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ABSTRACT  

   

In somatic cells, the mitotic spindle apparatus is centrosomal and several 

isoforms of Protein Kinase C (PKC) have been associated with the mitotic 

spindle, but their role in stabilizing the mitotic spindle is unclear.  Other protein 

kinases such as, Glycogen Synthase Kinase 3β (GSK3β) also have been shown to 

be associated with the mitotic spindle.  In the study in chapter 2, we show the 

enrichment of active (phosphorylated) PKCζ at the centrosomal region of the 

spindle apparatus in metaphase stage of 3T3 cells.  In order to understand whether 

the two kinases, PKC and GSK3β are associated with the mitotic spindle, first, the 

co-localization and close molecular proximity of PKC isoforms with GSK3β was 

studied in metaphase cells.  Second, the involvement of inactive GSK3β in 

maintaining an intact mitotic spindle was shown.  Third, this study showed that 

addition of a phospho-PKCζ specific inhibitor to cells can disrupt the mitotic 

spindle microtubules. The mitotic spindle at metaphase in mouse fibroblasts 

appears to be maintained by PKCζ acting through GSK3β.  The MAPK pathway 

has been implicated in various functions related to cell cycle regulation.  MAPKK 

(MEK) is part of this pathway and the extracellular regulated kinase (ERK) is its 

known downstream target.  GSK3β and PKCζ also have been implicated in cell 

cycle regulation.  In the study in chapter 3, we tested the effects of inhibiting 

MEK on the activities of ERK, GSK3β, PKCζ, and α-tubulin.  Results from this 

study indicate that inhibition of MEK did not inhibit GSK3β and PKCζ 

enrichment at the centrosomes.  However, the mitotic spindle showed a reduction 

in the pixel intensity of microtubules and also a reduction in the number of cells 
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in each of the M-phase stages.  A peptide activation inhibitor of ERK was also 

used. Our results indicated a decrease in mitotic spindle microtubules and an 

absence of cells in most of the M-phase stages.  GSK3β and PKCζ enrichment 

were however not inhibited at the centrosomes.  Taken together, the kinases 

GSK3β and PKCζ may not function as a part of the MAPK pathway to regulate 

the mitotic spindle. 
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Chapter 1 

INTRODUCTION 

The events that are involved in cell cycle progression are tightly regulated 

to maintain the viability of the cell and to correctly pass cytoplasm and genetic 

information to daughter cells.  Accurate chromosome segregation during meiosis 

and mitosis is a requirement that allows cells to faithfully transmit their genetic 

information to daughter cells.  A disruption in the regulation of any of these cell 

cycle events can lead to cell death and can significantly contribute to malignant 

transformation (Rao et al. 2009).  The accurate seggregation of chromosomes 

during mitosis and meiosis occurs on a highly ordered macromolecular machine, 

the spindle apparatus.  Assembly of the spindle is a dynamic process and 

maintenance of the bipolar array of the microtubules requires a constant 

dissipation of energy (Vernos and Karsenti, 1995).  To ensure faithful segregation 

of chromosomes, microtubules emanating from spindle poles attach to and align 

chromosomes at the metaphase plate before segregating the sister chromatids 

evenly between daughter cells.  In order to fulfill this aim, kinetochores, or 

macromolecular protein complexes associated with centromeres, must stably 

attach to dynamic microtubules (Ricke and Deursen, 2011).   

In the mouse egg the meiotic spindle is acentrosomal, in contrast to the 

mouse fibroblasts where the mitotic spindle is centrosomal.  The mouse egg has a 

natural cell cycle arrest point after the formation of the acentrosomal metaphase II 

spindle.  Studies have shown that spindles formed in the absence of centrioles are 
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thought to be nucleated at the chromosomes (Caudron et al. 2005; Hertzer, 2006).  

The microtubules then converge at the spindle poles by means of minus-end 

molecular motors (Goshima et al., 2005) forming a barrel-shaped structure 

(Szollosi et al., 1972).  In the mammalian egg, after fertilization there is a precise 

series of signaling events that orchestrate its conversion into a zygote.  These 

signals are precisely regulated and some are mediated through cytoskeletal 

scaffolds (Capco, 2001; Baluch and Capco, 2002).   

In somatic cells including mouse fibroblasts the mitotic spindle is 

centrosomal where the centrosome is the primary microtubule-organizing center 

(MTOC).  At the heart of each centrosome present in most animal cells there are 

two centrioles.  Centrioles are cylindrically shaped organelles made of nine 

microtubule (MT) triplets organized in a nine-fold symmetrical configuration.  

Centrioles are present in many eukaryotes and are essential for the formation of 

several microtubule-organizing structures including centrosomes and cilia (Debec 

et al. 2010).  The centriole remains a surprisingly mysterious organelle.  Although 

there have been many recent advances in the comprehension of its structure and 

functions, it remains, a kind of ‘‘terra incognita’’ of the cell (Paoletti and 

Bornens, 1997; Debec et al. 2010).  Many studies have observed that the mitotic 

spindle apparatus is composed of several elements including centrosomes, 

microtubules such as astral, polar, and kinetochore microtubules, kinetochores of 

chromosomes, and associated proteins (McIntosh and Landis, 1971; Burbank et 

al., 2007; Walczak and Heald, 2008; Schmidt et al., 2010).   

http://www.sciencedirect.com/science/article/pii/S0012160608000961#bib10
http://www.sciencedirect.com/science/article/pii/S0012160608000961#bib31
http://www.sciencedirect.com/science/article/pii/S0012160608000961#bib59
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The proper attachment and alignment of the chromosomes, which occurs 

during prometaphase, is the defining aspect of mitosis.  During prometaphase, 

chromosomes exhibit a complex pattern of movement that is often described as 

“the dance of chromosomes” in classic cytology literature.  In this dance, some 

chromosomes move poleward, while other chromosomes move away from the 

spindle poles drawn by association with the kinetochore microtubules, and others 

remain relatively motionless (Walczack et al. 2010).  Over time, these seemingly 

chaotic movements result in the congression of chromosomes to the spindle 

equator, such that more and more chromosomes become aligned between the 

separated spindle poles. The key interaction between chromosomes and 

microtubules occurs at the centromere of the chromosome, which contains 

macromolecular complexes termed kinetochores.  The known structure of a 

kinetochore consists of an inner plate, a chromatin structure containing 

nucleosomes with at least one specialized histone, auxiliary proteins and DNA. 

The makeup and organization of this DNA is not well understood in animal cells.  

The inner plate exists as a discrete heterochromatin domain throughout the cell 

cycle (Maiato et. al. 2004).  Outside this is an outer plate composed primarily, if 

not solely, of protein (Cooke et al. 1993).  This structure forms on the surface of 

the chromosome at about the time of nuclear envelope breakdown (Brinkley and 

Stubblefield, 1966; Ris and Witt, 1981; McEwen et al., 1993).  The outer plate of 

vertebrate kinetochores has about 20 end-on attachment sites for the plus ends of 

microtubules, termed kinetochore microtubules.  Challenges for a cell are, 

ensuring that the spindle microtubules attach properly to each of the many 
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chromosomes, positioning them at the spindle equator and ultimately driving the 

poleward movement of sister chromatids to the opposite poles of the spindle.  The 

segregation of multiple chromosomes in a cell must be executed in perfect 

synchrony, which implies that the state of every chromosome is monitored by the 

spindle and that mitotic exit is delayed until all chromosomes are attached.  This 

monitoring is achieved through a pathway termed the spindle assembly 

checkpoint (Musacchio and Salmon, 2007).  Sporadic errors in chromosome 

attachment to the spindle microtubules are inevitable given the complexity of the 

system.  Failure to correct these errors results in chromosome mis-segregation, 

and one of the outcomes is aggressive malignancies (Rajagopalan and Lengauer, 

2004; Holland and Cleveland, 2009).  How the spindle integrates all of its tasks 

remains unclear.  Studies conducted on microtubules during interphase indicate 

that microtubules are dynamic polymers that are assembled from tubulin 

heterodimers and these tubulin heterodimers are organized such that the 

microtubules have an intrinsic polarity (Fig. 1a).  Microtubules undergo periods 

of polymerization and depolymerization and interconvert randomly between these 

states, a property known as dynamic instability.  Although microtubules exhibit 

dynamic instability at both ends of the microtubule, the plus ends are more 

dynamic than the minus ends.  Microtubules in the spindle also exhibit dynamic 

instability (Fig. 1b), which occurs primarily at the plus ends of the microtubules 

as the minus ends are often capped at the centrosome.  However, spindle 

microtubules and kinetochore (k)-fibres exhibit an additional dynamic property, 

known as microtubule flux, in which there is a net addition of tubulin 
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heterodimers at the plus ends near the kinetochores and a net loss of tubulin 

subunits at the minus ends near the centrosomes (Fig. 1c) (Walczak et al. 2010; 

Zhu et al. 2009). 

 

 

Figure 1: Assembly of microtubules that are part of the mitotic spindle apparatus 

(Adopted from Walczak et al. 2010). 

 

At the microtubule organizing centers in cells containing centrioles and/or 

centrosomes, the “plus” ends of microtubules extend from the centrosomal region 

and are captured and stabilized by the kinetochore (Vernos and Karsenti, 1995; 

Zhang and Nicklas, 1995; Heald et al. 1996; Brunet et al. 1998; Caudron et al. 

2005; Tulu et al. 2006).  This type of assembly has been referred to as the “search 
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and capture model”.  In contrast, in cells that do not contain centrosomes such as 

mouse eggs, microtubules emanate from the chromosomes, become associated 

with molecular motor proteins and are thought to bundle the microtubules to form 

the bipolar spindle apparatus (Karsenti and Vernos, 2001; Caudron et al. 2005; 

Goshima et al. 2005; Tulu et al. 2006). 

In the meiotic metaphase II (MII) mouse egg, as well as in somatic cells, 

many signaling elements such as Protein Kinase C (PKC), Calcium/calmodulin 

dependent protein kinase II (CaM KII) and Mitogen-Activated Protein kinase 

(MAPK) are found to be enriched at the meiotic and mitotic spindle (Abbott and 

Ducibella, 2001; Collelo et al. 2012; Hatch and Capco, 2001, Shapiro et al. 1998; 

Willard and Crouch, 2001).   

Protein kinase C (PKC) is one of the important signaling elements 

involved in meiotic and mitotic events.  PKC exists as 11 isotypes, several of 

which can exist simultaneously in a single cell.  Many of the isotypes have 

different cofactor requirements for activation and function at different sites within 

the cell when active.  Presumably, they act to render differential functionality to 

various cellular events. There are three broad categories of PKC based on their 

requirements and the structure of their regulatory domains at the NH2 terminus 

(Fig. 2).  The conventional PKCs namely, PKCα, βI, βII, and γ are diacylglycerol 

(DAG), phospholipids, and calcium dependent, with their regulatory domains 

containing a C1 domain which binds DAG/PMA and a C2 domain which binds 

anionic phospholipids in a calcium dependent manner.  The novel PKCs are DAG 

and phospholipid dependent, but are calcium independent and include PKCδ, ε, µ, 
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η, and θ; their regulatory domains contain two C1 and one C2 domain with the C2 

domains lacking the calcium-coordinating acidic residues.  The atypical PKCs are 

DAG and calcium independent and include PKCζ and human PKCι/mousePKCλ; 

their regulatory domains lack the calcium-sensitive C2 domain and contain the 

atypical C1 domain that binds PIP2 or ceramide (Liu et al. 2006).   

 

 

 

Figure 2: Domain structure of protein kinase C (PKC) isoforms. PKCs have a 

conserved kinase domain (depicted in teal) and more variable regulatory domains. 

All PKC regulatory domains have a pseudosubstrate motif (shown in green) NH2 

terminal to the C1 domain (shown in pink). Tandem C1 domains are the 

molecular sensors of phorbol 12-myristate 13-acetate (PMA)/diacylglycerol 

(DAG) in cPKC and nPKC isoforms, whereas the single aPKC C1 domain does 

not bind DAG/PMA. The C2 domains (in yellow) function as calcium-dependent 

phospholipid binding modules in cPKCs. Novel PKC C2 domains do not bind 

calcium; the PKCδ-C2-like domain is a phosphotyrosine interaction module. PKC 

isoform variable regions are shown in gray (Steinberg, 2008). 

 

 

Studies conducted in yeast, Caenorhadbitis elegans, Drosophila, and other 

cell culture lines discovered that phosphorylated PKCζ (p-PKCζ) plays a role in 

polarity, microtubule nucleation, and microtubule stability which suggests that 

PKC has a important role in cytoskeletal regulation (Watts et al. 1996; Joberty et 

al. 2000; Johansson et al. 2000; Cox et al. 2001; Goold and Gordon-Weeks, 
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2004a; Etienne-Manneville et al. 2005; Yoshimura et al. 2005).  As a result of 

these studies, elements of the PKCζ signaling pathway have emerged.  The wide 

spectrum of PKC mediated signaling is organized by isoform specificity.  The 

activation and degradation of the PKC isoforms is controlled spatially and 

temporally, since cells and/or tissues often produce more than one PKC isoform.     

PKC isoforms can have broad overlapping substrate specificities, but their 

unique functionality may be defined via unique expression patterns, intracellular 

localization, and adaptor proteins (Meier et al. 2009).  Some of the substrates that 

PKC isoforms act on are: MARCKS proteins, RACK proteins, Dynamin, 

Vinculin, EGFR, and MEK5 (Steinberg, 2008; Meier et al. 2009).  Earlier studies 

have shown that mouse eggs arrested at metaphase II contain PKCα, γ, δ, and ζ 

(Pauken and Capco, 2000; Baluch et al. 2004) at specific locations (Fig. 3).  In 

oocytes, the nuclear envelope is disassembled at the onset of M-phase, perhaps in 

part by the action of PKC (Wilding et al. 1996), the interphase array of 

microtubules is disassembled as well and replaced during meiosis by the meiotic 

spindle.  Even in the absence of the nuclear envelope, different substrate 

specificities of enzymes can continue to contribute to each enzyme acting at a 

specific location (Fig. 3).  One such study (Avazeri et al., 2004) shows that PKCα, 

βI, βII, and γ are initially absent from the germinal vesicle, but later, prior to 

germinal vesicle breakdown, PKCα, βI, and βII enter the nucleus (Fig. 3).  Other 

studies that examined only one isotype of PKC confirm the presence of PKCα 

(Quan et al. 2003) and PKCβI (Denys et al. 2007) in the nucleus prior to germinal 

vesicle disruption.  One study examined PKCα, βI, and βII and found all three in 
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the cytoplasm of germinal vesicle stage oocytes (Luria et al. 2000) which is in 

agreement with the studies above at an early germinal vesicle stage (Avazeri et al. 

2004).  The main focus of that study was to apply PMA as an agonist to activate 

PKCs (Luria et al. 2000).  This treatment caused resumption of the meiotic cell 

cycle with the consequent disruption of the germinal vesicle. PKCδ has been 

identified in the oocyte germinal vesicle as well as the cytoplasm at a time when 

biochemical analysis demonstrates that PKC activity is elevated (Fig. 3).  Later 

PKCδ was shown to associate with the spindle apparatus in meiosis I (Viveiros et 

al. 2001, 2003), and that the active form of PKCδ (i.e., p-PKCδ) was specifically 

enriched at the spindle poles where it was co-localized with pericentrin and γ-

tubulin (Ma et al. 2008).  The fertilization-competent metaphase II stage egg 

exhibits notable differences in the position of several isotypes of PKC (Fig. 3).  

Antibodies that detect both unphosphorylated forms and phosphorylated forms of 

each isotype, hereafter referred to as ‘‘total’’ PKC, were present at a lower level 

in the cytoplasm, but enriched on the spindle apparatus for total PKCα, γ, δ, and ζ 

(Baluch et al. 2004).  Total PKCζ remained behind after the detergent extraction, 

and this was further confirmed by FRET analysis between α-tubulin and the PKC 

isotypes.  FRET revealed a close molecular association only between α-tubulin 

and PKCζ and between a-tubulin and PKCδ (Baluch et al. 2004; Baluch and 

Capco, 2008).  

   Other investigators have shown that PKCβ is present in the egg 

cytoplasm (Raz et al. 1998).  In eggs, pPKCζ is enriched at the ends of the 

acentrosomal spindle, whereas total PKCζ is attached along the length of the 
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spindle apparatus.  It has been suggested that PKCζ has a role in the asymmetric 

positioning of the spindle apparatus in mouse eggs (Na and Zernicka-Goetz, 

2006).  Some evidence exists to suggest a role for pPKCδ in spindle stability (Ma 

et al. 2008) as pPKCδ is enriched at the spindle poles in the same areas as pPKCζ 

in the metaphase egg.  A targeted knockdown of PKCδ expression with siRNA 

disrupts the spindle.  This same knockdown experiment also decreased expression 

of pericentrin, thus the knockdown may have several effects on the egg’s spindle 

apparatus (Ma et al. 2008).  The reduction in pericentrin would provide no place 

for pPKCδ to bind at the poles and may have even decreased the concentration of 

pPKCζ at the poles.  Either of these results would be expected to disrupt the 

spindle since pPKCζ activity is required for spindle stability as described earlier 

(Baluch et al. 2004).  In mouse oocytes, when free-calcium levels are low, 

calcium-independent kinases such as PKCζ may regulate the stability of the 

meiotic spindle (Baluch and Capco, 2008).   

 

 

Figure 3: Summary of various reports on the location of the different PKC 

isoforms at key points in mouse oocyte development. In these diagrams p-PKC 

represents phosphorylated forms of the kinase while PKC represents both the 

phosphorylated and nonphosphorylated forms of the kinase (Kalive et al. 2010). 
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Some of the PKC isoforms in somatic cells with a centrosomal mitotic 

spindle, have been shown to be associated with the microtubules or the 

centrosome of the spindle apparatus, although their role in spindle stability has 

not been elucidated.  These include PKC βI, βII, ε, θ, δ, and ζ (Lehrich and 

Forrest, 1994; Kiley and Parker, 1995; Volkov et al. 1998; Passalacqua et al. 

