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ABSTRACT

Scaling of the classical planar MOSFET below 20 nm gate length is facing

not only technological difficulties but also limitations imposed by short channel ef-

fects, gate and junction leakage current due to quantum tunneling, high body doping

induced threshold voltage variation, and carrier mobility degradation. Non-classical

multiple-gate structures such as double-gate (DG) FinFETs and surrounding gate

field-effect-transistors (SGFETs) have good electrostatic integrity and are an alter-

native to planar MOSFETs for below 20 nm technology nodes. Circuit design with

these devices need compact models for SPICE simulation.

In this work physics based compact models for the common-gate symmet-

ric DG-FinFET, independent-gate asymmetric DG-FinFET, and SGFET are de-

veloped. Despite the complex device structure and boundary conditions for the

Poisson-Boltzmann equation, the core structure of the DG-FinFET and SGFET

models, are maintained similar to the surface potential based compact models for

planar MOSFETs such as SP and PSP.

TCAD simulations show differences between the transient behavior and the

capacitance-voltage characteristics of bulk and SOI FinFETs if the gate-voltage

swing includes the accumulation region. This effect can be captured by a compact

model of FinFETs only if it includes the contribution of both types of carriers in the

Poisson-Boltzmann equation. An accurate implicit input voltage equation valid in

all regions of operation is proposed for common-gate symmetric DG-FinFETs with

intrinsic or lightly doped bodies. A closed-form algorithm is developed for solving the

new input voltage equation including ambipolar effects. The algorithm is verified for

both the surface potential and its derivatives and includes a previously published an-

alytical approximation for surface potential as a special case when ambipolar effects

can be neglected. The symmetric linearization method for common-gate symmetric

DG-FinFETs is developed in a form free of the charge-sheet approximation present in
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its original formulation for bulk MOSFETs. The accuracy of the proposed technique

is verified by comparison with exact results.

An alternative and computationally efficient description of the boundary be-

tween the trigonometric and hyperbolic solutions of the Poisson-Boltzmann equation

for the independent-gate asymmetric DG-FinFET is developed in terms of the Lam-

bert W function. Efficient numerical algorithm is proposed for solving the input

voltage equation. Analytical expressions for terminal charges of an independent-

gate asymmetric DG-FinFET are derived. The new charge model is C∞ continuous,

valid for weak as well as for strong inversion condition of both the channels and

does not involve the charge-sheet approximation. This is accomplished by develop-

ing the symmetric linearization method in a form that does not require identical

boundary conditions at the two Si-SiO2 interfaces and allows for volume inversion in

the DG-FinFET. Verification of the model is performed with both numerical com-

putations and 2D TCAD simulations under a wide range of biasing conditions. The

model is implemented in a standard circuit simulator through Verilog-A code. Sim-

ulation examples for both digital and analog circuits verify good model convergence

and demonstrate the capabilities of new circuit topologies that can be implemented

using independent-gate asymmetric DG-FinFETs.
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Chapter 1

INTRODUCTION

1.1 Scaling Limits of Conventional Planar MOSFETs

Planar MOSFETs have been the basis of CMOS technologies since their inception

in 1960 [1]. Continuous improvement as predicted by Moore’s law [2] has been

achieved by scaling and material innovations keeping the classical planar structure

unchanged. Scaling the channel length results in higher currents and hence faster

switching speed. Scaling is accomplished by following certain rules called “scaling

rules” to attain optimum device performance [3]. The aim is to have a transistor

with high on-state current, zero off-state current, a sharp transition from off-state to

on-state and the terminal currents apart from the drain to the source terminal must

be zero i.e., zero parasitic effects. Classical scaling rules reduce device dimensions

(such as channel length, gate oxide thickness, junction depth) and increase doping

concentration which helps in boosting on-current and keeps off-current under control.

Reducing device dimensions by scaling not only resulted in higher packing density

(i.e. more circuits functionality on given die area) but also higher speed, lower power,

reduced manufacturing cost, and other performance improvements.

As the feature size approached the sub-100 nm range, the scaling of planar

MOSFETs was confronted with many technological limitations as well as problems

related with the device characteristics. The problems with scaling of planar MOS-

FETs are severe short channel effects (SCEs) including threshold voltage (Vth) roll-

off, drain induced barrier lowering (DIBL), and subthreshold-slope (SS) degradation

[4]. This is because as the channel length is reduced the field lines originating from

the drain/source regions strongly influence the channel potential and reduce the bar-

rier seen by the injecting electrons at the source which enhances the drain current

[5]. Ideally, the barrier is controlled by the applied gate field. To increase the gate

control of the channel the gate oxide must be made thinner and the channel doping

must be increased as suggested by the classical scaling rules. Although this approach
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has been followed over the decades, in recent years this has given rise to a series of

undesirable effects such as parasitic tunneling current, mobility degradation, and

random dopant fluctuation (RDF).

As the gate oxide thickness is reduced the gate current, due to the quan-

tum tunneling, increases exponentially and therefore increases the standby power

dissipation. In the current sub-100 nm planar CMOS technologies the gate oxide

thickness has been reduced to the point where the power drain from gate leakage is

comparable to the power used for circuit switching [6]. In highly doped MOSFETs

the presence of a large number of dopant ions hinders carrier motion due to Coulomb

scattering and reduces mobility [7]. Additionally, higher channel doping increases

the surface electric field for a given inversion level which results in reduced carrier

mobility due to surface scattering [8]. The high surface electric field confines the

carriers in a narrow potential well resulting in quantum confinement effects [9]. Also

a high gate oxide field depletes the poly-silicon gate with appreciable amount of po-

tential drop thus reducing the effective gate bias [10]. Quantum confinement [4, 11]

and poly-silicon depletion [12] leads to a threshold voltage shift and gate capacitance

decreases. On the other hand, the RDF effect originate due to the discrete nature of

dopant ions in the channel region which become prominent at small geometry because

the total number of dopant ions is small; hence, their statistical fluctuation is large,

which alters the transistor properties especially threshold voltage and drive current

[13]. High body doping increases the electric field in the reverse biased source/drain

to body junction which significantly enhances the junction band-to-band tunneling

(BTBT) current [14].

Even with the above mentioned detrimental side effects of scaling, the clas-

sical planar MOSFET has been scaled to 28 nm technology node with ultra-shallow

junction, pocket implants [15], and super-steep retrograde channel doping [16]. Ma-

terial innovations such as high-k dielectric, metal-gate, mechanically inducing strain

in the channel and employing alternative channel materials such as SiGe, Ge semi-

2



conductors helped to push the planar CMOS technology under 100 nm node. With

the high-k dielectric as gate insulator material the effective insulator thickness is de-

creased without decreasing the physical insulator thickness enabling the higher gate

control on the channel and the metal-gate eliminates the poly-silicon depletion effect

[17, 18]. Suppression of source/drain lateral electric field can be achieved by locally

raising the channel doping near source and drain junctions via pocket implants [19].

Process induced strain is used to achieve significant mobility enhancement [20]. With

such ingenious technological developments the planar MOSFET has been pushed to

the limit. A paradigm shift in device structure was necessary for further scaling and

performance improvement.

Multi-gate MOSFETs where the gates are present on more than one side of

the channel are seen as an alternative for pushing the CMOS scaling forward under

sub-20 nm gate length [21]. The primary advantage of the Multi-gate MOSFETs

is the excellent control of SCEs [22, 23] without relying on channel doping, which

makes it potentially scalable to the end of the SIA ITRS roadmap [24].

1.2 Multi-Gate MOSFET Structures and their Advantages

Having more than one gate around the channel improves the electrostatic integrity

which is the measure of electric field lines from the source/drain influencing the

channel region. Higher electrostatic control by the gate results in reduced short

channel effects. Various flavors of alternative device structures having multiple gates

have been proposed to replace the classical planar MOSFET and extend the channel

length scalability into the sub-20 nm regime. Multi-gate MOSFETs shown in Fig. 1.1

have been proven to be strong candidates for the future CMOS technology [25] and

been in production in Intel at 22 nm technology node [26]. Such MOSFETs are

known as FinFETs [27, 28]. FinFETs offer increased immunity to small-geometry

effects, a near-ideal subthreshold slope, and certain other advantages like the in-

creased mobility associated with low or no doping. Lower doping results in less

effective electric field which reduces surface carrier scattering and gate tunneling.

3



The use of an undoped or lightly doped body provides immunity to threshold volt-

age and drive current variation due to statistical dopant fluctuations in FinFETs.

Because of strong coupling between gates the whole potential across the silicon film

moves along with the gate voltage and the carriers are not just induced at the in-

terface but throughout the body which is called “volume inversion” [29]. This leads

to a near-ideal subthreshold slope (60mV/decade) which improves device turn-off

behavior and reduces off-state current. For planar MOSFETs the substrate doping

not only served to control the SCEs but also enabled threshold voltage adjustment.

In FinFETs the freedom for threshold voltage adjustment is lost with the absence of

doping. However, in FinFETs the required threshold voltage is usually set by gate

work-function adjustment [30]. Moreover, the absence of doping increases the carrier

mobility due to lack of Coulomb scattering and reduces the effects of random dopant

fluctuation. Thus FinFETs devices offer the potential for maintaining the scalability

of the CMOS technology as it approaches the “end of the road-map” phase of its

development [25].

Si body

SiO2

Gate

(a)

Si body

SiO2

Gate

(b)

Figure 1.1: Structure of (a) bulk FinFET and (b) SOI FinFET.
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Depending upon the substrate type, FinFETs can be classified broadly as

a bulk (cf. Fig. 1.1a) or SOI type (cf. Fig. 1.1b). Both types of FinFETs have

merits associated with their structure. Some of the advantages of bulk FinFETs

are process compatibility with planar CMOS and reduced self-heating, whereas the

SOI FinFETs benefit from lower junction capacitances. Apart from these merits the

choice of particular structure is decided by the fabrication cost and ease of integrating

in the present technology setup. Typically, the body thickness is small compared to

its height thus the two side gates have a prominent effect in controlling the channel

inversion level as compared to the top gate. Also the top gate influence on the

channel reduces when its gate oxide is thicker than the side gate oxide. Since the

FinFET is controlled by two side gates it is generally called a double-gate (DG)

FinFET. Nevertheless, when the body thickness and top gate oxide are comparable

to its height and side gate oxide, respectively, the presence of the top gate cannot

be neglected. Such a device is called a tri-gate (TG) FinFET [31].

It can be noted that when the top gate is removed the result is a FinFET with

two independent-gate as shown in Fig. 1.2a. Both gates can be tied together to form

a common-gate DG-FinFET or can be separated to form an independent-gate DG-

FinFET. Structurally, DG-FinFETs can be symmetric or asymmetric. DG-FinFETs

with identical parameters (e.g., oxide thickness and gate work-function) for both

gates are symmetric otherwise they are called asymmetric. A planar independent-

gate asymmetric DG-FinFET is shown in Fig. 1.2b where a thin Si channel is locally

isolated from the bulk-Si substrate by a thin buried dielectric layer. The structure

resembles an SOI MOSFET with a extremely thin body [32] and relatively thin

gate oxide and is called an extremely thin SOI (ETSOI) or ultra-thin body SOI

(UTB-SOI). This structure combines the best features of the classical MOSFET

(low parasitic source/drain contact resistance) with the best features of SOI tech-

nology (improved electrostatic integrity); however, it poses technological difficulty

in aligning the bottom gate with the top gate.
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Figure 1.2: Independent double-gate (a) FinFET on SOI and (b) ETSOI.

The control of threshold voltage in the planar MOSFETs was achieved by

adjusting the doping concentration in the channel which was useful to build devices

with multiple threshold voltages on the same die. The multiple Vth capability is

important to have low power (high Vth) and high performance (low Vth) devices

on the same die. As FinFETs are typically low-doped devices alternate Vth control

techniques that have been proposed are the use of asymmetric gate work-function

where two gates have different work-function, and use of symmetric mid-gap work-

function gate-electrodes. Since the two gate electrodes in the independent-gate DG-

FinFET are electrically isolated they provide independent biasing of the two gates

and enable dynamic control of threshold voltage Vth where one gate is used as a drive

gate and other gate as a Vth control gate [33, 34]. The performance of an optimally

designed asymmetric DG-FinFET is found to be superior to that of its symmetric

counterpart [35]. Furthermore, novel circuit applications involving independent-gate

asymmetric DG-FinFET for analog [36, 37] and digital [38, 39] applications have

been demonstrated.

Apart from the double-gate FinFET various other flavors of the multi-gate

MOSFET have been proposed. Fig. 1.3 shows the cross-section of π-gate, Ω-gate,

quad-gate and surrounding gate MOSFET.
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(a) (b)

(c) (d)

Figure 1.3: Cross-section of various flavors of multi-gate MOSFETs (a) π-gate , (b)
Ω-gate, (c) quad-gate and (d) surrounding-gate.

1.3 Compact Modeling

Circuit design with new devices requires the development of compact models. Com-

pact models are a concise mathematical description of the transistor terminal charac-

teristics in closed form. A compact model maintains a balance between the amount

of physics captured for model accuracy and amount of approximation made for model

simplicity [40, 41, 42]. Compact models provide a bridge between circuit designers

and chip manufacturers. Traditionally, compact models of MOSFETs were thresh-

old voltage based where carrier transport via “drift” and “diffusion” were modeled

separately and then stitched together by smoothing functions to maintain continu-

ity. Example of such models are BSIM3v3, BSIM4, and MM9. Although inversion

charge-based models are powerful alternatives of threshold-based models they have

7



their own limitations such as modeling in the accumulation region where there is no

inversion charge.

Recently, surface-potential-based compact models like PSP have attracted

significant attention because of their better physical description of the device char-

acteristics. Apart from accuracy, complexity, and physical framework (threshold

voltage, inversion charge, or surface potential based) the typical compact model

may differ by inclusion of second order effects and parasitics, physical (charge con-

servation, symmetry, reciprocity) and mathematical (continuity) consistency, simu-

lation speed and memory usage, availability in EDA design tools, and documentation

[40, 43].

Due to the advantages offered by multi-gate transistors there is presently

considerable interest in developing compact models in order to assess the impact

of multi-gate transistors on circuit performance. Guided by the development of

compact models of the bulk [44, 45, 46, 47, 48, 49, 50, 51, 52] and SOI [53, 54, 55]

MOSFET one may expect that a compact model of multi-gate transistors will consist

of an essentially physical core model of an ideal long-channel transistor to which

small-geometry effects [56, 57] and quantum corrections [58, 59] are added using

suitably chosen approximations.

Various inversion charge- and surface-potential-based compact models of

double-gate FinFETs have been developed. The compact model of FinFETs devel-

oped in this work is based on the same principles as the PSP models of conventional

planar bulk and SOI MOSFETs. The structural similarity to PSP means that various

small-geometry effects can be introduced in a similar manner.

1.4 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2 we present TCAD simulations

illustrating the differences in C-V characteristics between bulk and SOI FinFETs.

The rigorous input voltage equation (IVE) in terms of the elliptic integrals is for-
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mulated for the common-gate symmetric DG-FinFET and replaced by an accurate

approximation suitable for compact modeling applications which takes into account

both electron and hole contributions to the charge density. An accurate approximate

solution for solving the IVE that does not require an iterative loop is developed.

The IVE for independent-gate asymmetric DG-FinFETs is developed in Chap-

ter 3 with an explicit expression for the boundary between trigonometric and hyper-

bolic forms of the IVE. However, the IVE for this case is unipolar and valid from

weak to strong inversion. An efficient numerical technique for solving the unipolar

IVE is proposed.

In Chapter 4 a drain current expression for common-gate symmetric DG-

FinFETs in [60] is reformulated in the PSP form. A symmetric linearization method

free from the charge-sheet approximation is developed for common-gate DG-FinFETs

and SGFETs and is used to derive an accurate terminal charge model.

In Chapter 5 the symmetric linearization method is extended to independent-

gate asymmetric DG-FinFETs by defining the concept of effective charge density.

The new model is implemented in Verilog-A following the style of the PSP model

[45] and circuit simulations are performed to verify its convergence robustness and

demonstrate its capabilities to model novel FinFET circuits.

The summary and conclusions of this dissertation are presented in the last

chapter.

1.5 Summary of the Original Results Obtained in this Work

In this work compact models for the common-gate symmetric DG-FinFET, SGFET,

and independent-gate asymmetric DG-FinFET are developed. Original results ob-

tained in this work are:

• Development of an ambipolar IVE for common-gate symmetric DG-FinFETs

which includes the contribution of both types of carriers (electrons and holes)
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to charge density and is valid for all regions of operation (from accumulation

to inversion).

• An accurate closed-form algorithm for solving the ambipolar IVE of common-

gate symmetric DG-FinFETs and proof that the previously known unipolar

approximation of the IVE can be derived as a special case of the more general

ambipolar IVE.

• The symmetric linearization method is developed for common-gate symmetric

DG-FinFETs and SGFETs in a form free of the charge-sheet approximation

present in its original formulation for bulk MOSFETs.

• An alternative and computationally efficient description of the boundary be-

tween the trigonometric and the hyperbolic solutions of the Poisson-Boltzmann

equation for the independent-gate asymmetric DG-FinFET is developed.

• Efficient numerical solution of the independent-gate asymmetric DG-FinFET

IVE suitable for circuit simulator implementation is proposed.

• The symmetric linearization method is generalized and extended to the inde-

pendent gate asymmetric DG-FinFET and an accurate terminal charge model

for that device is derived.

• The core model structure for FinFETs is maintained similar to that of PSP for

planar MOSFETs.

• The compact models are implemented in commercial circuit simulators through

Verilog-A and simulations were performed to verify good model convergence.

