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ABSTRACT 

The aim of this study was to investigate the microstructural sensitivity of the 

statistical distribution and diffusion kurtosis (DKI) models of 

non-monoexponential signal attenuation in the brain using diffusion-weighted 

MRI (DWI). We first developed a simulation of 2-D water diffusion inside 

simulated tissue consisting of semi-permeable cells and a variable cell size. We 

simulated a DWI acquisition using a pulsed gradient spin echo (PGSE) pulse 

sequence, and fitted the models to the simulated DWI signals using b-values up to 

2500 s/mm2. For comparison, we calculated the apparent diffusion coefficient 

(ADC) of the monoexponential model (b-value = 1000 s/mm2). In separate 

experiments, we varied the cell size (5-10-15 μm), cell volume fraction 

(0.50-0.65-0.80), and membrane permeability (0.001-0.01-0.1 mm/s) to study 

how the fitted parameters tracked simulated microstructural changes. The ADC 

was sensitive to all the simulated microstructural changes except the decrease in 

membrane permeability. The σstat of the statistical distribution model increased 

exclusively with a decrease in cell volume fraction. The Kapp of the DKI model 

increased exclusively with decreased cell size and decreased with increasing 

membrane permeability. These results suggest that the non-monoexponential 

models have different, specific microstructural sensitivity, and a combination of 

the models may give insights into the microstructural underpinning of tissue 

pathology. 

 Faster PROPELLER DWI acquisitions, such as Turboprop and X-prop, 

remain subject to phase errors inherent to a gradient echo readout, which 

ultimately limits the applied turbo factor and thus scan time reductions. This study 
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introduces a new phase correction to Turboprop, called Turboprop+. This 

technique employs calibration blades, which generate 2-D phase error maps and 

are rotated in accordance with the data blades, to correct phase errors arising from 

off-resonance and system imperfections. The results demonstrate that with a small 

increase in scan time for collecting calibration blades, Turboprop+ had a superior 

immunity to the off-resonance related artifacts when compared to standard 

Turboprop and recently proposed X-prop with the high turbo factor (turbo factor 

= 7). Thus, low specific absorption rate (SAR) and short scan time can be 

achieved in Turboprop+ using a high turbo factor, while off-resonance related 

artifacts are minimized. 
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Chapter 1  

INTRODUCTION 

Diffusion-weighted magnetic resonance (MR) imaging (DWI) allows the 

non-invasive probing of tissue structures in vivo in a scale of a few microns, 

opening a broad spectrum of clinical applications [1,2]. Despite its clinical 

usefulness, there exists a gap between the signal changes of DWI and underlying 

tissue microstructure [3,4] that impedes the understanding of related pathological 

mechanisms. 

The signal changes in DWI are typically modeled by the monoexponential 

model with a single parameter: apparent diffusion coefficient (ADC). The ADC 

model assumes free water diffusion in a homogeneous medium. In human brains,  

the monoexponential model is a good approximation at b-value = 1000 s/mm2, 

providing a measure of the mean diffusivity [5]. When the b-value is high (b > 

2000 s/mm2), the signal attenuation of DWI in vivo has been observed to deviate 

from a monoexponential relation [6,7]. 

Several phenomenological models have been developed to fit the 

non-monoexponential decay at high b-values, and their fitted parameters have 

been demonstrated to be potential biomarkers [8-13]. However, relationship 

between the fitted parameters and tissue microstructure is unclear and has been an 

active research area. 

The signal changes of DWI at high b-values arise from water protons with a 

slower diffusivity, which are expected to provide more information about 

interactions between water diffusion and microstructure at long diffusion times.    
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The hypothesis of this work is that these models of non-Gaussian water diffusion 

exhibit more specific sensitivities to microstructural changes relatively to the 

ADC. The hypothesis is tested by creating a Monte Carlo simulation of DWI 

experiments in a microenvironment composed of intra/extra-cellular 

compartments. Three simplified but pathologically relevant cell parameters: cell 

size, cell volume fraction, and membrane permeability are varied independently to 

study how the non-Gaussian water diffusion models correlate with the simulated 

biophysical changes. 

Another challenge of DWI is in data acquisition, which are commonly 

performed by single-shot echo planar imaging (EPI) method [14]. EPI method is a 

fast imaging method and is insensitive to patient motion. However, it suffers from 

geometric distortion and ghosting artifacts. The image resolution is also limited. 

An alternative approach is PROPELLER (Periodically Rotated Overlapping 

Parallel Lines with Enhanced Reconstruction) [15]. It is a multi-shot, fast spin 

echo (FSE) technique, providing high resolution images with minimal image 

artifacts. The major issues with PROPELLER are long scan time and high SAR. 

To address these issues, Turboprop [16] and X-prop [17] have been proposed to 

reduce scan time and SAR by incorporating gradient and spin echo (GRASE) 

sequence [18]. However, those methods remain subject to the phase error 

particularly at a high acceleration (turbo factor). This study presents a new phase 

correction to the turbo PROPELLER (Turboprop), called ‘turboprop+’. 

Turboprop+ allows a high turbo factor, which further reduces scan time and SAR, 

without compromising the image quality. The technique could be a promising tool 

for clinical and research DWI. 
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The following is a summary of the upcoming chapter contents: 

Chapter 2 introduces basic principles of MRI, including relaxation, image 

contrasts, and imaging method. 

Chapter 3 presents the fundamentals of diffusion physics, covering from 

Einstein’s theory of Brownian motion to anomalous diffusion. The water diffusion 

in biological tissues is also discussed. 

Chapter 4 introduces diffusion-weighted MR imaging, including the current 

methods of biophysical modeling and data acquisition. 

Chapter 5 presents a study of behaviors of the non-monoexponential DWI 

models using a clinical study and a Monte Carlo simulation. 

Chapter 6 proposes the developments of the whole-blade method and 

turboprop+ to address issues with PROPELLER. 

Chapter 7 summarizes the contributions presented in this work and discusses 

future directions. 
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Chapter 2 

MR PHYSICS 

Nuclear magnetic resonance (NMR) is a physical phenomenon that was first 

discovered independently by Felix Bloch and Edward Purcell, who shared the 

Nobel Prize in physics in 1946 for this discovery. At that time, NMR was used to 

study the molecular structures and composition of chemical substances in 

chemistry and physics. Until 1973, the first NMR spatial image was constructed 

by Paul Lauterbur through the use of linear field gradients. This imaging 

technique, called magnetic resonance imaging (MRI), allows for in vivo probing 

tissue properties from various, unique perspectives, greatly facilitating the 

advancement of biology and medicine. 

 MRI shares the similarities with computer tomography (CT). Both belong to 

tomographic modalities that produce the anatomic images of a selected part of the 

body. However, there are two fundamental differences. First, unlike X-ray in CT, 

MRI poses no risk of ionizing radiation by applying magnetic fields and 

delivering radio waves through the body. Secondly, image contrast in CT is 

dependent on the attenuation of the X-ray beams, which are related to the electron 

density and effective atomic number of the tissues. The contrast derived in MRI 

offers immense flexibility, reflecting compositions of chemical elements and 

dynamics of physical mechanisms. For instance, MRI is able to measure the 

homodynamic response during the neuron activation, the method called functional 

MRI (fMRI). Another example is the arterial spin labeling (ASL), which quantify 
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the tissue perfusion through the blood flow dynamics. Nonetheless, the drawbacks 

of MRI include high cost, long scan time, and various image artifacts. 

This chapter introduces basic MRI principles, starting from single atomic 

nuclei to the macroscopic magnetization in an image voxel. The basic MRI 

contrasts and imaging methods are discussed. The contents of this chapter are 

summarized from references [19-21]. 

2.1 Origins of the MR Signal 

2.1.1 Nuclear Spin and Magnetic Moment 

 Atomic nuclei are composed of protons and neutrons, both of which possess 

two physical properties: spin angular momentum and magnetic momentum. Spin 

angular momentum can be envisaged as a rotation around its axis. The orientation 

of the axis is related to the magnetic moment (μ), a behavior that is referred as a 

magnetic dipole and can be described by the right-hand rule in a classical picture 

(Fig. 2.1). A nucleus can be composed of multiple protons and neutrons, and its 

net magnetic moment is thus the vector sum of the magnetic moments of all the 

protons and neutrons. Because the pair of protons or neutrons tends to produce 

magnetic moments with opposite directions, their resulting net magnetic moments 

cancel out. For instance, the common isotope of carbon: 12C is with 6 protons and 

6 neutrons exhibits no net magnetic moment and cannot be used for MRI. Instead, 

1H only consists of one single proton and is abundant in human body. Therefore, it 

is by far the most used nucleus for MRI, and is the main focus of this dissertation. 
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Figure 2.1: Illustration of a conceptual magnetic dipole with a north and south 
poles. The strength and orientation of this rotation is given by the magnetic 
moment: μ. 

2.1.2 Magnetization 

 The basic idea of MRI is to detect the magnetic moment through Faraday’s 

law of induction, so the large net magnetic moment is required to induce a 

detectable current in a coil. However, the magnetic moments of hydrogen 1H in 

human body are oriented randomly, and the net magnetic moment is zero. To 

ensure the magnetic moments of protons are aligned in a single direction, a strong, 

static magnetic field B0 is applied to human body, creating a net magnetization. 

The amount of the net magnetization is related to the energy distribution. For 

hydrogen 1H, the gap between two energy states are: 

        0ΔE = γhB                         (2.1) 

where γ is the gyromagnetic ratio; γ = 42.5 MHz for 1H. The lower energy state E1 

with spin population N1 in tends to align with the direction of the applied static 

magnetic field B0, whereas the higher energy state E2 with spin population N2 

tends to orient in opposite to the direction of the magnetic field. The ratio of spin 

populations N2 to N1 is governed by the Boltzman distribution: 
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1

2

N ΔE= exp( )
N kT

                (2.2) 

where k is Boltzmann’s constant and T is absolute temperature. With T equals 

room temperature, the difference in the spin populations can be approximated to 

be: 

0 1 2
1 2

B (N +N )hγN  - N = ( )
2k T

             (2.3) 

This indicates that the detectable magnetization is proportional to the strength of 

static magnetic field B0 and the total protons, but is inversely proportional to the 

absolute temperature. The proportion of ‘excess’ spins, however, is very small (~ 

10-6) at room temperature (~ 300 K) and B0 ~ 1.5 T. 

2.1.3 Precession and Radiofrequency Excitation 

 When a spin is placed in the applied static magnetic field B0, a torque is 

exerted on the spin toward the alignment with the B0. Because the spin with the 

magnetic moment has its own rotation, these combined forces lead to the spin 

precession around the axis of the B0 (Fig. 2.2a). The angle with the B0 depends on 

the initial orientation of spins (Fig. 2.2b). The angular frequency ω of spin 

precession is proportional to the B0: 

0 0ω  = γB                          (2.4) 

The angular frequency of spins with random orientations is identical. But because 

spins’ orientations are random, the net magnetic moment of spins: M only exists 

along the longitudinal direction, proportional to the number of excess spins (Eq. 

(2.3)), whereas the transverse magnetic moments cancel out. 
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Figure 2.2: a: Spin precession with the magnetic moment: μ in the presence of a 
static magnetic field B0. b: Multiple spin precession with random orientations. 

Through the use of static applied magnetic field B0, the magnitude and 

direction of a net magnetic moment are stationary at thermal equilibrium. The 

stationary net magnetic moment is unable to induce a detectable electric current, 

according to Faraday’s low of induction. In MRI, radiofrequency (RF) waves are 

applied to irradiate the protons and disturb thermal equilibrium. This results in a 

net transverse magnetic moment rotating with the angular frequency ω (Eq. (2.4)). 

Because this disturbing of thermal equilibrium with applied radio waves is 

temporary, system eventually re-attains thermal equilibrium. The electromagnetic 

radiation (EM radiation) is the mechanism that produces image contrasts of MRI. 

The EM radiation is also applied in computer tomography (CT). The essential 

difference is that the energy induced by RF waves in MRI is much lower than the 

energy by X-rays in CT, and poses no health risk to human body. 

 To irradiate the protons, the RF energy has to be exactly fills the energy gap: 

∆E (Eq. (2.1) between two (low and high) energy states: 

RFΔE = hν                          (2.5) 

In other words, the RF waves have to oscillate in resonance with the angular 

frequency of protons (ω). When this energy gap is filled, the energy exchange 
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occurs between the two populations of protons with low energy state and high 

energy state. 

Figure 2.3 illustrates a classical figure of this energy exchange. An applied 

static magnetic field leads to a spin precession around the axis of the magnetic 

field. If another magnetic field B1 rotating at the identical angular frequency as 

the spin precession is applied at the transverse plane, it exerts a torque tipping the 

magnetic moment into transverse plane (Fig. 2.3a). When the magnetic moments 

move toward the transverse plane, the net magnetization M, which is originally 

pointed at longitudinal direction, also moves toward the transverse plane. Because 

the spins and magnetic field B1 rotate at the same angular frequency (ω), the 

dynamic behavior of the net magnetization M can be described in a rotating frame 

(Fig. 2.3b). The flip angle: θ is related to the length of time t when the magnetic 

field B1 is applied. 

1θ = γB t                         (2.6) 
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Figure 2.3: The evolution of a spin magnetic moment: μ (a) and a net 
magnetization: M (b) in the presence of a static magnetic field B0 (z direction) and 
a magnetic field B1 rotating in resonance with the spin precession (x, y plane). 
The net magnetization: M is in the rotating frame (x’, y’, z’). 

2.2 Relaxation and Image Contrasts 

2.2.1 Bloch Equation 

 The RF magnetic field B1 is applied for a short period of time. When it is 

removed, the RF energy emission starts to take place, and the system gradually 

regains thermal equilibrium, where the net magnetization re-aligns with the 

direction of the static magnetic field: B0. The rate of this RF energy emission 

depends on the chemical and physical environment of the spins, giving rise to the 

MRI contrasts. The evolution of the net magnetization: M = [Mx, My, Mz]T 

during the RF energy emission can be classically described by the Bloch 

Equation: 

x y z 0

2 1

(M x + M y) (M  - M )dM  = M γB -   - z
dt T T

×         (2.7) 

B is the applied magnetic field, including the static magnetic field B0 and RF 

magnetic field B1. M0 is the net magnetization at the thermal equilibrium. 
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Assuming the RF magnetic field B1 is just removed, and the applied magnetic 

field B only includes the static magnetic field B0 applied along z axis, the time 

derivative of the net magnetization: 

               x
0 y

2

dM M   = ω M  -   
dt T

x                    (2.8) 

y y
0 x

2

dM M  
 = -ω M  -  

dt T
                   (2.9) 

0

1

(M  - M ) dM =  -  
dt T

zz                   (2.10) 

The resulting time evolving magnetization: 

2

t
T

x x 0 y 0M (t) = (M (0) cos(ω t) + M (0) sin(ω t))e   
−

     (2.11) 

2

t-
T

y x 0 y 0M (t) = (M (0) -sin(ω t) + M (0) cos(ω t))e       (2.12) 

1 1

t t- -
T T

z z 0M (t) = (M (0)) e  + (1 - e ) M                 (2.13)  

The equations (2.11-2.13) indicate that the transverse magnetization rotates 

around the z-axis with an angular frequency ω0, and attenuates to zero when time 

goes to infinite (t → ∞). The longitudinal magnetization progressively grows to 

the equilibrium magnetization M0. The relaxation rates T1 and T2 are to be 

discussed in the later sections. 

2.2.2 T1 and T2 relaxation 

 As described in Eq. (2.13), T1 is the rate that determines how long of the 

longitudinal magnetization Mz reaches to the equilibrium magnetization M0. This 

process involves RF energy emission from the nuclear spin system to its external 

environment, so T1 relaxation is also called “spin-lattice” relaxation. Similar to 

RF energy radiation (Sec. 2.1.3), this RF energy emission of a spin needs to be 
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induced through a surrounding magnetic field fluctuating near the angular 

frequency of spin precession (ω0). The molecular tumbling rate is related to the 

molecular size and the state where the molecule is bounded or restricted. When 

the water is in a partially bounded or restricted state as bounded to proteins and 

other macromolecules, T1 relaxation is the most effective, and T1 relaxation time 

is short. Instead, for free water or protons on large macromolecules and in 

membrane lipids, the molecular tumbling rate is either too fast or too slow 

relatively to ω0, and T1 relaxation time in those tissues is long. 

 T2 determines the rate of the attenuation of transverse magnetization Mxy (Eq. 

(2.11-2.12). The RF energy emission results in an attenuation of transverse 

magnetization Mxy, and a re-growth of longitudinal magnetization Mz. However, 

T2 relaxation can also result from a change in the local magnetic field that lead to 

a loss of phase coherence of spins. The change in the local magnetic field is 

non-stationary and occurs when there is an interaction between spins or an 

alternation in the chemical environment. Therefore, T2 relaxation is called 

“spin-spin” relaxation. If the molecular tumbling rate is slow, protons experience 

the local magnetic field inhomogeneity, and the incoherent phases of protons 

shorten T2 relaxation time. Conversely, if the molecular tumbling rate is fast, the 

incoherent phases of protons caused by the local magnetic field inhomogeneity is 

averaged out in a short period of time, leading to a long T2 relaxation time. 

 These additional factors that lead to T2 relaxation make the T2 relaxation 

time shorter than the T1 relaxation time. Another difference is that T2 relaxation is 

less dependent on the static magnetic field B0, which related to angular frequency 

of spin precession (ω0) (Eq. (2.4)). At the static magnetic field B0 = 1.5 T, the T1 
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relaxation time of gray and white matter are around 800 and 900 ms, and the T2 

relaxation time of gray and white matter are around 100 and 92 ms [21]. 

2.2.3 Free Induction Decay 

 The net magnetization: M right after the 90º RF pulse is on the transverse 

plane rotating at the frequency (ω0) (Eq. (2.11-2.12)). If a receiver coil is placed 

along the direction of the transverse plane, the time-varying magnetization: M 

induce an electric current oscillating at the frequency (ω0) and the amplitude of 

the current attenuates with time when the spin phase progressive loses phase 

coherence (Fig. 2.4). The detected signal decay is called free induction decay 

(FID). 

 This decay rate of the transverse magnetization Mxy is determined by T2 

relaxation (Eq. (2.11-2.12)). In reality, there are other factors that also create the 

phase incoherence of protons, including B0 magnetic field inhomogeneity and 

magnetic susceptibility. Thus, the decay rate of FID is faster than T2, and is called 

T2
* (T2

* < T2). These factors create frequency shifts from the angular frequency of 

spin precession (ω0) that are stationary. The separation of the stationary frequency 

shifts and T2 relaxation is expressed as: 

*
2 2 2_int

1 1 1= +   
T T T

                    (2.14) 

where T2_int refers to the decay rate resulting from the stationary frequency shifts. 
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Figure 2.4: The magnetization M immediately after a 90º RF pulse and an induced 
free induction decay (FID) from a receiver coil. 

