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ABSTRACT  

In social insect colonies, as with individual animals, the rates of biological 

processes scale with body size. The remarkable explanatory power of metabolic 

allometry in ecology and evolutionary biology derives from the great diversity of 

life exhibiting a nonlinear scaling pattern in which metabolic rates are not 

proportional to mass, but rather exhibit a hypometric relationship with body size. 

While one theory suggests that the supply of energy is a major physiological 

constraint, an alternative theory is that the demand for energy is regulated by 

behavior. The central hypothesis of this dissertation research is that increases in 

colony size reduce the proportion of individuals actively engaged in colony labor 

with consequences for energetic scaling at the whole-colony level of biological 

organization.  

 A combination of methods from comparative physiology and animal 

behavior were developed to investigate scaling relationships in laboratory-reared 

colonies of the seed-harvester ant, Pogonomyrmex californicus. To determine 

metabolic rates, flow-through respirometry made it possible to directly measure 

the carbon dioxide production and oxygen consumption of whole colonies. By 

recording video of colony behavior, for which ants were individually paint-

marked for identification, it was possible to reconstruct the communication 

networks through which information is transmitted throughout the colony.  

Whole colonies of P. californicus were found to exhibit a robust 

hypometric allometry in which mass-specific metabolic rates decrease with 

increasing colony size. The distribution of walking speeds also scaled with colony 
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size so that larger colonies were composed of relatively more inactive ants than 

smaller colonies. If colonies were broken into random collections of workers, 

metabolic rates scaled isometrically, but when entire colonies were reduced in 

size while retaining functionality (queens, juveniles, workers), they continued to 

exhibit a metabolic hypometry. The communication networks in P. californicus 

colonies contain a high frequency of feed-forward interaction patterns consistent 

with those of complex regulatory systems. Furthermore, the scaling of these 

communication pathways with size is a plausible mechanism for the regulation of 

whole-colony metabolic scaling. The continued development of a network theory 

approach to integrating behavior and metabolism will reveal insights into the 

evolution of collective animal behavior, ecological dynamics, and social cohesion. 
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Chapter 1 

INSECT METABOLIC RATES 

 

INTRODUCTION 

Insect physiological diversity 

 The insects are among the most species-rich, morphologically diverse, and 

physiologically complex groups of organisms on the planet.  The number of 

documented insect species is between one and four million and some ecologists 

estimate that there are potentially as many as 7 million species alive today 

(Gaston, 1991; Wilson, 1985).  Insects have evolved adaptations that allow them 

to occupy terrestrial, aquatic, and aerial ecosystems and environments that vary in 

temperature, humidity, salinity, oxygenation, and resource abundance.   

 Insects exhibit an impressive range of sizes over ontogenetic development, 

within and between species.  One of the smallest adult insects is the 20 µg 

whitefly (Hemiptera: Aleyrodidae).  Seven orders of magnitude larger, the Goliath 

beetle (Coleoptera: Scarabaeidae) is one of the most massive individual insects at 

~50 g, larger than many birds and mammals.  Among the shortest adult insects is 

a 0.1mm springtail collembolan (Minelli et al., 2010). The longest may be the 

stick insect (Phasmatodea: Phasmatidae), which stretches over 0.5 m.  Fossil 

records from the Paleozoic include giants such as the griffenfly (Protodonata: 

Meganeuridae) that had wingspans as long as 0.71 m (Grimaldi and Engle, 2005).  

The sizes of eusocial insect superorganisms can be much larger.  An average 

honeybee colony may weigh more than 10 kg and one single colony of ants may 



  2 
 
 
 

stretch over many square kilometers (Giraud et al., 2002).  In addition to 

exhibiting broad variation in size, insects are among the most ecologically 

dominant taxa, filling crucial roles in ecosystem functioning including pollination, 

seed dispersal, and nutrient cycling (Fittkau and Klinge, 1973; Janzen, 1987).  

Taking advantage of the ecological and physiological diversity among the insects 

presents a great opportunity to advance the development of a comprehensive and 

mechanistic theory of metabolic ecology. 

 Insect metabolism is primarily aerobic and is fueled by catabolic 

substrates transported by an open circulatory system, oxidized within cells by 

oxygen that is directly transported from the environment in the gas phase to 

metabolizing tissues by a system of branching and interconnected air-filled 

tracheal conduits (Figure 1.1).  Although the transport capacity of the insect 

tracheal system was once thought to be limited by the passive mechanics of 

diffusive flux through stationary tubes, this is now known to be an antiquated 

paradigm (Chown and Nicolson, 2004; Socha et al., 2010). An impressive number 

of active mechanisms achieve convection through tracheal systems, including 

convective pumping of airsacs by ventilatory muscles of the abdomen (Miller, 

1966; Socha et al., 2008), convection associated with thoracic volume changes 

during flight (Wasserthal, 2001; Weis-Fogh, 1967), ventilation associated with 

hemolymph transfer between compartments (Wasserthal, 1996), and “suction 

ventilation” associated with the reduced tracheal pressures that occur when 

spiracles are closed (Hetz and Bradley, 2005; Lighton et al., 1993b; Miller, 1981). 

Furthermore, the geometry of the tracheal system is sensitive to environmental 
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conditions and exhibits both phenotypic plasticity and evolutionary responses to 

compensate for changing oxygen availability (Harrison et al., 2006b; Klok and 

Harrison, 2009).  

Measuring insect metabolic rates 

 Analyses of metabolic rate patterns in physiology and ecology rely on 

standardized conditions for measurement.  In the field of mammalian biology, 

basal metabolic rate is relatively well-defined as the metabolic rate of resting, 

non-digesting, animals within their thermoneutral zone, the temperature range in 

which metabolic rate is constant (Hulbert and Else, 2004).  The field of insect 

metabolic rate measurement does not have a thoroughly applied or well-defined 

set of criteria for standardizing metabolic rate measurements.  To a large extent, 

this is not the result of researcher negligence but rather a consequence of the 

broad diversity of insect behaviors and physiology.   

Defining criteria for standard metabolic rate is challenging in insects due 

to both behavioral and physiological issues. On the behavioral side, it can be 

difficult to get many insects to cease movement long enough to obtain metabolic 

measurements. For example, ants or bees removed from their colonies will often 

search ceaselessly for a way to rejoin their colonies. While it is possible to use 

movement sensors and chambers with short time constants to eliminate trials or 

time periods with locomotion, this approach can be challenging and is impossible 

for some species (Vogt and Appel, 1999).  Decapitation eliminates most insect 

locomotory movements, and some insects will continue to metabolize and exhibit 

regular discontinuous gas exchange cycles following decapitation (Lighton et al., 
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1993b); however, this terminal approach is not suitable for many studies and may 

cause other stresses that affect metabolic rate.  A variety of studies have used 

respiratory patterns (exhibition of discontinuous gas exchange) as a way to 

determine when insects are in a “resting” state (Davis et al., 2000; Klok and 

Chown, 2005; Lachenicht et al., 2010).  Lower metabolic rates do increase the 

likelihood of discontinuous gas exchange (Contreras and Bradley, 2009), but 

some insects can be quite active while exhibiting discontinuous gas exchange 

cycles and some simply never show such cycles, so this cannot be used as a 

uniform criteria for all insects.  It is often challenging to determine whether 

insects are in a post-absorptive state, as is commonly done for vertebrates, again 

because of the great diversity among insects. Some insects tolerate starvation very 

well, while in other species (e.g. honey bees), high metabolic rates lead to rapid 

utilization of nutrient stores and death after only a few hours of starvation at a 

temperature such as 20°C. The lack of a uniform definition for conditions for 

measurement of insect metabolic rates has two important implications. First, 

meta-analyses that compile data from various studies need to carefully consider 

such problems. Second, investigators should monitor and report behavior and time 

since feeding during all metabolic measurements of insects.  Although variability 

of this sort might be expected to only add noise to analyses of metabolic rate 

allometry, it may also contribute bias; for example, smaller animals might be 

more likely to more rapidly exhaust metabolic reserves during a set period of 

starvation, and respiratory patterns can be size-dependent (Davis et al., 1999; 

Lighton, 1991; Lighton and Berrigan, 1995). 
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Another source of confusion can be terminology. Here I define isometric 

scaling as following the standard predictions of Euclidian geometry, with volumes 

scaling with mass1, surface areas with mass0.67, and linear dimensions (e.g., leg 

length) with mass0.33.  Despite these scaling exponents ranging from 0.33-1.0, 

they all represent isometric scaling.  Hypermetric scaling refers to allometric 

patterns in which the dependent parameter exhibits a significantly higher rate of 

change than predicted by isometry (e.g. leg length scaling with mass0.5).  

Hypometric scaling refers to a significantly lower relationship than predicted by 

isometry (e.g., leg length scaling with mass0.2).  Since the vast majority of these 

patterns are non-linear, and since the sign (positive or negative) of the scaling 

relationship does not by itself indicate the nature of the allometry, I have chosen 

to use the hypometric/hypermetric language to consistently classify the deviation 

of allometric relationships from the predictions of isometry. 

 

ENVIRONMENTAL AND BEHAVIORAL EFFECTS ON INSECT 

METABOLIC RATES 

Temperature 

One of the primary environmental influences on insect metabolic rates is 

temperature.  The effect of temperature, however, is highly complex and depends 

on behavior, life-history stage, morphology, and size. Most insects are 

poikilothermic ectotherms, meaning that their body temperatures vary and that the 

source of that variation is environmental. Nonetheless, many insects utilize 

behavioral thermoregulation to achieve relatively constant body temperatures over 
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large parts of the day (Forsman, 2000; Ruf and Fiedler, 2002). A few insects are 

endothermic, often demonstrating considerable capacity for regulation of body 

temperatures using heat generated by the flight muscles (Heinrich, 1992).  Some 

social bee colonies that generate their own heat and a stable core colony 

temperature exhibit features consistent with homeothermic endothermy (Heinrich, 

1981b; Southwick, 1985).  The ability of many insects to uncouple body from air 

temperature contributes to some of the variation in how insect metabolic rate 

responds to air temperature (Figure 1.2), an important factor to consider when 

extrapolating from climatic models to predicted insect energetics. 

The temperature-dependence of metabolic rates has been analyzed with 

two main approaches. The MTE proposes an Arrhenius expression with a single 

activation energy that hypothesizes a broadly applicable, exponential effect of 

temperature on rate processes (Gillooly et al., 2001; Gillooly et al., 2006) in 

ectothermic poikilotherms. The classic physiological approach focuses on 

measuring an organism’s Q10, defined as the factorial change in metabolic rate for 

a 10-degree temperature difference (Lighton, 2008).  In many cases, Q10 is not 

constant, but varies depending on the specific range of temperatures being 

modeled (Downs et al., 2008; Lighton, 1989; Nielsen et al., 1999). The 

intraspecific variation in Q10 and the interspecific variation in MTE-modeled 

activation energy may be due to potential behavioral, acclimatory, and 

evolutionary effects that cause deviations in thermal response patterns away from 

simple exponential models (Chown et al., 2003; Clarke, 2006; Nespolo et al., 

2003; O'Connor et al., 2007).  
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In many cases, insect metabolic rates increase with temperature in a 

manner approximately consistent with the assumptions of MTE (Figure 1.2A; 

“inactive insects”).  Typical fitted activation energy parameters for these cases are 

in the range of 0.5 to 0. 8, consistent with the findings of a recent meta-analysis 

using a much larger database of insect metabolic rates (Irlich et al., 2009) and 

with Q10 values in the range of 2-3.   

These general patterns occur despite substantial variation in metabolic 

intensity.  For example, similar thermal sensitivities of metabolic rate (i.e., slopes) 

are observed for scarab beetles and whiteflies, despite their very different 

metabolic rate at a given temperature (normalization constants, Figure 1.2A).  In 

the scarab study, only data from insects exhibiting DGC are included, probably 

explaining their relatively low metabolic rate (Davis et al., 2000), while the 

whitefly data are for feeding groups (Salvucci and Crafts-Brandner, 2000).   

Despite the modal trend for thermal effects on metabolic rates to be 

relatively well predicted by MTE (Figure 1.2B), there are some striking 

exceptions that illustrate potential dangers of not considering the physiological 

ecology of the species in question. While metabolic rates of social insect larvae or 

sleeping adults indicate fairly normal responses to temperature (Petz et al., 2004; 

Schmolz et al., 2002), endothermic flying insects or insect colonies can exhibit 

constant or even decreasing MR as temperature increases (Figure 1.2A).  Because 

flight (foraging) costs can be a significant fraction of total metabolic rate for such 

insects (Harrison and Fewell, 2002), and metabolic rate during overwintering can 

affect survival of such colonies (Harrison et al., 2006a), it is important to consider 
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these mammal-like thermoregulatory responses of metabolic rate to temperature 

when considering the effect of climate on these species. Diurnal behavioral 

thermoregulation can result in higher than expected responses of metabolic rate to 

air temperature (Casey and Knapp, 1987), as can testing insects outside of their 

normal thermal ranges (Schultz et al., 1992).  Exposure to naturally occurring 

fluctuating temperature regimes can also induce stress (e.g. oxidative damage) 

that increases metabolic rates even where the average temperature decreases 

(Lalouette et al., 2010).  Furthermore, some insects exhibit seasonal and intra-

seasonal variation in mass-specific and temperature-independent metabolic rate 

(McGaughran et al., 2009).  In many of these cases, the biochemical/physiological 

mechanisms responsible for thermal responses that differ from MTE remain 

unknown.  

Oxygen and supply limitation 

 Metabolism represents a balance between energy supply and demand 

integrated across the many tissues and systems within an organism.  Energy is 

generated primarily by catabolism of fuels using oxygen transported by the 

tracheal system.  One foundational concept of MTE is the proposition that 

allometric scaling of MR reflects a resource supply constraint (West et al., 2001). 

Alternatively, or additionally, the hypometric scaling of metabolic rate with body 

mass could relate to body-size related scaling of energy demand (Ricklefs, 2003; 

Seibel and Drazen, 2007).  One way to consider the matching of oxygen supply 

and demand is to consider how metabolic rate is affected by ambient changes in 
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oxygen supply.  To model this effect, it can be useful to consider the classic mass 

balance equation of respiratory physiology: 

   

€ 

VO2 =G ⋅ ΔPO2   

in which VO2 indicates an organism’s oxygen consumption rate, G the 

conductance of the respiratory system, and ΔPO2 the partial pressure gradient for 

oxygen from atmosphere to mitochondria. G is a measure of the capacity of the 

respiratory system to transport oxygen, and in this simplified case represents the 

combination of both diffusive and convective conductance (Buck, 1962).  If 

ambient oxygen level is slowly lowered, and ΔPO2 drops, animals will typically 

increase the conductance of their respiratory system (in the case of insects, by 

opening spiracles and increasing ventilation) to maintain a constant VO2.  Over 

this range, the organism is within its safety margin for oxygen transport and is not 

supply limited.  The organism’s critical PO2 for that particular function is defined 

as the PO2 when oxygen becomes limiting and below which VO2 decreases 

(Figure 1.3).  From work with isolated mitochondria (Gnaiger and Kuznetsov, 

2002) it is known that mitochondria themselves need very little oxygen to perform 

maximally (less than 1 kPa) so at the critical PO2, the average ΔPO2 is likely 

approximately equivalent to the atmospheric PO2.  Under these circumstances, the 

maximal capacity of the respiratory system to conduct oxygen, Gmax, can be 

estimated as VO2/critical PO2 (Harrison, 1997).  Conductance varies with 

behavior, for example, it is much higher during insect flight than at rest due to 

recruitment of more active methods of ventilation (Harrison, 1997).  Comparison 

of critical PO2 values for a given behavior across insects of different sizes can 
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provide a direct way to test whether the ratio of oxygen supply to demand changes 

with body size. To our knowledge, insects are the only taxonomic group in which 

there have been systematic tests of the effect of body size on respiratory 

conductance and critical PO2. 

Most inactive insects exhibit very low critical PO2 values (Figure 1.4), 

clearly indicating that resting metabolic rate is not oxygen-limited.  However, 

critical PO2 values do tend to be higher when metabolic rate is elevated as during 

flight (Figure 1.4). When comparisons are made controlling for behavior and 

developmental stage, there is no evidence that critical PO2 values are higher in 

larger insects, and mass-specific tracheal conductances at least match the scaling 

of MR. Thus  there is no evidence that oxygen demand out-strips supply as insects 

increase in size (Greenlee and Harrison, 2004a; Greenlee and Harrison, 2005; 

Greenlee et al., 2007; Greenlee et al., 2009; Harrison et al., 2005). However, there 

is a tendency for juvenile insects tested later within the development of a single 

instar (when mass increases without molting) to have much higher critical PO2 

values, suggesting that size increases without molting and resizing of the tracheal 

system might lead to oxygen supply limitation (Greenlee and Harrison, 2004b; 

Greenlee and Harrison, 2005). 

While oxygen supply seems to meet demand as insects increase in size, 

this may occur because larger insects exhibit an increased investment in 

respiratory structure. Larger tenebrionid beetle species have a greater fraction of 

their body devoted to the tracheal system, and extrapolations of these trends 

suggest that this pattern could explain oxygen limitations on insect size (Kaiser et 
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al., 2007). Similar hypermetric patterns of tracheal investment have been 

observed in grasshoppers during ontogeny (Greenlee et al., 2009; Harrison et al., 

2005). The increased investment in respiratory structure in larger insects suggests 

that body size influences metabolic rate via evolutionary trade-offs such as 

reduced proportions of active tissues per unit volume in larger insects (Harrison et 

al., 2010).  

Locomotion 

The metabolic rates of behaviorally active insects range from 3 to 30 times 

resting rates, and the maximal mass-specific metabolic rates of active insects can 

be more than double those of maximally active, similarly sized mammals or birds 

(Harrison and Roberts, 2000).  Flying insects exhibit the highest metabolic scopes 

and flight metabolic rates are approximately 10 times greater than maximal 

metabolic rates for running insects of a similar size (Full, 1997).  In some 

endothermic insects, transitions from rest to activity are associated with strong 

increases in body temperature, leading to very high metabolic scopes.  For 

example, it has been reported that stridulating katydids (Stevens and Josephson, 

1977) and running beetles (Bartholomew and Casey, 1977) exhibit metabolic 

scopes in the range of 50-100 fold during these behaviors as they endothermically 

warm their bodies by up to 20°C.   

Metabolic rates increase linearly with running speed (Lipp et al., 2005; 

Weier et al., 1995) and peak metabolic rates among running and flying insects 

scale on average with M0.86 (Full, 1997). Metabolic rates during flight have been 

reported to scale with M0.9, but the degree of this allometry is likely influenced by 
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the tendency of larger endothermic insects to have higher body temperatures and 

flight metabolic rates than smaller insects (Niven and Scharlemann, 2005).  

Mechanical power output (usually estimated from the kinematics of limb or wing 

movements and dynamic models) scales isometrically with body size in running 

insects and either isometrically or hypermetrically in flying insects (Full, 1997).  

This pattern (increasing mechanical power output relative to metabolic power 

input) suggests that the relative efficiency (mechanical power output/metabolic 

power input) of locomotion increases with insect body size.  If efficiency is 

defined as the ratio of locomotory power output to metabolic power input, 

isometric scaling of power output and input would predict that efficiency is 

invariant with mass (~M0.0).  For insects in general, efficiency scales 

hypermetrically (relative to the isometric prediction) with mass0.12 and even more 

dramatically for honeybees, locomotory metabolic efficiency scales with M0.45 

(Harrison and Roberts, 2000). 

Nutrition and feeding 

 The metabolic costs of insect foraging are usually tightly linked to the 

energetics of locomotion.  In honey bee colonies, the energetic costs of foraging 

are approximately 30% of the estimated whole colony metabolic rate, but this 

fraction is likely much lower in terrestrial foraging species such as ants (Harrison 

and Fewell, 2002).  However, the metabolic rates of stationary ants (Atta sexdens 

rubropilosa) during leaf-cutting may be more than 30 times their inactive 

metabolic rate, yielding a similar aerobic scope to flight (Roces and Lighton, 

1995). 
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Metabolic rates typically increase in response to feeding and these 

increases may scale with both body size and meal type.  The metabolic costs of 

post-feeding digestion can be quantified by the elevation of metabolic rate relative 

to baseline, the postprandial metabolic scope (~ 3.3 for insects) and also by the 

net energy expended for the duration of the specific dynamic action response 

(SDA), which ranges among the insect groups studied from 0.00025-0.102 kJ 

(Secor, 2009).  Across a broad range of invertebrate taxa, SDA scales with M0.31, 

meal-mass0.72, and meal-energy0.32; for comparison, among mammals, SDA scales 

with M0.32, meal-mass0.7, and meal-energy1.21 and among reptiles SDA scales with 

M-0.08, meal-mass1.13, and meal-energy1.06 (Secor, 2009).  Among insects, the 

kissing bug (Rhodnius prolixus) exhibits the highest postprandial metabolic scope 

(10-fold increase in whole-organism metabolic rate) as well as the greatest SDA 

(0.102 kJ) following feeding on a blood meal (Bradley et al., 2003).  The specific 

dynamic action for migratory locust (Locusta migratoria) nymphs is in the 4-5-

fold range (Gouveia et al., 2000).  In addition to effects of being fed or not, the 

characteristics of the diet can also affect metabolic rate. A high-carbohydrate diet 

is linked to increased metabolic rates in honey bees (Blatt and Roces, 2001).  In 

locusts, increased carbohydrate:protein intake can lead to strong elevation in 

metabolic rates, probably to dispose of excess energy in the diet and allow intake 

and assimilation of needed quantities of protein (Gouveia et al., 2000; Zanotto et 

al., 1997). 