1.6 List of Publications Related to this Work

The publications that resulted from this work are given below. The text of this

dissertation, in part, is a reprint of the material as it appears in following list of

publications. The dissertation author was the primary investigator and author of

these publications.
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Chapter 2

ELECTROSTATICS of the COMMON-GATE SYMMETRIC DG-FinFET

2.1 Introduction

In surface potential based compact models such as PSP the drain current and the

terminal charges are expressed as explicit functions of the surface potentials at the

source and drain ends of the channel. The surface potential is obtained by solving an

IVE which is an implicit relation between the surface potential, the gate voltage and

the imref splitting. Thus the IVE forms an essential part of any surface potential

based compact MOSFET model. The IVE is derived from the integration of the

one dimensional Poisson-Boltzmann equation. Generally, the resulting IVE is an

implicit function of the surface potential and has to be solved iteratively. In PSP

an efficient explicit algorithm is proposed for solving the IVE [61]. Sometimes the

IVE is reformulated in terms of a variable on which the surface potential has explicit

dependence [62].

In this chapter the Poisson-Boltzmann equation is formulated for the DG-

FinFET and the IVE is derived for the common-gate symmetric structure subject to

appropriate boundary conditions. An explicit algorithm for solving the IVE of the

common-gate symmetric DG-FinFET is formulated.

Most often compact models of FinFETs are developed by including the con-

tribution of only one type of charge carrier to the charge density while integrating

the Poisson-Boltzmann equation. This is the unipolar approximation. The inclu-

sion of both type of carriers results in an IVE involving special functions which are

undesirable for compact modeling as they are not available in Verilog-A and their

implementation is computationally complex. Although the unipolar approximation

is sufficient in many cases it is not universal and, for example, does not allow one

to reproduce the difference in C-V curves between bulk and SOI FinFETs [63]. It

also does not lead to a FinFET model valid in all regions of operation. Hence it

is desirable to develop a compact FinFET model that includes ambipolar effects
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(contribution of both holes and electrons to the charge density) based on a suitably

modified IVE which does not involve special functions.

For the common-gate symmetric FinFET the IVE accounting for ambipolar

effects can be formulated in terms of elliptic integrals [64]. This formulation is

physical and complete but is difficult to use for compact modeling. Hence in [63]

we have presented an approximate IVE which is well conditioned and numerically

equivalent to that in [64] but does not include elliptic integrals or other quadratures.

The transcendental IVE in [63] was solved iteratively and implemented in a circuit

simulator to demonstrate the validity of the approach for compact modeling.

Additionally, we developed and verified an accurate approximate solution

that does not require an iterative loop [65]. Our approach is influenced by that in

[62] which in turn includes some ideas from the earlier work dealing with the surface

potential equation for a traditional bulk MOSFET [61]. In particular, we will show

that the results in [62] can be recovered as a special case of this work corresponding

to the unipolar approximation.

2.2 TCAD simulations of bulk and SOI FinFETs

In this section we present TCAD simulations illustrating the differences in C-V

characteristics between bulk and SOI FinFETs. The simplified structures of bulk

and SOI FinFETs are shown in Figs. 2.1a and 2.1b, respectively. The gate contact is

metal with a mid-gap work function and the substrate of the bulk FinFET is p-type

with doping concentration of 5×1015 cm−3. The source and drain are heavily doped

n-type and the body is intrinsic. The bulk contact is placed at the bottom of the

device.

Small signal a.c. simulations were performed around the d.c. bias point with

100 Hz signal frequency in order to investigate the low-frequency behavior. The

source, drain, and the bulk terminals are connected together as shown in the inset

of Fig. 2.2a. The gate voltage Vgs is swept from −1.5 to 1.5 V. The simulated ca-
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Figure 2.1: Simulated device structures (a) bulk FinFET and (b) SOI FinFET.

pacitances Cgg, Cbg and Cdg for bulk and SOI FinFETs are shown in Fig. 2.2. In

the inversion region, electrons are provided by the source and the drain contacts for

bulk and SOI FinFETs and similar capacitance characteristics are obtained for both

FinFET structures. However, in the accumulation region of the bulk FinFET, holes

are supplied by the substrate through the bulk contact, whereas such a supply of

holes is absent in the SOI FinFET. These holes need to be supplied from the thermal

generation process and through the source/drain contacts where their concentration

is extremely low. Even at a frequency as low as 100 Hz such processes fall short

of establishing the quasi-equilibrium concentration of holes resulting in negligible

capacitance Cgg and Cbg. Thus in agreement with TCAD simulations the accumula-

tion capacitance for the SOI FinFET can be assumed to be negligible for all practical

purposes.

SPICE-like circuit simulators evaluate capacitances as derivatives of the ter-

minal charges with respect to the terminal biases. In surface-potential-based compact

models for bulk and SOI MOSFETs, the terminal charges are expressed as functions
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Figure 2.2: TCAD simulated normalized transcapacitances (a) Cgg, Cbg and (b) Cdg

for bulk and SOI FinFETs with source, drain, and bulk connected.

of surface potentials at the source and the drain ends of the channel [45, 66]. The

surface potential is obtained by solving the IVE derived from the Poisson-Boltzmann

equation. A similar approach is followed in surface-potential-based compact models

of the DG-FinFET [67, 68] which is valid from weak to strong inversion regions of
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operation. To extend the validity of these models to the accumulation region, an ac-

curate IVE derived by considering both electron and hole contributions to the charge

density is needed. The TCAD result shown in Fig. 2.2 clearly illustrate the difference

in C-V characteristics of the two FinFET structures and need to be reproduced by

a compact model.

2.3 Poisson-Boltzmann Equation for DG-FinFET

Vd

Drain

Vs

Source

Vg

Gate

Vg

Gate

y

x tsi

L

tox

tox

n+ n+

φ

φ

Figure 2.3: Cross-section of the common-gate symmetric DG-FinFET. φ is the work-
function of gate material.

To understand the electrostatics of DG-FinFETs one needs to solve the

Poisson-Boltzmann equation within the device subject to the boundary conditions.

Fig. 2.3 shows the cross-section of a common-gate symmetric DG-FinFET. The grad-

ual channel approximation (used universally for the development of compact models

for MOSFETs) helps to write the Poisson-Boltzmann equation in one-dimension as

d2ψ

dx2
= − ρ

εsi
(2.1)

where

ρ = q(p− n) (2.2)

is the total charge density for an undoped body,

n = ni exp

(

ψ − Vc

φt

)

(2.3)
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Figure 2.4: Energy band diagram (a) across the channel (Vd = Vs = 0) and (b) along
the channel indicating the reference energy level for measuring electrostatic potential
ψ. Solid lines corresponds to ψ = 0 whereas dashed lines corresponds ψ > 0. Efm is
the gate Fermi level.

is the electron concentration,

p = pi exp

(

− ψ

φt

)

(2.4)

17



is the hole concentration, x is the direction across the channel, ψ is the electrostatic

potential (cf. Fig. 2.4), Vc ≡ (Fn − Fp)/q is the electron and hole imref splitting

with value Vs at the source and value Vd at the drain, εsi is the permittivity of the

silicon, φt is the thermal voltage, ni is the intrinsic electron concentration and pi is

the intrinsic hole concentration. Note that pi = ni and the body is assumed to be

undoped. The reference level for ψ is selected as in [69] to facilitate the recovery

of the theory in [69] as special case of the present work. In writing (2.4) which is

the hole contribution to the charge density, the holes are assumed to be in quasi-

equilibrium. This assumption is valid for FinFETs with n+ source/drain contacts

which act as sources and sinks only for electrons [64]. Substituting (2.2)-(2.4) in

(2.1) and using fact that ni = pi yields

d2ψ

dx2
=

q

εsi

[

ni exp

(

ψ − Vc

φt

)

− ni exp

(

− ψ

φt

)]

(2.5)

or equivalently,

d2ψ

dx2
=
φt · e

−Vc
2φt

L2
di

· sinh

(

ψ − Vc/2

φt

)

(2.6)

where the intrinsic Debye length [70] is

Ldi =

√

εsiφt

2qni
. (2.7)

Normalizing ψ and x we have

d2ϕ

dξ2
= sinh (ϕ) (2.8)

where

ϕ =
ψ − Vc/2

φt
, (2.9)

and

ξ =
xe

− Vc
4φt

Ldi
. (2.10)

2.4 Common-Gate Symmetric DG-FinFET

From the mathematical point of view the essential difference between a common-gate

symmetric DG-FinFET and a bulk MOSFET is that in the latter case the boundary

18



conditions

lim
x→∞

ψ(x) = 0 (2.11)

and

lim
x→∞

∂ψ

∂x
= 0 (2.12)

allow one to obtain an IVE directly from the first integral of the Poisson-Boltzmann

equation. For common-gate symmetric DG-FinFETs (2.11) does not apply and even

though (2.12) takes an equally simple form of (cf. 2.3)

∂ψ

∂x

∣

∣

∣

∣

x=tsi/2
= 0 (2.13)

it is impossible to arrive at the IVE from the first integral. In other words, in the DG-

FinFET there is no point where the values of ψ and ∂ψ/∂x are known a priori. This

necessitates the derivation of the IVE based on the second integral of the Poisson-

Boltzmann equation which, even in the case of undoped symmetric DG-FinFETs,

is formulated in terms of incomplete elliptic integrals and is not directly suitable

for the purpose of the compact modeling. Only if the unipolar approximation is

made can the IVE be rigorously reduced to the familiar form [69] almost universally

used in compact models of undoped DG-FinFETs. Our approach is to develop an

accurate simplified form for the IVE which does not involve elliptic integrals and can

be solved numerically within a compact model. This is accomplished in two steps. In

section 2.5 we reformulate the rigorous IVE using an approach developed earlier in

electrochemistry [71, 72] which is more suitable for our purpose than the equivalent

form recently rediscovered in [64] and which has also appeared earlier in the work on

electrocapillary slits [73]. The normalized form of the Poisson-Boltzmann equation

is the same in [71, 72, 64, 73]. Thus the developed rigorous IVE (including the

contributions of both electrons and holes) is simplified in the next section.

For further references we note that flatband condition at a point y along

the channel corresponds to ψ = ψs = Vc/2 where ψs is the surface potential. This

implies that for Vd > Vs we may have flat bands only for one but not for all planes
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y = const. We note in passing that the flatband condition can be included in the

model formulation only if both kinds of carriers are considered. For a fixed y we

have a potential minimum at the center of the channel if ψ > Vc/2 and a potential

maximum if ψ < Vc/2. In terms of the gate bias the flatband condition corresponds

to Vgs = ∆φ+ Vc/2 since the oxide field (Vgs − ∆φ− ψs)/tox = 0 where at flatband

ψs = Vc/2. Here Vgs is gate to source bias and ∆φ is the workfunction difference

between gate material and body. At a given plane y = const. we have a potential

minimum for Vgs > ∆φ+ Vc/2 and a maximum Vgs < ∆φ+ Vc/2.

2.5 Exact IVE for Common-Gate Symmetric DG-FinFET

By integrating (2.8) and using the boundary condition ϕ|x=tsi/2 = ϕ0 we have

(

dϕ

dξ

)2

= 2 · (coshϕ− coshϕ0) (2.14)

where

ϕ0 =
ψ0 − Vc/2

φt
(2.15)

and ψ0 is the electrostatic potential for x = tsi/2 (in the middle of the body). In

terms of ϕ0, the flatband condition for a plane y = const. corresponds to ϕ0 = 0, a

potential minimum to ϕ0 > 0 and maximum to ϕ0 < 0. Thus denoting

η = sgn(ϕ0) = sgn

(

Vgs − ∆φ− Vc

2

)

(2.16)

we have

sgn

(

dϕ

dξ

)

= η · sgn(ξ − ξ0), (2.17)

where sgn() is the sign function and

ξ0 =

(

tsi

2 · Ldi

)

· exp

(

− Vc

4φt

)

(2.18)

corresponds to ξ at x = tsi/2. From (2.14) and (2.17)

dϕ

dξ
= η · sgn(ξ − ξ0)

√

2 · coshϕ− 2 · coshϕ0. (2.19)
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From the continuity of the x-component of the displacement vector at x = 0

dϕ

dξ

∣

∣

∣

∣

ξ=0

= −Ldie
Vc

4φt

rctsiφt

(

Vgs − ∆φ− Vc

2
− φtϕs

)

(2.20)

where rc = Csi/Cox, Csi = εsi/tsi, Cox = εox/tox and

ϕs =
ψs − Vc/2

φt
. (2.21)

From (2.19) and (2.20)

ηLdie
Vc

4·φt√
2 · rctsiφt

(

Vgs − ∆φ− Vc

2
− φtϕs

)

−
√

coshϕs − coshϕ0 = 0. (2.22)

To obtain an IVE we need another equation relating ϕ0 and ϕs. Integrating (2.19),

ϕ
∫

ϕ0

dϕ′
√

2 · coshϕ′ − 2 · coshϕ0
= η · |ξ − ξ0|. (2.23)

The integral in (2.23) is an elliptic integral of the first kind and can be written in

several equivalent forms [71, 73, 72, 64]. In what follows we use the complete

K(k) =

π/2
∫

0

dθ√
1 − k2 sin2 θ

; 0 ≤ k ≤ 1 (2.24)

and incomplete

F (t, k) =

t
∫

0

dθ√
1 − k2 sin2 θ

; 0 ≤ k ≤ 1 and 0 ≤ t < π/2 (2.25)

elliptic integrals of the first kind in Legendre’s form [74]. Then as shown in Ap-

pendix A (2.23) is equivalent to

F

[

sin−1
(

e
η(ϕ0−ϕ)

2

)

, e−ηϕ0

]

−K
(

e−ηϕ0
)

=
−e

ηϕ0
2 |ξ − ξ0|

2
. (2.26)

Setting ξ = 0 and ϕ = ϕs yields the desired form of the IVE including the contribu-

tions of both electrons and holes:

F

{

sin−1
[

e
η(ϕ0−ϕs)

2

]

, e−ηϕ0

}

−K
(

e−ηϕ0
)

= − tsie

(

ηϕ0
2

− Vc
4·φt

)

4 · Ldi
, (2.27)
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where ϕ0 as a function of ϕs is given by (2.22). In the Appendix B we show that

this form of the IVE is mathematically equivalent to the formulation in [64]. The

reason for choosing (2.27) as a starting point in this work is that from (2.27) Taur’s

unipolar approximation [69] appears naturally. To see this set η = 1 and e−ηϕ0 ≈ 0

for ϕ0 & 5 and note that by (2.24), (2.25) K(0) = π/2 and F (t, 0) = t. Then (2.27)

becomes

sin−1
(

e
ϕ0−ϕs

2

)

− π

2
= − tsie

(

ϕ0
2

− Vc
4·φt

)

4 · Ldi
(2.28)

Rearranging (2.28),

ϕs = ϕ0 + 2 · ln

{

sec

[

tsi

4 · Ldi
exp

(

ϕ0

2
− Vc

4 · φt

)]}

(2.29)

or, equivalently,

ψs = ψ0 + 2 · φt ln

{

sec

[

tsi

4 · Ldi
exp

(

ψ0 − Vc

2 · φt

)]}

, (2.30)

which is precisely the IVE in the form obtained in [69] by retaining the contribution

of electrons and neglecting the contribution of holes to the space charge density.

Similarly, for ϕ0 . −5 (2.27) can be reduced to

ϕs = ϕ0 − 2 · ln

{

sec

[

tsi

4 · Ldi
exp

(

−ϕ0

2
− Vc

4 · φt

)]}

(2.31)

or, equivalently,

ψs = ψ0 − 2 · φt ln

{

sec

[

tsi

4 · Ldi
exp

(

− ψ0

2 · φt

)]}

, (2.32)

which is an approximation that can be also obtained directly from (2.5) by retaining

the contribution of holes and neglecting the contribution of electrons to the space

charge density. Note that in the presence of n+ source/drain contacts the hole imref

is approximately constant throughout the device so the imref splitting Vc does not

enter (2.32). In weak inversion or weak accumulation the difference between ψs or

ψ0 [i.e. the last term in (2.30) and (2.32)] is much less than φt which means that in

the condition of validity of the unipolar approximation ψ0 can be replaced by ψs.
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2.6 Approximate Input Voltage Equation

For ϕ close to ϕ0 (near the flat-band) it is possible to obtain ϕs as a function of

ϕ0 in a closed form including contribution to the space charge of both electrons and

holes. Using a second order Taylor expansion

coshϕ = coshϕ0 + (ϕ− ϕ0) sinhϕ0 +
1

2
(ϕ− ϕ0)2 coshϕ0 + · · · (2.33)

in (2.23) yields

ϕ
∫

ϕ0

dϕ′
√

2 · tanhϕ0 · (ϕ′ − ϕ0) + (ϕ′ − ϕ0)2
= η|ξ − ξ0| cosh

1
2 ϕ0. (2.34)

Integrating and using the boundary condition ϕ = ϕs at ξ = 0 we find

ϕs = ϕ0 + 2 · tanhϕ0 · sinh2 a (2.35)

where

a =
tsie

−Vc
4·φt

√
coshϕ0

4 · Ldi
. (2.36)

At this point we have the unipolar approximation (2.29) for ϕ0 & 5, the unipolar

approximation (2.31) for ϕ0 . 5 and bipolar approximation (2.35) near flatband.

The next step is to develop a C∞ class approximation to the rigorous IVE (2.27)

which has (2.29), (2.31) and (2.35) as proper limiting cases. This is done as follows.

First we note that

sinh2 a = ln
[

sec
(√

2 · a
)]

− 2 · a6

15
+ · · · (2.37)

The a(ϕ0) dependence near flatband, for |ϕ0| . 5, is shown in Fig. 2.5 for two values

of Vc. While a can be of the order of 10−3, the sixth order term in (2.37) is of the

order 10−18 and is totally inconsequential. Hence for |ϕ0| . 5 the relation between

ϕs and ϕ0 (2.35) is numerically indistinguishable from

ϕs = ϕ0 + 2 · tanhϕ0 · ln
[

sec
(√

2 · a
)]

(2.38)
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in which we have approximated sinh2 a by the first term in (2.37). From Fig. 2.5 it

can also be seen that for higher Vc the value of a is further reduced which increases

the accuracy of approximation made in (2.38). The advantage of switching from

(2.35) to (2.38) is that (2.38) contains not only (2.35) but also (2.29) and (2.31) as

its proper limits. For example if ϕ0 > 5 and from (2.36)

−5 0 5
0

0.5

1

1.5
x 10

−3

ϕ0

a

Vc = 0 V

0.2 

Figure 2.5: a(ϕ0) dependence; tsi = 20 nm, T = 300 K.

