
Characterization of Cost Excess in Cloud Applications

by

Kevin Buell

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2012 by the
Graduate Supervisory Committee:

James Collofello, Chair
Hasan Davulcu

Timothy Lindquist
Arunabha Sen

ARIZONA STATE UNIVERSITY

December 2012

ABSTRACT

The pay-as-you-go economic model of cloud computing increases the visibil-

ity, traceability, and verifiability of software costs. Application developers must un-

derstand how their software uses resources when running in the cloud in order to stay

within budgeted costs and/or produce expected profits. Cloud computing’s unique eco-

nomic model also leads naturally to an earn-as-you-go profit model for many cloud

based applications. These applications can benefit from low level analyses for cost op-

timization and verification. Testing cloud applications to ensure they meet monetary

cost objectives has not been well explored in the current literature.

When considering revenues and costs for cloud applications, the resource eco-

nomic model can be scaled down to the transaction level in order to associate source

code with costs incurred while running in the cloud. Both static and dynamic analysis

techniques can be developed and applied to understand how and where cloud applica-

tions incur costs. Such analyses can help optimize (i.e. minimize) costs and verify that

they stay within expected tolerances.

An adaptation of Worst Case Execution Time (WCET) analysis is presented

here to statically determine worst case monetary costs of cloud applications. This anal-

ysis is used to produce an algorithm for determining control flow paths within an ap-

plication that can exceed a given cost threshold. The corresponding results are used to

identify path sections that contribute most to cost excess.

A hybrid approach for determining cost excesses is also presented that is com-

prised mostly of dynamic measurements but that also incorporates calculations that

are based on the static analysis approach. This approach uses operational profiles to

increase the precision and usefulness of the calculations.

i

DEDICATION

To Arabeth, who has put up with all of it, and still does.

ii

ACKNOWLEDGEMENTS

I would first like to acknowledge the support, patience, and guidance of my

advisor Jim Collofello. He is very skillful in knowing how hard to push, what is

important and what is not, when to step out of the way and when to intervene, and in

general how best to help. He was definitely the right advisor for me and this work

would not have been possible without him.

I would also like to acknowledge my committee members–Tim Lindquist,

Hasan Davulcu, and Arun Sen–for sacrificing their time to review and discuss my

research. They offered several important suggestions and this work is better because

of their help.

I cannot leave out Martha Vanderberg who is probably the most helpful person

in public service that I’ve ever met. Her skillful and caring leadership in the computer

science advising department at Arizona State was immensely helpful to ensure this

work moved through the process toward completion.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER . 1

1 Introduction . 1

1.1 Background . 1

1.2 Hypothesis . 8

2 Conceptual Model . 11

2.1 Cloud Application Costs . 11

Processing Costs . 12

Storage Costs . 12

Bandwidth Costs . 13

Cost of Services . 13

2.2 Cloud Application Revenue . 14

Direct Revenue . 14

Indirect Revenue or Budgeted Cost . 15

2.3 Cloud Application Profit . 15

2.4 An Example . 18

3 Research Context . 23

3.1 Overview . 23

3.2 Review of Related Literature . 24

Cloud Cost Estimation and Verification 24

Cloud Cost Optimization . 25

Fine-Grain Cloud Economics and Measurements 27

Cloud and Software Economics . 28

Testing and the Cloud . 29

General Software Engineering and the Cloud 31

iv

Chapter Page
Cloud Based Services . 32

3.3 Contribution of the research . 33

4 Overview of Research Approaches . 36

4.1 Introduction . 36

4.2 Cost as a Software Quality Attribute 36

4.3 Dynamic Verification . 39

Instrumentation Approach . 40

Detection Approach . 42

Provider Based Approach . 44

4.4 Summary and Limitations of Dynamic Approaches 46

4.5 Static Verification . 47

5 Static Research Approach . 49

5.1 Overview . 49

5.2 WCET Adaptation . 49

5.3 Decision/Call Graph Analysis . 51

5.4 Characterizing Cost Excess . 55

5.5 An Example . 57

5.6 Evaluation Methodology . 59

Research Prototype . 59

Verification Utility . 60

5.7 Evaluation Results . 62

5.8 Assumptions and Limitations . 64

5.9 Observations . 66

6 Hybrid Approach . 67

6.1 Overview . 67

6.2 Dynamic Measurements . 68

6.3 Summary Calculations . 69

v

Chapter Page
6.4 Using the Hybrid Approach . 70

6.5 Evaluation Methodology . 71

Real World Example . 72

Measurements and Calculations . 74

6.6 Evaluation Results . 75

6.7 Assumptions and Limitations . 79

6.8 Observations . 79

7 Conclusions and Future Work . 81

7.1 Conclusions . 81

7.2 Future Work . 83

REFERENCES . 86

APPENDIX . 95

A SAMPLE GENERATED PROGRAM FOR STATIC ANALYSIS 96

B SAMPLE CLASSES FOR DYNAMIC ANALYSIS 102

vi

LIST OF TABLES

Table Page

1 Key Terms . ix

1.1 Current Rates Charged by Major Cloud Providers 6

1.2 Average measured costs in a sample cloud application 7

3.1 Comparison of related literature . 33

5.1 An example of normalized node weights 58

vii

LIST OF FIGURES

Figure Page

1.1 Cost of some sample transactions . 3

4.1 Sample cloud application . 38

4.2 Sample cloud application showing measurement via instrumentation 40

4.3 Sample cloud application showing measurement via detection 43

4.4 Sample cloud application showing measurement within the cloud provider . 45

5.1 A sample Decision/Call Graph (DCG) . 52

6.1 Real Estate Service Design . 73

viii

Table 1: Key Terms

Key Term Brief Definition
Cloud Application Software targeted for deployment in a cloud comput-

ing environment. In particular, the cloud applica-
tions discussed here assume abstraction at the plat-
form level (Platform as a Service or PaaS) and make
use of outside software services (Software as a Ser-
vice or SaaS).

Transaction Usage of a cloud application for which the applica-
tion provider charges a specific amount or for which
a specific cost is budgeted.

Cost Not just the usage of some resource but in particular
the monetary cost incurred by running an application
in the cloud.

Path A series of statements in an application’s source code
that can be executed sequentially, including state-
ments linked via procedure calls (an interprocedural
control flow path). Some of the algorithms in this dis-
sertation also consider intraprocedural paths.

Path Section A subset of the statements in a path. For simplicity,
entire methods or the contents of decision blocks are
used to delineate path sections in this dissertation.

Characterization The identification and description of cost excess.
Paths and methods are shown to be cost excessive and
are described in terms of their association with oper-
ational profiles and/or particularly important (costly)
path sections.

Annotation A note inserted into source code by an application de-
veloper that conveys some information to the algo-
rithms in this dissertation which they cannot deter-
mine independently. The term is borrowed from the
WCET literature where annotations are sometimes re-
quired for WCET systems to determine loop and re-
cursion bounds.

Conceptual Model A description of how cloud computing costs are
scaled down to the transaction level and associated
with source code. This forms the basis for calcula-
tions of maximum cost and cost excess.

ix

Chapter 1

Introduction

1.1 Background

Traditionally, organizations providing remotely accessible software services have

hosted software on in-house servers. Under these conditions, economics are generally

considered at a relatively high level. Costs that must be accounted for up front include

software development, infrastructure investment, third party software purchases or

contracts, and bulk bandwidth service agreements. A certain level of revenue is

forecast for a certain time period, and the organization attempts to recoup initial costs

over time as well as pay for ongoing costs. Furthermore, system planning would

account for various levels of resource usage by allocating infrastructure with slack in

reserve.

Cloud computing obviates the need for application developers to concern

themselves with the logistics and economics of large, upfront infrastructure

investments [7]. Instead, cloud application developers pay only for the processing,

bandwidth, and storage their applications require. Likewise, application developers

may use other software services for which they pay a fee, according to their Service

Level Agreement (SLA). It is not unlikely that this fee will take a pay-as-you-go

approach similar to the cost structure of cloud infrastructure, realizing the vision of

computing as a utility (see [15]).

Application developers using cloud infrastructure and services are not

concerned with resource or system unavailability. Indeed, the promise of the cloud is

that they need not be [7]. Cloud application developers may not be as concerned with

the economics of large initial investments (though they are certainly not freed from

recovering initial development costs).

Many cloud applications are offered in the form of Software as a Service

(SaaS) and users are charged on a per use basis. For these types of cloud applications,
1

not only is this a pay-as-you-go cost model, but this revenue model could similarly be

termed ‘collect-as-you-go’, which then leads to a profit model could be called

‘earn-as-you-go’. Understanding exactly how much the software costs as it runs is

essential for these types of applications. The more willing cloud application

developers are to understand the fine grain economic details of their software (i.e. at

the level of transactions and ultimately source code costs), the more they will be able

to maximize profit and/or minimize the costs they pass on to customers.

However, different paths in software may produce significantly different costs

[12]. See figure 1.1 for an illustration of what various transactions in a software

service might cost. Those that exceed the cost objective or threshold are marked with

an ‘x’. The rate that customers are charged is also noted. This is a generic distribution

that might represent any number of pay-per-use software services. This dissertation is

particularly beneficial to transaction oriented applications and services, especially

those that might aggregate other services.

For example, a transaction with stock trading middleware running as a service

in the cloud might consist of the fulfillment of a single purchase of stock. The

middleware provider might charge $0.10 for this transaction which must cover

processing and bandwidth costs plus the cost of any outside services used to complete

the stock purchase. Other possible examples include middleware for processing credit

card purchases, online wire transfer and transaction software, and real estate research

engines.

As low level economic concerns of cloud applications are considered, the

following types of issues become particularly interesting:

• How much a transaction costs

– How much do common transactions cost?

2

Threshold

Cost

Transactions

Rate

Figure 1.1: Cost of some sample transactions

– How much do transaction costs vary?

– What causes cost variation in transactions?

• How much to charge for a transaction

– Fixed rate or variable?

– Based on an average transaction cost, or closer to the max transaction cost?

Based on business case analysis and intuition, developers may have an idea of

some of the answers to these questions. Furthermore, they may fix a rate that they

charge customers for the different transactions available with their cloud application.

When fixing this rate, they have in mind a cost threshold such that most of the

transactions they service will cost less than the threshold. In this way, they expect to

make a profit roughly equal to the rate they charge customers minus the cost threshold,

multiplied by the number of transactions they expect to service.

During the verification phase of a software development process, developers

test certain nonfunctional attributes of their software. One of these attributes that is

especially visible and traceable in cloud computing is monetary cost. As part of a

verification process for earn-as-you-go cloud applications, it would be desirable to

ensure at least one of the following conditions holds:
3

• The cost of each transaction will always fall below the threshold

• Transactions that cost more than the threshold will be sufficiently rare

• The cost or frequency of transactions above the threshold can be reduced

Note that monetary costs in cloud applications probably do not have hard

constraints. As in most business situations, developers can ensure they turn an overall

profit even if they service some transactions at a loss, as long as most transactions cost

somewhat less than developers charge for them.

The ultimate business goal for cloud applications is to either produce profit or

stay at or below budgeted cost. This dissertation focuses on technologies that allow

application developers to understand costs and in particular, to understand how and

when costs fall outside of tolerances.

Other types of resource usage verification problems operate within hard

limitations. For example, real time systems often require that certain execution times

always stay within tolerances, even in the worst case [79]. The use of monetary

resources is likely to have slightly softer constraints. Of course, overall costs should

not exceed revenue, but some individual transactions may exceed the price charged for

them. Note that in the context of this dissertation, a transaction is defined as a distinct

usage of the cloud application, generally one for which an associated cost/price can be

set. When the cloud application is used internally (not to derive direct revenue), a

transaction is a usage for which a specific cost is budgeted.

Cloud application cost analysis is a somewhat novel research area not well

represented in the literature to date. Two main branches of research immediately

present themselves within this area: optimization and verification. Cost analysis for

optimization is concerned with determining how cloud applications can perform their

intended function more efficiently such that costs are minimized. It is possible that

4

some general optimizations can be made, and guidelines may be specified to address

this problem [61]. However, optimization is likely to be most effective with intimate

domain knowledge and application specific information.

Cost analysis for verification may require access to an application’s source

code but not necessarily an understanding of the application’s functionality. This is

similar to how memory management can be analyzed from a program’s source code.

These resource usage problems are concerned with where resources are used and to

what extent but not whether resource usage fulfills promised functionality. The work

developed in this dissertation falls within the general area of cost verification, while

the problem of cost optimization is not directly addressed.

Cloud application costs can broadly be defined to fall into one of four

categories: processing, storage, bandwidth, or services [48], [83]. Processing costs are

all those items associated with the CPU. Storage costs are the items associated with

persistent data. Bandwidth costs are incurred when sending or receiving data to or

from outside entities. Services are other applications that are provided inputs and

produce outputs required by the client application. The cost of a transaction with a

cloud application is the cost of each of these individual parts for the transaction added

together.

The amount of processing for a transaction is measured in terms of time. The

clock time required for a transaction is determined and multiplied by the cost per

nanosecond that the cloud provider charges for processing. It is also important to

know the number of bytes of memory required for the duration of the transaction, or

perhaps whether the transaction has average or high memory requirements.

The storage cost of a transaction is calculated based on the number of bytes

stored, the cost per byte for interfacing with the storage medium (though current

providers generally charge a flat fee for each interface [4]), the cost per second per

5

Table 1.1: Current Rates Charged by Major Cloud Providers

Provider CPU (hour) Storage (GB/Month) Bandwidth (GB)
Amazon EC2 [4] $0.08 $0.10 $0.12
Microsoft Azure [56] $0.12 $0.125 $0.12
Google AppEngine [31] $0.08 $0.13 $0.12

byte for persistent storage, and the amount of time the data stored during the

transaction is retained on the storage medium.

Bandwidth costs are separated into incoming and outgoing transfers. The

bandwidth cost calculation is simply the amount of bandwidth in bytes requested

multiplied by the amount the vendor charges per byte. Sometimes ingoing and

outgoing transfers are billed at different rates. See Table 1.1 for an example of current

rates cloud providers charge for resource usage.

When developers use outside services they incur costs according to pricing

established by the service vendors. Their total cost for using outside services for a

transaction is simply the sum of all the individual transactions they make with outside

services. (This, of course, assumes that they can determine which services are invoked

and how many times, which will be discussed later in this dissertation.)

As a very brief example, consider a real estate related cloud application that

takes as input a street address and produces as output an image of the property at that

address. The application is focused mostly on real estate recognition within images,

and it relies on outside services for data (the initial rough images) from which it

determines an appropriate angle, zoom, and bounds. Each time a client requests an

image for an address, the cloud application requests and receives rough images from

one or more data providers, analyzes the images making decisions on how to present

the real estate and possibly requesting more images in the process, and sends a final

high quality image to the client. The cloud application developer has run through a

6

Table 1.2: Average measured costs in a sample cloud application

Resource Cost
Bandwidth for data transferred to and from the client as well
as outside services

$0.0005

Outside services which provide rough images $0.002
Processing time to analyze the images and perform the busi-
ness logic of the application

$0.00001

Storage of the final image so that a subsequent identical re-
quest can be handled with a simple database retrieval of the
predetermined image

$0.0002

Total $0.00271

few common scenarios and has measured average costs (per transaction) as shown in

Table 1.2.

Since these numbers are only estimates, and since there are other overhead

charges to recover (personnel costs are probably the largest, but also tools, rent, etc.),

the cloud application developer decides to charge a flat fee of $0.005 for each client

transaction with the application. However, as part of the verification phase of the

software, the developer would like to determine if the cost of a transaction will ever

exceed the fee being charged to clients for that transaction (or perhaps the fee minus a

minimally acceptable profit margin). If there are instances where this can happen, the

developer would like to understand how it can happen to determine whether the

business plan is infeasible or whether the instances are so rare as to be acceptable.

It should be noted that cloud providers generally do not (at present) charge for

cloud infrastructure at the fine level of granularity as outlined here [2], [30], [55]. As

shown in Table 1.1, rates are currently on a per hour, per GB basis. Charges are

artificially scaled down to a much lower level of granularity. Even if cloud providers

never reduce their cost granularity, the verification in this dissertation can be scaled

back up as the costs of many transactions are added together. However, the

pay-as-you-go economic model is tightly coupled with the elastic resource usage

7

model of cloud computing [7], and a good case can be made for a downward trend in

cloud cost granularity. For example, recent work has covered low level billing and

resource tracking which helps enable the downward trend [62].

A further mitigating factor is this dissertation’s ready application to additional

fields of research. The significant base of WCET research is used by this dissertation,

but the results of this dissertation may in turn be useful to the WCET field, particular

for soft timing constrains. Low power computing may also benefit from this

dissertation, especially since it may have softer constraints. Some limited research

already exists to analyze software and compute a bound on the amount of power used

by an application [37].

Both WCET and low power computing have very little research in analyzing

cases where constraint thresholds are exceeded, which can be valid when constraints

are soft (e.g. when constraints are not required to be met for safety or correctness).

WCET focuses on finding the single highest execution time since anything over a

certain threshold is generally unacceptable. A low power system may allow some

limited cases when power budget is exceeded, as long as those cases are understood

ahead of time and known to happen infrequently.