2.2.4 Spin Echo and T2 Contrast 

 T2 relaxation is a result of non-stationary frequency shifts of spin precession, 

a fact that can be used to separate it from T2
* attenuation. In this section, a method 

used to produce T2 contrast is described, called “spin echo”. As shown in Fig. 2.5, 

spins de-phase immediately after a 90º RF pulse, leading to a FID (T2
* 

attenuation). At time t2, the phase shift (∆θ) due to the stationary frequency shift 

(∆ω0 = γ∆B0) can be represented by: 

   t2 0 2 0Δθ  = ω (t - t )                      (2.15)  

This phase shift is a factor of (t – t0). It indicates that if this phase is reversed, it is 

possible to re-create the phase coherence at t3 by applying a 180º RF pulse at time 

t2 to reverse the phase shift ∆θt2 to - ∆θt2. If (t3 – t2) equals (t2 – t0), the 

accumulated phase shift at time t3: 

t3 0 3 2 0 2 1Δθ  = ω (t - t ) + (-ω (t - t )) = 0            (2.16) 

Thus, the phase coherence is re-created (Fig. 2.5). The echo produced by this 

phase coherence is called “spin echo”. The time t3 is called “echo time” (TE). 
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Figure 2.5: Time-evolution of transverse magnetization Mxy and spin phases 
during applications of RF pulses (B1) of 90º and 180º. 

 The spin echo method is a very important development in MRI by allowing: 

(1): a measurement of T2 relaxation and (2): an adjustment of echo time (TE). 

Because different tissues have different T2 relaxation, the flexibility of adjusting 

TE enables the optimization of T2 contrast in tissues. 

2.2.5 Gradient Echo and T1 Contrast 

 In spin echo method, 180º RF refocusing pulse has to be placed after the FID 

to avoid the signal overlap between FID and spin echo (Fig. 2.5). Therefore, TE is 

normally long in spin echo method. Long TE is beneficial to optimization of T2 

contrast in tissues, but not suitable for optimized T1 contrast in tissues that 

requires a short TE. To produces an echo at short TE, the section describes a 

method, called “gradient echo”. 
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 As shown in Fig. 2.6, a magnetic field gradient is applied immediately after a 

90º RF pulse. A negative lobe gradient creates a de-phasing effect to the FID, 

leading to a very rapid decay of FID. Then a positive gradient lobe creates a 

re-phasing effect, producing an echo at TE, where the negative and positive 

gradients cancel each other, and the signal continues to attenuate after TE. 

 Since the re-phasing effect by the positive gradient lobe is only acted on the 

de-phasing effect by the negative gradient lobe, those phase shifts caused by T2
* 

relaxation still persist, and the magnitude of the gradient echo is affected by T2
* 

relaxation: 

                        
E
*
2

t- 
T

xy E 0M (t ) = M e                    (2.17) 

As described in Eq. (2.10), T1 relaxation determines the rate of re-growth of 

longitudinal magnetization Mz. It indicates that to generate image contrast 

between different tissues, the echo should be produced before the longitudinal 

magnetization Mz of tissues reaches the thermal equilibrium M0. Second, because 

only transverse magnetization is detectable (Fig. 2.4), a 90º RF pulse is required 

to “tip” the longitudinal magnetization Mz into the transverse plane. 

One standard method for detecting T1 relaxation is the inversion-recovery 

pulse sequence (Fig. 2.7). Immediately after a 180º RF pulse, the initial 

longitudinal magnetization Mz is -M0, and it starts to re-grow at a rate T1. The 

longitudinal magnetization at time t2 before a 90 º RF pulse is: 

2

1

t- 
T

z 2 0M (t ) = (1- 2 e ) M                   (2.18) 
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Figure 2.6: Time evolution of transverse magnetization Mxy with applications of a 
90º RF pulse and magnetic field gradient. 

 

 
Figure 2.7: Illustration of pulse sequence: inversion recovery and the time 
evolution of transverse magnetization. 
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After a 90º RF pulse, the longitudinal magnetization Mz is tipped into the 

transverse plane, and it attenuates at a rate T2
*. The transverse magnetization Mxy 

at time t3 can be represented: 

3 2 2
*
2 1

(t - t ) t- - 
T T

xy 3 0M (t ) = e |1- 2 e | M               (2.19)  

2.3 2-D Imaging Methods 

 This section describes the most common way to collect 2-D images using a 

slice selection and a subsequent 2-D spatial encoding (frequency-encoding and 

phase-encoding). 

2.3.1 Frequency-encoding and k-space  

 When a magnetic gradient is applied along longitudinal direction (Fig. 2.8), a 

linearly increasing magnetic field is created. Because a RF excitation requires a 

condition of resonance, oscillating frequency of RF magnetic field B1 can be 

adjusted to match the precession frequency of the selected slice location. The 

bandwidth (BW) of the RF magnetic field is the slice thickness ∆z:  

zBW = γ G  Δz                      (2.20) 

Ideally, the RF magnetic field function B1(t) is a time-infinite sinc function sinc(t), 

corresponding to a rectangular function in frequency domain. In reality, the 

truncation effect of the sinc function leads to a tapering-off effects of the 

rectangular function in frequency domain. This non-rectangular slice profile could 

possibly excite tissues outside a prescribe slice, an effect called “cross-talk”. In 

clinical MR imaging, it is commonly to leave a small gap between slices. 
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Figure 2.8: Illustration of slice-selective excitation using a magnetic filed gradient 
Gz. 

 After a RF field succeeds in exciting a slice, spatially localized information 

of transverse plane (x, y) is needed to produce a 2-D image. For instance, tissues 

A and B are located at different location and have different relaxation rate T2
* (Fig. 

2.9). If a FID is collected right after the excitation, the data consists of a combined 

T2
* from tissues A and B. However, when a magnetic gradient is applied along x 

direction, the precession frequency of tissue A (ωA) is slower than that of tissue B 

(ωB). Thus, the T2
* decay from tissue A and tissue B can be differentiated through 

the Fourier transform of the FID signal (Fig. 2.9). This Fourier relationship (time 

(t) versus precession frequency (ω)) can be represented as: 

s(t) = m(ω) exp(-iωt) dω∫                (2.21) 

where ω = γGx. Through the variable transformation, this Fourier relationship can 

be converted to a space (x) versus spatial frequency (kx): 

xs(k ) = m(x) exp(-ik x) dxx ∫               (2.22) 

where kx = γGt or 
t

x 0
k  = γ G(τ)dτ∫ . Eq. (2.22) describes how a spatially 

information can be encoded by a applied magnetic gradient G.. The method is call  
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Figure 2.9: Illustration of spatial localization method using a magnetic gradient 
applied along x. The Fourier transform (F.T.) of FID signals yield two peaks 
located at ωA and ωB (ωA < ωB). 

frequency-encoding method. The spatial frequency domain kx is referred as 

k-space. 

 k-space scheme is very helpful in illustrating the trajectory of collecting MRI 

signals. Figure 2.10 shows an example of k-space trajectory using gradient echo 

method. Despite the k-space traversal occurs during the time interval t0-t1-TE-t2, 

the data acquisition is only performed during the time interval t1-tE-t2. There are 

several reasons for selecting this acquisition time interval. First, the center of 

k-space, which contains the most information of object, can be well collected at a 

controllable timing (tE). Because of the hardware limitation and patient safety 

concern, there is a rise time for gradient to settle and data acquisition cannot be 

started immediately at t0 (Fig. 2.10). Second, the accuracy and uniformity of 

k-space data can be improved. The magnitude of an image object normally is 

slow-varying in space, so the signal intensity outside the central k-space is small. 

If data acquisition starts from the center of k-space, the small signal intensity out- 
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Figure 2.10: Illustration of k-space trajectory of the gradient echo method. 

side the central k-space is even diminished by T2 or T2
* relaxation. This relaxation 

effects could potentially result in a filtering effect, creating an image blurring. 

2.3.2 Phase-encoding 

 For a 2-D image, it requires a data acquisition along ky direction of k-space. 

Because only one data point is collected at a time, it is impossible to simultaneous 

apply frequency encoding along y direction. However, the phase information in 

Fourier transform can be used to help with spatial localization in y direction. As 

shown in Fig. 2.11, the first wave vector adds no phase into the collected signals. 

The measured signals would be signals A + C oscillating at ω1, and signals B + D 

oscillating at ω2. The second wave vector adds a 180º phase to the first row (A 

and B) and a zero phase to the second raw (C and D). The measured signals would 

be signals - A + C oscillating at ω1, and signals - B + D oscillating at ω2. 

Therefore, signals A and C, and signals B and D can be solved through the 

measured signals at ω1 and ω2 respectively.  
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Figure 2.11: Illustration of frequency-encoding gradient Gx and phase-encoding 
gradient Gy, where ω2 > ω1. Two wave vector created by Gy: N = 0 (Gy = 0), and 
N = 1 (Gy = (γ ty Ly)-1). ty is the time duration of phase-encoding gradient. Ly is 
the object length in y direction. 

The higher resolution in y direction thus requires more data collection along 

phase-encoding direction to resolve the signals in y direction. For instance, a data 

matrix of 128 × 128 requires 128 phase-encoding lines. The 2-D image can then 

be obtained through a 2-D Fourier transform: 

x y x ys(k ,k ) = m(x, y) exp(-i(k x + k y)) dxdy∫         (2.23) 

where 
t

x x0
k  = γ G (τ)dτ∫ , 

t

y y0
k  = γ G (τ)dτ∫ . 

2.3.3 2-D Spin Echo Pulse Sequence 

 Normally, it is difficult to complete a 2-D k-space sampling in one excitation, 

due to the T2
* and T2 relaxation. One way is to perform multiple excitations for 

each echo. In each excitation, there is an additional time period after echo time TE 

because the longitudinal magnetization has to be fully recovered from the 

previous excitation. The time interval between each excitation is called repetition 

time TR (Fig. 2.12). In human brains, TR is larger than TE by a factor above 10, 

because T1 relaxation time is longer than T2 relaxation time. The total scan time 

for 2-D k-space sampling is thus (number of phase-encoding lines) × TR. 
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2.3.4 Small Flip Angle and Gradient Echo Pulse Sequence 

 In spin-echo method with a flip angle of 90º, the fully recovered 

magnetization requires a long TR and a long scan time ((number of 

phase-encoding lines) × TR). When a small flip angle of RF pulse is used, it takes 

less time for full recovery of Mz (smaller TR). The scan time thus can be 

potentially reduced with a small flip angle. This section describes the gradient 

echo method with a small flip angle. 

 Instead of assuming a full recovery of Mz in spin echo method, a special 

situation is considered where a serial of RF pulses of equal flip angle (α) are 

applied in order to maintain a steady-state longitudinal magnetization Mz (Fig. 

2.13). Assuming that T2
* relaxation is negligible (very short TE), the transverse 

magnetization right after the excitation is: 

                     R 1
xy

R 1

(1- exp(-T /T ))m  = sin(α)
(1- cos(α) exp(-T /T ))

          (2.24) 

For fixed T1 and TR, the flip angle α that maximizes the transverse magnetization 

mxy is: 

                         -1
R 1α = cos (exp(- T /T ))                  (2.25) 

α is called “Ernst angle”. 
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Figure 2.12: a: Diagram of 2-D spin echo pulse sequence: RF pulses (RF), 
frequency-encoding gradients (Gx), phase-encoding gradients (Gy). b: 
corresponding k-space trajectory of 1st and 2nd TR. 
 

 

Figure 2.13: a: Diagram of 2-D gradient echo pulse sequence with a small flip 
angle α: RF pulses (RF), frequency-encoding gradients (Gx), phase-encoding 
gradients (Gy). b: corresponding k-space trajectory of 1st and 2nd TR. 
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2.4 Imaging Considerations 

2.4.1 Image Contrast  

 Both spin echo and gradient echo methods have controllable parameters: flip 

angle, echo time (TE), and repetition time (TR) that allow the flexibility of 

reflecting image contrast. 

The spin echo method has an inherent long TE, and eliminates T2
* relaxation 

using a 180º RF pulse. It is typically used to measure T2 relaxation. It employs a 

90º RF pulse to maximize the transverse magnetization Mxy, and a long TR to 

minimize T1 relaxation and ensure the fully recovered longitudinal magnetization 

Mz. 

The gradient echo method has an inherent short TR to reduce the scan time, 

and is normally used to measure T1 relaxation, and also allows the measurements 

of proton density and T2
* relaxation. For a typical T1 value of human brain: 800 

ms and a TR: 30 ms, the Ernst angle is around 30º. The larger flip angle increases 

T1 contrast, and a smaller flip angle increases the contrast of proton density. In 

clinical applications, the flip angle α is adjusted with respect to the Ernst angle to 

increase the image contrast and also maximize the signal. T2
* contrast is based on 

the chosen TE. A long TE increases T2
* contrast.   

2.4.2 Off-resonance 

The rationale of 2-D spatial-encoding by applying frequency and 

phase-encoding gradients assumes that spin precession frequency of an image 

volume is identically ω0 with an applied static magnetic filed B0, a condition 

called “on-resonance”. Therefore, the created frequency and phase differences by 
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the magnetic field gradients are used to differentiate different spatial location of 

an image. However, there are factors that lead to the shifts from the precession 

frequency (ω0) and thus interferes the spatial encoding. These factors can be 

generally categorized into: (1) static field B0 inhomogeneity, (2) magnetic 

susceptibility, and (3) chemical shift.  

The B0 magnetic field inhomogeneity originates from imperfections of 

generated magnetic field. Most MRI machines provide additional equipments to 

minimize the magnetic field inhomogeneity, an action referred as shimming. 

Magnetic susceptibility and chemical shift are related to the interactions 

between the molecular structure and the external applied magnetic field B0. When 

an object is placed in a magnetic field, currents are induced through its electrons, 

producing an internal magnetic field, which augments (paramagnetism) or 

opposes (diamagnetism) the external magnetic filed B0. Water and organic 

molecules are diamagnetic, while the metals (Cr, Fe, Mn, Co) and air are 

paramagnetic. The differences in magnetic susceptibility of tissues, such as an 

air-tissue interface create local magnetic field inhomogeneity. 

Chemical shift refers to the reduced magnetic field experienced by the proton 

because of chemical shielding of electron clouds. For instance, the spin precession 

frequency of proton in fat is measured to be approximately 3.5 ppm slower than 

that of proton in water. In 1.5 Tesla, this shift of precession frequency is around 

223 Hz. This specific frequency shift is used to suppress the effects of chemical 

shift, such as fat suppression. 
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Magnetic susceptibility and chemical shift are proportional to the strength of 

applied magnetic field. Therefore, while high filed magnet brings a higher 

magnetization and SNR (Eq. (2.3), issues of field inhomogeneity are exacerbated. 

This spatially dependent shift of precession frequency can be represented as: 

∆ω(x, y). If the variation of ∆ω(x, y) is very rapid in space, the phase dispersion 

occurs in an image voxel, resulting in a T2
* relaxation. This T2

* relaxation 

mitigated by using a smaller voxel size. 

Here, an effect of the frequency shift: ∆ω(x, y) on the frequency and 

phase-encoding of convention 2-D spin echo method (Fig. 2.12) is described. 

Assuming there is a field inhomogeneity along frequency-encoding direction: 

'
xΔω(x) = γG x , the measured signal during an acquisition time interval can be 

represented as: 
'
x

x y
x

Gs(k (t),k (t) = m(x, y) exp(-i k (1+ ) x -i k y)) dxdy
Gx y∫   (2.26) 

This indicates that this frequency shift results in a pixel shift along 

frequency-encoding direction. 

 If field inhomogeneity occurs along phase-encoding direction: 

'
yΔω(x) = γG y , the measured signal at nth phase-encoding step: 

'
x y ys(k (t), k (n) = m(x, y) exp(-i k x - i (k + γG τ)y) dxdyx y∫     (2.27) 

This indicates that the frequency shift results in a constant shift in k-space along 

ky direction, corresponding to a linear phase ramp in image-space. 

 The spin echo method can eliminate T2
* relaxation, but cannot reduce other 

effects of field inhomogeneity, including a pixel shift and a linear phase ramp in 
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an image. The phase of the image can simply removed after image reconstruction. 

The issue of a pixel shift can be mitigated by increasing the bandwidth of data 

acquisition. 

2.4.3 Noise 

 Noise is an important concern in MRI, because of the original limited signal 

and the rapid relaxation. The noise originates from random electrical fluctuations 

in the receiver coil and human body, producing a detectable voltage. It can be 

statistically modeled as additive random Gaussian noise. 

 Because the noise is random, its power (σ2) is proportional to the bandwidth 

of frequency spectrum: 

                         2 1σ BW = 
Δt

∝                       (2.28) 

where ∆t (1/BW) is the sampling rate of data acquisition. If a signal-to-noise ratio 

(SNR) is defined as signal amplitude divided by the noise deviation: 

          ASNR = 
σ

                         (2.29) 

The slower sampling rate (larger ∆t) and signal averaging are helpful to reduce 

the noise power. One can easily prove that the SNR is proportional to scan time . 

 Another way to increase SNR is by increasing the signal. The signal is 

proportional to the voxel size, defined by (slice thickness) × 

(field-of-view)/sampling points. The SNR dependence on these two imaging 

parameters can be represented as: 

SNR  scan time  (voxel size)∝                (2.30) 
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Chapter 3 

DIFFUSION PHYSICS 

 Brownian motion was first observed by Robert Brown, who described it as 

the irregular, jittering movement of small particles suspended in a fluid, such as 

liquid or gas [22]. The underlying mechanism of Brownian motion was unclear 

until Einstein established its relation with the molecular kinetic theory [23]. This 

resulted in the connection between the thermal driven movement of individual 

molecules and the mass transport of diffusion resulting from concentration 

gradients. The physical properties of the particles and fluid can be derived given 

the measurement of the diffusion coefficient. Besides, the irregular molecular 

movement can be described using the random walk model. 

These theoretical formulations by Einstein assume that the suspended 

particles diffuse in a homogeneous fluid, called normal diffusion. This assumption 

no longer holds in the presence of heterogeneous medium or physical 

compartments common to various real-world phenomenon. Anomalous diffusion 

[24] is used to describe the molecular movements deviating from the normal 

diffusion. The physical factors that lead to anomalous diffusion are unclear and 

remain a topic of active research. The anomalous diffusion in the biological 

tissues [25] is the primary focus of this study. 

