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ABSTRACT 

 

 A distributed-parameter model is developed for a pressurized water reactor 

(PWR) in order to analyze the frequency behavior of the nuclear reactor. The 

model is built based upon the partial differential equations describing heat transfer 

and fluid flow in the reactor core. As a comparison, a multi-lump reactor core 

model with five fuel lumps and ten coolant lumps using Mann’s model is 

employed. The derivations of the different transfer functions in both models are 

also presented with emphasis on the distributed parameter. In order to contrast the 

two models, Bode plots of the transfer functions are generated using data from the 

Palo Verde Nuclear Generating Station. Further, a detailed contradistinction 

between these two models is presented.  

From the comparison, the features of both models are presented. The 

distributed parameter model has the ability to offer an accurate transfer function at 

any location throughout the reactor core. In contrast, the multi-lump parameter 

model can only provide the average value in a given region (lump). Also, in the 

distributed parameter model only the feedback according to the specific location 

under study is incorporated into the transfer function; whereas the transfer 

functions derived from the multi-lump model contain the average feedback effects 

happening all over the reactor core.  
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CHAPTER I 

INTRODUCTION 

 

 This thesis describes a distributed-parameter model using partial differential 

equations for the pressurized water reactor (PWR). This model is used to analyze 

the frequency behavior of the nuclear power reactor. 

 Previous researchers have developed methods based on different multi-lump 

parameter models to evaluate the behavior of the nuclear reactor core. A result has 

been reached that the more lumps the model has, the more accurate the results are. 

However, the multi-lump model is based on the average theory; it is difficult to 

arrive at a very accurate result at any exact point that is going to be studied. To 

increase the model resolution, the number of lumps could be increased to a very 

large number. But this makes an analytical calculation very complicated and may 

take a large amount of (computer) time to solve the huge matrix. 

 This is an impetus to build a distributed-parameter model so that wherever 

the location of interest, the actual value at that exact position can be calculated. 

With the distributed-parameter model, the transfer function between any input and 

output at any location throughout the reactor core can be derived, plotted and 

analyzed. This makes the result more accurate yet the calculation is more 

simplified. This research simulates the transfer functions by producing the Bode 

plots using MATLAB. This research shows that the distributed parameter model is 
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correct and more accurate than the multi-lump model. By plotting the same 

transfer function at different locations in the same graph, it helps to have a better 

understanding of the response and behavior of the reactor core. 

 Chapter II provides background information on nuclear power plants and the 

nuclear reactor core. The zero power transfer function and the feedback 

mechanisms are also reviewed. The different nuclear reactor modeling methods 

are briefly introduced and compared at the end of Chapter II. Chapter III explains 

the theory of multi-lump reactor core modeling. A multi-lump model with five 

fuel lumps and ten coolant lumps is established using Mann’s model. Analysis is 

made by graphing the Bode plot of the transfer functions with MATLAB using 

data from the Palo Verde Nuclear Generating Station [1] [2]. In Chapter IV the 

general distributed parameter modeling theory is introduced. Then, a 

distributed-parameter model of a PWR is built and its transfer functions are 

derived. Chapter V simulates the distributed-parameter model established in 

Chapter IV with MATLAB using the same nuclear power plant data used in 

Chapter III. The comparison of two models is made and the differences between 

them are analyzed and explained. Chapter VI summarizes the research 

accomplishments and presents recommendations for future work.
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CHAPTER II 

BACKGROUND OVERVIEW 

 

This research mainly deals with the modeling and transfer functions of the 

nuclear reactor core. To have a better understanding, some basic nuclear reactor 

knowledge will be explained in this chapter. Feedback mechanisms are very 

important in a nuclear reactor, so the different feedback paths and coefficients are 

also covered. Since most of the analysis is based on modeling, some existing 

modeling methods will be discussed. 

 

Fundamentals of Nuclear Reactor 

Prompt Neutrons 

The reactor kinetics describe the time dependent neutronic behavior of the 

reactor by itself. The neutron population changes from one generation to the next 

based on the multiplication factor k. The number of neutrons in the ith generation 

( )in t  can be expressed as: 0( ) i

in t n k , where 
0n  is the initial number of 

neutrons. The period between one neutron generation to the next is defined as the 

neutron lifetime (l). There are two major stages that a thermal neutron goes 

through from its birth to death: slowing down from fast to thermal energy; and 

diffusion until being absorbed or leaking out. The latter one dominates the time 

period and it depends on the specific moderator material. The lifetime of a prompt 
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neutron in an infinite reactor is: 
(mfp)distance 1

velocity

a
p

a

l
v v

   


, where (mfp)a
 is 

the mean free path to absorption and 
a  is the macroscopic absorption 

cross-section [3]. By employing the Maxwellian neutron distribution, the prompt 

neutron lifetime in a thermal reactor can be estimated as the mean neutron 

diffusion time (
dt ): 

0 0

1

( ) 2
p d

aa T

l t
E v v

   
 

, where a  is the thermal 

macroscopic absorption cross-section. In the case of a moderator-fuel mixture, the 

mean neutron diffusion time can be calculated as: 

 
(1 )

22

M

a M

d dM F MF M

a a aa a TT

t t f
vv

   
    
      

, where 
F

a  is the thermal 

macroscopic absorption cross-section of the fuel, 
M

a  is the thermal macroscopic 

absorption cross-section of the moderator, M

dt  is the mean neutron diffusion time 

of the moderator and f is the thermal utilization [4]. 

Note that in actuality, the reactor cannot be an infinite core. Thus, absorption 

is not the only way of a neutron’s death; they may leak out from the core as well. 

In the finite reactor, only the neutrons that remain in the core contribute to the 

prompt lifetime ( pl ): 
p pl l Lth, where Lth is the thermal nonleakage probability. 

The neutron generation time ( ) is defined as the time period from birth 

(fission) to absorption-inducing fission (death) as a replacement to the neutron 

lifetime: 
l

k
  , where k is the multiplication factor describing criticality. From 
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the equation above, it can be seen that when 1k  , that is when the reactor is 

critical, the lifetime and the generation time are equal. 

 

Delayed Neutrons 

Besides prompt neutrons, the other important group of neutrons is the delayed 

neutrons. Radioisotopes decay by different mechanisms. Most of them are by 

alpha and beta decay. However, some neutron-rich radionuclides decay by neutron 

emission: 1 1

0

A A

Z ZP D n  , where P means the parent, D means the daughter and 

the n is the neutron. Delayed neutrons come from decay chains which have one or 

more beta emitters prior to the neutron emitter. Almost the entire delay time until 

the delayed neutron appears comes from the beta decay while only a little amount, 

which could be neglected, is from the actual delayed neutron emission. Then, the 

delayed neutron precursor (C) is defined as the radioactive fission product 

progeny that decays by neutron emission. 

The delayed neutrons are emitted from some fission products, but the delayed 

neutron fraction (  ) is very small, typically less than 1% [5]. However, the 

importance of the delayed neutron cannot be overemphasized since without them, 

the nuclear reactor would be uncontrollable. Therefore, the delayed neutrons are 

sure very important for a thermal reactor. 

Each radionuclide has its own decay constant ( ): 
1/2

ln(2)

t
  , where 1/2t  is 
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the half-life [6]. The average (or mean) life of a radionuclide ( ) is defined as: 

1



 . Then, the average thermal neutron lifetime accounts for delayed neutrons 

can be calculated as: 

1
(1 ) ( )Avg p pl l l


  

 
                    (2.1) 

 

Reactivity 

Reactivity (  ) is used to describe the change is criticality. It is defined as: 

1k k

k k


 
   [7]. The relationship among k,   and criticality is shown as 

Table 2.1. Reactivity can be expressed as a dimensionless quantity or in units of 

dollars: $



 . Note that a dollar of reactivity is very large. Usually, a smaller 

unit, the cent, is used to quantify the amount of reactivity [8]. 

