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ABSTRACT  
   

The heliobacterial reaction center (HbRC) is widely considered the simplest and 

most primitive photosynthetic reaction center (RC) still in existence.  Despite the 

simplicity of the HbRC, many aspects of the electron transfer mechanism remain 

unknown or under debate.  Improving our understanding of the structure and function of 

the HbRC is important in determining its role in the evolution of photosynthetic RCs.  In 

this work, the function and properties of the iron-sulfur cluster FX and quinones of the 

HbRC were investigated, as these are the characteristic terminal electron acceptors used 

by Type-I and Type-II RCs, respectively.  In Chapter 3, I develop a system to directly 

detect quinone double reduction activity using reverse-phase high pressure liquid 

chromatography (RP-HPLC), showing that Photosystem I (PSI) can reduce PQ to PQH2.  

In Chapter 4, I use RP-HPLC to characterize the HbRC, showing a surprisingly small 

antenna size and confirming the presence of menaquinone (MQ) in the isolated HbRC.  

The terminal electron acceptor FX was characterized spectroscopically and 

electrochemically in Chapter 5.  I used three new systems to reduce FX in the HbRC, 

using EPR to confirm a S=3/2 ground-state for the reduced cluster.  The midpoint 

potential of FX determined through thin film voltammetry was -372 mV, showing the 

cluster is much less reducing than previously expected.  In Chapter 7, I show light-driven 

reduction of menaquinone in heliobacterial membrane samples using only mild chemical 

reductants.  Finally, I discuss the evolutionary implications of these findings in Chapter 7. 
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CHAPTER 1: INTRODUCTION 

Photosynthesis 

Photosynthesis is the process in which light energy is harvested and used to 

drive important chemical reactions by living organisms.  The nature of these chemical 

reactions vary even within a given organism depending on the metabolic needs of the 

cell, but the most well known are found in oxygenic photosynthesis.  These can further be 

divided into the “light” and “dark” reactions.  In the light reactions, energy from absorbed 

photons is used to drive the formation of high-energy compounds such as ATP and 

NADPH.  These compounds are consumed in the dark reactions, forming sugars and 

other stable storage molecules for chemical energy (1).   

As implied above, there are other forms of photosynthesis that do involve oxygen 

production that are collectively referred to as anoxygenic photosynthesis.  While the 

overall processes vary significantly between organisms, the initial steps where light 

energy is converted into chemical energy are very similar.     

 

Photosynthetic reaction centers 

The light reactions described above rely on pigment-binding protein complexes 

referred to as photosynthetic reaction centers (RCs).  Antenna pigment molecules like 

chlorophylls and carotenoids absorb light energy in the form of photons.  This generates 

high-energy excited states, which ultimately give rise to a charge separated state.  There 

are strong similarities in the initial charge separated states between all RCs.  A “special 

pair” of chlorophylls becomes oxidized, forming a cation radical that is delocalized 

between the pair.  The electron ejected from the special pair reduces a primary acceptor.  

The primary acceptor is either chlorophyll or pheophytin (a chlorophyll with no Mg2+).  

Eventually the electron is used to reduce a terminal electron acceptor, which differs 

depending on the type of RC.  There are currently two classes of photosynthetic RCs 

described that are defined by their terminal electron acceptor (2).   
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Type-I 

Type-I RCs utilize iron-sulfur clusters as terminal electron acceptors.  There are 

four known Type-I RCs; Photosystem I of oxygenic photosynthetic organisms (plants, 

algae, and cyanobacteria), the Green-sulfur bacterial reaction center (GbRC), the 

heliobacterial reaction center (HbRC), and the reaction center of the newly discovered 

Chloroacidobacteria.  Of the Type-I RCs, Photosystem I (PSI) is the most extensively 

characterized and the only one for which an X-ray crystal structure is available (3).   

The simplified mechanism of Photosystem I is illustrated in Figure 1 below.  Light 

energy that is absorbed by antenna chlorophylls (not shown) is funneled to the special 

pair of chlorophyll a referred to as P700 through resonance energy transfer.  This energy 

drives the oxidation of P700 and the reduction of the primary acceptor A0, another 

chlorophyll a.  The primary acceptor then reduces a secondary acceptor (A1), which is a 

tightly bound phylloquinone (PhQ) (4).  The semiquinone radical generated in this step is 

very unstable, and quickly reduces the 4Fe-4S cluster FX (5).  The electron leaves PSI 

through a chain of 4Fe-4S clusters and reduces soluble electron acceptors such as 

ferredoxin or flavodoxin. 

The Type-I RCs from anoxygenic bacteria will be discussed further in the section 

titled Heliobacterial reaction center. 

 

Type-II 

Type-II RCs use quinones as terminal electron acceptors, doubly reducing them 

to the stable hydroquinone (or quinol) form.  The three known Type-II RCs are 

Photosystem II (found in plants, algae, and cyanobacteria), the Purple-bacterial reaction 

center (PbRC), and the reaction center of Green-sliding bacteria.  While crystal structures 

are available for both Photosystem II and the PbRC, the PbRC has historically been the 

most extensively studied Type-II RC (6).   

The mechanism of the PbRC is shown in Figure 1 below.  Similar to PSI, a 

special pair of bacteriochlorophyll serves as the primary donor in the PbRC and other 
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Figure 1.  Electron transfer mechanisms of model Type-I (right) and II (left) 
photosynthetic reaction centers.  Arrows denote movement of electrons for the PbRC 
(left) and PSI (right).  Note that Photosystem I (1JB0) has two functionally symmetric 
branches while the PbRC (1AIJ) is functionally asymmetric.   