1999).  The attachment of spindle microtubules to kinetochores is crucial for 

accurate segregation of chromosomes to daughter cells during mitosis.  PKCζ was 

shown to be localized at the mitotic spindle during mitosis and to play a role in 

stable kinetochore-microtubule attachment.  In this study, treatment of cells with 

the PKCζ inhibitor dislocated the minus-end directed motor protein dynein from 

kinetochores, but did not affect the mitotic checkpoint proteins Mad2 and CENP-

E and prolonged exposure to the PKCζ inhibitor eventually resulted in cell death.  

These results suggest a critical role of PKCζ in spindle microtubule-kinetochore 

attachment and subsequent chromosomal separation (Liu et al. 2006).  Location is 

a critical determinant in dictating the cellular function of PKC.  Scaffold proteins 

contribute to localization by poising PKC at specific intracellular sites.  An earlier 

study identified the centrosomal protein pericentrin as a scaffold that tethers PKC 

βII to centrosomes.  Disruption of this interaction results in release of PKC from 

the centrosome, microtubule disorganization, and cytokinesis failure, indicating a 

specific regulatory role of this isozyme in centrosome function (Chen et al. 2004).  

PKCε was shown to be anchored at the Golgi/centrosome area by, centrosome and 

Golgi localized PKN- associated protein (CG-NAP) after being 
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hypophosphorylated.  CG-NAP serves as a scaffold for the phosphorylation 

reaction of PKCε (Takahashi, 2000). 

In the PKC isoforms, V5 domains play an important role in orchestrating 

isoform specific functions.  V5 domains (Fig. 4) are 50- to 70-amino acid 

sequences that contain highly conserved turn and hydrophobic phosphorylation 

motifs as well as, additional 7–21 residues at the extreme COOH terminus 

(beyond the hydrophobic motif) that are highly variable both in their length and 

sequence. The extreme COOH-terminal regions of the V5 domain that share little 

to no sequence homology have been exploited as epitopes to raise PKC isoform-

specific antibodies for Western blotting and immuno-localization studies. These 

regions were otherwise generally ignored in early studies exploring the structural 

determinants of PKC isoform function.  However, V5 domains have recently 

emerged as structures that impart important determinants of PKC isoform-specific 

targeting and function, suggesting that V5 domains might represent novel targets 

for pharmaceuticals designed to regulate PKC isoform-specific signaling in cells 

(Steinberg, 2008). 
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 Figure 4. Alignment of the V5 domain in PKC isoforms (Adopted from 

Steinberg, 2008). 

 

 The binding of PKC to other kinases provides a mechanism for cross-

regulating the phosphorylation state and activity of different signaling pathways 

in somatic cells (Jaken and Parker, 2000; Koeneman and Capco, 2004).  For 

example, in addition to PKC, glycogen synthase kinase 3β (GSK3β) is a regulator 

of microtubule stability, and GSK3β needs to be inactivated to maintain the 

mitotic spindle.  Apart from the role of GSK3β in the Wnt signaling pathway, 

several studies have also pointed towards a role for GSK3β in the regulation of 

microtubule dynamics.  In neuronal cells, GSK3β is able to phosphorylate a 

number of microtubule-associated proteins, such as MAP2C, MAP1B and Tau 

(Lovestone et al. 1996; Goold et al. 1999; Sanchez et al. 2000) as seen in the 
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representative diagram in figure 5.  This figure is an outline of the various 

substrates of GSK3α/β.  Phosphorylation of the MAP proteins by GSK3β 

decreases their ability to stabilize microtubules (Lovestone et al. 1996; Wagner et 

al. 1996; Utton et al. 1997).  Earlier studies have shown that inactivation of 

GSK3β in mitotic cells permits microtubules to be present (Wakefield et al. 

2003).  In other cells, when GSK3β is activated, microtubules are destabilized 

(Goold et al. 1999; Jope and Johnson, 2004).  Moreover, GSK3β is a known 

substrate for PKCζ (Etienne-Manneville and Hall, 2003; Krishnamurthy et al. 

2007).  An earlier study indicated that PKCζ acts through GSK3β in mouse 

oocytes to mediate spindle stability (Baluch and Capco, 2008). 

 

 

Figure 5: Substrates of GSK3. Putative substrates are color-coded according to 

their proposed function in the cell ; transcription factors (mauve), enzymes that 

regulate metabolism (blue), proteins bound to microtubules (turquoise), scaffold 

proteins (orange), or components of the cell division cycle machinery (pink) or 
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involved in cell adhesion (yellow). Transcription factors are subdivided into those 

that are inhibited (+), activated () or unaffected by the phosphorylation by GSK3. 

(Adopted from Frame and Cohen, 2001). 

 

 

In Chapter 2, studies were conducted to test the hypothesis that when 

compared to the other PKC isoforms, phospho-PKCζ (pPKCζ) is the likely 

isoform to interact with GSK3β to regulate mitotic spindle stability.  The 

metaphase stage of mouse fibroblast cells with a centrosomal spindle was used for 

these studies.  In these studies, co-localization and molecular proximity between 

pPKCζ and inactive GSK3β in the centrosomal region was first tested.  Next 

inhibitors of pPKCζ were used in further studies in order to study if pPKCζ acts 

with GSK3β to disrupt the proteins involved in maintaining the mitotic spindle.  

Evidence is provided to show that pPKCζ may act through GSK3β to permit the 

spindle apparatus to exist at the metaphase stage in a centrosomal spindle. 

Apart from PKC and GSK3β, in mammalian mitosis, the role of mitogen 

activated protein kinase (MAPK) pathway in cell cycle regulation has been 

extensively examined.  For example studies indicate that activation of the MAPK 

pathway is required for normal progression into mitosis (Guadagno and Ferrell, 

1998; Wright et al. 1999; Hayne et al. 2000).  Besides mitosis, the MAPK 

pathway is involved in a multitude of functions including cell cycle regulation, 

cell differentiation, and cell death in eukaryotes ranging from yeast to humans 

(Nigg et al. 2001; Orton et al. 2005; Rozengurt, 2007; Marks et al. 2009).  As part 

of this pathway, many somatic cell studies have shown that Raf kinase activates 

MEK1/2 (MEK) by phosphorylation of two serine residues.  MEKs generally 
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recognize only MAPKs as substrates.  It has been reported that MEK has a ‘TEY’ 

motif within its activation loop (Yung et al. 1997, Orton et al. 2005). 

It has been reported that activated MEK and ERK localize to the 

centrosomes of the mitotic spindle from prophase to anaphase, and to the mid-

body during cytokinesis (Shapiro et al. 1998; Willard and Crouch, 2001; Collelo 

et al. 2012).  ERK, the known downstream target of MEK has been shown to be 

associated with the centrosome and kinetochore components of the mitotic spindle 

apparatus, and has multiple functions during mitosis including, promoting mitotic 

entry as well as targeting proteins that mediate mitotic progression in response to 

kinetochore attachment (Schmidt-Alliana et al. 1998; Shapiro et al. 1998; Saffery 

et al. 2000).  Activated ERK co-localizes with the kinetochore motor protein 

CENP-E, raising the possibility that CENP-E is a downstream effector for ERK 

during mitosis (Zecevic et al. 1998; Willard and Crouch, 2001; Chambard et al. 

2006).  Studies have shown that blocking MEK activity in cycling somatic cells 

does not significantly affect mitotic entry, but it does slow progression through 

mitosis, probably by slowing the CENP-E-dependent chromosome movements 

coordinated by the mitotic spindle (Roberts et al. 2002).  Other studies have 

shown that active MEK along with active cyclinB-Cdc2 is necessary for the cells 

to progress into M-phase (Harding et al. 2003; Walsh et al. 2003). 

   Signaling networks are important for cell proliferation, and 

communication between pathways can take place at many locations from the 

plasma membrane to the nucleus.  Signaling network is increasingly important for 

our understanding of cell proliferation.  Cross-talk involves components that are 
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in common pathways, as well as positive and negative feedback signals.  The 

MAPK pathways are tightly regulated by and cross-communicate with other 

signaling pathways.  An overview of the other cellular pathways that 

communicate with the MAPK pathway is shown in figure 6.  Figure 6 indicates 

cross-talk between the MAPK pathway, the Glycogen synthase kinase 3β 

(GSK3β) pathway and the protein kinase C (PKC) pathway (Nigg, 2001; Zhang 

and Liu, 2002; Kholodenko, 2006; Rozengurt, 2007).  GSK3β and PKC have 

been found to be associated with the mitotic spindle (Lehrich and Forrest, 1994; 

Etienne-Manneville and Hall, 2003; Wakefield et al. 2003; Jope and Johnson, 

2004; Liu et al., 2006; Kalive et al. 2011).  Earlier studies have shown that 

GSK3β is associated with the centrosome and is known to phosphorylate 

microtubule associated proteins (MAPs) such as MAP1B which in turn causes 

chromosomal segregation by the microtubules.  In these studies the MAPK 

pathway was shown to be upstream of GSK3β (Goold et al. 1999; Frame and 

Cohen, 2001; Goold et al. 2005; Scales et al. 2009).   
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   Figure 6:  An overview of MAPK pathways involved in a signaling network in 

mammalian cells (Adopted from Zhang and Liu, 2002). 

 

PKCs also have been reported previously as upstream activators of the 

MEK/ERK pathway (Brändlin et al. 2002; Puente et al. 2006; Chang et al. 2008; 

Marks et al. 2009).  In an earlier study the PKCζ isoform has been implicated to 

be an upstream activator of MEK (Berra et al. 1995; Short et al. 2006).  In 

addition, the PKCζ isoform has been shown to be associated with the centrosome 

region of the mitotic spindle, or with the spindle microtubules (Lehrich and 

Forrest, 1994; Liu et al. 2006), and its activation is known to play an important 

role in stable kinetochore-microtubule attachment and subsequent chromosomal 
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separation (Liu et al. 2006).  PKC isoforms can directly regulate Raf-1 which is 

an upstream activator of the MEK/ERK pathway, specifically PKCα and PKCη 

are known activators of Raf-1 (Schonwasser et al. 1998; Corbit et al. 2003).  A 

previous study showed that inhibition of active PKCζ by a myristoylated peptide 

inhibitor causes inhibition of p(ser9)GSK3β at the centrosomes and disruption of 

the mitotic spindle.  This study also suggests that p(ser9)GSK3β could be a 

substrate of active PKCζ (Kalive et al. 2011).   However, no single study has 

examined all four of the kinases at the same time in the same cell type. 

In Chapter 3, studies were conducted to determine the involvement of 

MEK, ERK, GSK3β and PKCζ in regulation of the mitotic spindle.  In these 

studies, MEK and ERK activity were separately inhibited in the same cell type 

and it was determined whether this inhibition affects the location and activity of 

PKCζ and GSK3β.  If MEK/ERK, PKCζ, and GSK3β interact then we predicted 

that they would co-localize at the spindle during mitosis.  Moreover, if MEK and 

ERK have sole control over the mitotic spindle then inactivation of either MEK or 

ERK may obliterate the spindle followed by a slower progression through mitosis.  

In contrast, if multiple signaling pathways are involved then a modification or 

reduction in the spindle might be observed followed by only a reduction in the 

progression through mitosis. 
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Chapter 2 

INVOLVEMENT OF PKCZETA AND GSK3BETA IN THE STABILITY OF 

THE METAPHASE SPINDLE  

 Madhavi Kalive, D. Page Baluch, David G. Capco 

 

Introduction 

Protein Kinase C (PKC) has been implicated in a wide range of G protein-

coupled receptor mediated responses, growth factor-dependent cellular responses, 

and is comprised of a family of isoforms that subserve unique or sometimes 

opposing functions in cells, (Steinberg, 2008).  PKC is a family of 11 isozymes 

that are classified into three subfamilies depending on their structural similarity 

and cofactor requirements.  The regulatory domains are different among the 

various isoforms, which contributes to a variety of roles played by the PKC 

isoforms, (Roffey et al. 2009; Rosse et al. 2010).  The conventional PKCs namely, 

PKC α, βI, βII, and γ are diacylglycerol (DAG), phospholipid, and calcium 

dependent.  The novel PKCs are DAG and phospholipid dependent but are 

calcium independent and include PKC ε, η, μ, θ, and δ.  The atypical PKCs are 

DAG and calcium independent and include PKCζ and human PKCι / mouse 

PKCλ, (Liu et al. 2006).  Two new isoforms of PKCζ, namely PKMζ which has a 

new PKCζ catalytic domain has been described in the brain, (Hernandez et al. 

2003) and PKCζII is involved in cell polarity, (Parkinson et al. 2004).  Each PKC 

isoform is involved in regulating specific cellular functions based on subcellular 

location and binding properties.  The interaction of PKC with other proteins in 
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cytoskeletal compartments has been shown which supports a role for PKC in 

cytoskeletal reorganization, (Jaken and Parker, 2000). 

 The mitotic spindle apparatus of a somatic cell is ‘centrosomal’ (Debec et 

al. 2010); (Walczak et al. 2010), wherein there are centrosomal structures at each 

spindle pole.  This is contrasted, for example, with mammalian oocytes where the 

meiotic spindle apparatus is ‘acentrosomal’, and lacks the centrosomal structures.  

The mitotic spindle is a dynamic molecular structure, composed of tubulin, 

motors, and other associated proteins, (Karsenti and Vernos, 2001; Debec et al. 

2010); Walczak et al. 2010) and studies have shown microtubule associated 

proteins as substrates of PKC, (Robinson et al. 1991; Correas et al. 1992).  

Moreover, phorbol esters which are activators of PKC have been shown to cause 

microtubule reorganization, (Kiley and Parker, 1997).  Some of the PKC isoforms 

have been shown to be associated with the microtubules or the centrosome of the 

spindle apparatus although their role in spindle stability has not been elucidated.  

These include PKC βI, βII, ε, θ, δ and ζ, (Lehrich et al. 1994; Kiley and Parker, 

1995; Volkov et al. 1998; Passalacqua et al. 1999; Takahashi et al. 2000; Chen et 

al. 2004; Eng et al. 2006; Liu et al. 2006).  

 The binding of PKC to other kinases provides a mechanism for cross-

regulating the phosphorylation state and activity of different signaling pathways 

in somatic cells, (Jaken and Parker, 2000; Koeneman and Capco, 2004).  For 

example, in addition to PKC, Glycogen Synthase Kinase 3β (GSK3β) is a 

regulator of microtubule stability and GSK3β needs to be inactivated to maintain 
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the mitotic spindle.   Earlier studies have shown that inactivation of GSK3β in 

mitotic cells permits microtubules to be present, (Wakefield et al. 2002).  In other 

cells, when GSK3β is activated, microtubules are destabilized, (Goold et al. 1999; 

Jope and Johnson, 2004).  Moreover, GSK3β is a known substrate for PKCζ, 

(Etienne-Manneville and Hall, 2003; Krishnamurthy et al. 2007).  

Based on these previous studies, we hypothesize that when compared to 

the other PKC isoforms, phospho-PKCζ (pPKCζ) is the likely isoform to interact 

with GSK3β to regulate mitotic spindle stability in the metaphase stage of mouse 

fibroblast cells with a centrosomal spindle.  If this hypothesis is correct, two 

predictions should follow: 1) there should be significant co-localization and 

molecular proximity between pPKCζ and inactive GSK3β in the centrosomal 

region and, 2) inhibitors of pPKCζ act with GSK3β to disrupt the proteins 

involved in maintaining the mitotic spindle.  The results reported in this study 

support these predictions.  Evidence is provided to show that pPKCζ may act 

through GSK3β to permit the spindle apparatus to exist at the metaphase stage in 

a centrosomal spindle.   

 

Materials and Methods 

Cell culture and media 

The cells used for all the experiments were NIH 3T3 mouse fibroblasts, 

ATCC number CRL-2795.  The cells were maintained at 10% CO2 concentration 

in a 37
0
C moisture incubator. DMEM media was used to maintain the cells (10% 

fetal calf serum (FCS), 1% Penicillin-streptomycin, 2% L-glutamine).  The cells 
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were grown to 80% confluency before being used.  All chemicals used in 

experiments were obtained from sigma unless otherwise indicated. 

 

Inhibitor treatment  

A dose response analysis was performed in order to determine the amount 

of inhibitor to be added to the cells and the time of exposure.  Metaphase 

synchronised 3T3 cells were subjected to logarithmically increasing 

concentrations of the inhibitor at a one hour time point and then subjected to 

immunocytochemical analysis using the pPKCζ specific antibody, then viewed by 

confocal microscopy.  The optimal concentration of the inhibitor was determined.  

The lowest possible concentration that completely suppressed pPKCζ was used.  

