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ABSTRACT  
   

This document presents a new implementation of the Smoothed 

Particles Hydrodynamics algorithm using DirectX 11 and DirectCompute. 

The main goal of this document is to present to the reader an alternative 

solution to the largely studied and researched problem of fluid simulation. 

Most other solutions have been implemented using the NVIDIA CUDA 

framework; however, the proposed solution in this document uses the 

Microsoft general-purpose computing on graphics processing units API. 

The implementation allows for the simulation of a large number of particles 

in a real-time scenario. The solution presented here uses the Smoothed 

Particles Hydrodynamics algorithm to calculate the forces within the fluid; 

this algorithm provides a Lagrangian approach for discretizes the Navier-

Stockes equations into a set of particles. Our solution uses the 

DirectCompute compute shaders to evaluate each particle using the 

multithreading and multi-core capabilities of the GPU increasing the 

overall performance. The solution then describes a method for extracting 

the fluid surface using the Marching Cubes method and the programmable 

interfaces exposed by the DirectX pipeline. Particularly, this document 

presents a method for using the Geometry Shader Stage to generate the 

triangle mesh as defined by the Marching Cubes method. The 

implementation results show the ability to simulate over 64K particles at a 

rate of 900 and 400 frames per second, not including the surface 

reconstruction steps and including the Marching Cubes steps respectively.
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Chapter 1 

INTRODUCTION 

 In this first chapter, we introduce the reader to the main motivation 

behind this research and its contribution to the computer graphics 

community.  

1.1 Motivation 

Fluid simulation has been a subject of study in computer graphics 

for several years. Researchers and developers have used a wide range of 

algorithms and techniques in order to generate high performance fluid 

simulators. Overall, there exists a wide variety of simulators that range in 

complexity; from high-end, accurate and time-consuming, to 

mathematically-simplified and real-time applications. The latter is the focus 

of this research. There exist several publications and white papers written 

describing different algorithms for solving the mathematical equations 

involved with fluid simulators. Most of the solutions proposed by 

researchers and developers were designed with a specific technology in 

mind, for example the NVIDIA CUDA framework. The lack of solutions 

using alternative technologies is the main motivation behind this research. 

In the following pages, we will discuss one of these alternatives: Direct3D 

and DirectCompute. 
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Figure 1. Fluid Simulation using SPH and DirectX 

 

1.2 Objective 

The main goal of this research is to provide an alternative solution 

to the existing fast fluid simulators developed using the NVIDIA CUDA 

framework. In this document we will present an algorithm and 

implementation designed using Microsoft Direct3D and the well-known 

Smoothed Particle Hydrodynamics and Marching Cubes methods. We 

then show the results obtained using different parameters and settings. 

These results validate that it is practical and efficient to build real-time fluid 

simulators using Direct3D as an alternative solution to CUDA. 
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1.3 Document Outline 

 The document is organized as follows. Chapter 2 describes other 

research and implementations used in order to develop fluid simulators 

and how these relate to this research. Chapter 3 provides a high level 

description of Direct3D programmable pipeline and DirectCompute. 

Chapter 4 reviews the Smoothed Particle Hydrodynamics algorithm, its 

physical properties and mathematical formulations. Chapter 5 provides a 

high level description of the Marching Cubes method and its 

implementation details. Chapter 6 introduces the reader to the algorithms 

necessary to develop a fast fluid simulator. Chapter 7 provides the details 

of the implementation and results. And Chapter 8 discusses alternative 

algorithms and methods in order to provide possible improvements to the 

algorithm presented in this document. 
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Chapter 2 

RELATED WORK 

For the last couple of decades, hundreds – if not thousands – of 

fluid simulators have been developed in computer graphics applications. 

These applications vary from video games, to water flood simulations, to 

flight simulation, to bloodstream simulations. Some of the earliest 

approaches for solving the fluid simulation problem used Eulerian grid-

based solutions [1]. For several years this was the most used and well 

known approach. A few years later, additional algorithms were introduced 

using semi-Lagrangian algorithms and adaptations of the Eulerian solution 

proposed by Foster and Metaxas. It was in 2003 when Mathias Müller [2] 

introduced the Smoothed Particles Hydrodynamics (SPH) algorithm into 

the fluid simulation computer graphics world. It has since then been used 

in a countless number of research papers and applications. The use of 

Lagrangian solutions enabled scientists and researchers to implement a 

wide range of new solutions. 

In the last few years, the introduction of General-Purpose 

Computation on Graphics Processing Units (GPGPU, or also referred to 

as simply GPU) has increased the research of fluid simulation. The ability 

to transform almost any PC into a powerful machine capable of performing 

millions of float-point operations per second (flops) has created a lot of 

attention in the research community. 
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In 2007 NVIDIA introduce CUDA to the world of computer graphics, 

and with it, a new playground for researchers. With the ability to generate 

general-purpose shaders, it is now possible to speedup solutions in an 

unprecedented way (see Figure 2). 

 

Figure 2. GPU N-body speedup timeline (Berczik, 2008) 

 

Several new implementations and algorithms have been developed 

using CUDA and SPH, including research documents like “Hybrid 

Smoothed Particle Hydrodynamics,” which exposes a new algorithm using 

“a Poisson solve on a coarse grid to enforce a divergence free velocity 

field, followed by a local density correction of the particles” [3]. The 

solution presented a set of results ranging from rendering 480,000 

particles in 326 minutes to 200,000 in 146 minutes. Another document 

includes “Interactive SPH Simulation and Rendering on the GPU,” which 
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exposes a new method for the neighbor particle search using the “Z-

indexing and parallel sorting which eliminates GPU memory overhead due 

to grid or hierarchical data structures” [4]. In this case, the results range 

from rendering 16,128 particles at 28 fps (frames per second) to 255,600 

particles at 3 fps. Finally, the research document “A SPH-based method 

for interactive fluids simulation on the multi-GPU” presents an approach 

for using multiple GPUs in parallel to resolve the SPH equations [5]. The 

solution presented in this document shows speedup results over single-

GPU solutions of up to almost 3.5 times. 

More recently, Microsoft introduced DirectCompute with the latest 

release of Direct3D. Although CUDA continues to be the most popular 

framework for fluid simulation and research, this document focuses on the 

technology developed by Microsoft as an alternative solution. As 

described in the following sections, the algorithm proposed here uses the 

Compute, Vertex, Geometry and Pixel Shaders exposed by this API. 