 

Type-II RCs.  Unlike PSI, the primary acceptor in Type-II RCs is a pheophytin (or 

bacteriopheophytin).  A tightly bound quinone serves as a secondary acceptor at the QA 

site while a loosely bound quinone serves as the terminal electron acceptor at the QB site 

(7, 8).  Type-II RCs require two photons, causing transfer of two electrons to the quinone 

at the QB site.  The doubly reduced quinone takes up two protons and can diffuse from 

the binding site.  An important note is that while PSI uses two functionally symmetric 

branches, Type-II RCs have functionally distinct branches (9).  The B-branch stabilizes 

the semiquinone state of QB while the A-branch is involved in electron transfer reactions 

(10). 

 

Evolution 

Structural similarities between PSI, PSII, and the PbRC were immediately 

recognized after the crystal structures of each were published (3, 11, 12).  Figure 2  
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Figure 2.  Structures of the 10 transmembrane helices and organic cofactors that make 
up the core reaction center for PSII (left), the PbRC (middle), and PSI (right).   
 
 
shows the strong structural homology in 10 transmembrane helices, coming from two 

polypeptides that constitute the core of these three RCs.  These helices form a pseudo-

symmetric “cage” around the electron transport cofactors that give the RCs their 

characteristic ability to convert light energy into chemical energy (13).  This strongly 

suggests that Type-I and Type-II RCs both evolved from a universal ancestor that was 

likely a homodimer.  The heterodimeric nature of these three RCs was due to gene 

duplications followed by divergence (2).  Of the seven modern RCs described above, 

three still exist as homodimers.  These are the GbRC, HbRC, and the reaction center of 

chloroacidobacteria.  Improving our understanding of the structure and function of these 

still-homodimeric RCs is key in improving our understanding of the evolution of 

photosynthesis.  

 

Heliobacteria 

Heliobacteria are anaerobic photoheterotrophic organisms that were first 

identified by their unique pigment bacteriochlorophyll g (Bchl g) (14).  They are the only 

organisms known to produce Bchl g, which is an isomer of Chl a at the 81
 position (15).   
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Bacteriochlorophyll g is readily isomerized to Chl a upon exposure to oxygen and light, 

which may be the cause of oxygen sensitivity in these organisms (15).  Another unique 

feature of heliobacteria is their lack of pigment binding antenna complexes (16, 17).  All 

other known photosynthetic organisms utilize antenna complexes such as chlorosomes 

or phycobilisomes to aid in light harvesting.  This, along with the homodimeric nature of 

the HbRC suggests it is one of the most primitive RCs still in existence.     

 

Heliobacterial reaction center 

 The heliobacterial reaction center (HbRC) is a homodimeric Type-I RC that is 

widely considered the simplest RC (18, 19).  The isolated HbRC consists only of two 

copies of PshA, which bind 22-45 Bchl g (20, 21).  Each copy of PshA forms 11  

transmembrane helices and has regions homologous to PsaA (and PsaB) of PSI, as well 

as CP43, the antenna subunit of PSII (18, 22).  A bacterial ferredoxin subunit PshB, 

which is homologous to PsaC of PSI, associates with the core complex in vivo, however 

this peptide is lost during most isolation procedures (20, 21, 23).  The isolated core 

complex has been shown to reduce soluble electron acceptors like flavodoxin even in the 

absence of PshB (24).  There is currently debate on whether PshB is a subunit of the 

HbRC in vivo or just a tightly associating soluble electron acceptor. 

While genetic studies on PshA of the HbRC described above suggest an 

evolutionary relationship to both PSI and PSII, current understanding of the HbRC 

function imply a much closer relationship to PSI.  First, the primary acceptor (A0) is a 

chlorophyll a as in all other Type-I RCs rather than a pheophytin as in Type-II RCs (25).  

Additionally, the HbRC uses Fe-S clusters as terminal electron acceptors, either in the 

form of PshB or FX (20, 21).  The 4Fe-4S cluster FX is bound between the two copies of 

PshA (analogous to FX in PSI) and acts as the terminal electron acceptor in the isolated 

HbRC core complex (20, 21).  This will be further discussed in Chapter 5 below. 

The mechanism of electron transfer in the HbRC resembles that of PSI described 

above with respect to the primary donor (P800), primary acceptor (A0), and FX.  However  
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Figure 3. Cartoon representation of the proposed arrangement of cofactors in the HbRC.  
Conventional names for the electron transfer cofactors in the HbRC are labeled on the 
figure while the chemical identities of the various cofactors are shown in the legend.  
Structures for these cofactors can be found in Figure 5. 
 

in the HbRC, there is no evidence that a semiquinone intermediate state is involved in 

electron transfer (26, 27).  In fact, forward electron transfer from A0 to FX in the HbRC 

was not affected after the quinones were removed by solvent extraction (28).  This is 

significant as an important distinction in the mechanisms of PSI and the PbRC discussed 

above is the function of the quinone.  PSI binds two functionally identical quinones that 

serve as intermediates in one-electron transfer from A0 to FX.  The PbRC binds two 
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functionally distinct quinones, one serving as a secondary electron acceptor similar to 

PhQ in PSI while the other serves as the terminal electron acceptor and becomes doubly 

reduced.   