Restricted nutritional resource supply can have a range of effects on insect 

metabolic rates. Foraging honey bees given richer (higher carbohydrate) rewards 
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exhibit higher metabolic rates during periods of foraging that include both flight 

and non-flight (Balderrama et al., 1992), suggesting that in this species, metabolic 

rate is positively influenced by nutritional supply.  Similarly, starvation may 

decrease metabolic rates or impair flight performance (Goldsworthy and 

Coupland, 1974; Matsura, 1981; Stoks et al., 2006), but this is not always the 

case.  In the African fruit beetle (Pachnoda sinuata) voluntary flight performance 

and duration is not inhibited by 15-30 days of starvation (Auerswald and Gäde, 

2000).  Reduced water supply can elevate metabolic rate in growing insect larvae 

(Martin and Van't Hof, 1988) but does not affect the overall metabolic rate of 

adult locusts (Loveridge and Bursell, 1975).  One of the reasons for the complex 

pattern of nutrient-supply effects on insect metabolic rates is the fact that there are 

often plastic physiological responses to resource deprivation including dramatic 

shifts in the metabolic pathways and nutrient substrates used to fuel metabolism, 

often without affecting overall metabolic rates (Auerswald and Gäde, 2000).  

However, both comparative and artificial selection studies suggest that an 

evolutionary response to starvation and water stress may involve reduced mass-

specific metabolic rate (Harshman et al., 1999; Marron et al., 2003).  

At the extreme of environmental nutrient restriction, insects may utilize 

torpor and diapause to survive long dearth periods, reducing metabolic rates for 

extended periods of time by more than 98% (Hahn and Denlinger, 2010; 

Schneiderman and Williams, 1953).  A meta-analysis of the metabolic rate scaling 

for insect eggs, larvae, and pupae (62.4M0.77) shows a similar hypometric 

exponent but a significantly reduced intercept (normalization constant) relative to 
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the allometry (363M0.86) for the corresponding adult resting metabolic rates 

(Guppy and Withers, 1999).  

 Social insect colonies are particularly well adapted to maintaining 

physiological homeostasis in response to variation in environmental resource 

availability.  For example, workers within the colony vary their foraging activity 

in response to the nutritional demands of the brood (Dussutour and Simpson, 

2009; Sorensen et al., 1985) and many species harvest and store resources 

(Hölldobler and Wilson, 1990).  Colonies may also catabolize somatic tissue to 

survive resource scarcity and environmental stress (Schmickl and Crailsheim, 

2001; Sorensen et al., 1983; Wilson, 1971).  In the acorn ant (Temnothorax 

rugatulus), decreases in activity levels and increases in trophallaxis (mouth-to-

mouth food transfer) are hypothesized to facilitate this species’ remarkable ability 

for colonies to survive greater than eight months of starvation (Rueppell and 

Kirkman, 2005).  Kaspari and Vargo observed a hypermetric allometry for the 

duration of queen survival in the fire ant (Solenopsis invicta) which scaled with 

the size of the colony as M0.21 (Kaspari and Vargo, 1995).  This capacity for 

resilience has been hypothesized as one of the factors involved in the evolution of 

eusociality, caste ratios, and variation in colony size (Bouwma et al., 2006).  

 

CORRELATIONS BETWEEN BODY SIZE AND METABOLIC RATE 

Developmental allometries 

Insect larvae represent excellent, albeit relatively unexplored, model 

systems for investigating the interface between physiology and ecology.  As for 
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adults, larval insects are quite diverse.  Many insect larvae live underground, in 

leaf litter, or in decaying fruits and likely experience a range of hypoxic 

environments, but others (e.g. many lepidopteran larvae) forage on leaves in 

normoxia.  Many insect larvae are solitary, but other species rear brood 

cooperatively, such as the bessbug (Odontotaenius disjuctus) which raise larvae in 

communal galleries carved out of decaying wood.  While most insect larvae are 

terrestrial, some are aquatic and of these some have open (e.g. mosquito) and 

others closed (e.g. caddisfly) tracheal systems.  Some aquatic insect larvae, (e.g. 

the chironomids) have evolved the use of hemoglobin for oxygen transport 

(Oliver, 1971).  The diversity of these environments and behaviors as well as the 

general paucity of literature data make it difficult to draw broad conclusions about 

the energetics of insect larvae.  

Insect larvae metabolic rate allometries have been investigated on an 

intraspecific basis for a number of insect species that can be easily reared.  While 

many of these studies report hypometric scaling exponents, there is weak support 

for a canonical 0.75 exponent. Growing honeybee larvae increase in mass by 

more than 400-fold in only four days and exhibit metabolic rates that scale with 

mass0.9 (Petz et al., 2004).  Larvae of the tobacco hornworm (Manduca sexta) 

span three orders of magnitude in body mass and exhibit CO2 emission rate 

scaling with a mass exponent that ranges from 0.77 (Alleyne et al., 1997) to 0.98 

across the entire larval stage (Greenlee and Harrison, 2005). However, individual 

instars show different patterns of metabolic rate scaling; as larvae grow within an 

instar, the mass-specific CO2 emission decreases with age/size among early 
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instars, but it increases with size in final larval instar (Greenlee and Harrison 

2005).  Similarly in grasshoppers, the pattern of CO2 emission rate scaling varies 

within different instars with exponents ranging between 0.45 and 0.91 (Greenlee 

and Harrison, 2004b), while across its entire development, metabolic rate scales 

with the exponent 0.73 (Greenlee and Harrison, 2004a). Larvae of the flour beetle 

(Tribolium castaneum) exhibit mass specific metabolic rates that decrease by over 

90% during less than 12 days of development (Medrano and Gall, 1976) and the 

hemimetabolous milkweed bug exhibits a 38% decrease in mass-specific 

metabolic rate from the first instar to adult (Niswander, 1951). 

Insect development from larvae to adults is associated with complex 

changes in body form and physiology in addition to alteration in body size.  

Metabolic rate scaling patterns may depend on the nature of these changes.  Adult 

holometabolous insects are often substantially smaller than the terminal larval 

instar and the few studies available suggest that they have greater resting and 

maximal metabolic rates.  Adults of vinegar flies (D. melanogaster) (Klok et al., 

2010), fire ants (S. invicta) (Vogt and Appel, 1999), and honey bees (A. mellifera) 

(Lighton and Lovegrove, 1990; Petz et al., 2004) exhibit mass-specific metabolic 

rates approximately twice as high as their larvae.  Are the higher mass-specific 

metabolic rates in adults due to their smaller size? If the adults and larvae are 

assumed to belong to a common mass-scaling allometry, then the ratio of their 

mass-specific metabolic rates can be calculated by: 
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This equation can be re-arranged to solve for the mass ratio (
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If the whole-animal scaling exponent (

€ 

α ) is 0.75, then we can predict what 

difference in masses would generate the observed ratio in mass-specific metabolic 

rates: 

 

€ 

ΔM = ΔB−4  

In the case of a two-fold difference in mass-specific metabolic rates, the mass 

ratio would have to be 0.0625 for allometry to predict the observed difference in 

mass-specific metabolic rates.  In other words, the adult stages of the ant, bee, and 

fly species mentioned above would have to be 94% smaller than their larval forms 

(or the larvae 16.67 times larger than the adults) for simple mass-scaling to 

explain the two-fold higher mass-specific metabolic rates in adults relative to 

larvae.   Since adults are only approximately 10-30% less massive than larvae, the 

relatively high adult mass-specific metabolic rates are not simple allometric 

consequences of smaller body mass.  An alternative ultimate explanation for the 

higher mass-specific metabolic rates of adults may be analogous to the higher 

metabolic rates of flying relative to non-flying adult insects (Reinhold, 1999).  

The complex changes (e.g., in body tissue composition and tracheal system 
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structure) that take place during metamorphosis in the holometabolous pupal stage 

apparently also enable fundamental changes in resting metabolic rate.  

 

Intraspecific allometries 

The relatively low range in masses among adults of a single species makes 

it difficult to accurately test for an intraspecific correlation between mass and 

adult insect metabolic rates in many species (Van Voorhies et al., 2004; Vogt and 

Appel, 1999).  Ants are somewhat exceptional in this regard, with some species 

exhibiting substantial variation in worker size. For example, the dry masses of 

Pheidologeton diversus workers vary by more than 500-fold (Hölldobler and 

Wilson, 1990). In most cases, it appears that metabolic rates of such workers scale 

hypometrically with mass (with homogenous slopes ranging from 0.55-0.83 

(Chown et al., 2007). 

In some insects, intraspecific variation is associated with morphological 

allometries that produce surprising patterns in metabolic rate scaling and 

locomotory performance. Among female carpenter bees, flight metabolic rate 

scales hypometrically with mass0.12 (Figure 1.5A), a very low scaling exponent.  

When these bees exhibit their maximal performance, flying in the lowest density 

air possible (to stay aloft in thin air requires more power), the scaling exponent is 

-0.22, meaning that both the mass-specific and absolute metabolic rates are lower 

in larger individuals than smaller individuals.  The reduced mass-specific 

metabolic rate and flight performance of larger bees in this species is explained by 

variation in the relative amount of flight muscle, the primary site of oxygen 
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consumption in flying bees. In this species, larger females have proportionally 

larger abdomens (Figure 1.5B) and likely larger ovaries. As a consequence, larger 

individuals have significantly lower ratios of flight muscle to body bass, lower 

mass-specific metabolic rate and reduced scopes for flight performance and 

metabolic rate (Roberts et al., 2004).   

 

Social insect colonies 

 Social insect colonies are intriguing organisms from the perspective of 

MTE because they span multiple levels of biological organization.  Individuals 

within the colony may be expected to exhibit hypometric scaling of metabolic rate 

with mass, but whole colonies are made up of physically independent individuals 

at different developmental stages and engaged in a wide variety of different tasks 

and behaviors.  Thus, whole colony metabolic rate should scale linearly with 

mass, depending proportionally on the number of individuals in the colony.  

Surprisingly, social insect colonies exhibit hypometric intraspecific scaling of 

metabolic rate with colony mass (Figure 1.6).  Intriguingly, while the three social 

insect data sets illustrated in Figure 1.6 exhibit hypometric metabolic rate scaling 

consistent with the pattern for individual insects, they are each hypothesized to do 

so for different reasons.  Honeybee clusters maintain a relatively constant core 

temperature when air temperature falls; mass-specific metabolic rates and mass-

specific heat loss from the cluster falls in larger clusters due to a reduced surface 

area-to-volume ratio (Southwick et al., 1990).  In the polymorphic ant Pheidole 

dentata, lower mass-specific colony metabolic rates arise from larger colonies 
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having a greater fraction of larger “major” workers (Shik, 2010).  In a harvester 

ant species with monomorphic workers, Pogonomyrmex californicus, it is 

hypothesized that a lower mass-specific colonial metabolic rate in larger colonies 

may be due to larger colonies having a lower fraction of active workers (Waters et 

al., 2010).  The similar hypometric scaling patterns with disparate mechanisms do 

suggest common underlying ecological/evolutionary forces that can be addressed 

by varied mechanisms in different species. Social insect colonies may be 

particularly useful for investigating mechanisms responsible for metabolic scaling 

patterns due to the capacity to more easily manipulate and measure specific 

components of the superorganism than is possible with individual organisms.  

 

Interspecific allometries 

 On an interspecific basis, insect metabolic rates scale with M3/4 (Chown et 

al., 2007) as in mammals.  Analysis of the intercept (or normalization constant) of 

this relationship indicates that insects have low metabolic rates relative to 

mammals. After accounting for the effects of mass (the scaling exponent) and 

temperature (by adjusting insect rates from 25°C to 37°C following the activation 

energy method), insect metabolic rates are approximately half that reported for 

mammals (Figure 1.7A). This pattern fits with the ectothermic nature of most 

insects; ectothermic vertebrates also have lower MR than mammals at the same 

body temperature (Hulbert and Else, 2000). 

 Examination of the intercept of metabolic rate allometries (referred to as 

metabolic coefficient, intensity, elevation or normalization constant) has the 
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potential to reveal evolutionary differences in the metabolic physiology of 

different animal taxa.  Among invertebrates, ticks and scorpions have been shown 

to exhibit significantly lower metabolic rates than other “typical” arthropods, 

possibly contributing to the high abundance of these species in some regions 

(Lighton et al., 2001).  Similarly, predatory antlion larvae which build pits in 

which to capture prey exhibit common hypometric metabolic rate scaling 

exponents but with intercepts depressed lower than insects in general and even 

lower than similarly sized sit-and-wait predatory spiders (Lucas, 1985; Van Zyl et 

al., 1997).  The normalization constant (y-intercept on log-log plots) of the scaling 

relationship for different insect orders varies by 18-fold (Figure 1.7B). While 

some of this variation may be related to methodology and behavioral variation 

among the taxa, it is likely that these order-level patterns at least partially reflect 

previously unrecognized evolutionary differences in physiology and life history. 

 

DISCUSSION 

The diversity of insect structure and function provides a powerful tool for testing 

physiological, ecological and evolutionary predictions of MTE. While the general 

equations of MTE seem to fit the modal responses of insects, and thus may be 

very useful for community and ecosystem ecology, behavioral and physiological 

divergences of individual species/taxa from the general theory of MTE are 

considerable.  The temperature dependence of insect metabolic rates is highly 

variable, and as previously discussed, frequently depends on important ecological 

variables including behavior and thermal preferences.  The temperature 
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dependence of insect metabolic rates can also be highly subject to thermal 

acclimation and adaptation (Chown and Nicolson, 2004).  All of these factors are 

critical to developing predictive models for how insect populations will respond 

to global-scale changes in climate (Dillon et al., 2010).   There is great potential 

for future developments of MTE to shed light on major unanswered questions in 

insect ecophysiology including understanding the evolution of endothermy, 

constraints on body size, and the physiological correlates of sociality.  Future 

mechanistic developments of MTE may also help to explain sources of variation 

in mass and temperature independent metabolic intensity, both among distinct 

insect taxa and on a larger scale between insects, birds, and mammals. In addition, 

studying the energetics of insects is tremendously important for ecology and 

agriculture. As predators, scavengers, detritovores, and herbivores, insects play 

enormously important roles in ecosystem functioning, so that more energy flows 

through an ecosystem due to the activity of insects than the activity of vertebrates 

(Andersen and Lonsdale, 1990).  Economic growth and stability may depend on 

understanding the thermal preferences, metabolic rates and behaviors of insect 

pollinators (Potts et al., 2010).  By moving beyond broad assumptions and 

universal characterizations, MTE has the potential not only to integrate fields as 

diverse as insect ecophysiology and biofluid transport dynamics, but also to reveal 

questions of basic and fundamental importance to agriculture, biomechanics, 

ecology, and evolution. 
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Figure 1.1.  Insect tracheal systems provide the primary pathway for transporting 

oxygen from the environment to all of the metabolically active tissues within the 

body.  (A) Synchrotron x-ray phase contrast image (Socha et al., 2007) of the 

head and thorax of the beetle, Pterostichus stygicus; scale bar: 1mm. (B) 

Magnified view of the thorax from the region enclosed by the dotted lines in (A); 

scale bar: 1mm (Socha et al., 2007).  (C) Confocal microscopy image of the 

autofluorescent tracheae and tracheoles within the thoracic longitudinal flight 
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muscle of a Drosophila melanogaster male; scale bar: 200µm. (D) Transmission 

electron microscopy image of a single taenidia-reinforced tracheole (t) positioned 

near mitochondria (m) within the flight muscle of Drosophila; scale bar: 1µm. 

Data for figures 1C and 1D were collected by the authors at the Bioimaging 

Facility in the School of Life Sciences at Arizona State University. 
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Figure 1.2. Insect metabolic rates are sensitive to air temperature and dependent 

on behavioral and environmental factors.  In (A) the mass-specific metabolic rates 

for 31 insect species from eight taxonomic orders and also ranging across eight 

orders of magnitude in body size are plotted as a function of temperature. There is 

a common trend of insect metabolic rates increasing with temperature in the 

majority of sampled studies but there are also a number of exceptions.  In 

particular, highly metabolically active, endothermic insects (e.g. endothermic 

flying insects, cold-exposed honey bee swarms) tend to show little effect of air 
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temperature on metabolic rate, or even an inverse relationship. The coefficients of 

the linear regressions describing the rate-temperature relationships are provided 

with asterisks (*) indicating whether the slope or intercept of the fitted data are 

significantly (P<0.05) different from the coefficients of the common regression 

parameters shared by the majority of inactive insects.  (B) Frequency distribution 

of activation energies of insects.  Activation energies were obtained as the slopes 

of OLS-regressions of the natural logarithm of mass-specific metabolic rate as a 

function of inverse absolute temperature for the 35 analyzed data sets. References 

for the data analyzed in (A) and (B) include: ant colonies (Lighton, 1989), flying 

insects (Casey and Ellington, 1989), hovering bees (Harrison and Fewell, 2002; 

Roberts et al., 1998), honeybee colonies (Heinrich, 1980b), inactive insects 

(Casey, 1977; Casey and Hegel-little, 1987; Chappell, 1983; Chappell, 1984; 

Fielden et al., 2004; Herreid et al., 1981; Klok and Chown, 2005; Morgan et al., 

1985; Schultz et al., 1992; Terblanche and Chown, 2007; Vogt and Appel, 1999), 

pre-flight warm-up (Casey and Hegel-little, 1987), scarab beetles (Davis et al., 

2000), and whiteflies (Salvucci and Crafts-Brandner, 2000). 
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Figure 1.3.  To quantify the safety margin for oxygen delivery, organism function 

can be measured over a range of oxygen partial pressures; the partial pressure 

(pO2) at which the activity measure significantly decreases is referred to as that 

organism’s critical oxygen partial pressure.  The critical pO2 for the metabolic 

rate of adult D. melanogaster is 3kPa or at about 85% less oxygen than normal, 

with a safety margin of 18 kPa O2 (Van Voorhies, 2009). 
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Figure 1.4.  Insects often exhibit an impressively broad safety margin for 

maintaining measures of activity (e.g., O2 consumption, CO2 emission, 

performance) in spite of reduced partial pressures of oxygen in their environment.  

This figure plots the range of critical pO2 in the literature for a diverse range of 

insects and their behaviors.  Critical pO2 tends to be higher in active insects. In 

cases where hyperoxic values are reported, this indicates that the measure of 

activity (i.e. dragonfly CO2 emission and grasshopper jumping performance) 

increased in hyperoxia relative to normoxia.  Normal pO2 is 21 kPa, as indicated 

by the dotted line.  The letter superscript associated with each row indicates the 

reference for that data set: a (Harrison et al., 2006b), b (Zhou et al., 2000), c 

(Chappell and Rogowitz, 2000), d (Klok et al., 2010), e (Greenlee and Harrison, 

2005), f (Greenlee and Harrison, 2004a), g (Kirkton et al., 2005), h (Joos et al., 

1997; Rascon and Harrison), and i (Harrison and Lighton, 1998). 
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Figure 1.5.  The allometry of body composition provides insight into the unusual 

intraspecific hypometric scaling of metabolic rate with body size in the carpenter 

bee, Xylocopa varipuncta.  This figure, adapted from Roberts et al. (2004), shows 

in (A) that body mass-specific metabolic rates decrease very strongly with body 

mass (so whole-organism rates scale with M-0.22 for maximal performance in 

hypodense air and M0.12  for normal hovering).  This pattern occurs because the 

relative content of thorax muscle mass (the major site of oxygen consumption 

during flight) decreases with body size (B).  
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Figure 1.6.  Allometry of colony metabolic rate in three colonial species 

compared with individual metabolic rate in seven solitary species.  Social insect 

colonies, like individual insects, exhibit metabolic rates that scale hypometrically 

with mass.   This figure combines intraspecific data for individual ants (Chown et 

al., 2007), two functioning whole ant colony species (Shik, 2010; Waters et al., 

2010), and thermoregulating honeybee clusters (Southwick et al., 1990).  The 

OLS-regression results for each group are displayed above (slopes are given with 

standard errors) and the overall model, which fits a separate slope and intercept 

for each species has an R2=0.99.  The average homogenous slope was 0.62 and 

the only species that show significantly higher than average scaling slopes are 

Eciton hamatum (slope=0.83, p<0.003) and P. dentata (slope: 0.78, p<0.002). 
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Figure 1.7. The hypometric scaling of inactive insect metabolic rates (Chown et 

al., 2007) is generally consistent with the pattern observed for mammals (Savage 

et al., 2004); both taxa exhibit similar ¾-power scaling slopes but insects have 

lower intercepts or normalization constants.  In (A) the metabolic rates for 391 

insect species have been adjusted using the Arrhenius equation to 37°C, a 
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standard mammalian body temperature. Independent of mass, inactive insects 

have metabolic rates about two times lower than inactive mammals with the same 

body temperature (figure inset displays the intercept values from the OLS 

regression on log-log data).  (B) The interspecific data on insect metabolic rates at 

25°C (Chown et al., 2007) can be analyzed by taxonomic order.  A linear model 

that fits unique slopes and intercepts for each order was not a significantly better 

model than one that preserved a common slope (0.72 ±0.2 SE) but allowed for 

variation in intercepts by order.  The maximum intercept (Diptera, 3.5mW) was 

more than 18 times greater than the minimal intercept (Isoptera, 0.19mW). Part of 

this variation may be due to behavioral variation among “inactive” insects, and 

methodological variation among researchers, but the data suggest substantial 

order-level variation in inactive metabolic rates among insects. 
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Chapter 2 

ALLOMETRIC SCALING OF METABOLISM, GROWTH, AND ACTIVITY 

IN WHOLE COLONIES OF THE SEED-HARVESTER ANT 

POGONOMYRMEX CALIFORNICUS 

 

INTRODUCTION 

 Colonies of social insects exhibit astonishing patterns of self-organization 

and emergent complexity (Bonabeau et al., 1997; Camazine et al., 2003; 

Hölldobler and Wilson, 2009).  These patterns are generated by the collective 

action of individual behaviors in the absence of centralized control.  Frequently, 

the emergence of a colony-level phenotype is dependent on colony size.  