√
2 · a ≈ tsi

4 · Ldi
exp

(

ϕ0

2
− Vc

4 · φt

)

, (2.39)

then (2.29) is recovered from (2.38) once we note that in this range tanhϕ0 ≈ 1.

Similarly, for ϕ0 < −5 and from (2.36)

√
2 · a ≈ tsi

4 · Ldi
exp

(

−ϕ0

2
− Vc

4 · φt

)

. (2.40)

Since this time tanhϕ0 ≈ −1 we obtain (2.31). We stress that while (2.35) is a step

towards a unified bipolar approximation to the exact IVE (2.27), neither (2.35) nor

(2.29) or (2.31) are used in the model formulation. In what follows we work directly

with (2.38) which covers all regions of operation and obviates the need for regional

approximations.
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It remains to check the accuracy of (2.38) in terms of the surface potential

and its derivatives. The new IVE is solved numerically using the Newton-Raphson

method. The results presented in Figs. 2.6, 2.7 (and several other extensive compu-

tations) show that (2.38) is an extremely accurate approximate form of (2.27) and

contains the same information about the device physics. Hence there is no trade-off

of any kind in switching from (2.27) to (2.38). Note also that in Figs. 2.6, 2.7 we

show only the curves for Vc = 0 since this is the worst case for the accuracy of (2.38)

as discussed above (cf. Fig. 2.5). Substituting for a from (2.36) in (2.38) yields

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Vgs [V]

ψ
s,
ψ

0
[V

]

ψs

ψ0

ψs

ψ0

Figure 2.6: Surface and center potential versus gate voltage. Circles represent exact
calculations based on (2.27) and the lines corresponds to the new approximation
(2.38); Vc = 0 V, tsi = 20 nm, tox = 2 nm, ∆φ = 0 V, T = 300 K.

ϕs(ϕ0) = ϕ0 + 2 · tanh(ϕ0) · ln
[

sec
(

b1

√

2 · coshϕ0

)]

, (2.41)

where

b1 =
tsi exp(−xn/4)

4 · Ldi
, (2.42)

and

xn =
Vc

φt
. (2.43)
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Figure 2.7: (a) dψs/dVgs and (b) d2ψs/dV
2

gs versus gate voltage. Circles represent
exact calculation and the lines corresponds to the new approximation; Vc = 0 V,
tsi = 20 nm, tox = 2 nm, ∆φ = 0 V, T = 300 K.

With this notation the IVE (2.22) [63] becomes

f(ϕ0) = 0 (2.44)
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where

f(ϕ0) = ϕs(ϕ0) − xgn + b2

√

2 · cosh[ϕs(ϕ0)] − 2 · coshϕ0, (2.45)

b2 = 4 · ηrcb1, (2.46)

η = sgn(xgn), (2.47)

xgn = xg − xn

2
, (2.48)

and

xg =
Vgs − ∆φ

φt
. (2.49)

An equivalent form of (2.45) used in this work to develop a closed form solution

algorithm in Section 2.8 is

f(ϕ0) = ϕs − xgn + b2 {2 sinh(ϕ0) sinh[p(ϕ0)] + 2 · cosh(ϕ0)[cosh p(ϕ0) − 1]}1/2

(2.50)

where

p(ϕ0) = 2 · tanh(ϕ0) · ln
[

sec
(

b1

√

2 · coshϕ0

)]

. (2.51)

The IVE (2.50) is better conditioned than (2.45) near flatband where ϕ0 ≈ ϕs ≈ xgn.

For example, for |xgn| . 10−8 the square root term in (2.45) becomes zero if double

precision calculations are used. This creates difficulties for computing and coding

the derivative df/dϕ0 near the flatband while solving the IVE . The IVE (2.50) does

not suffer from this problem except at a single flatband point where we have ϕ0 = 0

and there is no need to solve the IVE. Once the IVE is solved the surface potential

can be obtained from (2.41) and the gate charge density can be written as

qg = 2 · Cox (Vg − ∆φ− ψs) (2.52)

where the factor of 2 is from the presence of two gates.

2.7 Unipolar IVE

We now investigate the special case of (2.45) corresponding to |xgn| & 5. This

is useful not only for comparison with earlier work on the unipolar closed form
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approximation [62] but as a first step in the development of an explicit algorithm to

compute ϕ0(Vgs, Vc) from new ambipolar IVE.

Physically, the condition |xgn| & 5 means that only one type of carrier con-

tributes appreciably to the charge density within the active region of the device. To

simplify (2.45) in this case we introduce

ϑ = b1 exp(ηϕ0/2). (2.53)

and reformulate (2.41) as

ϕs = η ln

(

ϑ2

b2
1

)

+ 2 · η ln [sec (ϑ)] , (2.54)

where we have used the approximations

2 · cosh(ϕ0) ≈ exp(ηϕ0) (2.55)

and

tanh(ϕ0) ≈ η (2.56)

for |ϕ0| & 5. Substituting (2.54) in (2.45) and using the approximation 2·cosh(ϕs) ≈

exp(ηϕs) we obtain the IVE in terms of ϑ

ln(ϑ secϑ) + 2 · rcϑ tan ϑ− Fb = 0 (2.57)

where

Fb =
η xgn − xn/2

2
+ ln

(

tsi

4 · Ldi

)

. (2.58)

The unipolar IVE (2.57) corresponds to that in [62] when η = 1 and only the electron

contribution is included. In this case

ϑ ≈ θ ≡ b1 exp(ϕ0/2), (2.59)

Fb ≈ F ≡ xg − xn

2
+ ln

(

tsi

4 · Ldi

)

, (2.60)

and (2.57) becomes

ln(θ) + ln (sec θ) + 2 · rcθ tan θ − F = 0 (2.61)
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which is the precisely the IVE given in [62]1.

When (2.57) is used the surface potential is related to ϑ by (2.54) and (2.21).

Physically, ϑ is proportional to
√
n0 where n0 is the electron (η = 1) or hole (η = −1)

concentration in the middle of the body.

The inversion charge (electron) density is an important parameter in compact

modeling of MOSFETs and its absolute value per channel can be approximated in

the inversion region:

qn = Cox (Vg − ∆φ− ψs) . (2.62)

Note that unlike for planar bulk MOSFETs the inversion charge density for DG-

FinFETs is a linear function of surface potential due to the absence of doping. In

the accumulation region the inversion charge density can be neglected, however,

(2.62) can be used to estimate hole charge density per channel in the accumulation

region. To write qn in terms of θ we substitute the unipolar approximation (2.54)

with η = 1 in (2.62) and using (2.61) yields

qn = 4 · Csi φt qi (2.63)

where

qi = θ tan θ (2.64)

is the normalized inversion charge density.

2.8 Closed Form Solution of the Ambipolar IVE

The range of ϑ in (2.57) is between 0 and π/2 [62]. The asymptotic solutions for ϑ

corresponding to ϑ → 0 and ϑ → π/2 are developed in Appendix C and are used

to obtain asymptotic solutions for ϕ0 using (2.53). These are denoted as ϕ
(0)
0 and

ϕ
(π/2)
0 . The three step algorithm similar to that in [62] is developed in [65] to solve

the IVE (2.50):

ϕ0 = ϕ00 + ∆ϕ01 + ∆ϕ02 (2.65)

1In [62] the θ is denoted as β.
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where

ϕ00 =
1

2

[

ϕ
(0)
0 + ϕ

(π/2)
0 + η

√

(

ϕ
(0)
0 − ϕ

(π/2)
0

)2
+ 0.001

]

. (2.66)

The correction term ∆ϕ01 is given by [62]

∆ϕ01 = − f

f ′

{

1 +
f

2 · f ′2

[

f ′′ +
f

f ′2

(

f ′′2 − f ′f ′′′

3

)]}

(2.67)

where f and its derivatives f ′ = df/dϕ0, f
′′ = d2f/dϕ2

0, and f ′′′ = d3f/dϕ3
0 are

calculated at ϕ0 = ϕ00. The correction term ∆ϕ02 is also given by (2.67) but with

f , f ′, f ′′, and f ′′′ evaluated at ϕ0 = ϕ00 + ∆ϕ01.

Once ϕ0 is found the surface and the center potentials can be obtained from

(2.15), (2.21), and (2.41). In Fig. 2.8 the surface and the center potentials obtained

by closed form algorithm are compared with that obtained using numerical solution

for three different values of Vc. It is seen that the new closed form algorithm ac-

curately reproduces the exact results. The absolute error is found to be less than

0.01pV as shown in Fig. 2.9. Similar results are obtained for various device dimen-

sions and bias combinations. Fig. 2.10 shows the first and second derivatives of ϕs

with respect to Vgs which (as is essential for compact modeling work) vary smoothly

as functions of Vgs. Fig. 2.11a shows the surface potential obtained by solving

IVEs (2.50), (2.57), and (2.61). In the hole enhancement region (i.e. −xgn � −5 )

(2.61) does not apply and (2.57) must be used instead. Fig. 2.11b shows the surface

potential near the flat band condition. As far as the accuracy is concerned the use

of the unipolar approximation (2.57) results in the error of less than 1nV which is

acceptable for compact modeling applications. However it results in a discontinuity

“cusp" (non existing derivative dϕs/dVg) at flatband condition xgn = 0 (which cor-

responds to Vgs = 0 in Fig. 2.11 where Vc = 0). This is the motivation for using

(2.50) rather than (2.57).

The new algorithm for solving the IVE has been implemented in Verilog-A

as part of the compact FinFET model [67, 63] and further tested for accuracy and
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Figure 2.8: Surface and center potential obtained by solving IVE using closed form
algorithm is compared with that obtained by bisection method. Lines and sym-
bols corresponds to the results obtained from closed form algorithm and numerical
solution, respectively; tox = 2 nm, tsi = 20 nm, ∆φ = 0.

convergence. In agreement with Fig. 2.8 the results are indistinguishable from those

obtained from iterative solution of the IVE.
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Figure 2.9: Error in the surface potential obtained by new algorithm when compared
to that obtained by numerical solution of (2.50) for Vc = 0V. Device parameters are
the same as in Fig. 2.8.

32



−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Vgs [V]

d
ψ

s
/
d
V

g
s

Vc=0.0 V 0.5 1.0

(a)

−1 −0.5 0 0.5 1 1.5 2
−4

−2

0

2

4

Vgs [V]

d
2
ψ

s
/
d
V

2 g
s

[1
/
V

]

Vc=0.0 V 0.5 1.0

(b)

Figure 2.10: (a) First and (b) second derivative of the surface potential with respect
to the gate voltage obtained by solving IVE using closed form algorithm is compared
with that obtained by numerical solution. Lines and symbols corresponds to the
results obtained from closed form algorithm and numerical solution, respectively.
Device parameters are same as in Fig. 2.8.
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Figure 2.11: (a) Surface potential obtained by solving IVEs (2.50), (2.57), and (2.61)
for Vc = 0 V, (b) Surface potential near flatband condition. Device parameters are
same as in Fig. 2.8.

34



Chapter 3

ELECTROSTATICS of the INDEPENDENT-GATE ASYMMETRIC DG-FinFET

3.1 Introduction

In this chapter the Poisson-Boltzman equation for an independent-gate asymmetric

DG-FinFET is solved and the IVEs are derived. The presence of independent gates

with different bias conditions and gate oxide thicknesses destroys the symmetry of

the device and results in different boundary conditions at gate-1 and gate-2. Conse-

quently, the boundary condition (2.13) does not apply for the independent gate asym-

metric DG-FinFET. The solution of the Poisson-Boltzmann equation (2.5) with both

electron and holes contribution to the charge density involves special functions [71].

However, neglecting holes for an n-channel device simplifies the integration and the

solution of the Poisson-Boltzmann equation has a trigonometric or hyperbolic form

depending upon the bias conditions and device parameters. As the IVEs take differ-

ent functional forms (trigonometric and hyperbolic), the appropriate form to solve

needs to be determined before solving the IVEs. This situation has no analog in

compact modeling of other field effect transistors. We derive an explicit expression

for the boundary between the trigonometric and the hyperbolic potential solutions.

An efficient numerical algorithm is proposed for solving the IVEs to obtain surface

potentials at gate-1 and gate-2.

Fig. 3.1 shows the cross-section of the independent-gate asymmetric DG-

FinFET where the origin of x-coordinate is placed at the center of the body to

be consistent with earlier work on the independent-gate asymmetric DG-FinFET

[75, 76, 77]. To simplify integration of the Poisson-Boltzmann equation we start

with (2.5) considering only electrons and neglect the hole contribution to the charge

density (i.e. we assume ψ(x) > 3 · φt):

d2ψ

dx2
=
qni

εsi
exp

(

ψ − Vc

φt

)

(3.1)

35



Multiplying both sides by 2 · dψ
dx and integrating yields

dψ

dx
= −σ

[

(

φt

Ldi

)2

exp

(

ψ − Vc

φt

)

+ c

]1/2

(3.2)

where

c = E2
x0 −

(

φt

Ldi

)2

exp

(

ψx0 − Vc

φt

)

, (3.3)

ψx0 and Ex0 are the electrostatic potential and electric field, respectively, at some

point x0 along the path of integration, and σ is the sign of −dψ
dx in the neighborhood

of x0. Integrating (3.2) we obtain

ψ(x) = Vc − 2 · φt ln

{

φt√
cLdi

sinh

[

tanh−1

( √
c

σEx0

)

− σ
√
cx0

2 · φt
+
σ

√
cx

2 · φt

]}

(3.4)

When c < 0 we can use identity tanh−1(ix) = i tan−1(x) and sinh(ix) = i sin(x) to

avoid encountering complex numbers which yields

ψ(x) = Vc − 2 · φt ln

{

φt√−cLdi
sin

[

tan−1

(√−c
σEx0

)

− σ
√−cx0

2 · φt
+
σ

√−cx
2 · φt

]}

(3.5)

Thus depending on the sign of c the potential ψ(x) can have trigonometric or hyper-

bolic form. To select the sign of σ it can be noted that for hyperbolic case ψ(x) is

monotonic within the device as ψ(x) has sinh function. Physically, for this case ψ(x)

should be monotonically decreasing function of x for V1 > V2 and monotonically in-

creasing function of x for V1 < V2 where Vj = Vgj − ∆φj, ∆φj is the work-function

difference between the body and the gate-j, and j = 1, 2. Thus σ can be selected as

σ = sgn(V1 − V2) and x0 can be any point within the device. However, for trigono-

metric case as ψ(x) has sin function there exist a potential minimum (within or

outside the device) and the sign of Ex0 depends on location of x0. As suggested

in [77] if we set x0 = −tsi/2 for V1 ≥ V2 and x0 = tsi/2 for V1 < V2 then one can

write σ = sgn(V1 − V2). It may be mentioned that in the original work [75] only the

case V1 > V2 (i.e. σ = 1) was considered. In [78] we introduced σ to include the case

where V1 < V2.
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Figure 3.1: Cross-section of the independent-gate asymmetric DG-FinFET. φ1 and
φ2 are the workfunctions of gate-1 and gate-2, respectively.

3.2 Trigonometric Solution

To write the solution in a form given by Lu and Taur [75] in term of α and θ, we

define

θ =
tsi

√
c

4 · φt
(3.6)

and

α =











tan−1
(√

−c
Ex0

)

−
√

−cx0

2·φt
for σ = 1

π + tan−1
(√

−c
Ex0

)

−
√

−cx0

2·φt
for σ = −1

(3.7)

then (3.5) becomes

ψ(x) = Vc − 2 · φt ln

[

tsi

4 · Ldiθ
sin

(

α+
2 · θx
tsi

)]

. (3.8)

From (3.8) the surface potential at both the interfaces can be expressed in terms of

α and θ by setting x = −tsi/2 for ψs1 and x = tsi/2 for ψs2 which yields

ψs1 = Vc − 2 · φt ln

[

tsi sin (α− θ)

4 · Ldiθ

]

(3.9)

and

ψs2 = Vc − 2 · φt ln

[

tsi sin (α+ θ)

4 · Ldiθ

]

. (3.10)
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Differentiating (3.8) w.r.t x the electric field distribution within the body is

E(x) = −dψ

dx
=

4 · φtθ

tsi
cot

(

α+
2 · θx
tsi

)

. (3.11)

The electric field inside the body at x = −tsi/2 is

E1 =
4 · φtθ

tsi
cot (α− θ) (3.12)

and at x = tsi/2 is

E2 =
4 · φtθ

tsi
cot (α+ θ) . (3.13)

The boundary condition that the normal component of the electric displacement

vector is continuous at the gate-1 Si-SiO2 interfaces gives

Cox1(V1 − ψs1) = εsiE1. (3.14)

From (3.12) and (3.14) the surface potential there is then

ψs1 = V1 − 4 · φtrc1θ cot(α− θ). (3.15)

Similarly, the boundary condition that the normal component of the electric dis-

placement vector is continuous at gate-2 Si-SiO2 interfaces results in

Cox2(V2 − ψs2) = −εsiE2. (3.16)

From (3.13) and (3.16) the surface potential there is then

ψs2 = V2 + 4 · φtrc2θ cot(α+ θ) (3.17)

Equating (3.9) and (3.15) we have

V1 − Vc = −2 · φt ln

[

tsi

4 · Ldiθ
sin (α− θ)

]

+ 4 · φtrc1θ cot (α− θ) . (3.18)

Similarly, equating (3.10) and (3.17) we obtain

V2 − Vc = −2 · φt ln

[

tsi

4 · Ldiθ
sin (α+ θ)

]

− 4 · φtrc2θ cot (α+ θ) (3.19)
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where rc1 = Csi/Cox1 and rc2 = Csi/Cox2. Subtracting (3.18) from (3.19) yields

V2 −V1 + 2 ·φt ln

[

sin (α+ θ)

sin (α− θ)

]

+ 4 ·φtθ[rc1 cot (α− θ) + rc2 cot (α+ θ)] = 0. (3.20)

Any two of the above three equations form a set of coupled input voltage equations

which needs to be solved for the unknown variables α and θ and hence the surface

potentials ψs1 and ψs2. It may be noted that instead to two coupled IVEs it is

possible to derive a single IVE in terms of ψs1 for V1 > V2 and ψs2 for V1 < V2 [77]

(cf. Section 3.6). Nevertheless, the coupled IVEs derived in this section are used to

derive the drain current and terminal charge model.