Despite the lack of an identified function, the isolated HbRC contains 1-2 

quinones per RC (21, 23).  Alternative functions have been proposed for these quinones, 

but these lack any experimental evidence in their support.  One possibility is that the 

quinones function as a “safety valve” during periods of high electron flux through the RC.  

While this is an appealing possibility, as it would functionally link Type-I and Type-II RCs, 

no experiments have been designed to test this hypothesis directly. 
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CHAPTER 2:  EXPERIMENTAL 

Double reduction of plastoquinone in PSI 

menD1 PSI samples 

His-tagged PSI from menD1 mutants of Chlammydomonas reinherdtii was 

provided by Dr. Mike McConnell.  

 

Photoaccumulation 

PSI samples containing 50 µg chlorophyll in 50 mM MES pH 5.5 with 0.03% 

βDDM were exposed to 64,000 saturating laser flashes from a frequency-doubled 

Nd:YAG laser (Continuum Electro-Optics, Inc.) in the presence of 10 mM sodium 

ascorbate and 1 µM PMS.  Control samples were prepared in the dark with no exposure 

to laser flashes. 

Cofactor analysis 

Samples were concentrated 20-fold using Amicon Ultracel 50-kDa cutoff 

membranes, then extracted with 20 volumes acetone.  Acetone extracts were evaporated 

to near dryness, and then resuspended in 5 volumes of methanol prior to injection of  

200 µL of extract.  Pigments and cofactors were eluted isocratically from a reverse-phase 

C-18 column (Ultrasphere 250 mm L x 4.6 mm ID packed with 5 µm particles) using a 

flow rate of 1.5 mL/min of a 17:1 mixture of methanol and hexane (29).   A JASCO MD-

2018Plus PDA detector was used to monitor the absorbance of the eluent from  

190-798 nm while a Perkin-Elmer LS55 fluorescence spectrophotometer was used to 

monitor emission at 320 nm with 290 nm excitation.    

 

Characterization of purified HbRC 

Isolation of and solubilization of membranes 

HbRC samples were prepared essentially as described previously (23).  All steps 

prior to membrane solubilization were performed under very low light in aerobic 
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conditions.  Cells grown to mid-log phase were isolated by centrifugation for 10 minutes 

at 10,000 x g.  Cell pellets were resuspended in 50 mM MOPS pH 7, then sonicated on 

ice for 14 minutes using cycles of 1 minute action and 4 minutes of rest.  Unbroken cells 

were removed by centrifugation at 12,500 x g for 5 minutes.  Membranes were pelleted 

by centrifugation at 200,000 x g for 1 hour, then resuspended to a bacteriochlorophyll g 

concentration of 0.5 mM.  Membranes were solubilized in the dark under anaerobic 

conditions by adding βDDM to a final concentration of 0.9% (w/v) and stirring on ice for  

1 hour.  Insoluble material was removed by centrifugation at 200,000 x g for 30 minutes. 

 

Purification of HbRC 

Solubilized membranes were passed through a DEAE-cellulose anion exchange 

column (Whatman DE52) that was equilibrated with 50 mM MOPS pH 7 with 0.02% 

βDDM in the dark under anaerobic conditions.  The brown-colored flow-through was 

collected and loaded onto a CM-sepharose (Sigma) column that was equilibrated with  

50 mM MOPS pH 7 with 0.02% βDDM.  The brown band that contained the HbRC was 

washed with 3 column volumes 50 mM MOPS pH 7 with 0.02% βDDM, then 1 column 

volume 50 mM MOPS pH 7 with 0.02% βDDM and 10 mM MgSO4.  The bound HbRC 

was eluted with buffer 50 mM MOPS pH 7 with 0.02% βDDM containing 100 mM MgSO4. 

 

Pigment composition of HbRC 

HbRC samples prepared by Dr. Iosifina Sarrou were extracted with 10-50 

volumes acetone and incubated on ice for 5 minutes (25).  Extracts were passed through 

a 0.2 µm filter prior to injection of 200 µL onto a reverse-phase C-18 column (Ultrasphere 

200 mm L x 4.6 mm ID packed with 5 µm particles).   Pigment separation was achieved 

as described previously using a flow rate of 1 mL/min (30). A JASCO MD-2018Plus PDA 

detector was used to monitor the absorbance of the eluent from 190-798 nm.  Peaks 

were collected under argon in the dark and prepared as described previously using non-
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acidic matrices to prevent damage to pigments (31).  Samples were analyzed using an 

Applied Biosystems DE-STR MALDI-TOF mass spectrometer. 

 

Quinone content of HbRC 

Quinones were extracted using two methods that produced similar results.  The 

first method involved extraction with acetone as described above (25).  The second 

method involved an initial extraction using acetone and methanol.  The initial extract was 

then extracted with petroleum ether and evaporated to dryness.  Extracted pigments and 

cofactors were resuspended in acetone prior to injection of 200 µL of extract onto a 

reverse-phase C-18 column.  Pigments and cofactors were eluted isocratically using a 

flow rate of 1.5 mL/min of a 4:1 mixture of methanol and isopropanol (32). 

 

Characterization of FX in the HbRC 

HbRC samples  

HbRC isolated as described above was concentrated to a bacteriochlorophyll g 

concentration of 3 mM for EPR measurements, 1 mM for protein-film voltammetry 

measurements, 1 µM for measurements on the JTS or with single-photon counting, or  

60 µM for ultrafast transient absorption measurements.   

