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ABSTRACT

Over the past fifty years, the development of sensors for biological applications

has increased dramatically. This rapid growth can be attributed in part to the reduction

in feature size, which the electronics industry has pioneered over the same period. The

decrease in feature size has led to the production of microscale sensors that are used for

sensing applications, ranging from whole-body monitoringdown to molecular sensing.

Unfortunately, sensors are often developed without regardto how they will be

integrated into biological systems. The complexities of integration are underappreci-

ated. Integration involves more than simply making electrical connections. Interfac-

ing microscale sensors with biological environments requires numerous considerations

with respect to the creation of compatible packaging, the management of biological

reagents, and the act of combining technologies with different dimensions and material

properties.

Recent advances in microfluidics, especially the proliferation of soft lithogra-

phy manufacturing methods, have established the groundwork for creating systems that

may solve many of the problems inherent to sensor-fluidic interaction. The adaptation

of microelectronics manufacturing methods, such as Complementary Metal-Oxide-

Semiconductor (CMOS) and Microelectromechanical Systems(MEMS) processes, al-

lows the creation of a complete biological sensing system with integrated sensors and

readout circuits. Combining these technologies is an obstacle to forming complete

sensor systems.

This dissertation presents new approaches for the design, fabrication, and in-

tegration of microscale sensors and microelectronics withmicrofluidics. The work

addresses specific challenges, such as combining commercial manufacturing processes

into biological systems and developing microscale sensorsin these processes. This
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work is exemplified through a feedback-controlled microfluidic pH system to demon-

strate the integration capabilities of microscale sensorsfor autonomous microenviron-

ment control.
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Chapter 1

INTRODUCTION

Biological sensing technology has seen tremendous advancements since Leland C.

Clark Jr. introduced the electronic glucose sensor 50 yearsago. Since his presentation

on electrochemical glucose monitoring, sensors for biological applications have be-

come ubiquitous in our daily lives. The extensive usage of biological sensors is mainly

due to the development of sensors which are smaller, more accurate, more sensitive,

and more reliable. These advancements are largely due to therise of the microelectron-

ics industry. The advancements in microelectronics have natural parallels to the needs

of biological sensing. Smaller feature sizes allow sensorsthat are better matched to the

sizes of the biological features they are measuring. The heavily controlled manufac-

turing procedures for electronics also coincide with the desire for highly reliable and

reproducible biological sensors. The batch processing andhigh yield manufacturing

practices significantly reduce the per device cost of sensorproduction. Additionally, the

advancements in microelectronic circuit technology have increased the signal readout

and processing capabilities of new biological sensors. Thefield of biological sensors

continues to grow thanks to these advances and shows no sign of slowing. However,

many of the advancements in biological sensing technology have been developed with-

out regard to their use within an actual sensing system. Sensing systems can become

so burdensome, either by increasing size or decreasing accuracy, sensitivity, or relia-

bility, that many of the original advantages of the new sensors alone are completely

lost. To fully harness all of the advancements of the past 50 years, biological sensor

development needs to be approached on a systems level as wellas the sensor level.

System integration is challenging for a variety of reasons.The first is the size

of the sensors. Sensors can now be on the order of nanometers,but they still require

interfacing with larger components to be effectively used anywhere other than the ideal
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laboratory setting. Difficulties arise when making connections to read a signal. Man-

aging analyte interaction with miniature sensors is also a problem.

Another issue with new sensors is working with the signals they produce. Small

sensors often produce small signals. Getting as much information as possible out of a

signal often requires filtering, amplifying, and computational processing. Microelec-

tronics are well-suited for all of these tasks. However, interfacing electronics with

sensors is not straightforward. Care has to be taken to ensure the electronics do not

interfere with the sensor or analyte and vice versa. For the best results, sensors should

be located as close to possible to the readout circuits associated with them. Bringing

components together reduces noise therefore making the sensor more effective. Many

challenges arise from combining different technology effectively.

Additional problems emerge for continuous monitoring applications. Some bi-

ological sensors, such as glucose monitors and pregnancy tests, are designed with sin-

gle use components. Systems that perform multiple time-point measurements offer

more information than single-use sensors. The additional time dependent data provides

means for the analysis and prediction of the response to change within a biological sys-

tem. However, additional information requires more complex signal conditioning and

processing.

The sensor environment is also important. The sensors should be protected

from outside disturbances, and care should be taken to ensure that the sensor is actually

making the desired measurement. Microscale and nanoscale sensors naturally lend

themselves to placement in a microscale environment for effective control. The most

common way to create a microscale biological environment isthrough a microfluidic

device. Microfluidics offer unprecedented control over microscale reactions and are

becoming increasingly popular in biological technology. Effectively placing sensors
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within microfluidics is not easy and presents many challenges in both packaging and

fabrication.

This dissertation presents new methods for creating sensorsystems. Intricacies

in the design, fabrication, and packaging of sensor systemsare discussed as a complete

problem. Solutions for combining microelectronic circuits, microscale sensors, and

microfluidics are also presented.

The work presented here is organized on the sensing scale of the system dis-

cussed. Chapters 4 and 5 present systems for whole-body level sensing. These chapters

show the ability of adapting commercial microelectronics processes for sensing appli-

cations while still maintaining a small size. Chapters 6 and7 detail work on cellular

level sensing applications. The systems sense cellular impedance or cellular electrical

activity to demonstrate interfacing capabilities and integrated processing. Chapters 8,

9, and 10 discuss the ion sensitive field effect transistor asa pH sensor for molecular

level sensing. Device characteristics are examined and a system to mitigate drift is

presented. A complete feedback controlled pH system is presented to highlight the ca-

pabilities of combining sensors, microelectronics, and microfluidics. Chapters 11 and

12 present information on the use of commercially availableCMOS processes for mi-

croscale sensing systems. Designs for CMOS integrated sensors are shown along with

a novel method for interfacing CMOS circuits with microfluidic environments.

Prior to discussing sensor systems, this dissertation begins with brief introduc-

tions to two topics commonly addressed through the remainder of this work: cell cul-

ture (Chapter 2) and soft lithography microfluidics (Chapter 3).
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Chapter 2

CELL CULTURE

The first tissue culture experiments in 1907 used small pieces of frog spinal cord placed

on clotted tissue in a warm, moist chamber to show that cells could proliferate in artifi-

cial environments [1]. Since those experiments, cell culture has been an integral part of

biological research. Cell culture provides a means to studythe behavior of animal cells,

either under normal conditions or the stress of an experiment. The growing use of cell

culture in fields including cancer research, stem cell research, and vaccine production,

has also created a substantial financial impact. A report by Global Industry Analysts

Inc. projects the global market for cell and tissue culture supplies to surpass $6 billion

by 2015 [2]. Cell culture usage shows no signs of slowing in the coming years either.

While the cell culture market has seen extraordinary prosperity in the past 100

years, many of the methods for performing cell culture research have been largely

unchanged. This chapter examines the current status of cellculture practices. Re-

quirements for effective cell culture are presented. Many of the problems addressed

throughout the remainder of this work incorporate biological analysis, often with the

aim of improving cell culture applications. A thorough understanding of cell culture is

therefore essential.

2.1 Basics

Cell culture, thein vitro growth of cells, begins with harvesting cells from intact or

dissociated tissues or organs from a living subject [3]. These freshly harvested cells are

known as a primary culture. Cells are kept in a controlled environment and proliferate

until they are ready to passage. Passaging is the term for transferring cells from an on-

going culture into a new culture to allow further propagation. The continued passaging

of cells is dependent on the type of cell. After primary cellshave been passaged, they

can be considered a cell line.
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Primary cell lines often show behavior dependent on the passage number. Dif-

ferent harvesting methods or different harvesting sourcescan also lead to variations in

behavior. Primary cell lines are preferred when a specific cell behavior, such as elec-

trical activity, is of interest. However, when the specific behavior is of less interest,

cells that exhibit consistent behavior through repeated passaging are preferred. This

repeatability is possible by using cells which have been transformed. Transformation

is the alteration of cell characteristics such as cell cycletime, anchorage dependence,

response to growth factors, or most importantly the lifespan of the cell. Cells can be

transformed to have an infinite lifespan, thus allowing specific cell lines to be main-

tained with well-known characteristics. There are some differences in the behavior of

primary cells and immortalized cells, but the culture and analysis methods are largely

the same.

2.2 Cell Growth

There are four basic stages of cell growth in culture: lag, log, plateau, and decline.

Immediately after plating of cells (primary or immortalized) into a new vessel, cells

undergo a lag phase during which they do not divide. The length of the lag phase

mostly depends on the growth phase of the cells when they werepassaged and the

seeding density. During the lag phase, cells adapt to their surroundings. The next phase,

log phase, is characterized by logarithmic proliferation.The plateau phase occurs when

the cells have grown sufficiently to take up all the space available. This culture state

is known as confluent. After reaching plateau phase, the cells go into decline with the

rate of cell death exceeding the rate of cell division.

During all phases of cell growth, cells consume glucose and oxygen and pro-

duce carbon dioxide (CO2) and lactic acid. The balanced production of CO2 and lac-

tic acid is important to maintain a physiological pH of 7.2 to 7.4. The lag phase of

growth presents culture problems because these factors areunbalanced, with lactic acid

5



production outpacing CO2 production. Therefore, most cell culture systems provide an

elevated CO2 environment to provide balance. But providing elevated CO2 levels is not

the only means of regulating pH; cell culture media can also aid in pH maintenance.

2.3 Media

Initially, cell culture media were composed of natural media extracted from tissues and

body fluids. With the increased utilization of cell culture,and thus increased media

demands, chemically defined media have been developed. These media have been

formulated to maintain proper pH, osmolarity, and nutrition. The media comprise a

combination of a basal medium and serum. The serum provides the necessary growth

factors while the basal medium contains nutrients and a balanced salt solution. The

balanced salt solution provides pH buffering for the system, usually by the inclusion of

sodium bicarbonate. As CO2 dissolves into the media, it causes the pH to rise by the

reaction

H2O+CO2 ⇔ H2CO3 ⇔ H++HCO−
3 (2.1)

The presence of sodium bicarbonate helps drive this equation back to the left because

sodium bicarbonate dissociates,

NaHCO3 ⇔ Na++HCO−
3 (2.2)

producing excess bicarbonate. This system manages to maintain pH at the ideal bi-

ological value of 7.4. Some media have been developed which do not require in-

creased CO2 concentrations to stabilize pH; instead they operate with atmospheric

CO2. These media usually incorporate pyruvate, an amino acid, or phosphate-based

solutions for buffering. Another common buffer system is HEPES, 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid. HEPES is a strong bufferin the 7.2 to 7.6 range, but

is both toxic and expensive so efforts are made to minimize its use.
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2.4 Incubation

While the media can provide nutrients and pH control, external sources are used to

maintain CO2 concentration and temperature. An incubator is commonly employed to

create a proper culture environment. The incubator keeps a stable temperature, 37◦C,

and humidity, 100%. Temperature stability is very important because just a 2◦C change

for a short period can cause cell death [4]. The humidity is necessary to prevent changes

in media concentration due to evaporation.

2.5 Microfluidic Cell Culture

Much work has been performed to advance cell culture methodsusing the growing

fields of microfluidics and microfabrication [5]. Many devices have been developed

for cellomics including cell sampling, cell trapping and sorting, cell treatments such

as lysis and transfection, and cellular analysis [6–10]. Microfluidic platforms are now

widely produced using poly(dimethylsiloxane) (PDMS) [11]. PDMS has good bio-

compatibilty, optical properties, and a quick turnaround time in fabrication, so it is

well-suited for biological applications [12]. Instead of merely performing cellomics

in PDMS microfluidic devices, recent work has focused on creating systems capable

of maintaining cell cultures over time or incorporating sensors [13–20]. Hung et al.

demonstrated the ability to perform high-throughput assays on cultures of cells [21].

Automated cell culture systems have been developed which have maintained viable

cells in 96 independent culture chambers for weeks at a time with mixers and pumps

incorporated into the microfluidic design [22]. Other systems have been created to

work toward minimizing human interaction with cells in the culture [23]. Recently,

3-dimensional culture in PDMS devices without the use of hydrogels for suspending

cells has been demonstrated [24, 25]. PDMS cell culture is becoming more common

in scientific research; guides to performing standardized PDMS cell culture work have

been published [26]. However, PDMS cell culture devices still require a great deal of
7



human involvement and lack sufficient sensor systems to giveinformation about the

culture microenvironment.
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Chapter 3

SOFT LITHOGRAPHY MICROFLUIDICS

Many of the advances of the microelectronics industry in thepast 50 years have hinged

on the ability to make devices smaller. Near the end of the century, the same miniatur-

ization techniques began to find applications in biologicalresearch. George Whitesides

pioneered many of the advances through his work with polydimethylsiloxane, com-

monly referred to as PDMS. Whitesides presented ideas such as elastomeric printing

and micromolding, which were referred to collectively as “soft lithography” [27]. The

field of soft lithography matured very quickly, with many biological oriented devices

being developed [28]. Soft lithography also continued to adopt many of the advances

of the microelectronics industry, including large scale integration [29]. Soft lithogra-

phy microfluidics are now widely used with entire journals devoted to advances in the

field. This chapter gives a brief introduction to the techniques commonly used to create

PDMS microfludics. Many of these techniques are applied throughout the rest of this

dissertation.

3.1 PDMS

PDMS is a type of silicone rubber. Chemically, PDMS consistsof repeating monomer

[SiO(CH3)2] units. It is basically aSi−O−Si−O polymer backbone with each silicon

atom bearing two methyl groups. The chemical structure of PDMS is shown in Figure

3.1. PDMS has a number of uses ranging from contact lenses to shampoo. It has

numerous properties that make it well-suited for biological applications, such as being

optically clear, inert, gas permeable, non-toxic, and non-flammable.

PDMS is used to make microfluidics because it is mixed as a viscous liquid and

then slowly cures to become solid. The chemical structure ofPDMS allows for easy

conversion to a solid by cross-linking the polymer backbone. The slow curing time,

typically an hour or more depending on temperature, allows for the viscous solution
9



Figure 3.1: Chemical structure of PDMS.

to be molded. PDMS molds to the contours of the container holding it during curing,

even maintaining micrometer or smaller features. The elastomeric properties also allow

PDMS to be easily peeled away from a mold.

Additionally, the surface properties of PDMS can be modified. Exposing PDMS

to an oxygen plasma treatment creates exposed hydroxyl groups in place of the surface

methyl groups. These hydroxyl groups can be transformed to allow a number of re-

actions to occur at the surface, such as the attachment of self assembled monolayers.

Perhaps the most useful consequence of surface activation is the ability to permanently

bond the PDMS to another surface. Plasma treatment of PDMS allows it to form a

covalent bond with another piece of activated PDMS. This surface modifying reaction

can also be easily performed with activated glass substrates or any material with free

hydroxyl groups.

3.2 Microfluidic Fabrication

Fabrication techniques for soft lithography microfluidicsall follow the same basic pro-

cedure. Briefly, the procedure is to create a master mold using lithography techniques,

pour PDMS over the mold, allow it to cure, remove the PDMS, then attach the molded
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PDMS to another material to complete the channels. Of course, more elaborate fabri-

cation methods are available to create complex designs.

The more specific fabrication process for a simple microfluidic device is as

follows:

1. A mask is designed, often in a computer aided drafting software. Here the geom-

etry of the device is defined including channels, input and output ports, and any

other microfluidic feature.

2. A silicon wafer is cleaned in preparation for lithography. It will be used to create

the mold.

3. Photoresist is spin coated onto the wafer. Either positive or negative resists will

function to create a mold. Positive photoresists are sometimes preferred because

they can heated after processing to “reflow”. This reflow action causes the sharp

edges of the design to be smoothed. This is often helpful in creating valves as

will be discussed later. Negative resists, such as SU-8, areoften used because of

their ability to create high aspect ratio patterns.

4. The resist is baked, exposed, and developed according to the procedure for the

resist used. The mask design is thus patterned in the resist.

5. The patterned resist is hard baked. This step helps the adhesion of the resist to

the wafer. In the case of positive resist, this also causes reflow.

6. PDMS is prepared by mixing the two part resin. The mixture is typically 10 : 1,

part A : part B. The two parts are thoroughly mixed to ensure aneven reaction

throughout.

7. The mixture is degassed to remove bubbles. Bubbles naturally occur during the

mixing process so it is essential to remove them to create homogeneous devices.
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8. The liquid PDMS is poured over the prepared patterned resist mold.

9. The mixture is allowed to cure. It will cure overnight at room temperature or in

approximately two hours at 70◦C.

10. The cured PDMS is peeled away from the master mold.

11. The PDMS is cut down to include the desired shape containing the microfluidic

device.

12. A blunt needle is used to punch holes for access to the microfluidic channels.

Typically port areas have been defined in the design to signify the location of

these ports.

13. A glass slide is cleaned with isopropyl alcohol and water, then dried.

14. Both the PDMS and the glass slide are treated with oxygen plasma. The typical

treatment uses a Harrick Plasma System (Harrick Plasma, Ithaca, NY). Oxygen

is used as the process gas and “high” RF power is used for 30− 60 seconds.

The pressure should be kept lower than 600 mTorr; a light purple plasma should

be visible during treatment. A bright pink plasma indicatesa nitrogen plasma,

usually due to room air inside the chamber.

15. Immediately upon completion of the plasma treatment, the activated PDMS sur-

face is placed on the activated glass surface. The two piecesinstantly bond.

16. The pieces are left in an oven at 70◦C for about 10 minutes to allow a strong

bond to form.

The completed microfluidic structure can then be used for thedesigned pur-

pose. More advanced microfluidic structures often consist of multiple layers. More

layers allow for channels to cross without mixing. Multilayer devices also allow for the
12



creation of valves. The easiest type of valve to make is a normally open configuration.

This means that flow will pass through the valve unless the valve is activated. There

are two common methods to create normally open valves: push up configurations and

push down configurations. The difference is illustrated in Figure 3.2. The fluid layer

contains the fluid of interest. The control layer is either filled with air or water that can

be compressed by air. The general operation of both valves isidentical - a pressure

is applied to the control channel which causes the thin layerof PDMS separating the

channels to flex into the fluid channel and block flow. Reflow of the patterned resist can

help to create rounded channel shapes. This is helpful in preventing leakage around the

valve in the corners of the fluid channel that the membrane does not fully block.

Glass

Fluid 

Control

Membrane

PDMS

Glass
Fluid 

Control
Membrane

PDMS

Figure 3.2: Push up (top) and push down (bottom) microfluidicvalve configurations.
Both designs are normally open valves.

The process for making valves involves added steps to the simple device fabri-

cation sequence presented earlier. The process for push down valves is stated here. The

procedure for push up valves simply switches the fluid and control layers.
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1. Two masks are designed, one for the fluid layer and one for the control layer.

The mask needs to include channel crossings where valves will be created. In

general, the valve layer should be 10 times wider than the depth of the fluid layer

when a valve is desired. A crossing without a valve can be created by using a

thinner valve layer [29].

2. Both masks are used to create molds with patterned resist.The fluid layer should

be approximately 10µm tall. The control layer height is not as important as long

as it does not become blocked. A height of 10µm to 40µm is usually sufficient.

3. PDMS is mixed and poured over the control depth to a usual device thickness,

approximately 5mm−10mm.

4. Uncured PDMS is spun onto the fluid layer at 3500 RPM. This creates a thin

PDMS layer over the entire wafer. Areas over the patterned resist are even thinner

and will act as the flexible membrane when the control layer crosses a channel

layer.

5. Both wafers are allowed to cure for about two hours at 70◦C.

6. The control layer is removed from the mold and the excess PDMS is removed

from the sides so the molded surface is flat.

7. Both the fluid layer (still on the wafer) and the control layer are plasma treated.

8. Immediately upon completion of plasma treatment, the control layer is aligned

with the fluid layer and brought into contact to form a bond.

9. The pieces are left in an oven at 70◦C for about 10 minutes to allow a strong

bond to form.

10. The two bonded layers are then peeled from the fluid designwafer. Access ports

are then punched. The design is then ready for bonding to glass.
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These basic soft lithography techniques are used throughout this work to form

microfluidic devices.
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Chapter 4

MEMS TILT SENSOR

Tilt measurement is ubiquitous to a range of research and industrial fields including

automotive, aerospace, mechanical, and civil engineering. Biomedical engineering re-

search also employs tilt sensors. Recent research used tiltdata to analyze the gait in

persons with stroke or spinal cord injury [30] [31] and for advancing human-computer

interface capabilities [32] [33]. A particularly interesting application area is replacing

the function of the human vestibular system, commonly knownas the inner ear.

According to the Food and Drug Administration [34], at the end of 2006, more

than 112,000 people worldwide had received cochlear implants. Many of the indi-

viduals receiving cochlear implants also suffer from dizziness and balance disorders

from loss of inner ear functions. The inner ear’s vestibularsystem provides cues about

self-motion and helps stabilize vision during movement. Augmentation of cochlear im-

plants to include restoration of vestibular function wouldaid these individuals. It has

been estimated that approximately 30,000 Americans are coping with profound loss

of inner ear balance [35]. Restoration of balance could be achieved by bypassing a

dysfunctional element in the vestibular pathway using artificial stimulation. There are

a number of sites along the vestibular pathway that can be tapped into: the ampullae,

the scarpa’s ganglion, and individual nerve bundles.

The vestibular system in human physiology, illustrated in Figure 4.1, senses

the head’s motion and orientation using the ampullary (within semicircular canals)

and otolith (utricle and saccule) end organs. Three orthogonally oriented semicircu-

lar canals sense angular acceleration while the otolith organs oriented perpendicular

to one another sense tilt and linear acceleration. Both of these systems are based on

natural microfluidic technology, in which motion or otolithdisplacement is detected by
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cilia. The cilia, which are tiny hairs, signal the displacement angle by modulating the

firing frequency of the underlying neurons.

Figure 4.1: Illustration of the inner ear with the ampullaryand otolith end organs indi-
cated [36]. Changes in head position cause movement of fluid in the inner ear resulting
in cilia deformation. The deformation generates an electrical signal that is interpreted
as motion by the brain. This is the body’s natural fluidic microelectromechanical sys-
tem (MEMS).

Advanced applications such as a vestibular replacement require a tilt sensor that

produces a readout signal so data can be collected and analyzed. The tilt sensor also

needs to function at angles other than flat with respect to gravity. Additionally, many

applications such as vestibular implants desire low power consumption and a small

device size; other application areas value a device with robust operation that is resistant

to environmental noise. Of course the most important quality for such a sensor is a

precise and accurate measurement of tilt with an adequatelyhigh sensitivity.

This chapter describes the complete design, fabrication, and testing of a new

tilt sensor design. The device utilizes a commercial MEMS process to create a unique
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device. This novel adaptation of microfabrication technology for biosensing focuses

on measurements at the whole-body level.

4.1 Background

Generally, tilt sensors can be classified by the pendulum (the material which responds to

changes in inclination) and the method of obtaining a signal. There are three basic cate-

gories for pendulums: solid-mass pendulum, liquid pendulum, and gas pendulum [37].