Due to the early adoption of CUDA as the framework to resolve 

computer graphics problems such as fluid simulation, there is almost no 

research documents discussing the implementation of Direct3D and SPH 

and/or Marching Cubes. However, in 2011 Kristoffer Lindstrom authored a 

white paper discussing the implementation of the Marching Cubes 

algorithm using Direct3X’s DirectCompute [6]. In the document he outlines 

the benefits (and drawbacks) of using DirectCompute and the results of 

his research. 
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Chapter 3 

DIRECT3D 11 

Direct3D is a Microsoft DirectX API subsystem component 

available on Windows operating systems (Windows 95 and above). Its 

most important feature is the ability to allow applications to render three 

dimensional graphics in a high-performance environment. There have 

been several releases and updates, each one of them adding functionality 

that allows programmers to take advantage of the latest improvements on 

hardware, particularly on GPUs. Direct3D 11 was released in 2008 and 

included several major improvements and additional functionality over its 

previous versions. A full list of features can be found online at 

“Programming Guide for Direct3D 11” [7]. 

The algorithm presented on this document was designed with 

Direct3D11 in mind only. It specifically uses the new functionality available 

through DirectCompute and the Vertex, Geometry and Pixel Shader 

Stages (see Figure 3). The latter were originally introduced within 

Direct3D 10; however, there are some elements that were improved and 

added for version 11, such as allowing a higher number of threads and 

performance improvements, which are essential for a successful 

implementation of this algorithm. 
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Figure 3. Direct3D 11 Programmable Pipeline 

 

3.1 Direct Compute 

One of the critical pieces this algorithm uses is the Direct3D 11 

DirectCompute technology, sometimes also referred to as ‘compute 

shader technology’. It allows for general-purpose computing on graphics 

processing units [8]. That is, instead of using the GPU to handle computer 
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graphics, DirectCompute performs computational operations on GPUs that 

otherwise would have been traditionally performed on CPUs. Although 

GPUs are limited to a range of operations and data structures due to their 

nature, DirectCompute has become a powerful and important tool when 

developing high performance solutions. Programmers can now migrate 

some of the highly intensive mathematical operations from the CPU to the 

GPU, so that such operations can be handled in a multithreaded manner 

and more efficient hardware architecture for such operations. 

HLSL Code

Intermediate 
Language (IL)

D3D Compiler 
API

IHV Driver

Hardware 
Native Code

 

Figure 4. DirectCompute Compilation Steps (image by MSDN, 2010) 
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DirectCompute is not the only technology that provides this 

functionality, it actually “shares a range of computational interfaces with its 

competitors – the Khronos Group’s Open Computing Language (OpenCL) 

and NVIDIA’s Compute Unified Device Architecture (CUDA)” [8]. However, 

the algorithm being presented on this document focuses only on Direct3D 

and its components. 

3.2 Vertex Shader Stage 

The Vertex Shader (VS) stage is the first programmable interface in 

the Direct3D pipeline. The main feature of this stage is that it processes a 

single input vertex and produces a single output vertex. Also, “this stage 

must always be active for the pipeline to execute. If no vertex modification 

or transformation is required, a pass-through vertex shader must be 

created and set to the pipeline” [9]. This stage allows for multiple 

operations, including but not limited to per-vertex transformations and 

lighting; these two being the most common ones. 

3.3 Geometry Shader Stage 

The Geometry Shader (GS) stage is executed immediately before 

the rasterization stage (originally introduced in Direct3D 10). Its most 

important feature is the ability to work with multiple vertices as input (three 

for triangles, two for lines, and one for points), and generate additional 

vertices. This shader “is capable of outputting multiple vertices forming a 

single selected topology (GS stage output topologies available are tristrip, 

linestrip, and pointlist)” [9]. The number of primitives generated within the 
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shader can vary according to the implementation; however, the maximum 

number of vertices must be specified during implementation and cannot 

be updated dynamically (there exists no limit for the maximum number of 

vertices) [9]. Another important feature is the ability to choose different 

topology types for the input and output parameters; for example, the 

shader can receive a list of points as input, and produce a list of triangles 

as output. 

3.4 Pixel Shader Stage 

The Pixel Shader (PS) stage is the last programmable interface. It 

allows for “rich techniques such as per-pixel lighting and post-processing” 

[9]. After rasterization, this shader is executed once per pixel covered by a 

primitive. As opposed to the VS, this shader can be set to ‘NULL’ (no 

shader) in order to avoid running this stage. The input to this stage can 

vary depending on the requirements; however, the output of this shader 

can only be a ‘color’ output (or an additional depth-test value). This data is 

then evaluated at the ‘Output Merger Stage’ to determine if the color is 

written to the depth buffer or it is discarded [9]. 
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Chapter 4 

SMOOTHED PARTICLE HYDRODYNAMICS 

 Smoothed Particle Hydrodynamics (SPH) is a computational 

method originally developed by Gingold and Monaghan (1977) and Lucy 

(1977) to simulate and resolve astrophysical problems. In 2003 Matthias 

Müller [2] used this method to render fluids in interactive applications. He 

used the SPH algorithm to develop an alternative solution for the fluid 

simulations systems as opposed to the grid-based solutions that existed at 

the time. Since then it has been adopted as one of the most common 

approaches for creating fluid simulators. 

SPH is a mesh-free Lagrangian method which works by dividing the 

system into discrete set of atomic elements normally referred to as 

particles. Each one of these particles has physical properties such as 

mass, position, velocity and acceleration. There are several advantages to 

using this method compared to the alternative solutions that use grid-

based numerical methods for solving the problem. As described by Liu & 

Liu, the most significant advantage is the adaptive nature of the SPH 

method. “This adaptability of SPH is achieved at the very stage of the field 

variable approximation that is performed at each time step based on a 

current local set of arbitrarily distributed particles. Because of the adaptive 

nature of the SPH approximation, the formulation of SPH is not affected by 

the arbitrariness of the particle distribution” [10]. 
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The SPH method discretizes the fluid into a set of particles, each 

one having a set of physical quantities thus defining the fluid. The 

algorithm computes these quantities’ values by evaluating the properties 

of the neighboring particles. The contribution of each neighbor particle is 

weighted based on its distance from a given particle. This distance is 

known as the smoothing length (or core kernel radius), represented by   in 

the equations (1) – (3) and (10) – (17).  