For cloud costs, it is likely that constraints could be softer so that some cost

excesses are OK as long as developers are making good money on most of their

transactions.

1.2 Hypothesis

The hypothesis of this dissertation is as follows:

Cost excesses in cloud applications can be characterized before

deployment.

Characterization of cost excesses means that they can be identified and

described. The identification of cost excess is against a given cost threshold. The
8

description of the cost excess includes identifying methods and/or path sections which

are particularly important (costly and/or frequent). It also includes an association of

the excess with operational profiles.

It is important to emphasize that this dissertation is particularly focused on

analyzing applications before deployment. This is an entirely different matter than

collecting logs of applications in a production environment and analyzing actual usage

to determine how software is being used and how much it is costing. Such

postdeployment analysis is important and useful, but it is also reasonably

straightforward. From a business perspective, it may also be too late. Rather than

proactively understanding costs and profits, this would instead be reacting to possibly

unforeseen costs. Of greater interest (and a much more difficult problem) is how to

determine costs before deployment.

The hypothesis proposes the possibility of predeployment cost

characterization. However, this dissertation is not the end of research in cost

verification of cloud applications. On the contrary, it is only the beginning of such

research. The discussion here and the evidence presented will argue for the possibility

of this type of verification and it will show preliminary techniques for doing so.

However, as will be discussed in the assumptions and future work, there is still much

to be done to fully realize the possibilities.

Note that in the process of identifying cost excesses, paths and transactions can

be identified that do not exceed the cost threshold. Of course, a preliminary concern

may simply be whether an application will ever exceed a given cost threshold. If it can

be determined that there are no cost excesses in an application, then it can asserted

that the application will never exceed the threshold.

Hence, the hypothesis also implies that it can be determined whether an

application might exceed a given cost threshold. (In some type of applications with

9

hard cost constraints, it may be important simply to verify that no paths will ever be

cost excessive.) This is a special case of the general hypothesis which asserts that if

there are cost excesses, they can be found and described in a helpful way.

10

Chapter 2

Conceptual Model

This chapter presents a low-level cost accounting approach for tracking cloud

infrastructure costs (see also [12]). In a traditional computing model where software is

hosted on in-house servers, economics are often considered at a relatively high level.

In addition to software development costs, considerations include a large up front

infrastructure investment, third party software purchases or contracts, and bulk

bandwidth service agreements.

Additionally, an expected overall level of revenue is forecast, and the business

attempts to recoup initial costs over time. During system planning, various levels of

resource usage would be accounted for by allocating resources with slack, and only in

the worst case would unforeseen and excessive resource usage cause system

unavailability [7].

2.1 Cloud Application Costs

This section discusses a framework for determining the cost of a single transaction

with a cloud application. Four basic areas in which cloud applications incur costs are

considered: processing, storage, bandwidth, and outside services [7], [48]. Hence, this

dissertation is considering cloud application costs in the context of Software as a

Service (SaaS) and Platform as a Service (PaaS).

The cost of a transaction with a cloud application is simply the cost of each of

the constituent parts. That is, for a given transaction T with constituents Tp for

processing, Ts for storage, Tb for bandwidth, and Tv for services, define the following

Cost(T) = Cost(Tp)+Cost(Ts)+

Cost(Tb)+Cost(Tv)

11

The pricing policies of Amazon Web Services [2], Google App Engine [30],

and Microsoft’s Windows Azure [55] have been consulted for this dissertation. Note

that cloud providers may charge for bulk purchases of resources, much more than a

single transaction requires. The costs are scaled down to the transaction level, but

ongoing research may help overcome obstacles to more fine grain cost accounting and

billing [62]. These fine grain costs can be associated with source code which enables

static analysis to help understand how cloud applications incur costs.

Processing Costs

Processing is measured in terms of time [2], [30], [55]. Ultimately, the goal is to

determine the clock time required for a transaction (T IME) and have in hand a cost

per nanosecond (Cost(ns)). Furthermore, it is essential to know the number of bytes of

memory (MEM) reserved for the duration of the transaction and a corresponding cost

per byte per nanosecond (Cost(mem)). This yields:

Cost(Tp) = Cost(ns)×T IME(T)+

Cost(mem)×MEM(T)

Of course, cloud providers/vendors are free to produce pricing mechanisms as

they see fit, and processing cost per hour appears to be common. So for example, if a

cloud provider charges $0.10 for an hour of processing, developers may obtain the

cost per nanosecond by dividing that number by 60×60×109.

Memory costs are currently not well defined by vendors or not separated from

processing costs. Amazon Web Services charges more for memory intensive instances

[2], so the difference in price from a standard instance can be scaled down to represent

a memory unit cost.

Storage Costs

Storage costs are comprised of two main components: the cost of interfacing with the

storage medium and the cost of retaining data on the storage medium [2], [55]. The
12

former is similar to other costs that have been calculated and can be determined by

taking the vendor’s rate and scaling it down to the level which is being used for

transaction.

The cost of retaining data on the storage medium is more difficult to associate

with a transaction. To deal with persistent storage, a variable is introduced into the

calculations representing the length of time for which the data stored will be persisted

in the storage medium.

The storage cost of a transaction is based on the number of bytes stored (B),

the cost per byte for interfacing with the storage medium (Cost(int f store)), the cost

per second per byte for persistent storage (Cost(store)), and the persistence duration

of the data stored during the transaction (STAY). That is,

Cost(Ts) = Cost(int f store)×B(T)+

Cost(store)×B(T)×STAY (T)

Bandwidth Costs

Bandwidth costs are generally separated into those for incoming and outgoing

transfers [2], [30], [55]. If a transaction uses a certain bandwidth in bytes (IN, OUT)

and a vendor charges a certain amount per byte (Cost(in),Cost(out)), or if the charges

can be scaled down to this level, this yields

Cost(Tb) = Cost(in)× IN(T)+

Cost(out)×OUT (T)

Cost of Services

As developers make use of outside services in the form of SaaS, they incur costs

according to the pricing mechanisms established by the service vendors and/or an

individual service level agreement (SLA). Assume that these costs are known and that

they have been scaled down to a single use. Further, consider for a transaction the set

13

of service calls made is {sc0, . . . ,scn}. The total cost for using outside services for a

transaction is

Cost(Tv) =
n

∑
i=0

Cost(sci)

Hence, a characterization of total costs for processing, bandwidth, storage, and

services has been derived.

2.2 Cloud Application Revenue

Consider two types of revenue for cloud applications: direct and indirect. This

dissertation is more aligned with applications and transactions that produce direct

revenue, but indirect revenue should be accounted for as well.

Direct Revenue

This work is more naturally applied to cloud applications that directly produce

revenue and are made up of one or more transactions which perform a service that can

be associated directly with some amount of revenue. For example, if an application is

provided to clients as SaaS, developers may charge a specific amount per use of the

service.

Note that a cloud application may be SaaS, but that same application may also

use SaaS (a sort of aggregator). Of course, clients may instead purchase the services

directly from providers rather than indirectly through an aggregating service.

However, the aggregator ostensibly is providing some added value in composing the

services in such a way that would be more difficult for the clients to do themselves.

Clients decide instead to pay for use of the aggregator service which provides a

complete package of logic and outside services that fits what clients require.

Paying for a single use is not the only pricing scheme that produces direct

revenue. Developers may charge clients only after some number of uses, or they may

allow unlimited usage for a single fee. However, developers can attempt to estimate

14

the per use (transaction) revenue derived from customers, perhaps based on usage data

previously collected or usage patterns previously observed.

Indirect Revenue or Budgeted Cost

Many products and services may use a cloud application in part, though it may not be

the direct source of revenue. For example, when an individual purchases a book

online, she may use a vendor’s website to read about the book, access reviews, and

find associated products. The software to provide all of these ancillary services may

run on the cloud, but the book is the actual product that is purchased and provides the

direct revenue. The services were important and certainly supported the purchase.

Since the services do not produce a specific amount of revenue, they instead may be

allocated a certain budget.

Other products and particularly services may not produce any revenue at all,

but may use cloud applications and may benefit from cost calculations. These include

information technology infrastructure for private sector companies as well as services

provided by governmental and non profit organizations. For example, a local

municipality may allow residents to pay their bills online. The services to do this may

run on the cloud. Though the municipality may not generate revenue from this service,

it is likely saving money since they do not have to pay the cost of opening envelopes

and cashing checks. Therefore, they allocate a certain budget to the services and as

long as the services stay within the budget, the municipality is pleased with the results.

2.3 Cloud Application Profit

For developers, the ultimate goal is generally to produce cloud applications to either

produce profit or stay at or below budgeted cost. This work focuses on technologies

that allow developers to understand and minimize costs and/or ensure costs stay

within tolerances. Maximizing revenue is not part of this dissertation.

15

Developers may attempt to fix a single fee for a single usage of a cloud

application. However, it should be recognized that for all but the simplest of

applications, actual costs will vary to service a transaction, sometimes widely. As

developers strive to ensure cloud applications turn a profit, they look for answers to

the following questions:

• How much does it cost to service a transaction?

• Does the cost per transaction vary?

• What does the cost of a transaction depend on?

• What is the maximum cost of a transaction?

• What is the average cost of a transaction?

• Could the average cost change significantly?

In addition, it would be interesting to answer the following important

questions:

• Could changes be made to software to make it cheaper to service a transaction?

• How can developers determine (before deployment) if their software will

produce more revenue per transaction than it will cost per transaction?

The first set of questions fall broadly under the topic of cloud application cost

analysis, while the last two questions are specifically optimization and verification. It

is likely that the cloud computing optimization problem is largely dependent on the

particular application. However, some types of general optimizations may be possible.

For example, an approach to workflow cost minimization is given in [61].

16

Cloud application cost verification, on the other hand, might be accomplished

in a largely application independent way. The problem can be stated in this way: given

a cost tolerance for a specific transaction, can developers verify that the software

completes the transaction (under various conditions) using resources with a total cost

less than or equal to the tolerance? Furthermore, can developers characterize cost

excessive paths through their software to convince themselves that they are so unlikely

as to be negligible? These questions position cloud application monetary costs as a

quality attribute or part of a requirement that should be verified during the software

development process.

One method for determining the amount of processing resources used is to

borrow from the field of Worst-Case Execution Time (WCET) analysis. WCET

research makes very precise calculations about cycle time, taking into account method

caching and even using data flow analysis to give a tight upper bound on the cycles

used for a given function [79].

In addition to WCET, there has also been significant interest in verifying and

optimizing an application’s energy consumption. For example, an approach for

determining worst case energy consumption is presented in [37] which, like this

dissertation, builds on WCET analysis.

For cloud application cost analysis, this could provide direct results or

promising tools for calculating processing cost. However, cloud computing generally

abstracts away from the user (hosted application) the details of the resources it is

using. WCET analysis generally relies on intimate knowledge of the host processor to

determine a tight and accurate bound. Therefore, in order to adapt WCET to cloud

application cost analysis, it may be necessary to use some measured results to find

averages and/or make some assumptions about host hardware.

17

On the other hand, it may be decided that measured results and a dynamic

approach to cost verification are altogether easier and more effective. WCET has

certain limitations that may make it impracticable for immediate use in this context.

Some aspects of WCET analysis are difficult to calculate through static

analysis (e.g. loop and recursion bounds). In these cases, the analysis may rely on user

inserted annotations into source code [79]. Such annotations might also be used for

calculating a bound on monetary costs using tools borrowed from WCET analysis.

Annotations could account for fees charged for the use of outside services. Cloud

application developers could also plan for specific bounds on the amount of time an

outside service will take to return results as well as the amount of data received (and

possibly stored later in a database). These annotations would help a tool perform a

static analysis of source code and estimate an upper bound on monetary costs for a

transaction.

2.4 An Example

As an example of calculating transaction level cloud application costs, consider the

real estate image service mentioned earlier. Suppose an organization has developed

software that analyzes images and identifies real estate (homes, apartments, lots) in the

image either from a street or aerial view. The developers decide to use this software to

provide a service that accepts an address as input and produces an image of the real

estate at that address as output. They charge a flat fee per address and deliver a high

quality image of the real estate, one that uses the latest imagery and frames the real

estate accurately no matter what type of property it is or where it is located.

The developers don’t have expertise in hosting web services, and they don’t

want to incur the initial cost of the necessary infrastructure, so they decide to turn to

the cloud for a pay-as-you-go platform. Furthermore, since their expertise is in real

estate recognition software, the developers rely on outside services for other parts of

their system.
18

First, the service uses an outside service to convert an address to a geo location

(latitude and longitude). It uses a second outside service to find a street level image for

the location. If the service has such an image, it may be post processed with an

algorithm and sent to customers. Or, the service may request another image at a

different scale/width. If the service is not satisfied with the street view, or if the

service does not have an image for the location, it uses a third service to retrieve an

aerial image for the location. This service allows a fine zoom level to be specified, and

depending on the type or extent of the real estate detected, the image may be requested

at multiple zoom levels to obtain an accurate image. It may be compared to the street

view to determine which would give the best detail in a single image.

After producing an image for a given location, the service stores it in a

database for one month. If it is requested again, the service accesses the database and

provides it directly. After one month, it is removed from the database.

Now consider the cost calculations for a sample transaction. This particular

transaction is processed as follows:

1. Receive street address from customer

2. Determine if there is a stored image for this address and find that there isn’t

3. Request geo location for street address

4. Receive geo location.

5. Request street level image

6. Receive street level image

7. Run real estate recognition algorithm and determine closer image is needed

8. Request closer street level image

19

9. Receive closer street level image

10. Run real estate recognition algorithm and determine size and rotation for final

image

11. Send final image to customer

12. Store image in database

Consider now the total cost for this transaction. The following calculations use

' to denote rounded values. Unrounded values are used to achieve exact values when

possible, and compounding imprecisions due to rounding is avoided.

Suppose the cloud provider charges $0.10 per hour for processing costs and

provides a standard set of memory resources. Therefore, the cost per nanosecond

comes to about $0.000000000000027778. The processing duration for the transaction

is 500 milliseconds (500000000 ns), so the processing cost of the transaction is

Cost(Tp) ' $0.000000000000027778×

500000000

' $0.0000138889

Suppose the cloud provider charges $0.01 to interface with the storage medium

10,000 times, and $0.15 per gigabyte per month for persistent storage. Therefore, the

cost per interface is $0.000001 and the cost to store one byte per month is about

$0.0000000001397. The transaction interfaces with the database twice and the image

is stored for one month that is 2 megabytes (2097152 bytes), so the storage cost is

Cost(Ts) ' $0.000001×2+

$0.0000000001397×2097152

= $0.00029496875

20

The cloud provider charges $0.10 per gigabyte transferred for both incoming

and outgoing data. Therefore, the bandwidth cost for each direction is about

$0.00000000009313 per byte. The transaction receives 4 megabytes (4194304 bytes)

of data and sends 2 megabytes (2097152 bytes) of data, so the bandwidth cost for the

transaction is

Cost(Tb) ' $0.00000000009313×2097152+

$0.00000000009313×4194304

= $0.0005859375

The service converting a street address to a geo location is free. The service to

get street level images costs $0.01 for 10 images ($0.001 per image). The transaction

gets two images, so total service costs are

Cost(Tv) = $0.001+$0.001

= $0.002

The total cost for the entire transaction comes to

Cost(T) = Cost(Tp)+Cost(Ts)+

Cost(Tb)+Cost(Tv)

' $0.0028948

If the costs of all transactions were close to this one, the developers might

decide to charge $0.01 per transaction to recoup costs and make some profit on each

transaction. A viable business plan built on this cloud application would likely

anticipate several million transactions per month.

Note, however, that the application could handle transactions with significant

cost variations based on the paths taken in the algorithm and the associated service,
21

bandwidth, and storage variations. For example, in the real estate image service, the

service may have found just the right image initially, in which case bandwidth costs

would be much lower. On the other hand, if the service had to retrieve data from a

specialized aerial image provider for some real estate (e.g. large lots), the costs could

be significantly different based on the (probably higher) price charged by the aerial

image provider.

If the developers attempt to charge users a single price per transaction, what

amount should they choose? Can they determine, before deployment, if/when their

own costs will exceed the amount they charge? The answers to these questions will be

explored further in this dissertation.

22

Chapter 3

Research Context

3.1 Overview

This dissertation touches on several important themes which are general research

areas that have existed for some time. Its contribution is unique but can be situated

within a broader set of current works. Topics that intersect with the ideas in this

dissertation include cloud computing, software services, software economics, cost

optimization, software testing and analysis, and software engineering.

Much of the literature (though certainly not all) on cloud computing economic

analysis is from the cloud provider’s perspective (e.g. [51], [77], and [34]). This is

natural given the evolution of cloud computing, which sprang largely out of research

in grid computing and virtualization [78]. Furthermore, fully functioning cloud

infrastructure is a necessary prerequisite for cloud applications, so it is important that

the problems encountered by cloud providers are understood and addressed first. As

this research matures, cloud users (those writing software targeting the cloud) will

benefit from research geared toward cloud applications.

From a verification perspective, there are at least two unique aspects of cloud

computing. First is that the user does not have immediate/direct control of

infrastructure. Although this is largely a benefit, it also raises verification concerns in

the areas of performance, reliability, and security [7]. Second, the pay-as-you-go

economic model of cloud computing opens a relatively new area of verification:

monetary cost, which is tracked at a lower scale (e.g. an hour of CPU time) than under

current economic models (e.g. the purchase of a server).