 

Table 2.1 Relationship among k,   and criticality 

Multiplication Factor Reactivity Condition 

1k   0   Subcritical 

1k   0   Critical 

1k   0   Super Critical 

(1 ) 1k       (Super) prompt critical 
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Reactor Period 

The reactor period (T) is defined as: 
1 1 dn

T n dt
 . The time required for the 

flux or power to increase by a factor of e (e = 2.728) is also called the stable 

reactor period. For very small reactivity changes (   ), 
Avgl

T
 

  
   . 

For large positive reactivity insertions (   ), 
pl

T
 




, which is a (super) 

prompt critical condition [9]. 

 

Point Kinetics 

 Now, the set of differential equations that describe the time-dependent 

neutron population including the delayed neutrons is derived. The derivation 

begins with the expression: Production Leakage Absorption
n

t


  


. So, the 

basic neutron balance becomes 

  21 f a

n
v C DB

t
    


       

           (2.2) 

where B
2
 is buckling and D is the diffusion coefficient. Since the flux vn  , 

take the derivative of the equation and get: 

v
d dn

dt dt


                        (2.3) 

Substitute Equation (2.3) into Equation (2.2) and rearrange, it yields to: 
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2

v 1 va
f

f

DBd
v C

dt v


  

  
     

  
           (2.4) 

Equation (2.4) can be simplified as: 

v ( ) (v )f

d
v C

dt


                       (2.5) 

Define ' vC C , so Equation (2.5) can be re-written as: 

1
( ) '

d
C

dt


     


                    (2.6) 

For the delayed neutron precursors, the differential equation is: 

f

dC
v C

dt
                           (2.7) 

Multiply Equation (2.7) by a factor of v  and have: 

v v vf

dC
v C

dt
                         (2.8) 

Substitute ' vC C  into Equation (2.8) and simplify it to: 

' 1
'

dC
C

dt
  


                      (2.9) 

 Equations (2.6) and (2.9) are the final version of the generation time 

formulation of the point kinetics equations that includes the delayed neutron 

contribution. 

 Since R fP E V  , the point kinetics equations can be re-written in the 

power form as: 

1
( ) "

dP
P C

dt
    


                  (2.10) 
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" 1
"

dC
P C

dt
  


                    (2.11) 

where '' R fC E VC  , and ER and V are the recoverable energy and volume of the 

reactor core, respectively [10]. 

 

Zero Power Reactor Transfer Function 

 Transfer functions are very important in examining system response based on 

the changes in a single input parameter. The response is the output and in a 

nuclear reactor, it is usually power (P) or flux ( ) while the input variable is the 

reactivity (  ). So, the transfer function (G) can be written as: 

( )
( )

( )

Output P s
G s

Input s
                      (2.12) 

 Equation (2.12) is referred to as the zero power reactor transfer function 

because an assumption has been made that no feedback mechanisms are present. 

In order to make this assumption reasonable, the reactor should be at such a low 

power that the temperatures of the fuel and moderator do not increase above the 

ambient temperature. 

 Since the product of power and reactivity is nonlinear, the point kinetics 

equation cannot be used directly. Thus, the perturbation form of the point kinetics 

equations shall be used. The linearized point kinetic equations can be used to 

determine the transfer function of the zero power reactor. Equation (2.13) shows 
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the zero power reactor transfer function with a single delayed neutron precursor 

group in terms of power [11]. 

0
0

( ) /
( )

( )

P s P s
G s

s
s s

 





 

 
   

 

              (2.13) 

Substitute s j  into Equation (2.13), the zero power reactor transfer function 

in terms of frequency (  in radians/second) can be written as: 

0
0

( ) /
( )

( )

P P j
G

j j

   


 
  


 

 
   

 

           (2.14) 

Equation (2.14) shows that the zero power reactor transfer function has one zero 

at    and two poles at 0   and 


  


. 

 

Reactivity Feedback Mechanisms 

 The zero power reactor transfer function describes the response based only on 

the point kinetics equations. However, in a real nuclear power reactor, feedback 

influences must be considered in order to fully characterize the reactor behavior. 

The feedback is from both internal and external mechanisms. The internal factors 

include fuel heat element heat transfer, changes in coolant density, pressure, phase 

boundaries, acceleration, and effects of temperature and coolant density on reactor 

reactivity. The external effects are load conditions and other equipment like 

pressurizer, steam generator, etc.  
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 There are four inherent reactivity feedback mechanisms of significant 

magnitude, including: [12] 

1. Fuel temperature (Doppler) coefficient; 

2. Moderator temperature coefficient; 

3. Moderator void coefficient; and 

4. Moderator pressure coefficient. 

Only the first two reactivity feedback coefficients of temperature are utilized in 

this work. The temperature reactivity feedback coefficient (
T ) is defined as 

below: 

2

1 1
T

d dk dk

dT k dT k dT


                     (2.15) 

 In order to have a stable reactor operation, the reactivity feedback coefficients 

must be negative. And the reactivity coefficients are not constants, they change 

over the core life. 

 

Fuel Temperature Coefficient of Reactivity 

 The mechanism behind the fuel temperature coefficient of reactivity is 

Doppler broadening, which means an increase in fuel temperature (T) causes a 

broadening of the resonance cross sections with a corresponding decrease in the 

self-shielding and an increase in the resonance absorption, shown as Figure 2.1. 

Note that even though the peak in the figure decreases with the increase of the 
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temperature, the area under the absorption cross section curve remains the same. 

The Doppler effect is very important because it is fast acting and it is usually 

negative. 

 

Fig. 2.1 Doppler broadening. 

 According the definition of the temperature reactivity feedback coefficient 

(Equation 2.15), the fuel temperature reactivity feedback coefficient F

T  is 

defined as: 

1 1
ln( )F

T

F F

dk dI

k dT I dT
                      (2.16) 

where  is the resonance escape probability and I  is the resonance integral. 

Considering the resonance integral temperature dependence leads to: 

 ( ) (300 )
(300 ) 1 300

2

F I
I F

F F F

dI T I Kd
I K T K

dT dT T


    

 
  (2.17) 

where 
'

'I

F F

C
A

r



   and 'A , 'C  are constants. Substitute Equation (2.17) 
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into Equation (2.16) and we obtain: [13] 

1
ln

(300 )2

F I
T

F
KT




 
  

 
                (2.18) 

 

Moderator Temperature Coefficient of Reactivity 

 The moderator temperature coefficient (MTC) of reactivity, typically 

designated as M , is defined as the change in reactivity   per unit change in 

the moderator temperature 
MT : 

M

M

d

dT


                        (2.19) 

It is a very important reactivity coefficient in the nuclear reactor core. In a typical 

PWR, water is used as both coolant and moderator. So, in this thesis, coolant and 

moderator are the same. 

 

Reactor Core Modeling 

 Now, the linearized point kinetics equations for a pressurized water reactor 

can be re-written considering the fuel temperature coefficient and the moderator 

temperature coefficient: 

0 0 0F MT
F M ext

P P Pd P
P C T T

dt

 
    


    

   
    (2.20) 

Td C
P C

dt


  


                  (2.21) 
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where 
0P  is the reactor power and 

ext  is an external reactivity input (e.g., 

control rod). 

 Researchers have divided the nuclear reactor core into a fuel lump and a 

coolant (moderator) lump in order to study the response of the reactor. However, 

they found that this model cannot provide an accurate result because the 

parameters are changing throughout the core. So, the multi-lump model was 

created. Multi-lump means that the fuel and coolant has been divided into 

different lumps, typically according to the height. At first, there is only one 

coolant lump for each fuel lump. It is still not accurate enough. Therefore, a 

multi-lump model which uses two coolant lumps for each fuel lump has been 

made, known as the Mann’s model [14]. Mann’s model has increased the accuracy 

of the study and it can get a better result just by increasing the number of lumps. 

However, it is still based on an average method and if the number of lumps gets 

too big, this makes it hard to solve the huge matrix which may take a large 

amount of (computer) time during calculation. So it is useful to create a 

distributed parameter model so that wherever the point is of interest, the actual 

value at that exact position can be calculated. And with the distributed parameter 

model, the transfer functions between any two parameters at any place in the core 

can be derived, calculated and plotted very accurately. This thesis will present 

both models and make a detailed comparison between them. 
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CHAPTER III 

MULTI-LUMP MODEL 

 

In order to generate a more detailed reactor core model compared to the 

single lump reactor core model, the multi-lump reactor core model has been 

established. In this model, more than one lump is used to describe the fuel and 

coolant interactions in the core. 