Pi

P1

Length
Smoothed

P2

P3

P7

P6

P5

P4

P8

h

 

Figure 5. Fluid Particles and the Smoothed Length 

 

The Smoothed Particle Hydrodynamics method allows evaluating 

only those particles within a specific area, regardless of the particle 

position. Basically, it “distributes quantities in a local neighborhood of each 

particle using radial symmetrical smoothing kernels” [10]. So in order to 



  14 

calculate each particles’ physical scalar quantities at location  , SPH 

defines the following formula: 

   ( )   ∑    
  
  
  (       )

 
 (1) 

where    is the mass of particle  ,    is its density,   is the smoothing 

length,    is the field quantity at   , and the function  (       ) is the 

smoothing kernel with smoothed length  . Also, the kernel function must 

be even and normalized in order to accomplish a second order accuracy; 

that is: 

 ∫ ( )      (2) 

  (   )   (    ) (3) 

As it will be described next, it is critical to select the appropriate 

kernel function for each scalar quantity. For the purpose of the algorithm 

outlined in this document, we implemented the kernel functions Müller 

suggested in his 2003 research document [2]. 

4.1 Forces 

 It is common to use computational techniques using four types of 

forces: attractive, repulsive, damping and external. In SPH, it is assumed 

that the first three forces act within the fluid. As described in Müller’s 

document [2], we can start analyzing these internal forces using the 

equations used in the Eulerian solutions: 

 
  

  
    (  )    (4) 
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  (
  

  
     )              (5) 

where   is the fluid velocity,   is the density field,   is the pressure field, 

    is the fluid force,      the fluid viscosity, and    the external forces. 

Here, Eqn. (4) assumes conservation of mass and Eqn. (5) (a simplified 

version of the Navier-Stokes equations for incompressible fluids) assumes 

conservation of momentum. 

 Due to the nature of SPH, these equations can be greatly 

simplified. First, conservation of mass is guaranteed since the number of 

particles and their masses are constant. Then, since the particles 

compose the fluid, they move with the fluid, and so the convective term 

     is not needed in Eqn. (5). Therefore, we get: 

  (
  

  
)               (6) 

The left hand side of Eqn. (6) represents the force density fields of the 

SPH method. We can rewrite this equation by first defining the 

acceleration as: 

   
  

  
 (7) 

and the summation of the force fields as: 

                (8) 

Thus we get the acceleration of particle   as: 

    
  
  

 (9) 
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The next section describes the steps necessary in order to calculate the 

different force density fields of   . 

4.2 Density Force Fields 

 As defined in Eqn. (8), there are three density force fields values 

that we must calculate in order to compute the acceleration of each 

particle in the fluid. The following sections describe in detail each one of 

them and their mathematical formulation. 

 For the purpose of the algorithm and implementation described 

later on this document, we will be using the kernel functions described by 

Müller [2]. These kernels have been adopted by the graphics community 

due to their properties and stability as the distance between particles 

varies. 

4.2.1 Pressure 

The first density force field is pressure; within the fluid system, this 

term belongs to the internal repulsive forces. In the SPH Method, it is 

necessary to calculate each particle pressure and density at the particle 

location prior to the fluid pressure being calculated. This is achieved using 

the following formulas: 

      (     ) (10) 

     ∑    (        )
 

 (11) 

   (   )  (
   

     
) {
(      )       

           
 (12) 
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where    and    are the particle pressure and density at particle location,    

is the particle position,   and    are the gas constant and rest density from 

the ideal gas state equation respectively, and   is the kernel core radius. 

Eqn. (12) is the pressure’s smoothing kernel. 

Once the particle pressure at location   is calculated, it is 

necessary to calculate the fluid’s pressure density force field. This is 

achieved using the following formulas: 

       
 

 
 ∑   (

     

  
) (        )

 
 (13) 

   (   )  (
  

   
) {
(   )       

           
 (14) 

where Eqn. (14) is know as the Desbrun spiky kernel [2]. It allows the fluid 

to generate the necessary repulsion force to avoid building particle 

clusters when pressure is high. 

4.2.2 Viscosity 

 The second density force field is viscosity; it belongs to the 

damping forces of the fluid. This field is “caused by friction and, thus, 

decreases the fluid’s kinetic energy by converting it into heat” [10]. In the 

SPH method, this value can be calculated as follows: 

        ∑   (
     

  
)

 
  (        ) (15) 

  (   )  (
  

    
) { 

  

   
 
  

  
 
 

  
        

           

 (16) 

with the property: 
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 (   )   (

  

   
) (    ) (17) 

where   is the fluid viscosity,    the particle mass,    is the particle 

velocity,    is the velocity of the particle being analyzed,    the particle 

velocity,    is the particle position, and   is the kernel function. Here Eqn. 

(16) and Eqn. (17) represent the viscosity’s kernel functions.  

4.2.3 External Force 

 The last force in the formula represents all external forces applied 

to the fluid; these are simply accumulated and added to the total particle 

force   . These forces typically represent gravity, objects moving through 

the fluid, collisions, and other effects. 

4.3 Integrator Method 

 As described above, we will use SPH to calculate three different 

physical scalar quantities per particle: density, pressure, and viscosity. 

Each one of these fields will be used to calculate the particles’ 

acceleration, and subsequently, their velocities and positions. In order to 

accomplish this, we will use the Leapfrog integration method [14], a 

second-order accurate numerical solution. The Leapfrog integrator offers 

two main benefits, its time-reversibility (that is, the ability to “integrate n 

steps and then reverse the direction of the integration and integrate 

backward n steps to arrive at the same position” [14]) and its strength. The 

latter implies that the method conserves the energy of the dynamical 

system (the biggest benefit over other higher-ordered integrators) [14]. 
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The Leapfrog integrator “is a simple method for numerically 

integrating differential equations of the form:” 

  ̈   ( ) (18) 

In the case of velocities and positions, this function takes the form of: 

              ⁄    (19) 

     (  ) (20) 

      ⁄       ⁄       (21) 

where    is the position at step  ,      ⁄  is the velocity, or first derivative of 

  at step     ⁄ ,     (  ) is the acceleration, or second derivative of   

at step  , and    is the size of each time-step. It is critical for    to be 

constant on each time-step in order to maintain the stability of the system 

[14]. 
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Chapter 5 

MARCHING CUBES 

 Marching Cubes (MC) is one of the most popular and used 

algorithms in computer graphics for surface reconstruction. It was 

developed by William E. Lorensen and Harvey E. Cline and published in 

the 1987 SIGGRAPH conferences. 