3.1 Brownian Motion and Diffusion 

The jiggling movement of Brownian motion has been ascribed to the 

collisions between particles. According to the molecular kinetic theory, the 

average kinetic energy of the suspended particles is kB T × 3/2, where kB is the 
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Boltzmann constant and T is the temperature. By considering a dynamic 

equilibrium between the force exerted on the moving particle and the diffusion 

from the thermal molecular movement, the diffusion coefficient is given as [23]: 

6ππη
TkD B=                        (3.1) 

where T is the temperature, r is the radius of the particle, η is the viscosity of the 

fluid, kB is the Boltzmann constant. The relation was derived assuming the state of 

thermal equilibrium. Thus, for a given universal parameters (kB and T), the 

diffusion coefficient is only dependent on the viscosity of the fluid and the 

particle sizes. This essence of the equation is that it relates the mass transfer to the 

microscopic physical quantity of the suspended particles and fluid. 

 As the direction of particle movement reverses constantly in an irregular way, 

the displacement is used to measure this movement. By selecting a time interval 

Δt  that is short with respect the observation interval but long enough to 

experience several molecular collisions, the movements between the two 

successive intervals are regarded as statistically independent. The step of particle 

movement during the time interval Δt  is Δx  moving in any direction with 

equal probability P(Δx) : 

∫
∞

∞−
=ΔΔ 1xx)dP(                        (3.2)                  

If the number of particles per unit volume is defined as f(x,t), a function of 

location and time, f(x,t) can be expanded with respect to time and location 

through a perturbation theory: 

         
2

2

f(x,t) f(x,t)D
t x

∂ ∂
=

∂ ∂
                      (3.3) 

where the diffusion coefficient D: 
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t2

xx)dP(Δx
D

2

Δ

ΔΔ
= ∫

∞

∞−                      (3.4) 

Eq. (3.3) is exactly the diffusion equation with the analytical solution: 

                  )
4Dt
xexp(

4Dt
1t)f(x,

2

−=
π

                   (3.5)                  

Obviously, f(x,t) is a Gaussian distribution function. The diffusion coefficient D: 

       
2t
xD

2

=                             (3.6)                  

Eq. (3.6) indicates that the variance of particle displacement is proportional to the 

diffusion time t. The diffusion equation in Eq. (3.3) was previously derived by 

Adolf Fick [26]. The main distinction here is that this relates the behavior of the 

movement of one suspended particle to the diffusion equation, which governs the 

mass transfer in the present of concentration gradient. 

3.2 Random Walk Model 

 Through an appropriate selection of time intervalΔt , the time-evolving 

Brownian motion can be modeled with a random walker taking step Δx  toward 

random directions. Considering a 1-D case with equal probability moving right or 

left: 0.5x)P(- x)P( =Δ=Δ , the location s after N steps of random walking: 

      N321 x...ΔxΔxΔxs Δ+++=  (3.7)             

According to the central limit theorem [27], when the N is sufficiently large, s 

approaches a normal distribution: 

)
2var[s]

sexp(
2var[s]π

1f(s)
2

−=                 (3.8) 

where the mean and variance: 

       0E[s] =                           (3.9)
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       2xNvar[s] Δ=                         (3.10) 

Based on eq. (3.4), D = t/2Δx 2 Δ , and t = NΔt , f(s) can be given as: 

)
4Dt
sexp(

4Dtπ
1f(s)

2

−=                    (3.11) 

which is the same equation derived from the diffusion equation (Eq. 3.5). As the 

assumption stated by Einstein, time intervalΔt has to be short relatively to the 

observation interval t, inferring a sufficiently large N (N = t/Δt ), a displacement 

of molecular movement is expected to be Gaussian distributed. The Monte Carlo 

simulation was performed to validate the random walk model, as shown in Fig. 

3.1. The simulated molecular displacement is approximately Gaussian distributed, 

and its variance increased linearly with the diffusion time, consistent with the 

relation in Eq. (3.5-3.6). 

3.3 Anomalous Diffusion 

 The random walk model formulates the time-evolving displacement 

probability density function (pdf) utilizing the nice properties of central-limit 

theorem. It relies on the assumptions: (1): the pdf of step xΔ  is symmetric with 

the zero first moment (mean) and finite second moment (variance), (2): the time 

interval tΔ  is fixed, (3): the steps xΔ  between different time intervals are 

statistically independent, and (4): number of steps N has to be sufficiently large. 

The various physical phenomena that violate the above assumptions have 

been observed to deviate from the behaviors of normal diffusion. The deviation 

generally refers to a non-linear relation between the mean squared displacement 

and diffusion time, in contrast with the linear relation in normal diffusion (Eq. 

3.6). The possible factors that contribute to anomalous diffusion include structural 
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Figure 3.1: Monte Carlo simulation of the Brownian motion; 40'000 random 
walkers with step size xΔ : 2.24×10-4 mm and time interval tΔ : 5×10-2 ms. D = 
5×10-4 mm2/s (Eq. (2.4)). a: Histogram of molecular displacement at diffusion 
time: 64 ms. b: Variance of displacement versus diffusion time. 

heterogeneity, interactions between physical compartments, and dynamical 

structural variations [24]. Several physically-motivated modifications are thus 

made to the original assumptions of the normal diffusion. Continuous time 

random walk (CTRW) [24] provides a theoretical framework dealing with the 

deviations of the normal diffusion. When the step xΔ  of random walks has the 

finite variance but the time interval is power-law distributed, exhibiting a 

heavy-tail behavior: 

                     1α0    
t
1~)t(f α1 <<

Δ
Δ +                (3.12) 

The relation between the mean square displacement and the diffusion time is: 

                           α2 t~x                          (3.13) 

As in Eq. (3.12), larger α ensures smaller probability of large tΔ . When α = 1, it is 

the same linear relation as in Eq. (3.6). When α is smaller, the higher probability 

of large tΔ means that the time interval between successive steps can be long, 

slowing down the random walks, called ‘sub-diffusion’. Conversely, the time 
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interval has a finite expected value, whereas the step x is power-law distributed: 

2β0    
x
1~)x(f β1 <<

Δ
Δ +                  (3.14) 

and the resulting relation between the mean square displacement and the diffusion 

time is: 

β/22 t~x                          (3.15) 

Larger β ensures smaller probability for larger jumps, whereas the smaller β 

ensures the larger chance of big jumps, speeding up the random walk, called 

‘super-diffusion’. In the situation where both the step xΔ and time interval tΔ  

are power-law distributed, the relation between the mean square displacement and 

time is: 

β/α22 t~x                         (3.16) 

The non-linear relations of sub- and super-diffusion (Eq. (3.13), (3.15)) are shown 

in Fig. 3.2. 

3.4 Diffusion in Biological Tissues 

The thermal-driven diffusion is related to the particle size and the fluid 

viscosity (Eq. (3.1) with a dynamic behavior that is dependent on the structural 

complexity (Sec. 3.3). As the biological mechanisms involve dynamical molecular 

transport among and between cellular compartments, diffusion provides a viable 

means to assess the structures in vivo. The section introduces several biological 

factors including biophysical mechanisms and microstructures that are relevant to 

the diffusion behaviors in-vivo. The primary focus is on the interaction between 

intra- and extra-cellular compartments. Please note that the coverage here is far 

from being complete, as some aspects of this topic still remain open problems. 
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Figure 3.2: The mean squared displacement versus diffusion time in the case of 
super-diffusion (Eq. (3.15)), normal diffusion (Eq. (3.6)), and sub-diffusion (Eq. 
(3.13)). The diffusion coefficient D is 1.0 × 10-3 mm2/s. 

A simplified illustration of diffusion in cell compartment is shown in Fig. 3.3. 

The movement of the extra-cellular space follows the tortuous path bouncing 

around the cell membrane, whereas the intra-cellular movement is relatively 

restricted. The inter-compartmental exchange is related to the membrane 

permeability. Those interactions with cell compartment happen given a 

sufficiently long diffusion time, providing the opportunity to probe the 

microstructures in a non-invasive way. 
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Figure 3.3: Simplified cell structure with intra/extra-cellular (gray/white color) 
compartments. Arrows indicates the path of intra-, extra-, and inter-cellular 
movement. 

3.4.1 Compartmental Diffusion 

 At short times, without the interaction between the molecule and cell 

barrier, the movement behaves in normal diffusion, as described in Eq. (3.1-3.6). 

In consideration of the general geometry of the media, including the closed pores, 

a suspension of solids, or a well-connected porous media, when the diffusion time 

is intermediate, only some portion of molecules experiences the porous barriers. 

The time-dependent diffusion coefficient D(t) can be derived as a function of 

surface-to-volume ratio [5]: 

              t)O(D)t)(D
V
S

π9
4(1DD(t) 0

0.5
0

p
0 +−=          (3.17) 

D0 is a free diffusion coefficient. S/Vp denotes the pore surface-to-volume ratio, 

which is a very important parameter characterizing the chemical or biological 

reactions in a confined geometry. This is a monotonically decreasing function, 

inferring that the diffusion coefficient D(t) decreases with the diffusion time. The 
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relation in Eq. (3.17) applies to the intra and extra-cellular diffusion with 

impermeable membrane illustrated in Fig. 3.3. 

 At long times, in the case of diffusion in the closed pore, analogous to the 

intra-cellular diffusion with zero membrane permeability in Fig. 3.3, the 

intra-cellular diffusion coefficient Din(t) is given by: 

2t
L

~(t)D
2

s
in                         (3.18) 

Ls denotes the pore size. Eq. (3.18) means that the diffusion coefficient is only 

dependent on the pore size, and approaches to zero as the diffusion time reach the 

long time limit. Another case is the diffusion in the connected porous medium, 

analogous to the extra-cellular diffusion with impermeable membrane in Fig. 3.3. 

The extra-cellular diffusion coefficient Dex(t) is given by [28]: 

2
0

ex λ
D

~)t(D ∞→                      (3.19) 

λ > 1 is a tortuosity factor, quantifying the increase in the diffusing path length in 

a complex medium. The relation between the tortuosity factor (λ) and physical 

structure is implicit. Some studies have derived the relation between λ and cell 

volume fraction for randomly placed cell geometry of spheres and cylinders using 

an effective medium theory [29,30]. 

3.4.2 Compartmental Diffusion with Exchange 

 The exchange between compartments plays an important role in biological 

system, governing the transport of nutrition and ion balance. The barrier 

permeability κ is defined as [31]: 

ΔCκ J =                       (3.20)  

J is the particle flux density, and CΔ is the difference of the concentration on both 
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sides. For an equally space plane with distance l, the diffusion coefficient at the 

long time limit [32]: 

)1D/lκ /(lκ )t(D 0 +=∞→               (3.21) 

D0 is the free diffusion coefficient at short time limit. Another parameter of 

exchange is the mean lifetimeτ  within the individual compartment [31]: 

∫
∞

−=
0

dt)]t(γ1[τ                      (3.22) 

)t(γ  is the relative amount of molecules, which move out of the compartment. 

For a sphere with radius R: 

R/3κ  D15/Rτ 0
2 +=                    (3.23) 

This means that the residing time within the compartment is larger when 

compartment size is larger or the barrier permeability is lower. 

A simplified scheme of exchange between two compartments is discussed, 

assuming Din and Dout are the intrinsic diffusion coefficients in intra/extra-cellular 

compartments with the number of molecular density inside and outside the cell: 

nin/nex. Based on the definition of the membrane permeabilityκ, the flux from 

intra-cellular compartment to extra-cellular compartment is given by: 

)n(nκ J exinexin −=→                    (3.24) 

The flux can also be represented by the molecular movements across the 

membrane with a drift velocity v: 

inexexexexinininexin )p(n(1/4)v)p(n (1/4)vJ →→→ −=        (3.25) 

The intra/extra-cellular drift velocities are calculated as:  δ/D6v in/outin/out = , 

where δ denotes the small time interval during the molecular movement. By 

equaling Eq. (3.24) and Eq. (3.25), the membrane permeability κ can be 
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represented as [30]: 

inexexexinin pv)4/1(p v)4/1(κ →→ ==               (3.26) 

This is an important relation describing the molecular density balance between 

two compartments. The compartment with the larger molecular drift velocity has 

a smaller probability of crossing the membrane. This also provides a framework 

of the random walk model in a confined geometry with exchange between two 

compartments. 
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Chapter 4 

DIFFUSION-WEIGHTED MR IMAGING 

 As described in the Chapter 3, the dynamics of diffusion correlate with the 

dimensions of physical compartments and the inter-compartmental exchange. 

Water accounts for 70% of the composition of the human body, and thus diffusion 

measurement in the human body is of tremendous clinical value, enabling the 

probe of microstructure in a non-invasive way. The diffusion measurement 

requires a highly sensitive tracer of molecular movement, which is of a scale of 

few microns. MRI achieves the goal by labeling spins using a strong spatially 

dependent magnetic field. Besides, by means of the directionality of the diffusion, 

the fiber tract mapping can be created by the diffusion tensor imaging (DTI). 

 To establish the relation between the diffusion measurement and the 

underlying microstructure, the biophysical modeling is required. The biophysical 

models of diffusion MRI can be broadly categorized into phenomenological 

model and analytical model. Compared with phenomenological model, analytical 

model normally involve more parameters completely defining physical geometry 

and mechanisms. Ideally, the distinction between these two categories is obvious 

given sufficient, uncorrupted measurements. In reality, however, the accuracy of 

measurements is limited by the SNR, image artifacts and distortions, which are 

issues with data acquisition of diffusion MRI. In this chapter, fundamentals of 

diffusion MRI are introduced, covering from the biophysical modeling and data 

acquisition. 
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4.1 Pulsed-Gradient Spin Echo Sequence 

The pulse-gradient spin echo (PGSE) sequence [33], shown in Fig. 4.1, is 

typically used in diffusion MRI. The net phase of a ith single spin at the end of the 

PGSE sequence is: 

∫ ∫−=
δ

0

δ

0 12i )(t)dtr(t)dtrg( γθ                 (4.1) 

r1(t) and r2(t) denote the spin location during the first and second gradient pulses. 

The first gradient pulse is used to generate spatially dependent phase dispersion. 

The phase dispersion of static spins is refocused after the 180° refocusing RF 

pulse and the second gradient pulse, whereas the incoherent phase of moving 

spins causes de-phasing effect, resulting in signal attenuation. This sequence thus 

sensitizes the movements during the time ∆ between the two diffusion gradient 

pulses, defined as diffusion time. The net phase becomes larger when gradient 

strength g is larger for the same displacement between two gradient pulses. 

Therefore, the larger gradient strength g, the more sensitive of the PGSE sequence 

to the molecular movement. 

For free diffusion, the signal attenuation as a function of parameters of PGSE 

sequence is easily derived by virtues of the statistics of Gaussian displacement 

PDF (Eq. (3.5)). The relation can be derived using two ways: macroscopic 

approach [33,34] and random walk approach [34,35]. 

4.1.1 Macroscopic Approach 

 The Bloch-Torrey equation describes the time-evolving macroscopic 

magnetization during the T1 and T2 relaxation. The effect of diffusion on the 

macroscopic magnetization is represented by the diffusion equation (Eq. 3.3). 
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Figure 4.1: Illustration of pulse-gradient spin echo sequence; δ (the width of the 
gradient pulse) and ∆ (diffusion time) are the timing parameters of gradient pulse, 
and g is the gradient strength. 

Neglecting the T1 relaxation, the net magnetization )t,r(M  in the presence 

of diffusion gradients is given by: 

2
2

2

T
t),rM(

r
t),rM(D)t,r(M g r  γi

t
t),rM(

−
∂

∂
+−=

∂
∂         (4.2) 

r is the spin location, and g is the diffusion gradient. By assuming net 

magnetization t),rM(  is in a form of: 

          )t/T)exp(t)dtg( r  γiA(t)exp(t),rM( 2

t

0
−′′−= ∫           (4.3) 

This form assumes that molecular movement is geometrically symmetric, and has 

no effect on the spin phase but resulting in the decay of magnitude A(t) of net 

magnetization [36]. This decay is dependent of the spin displacement rΔ and is 

independent of the spin location r  [36]. By applying eq. (4.3) to eq. (4.2), A(t) is 

give by: 

)td)t)dtg((exp(-DγA(t)
t

0

2t

0

2 ∫ ∫ ′′′′′=
′

               (4.4) 

In the case of PGSE sequence, A(t) is represented as: 

δ/3))(Δδgexp(-DγA(t) 222 −=                  (4.5) 

Back to eq. (4.3), 0t)tg(
t

0
=′′∫  at the end of PGSE sequence, and t),rM(  is: 
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)t/Tδ/3))exp((ΔδgDγexp(t),rM( 2
222 −−−=            (4.6) 

Eq. (4.6) is a very important relation, where the diffusion coefficient D can be 

calculated from measured signal attenuation t),rM( in a PGSE experiment. 

4.1.2 Random Walk Approach 

 For each random walker, every step is sensitized by an applied pulsed 

gradient. The accumulated phase of single spin after the first pulse gradient with 

the widthδ , andδ takes n time increments ( tnδ Δ= ): 

∑
=

Δ−+Δ=Δ=
n

1i
ix)i1n(tG  γ)tnθ(δ             (4.7) 

ixΔ is the step take at ith time increment with 0]x[E =Δ , tD2]xvar[ Δ=Δ , and 

0]x[E]x[E ji =ΔΔ . This phase modulation on the transverse magnetization can be 

calculated by the ensemble average of this phase accumulation: 

∫
∞

∞−
= dθ)iθexp(θ)(P)iθexp(                    (4.8) 

Because xΔ is independent and identically distributed random variable, θ  is a 

Gaussian distributed according to the central limit theorem [27], and 

2exp(iθ) exp(- θ / 2)=  for a Gaussian distribution. From Eq. (3.7), )iθexp(  is 

given by: 

)δ Dgγ
3
1exp()iθexp( 322−=                   (4.9)

 For the second pulsed-gradient in the PGSE sequence, it is assumed to start 

right after the 180° RF focusing pulse; Δ=δ . The resulting ensemble average of 

the phase accumulation [34]: 

)δ Dgγ
3
2exp()θexp( 322−=i                 (4.10) 
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This is consistent with the signal attenuation derived using the macroscopic 

approach (Eq. (4.6)), whereΔ  is set to be equal toδ . 

4.2 q-Space Model 

The relation between the PGSE measurements and the diffusion coefficient 

in Eq. (4.6) and (4.10) assumes the free diffusion. In this aspect, the signal decay 

has a linear relation with the square of gradient strength (g2) and diffusion time 

(Δ ) (Eq. (4.6) and (4.10)). Diffusion in a confined geometry with compartmental 

exchange, its closed form solution is rather difficult to obtain. However, the 

analytical solution can be derived by assuming the width of the pulsed-gradient to 

be closely zero, which is generally referred as the short gradient pulse (SGP) 

approximation. 