The inhibitor, myristoylated PKCζ pseudosubstrate (EMD Corp., La Jolla, CA), 

was diluted to the working concentration of 50μM (as determined by the dose 

response analysis) in DMEM media.  The 3T3 cells were treated with the inhibitor 

for 30min and for 1hr. and processed for further immunocytochemical analyses or 

for immuno-pull down assays followed by western blotting.  For the experiment 

involving the addition of both PKCζ inhibitor and GSK3β inhibitor, the PKCζ 

inhibitor was added at 50µM concentration for 1hr. followed by 2.5μM GSK3β 

peptide inhibitor (Calbiochem Corp., La Jolla, CA) for 1hr in fresh media.  All 

experiments were repeated three times independently. 
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GSK3β kinase permeabilization assay 

The cells were permeabilized by washing briefly in modified ICB 

(100mM KCl, 5mM MgCl2, 5mM BAPTA, 20mM HEPES [pH 6.8] made 1% 

with Tween-20 and 1μg/mL each of pepstatin, aprotinin, chymostatin, leupeptin, 

and trypsin- chymotrypsin (Sigma Chemical Co., St. Louis, MO).  After 

permeabilization, the cells were washed briefly with modified ICB without 

Tween-20 to remove the detergent.  The cells were incubated with 40ng/mL 

GSK3β kinase and 1mM ATP (Cell Signaling Technology Inc., Danvers, MA) 

made in modified ICB (with added protease inhibitors) without Tween-20 for the 

indicated time points.  Parallel samples were incubated with the combination of 

GSK3β kinase and 1mM ATP in modified ICB without Tween-20 along with 

2.5μM GSK3β peptide inhibitor (Calbiochem Corp., La Jolla, CA).  Samples were 

then fixed with 2% paraformaldehyde in ICB, prepared for immunocytochemistry 

and confocal imaging.  To view the spindle, antibody to α-tubulin (Sigma 

Chemical Co., St. Louis, MO) was used.  To view the chromosomes of the cells, 

DRAQ 2.4μg/mL in ICB (Axxora, LLC, San Diego, CA) was used.  The 

experiments were repeated three times independently and every time, fifty cells at 

the metaphase stage were scored in each assay.   

 

Collection of cells at mitotic metaphase 

Cells at 80% confluency were treated with nocodazole at 10μM made in 

DMEM media for 14-16hrs at 37
0
C, (Jackman and O’Conner, 1998).  After 

removal of the nocodazole media, cells were rinsed once briefly with DMEM 
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media without nocodazole, then allowed to recover in fresh DMEM media for 

30mins.  Cells were then subject to a ‘mitotic shake’, each T-flask (T75 flask) for 

about 4min.  The cells as a pellet were then recovered by spinning at 3000rpm for 

10min.  RIPA buffer with protease inhibitors was used to make the cell lysate as 

described below. 

 

Immunopurification (Immuno-pull down assays) 

The Catch and Release Reversible Immunoprecipitation System v2.0 

(Millipore, Inc., Lake Placid, NY) was used according to the manufacturer’s 

instructions.  In the procedure, the number of cells used per experiment was kept 

constant.  For every Immunoprecipitation column, 1 T-flask was used with cells 

grown to 80% confluency.  After the appropriate treatment, the cell lysate from 

each T-flask was made in 500μL of cold RIPA lysate buffer (Pierce 

Biotechnology, Rockford, IL) with 1μg/mL of aprotinin, pepstatin, chymostatin, 

leupeptin and trypsin-chymotrypsin (Sigma Chemical Co., St. Louis, MO).  The 

lysate was added to the immunoprecipitation column along with 2μg of either 

pPKCζ antibody or p(ser9)GSK3β antibody and 10μL of the affinity ligand.  The 

column was gently rocked overnight at 4
o
C.  After 3 washes with the buffer 

provided, 70μL of the non-denaturing elution buffer was used to elute the 

immunoglobulin complex.  This was analysed by SDS- PAGE and western 

blotting using the appropriate primary and secondary antibodies. 
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Western analysis 

A Bradford assay was performed in order to determine the concentration 

of protein that was loaded onto the SDS gel.  The samples used for the 

immunopurification Western gels were loaded at a concentration of 750µg/ml in 

each lane.  Laemmli 2X sample buffer was added to cell lysate samples, inhibitor 

treated cell lysate samples or immunopurified cell lysate samples, (Laemmli, 

1970).  The samples were kept in a boiling water bath for 10min to denature the 

proteins.  The samples were then loaded onto a pre-cast 10% Tris-HCl precise 

protein gel (Pierce Biotechnology, Rockford, IL), then transferred to a PVDF 

membrane, (Towbin et al. 1979).  The Kaleidoscope protein dye was used as the 

marker to confirm molecular weight.  The blot was blocked in BLOTTO (5% 

non-fat dried milk in PBS-T [PBS with 0.1%Tween-20]  was used as the blocking 

agent for the blot for 1 hour, the blot was rinsed and treated with the appropriate 

primary antibodies at a 1:500 concentration overnight at 4
O
C.  The blot was then 

washed 3 times with PBS-T the following day.  The appropriate rat HRP or rabbit 

HRP (Pierce Biotechnology, Rockford, IL) were applied to the blot as secondary 

antibody in BLOTTO for 2hrs at room temperature.  After washing the blot with 

PBS-T 3 times, chemiluminescence was used to detect the protein bands on the 

blot.  The ECL plus kit (formerly Amersham Biosciences, Arlington, IL) and the 

Hyperfilm ECL chemilumiscent film (GE Healthcare) were used for the detection. 
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Immunocytochemistry 

The living (i.e. intact) 3T3 mouse fibroblast cells were fixed intact for 

30min in 2% formaldehyde in ICB (ICB: 100mM KCl, 5mM MgCl2, 3mM EGTA 

and 20mM HEPES (pH 6.8), in H2O) and permeabilized for 1hr in ICB with 2% 

paraformaldehyde and 1% Tween-20.  The samples were then washed 3 times for 

15min each wash with ICB-BSA buffer (1% BSA in ICB).  Primary antibodies 

were then added to the cells in the antibody dilution buffer (1% non-fat milk, 

0.5% Tween-20 in ICB) at a 1:500 dilution for each antibody overnight at 4
0
C 

with gentle rocking.  The following day, the cells were washed with the ICB-BSA 

buffer 3 times 15min each wash with gentle rocking.  The appropriate secondary 

antibodies were added to the cells overnight at 4
0
C with gentle rocking.  The 

secondary antibodies were made in the antibody dilution buffer at a 1:1000 

antibody concentration.  The following day, cells were washed with the ICB-BSA 

buffer 3 times 15min each wash, then placed in DRAQ5 (2.4µg/mL in ICB 

[AXXORA, LLC San Diego, CA]) for a 15min incubation.  This was done to 

visualize the chromosomal material microscopically.  The primary antibodies 

used were: anti-pPKC βII, anti-pPKC δ, anti-pPKC ζ, anti-p(ser9) GSK3β (Santa 

Cruz Biotechnology, Santa Cruz, CA).  pPKC γ, pPKC α, pPKC μ, pPKC θ  (Cell 

Signaling Technology, Beverly, MA).  The secondary antibodies used were 

Alexa-568 and 488 – conjugated IgGs (Molecular Probes, Inc, Eugene, OR). 

In order to perform the detergent extraction procedure, 3T3 mouse 

fibroblasts were treated with a detergent extraction buffer (Intracellular buffer 

made 1% Tween-20 and AEBSF at 200μg/ml as a protease inhibitor) for 5min.  
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This permitted the cytoskeletal components of the cells to be retained and the 

soluble components to be released into the media which was removed, (Capco et 

al. 1987).  Cells were then fixed and permeabilized for immunocytochemistry as 

described above. 

 

 Confocal microscopy 

The cells were mounted on coverslips sealed with nailpolish after the 

immunocytochemistry procedure.  The cells were viewed on the Leica SP2 

microscope in the W. M. Keck Bioimaging Laboratory at Arizona State 

University.  For each experiment, fifty cells were observed.  Multiple lasers 

allowed for simultaneous imaging of the Alexa 488 and Alexa 568 (Argon 

488nm; Krypton 568nm) fluorophore labeled samples.  Using a 100X oil 

objective, images were scanned at 0.5μM slices in the z-axis at the spindle region.  

The image files were analyzed and intensity ratios calculated using the Leica NTS 

software. (Leica Microsystems, Bannockburn IL).  In order to calculate the pixel 

intensity scan ratios, a square from the Leica software was used as the “reference 

frame” in each cell from which the pixel intensity numbers were derived via the 

Leica software.  In order to calculate the ratio of the pixel intensities at the 

centrosome vs the pixel intensity at the cytoplasm, the dimensions of the 

“reference frame” were kept constant and also the location on the cytoplasm was 

kept constant across cells.  For co-localization experiments, only the yellow pixels 

were used to calculate the pixel intensity ratios.   
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 Fluorescence resonance energy transfer measurements (FRET) 

Cells labeled with the appropriate primary and secondary antibodies were 

used.  After immunocytochemistry the cells were viewed on the Leica SP2 

confocal microscope housed in the W.M. Keck Bioimaging Facility at Arizona 

State University.  Multiple lasers allowed for sequential imaging of Alexa 488 

(Argon [488nm]) and Alexa 568 (Krypton [568nm]) fluorophore labeled samples.  

FRET analysis was carried out using the FRET acceptor bleaching software in the 

Leica SP2 confocal imaging system.  The energy efficiency of the donor by 

acceptor photobleaching was calculated by the software, (Zimmerman et al. 

2002).  The FRET efficiency was calculated using the formula: 

FRETeff = Dpost – Dpre / Dpost for all Dpost > Dpre  

Where: D represents the emitted donor fluorescence before and after bleaching. 

The acceptor fluorophore (Alexa 568) was photobleached to 100% so that it was 

indistinguishable from background fluorescence.  FRET trace images were also 

generated for each pair scanned.  These highlight the regions of FRET interaction 

based on a colorimetric scale. 
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Results 

Localization of pPKC isoforms at the mitotic spindle 

The mitotic spindle of mouse 3T3 fibroblasts was challenged with 

antibodies to different phospho-PKC isoforms (pPKC), that is, antibodies that 

bind to the active forms of the kinase (Fig. 7 a-o).  Antibodies to pPKCζ and 

pPKCδ (Figs. 7m and 7g respectively) were highly enriched at either side of the 

metaphase plate where the centrosomal spindle pole would be located.  To 

confirm that these were the centrosome, dual labeling with pericentrin (green) and 

pPKCζ (red) was conducted.  The inset in figure 7m shows the yellow centrosome 

as a co-localization of the individually labeled pericentrin and pPKCζ.  The 

pPKCα, βII, µ, and θ isoforms also were enriched at the centrosome but to a lower 

extent.  In contrast, pPKCγ (Fig. 7e) appeared to be enriched along the spindle 

microtubules and to a lesser extent at the centrosome.  The association of pPKC 

isoforms with the spindle or centrosome in intact cells suggested that the isoforms 

may be physically connected to the centrosome.  To test this, living cells were 

detergent extracted, a process where soluble components are removed and 

components associated with the detergent-resistant cytoskeleton are retained.  

Subsequently when cells were cytologically fixed and then challenged with 

antibodies to the pPKC isoforms, the ζ and δ isoforms remained highly enriched 

at the centrosome (Fig. 7n, h respectively) while the pPKCθ isoform was absent 

from the centrosome (Fig. 7l).  The α, βII, µ, and θ isoforms of pPKC also 

remained at the spindle pole though at a lesser intensity than the ζ and δ isoforms.  
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Detergent extraction also resulted in the reduction of pPKCγ binding to the 

spindle microtubules.   

 The extent of enrichment at the centrosomal poles was standardized by 

comparing the pixel intensity at the centrosomal pole to the pixel intensity in the 

remainder of the cytoplasm (Fig. 7o).  This ratio permitted the quantitation of 

relative amounts of pPKC isoforms on the mitotic spindle as measured by the 

signal intensity ratio of the pPKC isoform antibody labeling.  The ratio was 

obtained by conducting a pixel intensity scan through the spindle and separately 

through the cytoplasmic area in multiple cells from different experiments.  Each 

cell was sampled at three sites at the centrosomal pole and three sites elsewhere in 

the cytoplasm in three independent experiments, with the exception of the pPKCθ 

isoform, which had no enrichment at the centrosomes after detergent extraction.  

The intensity ratio for the enrichment of both pPKCζ and pPKCδ at the 

centrosome was significantly greater than the intensity ratio for the enrichment of 

the other pPKC isoforms. 

Unlike the other pPKC isoforms, pPKCζ also could be seen in an array of 

spots at the metaphase plate in the region of the chromosomes (Fig. 7m, arrow).  

This localization of pPKCζ at the region where chromosomes are found was 

detected by utilizing the technique of ‘frame averaging’ while scanning with the 

confocal microscope in order to reduce background noise and enhance the clarity 

of pPKCζ signal enrichment.  In figure 7 the mouse fibroblasts also were assessed 

for the enrichment of all the phospho-isoforms using the frame-averaging 
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technique.  As noted above only pPKCζ showed enrichment in the region of the 

chromosomes after frame averaging (Fig. 7m intact and detergent extracted).   

 

 

Figure 7. Enrichment of phospho(p)-PKC isoforms in 3T3 metaphase cells—

intact and detergent-extracted (DE). (a, c, e, g, i, k, m) In intact cells and (b, d, f, 

h, j, l, n) detergent-extracted (DE) cells, the localization of pPKC isoforms can be 

seen in gray tones and the chromosomes are stained blue with DRAQ5. All 

confocal images shown are frame averaged single optical sections. (m) Phospho-

PKCζ has the highest localization intensity at the centrosome in intact and (n) DE 
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cells and also in the region where the chromosomes are found (in intact cells 

indicated by an arrow, m). Inset (m) shows control cell co-labeled with pericentrin 

and pPKCζ at the centrosome. The other pPKC isoforms localize at the 

centrosome, in intact cells and DE cells at mitotic metaphase. (l) Phospho-PKCθ 

does not localize at the poles after detergent extraction. (e, f) Phospho-PKCγ 

localizes along the spindle structure. (o) A graphical representation of the pixel 

intensity ratios is shown. Pixel intensity ratios are expressed as the mean±SEM 

(n03). A total of 50 cells were analyzed for each PKC isoform. Means were 

compared using the Student’s unpaired t test. The value for pPKCζ and pPKCδ is 

significantly higher than the other pPKC isoforms (P<0.002). Scale bar is 10 μm. 

 

 

Co-localization of pPKCζ and p(ser9)GSK3β and FRET analysis 

Earlier studies conducted in yeast, Drosophila, C. elegans and various 

somatic cell lines have found that the interaction of the atypical PKCζ and GSK3β 

has a key role in specific signaling pathways, Etienne-Manneville and Hall 

(2003); Krishnamurthy et al. (2007); Kim et al. (2007).  The enrichment of 

p(ser9)GSK3β  and pPKC isoforms was demonstrated at the centrosome  by 

labeling the cells with a p(ser9)GSK3β specific antibody and pPKC isoform 

specific antibodies (Fig. 8, panels a, b, c and d).  The enrichment of pPKC 

isoforms was shown in the red channels and the enrichment of p(ser9)GSK3β was 

shown in the green channel, thus co-localization between the two would appear 

yellow in the merged image.  In figure 8, panel a, the cells at metaphase were 

double labeled with antibodies to pPKCζ and p(ser9)GSK3β and in order to better 

visualize the signal of pPKCζ and p(ser9)GSK3β at the chromosomal region, the 

blue channel visualizing the chromosomes was turned off.  The arrows shown in 

each channel of panel 8a indicate the region of the chromosomes.  Yellow spots 

can be seen both at the centrosomal region and the chromosomal region.  The 

inset in figure 8 panel ‘a’ shows a control cell co-labeled with antibodies to 
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pericentrin (green) and pPKCζ (red) to indicate the co-localization at the 

centrosome as yellow.  When the other pPKC isoforms were used, such as, pPKC 

α, βII, γ, (Fig. 8 panels b, c, and d respectively) this area showed few yellow 

pixels indicating little co-localization.  To quantify this amount of co-localization 

at the centrosome, pixel intensity scan ratio of the centrosome vs the cytoplasm in 

the merged channel quantifying only the yellow pixels was calculated and the 

results shown as a histograph in figure 8e.  The ‘yellow pixel intensity scan ratio’ 

allowed for the comparison of the signal intensities of each pPKC isoform 

antibody co-labeled with p(ser9)GSK3β antibody.  Each cell was sampled at three 

sites on the centrosomal pole and three sites elsewhere in the cytoplasm in three 

independent experiments.  The pixel intensity ratio of yellow pixels at the poles is 

highest for pPKCζ, while the other isoforms show less yellow pixel intensity at 

the centrosome.  Cells that were co-labeled with pPKCζ and p(ser9)GSK3β were 

also examined for co-localization at the chromosomal region by the frame 

averaging technique.  The co-localization can be seen at the chromosomal region 

as yellow spots in figure 8a (merged channel).  The other pPKC isoforms did not 

exhibit a co-localization with p(ser9)GSK3β.  
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Figure 8. Co-localization of the different phospho isoforms of PKC with 

p(ser9)GSK3β. (a) The PKC isoform, pPKCζ (red) was tested for co-localization 

with p(ser9)GSK3β (green) at the mitotic metaphase stage by 

immunocytochemistry and con-focal microscopy. The blue channel to show 

chromosomes was turned off to permit clear viewing of the signal at the region of 

the chromosomes, which can be seen as dark areas in the shape of chromosomes. 

The merged image indicates co-localization seen as areas showing yellow pixels. 

The arrows in (a) indicate co-localization of pPKCζ and p(ser9)GSK3β at the 

region of the chromosomes. (b, c, d) Other pPKC isoforms (red) such as pPKCα 

(b), pPKC βII (c), pPKC γ (d) were also tested for co-localization with 

p(ser9)GSK3β (green). The cells are triple-labeled with p(ser9)GSK3β 

(green), pPKC isoform (red), and DRAQ5 (blue) to show the chromosomes. The 

areas of co-localization are yellow as seen in corresponding merged images. The 

inset in (a) is a merged image of a control cell to show the co-localization of 

pPKCζ and pericentrin at the centrosome.  Co-localization is indicated by yellow 

pixels at the centrosome. (f) The histogram shown is a pixel intensity graph with 

the yellow pixel intensity ratio (average yellow pixel scan of centrosome/average 

pixel scan of cytoplasm) of the co-localization. Some of the pPKC isoforms 

shown in the histogram are not shown in the confocal images such as pPKCδ, 

pPKCμ, and pPKCθ. Yellow pixel intensity ratios are expressed as the 

mean±SEM (n03). Means were compared using the Student’s unpaired t test. The 

values for pPKCζ and pPKCδ colocalization are significantly higher than the 
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other pPKC isoforms (P< 0.002). The confocal images shown are single optical 

sections. Scale bar is 10 μm. 
 