The purpose of MC is to “extract a polygonal mesh of an isosurface 

from a three-dimensional scalar field” [11]. The basic principle “is to 

subdivide space into a series of small cubes. The algorithm then instructs 

us to ‘march’ though each on the cubes testing the corner points and 

replacing the cube with an appropriate set of polygons” [12]. The set of 

polygons generated through this method is what we know as the 

isosurface, which is an approximation of what the three-dimensional scalar 

field describes. 

It is important to note that several new approaches have been 

developed in order to resolve some of the issues and drawbacks 

associated with the original Marching Cubes algorithm; these other 

algorithms can be used within our solution, and we can measure their 

impact on image quality and performance. Some of these alternative 

solutions are addressed later on this document.  

Marching Cubes was selected as the method to generate the 

isosurface from the particles of the fluid due to its nature. We can easily 

translate the fluid information into a grid based data field and manipulate 
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its topology during the Geometry Shader Stage of the Direct3D pipeline. 

The MC scalar field (data grid) is created by using the density values of 

each particles and their “influence” on the vertices of the grid cubes. 

These values are then used to calculate the isosurface based on the iso-

value specified by the user. More implementation details are explained in 

the following sections. 

Mark Blackburn gave a presentation based on the work by 

Lorenson and Cline’s [11] work in which he described the Marching Cubes 

algorithm in three basic steps: 

1. Locate the surface corresponding to a user-specific value (iso-value) 

2. Create triangles 

3. Calculate normal to the surface at each vertex 

 

3D
Scalar Field

Surface 
Intersection

Triangulation Surface Normals

Isosurface

 

Figure 6. Marching Cubes Basic Steps 
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5.1 Step 1: Surface Intersection 

The first step in the Marching Cubes algorithm is accomplished by 

interpreting the scalar field as a collection of points, each one represented 

by a field value. The algorithm first transverses the entire grid using each 

vertex and its seven neighboring values in order to generate a virtual cube 

(see Figure 7). Then the algorithm analyzes each cube and its vertex 

values in reference to an arbitrary value normally referenced to as iso-

value. 

3
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Figure 7. MC Virtual Cube: Vertices (blue) & Edges (green) (image by 

Mark Blackburn, 2005) 

 

Then, in order to find the isosurface within the cube, the algorithm 

assigns a ‘one’ if the value of the vertex is greater or equal to the iso-value 

(inside); otherwise it assigns a ‘zero’ to the given vertex (outside). If an 
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edge contains one vertex inside and one outside the surface, then it is 

said that the edge intersects the Isosurface. 

5.2 Step 2: Triangulation 

 The Marching Cubes’ second step uses as input the edge 

information computed in the first step. Now, since each cube has eight 

vertices, and each can be inside or outside, then we know that there are 

2^8=256 possible combinations. However, due to its symmetry, these 

combinations can be reduced to only 15 different combinations (greatly 

simplifying the lookups). In this step, a set of triangles are generated 

within each cube (see Figure 8) using the interpolated values between the 

vertex “inside” and the one “outside.”  

 

 

Figure 8. The original published Marching Cubes configuration (image by 

Wikipedia: Marching Cubes, 2012) 
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The process of calculating the intersections of the surface and the 

grid vertices by computing an interpolated value is referred to as ‘Adaptive 

Marching Cubes.’ This approach provides a better approximation of the 

original scalar field surface. In this case, the interpolated values will be 

“closer” to the actual intersection between the surface and the grid 

vertices than selecting simply the midpoint or any other arbitrary value 

along the edge. It is also important to point out that, although the algorithm 

does not generate any edge connectivity information, the connectivity 

between triangles is preserved due to the cubes being selected as shown 

in Figure 8; thus also guaranteeing the isosurface mesh connectivity 0 . 

5.2 Step 3: Surface Normals 

 The last step of the Marching Cubes algorithm is to calculate the 

normals of the triangles. This step is required for rendering purposes; in 

order to be able to apply lighting and other effects. According to the 

original Marching Cubes algorithm presented by Lorenson and Cline, this 

step can be achieved by calculating first the gradient vector  ⃗ as a 

derivative of the density function. As described in their paper, “to estimate 

the gradient vector at the surface of interest, we first estimate the gradient 

vectors at the vertices and interpolate the gradient at the intersection” [11]. 

Where the gradients are calculated as follows: 

   (     )  
 (       )   (       )

  
 (22) 
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   (     )  
 (       )   (       )

  
 (23) 

   (     )  
 (       )   (       )

  
 (24) 

where  (     ) is the scalar field value at location (     ), and   ,   ,    

are the lengths of the cube edges. And the normal then is obtained by 

normalizing the gradient. Finally the algorithm interpolates the normal at 

the cube vertices to the intersection point found in the previous step. 
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Chapter 6 

ALGORITHM 

 The algorithm described in this document can be broken into 

multiple blocks and grouped based on their functionality as follows: 

Initialization, Fluid Setup, SPH Calculations, and Surface Reconstruction 

(see Figure 9). With the exception of the Initialization block, all the blocks 

are executed in the GPU on a per-frame basis. The Initialization block is 

executed on the CPU only once during the entire execution of the 

application. 