Applying Gauss’s law, the inversion (electron) charge density can be ex-

pressed as

Qn = −εsi (E1 − E2) = −4 · φtCsiθ [cot(α− θ) − cot(α+ θ)] (3.21)

Note that the Qn is the total inversion charge density within the body. The variation

of the electron concentration with x can be found from (2.3) and (3.8) as

n(x) = ni

(

4 · Csi

Cf

)2

θ2csc2
(

α+
2 · θx
tsi

)

(3.22)

which gives surface electron concentrations

n1 = n(−tsi/2) = ni

(

4 · Csi

Cf

)2

θ2csc2 (α− θ) (3.23)

and

n2 = n(tsi/2) = ni

(

4 · Csi

Cf

)2

θ2csc2 (α+ θ) . (3.24)

3.3 Hyperbolic Solution

For this case defining

θ∗ =
tsi

√
c

4 · φt
(3.25)

and

α∗ = tanh−1

( √
c

σEx0

)

− σ
√
cx0

2 · φt
(3.26)
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(3.4) becomes

ψ(x) = Vc − 2 · φt ln

[

tsi

4 · Ldiθ∗
sinh

(

α∗ + σ
2 · θ∗x

tsi

)]

. (3.27)

Setting x = tsi/2 yields the surface potential at gate 1

ψs1 = Vc − 2 · φt ln

[

tsi

4 · Ldiθ∗
sinh (α∗ − σθ∗)

]

(3.28)

and setting x = −tsi/2 yields the surface potential at gate 2

ψs2 = Vc − 2 · φt ln

[

tsi

4 · Ldiθ∗
sinh (α∗ + σθ∗)

]

. (3.29)

Differentiating (3.27) w.r.t. x we get the electric field distribution

E(x) = −dψ

dx
= σ

4 · φtθ∗
tsi

coth

(

α∗ + σ
2θ∗x

tsi

)

. (3.30)

The electric field inside the semiconductor at x = −tsi/2 is

E1 = σ
4 · φtθ∗
tsi

coth (α∗ − σθ∗) (3.31)

and at x = tsi/2 is

E2 = σ
4 · φtθ∗
tsi

coth (α∗ + σθ∗) . (3.32)

From (3.31) and the boundary condition (3.14) the surface potential at the gate-1 is

ψs1 = V1 − 4 · σφtrc1θ∗ coth(α∗ − σθ∗). (3.33)

Similarly, from (3.32) and the boundary condition (3.16) the surface potential at

gate-2 is

ψs2 = V2 + 4 · σφtrc2θ∗ coth(α∗ + σθ∗). (3.34)

Equating (3.28) and (3.33) we have

V1 − Vc = −2 · φt ln

[

tsi

4 · Ldiθ∗
sinh (α∗ − σθ∗)

]

+ 4 · σφtθ∗rc1 coth (α∗ − σθ∗) (3.35)

Similarly, equating (3.29) and (3.34) yields

V2 − Vc = −2 · φt ln

[

tsi

4 · Ldiθ∗
sinh (α∗ + σθ∗)

]

− 4 · σφtθ∗rc2 coth (α∗ + σθ∗) (3.36)
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Subtracting (3.35) from (3.36) we have

V2 − V1 + 2 · φt ln

[

sinh (α∗ + σθ∗)

sinh (α∗ − σθ∗)

]

+ 4 · σφtθ∗[rc1 coth (α∗ − σθ∗) + rc2 coth (α∗ + σθ∗)] = 0 (3.37)

Any two of (3.35), (3.36), and (3.37) together form a set of IVEs which needs to

be solved for unknown variables α∗ and θ∗ and hence surface potentials for the

hyperbolic case. In this case the inversion charge density becomes

Qn = −εsi (E1 − E2) = −4 · σφtCsiθ∗ [coth(α∗ − σθ∗) − coth(α∗ + σθ∗)] (3.38)

and the variation of the electron concentration with x can be found from (2.3) and

(3.27) as

n(x) = ni

(

4 · Csi

Cf

)2

θ2csc2
(

α+
2 · σθx
tsi

)

(3.39)

which gives surface electron concentrations

n1 = n(−tsi/2) = ni

(

4 · Csi

Cf

)2

θ2csch2 (α− σθ) (3.40)

and

n2 = n(tsi/2) = ni

(

4 · Csi

Cf

)2

θ2csch2 (α+ σθ) . (3.41)

3.4 Solution Space

The boundary between the hyperbolic and trigonometric solution is determined by a

transcendental equation derived in [75] which defines the critical value Vcr for given

gate bias and device parameters where the two different solutions merge. To obtain

an expression for the critical value Vcr one can introduce the variable s representing

the limiting value [75]

α

θ
=
α∗
θ∗

(3.42)

on the line Γ1 separating the trigonometric region from the hyperbolic region with

σ = 1 shown in Fig. 3.2. This line corresponds to α, θ, α∗, θ∗ → 0. This leads to

Vcr = V1 − 2 · φt ln

[

4 · Ldi

tsi(s− 1)

]

− 4 · φtrc1

s− 1
(3.43)
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Figure 3.2: Regions of operation on the V1-V2 plane for Vc = 0.5 V, tsi = 20 nm,
tox1 = 2 nm and tox2 = 40 nm.

where s is determined numerically from the transcendental equation [75]

V2 − V1

2 · φt
+ ln

(

s+ 1

s− 1

)

+ 2 ·
(

rc1

s− 1
+

rc2

s+ 1

)

= 0. (3.44)

These equations determine the lower partition line Γ1 in Fig. 3.2 on which

V1 > V2. The equation of the upper partition line Γ2 on which V1 < V2 can be

obtained by interchanging V1 ↔ V2 and rc1 ↔ rc2.

Vcr = V2 − 2 · φt ln

[

4 · Ldi

tsi(s− 1)

]

− 4 · φtrc2

s− 1
(3.45)

where s can be found from the solution of equation

V1 − V2

2 · φt
+ ln

(

s+ 1

s− 1

)

+ 2 ·
(

rc1

s+ 1
+

rc2

s− 1

)

= 0. (3.46)

For tox1 6= tox2 the line Γ2 has a different shape than the lower partition line Γ1.

Alternatively, equations (3.45) and (3.46) can be also obtained from (3.8), (3.27)

and the usual boundary conditions at x = ±tsi/2 [75] by redefining

s =
π − α

θ
=
α∗
θ∗

(3.47)
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where the ratio is evaluated on the second partition line Γ2. As illustrated in Fig. 3.3

and Fig. 3.4, the boundary between the three regions shifts with the increase of the

imref splitting. Since the line V1 = V2 (i.e. Vg1 − ∆φ1 = Vg2 − ∆φ2) always falls

within trigonometric region (cf. Fig. 3.2) the trigonometric solution always applies

in this case even if tox1 6= tox2. This includes the case of the common-gate symmetric

DG-FinFET [75]. Mathematically, this property of the partition line is represented

by the condition Vcr = ∞ for V1 = V2.

For a device with tox1 = tox2 and with independent gates the partition lines

are also symmetric (cf. Fig. 3.3). This is required by the intrinsic symmetry of the

device and without any computations confirms that there are three (trigonometric,

hyperbolic with σ = 1, and hyperbolic with σ = −1) rather than two regions on the

V1-V2 plane.

In [75] the regions of operation are found by first solving (3.44) numerically

for s and then substituting s in (3.43) to get Vcr. For V1 ≈ V2 equation (3.44)

and (3.46) are poorly conditioned and are difficult to solve numerically. Since it is

desirable that compact models of independent-gate asymmetric DG-FinFETs should

include the common-gate symmetric DG-FinFET as a special case, this represents a

potential problem for model development and convergence of circuit simulations.
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from numerical solution (circles) and analytical solution (lines); tsi = 20 nm,
tox1 = tox2 = 2 nm.
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3.5 Analytical Expression for the Partition Lines

With the physical picture and the complete partition diagrams in place it remains

to simplify the computational procedure. In this study we switch from computing

the critical value Vcr of the imref splitting to computing the critical values V1cr and

V2cr of V1 and V2, respectively [78]. This leads to the expressions for V1cr and V2cr in

terms of the Lambert W function [79] which are mathematically equivalent to (3.43),

(3.44) and (3.45), (3.46) but are much better conditioned and exhibit no singular

behavior. When V1 > V2 we find the critical voltage V2cr at gate 2 for a given value of

Vc and V1. Comparison of V2 with V2cr establishes the region of operation. Similarly,

for V1 < V2 we find the critical voltage V1cr at gate 1 for a given value of Vc and V2.

Now the region of operation is established by comparing V1 with V1cr. From (3.43)

ueu = v1; V1 > V2 (3.48)

where

u =
2 · rc1

s− 1
; V1 > V2 (3.49)

and

v1 =
rc1tsi

2 · Ldi
exp

(

V1 − Vc

2 · φt

)

; V1 > V2 (3.50)

Then u = W (v1),

s = 1 +
2 · rc1

W (v1)
; V1 > V2 (3.51)

and from (3.44)

V2cr = V1 − 2 · φt ln

(

s+ 1

s− 1

)

− 4 · φt

(

rc1

s− 1
+

rc2

s+ 1

)

; V1 > V2 (3.52)

Similarly, from (3.46)

V1cr = V2 − 2 · φt ln

(

s+ 1

s− 1

)

− 4 · φt

(

rc1

s+ 1
+

rc2

s− 1

)

; V1 < V2 (3.53)

where

s = 1 +
2 · rc2

W (v2)
; V1 < V2 (3.54)
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and

v2 =
rc2tsi

2 · Ldi
exp

(

V2 − Vc

2 · φt

)

; V1 < V2 (3.55)

The advantage of using the Lambert W function is that its defining transcendental

equation (3.48) is well-conditioned and efficient procedures for numerical as well

as analytical evaluation are readily available [79, 80]. For example, the condition

limV1→V2 Vcr = ∞ established above from the physical consideration corresponds

to limV1→V2 s = ∞. Since W (v) is analytic at v = 0 numerical evaluation of the

case V1 ≈ V2 represents no particular difficulty. Comparison of the two methods of

evaluating the partition lines on the V1-V2 plane is shown in Fig. 3.3 for tox1 = tox2

and in Fig. 3.4 for tox1 6= tox2 respectively. As expected a perfect agreement is

obtained between the numerical solution of (3.43)-(3.46) and the explicit solution

given by (3.52) and (3.53). To show the dependence of the boundary lines on the

silicon film thickness, we plot them in Fig. 3.5 for tsi = 10 nm with the same gate

oxide thickness as in Fig. 3.4.

3.6 A New Solution Technique for the IVEs

Originally, for both the trigonometric and hyperbolic cases, the IVEs were formulated

as two coupled equations with two unknown variables as shown earlier [75]. A single

IVE that is solved with respect to only one of the surface potentials was derived in

[77]. Depending on the device parameters and gate voltages Vg1 and Vg2 this IVE can

take four different forms: (i) V1 > V2, hyperbolic, (ii) V1 ≥ V2, trigonometric, (iii)

V1 < V2, trigonometric, and (iv) V1 < V2, hyperbolic. The appropriate functional

form of the IVE can be selected analytically as shown in Fig. 3.6, where explicit

equations for the boundaries Γ1 and Γ2 are described in the previous section [78]

and Γ3 corresponds to V1 = V2. However, the resulting IVE in [77] was solved using

computationally expensive numerical optimization techniques. A better conditioned

single IVE is obtained here by changing the variable in the IVE of [77] from ψs1 to

ξ1 =

[

Cox1 (V1 − ψs1)

Cfφt

]2

exp

(

Vc − ψs1

φt

)

, (3.56)
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where Cf = εsi/Ldi. For region (i) in Fig. 3.6 this gives an implicit ξ1(V1, V2, Vc)

dependence [81]

W
(

b1

√

ξ1

)

[

1 + r coth(ϕ1)

√

ξ1 − 1

ξ1

]

+ ln

[

sinh(ϕ1)√
ξ1 − 1

]

+
(V2 − V1)

2 · φt
= 0 (3.57)

where

ϕ1 =

√

ξ1 − 1

ξ1
· W

(

b1
√
ξ1
)

rc1
+ sinh−1

√

ξ1 − 1, (3.58)

b1 =
Cf

2 · Cox1
exp

(

V1 − Vc

2 · φt

)

, (3.59)

r = Cox1/Cox2, rcj = Csi/Coxj, and W is the Lambert-W function. The IVE for the

trigonometric case of region (ii) in Fig. 3.6 becomes

W
(

b1

√

ξ1

)

[

1 + r cot(ϕ1)

√

1 − ξ1

ξ1

]

+ ln

[

sin(ϕ1)√
1 − ξ1

]

+
V2 − V1

2 · φt
= 0, (3.60)

where now

ϕ1 =

√

1 − ξ1

ξ1
· W

(

b1
√
ξ1
)

rc1
+ sin−1

√

1 − ξ1. (3.61)

IVEs for regions (iii) and (iv) have a similar form. For the hyperbolic case it

can be seen that ξ1 ≥ 1 and for the trigonometric case 0 < ξ1 ≤ 1. While the IVEs
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(3.57) and (3.60) are mathematically equivalent to those in [77], the well-defined

range of ξ1 allows the Newton-Raphson method to be used directly for solution,

without any need for preliminary numerical optimization.

However, during numerical iteration of the trigonometric IVE for some bias

conditions ξ1 can cause ϕ1 = π which creates a problem when evaluating cotϕ1 in

(3.60). We overcome this problem by selecting the initial range of ξ1 to be between

ξπ and 1 where ξπ is found from (3.61) by setting ϕ1(ξπ) = π. This also avoids

encountering closely located unphysical multiple roots of the IVE between 0 and ξπ

produced by oscillations of cotϕ1 in (3.60). Note that (3.57) is equivalent to (3.60)

for ξ1 → 1 i.e. at the boundary between the trigonometric and the hyperbolic IVE

forms [78].

The surface potential ψs1 for region (i) is obtained from (3.56) as

ψs1 = V1 − 2 · φtW
(

b1

√

ξ1

)

(3.62)

and the surface potential ψs2 is given by [77]

ψs2 = ψs1 − 2 · φt ln

[

sinh(ϕ1)√
ξ1 − 1

]

. (3.63)

Traditionally, independent-gate asymmetric DG-FinFET models are formulated in

terms of the integration constants α and θ [75, 78] which are also used in expressions

for the drain current and terminal charges. They are related to ξ1 for region (i) as

follows

θ =
1

2 · rc1

√

ξ1 − 1

ξ1
·W

(

b1

√

ξ1

)

(3.64)

and

α = θ + sinh−1
√

ξ1 − 1. (3.65)

For region (ii) we replace ξ1 − 1 by 1 − ξ1 and sinh−1 √
ξ1 − 1 by sin−1

√
1 − ξ1 in

(3.63)-(3.65).
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Chapter 4

CURRENT and CHARGE MODELS for the COMMON-GATE SYMMETRIC

DG-FinFET

4.1 Introduction

An exact core model of undoped multi-gate MOSFETs has been developed in [60, 62,

75, 82] for the common-gate symmetric DG-FinFET and in [83, 84] for the SGFET.

In both cases one obtains closed-form equations for the drain current Id, but the

situation with the terminal charges is different. For the common-gate symmetric

DG-FinFET, the charges are obtained as quadratures that require numerical eval-

uation [75] while exact closed-form expressions for the charges in the SGFET case

[84] are somewhat more complex than is customary in compact models. The second

problem is that exact core SGFET and common-gate symmetric DG-FinFET mod-

els are significantly different, which is disadvantageous for the purpose of realistic

compact model development that may require simultaneous inclusion of both models

to describe complex geometries and corner effects [85]. The final problem is that the

complexity of the exact multi-gate MOSFET core models is not conducive to the

inclusion of small-geometry effects (e.g. velocity saturation) and does not allow one

to directly use the experience (and code) gained in the development of advanced

bulk and SOI MOSFET models.

Significant progress towards the resolution of the three problems outlined

above has been made in [56, 57] and [82]. In [56, 57] the current equation of the

exact core model of [60, 75] has been reformulated and then simplified so that the

resulting expressions for the drain current and charges take a form identical to that

used in PSP [45]. This allowed incorporation of small-geometry effects leading to

a relatively complete model of symmetric undoped DG-FinFETs that was found

to be in good agreement with both TCAD simulations and experimental data. The

price for the simplicity and the convenience of this approach is a significant difference

(about 20% for current and 4% for transcapacitances) between the simplified [56, 57]
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and the exact core models [60, 75]. This difference was absorbed by the parameters

included in the model. A different approach to simplifying the exact core model has

been introduced in [82]. Starting with the simplified input voltage equation simple

analytical expressions were obtained for the drain current and terminal charges. One

important accomplishment of the approximate theory developed in [82] is that with

a proper mapping, the same equations describe symmetric undoped common-gate

symmetric DG-FinFETs and SGFETs. The accuracy of the approximations made in

[82] is exactly the same as in [56, 57].