Examples range from the ergonomic optimization of worker castes and task 

partitioning (Anderson et al., 1999; Porter and Tschinkel, 1985; Wilson, 1980) to 

the construction of physical nests that passively regulate colony environments 

(Korb, 2003; Noirot and Darlington, 2000).  Size-dependent homeothermy at the 

colony-level has been observed in honeybee colonies in which individual 

clustering and thermogenesis regulate the core temperature of overwintering 

swarms and entire nests (Heinrich, 1980a; Southwick, 1985; Southwick, 1987).  

These patterns suggest that colonies may exhibit general patterns of integration 

similar to those that characterize the scaling of individual organisms.  

 Among individual organisms, size correlates strongly with rates of 

metabolism, growth, and locomotion, making it one of the single best predictors 

of the pace of life (Bonner, 2006). The regularity with which metabolic rates scale 
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with mass is a striking relationship that has fueled extensive research and 

substantial controversy (Glazier, 2005).  While the null isometric hypothesis is 

that metabolic rate should scale with mass1, generally, log-log plots of metabolic 

rate on mass have slopes significantly lower than predicted (negative allometry). 

Metabolic rate has been shown to scale with mass0.86 for a diverse collection of 

terrestrial arthropods (Lighton et al., 2001) and with mass0.75 among 391 insect 

species (Chown et al., 2007).   

 While the majority of studies of the scaling of metabolism have focused 

on interspecific analyses, intraspecific scaling is important due to the relevance of 

such patterns to species ecology, life history, and evolution.  In general, the 

intraspecific scaling of metabolism with mass seems more variable than observed 

in interspecific comparisons (Glazier, 2005); however, this may partially be a 

consequence of the relatively limited body mass ranges available for intraspecific 

studies. Intraspecifically, metabolic rate frequently exhibits negative allometric 

scaling within insect species including Oncopeltus fasciatus (Niswander, 1951), 

Tribolium castaneium (Medrano and Gall, 1976), Manduca sexta (Alleyne et al., 

1997; Greenlee and Harrison, 2005), Schistocerca americana (Greenlee and 

Harrison, 2004c), Atta columbica (Lighton et al., 1987) and Pogonomyrmex 

rugosus (Lighton and Bartholomew, 1988).  A recent investigation into 

intraspecific allometries among individual ants demonstrated that in seven of 

eight species studied, metabolic rate scaled homogenously and with an average 

scaling exponent of 0.65 (Chown et al., 2007).  Furthermore, it has recently been 

demonstrated that whole colonies of social insects may also exhibit negative 
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allometries on an interspecific basis (Hou et al., 2010), suggesting that a similar 

pattern may be present on an intraspecific basis between colonies of a single 

species that vary in size.  

 Social insect colonies are ideal model systems for investigating how the 

scaling of metabolic rate and associated parameters extends from individuals to 

societies.  Colonies of social insects range widely in size and diversity of social 

organization.  The nature of colonies as collections of physically independent 

individuals makes it possible to perform experimental manipulations on aspects 

such as size and composition that would not be feasible for individual organisms.  

Compared to other social insect species, nonreproductive ant colonies are 

particularly convenient model organisms for evaluating scaling relationships, due 

to the possibility of maintaining functioning colonies in the lab and the absence of 

flying individuals that would complicate models of whole-colony metabolic rate.  

 Several prior studies have examined the dependence of metabolic rate on 

group size in ants.  In some of the first attempts at quantifying the metabolic 

effect of group size, mass-specific metabolic rates of workers did not scale with 

the number of ants being measured (Brian, 1973; Lighton and Bartholomew, 

1988; Lighton, 1989).  In other studies, it was shown that mass-specific metabolic 

rate depended on worker group size in a nonlinear fashion (Fonck and Jaffe, 1996; 

Galle, 1978).  These investigations focused primarily on pseudo-colonies in which 

groups of individuals were removed from their more natural social milieu and 

placed into the artificial environment of a respirometry chamber.  Such groups of 

ants likely were unable to engage in normal colony functions such as foraging, 
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allogrooming, or rearing brood, and consequently were without the potential for 

maintaining the kind of organizational networks that may be fundamental to 

regulating the metabolism of integrated social groups.  

 In this study, colonies of the seed-harvester ant Pogonomyrmex 

californicus were reared in laboratory nests from founding to 10-mo-old colonies 

that ranged in size from 95 to 659 ants, including queens, larvae, pupae, and adult 

workers.  None of the colonies had begun to produce sexual castes.  The nest 

design allowed for simple and non-invasive flow-through respirometric measures 

of the metabolic rate of whole colonies while they carried out normal colony 

functions, including foraging and brood-rearing.  To control for the possibility 

that larger ant colonies are likely to also have larger workers (Tschinkel, 1999), I 

determined the caste, developmental stage, and mass compositions of each 

colony.  To test for an effect of the colony social environment, metabolic rate 

measurements were also carried out with worker groups that had been removed 

from their colonies.  To estimate the relative activity differences between 

colonies, I recorded and analyzed the patterns of locomotion among individual 

ants within colony nests. 

 

METHODS 

Collection and rearing 

 Queens of Pogonomyrmex californicus were collected 4-6 July 2007 

following mating flights in Pine Valley, San Diego County, California 

(32°49’20”N, 116°31’43”W, 1136m elevation).  Since this population is 
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pleometrotic (cooperative founding), laboratory colonies were initiated with three 

queens each.  Colonies were maintained in an incubator at 28-32°C in plastic 

artificial nests with cotton plugged water tubes but no soil or other ground 

substrate.  Each nest provided a total surface area of 242 cm2 and was partitioned 

into a brood chamber and foraging arena (Figure 2.5).  Kentucky bluegrass seeds 

and dead crickets were provided in excess of consumption to preclude resource 

limitation.  Water tubes were replaced and debris removed as necessary.  

Metabolic rate measurements were conducted after 10 months of rearing.  Colony 

mass data were collected following metabolic rate measurements; at which time 

colonies ranged in size from 95-659 ants and in mass from 311-2223 mg.   

 

Modeling whole-colony metabolic rate 

To quantitatively evaluate hypotheses on the scaling of metabolic rate 

among groups or colonies, it was necessary to develop a model to predict the 

metabolic rate of a group based on its composition.  To a first approximation, the 

metabolic rate (MR) for each individual (with mass, m) within a colony can be 

predicted by MR=a0mb where the allometric coefficient, a0, and exponent, b, can 

be estimated by the analysis of standard respirometric measures of individuals.  If 

colonies were simply collections of homogenous individuals, then summing their 

individually estimated metabolic rates would be predicted to generate an isometric 

scaling of colony metabolic rates.  However, eusocial insect colonies are 

heterogeneous collections of individuals that vary in a number of factors that can 

influence their per-capita metabolic rates including mass, caste, and activity level.  
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I propose the following model for estimating whole-colony metabolic rate while 

taking into account individual-level variation (e.g., in mass, caste, or activity).  In 

its most general form, the model is defined for a colony with numbers of 

individuals, Ni, in each of k distinct allometric subgroups by the following 

equation in which c is an activity coefficient, ai is the allometric coefficient, m is 

individual mass, and bi is the allometric exponent: 

(1) 

€ 

MRnet = cni aimni
bi

ni =1

Ni

∑
i=1

k

∑  

Applying this model to a social insect colony composed of queen, worker, larva, 

and pupa allometric subgroups (respectively identified by subscripts q, w, l, and 

p) and assuming homogenous activity across all individuals and colonies, colony 

metabolic rate is predicted by: 

(2) 

€ 

MRcolony = aqmn
bq

n=1

Nq∑ + awmn
bw

n=1

Nw∑ + almn
bl

n=1

Nl∑ + apmn
bp

n=1

N p∑  

This model may be simplified by assuming that a single allometric relationship 

predicts the metabolic rate of all individuals of a given species depending on their 

mass, and assuming average masses, 

€ 

m i, for each allometric subgroup within the 

colony.  I refer to this as the additive model for colony metabolic rate:  

(3)  

€ 

MRcolony = Nqa0m q
b + Nwa0m w

b + Nla0m l
b + N pa0m p

b  

This model was computed a series of times using the census data for ants in our 

laboratory colonies and populated with scaling coefficients based on P. rugosus 

(Lighton and Bartholomew, 1988) and a general arthropod allometry (Lighton et 

al., 2001).  Since data on brood metabolic rates were unavailable for this species, 
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following the results of a study of Solenopsis invicta (Vogt and Appel, 1999), I 

also computed the additive model with larvae and pupae estimated to have mass 

specific metabolic rates 72% and 56% that of individual P. californicus workers 

(Quinlan and Lighton, 1999).  The additive model (3) predicts isometric colony 

metabolic rate scaling if average individual mass and subgroup composition are 

both invariant with respect to colony size.  However, many factors could lead to 

either hypermetric or hypometric scaling of colonial metabolic rates, including 

changes in worker sizes, distribution of types of individuals in the colony (e.g. 

proportion of the colony that is brood), or variation in activity and metabolic rates 

among individuals within or across colonies.  

 

Measuring whole-colony metabolic rate 

Whole-colony metabolic rate was measured with flow-through 

respirometry.  Entire colony enclosures (including brood chamber and foraging 

arena) were placed with minimal disturbance into a 1.0 L airtight plexiglass 

chamber.  Dried, CO2-free air from a compressed air tank flowed through the 

chamber (38 ml min-1), regulated by Tylan mass flow valves and controller. In 

this way, the washout characteristics were such that 95% equilibration is 

estimated to take 79 min (Bartholomew et al., 1981).  Using an infrared analyzer 

(LI-6252, LI-COR, Lincoln, NE, USA), the carbon dioxide concentration of dried, 

excurrent air was measured (Figure 2.6). Air temperature exiting the colony 

chamber was measured using thermocouples embedded in line with the excurrent 

airstream.  Analog data were digitized [UI-2, Sable Systems International (SSI), 
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Las Vegas, NV, USA] and recorded on a PC (ExpeData v1.2.6, SSI) at 1 Hz 

sampling frequency and 10-20 Hz averaging.   

 Colonies were measured in the respirometry chamber for 24-48 hr at 

28.4°C (±0.5°C SD).  After this period, colonies were removed from their nest to 

count the number of individuals present and determine the average per-capita 

mass for each subgroup within the colony (queens, workers, pupae, larvae).  

Meanwhile, the colony nest was returned to the respirometry chamber to measure 

the background signal from the water tube, seeds, and debris.  Metabolic rates 

were calculated from baseline- and debris-corrected excurrent carbon dioxide 

concentrations averaged over the most stable 12-hr recording, standardized to the 

average temperature of 28.4°C assuming a Q10 of 2.0, and converted to 

microwatts assuming an RQ of 0.80 (Lighton and Bartholomew, 1988).   

Net colony growth rates were calculated by dividing wet-tissue biomass 

by colony age at the time of measurement.  Net growth efficiency was calculated 

as power output divided by power input (calculated from whole colony metabolic 

rate, measured as described above).  Power output was defined as the product of 

net rate of dry biomass production (converted from wet biomass data by direct 

calibration) and tissue caloric density.  Caloric equivalents were estimated based 

on the published value found for Crematogaster sp., 4.073 kcal/g (Cummins and 

Wuycheck, 1971).  
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Worker-group metabolic rate 

To control for the effects of density and social environment, I measured 

the metabolic rates of groups of workers removed from their colonies.  For three 

colonies of P. californicus (collected in 2007), workers in groups ranging in size 

from 1 to 225 ants were removed and a total of 20 worker groups were measured. 

Stop-flow respirometry was used to estimate metabolic rate.  Worker groups 

placed in petri dishes with a small water tube were placed in an airtight 

aluminum-plexiglass chamber.  Two respirometry chambers were used (30 mL 

and 600 mL volumes) with different surface areas (20 cm2 and 314 cm2) to 

accommodate the range of group sizes.  Normoxic air from a compressed-gas 

cylinder was used to both baseline and purge the concentrations of oxygen and 

carbon dioxide within the chamber.  A flow rate of 100 ml min-1 was used with 

the 30mL chamber and 500 ml min-1 was used with the 600 mL chamber.  

Following the purging of ambient air, the chambers were sealed for a period of 

time estimated to produce a decrease in oxygen concentration within the chamber 

of not greater than 0.5%.  The amount of time chambers were sealed ranged from 

0.5h to 15.3h and the average drop in oxygen concentration was 0.12% (±0.08 

SD).  Following the sealed phase, the airstream was redirected into the chamber 

and the excurrent air passed through, in order, a drierite column, a carbon dioxide 

analyzer, an ascarite column, and an oxygen analyzer (FC-2, SSI).  Oxygen 

consumption (mLO2 min-1) was determined by integrating the baseline-corrected 

oxygen concentration recording (Lighton, 2008) and was converted to microwatts 

(20.1 J mLO2
-1). 
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The data on worker-group metabolic rates were analyzed to determine if 

there was a correlation between worker group size and mass-specific metabolic 

rate.  Additionally, since the density of ants between measurements varied in this 

experiment by up to 60-fold (0.05-3.06 ants/cm2), I also tested for a correlation 

between density and mass-specific metabolic rate.  Performing these analyses on a 

mass-specific basis is justified because the worker body size (2.76 mg ±0.28 SD) 

did not scale with experimental group size (linear regression: F1,18=0.12, p=0.74) 

or vary significantly among the three originating colonies (one-way ANOVA: 

F2,17=1.7, p=0.21). 

 

Allometric analysis 

Data were analyzed using a variety of regression techniques to validate 

that results obtained were statistically robust (Packard and Boardman, 2008).  The 

allometric scaling coefficient and exponent for whole-colony metabolic rates were 

estimated using ordinary least squares and reduced major axis algorithms after 

log-transformation in GraphPad Prism version 5.0 (GraphPad Software, San 

Diego, CA, USA).  Residuals were normally distributed (D’Agostino-Pearson 

p=0.3).   The scaling coefficient and exponent were similarly estimated based on 

the predictions generated by the additive model (3). Additionally, scaling 

exponents were also estimated using non-linear regression on arithmetic-scaled 

data (Packard and Boardman 2008). 

 

 



  44 
 
 
 

Activity analysis 

 Patterns of locomotory activity were assayed by digitizing the movements 

of ants in recorded video of colony behavior.  Video recordings were made for 1h 

of the nest region of eight colonies.  For each colony, a 60 s segment of video was 

sub-sampled at 1fps and exported as a TIFF image stack.  The sub-sampling rate 

of 1fps was chosen to minimize the number of frames to be analyzed without 

excessive loss of spatial resolution due to ants moving more than one body length 

between frames.  Image stacks were loaded into NIH Image and the coordinates 

of individual ants in each frame were manually digitized with QuickImage 

(Walker, 2001).  These coordinate data (N=73,444) were analyzed to determine 

an average velocity for each ant in each of the colony nests.  For each colony, I 

determined the frequency distribution of individual average velocities.  Data on 

the relative speeds of individuals in each colony were also used to generate 

predictions for colony metabolic rate allometry using the compositional additive 

model (1) by incorporating an activity coefficient.  Since metabolic rate increases 

linearly with the speed of a running ant (Lighton et al., 1987; Lipp et al., 2005), 

the activity coefficient was used to scale the predictions for individual metabolic 

rates proportional to their measured speed.  Values are reported as means ± 

standard error (s.e.m.) throughout. 
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RESULTS 

Whole colony metabolic rate allometry 

 Whole-colony metabolic rate scaled with colony mass with negative 

allometry, with a scaling exponent of 0.75 ± 0.09 (Figure 2.1, Tables 2.1-2.2).  

The empirically determined exponent was significantly less than the isometry 

predicted by equation (3), using the measured masses of individual queens, 

workers, larvae and pupae for each colony (F1,22=7.20, p=0.01).  All additive 

models generated isometric scaling (exponents not significantly different from 1) 

regardless of whether I used coefficients based on the general arthropod (Lighton 

et al., 2001) or P. rugosus (Lighton and Bartholomew, 1988) allometries, or 

included the data estimated for P. californicus workers and brood  (table 1, 

F1,33=0.86, p=0.43). The scaling exponent estimated through ordinary least 

squares regression of log-transformed data did not significantly differ from the 

estimate generated by reduced major axis linear regression (t24=1.25, p=0.2) or 

the estimate generated by nonlinear regression using the arithmetic scaled data 

(t24=0.11, p=0.9).  Additionally, the scaling exponent did not depend on whether 

the minimum, average, or maximum colony metabolic rates were used in the 

analysis (F2,33=0.12, p=0.9).  The negative allometric scaling of whole colony 

metabolic rate is consistent with the general intraspecific scaling pattern observed 

for individual ants (Figure 2.1B; metabolic rate data adapted from Chown et al. 

2007).  Colonies of P. californicus exhibited an intraspecific scaling exponent not 

significantly different (one way ANOVA, F7,200=1.2, p=0.3) than seven of the 

eight species for which intraspecific individual ant metabolic rate scaling data 
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were available (Figure 2.7). 

 

Colony composition 

Negative allometric scaling in P. californicus could not be explained by 

trends in the scaling of individual ant size across colonies or by changes in colony 

composition (Table 2.3).  Average worker mass (mean 3.2 mg ±0.1) did not show 

a significant regression with colony size (F1,11=0.96, p=0.35).  There was also no 

significant scaling of average queen mass (12.0 mg ±0.2; F1,11=2.77, p=0.12) or 

average larva mass (1.9mg ±0.3; F1,11=4.39, p=0.06).  The fractions of colony 

mass composed of workers (0.83 ±0.03), larvae (0.09 ±0.01) and pupae (0.05 

±0.02) all exhibited non-significant regression with colony size (F1,11=0.07-1.29, 

p=0.28-0.78).  Fractional composition of the colonies by queens did scale with 

colony size (F1,11=28.03, p=0.0003), from 11.5% in the smallest colony to 0.6% 

in one of the largest, but overall, queen mass was a small proportion of colony 

size (0.04 ±0.01).  

Since all colonies were the same age, the seven-fold range in colony mass 

means that net growth rate increased linearly with colony size, and was seven-fold 

greater in the largest compared to smallest colonies.  Net growth efficiency 

increased more than 3X with colony size (F1,11=5.96, p=0.03, r2=0.35) due to 

larger colonies exhibiting 7-fold higher net growth rates and 30% lower mass-

specific metabolic rates.  
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Isometric scaling of worker groups 

 Worker groups, removed from the social environment of the colony, 

exhibited isometric metabolic rate scaling (Figure 2.2A, Table 2.1, and Table 2.4), 

consistent with some of the results of previous studies on the effects of group size 

on the mass-specific metabolic rate of groups of ants placed in a respirometer 

outside of their colony.  Metabolic rate scaled with group mass raised to the 

exponent 1.01 ±0.03 (linear regression on log-transformed data, F1,18=913.7, 

p<0.0001, r2=0.98).  There was no effect of source colony on the estimated 

scaling exponent (one way ANOVA: F2,17=0.98, p=0.39).  Furthermore, despite a 

60-fold range in the density of worker groups within the respirometry chambers in 

this study, there was no significant linear regression correlating mass-specific 

metabolic rate with worker density (Figure 2.2B; F1,18=0.55, p=0.47).  Due to the 

use of two different-sized respirometry chambers in the worker-group experiment, 

experimental group size did not correlate with worker density (Pearson r=0.08, 

p=0.73).   