 

Theory 

In the multi-lump reactor core model, the lump may be divided in either the 

radial or axial direction as well as the fuel to coolant heat transfer. Obvious 

divisions are the cladding, gap and the fuel pellet itself. However, because of the 

relative size difference between these three components, it is the fuel rod that is 

generally divided into several sections. Figure 3.1 shows the block diagram of a 

typical multi-lump reactor core with N fuel lumps and N coolant lumps. 

 

Fig. 3.1 Block diagram of the multi-axial lump reactor core model. 



16 

Mann’s Model 

 One of the problems brought by the modeling of the heat transfer process is 

the value of the driving temperature difference ( T ). Mann’s model uses two 

coolant lumps for each fuel lump. Thus, T  is then changed into the 

temperature difference between the fuel and the average temperature of the first 

coolant lump. Here, an assumption is made that each coolant lump is well-stirred 

so that the outlet coolant temperature equals the average coolant temperature in 

the lump. Figure 3.2 shows the block diagram of Mann’s Model [14]. 

 

Fig. 3.2 Block diagram of Mann’s model. 

The advantage of Mann’s model is that it provides a more realistic 

representation for the heat transfer from the fuel to the coolant, compared with 
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using the single coolant lump which assumes that the average coolant temperature 

( avgT ) in the lump is the mean value of the inlet and outlet coolant temperatures 

inT  and 
outT , respectively: 

( ) / 2avg in outT T T                       (3.1) 

Rearrange the equation above, the limitation of the single lump model can be seen 

such that: 

2out avg inT T T                        (3.2) 

Equation (3.2) shows that if the coolant inlet temperature suddenly increases, the 

outlet temperature will decrease at the same time, which is opposite to the reality. 

 The ordinary differential equations of Mann’s model are derived below. The 

fuel temperature, 
FT , is arrived at through a basic energy balance on the fuel 

lump: 

FdE

dt
Heat generated in the fuelHeat leaving the fuel     (3.3) 

where FE  is the heat energy in the fuel. Thus, 

1

( )
( ) ( ) ( )F F

FC F

dE d mcT
f P t UA T

dt dt
              (3.4) 

where 

 Fm = the mass of the fuel, 

 Fc = the specific heat of the fuel, 

 f = the fraction of heat generated in the fuel, 
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( )P t = the reactor power, 

 
FCU = the overall fuel-to-coolant heat transfer coefficient, 

 
FCA = the effective heat transfer surface area, and 

 
1 = the average temperature of the first coolant lump. 

Equation (3.4) can be re-written as: 

1

1
( ) ( )

( )

F
F

F F

dT f
P t T

dt mc



                   (3.5) 

where 
( )

( )

F
F

FC

mc

UA
   is the fuel heat transfer time constant. 

 Similarly, the differential equation for the first (inlet) coolant lump can be 

driven: 

1

1
1 1

( )
(1 )2

( ) ( ) ( ) ( ) ( )
2 2

C

C
FC F C in

m
d c

dE f A
P t U T mc

dt dt



  

 
          (3.6) 

where 

 1CE = the heat energy in the first (inlet) coolant lump, 

Cm = the mass of the coolant, 

 Cc = the specific heat of the coolant, 

 Cm = the coolant mass flow rate, and 

 in = the coolant inlet temperature. 

 Rearrange the equation above and get: 

1
1 1

(1 ) 1 2
( ) ( ) ( )

( )
F in

C C R

d f
P t T

dt mc


  

 


               (3.7) 
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where 
( )

( )

C
C

FC

mc

UA
   is the coolant heat transfer time constant and C

R

C

m

m
   is 

the coolant residence time in the core. 

 Thus, the differential equation for the second (outlet) coolant loop can be 

derived in the same way and get: 

2
1 2 1

(1 ) 1 2
( ) ( ) ( )

( )
F

C C R

d f
P t T

dt mc


  

 


               (3.8) 

where 
2  

is the average temperature of the second coolant lump [15]. 

 The matrix structure of the isolated core using Mann’s model is shown below: 

(3.9) 

 Mann’s model may also be implemented into a multi-lump reactor core with 

N fuel lumps and 2N coolant lumps. [16] The block diagram is shown as Figure 

3.3. 

 Similar to the derivation of Equations (3.3) to (3.8), the differential equations 

of the multi-lump model can be derived: 

,

, 2 1

,

1
( ) ( )

( )

F i i
F i i

F i
F

dT f
P t T

mdt
c

N




                      (3.10) 
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Fig. 3.3 Block diagram of Mann’s model with multiple lumps. 

 For the odd ( 2 1j i  ) coolant lumps: 

, 1

,

1 2
( ) ( ) ( )

/
( )
2

j j

F i j j j

C i R
C

d f
P t T

mdt N
c

N


  

 
           (3.11) 

 For the even ( 2j i ) coolant lumps: 

, 1 1

,

1 2
( ) ( ) ( )

/
( )
2

j j

F i j j j

C i R
C

d f
P t T

mdt N
c

N


  

 
           (3.12) 

  

Frequency Response 

To get the frequency response, the matrix formulation is introduced, shown 

as: 

( )
d

t
dt

 
x

Ax f
                    

 (3.13) 

where x is the input vector, f is the forcing functions vector, and A is the state 

matrix. 
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 To solve for the frequency response, the equation above can be re-written as: 

( ) ( )
d

t y t
dt

 
x

Ax b
                    

 (3.14) 

 Then, take the Laplace transform of the entire set of equations and yield to: 

( ) (0) ( ) ( )s s s y s  x x Ax b                  (3.15) 

  ( ) ( )s s y s I A x b
                  

 (3.16) 

 So, the transfer function can be written as: 

 
1( )

( )
( )

s
s s

y s


  

x
G I A b

                

 (3.17) 

 Substitute s j  into equation above and yield to: 

 
1

( )j j 


 G I A b
                 

 (3.18) 

 

Modeling and Simulation 

In this thesis, a five fuel nodes and ten coolant nodes model has been utilized. 

The block diagram of this model is shown in Figure 3.4. 

 This model is simulated with MATLAB. The Bode plots of different transfer 

functions can be graphed to study their characteristics. There are two driven 

sources in this model, the change in reactivity   and the change in coolant inlet 

temperature in , and three outputs, change in power P , change in fuel 

temperature FT  and change in coolant exit temperature out . In order to study 

the characteristics of the model, only one driven source will be turned on at each 
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Fig. 3.4 Multi fuel-coolant node model. 
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time and the other one will be set zero. All the data and parameters used in the 

model are from and based on the Palo Verde Nuclear Generating Station at 

Tonopah, Arizona [1] [2]. 

 

Reactivity Change as Input 

First, the change in coolant inlet temperature is set to be zero. Thus, the 

transfer functions with a reactivity input change can be calculated and plotted. We 

shall find that the first five transfer functions presented have a break point at 

around 37.63 Hz. From the block diagram in Figure 3.4, it will be seen that all 

these five transfer functions share one part in common, that is the zero power 

transfer function introduced previously in Chapter II. Equation (2.14) shows that 

the zero power reactor transfer function has one zero at    and two poles at 

0   and 


  


. Applying the data from this power plant finds the zero is 

at approximately 0.0152 Hz and the poles are at 0 Hz and around 37.63 Hz. This 

confirms that the pole of the zero power transfer function is the cause of this 

turning point. 

 The power to reactivity transfer function is plotted as in Figure 3.5. 

Compared to the plot of the zero power transfer function in Chapter V (Figure 

5.2), the gain at the low frequency does not go to infinity. This is because of all 

the inherent reactivity feedback that bring the gain from infinity to a finite value. 
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This makes the reactor controllable at the low frequency which is important. 