All of the pendulum types function similarly by responding to the direction of the grav-

itational force. The methods for detecting changes in the pendulum state have much

more variety and include resistance [37–42], capacitance [43–46], inductance [47–49],

magnetism [50], fiber optics [51–53], and optical measurement [54–58]. Many differ-

ent configurations of tilt sensors have been made for each detection method.

Fluid pendulums have been used to cause resistance changes by shifting the

position of liquid mercury [38] or by changing the amount of conductive fluid [39] [40].

Clever designs by Billatet al.[41] and Milanovićet al.[42] used heat transfer through a

gas to cause thermal changes in resistance. Other recent designs measured deformation

of a solid pendulum using piezoresistance [37]. Resistance-based devices have good

sensitivity and stability but their performance is susceptible to external and internal

influences.

Capacitance changes are often used to detect relative differences in the height

of a liquid pendulum [43] [46], with permittivity sometimesimproved by the addition

of nanoparticles to the detection fluid [44]. Other capacitive sensing setups utilize a

solid proof mass similar to the operation of an accelerometer [45]. Generally, these

devices perform well, but temperature and humidity can tamper with the results.

Less common sensing techniques include measurement of tiltwith inductance,

magnetism, or fiber optics. Inductance-based tilt sensors utilize a ferrofluid as a pen-
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dulum [47–49]. Magnetic sensors use a pair of magnets to alter a magnetic field when

tilted [50]. Fiber optic methods involve the use of a liquid pendulum [51] or solid pen-

dulum [52] [53]. However, these less common sensing techniques require complicated

measurement setups with expensive or large components.

Optical methods have been used in combination with many different types of

pendulums. The refraction of light through a liquid pendulum has been measured op-

tically to determine inclination [56]. Ragazzoniet al. measured the deflection of light

through an array of prisms to determine tilt [57]. Another optical method utilized a

freely rotating, solid-mass pendulum atop a circular photodiode array for one dimen-

sional tilt detection with accompanying on-chip readout circuitry [54]. Work by Kato

et al.[55] uses a liquid pendulum and detects the position of a bubble by use of a photo-

diode array. The device by Katoet al. has a similar operation to the device presented in

this work, but their design used a spirit level (commonly available in hardware stores)

placed on top of a photodetector array to create a macroscalesystem requiring manual

assembly. A spirit level is a common tool for carpenters, masons, or anyone that simply

wants to hang a picture. The tool uses bubble movement withina vial to indicate devi-

ations in inclination with respect to the force of gravity. Auser simply has to visually

inspect if the bubble is centered in the vial to determine if asurface is flat. The infor-

mation gathered from the device is useful for hanging a picture but it does not satisfy

the needs of scientific applications.

4.2 Design and Operation

We began the design of our tilt sensor with the natural operation of the human vestibular

system as a model. However, it is impossible to create an exact replica of the vestibular

system using MEMS technology. This is impossible because there is not a soft, flexible

material in commercial MEMS processing that can replicate biological tissue material.

Ideally we would produce flexible transducers to mimic the mechanotransduction prop-
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erties of the cilia within the inner ear; instead, we had to determine an alternate method

to produce a signal. The vestibular system relies on fluid movement to detect tilt using

the otolith organs so we developed a design under the same premise of sensing flu-

idic motion. Noting the operation of spirit levels inspiredus to replicate their function

within a MEMS microfluidic environment.

Our design was constrained by the fabrication steps available in the SensorNor

MultiMEMS process. The process involves standard silicon wafer processing tech-

nology but with the addition of isotropically etched borosilicate glass. The process is

summarized in Figure 4.2. The MultiMEMS process offers a p-substrate wafer with

n-well and n-epitaxial layers. Also offered are an n+ layer and four types of p-doping:

p-surface resistor, p-surface conductor, p-buried resistor, and p-buried conductor. It is

a single metal layer process and includes anodic bonding of both top and bottom side

glass layers. The glass is bonded to the wafer after silicon processing and allows the

formation of sealed cavities as well as access to the siliconsurface.

Based on the constraints of the process we developed a MEMS microfluidic tilt

sensor, the principle of operation of the sensor is illustrated in Figure 4.3. The MEMS

tilt sensor consists of a square cavity that is partially filled with an opaque liquid. The

remaining volume in the cavity is occupied by an air bubble. Tilting the device changes

the position of the bubble within the cavity. The fluid cavityis located directly on top of

four equal-area triangular p-n junction photodiodes. The photodiodes are rotated 45◦

off-axis from the square sides of the cavity so the base of each triangle aligns against

one side. Light is projected from a light-emitting diode onto the device from above.

Light passes through the bubble and fluid in the chamber, and the photodiodes measure

the number of photons reaching the bottom of the cavity. The magnitude of the current

produced in each photodiode depends on the number of photonsreaching the sensor,

allowing the position of the bubble to be determined.
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Figure 4.2: Cross-section schematic showing each of the doping regions available in
the SensoNor MultiMEMS process (A). Definable layers include n-well, n-epitaxial,
n+, and four p-doped layers: p-surface resistor (PSR), p-surface conductor (PSC), p-
buried resistor (PBR), and p-buried conductor (PBC). Both atop and bottom layer of
glass can be isotropically etched from both the top and bottom sides before anodic
bonding. The bottom glass layer is not pictured. The cross-section for the photodiode
structure is shown in (B). Three p-doped regions, PSR, PSC, and PBC, are stacked to
maximize the depletion region. The pattern of stacked layers is repeated throughout the
photodiode area.

Fluid-Light Interaction

The number of photons passing through liquid to the photodiodes is reduced according

to Beer’s Law,

A= εbc (4.1)

which states that the absorption (A) of a fluid is dependent on its the molar absorptivity

(ε), the distance the light travels through the fluid (b), and the fluid’s concentration (c).

Simply put, the farther light travels through a liquid the more the intensity decreases

because some of the light is absorbed by the liquid. Areas covered with more liquid

will have lower current outputs because the number of photons hitting the photodiode
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is decreased. More light reaches sensing areas directly below the bubble which allows

the bubble location to be determined.

Figure 4.3: The sensing region consists of four equal-area triangular regions. The
bubble is located in the center when the device is aligned normal to gravity. As the
device tilts the bubble moves to expose different areas of each photodiode. Micrographs
and corresponding illustrations of the device show the bubble moving to contact the
wall when tilted toward each corner.

Sensor Operation and Output

The bubble position depends on the orientation of the devicewith respect to gravity.

The bubble will be centered at the top of the cavity when the base of the device is normal

to the gravitational force. As the device tilts, the bubble moves along the ceiling of the

cavity and therefore changes which photodiodes are more illuminated. The operation
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is illustrated in Figure 4.4. Since all four photodiodes areequal area and oriented 45◦

off-axis from the square cavity (which we assume to be oriented with thex andy axes),

the four output currentsIA, IB, IC, andID are related to the bubble position on thex and

y axis with:

x=
IC− IA
IC+ IA

(4.2)

y=
IB− ID
IB+ ID

(4.3)

Dividing by the sum of the two regions in equations (4.2) and (4.3) normalizes the

output. The tilt angle and inclination direction can be calculated from the measuredx

andy position of the bubble. If we assume the top of the cavity is hemispherical and

the shape of the bubble remains circular, then the relationship between current output

and tilt angle,θx, is approximated withx = arctan(θx) [55]. Because our device is

symmetric, this relationship also holds for tilt measured in they direction,θy.

4.3 Fabrication and Testing
Design Layout

We designed two versions of MEMS tilt sensors and various photodiode test structure

to be included on our test chip. The only difference between the two tilt sensor designs

is the etching of the glass above the photodiodes. One of the designs has a fully open

cavity. The other design only has the bottom side of the top glass etched, forming an

enclosed cavity. The enclosed cavity is accessible throughaccess ports which were also

incorporated into the glass etching design. Both designs have an identical photodiode

layout in the silicon below the cavity. The full sensor layout, generated using L-Edit, is

shown in Figure 4.5.

The tilt sensor’s fluidic cavity has a pan (rectangular prism) shape formed by

creating an open area in the top glass, 2360µm× 2360µm. The open cavity design

maximizes the total depth of the pan. This will be defined by the thickness of the glass,

525µm. These dimensions give a total volume of approximately 2.9µL. The enclosed
23



A

C

A C

A

C

A

C

θx

X

I

LED

Figure 4.4: A cross-section of the device tilting along thex axis shows bubble move-
ment. As the inclination angle increases in the positive direction, the bubble exposes
photodiode C more than photodiode A, which increasesIC and decreasesIA. Approxi-
mating the top surface of the device as a hemisphere allows usto predict a relationship
between angle and output current that is close toI = arctan(θx), shown in the graph.

cavity design only etched on the bottom side of the top glass to create a pan depth of

310µm; this causes the total volume to drop to 1.7µL. While the total volume of fluid

for each device varies between the two designs, their operation is analogous.

The optical detection for the tilt sensor is composed of fourp-n photodiodes.

The p-doped side of the diodes is designed with overlapping p-surface resistor, p-buried

conductor, and p-surface conductor; the n-doped side is n-epi. The configuration and

choice of doping regions was determined by examining the relative doping levels of

each layer and the photon penetration depth for silicon [59]. The optical detection oc-

curs in the depletion regions formed at the junctions between the p-doped and n-epi
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Figure 4.5: Layout of the enclosed cavity design is shown. The four photodiode areas
are the triangular regions with a common vertex in the center. The fluidic ports extend
to the left from the sensing region for access to the cavity. The layout for the open
cavity is identical except the ports are not included. Each triangular region has a base
of 2mmand an altitude of 1mm.

regions. Stacked p-doped regions allows for the largest depletion region to maximize

photocurrent over a given area. A cross-section of the photodiode layout is shown in

Figure 4.2. The configuration is repeated across the entire photodiode region. Each

photodiode is a triangular area with a base of 2mmand an altitude of 1mm. The pho-

todiodes are arranged with a separation of 14µm. Photodiode test structures were in-

cluded on the device to allow characterization of each combination of p-n photodiode

separately. We defined equal areas of the four p-doped regions independent of any other

doping so geometry differences did not exist to vary the characterization results.

The completed chip fabrication is shown in Figure 4.6. The open cavity design

is not shown in this picture but is identical in size.
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Figure 4.6: Micrograph of tilt sensor before fluid addition and sealing. The access
ports extend from the left of the sensing region. Bondpads for electrical connections
are shown on the right.

Photodiode Characterization

Initial characterization of the photodiodes was performedusing test structures. These

structures were designed such that p-n junctions were formed between the n-type epi-

taxial layer and the four p-type layers as described in section 4.3. The p-type layers

each had different junction areas as a result of different doping ratios, and they were at

different depths within the final structure. It was expectedthat the photodiodes would

have different current-voltage characteristics and wouldexhibit different sensitivities

to optical stimulation.

The photodiode test structures were probed using a Semiprobe probe station

and measurements were performed using a Keithley 2636A source-measurement unit.

All measurements were performed in a dark room so ambient light was eliminated.

With the light source turned off, current-voltage measurements were performed for

each of four single-layer photodiodes on each die. As demonstrated in Figure 4.7,
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each of the four photodiodes shows a slightly different current-voltage characteristic.

The difference is expected considering the difference in p-n junction depths for each

photodiode combination layout. The classic features of a forward biased diode are

quite evident and confirm that we did in fact make good diode connections. Results

for reverse bias performance are shown in Figure 4.8. As expected, we observed a

linear correlation between light intensity and photocurrent. Our results confirmed that

our multilayered photodiode design increased the photocurrent over just using one p-n

junction photodiode.
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Figure 4.7: Photodiode characterization data showing the current versus voltage behav-
ior for all four devices. All devices have a turn-on voltage of approximately 0.7V.

Fluid Selection

The properties of the fluids used within the device are very influential on the perfor-

mance. There were three properties that we analyzed in selecting a fluid: viscosity,

surface tension, and opacity. The viscosity and surface tension of the fluid determines

how quickly the bubble moves and settles. The response time is inversely proportional

to the viscosity of the fluid. Because of the small scale of thedevice, surface tension

forces will have a significant effect. We also desired a liquid that was opaque to block
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Figure 4.8: The relationship between intensity and currentwas characterized for the
four photodiodes with a bias of -6.0 V. Because the devices are reversed bias there is a
nearly linear relationship between light intensity (arbitrary units) and photocurrent.

light and therefore increase the contrast for the bubble area. These same fluid proper-

ties are desirable in commercially available spirit levels. Traditional spirit levels utilize

an alcohol (hence the “spirit” nomenclature) because of their low values for surface

tension and viscosity. The alcohol is also colored, though it is usually yellow or green,

to provide contrast when viewed by the user.

Water was first examined as a possible fluid because it is non-toxic and could

be easily dyed to increase the opacity. Water was found to be inadequate due to the

high surface tension and viscosity values (72dynes/cm [60] and 1cP [61] at 298.15

K, respectively). We instead selected methanol as the alcohol to fill the tilt sensor

cavity. It was chosen because it has low surface tension (22.1dynes/cm) and viscosity

(0.54cP). Another option, ethanol, has a surface tension nearly identical to methanol

(22.27dynes/cm) but about twice the viscosity (1.07cP). Because surface forces play

such large roles in fluid-surface interactions we sought to minimize all these values and

hence chose methanol.
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The issue with the choice of methanol lies in trying to make itopaque. The po-

sition of the bubble is better defined when there is a large difference in the absorptivity

of the fluid and the bubble. Methanol is received as clear liquid so there is little contrast

from an air-filled bubble. In accordance with Beer’s Law (Equation (4.1)), we increase

the absorption of the fluid by increasing the molar absorptivity, which is accomplished

by adding a dye. However, methanol is actually a solvent usedto dissolve and re-

move many common water-based dyes, such as food coloring. Wetherefore had to dye

the methanol using a solvent-based dye. Solvent dyes are used in permanent markers.

We accomplished methanol dying by dipping the felt tip of a a black Mark-tex Film

Opaquer pen (ITW Dymon, Olathe, KS, USA) directly into 100% methanol (VWR In-

ternational, Radnor, PA, USA) until the methanol was a uniform black color. The dye

remained in solution as long as the methanol did not evaporate (thus illustrating the

need to re-cap markers!).

Device Sealing

Preliminary sealing tests were performed on the open cavitydesign because fluid could

simply be pipetted directly into the cavity. However there were a number of difficulties

associated with the sealing of the device while keeping the solution contained. A major

problem was the volatility of the methanol. The methanol is evaporated quickly, leaving

little time to physically cover and seal the device. The volatility of the methanol also

excluded sealing using heat. The second issue was the choiceof an adhesive. Methanol

reacts with most epoxies preventing them from fully curing.If the methanol was not

sequestered from the glue used to seal the cavity, then an imperfect seal would form.

Poor sealing either led to the cover falling off or methanol evaporation due to leakage.

Due to the difficulty in sealing the open cavity, the focus wasshifted to the

enclosed cavity with access ports. Filling of the small cavity through the access ports

was initially very difficult. The effects of surface tensionon a device with such small
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dimensions were apparent through the solution clinging to the glass walls of the ports.

We found that fluid could be injected into the device using a Fisherbrand Elite Pipet-

ter with an Ultra Micro Pipet Tip (Fisher Scientific, Waltham, MA, USA) capable of

dispensing volumes down to 0.1µL. Dyed methanol was injected until a bubble with a

diameter of over 1.2mmwas present and moving freely within the cavity. The bubble

could be trapped in the device by tilting so the bubble would move away from the ports.

Although the fluid was contained, it still evaporated slowlythrough the access ports.

We were still unable to use an epoxy to seal the device becauseit would not cure when

in contact with the methanol, even with the small area of the access ports. The solution

was to plug the holes into the cavity using small pieces of Parafilm “M” (Pechiney Plas-

tic Packaging, Chicago, IL, USA). The parafilm is resistant to methanol and forms an

airtight seal allowing the use of epoxy to seal the outside and hold the parafilm in place.

The parafilm was covered with Loctite 3335 UV curable epoxy (Henkel Corporation,

Westlake, OH, USA) and cured with an EN-180 handheld 8W UV-A longwave lamp

(Spectroline, Westbury, NY, USA). The fully cured epoxy ensured that the Parafilm

would maintain a sealed cavity without leakage. The sealed device is shown in Figure

4.9. Finally, the fully assembled MEMS device was wire bonded to a 24 pin side-

braze DIP (KD-S86898-B-1, Kyocera, Kyoto, Japan) for electrical access and ease of

handling.

Tilt Testing

Testing of various angles of inclination was performed witha Hi-Tech HS-645MG

servo motor (Hitec, Poway, CA, USA) attached to a moveable platform as shown in

Figure 4.10. The servo motor is controlled with Motor-Bee control software (PC Con-

trol Limited, Kettering, Northamptonshire, UK) and is ableto adjust the angle of incli-

nation in 1.25◦ steps using a graphical user interface. The packaged chip was placed

into a socket mounted on a board on the tilt platform. Attaching the chip to the board
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Figure 4.9: Micrograph of tilt sensor after fluid addition and sealing. The parafilm (not
visible) is held in place by the UV-cured epoxy. Wire bond connections are visible on
the right. The device is shown in a tilted state so the bubble is located toward one corner
of the cavity. The cavity is 2360µm×2360µm.

with a socket also ensured that the package, and therefore the chip itself, is aligned

correctly with the axis of tilt. Electrical leads from the board allowed connections for

measurements. A light-emitting diode is suspended 1cm above the chip to aim light

through the fluid cavity from directly above the device.

Photodiodes were operated in photoconductive mode during testing by apply-

ing a 5V reverse bias with a DC power supply. The p-doped side of each diode was

connected to one channel of a Keithley 2636A source measurement unit (Keithley In-

struments, Inc., Cleveland, OH, USA). Each channel on the source measurement unit

was set to source a value of 0V and measure current.
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The rotated layout of the photodiodes within the cavity allows for easy testing of

the inclination along thex andy axis independently. The device is easily aligned within

the DIP. Therefore, thex andy axes are aligned with the socket on the test platform.

The alignment enabled us to sweep the tilt angle in one direction independent of the

other to fully characterize the relationship between the output of the photodiodes and

the inclination. Testing was performed by tilting the stagefrom −45◦ to +45◦ along

the x axis and recording the current in each photodiode. The dual-axis capability of

the system was tested by fixing the inclination of the device perpendicular to the servo-

controlled stage tilt path (therefore setting they axis tilt) and again sweeping from

−45◦ to +45◦. The tilt in the perpendicular direction,x, was performed with fixedy

inclinations of−31◦,−21◦,−13◦,+13◦,+21◦, and+31◦. Sweeps were performed

with both increasing and decreasing inclination to allow usto observe any hysteresis in

the system.

4.4 Experimental Results

Results from sweeping the inclination along thex axis are shown in Figure 4.11. As

expected, increasing the tilt angle increases the value ofIC and decreases the value of

IA. Both curves have been fit to a sigmoid function,

y(x) = a+
b

1+e
−(x−m)

s

(4.4)

wherey(x) is the current (IA or IC), x is the value ofθ , a is the value at the minimum

θ , b is the maximumθ minusa, m is the center value ofθ , ands is the total width of

the function. The coefficients of determination,R2, are 0.99623 for photodiode A and

0.99549 for photodiode C.

Equations (4.2) and (4.3) map the output current to the angleof inclination. Fig-

ure 4.12 shows the results of mapping the output values toθx. This data was also fitted

with a sigmoid function giving anR2 value of 0.99595. The sigmoid fitting function
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Figure 4.10: Tilt testing platform shown with an inclination of 45◦. The tilt angle is
controlled through a computer and allows 1.25◦ steps. An LED is suspended directly
above the device, maintaining alignment of the light through all inclination angles.

can be inverted to allow the calculation ofθx, given the values forIA andIC, using

y(x) = m+s ln

(

x−a
a+b−x

)

(4.5)

with a=−0.1261,b= 0.4081,m= 2.0237,s= 6.6582, andx from equation (4.2).

We adjusted the inclination of the tilt platform to test changes inx andy tilt that

occur simultaneously. The value ofθx was swept at various values forθy to determine

the performance of the tilt sensor using all four photodioderegions concurrently. The

normalized output currents for all four photodiodes outputare shown in Figure 4.13.

The current through each photodiode increases or decreasesas predicted in Figure 4.3.

The bubble freely moves in all four directions allowing measurement of tilt along two
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Figure 4.11: Outputs of photodiodes A and C as the angle of inclination changes from
−45◦ to+45◦.

axes. The data from each region can be mapped to tilt angle using equations (4.2) and

(4.3) and a sigmoid fitting function.

The dimensions of this device are small so there are potential irregularities dur-

ing operation due to various surface forces. Surface tension forces tend to dominate

in cavities on the scale of this device. In the evolution of this sensing system, water

was tested as a possible fluid. The surface tension forces of water were too high to

allow free movement of a bubble within a cavity of this size. Methanol and other alco-

hols are common choices for other fluid pendulum tilt sensingdevices. As temperature

decreases, their viscosity and surface tension will increase. Increased viscosity and

surface tension can be a potential limitation to this type oftilt sensing mechanism. The

glass cavity is formed using isotropic etching with hydrofluoric acid (HF). Wet etching

with HF generates a rough surface, and non-uniformities areoften observed at the bot-
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Figure 4.12: Outputs of photodiodes A and C mapped toθx using equation (4.2). The
fit line is derived from equation (4.4).

tom of etched cavities. Distortions to the surface could affect the ability of the bubble

to traverse the cavity. Data in Figure 4.14 show an output dependent upon which di-

rection the tilt angleθx is swept. These variations are slight, but nevertheless suggest

hysteresis in our system.

The profile of our glass cavity is not perfectly hemispherical because the width

of the cavity is greater than twice the depth of the HF wet etch. This fabrication step

creates a relatively flat surface at the top of the cavity. Thebubble is in constant contact

with the top surface as it traverses the cavity so the relationshipx= arctan(θx) is not

a perfect model for this system. The flat surface allows the device to be very sensitive

when the device is nearly orthogonal to gravity. This sensitivity is demonstrated by the

maximum slope of the mapped output signal occurring aroundθx = 0 in Figure 4.12.

The sensitivity of our device is best quantified by examiningthe number of bits of
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Figure 4.13: Normalized output currents for all four photodiodes with colors corre-
sponding to each region, as in Figure 4.3. Measurements weremade sweeping bothθx

andθy.

an analog-to-digital converter (ADC) needed to distinguish a 1◦ change in inclination

(Table 4.1). A large measurement range,±36.25◦, is possible with just a 12 bit ADC.

Each photodiode in our system produces a current which is used to find thex and

y positions using equations (4.2) and (4.3). These calculations in the current domain

can be implemented through translinear circuit principles[62]. Translinear circuits

rely on an exponential relationship between current and voltage; therefore, they are

commonly implemented using either bipolar transistors in the forward-active region

or MOS transistors operated in subthreshold. Analyzing themultiplier/divider circuit
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Figure 4.14: Normalized output currents for photodiodes A and C as the inclination is
swept in both the increasing (forward) and decreasing (backwards) directions.

Table 4.1: Measurement range where a 1◦ tilt change can be distinguished for a given
number of ADC bits.

