high flow rate (in comparison to 

the flow injection design), the flush time of the reservoir is approximately 4 

hours.  To see a significant concentration increase would take hours.  

Transitioning to a smaller device, particularly on the microfluidic scale, would 

result in larger concentration enhancement, due to smaller detection volumes. 

To address these size issues, two planar prototypes were fabricated (Fig. 

3.2).  Although not on the microscale, both of these devices had smaller central 

reservoirs than the benchtop design, and due to their size and planar design, 

detection could take place on a fluorescence microscope, allowing for lower 

detection limits.  Additionally, five capillaries in parallel were incorporated to 

increase the flow rate through the system.  This increases the amount of fluid 

traveling through the capillaries, into the central reservoir, and therefore, the 

amount of material that could be excluded, all without having to increase the 

electric field strength.  Prototype 1 had the smallest central reservoir, but 
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alignment between capillary bundles and leaking were not overcome and the 

device was not practical.  The central reservoir in Prototype 2 was smaller than 

that of the benchtop design; however, the volume was still large (200 uL), 

assembly was time-consuming, and it was difficult to include the platinum wires 

in the design.  The inability to create a realistic and useable planar device on the 

macroscale re-enforced the desire to design a microdevice for electrophoretic 

exclusion. 

3.4  Concluding remarks 

 This work describes a novel separations technique that can be used for the 

exclusion of small dye molecules in bulk solution.  The method utilizes the 

electrophoretic velocity of species opposed by the hydrodynamic flow to 

concentrate species near the entrance of a capillary.  Proof-of-principle 

experiments have successfully demonstrated the exclusion of cationic methyl 

violet dye when potential was applied to the system, and indicates that with 

increased times of applied potential, more dye is excluded.  Planar devices were 

then created to attempt to increase detection limits and concentration 

enhancement; however, future work lies in designing a microdevice that is 

suitable for electrophoretic exclusion. 
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Chapter 4 

Using Electrophoretic Exclusion to Manipulate Small Molecules and 

Particles on a Microdevice 

4.1  Introduction 

 

Although capillary electrophoresis (CE) was established some thirty years 

ago [1, 2], it continues to advance both in its original capillary system and within 

microfluidic formats [3].  There are a number of advantages associated with CE 

for small volume analysis, but a challenge for both traditional and microchip CE, 

is concentration detection limits.  Most of the advantages for CE are neutralized 

above 100 µm characteristic dimension for the channel, limiting the size of the 

sample, even though this is an advantage in some applications.  Given this fact, 

sample enrichment has been the focus of many of the advances.  Recent 

developments in this field vary from the “standard” microchip electrophoretic 

separation schemes (support materials such as gels, membranes, packing, frits, 

etc.) to new creative strategies that exploit electrokinetic properties, including 

continuous sampling formats, and complete separations on-chip, all of which have 

been recently reviewed in Chapter 2 and elsewhere [3-6].  While closely related to 

many of these strategies, electrophoretic exclusion sets the actual separation 

outside the channel entrance and was first introduced as “electrophoretic 

focusing” in 2000 [7].  It was originally developed within the enrichment vein, 

but it has evolved because of the geometric freedom of microfluidic devices.  The 

technique is now envisioned as the bridge to creating highly efficient parallel or 

serial (or some mixture of the two) separations. 
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The exclusion principles examined in this thesis are closely related to all 

electrophoretic techniques where balancing forces or flow fields are invoked.  In 

terms of development, the original exclusion work precedes many of the works 

noted below, but clearly, these are related in terms of comparing and contrasting 

the approach described here.  Chapter 2 outlines several related enrichment 

techniques that have been developed for microchip formats including structural 

elements such as nanofissures [8], intersecting channels [9, 10], and valves [11].  

Other methods include sample stacking techniques, such as field-amplified 

sample stacking [12-14], isotachophoresis (ITP) [15-20], and isoelectric focusing 

[21-25].  These techniques have improved separations on-chip and recent 

contributions have been reviewed [4, 26]. 

More closely related works include the application of a counterflow while 

performing an electrophoretic separation.  Some of the initial applications of this 

technique were performed by the Tsuda laboratory [27] and the Jorgenson group 

[28].  In addition to those mentioned in previous chapters [6, 29-56], 

electrophoretic separations that take advantage of counterflow to increase 

separation efficiency include flow-induced electrokinetic trapping [57, 58] and the 

use of an electro-fluid-dynamic device [59, 60]. 

As published, GEMBE and GEITP—the techniques most similar to 

electrophoretic exclusion—are operated as linear separation schemes that 

differentiate species in a confined space, typically a channel.  These designs allow 

for only a univariate data set—one separation at a time.  The separation process 

begins in a reservoir, outside the channel, by stacking or providing temporally-
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selective entry into the channel.  The separation continues by introducing analytes 

sequentially into a, more or less, traditional capillary or channel.  Once samples 

are introduced to a column, the species are no longer isolated from each other and 

the advantage of the initial bulk solution differentiation is lost, namely, the ability 

to operate in parallel [6, 47, 48, 50-56, 61]. 

Like gradient techniques, electrophoretic exclusion utilizes a 

hydrodynamic counterflow when performing separations [7, 62-64].  Briefly, this 

technique is able to differentiate species of interest in bulk solution when the 

hydrodynamic flow into a channel is opposed by the electrophoretic velocity of a 

species out of the channel.  The interface itself can be considered a non-linear 

system.  Even though there is contracting flow, the interface has a relatively 

constant flow field, whereas the electric field can reasonably be considered a 

discontinuity on the length scale of these experiments.  As such, it can be 

integrated with other more traditional separation and detection schemes on a 

single microdevice.  With its capacity to separate species in solution, it can be 

used in a highly parallel manner and therefore has the potential to achieve a 

separation-based array for complex sample analysis.  There are further benefits to 

being able to differentiate species of interest in bulk solution, as opposed to inside 

of a channel.  For instance, channel length is independent of separation efficiency 

and shorter channels produce much smaller footprints suited to a microdevice.  

More separation schemes can be included on one chip, and resolving elements of 

varying degree of orthogonality could also be integrated together, allowing for 

complex multistage separation. 
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To date, only one example of a true separation-based array exists [65-67].  

The company formed to commercialize the technology, Protein Forest, has 

demonstrated the ability to successfully separate biological samples using parallel 

isoelectric focusing.  Typically, the separated samples are then introduced to a 

mass spectrometer for further analysis.  Although integrative, the technique is 

limited to resolving species by isoelectric points, where the analytes of interest 

(proteins and peptides) can, and do, suffer from low solubility.  The Ivory group 

has also examined various electrokinetic techniques and provided a structured 

comparison [68]. 

Initial electrophoretic exclusion studies demonstrated the ability to 

concentrate polystyrene microspheres from the entrance of a 20 µm i.d. capillary 

[7], and was followed by theoretical modeling of the system [64].  More recently, 

work on a benchtop device included the separation and concentration of both 

small dye molecules [62] and proteins [63] near the entrance of a 75 µm i.d. 

capillary.  Concentration enhancements of up to 1200 times in 60 s were observed 

when studying proteins.  The current work focuses on adapting the electrophoretic 

exclusion technique to a microscale device by manipulating and separating dyes 

and polystyrene microspheres using a PDMS/glass hybrid design with 

fluorescence detection.  This ties together the previous molecular and particle 

manipulations while demonstrating the technique on a microchip format.  This 

study provides a foundation for exploration of widely varying geometries and 

unique capabilities including highly parallel and serial separation schemes. 
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4.2  Materials and methods 

4.2.1  Design and fabrication of microdevice   

A photograph of the device design (top-view), as well as a schematic of a 

single separation channel is shown (Fig. 4.1).  Hybrid glass/PDMS devices were 

used for all experiments and each device contained nine separation channels. 

 

 

 

 

 

Figure 4.1.  Microdevice used for electrophoretic exclusion.  Photograph of the 

complete hybrid glass/PDMS chip with nine separation channels and a schematic 

of a single channel. 

 

 

4.2.1.1  PDMS 

 

One complete separation channel was 17 mm in length.  Each separation 

channel contained a central reservoir connected to two end reservoirs by a short 

channel.  Each reservoir was 5 mm x 5 mm; channels were 1 mm by 100 µm with 

a uniform depth throughout of 10 µm.  Masks were designed in Illustrator 

(Adobe, San Jose, CA) and were printed on transparency at a resolution of 65,000 

 

 

 
17 mm 

5 mm 
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dpi (Fine Line Imaging, Colorado Springs, CO).  Positive photoresist AZ 4620 

was spun on a silicon wafer and then exposed with using an EVG®620 

Automated UV-NIL, µ-CP System (EV Group, Austria) with the transparency 

mask.  The PDMS microchannels were fabricated using the soft lithography 

technique.  A 10:1 mass ratio of polymer to curing agent (Sylgard 184, Dow 

Corning, Midland, MI) was prepared and poured over the wafer for a thickness of 

approximately 5 mm and cured for 75 min. at 70 ºC.  The cured PDMS was 

removed from the wafer and holes (diameter: 3 mm) were punched in the end 

reservoirs of each separation channel using a quill. 

4.2.1.2  Electrodes   

Cr/Au electrodes were plated on microscope slides.  A mask was designed 

in Adobe Illustrator and then printed on transparency at a resolution of 8000 dpi 

(Fine Line Imaging).  Electrodes were 500 µm wide and the length of the 

microscope slide.  Positive photoresist AZ 4330 was spun on microscope slides 

and then the slides were exposed with the EVG®620 Automated UV-NIL, µ-CP 

System at 50 mJ/cm
2
 using the mask.  Two layers of metal were deposited on the 

glass slides using thermal evaporation with resistive heating (Edwards Auto 306, 

Edwards High Vacuum International, UK).  A 5 nm layer of Cr was deposited 

onto the slides, followed by 50 nm of Au.  Electric leads were attached to the 

electrodes with silver conductive epoxy to establish an electrical connection to the 

external power supply.  It was designed so that each reservoir maintained a 

constant potential. 
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4.2.2  Materials 

Aspartic acid (Sigma-Aldrich, St. Louis, MO), hydrochloric acid, 

rhodamine 123 (Invitrogen, Carlsbad, CA, USA), DMSO, and polystyrene 

microspheres (Invitrogen) were all used as received.  Aspartic acid buffer was 

prepared to 5 mM concentration at a pH of 2.95 using 18 MΩ Milli-Q water.  A 2 

mM rhodamine 123 stock solution was prepared in DMSO and then diluted to 5 

µM in aspartic acid buffer on the day of experiments.  Polystyrene microspheres 

were diluted in aspartic acid buffer (1:400) and sonicated for 10 minutes before 

use on the day of experiments.  All polystyrene microspheres were functionalized 

with either a carboxyl (ex/em:  580/685 nm) or sulfate (ex/em:  505/515 nm) 

group and were 1 µm in diameter. 