 According to the rule of thumb that a one cent change in reactivity will cause 

one percent change in the power, this figure can be proved reasonable. From the 

MATLAB plot, the gain value of the plateau region can be read which is 

55.23 10
MW


 . Based on the theory, the change of power can be calculated as 

5 51 5.23 10 (0.01 0.0073) 5.23 10 38.18
MW MW

cent MW
 

       . The power of this 

reactor is 3800MW. Thus one percent of the power is 0.01 3800 38MW MW  . 

They are not exactly the same but close enough for such an approximation. 

 

Fig. 3.5 Power to reactivity transfer function. 
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 The fuel temperature at the upmost lump to reactivity transfer function is 

shown as Figure 3.6. There are three turning points at frequencies of 0.00572 Hz, 

0.1484 Hz and 37.63 Hz. The curve comes in as a horizontal line until it hits the 

first break point and it decays one decade per four decades. Then it goes into the 

second break point and changes the slope to one decade per decade. Finally, it 

meets the third break point and the slopes changes to two decades per decade. 

 According to the definition of the fuel heat transfer time constant (
F ), 

F  

should have influence on the transfer function. All time constants and their 

corresponding frequencies (
1

2
f


 ) in this model are shown in Table 3.1. The 

parameters used to calculate the time constants are shown in Appendix A. Table 

3.1 shows that this transfer function shold have a pole at 0.0487 Hz, however, it 

does not intially appear to. 

 In order to determine if there is error in this plot or not, some analysis is done 

to examine the plot. First, according to the characteristic of a pole in the Bode plot, 

if a pole occurs, the curve will go downward by one decade per decade. However, 

as stated before, after hitting the first break frequency, the curve did not decay one 

decade per decade. It decays one decade per four decades istead. That is saying 

that the first break point is not a pole. Using the insert line function and the data 

cursor function in MATLAB, the pole can be extrapolated, shown as Figure 3.7. 

First, draw a extension line of the horizontal line at the low frequency. Then, draw 
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the extension line of the curve between the second and third break frequency, 

which is decaying one decade per decade. Find the intersection of these two lines 

and draw a vertical line through that point. Use the data cursor function and find 

out that the pole is at 0.0551 Hz. This is close to the 0.0487 Hz which coresponds 

to the fuel heat transfer time constant. This proves that the plot is correct. 

 Since the plot is right, what caused the first and second break point? In Figure 

3.4 it can be seen that there are two other mechanisms that may influence the plot. 

One is the fuel temperature coefficient of reactivity (
F ) and the other one is the 

moderator temperature coefficient of reactivity ( M ). A numerical experiment has 

been done in order to find out if this is the reason that caused the break 

frequencies. The experiment is done by changing only 
F  and only M  to zero, 

respectively. Then set both of them to zero. Compare these three plots with Figure 

3.6 which none of them are zero. The result is shown as Figure 3.8. From the 

comparison it can be seen that F  and M  serve important roles to keep the 

core controllable. Otherwise, the value of this transfer function will go infinity at 

the low frequency. Also, it shows that it is the effect by both F  and M  that 

causes the first and the second break frequencies. 
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Table 3.1 Time constants and their corresponding frequencies 

Time constant Value [1] Corresponding frequency 

Fuel heat transfer time constant (
F ) 3.265 sec 0.04875 Hz 

Coolant heat transfer time constant (
C ) 7.087 sec 0.02246 Hz 

Coolant residence time in the core (
R ) 0.7622 sec 0.2088 Hz 

 

 

Fig. 3.6 Fuel temperature at the upmost lump to reactivity transfer function. 
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Fig. 3.7 Fuel temperature at the upmost lump to reactivity transfer function. 

Figure 3.9 shows the transfer function of the coolant exit temperature to 

reactivity. The plot shows that it has a break frequency at 0.2056 Hz, which 

corresponds to 
1

0.7741sec
2 f




  . It is very close to the value of coolant 

residence time in core R  which is 0.7622 sec. The low frequency behavior can 

be validated using a basic heat balance on the reactor, after a one cent increase in 

reactivity. From Figure 3.5, the gain at low frequency can be read using MATLAB, 

which is 
54.019 10

MW


 . Then, the increase in power can be calculated as 

below: 
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0.0000118;  0.00007F M      0;  0.00007F M     

  

0.0000118;  0F M     0;  0F M    

Fig. 3.8 Comparison of different   values. 

5 51 4.019 10 (0.01 0.0073) 4.019 10 29.34
MW MW

P cent MW
 

          

(3.19) 

According to pP mc T   , the change in the coolant exit temperature can be 

computed as: 

6

29.34
0.431

1 1
164 10 1.4159

3412 1000
p

P MW
T F

lbm Btu kW hr MWmc

hr lbm F Btu kW


   

    
    

    

  

(3.20) 
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From MATLAB, the gain at the low frequency of Figure 3.9 can be read as 

6606
F


. Thus, the change in temperature for a one cent increase in reactivity 

should be (0.01 0.0073) 6606 0.482
F

F


   . These two results match well. 

 

Fig. 3.9 Coolant exit temperature to reactivity transfer function. 

According to the transfer functions above, more transfer functions can be 

easily derived. Figure 3.10 shows the coolant exit temperature to power transfer 

function. It has a turning point at 0.0210 Hz, which is 
1
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2 f




  . 

From Table 3.1 can be seen that it is approximately same as the C  value, 7.0870 

sec. The coolant temperature cannot keep up with power changes at high 

frequency because of heat transfer time delays. 
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Fig. 3.10 Coolant exit temperature to power transfer function. 

 Figure 3.11 shows the transfer function of the coolant exit temperature to fuel 

temperature at the upmost lump. The gain at the low frequency is 0.1003 and it 

turns at 1.232 Hz. Similarly, coolant temperature changes at higher frequencies 

are constrained by time lags due to heat transfer.  

 

Coolant Inlet Temperature Change as Input 

Next, the change in reactivity is set to zero and coolant inlet temperature 

works as the driven source. Thus, the transfer functions of input in
 
can be 

produced. 
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Fig. 3.11 Coolant exit temperature to fuel temperature at the upmost lump transfer 

function. 

 Figure 3.12 shows the transfer function between power and coolant inlet 

temperature. The same approach for the transfer function between fuel 

temperature and reactivity (Figure 3.7) is used here to obtain the pole of this 

transfer function. Use the insert line and data cursor function in MATLAB and 

find the pole is at 0.2056 Hz (shown in Figure 3.12), which is very close to the 

frequency of 0.209 Hz corresponding to the coolant residence time in the core ( R ) 

(see Table 3.1). 
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Fig. 3.12 Power to coolant inlet temperature transfer function. 

The fuel temperature at the upmost lump to coolant inlet temperature transfer 

function is plotted as Figure 3.13. It shows a break point at 0.02419 Hz. From 

Table 3.1 it can be seen that this is caused by the coolant heat transfer time 

constant ( C ) at 0.0225 Hz, which is reasonable. 

Figure 3.14 is the coolant exit to inlet temperature transfer function. Using 

the same method for Figure 3.7, we find that the break frequency is 0.2056 Hz 

which is caused by the coolant residence time R  according to Table 3.1. The 

gain at the low frequency is slightly less than 1 which is reasonable because of the 

negative moderator reactivity feedback effect. However, the feature that the curve 

decays very fast after the break frequency requires a greater level of scrutiny. 
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Fig. 3.13 Fuel temperature at the upmost lump to coolant inlet temperature 

transfer function. 

Notice that the transfer function of each lump in the multi-lump model is not a 

pure time delay. It is a first-order transfer function in the form of 
1

1 s
. 

Therefore, this first-order transfer function has been compounded from the inlet to 

the lump which is specified. This causes the curve after the break frequency to 

become steeper with increasing numbers of lumps. In order to prove this, the 

transfer function between the even number coolant lumps (see Figure 3.4) and the 

coolant inlet temperature has been plotted, shown as Figure 3.15. It shows that 

along with the coolant lump goes higher and higher, the curve after the break 

frequency decays faster and faster. This proves that the conclusion is correct. 
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Another place that warrants attention is the gain at the low frequency. Figure 3.15 

clearly shows that the gains at the low frequency are all slightly less than one, 

however, when the coolant lump goes higher, the gain becomes smaller. As 

mentioned before, the gain at low frequency is less than one because of the 

negative moderator reactivity feedback effect. This behavior here shows that the 

feedback is felt more and more moving up the core. This is because this transfer 

function includes not only the negative moderator reactivity feedback effect at one 

certain lump, but also the negative moderator reactivity feedback effects occurring 

before that location. 