This algorithm was developed with only Direct3D 11 and 

DirectCompute in mind. As such, the blocks described next are not meant 

to be implemented using any other technologies; although, it is possible to 

translate them based on other technologies functionality and 

requirements. 
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Initialization

Fluid
Setup

SPH
Calculations

Load Shaders

Surface
Reconstruction

Calculate Particle-Cell Value

Reset Grid Indices

Set Grid Indices

Sort Particles

Sort Particle-Cell Values

Calculate Density

Set Buffers

Calculate Force

Calculate Acceleration

Calculate New Position

CPU

GPU
(per frame)

Reset MC Grid

Set MC Grid Density Factors

Generate Isosurface

 

Figure 9. Algorithm Structure 

 

6.1 Initialization 

 This block is composed of only two steps: “Load Shaders” and “Set 

Buffers.” Each one of the steps on the following blocks represents a 

DirectCompute shader. These shaders can be loaded into memory by 

either using precompiled shaders or by compiling them during the 

application execution. After the loading step, then it is necessary to set all 

the buffers required by each one of these shaders. This block can also be 
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used to initialize any predefined setting such as minimum/maximum 

number of particles, create objects for the fluid to interact with, and set all 

the SPH global settings. 

6.2 Fluid Setup 

 This block is composed of a series of steps required to group and 

sort the particles in a manner in which we can apply the SPH calculations 

in an efficient manner. The nature of SPH, as it can be observed in its 

formulas, is to look at each particle and calculate the influence that other 

particles have over it. This can trivially be translated into a series of loops; 

however, due to the nature of the DirectCompute shaders, organizing the 

particles in such a format is not a trivial task. 

To accomplish this task, each one of the steps in this block uses a 

grid set. This grid contains all the particles in the fluid and arranges them 

in individual units called cells. The biggest benefit of placing all the 

particles within these cells is to limit the area the algorithm needs to look 

into when analyzing the influence of the particles over each other. 

In order to minimize the number of cells the algorithm needs to look 

at, we set the virtual size of each cell to   . This size guarantees that all 

the particles which can influence the forces affecting a given particle are 

contained within the adjacent cells. Furthermore, since each cell is of size 

2h, then we can determine the quadrant in which a given particle is within 

its cell and only search for other particles on the adjacent cells to that 

quadrant; allowing us to narrow the search from 27 cells to only 8 cells. 
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Figure 10. Fluid Simulation: Liquid interacting with a mesh object 

 

6.2.1 Data Structures 

 The steps described next use multiple different data structures 

based on the DirectCompute and HLSL guidelines. Next, we present the 

structured buffers required for the steps described on the Fluid Setup and 

SPH Calculations blocks (actual buffers implementation details are 

described later on the document): 

                [        ]                   

                [    ]              

                [     ]                     

                [     ]                 

                [     ]                  

                [     ]               

                [     ]                      

 



  30 

6.2.2 Calculate Particle-Cell Value 

 This step loops through all the particles and calculate the cell to 

which each particle belongs too. These cell values vary by the specific 

location of each particle, so they must be recalculated on each frame. 

01                   

02                  (                 ) 

03       [           ]  (                ) 

6.2.3 Sort Particle-Cell Values 

 This step takes the grid values derived on the previous step and 

sorts them all in ascending order. There are multiple different algorithms 

that can be used to achieve this using the power of the GPU. The 

implementation described later in this document uses the Bitonic Sort 

algorithm (more details on this algorithm are described on the following 

section). 

6.2.4 Reset Grid Indices 

 This is trivial step that simply resets all the values of the 

             buffer to zero. This is required in order to regroup all the 

particles by cells in the previous step. Since a particle can move to any 

cell from one step to another, the algorithm needs to be reset on every 

frame. 
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6.2.5 Set Grid Indices 

 This step loops through all the grid cell values and groups the 

particle IDs based on cell they belong to. At the end of this step, the 

GridIndices buffer contains a reference to the particles on each cell. 

01               

02                              

03                                       

04                         

05                                        

06                                  

07                                     

08                   

09                                   

10                [             ]          

11                               

12                [             ]            

6.2.6 Sort Particles 

 This step simply rearranges every particles based on the cell value 

they belong. This is necessary to assign the particles to the values 

assigned in the previous step. 

01                   

02             (    [           ]) 

03            [           ]           (  ) 
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6.3 SPH Calculations 

 After all the particles have been arranged and the              

buffer is setup with the correct indices, the algorithm is now ready to 

calculate the particles’ next positions in order to simulate how they move 

along the fluid. To accomplish this, the algorithm applies the SPH force 

formulas described previously following the next steps. 

6.3.1 Calculate Density 

 This step loops through every particle and calculates their density 

and pressure values based on the particles on the adjacent cells. 

01                   

02                  

03               (    [  ]) 

04                       (                 ) 

05                      (        ) 

06                

07                          

08                (                    [    ]) 

09          [  ]               

10           [  ]  (       [  ]      )      

where the function       is defined as follows: 

01               

02                           

03                             
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04          [                          ] 

05                          (    ) 

06        (                  ) 

07              (                  )  

6.3.2 Calculate Force 

After the pressure and the density of each individual particle have 

been calculated, this step computes the SPH force for all particles. 

01                   

02                  

03               (    [  ]) 

04                       (                 ) 

05                      (        ) 

06                 

07                          

08                 (                    [    ]) 

09        [  ]        

where the function       is defined as follows: 

01           (           ) 

02                           

03                             

04          [                          ] 

05                          (    ) 

06        (                  ) 
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07                                  () 

08                                    () 

09                                   

6.3.3 Calculate Acceleration 

 Once the forces have been calculated this step derives the 

particles’ acceleration. This is accomplished by looping through each 

particle and computing first their acceleration, next the algorithm applies 

the collision forces – if a collision is detected, and finally the algorithm 

applies all external forces. 

01                   

02                  

03                      [  ]                

04                           

05                            

06                              (
           

√        
) 

07                     

08                           

09                                     () 

10                  [               ] 

11               [  ]               

where the                method is a specific implementation function. 

The document describes in detailed an algorithm for implementing this 
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function on the following section. In this particular implementation, the final 

force applied to each particle is affected by the distance between the 

given particle and the object. 

6.3.4 Calculate New Position 

 This step used the acceleration of each particle and computes the 

particles’ new positions using a time-step approach. 

01                   

02                  

03                     

04        (            [  ]          ) 

05                   
 

 
(                ) 

06                     

07                                 

6.4 Surface Reconstruction 

 In order to derive the surface out of the particles, this solution 

presented next uses the Marching Cubes algorithm. The first two steps set 

up the data set with the corresponding iso-values, and then the set is used 

to create a triangle-mesh representing the fluid. 