4.2.3  Experimental Setup   

The PDMS layer was bonded to the glass slide with the Cr/Au electrodes 

using oxygen plasma operated at 50 W for 60 s.  Separation channels were filled 

with rhodamine 123 and/or polystyrene microspheres by pipetting the solution 

into one of the end reservoirs.  Channels were filled by capillary action and bulk 

flow was induced by the height difference between the menisci of the end 

reservoirs.  A total of 10 µL of solution was pipetted into each channel.  Flow 

rates for all experiments were approximately 10 nL/min.  Potential (0 - 40 V, 0 – 

3 min) was applied using a Bertram power supply (Series 225) so that 

differentiation occurred near the entrance to the second channel. 

Experiments were monitored with an inverted microscope with darkfield 

and fluorescence capabilities (IX70, Olympus, Center Valley, PA, USA) using a 
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100 W high-pressure Hg lamp as the light source.   Light from the lamp was 

passed through a band-pass filter and a 4X objective to the device.  Emitted light 

was collected through a long-pass dichromatic mirror and a band-pass filter into 

the camera port on the microscope.  Digital images were collected using a 

QICAM CCD camera from Q imaging, Inc. (Surrey, British Columbia, Canada) 

that was connected to a personal computer running Streampix III (NorPix, 

Montreal, Quebec, Canada).  ImageJ (NIH, Bethesda, Maryland) was used for 

intensity measurement analysis.  Intensity measurements were performed in the 

channels. 

4.2.4  COMSOL Multiphysics Modeling 

 Flow and electric fields in the device were modeled using COMSOL 

Multiphysics (Palo Alto, California).  One complete separation channel was 

drawn to-scale using the drawing tools in COMSOL.  PDMS borders were 

designated as insulating material, while the interior of the channels and reservoirs 

were labeled as conducting materials.  A potential drop of 30 V was added across 

the channel where the material of interest would be excluded. 

4.3  Results and discussion 

4.3.1  Principles of exclusion 

As noted numerous times, electrophoretic exclusion can be achieved when 

the electrophoretic velocity of a species is greater than or equal to the 

counteracting hydrodynamic flow.  When this occurs at an entrance to a channel, 

certain species can be prevented from entering the channel and are thus separated 

from the rest of the solution.  Three parameters are required for electrophoretic 
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exclusion:  hydrodynamic flow, a non-zero electrophoretic mobility of the 

species, and the applied electric field.  For a given set of experiments, the 

electrophoretic mobility remains constant (based on the specific properties of 

analyte and buffer), so hydrodynamic flow and electric field strength can be 

varied to influence exclusion. 

4.3.2  Proof of principle experiments 

Proof of principle experiments demonstrating the functionality of the 

device were performed with negatively charged polystyrene microspheres (Fig. 

2A) and positively charged rhodamine 123 (Fig. 2B), in aspartic acid buffer (pH 

2.95).  These studies are the first examples of direct observation of electrophoretic 

exclusion at a channel entrance, as opposed to inferring the behavior from a flow-

injection-analysis format [62, 63].  In both experiments, bulk flow was from left 

to right, and when potential was applied, the electrophoretic velocity of the dye 

and the particles was opposing the hydrodynamic flow. 

Successful exclusion was demonstrated with microspheres and dye.  

Before the application of the potential, beads and buffer flowed freely through the 

system (Fig. 4.2A, left).  After the application of the electric field (300 V/cm) for 

3 minutes, microspheres collected at the channel entrance (Fig.4.2A, right).  This 

behavior is consistent with the electrophoretic velocity of the microspheres, 

induced by the applied electric field, countering the hydrodynamic flow and 

causing the beads to be excluded from the channel and thus locally collected.  

Similar patterns were observed while examining the exclusion behavior of 

rhodamine 123.  Before the application of the electric field (-300 V/cm), the dye 
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and buffer were allowed to flow freely through the system (Fig. 4.2B, left image).  

Once the electric field (-300 V/cm) was applied for 30 s, there was an intensity 

increase near the channel entrance, consistent with an increased local 

concentration of fluorescent dye (Fig. 4.2B, right).  This data suggests the 

exclusion of the dye from the channel, which resulted from the counteracting 

forces of hydrodynamic flow and electrophoretic velocity at the zone where the 

electric field is present, found at the channel entrance.  In both cases, when the 

electric field was removed, the excluded species were again allowed to enter the 

channel (not shown). 

 

 

 

 

 

 

 

 

 

Figure 4.2.  Exclusion of beads and dye at a channel entrance.  Hydrodynamic 

flow is from left to right.  (A) Exclusion of beads at a channel entrance (right, 300 

V/cm).  (B)  Exclusion of rhodamine 123 at an entrance (right, -300 V/cm).  

 

 

The intensity from small sections of the images was quantitated as a 

method to assist in describing the exclusion behavior.  Intensity values were 
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assessed using ImageJ and all measurements were taken in the channel.  This 

region was chosen for ease of viewing (the electrodes blocked the view within the 

reservoir area) and to avoid the highly asymmetric and nonlinear zone at the 

entrance.  There is no radial symmetry at the entrance, as with traditional capillary 

entrances.  Further, because the electrode only occupies the bottom of the 

reservoir, the resulting electric and flow fields differ dramatically in shape and 

location compared to a simple capillary entrance, and, as a consequence, the 

temporal data from the entrance was difficult to interpret.  An average intensity 

curve for 30 s of applied electric field (-300 V/cm) is shown (Fig. 4.3).  Initially, 

before potential was applied, the intensity remained steady, as dye at a constant 

concentration was flowing through the channel.  Once potential was applied (t = 5 

s), the intensity decreased as the dye was evacuated from the channel.  In the 

presence of the electric field, dye remained excluded from the channel, within the 

local reservoir.  After the potential was removed (t = 35 s), an increase in intensity 

was observed in the channel, suggesting the excluded dye had collected near the 

entrance and it was again allowed to flow through the system once the electric 

field was removed from the channel.  This pattern of intensity changes was 

observed for all experiments where there was visual evidence of exclusion at the 

entrance area. 
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Figure 4.3.  Average intensity curve for rhodamine 123.  Measurements were 

taken in-channel for 30 s of applied potential (-300 V/cm, n = 4). 

 

 

Experiments that varied the time of applied potential, as well as the 

electric field strength were performed to characterize the system when studying 

rhodamine 123.  Control experiments that eliminated the electric field, 

hydrodynamic flow, or charged species were performed to demonstrate the 

necessity of all three parameters (data not shown).  In the absence of one of the 

critical parameters, no evidence of exclusion, as determined by an increase in 

fluorescence intensity near the channel entrance, occurred or was below the 

detection limit of the methodology. 

The magnitude of the electric field was varied to determine if there was an 

ideal strength for successful exclusion (Fig. 4.4).  The change in intensity, 

calculated as the difference in intensity between the peak intensity (after 

removing the electric field) and the initial intensity (before application of the 
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electric field), was used as a method for comparing measurements between 

experiments.  Electric field strengths greater than -300 V/cm appeared to result in 

no significantly greater intensity changes.  Potentially, no additional amount of 

dye was being excluded or the additional amount of dye was not significantly 

greater than the amount excluded for the -300 V/cm electric field.  Most likely, 

though, at higher field strengths, the excluded dye was pushed farther into the 

reservoir, where it was effectively dispersed by diffusion. 

Any electric field less than -200 V/cm resulted in either little or no 

evidence of exclusion (0 V/cm) or incomplete exclusion (-50 and -100 V/cm).  

This was further supported by observation of the raw data (inset).  At electric 

fields below -200 V/cm, the curves were absent, characterized by the decrease in 

intensity during the application of potential, followed by the increase in intensity 

once the potential is removed.  Presumably, this is consistent with the dye was not 

being excluded because the hydrodynamic counterflow was greater than the 

electrophoretic velocity of the rhodamine 123. 
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Figure 4.4.  Change in intensity values for varying electric field strengths.  

Potential was applied for 30 s and error bars represent standard deviation (n = 3).  

The inset shows representative curves of the raw data. 

 

 

For experiments varying the time of applied potential, the electric field 

remained constant and intensity changes for various times of electric field 

application were averaged (Fig. 4.5).  The largest intensity change was observed 

for 10 s of applied potential, suggesting that at 10 s of applied potential, the most 

rhodamine 123 is excluded.  Similar to increasing electric field strength, though, 

increased time of applied potential above 10 s could also mean that the excluded 

material was being more influenced by diffusional forces in the reservoir, 

resulting in less material being allowed to immediately flow down the channel 

once the electric field was released.  At shorter times of applied potential, there 

was significantly less intensity change, indicating that less dye was being 
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excluded from the channel.  Intensity changes for 20 and 30 s of applied potential 

were not significantly different from each other, indicating that the same amount 

of dye was excluded for both times. 

 

 

Figure 4.5.  Average intensity changes for various times of applied potential.  

Times varied from 5 s – 30 s (-200 V/cm, n = 3, exception:  t = 5 s, n = 2). 

 

 

Large standard deviations were sometimes observed when averaging 

multiple trials (Figs. 4.4 & 4.5).  As mentioned previously, the area where 

exclusion occurred is complex and nonlinear.  The three dimensional nature of the 

concentration gradient about the interface was being collapsed as the collected 

material traveled through the channel, where one dimensional intensity 

measurements were performed.  In addition, factors such as in-channel 

temperature changes and surface modifications between trials can contribute to 

somewhat different exclusion profiles, even when the general pattern of exclusion 
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is the same.  The standard deviations are reflective of the nonlinear nature of the 

interface where exclusion occurs. 