From Eq. (4.1), when the gradient pulse width approaches to zero, the net 

phase of a single spin in a PGSE sequence: 

12i0δ
r g δ γr g δ γθlim −=

→
                (4.11) 

The ensemble average of this phase modulation, which is very similar to Eq. (3.8), 

but the integral is calculated over all the starting and ending location r1 and r2: 

2112121 r))drr(rg δ  γiexp()r|r(P)r(P )iθexp( −= ∫∫       (4.12) 

The equation can be simplified by defining an average propagator P(R), which is 

a displacement distribution, calculated through the integral over all the starting 

locations r1: 

∫ += 1111 )drr|RP(r)P(r)P(R              (4.13) 

For free diffusion, the displacement R is independent of the starting location r1, 
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and P(R) is a Gaussian distribution function. Eq. (4.12) can be rewritten as: 

∫= R)dR g δ P(R)exp(iγ )exp(iθ              (4.14) 

As described in Sec. 4.1, the phase modulation because of diffusion results in an 

attenuated magnitude of magnetization. This decay in magnitude is a function of 

diffusion time and the parameters of PGSE sequence (g, δ). By defining the 

parameter g δ γq = , the signal attenuation in Eq. (4.14) is given by: 

∫=Δ R)dR q iexp()R(P ),q(E              (4.15) 

q is the spatial wave vector with respect to the molecular displacement R, called 

q-space. The relation in Eq. (4.15) is very useful, providing a structural relevant 

average propagator through the Fourier transform of signal attenuation. Please 

note that the q-space requires SGP approximation. This Fourier relation is 

analogous to the Fourier relation between image-space and k-space, where k 

denotes the spatial wave vector with respect to the image location. 

 For free diffusion, the average propagator P(R) is independent of the starting 

location r1. The signal attenuation of free diffusion is given by: 

Δ) Dexp(-q Δ)E(q, 2= , where g δ γq =           (4.16) 

This relation is consistent with the derived signal decay of the PGSE sequence 

with the zero pulsed-gradient width (δ = 0). 

 For restricted diffusion in a confined geometry, including plane, cylinder, and 

sphere, the average propagator and signal attenuation in Eq. (4.15) has been 

derived [37-40]. Figure 4.2 plots the analytical expression of signal attenuation 

for diffusion in a plane. The diffraction pattern in the SGP limit )0δ( → happens 

at the factor of the product of wave vector q and planar spacing L. This conforms 
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to the perception that the moving spins keep being reflected at the barrier 

boundaries. This is very useful information as the diffraction patterns provide the 

information of the spatial dimensions, and has been experimentally observed in 

vitro [41]. However, no observation of the diffraction has been made in the 

experiments in vivo. This may be due to the violation of SGP approximation (Fig. 

4.2) [40], compartmental exchange, SNR limit [42] and large variations of 

compartmental sizes [43,44]. Nonetheless, in in vivo experiments, the parameters 

derived from the displacement profile have been found to correlate with the 

pathology, including the mean square displacement [42] and kurtosis [45]. 

4.3 Apparent Diffusion Coefficient 

 The displacement profile derived from the q-space model in Eq. (4.15) 

provides statistical behavior of molecular displacement without the assumption 

about the geometry of the structures. However, the SGP approximation is difficult 

to achieve in practice, because the maximum gradient strength is limited by the 

hardware. Besides, the calculation of the displacement profile also requires 

multiple measurements of signal attenuation at different wave vector q, which 

prolongs the scan time. 

An alternative approach is to apply the phenomenological model, which requires 

only a few measurements and can be easily implemented in a clinical setting. A 

most commonly used model is the mono-exponential model, providing a 

quantitative measure of water diffusion, called apparent diffusion coefficient 

(ADC). 
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Figure 4.2: Signal attenuation (E) versus the wave vector q × L in the limit of SGP 
approximation from top to bottom(δ 0)→ . L is a spacing between planes. 

ADC)bS(0)exp( S(b) ×−=                  (4.17) 

b is a factor of diffusion weighting, defined as: )δ/3Δ(δgγ 222 − . S(0) is the T2 

relaxation without diffusion weighting. Eq. (4.17) is equivalent to Eq. (4.6), 

describing the signal decay in a PGSE experiment for a free diffusion. However, 

unlike Eq. (4.6), where the mono-exponential relation holds for all the b-values, 

Eq. (4.17) is a phenomenological fitting model normally applied with b = 1000 

s/mm2. 

 The typical gradient strength is 40 mT/m of a 3 Tesla clinical scanner 

andδ 24 (ms)≈ Δ ≈ of b = 1000 s/mm2. For a free diffusion coefficient: 3 × 10-3 

mm2/s (37 °C), the RMS displacement in a 3-D space is around 30 μm, which is 

larger than the typical human cell size 10 μm. The measured diffusivities using Eq. 

(4.17) assuming isotropic diffusion is around 1 × 10-3 mm2/s for gray and white 

matter and 2 × 10-3 mm2/s for cerebrospinal fluid (CSF) in human brain. They 
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are slower than the pure water as the interactions between water molecules and 

cell compartments is expected to slow down the measured diffusivity. 

 For free diffusion in a homogenous medium, the applied diffusion weighting 

acts equally on all the diffusing molecules with the same diffusivity. However, for 

diffusion in a heterogeneous structure, the molecules move at the different 

diffusivities, and the measured diffusivity depends on the applied b-value. At 

lower b-value (b-value ≤ 200 s/mm2), the perfusion effects mainly contribute to 

the signal decay. When b is greater than 2000 s/mm2, the molecules experiencing 

the restricted diffusion mainly contribute to the signal decay. However, the 

diffusion weighting at high b-value is limited by SNR.  

 The ADC value has been shown to be sensitive to the microstructural 

changes during various pathological states. For instance, ADC values were found 

to decrease after the onset of ischemic stroke [46], and has an inverse correlation 

with the tumor cellularity [2]. The reduction in ADC has been attributed to the 

decrease in membrane permeability [47], increase in cell volume fraction [29], 

and extracellular tortuosity [48]. It suffices to say that those mechanisms correlate 

with the reduction in ADC, but the exact mechanism underlying the pathological 

changes remains difficult to identify [3]. 

4.4 Diffusion Tensor Imaging 

 It is straightforward to envisage the directional dependence of diffusion as 

diffusion time is long enough for water molecule to encounter the barriers. 

Particularly, brain white matter is composed aligned axons coated with myelin 

(Fig. 4.3), and the strong directional dependence of brain white matter has been 
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observed from the early experiments [49,50]. The axon diameter is around 1-20 

μm. Thus, in a PGSE experiment, the diffusion perpendicular to the axon 

orientation is relatively restricted compared with the direction along the axon 

orientation. This anisotropic information can be analytically represented by a 3x3 

diffusion tensor. 
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The diffusion tensor D is a symmetric matrix with positive eigen-values: 

321 λ ,λ ,λ and orthogonal eigen-vectors: 321 e ,e ,e , which is illustrated as an 

ellipsoid (Fig. 4.3). It can be incorporated into the mono-exponential relation of 

ADC (Eq. 4.17). This is done by replacing the scalar of gradient strength g with a 

3-D vector g . 
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The mono-exponential relation in Eq. (3.17) can be represented as: 

)
3
δ(ΔδgDg γ

S(0)
S(b)log 2T2 −−=               (4.20) 

The diffusion tensor D is a symmetric matrix, so at least six diffusion 

measurements along different directions g are required to calculate D . The 

direction is commonly selected as uniformly distributed unit vectors in space, 

such as icosahedron and dodecahedrons [51]. More directions of diffusion 

measurements yields better estimate of diffusion tensor D  [52]. However, it may 

offer no advantage using more than 6 directions [53]. 
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Figure 4.3: Illustration of (a) perfectly aligned axons, and (b) the corresponding 
diffusion ellipsoid with principle axes e1, e2, e3 of length λ1, λ2, and λ3, which are 
eigen-values and eigen-vectors of the diffusion tensor. 

 Based on the measured diffusion tensor D , some quantitative measures of 

anisotropic diffusion are derived. The most commonly used parameters: mean 

diffusivity (mean apparent diffusion coefficient: mean ADC) and fractional 

anisotropy (FA) are introduced [54]. 

)DD(D
3
1)λλ(λ

3
1 ADC zzyyxx321mean ++=++=        (4.21) 

This is a very useful formula, indicating that the calculation of mean ADC only 

requires measurements on physical axis: x, y and z. The diffusion tensor D  can 

be separated into isotropic and anisotropic parts. 
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The FA is defined as the fraction of anisotropic part of the diffusion tensor. 

D:D

D:D
FA anisoaniso=                  (4.23) 

D:D is a matrix dot product, defined as the magnitude of a tensor[54]. Figure 

4.4 shows the ADC and FA maps of a healthy volunteer. The ADC values of gray 

matter and white matter are similar, but FA values of white matter are noticeably 

higher. 

 The diffusion tensor provides the information about ‘macroscopic’ 

anisotropy at a length of one image voxel, and is insufficient to distinguish 

between the microscopic anisotropy and microscopic isotropy, which both could 

end up with a low FA value [55]. Similarly, the crossing fiber in a voxel yields a 

low FA value, posing an issue with fiber tacking [56]. More refined, complete 

methods have been developed to solve these issues. 
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Figure 4.4: a: T2 images (b = 0 s/mm2), b: ADC map, and c: FA map. Imaging 
parameters: acquisition matrix of 64 × 64, NEX of 1, number of diffusion 
encoding directions of 25, and b-value of 1000 s/mm2. 

4.5 Data Acquisition 

 This section discusses the spatial encoding of the image following the 

preceding diffusion encoding gradients in a PGSE sequence. One inherent 

limitation of DWI is the longer TE. The typical choice of b-value is 1000 s/mm2 of 

clinical DWI, and the values of δ/Δ are approximately 21/27 ms for a PGSE 

sequence with gradient strength 40 mT/m. This infers that, for the same data 

acquisition, a DWI scan has a longer TE than a T2-weighted scan by 48 ms, 

resulting in low SNR and limited image resolution because of T2 relaxation. To 

shorten TE, one approach is to maximize the gradient strength and the rate of 

switching gradient (slew rate). However, these requirements of hardware induce 

eddy-current effects on diffusion and spatial encoding gradients, including 

gradient wave form distortions and inhomogeneous gradient magnetic fields. 

Another issue is that subject motion during the application of diffusion gradients. 

The applied diffusion gradients are able to sensitize the molecular movement of a 
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few microns. Meanwhile, only subtle, involuntary subject movements can cause 

undesired phase accrual, resulting in image artifacts and signal drop. 

 Various imaging strategies have been developed to address the issues of 

DWI data acquisition. The primary focus of this section is on echo planer imaging 

(EPI), which is the most commonly used method in clinical DWI. 

4.5.1 Echo Planar Imaging DWI 

 The k-space sampling of EPI and the corresponding pulse sequence diagram 

are shown in Fig. 4.5. It is exactly the PGSE sequence, followed by a spatial 

encoding echo train. One major feature of EPI is its efficient k-space sampling, 

which minimize scan time and maximize SNR efficiency. Besides, in EPI, TE is 

optimally shortened by using only a gradient-recalled echo train. k-space 

sampling in EPI is typically performed in one acquisition, or called single-shot 

EPI. There is a phase accrual following the diffusion gradients due to motion 

during the applied diffusion gradients or eddy currents that are generally referred 

as motion induced phase herein. This motion induced phase is inconsistent 

between different excitations. Thus, single-shot EPI is immune to this inconsistent 

motion induced phase. The short scan time and insensitivity to subject motion has 

enabled EPI as a clinical standard method. However, EPI method remains subject 

to various image artifacts arising from subject motion, off-resonance, and eddy 

currents. 
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Figure 4.5: a: k-space trajectory and b: pulse sequence diagram of echo planar 
imaging. This is a simplified illustration using merely 17 phase-encoded lines. 
The data acquisition matrix is normally 128 × 128 or larger. 

Motion induced artifact 

 The single-shot EPI method is immune to the inconsistent motion induce 

phase encountered by other multi-shot methods, but is subject to subject motion 

during the applied diffusion encoding gradients or during spatial encoding 

gradients. For simplicity, the discussion assumes only minor, rigid body motion. 

The effect of subject motion during the diffusion encoding gradients is more 

predominant, and would be the focus of the discussion. 

 A vector is defined to describe the change in location because of translation 

and rotation (Fig. 4.6). 

 r(t)θ(t)x  (t)R ×+=                  (4.24) 

The induce phase accrual is presented as: 

φ  γ g(t) R(t)dt= ∫                   (4.25) 

The resulting effect is the constant phase offset and a shift in k-space: 
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Figure 4.6: Illustration of rigid head motion, including translation and rotation; 
translation in x-y plane and rotation around z axis. 

rθ(t)dt(t)gγ(t)dtx(t)g γφ ⋅×+⋅= ∫∫             (4.26) 

r ⋅Δ+Θ= k                                  

This effect of rigid motion is common to any diffusion acquisition. For the 

multi-shot methods, because the motion induced effects are different between the 

excitations, the problem of data inconsistencies cause image artifacts [57,58]. For 

single-shot method, such as EPI, although the motion effect remains, it can be 

minimized by simply removing the phase in image-space, including a constant 

phase and a linear phase ramp because of the shift in k-space. 

Off-resonance related artifacts 

 The gradient-recalled echo train employed in EPI shortens the TE and 

increases the efficiency of k-space sampling. However, it leads to the increased 

sensitivity to off-resonance from field inhomogeneity, magnetic susceptibility, and 

chemical shift. Assuming a perfect RF refocusing pulse of 180°, off-resonance 

phase accrual is related to the time away from the refocusing time point: 
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∫ Δ=
t

0
wdt' (t) φ                      (4.27)  

The chemical shift of a fat nucleus is approximately 3.5 ppm, and the differences 

in resonance frequency between water and fat (∆w) is around 446 Hz at a 3 Tesla 

MR scanner. Given a receiver bandwidth of 125 KHz and echo time spacing of 1 

ms for a EPI data matrix of 128 × 128, the bandwidth per pixel is around 977 Hz 

along readout direction and around 8 Hz along the phase-encoded direction, 

resulting in shifts of 0.5 pixel along readout direction and 56 pixels along 

phase-encoded direction. This narrow phase-encoding bandwidth prolongs the 

time of echo away from the refocusing time point, causing T2
* signal decay and 

limiting the image resolution. 

Other sources of off-resonance phase, including field inhomogeneity and 

magnetic susceptibility, can be spatially independent as well as dependent. Their 

induced phase errors can be approximated as a constant phase and a linear phase 

ramp in image domain, corresponding to a constant phase offset and a shift in 

k-space. The echo shifting along the direction of readout gradients alternates 

between odd and even echoes in EPI [59], leading to misregistration in k-space. In 

addition, the accumulation of the off-resonance phase error is different between 

each phase-encoded line. These factors make it very challenging to remove the 

phase error in EPI. 

In a microscopic scale, which in a scale smaller than an image voxel, the 

off-resonance phase accrual creates microscopic phase dispersion, leading to a 

signal loss. This effect of T2 shortening relaxation, referred as T2
* signal loss, 

limiting the image resolution in EPI. 
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More recently, parallel imaging technique has been applied to increase the 

phase-encoding bandwidth. The phase-encoding bandwidth is increased by a 

factor of 2 or more depending on the applied acceleration factor [14], minimizing 

the effects of chemical shift and off-resonance related artifacts. 

Eddy current induced artifacts 

 The oscillating readout gradients of EPI accelerate the sampling of k-space. 

The rapid change of magnetic flux generates electric field, called eddy current, 

which in turn distorts the originally planned gradient wave form and shifts the 

desired k-space sampling location primarily along the direction of readout 

gradients. The oscillating readout gradients thus induce the opposite shifts 

between even and odd echoes, causing misregistration in k-space. Other 

hardware-driven system delays have similar effects as described above. 

 The k-space misregistration between even and odd echoes in EPI is generally 

referred as N/2 ghosting. The image artifacts due to the constant phase ϕ  or 

k-space shift along the frequency-encoded direction xu kΔ  alternating between 

odd and even echoes can be represented analytically [60]. 

ϕϕ )sin
2

N
-ym(x, iy)cosm(x, y)(x,m y+=′            (4.28) 

)
N

2ππu)sin(
2

N
-ym(x, i)

N
2ππuy)cos(m(x, y)(x,m

x

y

x

+=′      (4.29) 

Both show a ghosting artifacts coming from a shift of signal intensity at Ny/2, 

where Ny is the size of data matrix along the phase-encoded direction, and a 

modulation of image amplitude. 
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 N/2 ghosting in EPI is normally corrected using the reference scan method 

[61]. This method requires an additional data acquisition, where each gradient 

echo is acquired in two opposite readout directions without phase encoding. If 

there is a positive echo shift associated with the gradient echo, then the negative 

echo shift is associated with the gradient echo of the opposite readout direction 

(Fig. 4.7a). By reversing the gradient echo with negative echo shift, the relative 

echo shift between two gradient echoes is two times the echo shift (Fig. 4.7b). The 

estimate of echo shift as well as constant phase offset can be calculated by 

comparing two echoes. The reference scan is acquired for each gradient echo in 

EPI and the estimate of echo shift and constant phase offset are used to ‘un-shift’ 

and remove the phase offset of every gradient echo. 

 In the reference scan method, the phase error is assumed to exist only in the 

frequency-encoded direction by turning off the phase encoding for all reference 

data. This assumption may no longer hold as the off-resonance induced echo shift 

is present along the phase-encoded direction [59]. 

 Another issue associated with the rapid gradient switching is peripheral 

nerve stimulation (PNS). The PNS level has been found to be proportional to the 

change of magnetic field: dB/dt, which is related to the rise time and magnetic 

gradient strength [62]. No study has found that the PNS level lead to the risk in 

cardiac and respiratory function. However, caution should be taken as the 

advancement of MR hardware. 
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Figure 4.7: Illustration of reference scan method. a: The gradient echoes are 
acquired in two opposite directions without phase encoding, and their echo shifts 
have opposite signs. b: By reversing one of the gradient echo of the negative 
readout direction, the relative shift between two gradient echoes is two times the 
echo shift. 

4.5.2 PROPELLER DWI 

PROPELLER (Periodically Rotated Overlapping Parallel Lines with 

Enhanced Reconstruction) [15] is another alternative method for DWI. In contrast 

to EPI, where squared k-space coverage is finished in one TR, PROPELLER 

encodes a k-space strip in one TR and other rotated strips in subsequent TRs to fill 

a circle of k-space (Fig. 4.8a). In addition, each k-space strip is encoded by a fast 

spin echo train, where each phase-encoded line is a spin echo between each pair 

of refocusing RF pulses. 