6.4.1 Data Structures 

 The following are the structured buffers required for the steps 

required within the Surface Reconstruction block (actual buffers 

implementation details are described later on the document): 

                [        ]                   
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                [     ]              

                [     ]                     

6.4.2 Reset MC Grid 

 This step resets the grid indices buffer to zero before calculating 

the densities at each cell vertex, as described on the following step. This 

step must be executed on every frame. 

6.4.3 Set MC Grid Density Factors 

 The algorithm loops through each vertex in the grid and calculates 

the density factor (iso-value) according to the “influence” of the particles 

on the neighbor cells. A particle’s density “influences” the density factor of 

a vertex if the particle is within the kernel core radius, h; the “influence” is 

proportional to the distance between the particle and the vertex, similar to 

how particles influence each other on the SPH algorithm. 

01                         

02                       (      ) 

03                

04                          

05                (                  [     ]) 

06         [  ]               

6.4.4 Generate Isosurface 

 This step uses the Vertex, Geometry and Pixel Shaders from the 

Direct3D pipeline. These three shaders are part of the improved Direct3D 

11 and they play an important role on this algorithm. 
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6.4.4.1 Vertex Shader 

 For this algorithm, the Vertex Shader (VS) is simply used as a 

pass-through stage. The vertex ID is simply passed to the next stage on 

the pipeline. This ID will be used to identify the cell (or cube) in which the 

marching cube algorithm will operate on. That is, the vertex shader is 

called for each cell on the data grid. 

6.4.3.2 Geometry Shader 

 This shader is responsible for generating the isosurface using the 

Marching Cubes algorithm and data grid generated during the ‘Set MC 

Grid Density Factors’ step. 

This step loops through each cell on the grid, calculates the 

vertices “inside” and “outside” the isosurface. It then determines the cube 

configuration (as described in the Marching Cubes algorithm) and 

generates the triangles accordingly. 

01                       

02                

03                               

04                         () 

05                                [     ] 

06                            

07                                              

08                                            

09                     [         ] 
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10                (          [ ]      ) 

11                         

12                                 

13                 [  ]                  (    ) 

14                 [  ]              (    ) 

15             [  ]    

16             [  ]    

17                 

18        (             )    

19                 [ ]      (              ) 

20                 [ ]      (            ) 

21                      [ ]      

22                           [ ] 

23                         [ ] 

24                        (  ) 

25                           [   ] 

26                         [   ] 

27                        (  ) 

28                           [   ] 

29                         [   ] 

30                        (  ) 

31           
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32                              () 

6.4.3.3 Pixel Shader 

 There is no specific use for the Pixel Shader on this algorithm. 

Depending on the implementation, this stage can be used to create per-

pixel lighting calculations or simply to pass through the color calculated at 

the Geometry Shader. Even though there is no specific PS algorithm, this 

shader plays an important role and it cannot be overlooked. Anyone 

implementing this algorithm will have to set a Pixel Shader in order to 

properly render the isosurface extracted by the Geometry Shader. 

 

Figure 11. Pixel Shader Fluid Rendering 
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Chapter 7 

IMPLEMENTATION 

 The document now focuses on describing the details of the 

application developed using the algorithm described on the previous 

section. The implementation was created to simulate a liquid fluid, 

particularly in this case: water. 

7.1 Assumptions 

 As in all implementations, there exist multiple assumptions that 

were made during the development. Here is the list of the assumptions 

made on this implementation: 

1. Particles’ masses and sizes are constant and equal. This can be 

considered accurate in real-live scenarios where all the particles are water 

molecules. It also allows for a greatly simplifications of the SPH 

calculations. 

2. All particles are contained within a predefined grid; that is, no 

particles can exist outside the grid. This implies a limitation on the 

simulator, which in most cases, it would not have a significant impact, but 

it does have to be observed. In addition, the grid exists at a fixed location 

and it is of a fixed size; guaranteeing that the neighboring lookups are 

constant. 

3. All objects in the scene are triangle-meshes with the same physical 

properties, such as elasticity and stiffness. Also, the objects are static 

within the time-step specified in the SPH Calculations block; that is, the 
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object is not moving while the particles’ forces, acceleration and new 

position values are being calculated. 

7.2 Fluid Shaders 

 In order to guarantee that all compute shaders are executed for 

each fluid particle, the implementation uses the 

ID3D11DeviceContext.Dispatch method and the NUMTHREADS 

DirectCompute attribute. Following is an example of the setting required to 

accomplish this: 

In Code: 

Dispatch(NumberParticles / NUMBER_THREADS, 1, 1); 

In HLSL: 

[numthreads(NUMBER_THREADS, 1, 1)] 
void Step 
      ( 
        uint3 Gid  : SV_GroupID, 
        uint3 DTid : SV_DispatchThreadID, 
        uint3 GTid : SV_GroupThreadID, 
        uint  GI   : SV_GroupIndex 
       ) 
{ 
   // Code 
} 

where NUMBER_THREADS is set to 2014 (the maximum number of 

threads allowed by Direct3D 11). 

7.3 Sorting Shaders 

 For this implementation, we used the Bitonic algorithm in order to 

sort the grid indices values generated during the “Calculate Particle Cell-

Value” step. The Bitonic algorithm was originally developed by Ken 
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Batcher as a network sorting algorithm [26]. The algorithm provides a 

 (      ( )) worst case complexity and a best case performance of 

 (     ( )). 

Appendix A shows a full implementation of the Bitonic algorithm 

using C++ and HLSL. 

7.4 Marching Cubes Shaders 

 The first two shaders of the Surface Reconstruction block use the 

same approach as the fluid shaders, where the variable ‘NumberParticles’ 

is replaced with the variable ‘NumberVertices.’ Then, as the algorithm 

describes, the following steps use the Vertex, Geometry and Pixel 

shaders. In this implementation we use a per-pixel lighting technique. 

 

Figure 12. Marching Cubes Surface Reconstruction Steps Illustration. The 

left image shows the particles rendered as textured squares. The middle 

image shows the cubes with at least one vertex “inside” the isosurface. 

The right image shows the mesh fluid rendered using the MC algorithm. 