4.3.3  Separation of rhodamine 123 and polystyrene beads 

 Experiments were performed that demonstrated the ability of the 

technique to differentiate fluorescent dye from polystyrene microspheres.  The 

beads were negatively-charged at the pH of the buffer (2.95).  Based on the 

intensity measurements performed in-channel, rhodamine 123 was successfully 

separated from the polystyrene beads (Fig. 4.6).  Before the application of 

potential, all species were flowing through the system, with only the presence of 

hydrodynamic flow (Fig. 4.6A).  After a -300 V/cm electric field was applied to 

the system for 30 s, the polystyrene microspheres were still moving through the 

system, but the fluorescence intensity decreased, consistent with rhodamine 123 

being prevented from entering the channel (Fig. 4.6B).  The electrophoretic 

velocity of the positively-charged dye was greater than the opposing 

hydrodynamic flow.  The microspheres, conversely, were not excluded—as a 

result of their negative charge.  Instead they were carried down the channel with 

the hydrodynamic flow and electric field.  Once the potential was released, the 

data suggests the excluded dye flowed through the channel along with the 

microspheres under hydrodynamic flow (Fig. 4.6C).  This experiment 

successfully demonstrated the ability of the device to separate species with 

differing charges and of different sizes. 

 

 



  86 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6.  Still images taken from video demonstrating the separation of 

rhodamine 123 from carboxylated spheres.  (A) The system before the initiation 

of the electric field.  (B) The system after 30 s of applied potential.  (C) The 

system after the electric field is removed. 

 

 

4.3.4  The effects of variable channel and electrode geometry on 

electrophoretic exclusion 

The same electrophoretic exclusion pattern of behavior was observed 

consistently between different experiments.  In the presence of a large enough 

electric field, dye or small particles were excluded from a channel and when the 

potential was released, the excluded material flowed through the channel.  This 

pattern was observed visually during experiments by watching the fluorescence 
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intensity change (rhodamine 123) or the number of particles change (polystyrene 

microspheres) throughout the course of an experiment. 

Differences in intensity values occurred when the electrode alignment 

slightly changed (images not shown).  For example, intensity differences were 

measured, given the same experimental conditions (-200 V/cm, 30 seconds) (Figs. 

4.4 & 4.5).  The average for 30 s of applied electric field (-200 V/cm) reported in 

Fig. 4.4 was 103 ± 24 a.u. while in Fig. 4.5, it was reported to be 51 ± 13 a.u.  

Even when intensity values were different between days, the same exclusion 

patterns were observed.  Comparing the results of varying the electric field 

strength between days still yields -200 V/cm as the minimum field strength 

required for exclusion of rhodamine 123.  On different days, and even with 

different devices used on the same day, the electrode alignment was slightly 

different, varying by as much as ~200 µm, in part due to the PDMS shrinkage.  

With slight differences in the placement of the PDMS on the glass slide, the shape 

of the electric field about the entrance was altered.  One of the factors necessary 

for electrophoretic exclusion is an electric field, and because the exclusion took 

place at the electrode and channel entrance area, any small changes in the 

alignment of the electrode slide and the reservoir/channel interface altered the 

electric field geometry, and therefore, slightly changed the details of exclusion 

behavior. 

A COMSOL model was used to demonstrate the importance of the 

electrode alignment (Fig. 4.7).  Electrode placement at the channel entrance (Fig. 

4.7A) and a shift of 250 µm (Fig. 4.7B) resulted in a difference in the electric 
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field strength and geometry at the channel entrance.  When the electrode was 

shifted from the channel entrance, the electric field strength was less at the 

channel entrance/reservoir exit.  Because exclusion occurred at this interface, 

small changes in alignment, and therefore electric field, influence the results. 

Studies that include characterization of the channel/electrode geometry and its 

effect on the electric field, and therefore exclusion, are being conducted to allow 

for better utilization of this separation technique on the microscale. 
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Figure 4.7.  COMSOL figures demonstrating fluid velocity and electric fields.  

(A) Electrode placement at the channel entrance.  (B) Electrode 250 µm away 

from channel entrance.  Surface velocity magnitude is flow field, while 

streamlines represent the electric field. 

 

 

4.3.5  Future design:  Separation-based array format 

 

This work was a continuation of the studies conducted on a macroscale 

device using absorbance detection for small molecules [5].  In the macroscale 

experiments, the electrode fully encircled the capillary entrance and was radially 

symmetric.  In the microscale format, the electrode was plated on one surface of 

the device, the glass slide, which left three sides of the rectangular channel as 

insulating material.  This resulted in different electric field and flow field shapes 
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between the two designs and this difference in field shapes affected the exclusion 

profile.  This device is meant to bridge from the macroscale device [62, 63] to the 

first demonstration on a microfluidic format and, there are significant differences 

between the two designs. 

The main advantages of exploiting microdevices are precise and varied 

control of the flow and electric fields about the entrance of the channel and the 

possibility to include several channels on one chip.  Several designs can be 

envisioned where many channels and reservoirs with well-controlled flow and 

electric field interfaces are created to form separation-based arrays and even more 

complex systems. 

4.4  Concluding remarks 

 This work provides a step towards creating complex highly efficient 

separations based on the exclusion principles. The direct visualization of the 

exclusion process on small molecules, the differentiation of particles and 

molecules and performance of exclusion on a microdevice format are all 

demonstrated for the first time here. The manipulation of particles and small 

molecule bracket the potential targets in terms of size, demonstrating a broad 

range of applicability.  Combined with previous results using proteins, this 

suggests nearly all targets of typical electrophoretic separation can be addressed 

within a microchip format.  This work sets the fundamental studies directly 

observing exclusion of materials at a flow-electric field interface on a 

microdevice that can lead to much more complex devices on small footprint 

formats. 
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Chapter 5 

Development of the Resolution Theory for Electrophoretic Exclusion 

5.1  Introduction 

This dissertation has addressed the importance of separations science for 

analyzing complicated samples, particularly those which contain targets that are 

challenging to isolate from background species.  Traditionally, these types of 

samples have been studied using techniques such as chromatography (size 

exclusion and affinity) [1, 2] and capillary electrophoresis [3].  Although these 

common techniques are extensively used for complex samples, they result in 

diffusion and dilution over the course of their separation.  Equilibrium gradient 

methods, in contrast, utilize separating and focusing forces simultaneously to 

effectively counteract dispersion, including diffusion, resulting in better detection 

limits [4].  Isoelectric focusing (IEF), the best known example of an equilibrium 

gradient technique, employs a pH gradient with a constant electric field,  to 

separate species based on differences in their pI’s [5-7].  Other more recent 

examples of equilibrium gradient techniques include counterflow electric field 

gradient focusing (EFGF) methods [8-14].  As with other equilibrium gradient 

methods, species in EFGF separations are isolated and concentrated 

simultaneously. 

A successful separation is usually defined by generating adequate 

resolution, more so for analytical scale or complex samples, compared to some 

well characterized samples of preparative scale systems where this requirement 

can be relaxed.  The resolving capabilities of the more common separations 
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techniques, including chromatography [15, 16], IEF [4], and CE [17], are well-

established and experimentally confirmed.  Capillary electrophoresis separations 

on a microchip in a spiral channel have proven to be very successful, with 

theoretical plates as high as 1,000,000 having been reported [18].  More recently, 

resolution equations for EFGF techniques have been developed.  Tolley et al. 

described the resolution of electromobility focusing [19] and Kelly and Woolley 

described EFGF resolution by comparing the focusing effects near the zero-force 

point to a spring and invoked the mathematics of  Hooke’s Law to describe the 

forces [10].  Ultimately, these theories described the properties of EFGF as it 

successfully increases sample concentration and separates species with similar 

electrophoretic mobilities. 

Reducing dimensions to the microscale has the potential to improve EFGF 

devices.  Gradient elution moving boundary electrophoresis (GEMBE), another 

equilibrium gradient technique, has been used to perform electrophoretic 

separations in short channels [20-22].  Ross developed a theoretical framework to 

describe the resolving capability of GEMBE and compared it to CE, showing that 

GEMBE works on the same time-scale and provides similar resolution as CE 

separations [23].   

Electrophoretic exclusion, somewhat related to EFGF techniques, is a 

separation method first introduced by Polson et al. as an enrichment scheme [24] 

and exploits the counteracting forces of hydrodynamic flow and electrophoretic 

velocity.  However, unlike EFGF techniques, the electric field remains constant in 

the channel, and a sharp local gradient is initiated right at the channel entrance, 
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allowing for highly localized separation just outside of the channel entrance in 

bulk solution rather than in a channel.  This difference, though it may seem subtle, 

allows for parallelization and is predicted (in this chapter) to positively affect the 

overall resolution capabilities. 

The success of electrophoretic exclusion has been demonstrated 

experimentally using both mesoscale [24-27] and microscale [28] devices.  The 

technique has proven to be applicable to a variety of analytes with various 

properties and sizes, including small molecules, polystyrene microspheres, and 

proteins.  Additionally, studies have been conducted to model the physicality and 

actions of the electrode/solution/channel interface [29].  However, a thorough 

study of the resolution capabilities of the technique from a traditional separations 

science point-of-view has not yet been conducted.  Resolution and dynamic range 

of electrophoretic exclusion will be defined using common dimensionalities, 

materials, and electric potential magnitudes of current devices, thereby 

developing a foundational framework to interrogate the resolving power of 

electrophoretic exclusion enabled by the localized microgradient.  By extension, 

since the interface can be parallelized or placed in series, a variety of new 

capabilities can be envisioned. 