Another approximate core model of symmetric DG-FinFETs has been devel-

oped in [86]. Similarly to [82] this was accomplished by simplifying the input voltage

equation and as in [57] the result was brought in a form compatible with one of the

advanced bulk MOSFET models (EKV) simplifying the inclusion of small-geometry

effects [87].

In this work we continue the effort to make the DG-FinFET model as similar

as possible to the PSP bulk MOSFET model [45]. For this purpose we first show

that despite the different starting points and seemingly different formulation in [57]

and [82] both approximations are identical. The origin of error in the charge-sheet

approximation is discussed. We then significantly improve the accuracy of this ap-

proach while still keeping the equations of the approximate core model in a form

nearly identical to that of the PSP model as suggested in [57]. This is accomplished

by extending the symmetric linearization technique to not assume the charge-sheet

approximation that is used in the bulk MOSFET case [88, 89].

4.2 Exact Drain Current

We start with the drift and diffusion formulation of the drain current:

Id = qµhf

tsi
∫

0

(

n
∂ψ

∂y
− φt

∂n

∂y

)

dx. (4.1)
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where µ is the electron mobility and hf is the fin height. Using identity

n
∂ψ

∂y
− φt

∂n

∂y
= n

∂Vc

∂y
(4.2)

and the fact that in a device with the geometry shown in Fig. 2.3a, Vc = Vc(y) (4.1)

becomes

Id = 2 · µhfqn
dVc

dy
(4.3)

where

qn = q

tsi/2
∫

0

n(x, y) dx (4.4)

is the absolute value of electron charge density per unit area per channel expressed

in terms of ψs and θ in (2.62) and (2.63), respectively. Integrating (4.4) from source

to drain yields

Id = 2 · µhf

L

L
∫

0

qndVc. (4.5)

Changing the variable of integration in (4.5) from Vc to θ gives [60]

Id = 2 · µhf

L

θd
∫

θs

qn
dVc

dθ
dθ (4.6)

where θs and θd are the values of θ at source and drain end, respectively. From (2.61)

dVc

dθ
= −2 · φt

[

1

θ
+ (1 + 2 · rc) tan θ +

2 · rcθ

cos2 θ

]

. (4.7)

Substituting (2.63) and (4.7) in (4.6) the drain current becomes [60]

Id = 16 · µhf

L
Csiφ

2
t

(

rq2
i + qi − θ2

2

)∣

∣

∣

∣

∣

θs

θd

(4.8)

where qi = θ tan θ is the normalized inversion charge density. The values of θs and θd

are determined from (2.65) and (2.59) by setting Vc = Vs and Vc = Vd, respectively.

4.3 Charge-Sheet Approximation

Applying Brews charge-sheet approximation [90] to the DG-FinFET [67, 57] we get

Id = 2 · µhf

(

qn
dψs

dy
− φt

dqn

dy

)

. (4.9)
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Substituting for qn from (2.62) in (4.9) yields

Id = 2 · µhfCox [(Vgs − ∆φ− ψs) + φt]
dψs

dy
. (4.10)

Integrating (4.10) from the source end to drain end of the channel the drain current

becomes

Id = 2 · µhf

L
Cox [(Vgs − ∆φ− ψsm) + φt] ∆ψ (4.11)

where

∆ψ = ψsd − ψss (4.12)

is the total variation of surface potential along the channel,

ψsm =
1

2
(ψss + ψsd) (4.13)

is the surface potential midpoint and ψss and ψsd are the surface potential at the

source end and the drain end of the channel, respectively. Fig. 4.1 shows the per-

centage error introduced by the charge sheet charge sheet approximation (4.11) when

compared to the exact equation (4.8). In [82] an equivalent form of (4.11) is derived
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Figure 4.1: Relative error for drain current Id using expression (4.11); tox = 1.5 nm,
T = 300 K, Vds = 1 V.
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by approximating the IVE as

ln qi

2
+ 2 · rcqi ≈ Vg − ∆φ− Vc

2 · φt
− ln

(

4 · Ldi

tsi

)

(4.14)

to give

Id = 16 · µhf

L
Csiφ

2
t

(

qi

2
+ rcq

2
i

)∣

∣

∣

∣

qis

qid

(4.15)

Using (2.62) and (2.63) in (4.15) it can be shown that although (4.11) and (4.15)

originate from seemingly different approximations, they are equal [67]. These ap-

proximation were used in [82] and [57] to derive closed form expression for terminal

charges which had error of 4% compared to exact results. In Section 4.5 we propose a

more accurate terminal charge model based on the symmetric linearization method.

To gain further insight into the origin of the significant error for Id associated

with expressions (4.11) or (4.15) we reformulate the exact expression for the drain

current [60]. This reformulation is later used in extending the symmetric linearization

method. Following [57] (4.1) can be written as

Id = 2 · µhf

(

q̃n
dψs

dy
− φt

dqn

dy

)

(4.16)

where

q̃n =

q
tsi/2
∫

0
n∂ψ∂y dx

dψs

dy

(4.17)

As shown in Appendix D q̃n can be written as [57, 67]

q̃n =

(

1 +
g

4 · rc

)

qn (4.18)

where

g =
sin(2 · θ) − 2 · θ cos(2 · θ)
θ tan θ[2 · θ + sin(2 · θ)] (4.19)

Physically, the difference between qn and q̃n accounts for the fact that, generally

speaking, current flow in DG-FinFETs is not confined to a narrow surface channel

and approximation (4.9) is not always accurate. In Fig 4.2 we plot g as a function of θ

where θ varies from 0 (weak inversion) to π/2 (strong inversion). It can be seen that
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in strong inversion g approaches zero and the second term in parentheses in (4.18)

can be neglected which results in high accuracy of the charge sheet approximation.

In the weak inversion even with the highest value of g neglecting it does not result in

significant error in drain current as the diffusion term in (4.9) is dominant. However,

in the moderate inversion g has a significant value and since both drift and diffusion

terms in (4.9) contribute to current, neglecting g introduces significant error in drain

current [57]. Integrating (4.16) from the source end to the drain end of the channel

yields

Id = 2 · µ hf

L







ψsd
∫

ψss

q̃ndψs + φt(qns − qnd)






. (4.20)

Reformulating (4.20)

Id = 2 · µ hf

L






k

ψsd
∫

ψss

qndψs + φt(qns − qnd)






(4.21)
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where

k =

ψsd
∫

ψss

q̃ndψs

ψsd
∫

ψss

qndψs

(4.22)

or

k = 1 +
g0

4 · rc
(4.23)

and

g0 =

ψsd
∫

ψss

gqndψs

ψsd
∫

ψss

qndψs

(4.24)

is a bias-dependent but position-independent variable. From (2.62) we have dqn/dψs =

−Cox and (4.21) becomes

Id = 16 · µ hf

L
Csi φ

2
t

(

krcq
2
i +

qi

2

)∣

∣

∣

∣

qis

qid

(4.25)

The value of k can be obtained by direct integration in (4.22) or more conveniently

by comparison with the exact result (4.8). Comparison of (4.8) with (4.25) yields

krcq
2
i +

qi

2

∣

∣

∣

∣

qis

qid

= rcq
2
i + qi − θ2

2

∣

∣

∣

∣

∣

θs

θd

(4.26)

or

g0 =
2

qis + qid

(

1 − θ2
s − θ2

d

qis − qid

)

(4.27)

With g0 given by (4.27) and k by (4.23) expression (4.25) is exact and is just one of

many possible reformulations of (4.8). Clearly the approximations made in [57] and

[82] are equivalent to setting k = 1 i.e. g0 = 0 instead of using the exact expression

(4.23). For further reference we note that (4.25) can be also written as

Id = 2 · µ hf

L
Cox (kqnm + φt) ∆ψ (4.28)

or in PSP form

Id = 2 · µCox
hf

L
[qnm + φt + φt (1 − g1)]∆ψ, (4.29)
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where

g1 =
θ2

s − θ2
d

qis − qid
, (4.30)

and

qnm = qn|ψs=ψsm
(4.31)

denotes the voltage drop across gate oxide (in the inversion condition) at the surface

potential midpoint. The term φt (1 − g1) in (4.29) may be called a non-charge-

sheet term and if neglected it results in the drain current under the charge-sheet

approximation.

4.4 Symmetric Linearization Method

Introduction of a position-independent k is sufficient to compute Id but not the po-

sition dependence of the surface potential required to compute the terminal charges.

The latter involves evaluation of the derivative dy/dψs using (4.16) which can be

written as [57]

Id = 2 · µ hf (q̃n + Cox φt)
dψs

dy
(4.32)

where we used (2.62). In order to obtain compact closed form expressions for ψs(y)

and terminal charges some approximation is required. The simplest possible approx-

imation is q̃n = qn [57] which leads to the approximate expressions for QG, QS, and

QD developed in [57, 82]. A more accurate approximation is

q̃n = Cox(ν − αl u) (4.33)

where

u = ψs − ψsm (4.34)

and variables ν and αl are position independent (they, of course, are functions of the

terminal voltages). This approximation represents linearization of q̃n as a function

of surface potential. The value of the coefficients ν and αl can be selected in more

than one way. A natural choice is

ν =
q̃nm

Cox
(4.35)
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and

αl = − 1

Cox

(

dq̃n

dψs

)∣

∣

∣

∣

ψs=ψsm

(4.36)

where q̃nm denotes the value of q̃n at the point where ψs = ψsm. Since, however, a

simple expression for q̃nm is unavailable, we consider a different choice. From (4.32)

and (4.33) we find

Id = 2 · µ hf Cox (ν + φt − αl u)
du

dy
(4.37)

and after integration along the channel

Id = 2 · µ hf

L
Cox(ν + φt)∆ψ. (4.38)

By comparison with (4.28) it follows that by selecting

ν = k qnm (4.39)

we assure that expression (4.38) is exact. The difference between two choices of

ν is further discussed in Appendix E where we compare the commonality and dif-

ferences for the symmetric linearization method as applied to bulk MOSFETs and

DG-FinFETs.

From (4.36) the expression for linearization coefficient αl becomes

αl = − 1

Cox

d

dψs

[

qn

(

1 +
g

4rc

)]∣

∣

∣

∣

ψs=ψsm

(4.40)

which is approximated as [67, 63]

αl ≈ 1 +
3 · (3 + 2qim)

8 · rc(2 + qim)3
(4.41)

where

qim = qi|ψs=ψsm
=

1

2
(qis + qid) (4.42)

The derivation of (4.41) is presented in Appendix D.

58



4.5 Terminal Charges

With ν and αl established, the terminal charges are obtained as follows. From (4.37)

and (4.38)

dy

du
=
L(H − u)

H∆ψ
(4.43)

where

H =
ν + φt

αl
=
kqnm + φt

αl
(4.44)

After integration of (4.43)

y = ym +
Lu

∆ψ

(

1 − u

2 ·H

)

(4.45)

where

ym =
L

2

(

1 +
∆ψ

4 ·H

)

(4.46)

gives the position of the “surface potential midpoint”, i.e. the point where ψs = ψsm.

An explicit form of the ψs(y) dependence follows (4.45):

ψs(y) = ψsm +H

[

1 −
√

1 −
(

2 · ∆ψ

HL

)

(y − ym)

]

(4.47)

Expressions (4.43)-(4.46) are exactly the same as for bulk MOSFETs [44, 45, 88, 89]

except for the different value ofH. The high accuracy of the explicit expression (4.47)

for the position dependence of the surface potential is illustrated in Fig. 4.3 where

it is compared with the exact result for ψs(y) that can be presented in parametric

form [60]

ψs(θ) = Vg − ∆φ− 4 · rcφtθ tan θ (4.48)

and

y(θ)

L
=

F (θs) − F (θ)

F (θs) − F (θd)
(4.49)

where

F (θ) = θ tan θ − θ2

2
+ rcθ

2 tan2 θ. (4.50)
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Figure 4.3: Position dependence of surface potential in DG-FinFET; tox = 1.5 nm,
tsi = 20 nm, and Vds = 2 V.

Now the gate charge for bulk DG-FinFETs becomes

QG = hf

L
∫

0

qgdy = 2 · hfCox

∆ψ/2
∫

−∆ψ/2

(Voxm − u)
dy

du
du (4.51)

which with reference to (4.43) leads to a closed form expression

QG = 2 · CoxhfL

(

Voxm +
∆ψ2

12 ·H

)

(4.52)

where

Voxm = (Vg − ∆φ− ψsm) (4.53)

is the potential across gate oxide at surface potential midpoint. The total drain

charge using the Ward-Dutton partition scheme [91] is given by

QD = −2 · hf

L
∫

0

qn
y

L
dy = −2 · Coxhf

∆ψ/2
∫

−∆ψ/2

(qnm − u)
y

L

dy

du
du. (4.54)

Substituting (4.43), (4.45) in (4.54) and integrating yields

QD = −2 · CoxhfL

[

qnm

2
− ∆ψ

12

(

1 − ∆ψ

2 ·H − ∆ψ2

20 ·H2

)]

. (4.55)
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Similarly, the total source charge is

QS = −2 · CoxhfL

[

qnm

2
+

∆ψ

12

(

1 +
∆ψ

2 ·H − ∆ψ2

20 ·H2

)]

. (4.56)

The bulk FinFET body charge follows from the neutrality condition QB = −(QG +

QD+QS). For SOI FinFETs expressions for QS and QD remain the same but in (4.52)

we change Voxm to qnm to assure the QG (and hence Cgg, Cbg) becomes negligible in

accumulation (ψss < 5φt). A subtle point here which is not needed to be included

in the compact model formulation of SOI FinFETs is that in the steady state, QG

can become appreciable due to the leakage of minority carriers from the n+ contacts

provided that the device is not switched for prolonged periods of time. But this

build-up of QG is extremely slow and hence has no consequences for small-signal

behavior even at low frequency [cf. TCAD simulations in Fig. 2.2a].

Three dimensional (3D) TCAD simulations are performed for both bulk and

SOI DG-FinFETs. Both the electron and hole continuity equations are included in

the simulations. The device channel length is kept sufficiently large to reduce small

geometry and fringe capacitances effects. The simulated device structure parameters

are L = 1 µm, hf = 0.2 µm, tox = 2 nm, tsi = 10 nm and ∆φ = 0 V. The carrier

mobility is kept constant and equal to the mobility in intrinsic silicon.

While the implementation of modern compact transistor models in SPICE-

like circuit simulators is charge-based, in order to preserve the charge conservation

[92], it is often convenient to perform model verification in terms of capacitances.

Cnm = (2 · δnm − 1)
∂Qm
∂Vn

(4.57)

wherem,n label the terminals of the device and δnm is Kronecker’s delta. Indeed, any

error in the expressions for the terminal charges Qm is amplified while evaluating the

derivatives ∂Qm/∂Vn. For this reason we present a comparison of the charge model

with numerically computed results both in terms of charges and transcapacitances.
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Figs. 4.4a and 4.4b compare the capacitances obtained from the 3D TCAD

simulations and the compact model for bulk and SOI FinFETs, respectively. The

model accurately reproduces the transcapacitance behavior in all regions of operation

including accumulation.

Expressions (4.38), (4.52), (4.55) and (4.56) represent a form of the symmet-

ric linearization method applied to common-gate symmetric DG-FinFETs. Unlike

the simpler formulation in [57], the result is exact for the drain current and as shown

in Fig. 4.5 significantly reduces the error for the terminal charges. Similarly, it

provides a better accuracy for the transcapacitances (cf. Fig. 4.6a and 4.6b). An

important feature of the new approximations for QG and QD is that they are ex-

tremely simple, have the same form as in SP [44] and PSP [45] and differ only by

using different expression for H. This means that incorporation of small geometry

effects can proceed in the same manner as in [56, 57] which already had been shown

sufficiently accurate in terms of both TCAD simulations and experimental data. The

expressions for QG and QD given in [57, 82] can be obtained from (4.52) and (4.55)

by setting q̃n = qn. Indeed, this implies k = 1, ν = Voxm and αl = 1. Then by (4.44)

H = Voxm + φt and (4.52) and (4.55) revert to the charge sheet version of terminal

charge expressions found in [57, 82].
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Figure 4.4: Normalized transcapacitances of (a) bulk FinFET and (b) SOI FinFET
versus gate voltage for Vds = 1V. Symbols represents TCAD simulations results and
the lines corresponds to a compact model.
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Figure 4.5: Relative error for the terminal charges, using symmetric linearization
method for DG-FinFET; tsi = 20 nm, tox = 1.5 nm, T = 300 K, Vds = 1 V.
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Figure 4.6: Plots of (a) transcapacitance and (b) relative error for the tran-
scapacitances, using symmetric linearization method for DG-FinFET; tsi = 20 nm,
tox = 1.5 nm, T = 300 K, Vds = 1 V.
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4.6 Symmetric Linearization Method for SGFET

With reference to Fig. 4.7 the drain current for SGFET

Id =

∫

JdA (4.58)

where the integral is taken across the area in the direction perpendicular to the

current flow (i.e. dA = 2 · πρdρ). The current density

Vd

Drain

Vs

Source

Vg

Gate

Vg

Gate

y

ρ

2R

L

tox

tox

n+ n+

φ

Figure 4.7: Cross-section of the SGFET.

J = qµ

(

n
∂ψ

∂y
− φt

∂n

∂y

)

(4.59)

Hence

Id = µ

(

q̃n
dψs

dy
− φt

dqn

dy

)

(4.60)

where

qn = q

∫

ndA (4.61)

is the absolute value of the inversion charge per unit channel length and

q̃n =
q

dψs

dy

∫

n
∂ψ

∂y
dA. (4.62)

Just as for the DG-FinFET the difference between q̃n and qn accounts for the fact

that, generally speaking, current density is not concentrated near the Si-SiO2 inter-

face.
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Integrating along the y direction yields

Id =
µ

L






k

ψsd
∫

ψss

qndψs + φt(qgs − qgd)






(4.63)

where formally k is given by the same expression (4.23) as for DG-FinFET.