Concerning cloud application costs, the two most obvious problems are

optimization and verification. While cost optimization has received considerable

attention in the literature (e.g. [61], [76], and [41]), verification has not. There has

been some attention given to measuring the costs consumed by running applications in
23

the cloud (e.g. [74] and [75]). However, unless it is put in the context of dynamic

analysis, measurements only allow for reactive decisions rather than proactive

planning.

Of course, the overall business plan of a system has always been a concern.

However, the new economic model that cloud computing has established with its

pay-as-you-go pricing and complete scalability [7] leads to thinking more in terms of

a rate of return that applications produce as they run (i.e. margin). In a traditional

environment, a poorly planned system may result in unexpected demand that causes

unavailability for some users and perhaps even system wide unavailability. If

developers also had poorly planned margins, their losses may be contained within a

specific limit. However, with cloud computing the availability of virtually unlimited

resources means that services can continue losing money on an even grander scale!

Therefore, the understanding of profit margin in the cloud is of even greater

importance than in a traditional computing environment.

3.2 Review of Related Literature

This section briefly describes areas of research related to this dissertation as well as

representative works from the literature. Subsections delineate groups of related

works.

Cloud Cost Estimation and Verification

Verification of cloud applications costs is the main research area in which this

dissertation focuses. Cost estimation is closely related since it assumes that some sort

of analysis is performed to predict cloud resource usage and/or the resulting monetary

costs.

Some existing work has covered estimation and verification of cloud

application costs. However, these topics have generally been covered only indirectly

or in very specific cases. For example, Chen discusses cost verification but specifically

24

for grid workflows and proposes cost decomposition as an approach toward

understanding and verifying costs [22].

Kudtarkar presents a case study using a comparative genomics tool which

shows that running in the cloud and optimizing for the cloud can result in significant

cost savings [44]. The cost estimates performed are very domain and tool specific as

are the optimizations.

Lu presents work on running the BLAST algorithm in the cloud and providing

cost estimation. The estimation is based on the values of tunable parameters specific

to that algorithm [52].

Tosic presents a nice tool for estimating monthly cloud resource usage (and

associated costs), breaking down cost by type and showing usage over time [73].

Costs are not brought down any lower than the per-month level.

Truong’s work is probably the most relevant [74]. It provides extensive

measurement based calculations for a scientific workflow, but it focuses on runtime

estimation, optimization, and decision making rather than predeployment analysis and

verification in particular. Specifically, it does not cover in depth the types and methods

of measurements, their tradeoffs, and the associated implications on cost verification.

Furthermore, it doesn’t take into account a threshold and does not attempt to

determine which parts of the application are (or are likely to be) cost excessive.

In another work, Truong discusses cost modeling and calls for cost estimation

and monitoring tools from cloud providers and research communities [75]. Although

these themes come close to the themes of this dissertation, the specifics are somewhat

divergent.

Cloud Cost Optimization

Cost optimization is a sort of sister work to this dissertation. Perhaps a more obvious

concern and one garnering more immediate attention, cost optimization attempts to
25

minimize the amount of money or resources consumed by a cloud application or by

the cloud provider.

There are several existing works on cloud cost optimization, but most deal

only with cloud providers. Liu covers how cost goals can be met while optimizing

execution time [51]. Tsakalozos discusses how client cost goals can be met while

maximizing profit for the cloud provider [77]. Henzinger analyzes tradeoffs between

price and execution time from the cloud provider’s perspective [34].

Lee covers service request scheduling for profit optimization, also from the

cloud provider’s perspective [48].

Nallur uses a market mechanism such that cloud applications evaluate

tradeoffs between quality attributes and price [58]. In this sense, costs are optimized

from the cloud application’s perspective.

Pandey covers cost minimization specifically for workflows [61]. Costs are

measured and in some instances are scaled down from provider prices. This is of

particular interest since costs are massively scaled down in this dissertation.

Truong Huu presents an approach for cost estimation and optimization

specifically for cloud based workflows [76]. The cost calculations there are similar to

those presented in this dissertation and are at the per second and per Mbps scale (well

below the common levels cloud providers use but also well above the finer grain levels

in this dissertation).

Kllapi has developed a method of optimizing cloud dataflows for completion

time given a fixed budget, and cost given a fixed completion time [41]. Also discussed

is the approximation of cost as well as costs of fragmentation (paying for the use of

CPU even when, during some quanta, no computational resources are required).

Fragmentation is not discussed in this dissertation as it assumes a fairly consistent

26

stream of transactions consuming cloud resources. In practice, fragmentation would

have to be accounted for to some extent.

Agarwala covers cost optimization for data storage in cloud applications [1].

Ishii researched cost optimizations for stream computing applications in the

cloud [36].

Fine-Grain Cloud Economics and Measurements

Another unique feature of this dissertation is the scaling of costs down to very low

levels. Although this is not an entirely new idea, it has not generally been associated

with cost estimation for verification. Measuring these lower level costs is basically

equivalent to the dynamic analysis approach discussed later. Some of these themes are

touched on in related literature.

Amazon’s CloudWatch feature is an example of a cloud provider offering

utilities to track resource usage below the standard charging granularity [3].

CloudWatch gives statistics in terms of minutes instead of hours.

Deelman measures costs on a per transaction basis for a scientific application

running on the cloud [26]. Data related costs are normalized to the byte level,

although processing costs are scaled down only to a per second level. Though the

work is focused primarily on one specific scientific application, it does contain some

discussion relevant to general business concerns for cloud applications.

Sekar offers an approach for measuring (through approximations) the amount

of billable resource usage consumed by a cloud application at a fine-grain level [69].

Park’s work is also from the provider’s perspective and deals with how cloud

costs can be recorded and billed in a way that is verifiable and minimally invasive,

even at a very fine granularity [62].

27

Cloud and Software Economics

There are many important general works on cloud and software economics. These

works help to place the topics discussed here into a broader context. The following are

some of those general works that are most closely related to this dissertation.

Lehmann presents an in-depth discussion of pricing for software in general and

services in particular [49].

Bala provides a nice overview of usage-based pricing. Although many types of

cloud applications may benefit from this dissertation, those that assume a usage-based

pricing scheme will likely benefit the most [9].

Kossman provides a detailed cost analysis for an application involving data

intensive transaction processing, but the figures are at a much higher level than the fine

grain level discussed here [43].

Yeo discusses highly variable pricing schemes to maximize not only resource

usage and provider revenue, but also resource accessibility for cloud users [82].

Lampe accounts for arbitrary SaaS begin and end times. The goal is to work

toward resource distribution optimization for the SaaS provider (which is an IaaS user)

[45].

Cusumano wrote a short piece in 2007 (just before the explosion of literature

on cloud computing) claiming that although usage based pricing schemes were rare at

the time, a healthy percentage of customers would prefer that pricing scheme [24].

Cheng discusses a variety of two-part pricing schemes involving a single fee

component plus a pay as you go or usage based component [23]. These can be

tweaked to optimize profit for the service provider.

28

Khajeh-Hosseini discusses the details of migrating existing applications to the

cloud [38].

Klems provides a framework for determining whether the use of cloud

resources makes good business sense for a given application [40]. This is more of a

high level planning tool and not a low level technology.

Martens presents a fairly comprehensive list of cloud costs (organizational and

technological). He also includes a theoretical model for calculating Total Cost of

Ownership (TCO) associated with cloud computing [53].

Nurmi offers a research oriented cloud implementation called Eucalyptus (e.g.

[59]) which could be modified to provide the metrics required to enable cost

verification from the cloud user’s perspective.

Cost has been identified as an important QoS attribute for workflows in very

early work [84]. Not unlike many software applications, workflows involve several,

often disparate systems or components which individually analyze input data, make

specific calculations, and produce output data which is often then used by another

component in the workflow [32].

Shibata presents of a study of five workflow applications and their associated

costs [70].

Dun performed profiling on data intensive workflows. The approach discussed

there is similar to the detection approach for measurement covered in this dissertation

[27].

Testing and the Cloud

This dissertation is concerned with testing cloud applications specifically for cost

attributes. The following works cover various topics related to cloud application

testing. They are helpful for understanding what the realization of the technology

29

developed in this dissertation might look like and what sorts of implementation issues

could arise.

Chan gives an overview of modeling and testing cloud applications [20].

Robinson provides an in-depth discussion of strategies for and levels of testing

in the cloud [65].

King has devised an approach for integration testing of remotely hosted cloud

services (services outside the user controlled cloud application) [39].

Bai presents an excellent and comprehensive overview of testing tools for

cloud applications [8]. Some features include cloud simulation and cost related testing

(though not at the fine grain, transaction level discussed in this dissertation).

Zhang also presents an approach to model the cloud for testing cloud

applications [85]. The work simulates cloud states in order to present a realistic

representation.

Riungu presents research needs based on interviews with industry practitioners

[64]. Specifically mentioned is the need for a way to estimate costs and price services

accordingly.

In addition to presenting a cloud testing framework, Wu enumerates some key

features of a robust cloud application testing framework [80].

There is also a wealth of literature related to testing clouds and cloud

infrastructure (not cloud applications). One of the more popular example is CloudSim

which is a fully featured cloud modeling and simulation suite use extensively in cloud

infrastructure research [19]. However, that work is not closely related to this

dissertation.

30

General Software Engineering and the Cloud

In a very broad sense, this dissertation is concerned with software engineering for the

cloud. The following works present a summary of important works in this field.

Tai sets the stage for the software engineering of cloud services by defining

and describing the basic characteristics of cloud services as well as their business and

value context [72].

Yau points out that the cloud fundamentally changes the delivery, deployment,

and maintenance of the software lifecycle. This affects the engineering of software

services [81].

Rellermeyer emphasizes the importance of loosely coupled, highly cohesive

modules to form the basis of distributed cloud based software applications where

modules are a first class entity [63].

Singh describes the software development lifecycle (SDLC) in terms of the

cloud [71]. The cloud specific pieces of each phase make up the cloud development

lifecycle (CDLC).

Mei compares key aspects (I/O, storage, and calculations) of cloud computing

to service and pervasive computing and presents important questions that cloud

application developers should keep in mind [54].

Boehm’s well-known work on value based software engineering is both

directly related to this dissertation and in some ways parallel [11]. Boehm advocates

incorporating value into the entire software engineering process, much as this

dissertation advocates incorporating cost into much of the process. Furthermore,

Boehm discusses operational costs as part of business case analysis which corresponds

exactly to the costs discussed here.

31

Cloud Based Services

Many of the applications that are likely to find this research useful will be cloud based

services, particularly those embracing the pay-per-use economic model. Following are

descriptions of cloud based services that are particularly relevant to this dissertation.

Rostrom provides a prototype of a cloud based service for medical imaging

which could operate on a pay-as-you-go basis [66].

Lau presents an analysis of IP-based video on demand hosted in the cloud

[46]. This service is pay-per-use.

Cai emphasizes the differences between cloud infrastructure services and

cloud application services in meeting customers’ needs, as well as providing billing

policies that align with customer objectives [17].

Lee points out that a quality attribute for SaaS hosted on the cloud is

efficiency, and that efficiency is associated with the pay-per-use aspect of cloud

computing (and often SaaS which may not require up front purchases) [47].

Koehler found in a survey that customers strongly prefer subscription based

pricing of cloud based SaaS over pure pay-per-use pricing, and even slightly prefer

one-time based pricing over pure pay-per-use [42].

Hou discusses application software running on the cloud for use in high

performance scientific domains [35]. These cloud based services are offered on a

pay-per-use basis, and the associated cost model is analyzed to show that the result is

likely to be favorable for the customer.

Gmach analyzes several sample cloud workflows and provides important

characteristics such as memory and CPU usage plus associated costs as part of the

results of the analysis [29].

32

Table 3.1: Comparison of related literature

Perspective Analysis Costs Contribution
Name Provider User Measure Predict Full Scaled Optimize Verify
Buell X X X X X
Truong Huu X X X X
Chen X X X
Kudtarkar X X X X
Lu X X X
Pandey X X X X
Deelman X X X
Sekar X X X
Tosic X X X X
Truong X X X X
Kossman X X X
Nallur X X
Agarwala X X
Kllapi X X
Ishii X X
Tsakalozos X X
Liu X X
Henzinger X X
Lee X X
Park X

3.3 Contribution of the research

Table 3.1 situates this research within the body of existing related work on cloud

computing economic analysis. The table attempts to show a concise description of

related works based on categories particularly important to this research. Not all of the

categories are applicable to all of the related works.

Only the most closely related works are shown in the table. For example, there

are several works on general cloud economics and specifically in the area of migrating

to the cloud (see [50], [40], and [38]), but these are not considered in the table as they

are not closely enough related.

33

Categories listed in the table are:

• Perspective - Whether the work considers the cloud provider’s perspective or the

cloud developer’s perspective (user perspective). Other perspective could be

interesting (governmental regulator, cloud application user, etc.) but are not

considered in this dissertation.

• Analysis - The type of cost analysis performed in the work. Measurement is for

dynamic analysis performed during and after the cloud application runs (which

may occur before or during deployment of the application). Prediction is for

static analysis and estimates an upper bound on costs before the cloud

application is deployed.

• Costs - Whether the work considers costs directly from the cloud provider’s

pricing scheme (generally a relatively high level such as per hour or per GB) or

whether costs are scaled down to lower levels (e.g. cost per second, cost per

transaction).

• Contribution - The contribution of the work relevant to cost analysis. The types

here are limited to optimization and verification since these are most relevant to

this dissertation, but there are certainly many other diverse contributions of the

works listed.

To use the concise terminology from the table, this research is from the cloud

user’s perspective and considers both prediction and measurement of scaled costs for

the purpose of verification. Also note that the columns in the table corresponding to

this dissertation are shaded. This clearly demonstrates that this dissertation is

particularly unique in its consideration of the prediction approach for cost analysis

along with its ultimate goal of cost verification.

34

Furthermore, the entire conceptual model of verification of low level costs is

unique to this dissertation. This dissertation advocates a novel approach to verification

of cloud transactions by first setting a transaction level cost threshold then verifying

that it is met.

But this dissertation goes even further by determining where cost excesses

originate–whether in particular methods, sections of code, or perhaps operational

profiles. Hence, this dissertation explores approaches to providing cloud application

developers guidance as to how they can meet cost thresholds and under which

conditions cost thresholds may not be met.

35

Chapter 4

Overview of Research Approaches

4.1 Introduction

Monetary cost has always been an important attribute of software systems, but the

pay-as-you-go economic model of cloud computing changes how costs are planned

for and incurred. Cloud computing provides elastic resources that scale on demand

and mimic the consumption and charging patterns of a traditional utility [15].

It is important to understand how much applications cost to run for at least two

reasons. First, there may be a specific budgeted amount for each transaction within an

application and it is essential that the budget is not exceeded. For example, scientific

workflows are not concerned with profit but are often conscious of cost. Second, an

application may be running as a direct part of an activity for which a fee is charged

and from which some amount of profit should be derived. In this case, it is important

to ensure that the software stays within expected costs in order to ensure that profit

objectives are met.

4.2 Cost as a Software Quality Attribute

Since cloud computing costs are incurred at a much finer scale (e.g. server usage per

hour) than traditional computing, cost verification can also be scaled down to a much

lower level [12]. Indeed, this dissertation advocates tracking cost as a quality attribute

starting at the use case level and flowing down even to the unit and function level.

As with most software quality attributes, the cost to run an application is one

that should be understood well before the application is deployed. An obvious

consequence of having a cost excessive use case within an application would be a cost

overrun. Precisely because of the cloud’s resource elasticity, the extent of cost

overruns is possibly much higher than in a resource limited traditional computing

environment, particularly for customer facing applications where customer behavior

may be forecast but not entirely known ahead of time.
36

Fixing a budgeted cost for a use case may be quite natural for many cloud

applications, but particularly for services operating on a pay-per-use model. If

developers charge customers a certain amount per transaction to use their service, they

would also want to account for the cost of servicing the transaction. For example, if

developers are running credit card transaction processing middleware in the cloud,

then it is only natural that they can and would account for the cost of each transaction

when deciding how much to charge customers per transaction.

On the other hand, some cloud applications provide only ancillary services to

an ultimate customer transaction. Others have no direct revenue, but are still likely to

be under some sort of budget constraints. Many types of cloud applications could

potentially benefit from monetary cost verification.

Applications involving large amounts of data–and particularly large amounts

of data variability–require special attention for cost verification. In particular, cost

verification methods involving only static analysis and/or control flow analysis may

not work well for data-intensive applications. A dynamic, measurement based

approach is more likely to produce adequate and accurate cost verifications for these

types of applications.

Furthermore, dynamic measurement is probably the verification approach most

likely to be used in the near term (and possibly currently in use) in production

systems. Given the absence of other approaches to verifying monetary costs in cloud

applications, a very simple, very high level measurement of the costs incurred by

cloud applications are the costs reported by the cloud provider during billing. These

are tracked in terms of the associated resources consumed, as shown in Figure 4.1.

Breaking this down further, a cloud application developer might measure the types of

applications that were run during a billing cycle to get an idea of which applications

(perhaps even which components and use cases) contributed to the total cost in

specific ways.
37

Component 1

Component 2

Component 3

Component 4

Cloud

Resources

e.g.