 To confirm that pPKCζ and p(ser9)GSK3β were in close association, 

fluorescent resonance efficiency transfer (FRET) was performed.  Close 

molecular proximity would permit the possibility that the proteins could interact 

for example enzymatically.  Energy transfer can occur only if two protein targets 

are within 10-100 Å.  Even a small FRET value indicates the evidence of 

molecular proximity whereas co-localization data does not confirm such a close 

association.  FRET was measured both at the centrosome and the chromosomal 

region for all the PKC isoforms with p(ser9)GSK3β.  FRET measures increased 

fluorescence intensity in a fluorescent donor when the fluorescent acceptor is 

bleached.  FRET results do indicate that there is close molecular proximity 

between pPKCζ and p(ser9)GSK3β with an average FRET value of 33.51% at the 

poles and an average of 47.2% at the chromosomal region (Fig. 9a).  FRET also 

was detected between pPKCδ and p(ser9)GSK3β co-localization with an average 

value of 4.56% at the poles and an average value of 5.27% at the chromosomal 

region, while the FRET values for the other pPKC isoforms are not detectable.  

The boxes in figure 9 b, c, d, e, indicate the regions tested for FRET.  These 

results provide evidence that in a centrosomal spindle as found in the mouse 

fibroblast cell, pPKCζ and p(ser9)GSK3β are in close proximity.  In order to 

confirm that these spots above and below the chromosomes represent the 

centrosome, separate experiments were conducted to test FRET between pPKCζ 

and γ-tubulin (enriched in the centrosome) and between pPKCζ and pericentrin (a 
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centrosome-specific marker).  Both experiments gave detectable FRET values at 

the centrosome supporting the notion that these are the centrosomes (Fig. 9a). 

 

Figure 9. FRET values measured between pPKCζ or pPKCδ and p(ser9)GSK3β at 

metaphase stage of 3T3 cells. (a) The table indicates the average FRET values at 

the spindle pole regions and at the chromosomal regions for pPKCζ or pPKCδ 

double-labeled with p(ser9)GSK3β at mitotic metaphase. (b, c) A representative 

pre-and post-bleaching image of the FRET process for pPKCζ and (d,e) for 

p(ser9)GSK3 β are shown. The white boxes in the images (b, c, d, e) indicate the 

regions tested at the centrosome; the yellow boxes (b, c, d, e) indicate the regions 

tested at the chromosomes. (f) A pre-bleached merged image of the pPKCζ co-

labeled with p(ser9)GSK3β is shown in comparison to (g) the FRET trace image. 

Scale bar is 10 μm. 
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 Immuno-pull down studies to show p(ser9)GSK3β – pPKCζ isoform interactions 

An immuno pull-down assay was performed to further confirm that 

pPKCζ is associated with p(ser9)GSK3β in these cells.  The cell lysates used were 

prepared from 3T3 cells synchronized to metaphase using nocodazole followed by 

a reversal for 30min. to allow reformation of the spindle and followed by a 

mitotic shake to release the cells in metaphase.  The synchronized cell lysate 

containing cells at metaphase was passed through a column where the antibody to 

p(ser9)GSK3β was immobilized on the column.  The column was washed to 

remove unbound components, and then the bound antigen was released into the 

eluate.  Eluates were tested for the presence of the pPKC isoforms as follows.  

Replicate eluate samples were separated by PAGE (PolyAcrylamide Gel 

Electrophoresis) and subjected to western blotting using antibodies to different 

pPKC isoforms to detect a possible association between the inactive GSK3β and 

pPKC isoforms (Fig. 10a, lanes marked as IP).  To control for the detection 

efficiency and exposure time of the pPKC antibodies, parallel samples of 3T3 cell 

lysates were subjected to SDS-PAGE, and western blots of the gel were 

challenged with antibodies to the pPKC isoforms, pPKC α, βII, γ, δ, µ, θ, and ζ 

(Fig. 10a, lanes marked as CL).  The blot shows a binding interaction between the 

various pPKC isoforms and p(ser9)GSK3β.  Phospho-PKCζ had the highest 

binding with p(ser9)GSK3β.  Phospho-PKCδ had detectable binding with 

p(ser9)GSK3β, while binding of pPKC isoforms α, βII, γ, with p(ser9)GSK3β was 

not detectable.  There was a very low level of binding of p(ser9)GSK3β with 
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pPKCs μ, and θ.  As a control, pPKCζ was immobilized on a column and the 

column was challenged with the synchronized cell lysate.  The column was 

washed, the bound materials eluted and separated by SDS-PAGE.  Western blots 

of the gel were challenged with antibodies to p(ser9)GSK3β (Fig. 10a far right 

column) and the band corresponding to p(ser9)GSK3β was detected.  The western 

blot results are shown as a graph depicting the relative intensity of the bands 

corresponding to each pPKC isotype (Fig. 10b).  From the graph in figure 10b it 

can be seen that the binding of pPKCζ with p(ser9)GSK3β is the strongest 

followed by pPKCδ.  Taken together, the immunocytochemical co-localization, 

FRET analysis and immunopurification data support the prediction that pPKCζ 

interacts with GSK3β at the centrosomal region of the mitotic spindle.  

 

Figure 10. Western analysis of 3T3 cells at metaphase stage to show interaction of 

pPKC isotypes with p(ser9)GSK3β. (a) The 3T3 cells were synchronized to 

metaphase and immunopurified (IP) with p(ser9)GSK3β that was immobilized in 

the column. Antibodies to various phospho isotypes of PKC were used to test the 

interaction with p(ser9)GSK3β. 3T3 cell lysate samples (CL) were also subjected 

to SDSPAGE. The Western blots were treated with the pPKC antibodies, used as 
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controls for detection efficiency of these antibodies. As a control, pPKCζ was 

immobilized on a column, and the column eluate was challenged with an antibody 

to p(ser9)GSK3β. This binding of p(ser9)GSK3β with pPKCζ is shown in the lane 

labeled as pGSK3β which is the far right band in (a). (b) The histogram shows the 

relative intensity of the bands corresponding to each pPKC isotype. The binding 

of pPKCζ with p(ser9)GSK3β is the strongest followed by pPKCδ. Equal 

amounts of protein for each pPKC isoform were loaded on the gel (see “Materials 

and Methods”). 

 

 

 Involvement of inactive GSK3β in maintaining the mitotic spindle 

The close proximity and interaction between pPKCζ and p(ser9)GSK3β 

provides the possibility that pPKCζ can inactivate GSK3β which then results in 

maintaining the organization of the spindle, (Goold and Gordon-Weeks, 2001; 

Doble and Woodgett, 2003; Etienne-Manneville and Hall, 2003; Krishnamurthy 

et al. 2007).  To test the importance of inactive GSK3β in maintaining an intact 

mitotic spindle, a permeabilization experiment was conducted.  Mouse fibroblast 

(3T3) cells were permeabilized by treatment with a mild detergent, Tween-20, 

using a buffer that mirrors the intercellular environment, along with competitive 

protease inhibitors (Fig. 11).  The permeabilized cells were subjected to a series 

of treatments detailed below.  After these treatments, the cells were cytologically 

fixed and labeled to view both DNA and α-tubulin, the former to show the 

organization of the chromosomes and the latter to view the condition of the 

mitotic spindle.  Figure 11a shows the mitotic spindle in an intact cell compared 

to figure 11b which shows the spindle in an otherwise untreated, permeabilized 

cell.  This shows that permeabilization does not disrupt the spindle or the 

metaphase plate array of chromosomes.  Permeabilized cells treated with active 

GSK3β kinase for 30min. showed disruption of the spindle microtubule array 
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(Fig. 11c).  There was an average of 70% cells with disrupted spindles and 30% 

with intact spindles at the 30min. time point.  Cells incubated for 1 hour show that 

the mitotic spindle is virtually absent and the chromosomes begin to diffuse from 

a distinct metaphase configuration (Fig. 11d).  After 1 hour of treatment with the 

active GSK3β kinase no cells had an intact spindle.  In contrast, when active 

GSK3β was flushed into cells along with an excess of a GSK3β kinase specific 

peptide inhibitor, the spindle is clearly identifiable though slightly disorganized at 

the 30min and 1hr time points (Fig. 11e, f).  This phenomenon was observed in all 

the cells scored at metaphase in three independent experiments (fifty cells at 

metaphase were observed in each experiment).  These results indicate that GSK3β 

needs to be inactivated in order to maintain mitotic spindle organization at 

metaphase. 
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Figure 11. 3T3 cells permeabilized and treated with active GSK3β kinase. (a) An 

intact cell and (b) permeabilized cell is shown for comparison. Cells were labeled 

with α-tubulin antibody to identify the spindle (gray). The chromosomes are 

shown by DRAQ5 staining (blue). (c) Permeabilized cells treated with active 

GSK3β kinase show spindle disruption at 30min (there were an average of 

70%cells with disrupted spindle and 30% with an intact spindle) and (d) increased 

spindle disruption at 1 h. (e) When the GSK3β pseudosubstrate inhibitor is added 

with the kinase and applied to permeabilized cells, the spindle structure is 

maintained after 30 min of treatment and also at (f) 1 h of treatment. The 

experiment was repeated three times independently, and each time 50 cells at 

metaphase were scored for spindle condition. Scale bar is10 μm. 
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pPKCζ inhibitor studies   

  The prediction that pPKCζ is involved in inactivating GSK3β was further 

tested by blocking the activity of pPKCζ in living cells with a specific pPKCζ 

peptide inhibitor.  If pPKCζ is responsible for the inactivation of GSK3β then 

inhibition of pPKCζ should permit activation of GSK3β and consequently the 

mitotic spindle should become disrupted.  This was tested using a myristoylated 

cell-permeable, peptide inhibitor specific to pPKCζ.  The concentration of the 

pPKCζ inhibitor to be employed and the duration of exposure were determined 

using a dose response analysis (see Materials and Methods).  The inhibitor was 

added to the medium at a 50μM concentration for an hour.  The control cells 

(without the inhibitor treatment) and the treated cells were double labeled with 

antibodies to pPKCζ (red) and α-tubulin (green) to visualize pPKCζ and spindle 

microtubules respectively.  The control cells (Fig. 12 panel a, merged image) 

show a green spindle and yellow centrosomal poles (the contribution of green and 

red gives yellow when they are co-enriched as seen in the merged image).  Cells 

treated with the pPKCζ inhibitor have no detectable pPKCζ at the centrosome and 

no detectable spindle microtubules after one hour of incubation in the pPKCζ 

inhibitor (Fig. 12 panel b).  In parallel experiments, cells also were labeled to 

detect pPKCζ (red) and p(ser9)GSK3β (green).  In control cells (without inhibitor 

treatment) these form the yellow spots representing a co-localization at the 

centrosome as seen in the merged image (Fig. 12 panel c).  In the inhibitor treated 

cells (Fig. 12 panel d) there is no co-localization of pPKCζ and p(ser9)GSK3β 

after one hour of incubation in the pPKCζ inhibitor.  In order to test if the spindle 
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microtubules are maintained by inactivating GSK3β, an inhibitor to GSK3β was 

added to the cells following the addition of pPKCζ inhibitor.  The GSK3β 

inhibitor concentration and incubation time was determined by a dose reponse 

study as 2.4 µM for 1hr.  In figure 12 panel e, it can be seen that the spindle 

structure is maintained and also the signal for the inactive p(ser9)GSK3β can be 

detected.  In addition, both pPKCζ inhibitor (50µM) and GSK3β inhibitor 

(2.4µM) were added simultaneously and incubated for 1hr.  In figure 12 panel f it 

can be seen that the metaphase spindle is maintained and looks better than the 

spindle in figure 12 panel e.  The signals for, inactive p(ser9)GSK3β (red) and α-

tubulin (green) can be detected in figure 12 panel f.  Treatment with the GSK3β 

inhibitor likely inactivated GSK3β and resulted in stabilization of the spindle in 

the presence of pPKCζ inhibitor. 
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Figure 12. Effect of the inhibition of pPKCζ by a myristoylated pPKCζ peptide-

specific inhibitor on α-tubulin and p(ser 9)GSK3β in 3T3 cells. Cells were 

visualized by immunocytochemistry and confocal microscopy. (a) Control cells 

not treated with the pPKCζ inhibitor. A control cell (no inhibitor) is shown 

double-labeled with phospho-PKCζ (red) antibody and α-tubulin antibody 

(green). The merged image of this labeling is also shown. (b) The experimental 

cells were treated with 50 μM pPKCζ inhibitor for 1 h. A treated cell is shown 

double-labeled with phospho-PKCζ (red) antibody and α-tubulin antibody 

(green), the merged image is also shown. (c) A control cell (no inhibitor) is shown 

double-labeled with phospho-PKCζ (red) antibody and p(ser9)GSK3β antibody 

(green) along with the merged image. (d) A treated (50 μM pPKCζ inhibitor for 1 

h) cell is shown doublelabeled with p(ser9)GSK3β antibody (green) and with 

phospho-PKCζ (red) antibody along with the merged image. (e) A cell treated 

with 50 μM pPKCζ inhibitor for 1 h followed by treatment with 2.5 μM GSK3β 

inhibitor for 1 h is shown double-labeled with α-tubulin antibody (green) and with 

p(ser9)GSK3β antibody (red) along with the merged image. (f) A cell treated 

simultaneously with 50 μM pPKCζ inhibitor and 2.5 μM GSK3β inhibitor for 1 h 

is shown double-labeled with α-tubulin antibody (green) and with p(ser9)GSK3β 
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antibody (red) along with the merged image. The chromosomes of the cells are 

shown in blue. Scale bar is 10 μm. 

 

 

In order to further study the effects of the pPKCζ inhibitor on 

p(ser9)GSK3β and pericentrin (a centrosome specific marker), both of which 

interact with pPKCζ, an immuno-pulldown assay was performed.  Cell lysates 

were prepared from cells that had been treated with the pPKCζ inhibitor for one 

hour and from control, untreated cells.  Prior to preparation of the cell lysates the 

cells were synchronized into M phase as described in a previous section.  The 3T3 

cells were treated with 50µM concentration of pPKCζ inhibitor (determined from 

the dose response analysis) and this cell lysate along with the control cell lysate 

were applied to separate columns where the antibody to pPKCζ was immobilized.  

The column was then washed to remove unbound components and the bound 

antigen was then released into the eluate.  Replicate eluate samples were 

separated by PAGE and subjected to western blotting using antibodies to either 

pPKCζ, pericentrin or p(ser9)GSK3β.  In the western blot (Fig. 13a) cells without 

the pPKCζ inhibitor are indicated by a ‘-‘ on top of the lanes while the cells 

treated with the pPKCζ inhibitor are indicated by a ‘+’ on top of the lanes.  In the 

blot, the bands in the two left lanes show a reduction in the amount of pPKCζ 

indicating that the pPKCζ inhibitor did inhibit the activity of pPKCζ in the 

cellular lysate used.  This assay would detect only the level of active kinase and 

not the total amount of kinase.  The amount of pericentrin bound to pPKCζ is 

greatly reduced in the cell lysates of pPKCζ inhibitor treated cells as compared to 

the control cell lysate (middle two lanes).  The amount of p(ser9)GSK3β bound to 
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pPKCζ was also reduced in cell lysates of pPKCζ inhibitor treated cells.  The 

results of the western blot are shown as a graph depicting the pixel intensities of 

the bands on the gel (Fig. 13b).   

 

Figure 13. Western analysis of 3T3 cells treated with pPKCζ inhibitor and 

immunopurified to test the effects of the inhibitor on p(ser9)GSK3β and 

pericentrin binding. (a) In the Western blot, pPKCζ ‘minus sign’ and pPKCζ ‘plus 

sign’ show the presence or absence of pPKCζ, respectively, in the control cell 

lysate vs the cell lysate treated with the pPKCζ inhibitor. Pericentrin ‘minus sign’ 

and pericentrin ‘plus sign’ show the binding of pericentrin, a centriolar with 

pPKCζ in the absence or presence of the pPKCζ inhibitor. In the presence of the 

inhibitor, there is decreased binding of pericentrin as compared with the control 

cell lysate. P(ser9)GSK3β ‘minus sign’ p(ser9)GSK3β ‘plus sign’ show the 

binding of p(ser9)GSK3β with pPKCζ in the absence or presence of the pPKCζ 

inhibitor. In the presence of the inhibitor, there is decreased binding of GSK3β. 

(b) The histogram shown below compares the relative intensities of the 

protein bands. 
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Discussion 

PKCs (protein kinases C) are a family of phospholipid-dependent 

serine/threonine kinases with a central role in signal transduction and regulation 

of diverse physiological processes, (Durgan et al. 2008; Roffey et al. 2009; Rosse 

et al. 2010).  PKC has been shown to interact with proteins in dynamic cellular 

compartments including the cytoskeletal network; the latter suggests involvement 

of PKC in cytoskeletal remodeling, (Jaken and Parker, 2000).  The centrosomal 

spindle which occurs during mitosis has centrioles, and astral microtubules, 

(Compton, 2000) that form from the centrosome.  The “plus” ends of the 

microtubules extend from the centrosomal region and are captured and stabilized 

by the kinetochore of the chromosome.  This type of spindle assembly is referred 

to as the “search and capture model” (Holy and Leibler, 1994; Vernos and 

Karsenti, 1995; Andersen et al. 1997; Huang and Huffaker 2006; O’Connell and 

Khodjakov, 2007; Przewloka and Glover, 2009).  Previous studies have shown 

association of PKC isoforms at various locations on the mitotic spindle apparatus 

including PKCβII, PKCε, PKCθ, and PKCζ, (Lehrich and Forrest, 1994; 

Passalacqua et al. 1999; Chen et al. 2004; Eng et al. 2006; Liu et al. 2006) 

however there are few details about their function.  In addition, glycogen synthase 

kinase 3β (GSK3β) is a regulator of microtubule stability and active GSK3β 

disrupts the spindle whereas GSK3β needs to be inactivated to maintain the 

mitotic spindle, (Wakefield et al. 2006). 