5.2  Theory 

 For comparison to other electrophoretic techniques (traditional and 

gradient), resolution is described in terms of closest electrophoretic mobilities of 

two species that can be differentiated – one fully excluded and one fully entering 

the channel.  Resolution, R, will be described as: 
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                   (1) 

In this equation, ΔX is the distance between separated elements and σ is the 

standard deviation of the elements.  Both of these variables are easily defined 

within traditional separations, with ΔX and σ described in terms of distance or 

time reflecting the distribution of the separated concentration profiles.  The 

interface under study here does not produce traditional concentration profiles, or 

peaks, and the distance between two separated species cannot be defined in a 

traditional sense.  However, this interface does provide for separation of species 

and properties of the interface and the physicality of the target species allow for 

direct quantitative comparison to be made to other techniques. 

To provide a basis for discussion, the principles of exclusion and 

conventions of the model are briefly outlined.  This discussion will focus on the 

centerline and other factors (laminar flow) will be considered.  Flow is established 

inward, towards, and within a channel and an electric field is introduced within 

the channel itself only, introducing a gradient at the entry region.  Electrophoretic 

exclusion occurs when the electrophoretic velocity (product of the electrophoretic 

mobility and the electric field) of a species is opposite and greater than or equal to 

the fluid velocity into the channel.  Under these conditions, the species is 

excluded from entering the capillary.  Species with electrophoretic velocities 

smaller than the opposing fluid flow will instead flow through the channel.  This 

narrative will focus exploring the smallest difference in electrophoretic mobilities 

where this differentiation can be obtained. 
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For ease of discussion, visualizing the system, and adhering to existing 

experimental results that will be discussed later, a device description is included 

(Fig. 5.1A).  The materials and details are not central to the theoretical approach, 

as it is a general model, but this is presented to aid in communication and 

establish physicality for later discussion.  The device is composed of two 

reservoirs connected with a capillary.  Bulk flow is from left to right through the 

system, driven by a pressure differential in the chambers.  The end of the capillary 

(or channel) in chamber 1 contains an integral electrode that is constructed by 

removing approximately 3 mm of polyimide coating from a capillary tip and then 

sputtering with 30 nm of Ti and 50 nm of Pt.  Silver conductive epoxy is then 

used to physically connect the tip of the sputter-coated capillary to a 1 cm piece of 

Pt wire.  Power can be applied to the wire and when potential is applied, the tip of 

the capillary acts as an electrode.  As a result of the capillary tip electrode and the 

Pt wire in the reservoir, no potential field exists in the bulk of reservoir 1.  A 

ground electrode is placed in chamber 2.  The area of interest, where exclusion 

occurs, is in chamber 1, at the entry region or interface of the capillary. 
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Figure 5.1.  Device schematic and interface description.  (A) Schematic of the 

device used to capture data.  A 10 cm capillary with a sputtered electrode attached 

to two vials.  The vial on the left is filled with sample and the vial on the right is 

filled with buffer.  The capillary has a small window burned in it (~ 5 mm) where 

detection occurs.  (B) The area of interest, immediately outside the capillary 

entrance, where exclusion occurs.  (C) Voltage and electric field near the channel 

entrance, where exclusion occurs. 

 

 

5.2.1.  Defining the interface 

 

Exclusion occurs when the electrophoretic velocity of a species (v) is 

greater than, or equal to, the opposing hydrodynamic flow velocity (u): 

                 (2) 

The calculated fluid flow velocity (u) through the system is given by: 

                 (3) 
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where Δp is the pressure difference between the two chambers, rc is the radius of 

the capillary, L is the length of the capillary, and ɳ is the viscosity of the buffer.  

Electroosmosis is suppressed for the purposes of this model, but it can be added 

trivially without changing u, but could reduce Taylor dispersion. 

Consider two arbitrarily closely related targets with electrophoretic 

mobilities µ1 and µ2 (ostensibly, one excluded, the other not), the average 

electrophoretic mobility (µave) is: 

.                (4) 

The electrophoretic velocity is the product of the electrophoretic mobility and the 

local electric field strength (E), so the average electrophoretic velocity (vave) of the 

target pair is: 

                (5) 

5.2.2  Structure of flow and electric fields near/within the interface 

In electrophoretic exclusion, the electric field is initiated at the electrode-

channel entrance interface; there is no field in the reservoir away from the 

capillary entrance.  Within the body of the capillary, the electric field is constant 

and set at Ecap (Fig. 5.1B & C).  Immediately outside the capillary entrance, in the 

middle of the linear electric field gradient, where E = 1/2Ecap, vave is defined as the 

opposite of the bulk flow: 

                (6) 

Assuming µ1 is greater than µ2, the species with µ1 is completely excluded 

(effects of dispersion addressed below), while the species with µ2 is not excluded, 
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but allowed to travel past the interface and down the length of the capillary.  Flow 

rate near the entrance is assumed to be constant over the length of the scale of the 

electric field gradient (penetrating ~1/2 the capillary diameter into the reservoir). 

5.2.3  Steady state, fully developed concentration profile 

The concentration profile for a fully excluded analyte is described (Fig. 

5.2).  The maximum concentration is in the reservoir, which decreases to zero at 

the channel entrance (Fig. 5.2B).  The area of most interest is the slope across the 

interface.  The steepness of the slope varies, depending on focusing and dispersive 

forces and defines a characteristic variance. 
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Figure 5.2  Development of the concentration profile at the interface.  (A) The 

area of interest where exclusion occurs.  (B) The concentration profile in the 

reservoir in the area of exclusion.  Max concentration is in the reservoir, with 

concentration reaching zero in the channel. The shape of the concentration profile 

is modeled as an error function, as indicated with the red box.  The focusing 

forces and dispersive forces affect the steepness of the gradient.  (C) The first 

derivative of the concentration profile indicates that the largest change in 

concentration occurs at the channel entrance.  The steeper the gradient, the 

narrower the peak of the first derivative. 

 

 

Using the practice of Giddings, a steady state separation has a constant 

concentration profile with time (dc/dt = 0), where, in this case, the dispersion 

forces are equivalent and opposite to flow/electric field forces [30].  The structure 

of this concentration profile at steady state can be described by an error function 

which also lends itself to simple assessment of the variance of the concentration 

profile of this interfacial region [23].  The derivative of an error function is a 
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Gaussian profile with a characteristic variance.  This variance provides a standard 

means of comparison for steady state methods and is defined by including all 

dispersive forces (DTOT) competing with the restorative forces and is equal to [4]: 

              (7) 

The total dispersive forces cause band broadening, while focusing forces 

counteract it.  DTOT includes diffusion (Ddiff) and Taylor-Aris dispersion [31]: 

              (8) 

To understand the local velocity of the target species across this interfacial zone, 

the approach (and notation) given by Giddings [30] that states the overall 

transport (W) in the system is: 

,                (9) 

where W is the overall component velocity, U is the drift velocity due to external 

fields (field-induced velocity), and v is the flow velocity.  For electrophoretic 

exclusion, substitute, -u for v (eqn. 1) so that: 

               (10) 

In this case, only U varies with x, so the equation can be rewritten as: 

               (11) 

where a is change in velocity (slope) with respect to x, describing the focusing 

effects (field gradient dE/dx at the entrance).  Within the bulk reservoir, at 

negative values of x and outside the interface zone, the target species move at an 

average velocity of u or less.  The electrophoretic velocity of the species is less 

than the flow velocity due to small or nonexistent E.  At exactly x = 0 (the 
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capillary entrance/electrode solution interface, Fig. 5.2), the average velocity is 

zero because u is exactly offset by 1/2Ecapµave.  At x values above zero (within the 

capillary, past the interfacial zone) the velocity is u + µEcap. 

 The change in the electrophoretic velocity near the entrance, a, is: 

,              (12) 

and therefore 

                 (13) 

The local slope of the electric field (dE/dx) can be approximated and linearized by 

the change in the field across the interface divided by the diameter of the 

entrance.  Noting eqns. 7, 8 and 12, variance is: 

,              (14) 

and standard deviation is equal to: 

,              (15) 

resulting in a form very similar to other tradition gradient models, but with the 

local gradient at the entrance rather than the global gradient of standard 

techniques [10]. 

5.2.4  Determining the two closest resolvable species  

A construct must be created to determine the closest two electrophoretic 

mobilities that can be resolved with these associated variances.  In this system, the 

linearized local slope (dE/dx) at the entrance (approximated by Ecap divided by the 

diameter, d) controls what can and cannot enter the capillary.  This must be varied 
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in time or space.  It is easier to conceptualize slowly varying the capillary 

potential and monitor what can enter the capillary, but this strategy omits the 

inherent advantages of the local gradient by slowly releasing any collected 

materials at the interface and smearing out the narrow concentration gradients.  

Alternatively, we choose to model in space, where a construct is created that sets 

Ecap between adjacent capillary entrances as a direct function of the distance 

between the centerline of those capillaries (Fig. 5.3).  This solves three problems:  

1) it retains the advantages present in the local gradient at each capillary entrance, 

2) sets a physically meaningful construct reflective of real experiment apparatus, 

and 3) provides a function definition of ΔX that is easily conceptualized and 

tested. 
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Figure 5.3.  Using distance to determine the two closest resolvable species.  A.  

Graph showing the total concentration inside the capillary for varying Ecap values.  

A large Ecap value corresponds to lower concentration inside the capillary due to 

exclusion.  B.  The transition between the channels entrances is related to the 

distance between the capillaries.  The sharper the transition, the closer the 

capillaries can be. 

 

 

A short description of the construct is presented as an example.  Three 

channels are considered with three different Ecap values.  One channel has a small 

enough Ecap that neither species will be excluded from the capillary entrance (Fig. 

5.3A, left), allowing both species to flow through the capillary with the 

hydrodynamic flow (resulting in the highest total concentration in the channel).  A 

second channel has an increased Ecap, such that the species with the larger 

mobility (represented with gray circles) are excluded (Fig. 5.3A, center), 

producing an increased concentration of that larger mobility species immediately 
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outside of the capillary and complete passage of the other through the channel.  In 

a third channel, Ecap is such that the species with the smaller mobility will also be 

completely excluded (Fig. 5.3A, right), and both species are completely prevented 

from entering the channel.  In this case, the applied field is too large to achieve 

separation of the specified analytes. 