ADC bits Inclination range

6-bits ±3.75◦

8-bits ±18.75◦

10-bits ±28.75◦

12-bits ±36.25◦

14-bits ±43.75◦

shown in Figure 4.15 gives the translinear relationship

IM(IC− IA) = IOUT(IC+ IA) (4.6)

and by rearranging we get

IM

(

IC− IA
IC+ IA

)

= IOUT (4.7)
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which is equivalent to equation 4.2 withIOUT equal to thex position value multiplied by

a constant currentIM. Completing the calculation with just a few transistors reduces the

complexity of a system using our sensor. Furthermore, the translinear circuit has very

low power consumption compared to operational amplifier signal operations. Future

implementations of this tilt sensor could incorporate the circuit within the device to

reduce the readout complexity and processing.
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C
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C
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A

Figure 4.15: A schematic for a multiplier/divider circuit is shown with the translin-
ear loop indicated using an arrow. The output current,IOUT, is equal to the result of
equation (4.2) multiplied by a constant currentIM.

This system presents a significant advance in tilt sensor systems. The system

utilizes a fluid pendulum design for optical measurement. The system is not susceptible

to many of the environmental noise problems that occur in other systems that measure
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capacitance or resistance. Additionally, our fully-differential measurement allows for

variations in bubble size if that were to occur. The system size and operating principle

make it very attractive for numerous tilt sensing applications. Accelerometers are often

used for tilt measurement, but they contain fragile parts which are prone to break when

dropped or vibrated violently. Our design has no moving parts so it is more robust and

therefore better suited for certain applications.

The position of the bubble is determined by a differential measurement of pairs

of diodes so there are no restrictions on the intensity of light required to operate. The

simple bubble-positioning method used for this sensor allows easy system integration

without the use of complex readout circuits. The device alsohas potential to be self-

powered by energy harvesting through the operation of the photodiodes in photovoltaic

mode in conjunction with the use of optics instead of an LED. Operating without an

external power supply would be advantageous for applications in long-term monitoring

where constant powering is not available. The majority of the device fabrication is

done in a commercially available MEMS process which allows for mass production

and a low cost per device.
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Chapter 5

MEMS SUN TRACKER

Solar energy has emerged as one of the best options for alternative energy. It is widely

used in both industrial and domestic applications with increasing popularity. Data from

the U.S. Energy Information Administration indicates thatsolar panel production in

the U.S. in 2009 was more than 14 times the production in 2000 [63]. The number of

companies producing solar modules increased from 21 to 101 over the same time frame.

As solar photovoltaics become more efficient, these numbersare sure to continue rising.

The amount of power produced by solar photovoltaics is of course dependent

on the amount of sunlight striking the device. Solar cells need to be in direct sunlight as

much as possible to optimize power production. The sun is constantly moving across

the sky, thus systems for tracking the position of the sun andadjusting solar panels

to account for sun movement have received considerable attention, both for terrestrial

collection systems [64–66] and satellite collection modules [67] [68]. The principle

component of a sun tracking system is a sunlight position sensor. There are a number

of different setups for solar tracking including both active and passive systems. Pas-

sive solar trackers provide an elegant solution for solar tracking: heat from the sun

moves a low boiling point fluid from side to side and then relies on gravity to adjust the

mounted panels. An example of a passive solar tracker is shown in Figure 5.1. Passive

solar trackers have no motors, gears, or other controls thatcan fail but still require com-

plicated damping cylinders and the entire setup can still beexpensive. Passive systems

also take time to reset from the evening position in the morning thus losing some solar

radiation (i.e. the trackers don’t like mornings, just like me). Passive systems are also

susceptible to strong winds and can lack accuracy.

40



Figure 5.1: A commercial passive tracking system manufactured by Zomeworks Cor-
poration is pictured [69]. Low boiling point fluid is contained in the tubing running
along the left and right sides of the solar panels. Solar heating causes the system to
track sun position.

Active trackers come in many different configurations classified by the direc-

tions the panel alignment can be adjusted. The two methods for controlling the panel

position are open-loop tracking systems or a closed-loop tracking systems [65]. Open-

loop systems simply adjust the position of a solar panel by a predetermined amount

without knowledge of the quality of this adjustment. These algorithm-based control

systems utilize a solar irradiation geometry model which adjusts the position of the

tracker given the date, time, and location of the solar panel. The systems do not observe

the output of the process being controlled so there is no adjustment for errors. While

these systems are less expensive, they require complex microprocessor programming

and can still produce alignment errors.

A closed-loop tracking system uses feedback control principles to ensure the

correct position of the panels. Closed-loop systems sense the position of the sun, cal-

culate the error, then adjust the position to minimize error. The feedback configuration

41



ensures that the panels are always aimed directly at the sun.However, these systems are

not without fault. The sensors could give an incorrect position due to interference and

reflections from passing clouds. These systems typically employ photodiode sensors

to determine sun position. A closed-loop system is especially necessary for satellite-

based solar applications. Because of the zero gravity environment and unpredictable

position and orientation, passive and open-loop tracking options are not possible.

The following work presents a novel method of creating a miniature sun posi-

tion sensor for use in a closed-loop sun tacking system. Mostof the device fabrication

is performed in a commercial MEMS process. Using a commercial process allows us to

take advantage of the regulated manufacturing process to create miniature sensors with

precision control over their dimensions and therefore higher repeatability. Because the

design is made almost entirely in a commercial MEMS fabrication process, the device

can be mass produced at a low cost.

5.1 Background

Recent work in sunlight positioning sensors has yielded large, complicated devices

[67]. However, a straightforward method of creating a sun position sensor is well-

known. The uncomplicated design uses a pinhole to allow a small light spot to reach

the surface of a detector [70] [71]. A position-sensitive detector (PSD) is a common

device for detecting the position of such a light spot.

PSDs function by comparing relative magnitudes of photocurrents produced

when light strikes a photosensitive region. There are two main designs for PSDs: lat-

eral effect photodiodes, made from a single photodiode areawith multiple connection

points, and quadrant detectors, made from four equal-area photodiodes [72]. Both de-

signs determine position by taking a differential measurement. Lateral effect photodi-

odes utilize the lateral photoelectric effect to produce a position-dependent differential

photocurrent [73]; quadrant detectors rely on the spatial arrangement of four photodi-
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odes to allow subtraction of opposing areas. Both types of devices have widespread

uses in sensing motion, vibration, alignment, and leveling. Quadrant photodetectors

have seen especially widespread use in laser centering applications for CD and DVD

players.

Recent research on pinhole type sun position sensors has focused on improving

the complete sensing system while still using a PSD. Advances thus far have focused

on concurrent measurement of light at different frequencies [74] or utilizing multiple

pinholes to get a more accurate measurement [75–77]. The work by Chenet al. rec-

ognized the nonlinearity in the output of pinhole sun position detectors and therefore

modified the shape of the pinhole to compensate [78]. However, improvements to sun

position sensors in terms of a smaller device size and uncomplicated manufacturing

have received less attention. Work by Queroet al. demonstrated adapting microelec-

tromechanical system (MEMS) technologies to create sun sensors without unreliable

macroscale components [64]. However, their devices still required significant assembly

since the pieces were all produced separately.

5.2 Principle of Operation

The presented sun sensor uses a negative pinhole design to cast a shadow on a quadrant

PSD. Larger photocurrents are produced with this design because light strikes a larger

portion of the PSD. Generating larger currents also achieves a higher signal to noise

ratio. The larger signal comes at the cost of some device sensitivity. However, be-

cause the energy of a direct incident light beam drops off as afunction of cosine [79],

a 1◦ misalignment only causes a 0.015% loss in power. The low loss from a slight

misalignment indicates that a high accuracy is not imperative for sun position sensing

applications and can be sacrificed to create a smaller device. Furthermore, our device

produces analog outputs which allow for simple incorporation into a feedback tracking

system.
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Our sun position detector uses a quadrant photodetector layout to determine

the position of a shaded area. The photodetector region is covered with a layer of

borosilicate glass. An opaque circular shield on top of the glass blocks light from

reaching the surface. The operation is illustrated in Figure 5.2. Inclination relative to

the direction of a uniform light source (such as the sun) causes complementary exposure

and shading of opposing photodiodes. The relationship between outputs is used to find

the centroid of the shaded area. The position of the centroiddetermines the angle

between the normal orientation of the device and the light source. The design has two

pairs of opposing photodiodes allowing for simultaneous measurement along two axes.

θx

I

A C

XA

C A

C

Light Source

A C

Figure 5.2: Principle of operation for the sun position detector. The output current (I ) of
opposing photodiodes changes due to variations in the orientation relative to a uniform
light source. The lower half of the glass over the photodetectors was isotropically
etched for a different device using the same sensors. The cavity is not needed for this
system to operate.
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There are a number of trade-offs in the design of a spot (or shadow) PSD quad-

rant photodetector. The size of the spot affects both the resolution and the range of the

device. A smaller circle gives a greater resolution but decreases the range of the device.

The distance between the shield and the photodetectors alsoaffects both resolution and

range; a larger distance causes a faster moving spot and therefore greater resolution at

the expense of range. Other factors that affect either resolution or range are the size of

the photodetector area, the gap in between adjacent photodiodes, and the parameters of

the photodiodes themselves (i.e. noise, gain, etc.). We chose to design our device to

achieve a good balance between range and resolution while minimizing the total size.

We minimized size by placing the shield very close to the photodiodes. The close prox-

imity along with a large shield area gives a large working range while the resolution is

still adequate for sun position sensing.

Device Geometry

Each quadrant of the PSD design is a 45−45−90 right triangle with a base ofb= 2mm

and an altitude ofa= 1mmas illustrated in Figure 5.3. The shield is placed on top of

a 500µm thick layer of glass that was anodically bonded to the surface, therefore the

shield distance isd = 500µm. We chose a shield size of 1mm across to allow the

device to have an operating range between−45◦ and+45◦ along each axis of tilt. We

selected a circular shield shape for easy fabrication.

The expected area exposed to light is estimated using the geometry shown in

Figure 5.3. The distanceh, the height of the exposed region of the photodiode, changes

with the angle from the uniform light source. The value ofh relates to the inclination,

Θ, by a cosine function. Because our device only operates from−45◦ to+45◦ we can

approximate the change inh to be linear to a change inΘ. If we ignore the curved

shape of the shadow caused by the circular shield we can further simplify the exposed

region to be a trapezoid. This assumption allows us to calculate the exposed area,A, to
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be

A= bh−h2 (5.1)

With the given dimensions of the device we expect the exposedarea, and therefore the

output currentI , to vary with angle as seen in the graph in Figure 5.2. The output

current (I ) of each photodiode region is not linear with a change in angle. The non-

linearity causes the theoretical output current of each photodiode to be approximately

75% of its maximum current when aligned normal to the light source.

b

h

a

Top View

a

h

d

Side View

ϴ

Figure 5.3: Top and side view geometry for one of the photodiode regions. The distance
h changes relative to the device orientation.

All four photodiodes are oriented 45◦ off-axis from the square photosensitive

region (which we assume to be oriented with thex andy axes) and have equal area. The

photodiode arrangement is shown in Figure 5.4. The four output currentsIA, IB, IC, and

ID are used to find the position of the centroid of the shadow on the x andy axis with

the same equations ((4.2) and (4.3)) as used in the tilt sensing device in chapter 4. The

angle of inclination from a uniform light source can be calculated from the measuredx

andy values after the device has been calibrated. Using the expected results shown in

Figure 5.2 with equation (4.2) gives a nearly linear relationship betweenx andΘx. The

symmetry of our device gives a similar linear relationship betweeny andΘy.
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Figure 5.4: Top view of photodiode layout. A circular shieldis centered over the
detection region. The currents in each region increase and decrease as indicated with
changes in angle of incidence of a uniform light source.

5.3 Fabrication

The sun position sensor was designed and fabricated in the same SensoNor Multi-

MEMS process described in section 4.2. The same photodiode layout was also used.

However, only the closed cavity design was used for our sun position sensor because it

allowed us to attach a shield directly over our sensing region at a close distance con-

trolled by the fabrication process.

A circular shield was made using a 1mm round punch (Syneo, West Palm

Beach, FL, USA) to cut a hole in copper foil tape (Techni-Tool, Worcester, PA, USA).

The circular piece of copper tape was adhered to the top glasssurface with the aid of

a dissection microscope. The shield is shown attached to theglass in Figure 5.5. We
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also attempted to form a shield using aluminum foil. The aluminum was more flexible

than the copper so it was harder to cut evenly. The aluminum also required superglue to

attach the shield to the glass. The attachment proved messy and difficult so we instead

proceeded with copper tape. The fully assembled MEMS devicewas wire bonded to

a 24 pin sidebraze DIP (KD-S86898-B-1, Kyocera, Kyoto, Japan) for electrical access

and ease of handling.

2mm

2
m

m

1mm

Figure 5.5: Micrograph of MEMS chip after application of circular shield. The base
device is identical to the tilt sensor described in chapter 4.

5.4 Experimental

Testing of various angles of inclination was performed witha Hi-Tech HS-645MG

servo motor (Hitec, Poway, CA, USA) attached to a moveable platform. A model of

the platform is shown in Figure 5.6. The servo motor is controlled with Motor-Bee
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control software (PC Control Limited, Kettering, Northamptonshire, UK) and is able

to adjust the angle of inclination in 1.25◦ steps using a graphical user interface. The

packaged chip was placed into a socket mounted on a board on the tilt platform. At-

taching the chip to the board with a socket also ensured that the package, and therefore

the chip itself, is aligned with the axis of tilt. Electricalleads from the board allowed

connections for measurements.

Figure 5.6: A model of tilt testing platform shows the location of the DIP package
containing the MEMS chip. A light is suspended above the device to simulate a uniform
light source (not shown). The tilt angle is controlled through a computer and allows
1.25◦ steps.

Photodiodes were operated in photoconductive mode during testing by apply-

ing a 5V reverse bias with a DC power supply. The p-doped side of each diode was

connected to one channel of a Keithley 2636A source measurement unit (Keithley In-

49



struments, Inc., Cleveland, OH, USA). Each channel on the source measurement unit

was set to source 0V and measure current.

The rotated layout of the photodiodes within the cavity allows for simple test-

ing of the inclination along thex andy axes independently. The device is easily aligned

within the DIP, therefore thex andy axes are aligned with the socket on the test plat-

form. The alignment enabled us to sweep the tilt angle in one direction independent of

the other to fully characterize the relationship between the output of the photodiodes

and the angle of incidence of a uniform light source. Testingwas performed by tilting

the stage from−45◦ to+45◦ along thex axis and recording the current in each photo-

diode. A uniform light source was simulated by suspending a spot light approximately

0.5m directly above the chip during testing. The light source wasa simple lab light

using an MB-1142 miniature bulb rated to 18.4 Watts. All testing was performed in a

dark room to prevent interference from indirect light sources.

5.5 Results

The results from testing changes in angle of incidence in thex direction are shown

in Figure 5.7. As the angle is increased,IA decreases andIC increases; this was due

to the shadow covering and uncovering the two regions. The shapes ofIA and IC are

close to the predicted shapes but shifted toward the positiveΘx side. The shift suggests

misalignment of the shield or the testing setup.IA and IC reach an equivalent point

much closer to their maximum values than their minimum valuewhich also agrees with

our calculated prediction. As expected,IB andID are nearly identical. The difference

in output levels forIB and ID suggests misalignment of the circular shield in they

direction.

Mapping of the results using equation (4.2) is shown in Figure 5.8. Because our

individual channel results, shown in Figure 5.7, are shifted to the positivex direction,

our mapped results show a similar shift. A fit line for the linear region gives anR2 value
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Figure 5.7: Current of the four photodiode regions as the angle of incident light changes
in thex direction. IA andIC show inverse behavior as the angle is changed.IB andID
are nearly equivalent throughout angular changes because there is no change in they
direction. Offsets and non-ideal shapes are likely due to misalignment of the shield.

of 0.995 suggesting a very good correlation. The sensitivity of the device is the slope

of the fit line. Over the total output range of the mapped signal, the slope is equivalent

to a 1.33% change in output per degree.

Our sensor showed some irregularities in operation that canbe attributed to our

post-processing. The shield cutting process yielded an imperfect circle. The irregular

shape affects the shadow geometry and therefore the measured signal. Additionally,

centering the shield over the quadrant photodiodes was difficult. Misalignment on the

order of tens of microns can affect the measured light angle by multiple degrees. A

more controlled shield size and placement could be created by a lithographically de-
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Figure 5.8: Outputs of photodiodes A and C mapped to angle of incident light using
equation (4.2). The mapped output is shifted toward the positive Θx side, probably due
to poor shield alignment. The flat portion of the graph demonstrates the limit to the
sensing range.

fined metal deposition, but this would add significant complexity to the device post-

processing. Error caused by misalignment could be compensated by addition of an

offset or through implementation of the sensor in a closed-loop feedback system [64].

Additional error in the center value of our output signal canbe attributed to our

method of providing a uniform light source. During testing we used a stationary lamp to

simulate a uniform distribution of photons. However, the lamp has imperfect alignment

with the inclination of the device. The lamp intensity was also non-uniform. Thus the

photon distribution varied as the device was swept through various inclinations. We

expect better results when using the device with a uniform source, such as sunlight.
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The MEMS chip used for this study was also used for other experiments (Chap-

ter 4). In the other work, the glass over the sensing region was etched on the bottom

side to create both a cavity and accompanying access ports. The access ports and cavity

are visible in Figure 5.5. The cavity was made with isotropicetching so the corners of

the cavity have a curved profile. Light passing through the glass is refracted and there-

fore affects the output profile of the photodetectors. Future designs of a sun tracking

sensor would not include etched regions.

This sensor is unique because of the small size, uncomplicated design, and min-

imal power consumption. The device was fabricated almost entirely in a commercial

process, so it can be reliably reproduced. Placement of the shield is the only post-

processing needed to complete the sensor. The angle of incident light striking the de-

vice is determined by a differential measurement. The differential measurement setup

allows the device to operate independent of the intensity ofthe light. The output of

the differential measurement shows a linear relationship between output and angle of

incident light. The device has an operating range of±45◦. Multiple devices positioned

at different angles could provide a larger field of view. Thisdevice has the potential to

be inexpensive to produce, therefore helping to decrease the total cost of a sun tracking

system.
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Chapter 6

CAPACITANCE MEASUREMENT

Capacitive sensing techniques have a wide range of uses including antibody-antigen

recognition, bacterial growth monitoring, DNA detection,toxic gas detection, and cell

localization and monitoring [80]. Regardless of the application, all capacitive sensing

techniques have the same general principles of operation. The sensors, usually made

with two closely placed metal areas, are exposed to an analyte, and the capacitance is

measured. The addition of charged biological particles (proteins, antibodies, cells etc.)

between the sensing structures changes the capacitance. Changes in capacitance occur

due to changing either the distance term (d) in the standard capacitance equationC =

εRε0A
d or the relative permittivity (εR). In biological applications, the charged electrode

surface allows attachment of various particles; this is illustrated in Figure 6.1. The

sensitive area can also be immobilized with antibodies for detecting the attachment of

specific antigens.

Substrate
protein antibody antigen cells not to scale

++ ++ + +
++ + ++
+ + +

+
+ +

+
+

+ +

+ +
+

+
+

+++

++

+ +

+ +
+

+ +
++

+

+
++

+

+ + +

+ + +

+ + +

+ +
+

+ + + + + ++ + + + + + + + + + ++ + + +
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _
_ _ _ _

_ _ _ _ _ _ _ _ __ _ _
_ _ __ _ _

_ _ _
_ _ __ _ _

_ _ __ _ _Electrode

Figure 6.1: Capacitance sensors can be used to detect the presence of biological mate-
rials from protein or antibodies to cells.

This chapter presents two systems for capacitive sensing. The first system was

designed to be used for a wide range of capacitive sensing applications. The other

system was designed specifically for analysis of cellular level monitoring. Both systems

have included design and packaging considerations for their integration into biological

analysis systems.
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6.1 Adjustable Dynamic Range Capacitive Sensing

The biological particles and agents that are potential targets for capacitive sensing vary

in size and charge, making a universal system with a variabledynamic range very desir-

able. The capacitance sensor presented in this section is capable of providing accurate

measurements over a large variation in sensing values. The system can switch from

sensing capacitance changes down to the attofarad range, aswas seen in some permit-

tivity sensing [81], up to the nanofarad range, usual with sensing cell attachment [18]

and proliferation [19]. The design of a circuit capable of functioning over such a large

range can be accomplished using a single large dynamic rangeconfiguration. However,

for applications with only small capacitance changes, the majority of this range would

be unused resulting in an inefficient system. Additionally,the analog output from the

system needs to be converted to a digital signal for recording. A single large range

system would provide poor accuracy because the quantization error would be large

compared to the signal’s dynamic range. This system used a programmable gain circuit

capable of matching the dynamic range of the circuit to that of the desired capacitance

range. This means that regardless of the capacitance changefor the experiment range,

the specified capacitance range will utilize the full outputvoltage by tuning the gain of

the system. This also means that the number of bits for an analog-to-digital can remain

the same regardless of operation range.

Capacitance Sensing Circuit

The capacitance sensor circuit was implemented using a switched capacitor design and

is shown in Figure 6.2. The circuit has two capacitors, the sensing capacitorCS and the

reference capacitorCre f , which were designed with identical initial capacitance val-

ues. Exposing the sensing capacitor to a biological material (e.g. proteins, antibodies,

cells, etc.) causes a capacitance change for the sensing capacitor only. That value was
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Figure 6.2: Switched capacitor circuit implementation of the capacitance sensor.

compared to a reference capacitance and the difference was calculated. The differ-

ences were summed to give a total capacitance measurement. Repeating this process

an arbitrary number of times allows adjustment of the dynamic range.

To operate the circuit, both capacitors are charged using the same reference

voltage,Vre f . All of the charge on the sensing capacitor is used to charge the large

feedback capacitorCf k, then the reference capacitorCre f is used to discharge the same

feedback capacitorCf k. If there is a capacitance difference between theCS and theCre f ,

∆Q charge will be left on the feedback capacitorCf k. Therefore, after one cycle of

charging and discharging,∆Q=Vre f(CS−Cre f ). This assumes the capacitance change

onCS is positive. If the charging and discharging repeat N times,the resolution of our

sensor is increased N times since the total charge integrated on the feedback capacitor

is ∆Q = N ·Vre f(CS−Cre f ). For different applications, capacitance change may vary

and the number of cycles N can be user-controlled with external clock signals (CLK3

and CLK4). The dynamic range of the sensor can be optimized byproviding the correct

external clock signals. The relationship between the voltage output and the capacitance

change∆C on CS can be described asVout = N ·
Vre f(CS−Cre f)

Cf k
. This equation assumes

that all components are ideal. This assumption means that the non-zero resistance of
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switches, the potential offset of the sample and hold circuit, any layout mismatch, any

parasitic capacitances and all noise sources are not considered.

On-Chip Capacitance Structures

The chip was designed for direct interface with the analyzedbiological solution with

considerations for packaging and sensor interaction. The bond pads were isolated at

one end of the chip instead of a normal ring of pads around the perimeter. This was

designed to move the electrical connections as far away fromthe sensing structures as

possible. An area without chip surface structures was also included between the bond

pads and the sensing region to make sealing along the chip surface easier.