-Bandwidth

-Storage

-CPU

Figure 4.1: Sample cloud application

Just as the development of certain units can be associated with use cases, the

budgeted cost of a use case can be broken down into constituent pieces. For example,

a particular component, unit, or even function in a piece of software could be allotted

75% of the cost of a transaction while another method gets 20% and another 5%.

Associating a cost constraint with components, units, and functions is probably

the ultimate decomposition of the problem and would promote cost tracking down to

the unit test level. Though budgeted costs at this level would likely be extremely

small, they would scale back up as the usage of the software scales up to service

thousand and millions of transactions, or even more.

Of course, this would only naturally lead to an attempt by a cloud application

developer to independently measure resource usage in order to determine where costs

are coming from and how they vary. Hence, the following work on dynamic

approaches to cloud application cost verification is not only important for

data-intensive cloud applications and workflows, it also provides approaches to cloud

cost verification that might be immediately applicable to many types of cloud

applications. Transaction oriented services using a pay-per-use cost model will likely

find this dissertation particularly beneficial.

38

4.3 Dynamic Verification

A dynamic verification approach would involve taking measurements on applications

as they run and calculating costs from these measurements. The application under test

might be run off the cloud during this dynamic verification which could be easier, less

costly, and quite accurate except for a possible difference from cloud hardware in CPU

time. The application might be run on the cloud so that measurement could be more

accurate, but the testing process on the cloud could also be more costly.

As with any black box testing approach, a dynamic cost verification approach

would not guarantee that cost objectives are met. However, using standard software

testing techniques like boundary values and equivalence partitions, this approach

could provide a reasonable and practical estimate.

This section covers three basic approaches to dynamic measurement for cost

verification (also see [14]). First, an instrumentation approach takes measurements by

modifying the software under test, essentially wrapping it with a measurement layer.

Second, a detection approach requires no modification to the software under test but

instead intercepts the requests made by the software for resources that incur cost.

These first two approaches are specifically designed so that they can be used

off the cloud. Indeed, the measurements they produce are independent of the cloud

provider. This is important because they have the advantage that their measurements

can be applied to several cost profiles of different cloud providers and the various

resulting costs can be compared.

On the other hand, the third approach would be delivered by a cloud provider.

It would require no modification to the software and relies on a sort of measurement

layer built into the provider’s infrastructure.

39

Component 1

Component 2

Component 3

Component 4

Cloud

Resources

e.g.

-Bandwidth

-Storage

-CPU

Figure 4.2: Sample cloud application showing measurement via instrumentation

Though these three approaches may seem similar, their differences have non

trivial implications for the realization of a cost verification strategy.

Instrumentation Approach

The instrumentation approach is characterized by ‘surrounding’ each component with

a measurement layer, as shown in Figure 4.2. This layer provides an interface to cloud

resources such as bandwidth and storage, but it is only a pass through to the actual

resource layer. The measurement layer simply keeps track of the amount of resources

requested before forwarding requests to the resource layer. A very basic measurement

layer could be very easy to implement and an example of a thin measurement layer is

found later in this dissertation.

The potential downside here is that the user may need to update the software

under test to use this measurement layer. If the software is developed using the

measurement layer from the start, the burden for such an approach could be minimal.

As an alternative, the user may only need to run the source code through a

preprocessor or special compiler to automate the task of inserting the measurement

layer where appropriate. This would be more complicated to implement but would

ease the burden on the user considerably.

40

Note that the contribution of processing time toward the overall cost of running

a component would not be instrumented. It is a fairly simple calculation and would be

determined much as described below for other resources in the detection approach.

However, any processing time spent in the measurement layer would be subtracted

from the overall time as it will not be used during a production run of the software.

An instrumentation approach could be used to analyze and test software

locally (off the cloud). The measurement layer could forward requests to local

resource providers (locally hosted DB, sockets, etc.). But the measurement layer could

also forward requests to the cloud provider and so the instrumentation approach could

be used for verification directly in the cloud as well.

The instrumentation approach is very much compatible with (and similar to)

unit testing. A special implementation of the measurement layer could be made for

unit tests to interface with mock resource objects. This would allow for extensive

testing of various control flow paths in an application and would track the

corresponding resources that are requested by individual units. These could then be

rolled up into higher level component tests, and developers could more easily track

how resources costs are accrued in their applications. The ability to ensure extensive

test coverage (likely through unit and component testing) for the purposes of and from

the perspective of resource cost tracking would generally be well handled by an

instrumentation approach.

Consider a concrete example that could use an instrumentation approach, a

corporate wide accounting related application for a very large, multinational

corporation with several divisions/companies and ultimately hundreds of separate

accounting units. This software is internal to the corporation and its users/customers

are employees in the various payroll departments of the different accounting units.

41

The application’s components are the payroll applications for each of the

corporation’s accounting units, and each component is comprised of subcomponents

that query relevant databases for pay scale, timecards, personnel data, etc. All of the

components and subcomponents have been migrated to the cloud, and it is essential

that the components run in a timely manner and that they stay within a budgeted

execution cost.

The payroll application is a fairly extensive end to end solution for running the

components from the different accounting units, aggregating data, interfacing with

outside entities (i.e. banks) for direct deposits, etc.

Under the instrumentation approach, enterprise level developers would either

modify the individual components to make use of instrumentation hooks, or they

would require that the different IT departments for each accounting unit make the

change so that data can be collected for the overall application. Although this could

represent a significant retrofitting of existing applications, it allows different

organizations to manage and verify their own components as long as they use a

common instrumentation approach.

Detection Approach

The detection approach is less invasive than the measurement approach. It relies on an

outside entity to monitor requests for storage and bandwidth resources, intercepting

requests for resources as shown in Figure 4.3. Such an entity would be running apart

from the actual application under test and would not interfere with its execution. This

approach would likely require no modification to the software under test, so it would

be easy to use.

The monitoring application is responsible for measuring resource usage using

whatever mechanisms are made available to it. For example, a socket library may

allow for logging of bandwidth usage. Likewise, a database provider may have

42

Component 1

Component 2

Component 3

Component 4

Cloud

Resources

e.g.

-Bandwidth

-Storage

-CPU

Figure 4.3: Sample cloud application showing measurement via detection

mechanisms for triggering detection software when updates are made or queries are

run.

The detection approach is assumed to run off the cloud. (A similar approach

that runs on the cloud is discussed in the next section.) It is important to verify the cost

usage of cloud applications off the cloud for several reasons. A cost profile (or

resource usage profile) could be developed independent of cloud provider that can

help developers decide which cloud provider’s pricing scheme would result in the

lowest cost for cloud applications. Furthermore, certain levels of testing (e.g. unit

level) or harnesses (isolating certain components) may not be compatible with running

on the cloud. Testing needs may also be immediate, isolated, and/or sporadic which

may decrease the advantages of running in the cloud.

A significant problem with the detection approach is that its implementation

could be quite difficult. Depending on the different computing environments (DB, OS,

etc.) supported by the implementation or test framework, the work could be

substantial. Since there is no standard for making logging information available for

storage and bandwidth resources, the monitoring applications would have to include

some individual strategy for each database provider and bandwidth provisioning

mechanism. Furthermore, the capabilities for performing detection and logging are

43

likely to vary from vendor to vendor, so achieving a common set of functionality in

this space may be difficult or impossible.

This is different than the instrumentation approach, which requires a well

defined interface for requesting resources. The instrumentation approach is simply

inserting a layer to take measurements. Unlike that approach, the detection approach

relies on the resource providers’ functionality for detecting and logging resource

usage.

Returning to the accounting application example, the detection approach on

the surface seems very promising since the various IT departments would not have to

update their components. In practice, the detection approach may be quite challenging

since the different departments may use disparate and dissimilar systems. Either

enterprise level developers would require each department to be responsible for

providing the detection functionality for their own unique systems (not ideal, to say

the least), or they would have to ensure that the solution they provide accounts for all

of the different systems in use (if that is even possible).

Provider Based Approach

Another possible approach is for the cloud provider to make available an option to

enable fine grain cost and/or resource measurements, as shown in Figure 4.4. This

would be similar from a user’s perspective to the detection approach since it requires

no update to the cloud application. An approach to fine grain billing can be found in

[62], and could form the basis for a provider based measurement option.

To clarify what this approach entails, consider what a cloud provider would

need to add beyond what a basic cloud billing system would already record and make

available to users. Currently, cloud providers generally charge on the scale of per hour

for processing costs, per gigabyte for bandwidth costs, and per gigabyte per month for

storage costs.

44

Component 1

Component 2

Component 3

Component 4

Cloud

Resources

e.g.

-Bandwidth

-Storage

-CPU

Figure 4.4: Sample cloud application showing measurement within the cloud provider

Ultimately, it would be desirable to record resource usage down to the unit

level of cloud applications. (In practice, this could be the subcomponent level or the

interface level of components.) This would entail recording CPU usage down to the

millisecond or even nanosecond, bandwidth down to the kilobyte or even byte, and

storage usage also to the kilobyte or even byte level. To reiterate, the reason for these

fine grain metrics would be for developers to understand and project costs as the

number of transactions is dramatically scaled up, transactions are combined, and/or

users iterate through large amounts of data for a given transaction.

Though some cloud providers make available some amount of data below the

basic billing scale, Amazon’s CloudWatch feature is currently the closest to enabling

the types of metrics that would be required from the cloud provider for fine grain cost

verification of cloud applications [3]. Though not yet at the level proposed here, its

features at least demonstrate the demand for and usefulness of cloud resource usage

metrics far below the per hour, per gigabyte scale.

Note that an interesting aspect of the cloud provider approach is that the

software would likely have to be tested in the cloud. In many ways, this is ideal since

it more closely simulates the production environment. However, it could also incur

unwanted costs. For an in-depth discussion of strategies for and levels of testing in the

cloud, see [65].

45

Furthermore, this approach by definition is tied to a specific cloud provider.

The results of the measurements will only be applicable to that particular provider, and

the user may not be able to derive enough information from the results to determine

what the cost would be using a different provider. Although this kind of comparison

shopping is not the main focus of this dissertation, it is certainly a related concern.

Allowing users to comparison shop other cloud providers based on resource

usage profiles is probably not an incentive for cloud providers to make low level cost

and resource usage data available to users. However, there could be other incentives.

Amazon’s CloudWatch is offered for a fee [3], so deriving revenue from these metrics

is one option. If the demand for such metrics increases, it may become an assumption

that a cloud provider will make them available as part of a value added package

expected by cloud users.

Returning once again to the enterprise accounting and payroll example, this

system would fit very well with a cloud provider based system. Each of the separate

divisions could provide their own components to the application, none of which would

have to be updated to use the system. All the cost verification data could be

aggregated in one place and used through one interface.

On the other hand, developers would be completely reliant on the cloud

provider for the kinds of metrics that would allow cost verification. Furthermore, this

cost verification approach may not be portable to other providers since the metrics and

gathering would likely be provider specific.

4.4 Summary and Limitations of Dynamic Approaches

Cost verification through measurement is practical for practitioners and could provide

reasonable results. This section has presented three measurement based approaches

for cloud application cost verification. Given the advantages and limitations of the

46

various approaches, it is likely that an instrumentation based approach would make a

good first step in measuring cloud costs.

The detection approach has significant barriers to implementation and/or

realization. Because this approach assumes the usage of local resources (testing

locally, not on the cloud), it is complicated by the various resource providers’

capabilities and interfaces. The cloud provider approach is interesting and may

ultimately be the easiest and most accurate, but it relies on the willingness of cloud

providers to make metrics available at a very fine scale.

An instrumentation based approach could start very simply and eventually be

made more complex (with the intent of making it easier for the user). It can be used

for cost verification strategies that run on or off the cloud. The instrumentation

approach does not rely on metrics made available by cloud providers, so it can both

compare cost profiles from different providers and it can stand independent of various

levels of cloud providers’ measurement features. Though each of the three approaches

deserves more analysis, the instrumentation approach would likely be the best for

independent research on measurement based cost verification.

Note, however, that dynamic approaches to cloud application cost verification

are inherently imprecise. They are only as good as the testers understanding of the

software, possibly even its internals. Dynamic methods are theoretically hit and

miss–whatever gets executed for the measured test runs is what is represented as the

overall behavior of the system. Of course, the test cases are ostensibly selected wisely

and with extensive domain experience by experts, but there is always room for

something to be missed.

4.5 Static Verification

Another approach to verifying software costs is to perform static analysis of the

constituent components of an application. The goal of this kind of analysis would be

47

to predict, without actually running the software, what sorts of costs would be

incurred for the various kinds and amounts of inputs for each component. This would

be more of a white box testing approach which would necessarily make use of full

access to the source code.

Static analysis has many limitations which will be further discussed later.

However, it has been selected as a research approach for investigation in this

dissertation for two main reasons. First, since static methods may uncover cost

excessive in source code that dynamic verification misses, it is important that an

exploration of the tools for a static analysis be undertaken. Second, static analysis

methods of cost verification for cloud applications are non existent, and it would be

interesting to explore the benefits and limitations there.

Ultimately, a dynamic or perhaps a hybrid method may prove the most

immediately available if not the most successful. However, from the current state of

research and practice, it would seem that the development and evaluation of a static

analysis approach to cost verification for cloud applications would be beneficial and

unique as a contribution to the body of related research.

48

Chapter 5

Static Research Approach

5.1 Overview

This section describes an approach for calculating the maximum cost of a transaction

in a cloud application through static analysis. A method is also described for

determining the control flow paths that can cause cost excessive transactions, and

ranking methods and decisions based on the amount they can contribute to the cost

excess. This allows for verifying cost in cloud applications, identifying control flow

paths that can lead to cost excess, and pointing out areas in which to concentrate

efforts in order to reduce costs (also see [13]).

5.2 WCET Adaptation

The approach for determining cost excessive paths begins with an adaptation of

WCET analysis (which has already been identified as applicable to cloud computing

in [12] and [34]). The intermediate goal is to determine the maximum monetary cost

of a given method within the application. A given transaction with the application

begins with some method and follows a control flow path through an interprocedural

graph. Note that the term ‘method’ is used here but this might be used interchangeably

with ‘function’ or ‘procedure’ depending on the programming language in use.

The processing component of a method’s maximum cost can be derived

directly from the WCET. This cost component is simply the WCET (converted to

nanoseconds) multiplied by the cost per nanosecond that the cloud provider charges

(the per hour cost scaled down to the nanosecond level).

For the other cost components (bandwidth, storage, and services), user inserted

annotations are used. WCET analysis already embraces annotations for information

that cannot be (or cannot fully be) calculated through static analysis [79]. For

example, loop bounds are often annotated. In order to calculate worst case cost,

49

annotations can be inserted in source code directly where bandwidth or storage are

used, or where services are invoked.

The annotations are realized as standard Java Annotations on method

definitions. These are available to clients during introspection, and the WCET

adaptation looks for these annotations when the existing introspection logic is carried

out for standard WCET analysis. An annotation is defined for each resource and is

given a value of an appropriate type. Following is an example of an annotated method:

@ServiceCost(0.005)

@ServiceTimeBound(500000000)

@ServiceBandwidthBound(4096)

public Byte[] retrieveOutsideData()

{

...

}

These annotations indicate that the method invokes an outside service costing

$0.005. The bound on the amount of time required to wait for the results of the service

invocation is 500 milliseconds. (Waiting for an outside service is assumed to be

synchronous here and the cost of that wait time is accounted for in the CPU cost.) The

amount of bandwidth required for data transfer with the service is 4KB. The service

cost is used directly in max cost calculations. The time and bandwidth bounds are

converted to monetary cost based on the provider’s rates, and those contributions are

added to the max monetary cost.

It should be noted that annotations do not place a bound on a certain cost type

for an entire transaction. User inserted annotations are required only at those points of

the call graph where resources are used. The WCET adaptation must account for all

the annotations within the context of loops and decisions while traversing the call
50

graph to arrive at a final bound on the cost of a method. So the WCET adaptation is

still important even for annotated costs. An attempt to calculate a bound or derive

such a bound through analysis, simulation, or measurement is outside the scope of this

dissertation. For now, annotations are used.

Also note that the scaling and tracking of costs down to the transaction level,

though discussed to some extent in the literature (see [12] and [26]), is not

immediately compatible with how cloud providers charge for cloud resources. Cloud

providers generally charge at a higher scale (e.g. per hour for bandwidth and per GB

for bandwidth). It is implicit in these verification techniques that the cloud provider’s

costs are scaled down to the transaction level, but that as the number of transactions

increases, the actual usage of resources rises to the level tracked and charged by cloud

providers. Also note that some cloud providers are offering usage statistics at a scale

much lower than per hour, as in Amazon’s CloudWatch [3].

The WCET adaptation is simply the sum of processing cost plus bandwidth,

storage, and service costs accounted for throughout an application’s call graph.

Whereas WCET deals only with processing time and uses either a graph based or

linear programming based approach to determine worst case cost [79], the WCET

adaptation determines monetary cost and only uses a graph based approach (so that

additional node level information can be saved for later calculations). In particular, a

graph corresponding to the control flow nodes in a program is built and the

(maximum) cost of each node is determined by adding together and finding the

maximum of all the resource costs associated with the node and its children.