 The radial nature of data acquisition in PROPELLER make the high 

resolution diffusion-weighted images achievable, which are normally limited by 

the T2 or T2
* relaxation in the phase-encoded direction. The use of fast spin echo 

train minimizes the off-resonance phase warping in the phase-encoded direction. 
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Figure 4.8: a: k-space trajectory of diffusion-weighted PROPELLER. The bold 
lines denote encoded PROPELLER ‘blade’ in one TR. b: Pulse sequence diagram 
of diffusion-weighted PROPELLER in one TR. The effective TE is defined as the 
time reaching the center of k-space. Illustrations are for the echo train length of 5. 

The overlapped region serves as a self-navigated region for the 

motion-induced phase, which is to be removed before combining all the data 

blades to form the final image. The motion induced phase is assumed to be slowly 

varying in space. Besides, this method requires less demanding hardware for 

switching gradients, reducing the artifacts due to system imperfections. 

Nonetheless, PROPELLER method is subject to the issues from high specific 

absorption rate (SAR), long scan time, non-Carr-Purcell-Meiboom-Gill 

(non-CPMG) echo train, and motion-induced phase, which to be discussed below. 

SAR Issue 

 SAR, in a unit of watts per kilogram (W/kg), is a quantitative measure of RF 

energy deposited into the patient. The increase in SAR causes patient heating, 

which may pose the health risk. A scaling relationship between the main field 
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strength (B0), flip angle (θ), and RF bandwidth (∆f) is given by: 

ΔfθBSAR 22
0∝                        (4.30) 

Compared with EPI (Fig. 4.5), higher SAR is generated in PROPELLER by 

requiring more refocusing RF pulses of 180° flip angle, and the problem is even 

exacerbated at the high field strength; 3T generates 4 times SAR than 1.5T. 

According to the regulatory guideline for SAR by International Electro technical 

Commission (IEC) and the Food and Drug Administration (FDA), SAR value 

must be less than 8 W/kg over 15 minutes and less than 4 W/kg over 5 minutes. 

Non-CPMG Echo Train 

 The perfect 180° refocusing RF pulses of a fast spin echo train (Fig. 4.8b) 

ensure the stable signals with no dephasing from the off-resonance phase. 

However, the prefect refocusing is difficult to achieve in reality because of B1 

field inhomogeneity. When the flip angle is smaller than 180°, the transverse 

magnetization is partially delivered to the longitudinal magnetization after the fist 

refocusing RF pulse, and at the subsequent refocusing RF pulses, the multiple 

echoes are generated from multiple signal pathways [63]. Those multiple echoes 

are associated with different phases, resulting in signal losses throughout the 

refocusing echo train. The CPMG echo train [64] was developed to minimize the 

signal loss for an echo train with non-180° refocusing RF pulses. This requires 

two conditions, called CPMG conditions. First, there must be a 90° phase 

difference between the excitation and refocusing RF pulses. Besides, the time 

spacing between each pair of refocusing RF pulses has to be uniform throughout 
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an echo train, such that the echo is formed in the mid-point between each pair of 

refocusing RF pulses. Second, the gradient area between each pair of refocusing 

RF pulses has to be identical throughout an echo train. 

 A simulation was performed to investigate the spin phase evolution during a 

refocusing echo train [15]. A refocusing echo train satisfying the CPMG condition 

(90° phase shift between excitation and refocusing RF pulses) has a greater 

immunity over the signal losses due to the non-180° flip angle (Fig. 4.9). Lower 

flip angle allowed in a CPMG echo train also lead to a reduction in SAR (Eq. 

4.30). The required 90° phase difference between excitation and refocusing RF 

pulses ensures the transverse magnetization after the 90° excitation pulse lies 

along the axis of the refocusing RF pulse (Fig. 4.10a). However, in 

diffusion-weighted sequences (Fig. 4.8b), the preceding diffusion encoding 

gradients produce a unknown, spatially varying phase because of subject motion 

(Eq. 4.26), shifting the transverse magnetization away from the axis of the 

refocusing RF pulse (Fig. 4.10b). The resulting out-of-phase component of the 

transverse magnetization is sensitive to non-180° refocusing RF pulses [65], 

causing an overall signal loss (Fig. 4.11a). MLEV sequence [66] was applied to 

reduce this effect using alternating refocusing RF pulses (Fig. 4.11b). However, 

the out-of-phase component of transverse magnetization (Fig. 4.10b) still 

oscillates between odd and even echoes. This phase shift is termed as motion 

induced phase herein. The alternating motion induced phase between odd and 

even echoes causes phase inconsistencies in a PROPELLER blade. The phase 

inconsistencies can be minimized by conjugating the motion induced phase of odd 

echoes in image domain to match the motion induced phase of even echoes [15]. 
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Figure 4.9: Magnitude of transverse magnetization of echoes throughout a 
refocusing echo train with refocusing RF pulse of 180° and 160°; a: no phase 
difference and b: 90° phase difference between excitation and refocusing RF 
pulses. 

 

 
Figure 4.10: a: The change of magnetization after a 90° excitation RF pulse 
applied along x axis. b: The phase modulation (Ө(t)) deviates the magnetization 
from y axis, creating a out-of-phase component. 
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Figure 4.11: Magnitude of transverse magnetization of echoes throughout a 
refocusing echo train with refocusing RF pulse of 160° with a phase shift of 0° 
and 60°. a: Echo train with excitation RF pulse of 90° x and subsequent 
refocusing RF pulses of 160° y. b: Echo train with excitation RF pulse of 90° x 
and subsequent alternating refocusing RF pulses of 160° x, 160° y. 

Motion Induced Phase Removal 

 The motion induced phases are different between data blades from different 

TRs, and need to be removed prior to the combination of data blades to form the 

final image. By assuming that the motion induced phase is slowly varying in 

space, the overlapping area of PROPELLER blades (Fig. 4.8a) becomes the 

navigated region of the motion induce phase. If the motion induced phase is 

consistent between odd and even echoes, the phase map of the motion induced 

phase can be created through Fourier transform of the data blade. However, the 

short blade width of a data blade results in Gibbs ringing phase along the 

phase-encoded direction. The Gibbs ringing phase should be kept during the 

image reconstruction to avoid the blurring effects on the final reconstructed image. 

Therefore, a pyramid function is applied to the data blade to ‘filter’ out the Gibbs 

ringing for creating a motion induced phase map [15]. 
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Figure 4.12: Magnitude of one PROPELLER data blade (a) with diffusion 
weighting b = 1000 s/mm2 at y axis, and its corresponding phase map: magnitude 
images (b), and phase maps (c). 

Those approximations are problematic for a data blade with a narrow blade 

width. The rapid varying phase in space can possibly shift the majority of k-space 

data out of the data blade (Fig. 4.12). In addition, the spatial variation of Gibbs 

ringing phase is slower at the short blade width. The applied pyramid function 

could no longer filter out the Gibbs ringing phase, which can be removed together 

with the motion induced phase (Fig. 4.12b-c). 
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Chapter 5 

NON-MONOEXPONENTIAL PHENOMENOLOGIAL MODELS 

 When b-value is larger than 2000 s/mm2, the diffusion-weighted signal decay 

has been observed to deviate from a monoexponential behavior in the brain. This 

deviation at higher b-values could potentially provide valuable information about 

pathological mechanisms [67-73]. Recent works have been dedicated to establish 

the relationship between the signal decay and tissue microstructure. In general, 

the approaches can be divided into two categories: analytical models and 

phenomenological models. 

Analytical models [30,74-77] give the complete description of tissue 

structure, and the model parameters are direct measure of physical quantities. The 

models have multiple parameters and normally impose the assumption of short 

gradient pulse (SGP) (δ → 0) or assumptions about geometry of microstructure. 

However, it is difficult to achieve the SGP condition in current human imaging 

systems because of limited field gradient strengths. Besides, real tissues are 

composed of complex microstructure and biophysical mechanisms, which are 

difficult to describe using certain geometry even with multiple model parameters. 

Phenomenological modeling is developed to describe the observed 

non-monoexponential decay. It has a few fitted parameters and makes no 

assumption about tissue microstructure. 

Diffusion-weighted MR measurements have an inherently low SNR, because 

of a long TE and an application with diffusion encoding gradients. At higher 

b-values, further SNR loss is caused by a longer TE and an increased 
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diffusion-weighting. More number of excitations (NEX) is thus necessary to 

increase SNR. This combined with multiple b-value measurements prolongs the 

scan time for the high-value experiments. Long scan time is a very important 

limiting factor, because it poses concerns over patient discomfort and safety. 

Longer scan time also makes MR imaging more susceptible to patient motion. In 

this respect, phenomenological models with only a few parameters are applicable 

in a clinical setting. The major issue with phenomenological models is their lack 

of the relationship with tissue structures. 

The objective of this work was to study the behaviors of two 

phenomenological models: the statistical distribution and the diffusion kurtosis 

models. For this purpose, we acquired DWI data from clinical cases of ischemic 

stroke and recurrent high-grade gliomas to study how the phenomenological 

diffusion models responded to the pathological changes. In addition, we 

developed a Monte Carlo simulation of microstructures and a PGSE experiments 

to investigate how the fitted parameters were related to microstructural changes. If 

each of the diffusion models exhibits different, specific sensitivity to 

microstructural changes, the models may be used together to better understand 

and identify the underlying biophysical mechanisms. 

5.1 Background 

5.1.1 Multi-exponential Models 

 The exponential relaxation is a common phenomenon in physics and 

chemistry. The non-monoexponential relaxation is empirically attributed to the 

summation of multiple relaxations from heterogeneous sources [78]. For a cell 
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structure with intra/extra-cellular compartments (Fig. 2.3), it is tempting to 

envisage the slow and fast diffusion components arising from intra- and 

extra-cellular compartments with fractions: fslow + ffast = 1. 

)ADCexp(-bf)ADCexp(-bf
S(0)
S(b)

fastfastslowslow ×+×=       (5.1) 

The bi-exponential model with three fitted parameters has been shown to fit the 

data well and correlate with the pathological changes [72,73,79]. However, the 

measured fractions of slow/fast diffusion components (0.20-0.33/0.67-0.80) are 

inconsistent with the known intra/extra-cellular fractions (0.80/0.20) [80]. In 

addition, the bi-exponential decay has been observed at the intracellular space [81] 

and at the cellular space with the disintegrated cell membrane [82]. It can also be 

over-parameterized in some cases [83]. 

In complex tissue structure, it is likely that the signal attenuation observed 

with DWI can arise from a continuous distribution of diffusion rates [10,11,84]: 

              dADCADC)-bP(ADC)exp(
S(0)
S(b)

0∫
∞

×=            (5.2) 

P(ADC) is the continuous PDF of apparent diffusion rates without the assumption 

about the number of diffusion rates or short gradient pulse condition. Calculation 

of P(ADC) through Eq. (4.2) is a numerically ill-posed problem [84,85]. 

 Many relaxation problems in physics and chemistry are formulated as 

multiple relaxation sources arising from heterogeneous mediums that are similar 

to Eq. (4.2). The signal relaxation can be empirically described by the 

Kohlrausch-Williams-Watts (KWW) function [86]. The application of KWW 

function to diffusion-weighted signal attenuation was first presented by Bennett et 

al. [11], called the stretched exponential model (α-DWI): 
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                  αDDC)bexp(
S(0)
S(b)

×−=                    (5.3) 

DDC is described as the distributed diffusion coefficient, and α is termed as 

“heterogeneity index”. The α-DWI model has been used to measure structural 

heterogeneity in the brain [11,71,87,88] with a high b-value: 4000-5000 s/mm2. It 

has been linked to fractal tissue microstructure [89,90]. 

The α-DWI model makes no assumption about the type of the distribution 

P(ADC). Alternatively, other statistical distribution model assumes P(ADC) as a 

truncated Gaussian distribution [10]: 

 
              

2 2
stat stat

S(b) 1exp( b D b σ )
S(0) 2

= − × + ×            (5.4)
                 

Dstat refers to the most probable apparent diffusion rates, and σstat is the width of 

P(ADC). Another choice of P(ADC) is a gamma distribution [13]. 

αα

α

b)(β
β

S(0)
S(b)

+
=                    (5.5)

                 

where α = (Dgamma/σgamma)2, β = Dgamma/(σgamma)2, Dgamma is the mean diffusion rate 

and σgamma is the standard deviation (STD) of P(ADC). 

5.1.2 Cumulant Expansion Model 

Instead of making an assumption about the multiplicity of water diffusion 

rates as in the multi-exponential models, the diffusion kurtosis imaging (DKI) 

model measures the deviation of water displacement PDF from a Gaussian 

distribution. The DKI model was derived from a Taylor expansion of signal 

attenuation in the q-space model (Eq. (4.15)). 

2 3 41 1 1E(q, )  P(R)(1 iqR (qR) (qR) (qR) ...)dR
2 6 24

Δ = + − + − +∫     (5.6) 

The cumulant expansion of Eq. (5.6): 
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             ... kurtosisDq
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1Dq )logE(q, 2242 +×Δ+Δ−=Δ         (5.7) 

The kurtosis is defined as: 

3
]E[R
]E[R kurtosis 2

4

−=                     (5.8) 

The kurtosis can also be related to distribution of apparent diffusion rates (Eq. 

(5.2)) as: 

2(E[ADC])
 var[ADC]3 kurtosis =                    (5.9) 

If the short gradient pulse approximation is applied (δ → 0), and only the first two 

terms in the cumulant expansion (Eq. (3.16) are kept, the DKI model can be 

represented as a truncated cumulant expansion: 

app
2

app
2

app KDb
6
1bD logE(b) ×+−=           (5.10) 

Dapp and Kapp refer to apparent diffusion coefficient and apparent kurtosis. 

The DKI model has a well-defined theoretical basis. However, the truncated 

representation in Eq. (5.10) is only valid when both the b-value (q-vector) and the 

high moment of displacement R are small [91]. The b-value for the DKI model is 

less than 2500 s/mm2 in human brains. In addition, the derivation of the DKI 

model still requires the short gradient pulse approximation (δ → 0). In light of the 

above limiting factors, the DKI model is considered as a phenomenological model 

[74,91]. 

5.1.3 Summary 

The statistical distribution and the DKI models quantify non-Gaussian water 

diffusion with a relatively low b-value of less than 2500 s/mm2, and these models 

can thus be implemented in the clinic with a reasonable scan time and an adequate 
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SNR. The models have been used to study biophysical and pathological changes 

[70,92-97], potentially exhibiting higher sensitivity and specificity compared to 

the ADC of the monoexponential model. However, the relation between these 

models of non-Gaussian water diffusion and tissue microstructure is still unclear. 

To gain a better understanding of how these models related to healthy and 

diseased tissue, we investigated the relationship between two non-Gaussian water 

diffusion models (the statistical distribution and DKI models) and a simulated 

tissue microstructure. For this purpose, we performed a clinical study on ischemic 

stroke (n = 5) and recurrent gliomas (n = 7) to study how the fitted parameters 

correlated with pathological changes. We implemented multiple b-value imaging 

protocols with maxim b = 2500 s/mm2 in the clinics, and correlated the fitted 

parameters with the defined ROIs. We also created a 2-D Monte Carlo simulation 

of the DWI experiment and water diffusion in an intra/extra-cellular 

microstructure with the continuously distributed compartmental size. We 

independently varied three relevant microstructural parameters: cell size, volume 

fraction, and membrane permeability to study how the fitted parameters (Dstat, σstat 

of the statistical distribution model, Dapp, Kapp of the DKI model) correlated with 

the microstructural changes compared with the ADC. We compared the relative 

sensitivity between the diffusion models to the changes, and studied the 

dependence of the models on a realistic SNR. If each of the diffusion models 

exhibits different, specific sensitivity to microstructural changes, the models may 

be used together to better understand and identify the underlying biophysical 

mechanisms. 
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5.2 Patient Study 

 An imaging protocol of b-value up to 2500 s/mm2 was implemented in a 

clinical scanner, and DWI images were acquired from five case of ischemic stroke 

(n = 5) and seven cases of recurrent high-grade gliomas (n = 7). The statistical 

distribution and DKI models were fitted the signal decay, and their fitted 

parameters were compared between the defined regions of interest (ROIs). The 

goal was to study how the fitted parameters of the non-monoexponential models 

correlated with the pathological changes. 

5.2.1 Experiment 

With the Institutional Review Board approval and informed consent obtained 

from each patient, 12 patients were included in this study. Five patients (2 females, 

3 males with age: 57 ± 14 years, range: 42-77 years) were with ischemic stroke 

within 7 to 14 days after the onset of the neurological deficit. Seven patients were 

with recurrent WHO grade IV gliomas (5 females, 2 males with age: 56 ± 13 

years, range: 42-74 years), and had undergone previous multimodality therapy, 

including chemotherapy and radiation. Pre-operative imaging was obtained and 

was correlated with stereotactic sampled histopathology, which showed to have 

recurrent tumor. Patients with tissue samples containing both tumor and 

post-treatment radiation effects were considered as tumor cases if one of the 

biopsy samples was tumor. 

Images were acquired on a GE Signa HDx 3T scanner with an eight-channel 

head coil. A dual spin echo DW echo planar imaging (EPI) sequence was used 

with the maximum gradient strength: 40 mT/m. DW images were acquired in 
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three directions: x, y, and z respectively with b-value: 0-2500 s/mm2 in increment 

of 500 s/mm2 by changing the gradient strength g. The SENSE factor was 2. 

Other imaging parameters were: acquisition matrix of 128 × 128, field of view of 

240 mm, slice thickness of 4.5 mm with 0.5 mm gap, number of excitations (NEX) 

of 4, δ/∆ = 29/36 ms, and TE/TR = 106/4000 ms. For patients with recurrent tumor, 

routine pre- and post-contrast axial T1-weighted 3D magnetization prepared rapid 

gradient echo (MPRAGE) images were acquired with whole brain coverage from 

each patient. 