The chip capacitance structures were designed using the topmetal of the pro-

cess. Both capacitance sensing structures on the chip have identical interdigitated elec-

trode designs and dimensions. The equal sizes are required for accurate difference

measurements. The capacitance of the two sensors was not an issue because they are

used in a differential measurement. The adjustable range design also allows adjustment

for smaller or larger values. The total capacitance also depended on the permittivity

of the solution the sensors contact, so exact values could not be calculated. The two

sensing regions were placed with a gap between them to allow for greater flexibility in

isolating the two sensors for difference measurements.

Circuit Simulation

The capacitance sensor was designed and fully simulated with transistor level com-

ponents. The simulation environment tool used was Cadence IC 6 analog simulator;

Cadence Spectre simulation models are provided by MIT/Lincoln Labs 3D SOI 0.15

µm technology design kit version is 3DIC 3.3.5. All of the switches were implemented

with PMOS or NMOS transistors with minimum width and length for the 0.15 µm

technology. The operational amplifier was a two stage designwith an on-chip constant
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Figure 6.3: Two stage operational amplifier with on-chip constant Gm biasing
schematic.

Gm biasing circuit. A startup circuit was also included to guarantee the working state

of the current biasing circuit. The circuit schematic is shown in Figure 6.3.

Figure 6.4 (left) shows the results of a small capacitance change simulation

where Vout (output node voltage at steady state) took slightly over 10 seconds to stabi-

lize. Figure 6.4 (right) shows 3 complete cycles of chargingand discharging simulation

with thevoltage at feedback capwaveform showing voltage changes from the differ-

ence inCS andCre f . The charging period started on the rising edge of the first pulse of

the charging phasewaveform after thereset signalgoes to zero (in this figure it was

the second pulse of thecharging phasewaveform). Aftercharging phasegoes to zero,

discharging phasegoes high, which makes the waveform atvoltage at feedback cap

go down. After one complete cycle of charging and discharging, a slightly increased

voltage can be seen fromvoltage at feedback cap. This difference is caused by the dif-

ference in capacitance betweenCS andCre f which is determined by∆V =
Vre f(CS−Cre f )

Cf k
.

Before thesample clockgoes high, there are 3 cycles of charging and discharging which
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makes the total voltage change atvoltage at feedback cap∆V = 3 ·
Vre f(CS−Cre f)

Cf k
. The

four-clock signals shown in Figure 6.4 are all generated on-chip. For different appli-

cations, the number of cycles of charging and discharging can be accurately controlled

with two external clock signals.

Figure 6.4: Transient responses over more than 40 microseconds (left) and 3 com-
plete charging and discharging cycles (right) of the voltage atCf k, voltage atCout and
four clock signals (CLK4: reset signal, CLK3: sample clock,CLK2: dischargingCf k

phase, and CLK1: chargingCf k phase), respectively from top to bottom. The left figure
demonstrates how the output voltage can saturate. The circuit can be tuned based on
the saturation data to find the dynamic range of the system.

Results

This capacitive sensor has been fabricated in the MIT/Lincoln Labs 3D SOI 0.15 µm

process. The fabricated chip is pictured in Figure 6.5. However, experimental char-

acterization has not been finished. Initial testing showed the op amp is functioning

properly with less than 1 millivolt offset with nominal common mode and supply volt-

ages. The amplifier’s offset is within several millivolts when common mode level and

supply voltages are varied.
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Figure 6.5: Layout (upper) and microphotograph (lower) of the two versions of the
capacitance sensing chip.

6.2 Cellular Capacitance Monitoring

We have also fabricated a chip suitable for cell culture experimentation using the Sen-

soNor MultiMEMS process. The MultiMEMS process consists ofa silicon wafer, with

various P and N doped regions (see Figure 4.2), between two layers of glass that can

be etched to form cavities which expose the silicon surface.We have designed a cell

culture area with an area of approximately 2.2 mm× 2.2 mm cut through the top glass
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which is approximately 0.5 mm thick. This left an exposed area of silicon that was

divided into four equal areas with each area containing a photodiode, an ISFET, and

an interdigitated electrode structure (IDES) as seen in Figure 6.6. The IDES structures

can be used for cellular level monitoring. The chip was fabricated but problems with

post-processing did not allow extensive testing of this chip as a biological sensing en-

vironment. Therefore, this section presents the progress made on the post-processing

and a cellular capacitance monitoring system using a commercially available sensor.

Figure 6.6: Top view of the biosensing array on the MultiMEMSchip with bond pad
connections on the right. A 2× 2 array of sensing regions can be seen with each region
containing a photodiode, an ISFET, and an IDES.

Electroless Plating

The IDES structure was made using the aluminum top metal layer. Aluminum is the

most common metal used in integrated circuit manufacturingprocesses, but significant

problems arise when it contacts liquids, particularly biological media [82]. Aluminum

forms a natural oxide of Al2O3, about 10 nm thick, when exposed to air. However,

in saline based biological media corrosion occurs. This is due to a combination of

the electrochemical potential and the pH of the solution as indicated in Figure 6.7.

Chloride ions, which are abundant in media, absorb to the surface and create local

acidic conditions that are harmful to both the aluminum and the cells potentially grown
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on the metal. The use of copper in microelectronic fabrication is increasing, but it is

affected by similar oxidation and corrosion problems.

Figure 6.7: Pourbaix diagram for aluminum from [82]. The regions are determined
from the Nernst equation and show a dependance on both pH and electrode potential
(E).

To alleviate the problem of exposed aluminum we attempted toelectrolessly

plate the aluminum with gold. Electroless plating is preferred over electroplating be-

cause no electrical connection to the electrodes is necessary. The process involved first

replacing the aluminum oxide layer with zinc, then plating alayer of nickel, and finally

depositing a layer of gold [83]. Zincate, Nickelex, and Bright Electroless Gold were all

obtained from Transene Company Inc. (Danvers, MA) and recommended immersion

times and temperatures were followed. Our results were not ideal as seen in Figure 6.8.

The two biggest issues we encountered with electroless plating of gold on alu-

minum were a lack of adhesion and uncontrolled deposition. The initial zinc step, a two
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Figure 6.8: Non-ideal electroless plating results are shown. Shorting of electrical con-
nections is seen in the top figure. Poor adhesion is observed in the bottom figure where
deposited gold has detached from the aluminum.

step process to achieve better adhesion [84], is difficult tocontrol for thin aluminum

substrates because all of the aluminum can quickly be removed by zinc replacement.

Initially we believed that post-processing exposed aluminum would be a viable method

to create electrodes exposed to biological media but these results confirmed otherwise.

We concluded that the aluminum metal layers would only be useful as sensors if a

passivation layer is present. Alternatively, separate electrodes composed of a noble, bi-

ologically inert metal such as gold that are added after manufacturing would also be an
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option. However, gold patterning would require lithography steps that would increase

the complexity so avoiding this is desired.

6.3 Capacitance Sensor Implementation

Due to issues with electroless plating, the IDES we incorporated onto our chip could

not be used for cell culture monitoring. Therefore, we tested cellular capacitance mon-

itoring using the commercially available BioNAS metabolicchip SC1000 (BioNAS

GmbH, Rostock, Germany). This chip has incorporated IDES structures made of palla-

dium that are suitable for cell culture. For preliminary capacitance monitoring, we have

measured the decay time of the capacitor on the BioNAS chip when it was arranged in

a low pass filter configuration as in Figure 6.9.

−

+

1Hz

square

RfR=100k

IDES INA101

Figure 6.9: Low pass circuit configuration used to determinecapacitance of IDES. The
INA101 is an instrumentation amplifier with gain set byRf . The input is a square wave
with a frequency of 1 Hz and a duty cycle of 50%.

The output of the amplifier was read by a 1408FS data acquisition box from

Measurement Computing (Norton, MA) and recorded using MATLAB (Mathworks,

Natick, MA). The decay time was measured and related to capacitance using the equa-

tionV(t) =V0e−
t

RC, whereV(t) is the voltage at timet, V0 is the initial voltage,R is the

resistor used in the low pass filter, andC is the capacitance of the IDES.

Using this method, we successfully monitored capacitance in real time with

readings about every 2 seconds - much faster than we would expect to see any changes
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from biological phenomena. Figure 6.10 shows capacitance monitored over one hour

with the addition of trypsin, a protease which detaches cells from the surface, to a

confluent culture of NIH 3T3 cells after 30 minutes (1800 seconds).
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Figure 6.10: Raw IDES capacitance data. Cells were culturedon the BioNAS chip to
confluence and continuously monitored for one hour. After 30minutes (1800 seconds)
trypsin was added to the solution, so a change in capacitancecan be seen due to cells
detaching from the surface.

These results demonstrate proficiency in obtaining capacitance measurements

using an RC circuit and MATLAB for capacitance monitoring inreal time. The fab-

ricated system was designed for a similar measurement setup, allowing us to observe

cell attachment and proliferation over time. Improved electroless plating capabilities

would allow further work with this device.
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Chapter 7

CARDIAC CELL MONITORING

Metal electrodes have been used successfully for measurements in biological environ-

ments for decades [85] [86]. Advances in microfabrication in the 1980s allowed for the

development of microelectrode sensing arrays with dimensions similar to cells (ranging

from one to hundreds of microns). Many sensors used today make use of these micro-

electrode arrays as passive elements of sensing systems [87–89], with the electrodes

connected to separate signal processing hardware and software. Biological signals are

small, usually only micro or millivolts, and small variations in these signals often con-

tain large amounts of information [90]. Performing filtering and amplification of these

signals after transmitting the signal away from the microelectrode sensing areas can add

noise therefore losing some of the signal that contains biological information. With this

project we work toward improving these active sensing devices by including the sens-

ing microelectrodes on the signal processing substrate to provide for better resolution

as well as lowering the total power consumption.

This chapter shows progress made towards combining the amplification and

filtering of action potential signals of a cardiac cell with the sensing of the data onto

one device. The improvements in resolution and power consumption will make this

system well-suited for analysis of electrical recordings of living cells. This work was

completed in collaboration with Jianan Song, a fellow member of Dr. Blain Christen’s

research group.

7.1 Background

Electrical signals in a biological environment occur due tothe creation of ion gradi-

ents. The potential created across a cell membrane by ions isdescribed by the Nernst
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equation,

Eion =
60
Z

log
Co

Ci
(7.1)

whereEion is the equilibrium potential for an ion,Z is the valence of the ion, and

Ci andCo are the intracellular and extracellular concentration of the ion respectively.

Nerve and muscle cells are the most common types of electrically active cells, but

some endocrine, immune, and reproductive cells are also capable of producing action

potentials [90], making electrical recording applicable to many cell types. Cardiac cells

are particularly of interest because of their strong electrical response and relative ease of

culturing compared to nerve cells. In cardiac cells the three ions with the most influence

on action potential firing are potassium, sodium, and calcium. The total potential for

a cardiac cell will therefore be a combination of the Nernst equation for each of these

ions while also accounting for the relative permeabilitiesof each ion. This is given by

the Goldman equation

Vm = 60log
PK[Ko]+PNa[Nao]+PCa[Cao]

PK[Ki]+PNa[Nai ]+PCa[Cai]
(7.2)

whereVm is the total potential and permeabilities are given byPion [90]. The change

in permeability of each ion is due largely to the opening and closing of ion channels

during the action potential. The shape of an action potential produced in cardiac cells

and the derivatives are shown in Figure 7.1.

The intracellular signal shown in Figure 7.1 is taken acrossthe membrane. Mi-

croelectrode recordings only see an extracellular potential so the signal will be the

second derivative of the action potential due to the low sealresistance between the cell

and the electrode [91]. The second derivative signal occursvery quickly compared to

the intracellular response making achieving better resolution even more important.

67



Figure 7.1: A typical HL-1 intracellular signal recorded with whole-cell patch clamp
and the derivatives are shown. Extracellular recordings resemble the second derivative
[89].

7.2 Circuit Design and Simulation

The challenge in measuring the extracellular cardiac action potentials is the small sig-

nal amplitude, low signal to noise ratio, and DC drift. Creating a biologically suitable

interface for recording these signals is also difficult. Theextracellular action potential

is 1−2 mV peak-to-peak with a bandwidth of 2 kHz to 4 kHz and a signalto noise

(SNR) ratio of less than 10. For low frequency measurements the noise floor is pushed

up by the flicker noise (1/f noise), so high-pass filtering wasincluded. The first design

receives the signal input from one sensing electrode and grounds the solution to the cir-

cuit ground as a reference. The second design utilizes two separate sensing electrodes
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in a differential configuration to eliminate the need to connect the cell solution to the

circuit ground. The circuit diagrams for two configurationsof multi-stage amplification

and filtering circuits are shown in Figure 7.2.

Figure 7.2: Single-ended and differential designs are shown. Both circuits contain two
gain stages, a low-pass filter stage and a buffer stage. Values for components are shown
in Table 7.1.

Single-Ended Configuration

Our single-ended configuration uses an electrode directly connected to the active com-

ponents in the 50× pre-amplification stage. This maintains the signal to noiseratio

since initial filtering with passive devices would further decrease the SNR. Rather than

using a coupling capacitor to mitigate the effects of DC drift, we use a higher SNR de-

sign with a capacitor between the non-inverting gain resistors and ground. Additionally

we add an AC coupling capacitor between the first and second gain stages to further re-

move the DC offset. This capacitor is also part of the high pass filter after the first stage

that has a cutoff frequency of 6 Hz. The second stage of the circuit is a non-inverting
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amplifier with a gain of 20. This is followed by a continuous time 10th order linear

phase low-pass filter with a cutoff frequency of 5 kHz which isdefined by the ratio of

resistors. The continuous time filter was selected because it does not require a clocking

signal for operation that would add noise to the circuit and result in more components.

The final stage is a buffer for a possible low impedance load. All of the amplifiers used

are LinCMOS precision chopper-stabilized op amps with a lowoffset voltage of 1µV ,

a low temperature drift of less than 0.003µV/◦C, and a common-mode input voltage

range that accounts for possible DC drift. The circuit was simulated in Cadence IC

Virtuoso 5.141 Environment (Cadence, San Jose CA) with ideal components. In our

experiments the transition time at the cutoff frequency is much shorter than simulation

results since we use a 10th order filter. The simulations show a 60 dB gain, low-pass

filtering at 5 kHz and high-pass filtering at 6 Hz as expected from the design parameters

in Table 7.1.

Differential Configuration

Although the single-ended design is sufficient for filteringand amplification, we can

further improve the design with a differential configuration. Single-ended circuits are

susceptible to many noise sources including induction noise. Differential circuits will

improve the performance of the system by canceling out noisefrom connections and

other parasitics. Since almost all of the noise is common to both input nodes, am-

plification circuits with good common-mode rejection ratio(CMRR) will be nearly

immune to common mode noise. We have redesigned the circuit as a differential mod-

ified instrumentation amplifier. The differential configuration has a gain of 10 at the

pre-amplification stage to give higher resolution and better SNR performance. Because

our measurements are in a solution, we must ensure the commonmode range for the

circuit includes any possible DC offset.
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Table 7.1: The values for each of the single-ended circuit (SEC) and differential circuit
(DC) components in Figure 7.2.

Parameter SEC DC Function
R1 196 kΩ 1.8 kΩ Gain for first stage

R2 4 kΩ 15 kΩ Gain for first stage

R3 40 kΩ 39 kΩ Set 2nd stage DC operating point

R4 98 kΩ 1.8 kΩ Gain for second stage

R5 5 kΩ 39 kΩ Gain for second stage

C1 10 µF 1 µF Remove DC offset

C2 1 µF N/A AC coupling, DC filtering

7.3 Materials and Methods

We fabricated a microelectrode array with gold electrodes using the following proce-

dure:

1. A 2inch×3inchglass slide was first cleaned with isopropyl alcohol and water to

achieve a clean surface.

2. Shipley Microposit S1813 (Rohm Haas, Marlborough, MA) positive photoresist

was spun to a thickness of 1µm. The spin recipe was 500 RPM for 10 seconds

followed by 3000 RPM for 30 seconds.

3. The resist was baked at 115◦C for 30 minutes. This was a change from the

suggested recipe to account for heat transfer through the glass.

4. The resist was exposed for eight seconds with an aligner exposure power of ap-

proximately 25mJ/s.

5. Development was performed using 351 Developer (Microchem) mixed in a 5 : 1

ratio (water:developer). The pattern would fully develop in approximately 45

seconds. The device was cleaned with water after development.
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6. Metal evaporation was performed in a Cressington 308R evaporator (Ted Pella

Inc., Redding, CA) with a LT300 dual output power supply. Approximately

30nm of a chrome was evaporated to form an adhesion layer. A chromerod

served as the source for the metal (CRW-1, RD Mathis, Long Beach, CA). Imme-

diately following the chrome deposition, approximately 70nmof gold (99.999%

pure) was evaporated using a ME5-.005W source (RD Mathis).

7. Coated samples were place in an acetone bath with sonication to remove the

patterned resist and therefore selectively lift off the metal.

A second photoresist layer was patterned (using the same S1813 resist pattern-

ing procedure) to only expose gold areas of about 25µm by 100µm to act as sensing

electrodes. This resist layer effectively insulated the rest of the gold wiring so we would

only observe electrical activity at the exposed regions. A 4×4 array of electrodes pro-

vides 16 channels for measurement.

A polydimethylsiloxane (PDMS) structure was placed on top of the electrodes

to isolate the fluid needed for cell culture from the bond padsused for electrical con-

nections. The PDMS was simply used to form a deep well for cellculture. The PDMS

was bonded to the glass after plasma treatment for 1 minute athigh power using oxygen

as the process gas.

A jig, shown in Figure 7.3, was constructed of Lexan and Delrin and machined

to hold the microelectrode array as well as 16 pogo pins to provide electrical connec-

tions to the bondpads connected to each of the electrodes. The pogo pins (PP8, Solar-

botics, Calgary, AB, CAN) are placed in holders (PPH1, Solarbotics) to allow removal

when an electrical connection is not needed. This jig allowed for quick, reliable and

non-permanent connections between the micro-scale electrodes and the macro-scale

connections to the circuit on the custom designed PCB.
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Figure 7.3: Pogo pin jig holding the microelectrode array with cells in a PDMS well.
Connections to bond pads are made by pogo pins. The connections between the pogo
pins and the PCB are made with microclip connectors.

HL-1 Cell Culture

The HL-1 cell line, derived from AT-1 cells (mouse cardiomyocyte tumor), retains

the ability to contract spontaneously as well as cardiac morphological, biochemical,

and electrophysiological properties through serial passages [92]. HL-1 cells have been

used in other work with microelectrodes [88] [89] and provide electrical activity that

is easily measured and will provide results for comparison.Cells were cultured in

Claycomb media (Sigma, St. Louis MO) with 10% fetal bovine serum (Sigma), 1%

0.1mM norepinephrine (Sigma), 1% 2mM l-glutamine (Invitrogen, CA), and 1% 100

U/ml : 100µg/ml penicillin/streptomycin (Invitrogen). Surfaces were pretreated with
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a 0.02% gelatin (Fisher Scientific, Pittsburg PA) and fibronectin (Sigma) mixture for

24 hours before cell introduction. The electrode device wasautoclaved prior to pre-

treatment with gelatin. Cells were allowed to grow to confluent in an incubator at 37◦C

before testing, about 2−4 days.

Figure 7.4: Micrograph of HL-1 cells. The cells exhibit spontaneous electrical activity.

Custom Designed Printed Circuit Board

We designed two custom, two-layer PCBs (3× 3 square inches for the single-ended

design, 3× 4 square inches for the differential design) using PCB Artist (Advanced

Circuits, Aurora CO). The single-ended design is shown in Figure 7.5. Both PCBs

contained versions of the circuit requiring jumpers to manually complete some of the

connections to allow for separate testing after each stage.
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Figure 7.5: Custom designed printed circuit board layout (left) and picture (right) are
shown. The design included the complete circuit chain on theleft side of the board and
debugging circuit with jumper connection points on the right.

7.4 Results

Stand-alone measurements of the circuit were conducted to determine circuit perfor-

mance prior to testing with cells. The circuit was tested with various input waveforms

and frequencies from a Keithley 3390 Arbitrary Waveform Generator (Keithley, Cleve-

land OH). Testing validated both the gain and frequency performance of the circuit. We

were able to confirm the circuit worked with a range of DC offsets on the input from

-3 V to +2 V. The AC response of the circuit corresponded very well with the simula-

tion results. Initial testing using noisy square wave inputs was performed with varying

frequencies for both designs. As the frequency of the squarewave was increased from

500 Hz to 2.5 kHz, we were able to observe the output change from a noisy square

wave to a clean sine wave. An input signal similar to the expected cardiac signals but

with an amplitude of 6.3 mV pk-pk (minimum allowable amplitude) was tested with

the differential design using the arbitrary waveform generator. The input signal and the

output of the circuit are shown in Figure 7.6. The input signal from the arbitrary wave-
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form generator is noisy and the peak of each pulse is hard to differentiate. However

the output from the amplification and filtering circuit are clearly defined pulses. Fig-

ure 7.7 shows the power spectrum of the input and output signals. The original input

signal from the arbitrary waveform generator contains a great deal of high frequency

noise, but these higher frequency components are filtered asseen in the output of the

differential circuit.

Figure 7.6: The transient response of the differential circuit (upper waveform) to the
arbitrary waveform generator’s output signal resembling the expected cellular signal
(lower waveform). Note the two waveforms are plotted on different vertical scales.

We have designed and tested single-ended and differential designs of amplifi-

cation circuits for measuring cardiac action potentials. The circuit performance was

consistent with simulation results having expected gain and cutoff frequencies. We de-

signed and fabricated the microelectrode array and Pogo pinjig as an interface between

the circuit and the cells. Preliminary testing using HL-1 cells, the Pogo pin jig, and the

amplification circuit demonstrated the setup will be sufficient to measure extracellular

HL-1 action potentials. Our differential design was more robust for common mode

noise suppression of induction noise and other environmental noise.
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Figure 7.7: A fast Fourier transform was used to obtain the power spectrum of the
original signal (left) and output from the differential circuit (right). The original signal
and output signals are shown in Figure 7.6.

While the experiments and results shown are for discrete component PCB de-

signs, the results are being used to better understand the transfer function of the system.

This information is currently being used to improve our integrated circuit design. The

final version of our system will allow for cell growth and signal measurement on a

single chip that contains the integrated circuit, microelectrodes, and cell culture sub-

strate. Once integration is complete we expect the entire device to be approximately

1inch×1inch×0.5inchfor a sixteen channel system including accompanying microflu-

idics and packaging. The integrated system will allow for higher resolution outputs and

lower power consumption than is currently possible.
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Chapter 8

ION SENSITIVE FIELD EFFECT TRANSISTOR

Ion-sensitive field effect transistors (ISFETs) were introduced as pH sensitive devices

by Bergveld over 40 years ago [93]. ISFETs are an attractive means of measuring pH

because of their small size, low-power consumption, robustness, compatibility with

on-chip circuit integration, and the low manufacturing cost by batch processing using

integrated circuit technology [94]. However, their use in commercial applications thus

far have been limited. One problem is the development of effective packaging. ISFETs,

like other chemical sensors, need to be in contact with the solution being measured so

isolation of fluids from the electrical circuitry is necessary. Chapter 12 will address

packaging in more detail. The other major obstacle is drift in the sensor output.

