
A Fast Fluid Simulator

Using Smoothed-Particle Hydrodynamics

by

Gustavo Figueroa

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved October 2012 by the
Graduate Supervisory Committee:

Gerald Farin, Chair
Ross Maciejewski

Yalin Wang

ARIZONA STATE UNIVERSITY

December 2012

 i

ABSTRACT

This document presents a new implementation of the Smoothed

Particles Hydrodynamics algorithm using DirectX 11 and DirectCompute.

The main goal of this document is to present to the reader an alternative

solution to the largely studied and researched problem of fluid simulation.

Most other solutions have been implemented using the NVIDIA CUDA

framework; however, the proposed solution in this document uses the

Microsoft general-purpose computing on graphics processing units API.

The implementation allows for the simulation of a large number of particles

in a real-time scenario. The solution presented here uses the Smoothed

Particles Hydrodynamics algorithm to calculate the forces within the fluid;

this algorithm provides a Lagrangian approach for discretizes the Navier-

Stockes equations into a set of particles. Our solution uses the

DirectCompute compute shaders to evaluate each particle using the

multithreading and multi-core capabilities of the GPU increasing the

overall performance. The solution then describes a method for extracting

the fluid surface using the Marching Cubes method and the programmable

interfaces exposed by the DirectX pipeline. Particularly, this document

presents a method for using the Geometry Shader Stage to generate the

triangle mesh as defined by the Marching Cubes method. The

implementation results show the ability to simulate over 64K particles at a

rate of 900 and 400 frames per second, not including the surface

reconstruction steps and including the Marching Cubes steps respectively.

 ii

DEDICATION

I dedicate this thesis to my wife, Veronica, who never lost faith in

me and who gave me the necessary strength to complete my work.

Without her patience and sacrifice my research would have been

impossible.

 iii

ACKNOWLEDGMENTS

 This thesis document would not have been possible without the

assistance and guidance of several individuals whose valuable

contribution and knowledge helped in the preparation and completion of

my research.

 First, I wish to thank my advisor Dr. Gerald Farin, Professor of

Computer Science and Engineering at ASU and co-director of PRISM, for

his guidance and encouragement. For the past four years, regardless of

his busy schedule, he has always made the time to answer questions and

share his extensive and deep knowledge in computer graphics.

 Dr. Gregory Nielson, Emeritus Professor from ASU, whose

knowledge and dedication inspired me to complete my research. I am

grateful to my committee members, Dr. Ross Maciejewski and Dr. Yalin

Wang, Assistant Professors at ASU, for reviewing my thesis and their

support during this time.

 Finally, I would like to thank my friends and colleagues for their

relentless and unconditional support and my parents for their

encouragement and faith in me.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vi

LIST OF FIGURES ... vii

CHAPTER

1 INTRODUCTION ... 1

1.1 Motivation .. 1

1.2 Objective .. 2

1.2 Document Outline .. 3

2 RELATED WORK .. 4

3 DIRECT3D 11 .. 7

3.1 Direct Compute .. 8

3.2 Vertex Shader Stage ... 10

3.3 Geometry Shader Stage .. 10

3.4 Pixel Shader Stage .. 11

4 SMOOTHED PARTICLE HYDRODYNAMICS 12

4.1 Forces .. 14

4.2 Density Force Fields .. 16

4.3 Integrator Method .. 18

5 MARCHING CUBES .. 20

5.1 Step 1: Surface Intersection .. 22

5.2 Step 2: Triangulation ... 23

5.3 Step 3: Surface Normals ... 24

 v

CHAPTER Page

6 ALGORITHM .. 26

6.1 Initialization .. 27

6.2 Fluid Setup... 28

6.3 SPH Calculations ... 31

6.4 Surface Reconstruction ... 35

7 IMPLEMENTATION ... 40

7.1 Assumptions .. 40

7.2 Fluid Shaders .. 41

7.3 Sorting Shaders ... 41

7.4 Marching Cubes Shaders .. 42

7.5 Results ... 43

8 FUTURE WORK .. 48

REFERENCES .. 50

APPENDIX

A BIOTONIC SORT ALGORITHM ... 53

 vi

LIST OF TABLES

Table Page

1. System 1 Characteristics ... 43

2. System 2 Characteristics ... 43

3. System 1 Simulation Results ... 44

4. System 2 Simulation Results .. 44

 vii

LIST OF FIGURES

Figure Page

1. Fluid Simulation using SPH and DirectX 2

2. GPU N-body speedup timeline .. 5

3. Direct3D 11 Programmable Pipeline 8

4. DirectCompute Compilation Steps .. 9

5. Fluid Particles and the Smoothed Length 13

6. Marching Cubes Basic Steps .. 21

7. MC Virtual Cube: Vertices & Edges 22

8. The original published Marching Cubes configuration 23

9. Algorithm Structure .. 27

10. Fluid Simulation: Liquid interacting with a mesh object 29

11. Pixel Shader Fluid Rendering .. 39

12. Marching Cubes Surface Reconstruction Steps Illustration ... 42

13. Fluid interacting with a variety of objects (a) 45

14. Fluid interacting with a variety of objects (b) 45

15. Fluid interacting with a variety of objects (c) 46

16. Test Fluid Sequence .. 47

 1

Chapter 1

INTRODUCTION

 In this first chapter, we introduce the reader to the main motivation

behind this research and its contribution to the computer graphics

community.

1.1 Motivation

Fluid simulation has been a subject of study in computer graphics

for several years. Researchers and developers have used a wide range of

algorithms and techniques in order to generate high performance fluid

simulators. Overall, there exists a wide variety of simulators that range in

complexity; from high-end, accurate and time-consuming, to

mathematically-simplified and real-time applications. The latter is the focus

of this research. There exist several publications and white papers written

describing different algorithms for solving the mathematical equations

involved with fluid simulators. Most of the solutions proposed by

researchers and developers were designed with a specific technology in

mind, for example the NVIDIA CUDA framework. The lack of solutions

using alternative technologies is the main motivation behind this research.

In the following pages, we will discuss one of these alternatives: Direct3D

and DirectCompute.

 2

Figure 1. Fluid Simulation using SPH and DirectX

1.2 Objective

The main goal of this research is to provide an alternative solution

to the existing fast fluid simulators developed using the NVIDIA CUDA

framework. In this document we will present an algorithm and

implementation designed using Microsoft Direct3D and the well-known

Smoothed Particle Hydrodynamics and Marching Cubes methods. We

then show the results obtained using different parameters and settings.

These results validate that it is practical and efficient to build real-time fluid

simulators using Direct3D as an alternative solution to CUDA.

 3

1.3 Document Outline

 The document is organized as follows. Chapter 2 describes other

research and implementations used in order to develop fluid simulators

and how these relate to this research. Chapter 3 provides a high level

description of Direct3D programmable pipeline and DirectCompute.