 

Fig. 3.14 Coolant exit to inlet temperature transfer function-reactivity. 
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Fig. 3.15 Coolant lump temperature to coolant inlet temperature. 

 

Fuel Temperature to Power Transfer Function in Both Cases 
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transfer function when the driven source is change in reactivity and coolant inlet 
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gain of 0.1638 at the low frequency while it is 0.1334 in Figure 3.14. Notice that 
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1
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that the transfer functions are not exactly same in each situation. From the Figure 

3.3, it can be easily read that there is one more transfer function D when the 

coolant inlet temperature is the driven source rather than reactivity, which causes 

the difference between the plots. 

 

Fig. 3.16 Fuel temperature at the upmost lump to power transfer 

function-reactivity. 
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Fig. 3.17 Fuel temperature at the upmost lump to power transfer function-coolant 

inlet temperature. 
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CHAPTER IV 

THEORY 

 

 Even though a lot of studies show that the multi-lump reactor core model 

using ordinary differential equations can be used to analyze the time dependent 

behavior of the nuclear power reactor, it cannot represent the changes in the 

spatially dependent variables during a transient situation which is important. Thus, 

the distributed-parameter model using partial differential equations is more 

advantageous in this situation. This chapter is going to present the general 

distributed parameter modeling theory, build a distributed parameter model for a 

PWR reactor and derive the transfer functions of that model. 

 

General Distributed Method 

 The general equation of a distributed system is shown below: 

( , ) ( , ) ( , ) ( , ) ( , )r tL r t z r t M r t z r t C r t               (4.1) 

where 

 r = position vector, 

 rL = a linear differential operator containing all derivatives with respect to 

position and all constants, 

 z = the position and time dependent output variable, 

 tM = a linear differential operator containing all derivatives with respect to 
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time, 

 ( , )C r t = a forcing function (inhomogeneous term). 

 It takes two steps to obtain the solution in the frequency domain: 

1. Laplace transform the expression with respect to time, which gives: 

 
( , ) ( , ) ( , ) ( , ) ( , )r sL r s z r s M r s z r s C r s 

                 (4.2) 

where the zero initial conditions have been imposed. 

2. Solve the space dependent equation above by separation of variables for

( , )z r s . Use proper boundary conditions to couple the system to other 

parts of the system and the external conditions. 

 

Distributed-Parameter Model of PWR 

 The model which is going to be built could be shown as that in Figure 4.1. 

Now, the transfer functions for the heat transfer in the pressurized water 

reactor (PWR) core can be developed by the method above. Some assumptions 

are made to reach the result: 

1. The heat transfer is one-dimensional with uniform heat generation 

throughout the reactor core, 

2. The heat generated is transferred to a flowing coolant. 
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Fig. 4.1 Distributed-parameter model of a PWR. 

 

Fuel Rod Temperature 

The partial differential equation that describes the heat production and heat 

transfer through the fuel rod is: [17] 

2

2

( )1
( )

F pFF
cQ tT T

r
r r r k k t

  
 

  
              (4.3) 

where 

 FQ = heat generation rate per unit volume in the fuel rod, 

 k = thermal conductivity of the fuel rod, 

F = fuel density, 
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pFc = specific heat of the fuel, 

The boundary conditions are: 

0
T

r





  at 0r   (the fuel rod centerline)          (4.4) 

 0

T
k h T

r


  


  at 

0r r  (Newton’s law of cooling at fuel surface)  

(4.5) 

where 

 
0T = temperature in the material at 

0r r , 

  = temperature of the coolant fluid, 

 h = surface heat transfer coefficient, 

0r = radius of the cylindrical fuel rod. 

 According to the method of the distributed system, the first step is to Laplace 

transform the partial differential Equation (4.3) and get: 

2 2

2

( )1 ( , )
( ) ( , )FQ sT r s
r T r s

r r r k


 
 

 
            (4.6) 

where 
2 F pFc s

k


  . The general form of the solution is: 

0 0

( )
( , ) ( ) ( )F

F pF

Q s
T r s AI r BK r

c s
 


               (4.7) 

where 0I
 
is the modified Bessel functions of the first kind of order zero and 0K  

is the modified Bessel functions of the second kind of order zero. 

To solve for the constant coefficients A and B, the derivative of the solution is 

taken and get: 
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1 1

( , )
( ) ( )

T r s
A I r B K r

r
   


 


               (4.8) 

where 
1I  

and 
1K  are the modified Bessel functions of the first and second kind 

of order one, respectively. 

 Here, the boundary conditions are applied. Employing Equation (4.4) yields: 

1 1

0

( , )
0 (0) (0) 0

r

T r s
A I B K A B

r
   




      


    (4.9) 

 Thus, 0B   and the solution can be written as: 

0

( )
( , ) ( )F

F pF

Q s
T r s AI r

c s



                 (4.10) 

 Next, Equation (4.15) is applied: 

 
0

0

( , )
( ) ( )

r r

T r s
k h T s s

r 


  


             (4.11) 

 Substituting Equation (4.10) to (4.11) and yields: 

1 0 0 0

( )
( ) ( ) ( )F

F pF

hQ s
k AI r hAI r h s

c s
  


             (4.12) 

 Then, the constant coefficient A can be solved: 

1 0 0 0

( )
( )

( ) ( )

F

F pF

hQ s
h s

c s
A

k I r hI r



  

  




                (4.13) 

 Now, put A into Equation (4.10). The solution can be written as: 

0

1 0 0 0

( )
( )

( )
( , ) ( )

( ) ( )

F

F pFF

F pF

hQ s
h s

c sQ s
T r s I r

c s k I r hI r




   

  

 


       (4.14) 

or equivalently: 
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0 0

1 0 0 0 1 0 0 0

( ) ( )( )
( , ) 1 ( )

( ) ( ) ( ) ( )

F

F pF

hI r hI rQ s
T r s s

c s k I r hI r k I r hI r

 

      

   
     

    
 (4.15) 

 Therefore, two transfer functions can be determined from the equation above: 

0

1 0 0 0

( )( , ) 1
1

( ) ( ) ( )F F pF

hI rT r s

Q s c s k I r hI r



   

 
  

 
          (4.16) 

and 

0

1 0 0 0

( )( , )

( ) ( ) ( )

hI rT r s

s k I r hI r



  


 
               (4.17) 

 The former transfer function describes how the fuel temperature varies with 

heat generation (fission) changes, whereas the latter transfer function shows the 

change in fuel temperature with coolant temperature. 

 

Coolant Temperature and Flow 

 Another equation needed to establish the core heat transfer model is the heat 

balance for the coolant. Here, some assumptions are made: 

1. The coolant density c  is constant. Thus the mass is constant; 

2. The flow is constant. Therefore, the momentum balance is not needed. 

3. The coolant and moderator are incompressible media. Most nuclear 

power reactors use water, which is incompressible, as both the coolant 

and moderator. 

4. The heat generated from the fuel rod is directly transferred to the coolant 

(i.e. the gap and cladding are ignored). 
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Then, the convection heat transfer between the fuel rod and the coolant 

(single-phase, incompressible, one-dimensional slug flow) can be described by 

the partial differential equation below: 

0

( )
( ) c

c pc c pc

Q thP
u T

t z A c c 

 
   

 
             (4.18) 

where 

c = coolant density, 

pcc = specific heat of the coolant, 

CQ = volumetric heat generation in coolant, 

z = axial height (distance from core base), 

m
u

A
 = coolant velocity, 

m = mass flow rate, 

P = heated perimeter of the coolant channel, 

A = cross-sectional flow area of the channel. 

 Then, take the Laplace transform of the equation above, 

0

( )( , )
( , ) [ ( ) ( , )] C

c pc

Q sz s
s z s u b T s z s

z c


    


      (4.19) 

where 
c pc

hP
b

A c
 .  