This chapter will provide an introduction to the ISFET device. We also present

a new method of mitigating the effects of drift in ISFETs by cycling the electric fields

present in the device. This work was completed in collaboration with Sahil Shah, a

fellow member of Dr. Blain Christen’s research group.

8.1 Background

The functionality of ISFETs is well understood [96]. ISFETsare simply MOSFETs

with the gate connection separate from the device in the formof a reference electrode

present in solution. A schematic representation of an ISFETis shown in Figure 8.1.

ISFETs work by modulating the semiconductor surface potential, usually the insulator-

electrolyte interface, using the field-effect principle. The drain current in an ISFET is

given by the same equations as MOSFETs:

Id =Coxµ
W
L
[(Vgs−Vt)Vds−

1
2
V2

ds] (8.1)

with Cox the oxide capacitance per unit area,W and L the width and length of the

channel,Vt is the threshold voltage, andµ the electron mobility in the channel. When
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Figure 8.1: Schematic representation of MOSFET and ISFET [95]. The pH of the
solution above the gate causesVgs to change which changesId.

Vds is held constant, the drain current,Id, is a unique function of the input voltageVgs

which is controlled by the number of ions present in the solution. For this application,

the number of ions present is the pH. Alternatively, holdingId constant allows changes

in Vgs to reflect changes in pH. The pH sensitivity of an ISFET occursthrough changes

in the threshold voltage of the device caused by modificationof the flat band voltage,

VFB. The flat band voltage is defined as

VFB = Ere f −
1
q

ΦSi−ψ0−
Qi

Ci
+χSol+δχ (8.2)

whereEre f is the reference electrode potential relative to vacuum, 1/qΦSi is the work

function of Si, ψ0 is the potential drop in the electrolyte at the insulator-electrolyte

interface,Qi andCi are the insulator effective charge and capacitance,χSol is the surface

dipole potential of the solvent, andδχ is a collection of a number of variations inχ .

The insulator used in an ISFET contains charge at various locations, all of which affect
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the operation of the device. The total effective insulator charge can be expressed as

Qi = Qf +Qit +
dc

di
Qm (8.3)

whereQf is the fixed charge,Qit is the charge trapped in surface states, and the last

term is the charge distributed at the insulator,Qm, taking into account the distance to

the centroid of the insulatordc and the insulator thicknessdi . In total, the flat-band

voltage is influenced by three terms that depend on the electrolyte composition. The

first isψ0, the potential drop in the electrolyte at the electrolyte-insulator interface. The

second is(dc/di)Qm/Ci , the effect of the mobile ionic charge which can be modulated

by the electrolyte. The final component isQitCi , which is the effect of the surface state

density that can change from diffusion of the electrolyte into the insulator.

ISFETs suffer from drift caused by a number of different factors, some of which

are not fully understood. Drift has been shown to be temperature dependent [97], pH

dependent [98–100], insulating gate dependent [98], transport dependent [101], and

split between a fast and slow response [102]. Attempts to mitigate the effects of drift by

means of software compensation [94], hardware configurations [103], or a combination

of both [100, 104, 105] have shown progress in making ISFETs adequately stable for

commercial application.

Jamasbet al. developed a physical model for drift behavior in ISFET de-

vices [101]. They hypothesized that much of the drift phenomenon is associated with

transport through the gate insulator. Their model focuses on the chemical modification

of the oxide surface by hydration when exposed to aqueous solutions. Changes in the

oxide insulating layer modify the overall permittivity, therefore altering the capacitance

(Ci) and the amount of channel inversion in the ISFET. Because these changes occur

slowly over time, they show up as drift in the output signal ofthe devices.
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8.2 Experimental
Device Fabrication

We have fabricated a chip with ISFET pH sensors using the SensoNor MultiMEMS

process. The ISFET was made using the same process as the capacitance sensor in

Chapter 6. The ISFETs we designed in the MultiMEMS process are P-channel devices.

The P-doped regions are composed of PSC and PBC (see Figure 4.2) with a channel

length of 6µm. There are 21 fingers each with a length of 260µm for a total channel

width of 5460µm. The ISFET structure is contained in the N-Epi layer. The gate

insulating material is thermally grown oxide. The ISFET area can be seen in Figure

6.6.

ISFET Characterization

We measured electrical characteristics using a Keithley 2636A source measurement

unit (Keithley Instruments, Inc., Cleveland, Ohio) controlled by MATLAB (Math-

works, Natick, MA). Devices were characterized with buffersolutions with pH of 4.01,

7.0, and 10.01 (Oakton Instruments, Vernon Hills, IL). A gold wire was used as a ref-

erence electrode, and all experiments were conducted in a Faraday cage.

We verified a pH response from the device as shown in Figure 8.2. The device

gives a calculated sensitivity of 45mV/pH. It is important to note that the values of

Vre f required to operate the ISFETs varied greatly between devices. TheVre f required

to operate varied between about−20V and−2V, depending on the device. The huge

range is likely due to the fact that the fabrication was not designed to make ISFETs.

Once we determined the properVre f for a device to operate, the value was fairly con-

sistent.
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Figure 8.2: The pH response of an ISFET using buffer solutions of pH of 4, 7, and 10.
The value ofVre f was swept, and the currentIDS was recorded.

Voltage Cycling

We examined the cycling of two electric fields present withinthe ISFET. The first field

is the vertical field of the device which depends on the voltage betweenVre f and the

channel potential. The vertical field was cycled by switching the value ofVre f between

the operating voltage (ISFET on) and the value at the source (ISFET off). We also

investigated cycling of the horizontal electric field between the source and drain. The

horizontal field was controlled by switching the voltage on the drain of the device.

MATLAB was used to control all of the voltages applied to the device by the Keithley

2636A.

Modeling

A model of the ISFET was created using Silvaco TCAD to understand the physics of

the drift and the reset behavior. A physical-based simulation was performed in ATLAS
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to examine the physical mechanism of ISFET threshold voltage drift. The ATHENA

process simulation framework was used to create a p-channelfield effect transistor with

the same properties and dimensions as the ISFET. The simulated model was fabricated

according to the steps provided in the SensoNor MultiMEMS design guide.

TCAD can model the fabricated device, but the electrolyte cannot be modeled

directly. Therefore, a user defined material was deposited on top of the oxide layer

to emulate the electrolyte. All user defined materials in ATHENA are considered in-

sulators with properties that can be altered to meet the requirements for a simulation.

We modified the properties of the user defined material to align with the conditions of

an ionic solution as specified by Chunget al. [106]. In an ionic solution the charge

distribution (ϕ) in the ionic double layer is given by the Poisson-Boltzmannequation,

δ 2ϕ
δx2 =−

q
ε

[

CNa+
0 exp

(

−qϕ
kT

)

−CCl−
0 exp

(

−qϕ
kT

)]

(8.4)

whereCNa+
0 andCCl−

0 are the concentration ofNa+ andCl− in the electrolyte,k is

Boltzmann’s constant,T is the temperature in Kelvin,ε is the permittivity of the elec-

trolyte, andq is the total charge of the ions in the double layer equal to thecharge

number of the ion (z) multiplied by the elementary charge (e) (q= ze). This equation

can be modified to give the Fermi-Dirac distribution of electrons and holes given by

δ 2ϕ
δx2 =−

q
ε

[

p0
1+e

Ei−Ev
kT

1+e
Ei−Ev

kT e
qϕ
kT

−n0
1+e

Ec−Ei
kT

1+e
Ec−Ei

kT e
qϕ
kT

]

(8.5)

so that an intrinsic semiconductor can be used to model the electrolyte. In equation

(8.5), n0 and p0 are electron and hole concentration,Ei is energy of fermi level in an

intrinsic semiconductor,Ec is the energy of the conduction band, andEv is the energy

of the valence band. For equation (8.5) to be true, the band gap (Eg) of the intrinsic

semiconductor should satisfy the equationEg
2 −qϕ ≫ kT.

The density of states for the valence band and conduction band, (Nc andNv

respectively), were specified according to the molar concentration of the ionic solution.
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This set the bandgap to 1.5eV. This model required a Debye length larger than the size

of the simulated ions in solution. The Debye length decreases as the ionic concentration

increases; therefore, the maximum concentration we could simulate was approximately

500mM.

The relative permittivity of the defined material was set to 80 to match the prop-

erties of water. The mobility of electron and holes was set tothe values forCl− and

Na+ ions in water (6.88×10−4cm2V−1s−1 and 4.98×10−4cm2V−1s−1 respectively).

Properties for electron affinity (3.9eV) and the recombination lifetime of electrons

(1× 10−3s−1) and holes (1× 10−3s−1) were set by curve fitting the simulated and

experimentally obtained curves. Gold was used as a reference electrode to match the

experimental setup. The final structure of the modeled ISFETis shown in Figure 8.3.

Figure 8.3: The structure of the ISFET as modeled in Silvaco TCAD. Doping levels
and materials are indicated.
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The Shockley-Read-Hall(SRH) and Lombard mobility models were used to

simulate the drift in threshold voltage and the reset characteristics. These are stan-

dard models used for MOSFET simulations. SRH was used to model the generation

and recombination inside the semiconductor. The Lombard mobility model considers

mobility due to the transverse electric field. The curve fitting was done usingIDS vs

Vre f values obtained from the static DC solution. The gate voltage was ramped from

0V to −20V while keeping the drain at−2V to obtain theIDS vsVre f curves. During

simulations, the source and the substrate were kept at 0V, while the drain was held at

−2V. The reference voltage was kept at−10V while performing transient simulations.

All of the voltages used in the model reflect the experimentalconditions. Simulations

were performed for a model with a unit width so the current obtained was perµm of

device width. The width of our fabricated ISFET was 5460µm; the current values ob-

tained during simulations are multiplied by the width to compare to our experimental

results.

8.3 Experimental Results

Figure 8.4 shows the experimental ISFET drift results when using a pH 4 buffer. The

ISFET had a steady drift when no switching was applied. Cycling VDS showed no

change in the overall drift of the device; drift appears to continue even whenVDS is not

applied. CyclingVre f shows a repeatable drift pattern. The cycling ofVre f effectively

resets the device and causes identical drift every time the cycle is started. The reset

characteristics showed some dependence on the on and off time proportions as well as

the pH of the solution, but an appropriate vertical electricfield reset time was easily

determined by trial and error.

8.4 Simulation Results

Figure 8.5 shows simulation results of the same switching procedures shown in Fig-

ure 8.4. The simulations demonstrate the same behavior as our experimental results.
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Figure 8.4: Experimental results showing drift in drain current, the effect ofVre f cy-
cling, and the effect ofVDS cycling.

Cycling of Vre f effectively resets the device while cyclingVDS has little effect on the

overall drift. We simulated a unit ISFET width so the currents were much smaller than

experimental values.

8.5 Discussion

Cycling the vertical electric field of an ISFET is a promisingmethod of drift compensa-

tion. Our experimental results showed a clear reset in the drift profile of a commercially

fabricated ISFET when switchingVre f . CyclingVDS did not produce a reset; instead, the

ISFET output continued to drift throughout operation. The difference in drift direction

between experimental and simulation results is likely due to producing an electrolyte

solution within TCAD. The direction of drift has been shown to depend on the pH of the

measured solution [102]. The electrolyte concentration, and thus the pH and direction
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Figure 8.5: Simulated results showing the drift in drain current, the effect ofVre f cy-
cling, and the effect ofVDS cycling.

of drift, cannot be modeled very accurately in TCAD. The simulated ISFET current val-

ues matched well with the experimental value; multiplying the simulated unit current

(approximately 1.65×10−8) by the total device length(5460µm) gives 90µA, which

is very close to the experimental values of 146µA.

Our simulation confirmed our experimental results of a driftreset when switch-

ing Vre f and enabled us to determine the cause for the drift. Under theinfluence of an

electric field, ions accumulated at the interface between the oxide and the electrolyte.

Switching the vertical electric field off for sufficient timeallowed the ions to diffuse

away from the surface. When the vertical electric field was restored, the ions would

again accumulate at the surface but their accumulation would be identical to when the

device was first turned on. Conversely, horizontal field cycling showed no effect on
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the distribution of ions because the vertical field was maintained. The resetting of the

device through vertical field cycling thus allows a predictable drift pattern. The off time

required for a reset varied with the pH of the solution and theamount of time the device

was in the on state.

Overall, these results show the cycling ofVre f gives a repeatable drift pattern

easily accounted for with either software or hardware. Compensation of a known error

would allow for drift resistant ISFET operation. Multiple devices could useVre f cycling

to achieve constant pH measurement. Such a setup is possiblewith the small size of

the ISFET and their compatibility with on-chip circuit integration.

Other published work on ISFET drift attempts to actively fight against the be-

havior of the device. This work demonstrates the idea of drift management, allowing

the device to drift normally, but in a repeatable pattern. Extensive compensation tech-

niques for longer term monitoring are not necessary when thedevice shows repeatable

operation using shorter measurement times. This voltage cycling technique thus shows

potential in expanding the use of ISFETs in long term, continuous monitoring applica-

tions.
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Chapter 9

DISCRETE ISFET

As discussed in Chapter 8, ISFETs are solid state devices forsensing pH. Early IS-

FETs were fabricated exactly as MOSFETs, except the gate contact was removed and

the gate oxide exposed directly to a solution. This leaves a structure as seen in Figure

8.1. Further work with ISFETs revealed that the structure isessentially an ion sensi-

tive electrode with a field effect transistor used for detection [107]. Because of this

concept, extended gate structures were developed which used a simple metal connec-

tion to connect the pH sensitive region to a MOSFET for detection [108]. This has

been demonstrated more recently by Prodromakiset al. using a discrete MOSFET with

the gate connected to a metal electrode covered with a pH sensitive nitride layer [109].

This work uses the term “discrete ISFET” interchangeably with “extended gate ISFET”

because the design uses a discrete, commercially made MOSFET.

The discrete ISFET behaves in the same manner as a regular ISFET. However,

using a discrete design allows much more design freedom thana traditional implemen-

tation. The sensing region does not need to be on the same piece of silicon the transistor

is fabricated on. Therefore, the sensing region can have various geometries or param-

eters that are only limited by the fabrication process of thesensor instead of the entire

MOSFET structure. Changes can be made to the sensing portionwithout regard to the

MOSFET operation. Excluding the MOSFET from the fabrication process reduces the

time and cost of the sensor. Discrete component MOSFETS are incredibly cheap when

produced by commercial foundries; the commercially produced devices utilized in this

work were only $0.46 each. Fabrication of a similar quality MOSFET in a research

lab is neither feasible or comparable, in terms of both cost and time. For instance, pro-

duction of CMOS ISFETs (as in Chapter 11) takes a minimum of four months just to

receive a design from a commercial process. The fabricationof a custom sensing re-
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gion, on the other hand, is feasible in a research scale nanofabrication facility. The time

required to fabricate just the sensing region is on the orderof hours, so many iterations

of the devices can be produced.

9.1 Discrete ISFET Fabrication

The design for the discrete ISFET used in this system went through many iterations.

The first design was almost identical to the design used by Prodromakiset al. [109]. A

key difference was the base substrate used. Prodromakiset al. used glass whereas we

chose to fabricate on top of a silicon wafer to allow easier dicing. The design for metal

deposition is shown in Figure 9.1.

Figure 9.1: Masks used for the first discrete ISFET design. The blue represents areas
of chrome and gold while the green represents nitride. The total area of the design is
24 mm× 18 mm.

The fabrication protocol for the first discrete ISFET designwas as follows:

1. A clean,< 100> silicon wafer was used as the substrate

2. Shipley Microposit S1813 (Rohm Haas, Marlborough, MA) positive photoresist

was spun to a thickness of 1µm. The spin recipe was 500 RPM for 10 seconds

followed by 3000 RPM for 30 seconds.
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3. The resist was baked at 115◦C for 1 minute.

4. The resist was exposed for eight seconds with an aligner exposure power of ap-

proximately 25mJ/s. The mask was aligned with the wafer flat to ensure the

patterns could be diced cleanly.

5. Development was performed using 351 Developer (Microchem) mixed in a 5 : 1

ratio (water:developer). The pattern would fully develop in approximately 45

seconds. The device was cleaned with water after development.

6. Metal evaporation was performed in a Cressington 308R evaporator (Ted Pella

Inc., Redding, CA) with a LT300 dual output power supply. Approximately

30nm of a chrome was evaporated to form an adhesion layer. A chromerod

served as the source for the metal (CRW-1, RD Mathis, Long Beach, CA). Imme-

diately following the chrome deposition, approximately 70nmof gold (99.999%

pure) was evaporated using a ME5-.005W source (RD Mathis).

7. Coated samples were placed in an acetone bath with sonication to remove the

patterned resist and therefore selectively lift off the metal.

8. Approximately 65nmof silicon nitride was deposited using a Plasma Enhanced

Chemical Vapor Deposition (PECVD) at 350◦C.

9. Another layer of S1813 resist was spun, baked, exposed, and developed using a

nitride patterning mask to provide a protective layer over the sensing electrode

area.

10. The nitride was etched using reactive ion etching (RIE).This process removed

nitride not protected by the S1813 and exposed the gold bonding pads.

11. The device was rinsed with acetone to remove the S1813 etch mask.
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This process is summarized in Figure 9.2.
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Figure 9.2: Process flow for the first discrete ISFET design. The steps include resist
patterning (A), gold and chrome evaporation (B), lift-off to leave patterned gold (C),
PECVD nitride deposition (D), resist patterning (E), and RIE of nitride and resist re-
moval (F).

This device was tested for use as a pH sensing device and showed pH sensi-

tivity. However, there was not an integrated reference electrode on the device. Using

an external electrode was difficult because it had to be changed often and was not at

a consistent distance from the sensing area. This caused significant variations in the
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signals recorded and difficulty in calibrating for a pH value. This device also needed

to be used in a microfluidic environment so we wanted to avoid trying to integrate a

macroscale reference electrode.

The second iteration of the design integrated an on-chip reference electrode

onto the device. The fabrication protocol was the same as described for the first de-

vice in Figure 9.2. Different masks were used for the resist patterning steps, shown in

Figure 9.3. The problem with this design was a lack of insulation between the silicon

substrate and the deposited metal. This was not an issue in the first design because

there was only one connection made to the device. With the reference electrode inte-

grated onto the same substrate, we enabled the sensing region to short to the reference

electrode through the semiconducting silicon. The short rendered the devices useless

as pH sensors.

The third version of the discrete ISFET sensor corrected theshorting issue by

thermal growth of oxide on the silicon as an insulating layer. The remainder of the

fabrication protocol was the same except for the nitride patterning. Instead we inverted

the pattern used for the nitride patterning. The new mask design is shown in Figure 9.4.

The summarized fabrication protocol is shown in Figure 9.5.

The change to the nitride patterning had no implications to the function of the

ISFET as a pH sensor. In version two, nitride was left only on top of the electrode that

was to be pH sensitive. Nitride was removed elsewhere to allow for off chip electrical

connections and for reference electrode access to the solution. To ensure these electrical

connections, the RIE was programmed to etch past the depth ofthe nitride and into the

silicon dioxide. However, this excess etching produced a significant step from the total

height of the chrome/gold/nitride stack down to the silicondioxide layer. This step

proved to be an issue when attempting to bond a microfluidic device on top of the

discrete ISFET sensor. As shown in Figure 9.6, a good bond wasformed between the
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Figure 9.3: Masks used for the second discrete ISFET design.The grey represents areas
of chrome and gold, and the red-checkered area represents nitride covered regions.
Alignment marks at the corners of the mask are not part of the ISFET. The total area of
the design is 24 mm× 21 mm.

nitride layer and the PDMS, but no bonding occurred outside of this area. The problem

was corrected by only etching the nitride over the referenceelectrode and the bondpads.

The etched areas of the final version are indicated by the green mask in Figure 9.4. This

discrete sensor design was ultimately chosen for use in the feedback system.

9.2 Results

The discrete ISFETs could be tested for electrical characteristics using a Keithley

2636A source measurement unit (Keithley Instruments, Inc., Cleveland, Ohio) con-

trolled by MATLAB (Mathworks, Natick, MA). Devices were characterized with buffer

solutions with pH of 4.01, 7.0, and 10.01 (Oakton Instruments, Vernon Hills, IL). An

external reference electrode was necessary to test the firstdiscrete design. The fabri-
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Figure 9.4: Masks used for the third discrete ISFET design. The grey represents areas
of chrome and gold; the green represents areas NOT covered bynitride. The total area
of the design is 24 mm× 21 mm.

cated sensor was attached to a cuvet to enable easy interaction with fluid for testing.

The testing setup is shown in Figure 9.7. Initial testing wasperformed with a Ag/AgCl

electrode.

An ISFET characterization curve for the first discrete device design is shown in

Figure 9.8. The device shows pH dependence, but the results were highly variable and

often switched their order, so determining the sensitivitywas impossible.

The variations likely had many causes. The reference electrode required con-

stant upkeep so it had to be removed and replaced frequently.This made it impossible

to maintain a constant reference electrode position relative to the sensing region. Ad-

ditionally, liquid needed to be changed out in order to test different pH values. Drying
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Figure 9.5: Process flow for the third discrete ISFET design.The steps include resist
patterning on top ofSiO2 (A), gold and chrome evaporation (B), lift-off to leave pat-
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Figure 9.6: Micrograph of unsuccessful PDMS bonding onto the microfabricated IS-
FET (left). Bonding only occurred on the raised areas of goldor nitride (right). The
width of the gold extending pad to the sensing region where attachment occurred is
500µm.

Figure 9.7: First discrete ISFET design in cuvet for characterization. The reference
electrode was secured a fixed distance from the pH sensitive region.
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Figure 9.8: Characteristic ISFET curve for a discrete device. TheVre f value was swept
while maintaining a constantVDS. A different curve is obtained for each pH buffer
value.

and changing fluids likely moved the reference electrode. The drift of the device was

perhaps the greatest problem. To demonstrate drift,Vre f versusIDS was continuously

swept over a long period of time. As is seen in Figure 9.9, the device continued to drift

over the full hour of testing. The constant drift behavior made full characterization

difficult.

Subsequent designs integrated a reference electrode onto the substrate. This

reduced some variability in ISFET performance. However, asexplained in Chapter 8,

drift is an inherent problem. Controlling the ISFET environment as much as possible

helps to reduce drift. This can be done effectively using microfludics, as demonstrated

in Chapter 10.
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Chapter 10

MICROFLUIDIC FEEDBACK CONTROL OF pH

This work aims to look at the technologies and engineering principles that have evolved

since cell culture was first introduced and analyze these newideas to improve biological

cell culture. One of the most important concepts that will beinvestigated is feedback

control. Programmable control over the cellular environment will transform the way

experimentation is perceived. Feedback will also provide the opportunity for variable

control throughout an experiment instead of specifying only the starting parameters.

Feedback control is fundamental to many engineering applications and implementing it

for biological environments has numerous advantages to improve cell culture practices.