5.2.2 Data Analysis 

Data of diffusion attenuation were fitted with the statistical distribution and 

DKI models using the Levenberg-Marquardt algorithm in MATLAB (Mathworks, 

Inc.). For comparison, the ADC of the monoexponential model was calculated 

using the DWI signals of b = 0 and 1000 s/mm2. DW attenuation was normalized 

by the signal of b = 0 s/mm2, and the fitted parameters obtained from x, y, and z 

diffusion gradient directions were averaged to yield a mean value for each image 

voxel. The noise floor was empirically determined to be the mean plus 3 times 

STD of background noise. The DWI signals below the noise floor were excluded 

from the data fitting. The goodness-of-fit was assessed using the reduced 

chi-square statistic ( 2
νχ ) [98], defined as the sum of squares of residuals divided 

by the uncertainty of measurements (σi) and the degree of freedom (ν = N – 1 – n; 

n is the number of free parameters): 
2N

2 i fit
2

i 1 i

(S S )1 
σνχ ν =

−
= ∑                     (5.11)         

The uncertainty of measurements (σi) was empirically determined to be 3 times 
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STD of background noise. The goodness-of-fit was also assessed using the 

coefficient of determination (R2). The data fits with a low R2 (< 0.95) were 

excluded from the data analysis. 

 In the cases of ischemic stroke, two ROIs were selected: brain lesion and 

brain white matter. The regions of brain lesion were placed on the area of 

hyper-intensity of diffusion-weighted images with b = 1000 s/mm2 (Fig. 5.1a). 

The regions of white matter were segmented on T2-weighed images (Fig. 5.1b) 

using SPM (University College London, UK). In the cases of recurrent tumor, 

three ROIs were defined (Fig. 5.3): enhancing regions on T1-weighted 

post-contrast images, peri-enhancing regions on T2-weighted images (b = 0 

s/mm2), defined as abnormal signals outside of enhancing regions, and white 

matter regions, which were segmented on T2-weighed images using SPM. An 

paired two-tailed Student’s t-test was used to compare the fitted parameters 

between the selected ROIs. The difference was considered to be statistically 

significant, if p < 0.05. 

5.2.3 Results 

An example of calculated parametric maps of a case of ischemic stroke is 

shown in Fig. 5.1. The fitted parameters in ROIs of five patients with ischemic 

stroke are shown in Fig. 5.2. Brain lesion ROI showed the smaller average ADC, 

Dstat, Dapp, and σstat, and larger average Kapp than white matter ROI (Fig. 5.3). 

Figure 5.4 illustrates an example of calculated parametric maps of a case of 

recurrent gliomas. The fitted parameters in ROIs of seven patients with recurrent 

gliomas are shown in Fig. 5.5. Enhancing ROI showed higher average ADC, Dstat, 
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Dapp, and σstat, and smaller average Kapp, compared with white matter ROI (Fig. 

5.6). Compared with peri-enhancing ROI, enhancing ROI showed smaller average 

ADC, Dstat, and Dapp, while there was no difference between enhancing and 

peri-enhancing ROIs in σstat and Kapp. 
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Figure 5.1: Example of ROIs selection and parametric maps of a 63-year-old male 
with ischemic stroke. a: Isotropically diffusion-weighted image (b = 1000 s/mm2) 
with ROIs of brain lesions. b: T2-weighted (b = 0 s/mm2) image with ROI of 
white matter. c-f: Parametric maps calculated by fitting the diffusion models to the 
DWI signals of b = 0 – 2500 s/mm2; ADC of monoexponential model, Dstat, σstat 
of the statistical distribution model, and Dapp, Kapp of the DKI model. 
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Figure 5.2: The fitted parameters within the ROIs of white matter and brain 
lesions of five clinical cases of ischemic stroke; ADC of monoexponential model, 
Dstat, σstat of the statistical distribution model, and Dapp, Kapp of the DKI model. 
Error bar denotes the standard deviation. 
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Figure 5.3: The fitted parameters within the ROIs of white matter and brain 
lesions averaged across five clinical cases of ischemic stroke; ADC of 
monoexponential model, Dstat, σstat of the statistical distribution model, and Dapp, 
Kapp of the DKI model. Error bar denotes the standard deviation. 
 

 
Figure 5.4: Example of ROIs selection and parametric maps of a 46-year-old male 
with recurrent glioblastoma. a: Post-contrast T1-weighted image with enhancing 
and white matter ROIs. b: T2-weighted (b = 0 s/mm2) image with peri-enhancing 
ROI. c-f: Parametric maps calculated by fitting the diffusion models to the DWI 
signals of b = 0 – 2500 s/mm2; ADC of monoexponential model, Dstat, σstat of the 
statistical distribution model, and Dapp, Kapp of the DKI model. 
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Figure 5.5: The fitted parameters within the ROIs of white matte, enhancing, and 
peri-enhancing of seven clinical cases of recurrent gliomas; ADC of 
monoexponential model, Dstat, σstat of the statistical distribution model, and Dapp, 
Kapp of the DKI model. Error bar denotes the standard deviation. 



 80

 
Figure 5.6: The fitted parameters within the ROIs of white matter enhancing, and 
peri-enhancing averaged across seven clinical cases of recurrent gliomas; ADC of 
monoexponential model, Dstat, σstat of the statistical distribution model, and Dapp, 
Kapp of the DKI model. Error bar denotes the standard deviation. 

5.2.4 Discussion 

 Our findings of the decreased diffusivity measured by ADC, Dstat, and Dapp, 

and the increased index of non-Gaussian water diffusion by Kapp on ischemic 

lesion were consistent with a previous study on human ischemic stroke using the 

DKI model [99,100]. In our experiments, the ROI of recurrent tumor showed a 

decrease in the Kapp compared with white matter ROI. This result is consistent 

with the study by Raab et al. [70] on high-grade brain tumor using the DKI 

models.  

 Although the measured diffusivity by ADC, Dstat, and Dapp showed 

differences between enhancing and peri-enhancing ROIs, there were overlaps of 

the fitted parameters between these two ROIs. These overlaps of the fitted 

parameters may be due to the highly infiltrative nature of malignant tumor cells 

[101] and treatment-induced necrosis in the enhancing and peri-enhancing ROIs. 

 There are several challenges for a ROI-based study of high-grade brain 

tumor. Most studies including this work define a ROI on the enhancing regions on 
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T1-weighted post-contrast images by assuming that modulated cellularity of tumor 

cells correlates with the enhancing regions on T1-weighted images. This 

assumption could be problematic [101]. In addition, the changes in tumor 

cellularity could be subtle and occurs with surrounding necrotic tissues, and thus 

may be difficult to detect using low-resolution, diffusion-weighted images. 

5.3 Monte Carlo Simulation 

 Unlike the analytical methods, which require assumptions of certain 

geometrical structures, short gradient pulse approximation (SGP condition: δ → 

0), or long time limit (∆ → ∞), the Monte Carlo method allows flexibility to 

approximate realistic DWI experiments and tissue microstructure. It has been 

used to study the relationship between the physical structures and the 

phenomenological models, including ADC and DKI models. However, either 

compartmental exchange is unconsidered in some of the studies [102,103], or the 

simulated structures composed of uniform cell location or cell size [30,104].  

In this study, we simulated molecular water diffusion in a microstructure 

composed of randomly located semi-permeable cells with a continuously 

distributed cell size. We also simulated a PGSE experiment with a typical gradient 

strength (40 mT/m) in human imaging systems. 

5.3.1 Methods 

To simulate the MRI signal arising from tissue, a Monte-Carlo simulation 

was implemented in C++. 60,000 dimensionless spins were randomly placed in a 

2-D plane of 0.4 × 0.4 mm2 and performed a random walk at a rate 40,000 

steps/second within and between randomly packed cells (Fig. 5.7). The 



 82

intracellular diffusivities was set to 1.0 × 10-3 mm2/s [30], and the extracellular 

diffusivity was set to be 2.5 × 10-3 mm2/s [30], assuming that the intrinsic 

extracellular diffusivity is faster than the intracellular diffusivity. Cell sizes were 

specified from a gamma distribution with a mean of 10 μm, a typical human cell 

size [105], and a standard deviation (SD) of 7 μm in diameter; the ratio SD/mean 

was set to 0.7 to match the axon size distribution in human corpus callosum 

[102,106]. The intracellular volume fraction was 0.65, which is within the range 

of measured values in rat brains (0.73 in gray matter, 0.60 in white matter) [48]. 

The membrane permeability defined in [31] was 0.01 mm/s, close to the measured 

values in various cell types [75]. 

In this study, three important parameters of tissue microstructure were 

investigated: cell size (2R), cell volume fraction (V), and membrane permeability 

(P) that have been shown to correlate with pathology. An increase in cell size 

(around 1-6 μm increase in nuclear size) was observed in tumor cells after 

treatment in a mouse model of colon cancer [107]. An increase in cell volume 

fraction by 0.15 was shown after ischemia in rat brains [108], while a decrease of 

cell volume fraction by 0.19 was found in human glioblastoma [109]. Decreased 

membrane permeability was suggested as one of the mechanisms for ischemia 

[47]. An increase in membrane permeability by a factor of around 3 to 7 was 

shown in brain tumors [110]. 
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Figure 5.7: Illustration of the simulated cell structure (a) with mean cell size: 10 
μm in diameter and cell volume fraction: 0.65, and the microstructural changes in 
mean cell size (increased to 15 μm) (b), cell volume fraction (increased to 0.80) 
(c), and membrane permeability (decreased) (d). All the changes (b-d) were made 
with other microstructural parameters kept the same as in a. Intra/extra-cellular 
space is shown in gray/white color. 

To study how the non-Gaussian water diffusion models respond to 

pathology-induced microstructural chagnes, three parameters were modified in 

separate experiments, including a decrease and an increase in mean cell size 

(5-10-15 μm), cell volume fraction (0.50-0.65-0.80), and membrane permeability 

(0.001-0.01-0.1 mm/s). Figure 5.7 illustrates how the simulated microstructure 

was changed. 

A PGSE sequence was simulated to create the DWI signal through spin 

phase accumulation [30, 102]. The parameters of the PGSE sequence were chosen 

to be similar to those of human MRI systems: the maximum gradient strength 40 
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mT/m and δ/Δ = 29/36 ms. The gradient was applied along a single axis with 

maximum b-value: 2500 s/mm2 in increments of 500 s/mm2 by changing the 

gradient strength g. Each experiment was repeated 20 times, and the simulated 

DWI signals were averaged across the repeated experiments to minimize the 

deviation from the Monte Carlo simulation; the SD of the simulated DWI signal ~ 

3 × 10-3. 

The simulated DWI signals were fitted with the statistical distribution and 

DKI models using the Levenberg-Marquardt algorithm in MATLAB (Mathworks, 

Inc.). The goodness-of-fit was assessed using the reduced chi-square statistic ( 2
νχ ) 

(Eq. (5.11)). The uncertainty of measurements (σi) was empirically determined to 

be three times of the SD of the simulated DWI signal (~ 9 × 10-3). The standard 

monoexponential model was applied for comparison, and the ADC was calculated 

using the DWI signals with b = 0 and 1000 s/mm2. 

Pearson’s correlation coefficient was used to evaluate the correlation 

between the fitted parameters of the diffusion models (ADC of the 

monoexponential model, Dstat, σstat of the statistical distribution model, Dapp, Kapp 

of the DKI model) and the modified microstructural parameters (2R, V, and P) 

with a significance level: 0.05 (p < 0.05). The percentage change of the fitted 

parameter was used to assess the sensitivity of the fitted parameter in response to 

the modified microstructural parameters. 

The deviations of the fitted parameters due to noise were studied by 

simulating noisy MRI signals with a Rician distribution. The SNR level at b = 0 

were set to be 50, which is typical in DWI experiments. The models were fitted to 
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the simulated noisy data with b = 2500 s/mm2. The experiments were repeated 

10,000 times by adding the noise independently in each experiment, and the 

average and the SD of the fitted parameter was calculated across experiments. 

5.3.2 Results 

The simulation was validated by comparing with the analytical signal 

attenuation of free and restricted diffusion (Fig 5.8a-b). The minimum precision 

of the simulation reached 5 × 10-3 (dash line in Fig. 5.8a) with a relative error less 

than 2 × 10-3. The noise floor of this simulation was set to be 5 × 10-3. The 

simulated signal attenuation of restricted diffusion approximated the diffraction 

pattern better with the narrower pulse width (Fig. 5.8b). This agrees with the 

effects of finite pulse width shown by the previous study (Linse and Soderman 

1995). The simulated DWI signals with the prescribed microstructural changes 

caused non-monoexponential attenuation (Fig. 5.8c,d,e). The minimum signal was 

2.7 × 10-2, which was above the noise floor of this simulation (5 × 10-3). 

 The quadratic cumulant expansion models (the DKI model and the statistical 

distribution model) fit all the datasets inside a 95 % confidence interval with b = 

2500 s/mm2 (Table 5.1). 

 When cell size became larger, the ADC, Dstat, Dapp, and the σstat positively 

correlated with cell size, and the Kapp inversely correlated with cell size (Fig. 5.9). 

When cell volume fraction was increased, the ADC, Dstat, Dapp, and the σstat 

inversely correlated with cell volume fraction, but the Kapp showed no correlation 

with cell volume fraction. When membrane permeability was larger, the ADC, 

Dstat, and Dapp positively correlated with membrane permeability. The Kapp was in- 
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Figure 5.8: a-b: Comparison between the simulated DWI signals and the 
analytical signal attenuation of free diffusion (a) and restricted diffusion within 
cells (cell size (2R): 15 μm) (b), where q = γgδ. c-e: Simulated DWI signals 
versus b-value with the microstructural changes in cell size (2R), cell volume 
fraction (V), and membrane permeability (P). 
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Table 5.1: The reduced chi-square statistic (χν2) of the quadratic expansion fits 
(the DKI and the statistical model) to the datasets with simulated microstructural 
changes in cell size (2R), cell volume fraction (V), and membrane permeability 
(P). The changes of the microstructural parameters were made with other 
parameters kept constant; 2R = 10 μm, V = 0.65, and P = 0.01 mm/s. 

versely correlated with membrane permeability. However, the σstat showed no 

correlation with membrane permeability. 

 The ADC, Dstat, Dapp were sensitive to all simulated microstructural changes 

other than the decrease in membrane permeability (Fig. 5.10). By contrast, the 

σstat was specifically sensitive to both the increase and decrease in cell volume 

fraction. The Kapp was specifically sensitive to the decrease in cell size and the 

increase in membrane permeability. 
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Figure 5.9: Correlations between the fitted parameters and simulated 
microstructural changes in cell size (2R), cell volume fraction (V), and membrane 
permeability (P); ADC of the monoexponential model, Dstat, σstat of the statistical 
distribution model, and Dapp, Kapp of the DKI model. * indicates that a correlation 
is insignificant (p > 0.05). 
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Figure 5.10: Percentage changes of the fitted parameters in response to a decrease 
and an increase in cell size (2R), cell volume fraction (V), and membrane 
permeability (P); ADC of the monoexponential model, Dstat, σstat of the statistical 
distribution model, and Dapp, Kapp of the DKI model. Note that the σstat was 
uncorrelated with the changes in membrane permeability, and the Kapp was 
uncorrelated with the changes in cell volume fraction, as shown in Fig. 5.8. 
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The percentage changes of the fitted parameters obtained from the simulated 

noisy data (Fig. 5.11) were consistent with those obtained from the noise-free data 

(Fig. 5.10). This suggests that the models were insensitive to the simulated 

rectified noise floor. However, the fitted parameters showed fluctuations due to 

the simulated noise. In particular, the σstat showed the largest sensitivity to the 

simulated noise fluctuations (Fig. 5.11). 

5.3.3 Discussion 

We investigated the relationship between the statistical distribution and DKI 

models and simulated microstructural changes, specifically cell size, cell volume 

fraction, and membrane permeability. We compared the results of these models to 

those of the monoexponential model. The parameters ADC, Dstat, and Dapp were 

sensitive to all of the simulated microstructural changes except the decrease in 

membrane permeability. The ADC, Dstat, and Dapp increased with cell size and 

membrane permeability, and decreased with cell volume fraction. The measured 

width of the distribution of diffusion rates (P(D)) by σstat was specifically sensitive 

to the changes in cell volume fraction. The σstat increased with smaller cell volume 

fraction. The measured index of non-Gaussian water diffusion by Kapp was 

specifically sensitive to the decrease in cell size and the increase in membrane 

permeability. The parameter Kapp increased with smaller cell size and decreased 

with larger membrane permeability. We propose that the different sensitivities of 

these two models may contribute to the observed differences in the previous in 

vivo experiments [70,93-97,111]. More importantly, a combination of these 

non-Gaussian diffusion models may lead to a better identification and detection of 
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Figure 5.11: Effects of simulated MRI noise (SNR = 50 at b = 0 s/mm2) on the 
fitted parameters: a: An example of model fits to the simulated noisy DWI signals. 
b: Comparisons between percentage changes of the fitted parameters in response 
to a decrease and an increase in cell size (2R), cell volume fraction (V), and 
membrane permeability (P), and fluctuations due to the simulated noise; ADC of 
the monoexponential model, Dstat, σstat of the statistical distribution model, and 
Dapp, Kapp of the DKI model. The percentage change and fluctuation of the fitted 
parameter were calculated using the average and SD of the fitted parameter across 
10,000 experiments. 
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disease progression. However, cautions should be taken about the increased 

sensitivity of these models to noise fluctuations at higher b-values (Fig. 5.11). 

Our simulated physical system includes randomly packed, 2-D 

semi-permeable circular cells with the continuously distributed cell size to 

simulate tissue heterogeneity. Our simulated diffusion time is long ~ 26 ms (Δ – 

δ/3) but does not reach long diffusion limit (Δ → ∞). Nontheless, the correlations 

of the ADC with the simulated microstructural changes (Fig. 5.9) are consistent 

with the correlations predicted by the theoretical tissue model [30] consisting of 

regularly spaced, semi-permeable 3-D square cylinders at long diffusion time 

limit. Our chosen cell volume fraction was 0.65, which is lower than their 

simulated cell volume fraction (0.80) [30], in an attempt to facilitate the variation 

of the cell volume fraction (0.50 – 0.80) in a random cell packing. 

A 2-D computer model can be used to simulate water diffusion perpendicular 

to the fiber direction of white matter with a typical axonal size (~ 1-3 μm) 

[30,102,104]. In this study, the simulated 2-D microstructure with a typical cell 

size of 10 μm was used to approximate a 3-D isotropic microstructure by 

assuming that the measurements of water diffusion are approximately equal along 

any direction. We expect that the relationship between the diffusion models and 

simulated microstructural changes should be similar between a simulated 2-D and 

3-D microstructure. However, in an anisotropic microstructure, water diffusion 

should be directionally dependent in response to microstructural changes [30]. 

The previous measurements of intracellular water diffusion on HeLa cells 

[92] has shown that the σstat correlates with the width of cell size distribution at 

long diffusion times. In our study, the σstat measured at a long diffusion time was 
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specifically sensitive to the simulated changes in cell volume fraction, and it 

increased with a smaller cell volume fraction. We suspect that the changes in cell 

volume fraction may directly influence the distribution of intra/extra-cellular 

compartmental sizes, and smaller cell volume fraction may correlate with an 

increased width of the compartmental size distribution. 