 From Equation (4.15) derived earlier, the wall temperature 0T  in terms of 

the fluid temperature can be determined: 
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0 0 0 0
0

1 0 0 0 1 0 0 0

( ) ( )( )
( ) 1 ( )

( ) ( ) ( ) ( )

F

F pF

hI r hI rQ s
T s s

c s k I r hI r k I r hI r

 

      

   
     

          

(4.20) 

Substitute the equation above into Equation (4.24) and get: 

0 0

1 0 0 0

0 0

1 0 0 0

( )( )( , )
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( ) ( ) ( )
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    (4.21) 

or equivalently: 

( ) ( )( , )
( , )

( ) ( )
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        (4.22) 

where 
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( ) ( )
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               (4.23) 

 The solution of the equation is: 

( ) ( )

0

( ) ( ) 1
( , ) ( ) 1

( ) ( )

s bR z s bR z

C Fu u

p C p F

Q s bRQ s
z s s e e

c c s s bR 

 
     

         
     

  (4.24) 

 From the solution, three transfer functions can be obtained: 
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0

( , ) ( , )
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e
s s


 

 
 

               (4.25) 
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                 (4.26) 
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Combined Fuel and Coolant 

Then, the model of the heat conduction of the fuel and the model of the 

convection to the coolant can be combined to establish the full distributed 

parameter model of a PWR. Therefore, several transfer functions are obtained: 

( , , ) change in fuel temperature at the height  and radius 

(0, ) change in the coolant inlet ( 0) temperature

( , ) ( , )

( ) (0, )

T r z s z r

s z

T r s z s

s s





 

 


 




 

 (4.28) 

( , , ) change in fuel temperature at the height  and radius 

( ) change in the fuel heat source output

( , ) ( , ) ( , )

( ) ( ) ( )

F

F F

T r z s z r

Q s

T r s z s T r s

s Q s Q s





  

  




 



 (4.29) 

( , , ) change in fuel temperature at the height  and radius 

( ) change in the coolant heat source output

( , ) ( , )

( ) ( )

C

C

T r z s z r

Q s

T r s z s

s Q s





 

 








 (4.30) 

( , ) change in coolant temperature at the axial position 

(0, ) change in the coolant inlet temperature

z s z

s









   (4.31) 

( , ) change in coolant temperature at the axial position 

( ) change in the fuel heat source outputF

z s z

Q s






    (4.32) 

( , ) change in coolant temperature at the axial position 

( ) change in the coolant heat source outputC

z s z

Q s






    (4.33) 

 In order to have a better physical understanding of the equations derived 

above, Figure 4.2 is made to show the relationship of the variables and the 

transfer functions between two different variables. For example, Equation 4.16 is 

the transfer function from the fuel heat generation to the fuel temperature and 

Equation 4.17 shows the transfer function between the fuel temperature and the 
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coolant temperature; while Equation 4.15 combines both transfer functions 

whereas Equation 4.27 also includes coolant flow up the reactor. 

 
Fig. 4.2 Transfer functions between variables where the number in brackets refers 

to the equation number derived in the text. 
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CHAPTER V 

MODELING AND SIMULATION 

 

 For safety purposes, commercial nuclear power plants nowadays rarely 

accept any experiments or any test equipment attached to the reactor except those 

necessary to carry out required operations. Thus, creating a model of the nuclear 

reactor is necessary for simulation studies. 

 

Modeling 

 Since the majority of nuclear power plants use Pressurized Water Reactors 

(PWR), the model that is built up here is a PWR for the simulation and studies. To 

get a more accurate result, a distributed-parameter model is constructed. In order 

to have a better understanding, the overall block diagram of the PWR distributed 

parameter model has been made as Figure 5.1. For comparison, the results of the 

multi fuel-coolant node model employed in Chapter III will be used. Note that 

there are some slight differences between the gain of the transfer functions for the 

distributed model and the multi-lump model. It is because for the distributed 

parameter model, the fuel-to-coolant heat transfer is isolated at a certain height. 

The core averaged effects and feedback at other places are not explicitly included 

is the transfer function. However, the multi-lump model cannot be isolated at a 

certain level. It is an integral and average value for the core. Thus, all the effects 
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and feedbacks have been added to its transfer functions. All data and parameters 

used in the model are from and based on the Palo Verde Nuclear Generating 

Station at Tonopah, Arizona [1] [2]. 

 

Fig. 5.1 The overall block diagram of the PWR distributed parameter model. 

From the block diagram, the overall transfer function of the change in power 

to the change in the reactivity 0/

tot

P P


 can be derived as follows: 

0a xG A                          (5.1) 

0b aB xG AB                        (5.2) 

0c xG C                          (5.3) 

0f D                           (5.4) 
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0 0 0 0 0( )d b c f xG AB xG C D xG AB C D                (5.5) 

0 0 0( )F M F M Me a d xG A xG AB C D                  (5.6) 

extx e                          (5.7) 

Since this is a double-input single-output system, two transfer functions can 

be obtained by setting each input to zero separately: 

(1) If 
0 0  , then the output due to a reactivity change is 

 
0 0 0

0 0

/
( )

1 ( )ext F M

P P xG G
F s

x e G A G AB C



  
  

   
       (5.8) 

(2) If 0ext  , then the output due to a core inlet coolant temperature 

change is 

 
0 0 0

0 0 0

/
( )

1 ( )

M

F F M

M

P P xG DG
H s

x a G A G AB C
b c

D

 

  



  
   

     (5.9)

 

 

Simulation 

Individual Transfer Functions 

In Equations (5.8) and (5.9), the zero power transfer function 0G  

(introduced in Chapter II) is a basic and important transfer function. Recall that 

the zero power transfer function can be calculated as: 

0
0

( ) /
( )

( )
( )

P P j
G

j j

   


    


 

  


           (5.10) 

where 
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0P = the steady-state power generated in core, 

  = delayed neutron precursor decay constant, 

 = neutron generation time, and 

  = delayed neutron fraction. 

 Using MATLAB, the frequency domain response of the zero power transfer 

function is plotted in Figure 5.2. The graph shows that the transfer function has a 

zero at approximately 0.01519 Hz and two poles at 0 Hz and around 37.63 Hz 

which agrees with the theory that the zero power transfer function has a zero at 

  and two poles at 0 and 


 


. 

 

Fig. 5.2 Zero-power reactor transfer function. 
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From Figure 5.1, A is the transfer function of fuel temperature to power. It has 

been derived in Chapter IV and shown as Equation (4.29). It can be calculated and 

plotted as Figure 5.3. It shows that the fuel temperature response is the same at 

different heights. It is reasonable because the heat source in this model is assumed 

to produce heat uniformly along the fuel rod. Without this assumption, the fuel 

temperature will be different at different heights. Compare it to the plot of the 

multi-lump model Figure 5.4, the gain at low frequency of Figure 5.3 and 5.4 are 

0.1795 and 0.1638, respectively. The break frequencies are both 0.0404 Hz, which 

corresponds to the fuel heat transfer time constant (
F ) shown in Table 3.1. Then, 

it decays one decade per decade. These two plots agree very well. 

 

Fig. 5.3 Fuel temperature to power transfer function - distributed-parameter. 
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Fig. 5.4 Fuel temperature to power transfer function – multi node. 

 Equation (4.32) shows the transfer function of coolant temperature to the fuel 

heat production 
( , )

( )F

z s

Q s


 (Equation 4.27) which is the product of A and B in 

Figure 5.1. It has been plotted and shown in Figure 5.5. The gain at the low 

frequency at the coolant exit is 0.1561. It has a break frequency at 0.0223 Hz. 

From Table 3.1, it shows that this is caused by the coolant heat transfer time 

constant ( C ), which is reasonable. This means that if the fuel heat production 

changes faster than C , then the coolant temperature will not be able to keep up 

with the change. 
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Fig. 5.5 Coolant temperature to fuel heat production transfer function. 