Current cell culture practices have a number of methods thatattempt to con-

trol the environment, but most are focused on macroscale control. However, the cell

microenvironment has been shown to be an equal or even more important factor. The

microenvironment has a distinct physiological character defined by the physicochem-

ical properties such as pH, oxygen tension, temperature, and osmolality [110] as well

as the physical properties [111]. Recent research has shownthat small variations in

these factors affect cell behavior [112–117]. Stem cells are influenced by factors in-

cluding growth factors, other cells, and extracellular matrix components to such a large

degree that their microenvironment regulates cell survival, self-renewal, and differen-

tiation [118–120]. Control of the microenvironment is alsoimportant in cancer re-

search [121]. Hypoxic microenvironments have been shown toinduce metastasis in

tumors. Furthermore, levels of pH, glucose, and lactate also affect metastasis of tu-

mors [122]. While cell culture has been used since the 1950s to produce human vi-

ral vaccines, only recently has the cell microenvironment been examined as a factor

influencing their production [123]. Biopharmaceuticals rely on animal cells to glyco-

sylate proteins, and maintaining a consistent glycosylation profile between batches is
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important. Culture parameters such as nutrient concentration, dissolved oxygen, pH,

temperature, batch age, ammonia, shear stress, and even media perfusion can affect gly-

cosylation making consistent biopharmaceutical production difficult [124]. Precision

control over the microenvironment would solve many of theseproblems.

This chapter presents a control system for microenvironment pH control. This

is an excellent example of combining microscale biosensorsinto a biological environ-

ment.

10.1 Background

The pH of a solution is a dimensionless measurement of the molar hydrogen ion con-

centration ([H+]) in a solution. The pH, which stands for “power of hydrogen”,is

calculated with

pH =−log10[H
+] (10.1)

Similarly, the pOH is the measurement of the molar hydroxideion concentration ([OH−]),

which is calculated using

pOH=−log10[OH−] (10.2)

The values of pH and pOH are related by the dissociation of water

2H2O⇀↽ H3O+(aq)+OH−(aq) (10.3)

whereH3O+ is the equivalent toH+, with an equilibrium constant (Kw) of

Kw = [H+][OH−] = 1014 (10.4)

The values for pH and pOH are therefore related by

pOH≈ pH−7 (10.5)

when the temperature is 25◦C. Thus water is at equilibrium when the pH and pOH are

both 7, which is considered a neutral pH value. A solution with a pH > 7 is considered
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basic and a solution with apH < 7 is considered acidic. The usual range for pH or

pOH is from 0 to 14.

The strength of an acid or base is determined by how much the compound mak-

ing up the solution dissociates in water. Strong acids such as HCl and strong bases

such as NaOH completely dissociate in water. Because strongacids and bases dis-

sociate completely, their pH can be easily calculated usingequations (10.1), (10.2),

and (10.5). Weak acids and bases do not completely dissociate so their pH must be

calculated based on their respective dissociation constants (denoted asKa for an acid).

A buffer is a solution consisting of a mixture of a weak acid and its conjugate

base, or a weak base and its conjugate acid. It is referred to as a buffer because their

pH changes very little when adding a small amount of strong acid or base. Buffers

are used to keep pH values close to constant and thus have manyapplications in cell

culture and other biological applications. A property thatdistinguishes one buffer from

another is theKa value. The negative log of theKa gives thepKa, which is the pH value

around which the weak acid provides buffering. Some weak acids used as buffers, such

as potassium dihydrogen phosphate (KH2PO4), can lose more than one proton and thus

have more than oneKa value. These weak acids are known as polyprotic acids.

Feedback Control

Control systems are generally in two categories: open loop systems and closed loop

systems. An open loop system modifies the inputs to a system without monitoring the

outputs. Open loop configurations thus have no way to tell if the changes made to the

system actually perform as desired. Closed loop systems implement a feedback loop

in the control path. The closed loop system inputs a value into a system, monitors the

output, and then compares the output to the desired output characteristic to determine

how to change the input value. Feedback systems thus offer increased stability, reduced
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noise, reduced sensitivity to variations in input characteristics, and ultimate control over

the output.

A common method to implement feedback control is through PID(proportional

integral derivative) control. The control sequence of a PIDsystem is illustrated in Fig-

ure 10.1. The system first monitors the output of a process. The output value is then fed

back and compared to the setpoint of the system, which is set externally. The difference

produces an error value. The error value is multiplied by “proportional,” “integral,” and

“derivative” terms which are then summed to vary the input tothe process. Each of the

Figure 10.1: Control sequence for a PID system.

three PID elements of the controller has a different effect on the function of a system.

Proportional control provides information on the current setpoint error. Integral control

provides information on what has happened to the system in the past. The derivative

portion provides information on how the system will performin the future. These sys-

tems are often used concurrently but control systems also exist which only utilize one

or two of these elements. Overall, the system can be described mathematically through

equation 10.6 whereE(t) is the error,KP, KI andKD are the proportional, integral, and

derivative constants respectively, andC(t) is the control output of the system.

C(t) = KP×E(t)+KI

∫ t

0
E(t)dt+KD

dE(t)
dt

(10.6)
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As shown in equation 10.6, the formula for calculating the input to the system is a

continuous function. Since most modern control systems operate in discrete time, it

is necessary to convert the continuous function into discrete-time function. This trans-

formation requires approximations for both the integral and derivative portions of the

equation to obtain the discrete-time PID formula. We use a simple first order approxi-

mation withtS as the sample period to derive equation 10.7.

C(n)∼= KPE(n)+
[

E(n)−E(n−1)
]

/tS+ tS
n

∑
0

E(n) (10.7)

10.2 Fabrication

The feedback system used for this work uses a discrete ISFET for sensing pH. PDMS

microfluidics are employed to control the microenvironmentusing incorporated valve

structures. The microfluidics are joined to the ISFET to forman integrated testing

platform. ISFET readout, valve control, and PID control areperformed with a DAQ

and a computer running MATLAB.

The fabrication for this device can be categorized into fourparts. The first part is

the fabrication of the discrete ISFET, discussed in Chapter9. The remaining three parts

are addressed in this chapter and include fabrication of themicrofluidic environment,

the ISFET readout circuit, and the valve control system. These four parts are integrated

to form a feedback control system.

System Integration

There were multiple components necessary to make this feedback controlled microflu-

idic system work. Every part of the system was ultimately controlled using MATLAB.

The computer used a National Instruments USB-6212 DAQ to interface all of the elec-

trical connections necessary. The ISFET sensor was attached to a readout circuit which

produced a signal read into the DAQ for MATLAB analysis. The microfluidic valves

were controlled using an output from the DAQ.
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All of the fluidic connections were made using tygon tubing. The system used

gravity feeds to produce pressure driven flow through the device. The use of gravity for

pressure flow was especially advantageous because it eliminated the need for pumping

apparatus.

A picture of the complete system is shown in Figure 10.2. Specifics for the

operations of the components are in the following sections.

Figure 10.2: Picture showing all the components of the feedback system. The microflu-
idic device is shown with multiple fluidic inputs. Pressurized air is also input in the
microfluidics for valve control. The flow of pressurized air is controlled by solenoid
valves shown in the upper right. The ISFET readout circuit was implemented on a
breadboard. The DAQ controls the ISFET readout circuit as well as the valve control
circuitry.
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PDMS Microfluidics

All of the microfluidic devices were made using standard fabrication techniques as

presented in Chapter 3.

The design for the PDMS microfluidic interface also went through many iter-

ations. The first device design is shown in Figure 10.3. The multilayer PDMS design

featured a central processing chamber and two valves. The valves were to control the

entry of fluid from either of the side channels. The chamber was to be centered over

the pH sensitive electrode on the first discrete ISFET design. This design did not work

well because of the symmetry; directing fluid to flow from one port to another was

very difficult. The small chamber size was also inadequate for multiple electrodes. An-

other drawback to this design was the line around the outsideof the pattern. A slight

misalignment between the fluid and valve layers would cause one of the port areas to

overlap with the line around the outside. When this happened, the line, which was only

meant as a cutting aid, would turn into a channel. If the line was cut at any time during

fabrication (which happened often, since it was designed tobe cut) the channel would

be open to air; thus fluid would leak out through the cutting line channel. This line was

eliminated in subsequent designs and instead replaced withcorner alignment markers.

The second design iteration featured two different analysis area options. One

design, as shown in Figure 10.4, featured a large chamber area that would be situated

over the sensing electrode and reference electrode. Two valves were still included but

their angle was changed to allow for better spacing of the port connections. The length

of the channel between the point of mixing area and the analysis area was also in-

creased. The increase in length allowed better mixing in thelaminar flow environment.

The second version of the second design iteration featured adifferent analysis

area, as shown in Figure 10.5. This design replaced the chamber analysis area with a
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Figure 10.3: Mask designs for the first microfluidic design. The fluid layer is shown in
blue, and the control valve layer is shown in green. It was designed to fit over the first
ISFET device. The total area of the design is 16 mm× 17 mm.

small fluidic channel that would pass over the sensing area multiple times. This design

helped to reduce the number of bubbles that were being trapped in the chamber designs.

Both designs during the second design iteration failed to allow flow as desired.

The increased length of the channel before the analysis areahad an adverse effect on

the system because it increased the fluidic resistance. The increased resistance made

fluid flow in that direction less likely than fluid flow into one of the valved channels or

the bottom input channel. The small size of the channels usedup to this point (100µm

across) limited fluid flow throughout the device. A faster fluid flow between the mixing

region and the analysis region would reduce dead time in the feedback loop and thus

make control easier. The microfluidic design was changed to allow greater flow rates in

the third version. This version, shown in Figure 10.6, removed the lengthy mixing area
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Figure 10.4: Mask designs for the second set of microfluidic designs. This design uses
a chamber area for analysis. The fluid layer is shown in blue, and the control valve
layer is shown in green. It was designed to fit over the second and third ISFET devices.
The total area of the design is 21 mm× 17 mm.

Figure 10.5: Mask designs for the second set of microfluidic designs. This design uses
a serpentine channel arrangement over the sensing region. The fluid layer is shown
in blue, and the control valve layer is shown in green. It was designed to fit over the
second and third ISFET devices. The total area of the design is 21 mm× 17 mm.
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with high resistance. All of the input and output channels were also increased in size to

allow quicker flow throughout the system. The output channelwas increased to larger

than the input channels to encourage flow towards the analysis area. This design was

used in the presented feedback system. The final PDMS microfluidics were bonded

to the discrete sensor chip using oxygen plasma surface activation. This activation

allowed irreversible bonding of the PDMS to the sensor devices.

Figure 10.6: Mask designs for the third set of microfluidic designs. This design uses
larger channels throughout the device to allow for greater flow. The output channel is
larger than the input channels to encourage fluid flow in that direction. The fluid layer
is shown in blue, and the control valve layer is shown in green. It was designed to fit
over the second and third ISFET devices. The total area of thedesign is 21 mm× 17
mm.

Valve Control

The microfluidic valves are controlled by air pressure. Whenpressurized, the valves

block flow in the fluidic channel they cross. An illustration of the valve action is shown

in Figure 3.2. The flow of air into the valve channels is controlled by solenoid valves

(LHDA1211111H, The Lee Company, Westbrook, CT). Photographs of solenoid valves

are shown in Figure 10.7. The valves have two positions and can be switched by ap-
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plying a 12V DC signal. The valves can switch positions at up to 300Hz. Due to the

high voltage required, an isolation circuit is used to protect the DAQ and computer.

The circuit, shown in Figure 10.9, uses a photocoupler to isolate the DAQ digital input

from the solenoid connections. The valves are operated in a normally closed configura-

tion; therefore, the valves will only open to allow pressurized airflow when a voltage is

applied through the DAQ. Figure 10.8 illustrates the solenoid operating positions. The

system uses 15psicompressed air during operation.

Figure 10.7: Photograph of an individual solenoid valve (left) and the valve position
within a manifold.

Figure 10.8: Cross section of solenoid valve showing the normally open (NO), com-
mon, and normally closed (NC) positions [125].
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Figure 10.9: The schematic of the isolation circuit used forvalve control. The photo-
coupler prevents high voltages from reaching the DAQ.

ISFET Readout

The device fabricated for pH detection cannot operate independently. The device only

incorporates a pH sensitive nitride layer over an electrode; a transistor is needed to

operate. This discrete ISFET configuration relies on a commercially fabricated MOS-

FET to operate. The pH sensing region acts like an extended gate connection and the

operation is analogous to a regular ISFET. Using a metal connection to reduce the dis-

tance between the sensing region and the FET oxide is commonplace; even ISFETs

made entirely in a CMOS process employ stacked metal layers to reduce the effective

distance [126].
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The ISFET device requires additional circuitry to provide an easy readout. We

used the same circuit configuration as Dunet al. because it provides a simple readout

[102]. The circuit, shown in Figure 10.10, uses a resistor with a known voltage drop

to set a constant current through the MOSFET. The reference voltage applied to the

solution changes depending on the pH of the solution. This circuit provides a simple

means of readout by monitoring the reference voltage. This work used an LND150N3-

G N channel MOSFET (Supertex, San Jose, CA) with the gate connected to the pH

sensing region. The amplifier was an LF356N JFET input operational amplifier (Texas

Instruments, Dallas, TX). During operation, the current through the MOSFET was set

at 1µA by applying 0.182V across the 182kΩ resistor.
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Figure 10.10: Schematic of the ISFET readout circuit. The ISFET kept at a constant
current. Changes in pH are reflected in changes to the reference voltage.
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Fluids

Fluid choice was critical for successful feedback operation as explained in section 10.1.

This work used mixing of a weak acid,KH2PO4, with a strong base,NaOH. The

solution therefore provides buffering around the region ofinterest, pH 7. The solutions

were dyed,KH2PO4 with red food coloring andNaOH blue food coloring, to aid in

visualization of mixing. Both fluids were suspended approximately 50cm above the

microfluidic device to provide pressurized flow from gravity. The mixed solution was

free to drain throughout the experiment.

10.3 Results
pH Sensitivity

Standard pH buffers were used to determine the sensitivity of the discrete ISFET. Buffer

values of pH 4, pH 7, and pH 10 were obtained from Oakton Instruments (Vernon

Hills, IL). The buffers were introduced to the device one at atime, and the calibration

value was recorded. The three point calibration shown in Figure 10.11 indicates a pH

sensitivity of 33mV/pH. This value is in agreement with the results of 36.5mV/pH

by Prodromakiset al. using a similar device structure [109].

Feedback Control of pH

Figure 10.12 demonstrates the pH feedback control capabilities of this microfluidic

system. The setpoint was adjusted in 5mV increments to show the response character-

istics of the system. During tuning we discovered the necessity of an error value for

the system to control the pH. The error provides the appropriate mixing ratio of the

two reagents. Because a persistent offset was necessary forour operating region, we

eliminated the use of the integral component of the control system and instead just used

proportional and derivative values. Leaving the integral error factor would have caused

wind up and loss of system control since the integral could never correct the offset.
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Figure 10.11: The three point calibration curve for the ISFET gives a sensitivity of
33 mV/pH.

The methods to complete the feedback loop for this system provided interesting

behavior. The error signal was a difference in voltages between the set point and the

measured value. The error signal was simply a voltage. However, the valves operated

on a digital signal. A pulse width modulated (PWM) signal wascreated to convert the

variable amount of error into a digital signal for valve operation. The error in volts

was converted to a time using the tuning parameters of the feedback controller. The

maximum operating frequency of the valve was 300Hz so the minimum pulse width

was set to 0.01 second. Even periods of PWM signal were maintained by capping the

sum of the pulse on and off time.

The error between the setpoint and measured pH value (Vre f ) showed a linear

relationship. The fit line for the error is shown in Figure 10.13. We were able to subtract
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Figure 10.12: Feedback controlled steps in pH. An offset between the setpoint and the
Vre f is necessary to maintain a specific pH value.

this error from the setpoint value to better demonstrate ourcontrol over the system. The

modified setpoint is shown compared to the measured values inFigure 10.14. Each

step in the measured pH value represents a 0.14 pH change. The system was tested

for multiple hours and showed consistent control over the measured pH value. Drift in

sensor operation was present but minimal over a two hour testat a consistent setpoint.

Results are shown in Figure 10.15.

Range of pH Control

An example titration curve for a polyprotic acid is shown in Figure 10.16. The steps

within the titration occur because of the progression through different chemical reac-

tions, summarized in table 10.1. The use ofKH2PO4 produces buffering due to the
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Figure 10.13: Error for a given setpoint. Error values converge to the fit line when the
setpoint changes values. The relationship is approximately linear over the buffering
region.

common ion effect. This means we introduce phosphoric acidH3PO4 to the system by

means of its conjugate base,KH2PO4, which completely dissociates.

Table 10.1: Reaction equations during a titration ofKH2PO4 and theirpKa values.

Reaction pKa

KH2PO4 → K++H2PO4
− dissociates completely

H3PO4 ⇀↽ H2PO4
−+H+ pKa1 = 2.15

H2PO4
− ⇀↽ HPO4

2−+H+ pKa2 = 6.82

HPO4
2− ⇀↽ PO4

3−+H+ pKa3 = 12.38

Feedback control of pH is very difficult because pH is on a logarithmic scale

and can rapidly change with very small additions. These points of rapid change are

called equivalence points and are seen at points of very highslope on a titration curve.
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Figure 10.14: Feedback controlled steps in pH compared to the modified setpoint shows
a well controlled feedback system. Each step inVre f is approximately 0.12pH.

Titrating a strong acid with a strong base yields an equivalent point close to pH 7.

The pH is most sensitive around these equivalence points so it is extremely difficult to

control pH in these regions. Therefore, this work demonstrates control usingKH2PO4,

a weak acid, titrated withNaOH, a strong base. This utilizes polyprotic buffering

behavior to decrease the slope of the titration curve in the region of interest. With a

decreased slope, feedback control in this region is more easily attained.

The range of pH for the system is demonstrated with a controlled titration of a

weak acid (KH2PO4) and strong base (NaOH). Results from this titration are shown in

Figure 10.17. As expected, the system was not stable near theequivalence points of the
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Figure 10.15: Drift in sensor output over a two hour test witha consistent setpoint.

system. The pH changes at these points still represent a multiple order of magnitude

change in [H+], even though we are using a buffered solution.

The system required serial operations to read the input signal, process the error,

and then execute the controlling PWM signal. The reading andprocessing time created

delays between the PWM signal. The delay caused both valves to be open for a short

amount of time regardless of the error signal produced. Thissmall amount of leakage

limited the pH range of the system because mixing always occurred in some amount.

The effects were seen when the PWM signal period was shortened from two seconds,

shown in Figure 10.17, to only one second, shown in Figure 10.18. The range of pH

attainable is noticeably lower with the shorter PWM. However, the shorter PWM signal

allows finer control over the biological buffering region. Alonger PWM reduces the

proportion of processing time to PWM period. The smaller proportion minimizes the

total amount of unwanted mixing during processing.
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Figure 10.16: A sample titration curve for a polyprotic acid, H3PO4 [127]. The titration
for KH2PO4 has a similar shape but differentpKa values.

Comparing Figures 10.17 and 10.18 also shows the drift problems of the pH

sensor. Significant time passed between the calibration andthe titration in Figure 10.18

so the pH levels are not accurate.
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Figure 10.17: Feedback controlled titration using a weak acid (KH2PO4) and a strong
base (NaOH). The polyprotic titration shape, as shown in Figure 10.16,is clearly
defined. Equivalence points for the titration prevent stable feedback control. Indicated
pH levels were measured with calibrated buffer solutions. The PWM signal had a
period of two seconds.
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Figure 10.18: Feedback controlled titration using a weak acid (KH2PO4) and a strong
base (NaOH). The range of pH is significantly reduced due to the reduced PWM
period. Drift in the pH signal is also apparent when comparedto Figure 10.17.
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Chapter 11

CMOS BIOLOGICAL SENSORS

One of the most appealing methods to create lab-on-a-chip systems is to integrate the

microfluidic and biological reagents with CMOS technology.CMOS technology offers

integrated circuits, programmability and control, and embedded sensors in one device

to perform many of the functions needed for a lab-on-a-chip.Furthermore, the shrink-

ing sizes of CMOS features allow for the circuits created to be approximately the same

size as the cells and bioparticles being analyzed [128]. CMOS technology has been

used to create microelectrodes, microcoils, photodiodes,bipolar transistors, and ion

sensitive field effect transistors (ISFETs) that serve as front end detection devices for

a variety of applications ranging from temperature sensingto pH sensing to glucose

monitoring to dielectrophoretic manipulation [80].

In examining the measurement techniques for LOC andµTAS systems, the vast

majority of these systems are based on the measurement of basic quantities: voltage,

current, charge, impedance, optical power, etc. A vast library of circuits is already

available to make many of these measurements. The hurdle to making a complete

system is now to design specifically for biological applications. New designs need

to emphasize the eventual integration into a biological system. The best methods for

creating electrical interfaces using the CMOS architecture also need to be determined.

This chapter presents two CMOS chip designs for biological sensing applica-

tions. Both designs were focused on their eventual integration into microfluidic sys-

tems. Special considerations were made for their eventual testing and packaging. Along

with Chapter 12, this work makes significant progress towards fully integrated CMOS

technology for biological applications.
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11.1 CMOS Process Overview

Both of these chips were produced through the MOSIS Integrated Circuit Fabrication

Service. The service allows for small quantity fabricationruns specifically designed

for research and education purposes.

The process used for both chips allowed the definition of three metal layers and

two poly layers. The process is designed for 5V operation. Both chips were the same

die size, 3 mm× 1.5 mm. Circuit simulation and layout was performed in Cadence

using the amisc5 pdk.Rev2.18 design kit.

11.2 First CMOS Chip

This chip was designed with the goal of performing on-chip cell culture monitoring.

The chip included six different sensing regions. Each region contained an ISFET, a

Clark-type oxygen sensor, and a capacitance sensor. The ISFETs and the Clark sensors

were directly connected to bond pads for off-chip processing. The capacitance sensor

was connected to a capacitive feedback amplifier to convert the capacitance value to a

voltage output. A separate amplifier test structure with thecapacitive feedback removed

was included so the amplifier could be tested independently.

The layout of the total chip area was important to the design.All of the bond

pads were secluded to one end of the chip, while the sensing regions were pushed to the

other. The goal of this design was to maximize the space available to seal the analysis

area, which would contain liquids, from the electrical connection area. The bond pads

were arranged in two rows and wire bonding was planned as the method of forming

electrical connections. A picture of the entire chip layoutis shown in Figure 11.1.

ISFET

The ion sensitive field effect transistor was made as an NPN transistor without a gate.

The ISFET was designed with the intention of removing most ofthe passivation ox-
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Figure 11.1: The complete Cadence layout for the first CMOS chip design. The layout
is for a die size of 3 mm× 1.5 mm.
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ide above the gate region with post-processing. Two layers of metal were included to

cover the drain and source areas. The metal was included to act as a shield during

post-processing so only passivation above the gate would beremoved. This shield-

ing method was designed to increase the ISFET response by decreasing the gate oxide

thickness and therefore increasing the capacitance and sensitivity to hydrogen ion con-

centration. The layout of a single unit of the ISFET is shown in Figure 11.2. The gate

length of the ISFET is 1.0µm and the total width is 9000µm (36 rows× 250µm).