 

Carbonate-washed membrane samples 

Carbonate-washed membrane samples were prepared essentially as described 

previously (33).  Membranes isolated as described above were resuspended to an 

OD788 of 1-2 in 100 mM sodium carbonate pH 11.5 buffer and incubated for 1 hour in 

the dark under anaerobic conditions.  Following incubation, membranes were harvested 

by centrifugation at 45,000 RPM for 1 hour.  Membrane pellets were again resuspended 

in 100 mM sodium carbonate pH 11.5 buffer for an additional hour before being 

harvested by centrifugation at 45,000 RPM for 1 hour.  Pellets were resuspended in  
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50 mM MES pH 6 with 20 mM MgSO4 for all experiments unless otherwise noted.  

Samples were resuspended to a bacteriochlorophyll g concentration of approximately 3 

mM for EPR experiments or approximately 1 µM for optical measurements. 

 

Millisecond timescale pump-probe spectroscopy 

Pump-probe spectroscopy on the millisecond timescale was performed on a JTS-

10 kinetic spectrophotometer (BioLogic) with a frequency-doubled Nd:YAG  

laser (Continuum Electro-Optics, Inc.) as the actinic source and an 800 nm LED as the 

probe source.  Samples were excited with a 6 ns saturating laser pulse at 532 nm, then 

probed with low-intensity 10-µs flashes from the 800 nm LED beginning 500 µs after the 

laser flash. 

 

Ultrafast transient absorption 

 Picosecond transient absorption measurements were performed using a broad 

band pump-probe setup described previously by Dr. Su Lin (34). Laser pulses of 100 fs 

duration at 800 nm were generated from a regenerative amplifier system at a repetition 

rate of 1 kilohertz (Tsunami and Spitfire, Spectra-Physics). Part of the pulse energy was 

used to pump an optical parametric amplifier (IR OPA, Spectra-Physics) to generate 575-

nm excitation pulses. The broad-band probe pulse was generated by focusing a weak 

800-nm beam into a 3-mm sapphire plate, and sent to an optical compressor composed 

of a pair of prisms, before it was focused onto the sample. The white-light probe pulses 

were then dispersed by a spectrograph and detected using a CCD camera (DU420, 

Andor Technology). The collected data had a ~2.3 nm spectral resolution. The 

polarization of the pump pulses was set to the magic angle (54.7◦) with respect to that of 

the probe pulses. Samples were loaded into a spinning wheel with an optical path-length 

of 1.2 mm for the ascorbate-reduced samples or a sealed quartz cuvette with an optical 

path-length of 2 mm for dithionite-reduced samples. The optical density of the sample at 

788 nm was adjusted to 1.5 in the 2 mm path-length. 
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 Decay-associated spectra were calculated from global fitting, accounting for 

deconvolution of the recorded signals with instrument response function using locally 

written software, ASUFIT (http://www.public.asu.edu/~laserweb/asufit/asufit.html). 

 

Time-correlated single-photon counting 

Fluorescence decay kinetics was measured using the time-correlated single-

photon counting (TC-SPC) technique.  The excitation source was a fiber supercontinuum 

laser based on a passive modelocked fiber laser and a high-nonlinearity photonic crystal 

fiber supercontinuum generator (Fianium SC450).  The laser provides 6-ps pulses at a 

repetition rate variable between 0.1 – 40 MHz.  The repetition rate was 10 MHz unless 

otherwise noted.  The laser output was sent through an Acousto-Optical Tunable Filer 

(Fianium AOTF) to obtain excitation pulses at desired wavelength of 575 nm.  

Fluorescence emission was collected at 90° and detected using a double-grating 

monochromator (Jobin-Yvon, Gemini-180) and a microchannel plate photomultiplier tube 

(Hamamatsu R3809U-50).  The polarization of the emission was 54.7° relative to that of 

the excitation.  Data acquisition was done using a single-photon counting card (Becker-

Hickl, SPC-830).  The IRF had a FWHM of 50 ps, measured from the scattering of 

sample at the excitation wavelength.  The data was fitted with a sum of exponential 

decay model using ASUFIT.   

 

Preparation of EPR samples 

Dithionite-reduced samples were treated with 10 mM dithionite for optical 

measurements or 30 mM dithionite for EPR measurements for 30 minutes in the dark.  

Illumination of EPR samples was performed using a 1000 W Oriel quartz-tungsten 

halogen lamp (Model 6405) passed through a copper sulfate solution to give a light 

intensity of 750 µE/m2/s at room temperature for 30 seconds.  Following illumination, 

samples were given a 2 second period of darkness prior to freezing in a dry ice ethanol 

bath.  Samples were stored in the dark in liquid nitrogen prior to measurement.   
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EPR measurements 

Measurements were performed with a Bruker E580 X-band spectrometer 

(Bruker, Silberstreifen, Germany) with an Oxford Model 900 EPL liquid helium cryostat 

(Oxford Instruments, Oxfordshire, UK).  All spectra were measured with a modulation 

frequency of 100 kHz and modulation amplitude of 1 mT.  The microwave power used 

was 0.25 mW with a frequency of approximately 9.43 GHz unless otherwise noted.   