Conceptually, the sharper the transition between channel entrances, the 

closer the capillaries can be in (in terms of ΔX and Ecap) and still achieve 

successful differentiation (Fig. 5.3B).  The change in Ecap between the entrances 

defines ΔdE/dx, or the change in dE/dx, between to nearest neighbor channel 

entrances: 

             (16) 

Note this differentiation is for only one of these ‘steps’ (Fig. 3) and resolution can 

be described by: 

         (17) 

which suggests several things, including a steep gradient at the entrance and 

minimizing the difference between these local gradients in adjoining capillaries 

would maximize resolution. 

 The smallest change in electrophoretic mobilities is identified as the best 

resolution for the technique, so the resolution was solved for Δµ: 
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           (18) 

If resolution is set to 1 (complete separation in traditional separations), Δµ 

becomes Δµmin (the smallest change in mobilities that can be separated with 

adequate resolution) and is equal to: 

           (19) 

5.3  Results and discussion 

 According to this model and theoretical assessment, several factors can 

influence resolution including capillary diameter, flow rate, average 

electrophoretic mobility, and field strength – within the capillary or channel and 

the difference in field strength between adjoining entrances.  All other factors can 

be derived from these parameters.  A good example is the capillary diameter.   It 

influences resolution through Taylor-Aris dispersion (eqn. 7) and the steepness of 

the gradient (dE/dx, approximated by Ecap/d) at the entrance of the channel.   

5.3.1  Capillary diameter and flow rate 

Because the relationship between resolution and capillary diameter and 

flow rate are not algebraically simple (they are not trivial linear, exponential, or 

logarithmic relationships), they are assessed graphically (Fig. 5.4).  Most of the 

following discussion is centered on finding the minimum difference in 

electrophoretic mobilities which can be separated because this value is easily 

compared to other electrophoretic techniques.  In this assessment, the smaller Δµ 
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is, the better the resolution.  Accordingly, resolution is best when the capillary 

diameter is smaller and flow rate is lower.  The strongest effect is a reduction in 

Taylor-Aris dispersion at small diameters and low flow rates, and an additional 

effect is an increased gradient at the capillary entrance.  Since the smaller 

diameters positively influence resolution through two mechanisms, increased 

gradient and reduced dispersion, it dominates the relationship relative to flow.  

Resolution can be significantly increased by reducing channel diameters – by 

orders of magnitude, but at the cost of reduced volume flow rate.  This is directly 

offset by the opportunity to operate this strategy with massively parallel 

interfaces, all with small diameter, high resolution interfaces, while attaining the 

desired bulk fluid transfer. 

 
 

Figure 5.4.  Resolution as a function of capillary diameter and flow rate.  

Resolution is described by Δµmin and increases most notably with smaller 

capillary diameters. 
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5.3.2  Smallest separable difference in electrophoretic mobilities 

 

 According to the calculations presented here, the smallest difference in 

mobilities of species (Δµmin) that can be separated (R = 1) is ~ 10
-9

 cm
2
/Vs.  This 

occurs at the smallest common capillary diameter of 1 µm, a relatively low fluid 

velocity of 100 µm/s, and ΔdE/dx of 10 V/cm
2
 (assuming a large diffusion 

coefficient of 6 x 10
-4

 cm
2
/s, and a µave of 5.0 x 10

-5
 cm

2
/Vs).  Driving these down 

to obvious limits where assumed physics breakdown (200 nm channel diameter, 

3000 V/cm field, 50 µm/s flow velocity) gives ~ 10
-11

 cm
2
/Vs.  As a comparison, 

results were noted from the Jorgenson group [32, 33].  According to the data 

presented in their impressive experimental studies, flow counterbalanced CE 

could separate species with electrokinetic mobilities as similar as 10
-7

 cm
2
/Vs in 

several hours [32], while an ultrahigh voltage CE study separated species with 

mobilities as close as 10
-8

 cm
2
/Vs in approximately 1 hour [33].  Additionally, 

Culbertson et al. performed a CE study using a spiral channel on a microchip to 

separate dichlorofluorescein from a contaminant that differed by as little as 10
-6

 

cm
2
/Vs in tens of seconds [18].  According to these experimental results, the 

resolution theory developed here is on par with CE studies. 

 Aside from traditional CE studies, there are several examples in the 

literature where species have been differentiated at an interface similar to the one 

described by this theory, including GEMBE [23] and previous electrophoretic 

exclusion studies [26, 28].  To compare these studies, the variance of the 

concentration gradient at the entrance must be determined; however, it is difficult 

to quantitatively assess these data.  GEMBE studies vary the flow rate and 
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introduce dispersion associated with the transport of the concentrated species to 

the detection element, and an increase in measured dispersion from the detection 

element itself.  The calculation and subtraction of these additional dispersion 

elements to estimate the entrance dispersion are of little value since they are much 

larger.  Nevertheless, GEMBE reports Δµmin values on the order of 10
-5

 cm
2
/Vs 

for short separation time (tens of seconds), and improved resolution with 

increased analysis time.  In these GEMBE experiments, the detection window 

standard deviation is estimated to be 0.5 mm, which is noted to say that the initial 

width of the analyte boundary as it enters the capillary is negligible.  According to 

the theory presented here, in fact, the standard deviation for the experimental 

conditions noted is approximately 15 µm, or about 3%, supporting their assertion. 

 Meighan et al. reported several data which can be assessed [26].  The flow 

injection analysis mode, however, also added Taylor-Aris dispersion and resulted 

in standard deviations measured at the detector of 3 - 13 mm, whereas the 

entrance contribution was merely about 40 µm according to the theory presented 

here.  The calculated dispersion induced by the Taylor-Aris mechanism only 

accounted for a little over a millimeter of this distance and; therefore, some other 

mechanism is likely dispersing the concentration gradient.  This is supported by 

the poor resolution (as report by Δµmin) for two proteins differing in 

electrophoretic mobilities of 8 x 10
-5

 cm
2
/Vs at R = 0.68.  The theoretical Δµmin (R 

= 1) is approximately 10
-8

 cm
2
/Vs for the conditions reported.  These previous 

studies where indirect and dynamic strategies are used are not especially helpful 

in clarifying exactly what resolution is possible with this overall strategy.  
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Fortunately, direct observation of the local interface is available and indicates 

very sharp concentration gradients [28] and the flow and electric field forces of 

the interface have been experimentally quantified [27].  The concentration 

gradients are shown to be less than 100 µm wide for small molecules (fluorescent 

dye).  This was produced at an asymmetric interface not optimized for resolution, 

but does indicate that steep concentration gradients consistent with these 

calculations are observed.  The flow and electric field effects are consistent with 

the model presented here. 

5.3.3  Peak capacity 

 Another measure of the quality of a separation process is peak capacity.  

Peak capacity is defined as the amount of distinguishable peaks, or elements, that 

can be separated in a given space or time.  Peak capacity is a valuable separations 

metric because it accounts for the total amount of differentiable elements, as 

opposed to just comparing between two species as in resolution.  In 

electrophoretic exclusion, peak capacity is the total number of species that can be 

differentiated in individual reservoirs, assuming R = 1. 

 The calculated peak width (2σ) varies across the experimental space.  To 

account for this variation, Δµ was calculated at both the lowest reasonable 

electrophoretic mobility and the highest for an otherwise constant system.  To 

calculate this theoretical peak capacity (nc), several assumptions were made.  

First, it was determined that the range of electric fields that could successfully be 

used for separation were between 10 and 1000 V/cm (this could be extended to 3 

kV/cm for a microdevice).  A channel diameter of 1 µm was assumed and the 
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ΔdE/dx between entrances was 10 V/cm
2
.  Diffusion (D) was set at 6 x 10

-4
 cm

2
/s 

and hydrodynamic velocity ranged between 0.1 and 1 mm/s.  Next, the smallest 

µave (referred to as µmin) was calculated using the lowest linear velocity and the 

largest electric field strength to be µmin = 10
-5

 cm
2
/Vs.  The largest µave (referred 

to as µmax) was determined by using the highest linear velocity divided by the 

lowest electric field µmax = 10
-2

 cm
2
/Vs. 

The smallest separable difference in mobilities between species at R = 1, 

Δµmin, was calculated at both the µmin and µmax that was defined above.  For Δµmin 

at µmin, Δµmin was calculated using eqn. 18, which resulted in: 

                (21) 

Similarly, Δµmin at µmax was calculated, except the smallest electric field (10 

V/cm) was used for Eave, the largest flow velocity (1 mm/s) was used, and dE/dx 

was calculated as 1.0 x 10
-5

 V/cm
2
: 

             (22) 

Finally, the total peak capacity was calculated by using the range of mobilities 

divided by the average Δµmin: 

           (23) 

These calculations indicate that electrophoretic exclusion can be used for 

the isolation of analytes in samples that contain a large number of species and 

whose species cover a large range of mobilities.  A similar technique, electric 

field gradient focusing, suggested peak capacities of over 10,000 could be 
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achieved [19], while capillary isoelectric focusing reported an experimental peak 

capacity of over 4000 [34]. 

Although the peak capacity for electrophoretic exclusion is already 

comparable to some of the better one dimensional separation techniques, it can be 

further improved by stacking separation steps, while varying the buffer pH, ionic 

strength, etc. (moving the effluent from a single element, changing the buffer and 

separating on a new element), which changes the electrophoretic mobilities of the 

species and allows them to be isolated in different locations.  Electrophoretic 

exclusion is a dynamic technique that allows for adjustments to further improve 

its separation efficiency. 

5.4.  Concluding remarks 

 To understand the applicability of a separations technique to various 

samples, the resolving capabilities of the technique must be understood.  Here, the 

theoretical resolution of electrophoretic exclusion has been described, along with 

a brief analysis of previously published experimental data.  Theoretically, results 

indicated that electrophoretic exclusion can separate species with very similar 

mobilities (Δµmin = 10
-9

 cm
2
/Vs), better even than experimental results reported 

for CE.  The assessment of the experimental data indicated that electrophoretic 

exclusion is less capable of resolving species than what was theoretically 

indicated, due to various dispersion forces, particularly on the meso-scale.  