With those two transfer functions plotted above, the transfer function B in 

Figure 5.1 can be calculated by dividing the transfer function of coolant 

temperature to the fuel heat production (A times B) by the transfer function of fuel 

temperature to power (A), shown in Figure 5.6. However, it is only one part of the 

transfer function of coolant temperature to fuel temperature since heat can be 

directly deposited into the coolant by nuclear radiation. 

Transfer function C, which is the other part of the transfer function of coolant 

temperature to the power, has been calculated as Equation (4.26). It is plotted as 
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Fig. 5.6 Part of coolant temperature to fuel temperature transfer function. 

the curve when z = 12 ft, like in Chapter III, it shows that the curve hits a pole at 

0.207 Hz and turns to decay one decade per decade. Checking with Table 3.1, we 

find out that it is caused by the coolant residence time in the core ( R ), which 

means if the change in power is at a low frequency, the change in coolant 

temperature can follow up with the change in power. However, if the frequency of 

change in power is increased to faster than the coolant residence time in the core, 

then the coolant would not be able to react with the power change because it is 

changing too fast. 

10
-4

10
-2

10
0

10
2

10
4

10
-5

10
0

G
a
in

Coolant Temperature to Fuel Temperature (part) Transfer Function Magnitude

 

 

z=3 ft

z=6 ft

z=9 ft

z=12 ft

10
-4

10
-2

10
0

10
2

10
4

-150

-100

-50

0

50

Frequency (Hz)

A
n
g
le

 (
d
e
g
re

e
s
)



57 

 

Fig. 5.7 Part of the coolant temperature to power transfer function. 

From Equation (4.25), transfer function D in Figure 5.1, which is the coolant 

temperature at height z to the coolant inlet temperature 
0

( , )

( )

z s

s




 can be 

determined, shown as Figure 5.8. As a comparison, the plot for the multi-lump 

model has been shown again as Figure 5.9 and Figure 5.8 has been changed to a 

semi-log scale for the gain and a linear scale for the angle, shown as Figure 5.10. 

They all show that the gains at the low frequency are close to one and they have a 

break frequency at 0.2056 Hz which is caused by the coolant residence time R  

according to Table 3.1. Compare Figure 5.9 and 5.10 and find that the curves in 
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the distributed parameter model do not decay as fast or in the same manner as 

those of the multi-lump model. This is because the distributed parameter model 

provides an exact inclusion of the pure time delay of the coolant flow. Another 

reason is that the transfer function D has no feedback mechanism included but the 

multi-lump model does, as presented in Chapter III. Therefore, with the 

distributed parameter model, we are able to isolate on this D transfer function and 

research its effect by itself. 

 

Fig. 5.8 Coolant temperature at height z to coolant inlet temperature - 

distributed-parameter log-log scale. 
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Fig. 5.9 Coolant lump temperature to coolant inlet temperature – multi node. 

 

Fig. 5.10 Coolant temperature at height z to coolant inlet temperature - 

distributed-parameter compare. 
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Pure Time Delay 

Figure 5.11 shows the pure time delay of 
R 0.76219 second. The pure time 

delay is defined as: [18] 

2 1( ) ( )y t y t  
       

               (5.11) 

where 
iy  is the measurement at position i. The Laplace transform of Equation 

5.11 is: 

2 1( ) ( ) sY s Y s e                       (5.12) 

 Therefore, the transfer function between signals 1 and 2 is: 

2

1

( )
( )

( )

sY s
H s e

Y s

                      (5.13) 

 The magnitude of the transfer function can be calculated as: 

2 *( ) ( ) ( ) ( ) ( ) 1j jH j H j H j H j H j e e               (5.14) 

Thus the magnitude of the pure time delay is not very useful since it equals 1 

at all frequencies. However, the magnitude of Figure 5.11 equals to 1 as well. It 

proves the plot is correct. 

 According to the Euler’s formula cos( ) sin( )je j       , the phase 

angle of the pure time delay can be written as: 

 
Re( ) cos( )

arctan arctan arctan tan( ) 2
Im( ) sin( )

j

j

e
f

e






    







   
          

  
  

(5.15) 

Thus, the slope of the phase angle versus frequency is the time delay. From Figure 

5.11, the phase angle is 540  at 1.968 Hz. Therefore, 
3

( 2 ) (1.968 )Hz









 

0.76220sec , which matches with the coolant residence time R  of the model 
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perfectly. Compare the phase angle plot of Figure 5.10 when z = 12 ft to the phase 

angle plot of Figure 5.11 and find out that the slopes of the two curves are same. 

This means that 
R  value from the model simulation matches with the theoretical 

calculation value. 

 

Fig. 5.11 Pure time delay of R 0.76219 sec. 
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From Equation (5.8), the overall transfer function of power to reactivity 

ext

P


 can be plotted using MATLAB, shown as Figure 5.12. Figure 5.13 is the 

plot of the same transfer function using the multi-lump model. Compare these two 

figures with the plot of the zero power transfer function of Figure 5.2; they clearly 

show that with all the feedback mechanisms, the gain at the low frequency has 

been brought back to a reasonable value compared to the very large value in the 

zero-power transfer function. The poles and zero are still the same. The gain of 

Figure 5.12 at the low frequency is 31660 for z = 12 and it is 40190 for Figure 

5.13. They both have a gain value of about 52250 at the plateau region and then 

they both hit a break frequency at 31.98 Hz, which is as same as the zero power 

transfer function. Then, they both decay one decade per decade. Notice that there 

is an obvious difference between the gains at the low frequency. This is because 

the multi-lump model is based on the average method. Hence, the change in 

power is the change in average power instead of the power at the core outlet. 

Therefore, it should be compared with the gain when z = 6, which is 

approximately at the middle of the core. Using the data cursor function in 

MATLAB, we find out that the gain at low frequency for z = 6 is 39650, which is 

close to the value of the multi-lump model. 
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Fig. 5.12 Overall power to reactivity transfer function - distributed-parameter. 

 

Fig. 5.13 Overall power to reactivity transfer function - multi node. 
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Similarly, the transfer function between power and coolant inlet temperature 

can be plotted according to Equation (5.9), shown as Figure 5.14; and Figure 5.15 

is the plot of multi-lump model for comparison. Again, the curve when z = 6 ft is 

chosen to make the comparison for the same reason as Figure 5.12. The gains at 

the low frequency are 27.75 and 32.88, respectively. They both have a break 

frequency of 37.63 Hz, which again, is caused by the zero power transfer 

function. 

 

Fig. 5.14 Power to coolant inlet temperature transfer function - 

distributed-parameter. 
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Fig. 5.15 Power to coolant inlet temperature transfer function - multi node. 

The transfer function of the coolant temperature to power can be determined 

as well. It is the transfer function d in Figure 5.1. When change in reactivity is the 

driving source, 0d b c f AB C      . Thus, it can be plotted as Figure 5.16. 

Figure 5.17 is the plot of the multi-lump model as a comparison. Figure 5.16 

shows that the closer to the exit, the higher the coolant temperature is and the gain 

at the low frequency for the coolant exit is 0.01561 while it is 0.01634 in Figure 

5.17, which is close. They both have a turning point at around 0.0223 Hz, which 

corresponds to the coolant heat transfer time constant. There is also a slight 

difference between two graphs. Again, as presented for Figure 5.8, it is because in 

10
-4

10
-2

10
0

10
2

10
4

10
-4

10
-2

10
0

10
2

Power/Coolant Inlet Temp Transfer Function

G
a

in
 (

M
W

/°
F

)

Frequency (Hz)



66 

the distributed parameter model, this graph shows the transfer function that the 

coolant loop has been isolated from the whole system, which means it is only the 

AB+C in Figure 5.1, without all the feedback effects. However, in the multi node 

model, the coolant loop has not been isolated that the interaction between the 

coolant and fuel and the feedback changed the character of the graph. At first this 

may appear to be a disadvantage of the distributed parameter model, when, in fact, 

it is an advantage for research since individual components and physical 

mechanisms can be studied with the distributed parameter system while the 

matrix formulation of the multi-lump model makes this difficult and may cause 

the inaccuracy. 