  49 

Based on these previous studies, we hypothesized that phospho-PKCζ 

(pPKCζ) interacts with GSK3β to regulate mitotic spindle stability in the 

metaphase stage of somatic cells with a centrosomal spindle.  In this study, the 

enrichment of the various phosphorylated PKC isoforms in the region of the 

mitotic spindle, along with their binding with p(ser9)GSK3β has been assessed in 

the metaphase stage of somatic 3T3 cells,  at the centrosome  region.  The results 

from this study support our predictions proposed earlier that is, 1) there is 

significant co-localization and molecular proximity between pPKCζ and inactive 

GSK3β in the regions of the centrosome and, 2) inhibitors of pPKCζ may act 

through GSK3β to disrupt the proteins involved in maintaining spindle stability 

such as p(ser9)GSK3β as well as the spindle structure itself.   

In addition, the data resulting from this study indicate that among the 

phospho PKC isoforms studied, pPKCζ is more likely to be involved in stability 

of microtubules in the centrosomal mitotic spindle apparatus during cell division 

in mouse cells.  The mitotic cells employed in this study, 3T3 mouse fibroblasts, 

represent an immortal cell line, however they are anchorage-dependent for growth 

as normal fibroblast would be, and more to the point, do undergo mitosis with a 

centrosomal spindle. 

 

Protein kinase C (PKC) isoforms in the spindle apparatus of somatic cells 

In this study, the atypical isoform PKCζ in its phosphorylated form was 

enriched at the centrosome of intact cells at significantly higher levels than the 
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other pPKC isoforms tested except pPKCδ as determined by the pixel intensity 

ratio analysis.  Detergent extraction studies showed that pPKCζ is part of the 

spindle scaffold.  Interestingly, pPKCζ was also enriched at the chromosomal 

region of metaphase 3T3 cells.  None of the other pPKC isoforms tested showed 

enrichment at the chromosomal region of metaphase cells.    In an earlier study, 

pPKCζ was shown to be associated with the kinetochore region of 3T3 cells, (Liu 

et al. 2006).  It is possible that pPKCζ is associated with the kinetochore region in 

the current study. 

 

PKC isoforms and GSK3β 

In this study, p(ser9)GSK3β was found enriched at the centrosomes in the 

metaphase stage of 3T3 mouse fibroblasts.  Phospho-PKCζ and pPKCδ co-

localize with p(ser9)GSK3β at the centrosomes.  Frame averaging of the confocal 

images showed that pPKCζ also co-localizes with pGSK3β in the chromosomal 

region.   

FRET (fluorescent resonance energy transfer) is a useful method to 

determine close proximity between proteins.  A FRET value can be measured 

only if the fluorescent emitting molecules are within a proximity of 10-100 Å.  If 

pPKC isoforms and GSK3β interact, the proteins should be in close molecular 

proximity for some time in a metaphase cell.  FRET was used to measure the 

potential energy transfer between the pPKC isoforms tested and p(ser9)GSK3β at 

the centrosomes and the kinetochore region.  There was significant energy 

transfer between pPKCζ and p(ser9)GSK3β with an average value of 33.51% at 
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the centrosome and an average value of 47.2% at the kinetochore region.  FRET 

was detected between pPKCζ and pericentrin at the centrosome with a value of 

5%, also a FRET value of 8% was detected between γ-tubulin and pPKCζ at the 

centrosome.  This confirms that pPKCζ is in close association with key elements 

(i.e. pericentrin and γ-tubulin) of the centrosome region.  The value for the energy 

transfer between pPKCδ and p(ser9)GSK3β was an average of 4.56% at the 

centrosome and an average of 5.27% at the chromosomal region, which is lower 

than the values for pPKCζ.  FRET was absent for the other isoforms tested in this 

study.  Thus, at both the centromere and chromosomal region there is close 

molecular proximity between pPKCζ and p(ser9)GSK3β and to a lesser extent 

between pPKCδ and p(ser9)GSK3β as seen from the FRET and western blot data.  

Taken together, the results from co-localization studies and FRET 

analyses support our prediction that there should be significant co-localization and 

molecular proximity between pPKCζ and inactive GSK3β in the regions of the 

centrosome and the chromosomal region. 

 

Functional significance of PKCζ and GSK3β in the mitotic spindle 

The close proximity of the active form of PKCζ to GSK3β suggests that it 

may inactivate GSK3β by phosphorylating on the ser9 residue on GSK3β at the 

centrosome region.  GSK3β is a complex kinase that becomes inactive when 

phosphorylated on ser9 by pPKCζ, (Frame and Cohen, 2001; Krishnamurthy et al. 

2007) and inactivation of GSK3β has been shown to facilitate microtubule 
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stability.  We hypothesized that pPKCζ interacts with GSK3β to regulate spindle 

structure.  In order to test the importance of inactive GSK3β to maintain the 

mitotic spindle, active GSK3β was added to permeabilized 3T3 cells, which 

resulted in the disruption of the spindle apparatus.  On the other hand, addition of 

active GSK3β along with a GSK3β inhibitor resulted in stabilization of the 

spindle.  The latter result suggested that inactivation of GSK3β is necessary for 

maintenance of the mitotic spindle.  When GSK3β is phosphorylated, it results in 

dephosphorylation of known microtubule binding proteins (MBPs) like CRMP-2 

and APC thus leading to microtubule stabilization, (Zhou and Snider, 2005; 

Yoshimura et al. 2005).  In its active form, GSK3β activates via phosphorylation, 

targets such as Microtubule Associated Protein 1B (MAP1B), Tau and EB1 which 

destabilize microtubules and maintain them in a dynamic state, (Liu et al. 2003; 

Goold and Gordon-Weeks 2004; Trivedi et al. 2005; Vaughn, 2005).  

The addition of a specific inhibitor to pPKCζ likely causes decreased 

levels of inactive GSK3β in 3T3 cells at metaphase and results in the disruption of 

the mitotic spindle as seen from the immunocytochemical and the western blot 

results.  This supports our second prediction that inhibitors of pPKCζ may act 

through GSK3β to disrupt the proteins involved in maintaining spindle structure.  

However it is worth noting that it has been shown earlier that at micromolar 

concentrations (1–10 μM), the pseudosubstrate inhibitor to PKCζ can induced 

phosphorylation of eNOS, Akt, ERK 1/2, and p38 MAPK in cultured pulmonary 

artery endothelial cells (PAEC), (Krotova et al. 2006).  In the NIH 3T3 cells used 

in this study, it may be possible that these other pathways have an influence on 
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the interaction between pPKCζ and GSK3β.  Mitotic spindle structure disruption 

by the addition of pPKCζ inhibitor can be reversed by addition of GSK3β 

inhibitor, which is further evidence that spindle structure maintenance, may occur 

by the inactivation of GSK3β.  Also, when both pPKCζ inhibitor and GSK3β 

inhibitor were added simultaneously, the GSK3β inhibitor may have stopped 

spindle from disrupting which would have occurred in the presence of pPKCζ 

inhibitor alone thus retaining the spindle. 

Although little is known about their function, many of the PKC isoforms 

have been shown to be present in the acentrosomal spindle apparatus of the mouse 

egg, (Gangeswaran and Jones, 1997; Raz et al. 1998; Pauken and Capco, 2000; 

Viveiros et al. 2001; Baluch and Capco, 2002; Viveiros et al. 2003; Baluch et al. 

2004; Kalive et al. 2009) and these related studies show some notable differences 

when compared to mouse fibroblasts (mitotic cells).  In the mouse egg, which has 

an acentrosomal spindle, pPKCζ is present as a ring at the end of each spindle 

pole whereas the somatic cells have a distinct spot that overlaps the centrosome.  

This difference may result because meiotic cells have a barrel-shaped spindle and 

PKCζ may be lining the edge of the barrel-shaped spindle, whereas in the mitotic 

cells, all the spindle microtubules end at the centrosome.  In meiotic eggs, pPKCζ 

may have a role in stabilizing the ends of the barrel shaped spindle in the absence 

of centrioles, (Baluch and Capco, 2008).  Another notable difference between 

meiotic and mitotic cells is that pPKCγ localizes as a distinct spot at the end of the 

spindle in meiotic cells, whereas in mitotic cells pPKCγ appears to line the 
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spindle microtubules which is also seen when the mitotic cells are subjected to 

detergent extraction.   

  The assembly of the mitotic spindle is not similar to the assembly of the 

meiotic spindle.  The mitotic spindle assembles by “search and capture” while the 

meiotic spindle assembles by molecular motors that move and bundle 

microtubules at their minus ends, (Karsenti and Vernos, 2001; Huang and 

Huffaker, 2006; O’Connell and Khodjakov, 2007; Przewloka and Glover, 2009).  

It is interesting to note that both pPKCζ and p(ser9)GSK3β are present at the 

chromosomal region in the metaphase stage.  This possible interaction may be 

important to stabilize the astral microtubules when they “capture” the kinetochore 

region.  It will be important to study if GSK3β is phosphorylated by pPKCζ in the 

anaphase and telophase stages following metaphase and if this interaction is 

required to stabilize the microtubules in those stages also especially in the 

telophase stage when each daughter cell has one centrosomal region.  At these 

later stages, it can be speculated that an alternate pPKC isoform such as pPKCδ 

may also interact with GSK3β to stabilize the microtubules as a “back-up” to 

pPKCζ or the microtubules could be stabilized by other regulatory proteins. 

The various PKC isotypes tested have different substrate specificities and 

may have different roles to perform in the 3T3 cell cycle since all of them are 

enriched at the centrosome and have varying requirements for activation.  The 

mitotic spindle itself may serve as a scaffold to hold all these elements along with 

the other elements involved in the cell cycle machinery. 
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Chapter 3 

INVOLVEMENT OF MEK, ERK, PKCZETA AND GSK3BETA IN 

MAINTAINING THE MITOTIC SPINDLE  

Madhavi Kalive, David G. Capco  

 

Introduction 

The MAPK pathway is involved in a multitude of functions including cell 

cycle regulation, cell differentiation, and cell death in eukaryotes ranging from 

yeast to humans (Nigg et al. 2001; Orton et al. 2005; Rozengurt, 2007; Marks et 

al. 2009).  As part of this pathway, many somatic cell studies have shown that Raf 

kinase activates MEK1/2 (MEK) by phosphorylation of two serine residues.  

MEKs generally recognize only specific MAPKs as substrates.  It has been 

reported that MEK phosphorylates ERK 1/2 (ERK) at threonine and tyrosine 

residues in a ‘TEY’ motif within its activation loop (Yung et al. 1997, Orton et al. 

2005).   

In mammalian mitosis, the MAPK pathway in has been extensively 

examined.  For example studies indicate that activation of the MEK/ERK pathway 

is required for normal progression into mitosis (Guadagno and Ferrell, 1998; 

Wright et al. 1999; Hayne et al. 2000).  In somatic cells such as the 3T3 cells used 

in this study, the mitotic spindle is centrosomal and a dynamic structure that 

facilitates chromosome segregation.  Many studies have observed that the mitotic 

spindle apparatus is composed of several elements including centrosomes, 

microtubules such as astral, polar, and kinetochore microtubules, kinetochores of 
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chromosomes, and associated proteins (McIntosh and Landis, 1971; Burbank et 

al. 2007; Walczak and Heald, 2008; Schmidt et al. 2010).  It has been reported 

that activated MEK and ERK localize to the centrosomes of the mitotic spindle 

from prophase to anaphase, and to the midbody during cytokinesis (Shapiro et al. 

1998; Willard and Crouch, 2001; Collelo et al. 2012).  ERK, the known 

downstream target of MEK has been shown to be associated with the centrosome 

and kinetochore components of the mitotic spindle apparatus, and has multiple 

functions during mitosis including, promoting mitotic entry as well as targeting 

proteins that mediate mitotic progression in response to kinetochore attachment 

(Schmidt-Alliana et al. 1998; Shapiro et al. 1998; Saffery et al. 2000).  Activated 

ERK co-localizes with the kinetochore motor protein CENP-E, raising the 

possibility that CENP-E is a downstream effector for ERK during mitosis 

(Zecevic et al. 1998; Willard and Crouch, 2001; Chambard et al. 2006).  Studies 

have shown that blocking MEK activity in cycling somatic cells does not 

significantly affect mitotic entry, but it does slow progression through mitosis, 

probably by slowing the CENP-E-dependent chromosome movements 

coordinated by the mitotic spindle (Roberts et al. 2002).  Other studies have 

shown that active MEK along with active cyclinB-Cdc2 is necessary for the cells 

to progress into M-phase (Harding et al. 2003; Walsh et al. 2003). 

   Signaling networks are important for cell proliferation, and 

communication between pathways can take place at many locations from the 

plasma membrane to the nucleus.  MAPK pathways cross-communicate with 

other signaling pathways such as the GSK3 pathway and the PKC pathway (Nigg, 
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2001; Zhang and Liu, 2002; Kholodenko, 2006; Rozengurt, 2007).  Glycogen 

synthase kinase 3β (GSK3β) and protein kinase C (PKC) have been found to be 

associated with the mitotic spindle (Lehrich and Forrest, 1994; Etienne-

Manneville and Hall, 2003; Wakefield et al. 2003; Jope and Johnson, 2004; Liu et 

al. 2006; Kalive et al. 2011).  Earlier studies have shown that GSK3β is associated 

with the centrosome and is known to phosphorylate microtubule associated 

proteins (MAPs) such as MAP1B which in turn causes chromosomal segregation 

by the microtubules.  In these studies the MAPK pathway was shown to be 

upstream of GSK3β (Goold et al. 1999; Frame and Cohen, 2001; Goold et al. 

2005; Scales et al. 2009).   

PKCs also have been reported previously as upstream activators of the 

MEK/ERK pathway (Brändlin et al. 2002; Puente et al. 2006; Chang et al. 2008; 

Marks et al. 2009).  In an earlier study the PKCζ isoform has been implicated to 

be an upstream activator of MEK (Berra et al. 1995; Short et al. 2006).  In 

addition, the PKCζ isoform has been shown to be associated with the centrosome 

region of the mitotic spindle, or with the spindle microtubules (Lehrich and 

Forrest, 1994; Liu et al. 2006), and its activation is known to play an important 

role in stable kinetochore-microtubule attachment and subsequent chromosomal 

separation (Liu et al. 2006).  PKC isoforms can directly regulate Raf-1 which is 

an upstream activator of the MEK/ERK pathway, specifically PKCα and PKCη 

are known activators of Raf-1 (Schonwasser et al. 1998; Corbit et al. 2003).  A 

previous study showed that inhibition of active PKCζ by a myristoylated peptide 

inhibitor causes an inhibition of p(ser9)GSK3β at the centrosomes and causes a 
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disruption of the mitotic spindle.  This study also suggests that p(ser9)GSK3β 

could be a substrate of active PKCζ (Kalive et al. 2011).   However, no single 

study has examined all four of the kinases at the same time in the same cell type. 

Taken together these studies indicate that MEK, ERK, PKCζ, and GSK3β 

can all be important kinases involved with the mitotic spindle and its regulation.  

However from these previous studies it is not clear if these kinases are part of a 

single signaling pathway that regulate the mitotic spindle apparatus or whether 

there are multiple pathways engaged in cross-talk between the pathways.   

In this study, MEK and ERK activity were separately inhibited in the same 

cell type and it was determined whether this inhibition affects the location and 

activity of PKCζ and GSK3β.  If MEK/ERK, PKCζ, and GSK3β interact then we 

predicted that they would co-localize at the spindle during mitosis.  Moreover, if 

MEK and ERK have sole control over the mitotic spindle then inactivation of 

either MEK or ERK may obliterate the spindle and progression through mitosis.  

In contrast, if multiple signaling pathways are involved then a modification or 

reduction in the spindle might be observed and only a reduction in the progression 

through mitosis. 
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Materials and Methods 

Cell culture and media  

The cells used for all the experiments were NIH 3T3 mouse fibroblasts, 

ATCC number CRL-2795.  Cells were maintained at 10% CO2 concentration in a 

37°C moisture incubator.  Dulbecco’s Modified Eagle’s Medium (DMEM) was 

used to maintain the cells (10% calf serum, 1% penicillin–streptomycin, 2% L-

glutamine).  The cells were grown to 80% confluency before being used.  All 

chemicals used in experiments were obtained from Sigma (St. Louis, MO USA) 

unless otherwise indicated. 

 

Inhibitor treatment: MEK siRNA, U0126, ERK activation peptide inhibitor 

A dose–response analysis was performed in order to determine the amount 

of inhibitor to be added to the cells, and the time of exposure.   

MEK siRNA:  3T3 cells were exposed to increasing concentrations of the inhibitor 

according to the protocol provided by the manufacturer (Santa Cruz 

Biotechnology, Santa Cruz, CA USA).  Briefly, MEK siRNA at concentrations of 

1µM, 5µM, 10µM, and 20µM were introduced into cells using the reagents 

supplied by the manufacturer.  After 48hrs cells were subjected to 

immunocytochemical analysis using the pMEK specific antibody, and then 

viewed by confocal microscopy.  The optimal concentration of the MEK siRNA 

inhibitor i.e. the lowest possible concentration that completely suppressed pMEK 

was determined as 10µM and was used at this concentration for the studies 

performed.  
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U0126 inhibitor:  3T3 cells were exposed to increasing concentrations of the 

inhibitor (Calbiochem, La Jolla, CA USA) at 10µM, 25µM, 100µM, and 150µM 

in DMEM media for 5.5h, then subjected to immunocytochemical analysis using 

the pMEK specific antibody and viewed by confocal microscopy.  The optimal 

concentration of the inhibitor was determined as 100µM which was the lowest 

possible concentration that completely suppressed pMEK.  MEK inhibitor U0126 

was used at 100µM for 5.5h for the studies performed.    