Our experiments showed that the Kapp had an inverse correlation with the 

measured diffusivity (ADC, Dstat, and Dapp) upon the change in cell size and 

membrane permeability (Fig. 5.9). This inverse relationship can be expected from 

Eq. (5.9). However, the uncorrelated relationship between the Kapp and the 

changes in cell volume fraction may be a result of the concurrent increase or 

decrease of the measured width of P(D) (σstat) and the measured diffusivity (Dstat) 

(Eq. (5.9)). 

A decrease of ADC by approximately 40–60 % following ischemic stroke 

has been shown by previous studies [1,46]. The underlying mechanisms of this 

reduction in ADC remain unclear. The increased cell volume fraction is suggested 

to be one mechanism that results in more hindered extracellular diffusion [48,80]. 

However, the intracellular diffusion was found to decrease [112,113] or increase 

[114] at long diffusion times. Another factor of reduced membrane permeability 

was shown to have a minor impact on the reduced ADC using a Monte Carlo 

simulation [30]. One recent study applying the DKI on human stroke [99] has 

shown an increased Kapp (84 % increase versus 52 % decrease in the ADC). We 

suggest that this observed increase of the Kapp may arise from a decrease in cell 

size following ischemia, as our results showed that the increase of the Kapp was 
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sensitive to the decreased cell size and was relatively insensitive to the increased 

cell volume fraction and decreased membrane permeability (Fig. 5.10). 

Limitations of this study include the simplification of intra/extra-cellular 

structures by neglecting intracellular organelles, cytoplasm, and extracellular 

matrix, which are also important parameters of the pathological mechanisms 

[109,115]. Our simulation also neglected T2 relaxation in intra/extra-cellular 

compartments, which has been shown to affect the relation between the ADC and 

microstructural changes [116]. 

At relatively low b-values (b ≤ 2500 s/mm2), the statistical distribution and 

DKI models are less sensitive to the effects of MRI noise compared with the 

stretched exponential model fitted with typical high b-values of 4000-5000 s/mm2. 

However, at high b-values, the DWI signal arises from water protons with a 

slower diffusivity. Thus, non-monoexponential models applied at low b-value 

may not detect microstructural changes related to water with slower diffusivity. 

In conclusion, we simulated three important microstructural changes (cell 

size, cell volume fraction, and membrane permeability), and investigated how the 

diffusion models responded to the changes. The ADC, Dstat, and Dapp were 

sensitive to all these changes except for the decrease in membrane permeability. 

The σstat was specifically sensitive to the changes in cell volume fraction. The Kapp 

was specifically sensitive to the decrease in cell size and the increase in 

membrane permeability. These results suggest that the models of non-Gaussian 

water diffusion have different, specific sensitivities and may be used together to 

better understand the biophysical changes in disease. 
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Chapter 6 

ENHANCED PROPELLER DIFFUSION-WEIGHTED MR IMAGING 

 This chapter discusses the improvements to PROPELLER 

diffusion-weighted MR imaging. The violation of the CPMG condition of 

PROPELLER DWI leads to signal losses and phase inconsistencies between odd 

and even echoes. The signal losses is mitigated using the phase modulation of 

refocusing RF pulses, such as MLEV schemes [66]. However, the phase 

inconsistencies are difficult to remove when a receive-only phase coil such as a 

phased-array coil is used to increase SNR. The split-blade approach [104] has 

been proposed to encode odd and even echoes into separate blades. It minimizes 

phase inconsistencies but results in a smaller navigated region. This work 

introduces the whole-blade method to minimize the phase inconsistencies while 

keeping the larger navigated region. The results are compared to the results with 

the split-blade method. 

 The FSE-based PROPELLER DWI also causes high SAR and long scan time. 

Lately, faster PROPELLER techniques, including Turboprop [16], X-prop [23] 

and Steer-prop [117], have been proposed using a GRASE [18] readout to 

accelerate the sampling with fewer refocusing RF pulses. However, these faster 

PROPELLER methods are subject to the phase error arising from off-resonance 

and system imperfections. This study presents a new phase correction to 

Turboprop, called Turboprop+. Turboprop+ is then compared to other ‘turbo’ 

versions of PROPELLER, specifically Turboprop and X-prop. The Turboprop+ is 
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also compared to clinical standard EPI method using the same effective image 

resolution and NEX. 

6.1 Background 

6.1.1 Split-blade Method 

A PROPELLER blade is composed of odd and even echoes. The motion 

induced phase alternating between odd and even echoes creates phase 

inconsistencies in a PROPELLER blade. The appropriate phase ordering for either 

odd or even echoes to produce a consistent motion induced phase only applies 

using a transmit-receive coil [15]. When a receive-only phase coil is used, an 

additional coil phase is added to each acquired echo. This coil phase is slowly 

spatially varying without alternating between odd and even echoes. The mixture 

of the coil phase and the motion induced phase in a PROPELLR blade makes it 

difficult to remove the phase inconsistencies.  

To address the problem, a method called ‘split blade’ method [118] has been 

presented by encoding odd and even echoes into separate blades (Fig. 6.1). In the 

split blade method, because the motion induced phase and coil phase are 

consistent throughout every phase-encoded line, the remaining phases in the blade 

image formed by odd and even gradient echoes can be approximated as: 

y)(x,y)(x, y)(x, motioncoilodd Φ+Φ=Φ  

y)(x,Φy)(x,Φ y)(x,Φ motioncoileven −=              (6.1)  

The coil phase is measured in a blade image without diffusion weighting (b = 

0) by applying a pyramid function to the data blade in k-space to keep the Gibbs 

ringing phases in the phase-encoded direction (Fig. 4.12). After removing the coil 
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Figure 6.1: Illustration of the split-blade approach, where odd and even echoes are 
encoded into separate PROPELLER blades, which are oriented orthogonally to 
each other. At subsequent TRs, the blades are rotated to fill a full circle. 

phases, coil images are combined and the remaining motion induced phase in a 

diffusion-weighted blade image of odd and even echoes can be removed 

respectively. 

 The encoding scheme of the split blade method, however, results in a smaller 

navigated region. As illustrated in Fig. 6.1b, for an ETL of 6, the area of the 

navigated region is 9 (3 × 3) using the split-blade method, which is only 25 % of 

the original navigated area of 36 (6 × 6). In the presence of the rapid varying 

motion induced phase, the majority of k-space data can possibly shift out of the 

blade, which cannot be corrected by simply removing the motion induced phase 

[16]. 

6.1.2 Turboprop DWI 

 The pulse sequence diagram of Turboprop is shown in Fig. 6.2. It collects 

multiple gradient echoes around each primary spin echo, and the turbo factor is 

defined as the number of gradient echoes between each pair of refocusing RF 
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pulses. Compared with PROPELLER DWI, Turboprop DWI thus achieves more 

efficient k-space sampling with fewer refocusing RF pulses, which decreases SAR. 

The resulting wider blade also facilitates removing the motion-induced phase. 

Those benefits of Turboprop, however, are compromised by the increased 

sensitivity to the phase errors encountered in both EPI or GRASE-based methods. 

One source of the phase error is off-resonance arising from field inhomogeneity, 

magnetic susceptibility, and chemical shifts [59,119]. This leads to T2
* signal loss 

and ghosting artifacts because of the different off-resonance phase accrual 

between the phase-encoded lines. Another source of the phase error is system 

imperfections, such as eddy currents and hardware group delays, resulting in 

primarily an echo shift along the direction of readout gradient [119,120]. 

Oscillating readout gradients employed in Turboprop (Fig. 6.2a) thus induce 

misregistration of gradient echoes, exhibited as ghosting artifacts [119]. 

Furthermore, data blades in Turboprop are collected with slightly different phase 

errors, and this data inconsistencies cause signal loss and streaking artifacts [16] 

even without subject motion. The problem of data inconsistencies is even more 

exacerbated by the motion-induced phase from the diffusion gradients. 

The reference scan method [61] (Fig. 4.7) used with EPI is the typical 

approach to correct the phase error. This method requires an extra collected 

reference data without phase encoding to measure the echo shift and constant 

phase offset for each phase-encoded line. It was used to correct the phase error in 

Turboprop, where reference data is collected along directions of physical 

gradients x and y respectively to correct the anisotropic phase error of each 

rotated blade [121] (Fig. 6.3). However, this method is inadequate when there is a 
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Figure 6.2: Pulse sequence diagram (a) and k-space sampling scheme (b) of 
split-blade Turboprop. The solid lines refer to odd echoes and the dash lines refer 
to even echoes. Illustrations are for the turbo factor of 3 and ETL of 6 in one TR. 

large off-resonance phase accrual along the phase-encoded direction [59]. Besides, 

the off-resonance phase in each rotated blade of Turboprop is different and is 

insufficiently calibrated by using reference data oriented solely along physical 

gradients x and y. 

6.1.3 X-prop DWI 

 Another method to accelerate acquisition of PROPELLER is X-prop [122], 

where the individual gradient echoes are encoded into separate data blades (Fig. 

6.4). The idea is also very similar to the recently proposed Steer-prop [117]. 

Unlike Turboprop, where a data blade is composed of the different gradient 

echoes, in X-prop, the data blade is encoded by the same gradient echoes with the 

same gradient polarity. Thus, the echo shifting because of the off-resonance phase 

accrual and system imperfections is consistent in a data blade, and the phase error 

can be removed from each data blade using image-space phase correction [15]. 
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Figure 6.3: Reference scan method in Turboprop correcting for the anisotropic 
gradient shift and constant phase offset. The reference scan is applied on physical 
axis x and y respectively, and the measurements are used to circularly interpolate 
the gradient delays at different orientations. 

  

 

Figure 6.4: Pulse sequence diagram (a) and k-space sampling scheme (b) of 
split-blade X-prop. The solid lines refer to odd echoes and the dash lines refer to 
even echoes. Illustrations are for the turbo factor of 3 and ETL of 6 in one TR. 
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Because no reference scan is required, X-prop achieves faster acquisition 

with fewer image artifacts than Turboprop. Nonetheless, the sensitivity to the T2
* 

signal loss is increased in X-prop by placing the data blades of every gradient 

echo at the center of k-space. The effect of T2
* signals loss is most apparent when 

the turbo factor is high [122]. 

6.2 Whole-blade Method 

 The split-blade method has addressed the inconsistent phase between odd 

and even echoes in a non-CPMG echo train. However, the blade width is cut 

down by half and area of self-navigated region is reduced by 75 % (Fig. 6.1). One 

way to enlarge the self-navigated region in split-blade method is to increase the 

ETL. However, this results in a prolonged TE and loss of SNR. This study 

introduces an approach to combine even and odd echoes into a single blade, called 

whole-blade method [123]. In contrast to the previous scheme, where the blade 

images of b = 0 s/mm2 are averaged to measure the coil phase, this study employs 

the reference blades, which measure the coil phase for each rotated data blade 

more accurately. The reference blades are also served as a training data for 

parallel imaging, called Generalized Autocalibrating Partially Parallel Acquisition 

(GRAPPA), which further widen the blades and reduce the scan time. 

6.2.1 Methods 

 The flowchart of the whole blade method is shown in Fig. 6.5. Assuming coil 

phase is slowly varying, it is removed by applying image-space phase correction 

[15]. Assuming the coil phase is sufficiently removed, the remaining phase in the 

diffusion-weighted image is the motion induced phase, alternates the sign between 
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even and odd echoes (Eq. (6.1)). Simply by conjugating either the odd echoes or 

the even echoes, the resulting motion induced phase is consistent in a data blade. 

However, the conjugate of image-domain signals corresponds to the conjugate of 

Fourier-domain signals with reversed frequency and phase-encoding directions 

[15]. 

y)(x,Φ y)(x,Φ evenodd
* =  

)k,(k ),-k(-k yxevenyxodd
* Ω=Ω                (6.2) 

Therefore, the inverse operations have to be done to the echoes prior to the 

conjugation of the echoes. After the combination of the odd and even echoes, the 

remaining reconstruction is the same as for conventional PROPELLER DWI (Fig. 

6.5). 
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Figure 6.5: Reference blades are collected with no acceleration using odd and 
even echoes respectively on identical strips in k-space, at every blade angle, but 
only for b = 0. They are collected along with data blades (odd echoes at the center, 
and even echoes at the edge of the blade), collected with acceleration (R = 2) for 
all b-value and diffusion directions. After the GRAPPPA, each coil phase is 
removed for complex coil combination. The whole blade is then created by 
combining the even echoes and the conjugate of odd echoes. The remaining 
reconstruction is the same as for the standard reconstruction of PROPELLER 
DWI. 

6.2.2 Experiments 

All human studies were approved with the institutional review board and 

informed consent was obtained from each healthy volunteer. Pulse sequences 

were implemented on a GE Signa HDx 3 Tesla MR scanner (Milwaukee, 

Wisconsin) with an eight-channel brain head coil and a gradient system with 

maximum strength 40 mT/m. 

 The whole-blade method was applied to the conventional PROPELLER 

DWI (turbo = 1) and X-prop DWI with the turbo factor of 5. Three-axis DWI 

images: b = 0 and 1000 s/mm2 (x, y, and z) were acquired with an entire brain 

coverage (20 slices). Other imaging parameters were: 192 diameter matrix, FOV 
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of 240 mm, 20 slices with thickness/gap of 5/1.5 mm, ETL of 16 (PROPELLER), 

ETL of 12 (X-prop), BW of ± 50 kHz (PROPELLER), and BW of ± 100 kHz 

(X-prop). The images were also collected using the split-blade method with the 

identical slice coverage and imaging parameters. 

6.2.3 Results and Discussion 

 The comparisons of the results using the split-blade method and the 

whole-blade method are shown in Fig. 6.6 (PROPELLER) and Fig. 6.7 (X-prop). 

The results of whole blade were comparable with split blade method in SNR and 

artifacts, indicating that the odd/even echo phase inconsistencies were 

successfully addressed. 

 For the same ETL, the whole blade method of PROPELLER DWI can 

produce 4 times the area of the self-navigated region than the area produced by 

the split blade method (Fig. 6.8a-b). However, this benefit may not be applicable 

to the X-prop because the areas of the self-navigated regions of the two methods 

are similar. In addition, the phase inconsistencies may still exist during the 

combination of odd and even echoes may remain when the coil phase is 

insufficiently removed. 
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Figure 6.6: Isotropic DW images by a-d: split-blade, and e-h: whole-blade method 
of conventional PROPELLELR (turbo = 1). All are undersampled with R = 2. 4 
out of 20 slices are shown with total scan time: split-blade PROPELLER (4' 14"), 
and whole-blade PROPELLER (5' 15"). 

 
Figure 6.7: Isotropic DW images by a-d: split-blade, and e-h: whole-blade method 
of X-prop (turbo = 5). All are undersampled with R = 2. 4 out of 20 slices are 
shown with total scan time: split-blade X-prop (1' 37"), and whole-blade X-prop 
(2'). 
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Figure 6.8: k-space trajectory at one TR. The split-blade method: a (PROPELLER) 
and c (X-prop) and whole-blade method: b (PROPELLER), and d (X-prop). The 
orange-square and -circle indicate the area of self-navigated regions. 

6.3 Turboprop+ 

Despite the previous attempts to address the phase errors in Turboprop, the 

turbo factor is nonetheless limited by the increased artifacts due to off-resonance 

related phase errors especially at high magnetic field. In this work, we introduce a 

more complete method to correct phase errors in Turboprop, called ‘Turboprop+’. 

The proposed method utilizes calibration blades which are rotated in the same 

fashion as the Turboprop blades to measure and then remove phase errors 

originating from off-resonance and system imperfections. Turboprop+ is then 

compared to other ‘turbo’ versions of PROPELLER, specifically Turboprop and 
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X-prop. It is also compared to clinical standard EPI method using the same 

effective image resolution and NEX. 

6.3.1 Methods 

Figure 6.9 illustrates the flowchart of the proposed phase correction in 

Turboprop+. The flip angle of each RF refocusing pulse is assumed to be a perfect 

180° with the negligible phase modulation from multiple signal pathways [63], so 

the amount of off-resonance related phase accrual of the gradient echo increases 

linearly with the time away from the refocusing time point. A sub-blade represents 

a k-space strip encoded by the same gradient echo (Fig. 6.9b), and the 

phase-encoded lines of the sub-blade should have consistent phase errors because 

of their identical readout gradient polarity and off-resonance related phase 

accumulation. By assuming that phase errors of each sub-blade are slowly varying 

in space and only negligible subject motion occurs between the scans, the 2-D 

phase error maps of each sub-blade are created by the extra collected calibration 

blades at the central k-space with b = 0 (Fig. 6.9b). With these phase error maps, 

the phase errors can then be removed from each sub-blade using image-space 

phase correction [15]. After the removal of the phase error, the sub-blades are 

concatenated into one single, wider data blade. The same procedure for the phase 

correction is applied to the all rotated data blades. Following the phase correction, 

the remaining reconstruction is the same as for conventional PROPELLER DWI 

[15]. 
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Figure 6.9: Illustration of readout gradients (a) and flowchart (b) of Turboprop+ 
with the turbo factor = 3. Calibration blades are collected with acceleration (R = 2) 
on identical strips in k-space, at every blade angle, but only for b = 0, using every 
gradient echo (A, B, C) respectively. They are collected along with sub-blades, 
collected with acceleration (R = 2) for all b value and diffusion directions. Each 
sub-blade covers different k-space segments encoded by different gradient echoes 
(A, B, C). After the mutual calibration, the fully sampled calibration blades are 
windowed by a pyramid function, zero-padded, and Fourier-transformed (Ref. 15) 
to create phase error maps, which are used to remove the phase errors from each 
sub-blade. Following the phase correction and coil combination, sub-blades are 
concatenated into one single, wider data blade. The same procedures of the phase 
correction are applied to the data blades at every blade angle. The remaining 
reconstruction is the same as for the standard reconstruction of PROPELLER 
DWI (Ref. 15). 
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The accuracy of the calibrated phase error map is related to the blade width 

of the calibration blade. An image location with large magnetic susceptibility 

changes, such as an air-tissue interface, can produce the rapidly varying phase 

errors. The rapidly varying phase errors can shift the majority of k-space data out 

of the calibration blade, creating an inaccurate phase error map. The original 

calibration blade width is equal to the echo train length (ETL) (Fig. 6.9b), but is 

cut down to be half the ETL (ETL/2) because of the application of split blade 

method [118], which attempts to address the non-Carr-Purcell-Meiboom-Gill 

(non-CPMG) phase alternation between even and odd echoes. To widen the 

calibration blade, a parallel imaging technique using mutual calibration [124] in 

split-blade PROPELLER is employed in Turboprop+, and the resulting calibration 

blade width is increased by 80% or 0.9 × ETL. 