Chapter 4 reviews the Smoothed Particle Hydrodynamics algorithm, its

physical properties and mathematical formulations. Chapter 5 provides a

high level description of the Marching Cubes method and its

implementation details. Chapter 6 introduces the reader to the algorithms

necessary to develop a fast fluid simulator. Chapter 7 provides the details

of the implementation and results. And Chapter 8 discusses alternative

algorithms and methods in order to provide possible improvements to the

algorithm presented in this document.

 4

Chapter 2

RELATED WORK

For the last couple of decades, hundreds – if not thousands – of

fluid simulators have been developed in computer graphics applications.

These applications vary from video games, to water flood simulations, to

flight simulation, to bloodstream simulations. Some of the earliest

approaches for solving the fluid simulation problem used Eulerian grid-

based solutions [1]. For several years this was the most used and well

known approach. A few years later, additional algorithms were introduced

using semi-Lagrangian algorithms and adaptations of the Eulerian solution

proposed by Foster and Metaxas. It was in 2003 when Mathias Müller [2]

introduced the Smoothed Particles Hydrodynamics (SPH) algorithm into

the fluid simulation computer graphics world. It has since then been used

in a countless number of research papers and applications. The use of

Lagrangian solutions enabled scientists and researchers to implement a

wide range of new solutions.

In the last few years, the introduction of General-Purpose

Computation on Graphics Processing Units (GPGPU, or also referred to

as simply GPU) has increased the research of fluid simulation. The ability

to transform almost any PC into a powerful machine capable of performing

millions of float-point operations per second (flops) has created a lot of

attention in the research community.

 5

In 2007 NVIDIA introduce CUDA to the world of computer graphics,

and with it, a new playground for researchers. With the ability to generate

general-purpose shaders, it is now possible to speedup solutions in an

unprecedented way (see Figure 2).

Figure 2. GPU N-body speedup timeline (Berczik, 2008)

Several new implementations and algorithms have been developed

using CUDA and SPH, including research documents like “Hybrid

Smoothed Particle Hydrodynamics,” which exposes a new algorithm using

“a Poisson solve on a coarse grid to enforce a divergence free velocity

field, followed by a local density correction of the particles” [3]. The

solution presented a set of results ranging from rendering 480,000

particles in 326 minutes to 200,000 in 146 minutes. Another document

includes “Interactive SPH Simulation and Rendering on the GPU,” which

 6

exposes a new method for the neighbor particle search using the “Z-

indexing and parallel sorting which eliminates GPU memory overhead due

to grid or hierarchical data structures” [4]. In this case, the results range

from rendering 16,128 particles at 28 fps (frames per second) to 255,600

particles at 3 fps. Finally, the research document “A SPH-based method

for interactive fluids simulation on the multi-GPU” presents an approach

for using multiple GPUs in parallel to resolve the SPH equations [5]. The

solution presented in this document shows speedup results over single-

GPU solutions of up to almost 3.5 times.

More recently, Microsoft introduced DirectCompute with the latest

release of Direct3D. Although CUDA continues to be the most popular

framework for fluid simulation and research, this document focuses on the

technology developed by Microsoft as an alternative solution. As

described in the following sections, the algorithm proposed here uses the

Compute, Vertex, Geometry and Pixel Shaders exposed by this API.

Due to the early adoption of CUDA as the framework to resolve

computer graphics problems such as fluid simulation, there is almost no

research documents discussing the implementation of Direct3D and SPH

and/or Marching Cubes. However, in 2011 Kristoffer Lindstrom authored a

white paper discussing the implementation of the Marching Cubes

algorithm using Direct3X’s DirectCompute [6]. In the document he outlines

the benefits (and drawbacks) of using DirectCompute and the results of

his research.

 7

Chapter 3

DIRECT3D 11

Direct3D is a Microsoft DirectX API subsystem component

available on Windows operating systems (Windows 95 and above). Its

most important feature is the ability to allow applications to render three

dimensional graphics in a high-performance environment. There have

been several releases and updates, each one of them adding functionality

that allows programmers to take advantage of the latest improvements on

hardware, particularly on GPUs. Direct3D 11 was released in 2008 and

included several major improvements and additional functionality over its

previous versions. A full list of features can be found online at

“Programming Guide for Direct3D 11” [7].

The algorithm presented on this document was designed with

Direct3D11 in mind only. It specifically uses the new functionality available

through DirectCompute and the Vertex, Geometry and Pixel Shader

Stages (see Figure 3). The latter were originally introduced within

Direct3D 10; however, there are some elements that were improved and

added for version 11, such as allowing a higher number of threads and

performance improvements, which are essential for a successful

implementation of this algorithm.

 8

Vertex Shader
Stage

Input-Assembler
Stage

Hull Shader
Stage

Tessellator
Stage

Domain Shader
Stage

Geometry Shader
Stage

Stream Output
Stage

Rasterizer
Stage

Pixel Shader
Stage

Output Merger
Stage

M
em

o
ry R

eso
u

rces

Figure 3. Direct3D 11 Programmable Pipeline

3.1 Direct Compute

One of the critical pieces this algorithm uses is the Direct3D 11

DirectCompute technology, sometimes also referred to as ‘compute

shader technology’. It allows for general-purpose computing on graphics

processing units [8]. That is, instead of using the GPU to handle computer

 9

graphics, DirectCompute performs computational operations on GPUs that

otherwise would have been traditionally performed on CPUs. Although

GPUs are limited to a range of operations and data structures due to their

nature, DirectCompute has become a powerful and important tool when

developing high performance solutions. Programmers can now migrate

some of the highly intensive mathematical operations from the CPU to the

GPU, so that such operations can be handled in a multithreaded manner

and more efficient hardware architecture for such operations.

HLSL Code

Intermediate
Language (IL)

D3D Compiler
API

IHV Driver

Hardware
Native Code

Figure 4. DirectCompute Compilation Steps (image by MSDN, 2010)

 10

DirectCompute is not the only technology that provides this

functionality, it actually “shares a range of computational interfaces with its

competitors – the Khronos Group’s Open Computing Language (OpenCL)

and NVIDIA’s Compute Unified Device Architecture (CUDA)” [8]. However,

the algorithm being presented on this document focuses only on Direct3D

and its components.

3.2 Vertex Shader Stage

The Vertex Shader (VS) stage is the first programmable interface in

the Direct3D pipeline. The main feature of this stage is that it processes a

single input vertex and produces a single output vertex. Also, “this stage

must always be active for the pipeline to execute. If no vertex modification

or transformation is required, a pass-through vertex shader must be

created and set to the pipeline” [9]. This stage allows for multiple

operations, including but not limited to per-vertex transformations and

lighting; these two being the most common ones.

3.3 Geometry Shader Stage

The Geometry Shader (GS) stage is executed immediately before

the rasterization stage (originally introduced in Direct3D 10). Its most

important feature is the ability to work with multiple vertices as input (three

for triangles, two for lines, and one for points), and generate additional

vertices. This shader “is capable of outputting multiple vertices forming a

single selected topology (GS stage output topologies available are tristrip,

linestrip, and pointlist)” [9]. The number of primitives generated within the

 11

shader can vary according to the implementation; however, the maximum

number of vertices must be specified during implementation and cannot

be updated dynamically (there exists no limit for the maximum number of

vertices) [9]. Another important feature is the ability to choose different

topology types for the input and output parameters; for example, the

shader can receive a list of points as input, and produce a list of triangles

as output.