Pulse experiments were recorded at 4 K using a Bruker ELEXSYS E580 

FT−EPR X-band spectrometer equipped with a dielectric ring resonator (ER 4118X-

MD5).  The three-pulse ESEEM (π/2− τ−π/2−t−π/2−τ−echo) experiments were 

performed with a separation of the first and second microwave pulses of 144 ns and a 

π/2 pulse length of 8 ns. In total, 220 data points were recorded in the ESEEM 

experiments.  The microwave frequency was 9.68 GHz, the time increment of the t time 

was 8 ns, and the shot repetition time was 259 µs. The resulting modulation pattern was 

baseline-corrected, a Hamming window function was used for apodization, and the array 

was increased to 512 points by zero-filling prior to transformation into the frequency 

domain with Fourier analysis.  The ESEEM spectrum shown in this work is a magnitude 

spectrum. No dead time reconstruction procedures were used. The phase-memory time 

(T2*) was measured by the Hahn echo decay method. 

 

Fitting of EPR spectra 

 Fitting of EPR spectra was performed using EasySpin (version 3.0.0) by Dr. 

Marco Flores (35). The fitting parameters used were the three g values (gx, gy, and gz), 

the line width (∆B), and the zero-field splitting parameters (D and E).  The fitting method 

used here was similar to those previously described by Flores et al. (36). 

 

Thin film voltammetry 

Glassy carbon (GC) electrodes (3 mm diameter, BASi) with a DMPC/HbRC 

monolayer were prepared by Dr. Idan Ashur as follows.  A 3 mM DMPC solution was 
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prepared by sonicating in 50 mM Tris buffer pH 8.3.  Sonication of the mixture for 4 hours 

yielded a clear solution suitable for electrochemical measurements.  Equal volumes of 

the 3 mM DMPC and HbRC solutions were mixed and a 5 mL aliquot of the mixture was 

incubated on the clean GC overnight at 4 ºC. The electrochemical measurements were 

performed using a CV50W (BASi) potentiostat with a three-electrode setup. The 

reference electrode was Ag/AgCl (BASi), and a platinum wire served as the counter 

electrode. The electrochemical cell was filled with 5 ml of the working buffer (50 mM, 

0.1 M NaCl Tris buffer pH 8.3) and purged for 25 minutes with N2 gas. The 

HbRC/DMPC/GC working electrode was rinsed with the working buffer in order to remove 

loosely bound proteins and was placed in the electrochemical cell. An additional  

10 minutes of N2 purging were applied prior to measuring. During data collection, the N2 

tube was placed slightly on top of the solution to maintain anaerobic conditions 

throughout the measurement. The stability of the pH value in the cell was assessed 

before and after each measurement using a 2 mm pH electrode (HI1093, HANNA 

Instruments).   

 

Spectroelectrochemistry 

 HbRC samples were prepared in buffers ranging from pH 6-10 in the presence of 

10 mM ascorbate and 0.02% βDDM.  MES was used for pH 6-6.5, MOPS was used for 

pH 6.6-7.9, Tricine was used for pH 8-8.9, and Glycine was used for pH 9-10.  Laser-

flash induced photobleaching was measured at 800 nm on the JTS.  The samples were 

then treated with 10 mM dithionite in the dark for up to 3 hours.  Photobleaching 

measurements were taken every 15 minutes until the amplitude of the bleaching at  

500 µs after the flash remained constant between measurements. The fraction reduced 

was calculated by dividing the amplitude of the bleaching for the dithionite treated sample 

by the amplitude measured prior to addition of dithionite.  The ambient reduction potential 

of the various solutions were measured in the absence of the HbRC with 50 µM of methyl 
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viologen, benzyl viologen, triquat, and dimethyl triquat using a saturated calomel 

electrode and platinum counter-electrode 

 

Double reduction of MQ by the HbRC 

Sample preparation 

 HbRC were prepared at 1 µM Bchl g and subjected to various light and chemical 

treatments as discussed below. Heliobacterial membrane samples were prepared at  

10 µM Bchl g and subjected to various light and chemical treatments as discussed below 

Following treatments, HbRC samples were concentrated 20-fold and extracted in 80% 

acetone.  For samples treated with dithionite, the concentrated sample was diluted 5 fold 

in buffer without dithionite and re-concentrated.  This was repeated a total of 10 times so 

that the final concentration of dithionite in the extracted sample was less than 1 nM.  This 

procedure should minimize artifactual reduction of the extracted quinones by dithionite.  

Membrane samples (100 µL) were directly extracted following photoaccumulation with 

500 µL acetone to minimize oxidation of menaquinol.   

 

Cofactor analysis 

Pigments and cofactors were eluted isocratically from a reverse-phase C-18 

column (Phenosphere 250 mm L x 4.6 mm ID packed with 5 µm particles) using a flow 

rate of 1.5 mL/min of a 17:1 mixture of methanol and hexane.   A JASCO MD-2018Plus 

PDA detector was used to monitor the absorbance of the eluent from 190-798 nm.    

 

Photoaccumulation conditions 

 Samples were photoaccumulated as described above for PSI samples with the 

exception that 5,000 saturating flashes were used unless otherwise noted.  
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CHAPTER 3.  DOUBLE REDUCTION OF PLASTOQUINONE IN PHOTOSYSTEM I 

Background 

 Unlike Type-II RCs, the semiquinone in PSI does not become doubly reduced 

under normal conditions. The protein environment surrounding PhQ (A1) in PSI 

destabilizes the semiquinone state giving it an abnormally low reduction potential and a 

very short lifetime (37).  Double reduction of PhQ in PSI has been shown in vitro, but 

requires strongly reducing conditions (38, 39).  To study double reduction of quinones in 

PSI under more physiological conditions, the native PhQ must be replaced with 

alternative quinones. 