Figure 11.2: Layout of an individual unit of the ISFET. The middle area would act as
the source. Drain connections are on both sides. The two gateareas are the undefined
regions between the source and the drain. Each gate area is 1.0µm long. Metal layers
are defined to cover the source and drain connections. The metal layers also act as
shielding during etching.

Capacitance Sensing

To sense capacitance, an interdigitated electrode structure (IDES) was designed with

all three metal layers stacked on top of each other. Stacked metals were included with

chip postprocessing mind. The goal was to remove the passivation between the stacked

metal layers using a postprocessing etch. Without passivation, the capacitance could be

simplified to a parallel plate structure. This would allow the analyte to reach the area

between the IDES fingers with the goal of maximizing capacitance.

It was necessary to calculate the expected capacitance of the IDES, so we could

correctly measure the capacitance. We assumed a parallel plate capacitance neglecting

any fringing capacitance values. There were 100 rows of the stacked metals creating
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200 spaces. The area of the “parallel plate” capacitor is found by taking the length of

each row and multiplying by the height of the three metals when stacked. Using the

relative permittivity (εr ) value of water, we found an approximate capacitance value

of 64.3 pF. In the expected range for capacitance sensing we were able to calculate

an appropriate feedback capacitor to use in an electrometerop amp configuration. We

chose a value of 1 pF for the feedback capacitor, so we would get a large gain from the

amplifier. The feedback capacitor was made on-chip using thetwo poly layers.

The electrometer circuit, designed to output a voltage value representing a mea-

sured capacitance, is seen in Figure 11.3.

Figure 11.3: The schematic for the electrometer op amp charge amplifier circuit is
shown in a test configuration.
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Amplifier Design

The op amp is a large swing operational transconductance amplifier (OTA) with large

input transistors to reduce noise from the noisy biologicalsystem. The schematic for

the transistor layout of the amplifier is shown in Figure 11.4with the W/L values in-

cluded in the figure. The electrometer is reset through the feedback path using an

external clock signal.

Figure 11.4: The transistor layout for the OTA is shown. W/L values are included for
each transistor.

Clark Sensor

A Clark-type sensor is simply a three electrode design for measuring oxygen concentra-

tion. This design used three electrodes with different sizes: a small working electrode,

a larger reference electrode, and an even larger counter electrode. The electrodes were

made by stacking all three metal layers and with the plan of exposing them with passi-
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vation removal during postprocessing. The Clark-type sensor was included in each of

the six sensor areas along with the capacitance IDES and the ISFET.

First Chip Results

We discovered a number of design flaws during the testing of the fabricated chip, shown

in Figure 11.5. The first flaw was the design for the amplifier biasing. The design

included a biasing transistor for every amplifier on the chip, including the test structure.

A better design would have used just one biasing transistor and mirrored the output to

each amplifier. This error caused the biasing current to reflect the parallel combination

of every bias transistor on the chip. When adjusted for this flaw the biasing behavior

matched the simulated values.

Figure 11.5: Micrograph of the first CMOS chip.
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Besides confirming the correct biasing, little analysis wasperformed on the

chip. The chips quickly became inoperable during testing, likely due to electrostatic

discharge (ESD). This design didn’t include ESD protection, but this served as a re-

minder to why it was necessary.

The method for generating a reference voltage on this chip was also poorly

executed. The amplifier required a 2.5V reference voltage for proper operation. In lieu

of a bandgap reference, a voltage divider was made on chip using high resistance poly.

Using a voltage divider was not a good option because of the variations in resistance

values; matching problems between resistors could potentially cause incorrect voltage

division. Additionally, this voltage divider was repeatedfor every amplifier instead of

one instance that was connected throughout the chip. Because of this design, it was

likely the reference values were different for each amplifier.

Overall this design required too much post-processing. Both the IDES and

ISFET design required extensive etching through passivation. The materials and thick-

nesses included in the passivation were not disclosed, so a plan for etching could not

be predicted. Furthermore, if the etching were successful,we would have left exposed

aluminum. As discussed in Chapter 6, exposed aluminum needsto be plated before

inclusion in a biological monitoring system. Electroless plating was not successful so

these chips were not tested further.

11.3 Second CMOS Chip

The second chip was designed to correct many of the errors in the first version. First, the

new design was restructured to accommodate better packaging methods for direct expo-

sure biological environments. The chip architecture was completely changed to include

a pad ring structure with the sensing regions centered on thechip. This sequestered the

fluidic area to the middle of the chip while allowing electrical connections to extend in
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all directions. This allowed for an increased pad count. Thedesign geometry was used

for the packaging method presented in chapter 12.

Another big change was the elimination of exposed aluminum in the sensing

area, thus avoiding the problem of effective electroless plating. The Clark sensor design

was eliminated in favor of additional circuit configurations for both capacitive sensing

and ISFETs. A picture of the layout for this chip is shown in Figure 11.6.

ESD Protection

Each bondpad was designed with electrostatic discharge (ESD) protection. The ESD

protection is a simple design but provides ample protectionfor our circuit. The schematic

is seen in Figure 11.7. Protection was provided using diode connected transistors. One

transistor was forward biased from the pad to VDD when the signal voltage was higher

than approximately 5.7 V. Another diode connected transistor was forward biased from

ground to the pad. This diode turns on to protect the circuit when the voltage was below

approximately−0.7 V.

Amplifier Design

A single amplifier design was made and reproduced throughoutthe chip design. The de-

sign is a wide swing output transconductance amplifier (OTA). It was designed largely

around the work by Harrison and Charles [129]. The design schematic, shown in Fig-

ure 11.8, was used in their neural amplifier. In this design, the transistor sizes were

changed and the cascode transistors were omitted. Transistor sizes were tweaked to

center the output by balancing the PMOS and NMOS. Large transistors (W/L=800/4)

were used as input transistors to decrease noise. The OTA wasdesigned to run on a 30

µA bias current withVdd= 5V.
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Figure 11.6: The complete Cadence layout for the second CMOSchip design. The
layout is for a die size of 3 mm× 1.5 mm.
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Figure 11.7: ESD pad schematic.

ISFET

CMOS ISFET designs differ from normal ISFET configurations [130] due to the large

amount of oxide above the gate region as well as the need for a polysilicon gate for

self-aligned source and drain regions [126]. Therefore, this version of our chip uses

a CMOS ISFET similar to the design by Bausells [126] which stacked levels of metal

connected to the ISFET gate. The metal is left floating and simply acts as a gate con-

nection closer to the sensing oxide surface. Multiple ISFETs were included on the

chip with both PMOS and NMOS configurations. We designed the ISFETs to sepa-

rate the drain and source metal contacts from the floating gate to minimize noise [131].

Many of the NMOS ISFETs were connected to readout circuitry on chip. We employ

a design from Morgenshtein et. al [103], the indirect complementary ISFET/MOSFET
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Figure 11.8: Schematic of OTA used in all capacitance sensing circuits.

pair configuration (Fig. 11.9). This design eliminates bodyeffect that can shift the

threshold voltage and the calculated pH value. The size of the ISFET was chosen to be

approximately the same size as the work by Morgenshtein to allow for a performance

comparison.

Capacitance Sensing

The chip included four designs for capacitance monitoring,each a combination of one

of two sensing methods and one of two monitoring circuits. The first sensing method

utilized the top metal of the CMOS process to create an IDES. This structure is de-

signed to have a capacitance of 1pF. The top metal has a passivation layer over it, so it

can be directly exposed to a biological environment withoutfowling due to aluminum.

Any change to capacitance will be due to a change in fringe capacitance. Fringe ca-
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Figure 11.9: Indirect complementary ISFET/MOSFET schematic from [103].

pacitance is small compared to the total capacitance between two plates so only small

variations were expected from this sensor. Therefore, thisdesign relied heavily on a

large amplification to get a detectable result.

The second capacitance sensor was also an IDES but required post-processing.

The IDES was designed to be formed using patterned gold structures on top of the

passivation layer, similar to the methods used by Zhang et al. [132]. The sensor could

be produced using a lift-off method. An appropriate metal thickness would create a

base capacitance of 1pF, similar to the other sensor design.Unlike the other design, this

sensor allows cells to culture between the capacitor “plates” to create larger capacitance

changes.
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Two different circuit configurations were included on the chip. Both designs

were based on an electrometer op amp charge amplifier circuit[133] [81]. Figure 11.10

shows the schematic of the circuit. Charge collects on the sensing capacitor and is

amplified based on the value of the feedback capacitor. The resistive feedback provides

a DC path to ground for the negative input terminal of the op amp. The transfer function

of the circuit isA = − Csense
Cf eedback

when the frequency of excitation is much greater than

the RC time constant [134]. We wanted large values of resistors so we could work at

low frequencies using a lower power amplifier design. Our second circuit design uses a

method of creating large resistors using MOS-bipolar pseudoresistors as demonstrated

by Harrison and Charles [129]. Harrison showed resistance values greater than 1GΩ, a

resistance that would be prohibitively large to make in a standard CMOS process.

+

+
–

10 pF

C sense

~1pF

2.5 V

1 Vp-p

10 kHz

2.5 V o�set

Output

1 MΩ

Figure 11.10: Basic electrometer circuit schematic.

135



Second Chip Results

A micrograph of the second fabricated chip is shown in Figure11.11. Two chips were

wire bonded for electrical characterization without fluid interaction.

Figure 11.11: Micrograph of second fabricated chip modifiedto indicate the sensing
region (white box) and the interior pad connections (black box). The chip is wire
bonded for easy electrical analysis. The chip size is 3 mm× 1.5 mm.

Amplifier Testing Results

Testing of amplifier performance began by verifying the biasing conditions. AnIDS

versusVDS sweep was performed on the biasing PMOS, and we determined that a volt-

age of 2.35 V provides a 30µA bias current. The amplifier was then configured with

unity gain feedback to confirm the amplifier could act as a buffer. To see the input

common-mode range, the input voltage was swept from 0 V to 5 V with VDD = 5V

andVSS= 0V. The input common-mode range of the circuit was found to extend from

800 mV to 4.2 V. The open loop amplification was examined by setting the negative

input to 2.5 V while a sine wave with a 2.5 V DC offset was applied to the positive
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input. Because of the high gain of the circuit and limitations on the minimum output

signal from the Keithley 3390 arbitrary waveform generator(Keithley Instruments Inc.,

Cleveland, OH), a voltage divider was used to attenuate the input signal. Using a TDS

2004B oscilloscope (Tektronix, Beaverton, OR), the peak topeak values were recorded

and the gain of the amplifier was calculated to be 48 dB. While keeping the same open

loop gain configuration, the input frequency was increased until finding the 3 dB point

at 1.65 kHz. The CMRR was found by setting both amplifier inputs to asinusoidal

input centered at 2.5 V. The CMRR was calculated to be 72 dB.

The pH and capacitive sensing circuits could not be fully tested due to packag-

ing problems. Progress on solving these issues is presentedin Chapter 12.
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Chapter 12

FLIP CHIP CMOS-MICROFLUIDIC PACKAGING

Small, complex integrated circuits are now commonplace with technology such as

complementary metal-oxide-semiconductor (CMOS) processes. CMOS processes have

been used to make sensors, actuators, and stimulators, as well as the circuits to amplify

and process data, all in one device. Because CMOS is well-established commercially,

there is the added advantage of reliable production methodsand the economies of scale.

CMOS integrated circuits are similar to microfluidics because both branches of research

have followed a trend of miniaturization and integration [135]. Microfluidics matured

into a major research field thanks in part to adapting many of the fabrication procedures

used to make integrated circuits. Microfluidic devices allow controlled introduction of

fluids, maintenance of a biocompatible environment, and sophisticated flow control for

sample mixing, separation, and reactions. Successful integration of CMOS sensors

with microfluidics would advance the testing and eventual commercialization of many

lab-on-a-chip technologies.

Several challenges exist before all of the benefits of combining the technologies

can be realized to create complete lab-on-a-chip systems [136]. One challenge is find-

ing reliable and simple methods to seal microfluidics with integrated circuits. Another

obstacle is making electrical connections to a printed circuit board and incorporating

microfluidics onto the same board while isolating the fluids from the electronics. All

packaging methods must be compatible with the integrated circuit process,i.e. no an-

odic bonding or very high temperatures. Another hindrance is a mismatch in device

footprints. Microfluidic devices usually have dimensions in centimeters while CMOS

die have dimensions in millimeters. Finally, creating reliable electrical connections in

the presence of fluids also causes problems. Formulation of amethodology to solve all
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of these issues concurrently is a significant problem in advancing lab-on-a-chip tech-

nology.

This chapter demonstrates a new technique for integrating CMOS technology

with microfluidics. The system merges the capabilities of CMOS integrated circuits

with the flexibility of soft lithography microfluidics to create a platform capable of

numerous testing applications.

12.1 Background

An early method to combine CMOS chips with microfluidics involved depositing lay-

ers of polymer directly onto a chip and removing a sacrificiallayer to create a chan-

nel [137]. Fluidic connection ports were etched through thebottom of the substrate to

access the microfluidics constructed on the surface. The design also required extensive

fabrication on the CMOS chip as well as machining of the package used to hold the

chip. Work by Rasmussenet al. [138] involved designing the microfluidic system us-

ing layers within the CMOS chip. The channels were formed by bulk etching of the

silicon substrate to eliminate the need for additional deposition. Other work has shown

creation of multilayer fluidic structures on top of a CMOS substrate [139]. All of these

methods produced simple channels for interface with the CMOS electronics but lacked

valves or other methods of fluidic control.

More recent methods have focused on simplifying the hybrid system and ad-

dressing electrical connection issues [4]. A number of hybrid systems have been cre-

ated that utilize wire bonding for electrical connections [140–143]. These systems limit

chip area available for bond pads due to the path of the microfluidic channel. Addition-

ally, the integrated microfluidics are incapable of performing flow control operations

because they lack valves. Others have utilized flip chip bonding to make electrical

connections with microfluidics fabricated from glass [144][145] and injection molded

plastic [146].
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The presented work describes fabrication of a hybrid CMOS microfluidic sys-

tem using flip chip electrical connections. The new method ofcreating flip chip elec-

trical connections seals against liquids and provides mechanical support without using

an underfill after bonding. Additionally, the system accommodates polydimethylsilox-

ane (PDMS) microfluidics made with common soft lithography methods. A method of

bonding PDMS to flexible polyimide is also presented.

12.2 Experimental
System Design

A profile of our assembled system is shown in Figure 12.1. The central component of

the system is a flexible printed circuit board (PCB) made of polyimide. All electrical

connections are made on one side while fluids are confined to the other. The polyimide

has low moisture absorption and high dielectric strength toprovide adequate insulation

between liquids and electronics. A small opening in the polyimide provides an area for

fluids to interact directly with the CMOS surface. Electrical connections are made by

first patterning the PCB copper to match the bond pad configuration of a CMOS die. A

photo-patternable epoxy (SU-8) is then used to define open areas for electrical bonds.

Solder paste is screen printed using the epoxy as a stencil, and then the CMOS die is flip

chip bonded. Microfluidics are fabricated using established soft lithography methods

with integrated valves and directly bonded to the polyimideusing a combination of

oxygen plasma and chemical bonding. The process flow for the electrical connections

is shown in Figure 12.2, and the fluidic connection scheme is shown in Figure 12.11.

Flexible Printed Circuit Board

The flexible printed circuit board we used was Pyralux AC182500R obtained from

Dupont (Wilmington, Delaware). Pyralux consists of 25.4 µm polyimide covered with

0.5 oz/ft2 copper (18µm thick) and comes as a large sheet that can be cut into custom

shapes. A sample of the pyralux is shown in Figure 12.3. Pyralux is commonly used to
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Figure 12.1: Schematic of hyrbid CMOS and microfluidic system. Flexible polyimide
separates electrical connections from fluids. The chip is sealed from fluids by SU-8
resist. Not to scale.

make flexible circuits for automotive, computing, consumerelectronics, aerospace, and

even medical applications since it is biocompatible. Dupont provided the materials free

of charge. Dupont also provided a coverlay material. The coverlay is used to protect

and insulate the copper electrical connections after fabrication but was not used with

this system. The Pyralux was cut to the desired size and attached to a glass slide using

tape for easier handling during processing.

PCB Layout

The PCB layout was designed using L-Edit. The only electrical use of the PCB was to

provide a connection between the flip chip bonding area and test equipment. No other

components were included on the PCB. The layout of the mask for patterning is shown

in Figure 12.4. The wires are spaced to fit into an eight pin flexible flat cable socket

with 2.54mm spacing, part number 538− 15− 25− 4081 from Mouser (Mansfield,

TX).
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Figure 12.2: Electrical connections to a CMOS chip are made on a flexible PCB (A) by
patterning S1813 positive resist (B), etching copper to leave traces and bonding sites
on the board (C), and then patterning SU-8 (D). Cavities above copper bonding areas
are filled with a solder paste and an opening is cut in the polyimide to allow access to
the sensing region of the chip (E). Finally, a CMOS chip is flipchip bonded while in
contact with the SU-8 layer to simultaneously create electrical connections and insulate
them from fluids (F).
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Figure 12.3: Photograph of Pyralux shown folded over to expose the copper side. Cov-
erlay material is shown rolled next to the Pyralux and can also be cut to size.

Figure 12.4: The layout of the PCB mask is indicated by the black layer. The connec-
tions are designed to connect between a CMOS sized chip and a flat flexible connection
socket. The mask color is inverted when used but is shown herewith the opposite po-
larity to better indicate the position of the CMOS chip. The green mask layer represents
SU-8 patterning. The total area of the layout shown is about 3inches× 1 inch.
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PCB Fabrication

The PCB fabrication protocol was as follows:

1. The Pyralux was cut into a two inch by three inch rectangle and attached to a

glass slide of the same size using scotch tape, copper side up.

2. Shipley Microposit S1813 (Rohm Haas, Marlborough, MA) positive photoresist

was spun to a thickness of 1µm on the Pyralux. The spin recipe was 500 RPM

for 10 seconds followed by 3000 RPM for 30 seconds.

3. The resist was baked at 115◦C for 15 minutes. This is increased from the one

minute suggested bake time on the datasheet to account for the slower heat trans-

fer through the insulating glass.

4. The resist was exposed for eight seconds with an exposure power of approxi-

mately 25mJ/s.

5. Development was performed using 351 Developer (Microchem) mixed in a 5 : 1

ratio (water:developer). The pattern would fully develop in approximately 45

seconds. The device was then ready for copper etching.

6. Copper was etched in ferric chloride (MG Chemicals, Surrey, BC, Canada) while

brushed with a foam brush to aid in even etching rates across the PCB. The

etching rate was fairly fast, so it was easy to over etch and remove small features

if care was not taken. To avoid loss of small features, the brushing was performed

over areas with large copper features until they were fully developed. Areas with

small features were etched last. The samples were rinsed with water immediately

upon completion of etching the small features to stop etching.
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7. The resist etch mask was removed by rinsing the PCB with acetone, therefore

exposing the copper.

SU-8 Patterning

SU-8 was patterned to expose areas of the copper for electrical connections to a silicon

chip. The fabrication protocol was as follows:

1. SU-8 2075 (Microchem, Newton, MA) negative photo resist was spun to 60µm

thick on top of the flexible patterned PCB (still attached to aglass slide). The

spin recipe was 500 RPM for 10 seconds followed by 4000 RPM for30 seconds.

2. The SU-8 was soft baked at 65◦C for five minutes and then 95◦C for 15 minutes.

3. The SU-8 was exposed for 40 seconds with an exposure power of approximately

25mJ/s. The mask, shown as the green layer in Figure 12.4, is designed to only

leave SU-8 in a small area around the electrical connection sites.

4. A post exposure bake is performed at 65◦C for five minutes and then 95◦C for

15 minutes.

5. The SU-8 was developed for approximately four minutes using SU-8 Developer

(Microchem).

The completed PCB with patterned SU-8 is shown in Figure 12.5. The copper

traces on the PCB are 18µm tall, therefore this protocol gives about 42µm of SU-

8 above the copper areas. SU-8 was removed away from the die attachment area to

maintain flexibility and allow for electrical connections to test equipment. Excess SU-

8 across the PCB decreases flexibility and can cause deformation. An area where chip

sensors can be accessed was also left open to allow for easierremoval of the polyimide

layer to expose the sensing region of the chip.
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Figure 12.5: Micrograph of patterned copper on flexible PCB with a SU-8 patterned
on top. Holes in the SU-8 layer expose the copper pads for electrical connections. An
area of SU-8 in the middle of the bonding area was removed to allow polyimide to be
cut out for access to the die sensing area after flip-chip attachment.

Test CMOS Style Die Fabrication

To simulate a CMOS die we have created test structures with metal connections iden-

tical in size to those seen in CMOS processes. Commerical CMOS bond pads are

typically aluminum but nickel-gold under bump metallization (UBM) is common to

prevent oxidation before flip chip bonding [147]. To simplify fabrication, our metal

connections exclude the aluminum and subsequent UBM process and instead consist

of evaporated gold. This process also works with aluminum bond pads but results are

not shown. Metal connections were made on a silicon wafer using a lift off process.

The fabrication protocol for the test CMOS die was as follows:

1. First, a 100 nm layer of silicon dioxide was thermally grown on a silicon wafer.

This was to insulate any electrical connection through the silicon wafer.
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2. Shipley Microposit S1813 (Rohm Haas, Marlborough, MA) positive photoresist

was spun to a thickness of 1µm. The spin recipe was 500 RPM for 10 seconds

followed by 3000 RPM for 30 seconds.

3. The resist was baked at 115◦C for 1 minute.

4. The resist was exposed for eight seconds with an aligner exposure power of ap-

proximately 25mJ/s.

5. Development was performed using 351 Developer (Microchem) mixed in a 5 : 1

ratio (water:developer). The pattern fully developed in approximately 45 sec-

onds. The device was cleaned with water after development.

6. Metal evaporation was performed in a Cressington 308R evaporator (Ted Pella

Inc., Redding, CA) with a LT300 dual output power supply. Approximately

30nm of a chrome was evaporated to form an adhesion layer. A chromerod

served as the source for the metal (CRW-1, RD Mathis, Long Beach, CA). Imme-

diately following the chrome deposition, approximately 70nmof gold (99.999%

pure) was evaporated using a ME5-.005W source (RD Mathis).

7. Coated samples were placed in an acetone bath with sonication to remove the

patterned resist and therefore selectively lift off the metal.

8. Samples were rinsed with isopropyl alcohol and water before dicing into pieces

that are approximately 1.5 mm× 3 mm, a common size of CMOS die.

A micrograph of the completed test die is shown in Figure 12.6.

Flip Chip Bonding

Flip chip bonding was performed on a Finetech Picoplacer multi-purpose die bonder,

shown in Figure 12.7 (Finetech GmbH & Co. KG, Berlin, Germany). Bonding simul-
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Figure 12.6: Micrograph of patterned metal connections forelectrical testing. The
connections simulate the size of a typical CMOS die, 1.5 mm× 3 mm, and bond pad
sizes, 100µm × 100µm.

taneously created the electrical connections and sealed the test die against the SU-8.