Velocity distributions 

 I recorded the trajectories and determined the average locomotor velocities 

for more than 1200 ants across eight colonies (Figure 2.8).  Average ant velocity 

did not show a significant regression with colony mass (Figure 2.3A; F1,6=2.75, 

p=0.09, r2=0.41), though there was a trend toward slower speeds in larger 

colonies. Ant speed was positively correlated with colony mass-specific metabolic 

rate (F1,5=6.40, p=0.05, r2=0.56).  
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Velocity distributions within colonies were strikingly non-normal (Figure 

2.3B) and more accurately represented by a power law of the form, y=axb, where 

a frequency, y, of individuals moving at a certain speed, x, scales with the 

exponent b.   The exponent of this scaling equation was estimated following the 

method of log-transformation and linear regression.  The linear regressions 

(Figure 2.3C) on double log-transformed axes were highly significant (for all 

eight colonies, p<0.0001 and mean r2=0.75).  The slopes of the regressions, 

equivalent to the exponents of the power laws describing the velocity 

distributions, decreased with colony size, from -0.39 in the smallest colony to -

1.32 in the largest colony.  The degree (or exponent) of the velocity distributions 

correlated significantly with colony size (Figure 2.3D; Pearson r=-0.93, 

p=0.0009).  Larger colonies exhibit a greater disparity between fractions of active 

and inactive ants, with a few key individuals moving the most and the majority 

moving far less. 

 

DISCUSSION 

 Colonies of P. californicus exhibited striking patterns of metabolic rate, 

growth, and activity scaling.  Unlike the isometric scaling predicted for and 

empirically measured among groups of individual ants, functioning whole 

colonies exhibited ¾-power metabolic rate scaling.  Since net growth rate 

exhibited isometric scaling, net growth efficiency was much higher in larger 

colonies than smaller colonies.  The patterns of individual speeds within each 

colony were well represented by power-law distributions in which the majority of 
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ants were relatively inactive compared to the relatively few highly active 

individuals.  Furthermore, the extent of this disparity among individual speeds 

within colonies increased with colony size.  

 As predicted given that these colonies were actively foraging and rearing 

brood, colonial metabolic rates were higher than measured for individual ants 

measured under standard conditions (Figure 2.1B), which usually mean that ants 

are alone, without food, in the dark, and often not moving (Chown et al., 2007).  

While the scaling slopes are homogenous, the difference in the metabolic 

elevation, or intercept, of our whole colony lines and the average intercept for 

intraspecific scaling of ant individuals in the Chown et al. study was 845µW, 

representing about a 3x-fold elevation of metabolic rate over that predicted for an 

average inactive “standard” ant.  The data I collected are more analogous to the 

scaling of field metabolic rates for individuals, and the scaling of such field 

metabolic rates have the potential to differ for many reasons from that occurring 

for resting animals. However, the data that do exist suggest that field metabolic 

rates of individual vertebrates tends to scale with negative allometry (Nagy, 

2005). 

 I investigated a number of possible explanations for the observed negative 

allometry of metabolic rate.  Larger colonies of P. californicus consumed up to 

one-third less oxygen on a mass-specific basis than smaller colonies, and this 

result could not be explained by changes in colony demography, scaling of the 

size of individual ants or by changes in density.  Two recent studies have 

demonstrated that density can influence population-level metabolic rates (Cao and 
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Dornhaus, 2008; DeLong and Hanson, 2009), however I did not see such an 

effect.   Density manipulations on colonies of Temnothorax rugatulus showed a 

positive relationship between crowding and mass-specific metabolic rate (Cao and 

Dornhaus, 2008); in our case, the opposite trend was seen since larger colonies in 

the same size boxes had lower mass-specific metabolic rates.  When groups of 

individuals were removed from their colonies in our study, density did not 

correlate with mass-specific metabolic rate.  Although this pattern of increasing 

density correlating with reduced mass-specific metabolic rates was also observed 

among aquatic unicells (DeLong and Hanson, 2009), it is not immediately clear 

how a similar mechanism relating to resource constraint, as proposed in that 

study, could function among our colonies which all were fed with excess food 

always available. 

 Changes in the patterns of locomotory activity may contribute to the 

observed negative allometry of metabolic rate.  The velocity distributions of ants 

within our colonies scaled with colony size so that larger colonies exhibited a 

greater disparity of active and inactive ants than smaller colonies.  A general way 

to estimate the contribution of locomotory patterns to estimates of whole colony 

metabolic rate data is to modify the additive model so that individual metabolic 

rates are predicted as a function of their velocity.  The average increase in 

metabolic rate for ants running at peak speeds relative to “resting ants” is about 6-

fold (Fewell, 1988; Lighton et al., 1993a; Lighton et al., 1987; Weier et al., 1995).  

Thus, the activity coefficient in the additive model (1) can be used to scale each 

ant’s metabolic rate to be linearly proportional to its speed and with the fastest 
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ants being modeled with 6x-greater metabolic rates than the least active ants.  In 

this way, I estimated that the fraction of whole colony metabolic rate attributable 

to locomotory movement decreases with colony size (Figure 2.4A).  I also used 

the additive model to predict how much of an effect velocity would have to have 

on individual metabolic rates to fully account for the observed ¾-power metabolic 

rate scaling.  Based on the measured velocity distributions, the additive model 

predicts ¾-power metabolic allometry among our colonies if instead of a 6-fold 

elevation, running at peak velocity elevates metabolic rate above those of inactive 

ants by 25-fold (Figure 2.4B). This magnitude of an effect seems unlikely given 

that the scope of metabolic rate associated with running is about 6x in ants, 

suggesting that variation in locomotory performance is only part of the 

explanation for the observed negative allometry of metabolic rate. 

 A number of other hypotheses can be proposed to explain the negative 

allometry of metabolic rates observed for the whole ant colonies in this study.  

One possibility is that certain colonies grew faster due to relatively higher growth 

efficiency and relatively lower metabolic rates.  In this way, colony size per-se is 

not hypothesized to be the factor that determines metabolic rate so much as the 

reverse; i.e., variation in colony-size independent metabolic physiology is 

hypothesized to result in different growth rates and effective colony sizes.  A 

second possibility is that maintenance costs associated with colony growth and 

function scale with negative allometry (Jeanson et al., 2007).  This hypothesis 

predicts that as colony size increases, the number of ants necessarily engaging in 

particular activities decreases so that a surplus of individuals with low metabolic 
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rates may accumulate and thus produce negative metabolic allometry.  However, 

our evidence for higher efficiency in larger colonies should be considered 

preliminary, as I have not shown that these colonies have similar egg production 

rates or worker survival, or that metabolic rates are consistent during ontogeny. 

 Another non-alternative type of explanation for negative metabolic 

allometry in P. californicus colonies is that eusocial insect colonies may be 

metabolically and behaviorally integrated in ways that are more commonly 

thought of as restricted to the physiology of physically connected individual 

organisms.  Marine colonial ascidians, for example, have been shown to exhibit 

near ¾-power metabolic scaling, but only when individuals are physically 

connected by a vascular network (Nakaya et al., 2003).  In the same way that the 

geometry of vascular networks is proposed to be the emergent result of shear 

forces and material properties on the local scale (LaBarbera, 1990), conceivably 

the behavioral interactions in a networked social group may lead to emergent 

patterns of nutrient or information transfer that similarly influence the scaling of 

metabolism.  Studies of the network interactions of food and behavior within ant 

colonies will help assess whether this is possible. The ability to perform direct 

manipulations on colony size and composition while observing patterns of activity 

make social insect colonies particularly useful models for evaluating general 

hypotheses of metabolic integration.  It should be possible to directly observe the 

scaling properties of distribution networks between foragers and inside-nest ants, 

individual activity rates, and to directly manipulate superorganism size, an 

experimental approach not easily performed with individual organisms.  In this 
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way, data can be collected to empirically test the predictions of hypotheses that 

aim to explain the mechanistic basis of negative metabolic allometry. 
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Figure 2.1. (A) Whole colony metabolic rate allometry plotted on double-log 

axes, with a hypometric slope (0.75) statistically less than the isometric slope 

(1.0) predicted by the additive model.  (B) Intraspecific whole colony metabolic 

rates scale in essentially the same way as observed for intraspecific scaling of 

metabolic rate for individual ants, as seen on this plot with seven intraspecific 

negative metabolic rate allometries (data adapted from Chown et al. 2007) with 

slopes ranging from 0.56-0.84.
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Figure 2.2.  (A) Isometric scaling of metabolic rate among worker groups 

removed from the social environment of their colonies.  (B) In the worker-group 

study, ant densities ranged greater than 60x, but showed no correlation with the 

mass-specific metabolic rates of the workers. 
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Figure 2.3. (A) Average ant velocity within a colony plotted as a function of 

colony size, error bars noting standard error.  Crosses indicate median velocities 

for each colony.  (B) This plot illustrates the frequency distribution of ant 

velocities within a colony having 332 workers. The inset displays the same data 

on double-logarithm axes.  (C) Linear regressions of log-transformed velocity 

distributions for a range of colony sizes.  (D) The slopes of the regressions in (C) 

are plotted here as the scaling exponents for the velocity distributions as a 

function of colony size. 



  57 
 
 
 

 

 

Figure 2.4.  (A) The fraction of whole colony metabolic rate (CMR) estimated to 

be due to movement patterns decreases with increasing colony size.  (B) This 

figure plots the estimated allometric exponent generated by the additive model 

modified to take into account both the effect of velocity on metabolic rate and the 

colony velocity distributions.  If maximum running speed elevates individual 

metabolic rates by 25-times, then the additive model predicts metabolic rate 

scaling with mass0.75. 
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Figure 2.5.  These photographs show (A) a colony of Pogonomyrmex californicus  

in its artificial nest enclosure, (B) queens, (C) workers tending to brood, (D) 

foraging for seeds, and (E) a colony nest enclosure within the flow-through 

respirometry chamber.  
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Figure 2.6.  Representative trace of CO2 recording during whole colony 

measurements. The entire recording graphed in (A) includes three baseline 

measurements as indicated by asterisks (*) and shows the excurrent airstream CO2 

concentration both for the whole colony measurement as well as after the ants had 

been removed so that the background CO2 emission from debris could be 

measured.  In (B), the CO2 emission from the colony as illustrated by the dotted 

box in (A) is graphed for increased resolution. 



  60 
 
 
 

 

Figure 2.7.  With the exception of Messor capensis, the homogenously 

hypometric intraspecific metabolic rate scaling allometries of individual ants (data 

from Chown et al. 2007), are not significantly different from the hypometric 

scaling allometry for whole colonies of Pogonomyrmex californicus. 
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Figure 2.8.  Digitized trajectories of ants in colonies with (A) 32, (B) 39, (C) 267, 

and (D), 332 workers.  Each frame shows the trajectories of ants over a 60s period 

within the colony nest of width and height 11cm.  Colors indicate different ants. 
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Table 2.1.  Whole colony metabolic rate allometries. 

Regression Intercept (±SE) Slope (±SE) r2 N Range (g) 
Additive model1 3.237 ± 0.004 1.000 ± 0.014 0.99 13 0.311-2.222 
Additive model2 3.347 ± 0.001 1.001 ± 0.006 0.99 13 0.311-2.222 
Additive model3 3.268 ± 0.005 0.980 ± 0.015 0.99 13 0.311-2.222 
Colony 
measurements 3.107 ± 0.028 0.747 ± 0.093 0.85 13 0.311-2.222 
Worker groups 3.468 ± 0.050 1.008 ± 0.033 0.98 20 0.003-0.641 

 

Note: This table displays ordinary linear regression results for metabolic rate 

allometries based on log10-transformed data for the additive model predictions, 

whole colony metabolic rate measurements, and the worker group metabolic rate 

data, all standardized to 25°C.  The three additive models were computed with 

scaling coefficients based on (1) P. rugosus, (2) general non-tick non-scorpion 

arthropods, and (3) estimated P. californicus mass-specific metabolic rates.  
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Table 2.2.  Mass and metabolic rate data for whole colonies of Pogonomyrmex 

californicus. 

Colony Mass (g) VCO2(ml/min) Temperature (C) Metabolic rate (µW at 25C) 
1 2.2228 0.0091611 28.45 2416.22 
2 1.0851 0.00546 28.45 1440.07 
3 0.311 0.0013845 27.8 381.99 
4 1.0518 0.004485 28.7 1162.59 
5 1.947 0.0096603 28.88 2473.07 
6 1.339 0.006474 27.87 1777.55 
7 1.7183 0.010023 28.85 2571.26 
8 1.8048 0.004719 28.37 1251.55 
9 1.8124 0.007566 28.5 1988.61 

10 0.3163 0.00273 29.18 684.51 
11 0.4948 0.003159 28.2 847.74 
12 1.0259 0.00249591 27.56 1094.03 
13 0.404 0.0027222 28.4 720.47 
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TABLE 2.3. Colony census data at time of measurement.  

 Queens Workers Pupae Larvae 

Colony # 
mass 
(mg) # 

mass 
(mg) # 

mass 
(mg) # 

mass 
(mg) 

1 1 12.8 405 1530 70 320 75 360 
2 3 37.2 251 730 33 116.4 80 201.5 
3 3 35.7 80 265.7 0 0 12 9.6 
4 3 32.4 317 862 17 58.3 55 99.1 
5 3 37.4 532 1613.4 36 136.2 88 160 
6 3 36.4 400 1273.1 0 0 18 29.5 
7 3 34.2 413 1247.8 57 224.4 124 211.9 
8 2 24.5 503 1724.7 0 0 36 55.6 
9 2 26.7 514 1654.7 0 0 82 131 
10 2 24.6 92 260.4 0 0 19 31.3 
11 2 24.8 120 391 19 65.5 9 13.5 
12 1 11.6 260 888.8 0 0 55 125.5 
13 3 30.8 105 350.6 0 0 16 23 

Note:  Data are presented for 10-month old whole colonies of Pogonomyrmex 

californicus. Note that the masses listed in each column are the measured 

masses of the total number of ants within that category, not average per-

capita values. 
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Table 2.4.  Mass and metabolic rate data for Pogonomyrmex californicus worker 

groups exhibiting isometric metabolic rate scaling. 

Workers Mass (g) 
Temperature 

(C) 
VO2 
(mlO2/min) 

Metabolic rate 
(µW at 25C) 

1 0.0028 31.86 2.44E-05 5.38 
1 0.0024 30.36 3.45E-05 8.45 
1 0.0026 30.35 5.24E-05 12.83 
3 0.0083 30.94 7.79E-05 18.32 
5 0.0184 30.11 1.78E-04 44.39 
5 0.0125 30.30 9.33E-05 22.94 

10 0.0278 31.83 3.64E-04 80.47 
10 0.0289 29.55 5.21E-04 134.85 
10 0.026 30.06 2.54E-04 63.53 
20 0.0585 31.83 6.48E-04 143.29 
25 0.0717 29.91 9.48E-04 239.48 
25 0.0618 31.55 8.10E-04 182.64 
50 0.1232 29.81 1.45E-03 369.26 
60 0.1612 30.30 1.52E-03 373.94 
75 0.2024 31.86 2.60E-03 573.00 
85 0.2139 30.13 2.75E-03 685.24 

115 0.3584 30.11 4.44E-03 1104.81 
150 0.4398 30.94 5.40E-03 1269.23 
150 0.3985 31.34 5.77E-03 1320.01 
225 0.6405 31.83 8.42E-03 1860.50 
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Chapter 3 

INFORMATION PROCESSING IN SOCIAL INSECT NETWORKS 

 

INTRODUCTION 

Capturing the essence of biological networks is among the most important 

challenges facing modern science. Gene regulation, motor control, developmental 

specialization, and metabolic allometry all emerge as the result of integrated 

networks. These networks operate at different biological levels but all distribute 

and transform localized information into larger scale processes (Jeong et al., 

2000; LaBarbera, 1990; Moses et al., 2008; Strogatz, 2001).  However, not all 

biological networks develop or evolve around higher order function. Social 

networks, the broad class of networks characterizing human and animal social 

groups, are typically thought to exhibit global-structure consistent with the 

predictions of generative network models such as preferential attachment 

(Barabasi and Albert, 1999; Newman, 2010).  In these systems, interactions 

benefit and reinforce an individual’s own role within the network (Salganik et al., 

2006), but at a potential cost to higher-level properties such as efficiency or 

resilience (Kaluza et al., 2008).  

Although generally clustered into one category, social networks can 

describe many different types of complex systems from aggregations to cohesive 

social units. Network analyses show global similarities across social systems; they 

are generally decentralized and scale-free, with network structure emerging from 

local interactions in the absence of an external controller. However, the function 
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of interactions within social groups should vary with the evolutionary and 

ecological contexts in which the group evolves. The social interactions within, for 

example, a pod of dolphins (Lusseau, 2003; Lusseau and Newman, 2004) or 

extended family groups of ground squirrels (Wey et al., 2008), should serve very 

different functions than the communication networks among workers within a 

eusocial insect colony (Feigenbaum and Naug, 2010; Fewell, 2003; Mayack and 

Naug, 2009; Naug, 2008).  

Social insect colonies are the hallmark of integrated social units, 

exhibiting some of the most awe-inspiring examples of complexity in the 

biological world. Nest architecture that promotes environmental stability (Penick 

and Tschinkel, 2008), division of labor that scales with colony size (Holbrook et 

al., 2011), and collective decision making (Sasaki and Pratt, 2011) all take place 

in the absence of hierarchical control (Wilson and Hölldobler, 1988). Social insect 

communication systems, which include such diverse modalities as direct 

individual contact, trophallaxis, and broadcast pheromonal signaling, show they 

are highly regulated units with coordinated individual behaviors that generate 

emergent effects which are beneficial to the group as a whole (Hölldobler and 

Wilson, 2009).  If network structure reflects biological function, then the structure 

of a social insect colony should vary distinctly from that of social networks 

generated from associations based on individual success. 

I investigated network motif profiles of seed harvester ant colony 

interaction networks to determine whether their antennation patterns are 

predominantly random, regulatory, or social in nature.  Since the purpose of 
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antennation by ants is to obtain information, the structure of their communication 

networks is critical to how colonies function (Fewell, 2003).  Motif analysis 

determines the predominant local interaction patterns (3-node directed subgraph 

motifs) making up a network (Milo et al., 2002) and has the potential to identify 

fundamental interaction signatures within networks of different size or context 

that may correspond to differences in functionality (Milo et al., 2004). Previous 

work by Milo and his colleagues (Milo et al., 2004; Milo et al., 2002; Shen-Orr et 

al., 2002) has shown that biological regulatory networks have predominant 

interaction patterns that move information directionally, while social networks 

develop bidirectionally-connected cliques as individuals mutually strengthen 

associations with their neighbors. I asked whether these different types of 

subgraph representation allow us to differentiate between networks selected for at 

the individual-level and networks that emerge as a result of group-level selection 

(Kaluza et al., 2008). 

 

METHODS 

Ant colonies 

 Whole colonies of Pogonomyrmex californicus were reared in the 

laboratory (Holbrook et al., 2011; Waters et al., 2010) in artificial nest enclosures 

(242 cm2) containing separate nest and foraging arenas, water tubes, and foraging 

material including fruit flies, grass seeds, and finch seeds.  All adult workers and 

queens within each of two colonies were uniquely marked.  Color codes were 

applied to the dorsal surface of the ant head, mesosoma, and gaster with fine-tip 
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oil-based paint markers.  Ants did not exhibit adverse reactions to the paint or 

increased mortality following paint marking.   

After having been paint-marked, colonies were given two weeks to 

acclimate to their new markings and the experimental arena, a well-lit lab bench 

in an observation room maintained at 30 degrees C.  A foam pad beneath the nest 

enclosures dampened vibrations and a sheet of transparent plastic was placed over 

the nest enclosures to prevent disturbance induced by experimenter exhalation.  

Fifteen minutes before video-recording, colonies were gently stimulated to engage 

in work (division of labor) with the addition of foraging items and debris through 

small openings in the nest enclosure lids.  Following these methods, nearly all 

individuals within the colonies were visible from above and workers within the 

colonies were observed engaging in normal behaviors including foraging, brood 

care, food processing, refuse removal, policing, and allogrooming.  

 

Video recording 

I recorded digital video of colonies within nest enclosures to carefully 

observe the behaviors and patterns of interactions among individual ants (Movie 

S1).  Video data were recorded using a CCD camera (Flea 2, Point Grey 

Research, Richmond, BC, Canada) and a 16mm fixed focal length lens (Edmund 

Optics, Barrington, NJ, USA) positioned on a copy stand above colony nest 

enclosures. Uncompressed AVI video (1624 x 800 pixels, 15 frames per second) 

was recorded using FlyCapture SDK (Point Grey Research, Richmond, BC, 

Canada).  The arrangement of these components resulted in a resolution of 73.8 
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pixels per centimeter, more than sufficient to observe the fine-scale antennation 

patterns between interacting ants.   I recorded each colony for a duration of two 

hours (approximately 550 GB for each recording).  