 



  43 

7.5 Results 

In this section we describe the results of the implementation we just 

described. As a point of reference, the application was tested using the 

following system: 

System 1 Characteristics 

 Intel Core i7-2700 CPU @3.50GHz (8 CPUs) 
 16 GB RAM 
 Windows 7 Enterprise 64-bit (6.1, Build 7601) 
 NVIDIA GeForce GTX 580 (2736 MB) 
 DirectX 11 
 Windows Experience Index: 7.6 

Table 1: System 1 Characteristics 

 

System 2 Characteristics 

 Intel Core i7 CPU 950 @3.07GHz (8 CPUs) 
 12 GB RAM 
 Windows 7 Enterprise 64-bit 
 NVIDIA GeForce GTX 430 (1024 MB) 
 DirectX 11 
 Windows Experience Index: 5.9 

Table 2: System 1 Characteristics 

 

The first tests were designed in order to validate the performance of 

the algorithm and the implementation. Table 3 & Table 4 describe the 

results obtained when testing the implementation using the both System 1 

and System 2. The application was tested using a different set of 

configurations and number of particles. As it can be seen on the following 

tables, one of the most relevant results is the application’s ability to handle 

in real-time over 65,000 particles using a 128*128*128 Marching Cubes 
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grid. However, the results also show that the bottleneck in the application 

is the Marching Cubes algorithm. Alternative solutions are analyzed in the 

following section. 

System 1 

Configuration 
Number of Particles 

16,384 32,768 65,536 

SPH-Only 920 fps 915 fps 910 fps 

SPH + Particles (texture based) 903 fps 895 fps 860 fps 

SPH + MC (grid size 32) 608 fps 524 fps 440 fps 

SPH + MC (grid size 64) 314 fps 241 fps 184 fps 

SPH + MC (grid size 128) 86 fps 65 fps 49 fps 

SPH + MC (grid size 256) 12 fps 8 fps 7 fps 

Table 3: System 1 Simulation Results 

 

System 2 

Configuration 
Number of Particles 

16,384 32,768 65,536 

SPH-Only 835 fps 805 fps 798 fps 

SPH + Particles (texture based) 800 fps 790 fps 755 fps 

SPH + MC (grid size 32) 537 fps 463 fps 389 fps 

SPH + MC (grid size 64) 277 fps 212 fps 180 fps 

SPH + MC (grid size 128) 78 fps 60 fps 44 fps 

SPH + MC (grid size 256) 10 fps 7 fps 4 fps 

Table 4: System 2 Simulation Results 
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 Additional results are shown in the following images: 

 

Figure 13. Fluid interacting with multiples objects (a). Number of Particles: 

32,768; Marching Cubes Grid: 128x128x128. 

 

 

Figure 14. Fluid interacting with multiples objects (b). Number of Particles: 

65,636; Marching Cubes Grid: 128x128x128. The image shows the fluid 

rendered using Marching Cubes. 
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Figure 15. Fluid interacting with multiples objects (c). Number of Particles: 

65,636; Marching Cubes Grid: 128x128x128. This image shows the 

individual particles rendered as textured squares. 
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Figure 16. Test Fluid Sequence. The top image represents the initial state 

of the fluid. All other images represent the sequence after “dropping” a 

“block of liquid”. Total Number of Particles: 32,768; MC Grid: 

128x128x128 
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Chapter 8 

FUTURE WORK 

 The solution presented in this document shows a promising 

approach for creating fast fluid simulators using Direct3D. However, the 

solution is not ideal; there are areas that can be improved to generate 

faster and more photorealistic simulators. Following we present a list of 

possible areas and solutions which can improve the overall outcome of the 

algorithm just presented. These possible areas of improvements are 

grouped by the block or step they belong to. 

 ‘Sort Particle’ step. Our solution uses the Bitonic Sort algorithm in 

order to sort, in each frame, all the fluid particles. However, it was 

observed that most particles do not have to be rearranged on every 

frame; that is, most particles do not move from one cell/cube on every 

frame. So, a new algorithm which tackles this issue, and only sorts 

those particles that have moved to another cell/cube could improve the 

overall the performance greatly. 

 ‘Surface Reconstruction’ block. There exist several algorithms that can 

be used to reconstruct the surface based on the fluid particles data. 

Each one of these algorithm would need to be tested and compared 

against the results presented here to determine if they actually 

represent an improvement. One of these alternatives is the “Dual 

Marching Cubes” algorithm developed by Dr. Gregory M. Nielson [16]. 

This algorithm resolves some of the “artifacts” generated by the 
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Marching Cubes algorithm; thus generating a visually better isosurface. 

Other alternatives include smooth isosurface extraction [17], 

anisotropic kernels [18] and adaptive sampling [19]. All of these 

present benefits and drawbacks. Further research is required to 

determine their best implementation and to analyze their results. 

 ‘Collisions’ (within the ‘Calculate Acceleration’ step). Our algorithm 

uses a basic point-triangle collision detection method. This method is 

efficient, but it can be improved by using other approaches such as the 

one proposed by da Silva, Clua, Pagliosa and Montenegro: “Fluid 

Simulation with Rigid Body Triangle Accuracy Collision using a 

Heterogeneous GPU/CPU Hardware System.” 
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APPENDIX A  

BIOTONIC SORT ALGORITHM 
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BiotonicSort.cpp 
#define BIT_BSIZE 1024 
#define TRANS_BSIZE 32 
#define MATRIX_WIDTH = BIT_BSIZE; 
#define MATRIX_HEIGHT = NUM_ELEMENTS/ BIT_BSIZE; 
 
// Constant Buffers 
_DECLSPEC_ALIGN_16_ struct SortCB 
{ 
    UINT Level; 
    UINT LevelMask; 
    UINT Width; 
    UINT Height; 
}; 
 
// Structured Buffers 
ID3D11ComputeShader*  pSortBitonic = NULL; 
ID3D11ComputeShader*  pSortTranspose = NULL; 
ID3D11Buffer*    pSortCB = NULL; 
ID3D11Buffer*    pTemp = NULL; 
ID3D11ShaderResourceView*  pTempSRV = NULL; 
ID3D11UnorderedAccessView*  pTempUAV = NULL; 
 