However, when reducing the size scale to a microchip, the dispersive forces 

decreased, suggesting the possibility of better resolution.  To further improve 

resolution, an optimized electrode design can be created, reducing the dispersive 
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forces even further.  With better resolution, more similar species can be 

differentiated and; therefore, more complex samples can be analyzed and 

separated.  The engineering of an interface with high resolving capabilities can be 

used in designs that include several of these interfaces in series and parallel that 

can be envisioned for the complex sample analysis. 
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Chapter 6 

The Development of a Microfluidic Array for Use in Electrophoretic 

Exclusion Separations 

6.1 Introduction 

Previous chapters have discussed the role of separations in complex 

sample analysis and have established the potential advantages and applications for 

array-based separations.  Electrophoretic exclusion, with its ability to separate 

native species in bulk solution based upon their electrophoretic mobilities, is 

especially appropriate for array separations.  Because species are separated based 

upon their mobilities, the technique does not require molecular recognition 

elements and can be dynamically adjusted during the course of an experiment by 

simply altering the electric field strength.  By separating species in bulk solution, 

as opposed to in a channel, channel length becomes essentially irrelevant, 

allowing for a smaller device footprint and for numerous capture zones in series 

and parallel for addressing complex samples. 

In addition to being ideal for a multiplexed format, avoiding separation in-

channel reduces dispersive forces.  In traditional separations, species are injected 

onto a column in plug form, and during the course of the experiment, species 

move differentially along the channel.  During this process, species migrate at 

different rates in the column based upon their specific properties.  Although 

analytes are spatially separated, they also disperse and diffuse as the experiment 

continues.  This dispersion limits the resolving capabilities of the technique.  

Electrophoretic exclusion exploits restoring forces, the electric field gradient at 
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the channel entrance, to help balance the diffusive and dispersive effects; 

therefore, increasing resolution of the technique.  Theory indicates that 

electrophoretic exclusion has resolving capabilities comparable to those of CE, in 

a dramatically different format (Chapter 5).  Additionally, peak capacities have 

been theoretically calculated to be on the order of 1,000 (Chapter 5).  Having high 

resolving capabilities and high peak capacities is a necessity when studying 

complex samples so that similar species can be differentiated.  High resolution is 

also essential for creating a separations-based array so that many species, some of 

which will be very similar, can be individually isolated and then later, studied.  

Electrophoretic exclusion is uniquely suited for array-based separations, 

particularly when designed for a microdevice. 

For several decades, microfluidics has been used to manipulate and move 

fluids on the small scale.  Microfabricated devices have been used for many 

applications such as DNA sequencing [1, 2], clinical studies [3, 4], and 

separations [5, 6], including array applications from Protein Forest [7-9].  Some 

of the most notable advantages of performing analyses on microdevices include 

decreased analysis time and reagent consumption.  This is especially important 

when it is not feasible to obtain or use large amounts of sample, for example when 

studying samples from biological and environmental sources.  Additionally, 

microdevices can often be made portable, making them ideal for environmental 

[10, 11] and, in some cases, biological testing [12].  These advantages have 

contributed to the increase in popularity of microfluidic devices over the last 

several decades. 
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The creation of features and channels in microfluidic devices was 

originally achieved with photolithography and etching techniques.  Although the 

techniques were well understood, due to their origins in microelectronics, there 

were several disadvantages to using them [13].  Silicon is expensive and cannot 

be used for systems that require optical detection, and devices must be assembled 

in a clean room.  Glass, though transparent and less expensive, still requires the 

use of a cleanroom for assembly.  This increases the time investment to make 

every device in a clean room.  More recently, polymers have been used for 

creating the features in a microdevice, with polydimethylsiloxane (PDMS) being 

the most popular choice [14].  There are several advantages to using PDMS, 

including optical transparency, low cost, low curing temperature, irreversible or 

reversible sealing, fast prototyping, and biocompatibility.  When using PDMS for 

creating the features in a microdevice, a master template must first be fabricated 

for subsequent replica molding.  After a replica is made, the resulting polymer 

layer must be sealed to a flat substrate.  For irreversible sealing, oxygen plasma is 

required.  The patterned PDMS layer can be sealed to another PDMS layer, glass, 

silicon, etc. for feature completion [15]. 

Glass is often used as the substrate in a microfluidic device with PDMS 

[15].  It is an attractive option because it is optically transparent; it can be used 

with fluorescence detection, with laser induced fluorescence being popular 

because of the small dimensions and sample sizes [16].  Fluorescence detection is 

attractive because it is sensitive and can be performed during the course of an 

experiment, in real-time.  However, analytes must either be natively fluorescent, 
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or they must be labeled.  Other common options for detection include 

electrochemistry [17-19], and mass spectrometry [20, 21].  Electrochemical 

detection is sensitive, but adds another level of complication for fabrication 

purposes, particularly if electrodes are already required for the experimental 

parameters.  Mass spectrometry (MS) is incredibly sensitive as well, but it 

requires an additional interface for transfer to the MS. 

When designing microfluidic devices, feature sizes, including channels, 

reservoirs, and electrodes, must be considered.  As the name suggests, for 

channels and reservoirs, at least one dimension has to be on the micrometer scale.  

It is not uncommon, though, for channel widths and lengths to be on the 

centimeter scale.  Such is the case with chips that are used for IEF [22-24] and 

free flow electrophoresis [25, 26].  When designing the fluid elements, factors 

such as detection method, fluid flow rates, and sample amounts must be 

considered.  Additionally, when electrodes are used on the device, in cases such 

as electrophoresis, electrode dimensions, location, and material must be 

considered [27].  For electrophoretic separations, electrodes can be embedded in a 

channel [28, 29] or remain separate from the channel [30, 31]. 

Based upon the information above, the practicality of microfluidic devices 

has been well established, along with the major parameters that must be 

considered when creating a device.  The rest of this chapter is devoted to 

development of a microfluidic array to be used for electrophoretic exclusion.  

Thus far, it has been well established that separations-based arrays have a 

potentially important place in complex sample analysis, and electrophoretic 



  122 

exclusion is suited to this type of application.  However, an array device has yet to 

be used, or even fabricated.  Here, the initial array device for electrophoretic 

exclusion is constructed and tested. 

6.2  Materials and methods 

Device design and fabrication was very similar to that described in 

Chapter 4, where changes are noted below. 

6.2.1  Design and fabrication of array device 

A photograph of the device design (top-view) (Fig. 6.1).  Hybrid 

glass/PDMS devices were used for all experiments and each device contained two 

separate arrays. 

 

 

 

 

Figure 6.1.  Experimental array device.  Top-view photograph of the hybrid/glass 

array device.  The standard glass microscope slide contained Ti/Pt electrodes, 

while the PDMS layer contained the channels and reservoirs.  Each device 

contained two arrays. 

 

 

A PDMS layer was made using standard photolithography techniques.  

Each array design contained an entrance reservoir, followed by three channels in 

parallel, each connected to a central reservoir, a second channel, and an exit 

reservoir.  The entrance reservoir was 19 mm x 5 mm, the central and exit 

reservoirs were 5 mm x 5 mm, and each channel was 1 mm long and 100 µm 

5 mm 
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wide with a uniform depth throughout of 10 µm.  A schematic representation is 

included (Fig. 6.2, left). 

Electrodes were plated on standard microscope slides.  Electrodes were 

500 µm wide and bracketed each reservoir (entrance, central, and exit) on three 

sides, allowing for a flat potential field in the reservoir.  The flat potential field 

ensured that exclusion only occurred at the electrode aligned at the channel 

entrance.  A schematic of the electrode design is included (Fig. 6.2 right).  Each 

electrode had an electrode pad that lead to the bottom of the slide for attachment 

of leads with silver conductive epoxy.   Photolithography steps were the same as 

those reported in Chapter 4; however, after development, 30 nm layer of Ti, 

followed by a 50 nm layer of Pt were deposited using electron beam evaporation 

(PVD75, Kurt J. Lesker Company, Clairton, PA). 

 

 

 

 

 

 

 

Figure 6.2.  Schematic representations of PDMS and electrode patterns. 

 

 

6.2.2 Materials 

 

Aspartic acid (Sigma-Aldrich, St. Louis, MO), hydrochloric acid, 

rhodamine 123 (Invitrogen, Carlsbad, CA, USA), DMSO, rhodamine 6G 

Channel design 

in PDMS 

 

 

 

 

  

 

 

  

 

Electrode design 

on glass slide 
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(Invitrogen), true blue chloride (Invitrogen), and 8-hydroxy-1,3,6-

pyrenetrisulfonic acid trisodium salt (HPTS) (Acros Organics, Geel, Belgium) 

were all used as received.  Aspartic acid buffer was prepared to 5 mM 

concentration at a pH of 2.95 using 18 MΩ Milli-Q water.  Stock solutions of 

rhodamine 123 and rhodamine 6G were prepared to 2 mM in DMSO and then 

diluted to 10 µM in aspartic acid buffer on the day of experiments.  A stock 

solution of HPTS was prepared in 18 MΩ Milli-Q water, and diluted to 40 µM for 

experiments.  A stock solution of true blue chloride (~1 mM) was obtained and 

diluted with water (1:1).  On the day of experiments, solutions were diluted using 

aspartic acid buffer. 

6.2.3 Experimental design   

The PDMS layer was bonded to the glass slide with the Ti/Pt electrodes 

using oxygen plasma operated at 50 W for 60 s.  Each array design was filled with 

dye by pipetting 7 µL of solution into each of the three holes in the entrance 

reservoir, for a total of 21 µL in each array.  For experiments that used two dyes, 

equal volumes of each dye were combined so that the final concentration of each 

was of that mentioned above.  The combination of dyes was then pipetted into the 

device.  Flow rates for all experiments were approximately 1 - 10 nL/min.  

Potential (0 – 1500 V) was applied using a HVS448-3000D LabSmith power 

supply (Livermore, CA).  Seven individual potentials were applied; one to each 

electrode pad so that each reservoir was individually addressed and potentials 

were applied so that there was a flat potential field in each reservoir. 
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 A voltage divider was constructed in-house from 100 kΩ, 120 kΩ, and 1 

MΩ resistors (Fig. 6.3).  Each voltage divider was connected to a thin wire that 

was coiled at the end.  The coiled end was then slipped over the leads that were 

epoxied to the microscope slide.  Output potentials were monitored using a digital 

mulimeter throughout the course of the experiment.  Output voltages from the 

voltage divider ranged between 0 V and 25 V, with the resulting electric fields 

varying between 0 and 250 V/cm. 