 

Networks 

To establish networks of directed contacts from the video recordings, each 

individual ant was tracked throughout the entire recording and her contacts with 

other ants manually recorded. Contact occurred if the ant stopped and placed both 

antennae onto another ant, orienting the head towards the contacted ant. 

Antennation was chosen as the focal behavior because it is a direct form of 

information exchange and can be clearly characterized ethologically. Networks of 

colony interactions were constructed as adjacency lists, each individual ant treated 

as a node, with their directional interactions supplying the network edges. A total 

of 12 networks were constructed, 5 for colony pcp07-40 and 7 for colony pcp07-

35.  

All social network data are snapshots of a system in time.  For the data to 

be meaningful, they should be based on a time interval long enough to capture the 

behavior of the system at a point in time without being so long that behavioral 

variation over time averages and dampens away relevant interaction patterns.  

Data to populate the interaction networks in this study were based on the 

behaviors observed during 26-second subsets of the video recordings for each 

colony.  Analyzing less time than this would have meant that the networks were 

highly fragmented (i.e., not connected).  Preliminary data suggested that 
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reviewing 13-26 seconds of behavior would be sufficient to capture interactions 

for greater than 90% of the active individuals within the colonies.  Of the 12 

networks I analyzed, there was an average of 3.17 connected components per 

network and the largest connected cluster contained on average 92.96% of the 

nodes in each network. The effects of analysis and observation time on social 

network structure were investigated by cumulatively pooling networks.  For each 

of the two colonies, I analyzed the network motif representation of networks 

based on 26, 52, 78, 104, and 130 seconds by combining observations to build 

sequentially larger networks.   

 

Motif analysis 

 To test hypotheses about the mechanisms responsible for generating 

colony-level functionality, I analyzed the local-scale structure of interaction 

networks using triad motif analysis (Milo et al., 2004; Milo et al., 2002). The 

primary question addressed by motif analysis is whether particular subgraphs 

appear more often in an observed network than would be expected in similarly 

sized networks generated based on the assumptions of specific null models.   

Using the implementation of motif analysis executed by Fast Network 

Motif Detection (FANMOD) (Wernicke and Rasche, 2006) I tested the structure 

of our networks against a network model that randomized the interactions 

between individuals.  The null-model random graphs were generated with the 

same degree distribution as observed in the colonies to preserve global network 

structure. Nodes in the random networks also maintained the same number and 
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directionality of edges as in the respective observed networks. The frequencies of 

each of the 13 directed three-node subgraphs (Figure 3.4, Table 3.5) were 

calculated both for each observed network (N=12) and the simulated random 

graphs (N=10,000 per observed network).  

The statistical significance of each subgraph representation within an 

observed network was calculated by comparing subgraph densities (the ratio of 

the number of occurrences of a specific subgraph to the total number of subgraphs 

within a network) between observed and random networks.  I estimated 

bootstrapped p-values calculated as ratio of the number of randomized networks 

in which the subgraph density was higher than observed to the total number of 

randomized networks for each subgraph in each observed network.  Significantly 

over-represented subgraphs (p < 0.05 and density > 0.01) are referred to as 

network motifs (Milo et al., 2002).  It is possible that specific subgraphs are not 

generated within the randomized networks, resulting in cases for which the p-

values are undefined.  The only subgraph for which this occurred was ID=13, a 

subgraph identified in 5/12 networks, but with a instance count greater than one in 

only two networks and never with a subgraph density greater than 0.01.   

Network visualizations and additional descriptive network statistics were 

generated in R using the igraph package (Csardi and Nepusz, 2006; R 

Development Core Team, 2011).  Degree distributions for the nodes within a 

network can be modeled as power laws, p(k) ∝ k-alpha, where p(k) is the fraction of 

vertices having degree k and alpha is the scaling exponent.  I estimated the 

exponent associated with in-, out-, and total-degree distributions using the 
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methods of both ordinary least squares on log-transformed data and discrete 

maximum-likelihood estimation of the power-law distribution (Clauset et al., 

2009; Dubroca, 2011).   Unless described otherwise, data in the results section are 

presented as means ± standard errors. 

 

RESULTS 

Seed harvester colony interaction networks (Figure 3.1) developed at a 

rate of 4.86 ± 0.08 interactions per ant per minute. Networks were composed of 

an average of 89.17 ± 3.96 nodes and 191.5 ± 18 edges (Table 3.1).  While 

differences in colony size affected the number of nodes (F1,10=19.38) and edges 

(F1,10=23.29), there were not significant differences in network topology. Across 

the 12 networks, the average in-degree power-law exponent was 1.93 ± 0.13 

(Table 3.2) and the average out-degree power-law exponent was 2.03 ± 0.08 

(Table 3.3).  There was no significant effect of source colony on in-degree 

(F1,10=0.152, p=0.71) or out-degree (F1,10=1.77, p=0.21) exponents and there was 

also not a significant difference between these exponents (F1,22=0.387, p=0.54). 

The exponents estimated by OLS were less than those estimated by maximum 

likelihood (in-degree: 3.18 ± 0.08, out-degree: 3.12 ± 0.09), but both sets of 

estimates are qualitatively consistent with right-skewed degree distributions 

characteristic of scale-free networks (Figure 3.4).   

I used motif analysis to identify the relative significance of the thirteen 

possible directed subgraphs among every connected triad of ants within our 

recorded networks (Figure 3.2). Subgraphs were classified as significant motifs 
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when the frequency of a given subgraph was higher than expected compared to a 

null model of degree-preserved randomized interaction and its subgraph density 

was at least 0.01 (Table 3.4). Eight subgraphs (IDs: 1, 3, 6, 7, 9-12) were 

classified as motifs in at least one of the 12 observed networks, and one motif, the 

feed-forward loop (ID: 7), was present in 11/12 networks.  The high frequency on 

significance for the feed-forward loop (i.e. significantly higher expected 

frequency in each network) indicates it to be a consistent network signature within 

the colonies I measured.   

To evaluate the similarity of motif patterns across different networks and 

over time, I calculated the standardized Z-score for each subgraph (Milo et al., 

2002) and constructed a triad significance profile (TSP) for each network (Figure 

3.3). The TSP was consistent across all colony networks (Pearson’s r=0.58 ± 0.03, 

N=66 comparisons, median p=0.03).  The motif distributions were also not 

significantly affected by the amount of time (26-130 s) used to populate 

interaction networks (Figure 3.6; Table 3.6). 

When compared to the major network superfamilies (Milo et al., 2004), 

the combined motif signatures of our observed networks were somewhat more 

correlated with social networks (r=0.68, p=0.009) than the gene transcription 

(r=0.48, p=0.09) or the signal transduction (r=0.60, p=0.03) regulatory network 

superfamilies (Figure 3.3). Nevertheless, the correlation between colony and 

social networks was not significantly stronger than the correlation between colony 

and transcription networks (∆r=0.20, n=13, p=0.49). The fully connected triad 

(motif 13: the social-clique motif), which is a defining characteristic of the human 
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social network superfamily (Milo et al., 2004), was conspicuously uncommon in 

the P. californicus networks.  

 

DISCUSSION 

I compared the network motif profiles within social insect colony 

networks to the motif signatures for a range of technological and biological 

networks, including social networks. While the P. californicus networks exhibited 

scale-free structure and similarity with the general triad significance profile for 

the social network superfamily, the predominant motif within our colonies was 

the feed-forward loop. This interaction pattern is not typically identified with 

human social networks, but is involved in modulating information transmission in 

a range of regulatory networks across biological levels, including transcriptional 

regulation in E. coli, signal transduction between mammalian cells, and C. 

elegans synaptic wiring (Mangan and Alon, 2003; Mangan et al., 2006; Shen-Orr 

et al., 2002). In contrast, the social-clique motif, characteristic of social 

attachment networks (Milo et al., 2004; Shen-Orr et al., 2002), was absent in our 

P. californicus colony networks. The motif representation in P. californicus 

network structure supports the hypothesis that social network structure within 

these cohesive social groups has been selected to maximize colony-level function 

and/or efficiency rather than individual success. In other words, they are social 

regulatory networks, with key subgraph structures in common with regulatory 

networks across biological scales. 
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I suggest the motif signatures within social insect colonies may reflect 

selection for efficiency of directional information flow. Although all 13 subgraphs 

connect the same number of individuals, they vary in the costs of establishing and 

maintaining those connections. One way to compare efficiencies of interaction 

patterns is to evaluate the extent to which a particular subgraph maximizes the 

number of connected nodes (N) while minimizing costs of connectivity, in 

particular the number of edges as determined by interactions (I) and the resulting 

diameter (D) of the graph. In this way, subgraph efficiency (E) can be defined as 

E=N/(I*D). Applying this definition to the thirteen directed three-node subgraphs, 

calculated efficiencies range from 0.38 in motif 6, the motif of two mutual 

interactions, to 1.0 in motifs 7 and 8, the feed-forward loop and the three-cycle 

(Figure 3.2). The observation that the feed-forward loop is the characteristic motif 

signature among our colony networks suggests that efficiency of information 

transfer may be relevant to the patterns of connection among workers. 

While this study has identified a number of intriguing features of 

communication patterns within social insect colonies, it also raises many new 

questions.  One question to consider is how nest architectures may affect 

interaction dynamics.  While the interaction patterns of individual ants may 

correlate with their spatial location within a nest (Pinter-Wollman et al., 2011), it 

is not clear whether location passively determines which type of interaction 

pattern individuals may be subjected to or engage in.  Since ants tend to 

homeostatically regulate their densities (Holbrook et al., 2011) and exhibit spatial 

fidelity (Sendova-Franks et al., 2010), I do not expect spatial position to be a 
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causal factor influencing interaction patterns.  However, given the substantial 

variation in labor-related specialization among workers within a colony, one 

factor that may be important is the extent to which individuals exhibit behavioral 

specialization for specific information-processing roles.  An example of this kind 

of information-processing specialization has been identified in colonies of leaf-

cutting ants, in which workers at the start of foraging may return to the nest 

unladen to increase the rate of information transmission to other workers within 

the nest (Bollazzi and Roces, 2011).  By directly manipulating colony 

composition, I can empirically test hypotheses about the effects of spatial 

segregation and worker specialization.  Additionally, by using different random 

models or generative network algorithms (Newman, 2010), the motif analysis 

method can be extended to test theoretical hypotheses about the temporal 

development and evolution of complex systems.  

Animal groups exhibit an extreme range of social integration, from 

primarily solitary species that lack social cohesion to the complex interactions 

that shape superorganism species. To date there has been no network-based 

approach to separate out the very different mechanisms for network evolution 

across the diversity of social groups. Network motif analyses provide a new way 

to differentiate the interaction regimes under selection in social evolution. The 

markedly different subgraph characteristics of social insect and human societies 

open the field of network analysis for further exploration into the forces shaping 

social structure, function and evolution.  
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Figure 3.1. Ant colony interaction networks.  (A) The development of a directed 

network of interactions between workers in a single P. californicus colony over a 

period of 60 s. Nodes represent individual workers or queens within a colony and 

arrows represent interactions between individuals. (B) Example P. californicus 

interaction network based on 26 s of colony behavior. (C) Photograph of queens 

and workers within a seed harvester colony; individuals have been painted with 

unique color combinations to track their interactions. 
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Figure 3.2. Distribution of network motifs. Network motif analysis deconstructs a 

network into its constituent subgraphs and determines whether any of these local-

scale interaction patterns are represented more frequently than expected for a 

randomized network of the same size. The subgraphs that were identified as 

significant motifs in our analysis of social insect colony networks are plotted 

above in a summary histogram with relative frequencies on the left axis. The 

interaction efficiencies of each subgraph are plotted as a line with units along the 

right axis. One of the two subgraphs with the highest efficiencies, the feed-

forward loop (motif 7), was also the most dominant motif observed across the P. 

californicus interaction networks. Gray subgraphs were not classified as network 

motifs, black indicates a subgraph identified as a motif within at least one 

network, and red indicates the only motif that was identified across the majority 

of networks. 
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Figure 3.3.  Social regulatory networks. Triad significance profiles compare the 

characteristic network motifs across a diverse range of network types and sizes by 

plotting standardized Z-scores which quantify the extent to which each subgraph 

is observed more or less frequently than expected in networks of a similar size 

and global structure but with randomized edge connections.  The observed P. 

californicus social insect networks exhibit a distinct pattern of social regulatory 

structure combining elements found in previously identified major network 

superfamilies (Milo et al., 2004).



  81 
 
 
 

 

 

Figure 3.4. Isomorphism classes and network motifs. There are 16 isomorphism 

classes (#0-15) of three-node directed graphs. Note that there are only 13 of these 

graphs that connect all three nodes. Above, each of these is drawn and identified 

with the corresponding network motif ID.  
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Figure 3.5a. Network degree distributions (networks 1-4).  For each colony 

network, I present the histograms for in- and out-degree as well as the scatterplots 

associated with estimating the exponent by OLS-regression for the power-law 

distribution describing the in- and out-degree scaling in each colony. 
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Figure 3.5b. Network degree distributions (networks 5-8).  For each colony 

network, I present the histograms for in- and out-degree as well as the scatterplots 

associated with estimating the exponent by OLS-regression for the power-law 

distribution describing the in- and out-degree scaling in each colony. 
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Figure 3.5c. Network degree distributions (networks 9-12).  For each colony 

network, I present the histograms for in- and out-degree as well as the scatterplots 

associated with estimating the exponent by OLS-regression for the power-law 

distribution describing the in- and out-degree scaling in each colony. 
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Figure 3.6. Effect of analysis time on subgraph Z-scores.  The effect of analysis 

time on motif representation was examined by constructing cumulative networks 

spanning 30-130 seconds of whole-colony interaction.  These networks exhibited 

a considerable range in size from 83 individuals and 136 interactions in a network 

based on 26 seconds of recorded behavior to 129 individuals engaging in 1117 

interactions in a network based on 130 seconds of recorded behavior.   

The Z-score is defined as the ratio of the difference in subgraph density 

between an observed network and its average density in a set of 10,000 

randomized networks divided by the standard deviation of the subgraph’s density 

in the randomized networks.  Although there are visible trends in which the Z-

scores associated with individual subgraphs (IDs 1-13) either increase or decrease 
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with the amount of time analyzed (and network size), none of the linear 

regressions were significant (p-values ranging from 0.20-0.99), suggesting that 

the method of motif analysis is robust with respect to the amount of time 

analyzed.  

The figure above shows a scatterplot of the Z-scores for each subgraph as 

a function of the amount of time analyzed in constructing the interaction network.  

Table 3.6 gives the estimates and standard error for intercept and slope as well as 

t-score and p-value for the slope of each of the regression models fitting subgraph 

Z-score as a function of the amount of time used to construct the respective 

networks. 
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Table 3.1.  Summary statistics for P. californicus interaction networks. This table 

summarizes global-scale network statistics for the twelve observed P. californicus 

interaction networks. 

 
 
Network Statistic Mean (N=12) Standard Deviation 
Nodes 89.167 13.730 
Edges 191.5 62.372 
Average Node Degree 4.213 0.824 
Maximum Node Degree 13.333 2.964 
Average Path Length 5.256 0.986 
Diameter 14.75 2.261 
Density 0.024 0.003 
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Table 3.2. Summary of out-degree scaling analysis. 
 
Colony Slope1 SE R squared P-value 

1 -2.302233 0.2453528 0.9362024 0.0001 
2 -1.495037 0.4009239 0.7766024 0.0203 
3 -1.993387 0.397453 0.80741 0.0024 
4 -2.076154 0.1107807 0.9859641 0 
5 -1.718984 0.3488862 0.8585369 0.0079 
6 -2.129866 0.2474018 0.9251065 0.0001 
7 -1.93115 0.2274315 0.9231746 0.0001 
8 -2.371344 0.3693494 0.8918231 0.0014 
9 -2.230362 0.3129172 0.8788996 0.0002 

10 -2.343456 0.3201249 0.9146595 0.0007 
11 -1.773185 0.4323595 0.7061254 0.0046 
12 -2.045588 0.2359468 0.8930656 0 

 
(1) This is the OLS-estimated slope for the relationship describing how the 

number of nodes with a given number of out-degree edges scales with out-degree. 

The data (x) were transformed prior to regression according to log10(x+1). The 

absolute value of the slope is an estimate for the degree distribution power law 

exponent (alpha). 
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Table 3.3.  Summary out in-degree scaling analysis. 
 
Colony Slope1 SE R squared P-value 

1 -1.589522 0.95259 0.258183 0.1337 
2 -2.390163 0.4221644 0.8423322 0.0013 
3 -1.27468 0.9519083 0.1831009 0.2173 
4 -2.434398 0.335663 0.8976089 0.0003 
5 -1.105925 1.0091694 0.1305242 0.305 
6 -2.685515 0.3487973 0.936789 0.0015 
7 -1.742611 0.3006386 0.8936109 0.0044 
8 -1.849658 0.3015067 0.8827247 0.0017 
9 -1.957485 0.2508555 0.9383577 0.0015 

10 -1.838498 0.2517909 0.8555716 0 
11 -2.018978 0.4390072 0.7790092 0.0037 
12 -2.344854 0.4034605 0.8491615 0.0011 

 
(2) This is the OLS-estimated slope for the relationship describing how the 

number of nodes with a given number of in-degree edges scales with in-degree. 

The data (x) were transformed prior to regression according to log10(x+1). The 

absolute value of the slope is an estimate for the degree distribution power law 

exponent (alpha). 
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Table 3.4.  Network motif analysis results. 
 

Subgraph 
ID 

Average 
Observed 
Density 

Observed 
Networks1 

Motifs 
(count > 1)2 

Motifs (density 
> 1%)3 

1 2.33E-01 12 3 3 
2 1.25E-01 12 0 0 
3 2.55E-01 12 2 2 
4 1.17E-01 12 0 0 
5 1.74E-01 12 0 0 
6 4.07E-02 12 0 0 
7 2.33E-02 11 11 11 
8 4.43E-03 9 4 0 
9 5.53E-03 11 4 1 

10 9.62E-03 11 10 4 
11 7.71E-03 11 7 2 
12 8.21E-03 12 7 4 
13 4.76E-03 5 2 0 

 

This table summarizes the classification of subgraphs as network motifs.   (1) The 

number of observed networks containing each respective subgraph. (2) The 

number of networks in which the observed density for a subgraph is significantly 

greater than its density in the random networks and in which the subgraph appears 

more than once in the observed network.  (3) The number of networks in which 

the average observed density for a subgraph is significantly greater than its 

density in the random networks and in which the subgraph density is at least one 

percent in the observed network. 
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Table 3.5. Classification and identification of network motifs 
 

 
Motif 

ID 
Fanmod 

label 
Isomorphism 

class number in R 
Triad census 

name in R 
Graph 

1 6 6 021D A<-B->C 
2 36 2 021U A->B<-C 
3 12 4 021C A->B->C 
4 164 5 111D A<->B<-C 
5 14 9 111U A<->B->C 
6 78 10 201 A<->B<->C 
7 38 7 030T A->B<-C, A->C 
8 140 11 030C A<-B<-C, A->C 
9 166 8 120D A<-B->C, A<->C 
10 46 13 120U A->B<-C, A<->C 
11 102 12 120C A->B->C, A<->C 
12 174 14 210 A->B<->C, A<->C 
13 238 15 300 A<->B<->C, A<->C 
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Table 3.6. Effect of time on network motif Z-score summary statistics. 
 