In Turboprop+, the calibration blades are rotated in accordance with the data 

blades, but are only collected with b = 0. Consequently, the additional time 

required for collecting calibration blades is effectively the time to acquire an 

additional b = 0 image, but with the data used for calibration. This increase in 

scan time is small when compared with standard Turboprop, where 4 extra TRs are 

required to collect the reference data. 

 All human studies were approved with the institutional review board, and 

informed consent was obtained from each healthy volunteer. Pulse sequences 

were implemented on a GE Signa HDx 3 Tesla MR scanner (Milwaukee, 

Wisconsin) with a gradient system with maximum strength 40 mT/m, and using 

an eight-channel phased array head coil. 
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The purpose of this experiment was to examine the effects of the phase error 

on DWI images by increasing the turbo factor from 3 to 7, and to compare the 

results of Turboprop, X-prop, and Turboprop+ with these changes in the turbo 

factor. DWI images: b = 0 and 1000 s/mm2 (x, y, and z) were acquired along 

physical axes x, y, and z respectively using Turboprop+ with an entire brain 

coverage (20 slices). Images with identical slice coverage were also acquired 

using Turboprop and X-prop. Split-blade acquisition and parallel imaging using 

mutual calibration (R = 2) were applied in all cases. To minimize effects on DWI 

other than the turbo factor, the ETL (number of refocusing pulses) was reduced at 

the larger turbo factor to minimize the differences in the TE. The ETL was set to 

be 14, 12, 10 for the turbo factor: 3, 5, 7, resulting in the TE: 130 ms, 139 ms, and 

142 ms respectively. Other parameters were: 192 matrix, 240 mm FOV, 20 slices 

with thickness/gap: 5/1.5 mm, TR = 5700 ms, R = 2, and BW = 200 kHz. The 

acquisition of each image required 4 TRs, which was the same for all three turbo 

factors. The time for collecting the calibration blades in Turboprop+ was 

approximately 23 sec (4 TRs), which was the same as collecting the reference data 

for Turboprop. The total scan time of X-prop (1 min 37 sec) was shorter than that 

of both Turboprop and Turboprop+ (2 min) in this experiment, since no 

calibrations are required for X-prop. The standard phase-encoding order [18] was 

implemented for both GRASE-based Turboprop and Turboprop+ in this study. 

Another dataset was acquired using conventional PROPELLER (turbo factor 

= 1) as a baseline for comparison. Imaging parameters were: 192 matrix, 240 mm 

FOV, 20 slices with thickness/gap: 5/1.5 mm, ETL = 20, TE/TR = 133/7700 ms, R 

= 2, and BW = 100 kHz. The acquisition of each image required 8 TRs. 
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In a second experiment, Turboprop+ was compared to EPI method with the 

same effective image resolution and NEX (Turboprop+: 144 matrix, 1 NEX, and 

EPI: 128 × 128 matrix, 1 NEX). The effective image resolution is defined as the 

width of point spread function that is related to the area of k-space coverage, 

given that Nyquist sampling criterion is satisfied. Imaging parameters of 

Turboprop+ were: 240 mm FOV, 20 slices with thickness/gap: 5/1.5 mm, turbo 

factor = 7, ETL = 10, TE/TR = 123/4500 ms, R = 2, and BW = 200 kHz. The 

acquisition of each image required 2 TRs. Another set of images of the identical 

slice coverage were collected with the clinical EPI protocol; the parameters were: 

20 slices with thickness/gap: 5/1.5 mm, TE/TR = 87/5400 ms, R = 2. The total scan 

time of Turboprop+ was 52 sec, and that of EPI was 23 sec. 

In all experiments, subject motion between the calibration scan and the data 

collection was assumed to be negligible. To test this assumption, three successive 

Turboprop+ scans were performed on each of three healthy volunteers. The phase 

error maps collected during the first scan were used to correct the phase error of 

all the three scans, and the final reconstructured images of the three scans were 

compared. The normalized root mean squared error (NRMSE) was calculated to 

quantify the differences between the reconstructed images using the ‘inter-scan’ 

phase error maps and those using the ‘intra-scan’ phase error maps. The NRMSE 

is defined as the RMSE divided by the range of image intensity. Finally, the 

assumption of ideal 180° RF refocusing pulses was also tested by reducing the 

flip angle from 180° to 120° in successive Turboprop+ scans, and the images with 

different flip angles were compared. 
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6.3.2 Results 

Figure 6.10 shows a comparison of DW images along the three orthogonal 

directions using Turboprop, X-prop, and Turboprop+ with the turbo factor = 7, 

and conventional PROPELLER (turbo = 1) as a baseline. Major differences were 

in the regions around nasopharynx (white arrows), and were consistently observed 

in the images of three diffusion-encoding directions and trace-weighted images. 

The ghosting artifacts in Turboprop were minimized in X-prop, which, however, 

still exhibited the prominent T2
* signal loss. Both the ghosting artifacts and T2

* 

signal decay were mitigated in Turboprop+. 

 The effects of modifying the turbo factor on DWI images by Turboprop, 

X-prop, and Turboprop+ are illustrated in Fig. 6.11. In the regions of temporal 

lobes (white arrows) with magnetic susceptibility variations, the ghosting artifacts 

in Turboprop and T2
* signal loss in X-prop increased noticeably with the turbo 

factor. By contrast, Turboprop+ achieved a rather uniform image quality 

throughout the increase in the turbo factor. 

 A comparison between Turboprop+ and EPI is shown in Fig. 6.12. Although 

EPI showed higher SNR because of its shorter TE and lack of RF refocusing 

pulses, the signal pile-up and warping artifacts in EPI were considerably reduced 

in Turboprop+ with an identical image resolution and NEX. 

 Figure 6.13 shows the effect of passive subject motion between the 

calibration scan and the data collection on Turboprop+. For each of three 

successive Turboprop+ scans, the phase correction was performed using the phase 

error maps collected during the first scan (scan 1), so there were more than 2 min 
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difference (scan 2) and more than 4 min difference (scan 3) between the phase 

error maps and the data collection. The results of three healthy volunteers showed 

the consistent image quality between the three successive scans, and the values of 

NRMSE were less than or equal to 1 %. This suggests that the presented phase 

correction appears robust to inter-scan passive movements, such as respiration and 

minor subject motion. 

 The effect of the flip angles of RF refocusing pulses on Turboprop+ is shown 

in Fig. 6.14. While the image contrasts remained similar, there was a decrease in 

SNR when the flip angle was reduced. The signal loss at the low flip angle is 

largely be due to the violation of the CPMG condition [15]. 

6.3.3 Discussion 

Turboprop+ is presented as a means to address phase errors in Turboprop 

that results from off-resonance and system imperfections. By employing the 

calibration blades, phase error induced artifacts, including ghosting artifacts and 

T2
* signal loss, were reduced to a great extent in Turboprop+ when compared to 

Turboprop and X-prop. Although a nominal increase in scan time is needed to 

collect the calibration blades, this method allows Turboprop+ to be applied with a 

high turbo factor, thus reducing SAR and scan time without compromising the 

image quality. The benefit of Turboprop+ is further demonstrated by its 

comparison with clinical standard EPI (Fig. 6.12), where the severe geometric 

distortions in EPI were notably mitigated using Turboprop+ with a scan time less 

than 1 min. Turboprop+ thus is a promising tool for data acquisition in research 

and clinical DWI. 
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Figure 6.10: DW images with b = 1000 s/mm2 along three orthogonal directions 
(from left to right): Anterior/Posterior (A/P), Left/Right (L/R), and 
Superior/Inferior (S/I) by a: conventional PROPELLER (turbo = 1), b: Turboprop 
(turbo = 7), c: X-prop (turbo = 7), and d: Turboprop+ (turbo = 7). Trace-weighted 
images (geometric average of three orthogonal DW images) are shown on the 
right. All were undersampled with R = 2. Imaging parameters were: FOV = 240 
mm, slice thickness = 5 mm, matrix = 192, and ETL = 10. 1 out of 20 slices is 
shown with scan time: PROPELLER (4 min 14 sec), Turboprop (2 min), X-prop 
(1 min 37 sec), and Turboprop+ (2min). 
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Figure 6.11: Effects of the turbo factor on trace-weighted images (geometric 
average of three orthogonal DW images with b = 1000 s/mm2) by a: conventional 
PROPELLER (turbo = 1), b: Turboprop, c: X-prop, and d: Turboprop+ with an 
increase in turbo factor from 3 to 7 (left to right). White arrows indicate regions 
susceptible to the changes in the turbo factor. All were undersampled with R = 2. 
Imaging parameters were: FOV = 240 mm, slice thickness = 5 mm, matrix = 192. 
1 out of 20 slices is shown with total scan time: PROPELLER (4 min 14 sec), 
Turboprop (2 min), X-prop (1 min 37 sec), and Turboprop+ (2 min). 
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Figure 6.12: Trace-weighted images (geometric average of three orthogonal DW 
images with b = 1000 s/mm2) by a: EPI, and b: Turboprop+ (turbo = 7). All were 
undersampled with R = 2. Imaging parameters were: FOV = 240 mm, slice 
thickness = 5 mm, matrix = 128 × 128 (EPI), and 144 (Turboprop+), and ETL = 
10 (Turboprop+). 5 out of 20 slices are shown with scan time: EPI (23 sec), and 
Turboprop+ (52 sec). 
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Figure 6.13: Trace-weighted images (geometric average of three orthogonal DW 
images with b = 1000 s/mm2) of three healthy volunteers (a-c) from three 
consecutive scans (from left to right) using Turboprop+ (turbo = 7). The phase 
error maps acquired during the first scan (Scan 1) were used for the phase 
correction of all the three Turboprop+ scans (Scan 1-3). The NRMSE quantifies 
the differences between the reconstructed images using the ‘inter-scan’ phase 
error maps and those using the ‘intra-scan’ phase error maps. All were 
undersampled with R = 2. Imaging parameters were: FOV = 240 mm, slice 
thickness = 5 mm, matrix = 192, and ETL = 10. 1 out of 20 slices are shown with 
total scan time of three scans: 6 min (each scan took 2 min). 
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Figure 6.14: Trace-weighted images (geometric average of three orthogonal DW 
images with b = 1000 s/mm2) by Turboprop+ (turbo = 7) with a decrease in the 
flip angle of RF refocusing pulses from 180° to 120° (from left to right). All were 
undersampled with R = 2. Imaging parameters were: FOV = 240 mm, slice 
thickness = 5 mm, matrix = 192, and ETL = 10. 1 out of 20 slices is shown with 
scan time: 2 min. 

 The rationale of the 2-D image-space phase correction in Turboprop+ relies 

on a consistent phase error in each sub-blade. The identical gradient polarity of 

the phase-encoded lines renders the consistent phase errors in a sub-blade arising 

from eddy currents and hardware group delays. Similar ideas have been 

previously proposed by Buonocore et al. [120] and Chen et al. [125] to address 

the odd/even echo inconsistencies in EPI. The consistent off-resonance related 

phase accumulation in a sub-blade requires a near-ideal 180° flip angle of each RF 

refocusing pulse to avoid the undesired echoes coming from multiple signal 

pathways. This requirement seemed sufficiently fulfilled throughout the 

demonstrated experiments, but could be problematic for a long echo train in the 

presence of B1 field inhomogeneity because of the non-CPMG condition, 

particularity at a low flip angle (Fig. 6.14). These effects from multiple signal 
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pathways are nonetheless reduced in Turboprop+ by allowing a higher turbo 

factor and ultimately requiring fewer RF refocusing pulses for k-space sampling. 

 The phase-encoding order of GRASE sequences can be implemented in 

different ways, and has been shown to influence the image artifacts caused by 

phase errors [126]. The presented phase correction in Turboprop+, however, is 

only compatible with the standard phase encoding order used in GRASE [18]. The 

standard phase encoding order was also applied to Turboprop for the purpose of 

this study. Further investigation is required to address this concern. 

Unlike Turboprop with the 1-D reference scan method, the presented 2-D 

phase correction enables Turboprop+ to correct phase errors along both the 

frequency-encoded and phase-encoded directions. However, the assumption of the 

slowly varying phase error in space may no longer hold when the turbo factor is 

high. This is an important limiting factor because the ETL, related to the 

calibration blade width, tends to be short for the high turbo factor to avoid a 

prolonged TE. The rapid spatially varying phase errors along the phase-encoded 

direction can possibly move the majority of k-space data out of the calibration 

blade. This issue was addressed in this study using the parallel imaging method 

[124]. With the highest applied turbo factor of 7 and an ETL of 10, which results 

in a calibration blade width of 18, the artifacts from the phase error in Turboprop+, 

although not removed completely, were for the most part mitigated. 

 Turboprop+ and X-prop share the similarity that both the phase errors are 

removed using image-space phase correction by assuming phase errors to be 

slowly varying in space. In X-prop, the data blades formed by the each gradient 

echo are placed in central k-space (Fig. 6.4). Instead, in Turboprop+, the 
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sub-blade with the minimal off-resonance related phase errors (e.g. echo B in Fig. 

6.9b) is assigned to the center of k-space, and the sub-blade with larger 

off-resonance related phase errors (echo A, C in Fig. 6.9b) is assigned to the outer 

k-space. This minimizes the artifacts from T2
* signal decay in Turboprop+. 

In conclusion, Turboprop+ was proposed in this study to mitigate the phase 

errors inherent to Turboprop. The improvements allows Turboprop to retain all its 

advantages relative to conventional PROPELLER, namely short scan time, low 

SAR, and reduced sensitivity to bulk motion (wider blade) with phase error 

induced artifacts being further minimized in Turboprop+. 
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Chapter 7 

CONCULSIONS 

7.1 Summary and Contributions 

This work is dedicated to two aspects of diffusion-weighted MR imaging. 

One aspect is the phenomenological diffusion modeling. The other aspect is the 

data acquisition using PROPELLER technique. The summary as well as the 

contributions of this work is described below. 

7.1.1 Behaviors of Phenomenological Diffusion Models 

 In this study, we have studied the fitted parameters of two non-Gaussian 

water diffusion models: Dstat and σstat of the statistical distribution model and Dapp 

and Kapp of the DKI model using a b = 2500 s/mm2, and the ADC of the 

monoexponential model using a b = 1000 s/mm2. We fitted these models to the 

DWI data collected from patients with ischemic stroke (n = 5) and recurrent 

gliomas (n = 7). Compared with the white matter, brain lesion of ischemic stroke 

showed the reduced diffusivity, reduced width σstat of distribution of diffusion 

rates (P(D)), and increased non-Gaussian water diffusion (Kapp). Recurrent 

high-grade brain tumor showed the increased diffusivity, increased width σstat of 

distribution of diffusion rates (P(D)), and decreased non-Gaussian water diffusion 

(Kapp). These results suggest that each of the fitted parameter has different 

correlation with the pathological changes. We hypothesized that these observed 

differences were caused by the different sensitivity of the diffusion models in 

response to microstructural changes. In particular, the models of non-Gaussian 

water diffusion were more specific to microstructural changes. 
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To test the hypothesis, we developed a Monte Carlo simulation of water 

diffusion in a 2-D microstructure and a DWI experiment. We have simulated three 

relevant microstructural changes: cell radius, cell volume fraction, and membrane 

permeability. We have shown that the ADC, Dstat, and Dapp were sensitive to all 

these changes except for the decrease in membrane permeability. The σstat was 

specifically sensitive to the increase and decrease in cell volume fraction. The 

Kapp was specifically sensitive to the decrease in cell size and the increase in 

membrane permeability. Our simulated microstructure is a simplistic physical 

system. Nonetheless, these results suggest that the models of non-Gaussian water 

diffusion have different, specific sensitivities and may be used together to better 

understand underlying biophysical changes due to disease progression. 

7.1.2 Enhanced PROPELLER DWI 

 In this study, we have presented an improvement to the whole blade method 

by utilizing reference blades to more accurately calibrate the coil phase of odd 

and even echoes and for GRAPPA training. We have demonstrated that the phase 

inconsistencies between odd and even echoes were successfully addressed using 

the improved whole blade method. Furthermore, the self-navigated region became 

larger using the whole blade method (4 times larger than that using the split blade 

method), resulting in a more robust removal of the motion induced phase. 

High SAR and long scan time are important challenges of PROPELLER data 

acquisition. In this work, we have proposed a new phase correction to Turboprop, 

called Turboprop+. We have shown that compared with previous conventional 

Turboprop and X-prop, the presented Turboprop+ was more immune to the phase 
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error resulting from off-resonance throughout the increase of turbo factor from 3 

to 7. Thus, turboprop+ allows the high turbo factor in PROPELLER, further 

reducing SAR and scan time without compromising the image quality. 

7.2 Future Work and Directions 

 The presented simulation of 2-D microstructure is a simplified physical 

system, and is insufficient to account for the complexity of intra/extra-cellular 

structures. Nonetheless, the idea of altering cell size, cell volume fraction, and 

membrane permeability independently may be realized in biological tissues. For 

instance, previous work by Latour et al. [29] used packed erythrocytes to study 

the time dependence of the diffusion coefficient by varying the membrane 

permeability and extracellular volume fraction independently. In the future, the ex 

vivo experiments can be devised to mimic the pathological changes and to study 

the relative sensitivities between diffusion models. However, cautions should be 

taken about the different biophysical properties between various cell types. 

 Our simulation is a 2-D system, and no investigation about the directional 

dependence of the measured diffusion was performed. Because our simulation 

study showed that the non-Gaussian diffusion models performed differently from 

the monoexponential model, one would expect that the non-Gaussian diffusion 

models would reveal different information about the anisotropic microstructural 

changes in contrast to DTI. Other groups have developed theoretical frameworks 

to look into the directional dependence [88,127-129]. In the future, our 2-D 

simulation can be extended to 3-D geometry, such as crossing fibers [130], and 

randomly oriented cylinders [55]. 
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The stable image quality of Turboprop+ at the high turbo factor provides a 

potential for a single-shot acquisition. The multi-shot acquisition produces 

high-resolution DWI images. However, it remains difficult to robustly remove the 

motion induced phase when non-rigid motion occurs, such as respiratory motion 

in human body. Therefore, a single-shot method may have a potential application 

in body DWI. For the current implemented Turboprop+, the highest turbo factor is 

7 with ETL of 10. If a whole-blade method is applied to Turboprop+, the 

resolution in phase-encoded direction would be 126 (with parallel imaging), 

which is very close to the typical resolution of EPI method: 128. However, the 

issues including the phase inconsistencies in the whole-blade method still have to 

be addressed. 
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