 

 

Figure 6.3.  Voltage divider connected to an array device.  One voltage divider 

was constructed for each lead. 

 

 

Experiments were monitored using the same microscope setup reported in 

Chapter 4, with the exception of a 1.25X objective in addition to the 4X objective.  

Additionally, Streampix 5 was used in place of Streampix 3 (NorPix, Montreal, 

Quebec, Canada).  ImageJ (NIH, Bethesda, Maryland) was used for intensity 

measurement analysis. 
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6.3 Results and Discussion 

6.3.1  Device design 

 The array device was designed based upon the success of the initial 

microfluidic device used for electrophoretic exclusion at a single interface 

(Chapter 4).  To allow for an array, additional interfaces were included. 

6.3.1.1  Device parameters  

A PDMS layer with reservoirs and channels was sealed to a glass 

microscope slide plated with electrodes.  Because of the success of the original 

microfluidic electrophoretic exclusion experiments, the same size reservoirs and 

channels were used for the array design. 

Electrode width remained the same as those used previously.  Although 

the electrodes were wide (500 µm), this allowed for easier alignment with the 

PDMS layer containing the channels and reservoirs.  This step was performed 

manually.  More important than the width of the electrode, is its alignment at the 

channel entrance.  The effect of electrode alignment has been discussed 

previously (Chapter 4).  The width of the electrodes also did not negatively 

impact the electric field shape at the channel entrance, which is essential for 

exclusion and directly impacts the success of the separation process.  Electric 

field lines converged at the edge of the electrode nearest the channel.  

Additionally, the width of the electrodes allowed for easier epoxying of the leads 

to the chip. 

 Although the electrodes used in this array were the same width as those 

used in the initial microchip designs, the electrodes for the array, were made from 
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Ti/Pt instead of Cr/Au (Chapter 4).  The decision to switch to Ti/Pt was made 

based upon experimental evidence that suggested Ti/Pt electrode slides were more 

robust, meaning that they could be reused more often than the Cr/Au electrodes 

6.3.1.2  Selection of analytes 

Fluorescence detection was chosen to monitor the exclusion process 

because it allows for the direct visualization of exclusion and is ideal for the 

PDMS/glass hybrid device that was designed.  Four dyes were chosen for testing 

the array device based upon their fluorescent emission (dyes had to fluoresce 

within red, blue, or green wavelengths to be suitable for use with the available 

triple bandpass filter cube) and their charges in the aspartic acid buffer that was 

used for all experiments.  Experiments were performed at pH 3 to largely 

eliminate electroosmotic flow (EOF).  By reducing the pH to 3, EOF could be 

greatly decreased [32-34], without the additional step of coating the PDMS 

channels.  Because of this, dyes were used, as opposed to biological samples, due 

to their relative instability in an acidic pH.  Biological samples typically must 

remain at physiological pH and are more complex analytes.  At pH 3, true blue 

chloride, rhodamine 123, and rhodamine 6G were positively charged, while HPTS 

was negatively charged.  All dyes were fluorescently green, aside from true blue 

chloride, which fluoresced blue in the buffer conditions. 

6.3.2  Terminology used in the array device 

Before continuing with the analysis of results, terminology must be 

established for addressing the various locations in the array device.  The large 

reservoir used for sample introduction is referred to as the main or entrance 
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reservoir.  The channels leading from the entrance reservoir to each of the central 

reservoirs will be referred to as entrance channels 1-3, with channel 1 being on 

the left.  The central reservoirs, where isolation was designed to occur, will be 

referred to as central reservoirs 1-3, with reservoir 1 being on the left.  Similarly, 

the channels leading from the central reservoirs to the exit reservoirs will be 

referred to as exit channels 1-3, corresponding to central reservoirs 1-3.  End 

reservoirs will be addressed as exit reservoirs 1-3, with reservoir 1 on the left 

(Fig. 6.4). 

 

 

 

 

 

 

 

Figure 6.4.  Schematic explaining the array device terminology.  Numbers and 

shading indicate reservoirs and channels. 

 

 

6.3.3 Basics of electrophoretic exclusion in an array device 

 

Electrophoretic exclusion is achieved at an electrode/solution interface 

when the electrophoretic velocity of a species is greater than or equal to the 

opposing hydrodynamic fluid velocity through a channel.  The array prototype 

was designed with a total of six interfaces, three in the entrance reservoir (one at 

each entrance channel) and three in the central reservoirs (one at each exit 
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channel).  Although exclusion could occur at six different interfaces, experiments 

were designed so that species could be isolated individually in each of the three 

central reservoirs.  The main reservoir was used for sample introduction and the 

electrodes at the entrance channels were designed to control what species were 

allowed to leave the entrance reservoir and travel to the central reservoirs.  

Similarly, the electrodes at the exit channels were programmed to prevent certain 

species from leaving the central reservoirs.  Using this principle, species can be 

selectively isolated and concentrated in the central reservoirs.  Because all 

experiments detailed in this chapter used the same buffer (aspartic acid buffer at 

pH 3) and flow rates were assumed to remain constant throughout the course of an 

experiment (1 – 10 nL/min.), the electric field was manipulated for the 

differentiation of species. 

Experiments were designed so that HPTS would be captured in central 

reservoir 1, while positively charged dyes would be captured in central reservoirs 

2 and 3.  A representative potential sequence is shown (Fig. 6.5). 
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Figure 6.5.  Representative potential sequence used for exclusion experiments. 

 

 

Exclusion only occurred when there was a gradient in the electric field at 

the electrode-solution interface at a channel.  In instances when there was no 

potential difference between reservoirs in series, exclusion was not intended to 

occur.  For a hypothetical example, if the potential sequence above was applied to 

an array, all species would flow between the entrance reservoir and central 

reservoirs 1 and 2.  However, based upon the positive potential difference 

between exit reservoir 1 and central reservoir 1, the negatively charged HPTS 

would be prevented from exiting central reservoir 1, resulting in its isolation in 

that location.  Similarly, the negative potential difference applied between exit 

reservoir 2 and central reservoir 2, would result in certain positively charged 

species being excluded (based upon the species’ mobilities) and isolated in the 

central reservoir.  Assuming two positively charged dyes with differing 

mobilities, central reservoir 2 was designed to capture the positively charged 

species with the larger electrophoretic mobility since a lower potential difference 

was applied.  The potential difference between the entrance reservoir and central 
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reservoir 3 was set equal to that of the difference between central reservoir 2 and 

exit reservoir 2.  This was done to prevent the positively charged dye with the 

larger mobility from entering central reservoir 3.  Finally, the largest negative 

potential difference was initiated between central reservoir 3 and exit reservoir 3.  

This was done to exclude the positively charged species with the smaller mobility.  

Based upon a potential sequence such as the one indicated, three species could be 

isolated individually in each central reservoir, and if experiments are run long 

enough, concentrated in their isolation locations. 

6.3.4 Assessment of initial array design 

 As mentioned previously, the array device was designed based upon many 

of the parameters from the initial microchip studies outlined in Chapter 4.  

However, before complex samples, or even a somewhat simple sample (three 

analytes) can be separated with the device, its basic performance had to be 

assessed.  The main variables tested were the power supply, electrode design, and 

reservoir integrity.  The majority of this chapter is dedicated to testing the initial 

array design. 

6.3.4.1 Electrode design 

 Electrodes were slightly modified after initial experiments were 

performed.  During the course of experiments, unexpected exclusion behavior 

repeatedly occurred in the entrance reservoir at entrance channel 2 (data not 

shown).  Because experiments were designed so that no electric field existed at 

this channel entrance, exclusion should not have occurred.  Inspection of several 

electrode slides revealed an error in the electrode mask at the entrance reservoir.  
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There was a small break in the connection between the electrode pad and the 

entrance reservoir, which prevented the application of potential to that reservoir.  

Instead of being held at a constant potential, this electrode was always at 0 V.  

This allowed it to act as a capacitor, resulting in inconsistent exclusion behavior.  

To rectify this, silver conductive epoxy was used to bridge the gap.  However, a 

new mask was also made to correct the error.  

6.3.4.2 Voltage divider 

 A voltage divider was constructed in-house (Fig. 6.3) using 100 kΩ, 120 

kΩ, and 1 MΩ resistors to divide voltages from the power supply by ~1:10 and 

1:100.  In previous experiments it was determined that the voltages coming from 

the power supply varied by ± 5 V at any given moment, resulting in fluctuations 

of approximately ±5%.  Due to these fluctuations, potential differences between 

reservoirs were sometimes eliminated when they were intended to exist, and other 

times, they were created.  This resulted in some instances of exclusion when it 

was not predicted to, specifically when an experiment was designed to have no 

potential difference between reservoirs.  And in other instances, exclusion did not 

occur, or was not maintained, when it was predicted, particularly when 

differences in applied potential were small (5 – 10 V). 

For example, during a single dye experiment with rhodamine 123, an 

electric field of -100 V/cm (-10 V difference) was applied between central 

reservoir 2 and exit reservoir 2, and between the main reservoir and central 

reservoir 3.  Because of this potential sequence, exclusion was expected to occur 

at entrance channel 3.  A 20 min experiment was performed where still images 
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were taken at various intervals throughout the study and fluorescence intensity 

was then measured in ImageJ.  For this study, intensity measurements were taken 

in central reservoirs 2 & 3 at the top of the reservoirs, just below the electrode.  A 

successful exclusion process resulted in a decrease in the fluorescence at this 

location.  Based upon the applied potentials, an exclusion process was expected 

only at entrance channel 3, resulting in a decrease in the fluorescence intensity at 

the observation location.  The decrease in fluorescence was the result of the 

material being excluded at entrance channel, and, therefore, prevented from 

entering the central reservoir.  Initially, successfully exclusion was observed 

(reservoir 3), as indicated by a decrease in fluorescence intensity (Fig. 6.6).  