 
Subgraph Intercept Slope t Pr (>|t|) 

1 2.289 ± 23.685 -0.024 ± 0.275 -0.086 0.9314 
2 -6.459 ± 33.496 0.019 ± 0.275 0.068 0.9459 
3 -4.050 ± 33.496 0.019 ± 0.275 0.07 0.9442 
4 -3.791 ± 33.496 -0.024 ± 0.275 -0.086 0.932 
5 -5.758 ± 33.496 0.007 ± 0.275 0.026 0.9795 
6 -4.544 ± 33.496 -0.073 ± 0.275 -0.266 0.7911 
7 3.856 ± 36.811 -0.019 ± 0.311 -0.06 0.9522 
8 0.261 ± 39.061 -0.017 ± 0.330 -0.05 0.96 
9 -0.759 ± 33.496 0.022 ± 0.275 0.078 0.9376 

10 2.7078 ± 33.496 -0.012 ± 0.275 -0.043 0.9658 
11 0.973 ± 33.496 0.003 ± 0.275 0.009 0.9925 
12 -0.851 ± 33.496 0.028 ± 0.275 0.101 0.92 
13 86.039 ± 44.022 0.499 ± 0.389 1.284 0.2022 
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Chapter 4 

A MANIPULATIVE TEST OF THE SIZE-DEPENDENCE THEORY OF ANT 

COLONY METABOLIC ALLOMETRY 

 

INTRODUCTION 

The remarkable explanatory power of metabolic theory in ecology and 

evolutionary biology derives from the great diversity of life exhibiting a nonlinear 

scaling pattern in which metabolic rates are not proportional to mass, but rather 

exhibit a hypometric allometry (Calder, 1996; Ehnes et al., 2011; Peters, 1983; 

Schmidt-Nielsen, 1995).  The central equation in metabolic theory (Robinson et 

al., 1983) may be used to predict an organism’s metabolic rate, i.e. its oxygen 

consumption (VO2), as the product of an allometric function of its mass (M) and 

an exponential function of its temperature (T): 

€ 

˙ V O2 = aMb ⋅ ecT
     (1) 

While the dependence of metabolism on temperature can be quite variable 

among taxa (Clarke, 2006; Irlich et al., 2009; Waters and Harrison, 2012), the 

mass scaling exponents (b) are generally constrained such that 0.5 < b < 1 

(Glazier, 2005; Hemmingsen, 1960; Robinson et al., 1983).  Despite more than a 

century of empirical research and a recent deluge of theoretical models, the 

mechanistic basis for the hypometric relationship between mass and metabolic 

rate remains a major unresolved problem in biology (Agutter and Wheatley, 2004; 

Martinez del Rio, 2008).  Perhaps more fundamentally, the relationship between 

mass and metabolic rate is almost entirely based on correlative data and only a 
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few studies have demonstrated a causal link between these factors (White et al., 

2011; White and Seymour, 2004). If mass constrains or otherwise affects 

metabolism, then the mechanistic basis for this would have dramatic 

consequences throughout biology.  If however, the relationship between mass and 

metabolism is due to another mechanistic factor (e.g., nutrient stoichiometry, 

population density, or evolutionary inertia) then this must be identified. To 

empirically test for an effect of mass on metabolic rate, it would be ideal to 

directly manipulate mass (Olsson et al., 2002; Sinervo and Huey, 1990; Sinervo et 

al., 1992) and measure any subsequent changes in metabolism. Alas, for the vast 

majority of organisms, the inability to manipulate mass without sacrificing critical 

tissues or otherwise inducing physiological trauma presents an imposing 

challenge to the experimentally evaluation of the mechanisms responsible for 

allometric scaling of metabolism. 

Recent observational studies (Cao and Dornhaus, 2012; Nakaya et al., 

2003; Shik, 2010; Vollmer and Edmunds, 2000; Waters et al., 2010) have 

reported that colonial organisms exhibit metabolic hypometry similar to the 

scaling pattern exhibited by unitary organisms.  Manipulative tests of these 

scaling relationships have been performed with marine colonial organisms 

including ascidians (Nakaya et al., 2005) and encrusting bryozoans (White et al., 

2011). In both cases, the reduction of colony size was associated with increased 

mass-specific metabolic rates.  Using the framework of the Dynamic Energy 

Budgets theory (Kooijman, 2000; van der Meer, 2006) these increases in mass-

specific metabolic rate can be explained by associated changes in energetic 
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allocation to growth as mediated by surface area (White et al., 2011). Due to 

physical connections between these modular organisms, the surface areas do not 

scale isometrically with the number of zooids in the colonies.  In the insect 

colonies however, individuals are physically independent and any surfaces that 

exist (either in the arrangement of individuals or with respect to nest architecture) 

are the result of social interaction. 

 Among the eusocial insects, colony size strongly correlates with many life 

history characteristics, including reproductive allocation (Shik, 2008), fasting 

endurance (Kaspari and Vargo, 1995), division of labor (Dornhaus et al., 2008; 

Holbrook et al., 2011; Jeanson et al., 2007), foraging organization (Beekman et 

al., 2001), and information transmission (Blonder and Dornhaus, 2011).  In some 

ant species, colony size is also associated with changes in the average body size 

of workers and in the composition of different physical castes within the colony 

(Tschinkel, 1993).  The hypometric scaling of metabolic rate in colonies of 

Pheidole dentata, is hypothesized to be a result of changing caste composition 

with colony age; larger and older colonies have a greater number of supermajor 

workers, each of which exhibits a relatively low mass-specific metabolic rate 

(Shik, 2010).  In same-aged colonies of the seed harvester ant, Pogonomyrmex 

californicus, metabolic rate scales similarly as P. dentata, however there is no 

corresponding scaling of morphological caste composition; instead it is 

hypothesized that metabolic allometry in this case may be due to decreases in 

demand for work as colony size increases (Waters et al., 2010). To test for a 

causal effect of colony size on metabolic rate, I conducted a size-manipulation 
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experiment on whole colonies of P. californicus.  Considering colony metabolic 

rates standardized to a given temperature, it may be predicted that whole colonies 

of P. californicus would scale according to a simplified version of equation 1: 

€ 

˙ V O2,colony = aMb
      (2) 

 

Following the manipulation of colony size to half of its previous size, colony 

metabolic rates would scale according to: 

€ 

˙ V O2,manipulation = a 1
2 M( )b

     (3) 

By considering the ratio of mass-specific metabolic rates (B) predicted by 

equations 2 and 3,  

€ 

Bmanipulation

Bcolony

=
a 1

2 M( )b−1

a M( )b−1
≈

1
2 M( )−0.25

M( )−0.25
= 1

2
−0.25

    (4) 

it may be predicted that following size reduction, manipulated colonies would 

exhibit increases in mass-specific metabolic rates to approximately 1.2 times their 

previous rate as intact whole colonies.  

 

METHODS 

Rearing ant colonies 

Queens of the California seed harvester ant, Pogonomyrmex californicus, 

were collected in Pine Valley, CA (32°49’20”N, 116°31’43”W, 1,136-m 

elevation) on July 2-3 2011.  The queens had recently settled to the ground 

following mating flights and were collected as they were foraging or starting to 
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excavate new nests.  This population of P. californicus exhibits cooperative 

pleometrotis (Johnson, 2004), so when the queens were returned to the laboratory, 

they were placed into artificial nest enclosures in foundress associations (n=3 

queens per nest).  Four sizes of artificial nest enclosures were used as colonies 

grew: a test tube (47.8 cm2) was used until the first workers eclosed, a small 

plastic box was used until colonies were nine months old (209.5 cm2; Pioneer 

Plastics, Inc., North Dixon, KY, USA), and a large plastic box (625 cm2; Small 

Parts, Inc., Logansport, IN, USA) was used thereafter. Colonies were generously 

fed 1-2 times per week with grass seeds, frozen fruit flies, and droplets of 

Bhatkar, a synthetic diet for ants (Hölldobler and Wilson, 1990).  Multiple small 

test tubes partially filled with water and plugged with cotton were also provided at 

all times.  Colonies were reared in a dark incubator set to 32°C and observed in a 

laboratory in which the ambient room temperature ranges from 28-34°C.   

 

Experimental design 

 The primary aim of this study was to determine whether size affects the 

average per-capita metabolism within ant colonies.  Secondary aims included 

evaluating the extent to which activity, age, and consistent inter-colony 

differences influence metabolism within colonies.  To address these aims, a series 

of measurements (including metabolic rates, colony masses, and activity 

estimates) were recorded at multiple time points (Figure 4.1A) across the 

development of a series of colonies (n=12).  Colonies were measured in June-
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August 2012 (size manipulation experiment), and in September 2012 (control 

measurements).  

The Summer 2012 measurements included a repeated-measures 

experiment in which colonies were measured twice, once without manipulation 

and a second time following reduction in size. The schedule for this experiment 

(Figure 4.1B) involved acclimating colonies within a respirometry chamber for 24 

hours, recording respirometry and video data for 16-24 hours, and then censusing 

the mass of the colony.  Following the census, 50% of the worker, larvae, and 

pupae populations (by count, not by mass) were removed from the colony and set 

aside.  The remaining (reduced size) colony was given five days to rest and was 

then returned to a respirometry chamber to acclimate for 24 hours before 

repeating the respirometry and video recording (7 days following the first 

measurement).  

The measurements in September 2012 were designed to provide a control 

for the manipulation experiment (Figure 4.1C).  It followed nearly the exact same 

protocol as the manipulation experiment; the only difference was that the workers, 

larvae, and pupae that were removed following the first measurement were 

returned to their colonies after 24 hours and five days before the second 

measurement. Since in many ways a colony’s nest is part of its extended 

phenotype, for all of the repeated measurements in 2012, each colony was 

maintained within its own artificial nest enclosure. 
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Respirometry 

 Metabolic rates of whole colonies were estimated using flow-through 

respirometry (Lighton, 2008). To minimize disturbance, colonies were maintained 

within artificial nest enclosures which could be placed inside and sealed within a 

respirometry chamber, the lid of which was transparent to allow video recording 

of ant colony behavior simultaneous with respirometry (Figure 4.2A). The 

respirometry system was designed with push-mode plumbing (Figure 4.2B) with 

dry CO2-free air supplied by a compressed air tank and regulated at constant flow 

rate (250 mL min-1) with mass flow controllers (500 mL min-1 max; set to 50%).  

Air was passed through the reference cell of a CO2 analyzer and into a multiplexer 

(RM-8; Sable Systems International, Las Vegas, NV, USA) to automate switching 

of measurement between baseline and chamber airflows (Figure 4.2B).  The 

analyzer was calibrated using Nitrogen as a zero-CO2 gas and 11.9 ppm and 298 

ppm CO2/N2 balance gasses to set the span. Excurrent air was sequentially passed 

from the multiplexer through a Drierite column (Indicating Drierite, 10-20 mesh; 

W. A. Hammond Drierite Co. Ltd, Xenia, OH, USA) to remove water vapor, the 

sample cell of the CO2 analyzer, a Drierite/Ascarite column (Ascarite II CO2 

Absorbent, 8-20 Mesh, Thomas Scientific, Swedesboro, NJ, USA) to scrub CO2, 

and the fuel cell of an O2 analyzer (FC-2; Sable Systems International). The flow 

rate of the excurrent air was periodically checked for accuracy and stability (SS-4, 

Sable Systems International). I also confirmed the lack of back-pressure by 

periodically disconnecting the flow downstream of the CO2 analyzer and 

validating that there was no subsequent change in CO2 concentration.  



  100 
 
 
 

Temperature of the colony during each recording was estimated using with a 

thermistor fixed to the aluminum base of the respirometry chamber. 

 Each colony was given fresh food and water and placed into a 

respirometry chamber with ports disconnected from airflow but open to the room 

air 24 hours prior to the start of respirometry. Although all colonies were 

measured in chambers of the same size, our prior study has demonstrated that 

moderate variation in worker density does not explain patterns in colony 

metabolic rates (Waters et al., 2010).  Data were converted from analog to digital 

(UI-2, Sable Systems International) and recorded at 1 Hz with Expedata version 

1.1.18 (Sable Systems International).  Colonies were measured for 16-24 hours 

with repeat-recording enabled so that a file was saved every 1851 seconds.  The 

multiplexer was digitally controlled by Expedata to automate switching between 

baseline and respirometry chamber airflow measurements so that each recording 

included colony respirometry sandwiched between baseline data at the start and 

end of the recording.  By programming markers to be saved at a sequence of time 

points during the recording, it was possible to automate the baseline and drift-

correction analysis using a batch-processed macro within Expedata.  Following 

this procedure, all of the files for a given colony’s recording were appended in 

Expedata and exported as comma separated text for analysis in R v. 2.13.1 (R 

Development Core Team, 2011). Following each colony’s respirometry run, 

the wet mass of the colony was censused, counting the total number of queens, 

larvae, pupae, and workers and weighing each group to the nearest 0.1 mg. 
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 For six colonies at the start of the investigation, I measured the CO2 

production due to chamber debris.  To do this, the debris and water tubes were 

removed, placed in a respirometry chamber, and measured using the same method 

as applied to the colony measurements.  The fraction of whole colony CO2 

production attributable to the debris and water tubes averaged 0.0027 ± 0.0004 

(range: 0.0011-0.0044).  Since the measurement error attributable to debris was so 

small and since it did not scale with colony size (F1,4=1.18, p=0.34), debris 

measurements were not incorporated into the subsequent measurements or 

analyses. 

 

Colony activity 

 The activity patterns exhibited by the colonies in this study were analyzed 

by recording video of the colony nest enclosures and estimating the average per-

capita walking speed of all of the workers within each colony.  The video 

acquisition system, previously described (Waters and Fewell, 2012), enabled 

repeat recording of high quality uncompressed AVI video (2024 x 2024 pixels; 15 

frames per second).  The walking speeds of ants were estimated by manual 

tracking of all of the visibly moving ants within segments of video (30 s) which 

had been recorded at the end of respirometry (Meijering et al., 2012; Rasband, 

1997-2012).  Additionally, the size of the largest brood pile for each colony was 

measured in ImageJ by tracing the perimeter of these piles in frames of the video 

recordings of each colony. 
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Analysis of metabolic rate data 

 The data recorded by Expedata included CO2 and O2 concentrations of the 

excurrent airflow and the temperature of the respirometry chamber, saved as a 

sequence of baseline-corrected intervals (Figure 4.3). Reliable O2 data (based on 

signal to noise ratios) were only available for a series of six colonies, so these 

recordings were used to estimate the colony respiratory quotient (0.86 ± 0.02 SE) 

and subsequent metabolic rate estimates were based on CO2 data converted from 

units of ppm to Watts and standardized to 25°C assuming a Q10=2.0 (Lighton, 

2008).  Standardization of metabolic rate data to a single temperature was 

necessary to account for variation in room temperature.  Although 25°C is outside 

of the normal temperature range for these ants, its choice facilitates comparison 

across multiple data sets in the literature (Chown et al., 2007; Shik, 2010; Waters 

et al., 2010).  

 

Statistical analyses 

 All statistical analyses were performed in R version 2.13.1 (R 

Development Core Team, 2011) and all graphs were plotted using ggplot2 version 

0.8.9 (Wickham, 2009).  Where scaling data exhibited heterscedasticity, estimates 

of the coefficient and exponent in the allometric equation (2) were calculated 

using ordinary least squares (Model I) and reduced major axis regression on log10 

transformed data (Xiao et al., 2011).  Reduced major axis (Model II, also known 

as standard major axis) regression was conducted using the lmodel2 package for 

R (Legendre, 2011).  Paired comparisons were evaluated using the nonparametric 
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Wilcoxon signed rank test due to likely departure from normality and equal 

variance among comparisons with relatively small sample sizes (i.e., N=6-12 

paired observations).  In the results below, unless otherwise mentioned, estimates 

are presented as means ± standard error of the means. 

 

RESULTS 

Colony size and composition 

 Twelve colonies were censused before and after size manipulation in 

Summer 2012.  Prior to manipulation, the average colony mass was 1.10 grams ± 

0.12 SE and colony mass ranged from 0.32-1.70 grams.  The age of the colonies, 

when measured prior to manipulation was 351-380 days (Collected 3 July 2011, 

measured 18 June 2012 – 17 July 2012). 

The average colony prior to manipulation was composed of 2.4 ± 0.26 

queens (12.2 ±0.4 mg each), 33.4 ± 6.3 larvae (2.9 ± 0.4 mg each), 33.9 ± 9.2 

pupae (4.2 ± 0.2 mg each), and 255.3 ± 31.0 workers (3.5 ± 0.1 mg each).  The 

number of individuals within a colony ranged from 86-452 (workers ranging from 

70-400). 

Queen mass was not correlated with colony mass (r=0.21, p=0.53), larvae 

mass was nearly correlated with colony mass (r=0.56, p=0.06), pupae mass was 

not correlated with colony mass (r=0.21, p=0.52) and worker mass was obviously 

very strongly correlated with colony mass (r=0.90, p < 0.001).  The average per-

capita masses of queens, larvae, pupae, and workers did not correlate with colony 

mass (r=-0.20 – 0.31, p=0.26-0.92).   
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The manipulated colonies had masses approximately 0.5 times their 

original size, though this fraction ranged from 0.46-0.52 depending on the colony; 

the variation was due to the fact that queen number was not manipulated, there 

were occasionally odd numbers of ants, and there was occasional loss of worker 

escapees during manipulation.  There was however, no general trend of 

manipulation fraction depending on colony size (F1,10 = 0.369, p=0.56). 

 

Stabilization time for metabolic rates 

Although colonies were given 24 hours to rest after their nests were placed 

in the respirometry chamber, they exhibited increased activity following the start 

of flow-through respirometry; this increase in activity (i.e. walking/running) 

tapered off after 2-4 hours  (Figure 4.3D).  To determine more accurately the time 

period after which CO2 emission stabilized, I fit a series linear regression models 

to the time series respirometry data.  As the model was fit to data truncated to 

sequentially later start times, the significance of the negative slope estimated by 

the model decreased.  Based on this analysis, I concluded that the respirometry 

traces had stabilized after approximately 8.7 hours (Figure 4.4).  To avoid pseudo-

replication in all subsequent analyses, a single metabolic rate was estimated for 

each colony recording based on the average of data collected between 8.7-14.4 

hours (Figure 4.4).   
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Metabolic rate allometry of unmanipulated and reduced-size colonies 

Colonies and reduced-size colonies exhibited a hypometric relationship 

with metabolic rate (Figure 4.5). The exponent, estimated as the slope of a line fit 

by OLS regression on log transformed data (including unmanipulated and 

reduced-size colonies), was 0.79 ± 0.06 SE (95% CI: 0.66-0.92; R-squared: 

0.8883).  By comparison, the reduced major axis model estimated the exponent as 

0.84 (95% CI: 0.72-0.97).  For just the unmanipulated colonies, the OLS-derived 

exponent is 0.87 ± 0.11 SE (95% CI: 0.62-1.12; R-squared: 0.8582); these data 

were not significantly different from an isometric scaling relationship.  For just 

the post size-reduction colonies, the exponent was 0.75 ± 0.11 SE (95% CI: 0.51-

0.98; R-squared: 0.8293); this was a significant hypometric scaling relationship.  

Modeling the data in an ANCOVA design, there was not a significant 

improvement to the base model by accounting for different intercepts (p=0.67) or 

different slopes (p=0.43) for the measurements before and after manipulation. 

The average mass-specific metabolic rates after reducing colony size was 

significantly higher than before colony sizes manipulation (Wilcoxon signed rank 

test, N=12 paired observations, V=11, p=0.023, Figure 4.6A). The size 

manipulation lead to an increase in mass-specific metabolic rate in nine of twelve 

colonies, with post-manipulation metabolic rates on average 1.21 times higher 

than pre-manipulation metabolic rates.This effect size matches almost perfectly 

the theoretical prediction (1.20) based on equation 4 and is significantly greater 

than the alternative isometric prediction (95% CI: 1.07-1.35).   
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Control experiment testing for a possible effect of colony manipulation on 

metabolic rate 

 The control experiment was conducted using the six colonies that showed 

the greatest increases in mass-specific metabolic rate after colony size reduction.  

There was not a significant change in the mass-specific metabolic rate of colonies 

following the removal of 50% of the colony for 24 hours and its subsequent 

replacement (Figure 4.6B; Wilcoxon signed rank test, N=6 paired observations, 

V=17, p=0.218).  Visual inspection of the respirometry traces (Figure 4.7) for 

each colony before and after the control experiment reinforced this result and 

suggests that repeatability of metabolic rates was relatively high despite the 

handling of the workers. 

 Following the control experiment, six whole colonies had been measured a 

total of three times each, so I analyzed the repeatability of these metabolic rate 

estimates (Figure 4.8).  The repeated measures analysis of variance (Table 1) 

identified a strong effect of mass (p < 0.003), and there was not a significant 

effect of measurement period (p > 0.26), indicating good repeatability in 

metabolic rates within same-sized individual colonies. 

The control data can also be used to confirm the repeatability of metabolic 

allometry across time as the control measurements were conducted on colonies 

that had been previously measured (Figure 4.8).  Considering the six pairs of 

repeated measures together (N=12), the method of ordinary least squares 

regression on log10 transformed data predicts a scaling exponent of 0.63±0.08 SE 

(95% CI: 0.44-0.81; R-squared: 0.8548).  Considering just the first set of 
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measurements during the control (N=6), the scaling exponent was 0.53±0.08 SE 

(95% CI: 0.32-0.75; R-squared: 0.9208). Considering just the second set of 

measurements during the control (N=6), the scaling exponent was 0.76±0.10 SE 

(95% CI: 0.48-1.04; R-squared: 0.9348). 

 

Behavior 

The walking speeds of all ants (N=2,116 workers) visible within eight 

colonies during the first measurement of the size manipulation experiment were 

estimated by manually tracking individual positions across a 30-second video 

recording (Figure 4.9).  The distribution of walking speeds within each colony 

was strongly skewed to the right (positive skew) with average walking speeds for 

each colony at least twice the median walking speed.  While there was not a 

significant effect of colony size on mean walking speed (linear regression, 

F1,6=1.26, p=0.31), there was a significant effect of colony size on median 

walking speed (F1,6=6.74, p=0.04) with the median speed decreasing sharply with 

increasing colony mass (Figure 4.10).  Additionally, the fraction of the colony 

moving less than 1.0 mm s-1 increased with colony mass (F1,6=9.56, p=0.02), but 

there was not a significant trend of the fraction of the colony moving greater than 

15.0 mm s-1 (F1,6=0.14, p=0.72). Following experimental size manipulation, the 

walking speeds (for a sample of N=5 colonies) showed no significant change 

relative to the walking speeds prior to manipulation (Figure 4.11). 