5.3 Decision/Call Graph Analysis

As mentioned previously, the basis of cost analysis here is a WCET adaptation that

calculates maximum monetary cost of a method in a cloud application. More

specifically, as the max cost algorithm runs, information is saved about each method

as well as each branch of each decision, all within the interprocedural graph. The
51

Figure 5.1: A sample Decision/Call Graph (DCG)

result is a Decision/Call Graph (DCG) where a node is considered to be either a

method or a decision branch (not the decision itself). See figure 5.1 for an example of

a DCG. Methods and decision branches are represented by circles. Decisions are

represented by triangles. Nodes on the path of worst case cost are shown in bold.

Note that the set of unique paths through an interprocedural call graph is based

on decision branches. Whether one branch or the other is taken determines the path

followed. Loops complicate the matter, but a simplification is made by assuming that

the same decision branch is taken for each iteration of a loop for a given path.

The DCG is defined as similar to a standard directed acyclic graph, but with a

fully ordered set of nodes (i.e. a method m or branch br) encountered as a program is

executed, along with the set of edges that connect the nodes. By convention, nodes are

drawn in order from left to right when represented graphically. The two branches of a

condition are drawn together to show that they are related, but only one of the branches

of a given decision will be part of any path of execution (from each unique parent).

The DCG can be represented formally as a set of nodes and edges, as follows:

node = m∨br
52

DCGN = {node1, . . . ,noden}

edge = {nodei,node j}, with nodei,node j ∈ DCGN

DCGE = {edge1, . . . ,edgem}

Note that an execution path will follow all invoked methods leading from a

source node (assuming no early returns). However, only one execution branch will be

followed when a decision is encountered. Therefore, when representing a path (P), the

methods can be omitted without loss of precision.

A path is represented formally as follows:

P = {br1, . . . ,brr}, with bri ∈ DCGN

During the calculation of worst case cost, the following pieces of information

are calculated and saved for each node in the DCG:

• MaxCost(node) - The full cost of the node. This includes the cost of all children

nodes (accounting for loops appropriately). This is calculated as part of the

WCET adaptation and can be used to find cost excessive paths, but it is not used

in any of the node ranking calculations discussed later.

• BaseCost(node) - The base cost of the node, or the cost of only the statements

within the node. The base cost is not path specific. It is calculated by counting

only ‘local’ statements in the node (not invoked methods or contained decision

branches).

• MaxTimes(node) - The maximum number of times each node can be invoked

by its parent(s). This value is path specific (i.e. it may vary and depends on the

particular path). For decision branches, it is calculated by starting with the

MaxTimes value for the containing method and multiplying by any loop bounds

in which the branch is contained (multiplied together if nested). For methods, it
53

is also calculated based on the MaxTimes of the invoking method and loop

bounds at the site of each invocation. All invocations anywhere in the parent

method are added together to determine the total number of invocations from

that parent. Currently, recursion is not handled (see the limitations section of

this chapter for a discussion of recursion).

For each path, the following are calculated:

• MaxCost(path) - The maximum cost of the path. The MaxCost of a top level

node will be produced by the max cost path. However, also of interest is the

(max) cost for all paths, not just the path of highest cost.

A path’s max cost is calculated using the worst case cost as a starting point and

subtracting lower cost branches while traversing down the DCG, as follows:

float MaxCost(P) :-

// topLevelNode is the entry point

// of the transaction

Set pathCost = MaxCost(topLevelNode)

For each decision branch br in P

// brs is the sibling branch of br

Set branchDiff = MaxCost(brs) - MaxCost(br)

If branchDiff > 0

pathCost -= (branchDiff * MaxTimes(br))

return pathCost

54

Of course, another approach is to simply add the base cost of each DCG node

along the path multiplied by the max number of times that node can be invoked in the

path, like this:

float MaxCost(P) :-

// Assuming that MaxTimes and BaseCost have

// already been calculated for each DCG node

Set pathCost = 0

For each DCG node along P

pathCost += BaseCost(node) * MaxTimes(node)

return pathCost

A straightforward but very important definition that should be made is for cost

excessive paths. Given a cost threshold T HR, note that some path is cost excessive if

MaxCost(path)> T HR. Note once again that the cost threshold, though not arbitrary,

is not calculated as part of the algorithms in this dissertation but is instead determined

by business case analysis likely involving expected revenue, usage, resource costs, and

other information.

5.4 Characterizing Cost Excess

Enumerating cost excessive paths is important, but it is even more helpful to

understand the degree to which nodes in the DCG contribute to the max cost. The

following calculations are made to determine the magnitude to which a DCG node

contributes to cost threshold. Since the magnitudes are normalized by the amount of

cost excess for a given path, they can be compared between paths. Therefore, a

single/maximum magnitude (or weight) for a given DCG node can be determined.

55

Of course, it cannot be determined for sure (without more information about

how the application will be used) whether a particular node’s cost excess is more or

less important since it is unknown how often the cost excessive paths which include

the node will be executed.

Start by calculating the raw cost excess for a particular path. This is simply the

maximum cost of the path minus the cost threshold:

CostExcess(path) = MaxCost(path)−T HR

Next, determine the ‘weight’ of the cost excess for a path. The weight is

intended to measure the magnitude of the path’s cost excess as it measures the

percentage of excess in relation to the threshold. It is calculated as follows:

PathWeight(path) =
CostExcess(path)

T HR

Likewise, the weight of a node measures the contribution of an individual node

to a path’s cost (the percentage of the path cost attributed to the node). It is calculated

as follows:

NodeWeight(path,node)

=
BaseCost(node)×MaxTimes(node)

MaxCost(path)

Now determine a normalized node weight which measures the magnitude of

the node’s cost in terms of its path’s cost excess. Since it is ‘normalized’ by the path

weight, it can be compared to the normalized weights of nodes from other paths. It is

calculated as follows:

NormalizedNodeWeight(path,node)

= NodeWeight(path,node)×PathWeight(path)

56

The overall normalized weight of a node, independent of path, is simply the

maximum normalized weight of the node on any path and is calculated as follows:

NormalizedNodeWeight(node)

= Max(NormalizedNodeWeight(path,node))

5.5 An Example

Consider again the stock trading middleware example. The developers charge $0.10

per transaction and they have set a $0.02 cost threshold for the transaction. This

margin and the vast number of transactions handled allow developers/owners to pay

staff and other costs plus derive some profit on top.

Suppose the WCET adaptation has been run and that the MaxCost and

BaseCost have been saved for each node in the DCG. Also, MaxTimes of each node

has been determined for each path as well as MaxCost of each path.

Now, consider a path P1 that represents the servicing of a fairly standard stock

purchase with only basic database access plus average latency and bandwidth with

outside service and data providers. It has been determined that MaxCost(P1) = $0.024

so clearly, this yields

CostExcess(P1) = $0.004

Furthermore, the path weight shows that P1 exceeds the cost threshold by 20%.

PathWeight(P1) =
$0.004
$0.02

= 0.2

Since this is a common case, this cost excess may be of concern. The node

weight for each node along P1 is calculated next. For example, suppose there is a

method m1 along P1 (i.e. between two decision branches that define P1). The method’s

base cost is $0.00004 and the max number of times it can be called is 30. Next, it is

57

Table 5.1: An example of normalized node weights

Method Normalized Weight
m4 0.15
br15 0.11
m31 0.06
m1 0.01
br9 0.009
m11 0.007
· · · · · ·
m3 0.0005

determined that this node accounts for 5% of the path’s max cost.

NodeWeight(P1,m1) =
$0.00004×30

$0.024
= 0.05

In order to make useful comparisons between other nodes in the DCG, the

node weight is normalized based on the path’s weight. This yields

NormalizedNodeWeight(P1,m1) = 0.05×0.2 = 0.01

For this example, suppose that the normalized node weights for m1 along all

other paths were smaller than the weight for P1. It can then be concluded that the

normalized node weight of m1 is 0.01.

Now, suppose that similar calculations have been made for all the other nodes

and paths. The normalized node weights could then be ordered as shown in Table 5.1.

From this analysis, it might be concluded that m1 is of average importance in

terms of its contribution to cost excess. It is likely that m4 and br15 would be of

particular concern. It may be important to look at which cost excessive paths those

nodes fall on and try to determine how likely those paths are to occur. If those are

thought to be likely, attention should be focused on reducing the cost excess of those

nodes in order to reduce the overall probability of cost excessive transactions.

58

Indeed, the common path P1 does contain m4. Upon further inspection, it is

found that m4 invokes an outside data service whose per transaction cost is no longer

market competitive. Ultimately, the decision could be made to either renegotiate a

better rate for the data service or find an alternate provider.

5.6 Evaluation Methodology

Evaluation of the static analysis approach was accomplished by first implementing a

research prototype of the WCET adaptation developed earlier, and then by verifying

the prototype using a separate and independent utility.

Research Prototype

A prototype was built on the Volta suite of tools [33] for WCET calculations on Java

programs. By default, Volta’s target processor is JOP, hardware specifically designed

for running Java for real time embedded applications [67].

Volta is easy to use and already supports the concept of pluggable strategies for

various parts of the WCET calculations. Using a new cost based strategy along with

other minor changes to the framework proved to be a very reasonable approach for

implementing a prototype of the static analysis approach. Adapting another WCET

system for Java, like the one described in [68], might also be useful in the future.

The WCET adaptation calculates the max monetary cost of a program starting

at a root method. It also finds cost excessive paths and determines path independent

normalized node weights for the nodes in the input program’s DCG.

The implementation of the prototype relies heavily on the control flow analysis

and execution time features of the WCET system. It builds a DCG during the

WCET/cost analysis, and it calculates and saves base cost and max times values for

the nodes in the DCG. It then uses the algorithms developed in the static analysis

approach to determine path costs and node weights.

59

Verification Utility

A verification utility was implemented to test the prototype. Whereas the research

prototype performs static analysis on an input program, the verification utility

executes programs and measures costs dynamically.

The verification utility first generates random programs by producing a

random DCG. Though the DCG is random, it is bounded by several constants in the

verification utility such as maximum number of children nodes for a given node and

maximum program call stack depth. These are designed to be within reason for actual

programs while keeping the size of the random programs amenable to producing and

analyzing many programs. For example, the average call stack depth was 5 and the

average number of children nodes was 3. Calder studied object oriented programs (in

this case written in C++) and found an average call stack depth of 13 (see [18]). An

average number of children call graph nodes of 2 can also be derived from Calder’s

data. The stack depth is shorter in order to keep analysis times lower, but the average

number of children is slightly higher in order to ensure reasonable diversity in paths.

The verification utility produces Java source code from the random DCG. In

addition to the methods and conditions which make up the DCG, the Java source code

includes loops (randomly selected DCG nodes are surrounded by loops). Furthermore,

methods are chosen at random to be annotated with the various resource costs

(bandwidth, service, and storage usage).

It is not uncommon to use generated programs to verify static analysis tools. In

[25], refactoring engines are tested using generated programs. An approach for testing

an optimizing compiler using randomly generated programs is described in [60].

Costs/rates for each of the different cloud resources (processing, storage,

bandwidth) are fixed randomly for each program within appropriate bounds. The cost

60

threshold for each random program is also generated randomly and within a

reasonable bound.

The Java source code produced by the verification utility introduces some

limitations. The DCGs on which they are built contain no cycles and children nodes

always have exactly one parent. The bodies of decision branches always consist of

exactly one method, though method bodies contain a random (but bounded) number of

method calls. Also, loop bodies always consist of exactly one DCG node (either

decision or method call), and the loops themselves always execute all the way to their

annotated bounds. If this were not the case, it would be difficult to use the random

programs to verify the accuracy of the research prototype. On the other hand, it may

better simulate actual variations in runtime conditions, depending on the particular

application and domain.

The root method in the generated source accepts a random integer as input.

This integer is used in the condition of each decision in the program. Each decision

randomly selects a bit position to mask and test. When the bit is set, the then branch is

taken otherwise the else branch is taken. This allows for a set of randomly generated

inputs to produce an extensive variety of control flows.

The overall idea is to generate enough random programs and execute the

random programs with enough random inputs so that a credible list of paths and

calculated nodes weights can be built. Both the verification utility and the particular

structure of the random programs themselves allow for capturing the cost of a

particular execution of the program on a given input as well as the other essential

information for each node (base cost and max times) required for the additional

calculations developed here.

If the cost of a path (i.e. one execution of the program for a given random

input) exceeds the predetermined (but random) threshold, then the additional

61

calculations developed here are performed to determine the path independent

normalized node weight for each node that appears somewhere in a cost excessive

path.

The verification utility also orchestrates the entire process of producing the

random DCG, converting it to Java source code, compiling the Java source code, then

executing it on random inputs. All of this was accomplished without much trouble

using Java features including dynamic compilation as well as extensive use of the

Reflection API.

The goal for the verification utility is to produce two main pieces of data that

can be compared with corresponding data produced by the static analysis performed in

the research prototype. First, the cost excessive paths found by the verification utility

should always be a subset of those found by the research prototype. Second, the path

independent normalized node weight values of the verification utility should generally

be very close to those of the research prototype.

5.7 Evaluation Results

To ensure diversity in testing inputs for the research prototype, 1000 random programs

were generated by the verification utility. As discussed earlier, the programs varied in

size and complexity within certain bounds. For each random program, 10000 random

inputs were generated and provided as input to the program. The paths and node

weights determined by the verification utility were captured and saved. The program

was then analyzed by the research prototype and the output data were then compared

to the data saved from the random test runs of the program.

All cost excessive paths found by the verification utility were also found by the

research prototype. This met the expectation that the cost excessive paths from the

verification would be a subset of those found by the research prototype.

62

Of course, this does not fully guarantee that the research prototype is correct in

this aspect, since there was no analysis of the cost excessive paths identified by the

prototype but not by the verification utility. It is assumed that those paths (if any) were

simply not found by any of the random test runs. However, future work could perform

further analysis on these paths to verify (independent of the research prototype itself,

since it is the component under test here) that they are indeed cost excessive.

A close correlation was found between the path independent normalized node

weights of the verification utility and the research prototype. For those nodes with a

nontrivial weight (i.e. at least 0.0001), the median weight difference between the

verification utility and research prototype was just 4.2%. This demonstrates that the

prototype is meeting its objectives in this aspect and making its calculations

accurately.

Looking through various test data and the source code of randomly generated

programs, some anecdotal observations regarding the verification utility were made.

First, when all cost excessive paths are found by test runs in the verification utility,

differences in node weights from the research prototype are most likely due to

execution time measurements and are generally very small. More significant

differences in node weights are probably introduced when some cost excessive paths

are not found by the verification utility.

Also, highly weighted nodes can often be predicted simply by scanning the

source code (though the absolute and relative magnitude is not so easily predicted).

Those nodes that have annotated resource costs, those that are called within loops, and

those with ancestor methods called within loops are almost always the nodes that are

weighted more heavily.

It should be noted, however, that this does not trivialize the importance of the

research prototype since real world programs can be very large and complex.

63

Statically traversing source code and describing cost excess can be a very nontrivial

undertaking, one which is very likely to be prohibitive if attempted manually.

5.8 Assumptions and Limitations

The tools and algorithms in the static analysis approach leverage the significant body

of research on WCET analysis which has been developed mostly over the past 10-15

years. The WCET problem is very important for real-time and safety critical systems,

but it is also very difficult. The limitations of the work developed here are mostly

carried over from the limitations of WCET analysis. Fortunately, ongoing work in

WCET is addressing these limitations. Following is a discussion of the limitations,

including how they are being addressed and why research into the limitations is

outside the scope of the current research.

A basic WCET implementation provides a single upper bound for a function.

A more advanced possibility (not yet available) might be to assign a range of values

and perhaps a probability associated with each range. A parametric solution would

include a variable upper bound using function inputs as parameters. Recent parametric

timing research has produced some basic results [16]. However, these produce very

complex parametric representations that need to be simplified in order to be useful.

Addressing this and other problems is literally the work of another dissertation

(namely, the dissertation of Stefan Bygde of Malardalen University in Sweden) and is

outside the scope of this dissertation.

The implication for this dissertation is that the kinds of applications that can

benefit from it will be those that have fixed limits on data sizes (consumption of

memory, storage, and bandwidth) and therefore have a fixed cost that can be

determined and compared against a threshold instead of a variable threshold

depending on inputs. Such applications are likely to charge users a flat fee for a single

use (or a fixed number of uses). An example of a fixed rate SaaS application would be

a stock transaction processing system (pay-per-trade).
64

WCET also has some limitations significant to cloud applications which are

more likely to be built using modern programming languages. These limitations

include dealing with recursive methods and exception handling (which significantly

complicate control flow) as well as polymorphism (which requires advanced analysis

to determine type information statically when such a determination is even possible).

Historically, these have not been too limiting for WCET since real time systems have

been implemented using low level languages or even assembly (which do not support

polymorphism and exception handling), or have accepted limitations in order to

guarantee safety (in the case of recursive methods). However, as higher level

languages are increasingly used in real time systems, these limitations become more

restrictive. Therefore, it is likely that there will be more research in these areas in the

coming years.

One of the more prominent WCET tools for Java has some support for

polymorphism using data flow analysis (specifically receiver type analysis) [68]. This

provides some narrowing of possible virtual method invocations, but static analysis

cannot always determine the type of an object and therefore cannot determine exactly

which virtual method implementation will be invoked at run time.