 In previous studies, PhQ in the A1 binding pocket of PSI has been replaced by 

extraction followed by addition of alternative quinones (40, 41).  This procedure requires 

harsh treatment with organic solvents that leads to loss of antenna chlorophylls.  More 

recently, PSI lacking PhQ has been isolated from cyanobacteria and green algae using 

mutations in the PhQ biosynthetic pathway (42).  The PSI isolated from these menA, 

menB, and menD mutants incorporates plastoquinone (PQ) in the A1 binding pocket.   

PQ, with a reduction potential of 100 mV, should be more easily reduced in the A1 

binding pocket than PhQ (-70 mV) (13).  Additionally, the lifetime of the semiquinone 

radical is significantly increased in these mutants (43).  These properties make PSI 

isolated from menD1 mutants of C. reinhardtii ideal for the study of double reduction of 

quinones by PSI.   

 

HPLC analysis of photoaccumulated menD1 PSI 

 Previous studies on the redox state of PQ in photosynthetic organisms have 

used RP-HPLC to separate the oxidized form (PQ) from the doubly reduced form (PQH2) 

(29).  The addition of two O-H bonds to the quinone head group increases the polarity 

and decreases the retention time of PQH2 on a C-18 column.  While PQ is easily 

detectible by its absorbance at 260 nm, PQH2 has a much weaker spectroscopic 

signature and often requires more sensitive techniques for detection.  Fluorescence 
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emission at 330 nm with 290 nm excitation has been utilized in previous studies and was 

used here to detect and quantify PQH2.   

 The A260 chromatogram from the extracts of dark-treated menD1 PSI in Figure 

4A shows a peak at a retention time of 35 minutes.  This is identified as PQ by both 

retention time and spectral properties as compared to a PQ standard.  By comparing the 

area of the PQ peak with the area of the chlorophyll a peak and using published 

extinction coefficients, it is possible to determine the relative levels of PQ in the menD1 

PSI samples.  The dark-treated menD1 PSI samples show a PQ:Chl a ratio of 1:193.  In 

the extracts of the menD1 PSI subjected to 64,000 saturating laser flashes, the PQ peak 

is below the limit of detection with this system (Figure 4B).  However, a new peak in the  

  

Figure 4.  Pigments extracted from menD1 PS1 particles following dark incubation (A 
and C) or photoinactivation (B and D) were subjected to reverse-phase HPLC. 
Chromatograms monitored absorbance at 260 nm (A and B) or fluorescence emission at 
330 nm using excitation at 290 nm (C and D). The PQ and PQH2 labels indicate the 
elution times of those species, as determined using PQ-9 and PQH2-9 standards, 
respectively (not shown).  Reprinted with permission from McConnell, MD., Cowgill, JB., 
Baker, PL, Rappaport, F, and Redding, KE (2011) Double Reduction of Plastoquinone to 
Plastoquinol in Photosystem 1.  Biochemistry  50:11034-11046.  Copyright 2012 
American Chemical Society.   
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fluorescence emission chromatogram in Figure 4D appeared with a retention time of  

10 minutes.  This was identified as PQH2 by comparison to the PQH2 standard that had 

been made by reducing PQ with KBH4.  The level of PQH2 in the extract was quantified 

by comparison of the fluorescence emission peak to a standard curve prepared using the 

reduced PQ standard.  Comparison of the PQH2 concentration determined using this 

method to the concentration of chlorophyll a injected gives a PQH2:Chl a ratio of 1:250.   

 

Discussion 

 The content PQ in menD1 PSI is similar to the content of the native PhQ in wild-

type PSI in C. reinhardtii, with quinone to chlorophyll a ratios of 1:193 and 1:150, 

respectively (44).  This suggests that the majority of A1 binding sites are occupied by PQ  

After 64,000 laser flashes in the presence of PMS and ascorbate, PQ is no longer 

detectable in the extracts of menD1 PSI.  The loss of the PQ peak is accompanied by the 

rise of a PQH2 peak that is present at a ratio of 1 PQH2 to 250 chlorophyll a.  This 

suggests that ~75% of the PQ in the menD1 PSI samples is converted to PQH2 following 

photoaccumulation.  This is in agreement with levels of photoinactivation of PSI 

determined by pump-probe spectroscopy (45).  Thus, PSI can doubly reduce PQ in the 

A1 binding site under mildly reducing conditions. 

 The A1 binding site evolved to destabilize the semiquinone state and reduce its 

lifetime.  A tryptophan residue π-stacks with the aromatic rings of the quinone (46).  This 

hydrophobic interaction destabilizes any accumulation of charge on the quinone head-

group.  Furthermore, the very hydrophobic environment of the A1 site minimizes the risk 

of protonation of the reduced states of the quinone, preventing formation of the stable 

hydroquinone state.  Because the double reduction of PQ in menD1 PSI is pH 

dependent, such proton transfer reactions are likely a rate-limiting step (45).  These 

features make double reduction of quinones in the A1 site very difficult.  This activity is 

not physiologically relevant, as it requires use of strongly reducing conditions imposed by 

dithionite at high pH or replacement of the native quinone.  The ability of PSI to doubly 
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reduce quinones may be a vestigial feature that hints at an activity once possessed in 

ancestral forms.  This will be further discussed in Chapter 7. 
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CHAPTER 4. CHARACTERIZATION OF PURIFIED HBRC 

Background 

 Current estimates on the antenna size of the HbRC range from 22 to 45 Bchl g 

per RC (20, 21).  The large discrepancy in the antenna size determined in previous 

studies is due to different methods of determining the concentration of HbRC in solution.  