 

 



  108 
 
 
 

DISCUSSION 

 Two alternative hypotheses could explain the metabolic hypometry 

observed for P. californicus colonies (Waters et al., 2010).  Smaller colonies 

might have higher metabolic rates per gram due to their smaller size.  

Alternatively, colonies might achieve larger sizes partly because they possess an 

intrinsically lower mass-specific metabolic rate.  The results of the current size 

manipulation experiment strongly support the hypothesis of a size-dependence of 

metabolism.  Reducing colonies to half of their size generated an increase in 

mass-specific metabolic rates to 1.21 times their rates as larger colonies, nearly 

exactly as predicted by equation 4.  If intrinsic differences among colonies in 

metabolic intensity were responsible for smaller colonies having higher metabolic 

rates, then no change in mass-specific metabolic rates would be expected 

following reduction of colony size. 

Our prior study (Waters et al., 2010) also showed that larger colonies had 

a higher fraction of workers inactive (not walking).  Again, this could be due to a 

direct effect of colony size, or it could be a function of the larger colonies 

achieving their large size partly by greater division of labor.  Our examination of 

locomotory activity patterns across colony size were generally consistent with our 

prior study.  I found that activity patterns of intact colonies scaled with colony 

size so that larger colonies were composed of slower-moving ants and a greater 

fraction of inactive ants compared to smaller intact colonies. However, the 

walking speeds of ants did not change significantly following the experimental 
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reduction of colony size, suggesting that the variation in walking speeds I have 

observed across colony sizes is not due to effects of colony size per se. 

Why might larger colonies have lower metabolic rates per gram but have 

workers walking with similar speeds as smaller colonies?  One possible 

explanation is that factors in addition to locomotory behavior (such as 

reproductive and growth rates) are likely to be important in determining whole-

colony metabolic rates.  Our previous calculations suggest that variation in 

walking rates is unlikely to completely explain variation in colony metabolism 

(Waters et al., 2010).  Another possibility is that compensatory mechanisms may 

be triggered by the size-reduction experiment. For example, the removal of nurse 

workers may have triggered DNA methylation changes in foragers that returned 

to performing nurse-related tasks (Herb et al., 2012).  Alternatively, the 

manipulation may have stimulated colonies to up-regulate growth processes in 

response to the reduction in size, stimulating workers to work more closely with 

brood piles.  

Although the difference was not statistically significant, I observed that 

nearly two months following the experimental size reduction, colonies were 

producing more brood than they had previously been (Figure 4.12).  This is 

consistent with the observation that brood production scales hypometrically with 

colony size, i.e., the number of brood produced per worker is greater in smaller 

colonies than larger colonies (Cao and Dornhaus, 2012; Michener, 1964).  

Although our behavioral analyses did not detect an increase in per-capita speed 

following the experimental size manipulation, it is possible that the large fraction 
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of stationary workers were in fact doing more work within the colony with respect 

to processing food and tending to the queen and brood, causing the higher mass-

specific metabolic rates in the reduced-size colonies.   

 Previous size-manipulation studies examining metabolic rate allometries 

in marine colonial organisms have identified surface areas necessary for growth 

as a critical factor in generating metabolic hypometry in these modular organisms 

(Nakaya et al., 2003; Nakaya et al., 2005; White et al., 2011).  Based on these 

observations, I might consider what the analogous surface areas are in social 

insect colonies and what effect the size manipulation had on these surfaces.  One 

possible surface area of importance is the surface around the piles of larvae.  

Workers frequently pile larvae into clusters, but the specific reasons why they 

create these brood piles are not clear.  However, there are potentially important 

consequences to the shape of these brood piles if the larvae are not well mixed 

within, namely, the size of the pile affects the ease with which workers may 

interact with larvae.  Larger piles make relatively fewer larvae accessible and this 

may reduce their ability to communicate the demand for work to the rest of the 

colony.  Thus, I predicted that the surface to volume ratios for brood piles would 

decrease with colony size and that following the experimental size reduction, the 

surface area to volume ratio of brood piles should increase.  Since the brood piles 

are effectively two-dimensional, I measured the perimeter of the piles as a proxy 

for their surface area and counted the number of larvae as a proxy for pile volume.  

Consistent with the predictions, the perimeter per larva ratio decreased with 

colony size (F1,22=8.93, p=0.006, Figure 4.13A), the perimeter scaled 
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hypometrically with the number of larvae (F1,22=8.93, p=0.006, Figure 4.13B), 

and the perimeter per larva ratio increased following the experimental reduction 

of colony size (Wilcoxon sign rank test, V=14, N=12 pairs, p=0.052, Figure 

4.13C).  The perimeter per larva ratio in reduced size colonies was on average 

1.52±0.12 times greater than the perimeter per larva ratio in whole colonies. 

Conceivably, greater access to brood could stimulate effort by the workers, 

leading to higher mass-specific metabolic rates in reduced-size (or simply 

smaller) colonies. 

 How is colony size perceived by the workers within a social insect 

colony?  The hydrocarbon profiles of eggs laid by the queens can communicate 

information about colony size across development (Moore and Liebig, 2010).  

Additionally, nutritional feedback between workers, larvae, and the queen may be 

critical in establishing growth patterns (Tschinkel, 1988).  The common theme to 

both of these mechanisms is that perception of colony size relies on physical 

interaction among the individuals within a social insect colony.  In whole P. 

californicus colonies, the interactions among workers exhibit a predominance of 

regulatory patterns not expected by animal social network models (Waters and 

Fewell, 2012).  Examining the dependence of these networks to colony size and 

their responsiveness to perturbation will make it possible to develop an integrated 

and mechanistic model for the hypometric relationship between colony size and 

metabolic rate in social insect colonies. 
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Figure 4.1. Protocol and timeline of experiments.  (A) A two-year timeline 

indicating the sequence of events reported in this manuscript.  (B) For each 

colony, the manipulation experiment spanned two weeks with sequential 
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recordings one week apart. The days identified above are for conceptual purposes 

only; since I constructed two respirometry chambers, it was possible to run 

colonies continuously and sequentially, always having one colony being measured 

while the next colony was resting in the second chamber in preparation for being 

measured the following day. (C) The control experiment followed nearly the same 

protocol as the manipulation, except the ants that were removed following the 

first measurement were returned to the colony one day later. 
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Figure 4.2.  Respirometry chamber and system design schematic.  (A) The 

respirometry chamber was constructed with an aluminum base, plexiglass lid, 

rubber o-ring, and multiple inlet/outlet ports.  It holds an artificial nest enclosure 

made up of a square petri dish (25 cm x 25 cm) with mesh-covered holes on the 

side placed to align with the respirometry chamber inlet/outlet ports.  (B) The 

airflow was plumbed as a push-model flow-through respirometry system with 

mass flow controllers (MFC), a baseline multiplexer (BL), CO2 analyzer 

(LICOR), Drierite (DRI) and Ascarite (ASC) columns, and an O2 analyzer (FC2).  

The baseline multiplexer switches the flow of air into the gas analyzers between 

the airflow coming from the chamber and a baseline air stream.  While the 

analyzers are baselining, the multiplexer maintains a continuous flow of air into 

the respirometry chamber from the second mass flow controller avoiding 

repeatedly disturbing the colony with changes in flow regime. 
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Figure 4.3.  Whole-colony flow-through respirometry and activity.  (A) A 

representative sixteen hour respirometry recording, showing alternating baseline 

and chamber recordings. (B) A single 10 minute CO2 recording.  (C) A single 10 

minute O2 recording. (D) Normalized bulk activity metric based on analyzing 

pixel changes in sequential video frames. 
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Figure 4.4.  Settling period and respirometry data over time.  The two sets of 24 

panels above display the complete respirometry data from the manipulation 

experiment.  Each pair of sequential columns represents a single colony, before 

and after size manipulation. The x-axis for the 24 top panels spans 16 hours of 

respirometry; for the bottom panels it spans only the last 6 hours of respirometry.  
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Figure 4.5.  Modeling metabolic rate allometry.  (A) Since the variance in 

metabolic rate data increases with mass, the data were log10 transformed to 

establish homoscedasticity as can be observed by the plot of residuals of an 

ordinary least squares linear regression model fit to the log10 transformed data.  

(B) On linear axes, mass and metabolic rate are plotted (solid circles represent 

colony metabolic rates prior to manipulation; open circles represent colony 

metabolic rates after size manipulation) and the power law equation is plotted 

with coefficient and exponent determined by back-calculating their values from 

the OLS regression on log10 transformed data.   
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Figure 4.6. Testing for a direct effect of colony size on metabolic rate. (A) The 

experimental size reduction (N=12 colonies, repeated measures) lead to a 

significant increase in mass specific metabolic rates.  (B) There was not a 

significant effect of the sham manipulation on colony metabolic rate in the 

experimental control (N=6 colonies, repeated measures).



  119 
 
 
 

 

 

Figure 4.7. Control experiment respirometry traces.  States “a” and “b” refer to 

the two repeated measures during this control experiment, before and after a 24-

hour removal of 50% of the colony mass. 
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Figure 4.8. Repeated measures of metabolic rates on a set of six colonies.  These 

colonies were measured first during the size manipulation experiment (labeled 

above as “Experiment”) and then twice during the control experiment (“Control 

A” and “Control B”).  Data are plotted along the x-axis grouped by colony and 

sorted by average mass across the three measurement periods.  
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Figure 4.9.  Trajectories of ants in a P. californicus colony.  (A) A still-frame 

from the video recording of a colony within its artificial nest and sealed within a 

respirometry chamber during flow-through respirometry.  Two clusters of brood 

are located near water tubes toward the bottom of the frame; the lid of a small 

petri dish containing food and debris is located toward the top-center of the frame.  

(B) In this image, the track of each ant’s movement within the nest is identified 

with a different color line.  The positions of each ant visibly moving were tracked 

every 5 frames across a 451 frame recording (30 s).  In this colony, I tracked a 

total of 161 workers; an additional 78 additional workers were present but they 

were not moving (e.g., standing over brood or stationary within a water tube).
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Figure 4.10. Analysis of walking/running behavior in P. californicus colonies.  I 

tracked 995 ants in 8 colonies (a total of 90,545 manually digitized coordinates) to 

determine how walking speeds scaled with colony size.  Generally, as colonies get 

larger, there is a greater fraction of inactive ants.  This can be seen above by (B) 

the significant decrease in median walking speed with colony size and in (C) the 

significant increase in the fraction of workers moving less than 1.0 mm s-1. 
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Figure 4.11. Analysis of walking/running behavior in P. californicus colonies 

before and after size manipulation (N=8 pairs). Although walking speeds 

exhibited a strong correlation with colony size and mass-specific metabolic rates, 

the experimental size manipulation did not affect the average, median, or 

distribution of walking speeds. 
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Figure 4.12.  Changes in colony composition following size manipulation and 

differences in mass specific metabolic rate.  From July to September 2012, the 

average number of larvae per colony increased.  At the same time, mass specific 

metabolic rates tended to increase.  
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Figure 4.13.  The geometry of brood piles in social insect colonies.  Brood piles 

contain a number of larvae which may be accessed by workers along the edge of 

the pile.  Are these piles spread out so that all of the larvae can be well-accessed 

by workers, or do they cluster? (A) The perimeter to larva ratio decreased with 

colony size, scaling with colony mass-0.90±0.21 (95% CI: -1.35 – -0.44).  (B) The 

perimeter of brood piles scaled hypometrically with larvae number0.22±0.07 (95% 

CI: 0.07-0.37). (C) Following the experimental size manipulation, which reduced 

the number of workers, larvae, and pupae by 50%, there was an increase in 

perimeter per larva ratio. 
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Repeated measures ANOVA 
     

formula = Watts ~ Mass * Measurement.Period + Error(Colony.ID/Measurement.Period) 

      

Error: Colony.ID      

 df SS MS F P 

Mass 1 7.33E-06 7.33E-06 237.157 0.00419 

Mass:Measurement.Period 2 1.72E-07 8.62E-08 2.7904 0.26383 

Residuals 2 6.18E-08 3.09E-08   

      

Error: Colony.ID:Measurement.Period 

 df SS MS F P 

Mass 1 1.50E-06 1.50E-06 20.8486 0.002586 

Measurement.Period 2 2.34E-07 1.17E-07 1.6279 0.262697 

Mass:Measurement.Period 2 1.13E-07 5.67E-08 0.7872 0.491614 

Residuals 7 5.04E-07 7.20E-08   

 

Table 4.1.  Results of a repeated measures analysis of variance modeling colony 

metabolic rate (Watts) as dependent on colony mass, measurement period, and 

colony.  While there was a strong effect of mass, there was not a significant effect 

of measurement period. 
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Chapter 5 

TOWARD A NETWORK MODEL OF METABOLIC REGULATION IN 

SOCIAL INSECT COLONIES 

 

Size and metabolism 

Size is among the most important factors in determining the biology of an 

individual animal (Bonner, 2006; McMahon and Bonner, 1983; Went, 1968).  

Characteristics that correlate with body size include lifespan, metabolism, and 

growth (Calder, 1996; Peters, 1983; Schmidt-Nielsen, 1995).  Despite the 

significance of these factors for fields ranging from ecology to human medicine, 

scientists have not yet been able to explain the mechanism that generates these 

patterns throughout nature (Chown et al., 2007; Glazier, 2005; Savage et al., 

2008).  Recent studies have demonstrated that similar patterns related to size 

occur in entire societies such as marine colonial organisms and social insect 

colonies, broadening the scope of these unexplained patterns (Fonck and Jaffe, 

1996; Nakaya et al., 2003; White et al., 2011).  The focus of this dissertation has 

been to develop the use of social insect colonies as model organisms to test 

hypotheses about the mechanistic basis for the observed allometric scaling of 

metabolic rate with colony size.  

The metabolic rates of all animals, including insects, can be highly plastic, 

and are extremely dependent on behavior.  Animal behaviors require time and 

energy (Cuthill and Houston, 1997), and measurements of metabolic rate integrate 

both of these variables.  In social insect colonies, as with individual animals, the 
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rates of biological processes and the budgets for energy supply and demand scale 

hypometrically with body size, meaning that larger animals have predictably 

lower mass-specific metabolic rates (Calder, 1996; Hou et al., 2010; Oster and 

Wilson, 1978; Peters, 1983; Schmidt-Nielsen, 1995; Waters et al., 2010). While 

one common theory suggests that the supply of energy limits metabolic rates in 

larger animals, being a major constraint to animal physiology and behavior 

(Brown et al., 2004; West et al., 1997), an alternative hypothesis is that demand 

for energy is lower in larger organisms, with behavioral regulation providing the 

mechanistic basis for patterns such as the ¾-power scaling of metabolic rate with 

body size (Reinhold, 1999; Ricklefs, 2003; Secor and Diamond, 1998).   

 

Metabolic allometry in social insect colonies 

It has long been hypothesized that since social insect colonies behave in 

many ways as functionally integrated superorganisms, they should likewise 

benefit from an economy of scale (Emerson, 1939; Wheeler, 1911).  A number of 

early studies examined whether or not a “group effect” influenced the metabolic 

rate of social insects.  In some ant species, such an effect was identified (Fonck 

and Jaffe, 1996; Galle, 1978), while in others it was not (Brian, 1973; Lighton and 

Bartholomew, 1988; Lighton, 1989).   Honeybees exhibit striking effects of group 

size, with metabolic rates scaling hypometrically in swarm clusters (Heinrich, 

1981a; Heinrich, 1981b) and entire nests (Southwick, 1982), apparently because 

these colonies use metabolic heat to thermoregulate, and mass-specific heat loss 

rates decrease as colony surface area to volume ratio decreases in larger colonies.  
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As described in Chapters 2 and 4, colonies of the seed-harvester ant, 

Pogonomyrmex californicus, consistently exhibit metabolic hypometry, with 

metabolic rates scaling with colony mass0.77±0.06 (Figure 5.1). This scaling 

relationship was robust to different experimental protocols, nest enclosures, 

experimental size manipulation, and colony age. The scaling exponents of 

colonies before and after size-manipulation were statistically indistinguishable 

(ANCOVA, F1,20=0.64, p=0.435) as were their scaling coefficients (ANCOVA, 

F1,21=0.19, p=0.67).  The colonies measured in 2010 (Chapter 2) were 

approximately three years old and the colonies measured in 2012 (Chapter 4) 

were approximately one year old; both exhibited statistically indistinguishable 

scaling exponents (ANCOVA, F1,21=0.63, p=0.436). The persistence of a 

relatively constrained and hypometric mass-scaling exponent strongly suggests 

that colony size is a critical factor in predicting the pace of life in social insect 

colonies.   

While the effect of size on colony metabolic rates remained similar across 

years, there were strong differences in the absolute metabolic rates. The mass-

specific metabolic rates of the colonies measured in 2012 were on average three 

times greater than the mass-specific metabolic rates of colonies measured in 2010.  

These colony cohorts exhibited similar colony compositions in terms of queen 

number, larvae and worker composition, and average body size, suggesting such 

parameters did not explain these differences.  However, average walking-speeds 

of workers and colony growth rates correlated with the metabolic variation across 

years.  The 2010 cohort exhibited average walking speeds between 0.3-1.0 mm s-
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1, while the average walking speed for workers in 2012 ranged from 1.0-4.0 mm s-

1. Additionally, the colonies in 2012 were younger than the ones in 2010, and they 

exhibited significantly greater net effective growth rates, defined as the ratio of 

their wet mass at the time of measurement to their age (Welch two sample t-test, 

t=5.23, df=16.6, p < 0.001; Figure 5.2). It should be noted that these calculated 

net effective growth rates may not reflect variation in colonial growth rates over 

shorter time periods. The higher metabolic rates, net effective growth rates and 

walking speeds of the 2012 colonies support the hypothesis that colony growth 

and worker behavior are strong determinants of colonial metabolic rates. 

One of the predictions of the supply-limitation hypothesis of metabolic 

allometry is that as metabolic rates become increasingly constrained with size, 

growth rates should scale accordingly.   The data presented here for P. 

californicus colonies do not match this prediction.  To the contrary, the largest 

colonies exhibited relatively high growth rates and relatively low metabolic rates 

(Chapter 2).  These scaling patterns, together with the fact that colonies in all 

studies were generously supplied with food, water, and space, suggest that 

differences in colony size may be associated with variation in metabolic demand. 

 

Integrating metabolism and behavior 

The central hypothesis of this dissertation is that increases in colony size 

are associated with changes in behavioral organization that reduce the mass-

specific demand for work which then decreases the mass-specific metabolic rate.  
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There are a number of (non-mutually exclusive) mechanisms which may plausibly 

operate to generate the observed metabolic and locomotory scaling patterns: 

 

1. Ergonomic optimization and the division of labor.  As colonies grow 

and the supply of resources into the colony increases, there is the potential 

for increased variance in worker size, morphology, task specialization, and 

spatial fidelity.  These factors may directly contribute to the development 

of a division of labor and improve the energetic efficiency of colony 

operations (Oster and Wilson, 1978). 

2. Scaling of work capacity relative to production and reproduction.  

Since much of the work performed by workers is related to care for and 

provisioning of larvae, the organization of this work depends on queen 

egg-laying rates and how these scale with colony size. Although the 

number of workers increases with the size of the colony, queen number 

does not.  Furthermore, queen egg-laying rates in a number of species do 

not depend on colony size (Brian, 1989; Porter and Tschinkel, 1985); in 

others it increases but not as fast as the supply of workers (Endler et al., 

2006).  As a consequence, the capacity for work within social insect 

colonies may scale faster than the demand for work imposed by the 

number of larvae, leading to the potential for a growing surplus of 

relatively idle individuals, a reserve workforce, as colony size increases.   

3. Work capacity scaling and the division of labor. The response-threshold 

model for the division of labor is based on the theory that workers vary in 
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the stimulus intensities required for them to engage in particular behaviors 

(Beshers and Fewell, 2001).  Individuals with relatively high response 

thresholds for a given task are more likely to be available for other tasks 

(or simply idle) as long as there is a sufficient supply of other individuals 

with lower response thresholds. Thus, if the supply for work increases 

faster than its demand, larger colonies are more likely to establish a 

division of labor than smaller colonies (Jeanson et al., 2007).  Indeed, the 

division of labor increases in colonies of P. californicus both with size and 

age (Holbrook et al., 2011). 