The procedure for the bonding was as follows:

1. After completion of SU-8 patterning on the PCB, the polyimide was manually

cut from the center of the pad region using an X-Acto. The rectangular opening

in the SU-8 allowed easy removal of the polyimide in this area. The PCB is still

attached to the glass slide.

2. ChipQuik No Clean Solder Paste (Chip Quik Inc., Mashpee, MA) was applied

to the patterned SU-8 and wiped repeatedly across the openings until filled. The

wiping was performed with a plastic cell scraper (Fisher part 08-773-2) acting as

a squeegee. The surface was also wiped with a kim-wipe to remove flux residue

from the SU-8 surface that will bond with the chip. The solderpaste has a lim-
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Figure 12.7: Photograph of the Finetech Picoplacer used forflip chip assembly. As-
sembly is done on the heated stage under the microscope, shown on the left side of the
picture. A monitor, on the right, is attached to the microscope to aid in alignment. The
chip and stage can be heated independently using computer control.

ited time before it dries out, so the next steps were performed immediately after

application.

3. The flexible PCB was then removed from the glass slide, turned over, and the

polyimide side was washed using a water dampened kim-wipe. This step cleans

any residue from liquids (such as SU-8 developer) used during processing. If this

is not performed the residue will become sticky from heatingduring the flip chip

bonding process, making quality PDMS bonding impossible.
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4. The flexible PCB was attached to the heating plate of the diebonder using high

temperature polyimide tape (105AC120, Techni-Tool, Worcester, PA).

5. A test chip was picked up using the die bonder tool and aligned to the bonding

area on the flexible PCB. The chip was then brought into contact with the PCB.

A force of 50 Newtons was applied during chip bonding to aid inattachment.

6. The chip and flexible PCB were heated to maximum temperatures of 300◦C and

200◦C respectively over 90 seconds. The bonding system cooled fortwo minutes

before removing the 50 Newton force and detaching the assembled structure.

Chip heating was adequate to liquify the solder paste. Surface tension forces

in the liquid solder caused it to gather and increase in height to allow contact with the

die bond pads. The change in height can be seen on solder ballsthat were liquified but

not bonded to a CMOS chip in Figure 12.8. A seal between the dieand the SU-8 was

formed by exceeding the glass transition temperature (210◦C) of SU-8 while applying

adequate pressure [148].

PDMS Molding and Attachment

Microfluidic Fabrication

Multilayer microfluidic structures were made using standard soft lithography tech-

niques. The procedure for producing them was as follows:

1. SU-8 2007 (Microchem, Newton, MA) negative photo resist was spun to 10µm

thick on top of a silicon wafer. The spin recipe was 500 RPM for10 seconds

followed by 2000 RPM for 30 seconds.

2. The resist was soft baked for three minutes at 95◦C.

3. The resist was exposed for 20 using the mask aligner with anexposure power of

approximately 25mJ/s.
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Figure 12.8: Micrographs of solder connections separated by SU-8 resist. A CMOS
die would normally be aligned on top of these connections while the solder was still a
paste. Surface tension formed the solder into a spherical shape when it was liquified.
The spherical shape has an increased height to allow contactwith a CMOS die bond
pad.

4. The resist was given a post exposure bake for four minutes at 95◦C.

5. The resist was developed for approximately two minutes inSU-8 developer.

6. The resist was hard baked at 250◦C for five minutes.

7. PDMS was mixed in a 10 : 1 ratio (part A:part B) and degassed in a vacuum

chamber until no bubbles were present.

8. The fluidic layer was made by spinning PDMS onto an SU-8 moldusing a spin

speed of 500 RPM for 10 seconds followed by 3500 RPM for 30 seconds.
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9. The valve layer was made by pouring PDMS over an SU-8 mold tothe depth of

about one centimeter.

10. The PDMS and molds (both for the fluidic and valve layers) were put into an

oven at 70◦C for at least two hours for curing.

11. PDMS was peeled away from the valve SU-8 mold to release the microfluidics.

12. Both the released valve PDMS structure and the fluidic structure (still attached

to the mold) were plasma cleaned (Harrick Plasma, Ithaca, NY) using oxygen as

the process gas and high RF power for 60 seconds.

13. Immediately upon completion of the plasma cleaning the valve layer was aligned

with the fluidic layer and brought into contact. The layers attached immediately

and were put into an oven at 70◦C for 10 minutes to ensure good bond strength.

14. The multilayer PDMS structure was peeled away from the fluidic mold. At this

point the device was cut down to size using a razor blade.

15. Finally, a 20 gauge straight blunt needle (NE-251PL-C, Amazon Supply, Seattle,

WA) was used to punch holes through the PDMS structure. This was to allow

access to the valve and fluidic layers after the PDMS structure is bonded to a

final surface.

PDMS to Polyimide Bonding

The attachment of PDMS to the flexible polyimide backbone of the Pyralux proved

extremely difficult. The original plan was to bond the PDMS microfluidics to the poly-

imide side of the flexible PCB using the room temperature bonding method from Tang

and Lee [149] shown in Figure 12.9. First, both the polyimideflexible PCB and the

PDMS structure were plasma cleaned (Harrick Plasma, Ithaca, NY) using oxygen as

the process gas and high RF power for 60 seconds. Immediatelyupon removal from the
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plasma clean the PDMS was placed in a 1% solution of 3-Aminopropyltriethoxysilane

(APTES, 99%)(Sigma-Aldrich, St. Louis, MO) and the flexiblePCB was placed in a

1% solution of 3-Glycidoxypropyltriethoxysilane (GPTES,99%)(Gelest, Morrisville,

PA), both at room temperature. After 20 minutes the pieces were removed, rinsed with

water, dried with nitrogen, and then aligned and brought into conformal contact. The

device was allowed to set for at least 1 hour at room temperature to form a strong

amine-epoxy bond.

Figure 12.9: Bonding strategy from [149]. (a) Surface hydroxylation of PDMS and
plastic substrates by O2 plasma treatment for one minute. (b) Aminosilane and epoxysi-
lane anchoring on the O2 plasma-treated PDMS and plastic substrates, respectively. (c)
Conformal contact of the two substrates at room temperaturefor one hour.
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This process achieved favorable results when performed by Tang and Lee, but

testing with our flip chip PCB yielded poor performance. The devices did not seal

evenly so leakage occurred. An example of the poor sealing isshown in Figure 12.10.

The bonding problem appeared to arise from the fact that the PDMS did not imme-

diately bond with the polyimide. The procedure by Tang and Lee required the two

pieces to sit in constant contact for at least an hour. This could not be achieved with

our devices because we had already bonded the CMOS test chip to the other side of the

polyimide. The chip was significantly smaller than the PDMS,so the PDMS could not

sit evenly on the polyimide. Thus, a bond could not form.

Figure 12.10: A micrograph of the poor bonding achieved withthe APTES-GPTES
bonding strategy. The port area on the right side is not sealed so the device is inopera-
ble. The PDSM is approximately 16 mm× 17 mm.
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A number of bonding methods were investigated as possible solutions to the

PDMS to flexible polyimide bonding problem. The six attempted bonding strategies

are summarized in Table 12.1. Materials used in these attempts included PDMS primer

adhesive (SS4120, RS Hughes, Sunnyvale, CA), 5% APTES at 80◦C, 5% GPTES at

80◦C, and uncured PDMS. The standard plasma treatment was for 1 minute at high

power using oxygen as the process gas. All strategies allowed the materials to sit in an

oven for 30 minutes at 60◦C after they were brought into contact.

Table 12.1: Summary of attempted PDMS to flexible PCB bondingmethods.

Strategy Flexible Polyimide Prepara-
tion

PDMS Microfluidics Prepara-
tion

A Spun on adhesion primer at 1000
RPM, allowed to dry for 20 min-
utes, then spun a layer of PDMS
at 3500 RPM

Not modified

B Brushed on adhesion primer
(thicker than spinning), dry for
20 minutes

Stamped into a layer of uncured
PDMS spun at 3500 RPM

C Plasma treatment, submerged in
APTES for 5 minutes, spun a
layer of PDMS at 3500 RPM

Plasma treatment, stamped into a
layer of uncured PDMS spun at
3500 RPM

D Plasma treatment, submerged in
APTES for 5 minutes

Plasma treatment

E Plasma treatment, submerged in
GPTES for 5 minutes, spun a
layer of PDMS at 3500 RPM

Plasma treatment, stamped into a
layer of uncured PDMS spun at
3500 RPM

F Plasma treatment, submerged in
GPTES for 5 minutes

Plasma treatment

The devices were tested for quality by attaching a pressurized air supply and

increasing the pressure until leakage was heard. Strategies C, E, and F failed to hold

even a base pressure of 50 kPa. Strategy B held up to 100 kPa, and strategy A held up

to 125 kPa. Strategy D performed the best, holding up to 400 kPa before leaking. The

leakage for strategy D was around the air supply connection,not between PDMS and

the polyimide. Therefore the bond can likely hold much more than 400 kPa of pres-
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sure. The pressure test also revealed a downfall of using stamped PDMS for adhesion

promotion such as with strategies B, C, and E; some of the uncured PDMS entered the

channels during stamping and cured, completely blocking flow.

The quality of each bond was also tested by a peel test. This was performed by

simply holding onto the PDMS and attempting to peel it off of the polyimide. The only

devices that did not come off as an entire piece were bonded with strategy D. These

devices appeared to form a permanent bond with the polyimidebecause the PDMS

structure broke before the bond with the polyimide.

Bonding strategy D has previously been demonstrated to workwith bonding

PDMS to other materials [150] [151]. However, this strategyhad not been applied

to flexible polyimide bonding. A more detailed procedure forthis bonding strategy

is shown in Figure 12.11. Polyimide substrates were first plasma cleaned using oxy-

gen as the process gas and high RF power for 60 seconds. Immediately upon removal

from the plasma clean, the polyimide PCB was placed in a 5% solution of APTES at

80◦C for 20 minutes. The 20 minutes is a change from strategy D above, allowing

more time for APTES adhesion to the surface. The polyimide PCB pieces were then

removed and dried with nitrogen while PDMS pieces were plasma cleaned for 60 sec-

onds concurrently. Immediately upon completion of the plasma cleaning, the PDMS

pieces were brought into contact with the surface modified polyimide PCB. The as-

sembly was placed in an oven at 60◦C for 30 minutes to allow formation of a strong

bond.

Bonding Strength Test

Additional experiments were performed to examine the APTESbonding strategy when

used with the complete flip chip assembly. Again, a burst testwas used since it is the

common method for testing microfluidic devices. This is different from the previous

burst test because the microfluidic devices were filled with water dyed with food col-
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Figure 12.11: PDMS to polyimide bonding strategy. Startingwith clean substrates
(a), the polyimide is first hydroxylized by O2 plasma treatment for 1 min (b). The
polyimide is then placed in 5% APTES at 80◦C for 20 minutes (c) while the PDMS is
hydroxylized byO2 plasma treatment for 1 min (d). Substrates are brought into contact
and bond instantly (e).

oring and placed on an absorbent towel for easy observation of leakage of fluid at the

point of chip attachment. Fluidic connections to the microfluidic device were made

with 20 gauge blunt needles and 0.030 inch inner diameter Tygon micro bore PVC

tubing (Amazon Supply, Seattle, WA). Pressure was applied and controlled through

a regulated air supply. The initial pressure of 50 kPa was applied and the system was
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checked for leaks. The pressure was increased incrementally and continuously checked

until leakage was observed.

Figure 12.12: Fully assembled device filled with dye before leakage test. Air pressure
was incrementally increased until a leak was observed to determine the overall bonding
strength.

Electrical Connection Testing

Connections made via flip chip bonding were tested for both their conductivity and

insulation from other connections. The deposited gold connections on the chip were

tested for their resistance before bonding on a probe station (Semiprobe, Winooski, VT)

using a Keithley 2636A source measurement unit (Keithley Instruments, Inc., Cleve-

land, OH). Insulation of the connections from one another was also verified with the

same setup. Electrical connection quality after flip chip bonding was measured through

the copper PCB connections. The electrical path we analyzed, shown in Figure 12.13,
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includes resistance from the PCB (Rcopper), the two solder connections (Rbond), and the

on chip gold connections (Rchip).

Figure 12.13: Complete electrical resistance path consisting of five resistances in series.
Resistance was measured from one copper PCB connection to another to get the total
resistance.

12.3 Results

We successfully packaged a CMOS-sized chip with a PDMS microfluidic device, as

shown in Figure 12.14. This work demonstrates a number of advances in the fabrication

of hybrid CMOS and microfluidic systems. Producing flip chip electrical connections

with patterned SU-8 as a permanent stencil allows the use of solder paste, a common

and inexpensive laboratory material, in place of expensivesolder ball formation and

placement technology. Leaving the SU-8 throughout solder placement and bonding

helps ensure that the electrical connections are properly insulated from each other. Be-

cause the SU-8 both bonds and seals the chip to the polyimide,additional fabrication

steps are eliminated. Additional underfill is not needed to provide mechanical stabil-

ity between the flexible PCB and the chip. Furthermore, the SU-8 application by spin

coating creates a flat surface for bonding chips which reduces the possibility of leak-
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age. The planar bonding surface also creates equal height solder connections across the

entire area of the chip.

Figure 12.14: A completely assembled device is shown plugged into a socket for easy
electrical connections. Microfluidic channels can be easily accessed while being insu-
lated from all electrical connections.

Electrical connections between the flexible PCB and the testchip were charac-

terized for the new bonding strategy. The resistance of the solder bond was evaluated

by subtracting the values of the serial resistive components. Measurements are sum-

marized in Table 12.2. We calculated Rbond to be−8.2± 7.9 Ω for each soldered

connection. Additionally, isolated electrical connections remained as open circuit con-

nections after the bonding process. No leakage current was measured between adjacent

electrical bonds.
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The value for Rbond is essentially a short circuit connection. The negative resis-

tance is likely caused by the solder connection effectivelyshortening the total length of

the on-chip electrical connection. The bond pad areas are collectively almost 10% of

the total length of the on-chip connections; reducing the effective length of the connec-

tion by 10% causes a drop in the total resistance by about 7Ω. This drop in resistance is

very close to our measured result and explains the negative resistance value. The high

variation is likely due to alignment problems during flip chip bonding. The high reflec-

tivity of the test CMOS die made optical alignment difficult with our system. Improved

optics would significantly improve device yield.

Table 12.2: Measured resistance values for each component of the measurement path.
Rbond is calculated from the measured values.

Parameter Resistance(Ω)
Rchip 74.2±3.8

Rcopper 0.76±0.05

Total series resistance 58.5±16.3

Rbond −8.2±7.9

A complete device assembly was evaluated for leakage with emphasis on two

key bonding areas. The first area was the ability of the PDMS tobond directly to

the polyimide substrate. PDMS bonded directly to an area of unmodified polyimide

substrate held to a pressure of 400 kPa. The failure point of the device was at the

connection of the Tygon tubing to the PDMS, suggesting that the ultimate strength

of the polyimide to PDMS bond would be higher with a better connection. We next

tested the strength of the entire assembly which included the chip bonded with electrical

connections. The device was able to hold without leaks up to apressure of 175 kPa.

The failure point of the complete assembly was between the chip and the SU-8. Both

the bonding between the PDMS and the polyimide, and between the chip and the SU8,

are adequate to work with normal microfluidic applications which only reach pressures
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up to 50 kPa. To our knowledge this is the first reported bonding of polyimide to

PDMS using only APTES as a bonding intermediate. Other work involving polyimide

to PDMS bonding [149] required additional activation of thePDMS surface. This is

also the first reported use of a flip chip bonding assembly witha flexible PCB and

PDMS microfluidic device. This bonding method eliminated the need for a PDMS

adhesion layer as used by Wuet al.[145]. By using SU-8 for solder placement and this

method for PDMS adhesion, we have shortened the gap between the surface of the chip

surface and the microfluidics from 120µm [145] to 85µm.

Solder Volume Analysis

An interesting topic of analysis for this integrated packaging system is the formation of

the solder electrical connection. During reflow, the solderballs that make up the solder

paste form a continuous volume. The solder height must be more than the height of the

SU-8 well surrounding the PCB pad to make an electrical connection between the PCB

and a CMOS chip. If the volume is large enough, solder will come into contact with

the chip at the top of the well. An electrical connection is not made if upon reflow the

solder height is not sufficient to contact the chip. This dependence on solder volume is

illustrated in Figure 12.15.

It is obvious that we want to achieve the greatest height of solder possible to

get the best connection. The best height is achieved by maximizing the solder volume.

Solder volume is determined by the solder paste used to fill the wells before reflow.

Solder paste is composed of flux and spheres of solder, known as solder powder. The

size of solder powder in the paste used in this work is not stated by the manufacturer.

The most common size for powder for solder paste is currentlytype 4 solder so we can

assume this value. Type 4 powder indicates the solder powderspheres have an average

diameter of 29 microns. The size of the powder is therefore significant compared to the

total dimensions of the well.
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Figure 12.15: A profile view of the solder well showing the dependence on solder
height to make an electrical connection. Different solder heights are illustrated with
different shades of grey.

Knowing the dimensions of the spheres and wanting to maximize the total sol-

der volume (and with it the height) therefore becomes a packing problem. The problem

can be reduced to a two-dimensional problem for simplicity.The geometry is shown in

Figure 12.16.
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y
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Figure 12.16: A profile view of the solder well dimensions used to calculate solder
height.

The first step is to find the total volume of solder that can fit into a given well

size. With the simplified two-dimensional problem, this means finding the number
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of circles with the diameter of the solder ball (d) that fit into the area of the well (a

rectangle of areax× y). For simplicity, the number of circles that will fit in a given

dimensionx or y assumes a cubic packing pattern. A floor function is used to eliminate

partial spheres because the solder powder size is significant with respect to the size of

the well (i.e. only one 29µm sphere will fit in they direction untily> 58). The copper

pad is within the well area, so the constant area of the pad is multiplied by the density of

a cubic lattice (π/6) and then subtracted from the total solder area. The final equation

for the area of solder is

A=

(

⌊
x
d
⌋×⌊

y
d
⌋×π ×

(

d
2

)2
)

−
(

1800×
π
6

)

(12.1)

whereA is the area of solder in the two-dimensional model and the remaining variables

are as indicated in Figure 12.15.

The area of solder will wet to the surface of the copper pad first. As the area

increases it will grow in height, but the shape it takes is hard to define due to the internal

forces of the liquid solder. The shape is simplified to be a triangle with a fixed base of

100µm, the width of the pad. This assumption is quite generous since the solder shape

will be much more rounded. Given this assumption, the heightof the solder for a given

well area is

h=
A
50

+18 (12.2)

which adds 18 to account for the height of the copper pad. The output of equation

(12.2) is shown in Figure 12.17. From this data it is clear that a well width (x) close

to the width of the copper pad (100µm) provides little chance for the solder to reach

the top of the well to connect with the CMOS chip. The solder wells used in this work

were exactly the same size as the copper pad, a possible explanation of the poor yield.

When electrical connections were made, they had somewhat large resistances. The

large resistances could be explained by a limited area of solder actually making contact

between the pads. Future work with this packaging design should have the well be at
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least 30% larger than the copper pad area for best results. Additionally, solder paste

with a smaller powder size will generally increase the likelihood of achieving a height

sufficient for contact.

Figure 12.17: Plot of the estimated height of the solder in anSU-8 well with the given
x andy dimensions for type 5 powder (d = 20µm), type 4 powder (d = 29µm), and
type 3 powder (d = 35µm).

12.4 Discussion

This work presents a number of improvements over recent systems which interfaced

microelectronic devices with microfluidics. Table 12.3 summarizes some distinguish-

ing system parameters. Our design offers many advantages over other systems created

to date. The integration of traditional soft lithography microfluidics with direct contact

to microelectronic sensors is the most notable improvement.
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Table 12.3: Comparison of CMOS and microfluidic integrationmethods
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The demonstrated system provides flexibility in the choice of microfluidic fea-

tures because of the modular assembly method. The structureof the microfluidics

is independent of the electrical connections made; the onlyrequirement is a testing

chamber located over the sensing area of the chip. This flexibility also alleviates the

problem of footprint mismatch between a CMOS chip and microfluidics. The microflu-

idic footprint is only limited by the flexible PCB area and is unrelated to the electrical

connection placement.

This system design has many potential configurations to create lab-on-a-chip

devices with multiple sensing areas. Multiple CMOS chips, each with a separate sens-

ing, actuating, or stimulating function, could be joined tothe same flexible PCB. Mi-

166



crofluidics could connect all of the exposed CMOS areas with channels and include

pumps or mixers between them. The use of multiple, isolated sensing areas on the

same CMOS chip is also a possibility. SU-8 can be patterned tocreate separate fluid

wells in the same way the electrical connections isolate solder in this work. A well-

designed arrangement of polyimide openings and associatedmicrofluidics would make

completely isolated fluid chambers on the same CMOS chip possible. This arrange-

ment would allow for small signal detection through differential measurements on a

single chip with associated signal processing.
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Chapter 13

CONCLUSIONS

Multiple themes were present throughout this work. First, this work emphasized the

necessity of good packaging design. Consideration of the operating environment in

packaging enables seamless integration of microelectronics and sensors into biological

systems. Second, this work delved into the theme of integrating different technologies

for comprehensive interaction. Effectively interfacing sensors with readout circuits

in a microscale biological environment enables complex systems. Finally, this work

explored the control of sensor and microenvironment interaction. Tight microenviron-

ment control opens numerous applications in biological processing. Tying these themes

together when creating biological analysis systems can lead to nearly unlimited possi-

bilities.

This work presented a number of unique contributions. Chapter 4 presented

an original MEMS tilt sensor concept. The liquid pendulum design was inspired by

the anatomy of the human vestibular system. The precision measurement of two-

dimensional tilt is enabled by a differential measurement.The design is straightforward

yet elegant, and the system is mechanically robust.

Much of the original research focused on ISFETs as pH sensitive devices. This

work explored ISFETs fabricated in commercial CMOS and MEMSprocesses as well

as extended gate devices independently fabricated within the lab. Chapter 8 demon-

strated a theory for ISFET drift with both experimental and simulation results. These

results indicated a method for producing a repeatable driftbehavior. Chapter 10 ex-

hibited an ISFET utilized in a complete feedback system which combined electronic

sensing with microfluidic control. The system demonstratedcontrol down to 0.12 pH
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and real-time pH control. The system also showed long term control with minimal pH

variation.

Significant contributions were made in CMOS system integration with microflu-

idics in Chapter 12. A new technique demonstrated seamless interfacing of CMOS with

soft lithography. The new technique is an improvement over any existing system. The

presented work advances the capabilities of using CMOS technology for biological

analysis.

There is great potential in the integration of microelectronics, sensors, and mi-

crofluidics to form complete biological sensing systems. This dissertation presented

a number of integration examples spanning from the whole-body level down to the

molecular level. All of the systems demonstrated both the challenges and benefits of

combining different areas of research which are often considered independently. While

many systems have been addressed, there are numerous other possibilities to form com-

plete sensor systems. As advances continue across the fieldsof microelectronics, sen-

sors, and microfluidics, it will be important to continue to develop systems to combine

these technologies.
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