For SGFETs (cf. Fig. 4.7)

dqn

dψs
= −2 · πRCox (4.64)

where

Cox =
εox

R ln
(

1 + tox
R

) . (4.65)

It follows that

Id =
µ

L

(

kq2
n

4 · πRCox
+ φtqn

)∣

∣

∣

∣

∣

qns

qnd

. (4.66)

For SGFETs it is convenient to define the variable θ as [84]

θ = 1 −
(

R

4 · Ldi

)2

exp

(

ψ0 − Vc

φt

)

(4.67)

where ψ0 denotes the potential at the center of the device. Then

qn = 8 · πφtεsiqi (4.68)

where the normalized gate charge per unit length is

qi =
1 − θ

θ
. (4.69)

From (4.66)

Id =
8 · πµεsiφ

2
t

L

(

ksq2
i + qi

)∣

∣

∣

qis

qid

(4.70)

where

s =
2εsi

εox
ln

(

1 +
tox

R

)

. (4.71)

Comparing this with exact result [83, 84]

Id =
8 · πµεsiφ

2
t

L

[

s

θ2
+

2 · (1 − s)

θ
+ ln θ

]∣

∣

∣

∣

θs

θd

(4.72)
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we find

k = 1 +

1
θs

− 1
θd

+ ln
(

θs
θd

)

s

(

1
θ2

s
− 1

θ2
d

+ 2
θd

− 2
θs

) . (4.73)

With this selection of k, (4.70) represents a reformulation of (4.72) conducive to the

development of the symmetric linearization method. The approximate expression

in [82] follows from (4.70) by setting k = 1, i.e. q̃n = qn just as in the case of

DG-FinFET considered in Section 4.3.

To introduce symmetric linearization and account for q̃n 6= qnwe note that

dqn

dy
= −2 · πRCox

dψs

dy
(4.74)

and set

Id = µ (q̃n + 2 · πRCoxφt)
dψs

dy
. (4.75)

Linearization of q̃n as a function of ψs yields

q̃n = 2 · πRCox(ν − αlu). (4.76)

where u is defined as in (4.34) and the variables ν, αl are yet to be determined. From

(4.75) and (4.76)

Id = 2 · πµRCox(ν + φt − αlu)
du

dy
. (4.77)

In particular,

Id = µ
2 · πR
L

Cox(ν + φt)∆ψ. (4.78)

According to (4.72) in order for this expression to be exact

2 · (ν + φt)∆ψ = 4 · sφ2
t

[

s

θ2
+

2 · (1 − s)

θ
+ ln θ

]∣

∣

∣

∣

θs

θd

. (4.79)

This yields ν. The coefficient αl is selected as

αl =
q̃is − q̃id

Cox∆ψ
≈ k (4.80)

where the approximation is based on q̃is ≈ kqis and q̃id ≈ kqid. The final justification

of the selected approximations for ν and αl for both DG-FinFET and SGFET is by

comparison with the exact expressions for terminal charges and transcapacitances.
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From (4.77), (4.78)

dy

du
=

2 · πRCoxαl(H − u)

Id
(4.81)

and

Id =
2 · πR
L

µCoxαlH∆ψ (4.82)

where

H =
ν + φt

αl
. (4.83)

This yields (4.45) and after integration one concludes that (4.52), (4.54), and (4.55)

apply also to SGFET, after changing hf into πR. The only difference with DG-

FinFET or bulk MOSFET is in the expressions for ν and H. Comparison with

the exact results for SGFETs is shown in Fig. 4.8 for charges and in Fig. 4.9 for

transcapacitances. In all cases the accuracy is better than 2% while expression

(4.78) for the drain current is exact.
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Figure 4.8: Relative error for the terminal charges, using symmetric linearization
method for SGFET; R = 8 nm, tox = 1.5 nm, T = 300 K, Vds = 1 V.
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Figure 4.9: Plots of (a) transcapacitances and (b) relative error for the transcapaci-
tances, using symmetric linearization method for SGFET; R = 8 nm, tox = 1.5 nm,
T = 300 K, Vds = 1 V.
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Chapter 5

CURRENT and CHARGE MODELS for the INDEPENDENT-GATE

ASYMMETRIC DG-FinFET

5.1 Drain Current Model

In this section the drain current expression for the independent-gate asymmetric DG-

FinFET is derived following the approach of [76] and extended to include biasing

for which V1 < V2. The drain current expression (4.5) for common-gate symmetric

DG-FinFETs can be used for independent-gate asymmetric DG-FinFETs:

Id = −µhf

L

Vd
∫

Vs

QndVc. (5.1)

Note that in (4.5) qn is the absolute value of inversion charge density per channel

whereas in (5.1) Qn is the total inversion charge density. The IVE and Qn for

the independent-gate asymmetric DG-FinFET can have trigonometric or hyperbolic

form depending on the device parameters and applied bias as discussed in Section 3.1.

As Vc varies along the channel from Vs at the source to Vd at the drain the form

of IVE and Qn may or may not change along the channel. Depending on the form

of IVE at the source end and the drain end of the channel there are three different

cases:

Case I: In this case we have trigonometric form of IVE throughout the channel (i.e.

Vs ≤ Vd ≤ Vcr).

Case II: In this case we have hyperbolic form of IVE throughout the channel (i.e.

Vcr ≤ Vs ≤ Vd).

Case III: In this case we have trigonometric form of IVE at the source end and the

hyperbolic form of IVE at the drain end of the channel (i.e. Vs ≤ Vcr ≤ Vd).

Case I (Vs ≤ Vd ≤ Vcr): For this case we have the trigonometric solution for ψ(x)

throughout the channel. Substituting for the inversion charge density from (3.21) in
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(5.1) we have

Id = 8 · µhf

L
Csiφ

2
t (J+ − J−)|ds (5.2)

where

J± = − 1

2 · φt

∫

θ cot(α± θ)dVc. (5.3)

and the limits of integration s and d correspond to values of (J+ −J−) at the source

and the drain end of the channel, respectively. From (3.18)

dVc

2 · φt
= −d ln

[

θ

sin (α− θ)

]

− 2 · rc1d[θ cot (α− θ)]. (5.4)

Substituting (5.4) in (5.3) and integrating we have

J− = θ cot(α− θ) + rc1θ
2 cot2(α− θ) − θ2

2
+

∫

θdα. (5.5)

To evaluate J+ we use (3.19) which gives

dVc

2 · φt
= −d ln

[

θ

sin (α+ θ)

]

+ 2 · rc2d[θ cot (α+ θ)]. (5.6)

Substituting (5.6) in (5.3) and integrating yields

J+ = θ cot(α+ θ) − rc2θ
2 cot2(α+ θ) +

θ2

2
+

∫

θdα. (5.7)

From (5.2), (5.5), and (5.7) we have the expression for the drain current

Id = 8 · µhf

L
Csiφ

2
t (fd − fs) (5.8)

where fd and fs are values of

f = θ2
[

1 − rc1 cot2(α− θ) − rc2 cot2(α+ θ)
]

+ θ [cot(α+ θ) − cot(α− θ)] (5.9)

at the source and the drain end of the channel, respectively. It may be mentioned

that since ψ(x) for a common-gate symmetric DG-FinFET has trigonometric form

irrespective of Vc its drain current can be shown to be a special case of (5.8) (cf.

Appendix G).
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Case II ( Vcr ≤ Vs ≤ Vd): For this case we have a hyperbolic solution for ψ(x) through-

out the channel. Substituting for the inversion charge density from (3.38) in (5.1)

yields

Id = 8 · µhf

L
Csiφ

2
t (J∗

+ − J∗
−)
∣

∣

d
s

(5.10)

where

J∗
± = − σ

2 · φt

∫

θ∗ coth(α∗ ± θ∗)dVc. (5.11)

and the limits of integration s and d correspond to values of (J∗
+ −J∗

−) at the source

and the drain end of the channel, respectively. From the IVE (3.35) we have

dVc

2 · φt
= −d ln

[

θ∗
sinh (α∗ − σθ∗)

]

− 2 · σrc1d[θ∗ coth (α∗ − σθ∗)]. (5.12)

Substituting (5.12) in (5.11) and integrating yields

J∗
− = σθ∗ coth(α∗ − σθ∗) + rc1θ

2
∗ coth2(α∗ − σθ∗) +

θ2
∗
2

− σ

∫

θ∗dα∗. (5.13)

To evaluate J∗
+ we use the IVE (3.36) which gives

dVc
2 · φt

= −d ln

[

θ∗
sinh (α∗ + σθ∗)

]

+ 2 · σrc2d[θ∗ coth (α∗ + σθ∗)]. (5.14)

Substituting (5.14) in (5.11) and integrating yields

J∗
+ = σθ∗ cosh(α∗ + σθ∗) − rc2θ

2
∗ coth2(α∗ + σθ∗) − θ2

∗
2

− σ

∫

θ∗dα∗. (5.15)

From (5.10), (5.13), and (5.15) we get drain current

Id = 8 · µhf

L
Csiφ

2
t (f∗

d − f∗
s ) (5.16)

where f∗
d and f∗

s are values of

f∗ = −θ2
∗

[

1 + rc1 coth2(α∗ − σθ∗) + rc2 coth2(α∗ + σθ∗)
]

− σθ∗[coth(α∗ − σθ∗) − coth(α∗ + σθ∗)] (5.17)

at the source and the drain end of the channel, respectively.

Case III ( Vs ≤ Vcr ≤ Vd): The drain current for this case becomes

Id = 8 · µhf

L
Csiφ

2
t [f∗

d − f∗
cr + fcr − fs] (5.18)
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where f∗
cr and fcr are the respective values of f∗ and f at the critical channel potential

Vc = Vcr within the channel. Since at Vc = Vcr, α = α∗ = θ = θ∗ = 0 when V1 > V2

and π − α = α∗ = θ = θ∗ = 0 when V1 < V2 it can be seen that −f∗
cr + fcr = 0 and

(5.18) becomes

Id = 8 · µhf

L
Csiφ

2
t [f∗

d − fs] (5.19)

5.2 Reformulation of Drain Current in PSP Form

In this section we reformulate the drain current expressions given in Section 5.1 in

PSP form to facilitate the inclusion of small geometry effects in a form similar to that

of the PSP compact model [44, 45]. This reformulation also helps to independently

model gate-1 and gate-2 field dependent mobilities.

Case I (Vs ≤ Vd ≤ Vcr):

Denoting

f1 = −θ cot(α− θ) − rc1θ
2 cot2(α− θ) +

θ2

2
(5.20)

and

f2 = θ cot(α+ θ) − rc2θ
2 cot2(α+ θ) +

θ2

2
(5.21)

the drain current expression (5.8) becomes

Id = Id1 + Id2 (5.22)

where

Id1 = 8 · µhf

L
Csiφ

2
t (f1d − f1s) (5.23)

and

Id2 = 8 · µhf

L
Csiφ

2
t (f2d − f2s). (5.24)

The s and d in the subscript of f1 and f2 indicates their value at the source and the

drain ends of the channel, respectively. Substituting for f1d and f1s and noting from

(3.15)

4 · φtrc1θ cot(α− θ) = V1 − ψs1 (5.25)
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(5.23) becomes

Id1 = µ
hf

L
Cox1 [Vox1m + φt + φt (1 − g1)] ∆ψ1 (5.26)

where

g1 =
θ2

s − θ2
d

qgn1s − qgn1d
, (5.27)

qgn1s = θs cot(αs − θs), (5.28)

and

qgn1d = θd cot(αd − θd). (5.29)

Physically qgn1s and qgn1d are the normalized gate-1 charge density at the source and

the drain end of the channel, respectively. Similarly, substituting for f2d and f2s and

noting that from (3.17)

4 · φtrc2θ cot(α+ θ) = −(V2 − ψ2) (5.30)

(5.24) becomes

Id2 = µ
hf

L
Cox2 [Vox2m + φt + φt (1 − g2)] ∆ψ2 (5.31)

where

g2 =
θ2

s − θ2
d

qgn2s − qgn2d
, (5.32)

qgn2s = −θs cot(αs + θs), (5.33)

and

qgn2d = −θd cot(αd + θd). (5.34)

The qgn2s and qgn2d are the normalized gate-2 charge density at the source and the

drain end of the channel, respectively.

Case II (Vcr ≤ Vs ≤ Vd):

For this case we denote

f∗
1 = −σθ∗ coth(α∗ − σθ∗) − rc1θ

2
∗ coth2(α∗ − σθ∗) − θ2

∗
2

(5.35)
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and

f∗
2 = σθ∗ coth(α∗ + σθ∗) − rc2θ

2
∗ coth2(α∗ + σθ∗) − θ2

∗
2

(5.36)

then the drain current expression (5.16) becomes

Id = I∗
d1 + I∗

d2 (5.37)

where

I∗
d1 = 8 · µhf

L
Csiφ

2
t (f∗

1d − f∗
1s) (5.38)

and

I∗
d2 = 8 · µhf

L
Csiφ

2
t (f∗

2d − f∗
2s). (5.39)

The s and d in the subscript of f∗
1 and f∗

2 indicates their value at the source and the

drain ends of the channel, respectively. Substituting for f1d and f1s and noting that

4 · σφtrc1θ coth(α− σθ) = V1 − ψs1 (5.40)

and σ2 = 1 (5.38) takes a form similar to (5.26) where now

g1 =
−θ2

∗s + θ2
∗d

qgn1s − qgn1d
(5.41)

qgn1s = σθ∗s cot(α∗s − σθ∗s) (5.42)

and

qgn1d = σθ∗d cot(α∗d − σθ∗d). (5.43)

Similarly, I∗
d2 for this case is given by (5.31) with

g2 =
−θ2

∗s + θ2
∗d

qgn2s − qgn2d
, (5.44)

qgn2s = −σθ∗s coth(α∗s + σθ∗s), (5.45)

and

qgn2d = −σθ∗d coth(α∗d + σθ∗d). (5.46)
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For Case III where we have trigonometric solution at source end of the chan-

nel and hyperbolic solution at drain end of the channel (5.26) and (5.31) still apply

provided now g1 and g2 are given as

g1 =
θ2

s + θ2
∗d

qgn1s − qgn1d
(5.47)

and

g2 =
θ2

s + θ2
∗d

qgn2s − qgn2d
. (5.48)

where qgn1s, qgn1d, qgn2s and qgn2d are given by (5.28), (5.43), (5.33), and (5.46)

respectively.

Separation of the drain current into Id1 and Id2 components facilitates in-

dependent modeling of gate-1 and gate-2 field dependent mobility by replacing µ in

Id1 and Id2 with µ1 and µ2, respectively, where µ1 is gate-1 field dependent mobility

and µ2 is gate-2 field dependent mobility.

5.3 Effective Gate Charge Density Concept

The objective in this section is to present the drain current equation in a form

that looks as simple as the charge-sheet approximation but does not really use it.

This can be accomplished rigorously by introducing the concept of effective charge

density. While the true charge density is a linear function of the surface potential,

the effective charge density is not. However, this reformulation of the drift-diffusion

equation allows one to use the powerful symmetric linearization method developed

in [88, 89] that forms the theoretical foundation of the popular PSP model [45]. In

particular, symmetric linearization of the effective charge density leads to closed-

form expressions for the terminal charges which are almost identical to those used in

PSP. This approach has been already successfully implemented for the special case

of common-gate symmetric DG-FinFETs [67].

An alternative view of what is done in this and the next section is that

we develop symmetric linearization of the difference between the actual channel
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current and its charge sheet approximation. By doing so we are able to obtain simple

analytical expressions for the terminal charges without relying on the charge-sheet

approximation.