However, after approximately 4 min, the fluorescence intensity began to increase 

again, indicating that the excluded material was released and allowed to flow 

down the channel and into the reservoir.  This behavior was consistent with the 

reduction in electric field strength, which can result from fluctuating voltages 

from the power supply. 
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Figure 6.6.  Fluorescence intensity graph.  Measurements were made near the 

entrance electrode in central reservoirs 1 and 2.  The decrease in intensity, 

followed by the increase in intensity in reservoir 3 indicates potential is 

fluctuating 

 

 

To reduce these fluctuations in applied potentials, a voltage divider was 

added to the experimental design.  An initial voltage divider experiment was 

performed using a single dye so that the functionality of the device could be 

tested.  Output potentials were measured, and instead of the varying by ± tens of 

percent when using the lower voltages, voltages only fluctuated by 0.05 

depending on which voltage divider was used.  This was the predicted outcome 

when the voltage divider was being employed and it was expected to improve the 

stability of the applied potentials and allow for anticipated exclusion behavior. 

 The tunability of the voltage divider was also tested.  An experiment using 

HPTS as the analyte initially exhibited unexpected exclusion in the entrance 

reservoir at entrance channel 1 (Fig. 6.7), despite the potential sequence being 

designed not to elicit exclusion at this channel.  Before potential was applied, no 
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exclusion was observed, as indicated by the consistent fluorescence intensity (Fig. 

6.7A, red box).  Once potential was applied, exclusion at the entrance reservoir 

became evident, as demonstrated by the fluorescence intensity decrease at the top 

of central reservoir 1 and within entrance channel 1 (Fig. 6.7B, red box).  When 

exclusion was observed, the potential was measured with a voltage divider.  It 

was determined that there was a small positive potential difference causing the 

exclusion of HPTS.  The voltage was then adjusted at central reservoir 1 during 

the experiment to eliminate the potential difference.  Exclusion immediately 

halted.  This was shown by increased fluorescence intensity in the channel (Fig. 

6.7C, red box) once the potential sequence was adjusted accordingly.  The 

increase in fluorescence intensity resulted from the excluded material traveling 

down the channel again.  This demonstrated the possibility for adjustment during 

the course of an experiment, and consequently, the potential for dynamic 

experiments where potentials could be changed to selectively isolate and move 

species through an array. 

 

 

 

 

 

Figure 6.7.  Voltage divider experiment.  Still images taken in central reservoir 1 

during the course of an exclusion experiment with HPTS while using the voltage 

divider.  (A) Before the application of potential.  (B) Exclusion.  (C) Exclusion 

being halted when the voltage divider was being adjusted.  Images were taken 

using a 1.25X objective. 

 

t = 0 min t = 2 min t = 4 min 

(A) (B) (C) 
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6.3.4.3 Addition of posts to the central reservoirs 

 While the addition of a voltage divider allowed for the application of more 

stable potentials, another challenge arose during the course of the testing.  The 

devices still occasionally suffered from collapsing reservoirs.  A single collapsed 

reservoir rendered an entire array unusable.  Most commonly, it was the central 

reservoirs that collapsed.  On some occasions, the reservoirs would collapse 

before experiments began, preventing the device from ever being used.  On other 

occasions the reservoirs collapsed during the course of experiments, preventing 

the completion of an experiment.  Eliminating the reservoir failure is essential to 

allow for future experiments. 

It was determined that the reservoirs were collapsing due to the small 

height to width ratio.  Interestingly, this was not an evident problem with the 

initial microfluidic design (Chapter 4), likely due to the fact that single channels 

were filled and used immediately.  To counteract the collapsing reservoirs, posts 

were added to the central reservoirs (Fig. 6.8).  Four different post designs, in 

addition to the original design without posts (Fig. 6.8A), were included.  One 

design included four posts, 500 µm in diameter, each 750 µm from the edge of the 

reservoir (Fig. 6.8B).  The second design also contained four posts, each 1 mm in 

diameter and 500 µm away from the edge of the reservoir (Fig. 6.8C).  The 

remaining two designs each contained 16 posts.  One of these designs contained 

posts evenly spaced throughout the reservoir, 250 µm in diameter and 1 mm apart 

(Fig. 6.8D).  The last design contained posts grouped together in four clusters, 
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which were 500 µm in diameter and 200 µm away from the edge of the reservoir 

(Fig. 6.8E). 

All five designs were compared by filling two arrays with rhodamine 123 

according to the experimental protocol.  Once each array was filled, images of the 

central reservoir were captured.  The design without posts (Fig. 6.8A) had the 

largest degree of central reservoir collapsed, as indicated by the dark area in the 

central reservoir.  Each design with four posts also suffered from collapse (Fig. 

6.8B & C), while the designs with 16 posts showed no signs of reservoir collapse 

(Fig. 6.8D & E).  Because of these results, it was determined that either of the 

central reservoir designs with 16 posts is suitable for experimental use.  Future 

experimental devices will incorporate posts. 

 

 

 

 

 

 

 

Figure 6.8.  Images of central reservoirs with various post designs.  (A) No posts.  

(B) Four posts per reservoir.  (C) Four posts per reservoir.  (D) Sixteen posts per 

reservoir.  (E)  Sixteen posts per reservoir.  Designs other than those with 16 posts 

suffered from collapse.  Images were taken using a 1.25X objective. 

 

 

6.3.5 Interpretation of results 

 

Although most of this chapter has been dedicated to describing the 

development process of the array, experimental data was obtained with two dyes 

(A) (B) (C) 

(D) (E) 
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in the device simultaneously.  For these experiments, either dilutions of true blue 

chloride and rhodamine 123 or true blue chloride and rhodamine 6G were used to 

fill the array.  The first example used rhodamine 123 and true blue chloride (Fig. 

6.9).  Before potential was applied to the system (Fig. 6.9A), fluorescence 

intensity remained constant throughout the device.  The fluorescent species 

traveled with the hydrodynamic flow through the channels (from top to bottom).  

The observation area was exit channel 2.  

 

 

 

 

 

 

 

Figure 6.9.  Observation of rhodamine 123 and true blue chloride in array device.  

(A)  Before potential is applied, fluorescence intensity remains constant.  (B) 

After the application of potential, a band of focused material is visible.  Images 

were captured using a 4X objective. 

 

 

After the application of potential, a band of material became visible in the 

central reservoir, just below the electrode (Fig. 6.9B).  This band indicates that at 

least one of the species was focused while under the influence of the electric field 

and hydrodynamic flow.  When potential was removed, the focused species 

flowed down the channel with the hydrodynamic flow.  Since this behavior only 

(A) (B) 

t = 0 s t ~ 40 s 
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occurred during the application of potential, the focusing is presumed to be the 

result of electrophoretic exclusion.   

 Similarly, when rhodamine 6G and true blue chloride were put into the 

device, a focusing effect was evident (Fig. 6.10).  Again, before the application of 

potential, the fluorescence intensity remained constant (Fig. 6.10A).  During the 

application of potential bands of material were visible (Fig. 6.10B).  In this 

instance, however, the bands of material were located in the channel, as opposed 

to in the reservoir.  Although this was not ideal, it could be the result of 

uncontrolled variables.  This data was obtained before the electrode error was 

identified and before the construction of the voltage divider.  Both of these 

variables made it difficult to determine the exact potential that was applied to the 

system. 

 

 

 

 

 

 

Figure 6.10.  Observation of rhodamine 6G and true blue chloride in the array 

device.  (A) Before the application of potential, fluorescent intensity is constant.  

(B) After the application of potential, band of focused material are present.  

Images were captured using a 4X objective. 

 

 

The presence of focused bands of material during the application of 

potential indicates that with continued refinements, electrophoretic exclusion will 

(B) (A) 

t = 0 s t ~ 10 s 
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be successful for separation of multiple species on an array device.  The 

movement of material in the channels indicates that the species are being 

influenced by the electric field, meaning that their electrophoretic velocities are 

countering the hydrodynamic velocity and resulting in exclusion behavior.  

Additionally, the estimated band widths for these experiments are on the order of 

tens of microns, which is comparable to the value reported for the previous array 

device (Chapter 5).  Narrow band widths are necessary for better resolving 

capabilities, and therefore, better separation capabilities. 

6.4  Concluding remarks 

This chapter detailed the steps that have contributed to the design and 

fabrication of an array-based device.  Although the array was intended for the 

isolation of species in complex samples, most of the chapter was devoted to 

identifying the problems associated with its design.  Throughout the course of the 

study, it was determined that electrode design, power supply instability, and 

reservoir structure all contributed to irreproducible results.  By systematically 

addressing each of these issues, future designs can further advance the technique 

towards a successful separations-based array. 
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Chapter 7 

Concluding Remarks 

7.1  Electrophoretic exclusion at a single interface 

 Separation science has often been employed to study complex samples 

because of its ability to remove interferents and isolate species of interest.  An 

ideal separations technique would be fast, sensitive, selective, and have the ability 

to address many types of analytes covering a large range of concentrations.  

Throughout this dissertation, arguments were made for applying electrophoretic 

exclusion to an array-based microfluidic device for the analysis of complex 

samples.  

Although array-based separations were identified as the ultimate goal, the 

electrophoretic exclusion studies presented in this dissertation focused primarily 

on characterizing the differentiation of species in bulk solution at a single 

interface.  Initial work described the exclusion of small molecules on a benchtop 

design (Chapter 3).  Planar microchip experiments demonstrated the ability to 

exclude small dye molecules or particles at a single interface.  These results 

indicated that the technique was useful for addressing analytes with varying 

properties.  Additionally, the separation of small dye molecules from polystyrene 

spheres was demonstrated.  This work demonstrated the first direct visualization 

of electrophoretic exclusion behavior (Chapter 4). 

7.2  Resolution and the potential for array-based separations 

In addition to single interface studies, resolution theory for electrophoretic 

exclusion was developed and it suggested that the technique is capable of 
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separating species with very similar electrophoretic mobilities (Chapter 5).  An 

array prototype was designed and tested (Chapter 6) based on the parameters of 

the single interface microdevice.  Studies indicated that with further refinements, 

electrophoretic exclusion can be successfully used as an array-based technique for 

complex sample analysis. 
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