4. Social geometry.  A number of social behaviors may affect the demand 

for work as colony size increases. While workers have a tendency to 

gather brood into piles, thus securing them from predators, preventing 

loss, and centralizing their care near that of the queens, the piles 

themselves insulate larvae on the interior from access to workers and may 

act as barriers to the communication of larval growth demands (Brian, 

1956).  As such, there may be aspects of colony geometry that are affected 

by colony size.  For example, larger brood piles, which have a lower 

surface-to-volume ratio (Figure 4.13), may lead to lower brood feeding 

rates and growth.  Worker access to the queen may be similarly affected 

by increased crowding as colony size increases, with possible effects on 

her feeding, transmission of her fertility signal, and her ease of mobility 

within the nest.  Geometric considerations such as these may play a role 

not only in driving down metabolic demand with increasing colony size, 
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but they may also play a central role in generating Michener’s paradox 

(Michener, 1964), the observation that the effective productivity of a 

colony decreases with its size (Brian, 1953; Shik, 2008). 

5. Network structure and the efficiency of task-allocation.  One common 

element of each of mechanisms described above is that they all depend on 

interaction between the individuals within a colony.  Foraging workers 

need to interact with nurse workers to provision for the larvae, nurse 

workers interact with the queen and the larvae, some workers may conduct 

policing behavior among each other, and idle workers may remain inactive 

until stimulation by interaction with passing workers engages their 

response threshold.  Just as the nervous and cardio-pulmonary systems in 

vertebrates serve to transmit information about an animal’s environment 

and energetic state, so too might the interaction networks within social 

insect colonies serve as the conduits for information about energetic 

supply and demand.  Intriguingly, the communication networks in social 

insect colonies may serve as both the conduits for the transmission of 

information as well as the mechanism for behavioral regulation at the 

colony-level if the structure of these networks affected the allocation and 

distribution of work.  Since the potential for network complexity scales 

exponentially with colony size (the total number of possible interactions, I, 

depends on colony size, N, according to I ~ N2), it is possible that there 

may be barriers to efficient communication as colony size increases 

(Blonder and Dornhaus, 2011).  However, observations on the net 
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effective growth rates in P. californicus (Chapter 2 & 4) suggest that while 

larger colonies had lower mass-specific energetic demands, they also grew 

more than smaller colonies.  These observations suggest a novel 

mechanism for the hypometric scaling of metabolic demand with colony 

size, i.e. that metabolic demand may be proportional to the rate of 

information flux through a network. As colony size increases, information 

may be transmitted more slowly across the whole colony while local 

information transmission rate either stays constant or increases due to 

density.  As a consequence, larger colonies may be more able to buffer 

transient stimuli than smaller colonies and this may lead to a more 

efficient allocation of work with increasing colony size. 

 

Social insect colony interaction networks 

In 1988, E. O. Wilson and Bert Hölldobler described the organization of 

communication within social insect societies as “dense heterarchies” in which 

feedback patterns among highly connected individuals and task groups generate 

emergent complexity (Wilson and Hölldobler, 1988).  Among the most important 

foundations of social insect societies, communication provides the basis for the 

division of labor and its regulation (Hölldobler and Wilson, 1990; Hölldobler and 

Wilson, 2009).  Although individuals within colonies may communicate in many 

ways, from acoustic to chemical, direct physical interactions are hypothesized to 

play a central role in the organization of social insect colonies (Anderson and 

McShea, 2001; Gordon, 2007).  One way to study the patterns of physical 
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interaction is to aggregate sequences of observed interactions as a network model 

for communication. The structure of social interaction networks has been 

demonstrated to correlate with colony decision, immunity, and resource 

distribution (Dussutour and Simpson, 2009; Naug, 2008; Naug, 2009; Sendova-

Franks et al., 2010).  By uniquely marking individuals, recording their behavior, 

and tracking their interactions with other individuals within a colony, patterns of 

communication in P. californicus colonies were studied by examining the 

frequency of interaction and the topological structure of their interaction networks 

(Chapter 3). 

Since workers engage in tasks dependent on information received through 

interactions with other individuals within the colony, the structure of these 

interaction networks is hypothesized to influence the distribution and efficient 

allocation of work.  In a small colony, workers may be in direct contact with a 

relatively larger fraction of the colony than workers from a large colony, and as 

such, they would be exposed to a relatively greater amount information and 

stimulus, leading to task redundancy and a poor distribution of work.  As colony 

size increases, enhanced communication networks may distribute more work 

effectively leading to a larger reserve workforce and a relatively smaller 

proportion of individuals actively engaged in colony labor, thus reducing mass-

specific metabolic rates compared to smaller colonies.  

Investigating the topology of P. californicus interaction networks (Figure 

5.3) revealed a number of intriguing features.  Similar to scale-free networks, the 

degree distribution was strongly right-skewed with a few workers engaging in 
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many interactions and most workers engaging in fewer interactions (Figure 3.5 

and Figure 5.8).  There was also a preponderance of regulatory feed-forward loop 

subgraphs present in the colony networks (Chapter 3). The density of feed-

forward loop did not scale with colony mass (p=0.18) or worker number (p = 

0.44), but did increase as a fraction of behavioral triads as the number of larvae 

increased (F1,4=15.21, p=0.02, R2=0.80; Figure 5.4).   

The feed-forward loop involves three ants and three directional 

interactions. Adapting terminology from the transcriptional regulation literature 

(Shen-Orr et al., 2002), I may name the three ants as A, B, and C.  Ant A interacts 

with both B and C; ant B also interacts with ant C.  In this way, information is 

transmitted in a directional way from A and B to C and it is efficient in the 

directional transmission of information in that there are no mutual or negative 

feedback interactions.  One plausible hypothesis for the dominance of the feed-

forward loop is that use of this pattern provides increased reliability in the 

decision-making behavior of the receiving ant (ant C), since a change in its 

behavior may require a pair of coherent interactions from the other two 

individuals (A and B).  The feed-forward loop is a characteristic subgraph within 

metabolic and gene-transcription networks in which gene expression may be 

regulated only in response to persistent changes in an environment (Mangan and 

Alon, 2003; Mangan et al., 2006). The subgraph most associated with animal 

social interactions, the mutually-connected clique triad (Milo et al., 2004), was 

absent from the majority of P. californicus interaction networks (Waters and 

Fewell, 2012). 
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Within a social insect colony, larvae are the only individuals that grow, 

and thus most demand for food comes from the larvae. In Solenopsis invicta, a 

larval metabolic caste processes nutrients that are fed to the queen by workers 

thus generating a feedback cycle in which social interactions regulate egg-laying 

rate (Tschinkel, 1988).  In Lasius niger, workers forage for resources with 

different stoichiometric intake targets depending on the larval composition within 

the colony (Dussutour and Simpson, 2008; Dussutour and Simpson, 2009).  Thus, 

larval growth rate may be a principal factor in setting the metabolic demands for a 

colony, demands that drive the patterns of interaction and behavior of workers 

that forage for the resources to supply the growing larvae.  

The interaction and feedback between the larvae and worker populations 

may play a central role in regulating the scaling of work in social insect colonies.  

Wilson and Hölldobler (Wilson and Hölldobler, 1988) predicted that feedback 

loops such as this would be important in establishing emergent patterns of colony-

level organization and Fewell developed this concept further within the 

framework of a functional network operating with differential feedback between 

the task groups within a colony (Fewell, 2003).  While the behavior and metabolic 

rates of workers are ultimately influenced by their interactions with each other, 

their interactions with larvae may provide the mechanism to integrate the relative 

abundance of energetic supply and metabolic demand within the colony. 

A major long-term goal of research in this area should be to test these 

various proposed mechanisms for the hypometric scaling of colonial metabolic 

rates and behavior. Doing so would be facilitated by development of models that 
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incorporate the network interactions, as it seems unlikely that colonial scaling can 

be explained by autonomous individual behavior. One obvious null model for 

network interactions in colonies is a diffusion model, in which workers are 

hypothesized to interact randomly. While I know that this is not the case, if 

scaling patterns exhibited by such null models match the empirically observed 

patterns, this might allow determination of the specific aspects of colonial 

geometry, behavior distribution, or interaction pattern that explains hypometric 

scaling. I have begun tests of such a null model, but these remain preliminary 

(Appendix A). Nonetheless, these preliminary tests suggest that such random 

models likely do not explain the scaling of colonial behavior. Future directions 

will include extending the response-threshold model for the division of labor 

(Beshers and Fewell, 2001; Jeanson et al., 2007) so that its predictions may be 

assessed based on different network models for connectivity within a colony.  It 

will also be possible to experimentally manipulate the social geometry of a 

colony, such as by redistributing brood piles or the area for interaction between 

individuals to determine how these factors specifically contribute to the metabolic 

regulation and behavioral integration of whole colonies. 
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Appendix: A diffusion model for predicting the scaling of interaction rates 

 Understanding how colony size might affect interaction networks among 

ants requires the development of mathematical models of worker interactions that 

can include factors such as ant size, speed and nest size. A null model for the 

interactions within a social insect colony is that they proceed randomly in a 

manner similar to molecular diffusion, with interactions mathematically 

explicable by worker velocities and density. To explore this hypothesis, I 

developed a kinetic model for ant interaction frequencies based on the collision 

probabilities of randomly diffusing particles.  An alternative explanation for 

interaction patterns is that there is a functional basis to the interactions between 

workers.  These models are not mutually exclusive and there are data supporting 

each perspective.  Pogonomyrmex barbatus workers tend to interact more with 

each other at nest entrances, a spatially deterministic feature consistent with the 

diffusion model (Pinter-Wollman et al., 2011).  Acromyrmex heyeri foragers 

engage in significantly different interaction rates depending on whether they are 

in the initial or established phase of foraging, a difference with a functional basis 

in the need to communicate information about new resources early in foraging 

(Bollazzi and Roces, 2011).  

To estimate the collisional frequency of a single particle (or ant), the area 

of the nest’s surface it crosses may be estimated and the number of other ants’ 

paths it may intersect in a given time interval may be calculated based on ant 

density.  The area covered by a single ant on its trajectory may be calculated as 

the product of the distance traveled and the effective diameter of its interaction 
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with other ants.  The distance traveled by an ant may be found by taking the 

product of its average speed ( ) and the duration (∆t) of its travel.  The effective 

diameter ( ), within which it is likely to interact with nearby ants, depends on 

body size and may be approximated as close to 5.0 mm for an average-sized P. 

californicus worker.  Thus, the area of the nest surface occupied by an ant on its 

journey is given by: 

 

The number of times this ant collides with another depends on how many other 

ants’ paths it crosses, which depends on the density of ants within the nest 

enclosure (given by the ratio of the total number of ants, N, to the total area, 

). Thus, the collisional rate (Zi) of a single ant may be found by: 

 

The total collisional rate for the entire colony is one-half of the sum of all ants’ 

collisional rates (to avoid double-counting each interaction): 

 

This model predicts that per capita interaction rates should increase linearly with 

colony size, and total net interactions should increase exponentially with colony 

size (Fig. 5.5A). This effect occurs due to the increase in ant density with colony 

size.  
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Modifying the diffusion model for to match worker behavior 

Two major results of the kinematic analysis of worker walking speeds 

(Chapter 4) were that larger colonies tended to have more slowly walking workers 

and more workers "standing around."  Median walking speed decreased with 

colony size (Figure 4.10B).  There was also an increase in the relative proportion 

of stationary ants with increasing colony size (Figure 4.10C).   

To consider how these changes in walking speed across colony size might 

alter a diffusion model, I parameterized the model so that average worker speed 

inversely proportional to colony size, as described in Chapter 4. With these 

parameters, the model predicted a highly nonlinear relationship between per-

capita interaction rate and colony size (Figure 5.5B). 

While the random diffusion model assumed that ants are uniformly 

distributed throughout the nest and that density increases with colony size, these 

assumptions may not be accurate.  A previous study identified that even as colony 

size increases within a fixed enclosure, the workers maintain a relatively constant 

effective density by adjusting how much of the nest box they occupy (see Chapter 

2). If walking speeds are constant and density is held constant across colony sizes, 

per capita interactions do not change with size (data not shown). Revising the 

model so that density is held constant with respect to colony size (and speeds 

decrease with increasing colony size as before), the per-capita interaction rate is 

predicted to decrease with colony size (Figure 5.6F). 

The fact that predictions of the diffusion model regarding the scaling of 

per capita interaction rate vary dramatically with assumptions indicates that 
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verification of the model's parameters is critical in order to assess whether such a 

model can have utility in the describing the scaling of colony network 

interactions.  

 

Scaling of interaction rates with colony size and comparisons with the various 

diffusion models 

During the respirometry recordings conducted in 2012 (Chapter 4), video 

recordings of colony behavior were saved and used to explore the relationship 

between colony size, walking speeds, and interaction patterns between workers. 

Although data are available for both pre- and post- size-manipulated colonies, the 

data analyzed so far were for video recordings of colonies prior to the size 

manipulation. The methods for these analyses were similar to those previously 

described in Chapter 3 (Waters and Fewell, 2012), with the only difference being 

that individuals were not paint-marked but rather digitally marked and manually 

tracked using the MTrackJ plugin for ImageJ (Meijering et al., 2012; Rasband, 

1997-2012).   

How did per capita interaction rates change with colony size? The slower 

velocities and increased number of stationary workers led to no net change in per 

capita interaction rates across a range of colony sizes, despite the greater number 

of ants and the higher densities of ants  (Figure 5.6A, F1,3=0.54, p=0.516). If one 

considers only the ants that engage in interactions, the per capita interaction rate 

increased with the size of the group, suggesting that the effect of increasing ant 

density outweighed the slower velocities in larger colonies (Figure 5.5B, 
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F1,3=12.38, p=0.04).  As a scaling relationship, the whole-colony interaction rate 

scaled with the number of interacting ants1.24±0.05 (F1,3=572.5, p < 0.001; 95% CI: 

1.08-1.41).   

Are the diffusion models useful for predicting the scaling of interactions 

across colony size? Inclusion of additional colonies is probably necessary to 

answer this question, since it is very difficult to test against nonlinear models with 

such a low sample size. However, a number of factors suggest that the scaling of 

interactions in ant colonies is not well-predicted by a diffusion model. First, the 

decline in velocities in large colonies is not predicted by such random models. 

Second, the decline in velocities only applied to the colony as a whole, 

considering only the ants that were walking, there were not significant differences 

in walking speeds between colonies.  Similarly, the decrease in the fraction of 

ants walking in larger colonies does not fit with a diffusion model. Even if the 

decline in walking speed with colony size is incorporated into the diffusion 

model, the highly nonlinear pattern predicted by the model (Fig. 5E) does not 

seem to fit the observed data (Fig. 5A). More data are needed to reject such 

models with statistical power, but the data to date suggest that these simple 

diffusion models are not good descriptors of ant interactions in our colonies, 

perhaps because I lack good measures of actual ant density, or perhaps because 

workers seek or avoid each other in a manner not predicted by a diffusion-type 

model.  

The diffusion model for per-capita collision rates assumes that all of the 

ants within a colony move at the same speed, and as such, all individuals within 
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the colonies are predicted to exhibit the same per-capita interaction rate.  In 

reality, the distribution of walking speeds (Chapter 4) and interactions (Figure 

5.7) is far from uniform or normal, but rather is highly right-skewed.  The number 

of interacting ants increases with colony size, but larger colonies may have a 

larger fraction of relatively inactive ants that do not engage in interactions.  Thus 

in large colonies, a few ants have many interactions, while many ants have very 

few interactions, similar to the pattern observed for walking speeds for which 

larger colonies had more skewed speed distributions (Chapter 2). This result is 

consistent with the observation that larger colonies have an increased division of 

labor in which a few ants are doing most of the walking and communicating 

(Holbrook et al., 2011).   

Some other predictions of the diffusion models do fit with the empirical 

data. Per-capita interaction rates (among individuals engaged in interactions) did 

increase linearly with individual ant walking speeds (Figure 5.7). The overall 

(pooling all colonies) correlation between interaction rate and walking speed was 

significantly positive (r=0.32, p < 0.001).  The relationship was also significant (p 

< 0.05) in five of six colonies examined (Fig. 5.6). However, even for the 5 

colonies in which the relationship is significant, walking speed explained only a 

small fraction of the variation in per-capita interaction rate (average R2=0.16 ± 

0.07).  Individuals with the most interactions tended to exhibit not the highest 

speeds but relatively moderate speeds, again suggesting that a diffusion-type 

model is not predictive of ant interactions.  Observations of ant interactions also 

suggest that these are not random.  Interactions tend to make ants stop and 
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frequently result in their changing direction and/or speed, strongly suggesting that 

information exchange occurs, producing non-random walking patterns. 
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Figure 5.1.  Metabolic allometry of P. californicus.  The figure above shows the 

metabolic rate allometries of three sets of measurements of seed-harvester 

colonies.  In red are the data collected in 2010 and described in Chapter 2 (Waters 

et al., 2010) and the green and blue colors indicate the pre-manipulation and post 

size-manipulation data collected in 2012, described in Chapter 4.  Although there 

is a significant difference in the metabolic elevation (the 2012 measurements are 

approximately three times higher than in 2010), the equation at the bottom right 

indicates the common scaling exponent shared by the three allometries.   
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Figure 5.2.  Growth rates of colonies measured in 2010 (approximately three 

years old) and 2012 (approximately one year old). The 13 colonies measured in 

2010 exhibited net effective growth rates of 0.0011±0.00017 g day-1; the 12 

colonies measured in 2012 exhibited net effective growth rates of 0.003 ± 0.00033 

g day-1 
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Figure 5.3.  Social insect colony interaction network.  This network was 

constructed based on recording the antennal interactions between workers in a P. 

californicus colony across 30 s of video recorded simultaneously with flow-

through respirometry.  The network is composed of 102 nodes or vertices (each 

representing a unique worker) and 222 directional edges (representing interactions 

between the workers).  In this visualization, the nodes are scaled proportional to 

their degree (i.e., the sum of their in- and out-interactions).  The network can be 



  149 
 
 
 

deconstructed into 703 distinct triads (subgraphs of three connected nodes), 

3.13% of which are topologically identical to the feed-forward loop motif (four of 

which are highlighted above in red).  By contrast, when a similarly sized network 

(i.e., one preserving the local-degree distribution) is modeled with random 

interactions, it is only expected to exhibit the feed-forward loop in 0.72 ± 0.003% 

(SD) of the network triads (N=10,000 simulated randomized networks). 
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Figure 5.4.  Scaling of regulatory network structure.  The feed forward loop 

was identified as a subgraph within 5/6 P. californicus interaction networks 

measured using the video recorded during the analysis of respirometry in Chapter 

4.  In each of these cases, the subgraph density was significantly higher than 

expected given its density in the random models.  While there was not a trend of 

this subgraph’s density scaling with colony mass (p=0.18) or worker number 

(p=0.44), there was a strong trend of the feed-forward loop subgraph density 

increasing with the number of larvae (F1,4=15.21, p=0.02, R2=0.80). 
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Figure 5.5.  Predictions of the diffusion model for ant colony 

interaction/collision patterns. (A) If average speed is constant across a range of 

colony sizes, the per-capita interaction rates are predicted to increase linearly with 

colony size (density) and net interaction rates should increase with the square of 

colony size.  (B) If average speed decreases with increasing colony size according 

to the observed empirical pattern, then over a lower range of sizes per capita and 

net total interactions increase due to the effect of increased ant density, but at 
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higher ranges of colony size the effect of decreasing speed predominates, leading 

to a fall in per capita and total net interactions. the relationship between 

interaction rate and colony size becomes nonlinear.  This is because of a tradeoff 

as colony size increases between density increasing the probability of collision 

and speed decreasing the probability of collision. 
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Figure 5.6. Empirical data (A-C) and model estimates (D-F) for the scaling of 

per-capita interaction rates. (A) There was no trend of per-capita interaction 

rates increasing with colony size when considered based on the total number of 

workers. (B) There was a trend of per-capita interaction rates increasing with 

colony size when considered based on the number of actively interacting workers. 

(C) The fraction of a colony’s worker population actively involved with 

interacting with each other decreased with colony size. (D) The model was 
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parameterized so that larger colonies were composed of ants moving slower.  (E) 

The random diffusion model predicts a nonlinear scaling of per-capita interaction 

rates because the density is increasing with colony size (tending to increase 

collision frequency) but the speeds are decreasing (tending to decrease collision 

frequency). (F) If the model is modified so that density is preserved, per-capita 

interaction rates are expected to decrease with colony size. 
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Figure 5.7. Degree distribution and colony size.  The degree distribution is a 

probability distribution of worker interaction rates.  Shown above are the degree 

distribution for a small colony (180 workers) and a large colony (326 workers).  

Random-graph networks are characterized by normal shaped degree distributions.  

The observed interaction rates are not normally distributed among the workers 

within their colonies.  In this example, as colony size increases, this distribution 

becomes increasingly skewed, reflecting an increase in the variance in the per-

capita interaction rates; larger colonies may have a greater disparity between the 

number of individuals doing the most active communicating and those doing the 

least.  
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Figure 5.8.  Per-capita interaction rate and walking speed on the individual-

level.  There is a correlation between per-capita interaction rate and walking 

speed.  In six of the P. californicus colonies investigated in Chapter 4, individual-

level kinematic data were compared with the corresponding individual’s social 

interaction pattern.  The figures above plot the relationship between each ant’s 

average walking speed and their network degree (the sum of in- and out-

interactions they exhibited).  
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