ERK activation peptide inhibitor:  3T3 cells were exposed to increasing 

concentrations of the peptide inhibitor (Calbiochem, La Jolla, CA USA) such as 

10µM, 25µM, 100µM, and 150µM in DMEM media for 4h, then subjected to 

immunocytochemical analysis using the pERK specific antibody and viewed by 

confocal microscopy.  The optimal concentration of the inhibitor was determined 

as 100µM which was the lowest possible concentration that completely 

suppressed pERK.  ERK inhibitor was used at 100µM for 4h for the studies 

performed. 

 

Immunocytochemistry  

 

The living 3T3 mouse fibroblast cells were fixed intact for 30 min in 2% 

formaldehyde in ICB (ICB-100 mM KCl, 5 mM MgCl2, 3 mM EGTA, and 20 

mM HEPES (pH 6.8), in H2O) and permeabilized for 1 h in ICB with 2% 

paraformaldehyde and 1% Tween-20.  The samples were then washed three times 

for 15 min, each wash with ICB-bovine serum albumin (BSA) buffer (1% BSA in 

ICB).  In separate experiments primary antibodies were then added to the cells in 
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the antibody dilution buffer (1% nonfat milk, 0.5% Tween-20 in ICB) at a 1:500 

dilution for each antibody, overnight at 4°C with gentle rocking.  The following 

day, the cells were washed with the ICB-BSA buffer three times, at 15 min each 

wash with gentle rocking.  The appropriate secondary antibodies were added to 

the cells overnight at 4°C with gentle rocking.  The secondary antibodies were 

made in the antibody dilution buffer at a 1:1,000 antibody concentration.  The 

following day, cells were washed with the ICB-BSA buffer three times, at 15 min 

each wash, and then placed in DRAQ5 (2.4 μg/mL in ICB [Axxora, LLC]) for a 

15-min incubation.  This was done to visualize the chromosomes in the confocal 

microscope.  The primary antibodies used were: anti-pMEK, anti-tMEK, anti-

pPKC ζ (Santa Cruz Biotechnology, Santa Cruz, CA), anti-pERK, anti-tERK, 

anti-p(ser9) GSK3β (Cell Signaling Technology, Beverly, MA USA), anti-α-

tubulin (Sigma Aldrich, St. Louis, MO USA),  anti-γ-tubulin (Sigma Aldrich, St. 

Louis, MO USA).  The secondary antibodies used were Alexa-568- and Alexa-

488-conjugated IgGs (Molecular Probes Inc, Eugene, OR USA).  All experiments 

were performed in triplicate independently. 

 

Confocal microscopy  

The cells were mounted on coverslips sealed with nail polish after the 

immunocytochemistry procedure.  The cells were viewed on the Leica SP2 

microscope in the W. M. Keck Bioimaging Laboratory at Arizona State 

University.  Multiple lasers allowed for simultaneous imaging of the Alexa 488 

and Alexa 568 (argon 488 nm; krypton 568 nm) fluorophore-labeled samples.  
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Using a 100x oil objective, images were scanned at 0.5μM slices in the Z-axis at 

the spindle region. The image files were analyzed using the Leica NTS software 

(Leica Microsystems, Bannockburn, IL USA).  

  

Cell cycle quantification  

  3T3 cells were treated with MEK siRNA, U0126, ERK activation peptide 

inhibitor or left untreated as control cells in separate experiments.  After 

performing the immunocytochemistry procedure, cells were labeled with an 

antibody against α-tubulin.  The chromosomes were visualized by staining with 

DRAQ1 (2.4 μg/mL in ICB [AXXORA, LLC]).  The cells viewed by confocal 

microscope were divided into quadrants and a total of about four thousand cells 

were analyzed.  The number of cells in the cell cycle stages such as, pre-

metaphase (stages earlier than metaphase), metaphase, anaphase, telophase, and 

cytokinesis were counted within each of the quadrants.  This was repeated for all 

the treatments studied.  Every treatment experiment was performed in triplicate, 

the numbers of cells in each cell cycle stage were counted, an average calculated 

along with the standard error of the mean and the averages were converted to 

percentages.  This data was then represented graphically with the cell cycle stages 

on the X-axis and the percentage numbers of cells in each cell cycle stage on the 

Y-axis.  Statistical significance was calculated by comparing the control values 

versus experimental values using a Student t-test and a probability of p<0.05 was 

considered as significant.  All experiments were performed in triplicate 

independently 
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Transfection with MEK plasmid 

MEK plasmid was transiently transfected into 3T3 cells according to the 

protocol by Life technologies Inc. using Lipofectamine™ 2000 (Life technologies 

Inc, Carlsbad, CA USA).  Briefly, cells were grown in 60mm petri-dishes until 

70% confluent.  Twenty-four hours after transfection fresh media was added to 

the cells and after 48h of transfection cells were used for further analyses.  The 

same protocol was followed when cells were transiently transfected with a 

combination of MEK plasmid and MEK siRNA. 

 

RNA isolation and RT-PCR 

3T3 cells were grown in 60mm petri-dishes until they were 70% 

confluent.  The total RNA from each of the petri-dishes was isolated after 48hrs 

of treatment, then reverse transcriptase (RT) reaction was conducted to isolate the 

cDNA from each treatment category.  RNA easy mini kit (Qiagen, Maryland 

USA) was used to isolate the RNA.  The isolated cDNA was then subjected to 

PCR (polymerase chain reaction).  The primers used for the PCR reactions were, 

forward and reverse primers for MEK (Santa Cruz Biotechnology, CA) and the 

forward and reverse primers for GAPDH (glyceraldehyde 3-phosphate 

dehydrogenase) (Santa Cruz biotechnology).  The RT-PCR products were run on 

a 1% agarose gel along with the 1kb DNA ladder as a molecular weight marker.  

All experiments were performed in triplicate independently. 
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Immunoblotting   

A Bradford assay was performed in order to determine the concentration 

of protein that was loaded onto the SDS gel.  The samples used for 

immunoblotting were loaded at a concentration of 750 μg/ml in each lane, to 

perform SDS-PAGE.  Laemmli 2× sample buffer was added to the samples 

(Laemmli, 1970).  The samples were placed in a boiling water bath for 10 min to 

denature the proteins. The samples were then loaded onto a pre-cast 10% Tris–

HCl precise protein gel (Pierce Biotechnology, Rockford, IL USA), and then 

transferred to a PVDF membrane (Towbin et al. 1979).  The Kaleidoscope protein 

dye was used as the marker to confirm molecular weight.  The blot was blocked in 

BLOTTO, (5% percent non-fat dried milk in PBS-T [PBS with 0.1% Tween-20]) 

for 1 h; the blot was rinsed and treated with the appropriate primary antibodies at 

a 1:500 concentration overnight at 4°C.  The blot was then washed three times 

with PBS-T the following day.  The appropriate horseradish peroxidase (HRP) 

conjugated secondary antibody (Pierce Biotechnology, Rockford, IL USA) was 

applied to the blot as secondary antibody in BLOTTO for 2 h at room 

temperature.  After washing the blot with PBS-T three times, chemiluminescence 

was used to detect the protein bands on the blot.  The ECL plus kit (formerly 

Amersham Biosciences, Arlington, IL) and the Hyperfilm ECL chemiluminescent 

film (GE Healthcare, Arlington, IL) were used for the detection.  The protein 

bands from the blots were quantified by calculating the average pixel intensities 

of the each protein band from three independent experiments and plotting them as 

a histogram.  Image J software was used to calculate the relative band intensity of 
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the protein bands.  Statistical significance was calculated by comparing the 

control values versus experimental values using a Student t-test and a probability 

of p<0.05 was considered as significant.   

 

Results 

Effects of inhibitors of MEK on the co-localization of pMEK with pPKCζ and with 

p(ser9)GSK3β 

 The effects of MEK inhibitors on the co-localization of pMEK with 

pPKCζ and p(ser9)GSK3β  at the metaphase stage of 3T3 cells were tested with 2 

types of treatments compared to the control cells (no treatment).  The treatments 

applied in parallel were: 1) Cells treated with the MEK small inhibitor RNA 

(MEK siRNA); and 2) Cells treated with the MEK chemical inhibitor, U0126.  

The concentration of MEK siRNA and U0126, and the duration of exposure were 

determined using a dose response analysis (see Materials and Methods).  All the 

cells in culture dishes analyzed were in metaphase.  In all figures, the 

chromosomes can be visualized as blue as a result of labeling with DRAQ5.  In 

control cells (Fig. 14 a, b, and c), the enrichment of pMEK and p(ser9)GSK3β 

was assessed by labeling the cells both with a pMEK specific antibody (binds to 

active MEK) and p(ser9)GSK3β specific antibody (binds to inactive 

(ser9)GSK3β). The enrichment of pMEK was visualized as red in the centrosomal 

areas on either end of the metaphase plate (indicated by arrows in figure 14a), and 

the enrichment of p(ser9)GSK3β was visualized as green in the centrosomal areas 

on either end of the metaphase plate in figure 14b, thus co-localization between 
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the two appears as yellow spots at the centrosomal areas on either end of the 

metaphase plate, in the merged image in figure 14c.  In order to confirm that the 

spots on either end of the metaphase plate chromosomes were centrosomes, cells 

were co-labeled with a centrosomal marker, γ-tubulin (Habermann and Lange, 

2012), along with pMEK.  The inset in figure 14c indicates a representative 

metaphase cell co-labeled with antibodies to pMEK (red) and γ-tubulin (green) so 

that the co-localization at the centrosomes is visualized as yellow.  In earlier 

studies, pPKCζ has been shown to be localized to the centrosomes of the mitotic 

spindle (Lehrich and Forrest, 1994; Liu et al., 2006).  To test if pPKCζ co-

localized with pMEK, the enrichment of pMEK and pPKCζ was assessed next in 

control cells by labeling the cells with a pMEK specific antibody (red) and pPKCζ 

specific antibody (green) (Fig. 14d, e, and f).  Co-localization between the two 

appears yellow at the centrosomal areas in the merged image in figure 14f.   

In cells treated with the MEK siRNA, the effects of inhibiting MEK on 

p(ser9)GSK3β was demonstrated by labeling the cells with a pMEK specific 

antibody (red) and a p(ser9)GSK3β specific antibody (green).  In figure 14g, there 

is an absence of pMEK in the centrosomal areas.  Phospho(ser9)GSK3β (green) 

can be visualized in the centrosomal areas in figure 14h.  Note the absence of 

yellow spots at the centrosomal areas that would otherwise indicate the co-

localization between the two kinases in the merged image in figure 14i (indicated 

by arrows).  The inset in figure 14i indicates a metaphase cell labeled with 

antibodies against γ-tubulin (green) at the centrosomes.  In MEK siRNA treated 

cells, the effects of inhibiting MEK on pPKCζ was demonstrated next by labeling 
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the cells with a pMEK specific antibody (red) and a pPKCζ specific antibody 

(green).  In figure 14j, there is an absence of pMEK in the centrosomal areas.  

PhosphoPKCζ (green) can be visualized in the centrosomal areas in figure 14k.  

Note the absence of yellow spots at the centrosomal areas in the merged image in 

figure 14l (indicated by arrows). 

MEK was also inhibited by a different method that is, using a 

pharmacological inhibitor of MEK to test if the same results were observed.  Cells 

were treated with the pharmacological inhibitor against MEK, U0126 which has 

been shown to inhibit MEK1 and MEK2 by non-competitive inhibition (Duncia et 

al., 1998; Favata et al., 1998) and cells were treated with U0126.  In the U0126 

inhibitor treated cells, the effects of inhibiting MEK on p(ser9)GSK3β was 

assessed by labeling the cells with a pMEK specific antibody (red) and a 

p(ser9)GSK3β specific antibody (green).  In figure 14m, there is an absence of red 

pMEK in the centrosomal areas of the cell, while green p(ser9)GSK3β can be 

visualized in the centrosomal areas (Fig. 14n).  A co-localization between the two 

kinases in the merged image in figure 14o (indicated by arrows) is absent.  The 

inset in figure 14o indicates a metaphase cell showing γ-tubulin (gree en) at the 

centrosomes.  In U0126 inhibitor treated cells, the effects of MEK inhibition on 

pPKCζ was assessed next by labeling the cells with a pMEK specific antibody 

(red) and a pPKCζ specific antibody (green).  The inhibitor blocked pMEK (Fig. 

14p seen as an absence of red), but pPKCζ (green) is present and is shown in the 

merged image in figure 14r (indicated by arrows).  
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Figure 14: Effect of MEK inhibition on the co-localization of pMEK with 

p(ser9)GSK3β and pPKCζ in 3T3 cells.  (a) In control cells pMEK (red) was 

tested for co-localization with (b) p(ser9)GSK3β (green) by 

immunocytochemistry and confocal microscopy. (c) The co-localization of pMEK 

and p(ser9)GSK3β can be visualized in a merged image with the co-localized 

areas showing yellow pixels.  The arrows in (a) indicate the enrichment of pMEK 

at the centrosome regions.  The inset in (c) is a merged image of a control cell to 

show the co-localization of pMEK and γ-tubulin at the centrosomes.  (d) In 

control cells pMEK (red) was tested for co-localization with (e) pPKCζ (green) 

and in the merged image (f) is yellow.  (g) In MEK siRNA treated cells, pMEK is 

absent and there is no co-localization with (h) p(ser9)GSK3β (green).  Thus (i) in 

the merged image the centrosomes are green since there is no co-localization.  

The arrows in (i) indicate the green pixels at the centrosomes.  The inset in (i) is 

an image of a MEK siRNA treated cell that shows the enrichment of γ-tubulin at 

the centrosomes.  (j) In MEK siRNA treated cells, pMEK (red) is absent, while 

(k) pPKCζ (green) is present.  Thus (l) in the merged image the centrosomes are 

green since there is no co-localization and this is indicated by arrows.  (m,n) In 

U0126 treated cells, there is an absence of pMEK (red) while p(ser9)GSK3β 

(green) is present.  In the merged image (o) there are green pixels at the 

centrosomes indicated by arrows.  The inset in (o) shows γ-tubulin at the 
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centrosomes.  (p,q) In U0126 treated cells, there is an absence of pMEK (red) 

while pPKCζ (green) is present.  In the merged image (r) centrosomes are green 

indicated by arrows.  All experiments were performed in triplicate.  Scale bar is 

10µm. 

 

 

Effects of MEK inhibition on protein expression  

A biochemical confirmation of the results from the immunocytochemical 

co-localization experiments in the previous section, shows the effect of MEK 

inhibition on cellular protein expression of pMEK, p(ser9)GSK3β and pPKCζ 

(Fig 15).  Cell lysates were prepared from both the inhibitor treatments as well as 

the control cells and then subjected to immunoblotting.  All the blots in figure 15 

were also treated with an antibody against Myosin-1 (200kD molecular weight) as 

a loading control to correct for loading errors (see Materials and Methods).  Cells 

treated with inhibitors of MEK activity were first assessed to determine the effects 

on total MEK (Fig. 15a) and pMEK (Fig. 15b).  The signal for both of these was 

absent though clearly visible in control cells and also the DMSO carrier control.  

This was observed for both MEK siRNA and U0126 treated cells (Fig. 15a-b).   

Phospho(ser9)GSK3β antibody was used next to detect protein expression 

of p(ser9)GSK3β in the control lysate along with the U0126 and MEK siRNA 

treated lysates (Fig. 15c).  The expression of p(ser9)GSK3β was detected by a 

band at the 42kD molecular weight in the control lysate along with the U0126 and 

the MEK siRNA treated cell lysates.  These results support the confocal 

microscopy images seen in figures 1g, h, i, m, n, and o where p(ser9)GSK3β 

protein expression was not inhibited by MEK inhibitors, although there was a 
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significant reduction in the total cellular protein levels of p(ser9)GSK3β after 

addition of the MEK inhibitors.  This protein reduction is seen in the graphical 

representation of the average protein band intensity from the blots (Fig. 15h).  The 

band intensities for each blot were calculated as an average from three 

independent experiments and statistical significance was also calculated (see 

Materials and Methods).   

In figure 15d, pPKCζ antibody was used and pPKCζ expression was 

detected in the control lysate, also in the U0126 treated lysate and the MEK 

siRNA cell lysate as the 71kD molecular weight band.  These results support the 

confocal microscopy images seen in figures 15j, k, l, p, q and r where pPKCζ 

protein expression was not inhibited by MEK inhibitors, although there was a 

significant reduction in the total cellular protein levels of pPKCζ as seen in figure 

15h.   

To test the effects of MEK inhibition on the mitotic spindle microtubules, 

the protein levels of α-tubulin were examined.  In figure 15e, the α-tubulin 

antibody was used and α-tubulin expression was detected in the control lysate, 

also in the U0126 treated lysate and the MEK siRNA cell lysate as a 55kD 

molecular weight band.  There was a significant reduction in the total protein 

levels of α-tubulin as seen in figure 15h. 
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Figure 15:  Western analysis of MEK inhibited cell lysates.  Control cells have 

been labeled ‘ctrl’ and ‘DMSO’ (for the carrier control) in all the blots of this 

figure.  (a) An antibody to tMEK was used to detect tMEK protein in lysates from 

control cells, along with lysates from MEK siRNA treated cells and U0126 

treated cells.  Myosin-1 was used as the loading control with a molecular weight 

of 200kD in all the Western blots shown in this figure.  (b) PhosphoMEK 

antibody was used to detect cellular protein levels of pMEK in control cells 

versus MEK siRNA treated cells and U0126 treated cells.  Antibodies including 

(c) p(ser9)GSK3β antibody, (d) pPKCζ antibody, (e) α-tubulin antibody, (f) tERK 

antibody, and (g) pERK antibody were employed to detect the corresponding 

cellular protein levels in control cells versus MEK inhibited cells, inhibited by 

MEK siRNA and U0126.  The histogram in (h) represents a quantification of the 

protein bands seen in the Western blots.  The asterisks represent a significant 

difference from the control lysates.  Experiments were performed in triplicate and 

statistical significance was calculated by a Student t-test and a probability of 

p<0.05 was considered as significant.  There is a slight reduction of 

p(ser9)GSK3β, pPKCζ and α-tubulin protein levels.  Equal amounts of each 

protein were loaded on the gels (see Materials and Methods). 