3.4 Pixel Shader Stage

The Pixel Shader (PS) stage is the last programmable interface. It

allows for “rich techniques such as per-pixel lighting and post-processing”

[9]. After rasterization, this shader is executed once per pixel covered by a

primitive. As opposed to the VS, this shader can be set to ‘NULL’ (no

shader) in order to avoid running this stage. The input to this stage can

vary depending on the requirements; however, the output of this shader

can only be a ‘color’ output (or an additional depth-test value). This data is

then evaluated at the ‘Output Merger Stage’ to determine if the color is

written to the depth buffer or it is discarded [9].

 12

Chapter 4

SMOOTHED PARTICLE HYDRODYNAMICS

 Smoothed Particle Hydrodynamics (SPH) is a computational

method originally developed by Gingold and Monaghan (1977) and Lucy

(1977) to simulate and resolve astrophysical problems. In 2003 Matthias

Müller [2] used this method to render fluids in interactive applications. He

used the SPH algorithm to develop an alternative solution for the fluid

simulations systems as opposed to the grid-based solutions that existed at

the time. Since then it has been adopted as one of the most common

approaches for creating fluid simulators.

SPH is a mesh-free Lagrangian method which works by dividing the

system into discrete set of atomic elements normally referred to as

particles. Each one of these particles has physical properties such as

mass, position, velocity and acceleration. There are several advantages to

using this method compared to the alternative solutions that use grid-

based numerical methods for solving the problem. As described by Liu &

Liu, the most significant advantage is the adaptive nature of the SPH

method. “This adaptability of SPH is achieved at the very stage of the field

variable approximation that is performed at each time step based on a

current local set of arbitrarily distributed particles. Because of the adaptive

nature of the SPH approximation, the formulation of SPH is not affected by

the arbitrariness of the particle distribution” [10].

 13

The SPH method discretizes the fluid into a set of particles, each

one having a set of physical quantities thus defining the fluid. The

algorithm computes these quantities’ values by evaluating the properties

of the neighboring particles. The contribution of each neighbor particle is

weighted based on its distance from a given particle. This distance is

known as the smoothing length (or core kernel radius), represented by in

the equations (1) – (3) and (10) – (17).

Pi

P1

Length
Smoothed

P2

P3

P7

P6

P5

P4

P8

h

Figure 5. Fluid Particles and the Smoothed Length

The Smoothed Particle Hydrodynamics method allows evaluating

only those particles within a specific area, regardless of the particle

position. Basically, it “distributes quantities in a local neighborhood of each

particle using radial symmetrical smoothing kernels” [10]. So in order to

 14

calculate each particles’ physical scalar quantities at location , SPH

defines the following formula:

 () ∑

 ()

 (1)

where is the mass of particle , is its density, is the smoothing

length, is the field quantity at , and the function () is the

smoothing kernel with smoothed length . Also, the kernel function must

be even and normalized in order to accomplish a second order accuracy;

that is:

 ∫ () (2)

 () () (3)

As it will be described next, it is critical to select the appropriate

kernel function for each scalar quantity. For the purpose of the algorithm

outlined in this document, we implemented the kernel functions Müller

suggested in his 2003 research document [2].

4.1 Forces

 It is common to use computational techniques using four types of

forces: attractive, repulsive, damping and external. In SPH, it is assumed

that the first three forces act within the fluid. As described in Müller’s

document [2], we can start analyzing these internal forces using the

equations used in the Eulerian solutions:

 () (4)

 15

 (

) (5)

where is the fluid velocity, is the density field, is the pressure field,

 is the fluid force, the fluid viscosity, and the external forces.

Here, Eqn. (4) assumes conservation of mass and Eqn. (5) (a simplified

version of the Navier-Stokes equations for incompressible fluids) assumes

conservation of momentum.

 Due to the nature of SPH, these equations can be greatly

simplified. First, conservation of mass is guaranteed since the number of

particles and their masses are constant. Then, since the particles

compose the fluid, they move with the fluid, and so the convective term

 is not needed in Eqn. (5). Therefore, we get:

 (

) (6)

The left hand side of Eqn. (6) represents the force density fields of the

SPH method. We can rewrite this equation by first defining the

acceleration as:

 (7)

and the summation of the force fields as:

 (8)

Thus we get the acceleration of particle as:

 (9)

 16

The next section describes the steps necessary in order to calculate the

different force density fields of .

4.2 Density Force Fields

 As defined in Eqn. (8), there are three density force fields values

that we must calculate in order to compute the acceleration of each

particle in the fluid. The following sections describe in detail each one of

them and their mathematical formulation.

 For the purpose of the algorithm and implementation described

later on this document, we will be using the kernel functions described by

Müller [2]. These kernels have been adopted by the graphics community

due to their properties and stability as the distance between particles

varies.

4.2.1 Pressure

The first density force field is pressure; within the fluid system, this

term belongs to the internal repulsive forces. In the SPH Method, it is

necessary to calculate each particle pressure and density at the particle

location prior to the fluid pressure being calculated. This is achieved using

the following formulas:

 () (10)

 ∑ ()

 (11)

 () (

) {
()

 (12)

 17

where and are the particle pressure and density at particle location,

is the particle position, and are the gas constant and rest density from

the ideal gas state equation respectively, and is the kernel core radius.

Eqn. (12) is the pressure’s smoothing kernel.

Once the particle pressure at location is calculated, it is

necessary to calculate the fluid’s pressure density force field. This is

achieved using the following formulas:

 ∑ (

) ()

 (13)

 () (

) {
()

 (14)

where Eqn. (14) is know as the Desbrun spiky kernel [2]. It allows the fluid

to generate the necessary repulsion force to avoid building particle

clusters when pressure is high.

4.2.2 Viscosity

 The second density force field is viscosity; it belongs to the

damping forces of the fluid. This field is “caused by friction and, thus,

decreases the fluid’s kinetic energy by converting it into heat” [10]. In the

SPH method, this value can be calculated as follows:

 ∑ (

)

 () (15)

 () (

) {

 (16)

with the property:

 18

 () (

) () (17)

where is the fluid viscosity, the particle mass, is the particle

velocity, is the velocity of the particle being analyzed, the particle

velocity, is the particle position, and is the kernel function. Here Eqn.

(16) and Eqn. (17) represent the viscosity’s kernel functions.

4.2.3 External Force

 The last force in the formula represents all external forces applied

to the fluid; these are simply accumulated and added to the total particle

force . These forces typically represent gravity, objects moving through

the fluid, collisions, and other effects.

4.3 Integrator Method

 As described above, we will use SPH to calculate three different

physical scalar quantities per particle: density, pressure, and viscosity.