We start with the drain current expression including drift and diffusion com-

ponents

Id = qµhf

tsi/2
∫

−tsi/2

(

n
∂ψ

∂y
− φt

∂n

∂y

)

dx (5.49)

For any choice of xd we have

Id = I1 + I2 (5.50)

where

I1 = µhf











q

xd
∫

−tsi/2

(

n
∂ψ

∂y
− φt

∂n

∂y

)

dx+ εsiEx(xd)
dVc

dy











(5.51)

and

I2 = µhf











q

tsi/2
∫

xd

(

n
∂ψ

∂y
− φt

∂n

∂y

)

dx− εsiEx(xd)
dVc

dy











. (5.52)

For the trigonometric case, it is convenient to select xd at the point where the x-

component of electric field, Ex, goes to zero (in this case the last term in (5.51) and

(5.52) is zero). This requires that xd = xd(y) be position-dependent. However, an

explicit expression for xd does not enter the final expressions of the model developed

below due to the fact that last term in the curly braces of (5.51) and (5.52) cancels

with the values of integrals in (5.51) and (5.52) at the limit x = xd, respectively. For

the hyperbolic case we set xd = σ · ∞ 1. This requires that the expressions for n and

ψ as functions of x be extended from the physical range (−tsi/2, tsi/2) to the interval

(−tsi/2,∞) for σ = 1 and to the interval (−∞, tsi/2) for σ = −1, using (3.27). The

last terms in (5.51) and (5.52) are included to facilitate subsequent derivation of the

charge model. The currents I1 and I2 thus defined are position-dependent. However,

they add up to produce constant current Id along the channel.
1If one approaches the boundary between the trigonometric and the hyperbolic region on the

V1-V2 plane [78] from inside the trigonometric region (cf. lines Γ1, Γ2 in Fig. 3.2) then xd approaches
σ · ∞. This explains the selection of xd for the hyperbolic region. Naturally, this selection of xd is
a matter of convenience and does not enter into the final model equation.
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In both the trigonometric and the hyperbolic cases we define

qg1 = q

xd
∫

−tsi/2

ndx+ εsiEx(xd) (5.53)

qg2 = q

tsi/2
∫

xd

ndx− εsiEx(xd) (5.54)

q̃g1 =
q

dψs1

dy

xd
∫

−tsi/2

n
∂ψ

∂y
dx+ εsiEx(xd)

dVc

dψs1
+ φtεsi

dEx(xd)

dψs1
(5.55)

and

q̃g2 =
q

dψs2

dy

tsi/2
∫

xd

n
∂ψ

∂y
dx− εsiEx(xd)

dVc

dψs2
− φtεsi

dEx(xd)

dψs2
. (5.56)

Physically, qg1(y) and qg2(y) represent the charge densities at two gates at

a distance y from the source. In particular, the total mobile charge density is −qg

where

qg = qg1 + qg2. (5.57)

With the above definitions

Ij = µhf

(

q̃gj
dψsj

dy
− φt

dqgj

dy

)

. (5.58)

Substituting

qgj = Coxj(Vj − ψsj) (5.59)

in (5.58) we have

Ij = µW (q̃gj + φtCoxj)
dψsj

dy
. (5.60)

Using the identity

n
∂ψ

∂y
− φt

∂n

∂y
= n

∂Vc

∂y
(5.61)

and the fact that in a device with the geometry shown in Fig. 3.1, Vc = Vc(y),

expressions (5.51) and (5.52) can be reformulated as

Ij = µhfqgj
dVc

dy
. (5.62)
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In particular, from (5.50) and (5.57)

Id = µhfqg
dVc

dy
. (5.63)

Equating (5.60) and (5.62) we have

(q̃gj + φtCoxj)
dψsj

dy
= qgj

dVc

dy
. (5.64)

Substituting dVc/dy from (5.63) yields

Id = µhf q̂gj
dψsj

dy
(5.65)

where

q̂gj = (q̃gj + φtCoxj)
qg

qgj
. (5.66)

To interpret (5.65), consider the corresponding equation for a bulk MOSFET with

a single gate. Under the charge-sheet approximation

Id = µhf q̂
dψs

dy
(5.67)

where ψs denotes the surface potential and

q̂ = qi + φtCox (5.68)

where qi is the absolute value of the inversion charge density and the second term

accounts for the diffusion current. Thus, the drain current in the double-gate device

considered here rigorously without the charge-sheet approximation is given by the

same expression as the current in a single gate device provided that instead of the

charge density q̂ and the surface potential ψs we use the effective charge density q̂gj

and the surface potential ψsj. In (5.66), the difference between q̃gj and qgj accounts

for the fact that the charge-sheet approximation is not used in (5.65) and the factor

qg/qgj reflects the presence of the second gate. This interpretation is not necessary

for the subsequent analysis but provides the motivation for symmetric linearization

of q̂gj in the next section. Indeed, such linearization of the charge q̂ for the single
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gate bulk MOSFET leads to a remarkably simple and accurate terminal charge model

[88, 89, 45].

To complete the discussion, we present the following analytical expressions

for qgj and q̃gj for j = 1, 2 derived in Appendix F.

In the trigonometric case

qg1 = 4 · φtCsiθ cot(α− θ), (5.69)

qg2 = −4 · φtCsiθ cot(α+ θ), (5.70)

q̃g1 = qg1 − φtCox1

[

1 − 2 − 2 · qgn1(α′ − 1)

1 − (nn1/qgn1)(α′ − 1)

]

, (5.71)

and

q̃g2 = qg2 − φtCox2

[

1 − 2 + 2 · qgn2(α′ + 1)

1 + (nn2/qgn2)(α′ + 1)

]

(5.72)

where

α′ =
dα

dθ
=

2 · (rc1nn1 − rc2nn2) + 2 · (rc1qgn1 − rc2qgn2) + (qgn1 − qgn2)

qgn + 2 · (rc1nn1 + rc2nn2)
, (5.73)

qgn1 and qgn2 is the respective gate charge density qg1 and qg2 normalized to 4 ·φtCsi,

qgn = qgn1 + qgn2, and nn1 and nn2 is the surface electron concentration normalized

to ni(4 · Csi/Cf)
2.

In the hyperbolic case

qg1 = 4 · σφtCsiθ∗ coth(α∗ − σθ∗), (5.74)

qg2 = −4 · σφtCsiθ∗ coth(α∗ + σθ∗), (5.75)

q̃g1 = qg1 − φtCox1

[

1 − 2 − 2 · qgn1(σα′ − 1)

1 − (nn1/qgn1)(σα′ − 1)

]

. (5.76)

and

q̃g2 = qg2 − φtCox2

[

1 − 2 + 2 · qgn2(σα′ + 1)

1 + (nn2/qgn2)(σα′ + 1)

]

(5.77)

where α′ is same as in (5.73).
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5.4 Terminal Charge Model

The physical charge density qgj on gate j is a linear function of the surface potential

ψsj [cf. (5.59)] but the effective charge density q̂gj is not [cf. (5.66)]. This is the

price paid for the apparent simplicity of (5.65) for the drain current in terms of

q̂gj. The approximation made in the proposed charge model consists of symmetric

linearization of q̂gj. For this purpose we introduce the value q̂gjm of q̂gj at the point

y = yjm where the surface potential ψsj reaches its average value

ψsjm =
ψsjs + ψsjd

2
(5.78)

where ψsjs and ψsjd are the values of ψsj at the source and drain ends of the channel,

respectively. The simplest form of symmetric linearization consists of setting

q̂gj = q̂gjm +

(

dq̂gj

dψsj

)

ψsj=ψsjm

· uj (5.79)

where uj = ψsj −ψsjm. This is a valid approximation closely resembling the one used

in the case of bulk MOSFETs [88, 89, 45]. However, in the context of a double-gate

device it is somewhat difficult to use, since evaluation of q̂gjm and (dq̂gj/dψsj)ψsj=ψsjm

requires knowledge of Vc(yjm). Instead, we generalize (5.79) as

q̂gj = Coxj(νj − αjuj) (5.80)

where bias-dependent (but position-independent) coefficients νj and αj are selected

so as to assure model accuracy and simplicity.

Substituting (5.80) in (5.65)

Id = µhfCoxj(νj − αjuj)
dψsj

dy
. (5.81)

After integration

Id = µ
hf

L
Coxjνj∆ψsj (5.82)

where

∆ψsj = ψsjd − ψsjs. (5.83)
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We now select νj so that the expression for Id (available, for example, in [93, 94, 95,

76, 96]) remain unaffected by the symmetric linearization approximation (5.80):

νj =
LId

µhfCoxj∆ψsj
(5.84)

In this way the new charge model can be used with any of the published drain current

models and the channel potential Vc at the point y = yjm is not needed. In this work

we use the exact analytical current model of [76]. For the linearization coefficient αj

we use the quotient approximation [66]

αj = − q̂gjd − q̂gjs

Coxj∆ψsj
. (5.85)

In the final analysis, this selection of νj and αj is justified by comparing the charge

model with the results of numerical computations performed in Section 5.5. Never-

theless, it is instructive to point out the difference between (5.79) and (5.80). Using

(5.79) provides an exact value for q̂gj at y = yjm but approximate expression for Id.

On the other hand, (5.80) provides approximate expression for q̂gjm but does not

introduce any error for the drain current.

The advantage of the symmetrically linearized form (5.80) of the effective

charge densities is that it leads to simple expressions for the position dependence of

the surface potential for the terminal charges. Equating (5.81) and (5.82) yields

dy

duj
=
L(Hj − uj)

Hj∆ψsj
(5.86)

where

Hj =
νj

αj
. (5.87)

The total charge on gate j is

QGj = hf

L
∫

0

qgjdy = hf

ujd
∫

ujs

qgj
dy

duj
duj (5.88)
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where ujs and ujd are the values of uj at the source and drain ends of the channel,

respectively. Substituting (5.86) in (5.88) we have

QGj = hf

∆ψsj/2
∫

−∆ψsj/2

qgj
L(Hj − uj)

Hj∆ψsj
duj (5.89)

where

qgj = Coxj(Voxjm − uj) (5.90)

and Voxjm = Vj − ψsjm is the voltage across oxide toxj at point y = yjm. Hence

QGj = hfLCoxj

(

Voxjm +
∆ψ2

sj

12 ·Hj

)

(5.91)

The drain charge is found from Ward-Dutton partitioning [97]

QD = −hf

2
∑

j=1

L
∫

0

qgj
y

L
dy (5.92)

or

QD = −hf

L

2
∑

j=1

∆ψsj/2
∫

−∆ψsj/2

qgjy
dy

duj
duj. (5.93)

To evaluate the integral we use the relations between the position y and the surface

potentials which are obtained by integrating (5.86):

y = yjm +
L

∆ψsj

(

uj −
u2
j

2 ·Hj

)

(5.94)

where

yjm =
L

2

(

1 +
∆ψsj
4 ·Hj

)

. (5.95)

Then

QD = −hfL
2
∑

j=1

Coxj

[

Voxjm

2
− ∆ψsj

12

(

1 − ∆ψsj

2 ·Hj
−

∆ψ2
sj

20 ·H2
j

)]

. (5.96)

Finally, the integrated source charge is evaluated from the neutrality condition QS =

−(QG1 +QG2 +QD).

The concept of symmetric linearization of the effective charge has been in-

vestigated for a common-gate symmetric DG-FinFET in the previous chapter [67].
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The present model includes [67] as a special case (cf. Appendix G), thus eliminating

the need for two separate models of symmetric and asymmetric DG-FinFETs which

until now represented the state of the art in compact modeling of these devices.

5.5 Results and Discussion

To verify the accuracy of the proposed model we compare it with the results of nu-

merical integration of (5.88) and (5.92) and also with two-dimensional TCAD simula-

tions [98]. All transcapacitances are normalized to Cox1hfL. These capacitances are

automatically evaluated in SPICE-like circuit simulators by differentiating terminal

charges w.r.t. terminal voltages.

The terminal charges and transcapacitances are plotted for different biases

assuming T = 300 K, tsi = 10 nm and ∆φ1 = ∆φ2 = 0. The asymmetry is introduced

with different gate oxide thicknesses. To concentrate on the core model the length

and height of the channel are kept sufficiently long (L = hf = 1 µm) to suppress

small geometry effects. These effects can be introduced as a correction to the core

model as done for symmetric DG-FinFET [56].

Figs. 5.1a and 5.1b show the terminal charges and the transcapacitances as

a functions of Vg1 for independent-gate symmetric DG-FinFET with Vg2 and Vd as

parameters. In these plots the channel under gate 2 is in weak inversion. Figs. 5.2a

and 5.2b show similar plots for the same device with channel under gate 2 strongly

inverted. The terminal charges and the transcapacitances plots versus drain voltage

are shown in Figs. 5.3a and 5.3b, respectively, for fixed values of Vg1 and Vg2.

The capacitances versus Vg1 plots for asymmetric DG-FinFET with Vg2 and

Vd as parameters are shown in Fig. 5.4 with the channel under the gate 2 weakly in-

verted, and in Fig. 5.5 with the channel under the gate 2 strongly inverted. Fig. 5.6

shows a plot of transcapacitances as functions of Vd. Finally, at Vds = 0 the re-

movable singularity in the expression for Hj does not appear since an expression
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equivalent to, but more elaborate than (5.87) is used. The plots for charges and

transcapacitances at Vds = 0 V are shown in Figs. 5.7a and 5.7b, respectively.

Good accuracy of the proposed model is observed in all cases. The small

differences between the TCAD results and the new model present in Fig. 5.5 are in-

consequential for practical compact modeling purposes and do not affect the physical

behavior of the device transcapacitances.
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Figure 5.1: Comparison of terminal charges (a) and transcapacitances (b) obtained
from the new model and numerical computations; tox1 = tox2 = 2 nm , Vg2 = 0.4 V
and Vd = 1.5 V.
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Figure 5.2: Comparison of terminal charges (a) and transcapacitances (b) obtained
from the new model and numerical computations; tox1 = tox2 = 2 nm, Vg2 = 1.0 V
and Vd = 0.5 V.

88



0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−14

Vd [V]

T
er

m
in

a
l
ch

a
rg

es
[C

]

 

 

QG1

QG2

QD

QS

1D Numerical
Model

(a)

0 0.5 1 1.5 2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Vd [V]

N
o
rm

a
li
ze

d
tr

a
n
sc

a
p
a
ci

tn
a
ce

s

 

 

Cg1d

Cg2d

Csd

Cdd 1D Numerical
Model

(b)

Figure 5.3: Comparison of terminal charges (a) and transcapacitances (b) obtained
from the new model and numerical computation; tox1 = tox2 = 2 nm, Vg1 = 2.0 V
and Vg2 = 0.6 V.
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Figure 5.4: Comparison of transcapacitances obtained from the new model and
numerical computations; tox1 = 2 nm, tox2 = 10 nm, Vg2 = 0.6 V and Vd = 0.5 V.
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Figure 5.5: Comparison of transcapacitances obtained from the new model and
numerical computations; tox1 = 2 nm, tox2 = 10 nm, Vg2 = 1.5 V and Vd = 2.0 V.
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Figure 5.6: Comparison of transcapacitances obtained from the new model and
numerical computations; tox1 = 2 nm, tox2 = 10 nm, Vg1 = 2.0 V and Vg2 = 0.6 V.
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Figure 5.7: Comparison of terminal charges (a) and transcapacitances (b) obtained
from the new model and numerical computation at Vds = 0.0 V; tox1 = 2 nm,
tox2 = 10 nm, and Vg2 = 0.7 V.
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5.6 Model Implementation and Simulation

As Verilog-A has emerged as the de facto standard language for defining compact

models [99] we have implemented our model in Verilog-A and used this, in a com-

mercial circuit simulator, to investigate circuit behavior. Two examples illustrate the

advantages of the gate-to-gate coupling feature of independent gate DG-FinFETs for

both analog and digital applications. A double balanced mixer [100, 34] and Schmitt

trigger [101] are shown in Figs. 5.8 and 5.9, respectively. In the mixer circuit RF+

and RF- are the RF signal ports, with input frequency fRF, and LO+/LO- is the

local oscillator signal of frequency fLO. The ‘+’ signal is antiphase with respect to

the ‘−’ signal. A three tone (fRF1, fRF2, and fLO) harmonic balance simulation of

the mixer was done and Fig. 5.10 shows the output power of the first, second, and

third order inter-modulation products (at frequencies |fRF1 − fLO|, |fRF1 − fRF2|,

and |2fRF1 − fRF2 − fLO|, respectively) as a function of the input power of the RF

signals. The slopes of the inter-modulation product power in Fig. 5.10 are very

close to their theoretical values. Two situations are shown, with symmetric gate

oxides and with an asymmetry in the thickness of the two gate oxides of each DG-

FinFET. For the symmetric case the second order product of the mixer cancels out,

as expected. However, the asymmetric case destroys the balance of the mixer, which

results in the non-zero second order product seen in Fig. 5.10.

In the Schmitt trigger circuit of Fig. 5.9 the threshold voltages of M1 and

M2 are altered dynamically by positive feedback from output to gate 2 of both M1

and M2. This causes hysteresis in the transfer characteristic as shown in Fig. 5.11.

The four transistor independent-gate FinFET Schmitt trigger has advantages of re-

duced area and reduced power consumption compared to a conventional six transistor

common-gate FinFET Schmitt trigger [101].
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Chapter 6

CONCLUSIONS

The transcapacitance characteristics of bulk and SOI DG-FinFETs are studied in all

regions of operation and it is found that the unipolar approximation is inaccurate

in describing the observed transcapacitances of bulk DG-FinFETs in the accumula-

tion region. An accurate approximate ambipolar IVE for common-gate symmetric

DG-FinFETs considering both electron and hole contributions to space charge is

proposed. The new IVE developed in this work is general and can be adopted in

any surface-potential-based compact model of DG-FinFETs with intrinsic or lightly-

doped bodies.

We have presented an accurate closed form algorithm for solving the am-

bipolar IVE of common-gate symmetric DG-FinFETs. The new algorithm can be

used with any surface-potential-based compact model of common-gate symmetric

DG-FinFETs. We also show that the earlier unipolar approximation of the IVE in

[62] emerges as an important special case of the more general ambipolar IVE.

Based on the new IVE a compact core model for drain current and terminal

charges valid in all regions of operation is developed for common-gate symmetric DG-

FinFET. Distinct C-V characteristics of bulk and SOI FinFETs can be reproduced

by the new model with good accuracy. The approximations developed in [56, 57] and

[82] from different assumptions are shown to be equivalent and can be significantly

improved by developing symmetric linearization forms that do not involve the charge-

sheet approximation. The new closed-form expressions for the drain current and

terminal charges are similar to those used in the bulk PSP model. The expression

for Id is exact while those for QG, QS, QB and QD are accurate within 1% for

common-gate symmetric DG-FinFETs and 2% for SGFET.

The solution space for the Poisson-Boltzmann equation in independent-gate

asymmetric DG-FinFETs has been partitioned including all possible cases. The
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analytical expressions for the partition lines are given in terms of the Lambert W

function. The results simplify the development of a core compact model of asymmet-

ric DG-FinFETs. A surface-potential-based compact model of the independent-gate

asymmetric DG-FinFET, valid for all inversion conditions (from weak to strong in-

version) of both channels, is developed, verified, and implemented in a circuit simu-

lator. Efficient numerical IVE solution suitable for circuit simulator implementation

is proposed.

We have developed analytical C∞ continuous models for terminal charges of

independent-gate asymmetric DG-FinFETs valid for all bias conditions. Terminal

charges are obtained through the linearization of the effective gate charge densities

as functions of the surface potentials.

The equations of the new models are brought in a form similar to that used

in the PSP model but with separate contributions from each of the two gates. The

structural similarity to the PSP [45] and PSP-based symmetric DGFET models [57]

means that various small-geometry effects can be introduced in a similar manner. For

the common-gate symmetric DGFET this approach has been already experimentally

verified in [56].