 

ERK is a known downstream target of MEK in the MAPK pathway of 

somatic cells (Pumiglia and Decker, 1997; Zhang and Liu, 2002; Orton et al., 
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2005; Shaul and Seger, 2007; Borysova et al., 2008).  The protein expression 

pattern of total ERK1/2 (tERK) in the cell population was examined next (Fig. 

15f).  After immunoblotting, an antibody against tERK1/2 protein was used and 

the expression of tERK1/2 was visualized as two protein bands at the molecular 

weights of 44kD and 42kD.  The inhibitors, U0126 and MEK siRNA did not 

affect tERK1/2 protein levels since tERK1/2 was expressed in all of the 

treatments as seen in the blot and in the graph (Fig. 15h).  However when an 

antibody against phospho ERK1/2 (pERK1/2) was used to test the expression of 

the active phosphorylated form of ERK1/2 (Fig. 15g), compared to the control 

cell lysate, pERK1/2 was not expressed in the U0126 and MEK siRNA treated 

cell lysates since the upstream effector pMEK was inhibited. 

 

Confirmation of MEK siRNA specificity; Effect of MEK overexpression  

In order to confirm that MEK siRNA did inhibit the expression of MEK, 

experiments were performed with a MEK expression plasmid (Addgene plasmid 

repository, plasmid number: 21208: W1), a plasmid expressing the wild type form 

of MEK.  In parallel experiments, 3T3 cells were subject to three treatments along 

with control cells with no treatment, 1) Cells that were treated with MEK siRNA 

alone, 2) cells that were transiently transfected with both MEK siRNA and MEK 

expression plasmid (MEKp), 3) Cells that were transiently transfected with 

MEKp alone (Fig. 16).  After 48hrs of treatment (see Materials and Methods for 

details), the total RNA from each of the treated cells along with control cells was 

isolated and the isolated RNA was subject to a Reverse Transcriptase-Polymerase 
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Chain Reaction (RT-PCR) procedure where, the total isolated RNA from each 

treatment and control cells was transcribed to form the corresponding cDNA by 

an RT reaction, then the cDNA was amplified by a PCR reaction using the 

specific 5’ and 3’ DNA primers.  The amplified cDNA was then subject to 

agarose gel electrophoresis (see Materials and Methods for details).  

Glyceraldehyde-6-phosphate dehydrogenase (GAPDH) expression was studied as 

a control since it is a known housekeeping gene and is often stably and 

constitutively expressed at high levels in most tissues and cells (Barber et al. 

2005; Zainuddin et al. 2010).  For each experimental sample the 5’-3’ primers for 

GAPDH and MEK were used in order to amplify the corresponding cDNA.   

In Figure 16a lane 2 was loaded with control cell cDNA amplified with 

MEK primers while lane 3 was loaded with control cell cDNA amplified with 

GAPDH primers.  Lanes 2 and 3 indicate that MEK cDNA and GAPDH cDNA 

were present in control cells.  In lanes 4, 5 the amplified cDNA from cells treated 

with MEK siRNA alone was loaded.  MEK cDNA (using MEK primers) cannot 

be seen (lane 4) since its synthesis was inhibited by the siRNA, while GAPDH 

cDNA (using GAPDH primers) can still be seen (lane 5) similar to that seen in the 

control lane 3.  In lanes 6, 7, the amplified cDNA from cells transfected with only 

MEKp was loaded.  Both MEK cDNA (using MEK primers) and GAPDH cDNA 

(using GAPDH primers) can be seen similar to that seen in the control lanes 2 and 

3.  Lanes 1 and 10 in figure 16a were loaded with a 1kb DNA ladder. 

Expression at the protein level, of these RT-PCR results was examined 

next by immunoblotting (Fig. 16b, c).  In parallel experiments, the cells were 
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subject to the same treatments described in the above section along with control 

cells, and DMSO carrier treated cells.  The total cell lysates were isolated and 

immunoblotting was then performed with the lysates.  Antibodies against tMEK 

(Fig. 16b) and against pMEK (Fig. 16c) were used to visualize the protein 

expression of tMEK and pMEK.  Total MEK (Fig. 16b) was expressed from: a) 

Control cells that were not transfected; b) Cells that were transfected with both 

MEK siRNA and MEKp; c) Cells that were transfected with only MEKp.  

However, there was no expression of tMEK in the lane containing the lysate from 

cells transfected with only MEK siRNA compared to the expression in control 

cell lysates.  This result was similar to the cDNA results in figure 16a.  Similar to 

the protein expression results of tMEK, figure 16c indicates that pMEK was also 

expressed from: a) Control cells that were not transfected; b) Cells that were 

transfected with both MEK siRNA and MEKp; c) Cells that were transfected with 

only MEKp.  However, there was no expression of pMEK in the lane containing 

the lysate from cells transfected with only MEK siRNA compared to the 

expression in control cell lysates.  
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Figure 16. Confirmation of MEK siRNA specificity; Effect of MEK 

overexpression.  (a) The PCR amplified cDNA was run on an agarose gel.  The 

cDNA was processed by a reverse transcriptase reaction from cellular RNA.  This 

RNA was isolated from cells treated with MEK siRNA alone, MEK plasmid 

alone (MEKp), a combination of MEK siRNA and MEK plasmid along with 

untreated control cells.  For the PCR reaction, GAPDH primer set and MEK 

primer set were used.  MEK cDNA can be visualized on the gel in MEKp treated 

cells, but not in MEK siRNA treated cells. (b) Western analysis of cell lysates 

from control cells, MEK siRNA treated cells, MEK siRNA and MEKp treated 

cells, and MEKp treated cells.  An antibody to tMEK was used and tMEK protein 

bands can be detected in all the lanes except MEK siRNA treated cell lysate.  (c) 

Western analysis of cell lysates from control cells, MEK siRNA treated cells, 

MEK siRNA and MEKp treated cells, and MEKp treated cells.  An antibody to 

pMEK was used and pMEK protein bands can be detected in all the lanes except 

MEK siRNA treated cell lysate.  Immunocytochemical analysis followed by 

confocal imaging was performed to study the effect of MEK overexpression on 

the enrichment of pMEK and α-tubulin.  (d) The enrichment of pMEK in a control 

cell versus (e) MEKp treated cell at the centrosomes is quite similar.  However, 

compared to (f) the enrichment of α-tubulin on the spindle in a control cell (g) the 

enrichment of α-tubulin in a MEKp treated cell seems to show an increase in 

astral microtubules.  Immunocytochemical analysis followed by confocal imaging 
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was performed to study the effect of adding MEK siRNA along with MEKp on 

the enrichment of pMEK and α-tubulin.  (h) The absence of pMEK in a MEK 

siRNA treated cell can be compared to (i) where there was enrichment of pMEK 

when MEKp was added together with MEK siRNA.  (j) The reduction in intensity 

of green α-tubulin (part of the spindle microtubules) in MEK siRNA treated cell 

can be compared to (k) the spindle microtubules in a cell treated with both MEK 

siRNA and MEKp, where the spindle is similar to the spindle in a control cell. 

 

 

The effects of overexpression of MEK on pMEK and α-tubulin were 

studied next at the immunocytochemical level.  Cells were subjected to three 

types of treatments along with the untreated controls in separate experiments.  

The three types of treatments include, transfection of cells with MEKp, treatment 

of cells with MEK siRNA alone, treatment of cells with a combination of MEK 

siRNA and MEKp.  These three types of cell populations along with controls 

were labeled with pMEK antibodies (red).  The cells treated with MEKp alone 

showed the presence of pMEK (Fig. 16e) similar to the control cells (Fig. 16d).  

The MEK siRNA treated cells showed the absence of an enrichment of pMEK 

(Fig 16h), while the cells treated with both MEK siRNA and MEKp showed an 

enrichment of pMEK.  The three types of cell populations along with controls 

were labeled next with α-tubulin antibodies (green).  In MEKp treated cells the 

astral microtubules of the spindle are more pronounced (Fig. 16g) compared to 

those in the control cells (Fig. 16f).  Compared to the MEK siRNA treated cell 

(Fig. 16j) where the spindle microtubules are highly reduced in intensity, in cells 

treated with both MEK siRNA and MEKp the spindle microtubules are almost 

similar to the untreated control microtubules. 
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Effects of MEK inhibition on the mitotic spindle     

In order to assess the effects of inhibiting MEK on the mitotic spindle, 

cells were treated with MEK inhibitors in parallel experiments.  An antibody 

against α-tubulin along with DRAQ5, was used to visualize the spindle 

microtubules and chromosomes in three stages of mitosis, namely metaphase, 

anaphase, and telophase.  In figure 17a, the metaphase mitotic spindle of a control 

cell (α-tubulin, green) is shown.  An intact spindle apparatus at this stage with 

intact microtubules enveloping the chromosomes (blue) from both spindle pole 

regions can be visualized.  However, in cells treated with MEK siRNA (Fig. 17b) 

the metaphase spindle visualized by α-tubulin (green) indicates a reduction in 

brightness of microtubules compared to the control metaphase spindle in figure 

17a.  In cells treated with U0126, the metaphase spindle visualized by α-tubulin as 

green (Fig. 17c) also indicates a reduction in the brightness of microtubules 

compared to the control.  In order to quantify this, the number of green pixels in 

the region of the spindle was quantified.  One hundred cells were visualized at 

each stage of M-phase and a graphical representation of the spindle pixel intensity 

numbers at each M-phase stage is shown in figure 17j for controls and each 

treatment.  All the pixel intensity numbers in figure 17j represent average pixel 

values of the entire spindle apparatus at each stage of the cell cycle.  Statistical 

significance of these numbers was also calculated (see Materials and Methods 

section). 

Anaphase stage in control cells visualized by α-tubulin (green) 

demonstrates intact microtubules (Fig. 17d) in a representative control cell.  The 
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MEK siRNA treated cells indicate a reduction in pixel intensity (Fig. 17j) of 

microtubules visualized by α-tubulin antibody (green, Fig. 17e) compared to the 

control (Fig. 17d).  Similarly in U0126 treated cells, the mitotic spindle in 

anaphase visualized by α-tubulin (green, Fig. 17f) indicates a reduction in the 

pixel intensity of microtubules (Fig. 17j), compared to the control cell (Fig. 17d).   

Telophase stage in control cells (Fig. 17g) demonstrates that the 

microtubules are intact as visualized by α-tubulin (green) at the spindle apparatus 

region.  However, in MEK siRNA treated cells (Fig. 17h), the pixel intensity of 

microtubules was reduced (Fig. 17j), visualized by α-tubulin (green) compared to 

the control cell in figure 17g.  In the telophase stage of U0126 treated cells also 

(Fig. 17i) there was a reduction in the pixel intensity of microtubules (Fig. 17j) 

visualized by the α-tubulin antibody (green) compared to the control cell (Fig. 

4g).  In any of these three stages, the size of the spindle in MEK inhibitor treated 

cells did not change (data not shown). 
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Figure 17:  Effect of MEK inhibition on α-tubulin.  (a) A control cell at 

metaphase showing an intact mitotic spindle.  (b) A MEK siRNA treated cell 

indicating a reduction in the green pixel intensity of spindle microtubules at 

metaphase.  (c) A U0126 treated cell indicating a reduction in the green pixels of 

spindle at metaphase.  (d, e, f) A control cell, a cell treated with MEK siRNA, and 

a cell treated with U0126 respectively indicating a reduction in green pixel 

intensity of the spindle at anaphase.  (g, h, i) Control cell versus MEK siRNA 

treated cell and U0126 treated cell respectively at telophase indicating a pixel 

intensity reduction in MEK inhibited cells.  (j) The pixel intensity values for 

metaphase, anaphase and telophase are indicated in the histogram.  The asterisks 

represent a significant difference from the control pixel intensity values.  

Experiments were performed in triplicate and statistical significance was 

calculated by a Student t-test and a probability of p<0.05 was considered as 

significant. 

 

Effect of MEK inhibition on number of cells in cell division stages  

Inhibition of MEK did not result in the disruption of the spindle though it 

did have the subtle effect of reducing the intensity of α-tubulin in spindle 
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microtubules.  In order to test whether other subtle effects on mitosis occurred, 

progression through the cell cycle was assessed (Fig. 18).  In parallel experiments, 

cells were treated with MEK siRNA and U0126 inhibitors along with the 

untreated control cells.  The percent cell population in interphase and in each 

stage of M-phase including, pre-metaphase, metaphase, anaphase, telophase, and 

cytokinesis was examined by immunocytochemistry.  The pre-metaphase stage 

encompassed all cells from early prophase through prometaphase.  Spindle 

microtubules were identified by using antibodies against α-tubulin (green), while 

the chromosomes were identified with DRAQ5.  The number of control cells 

examined were 4244 where, 1% cells were in pre-metaphase stages, 1.5% cells 

were in metaphase, 0.6% cells were in anaphase, 0.4% cells were in telophase and 

0.5% cells were in the cytokinesis stage (Fig. 18a).  The absolute numbers of cells 

for each stage of M-phase are indicated above the corresponding columns in 

figure 18a.  A total of 4% cells were in the mitotic phase while 96% (4092 cells) 

were in interphase stages of the cell cycle indicated by the pie chart in figure 18a.   

In MEK siRNA treated cells (Fig. 18b), 4172 cells were examined and the 

percent cells in each M-phase stage were significantly lower than the 

corresponding control cells.  The absolute numbers of cells in each stage of M-

phase are indicated above the corresponding columns in figure 18b.  A total of 

1.25% cells were present in the mitotic phase while 98.75% (4111) cells were 

present in interphase stages of the cell cycle (pie chart in figure 18b).   

 In U0126 treated cells also (Fig. 18c), 3975 cells were examined and the 

percent cells in each M-phase stage were significantly lower than the 
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corresponding control cells.  The absolute numbers of cells in each stage of M-

phase are indicated above the corresponding columns in figure 18c.  A total of 

1.5% cells were present in the mitotic phase while 98.5% (3916) cells were 

present in interphase stages of the cell cycle (pie chart in figure 18c).  Statistical 

significance of these cell numbers from two treatments compared to the control 

cell numbers was calculated and a p-value of p<0.05 was considered significantly 

different in comparison to the control cells.  The asterisks above the columns in 

the graph (Fig. 18b) indicate significant difference from the control cells. 
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Figure 18: Cell numbers in mitotic stages after MEK inhibition.  (a) The number 

of control cells in M-phase stages including, pre-metaphase (stages encompassing 

early prophase through prometaphase), metaphase, anaphase, telophase and 

cytokinesis are represented by a histogram.  The pie chart inset in (a) indicates the 

percentage of cell in interphase versus M-phase.  (b) The number of MEK siRNA 

treated cells in M-phase stages including, pre-metaphase (stages encompassing 

early prophase through prometaphase), metaphase, anaphase, telophase and 

cytokinesis are represented by a histogram.  There is a significant reduction in the 

number of cells in M-phase stages compared to the control cell numbers which is 

indicated on the histogram by asterisks.  (c) The number of U0126 treated cells in 

M-phase stages are represented by a histogram.  A significant reduction in cell 

numbers compared to that of control cells is indicated by asterisks.  Statistical 

significance was calculated by a Student t-test and a probability of p<0.05 was 

considered as significant.  The pie chart insets in (b) and (c) represent the percent 
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cells in interphase versus M-phase and there is an increase in interphase cells 

when MEK is inhibited. 

 

 

Effects of inhibition of ERK activation 

To test if the ERK activation inhibitor has effects similar to that of the 

MEK inhibitors, on the number of cells in M-phase versus interphase, the percent 

cells in each of the M-phase stage were studied.  The ERK inhibitor used was a 

peptide inhibitor that prevents activation of ERK by pMEK.  The enrichment of 

active ERK (pERK) was detected in control cells by a pERK antibody (red, Fig. 

19a), while in ERK inhibitor treated cells there is an absence of pERK (absence of 

red, Fig. 19b).  Figure 19c shows a graphical representation of the percentage of 

cells in each of the mitotic stages studied.  In this graph, control cell percentages 

(shown as white columns in figure 19a marked ‘ctrl’) were compared to the cells 

treated with the ERK1/2 peptide inhibitor (shown as black columns in figure 6c 

marked ‘exp’).  The number of cells counted for this study was 4200.  Compared 

to the control cell percentages, a significantly lesser percentage of ERK inhibitor 

treated cells were present in the pre-metaphase and metaphase stages.   Also, none 

of the ERK inhibitor treated cells were present in anaphase, telophase or 

cytokinesis compared to the control cells.  The absolute numbers are indicated 

above the corresponding columns in figure 19c.   A total of 99.6% cells were 

present in interphase stages while 0.4% cells were present in M-phase (pie-chart 

in Fig. 19c). 

The protein expression patterns in control cells compared to ERK 

inhibited cells were examined next by immunoblotting using the antibodies 
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against the proteins indicated on the lanes (Fig. 19d).  The untreated control cell 

lysates are indicated by “-” while ERK1/2 inhibitor treated cell lysates are 

indicated by “+” on the lanes in figure 19d.  In the control cell lysate lane, the 

band for pERK can be visualized.  In lane 3 of the blot, there is an absence of 

active pERK protein band, while lane 4 shows the presence of tERK (44kD and 

42kD protein bands).  The protein bands for pMEK and tMEK can be visualized 

in lanes 5 and 6 respectively in the inhibitor treated cell lysates.  PhosphoPKCζ 

can be visualized in lane 7 and p(ser9)GSK3β can be visualized in lane 8 of figure 

19d.  Lane 9 shows the presence of α-tubulin.  A comparison of the relative 

intensities of each protein band in the blot is shown as a histogram below the blot.  