Each one of these fields will be used to calculate the particles’

acceleration, and subsequently, their velocities and positions. In order to

accomplish this, we will use the Leapfrog integration method [14], a

second-order accurate numerical solution. The Leapfrog integrator offers

two main benefits, its time-reversibility (that is, the ability to “integrate n

steps and then reverse the direction of the integration and integrate

backward n steps to arrive at the same position” [14]) and its strength. The

latter implies that the method conserves the energy of the dynamical

system (the biggest benefit over other higher-ordered integrators) [14].

 19

The Leapfrog integrator “is a simple method for numerically

integrating differential equations of the form:”

 ̈ () (18)

In the case of velocities and positions, this function takes the form of:

 ⁄ (19)

 () (20)

 ⁄ ⁄ (21)

where is the position at step , ⁄ is the velocity, or first derivative of

 at step ⁄ , () is the acceleration, or second derivative of

at step , and is the size of each time-step. It is critical for to be

constant on each time-step in order to maintain the stability of the system

[14].

 20

Chapter 5

MARCHING CUBES

 Marching Cubes (MC) is one of the most popular and used

algorithms in computer graphics for surface reconstruction. It was

developed by William E. Lorensen and Harvey E. Cline and published in

the 1987 SIGGRAPH conferences.

The purpose of MC is to “extract a polygonal mesh of an isosurface

from a three-dimensional scalar field” [11]. The basic principle “is to

subdivide space into a series of small cubes. The algorithm then instructs

us to ‘march’ though each on the cubes testing the corner points and

replacing the cube with an appropriate set of polygons” [12]. The set of

polygons generated through this method is what we know as the

isosurface, which is an approximation of what the three-dimensional scalar

field describes.

It is important to note that several new approaches have been

developed in order to resolve some of the issues and drawbacks

associated with the original Marching Cubes algorithm; these other

algorithms can be used within our solution, and we can measure their

impact on image quality and performance. Some of these alternative

solutions are addressed later on this document.

Marching Cubes was selected as the method to generate the

isosurface from the particles of the fluid due to its nature. We can easily

translate the fluid information into a grid based data field and manipulate

 21

its topology during the Geometry Shader Stage of the Direct3D pipeline.

The MC scalar field (data grid) is created by using the density values of

each particles and their “influence” on the vertices of the grid cubes.

These values are then used to calculate the isosurface based on the iso-

value specified by the user. More implementation details are explained in

the following sections.

Mark Blackburn gave a presentation based on the work by

Lorenson and Cline’s [11] work in which he described the Marching Cubes

algorithm in three basic steps:

1. Locate the surface corresponding to a user-specific value (iso-value)

2. Create triangles

3. Calculate normal to the surface at each vertex

3D
Scalar Field

Surface
Intersection

Triangulation Surface Normals

Isosurface

Figure 6. Marching Cubes Basic Steps

 22

5.1 Step 1: Surface Intersection

The first step in the Marching Cubes algorithm is accomplished by

interpreting the scalar field as a collection of points, each one represented

by a field value. The algorithm first transverses the entire grid using each

vertex and its seven neighboring values in order to generate a virtual cube

(see Figure 7). Then the algorithm analyzes each cube and its vertex

values in reference to an arbitrary value normally referenced to as iso-

value.

3

4

9

2

0

8

1

10 11

6

3

5

7

0

4

1

2

5

67

Figure 7. MC Virtual Cube: Vertices (blue) & Edges (green) (image by

Mark Blackburn, 2005)

Then, in order to find the isosurface within the cube, the algorithm

assigns a ‘one’ if the value of the vertex is greater or equal to the iso-value

(inside); otherwise it assigns a ‘zero’ to the given vertex (outside). If an

 23

edge contains one vertex inside and one outside the surface, then it is

said that the edge intersects the Isosurface.

5.2 Step 2: Triangulation

 The Marching Cubes’ second step uses as input the edge

information computed in the first step. Now, since each cube has eight

vertices, and each can be inside or outside, then we know that there are

2^8=256 possible combinations. However, due to its symmetry, these

combinations can be reduced to only 15 different combinations (greatly

simplifying the lookups). In this step, a set of triangles are generated

within each cube (see Figure 8) using the interpolated values between the

vertex “inside” and the one “outside.”

Figure 8. The original published Marching Cubes configuration (image by

Wikipedia: Marching Cubes, 2012)

 24

The process of calculating the intersections of the surface and the

grid vertices by computing an interpolated value is referred to as ‘Adaptive

Marching Cubes.’ This approach provides a better approximation of the

original scalar field surface. In this case, the interpolated values will be

“closer” to the actual intersection between the surface and the grid

vertices than selecting simply the midpoint or any other arbitrary value

along the edge. It is also important to point out that, although the algorithm

does not generate any edge connectivity information, the connectivity

between triangles is preserved due to the cubes being selected as shown

in Figure 8; thus also guaranteeing the isosurface mesh connectivity 0 .

5.2 Step 3: Surface Normals

 The last step of the Marching Cubes algorithm is to calculate the

normals of the triangles. This step is required for rendering purposes; in

order to be able to apply lighting and other effects. According to the

original Marching Cubes algorithm presented by Lorenson and Cline, this

step can be achieved by calculating first the gradient vector ⃗ as a

derivative of the density function. As described in their paper, “to estimate

the gradient vector at the surface of interest, we first estimate the gradient

vectors at the vertices and interpolate the gradient at the intersection” [11].

Where the gradients are calculated as follows:

 ()
 () ()

 (22)

 25

 ()
 () ()

 (23)

 ()
 () ()

 (24)

where () is the scalar field value at location (), and , ,

are the lengths of the cube edges. And the normal then is obtained by

normalizing the gradient. Finally the algorithm interpolates the normal at

the cube vertices to the intersection point found in the previous step.

 26

Chapter 6

ALGORITHM

 The algorithm described in this document can be broken into

multiple blocks and grouped based on their functionality as follows:

Initialization, Fluid Setup, SPH Calculations, and Surface Reconstruction

(see Figure 9). With the exception of the Initialization block, all the blocks

are executed in the GPU on a per-frame basis. The Initialization block is

executed on the CPU only once during the entire execution of the

application.

This algorithm was developed with only Direct3D 11 and

DirectCompute in mind. As such, the blocks described next are not meant

to be implemented using any other technologies; although, it is possible to

translate them based on other technologies functionality and

requirements.

 27

Initialization

Fluid
Setup

SPH
Calculations

Load Shaders

Surface
Reconstruction

Calculate Particle-Cell Value

Reset Grid Indices

Set Grid Indices

Sort Particles

Sort Particle-Cell Values

Calculate Density

Set Buffers

Calculate Force

Calculate Acceleration

Calculate New Position

CPU

GPU
(per frame)

Reset MC Grid

Set MC Grid Density Factors

Generate Isosurface

Figure 9. Algorithm Structure

6.1 Initialization

 This block is composed of only two steps: “Load Shaders” and “Set

Buffers.” Each one of the steps on the following blocks represents a

DirectCompute shader. These shaders can be loaded into memory by

either using precompiled shaders or by compiling them during the

application execution. After the loading step, then it is necessary to set all

the buffers required by each one of these shaders. This block can also be

 28

used to initialize any predefined setting such as minimum/maximum

number of particles, create objects for the fluid to interact with, and set all

the SPH global settings.