Many of these studies normalize the Bchl g concentration (determined by absorbance at 

the Qy maximum) to the concentration of P800 determined using differential extinction 

coefficients.  However, the differential extinction coefficients used range from 100-200 

mM-1 (21).  In the most recent study, the Bchl g concentration was normalized to the 

concentration of non-heme iron (assuming 4 irons per RC) and produced a ratio of 22 

Bchl g per HbRC (20). 

 

Figure 5.  Chemical structure of relevant pigments and cofactors.  Bchl g’ has an identical 
structure to Bchl g with different stereochemistry at the 132 position.  The primary 
acceptor of the HbRC, 81-OH Chl af has a similar structure as Chl a with the exception 
that it has a hydroxyl group added at the 81 position and the tail is a farnesyl group rather 
than the phytyl group shown.   
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 The approaches described above provide estimations of the total Bchl g content 

of the HbRC, but do not allow quantification of the other pigments and cofactors present.  

In addition to the major pigment Bchl g, the HbRC also contains Bchl g’, 81-OH-Chl aF, 

4,4’-diaponeurosporene, and MQ (19).  Previous studies have shown that there are two 

Bchl g’ and two 81-OH-Chl aF per RC, which are believed to form the primary donor 

(P800) and primary acceptor (A0), respectively (25, 47).  Therefore, the concentrations of 

Bchl g’ and 81-OH-Chl aF may be used as internal standards for quantification of the Bchl 

g antenna size as well as quinone and carotenoids content of the HbRC.  RP-HPLC will  

be used in this study to allow separation and quantification of the major pigments and 

cofactors of the HbRC.  The chemical structures of the cofactors bound by the HbRC are 

shown in Figure 5. 

 

Pigment composition 

 The acetone extracts of the purified HbRC show 4 major peaks when subjected 

to RP-HPLC as shown in Figure 6A.  Based on their absorbance spectra (Figure 6C) and 

MALDI-TOF determined masses, peaks 1-4 can be assigned to 81-OH-Chl aF Bchl g, 

Bchl g’, and 4,4’ diaponeurosporene, respectively.  While Bchl g and Bchl g’ have 

identical masses and spectra, peak 2 is identified as Bchl g based on its increase 

abundance compared with peak 3.  After correcting peak areas using published extinction 

coefficients, the ratios of each of these pigments in the extracts were determined.  Figure 

4B shows the pigment composition of the HbRC based on either two Bchl g’ or two 81-

OH-Chl aF RC.  As expected, both methods give similar results of approximately 20 Bchl 

g, two Bchl g’, two 81-OH-Chl aF, and one 4,4’-diaponeurosporene per HbRC.  This gives 

an estimated antenna size of 22 total Bchl g (Bchl g + Bchl g’), which is consistent with 

the most recent estimates (20).    
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Figure 6. Analysis of the pigments associated with the HbRC. A: Representative HPLC 
chromatogram (at 410 nm) of an acetone extract of HbRC fraction CM-20. Peak 1 is due 
to pigments related to Chl a (Chl aF and 81-OH-Chl aF), while peaks 2 and 3 are BChl g 
and BChl g’, respectively; peak 4 is 4,4’-diaponeurosporene. B: Estimated number of 
pigments per HbRC by integration of peak areas of separated pigments at their 
absorption maximum. The extinction coefficients used for the BChl g (and g’) and Chl a 
was 76 mM-1 cm-1, and 150 mM-1 cm-1 was used for the carotenoid. The histogram shows 
the number of pigments calculated for DS-FT and CM-20 fractions (see text for details).  
C: Absorption spectra of the pigments in peaks 1, 2 and 4 (81-OH-Chl aF, BChl g, and 
4,4’-diaponeurosporene, respectively).  This figure is reprinted from Springer and the 
original publisher/ Photosynthesis Research, 111, 2012, 291-302, Purification of the 
photosynthetic reaction center from Heliobacterium modesticaldum, Sarrou, I., Khan, Z., 
Cowgill, J., Lin, S., Brune, D., Romberger, S., Golbeck, J. H., Redding, K. E., Figure 2, 
with kind permission from Springer Science and Business Media. 
 

Quinone Content 

 A separate HPLC method was used to identify and quantify the quinones in the 

isolated HbRC (Figure 7).  In this method, two peaks were identified as quinones by the 

absorption spectra (Peaks 2 and 3).  Peak 3 was identified as MQ9 by coelution the MQ9  

C 

B A 
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Figure 7. Identification and quantification of the quinone in the HbRC.  A: Representative 
HPLC chromatogram (at 260 nm) of an extract from HbRC without (red) or with (black) 
the addition of 10 µg/mL MQ-9. Peak 1 is due to 4,4’-diaponeurosporene; peaks 2 and 3 
are MQ-8 and MQ-9, respectively. B:  Absorption spectra of peak 3 (black) and an 
authentic MQ-9 sample (blue). The intensities of the two spectra were normalized for 
comparison. This figure is reprinted from Springer and the original publisher/ 
Photosynthesis Research, 111, 2012, 291-302, Purification of the photosynthetic reaction 
center from Heliobacterium modesticaldum, Sarrou, I., Khan, Z., Cowgill, J., Lin, S., 
Brune, D., Romberger, S., Golbeck, J. H., Redding, K. E., Figure 3, with kind permission 
from Springer Science and Business Media. 
 