Some research into WCET in the presence of exception handling has taken

place [21]. It is difficult because it increases (and to some extent obfuscates) the

control paths that must be considered. None of the main WCET tools for Java

currently deal with exception handling. This is mitigated by the common use of

exception handling as error handling which generally limits-not expands-the flow of

control through the program and therefore would generally not increase the upper

timing bound.

Recursive methods complicate possible control flow even more. The extensive

work of Blieberger provides good evidence for this [10]. There are various special

cases of recursive methods including indirect recursion, multiple entry and exit points
65

to a cycle of recursive methods in a control flow graph, overlapping recursive cycles,

and multiple recursive calls within a single method. Complete analysis of these and

other issues related to recursion would be enough material for a separate dissertation

and if included here would likely be a distraction from the main hypothesis of this

dissertation.

Another assumption involves lower level hardware concerns, which are

sometimes abstracted away from the developer in cloud computing. In WCET

analysis (and in the static analysis approach by extension), a tight bound on processing

time can be derived when developers have intimate knowledge of the target processor.

For example, the Volta tool requires developers to specify the number of cycles used

for basic Java bytecode instructions. Default values are provided but they can be

customized based on the actual target processor. For this dissertation, the default

values were left in place, and a processor speed of 4GHz was assumed. However, this

processor speed can easily be customized. Some cloud providers do publish CPU

speeds and they differentiate between the speeds in their pricing schemes [56].

5.9 Observations

While the research prototype for the static analysis approach has delivered accurate

results, these results were derived from input programs that were constructed so as to

avoid the limitations discussed earlier. These limitations are quite severe. A sample

program (one of the shorter programs) that was analyzed is shown in Appendix A.

While this program and the others that were analyzed represent various possible call

graphs of varying sizes, they do not represent real world Java programs well. An

approach that could handle more standard Java programs would be important to

consider.

66

Chapter 6

Hybrid Approach

6.1 Overview

The static analysis approach discussed previously delivered concrete results and

calculations for determining cost excessive paths in a cloud application. However, the

limitations associated with that approach are severe. The sample programs constructed

as part of the verification of the static analysis approach were tailored to the

limitations, but a real world example (much less a real world production system)

would not be handled by the tools and research in its current state.

An approach based more on the dynamic approaches discussed earlier could

handle a real world example. This chapter describes such an approach. It is based on

the instrumentation approach to dynamic measurement but it involves calculations that

are similar to those developed for the static analysis approach. Hence, it is called a

hybrid approach.

The hybrid approach will also take operational profiles into account.

Operational profiles are one way of representing expected or observed usage

information into cost calculations. At a fundamental level, an operational profile is

simply a set of inputs and a probability that the set will be executed for a given run of

the program (for a more complete explanation see [57] and [28]). This data fits nicely

into the hybrid approach. The probability informs weighting calculations so that when

an input from a certain operational profile is chosen, the corresponding costs are

weighted with the probability.

Note that because this approach gathers and analyzes aggregate usage data, it

answers questions related to overall averages. Whereas the static analysis approach

looked at individual control flow paths, the hybrid approach uses probabilities to

present an overall picture of cost excess.

67

The hybrid approach allows helps to answer questions such as those listed

below:

• On average, how much profit (or loss) is expected per transaction?

• Which operational profiles are most likely to exceed a cost threshold?

• Which operational profiles contribute most to cost excess?

• Which methods contribute most to cost excess?

Following is a more detailed description of the hybrid approach including the

calculations that can be made with it. Also provided is a real world example

application that demonstrates the use of the hybrid approach.

6.2 Dynamic Measurements

The hybrid approach is a basic form of the dynamic instrumentation approach

discussed earlier. For each operational profile, the following measurements are taken

on a set of test runs:

• When resources are requested, the cost is added to the running total for that

method.

• At the end of each run, a cost for each method for the given transaction has been

calculated.

• Adding these costs together, an overall cost for the given transaction is

determined (each transaction is associated with the operational profile that

contains its inputs).

Measurements for running time (CPU) are handled in a similar way both on a

method and transaction level. Running the software on the CPU is not exactly the

68

same as requesting a resource like bandwidth, but it is the same in that it is consuming

a fundamental cloud resource. CPU usage is added to the cost of a method or

transaction before summary calculations are made, so it is treated the same as other

cloud resources.

If the measurements are taken locally (off the cloud) the CPU times would not

be quite as accurate as if they were run on the cloud unless local hardware is nearly

identical to the hardware on instances reserved in the cloud.

With these basic pieces of data, summary calculations can be performed

similar to those used in the static analysis approach. These calculations are discussed

in the following section.

6.3 Summary Calculations

From the dynamic measurements the following calculations can be made given a cost

threshold (THR), for an operation profile (P) which involves some number of method

calls (M) and is part of a complete set of operational profiles (S).

TotalCost(P) = total measured cost for all runs of P

NumRuns(P) = the number of runs of P

AverageCost(P) =
TotalCost(P)
NumRuns(P)

AverageCostExcess(P) =
AverageCost(P)−T HR

T HR

(Average cost excess is expressed here as a percentage of cost excess.)

Since the operational profile includes a probability, it is used to “weight” the

profile as well the methods invoked during transactions under that profile. Hence, a

weighed cost for the operational profile is calculated as follows:

Weight(P) = AverageCostExcess(P)×Probability(P)

69

The following calculations are specific to methods invoked during the test runs

of an operational profile. First, calculate a method’s contribution to the operational

profile under which it was invoked, then use that operational profile’s weight to

produce a weighting for the method. This weighting is ultimately the contribution for

this path to the overall weighting of the method.

TotalCost(M,P) = total measured cost for M for all runs of P

AverageContribution(M,P) =
TotalCost(M,P)

TotalCost(P)

Weight(M,P) = Weight(P)×AverageContribution(M,P)

The overall cost excess for all operational profiles can be derived based on

their weighted cost excesses. Furthermore, the normalized weight for a given profile

takes all other profile weights into account. It represents the impact or importance the

operational profile plays in relation to cost excess.

OverallCostExcess = ∑
P∈S

Weight(P)

NormalizedWeight(P) =
Weight(P)

OverallCostExcess

Likewise, by summing the weight of a particular method for each of the

operational profiles in which it is invoked, the full weight can be calculated (already

weighted appropriately from each operational profile weight). Comparing the weight

against the overall cost excess allows for determining the normalized node weight.

This is the ultimate determination of which methods contribute most to cost excess.

FullWeight(M) = ∑
P∈S

Weight(M,P)

NormalizedWeight(M) =
FullWeight(M)

OverallCostExcess

6.4 Using the Hybrid Approach

To briefly summarize how one would use the hybrid approach to characterize cost

excess, think of it in terms of measurements, calculations, and results. First, measure
70

the cost of resources consumed by a test run of the program (as described above), and

associate each cost with the method it was called from.

Next, provide these measurements as input to the summary calculations (also

described above). Each of the results of these calculations provides an answer to one

of the questions posed earlier, as follows:

• On average, how much profit (or loss) is expected per transaction?

– The OverallCostExcess gives exactly the loss per transaction.

• Which operational profiles are most likely to exceed a cost threshold?

– The AverageCostExcess(P) for each profile indicates whether that profile

exceeds the threshold (on average) or not.

• Which operational profiles contribute most to cost excess?

– The contribution of operational profiles to cost excess is measured in terms

of NormalizedWeight(P) for each profile. A higher weight indicates a

higher relative contribution.

• Which methods contribute most to cost excess?

– The contribution of methods to cost excess is measured in terms of

NormalizedWeight(M) for each method. A higher weight indicates a

higher relative contribution.

6.5 Evaluation Methodology

The hybrid approach was evaluated by implementing a real world example program

and taking measurements on test runs of that program. The summary calculations

discussed previously were performed on the measurements taken during test runs, and

the resulting data were analyzed for correctness.

71

Real World Example

An implementation of the real estate image service (discussed earlier in the

dissertation) was implemented as a real world example. As discussed earlier, this

example takes an address as input and produces a high quality image of the real estate

at that address as output. To accomplish this work, the application first converts the

address to a geolocation (latitude and longitude), then queries one or more image

providers for a detailed image at that location. The images are analyzed by an

algorithm that decides what image will best represent the real estate at that location.

The image providers offer satellite, aerial, or street level images via a SaaS

interface. The real estate image service detects the type of real estate at a given

geolocation (e.g. single family house, high rise condo, acreage, etc.) based on location

and/or based on an initial high level image scan. It then requests the right kind of

image for the real estate type from the appropriate image provider. For example, a one

acre lot may look best on an aerial image, while a single family house may look better

in a street level image.

The example application used to verify the hybrid approach is a prototype

implementation of the real estate image service to serve as a proof of concept for the

hybrid approach. Several pieces of the application only simulate what a real

application would do. For example, latency is simulated with image providers via

Thread.sleep calls, and the images themselves are simulated with default constructed

images of various sizes.

A UML diagram of the real estate image service is provided in Figure 6.1.

The design makes use of two main types of components: directors and

handlers. A director in this application is a class that encapsulates the procedural logic

of the application along with associated algorithms.

72

TransactionDirector

ImageDirector

ResourceTracker

LocationHandler

SatelliteHandler

TransactionHandler

SkyHandler StreetHandler

Figure 6.1: Real Estate Service Design

The TransactionDirector is the top level class that implements the overall logic

of receiving the address and converting it to a geolocation, handing off work to the

ImageDirector and getting a result, then sending this result as output. The

ImageDirector encapsulates the core algorithm of the application. It works with

handlers associated with each image provider to fetch and analyze images as needed.

A handler in this application is a class that handles all protocol responsibilities

for sending and receiving data from outside services and clients. There are handlers

for each image provider as well as for the service that converts from an address to a

geolocation. There is also a handler for communication with clients of the real estate

image service.

Each of the handlers uses bandwidth and outside services. Bandwidth is used

for sending inputs and receiving outputs to/from the outside service. These resources

are accounted for by the ResourceTracker. The ResourceTracker implements the

instrumentation approach to dynamic measurements and is discussed in greater detail

below.

73

The real estate image service is clearly a pay-per-use composite service.

Customers are charged for each image (or perhaps group of images) that the service

produces. Likewise, the service itself uses outside services to obtain raw images and

for other parts of the application.

See Appendix B for some sample classes from the real estate image service.

Note in particular how they are a much better representation of an actual Java program

than are the test programs for the static analysis program, an example of which is

provided in Appendix A.

Measurements and Calculations

Similar to the dynamic instrumentation approach discussed earlier, a single method

call was inserted in each of the handlers to record usage of a cloud resource. For the

real estate image service, this included tracking bandwidth and service costs. The

method using the resource was detected via Java stack inspection utilities, and

resource usage was recorded by simply adding the usage to the running total for the

detected method. The recorded values were serialized to a file for all the runs of a

particular operational profile (and later deserialized to perform summary calculations).

To determine the CPU cost of each method as well as the full transaction as a

whole, java heap profiling was utilized. This is enabled by adding

“-Xrunhprof:cpu=times” as an argument to the Java virtual machine. It produces an

hprof file (heap profile) which is then parsed for information about each method

executed during the transaction. (Each method’s running time is recorded and stored

in text format in the hprof file.)

To simulate latency associated with working with outside services, each

handler inserted some amount of time to the execution via a Thread.sleep call. Hence,

they were always ranked at the top of methods requiring the most CPU time.

74

Constant (but configurable) values for the bandwidth cost per byte, the CPU

cost per millisecond, and the overall cost threshold were also specified in the

ResourceTracker. Operational profile probabilities were similarly specified. The cost

of invoking an outside service was accounted for at the point of usage since it was

specific to the particular service requested. Total transaction costs were calculated

based on these low level cloud resource costs as has been discussed previously.

The final step of the process was to deserialize operational profile specific data

combined with hprof information and aggregate the data to determine overall results.

As discussed in the section on calculations, the number of test runs was recorded

along with the resource cost for each invocation of a method as well as the total for the

entire transaction (test run). These were summed for each operational profile. Those

data formed the basis for the remaining calculations. The results that were collected

are discussed in the following section.

6.6 Evaluation Results

To demonstrate the effectiveness of the hybrid approach (implemented in the

ResourceTracker) several scenarios were explored for using the real estate image

service. Normal (expected) values and test runs produce normal/expected results. A

“normal” test run and result is one in which each of the operational profiles produces

different costs but all of them fall below the threshold and none of them has cost

excess. All tests were run locally (off the cloud) since running on the cloud would not

provide any significant benefit from an evaluation perspective.

After observing expected results in the normal case, some cost excesses were

seeded in the application and it was demonstrated that the hybrid approach correctly

identifies them and the resulting overall cost excess in its summary calculations. This

is very similar to standard mutation testing (see [5] and [6]), though instead of using

generic mutation operators, specific and targeted mutations to produce deterministic

mutants were used.
75

Indeed, the seeding was done specifically at points in the program where

resources were used by simply multiplying the existing resource usage/request by a

relatively large factor to be sure cost excesses would result. Since the test program

was not CPU intensive, cost excess seeding was necessarily biased toward spots where

bandwidth and outside services were used. Increasing the resource usage in these

spots ensured that cost excesses would result, and the overall goal of the seeding was

to show that the measurement framework (which of course was not modified during

seeding) would find the associated cost excesses.

Finally, the calculations in the hybrid approach were used to explore different

scenarios to improve cost performance. The initial image processing algorithm was

compared to a possible improvement, and the resulting summary calculations inform

decisions about why the improvement would or would not produce a better cost

profile.

An initial set of test runs of the real estate image service with resource tracking

and summary calculations produced expected results. Given the following constants

(as well as reasonable values for image sizes and service latencies), none of the

operational profiles produced average costs above the threshold.

• Transaction cost threshold: $0.005

• Bandwidth cost: $0.12/GB

• CPU cost: $0.12/hour

• Satellite image service: $0.001 per use

• Street image service: $0.002 per use

• Aerial image service cost: $0.003 per use

• Large lot profile probability: 0.05
76

• Small lot profile probability: 0.05

• House with large lot profile probability: 0.10

• House with standard lot profile probability: 0.50

• Condo/Townhouse (within small clustered buildings) profile probability: 0.20

• Condo/Townhouse (within high rise building) profile probability: 0.10

The summary calculations for normal usage showed that the overall cost

excess was negative (the overall average transaction cost did not exceed the threshold)

and the individual cost excesses for each operational profile were also negative (none

of the average costs for an individual profile exceeded the threshold).

Even though the threshold was not exceeded, method and operational profile

weights were still calculated and showed that the retrieval of satellite and street level

images contributed most to cost. This is likely due to the image director (image

processing algorithm) which always requests an initial but low cost satellite image and

requests a street level image for houses (the most common operational profile).

After demonstrating standard usage of the applications, cost excesses (through

manual insertion) were then seeded in specific locations in order to produce

deterministic cost excesses in the final calculations. This allowed us to verify that the

resource tracker and summary calculations were accurately and consistently detecting

cost excessive profiles and methods.

First, the cost of the aerial image service (which affects operational profiles for

which those images are a best fit) was doubled. An additional fifty redundant

transmissions of the final resulting image were also injected, which would affect all

operational profiles. This latter cost excess seeding was to ensure that the hybrid

approach would show the correct method containing elevated cost excess.

77

After these cost excesses were seeded, the expected results were observed. In

the first case, when aerial image costs were doubled, the operational profiles that

became cost excessive were for smaller lots of land, condos in small clustered

buildings, and houses with relatively large lots, each of which uses an aerial image. In

the second case with extra transmissions to the client, most operational profiles

became cost excessive, but the particular method in the transaction handler to send the

final resulting image was flagged as contributing most significantly to cost excess.

Hence the resource tracker’s calculations were able to successfully find the seeded

cost excesses.

The calculations were also used to make decisions about the internals of the

software. For example, the image director’s algorithm always retrieves a satellite

image as the first step, and decides from that image which kind of real estate is at the

location. However, since street images are used for common operational profiles (e.g.

standard house), it may be cheaper to instead request the street image and send it as

the result, if it is available. (If it is not available, the algorithm would fall back to

requesting the satellite image as usual.) The image director was modified to

implement this new approach and ran the ResourceTracker to calculate results.

After executing the test runs for the original algorithm and for the modified

algorithm, the results of the summary calculations for each algorithm were compared.

Costs had indeed shifted and that the profiles that do not benefit from the optimization

for street images became cost excessive. Furthermore, the overall average cost was

still barely below the threshold, but still somewhat higher than the overall average cost

for the original algorithm. With this information, the modified algorithm would not be

chosen. This demonstration shows that the hybrid approach can also inform decisions

about implementation concerns.

78

6.7 Assumptions and Limitations

The hybrid approach assumes that operational profile data are readily available.

Without these data, the calculations at the core of this approach would not be possible.

However, some scaled back information and calculations might be possible without

using operational profile data (e.g. overall cost excess without weighting, cost

excessive methods but also without weighting information).

As with any approach based on dynamic analysis, the data and calculations are

only as accurate as the test runs are representative of real world conditions. If the

verification phase involves tests that accurately simulate the types of transactions users

will initiate, then the approach will be successful in indicating where cost excess will

show up. However, if the inputs in the tests do not represent real world conditions

well, then the cost data will not help.