 
Fig. 5.16 Coolant temperature at height z to power transfer function - 

distributed-parameter. 
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Fig. 5.17 Coolant exit temperature to power transfer function - multi node. 

 Then, the transfer function of coolant temperature to fuel temperature can be 

derived with the transfer function above. 

F F
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T P T A

  

  

  
                   (5.16) 

Thus, according to Equation (5.11), the transfer function of coolant 

temperature to fuel temperature is plotted, shown as Figure 5.18. Again, the plot 
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1.232 Hz. After that, the gain of Figure 5.19 drops to 0.015 after the break 

frequency, while the average gain value of Figure 5.18 at high frequency is also 

around 0.015. 

 

Fig. 5.18 Coolant temperature to fuel temperature transfer function - 

distributed-parameter. 

The transfer function between fuel temperature and reactivity when change in 

reactivity is the driving source can be derived from Figure 5.1: 
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Since the change in reactivity is the driving source, 0 0  . Thus, 
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Fig. 5.19 Coolant exit temperature to fuel temperature at the upmost lump transfer 

function - multi node. 

Figures 5.20 and 5.21 show the transfer function of fuel temperature to 

reactivity using distributed model and multi-lump model, respectively. These two 

figures match well. The gain at the low frequency is 5542 for Fig 5.20 when z = 

12 and 6583 for Figure 5.21. Again, the difference at the gain is caused by the 

feedback mechanisms. In the distributed parameter model, the fuel and moderator 

temperature reactivity feedback are based on temperatures for the specific height 

under study. However, in the multi-lump model, all the feedback mechanisms 

through the core are incorporated. Both curves hit the first pole at 0.551 Hz, 

which corresponds to the fuel heat transfer time constant introduced in Table 3.1. 
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Then, they both have a break frequency at 37.64 Hz which is caused by the zero 

power transfer function 
0G . After that, it decays from one decade per decade to 

two decades per decade. 

 

Fig. 5.20 Fuel temperature to reactivity transfer function - distributed-parameter. 

 Similarly, the transfer function between coolant temperature and reactivity 
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Fig. 5.21 Fuel temperature at the upmost lump to reactivity transfer function - 

multi node. 

Still, the change in reactivity is the driving source, 0 0  . Hence, 
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Plot Equation (5.20) using MATLAB and get the transfer function between 

coolant temperature and reactivity shown as Figure 5.22. Similarly, the plot of the 

multi-lump model is compared as Figure 5.23. The gain at the low frequency is 

4943 for core exit in Figure 5.22 and 6606 in Figure 5.23. Similar to Figures 5.20 

and 5.21, in this case, the difference at the gain is caused by the isolation of the 
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moderator temperature reactivity feedback at the certain height is counted while 

in the multi-lump model, the feedback mechanisms are based on average lump 

temperatures through the core are included. 

 

Fig. 5.22 Coolant temperature to reactivity transfer function - 

distributed-parameter. 
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Fig. 5.23 Coolant exit temperature to reactivity transfer function - multi node. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 This research concerns reactor core models built using data from the Palo 

Verde Nuclear Generating Station. A multi-lump model is presented using Mann’s 

approach employing ordinary differential equations (ODEs) and a distributed 

parameter model is built based on partial differential equations (PDEs). Currently, 

commercial power plants are not inclined to accept experiments or test equipment 

attached to their reactor for safety reasons, except those needed for required 

operations. Therefore, both models are simulated and analyzed in the frequency 

domain with MATLAB.  

From the comparisons between the multi-lump parameter model and the 

distributed parameter model in Chapter V, the advantages of the distributed model 

can be observed. Based on the methods by which the two models are established, 

the distributed parameter model is built upon PDEs and it has the ability to offer 

the transfer function at any location throughout the reactor core. However, the 

multi-lump parameter model is based on an average model. Hence, it can only 

obtain the value at a certain region (lump) instead of any specific location. Even 

though increasing the number of lumps can increase the model resolution, it will 

not change the fact that it is still based on an average method. Also, if the number 

of lumps is increased into a very large number, it will lead to a huge matrix, which 

may take a lot more (computer) time to solve while using the distributed 
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parameter model is much faster and easier to implement. 

 Another feature of the distributed parameter model is that it isolates the 

feedback mechanisms for the location where the research is interested. That is, 

only the feedbacks existing at the certain location are counted into the transfer 

function. In the multi-lump model, because of the matrix method it is built upon, 

it is inconvenient to isolate the feedbacks at the certain point and to do so will 

take a lot of work. Therefore, the transfer functions derived from the multi-lump 

model contain the feedbacks not only at a certain lump, but also the feedbacks 

from all over the reactor core. The advantage of this feature for the distributed 

parameter model is that in the research of the characteristics of a reactor core, if 

the feedback can be isolated for the certain point, individual components and 

physical mechanisms can be studied. Researchers will be able to determine what 

is happening at that point and what caused the effects. The drawback of this 

feature is that in a real reactor core, the response at a location is caused not only 

by the feedback mechanisms at that position but also the feedbacks happening all 

over the core. However, in this thesis, an assumption is made that the heat 

generation is uniform throughout the reactor core. Therefore, the effect of this 

drawback for this model is small in this case, as temperatures are relatively 

consistent across the core. 

 Even so, it is very desirable that in the future, more work could be done with 
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the distributed parameter model so that it is able to accurately include the 

feedback mechanisms when non-uniform heat generation exists. Also, from the 

plots of the distributed parameter model in Chapter V, it can be seen that some of 

the graphs have an oscillatory behavior in the transfer function at the high 

frequency. Analytical work has been done here to ascertain what caused this 

oscillatory behavior and the result shows that it is most probably caused by the 

exponential portion (Equation 4.25) in the transfer functions of the distributed 

parameter model. Therefore, it is recommended that further work be performed to 

fully explore this phenomenon. As mentioned at the beginning of this chapter, this 

distributed parameter model is analyzed based upon the simulation using a 

computer tool (MATLAB). Since commercial power plants do not encourage 

experiments or test equipment attached to their reactor because of the safety 

consideration, it would be very helpful if future work could take existing 

experimental results found in the literature (e.g., from H. B. Robinson Nuclear 

Plant [19]) and use their data in this model and compare the results. This could 

promote further improvements to the model such that in the future, it could be 

applied to a real nuclear reactor core to examine and analyze it, and eventually be 

used routinely in nuclear power plants. As a case in point, this modeling effort 

could be applied to diagnostic and monitoring methods, such as noise analysis, for 

instance, to determine the moderator temperature coefficient in nuclear reactors. 
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APPENDIX A 

PARAMETERS FOR PALO VERDE NUCLEAR GENERATING STATION 
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Table A 

Parameters for Palo Verde nuclear generating station [1] [2] 

Variable Description Value 

h Fuel to coolant heat transfer coefficient 6300 Btu/(hr·ft2·°F) 

p Pitch 0.605 in. 

d Fuel rod diameter 0.382 in. 

ρc Coolant density 43.387 lb/ft
3
 

cpc Coolant specific heat 1.4159 Btu/(lb·°F) 

Vc Coolant volume in core 715.741 ft
3
 

k Fuel thermal conductivity 2.17253 Btu/(hr·ft2·°F) 

mF Fuel mass 257100 lbm 

cpF Fuel specific heat 0.07878 Btu/(lb·°F) 

u Coolant velocity in core 16.4 ft/sec 

λ Decay constant 0.1 /sec 

β Delayed neutron fraction 0.0073 

Λ Generation time 0.00003 sec 

P0 Initial or maximum power 3800 MW 

αM Moderator temperature coefficient -0.00007 /°F 

αF Fuel temperature coefficient -0.0000118 /°F 

f Fraction of heat generated in fuel 97.5% 
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TABLE A cont. 

F  Fuel heat transfer time constant 3.265 sec 

C  Coolant heat transfer time constant 7.087 sec 

R  Coolant residence time in the core (
R ) 0.7622 sec 

(mcp)F Fuel heat capacity 20250 Btu/°F 

(mcp)c Coolant heat capacity 43963.69 Btu/°F 

 

 

 

 

 

 

 

 

 

 

 

 

 