6.2 Fluid Setup

 This block is composed of a series of steps required to group and

sort the particles in a manner in which we can apply the SPH calculations

in an efficient manner. The nature of SPH, as it can be observed in its

formulas, is to look at each particle and calculate the influence that other

particles have over it. This can trivially be translated into a series of loops;

however, due to the nature of the DirectCompute shaders, organizing the

particles in such a format is not a trivial task.

To accomplish this task, each one of the steps in this block uses a

grid set. This grid contains all the particles in the fluid and arranges them

in individual units called cells. The biggest benefit of placing all the

particles within these cells is to limit the area the algorithm needs to look

into when analyzing the influence of the particles over each other.

In order to minimize the number of cells the algorithm needs to look

at, we set the virtual size of each cell to . This size guarantees that all

the particles which can influence the forces affecting a given particle are

contained within the adjacent cells. Furthermore, since each cell is of size

2h, then we can determine the quadrant in which a given particle is within

its cell and only search for other particles on the adjacent cells to that

quadrant; allowing us to narrow the search from 27 cells to only 8 cells.

 29

Figure 10. Fluid Simulation: Liquid interacting with a mesh object

6.2.1 Data Structures

 The steps described next use multiple different data structures

based on the DirectCompute and HLSL guidelines. Next, we present the

structured buffers required for the steps described on the Fluid Setup and

SPH Calculations blocks (actual buffers implementation details are

described later on the document):

 []

 []

 []

 []

 []

 []

 []

 30

6.2.2 Calculate Particle-Cell Value

 This step loops through all the particles and calculate the cell to

which each particle belongs too. These cell values vary by the specific

location of each particle, so they must be recalculated on each frame.

01

02 ()

03 [] ()

6.2.3 Sort Particle-Cell Values

 This step takes the grid values derived on the previous step and

sorts them all in ascending order. There are multiple different algorithms

that can be used to achieve this using the power of the GPU. The

implementation described later in this document uses the Bitonic Sort

algorithm (more details on this algorithm are described on the following

section).

6.2.4 Reset Grid Indices

 This is trivial step that simply resets all the values of the

 buffer to zero. This is required in order to regroup all the

particles by cells in the previous step. Since a particle can move to any

cell from one step to another, the algorithm needs to be reset on every

frame.

 31

6.2.5 Set Grid Indices

 This step loops through all the grid cell values and groups the

particle IDs based on cell they belong to. At the end of this step, the

GridIndices buffer contains a reference to the particles on each cell.

01

02

03

04

05

06

07

08

09

10 []

11

12 []

6.2.6 Sort Particles

 This step simply rearranges every particles based on the cell value

they belong. This is necessary to assign the particles to the values

assigned in the previous step.

01

02 ([])

03 [] ()

 32

6.3 SPH Calculations

 After all the particles have been arranged and the

buffer is setup with the correct indices, the algorithm is now ready to

calculate the particles’ next positions in order to simulate how they move

along the fluid. To accomplish this, the algorithm applies the SPH force

formulas described previously following the next steps.

6.3.1 Calculate Density

 This step loops through every particle and calculates their density

and pressure values based on the particles on the adjacent cells.

01

02

03 ([])

04 ()

05 ()

06

07

08 ([])

09 []

10 [] ([])

where the function is defined as follows:

01

02

03

 33

04 []

05 ()

06 ()

07 ()

6.3.2 Calculate Force

After the pressure and the density of each individual particle have

been calculated, this step computes the SPH force for all particles.

01

02

03 ([])

04 ()

05 ()

06

07

08 ([])

09 []

where the function is defined as follows:

01 ()

02

03

04 []

05 ()

06 ()

 34

07 ()

08 ()

09

6.3.3 Calculate Acceleration

 Once the forces have been calculated this step derives the

particles’ acceleration. This is accomplished by looping through each

particle and computing first their acceleration, next the algorithm applies

the collision forces – if a collision is detected, and finally the algorithm

applies all external forces.

01

02

03 []

04

05

06 (

√
)

07

08

09 ()

10 []

11 []

where the method is a specific implementation function.

The document describes in detailed an algorithm for implementing this

 35

function on the following section. In this particular implementation, the final

force applied to each particle is affected by the distance between the

given particle and the object.

6.3.4 Calculate New Position

 This step used the acceleration of each particle and computes the

particles’ new positions using a time-step approach.

01

02

03

04 ([])

05

()

06

07

6.4 Surface Reconstruction

 In order to derive the surface out of the particles, this solution

presented next uses the Marching Cubes algorithm. The first two steps set

up the data set with the corresponding iso-values, and then the set is used

to create a triangle-mesh representing the fluid.

6.4.1 Data Structures

 The following are the structured buffers required for the steps

required within the Surface Reconstruction block (actual buffers

implementation details are described later on the document):

 []

 36

 []

 []

6.4.2 Reset MC Grid

 This step resets the grid indices buffer to zero before calculating

the densities at each cell vertex, as described on the following step. This

step must be executed on every frame.

6.4.3 Set MC Grid Density Factors

 The algorithm loops through each vertex in the grid and calculates

the density factor (iso-value) according to the “influence” of the particles

on the neighbor cells. A particle’s density “influences” the density factor of

a vertex if the particle is within the kernel core radius, h; the “influence” is

proportional to the distance between the particle and the vertex, similar to

how particles influence each other on the SPH algorithm.

01

02 ()

03

04

05 ([])

06 []

6.4.4 Generate Isosurface

 This step uses the Vertex, Geometry and Pixel Shaders from the

Direct3D pipeline. These three shaders are part of the improved Direct3D

11 and they play an important role on this algorithm.

 37

6.4.4.1 Vertex Shader

 For this algorithm, the Vertex Shader (VS) is simply used as a

pass-through stage. The vertex ID is simply passed to the next stage on

the pipeline. This ID will be used to identify the cell (or cube) in which the

marching cube algorithm will operate on. That is, the vertex shader is

called for each cell on the data grid.

6.4.3.2 Geometry Shader

 This shader is responsible for generating the isosurface using the

Marching Cubes algorithm and data grid generated during the ‘Set MC

Grid Density Factors’ step.

This step loops through each cell on the grid, calculates the

vertices “inside” and “outside” the isosurface. It then determines the cube

configuration (as described in the Marching Cubes algorithm) and

generates the triangles accordingly.

01

02

03

04 ()

05 []

06

07

08

09 []

 38

10 ([])

11

12

13 [] ()

14 [] ()

15 []

16 []

17

18 ()

19 [] ()

20 [] ()

21 []

22 []

23 []

24 ()

25 []

26 []

27 ()

28 []

29 []

30 ()

31

 39

32 ()

6.4.3.3 Pixel Shader

 There is no specific use for the Pixel Shader on this algorithm.