Furthermore, the hybrid approach is particularly subject to the risk of not

finding cost excessive methods or profiles that are executed so infrequently that they

are not included in any test suite. These might be found by a robust implementation of

a static analysis approach (if/when such an approach could overcome the many

limitations to which static analysis approaches are subject!).

6.8 Observations

The hybrid approach is fairly easy to use and produces accurate results. With the

implementation developed here, the developer must add some instrumentation to the

source code (a more complicated but feature rich implementation could free the

developer from manually adding instrumentation). However, the developer is not

guessing at loop or bandwidth bounds as in the static analysis approach–those can be

observed dynamically.

Operational profiles lend further credibility to the calculations and increases

accuracy. Separating test runs by operational profiles and determining their overall
79

weight is informative. Ultimately, this information flows down to the methods which

are more accurately weighted for determining sources of cost excess.

The hybrid approach could be limited by the test runs that are observed. As

long as these test runs are representative of actual usage, the dynamic analysis will be

useful. However, there is some risk that all types of usages of the software cannot be

covered, and possibly some important ones. This may leave some dark corners of the

application unexplored by the hybrid approach and only detectable by something with

more extensive static analysis.

80

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Finding cost excesses in cloud applications can be an important part of software

verification. It is a type of nonfunctional testing that is particularly important for cloud

applications precisely because of the benefits of the cloud: resource elasticity and a

pay-as-you-go economic model. Without a clear understanding of how cloud

applications incur costs, developers increase their risk of scaling up resource usage to

meet high demand while possibly losing money on important and costly transactions.

This dissertation has presented several possibilities for verifying that cost

objectives are met and for determining when costs may exceed a given threshold. As

explained earlier, the hypothesis of this dissertation is as follows:

Cost excesses in cloud applications can be characterized before

deployment.

This dissertation has shown the development of a static analysis approach for

determining paths within a cloud application that can exceed a predetermined cost

threshold. These paths, along with the most important/costly nodes within a program’s

interprocedural control flow graph can be brought to the attention of developers before

an application is deployed. Using a research prototype and independent verification

utility, it was determined that the static analysis approach found each path identified

by the verification utility and only differed from the utility in summary calculations by

a small amount. Hence, the prototype demonstrates the accuracy of the static analysis

approach.

By building on the research and tools of worst case execution time analysis,

the static analysis approach inherits all the benefits of a well established field. On the

other hand, it also inherits the limitations of that field which still exist but which are

81

also being addressed over time. The limitations are nontrivial and include restrictions

on commonly used programming language facilities. The approach also assumes

advanced knowledge of bandwidth and possible storage usage, but only at the point of

usage within a particular method of the cloud application.

This dissertation has also shown the development of several dynamic analysis

methods that could be practical and potentially accurate. They may find a

representative subset of the cost excessive methods in a cloud application, depending

on how representative the tests are that are used to perform the analysis. They do not

suffer from many of the limitations of the static analysis approach but also do not have

some of the benefits of static analysis.

Static analysis does not depend so heavily on test suites finding all possible

cost excesses. The advantage of static analysis is that it examines the entire program

and therefore will find all cost excesses, even those in the “dark corners” of an

application that are less commonly used.

A hybrid approach was developed and represents a pragmatic way to achieve

reasonably accurate results in finding cost excesses while avoiding the limitations of

the purely static analysis approach. This approach is mostly dynamic but its

calculations are based on those developed for the static analysis approach. These

calculations incorporate operational profile data to enhance their accuracy.

Overall, the results of the experiments conducted here point toward affirmation

of the hypothesis. The work here represents an attempt to open the door into

predeployment monetary cost analysis of cloud applications, and it is safe to say that

such an analysis is possible and that the paths and/or methods in cloud applications

that are cost excessive can indeed be identified and described. The major contributions

of this dissertation can be summarized as follows:

82

1. Based on its significant benefits and modest limitations, a cost verification

approach based mostly on dynamic analysis would be useful for determining

and characterizing cost excesses. An approach based on instrumenting cloud

applications can be easy to implement (with added features requiring additional

effort) and can be useful for providing important insights to developers.

2. Based on its significant limitations, the static analysis approach developed and

explored in this dissertation would require further research to be useful in a

production environment. As related fields (WCET, energy aware computing)

progress and their needs converge with those of cloud cost verification, the static

analysis approach may become more immediately applicable as it will inherit

the advances in those fields and overcome current limitations.

Several types of cloud application can benefit from this dissertation. Scientific

workflows often involve data intensive transactions which may be costly. Business and

consumer application developers are likely to be particularly sensitive to costs in order

to maximize profits. Cloud services, particularly those that operate under a

pay-per-use model, will likely benefit most from the cost verification presented here.

7.2 Future Work

This dissertation opens the door to many possible future paths of research. Though

outside the scope of this dissertation and generally somewhat orthogonal to the

research in this dissertation, the potential value of these future paths is at least

highlighted by the work here.

It may be interesting to further explore a provider based approach to dynamic

cost measurements. This would be the ideal approach from the cloud user’s

perspective, not only because it results in the least work for the user but also because

the cloud provider has more immediate access to the cloud resources and can more

easily account for their usage at a very fine level. Of course, the cloud provider must
83

already provide trustworthy resource accounting, but the incentive to provide the very

low level accounting discussed in this dissertation has not previously presented itself.

It would be interesting to modify an existing cloud implementation like

Eucalyptus [59] to record and make available fine grain resource usage measurements.

Indeed, the technology to non-invasively and verifiably provide these metrics could be

an entirely separate research direction altogether. This could encourage cloud

providers to take on the value added functionality of fine grain resource accounting.

This dissertation assumes that a cost threshold has already been fixed.

However, an extension of this dissertation may be to help cloud application developers

decide on a cost based on the various resource usage scenarios along the various

control flow paths in an application. Furthermore, building a resource usage profile

could also provide a means for choosing a cloud provider. Since providers have

different cost profiles for different resource types, matching a resource usage profile

with a cost profile could allow for cost minimization.

It might be interesting to build simulation models of applications in order to

derive cost usage models and/or determine resource usage bounds and probabilities.

These could be associated with the previously mentioned work of minimizing costs by

considering resource usage profiles along with the various cloud provider cost profiles.

Simulation models working under different cost profiles could provide important data

for making decisions about which cloud provider to use.

It may be even more interesting to determine a general approach for cost

simulation modeling for cloud applications. Though clearly outside the scope of this

dissertation, this could be a fruitful area of research and could be beneficial to cloud

application cost verification.

The idea of resource usage profiles that are matched to a lowest cost cloud

provider gives rise to another important question that could be explored in future

84

work. Are there parts of an application that should not be run on the cloud? For

example, if a resource usage profile (or possibly one of the weighting schemes

described in this dissertation) shows that a resource is in such high demand within an

application, and if the application is run frequently enough, it may be more cost

effective to provide dedicated, in house resources instead of using those available on

the cloud. Indeed, it may be possible that a resource usage profile would lead to a

decision not to run an application on the cloud at all.

Since economic concerns are a key component of the entire notion of cloud

computing, deciding if and when to run applications or components on the cloud

(from an economic standpoint) as well as verifying that running applications or

components on the cloud will indeed be cost effective are both essential for developers

to understand when planning the deployment of software applications.

85

REFERENCES

[1] S. Agarwala, D. Jadav, and L. Bathen. Icostale: Adaptive cost optimization for
storage clouds. In Cloud Computing, IEEE International Conference on
(CLOUD), July 2011.

[2] Amazon. Amazon web services, Dec. 2010.

[3] Amazon. Amazon cloudwatch, Feb. 2012.

[4] Amazon. Amazon ec2 pricing, June 2012.

[5] J. Andrews, L. Briand, and Y. Labiche. Is mutation an appropriate tool for testing
experiments? [software testing]. In Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on, pages 402 – 411, May 2005.

[6] J. Andrews, L. Briand, Y. Labiche, and A. Namin. Using mutation analysis for
assessing and comparing testing coverage criteria. Software Engineering, IEEE
Transactions on, 32(8):608 –624, 2006.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing.
Commun. ACM, 53:50–58, April 2010.

[8] X. Bai, M. Li, B. Chen, W.-T. Tsai, and J. Gao. Cloud testing tools. In Service
Oriented System Engineering (SOSE), 2011 IEEE 6th International Symposium
on, pages 1 –12, dec. 2011.

[9] R. Bala and S. Carr. Usage-based pricing of software services under
competition. Journal of Revenue and Pricing Management, 9(3):204–216, 2010.

[10] J. Blieberger. Real-time properties of indirect recursive procedures. Inf.
Comput., 171:156–182, January 2002.

[11] B. Boehm. Value-based software engineering: reinventing. SIGSOFT Softw.
Eng. Notes, 28(2):3–, Mar. 2003.

[12] K. Buell and J. Collofello. Transaction level economics of cloud applications.
Services, IEEE Congress on, 0:515–518, 2011.

[13] K. Buell and J. Collofello. Cost excessive paths in cloud based services. In
Information Reuse and Integration (IRI), 2012 IEEE International Conference
on, aug. 2012.

86

[14] K. Buell and J. Collofello. Dynamic cost verification for cloud applications. In
Proceedings of the 2012 Workshop on Dynamic Analysis, WODA 2012, pages
18–23, New York, NY, USA, 2012. ACM.

[15] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst., 25:599–616, June 2009.

[16] S. Bygde and B. Lisper. Towards an automatic parametric wcet analysis. In
R. Kirner, editor, 8th Intl. Workshop on Worst-Case Execution Time (WCET)
Analysis, Dagstuhl, Germany, 2008.

[17] H. Cai, K. Zhang, M. Wang, J. Li, L. Sun, and X. Mao. Customer centric cloud
service model and a case study on commerce as a service. In Cloud Computing,
2009. CLOUD ’09. IEEE International Conference on, pages 57 –64, sept. 2009.

[18] B. Calder, D. Grunwald, and B. Zorn. Quantifying behavioral differences
between c and c++ programs. JOURNAL OF PROGRAMMING LANGUAGES,
2:313–351, 1994.

[19] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya.
Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Softw. Pract.
Exper., 41(1):23–50, Jan. 2011.

[20] W. Chan, L. Mei, and Z. Zhang. Modeling and testing of cloud applications. In
Services Computing Conference, 2009. APSCC 2009. IEEE Asia-Pacific, pages
111 –118, 2009.

[21] R. Chapman, A. Burns, and A. Wellings. Worst-case timing analysis of
exception handling in ada. In Proceedings of the Ada UK Conference, pages
148–164. IOS Press, 1993.

[22] J. Chen and Y. Yang. A taxonomy of grid workflow verification and validation.
Concurr. Comput. : Pract. Exper., 20(4):347–360, Mar. 2008.

[23] H. K. Cheng and G. J. Koehler. Optimal pricing policies of web-enabled
application services. Decis. Support Syst., 35(3):259–272, June 2003.

[24] M. A. Cusumano. The changing labyrinth of software pricing. Commun. ACM,
50(7):19–22, July 2007.

87

[25] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated testing of refactoring
engines. In Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, ESEC-FSE ’07, pages 185–194, New York, NY, USA,
2007. ACM.

[26] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing
science on the cloud: The montage example. In High Performance Computing,
Networking, Storage and Analysis, 2008. SC 2008. International Conference for,
pages 1 –12, 2008.

[27] N. Dun, K. Taura, and A. Yonezawa. Paratrac: a fine-grained profiler for
data-intensive workflows. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, HPDC ’10, pages
37–48, New York, NY, USA, 2010. ACM.

[28] M. Gittens, H. Lutfiyya, and M. Bauer. An extended operational profile model.
In Software Reliability Engineering, 2004. ISSRE 2004. 15th International
Symposium on, pages 314 – 325, 2004.

[29] D. Gmach, J. Rolia, and L. Cherkasova. Resource and virtualization costs up in
the cloud: Models and design choices. In Dependable Systems Networks (DSN),
2011 IEEE/IFIP 41st International Conference on, pages 395 –402, june 2011.

[30] Google. Google app engine, Dec. 2010.

[31] Google. Google app engine - pricing and features, June 2012.

[32] I. Gorton, J. Chase, A. Wynne, J. Almquist, and A. Chappell. Services +
components = data intensive scientific workflow applications with medici. In
Proceedings of the 12th International Symposium on Component-Based Software
Engineering, CBSE ’09, pages 227–241, Berlin, Heidelberg, 2009.
Springer-Verlag.

[33] T. W. Harmon. Interactive worst-case execution time analysis of hard real-time
systems. PhD thesis, University of California, Irvine, 2009.

[34] T. A. Henzinger, A. V. Singh, V. Singh, T. Wies, and D. Zufferey. A marketplace
for cloud resources. In Proceedings of the tenth ACM international conference
on Embedded software, EMSOFT ’10, pages 1–8, New York, NY, USA, 2010.
ACM.

88

[35] Z. Hou, X. Zhou, J. Gu, Y. Wang, and T. Zhao. Asaas: Application software as a
service for high performance cloud computing. In High Performance Computing
and Communications (HPCC), 2010 12th IEEE International Conference on,
pages 156 –163, sept. 2010.

[36] A. Ishii and T. Suzumura. Elastic stream computing with clouds. In Cloud
Computing, IEEE International Conference on (CLOUD), July 2011.

[37] R. Jayaseelan, T. Mitra, and X. Li. Estimating the worst-case energy
consumption of embedded software. In Proceedings of the 12th IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 81–90,
Washington, DC, USA, 2006. IEEE Computer Society.

[38] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville. Cloud migration: A
case study of migrating an enterprise it system to iaas. In Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on, pages 450 –457, 2010.

[39] T. M. King, A. S. Ganti, and D. Froslie. Enabling automated integration testing
of cloud application services in virtualized environments. In Proceedings of the
2011 Conference of the Center for Advanced Studies on Collaborative Research,
CASCON ’11, pages 120–132, Riverton, NJ, USA, 2011. IBM Corp.

[40] M. Klems, J. Nimis, and S. Tai. Do clouds compute? a framework for estimating
the value of cloud computing. In W. Aalst, J. Mylopoulos, N. M. Sadeh, M. J.
Shaw, C. Szyperski, C. Weinhardt, S. Luckner, and J. Ster, editors, Designing
E-Business Systems. Markets, Services, and Networks, volume 22 of Lecture
Notes in Business Information Processing, pages 110–123. Springer Berlin
Heidelberg, 2009.

[41] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. Ioannidis. Schedule optimization
for data processing flows on the cloud. In Proceedings of the 2011 international
conference on Management of data, SIGMOD ’11, pages 289–300, New York,
NY, USA, 2011. ACM.

[42] P. Koehler, A. Anandasivam, and D. Ma. Cloud Services from a Consumer
Perspective. In Proceedings of the 16th Americas Conference on Information
Systems (AMCIS), Lima, Peru, 2010.

[43] D. Kossmann, T. Kraska, and S. Loesing. An evaluation of alternative
architectures for transaction processing in the cloud. In Proceedings of the 2010
international conference on Management of data, SIGMOD ’10, pages 579–590,
New York, NY, USA, 2010. ACM.

89

[44] P. Kudtarkar, T. F. DeLuca, V. A. Fusaro, P. J. Tonellato, and D. P. Wall.
Cost-effective cloud computing: A case study using the comparative genomics
tool, roundup. Evolutionary bioinformatics online, 6:197–203, 2010.

[45] U. Lampe, T. Mayer, J. Hiemer, D. Schuller, and R. Steinmetz. Enabling
cost-efficient software service distribution in infrastructure clouds at run time. In
Service-Oriented Computing and Applications (SOCA), 2011 IEEE International
Conference on, pages 1 –8, dec. 2011.

[46] P. Y. Lau, S. Park, J. Yoon, and J. Lee. Pay-as-you-use on-demand cloud service:
An iptv case. In Electronics and Information Engineering (ICEIE), 2010
International Conference On, volume 1, pages V1–272 –V1–276, aug. 2010.

[47] J. Y. Lee, J. W. Lee, D. W. Cheun, and S. D. Kim. A quality model for evaluating
software-as-a-service in cloud computing. In Software Engineering Research,
Management and Applications, 2009. SERA ’09. 7th ACIS International
Conference on, pages 261 –266, dec. 2009.

[48] Y. C. Lee, C. Wang, A. Y. Zomaya, and B. B. Zhou. Profit-driven service request
scheduling in clouds. In Cluster, Cloud and Grid Computing (CCGrid), 2010
10th IEEE/ACM International Conference on, pages 15 –24, May 2010.

[49] S. Lehmann and P. Buxmann. Pricing strategies of software vendors. Business
Information Systems Engineering, 1(6):452–462, 2009.

[50] X. Li, Y. Li, T. Liu, J. Qiu, and F. Wang. The method and tool of cost analysis
for cloud computing. In Proceedings of the 2009 IEEE International Conference
on Cloud Computing, CLOUD ’09, pages 93–100, Washington, DC, USA, 2009.
IEEE Computer Society.

[51] K. Liu, H. Jin, J. Chen, X. Liu, D. Yuan, and Y. Yang. A compromised-time-cost
scheduling algorithm in swindew-c for instance-intensive cost-constrained
workflows on a cloud computing platform. International Journal of High
Performance Computing Applications, 24(4):445–456, 2010.