 
//------------------------------------------------------------------------- 
// GPU Bitonic Sort 
// For more information, please see the DirectX samples by Microsoft 
//------------------------------------------------------------------------- 
void BitonicSort 
        ( 
          ID3D11DeviceContext* pd3dCxt, 
          ID3D11UnorderedAccessView* inUAV, 
          ID3D11ShaderResourceView* inSRV 
        ) 
{ 
    pd3dCxt ->CSSetConstantBuffers(0, 1, &pSortCB); 
 
    // Sort the data 
    // First sort the rows for the levels <= to the block size 
    for(UINT level=2; level<=BIT_BSIZE; level<<=1) 
    { 
        SortCB cons = {level, level, MATRIX_HEIGHT, MATRIX_WIDTH}; 
        pd3dCxt->UpdateSubresource(pSortCB, 0, NULL, &cons, 0, 0); 
 
        // Sort the row data 
        pd3dCxt->CSSetUnorderedAccessViews(0, 1, &inUAV, NULL); 
        pd3dCxt->CSSetShader(pSortBitonic, NULL, 0); 
        pd3dCxt->Dispatch(NUM_ELEMENTS/BIT_BSIZE, 1, 1); 
    } 
 
    // Sort the rows and columns for the levels > than the block size 
    // Transpose. Sort the Columns. Transpose. Sort the Rows. 
    for(UINT level=(BIT_BSIZE<<1); level<=NUM_ELEMENTS; level<<=1) 
    { 
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        SortCB cons1 = 
        { 
           (level/BIT_BSIZE), 
           (level&~NUM_ELEMENTS)/BIT_BSIZE, MATRIX_WIDTH, MATRIX_HEIGHT 
        }; 
         
        // Set constant buffer 
        pd3dCxt->UpdateSubresource(pSortCB, 0, NULL, &cons1, 0, 0); 
 
        // Transpose the data from buffer 1 into buffer 2 
        ID3D11ShaderResourceView* pViewNULL = NULL; 
        pd3dCxt->CSSetShaderResources(0, 1, &pViewNULL); 
        pd3dCxt->CSSetUnorderedAccessViews(0, 1, &pTempUAV, NULL); 
        pd3dCxt->CSSetShaderResources(0, 1, &inSRV ); 
        pd3dCxt->CSSetShader(pSortTranspose, NULL, 0); 
        pd3dCxt->Dispatch(WIDTH/TRANS_BSIZE, HEIGHT/TRANS_BSIZE, 1); 
 
        // Sort the transposed column data 
        pd3dCxt->CSSetShader(pSortBitonic, NULL, 0); 
        pd3dCxt->Dispatch(NUM_ELEMENTS/BIT_BLOCK_SIZE, 1, 1); 
 
        SortCB cons2 = {BIT_BSIZE, level, MATRIX_HEIGHT, MATRIX_WIDTH}; 
        pd3dCxt->UpdateSubresource(pSortCB, 0, NULL, &cons2, 0, 0); 
 
        // Transpose the data from buffer 2 back into buffer 1 
        pd3dCxt->CSSetShaderResources(0, 1, &pViewNULL); 
        pd3dCxt->CSSetUnorderedAccessViews(0, 1, &inUAV, NULL); 
        pd3dCxt->CSSetShaderResources(0, 1, &pTempSRV); 
        pd3dCxt->CSSetShader(pSortTranspose, NULL, 0); 
        pd3dCxt->Dispatch(HEIGHT/TRANS_BSIZE, WIDTH/TRANS_BSIZE, 1); 
 
        // Sort the row data 
        pd3dCxt->CSSetShader(pSortBitonic, NULL, 0); 
        pd3dCxt->Dispatch(NUM_ELEMENTS/BIT_BSIZE, 1, 1); 
    } 
} 
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BiotonicSort.hlsl 
#define BIT_BSIZE 1024 
#define TRANS_BSIZE 32 
 
// Constant Buffers 
cbuffer CB : register( b0 ) 
{ 
    uint Level; 
    uint LevelMask; 
    uint Width; 
    uint Height; 
}; 
 
// Structured Buffers 
StructuredBuffer<uint> Input : register( t0 ); 
RWStructuredBuffer<uint> Data : register( u0 ); 
 
//------------------------------------------------------------------------- 
// For more information, please see the DirectX samples by Microsoft 
//------------------------------------------------------------------------- 
 
// Bitonic Sort Compute Shader 
groupshared uint shared[BIT_BSIZE]; 
 
[numthreads(BIT_BSIZE, 1, 1)] 
void BitonicSort 
        ( 
          uint3 Gid  : SV_GroupID, 
          uint3 DTid : SV_DispatchThreadID, 
          uint3 GTid : SV_GroupThreadID, 
          uint  GI   : SV_GroupIndex 
        ) 
{ 
    // Load shared data 
    shared[GI] = Data[DTid.x]; 
    GroupMemoryBarrierWithGroupSync(); 
     
    // Sort the shared data 
    for (uint j=Level>>1 ; j>0 ; j>>=1) 
    { 
        // ‘Copy’ data 
        uint result =  
        ((shared[GI&~j].x<=shared[GI|j].x)==(bool)(LevelMask& DTid.x))? 
           shared[GI^j] : shared[GI]; 
        GroupMemoryBarrierWithGroupSync(); 
         
        // ‘Paste’ data 
        shared[GI] = result; 
        GroupMemoryBarrierWithGroupSync(); 
    } 
     
    // Store shared data 
    Data[DTid.x] = shared[GI]; 
} 
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// Matrix Transpose Compute Shader 
groupshared uint shared [TRANS_BSIZE*TRANS_BSIZE]; 
 
[numthreads(TRANS_BSIZE, TRANS_BSIZE, 1)] 
void MatrixTranspose 
        ( 
          uint3 Gid  : SV_GroupID, 
          uint3 DTid : SV_DispatchThreadID, 
          uint3 GTid : SV_GroupThreadID, 
          uint  GI   : SV_GroupIndex 
        ) 
{ 
    // Load shared data 
    shared[GI] = Input[DTid.y*Width+DTid.x]; 
    GroupMemoryBarrierWithGroupSync(); 
     
    // Find destination 
    uint2 P = DTid.yx-GTid.yx+GTid.xy; 
     
    // Store shared data 
    Data[P.y*Height+P.x] = shared[GTid.x*TRANS_BSIZE+GTid.y]; 
} 

 