Depending on the implementation, this stage can be used to create per-

pixel lighting calculations or simply to pass through the color calculated at

the Geometry Shader. Even though there is no specific PS algorithm, this

shader plays an important role and it cannot be overlooked. Anyone

implementing this algorithm will have to set a Pixel Shader in order to

properly render the isosurface extracted by the Geometry Shader.

Figure 11. Pixel Shader Fluid Rendering

 40

Chapter 7

IMPLEMENTATION

 The document now focuses on describing the details of the

application developed using the algorithm described on the previous

section. The implementation was created to simulate a liquid fluid,

particularly in this case: water.

7.1 Assumptions

 As in all implementations, there exist multiple assumptions that

were made during the development. Here is the list of the assumptions

made on this implementation:

1. Particles’ masses and sizes are constant and equal. This can be

considered accurate in real-live scenarios where all the particles are water

molecules. It also allows for a greatly simplifications of the SPH

calculations.

2. All particles are contained within a predefined grid; that is, no

particles can exist outside the grid. This implies a limitation on the

simulator, which in most cases, it would not have a significant impact, but

it does have to be observed. In addition, the grid exists at a fixed location

and it is of a fixed size; guaranteeing that the neighboring lookups are

constant.

3. All objects in the scene are triangle-meshes with the same physical

properties, such as elasticity and stiffness. Also, the objects are static

within the time-step specified in the SPH Calculations block; that is, the

 41

object is not moving while the particles’ forces, acceleration and new

position values are being calculated.

7.2 Fluid Shaders

 In order to guarantee that all compute shaders are executed for

each fluid particle, the implementation uses the

ID3D11DeviceContext.Dispatch method and the NUMTHREADS

DirectCompute attribute. Following is an example of the setting required to

accomplish this:

In Code:

Dispatch(NumberParticles / NUMBER_THREADS, 1, 1);

In HLSL:

[numthreads(NUMBER_THREADS, 1, 1)]
void Step
 (
 uint3 Gid : SV_GroupID,
 uint3 DTid : SV_DispatchThreadID,
 uint3 GTid : SV_GroupThreadID,
 uint GI : SV_GroupIndex
)
{
 // Code
}

where NUMBER_THREADS is set to 2014 (the maximum number of

threads allowed by Direct3D 11).

7.3 Sorting Shaders

 For this implementation, we used the Bitonic algorithm in order to

sort the grid indices values generated during the “Calculate Particle Cell-

Value” step. The Bitonic algorithm was originally developed by Ken

 42

Batcher as a network sorting algorithm [26]. The algorithm provides a

 (()) worst case complexity and a best case performance of

 (()).

Appendix A shows a full implementation of the Bitonic algorithm

using C++ and HLSL.

7.4 Marching Cubes Shaders

 The first two shaders of the Surface Reconstruction block use the

same approach as the fluid shaders, where the variable ‘NumberParticles’

is replaced with the variable ‘NumberVertices.’ Then, as the algorithm

describes, the following steps use the Vertex, Geometry and Pixel

shaders. In this implementation we use a per-pixel lighting technique.

Figure 12. Marching Cubes Surface Reconstruction Steps Illustration. The

left image shows the particles rendered as textured squares. The middle

image shows the cubes with at least one vertex “inside” the isosurface.

The right image shows the mesh fluid rendered using the MC algorithm.

 43

7.5 Results

In this section we describe the results of the implementation we just

described. As a point of reference, the application was tested using the

following system:

System 1 Characteristics

 Intel Core i7-2700 CPU @3.50GHz (8 CPUs)
 16 GB RAM
 Windows 7 Enterprise 64-bit (6.1, Build 7601)
 NVIDIA GeForce GTX 580 (2736 MB)
 DirectX 11
 Windows Experience Index: 7.6

Table 1: System 1 Characteristics

System 2 Characteristics

 Intel Core i7 CPU 950 @3.07GHz (8 CPUs)
 12 GB RAM
 Windows 7 Enterprise 64-bit
 NVIDIA GeForce GTX 430 (1024 MB)
 DirectX 11
 Windows Experience Index: 5.9

Table 2: System 1 Characteristics

The first tests were designed in order to validate the performance of

the algorithm and the implementation. Table 3 & Table 4 describe the

results obtained when testing the implementation using the both System 1

and System 2. The application was tested using a different set of

configurations and number of particles. As it can be seen on the following

tables, one of the most relevant results is the application’s ability to handle

in real-time over 65,000 particles using a 128*128*128 Marching Cubes

 44

grid. However, the results also show that the bottleneck in the application

is the Marching Cubes algorithm. Alternative solutions are analyzed in the

following section.

System 1

Configuration
Number of Particles

16,384 32,768 65,536

SPH-Only 920 fps 915 fps 910 fps

SPH + Particles (texture based) 903 fps 895 fps 860 fps

SPH + MC (grid size 32) 608 fps 524 fps 440 fps

SPH + MC (grid size 64) 314 fps 241 fps 184 fps

SPH + MC (grid size 128) 86 fps 65 fps 49 fps

SPH + MC (grid size 256) 12 fps 8 fps 7 fps

Table 3: System 1 Simulation Results

System 2

Configuration
Number of Particles

16,384 32,768 65,536

SPH-Only 835 fps 805 fps 798 fps

SPH + Particles (texture based) 800 fps 790 fps 755 fps

SPH + MC (grid size 32) 537 fps 463 fps 389 fps

SPH + MC (grid size 64) 277 fps 212 fps 180 fps

SPH + MC (grid size 128) 78 fps 60 fps 44 fps

SPH + MC (grid size 256) 10 fps 7 fps 4 fps

Table 4: System 2 Simulation Results

 45

 Additional results are shown in the following images:

Figure 13. Fluid interacting with multiples objects (a). Number of Particles:

32,768; Marching Cubes Grid: 128x128x128.

Figure 14. Fluid interacting with multiples objects (b). Number of Particles:

65,636; Marching Cubes Grid: 128x128x128. The image shows the fluid

rendered using Marching Cubes.

 46

Figure 15. Fluid interacting with multiples objects (c). Number of Particles:

65,636; Marching Cubes Grid: 128x128x128. This image shows the

individual particles rendered as textured squares.

 47

Figure 16. Test Fluid Sequence. The top image represents the initial state

of the fluid. All other images represent the sequence after “dropping” a

“block of liquid”. Total Number of Particles: 32,768; MC Grid:

128x128x128

 48

Chapter 8

FUTURE WORK

 The solution presented in this document shows a promising

approach for creating fast fluid simulators using Direct3D. However, the

solution is not ideal; there are areas that can be improved to generate

faster and more photorealistic simulators. Following we present a list of

possible areas and solutions which can improve the overall outcome of the

algorithm just presented. These possible areas of improvements are

grouped by the block or step they belong to.

 ‘Sort Particle’ step. Our solution uses the Bitonic Sort algorithm in

order to sort, in each frame, all the fluid particles. However, it was

observed that most particles do not have to be rearranged on every

frame; that is, most particles do not move from one cell/cube on every

frame. So, a new algorithm which tackles this issue, and only sorts

those particles that have moved to another cell/cube could improve the

overall the performance greatly.