[52] W. Lu, J. Jackson, J. Ekanayake, R. S. Barga, and N. Araujo. Performing large
science experiments on azure: Pitfalls and solutions. In Proceedings of the 2010
IEEE Second International Conference on Cloud Computing Technology and
Science, CLOUDCOM ’10, pages 209–217, Washington, DC, USA, 2010. IEEE
Computer Society.

90

[53] B. Martens, M. Walterbusch, and F. Teuteberg. Costing of cloud computing
services: A total cost of ownership approach. In System Science (HICSS), 2012
45th Hawaii International Conference on, pages 1563 –1572, jan. 2012.

[54] L. Mei, Z. Zhang, and W. Chan. More tales of clouds: Software engineering
research issues from the cloud application perspective. In Computer Software
and Applications Conference, 2009. COMPSAC ’09. 33rd Annual IEEE
International, volume 1, pages 525 –530, july 2009.

[55] Microsoft. Windows azure platform, Dec. 2010.

[56] Microsoft. Windowsazure pay-as-you-go, June 2012.

[57] J. Musa. Operational profiles in software-reliability engineering. Software,
IEEE, 10(2):14 –32, Mar. 1993.

[58] V. Nallur and R. Bahsoon. Design of a market-based mechanism for quality
attribute tradeoff of services in the cloud. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10, pages 367–371, New York, NY,
USA, 2010. ACM.

[59] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. The eucalyptus open-source cloud-computing system. In
Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, CCGRID ’09, pages 124–131, Washington, DC, USA,
2009. IEEE Computer Society.

[60] M. H. Palka, K. Claessen, A. Russo, and J. Hughes. Testing an optimising
compiler by generating random lambda terms. In Proceeding of the 6th
international workshop on Automation of software test, AST ’11, pages 91–97,
New York, NY, USA, 2011. ACM.

[61] S. Pandey, A. Barker, K. Gupta, and R. Buyya. Minimizing execution costs when
using globally distributed cloud services. In Advanced Information Networking
and Applications (AINA), 2010 24th IEEE International Conference on, pages
222 –229, Apr. 2010.

[62] K.-W. Park, S. K. Park, J. Han, and K. H. Park. Themis: Towards mutually
verifiable billing transactions in the cloud computing environment. In Cloud
Computing (CLOUD), 2010 IEEE 3rd International Conference on, pages 139
–147, 2010.

91

[63] J. S. Rellermeyer, M. Duller, and G. Alonso. Engineering the cloud from
software modules. In Proceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing, CLOUD ’09, pages 32–37,
Washington, DC, USA, 2009. IEEE Computer Society.

[64] L. Riungu, O. Taipale, and K. Smolander. Research issues for software testing in
the cloud. In Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, pages 557 –564, 30 2010-dec. 3 2010.

[65] P. Robinson and C. Ragusa. Taxonomy and requirements rationalization for
infrastructure in cloud-based software testing. In Cloud Computing Technology
and Science (CloudCom), 2011 IEEE Third International Conference on, pages
454 –461, December 2011.

[66] T. Rostrom and C.-C. Teng. Secure communications for pacs in a cloud
environment. In Engineering in Medicine and Biology Society,EMBC, 2011
Annual International Conference of the IEEE, pages 8219 –8222, 30 2011-sept.
3 2011.

[67] M. Schoeberl. JOP: A Java Optimised Processor for Embedded Real-Time
Systems. PhD thesis, Vienna University of Technology, 2005.

[68] M. Schoeberl, W. Puffitsch, R. U. Pedersen, and B. Huber. Worst-case execution
time analysis for a java processor. Softw. Pract. Exper., 40:507–542, May 2010.

[69] V. Sekar and P. Maniatis. Verifiable resource accounting for cloud computing
services. In Proceedings of the 3rd ACM workshop on Cloud computing security
workshop, CCSW ’11, pages 21–26, New York, NY, USA, 2011. ACM.

[70] T. Shibata, S. Choi, and K. Taura. File-access patterns of data-intensive workflow
applications and their implications to distributed filesystems. In Proceedings of
the 19th ACM International Symposium on High Performance Distributed
Computing, HPDC ’10, pages 746–755, New York, NY, USA, 2010. ACM.

[71] G. Singh, G. Garg, P. Jain, and H. Singh. Article: The structure of cloud
engineering. International Journal of Computer Applications, 33(8):44–49,
November 2011. Published by Foundation of Computer Science, New York,
USA.

[72] S. Tai, J. Nimis, A. Lenk, and M. Klems. Cloud service engineering. In Software
Engineering, 2010 ACM/IEEE 32nd International Conference on, volume 2,
pages 475 –476, may 2010.

92

[73] V. Tosic, H. Wada, A. Guabtni, K. Lee, and A. Liu. Management towards
reducing cloud usage costs. In Network Operations and Management
Symposium (LANOMS), 2011 7th Latin American, page 1, oct. 2011.

[74] H.-L. Truong and S. Dustdar. Composable cost estimation and monitoring for
computational applications in cloud computing environments. Procedia
Computer Science, 1(1):2175 – 2184, 2010. ICCS 2010.

[75] H.-L. Truong and S. Dustdar. Cloud computing for small research groups in
computational science and engineering: current status and outlook. Computing,
91(1):75–91, Jan. 2011.

[76] T. Truong Huu, G. Koslovski, F. Anhalt, J. Montagnat, and P. Vicat-Blanc Primet.
Joint elastic cloud and virtual network framework for application
performance-cost optimization. J. Grid Comput., 9(1):27–47, Mar. 2011.

[77] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, and
A. Delis. Flexible Use of Cloud Resources through Profit Maximization and
Price Discrimination. In Proc. of the 27th IEEE Int. Conf. on Data Engineering
(ICDE’11), Hannover, Germany, Apr. 2011.

[78] M. Vouk. Cloud computing–issues, research and implementations. In
Information Technology Interfaces, 2008. ITI 2008. 30th International
Conference on, pages 31 –40, 2008.

[79] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The worst-case execution-time
problem–overview of methods and survey of tools. ACM Trans. Embed. Comput.
Syst., 7:36:1–36:53, May 2008.

[80] J. Wu, C. Wang, Y. Liu, and L. Zhang. Agaric–a hybrid cloud based testing
platform. In Cloud and Service Computing (CSC), 2011 International
Conference on, pages 87 –94, dec. 2011.

[81] S. Yau and H. An. Software engineering meets services and cloud computing.
Computer, 44(10):47 –53, oct. 2011.

[82] C. S. Yeo, S. Venugopal, X. Chu, and R. Buyya. Autonomic metered pricing for
a utility computing service. Future Gener. Comput. Syst., 26(8):1368–1380, Oct.
2010.

93

[83] L. Youseff, M. Butrico, and D. Da Silva. Toward a unified ontology of cloud
computing. In Grid Computing Environments Workshop, 2008. GCE ’08, pages
1 –10, 2008.

[84] J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid
computing. SIGMOD Rec., 34:44–49, September 2005.

[85] L. Zhang, X. Ma, J. Lu, T. Xie, N. Tillmann, and P. de Halleux. Environmental
modeling for automated cloud application testing. Software, IEEE, 29(2):30 –35,
march-april 2012.

94

APPENDIX A

SAMPLE GENERATED PROGRAM FOR STATIC ANALYSIS

95

import test.*;

import edu.uci.eecs.doc.clepsydra.cost.*;

import edu.uci.eecs.doc.clepsydra.loop.*;

public class RandomCode{

public static final double processingCost_ = 0.23;

public static final double outgoingBandwidthCost_ = 0.06;

public static final double incomingBandwidthCost_ = 0.05;

public static final double storageAccessCost_ = 0.0096;

public static final double storageMonthlyCost_ = 0.01;

public static final double costThreshold_ = 0.08;

public DCGNodeInfo[] M(Integer i)

{for (int c = 0; c < nodeInfos.length; ++c)

{nodeInfos[c]=new DCGNodeInfo();nodeInfos[c].maxTimes=0;}

M0(i, 1);return nodeInfos;}

public void M0(int i, int maxTimes){

nodeInfos[0].id = 0;

nodeInfos[0].baseCost = 0.0;

nodeInfos[0].maxTimes = maxTimes;

M1(i, maxTimes * 1);

M20(i, maxTimes * 1);

if((i & (1 << 19)) != 0){

M22(i, maxTimes * 1);

}

else{

M23(i, maxTimes * 1);}

}

public void M1(int i, int maxTimes){

nodeInfos[1].id = 1;

nodeInfos[1].baseCost = 0.0;

nodeInfos[1].maxTimes = maxTimes;

@LoopBound(max=8)

for (int j = 0; j < 8; ++j){

if((i & (1 << 1)) != 0){

M2(i, maxTimes * 8);

}

else{

M17(i, maxTimes * 8);}

}

}

public void M2(int i, int maxTimes){

nodeInfos[2].id = 2;

nodeInfos[2].baseCost = 0.0;

nodeInfos[2].maxTimes = maxTimes;

M3(i, maxTimes * 1);

M4(i, maxTimes * 1);

96

M11(i, maxTimes * 1);

M16(i, maxTimes * 1);

}

@IncomingBandwidthBound(maxBytes=19147486, maxDelay=1001608507)

public void M3(int i, int maxTimes){

nodeInfos[3].id = 3;

nodeInfos[3].baseCost = 9.556159525605805E-4;

nodeInfos[3].maxTimes = maxTimes;

}

@OutgoingBandwidthBound(maxBytes=30533291, maxDelay=563657498)

public void M4(int i, int maxTimes){

nodeInfos[4].id = 4;

nodeInfos[4].baseCost = 0.001742192042397328;

nodeInfos[4].maxTimes = maxTimes;

M5(i, maxTimes * 1);

M6(i, maxTimes * 1);

M7(i, maxTimes * 1);

M8(i, maxTimes * 1);

M9(i, maxTimes * 1);

M10(i, maxTimes * 1);

}

public void M5(int i, int maxTimes){

nodeInfos[5].id = 5;

nodeInfos[5].baseCost = 0.0;

nodeInfos[5].maxTimes = maxTimes;

}

public void M6(int i, int maxTimes){

nodeInfos[6].id = 6;

nodeInfos[6].baseCost = 0.0;

nodeInfos[6].maxTimes = maxTimes;

}

public void M7(int i, int maxTimes){

nodeInfos[7].id = 7;

nodeInfos[7].baseCost = 0.0;

nodeInfos[7].maxTimes = maxTimes;

}

@ServiceBound(maxCost=0.0076849871343693, maxDelay=537097828)

public void M8(int i, int maxTimes){

nodeInfos[8].id = 8;

nodeInfos[8].baseCost = 0.007719301717824856;

nodeInfos[8].maxTimes = maxTimes;

}

97

public void M9(int i, int maxTimes){

nodeInfos[9].id = 9;

nodeInfos[9].baseCost = 0.0;

nodeInfos[9].maxTimes = maxTimes;

}

public void M10(int i, int maxTimes){

nodeInfos[10].id = 10;

nodeInfos[10].baseCost = 0.0;

nodeInfos[10].maxTimes = maxTimes;

}

public void M11(int i, int maxTimes){

nodeInfos[11].id = 11;

nodeInfos[11].baseCost = 0.0;

nodeInfos[11].maxTimes = maxTimes;

M12(i, maxTimes * 1);

M13(i, maxTimes * 1);

M14(i, maxTimes * 1);

M15(i, maxTimes * 1);

}

public void M12(int i, int maxTimes){

nodeInfos[12].id = 12;

nodeInfos[12].baseCost = 0.0;

nodeInfos[12].maxTimes = maxTimes;

}

public void M13(int i, int maxTimes){

nodeInfos[13].id = 13;

nodeInfos[13].baseCost = 0.0;

nodeInfos[13].maxTimes = maxTimes;

}

public void M14(int i, int maxTimes){

nodeInfos[14].id = 14;

nodeInfos[14].baseCost = 0.0;

nodeInfos[14].maxTimes = maxTimes;

}

public void M15(int i, int maxTimes){

nodeInfos[15].id = 15;

nodeInfos[15].baseCost = 0.0;

nodeInfos[15].maxTimes = maxTimes;

}

public void M16(int i, int maxTimes){

98

nodeInfos[16].id = 16;

nodeInfos[16].baseCost = 0.0;

nodeInfos[16].maxTimes = maxTimes;

}

public void M17(int i, int maxTimes){

nodeInfos[17].id = 17;

nodeInfos[17].baseCost = 0.0;

nodeInfos[17].maxTimes = maxTimes;

M18(i, maxTimes * 1);

@LoopBound(max=41)

for (int j = 0; j < 41; ++j){

M19(i, maxTimes * 41);

}

}

public void M18(int i, int maxTimes){

nodeInfos[18].id = 18;

nodeInfos[18].baseCost = 0.0;

nodeInfos[18].maxTimes = maxTimes;

}

public void M19(int i, int maxTimes){

nodeInfos[19].id = 19;

nodeInfos[19].baseCost = 0.0;

nodeInfos[19].maxTimes = maxTimes;

}

public void M20(int i, int maxTimes){

nodeInfos[20].id = 20;

nodeInfos[20].baseCost = 0.0;

nodeInfos[20].maxTimes = maxTimes;

@LoopBound(max=8)

for (int j = 0; j < 8; ++j){

M21(i, maxTimes * 8);

}

}

public void M21(int i, int maxTimes){

nodeInfos[21].id = 21;

nodeInfos[21].baseCost = 0.0;

nodeInfos[21].maxTimes = maxTimes;

}

public void M22(int i, int maxTimes){

nodeInfos[22].id = 22;

nodeInfos[22].baseCost = 0.0;

nodeInfos[22].maxTimes = maxTimes;

99

}

public void M23(int i, int maxTimes){

nodeInfos[23].id = 23;

nodeInfos[23].baseCost = 0.0;

nodeInfos[23].maxTimes = maxTimes;

}

public DCGNodeInfo[] nodeInfos = new DCGNodeInfo[24];

}

100

APPENDIX B

SAMPLE CLASSES FOR DYNAMIC ANALYSIS

101

package realimage.directors;

import java.awt.Image;

import cloud.resources.ResourceTracker;

import realimage.handlers.LocationHandler;

import realimage.handlers.TransactionHandler;

public class TransactionDirector

{

public static void main(String[] args)

{

for (String address : args)

{

ResourceTracker.beginTransaction();

TransactionHandler transactionHandler = new TransactionHandler();

LocationHandler locationHandler = new LocationHandler();

String geoLocation = locationHandler.getGeolocation(address);

ImageDirector imageDirector = new ImageDirector();

Image result = imageDirector.getImage(geoLocation);

transactionHandler.sendResult(result);

ResourceTracker.endTransaction();

}

ResourceTracker.saveStats();

}

};

102

package realimage.handlers;

import java.awt.Image;

import java.awt.image.BufferedImage;

import cloud.resources.ResourceTracker;

public class SatelliteHandler

{

public SatelliteHandler(){}

public Image getImage(String geolocation)

{

ResourceTracker.recordServiceUsage(.001);

ResourceTracker.recordBandwidthUsage(50000);

try

{

Thread.sleep(100);

}

catch (InterruptedException e)

{

e.printStackTrace();

}

return new BufferedImage(500, 100, BufferedImage.TYPE_3BYTE_BGR);

}

};

103

package realimage.directors;

import java.awt.Image;

import realimage.handlers.SatelliteHandler;

import realimage.handlers.SkyHandler;

import realimage.handlers.StreetHandler;

public class ImageDirector

{

public static enum RealEstateType{

LARGE_LOT(.05),

SMALL_LOT(.05),

LARGE_LOT_HOUSE(.10),

STANDARD_HOUSE(.50),

CLUSTERS(.20),

HIGH_RISE(.10);

final public double probability;

RealEstateType(double probability)

{

this.probability = probability;

}

}

public ImageDirector(){}

// Encodes real estate image selection and processing algorithm

public Image getImage(String geolocation)

{

// Look at sat first and determine real estate type

SatelliteHandler sat = new SatelliteHandler();

Image satImage = sat.getImage(geolocation);

RealEstateType type = getRealEstateType(geolocation, satImage);

// if larger lot, then keep sat imagery

if (type == RealEstateType.LARGE_LOT)

{

return satImage;

}

// if smaller lot, large lot house, or clusters,

// then try for sky (if none, then try street, then sat)

if (type == RealEstateType.SMALL_LOT ||

type == RealEstateType.LARGE_LOT_HOUSE ||

type == RealEstateType.CLUSTERS)

{

104

SkyHandler sky = new SkyHandler();

Image skyImage = sky.getImage(geolocation);

return skyImage != null ? skyImage : satImage;

}

// if standard house or high rise,

// then try for street level (if none then sat)

if (type == RealEstateType.STANDARD_HOUSE ||

type == RealEstateType.HIGH_RISE)

{

StreetHandler street = new StreetHandler();

Image streetImage = street.getImage(geolocation);

return streetImage != null ? streetImage : satImage;

}

// unknown image types return sat image

return satImage;

}

private RealEstateType getRealEstateType(

String geolocation, Image satelliteImage)

{

// Simulate real estate type detection (just lookup type)

return RealEstateType.values()[Integer.parseInt(geolocation) / 2];

}

};

105