From the histogram in figure 19d it can be seen that the amounts of pPKCζ, 

p(ser9)GSK3β, and α-tubulin proteins are significantly reduced in the ERK 

inhibitor added lysates compared to the control lysates.  
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Figure 19:  Effects of ERK activation peptide inhibitor.  (a) pERK (red) exists at 

the centrosomes in control cells while (b) in ERK inhibitor treated cells there is an 

absence of pERK.  (c) The number of control cells in M-phase (ctrl) versus the 

number of ERK inhibitor treated cells in M-phase (exp) are represented by a 

histogram.  The M-phase stages that were counted include, pre-metaphase (stages 

encompassing early prophase through prometaphase), metaphase, anaphase, 

telophase and cytokinesis.  In ERK inhibitor treated cells, no cells in anaphase, 

telophase and cytokinesis were identified.  The pie chart inset in (c) indicates the 

percentage of cells in interphase versus M-phase.  A significant reduction in cell 

numbers compared to that of control cells is indicated by asterisks.  (d) Western 

analyses of control cell lysates (indicated by a ‘-‘on the blot) versus ERK 

inhibitor treated cell lysates (indicated by a ‘+’ on the blot).  The antibodies used 

to detect corresponding proteins were, pERK, tERK, pMEK, tMEK, pPKCζ, 

p(ser9)GSK3β, and α-tubulin.  The relative quantitation of these protein levels 

from the intensities of the protein bands is represented by a histogram below the 

western blots in (d).  A significant reduction in band intensity compared to that of 

control cell lysates is indicated by asterisks.  Statistical significance was 

calculated by a Student t-test and a probability of p<0.05 was considered as 

significant.  (e) Cells treated with the ERK inhibitor were tested 

immunocytochemically for the enrichment of α-tubulin (green), (f) pMEK (red), 

(g) pPKCζ (green), and (h) p(ser9)GSK3β.  It can be seen that these kinases are 

not absent at the centrosomes.  All experiments were performed in triplicate. 
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ERK inhibited cells were labeled with an antibody against α-tubulin 

(green) visualized along the mitotic spindle in figure 19e.  An antibody against 

pMEK (red) was visualized in the centrosome areas in figure 19f.  An antibody 

against pPKCζ (green) was visualized in the centrosome areas in figure 19g.  The 

enrichment of p(ser9)GSK3β (green) in the centrosome areas was visualized in 

figure 19h.  The enrichment of pPKCζ and p(ser9)GSK3β at the centrosome was 

not absent in ERK inhibitor treated cells although the enrichment of α-tubulin 

along the mitotic spindle seems to have reduced compared to that in the MEK 

inhibited cells in figure 17. 
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Discussion  

This study demonstrates that pMEK, pERK, pPKCζ, and p(ser9)GSK3β 

were all enriched at the centrosomes of the mitotic spindle in 3T3 cells.  Also, 

pPKCζ and p(ser9)GSK3β each co-localized with pMEK and pERK at the 

centrosomes suggesting that these former two kinases may play an important role 

in mitotic spindle regulation.  However inhibition of MEK by siRNA and by a 

chemical inhibitor indicated the following.  1) The enrichment of pPKCζ or 

p(ser9)GSK3β at the centrosomes was not inhibited, although there was a slight 

decrease in total cellular protein levels of pPKCζ and p(ser9)GSK3β.  This 

suggested that these two kinases are not downstream targets of pMEK but may act 

either upstream of these kinases or alternatively may be in a separate pathway that 

engages in crosstalk with the MEK/ERK pathway.  2) There was a significant 

decrease in pixel intensity of the spindle microtubules when MEK was inhibited 

and the α-tubulin protein levels were also reduced.  3) The effect of MEK 

inhibition caused a slower progression of cells through M-phase compared to 

control cells.  A peptide inhibitor that inhibited activation of ERK by pMEK was 

used and inhibition of pERK indicated the following. 1) The enrichment of 

pPKCζ or p(ser9)GSK3β at the centrosomes was not inhibited, as seen when 

MEK was inhibited. 2) There was a decrease in the α-tubulin protein levels and 

there was likely a decrease in the number of spindle microtubules.  The number of 

spindle microtubules seemed to be further reduced than what was seen when 

MEK was inhibited.  3) In contrast to what was seen when MEK was inhibited, 
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inhibition of pERK caused an absence of cells in anaphase, telophase, and 

cytokinesis.  

This study examined whether pMEK/pERK co-localized with pPKCζ 

and/or with p(ser9)GSK3β.  Previously, the putative co-localization of these four 

kinases has not been examined in a single study.  Separate studies have shown 

that pMEK, pERK, pPKCζ, and p(ser9)GSK3β are enriched at the centrosomes of 

the mitotic spindle (Lehrich and Forrest, 1994; Shapiro et al. 1998; Willard and 

Crouch, 2001; Etienne-Manneville and Hall, 2003; Wakefield et al. 2003; Jope 

and Johnson, 2004; Liu et al. 2006; Kalive et al. 2011;  Collelo et al. 2012) but 

have not examined their interactions.  Results from this study indicated that 

p(ser9)GSK3β and pPKCζ are possibly involved in maintaining an intact mitotic 

spindle independent of the MEK/ERK pathway in mouse 3T3 fibroblasts, 

although earlier studies have indicated that p(ser9)GSK3β can act downstream of 

the MAPK pathway in other cells and is involved in maintaining the dynamic 

instability of microtubules (Goold et al. 1995; Goold et al. 1999; Scales et al. 

2009).  PKCζ also has been implicated by other studies to be upstream of the 

MAPK pathway (Berra et al. 1995; Short et al. 2006).  We speculated that these 

kinases may independently regulate specific components of the spindle since the 

absence of MEK/ERK activity and the presence of p(ser9)GSK3β and pPKCζ at 

the centrosomes resulted in a partially intact spindle.  Interestingly, in this study 

when MEK was overexpressed the astral microtubules seemed to have increased 

which suggested that MEK may also be involved in regulation of astral 

microtubules.  Studies have shown microtubule associated proteins (MAPs) to be 
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substrates of both ERK and GSK3β, and performed specific functions to regulate 

microtubules (Goold et al. 1995; Scales et al. 2009).  Other MAPs including 

MAP-1, MAP-2, MAP-4 have been shown to be substrates of ERK1/2 (Lin et al. 

1993; Seger and Krebbs, 1995; Zhang and Liu, 2002) that are involved in 

nucleation and stabilization of microtubules (Sanchez et al. 2000).   In the current 

study, the reduction in pixel intensity at the spindle suggested that the spindle may 

have fewer microtubules, if so, this reduced spindle number may be one reason 

for slow M-phase progression of MEK/ERK inhibited cells.  Alternatively, other 

studies have shown that inhibition of MEK/ERK inhibits the phosphorylation of 

downstream cyclin dependent kinases (cdks) which in turn slows the progression 

of cells through M-phase (Pumiglia and Decker, 1997; Willard and Crouch, 2001; 

Horne and Guadagno, 2003; Harding et al. 2003; Chambard et al. 2007). 

Phospho(ser9)GSK3β has been shown to be involved in transport of 

centrosomal proteins to the centrosome by stabilizing the  dynein complex, 

resulting in the regulation of a focused microtubule organization (Fumoto et al. 

2006; Izumi et al. 2008).  In addition, pPKCζ, has been shown to be important for 

microtubule-kinetochore attachment (Liu et al. 2006).  In another study, ERK was 

shown to phosphorylate the kinetochore motor protein CENP-E on sites that 

regulate the interaction of centromere-binding protein E (CENP-E) with 

microtubules.  ERK could play a role in mitotic progression by altering the ability 

of CENP-E to mediate the interactions between chromosomes and microtubules 

(Zecevic et al. 1998; Willard and Crouch, 2001; Chambard et al. 2007).  As an 

extension to these earlier studies, this study indicated that ERK inhibition did 
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cause slower mitotic progression in 3T3 cells possibly due to a reduction in the 

number of spindle microtubules.  Since MEK/ERK, p(ser9)GSK3β, and pPKCζ 

seemed to regulate different parts of the mitotic spindle, absence of MEK/ERK 

alone is necessary but not indispensable for 3T3 cells to maintain a spindle.  A 

previous study showed abnormal spindles in the metaphase stage of U0126 

treated cells (Guadagno and Horne, 2003).  Additionally, the current study 

indicated a significant decrease in pixel intensity of the spindle microtubules in 

U0126 treated and MEK siRNA treated cells compared to control cells in 

metaphase, anaphase and telophase stages.  Thus there was a reduction in total 

number of spindle microtubules in all these stages.  Inhibition of MEK/ERK 

however, did not shorten or lengthen the microtubules in 3T3 cells as observed in 

the current study.  The reduction in total cellular protein levels of α-tubulin in 

MEK/ERK inhibited cells as demonstrated in the current study is a further 

confirmation of reduction in the number of spindle microtubules. 

MEK/ERK, PKCζ, and p(ser9)GSK3β are kinases that are bound to 

scaffold proteins (Morrison and Davis, 2003; Macara, 2004; Moscat et al. 2006; 

Sacks, 2006; Marks et al. 2009).  Scaffold proteins are molecular sockets that bind 

several signal transducing proteins in such a way that the signaling interactions 

are facilitated and rendered more specific (Marks et al. 2009).  These kinases 

seem to specifically regulate different elements of the spindle apparatus in 3T3 

cells.  The results from our study indicated that the MEK/ERK pathway may not 

have an important role in regulation of the centrosome in somatic cells, but it does 

have an important role in spindle microtubule regulation along with 
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p(ser9)GSK3β and pPKCζ.  The kinases, MEK, PKCζ and GSK3β are probably 

not part of a single signaling pathway, but have overlapping functions in regard to 

preserving normal centrosomes and normal spindles.  Phospho(ser9)GSK3β and 

PKCζ may be involved in regulating the centrosome which is the microtubule 

organizing center of somatic cells (Compton, 2000; Debec et al. 2010;Walczak et 

al. 2010), both these kinases being part of an independent pathway.  Alternatively, 

pPKCζ could be upstream of the MEK/ERK pathway and also upstream to 

GSK3β in parallel to the MEK/ERK pathway, leading to the regulation of 

different elements of the mitotic spindle.  These four kinases are important for 

normal cell division and inhibition of any one of these kinases can affect cell 

division dynamics.   
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Chapter 4 

CONCLUDING THOUGHTS 

Conclusions from Chapter 2 

The results from the study in Chapter 2 match our predictions proposed 

earlier that, in mitotic cells: 1) there is significant co-localization and molecular 

proximity between pPKCζ and inactive GSK3β in the regions of the centrosome 

and, 2) inhibitors of pPKCζ may act through GSK3β to disrupt the proteins 

involved in maintaining spindle stability as well as the spindle structure itself.  In 

addition, the data resulting from this study indicates that among the phospho PKC 

isoforms studied, pPKCζ is more likely to be involved in stability of microtubules 

in the centrosomal mitotic spindle apparatus during cell division in mouse cells.   

A comparison can be made between the acentrosomal meiotic spindle in 

mouse eggs and the centrosomal mitotic spindle in mouse fibroblast cells.  The 

similarities between these two types of spindle are: 1) Among the pPKC isoforms 

tested, pPKCζ and pPKCδ localize in the meiotic spindle poles and at the 

centrosome of the mitotic spindle; 2) pPKCζ and pPKCδ enrich in the kinetochore 

region of both meiotic spindle and mitotic spindle;  3) GSK3β is also enriched in 

the spindle pole region of the meiotic spindle as well as at the centrosome of the 

mitotic spindle; 4) Among the pPKC isoforms tested there is higher binding 

between pPKCζ and p(ser9)GSK3β in the meiotic spindle poles and at the 

centrosome of the mitotic spindle.  Two notable differences exist between the 

centrosomal and acentrosomal spindles.  First, in the mouse egg, pPKCζ is present 

as a ring at the end of each spindle pole whereas in somatic cells pPKCζ localizes 
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at the centrosome.  Second, in meiotic cells, pPKCγ localizes at the spindle poles, 

whereas in mitotic cells pPKCγ is associated with the spindle microtubule region 

at the centrosomal end. 

The many similarities between centrosomal and acentrosomal spindles 

suggest that although the assembly of these two spindles is different, the 

proteins/signals regulating spindle dynamics may be the same. 

Conclusions from Chapter 3 

The study in Chapter 3 demonstrates that pMEK, pERK, pPKCζ, and 

p(ser9)GSK3β are all enriched at the centrosomes of the mitotic spindle in 3T3 

cells.  If MEK/ERK, PKCζ, and GSK3β interact then we predicted that they 

would co-localize at the spindle during mitosis.  Our results indicate that there is 

co-localization between pMEK/pERK and pPKCζ, and between pMEK/pERK 

and p(ser9)GSK3β supporting our prediction.  We predicted that if MEK and 

ERK have sole control over the mitotic spindle then inactivation of either MEK or 

ERK may obliterate the spindle and progression through mitosis would be absent.  

This prediction was not supported in our study.  Our final prediction was, if 

multiple signaling pathways are involved, then a modification or reduction in the 

spindle might be observed and also a reduction in the progression through mitosis.  

This final prediction was supported in our study. 

The results from our study indicate that the MEK/ERK pathway may not 

have sole control in regulation of the centrosome in somatic cells, but that it does 

have an important role in spindle microtubule regulation along with 
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p(ser9)GSK3β and pPKCζ.  The kinases, MEK, PKCζ and GSK3β are probably 

not part of a single signaling pathway, but have overlapping functions in regard to 

preserving normal centrosomes and normal spindles.  Alternatively, pPKCζ could 

be upstream of the MEK/ERK pathway and also upstream to GSK3β in parallel to 

the MEK/ERK pathway, leading to the regulation of different elements of the 

mitotic spindle.  The results from our studies suggest that these four kinases are 

important for normal cell division and inhibition of any one of these kinases can 

affect cell division dynamics.   

The four kinases although not part of one signaling pathway, have specific 

roles to play in spindle regulation.  Thus, the mitotic spindle itself may serve as a 

molecular scaffold where the kinases MEK/ERK, PKCζ, and p(ser9)GSK3β are 

bound and perform specific functions related to the regulation of the mitotic 

spindle.  Molecular scaffolds are similar to sockets that bind several signal 

transducing proteins in such a way that the signaling interactions are facilitated 

and rendered more specific (Marks et al., 2009).  For example, protein scaffolds 

bind to multiple components of the MAPK cascade, bringing them into close 

proximity and thereby facilitating efficient propagation of the signal.  Kinase 

suppressor of Ras (KSR), IQGAP1, MEK partner-1 (MP-1), and β-arrestins are 

some of the scaffolds in the MAPK pathway that bind to MEK1/2 and ERK1/2 

(Brown and Sacks, 2009).  Par-6 and p62 are examples of scaffold proteins in 

cells that PKCζ binds to, in order to perform specific functions (Moscat et al. 

2006).   
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A model pathway can be predicted from the results presented in Chapters 

2 and 3 of the dissertation.  The predicted model is indicated in figure 20 below. 

 

                               

Figure 20: Predicted model from the results in Chapter 2 and Chapter 3. 

 

 In this predicted model, the upstream regulators of MEK and PKCζ that 

are involved in regulation of the mitotic spindle in 3T3 cells are not known.  Also 

the downstream targets of ERK and GSK3β that are involved in mitotic spindle 

regulation of 3T3 cells are not known.  This model can be used to suggest studies 

that can be conducted in future experiments.  

 

Future studies 

The function of each of the PKC isoforms in centrosome regulation should 

be investigated  in the future.  Since PKCδ is also found on the centrosome and 

binds p(ser9)GSK3β studies can be performed to determine if PKCδ is a ‘backup’ 
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kinase for PKCζ or if PKCδ has some other important role to play in mitotic 

spindle regulation.  Studies can be performed to study upstream regulators of 

PKCζ and downstream effectors of GSK3β in 3T3 mouse fibroblast cells that are 

part of the pathway that regulates the mitotic spindle.  This would identify the 

kinases that are involved in regulation of the spindle and are part of the same 

pathway. 

In order to understand if PKCζ is upstream to the MAPK pathway, a 

peptide inhibitor against pPKCζ can be used and the cellular presence of pMEK 

and pERK can be investigated.  If the pPKCζ inhibitor inhibits the presence of 

pMEK and pERK, pPKCζ can be further studied as an upstream regulator of 

pMEK and pERK.  PKCs have been reported previously as upstream activators of 

the MEK/ERK pathway (Brändlin et al., 2002; Puente et al., 2006; Chang et al., 

2008; Marks et al., 2009).  In other studies the PKCζ isoform has been implicated 

to be an upstream activator of MEK (Berra et al. 1995; Short et al., 2006).   

Studies have shown microtubule associated proteins (MAPs) to be substrates of 

both ERK and GSK3β, and performed specific functions to regulate microtubules 

(Goold et al., 1995; Scales et al., 2009).  In 3T3 cells it will be interesting to study 

if MAPs are downstream effectors of ERK and GSK3β. 

The upstream regulator of PKCζ should be studied next in order to 

understand the complete pathway that regulates the mitotic spindle.  Earlier 

studies have implicated Phosphoinositide-3-kinase (PI3K) as an upstream 

regulator of PKC (Populo et al. 2012; Lee et al. 2008).  In other studies 

phosphoinositide dependent kinase-1 (PDK1) also has been implicated to be an 
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upstream regulator of PKC (Bayascas, 2010; Corbit et al. 2000).  It will be 

interesting to investigate if PI3K and/or PDK1 are upstream regulators of PKCζ.  

Thus studying these aspects of the signaling pathways involving PKCζ, GSK3β, 

MEK and ERK discussed above may lead to interesting observations about the 

roles of these kinases in regulation of the mitotic spindle.  
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