 ‘Surface Reconstruction’ block. There exist several algorithms that can

be used to reconstruct the surface based on the fluid particles data.

Each one of these algorithm would need to be tested and compared

against the results presented here to determine if they actually

represent an improvement. One of these alternatives is the “Dual

Marching Cubes” algorithm developed by Dr. Gregory M. Nielson [16].

This algorithm resolves some of the “artifacts” generated by the

 49

Marching Cubes algorithm; thus generating a visually better isosurface.

Other alternatives include smooth isosurface extraction [17],

anisotropic kernels [18] and adaptive sampling [19]. All of these

present benefits and drawbacks. Further research is required to

determine their best implementation and to analyze their results.

 ‘Collisions’ (within the ‘Calculate Acceleration’ step). Our algorithm

uses a basic point-triangle collision detection method. This method is

efficient, but it can be improved by using other approaches such as the

one proposed by da Silva, Clua, Pagliosa and Montenegro: “Fluid

Simulation with Rigid Body Triangle Accuracy Collision using a

Heterogeneous GPU/CPU Hardware System.”

 50

REFERENCES

[1] Nick Foster and Demitri Metaxas. “Realistic Animation of Liquids”. In
Wayne A. Davis and Richard Bartels, editors, Graphics Interface ’96,
pages 204–212. Canadian information Processing Society, Canadian
Human-Computer Communications Society, May 1996.

[2] Matthias Müller, David Charypar, and Markus Gross. 2003. “Particle-

Based Fluid Simulation for Interactive Applications”. In Proceedings of
the 2003 ACM SIGGRAPH/Eurographics symposium on Computer
animation (SCA '03). Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 154-159.

[3] Karthik Raveendran, Chris Wojtan, and Greg Turk. 2011. “Hybrid

Smoothed Particle Hydrodynamics”. In Proceedings of the 2011 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA
'11), Stephen N. Spencer (Ed.). ACM, New York, NY, USA, 33-42.

[4] Prashant Goswami, Philipp Schlegel, Barbara Solenthaler, and

Renato Pajarola. 2010. “Interactive SPH Simulation and Rendering on
the GPU”. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA '10). Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 55-64.

[5] Fengquan Zhang, Lei Hu, Jiawen Wu, and Xukun Shen. 2011. “A

SPH-Based Method for Interactive Fluids Simulation on the Multi-
GPU”. In Proceedings of the 10th International Conference on Virtual
Reality Continuum and Its Applications in Industry (VRCAI '11). ACM,
New York, NY, USA, 423-426.

[6] Kristoffer Lindstrom. 2011. “Performance of Marching Cubes using

DirectX Compute Shaders Compared to using HistoPyramids”.
Blekinge Institute of Technology. Karlskrona, Sweden, 2-4.

[7] Programming Guide for Direct3D 11. MSDN. Microsoft. 2012.

http://msdn.microsoft.com/en-
us/library/windows/desktop/ff476345(v=vs.85).aspx/

[8] DirectCompute. Wikipedia. Wikimedia Foundation, Inc. May 2, 2012.

http://en.wikipedia.org/wiki/DirectCompute/

[9] Shader Stages. MSDN. Microsoft. 2012.

http://msdn.microsoft.com/en-
us/library/windows/desktop/bb205146(v=vs.85).aspx#Vertex_Shader_
Stage/

 51

[10] G.R. Liu, M. B. Liu. “Smoothed Particle Hydrodynamics: A Meshfree

Particle Method”. World Scientific Publishing Co. Pte. Ltd. 2003. USA.

[11] William E. Lorensen and Harvey E. Cline. 1987. “Marching cubes: A

high resolution 3D Surface Construction Algorithm”. In Proceedings of
the 14th annual conference on Computer graphics and interactive
techniques (SIGGRAPH '87), Maureen C. Stone (Ed.). ACM, New
York, NY, USA, 163-169.

[12] Marching Cubes. Wikipedia. Wikimedia Foundation, Inc. September 4,

2012. http://en.wikipedia.org/wiki/Marching_cubes

[13] James Sharman. “The Marching Cubes Algorithm”.

http://www.exaflop.org/docs/marchcubes/

[14] Leapfrog Integration. Wikipedia. Wikimedia Foundation, Inc. August,

12, 2012. http://en.wikipedia.org/wiki/Leapfrog_method/

[15] Tomas Müller and Ben Trumbore. 2005. “Fast, Minimum Storage

Ray/Triangle Intersection”. In ACM SIGGRAPH 2005 Courses
(SIGGRAPH '05), John Fujii (Ed.). ACM, NY, USA, Article 7.

[16] Gregory M. Nielson. 2004. “Dual Marching Cubes”. In Proceedings of

the conference on Visualization '04 (VIS '04). IEEE Computer Society,
Washington, DC, USA, 489-496.

[17] Lars Linsen, Vladimir Molchanov, Petar Dobrev, Stephan Rosswog,

Paul Rosenthal, Tran Van Long. “SmoothViz: Visualization of
Smoothed Particle Hydrodynamics Data”. In Hydrodynamics –
Optimizing Methods and Tool. INTECH. October 26, 2011, pages 3-
28.

[18] Jihun Yu and Greg Turk. 2010. Reconstructing surfaces of
particle-based fluids using anisotropic kernels. In Proceedings

of the 2010 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA '10). Eurographics Association,

Aire-la-Ville, Switzerland, Switzerland, 217-225.

[19] Zhang, Y; Solenthaler, B; Pajarola, R (2008). “Adaptive Sampling and
Rendering of Fluids on the GPU”. In: Proceedings Symposium on
Point-Based Graphics, Los Angeles, 10 August 2008 - 11 August
2008, 137-146.

 52

[20] Jose Ricardo da Silva, Jr, Esteban W. Cluay, Paulo A. Pagliosaz, and
Anselmo Montenegrox. 2010. “Fluid Simulation with Rigid Body
Triangle Accuracy Collision using a Heterogeneous GPU/CPU
Hardware System”. In Proceedings of the 2009 symposium on
Interactive 3D graphics and games (I3D '09). ACM, New York, NY,
USA, Article 20, 1 pages.

[21] Rama Hoetzlein. R.C. Hoetzlein Web Site.

http://www.rchoetzlein.com/eng/

[22] Peter Berczik. SPH Astrophysics - State-of-the-art. ERCOFTAC SIG
SPHERIC III International Workshop Keynotes. 2008.

[23] Michal Chladek, Roman Durikovic. Smoothed Particle Hydrodynamics

in Flood Simulations. Proceedings of the Spring Conference on
Computer Graphics - SCCG2010, ISSN: 1335-5694, Budmerice,
Slovakia, pages 34 – 37, 2010.

[24] Robert Bridson, Matthias Müller-Fischer. Fluid Simulation SIGGRAPH

2007 Course Notes, SIGGRAPH Symposium 2007, pages 65 – 67.
April 30, 2007.

[25] Marcus Vesterlund. 2004. “Simulation and Rendering of a Viscous

Fluid using Smoothed Particle Hydrodynamics”. Master Thesis.
December 3, 2004.