Sample circuit simulations demonstrate the convergence properties and prac-

ticality of the new compact model. This work provides a promising core model for

the development of a practical compact DG-FinFET and SGFET model.
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APPENDIX A

Derivation of (2.26)
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The integral in (2.23) can be written as

I =

h
∫

h0

dh′
√

h′(h′ − k) (h′ − 1/k)
, (A.1)

where h = eϕ and k = e−ϕ0 . For η = 1 we have h > 1/k > k. Setting

h =
1

k sin2 t
; 0 ≤ t ≤ π/2, (A.2)

we find

I = −2 ·
√
k







t
∫

0

dt′√
1 − k2 sin2 t′

−
π/2
∫

0

dt′√
1 − k2 sin2 t′






, (A.3)

where

t = sin−1
(

e
ϕ0−ϕ

2

)

(A.4)

The first and second integrals are incomplete and complete elliptic integral of first

kind in Legendre’s form as defined in (2.24) and (2.25). Thus,

I = −2 · e−ϕ0/2 [F
(

t, e−ϕ0
)

−K
(

e−ϕ0
)]

. (A.5)

Similarly, for η = −1 where h < 1/k < k setting

h =
sin2(u)

k
; 0 ≤ u ≤ π/2 (A.6)

yields

I = 2 · e
ϕ0
2 [F (u, eϕ0) −K (eϕ0)] , (A.7)

where

u = sin−1
(

e− ϕ0−ϕ

2

)

(A.8)

Equation (A.5) and (A.7) can be combined together as

I = −2 · ηe
−ηϕ0

2

{

F

[

sin−1
(

e
η(ϕ0−ϕ)

2

)

, e−ηϕ0

]

− K
(

e−ηϕ0
)}

. (A.9)

Substituting (A.9) in (2.23) yields (2.26).
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APPENDIX B

Equivalent form of Equation (2.26)
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We show that (2.26) is equivalent to equation (7) of [64]. The integral in

(2.23) can be written as

I =
1

2

ϕ
∫

ϕ0

dϕ′
√

cosh2(ϕ′/2) − cosh2(ϕ0/2)
. (B.1)

Setting r = cosh ϕ
2 / cosh ϕ0

2 yields

I = η

r
∫

1

dr′
√

(1 − r′2)
[

1 − cosh2(ϕ0/2) · r′2
]

(B.2)

or

I = η















r
∫

0

dr′
√

(1 − r′2)
[

1 − cosh2(ϕ0/2) · r′2
]

−
1
∫

0

dr′
√

(1 − r′2)
[

1 − cosh2(ϕ0/2) · r′2
]















.

(B.3)

The integrals in (B.3) are elliptic integrals in a form given in equation (5) of [64].

They can be easily transformed into Legendre’s form given in (2.24) and (2.25). As

in [64] denote

Felliptic{z, k} =

z
∫

0

dx√
1 − x2

√
1 − k2x2

, (B.4)

then (B.3) becomes

I = η [Felliptic{r, cosh(ϕ0/2)} − Felliptic{1, cosh(ϕ0/2)}] . (B.5)

Substituting (B.5) in (2.23) and setting ξ = 0, ϕ = ϕs yields equation (7) of [64]. We

note that while I is real, each of the two terms in (B.3) contains imaginary parts.
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Asymptotes of ϕ0 for the Common-Gate Symmetric DG-FinFET
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We start with the unipolar IVE (2.57). In the region where ϑ is small we

retain the first two terms in the Taylor series expansion

ln(ϑ secϑ) + 2 · rcϑ tan ϑ = ln(ϑ) +
(1 + 4 · rc)ϑ

2

2
+

(1 + 8 · rc)ϑ
4

12
+ · · · (C.1)

in (2.57) to yield

ln(ϑ) +
(1 + 4 · rc)ϑ

2

2
− Fb = 0. (C.2)

Equation (C.2) can be solved for ϑ using the principal branch of the Lambert-W

function [79]

ϑ =

√

W [(1 + 4 · rc)e2·Fb ]

1 + 4 · rc
. (C.3)

From (2.53) and (C.3)

ϕ
(0)
0 =

ηxn

2
− 2 · η ln

(

tsi

4 · Ldi

)

+ η ln

{

W [(1 + 4 · rc)e
2·Fb ]

1 + 4 · rc

}

. (C.4)

The following approximation is valid in this region where the argument (1+4·rc)e
2·Fb

of W is small

W (z) ≈ ln(1 + z) · 1 + 123
40 z + 21

10z
2

1 + 143
40 z + 713

240z
2
. (C.5)

Here the rational portion is the Pade approximation of W (z)/ ln(1+z) was obtained

by using Mathematica [102].

In the region where ϑ is close to π/2 the Taylor series expansion of

ln(ϑ secϑ) + 2 · rcϑ tan ϑ =
πrc

π/2 − ϑ
− 2 · rc+

ln

(

π

2

)

− ln

(

π

2
− ϑ

)

+

(

2

π
− πrc

3

)(

π

2
− ϑ

)

. (C.6)

Retaining the first four terms of the series expansion in (C.6) and substituting in

(2.57) yields

πrc
π
2 − ϑ

− ln

(

π

2
− ϑ

)

− 2 · rc + ln

(

π

2

)

− Fb = 0. (C.7)

Solving (C.7) for ϑ using the principal branch of the Lambert W function we obtain

ϑ =
π

2
− πrc

W [2 · rc exp (2 · rc + Fb)]
. (C.8)
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From (2.53) and (C.8)

ϕ
(π/2)
0 =

ηxn

2
− 2 · η ln

(

tsi

4 · Ldi

)

+ 2 · η ln

[

π

2
− πrc

W (2 · rce2rceFb)

]

(C.9)

In this region the argument 2 · rce
2·rceFb of the Lambert W function in (C.9) is large

and we can use the approximation suggested in [103] for z � e

W (z) ≈ {ln(z) − ln[ln(z)]}2 + ln(z)

1 + ln(z) − ln[ln(z)]
. (C.10)

Then from (C.9) and (C.10)

ϕ
(π/2)
0 =

ηxn

2
− 2η ln

(

tsi

4 · Ldi

)

+ 2 · η ln

{

π

2
− πrc [1 +G− ln(G)]

[G − ln(G)]2 +G

}

(C.11)

where

G = Fb + 2 · rc + ln(2 · rc). (C.12)

For computational purpose we change G to Gm where

Gm =
1

2

[

G+ 6 · rc −
√

(G− 6 · rc)2 + 1

]

. (C.13)
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Derivation of q̃n and αl
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The potential ψ(x) in inversion condition (ϕ > 5) can be obtained from

(2.26) as

ψ(x) = ψ0 + 2 · φt ln

{

sec

[

x

2 · Ldi
exp

(

ψ0 − Vc

2φt

)]}

. (D.1)

Rearranging (D.1) using (2.59) yields

ψ(x) = Vc − 2 · φt ln

[

tsi

4 · Ldiθ
cos

(

2 · θx
tsi

)]

. (D.2)

Hence,

∂ψ

∂y
=

{

∂Vc

∂y
+ 2 · φt

[

1

θ
+

2 · x
tsi

tan

(

2 · θx
tsi

)]}

∂θ

∂y
. (D.3)

From (D.3)

∂ψ/∂y

∂ψs/∂y
=

dVc
dθ + 2 · φt

[

1
θ + 2·x

tsi
tan

(

2·θx
tsi

)]

dVc
dθ + 2 · φt

(

1
θ + tan θ

) (D.4)

thus

∂ψ/∂y

∂ψs/∂y
= 1 +

tan θ + 2·x
tsi

tan
(

2·θx
tsi

)

2 · r
(

tan θ + θ
cos2 θ

) . (D.5)

where we have used (4.7). The electron concentration n can be obtained by substi-

tuting (D.2) in (2.3) to yield

n = n0 sec2
(

2 · θx
tsi

)

(D.6)

where n0 denotes the electron concentration at x = 0. From (D.5), (D.6), and (4.17)

we obtain

q̃n = qn +
qn0tsi

4 · rcθ
(

tan θ + θ
cos2 θ

)

∫ θ

0

tan u− u
θ tan u

cos2 u
du (D.7)

where it is convenient to set qn0tsi/θ = qn cot θ. Using standard trigonometric

identities (D.7) can be reduced to (4.18).

To evaluate αl note that by (4.36)

αl = 1 − φt

(

dg1

dψs

)∣

∣

∣

∣

ψs=ψsm

(D.8)

where

g1 = qi · g =
sin(2 · θ) − 2 · θ cos(2 · θ)

2 · θ + sin(2 · θ) (D.9)
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then

dg1

dψs
=

dg1

dθ
dψs

dθ

(D.10)

where

dg1

dθ
=

8 · θ2 sin(2 · θ) − 4 · sin(2 · θ) cos2 θ + 8 · θ cos2 θ

(2 · θ + sin(2 · θ))2
(D.11)

and dψs/dθ is found from (D.2) as

dψs

dθ
=

dVc

dθ
+ 2 · φt

(

tan θ +
1

θ

)

. (D.12)

Substituting dVc/dθ from (4.7) yields

dψs

dθ
= −4 · φtrc(tan θ + θ sec2 θ) (D.13)

and from (D.8), (D.9) and (D.11)

αl = 1 +
1

rc
· [2 · θ2

m sin2(2 · θm) − sin(θm) cos2 θm + θm cos2 θm]

(2 · θm + sin(2 · θm))2(tan θm + θm sec2 θm)
(D.14)

where

θm = θ|ψs=ψsm
. (D.15)

An equivalent form is

αl = 1 +
θ2
m

2 · rc
· qim(2 · q2

im + 2 · θ2
m − 1) + q2

im + θ2
m

(q2
im + qim + θ2

m)3
. (D.16)

While for common-gate symmetric DG-FinFETs qim is given by (4.42), the corre-

sponding approximation θ2
m = θ2

0 ≡ (θ2
s +θ2

d)/2 for θ2
m is valid only in weak inversion

where qi = θ tan θ ≈ θ2. Since in strong inversion, qim � θ2
m an approximation [67]

αl = 1 +
θ2

m

2 · rc
· qim(2 · q2

im + 2 · θ2
0 − 1) + q2

im + θ2
0

(q2
im + qim + θ2

0)3
(D.17)

is quite accurate in all regions of DG-FinFET operation. However, approximating

θ2
m by θ2

0 in (D.17) does not result in accurate expressions for QG and QD. Better

accuracy is achieved by setting θ2
m = 3 · qim/4 i.e. by using αl in the form given by

αl ≈ 1 +
3 · qim

8 · rc
· qim(2 · q2

im + 2 · θ2
0 − 1) + q2

im + θ2
0

(q2
im + qim + θ2

0)3
. (D.18)

This conclusion is invariant of device parameters such as tox and tsi. Without adding

much error further simplification is made to (D.18) in [63] by setting θ2
0 in (D.18) to

qim which gives (4.41).
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Comparison of Symmetric Linearization Method for bulk MOSFETs and

DG-FinFETs
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For both DG-FinFETs and bulk MOSFETs symmetric linearization is intro-

duced to obtain compact expressions for the terminal charges. The difference is that

in the case of the bulk device symmetric linearization is required for the inversion

charge while for undoped DG-FinFETs the inversion charge

Qi = −qn = −2 · Cox(Vg − ∆φ− ψs) (E.1)

is already a linear function of ψs. However, the surface potential dependence of the

“effective charge” q̃n is nonlinear necessitating the approximation given by (4.33). In

other words, for DG-FinFETs the complexity of the model comes from the fact that,

generally speaking, ∂ψ/∂y 6= dψs/dy and symmetric linearization approximation is

introduced in order to account for this complication in a computationally efficient

way.

The second difference is that the value of ν in this work selected so as to

make the expression (4.25) for Id not just accurate but exact. This approach is also

applicable to bulk MOSFETs. Indeed, the equations for the drain current in [90, 41]

can be written in the form

Id = µ
W

L
Cox

[

Vgb − Vfb − ψsm + φt

(

1 +
γ

√
a+

√
b

)

−(2 · γ/3)(2 · ψm − 2 · φt +
√
ab)

√
a+

√
b

]

∆ψ (E.2)

where W is the width of the channel, Vfb denotes flat-band voltage, γ is the body

effect factor, a = ψsd − φt and b = ψss − φt.

Using the version of the symmetric linearization method in the form

Qi = −Cox(ν − αlu) (E.3)

and proceeding as in [88] yields

Id = µ
W

L
Cox(ν + αlφt)∆ψ. (E.4)
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It is now possible to select ν so that (E.4) coincides with the exact result (E.2):

ν = Vgb − Vfb − ψm − (2 · γ/3)(2 · ψm + 2 · φt +
√
ab)

√
a+

√
b

+ φt

(

1 +
γ

√
a+

√
b

− αl

)

(E.5)

The linearization coefficient αl can be selected as in [88, 89]

αl = 1 +
γ

2 ·
√
ψsm − φt

(E.6)

or as

αl = 1 +
γ

√
a+

√
b
. (E.7)

The essence of symmetric linearization, however, is to obtain simple but accurate

approximations for the terminal charges. Following [88] or Section 4.4 we obtain

(4.43)-(4.47) with

H =
ν

αl
+ φt (E.8)

the only difference being that ν and αl are now given by (E.5) and (E.6). The total

gate charge, QG, is still given by (4.52) (without the coefficient 2), while

QD = −WLCox

[

ν

2
− αl∆ψ

12

(

1 − ∆ψ

2 ·H − ∆ψ2

20 ·H2

)]

(E.9)

As shown in Fig. E.1, for charges this approach produces results that are even more

accurate than the symmetric linearization version developed in [88]. However, this

requires using expression (E.5) which is more complex than the approximation ν =

−(Qi|ψ=ψsm)/Cox used in [88]. In contrast, for undoped DG-FinFETs (4.39) results

in a model that is both simpler and more accurate than that based on (4.35). This

explains the difference in our implementation of the symmetric linearization method

in this work relative to [88, 89].
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Figure E.1: (a) Normalized transcapacitance Cgg using original charge sheet model
[89, 104], and two versions of symmetric linearization; (b) Relative error (%) for
Cgg for present technique and symmetric linearization of [88]; NA = 3 × 1017 cm−3,
tox = 2.5 nm and Vds = 1 V, Vbs = 0 V.
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APPENDIX F

Derivation of (5.74)-(5.77)
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We present a derivation of expressions (5.74)-(5.77) for the hyperbolic case.

Expressions (5.69)-(5.73) for the trigonometric case are derived similarly. Substitu-

tion of (3.39) in (5.53) and integration yields (5.74) once it is noted that from (3.30)

E(σ · ∞) = 4 · σφtθ∗/tsi. Similarly, (5.75) follows from (5.54) and (3.39).

The derivation of (5.76) requires evaluation of the integral in (5.55). For this

purpose, we differentiate (3.27) with respect to y to obtain

∂ψ

∂y
=

dVc

dy
+

2 · φt
[

θ∗csch
(

α∗ + σ 2·θ∗x
tsi

)] × ∂

∂y

[

θ∗csch

(

α∗ + σ
2 · θ∗x

tsi

)]

(F.1)

where from (3.35)

dVc

dy
= − 2 · φt

θ∗csch(α∗ − σθ∗)

d

dy
[θcsch(α∗ − σθ∗)] − 4 · σφtrc1

d

dy
[θ∗ coth(α∗ − σθ∗)]

(F.2)

Setting x = −tsi/2 in (F.1) yields

dψs1

dy
= −4 · σφtrc1

d

dy
[θ∗ coth(α∗ − σθ∗)] (F.3)

Substitution of n(x), ∂ψ/∂y, and, dψs1/dy from (3.39), (F.2) and (F.3), respectively,

in (5.55) and integration yields (5.76). The derivation of (5.77) follows the same lines,

except that now it is convenient to obtain dVc/dy from (3.36) rather than (3.35):

dVc

dy
= − 2 · φt

θ∗csch(α∗ + σθ∗)

d

dy
[θ∗csch(α∗ + σθ∗)] + 4 · σφtrc2

d

dy
[θ∗ coth(α∗ + σθ∗)]

(F.4)

Finally, (5.73) is obtained by differentiating (3.37).

123



APPENDIX G

Common-Gate Symmetric DG-FinFET as a Special Case of Independent-Gate

Asymmetric DG-FinFET
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It is worth noting that we can get the drain current and q̃g for a common-

gate symmetric DG-FinFET defined in [67] as a special case of (5.8) and (5.71),

respectively. In common-gate symmetric DG-FinFETs we have V1 = V2, rc1 = rc2 =

rc, α = π/2 and the ψ(x) has a trigonometric form [69]. Thus, considering the drain

current expression for case I we have

Id = 8 · µhf

L
Csiφ

2
t (fd − fs) (G.1)

where

f = −
[

rc1u
2
− + rc2u

2
+ − θ2

]

− [u−u+] (G.2)

and

u± = θ cot(α± θ) = θ cot

(

π

2
± θ

)

= ∓θ tan θ. (G.3)

Hence (G.2) becomes

f = −
[

2 · rcθ
2 tan2 θ − θ2

]

− 2 · θ tan θ. (G.4)

Substituting (G.4) in (G.1) the expression for drain current becomes

Id = 16 · µW
L
Csiφ

2
t

(

rcθ
2 tan2 θ − θ2

2
+ θ tan θ

)∣

∣

∣

∣

∣

θs

θd

. (G.5)

The equation (G.5) is the equation for the drain current of common symmetric DG-

FinFET [60].

Symmetry allows us to write

qg1 = qg2 =
qg

2
(G.6)

and

q̃g1 = q̃g2 =
q̃g

2
. (G.7)

The constant α results in dα/dθ = 0 which is consistent with (5.73) for α = π/2.

Substituting α = π/2 and dα/dθ = 0 in (5.71)

q̃g1 = qg1 +Coxφt
sin(2 · θ) − 2 · θ cos(2 · θ)

2θ + sin(2θ)
. (G.8)
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From (G.6)-(G.8),

q̃g = qg + 2 · Coxφt
sin(2 · θ) − 2 · θ cos(2 · θ)

2 · θ + sin(2 · θ) (G.9)

which is precisely the result given in [67] for common-gate symmetric DG-FinFETs.
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