[26] Bitonic Sorter. Wikipedia. Wikimedia Foundation, Inc. September 8,

2012. http://en.wikipedia.org/wiki/Bitonic_sorter.

53

APPENDIX A

BIOTONIC SORT ALGORITHM

54

BiotonicSort.cpp
#define BIT_BSIZE 1024
#define TRANS_BSIZE 32
#define MATRIX_WIDTH = BIT_BSIZE;
#define MATRIX_HEIGHT = NUM_ELEMENTS/ BIT_BSIZE;

// Constant Buffers
_DECLSPEC_ALIGN_16_ struct SortCB
{
 UINT Level;
 UINT LevelMask;
 UINT Width;
 UINT Height;
};

// Structured Buffers
ID3D11ComputeShader* pSortBitonic = NULL;
ID3D11ComputeShader* pSortTranspose = NULL;
ID3D11Buffer* pSortCB = NULL;
ID3D11Buffer* pTemp = NULL;
ID3D11ShaderResourceView* pTempSRV = NULL;
ID3D11UnorderedAccessView* pTempUAV = NULL;

//---
// GPU Bitonic Sort
// For more information, please see the DirectX samples by Microsoft
//---
void BitonicSort
 (
 ID3D11DeviceContext* pd3dCxt,
 ID3D11UnorderedAccessView* inUAV,
 ID3D11ShaderResourceView* inSRV
)
{
 pd3dCxt ->CSSetConstantBuffers(0, 1, &pSortCB);

 // Sort the data
 // First sort the rows for the levels <= to the block size
 for(UINT level=2; level<=BIT_BSIZE; level<<=1)
 {
 SortCB cons = {level, level, MATRIX_HEIGHT, MATRIX_WIDTH};
 pd3dCxt->UpdateSubresource(pSortCB, 0, NULL, &cons, 0, 0);

 // Sort the row data
 pd3dCxt->CSSetUnorderedAccessViews(0, 1, &inUAV, NULL);
 pd3dCxt->CSSetShader(pSortBitonic, NULL, 0);
 pd3dCxt->Dispatch(NUM_ELEMENTS/BIT_BSIZE, 1, 1);
 }

 // Sort the rows and columns for the levels > than the block size
 // Transpose. Sort the Columns. Transpose. Sort the Rows.
 for(UINT level=(BIT_BSIZE<<1); level<=NUM_ELEMENTS; level<<=1)
 {

55

 SortCB cons1 =
 {
 (level/BIT_BSIZE),
 (level&~NUM_ELEMENTS)/BIT_BSIZE, MATRIX_WIDTH, MATRIX_HEIGHT
 };

 // Set constant buffer
 pd3dCxt->UpdateSubresource(pSortCB, 0, NULL, &cons1, 0, 0);

 // Transpose the data from buffer 1 into buffer 2
 ID3D11ShaderResourceView* pViewNULL = NULL;
 pd3dCxt->CSSetShaderResources(0, 1, &pViewNULL);
 pd3dCxt->CSSetUnorderedAccessViews(0, 1, &pTempUAV, NULL);
 pd3dCxt->CSSetShaderResources(0, 1, &inSRV);
 pd3dCxt->CSSetShader(pSortTranspose, NULL, 0);
 pd3dCxt->Dispatch(WIDTH/TRANS_BSIZE, HEIGHT/TRANS_BSIZE, 1);

 // Sort the transposed column data
 pd3dCxt->CSSetShader(pSortBitonic, NULL, 0);
 pd3dCxt->Dispatch(NUM_ELEMENTS/BIT_BLOCK_SIZE, 1, 1);

 SortCB cons2 = {BIT_BSIZE, level, MATRIX_HEIGHT, MATRIX_WIDTH};
 pd3dCxt->UpdateSubresource(pSortCB, 0, NULL, &cons2, 0, 0);

 // Transpose the data from buffer 2 back into buffer 1
 pd3dCxt->CSSetShaderResources(0, 1, &pViewNULL);
 pd3dCxt->CSSetUnorderedAccessViews(0, 1, &inUAV, NULL);
 pd3dCxt->CSSetShaderResources(0, 1, &pTempSRV);
 pd3dCxt->CSSetShader(pSortTranspose, NULL, 0);
 pd3dCxt->Dispatch(HEIGHT/TRANS_BSIZE, WIDTH/TRANS_BSIZE, 1);

 // Sort the row data
 pd3dCxt->CSSetShader(pSortBitonic, NULL, 0);
 pd3dCxt->Dispatch(NUM_ELEMENTS/BIT_BSIZE, 1, 1);
 }
}

56

BiotonicSort.hlsl
#define BIT_BSIZE 1024
#define TRANS_BSIZE 32

// Constant Buffers
cbuffer CB : register(b0)
{
 uint Level;
 uint LevelMask;
 uint Width;
 uint Height;
};

// Structured Buffers
StructuredBuffer<uint> Input : register(t0);
RWStructuredBuffer<uint> Data : register(u0);

//---
// For more information, please see the DirectX samples by Microsoft
//---

// Bitonic Sort Compute Shader
groupshared uint shared[BIT_BSIZE];

[numthreads(BIT_BSIZE, 1, 1)]
void BitonicSort
 (
 uint3 Gid : SV_GroupID,
 uint3 DTid : SV_DispatchThreadID,
 uint3 GTid : SV_GroupThreadID,
 uint GI : SV_GroupIndex
)
{
 // Load shared data
 shared[GI] = Data[DTid.x];
 GroupMemoryBarrierWithGroupSync();

 // Sort the shared data
 for (uint j=Level>>1 ; j>0 ; j>>=1)
 {
 // ‘Copy’ data
 uint result =
 ((shared[GI&~j].x<=shared[GI|j].x)==(bool)(LevelMask& DTid.x))?
 shared[GI^j] : shared[GI];
 GroupMemoryBarrierWithGroupSync();

 // ‘Paste’ data
 shared[GI] = result;
 GroupMemoryBarrierWithGroupSync();
 }

 // Store shared data
 Data[DTid.x] = shared[GI];
}

57

// Matrix Transpose Compute Shader
groupshared uint shared [TRANS_BSIZE*TRANS_BSIZE];

[numthreads(TRANS_BSIZE, TRANS_BSIZE, 1)]
void MatrixTranspose
 (
 uint3 Gid : SV_GroupID,
 uint3 DTid : SV_DispatchThreadID,
 uint3 GTid : SV_GroupThreadID,
 uint GI : SV_GroupIndex
)
{
 // Load shared data
 shared[GI] = Input[DTid.y*Width+DTid.x];
 GroupMemoryBarrierWithGroupSync();

 // Find destination
 uint2 P = DTid.yx-GTid.yx+GTid.xy;

 // Store shared data
 Data[P.y*Height+P.x] = shared[GTid.x*TRANS_BSIZE+GTid.y];
}