 

   
 
Figure 8. HPLC analysis of quinones in membranes from H. modesticaldum. Solvent 
extracts from membranes were analyzed by HPLC using the same method as in Figure 
5. A: HPLC chromatogram of extracted pigments at 250 nm. Peak 1 is MQH2 and peak 2 
is MQ-9. HPLC method was the same as used in Figure 7. B: UV-visible absorption 
spectra of peak 1 and MQH2 (made by reducing MQ-9 with NaBH4). This figure is 
reprinted from Springer and the original publisher/ Photosynthesis Research, 111, 2012, 
291-302, Purification of the photosynthetic reaction center from Heliobacterium 
modesticaldum, Sarrou, I., Khan, Z., Cowgill, J., Lin, S., Brune, D., Romberger, S., 
Golbeck, J. H., Redding, K. E., Figure S5, with kind permission from Springer Science 
and Business Media. 
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standard.  Peak 2 most likely corresponds to MQ8, which has an identical head group to 

MQ9, but the hydrophobic tail is shorter by one isoprenoid unit.  The quinones were 

quantified by comparison of the peak areas to the peak area for 4,4’-diaponeurosporene 

(Peak 1) after correction using published extinction coefficients for MQ and 4,4’-

diaponeurosporene.  Quantification by this method yields a quinone content of  

1.5-1.6 MQ per HbRC, which is consistent with previous reports on HbRC isolated from 

H. mobilis (21). 

Additionally, the quinone content of membrane samples was determined via RP-

HPLC (Figure 8).  In membranes, there is a mixture of MQ8, MQ9, and MQH2, the 

reduced form of MQ.  The oxidized and reduced forms are present in approximately 

equal abundance at a ratio of about 4 or 5 quinones per HbRC.  This is similar to 

previous reports on the quinone content of membranes from H. mobilis, though the redox 

state of these quinones was not investigated in this species (21).       

 The quinone and carotenoid content of HbRC samples prepared on a larger 

scale was found to be more variable as summarized in Table 1.  These samples show an 

average of 0.75 quinones and 0.41 carotenoids per HbRC as compared to ~1.6 quinones 

and 1 carotenoid per reaction center that was determined in the analysis above.  This 

discrepancy may arise due to changes to the HbRC isolation protocol designed to 

accommodate larger scale preparations for measurements such as EPR.  Use of larger 

columns and more extensive washing on the column may cause labile cofactors to be 

washed out of the immobilized HbRC.  This suggests that both the quinones and the 

carotenoids bound by the HbRC may be more labile than previously thought.  

 

Table 1:  Quinone and carotenoid content of large-scale HbRC preparations. 

	  	  
Small-‐scale	  
preparation	   Large-‐scale	  preparations	  

4,4'-‐diaponeurosporene	   1.20	   0.52	   0.46	   0.19	   0.46	   0.44	  

MQ	   1.70	   0.75	   0.41	   1.2	   0.70	   0.69	  
 
*All values are normalized to 22 total Bchl g per reaction center (Bchl g + Bchl g’) 
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Discussion 

 The antenna size of 22 Bchl g per HbRC is consistent with the most recent 

estimate based on normalization to 4 non-heme irons per RC (20).  This is a very small 

antenna size relative to Photosystem I, which binds over 90 Chlorophyll a and an 

additional 20+ carotenoids per RC.  The large difference in the antenna size between PSI 

and the HbRC is surprising given the similar topology of the core dimers that are 

responsible for binding the majority of the pigments.  The core polypeptide of the HbRC 

(PshA) is comprised of 11 hydrophobic regions that are believed to form transmembrane 

α-helices similar to the PsaA/PsaB core polypeptides of PSI (3, 48).   

 Another surprising find is that there is only one carotenoid bound by the isolated 

HbRC.  Given the perfect symmetry of the HbRC predicted by the presence of a single 

core polypeptide in the genome, each cofactor should be present in an even 

stoichiometry.  One possible exception is cofactors like FX that are bound at the 

symmetry axis between the copies of the homodimer.  While this cannot be ruled out until 

the X-ray structure of the HbRC is determined, a more likely explanation is that the 

carotenoid is susceptible to being “washed out” during the isolation procedure, as 

suggested by the variability of the carotenoid content in the HbRC samples prepared on a 

larger scale with more extensive column washing.   

 The quinone quantification described here shows that 1-2 quinones are present 

in the isolated HbRC while membranes have 4-5 quinones per RC.  All quinones in the 

isolated HbRC are in the oxidized form while the reduced and oxidized forms are present 

in approximately equal abundance in anaerobically isolated membranes.  The main 

quinone is MQ9, though MQ8 was found at about a 1:6 ratio to MQ9 for both membrane 

and HbRC samples.  This is consistent to reports on the quinone content of the HbRC 

and membranes isolated from H. mobilis (21).  Despite the presence of quinones in these 

samples, no EPR signal attributable to a semiquinone could be generated by 

photoaccumulation (23).  The role of the quinone in these RCs will be further investigated 

in Chapter 6.   
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CHAPTER 5. CHARACTERIZATION OF FX IN THE HBRC 

Background 

 Iron-sulfur clusters are ubiquitous in biology, with functions ranging from redox 

cofactors to oxygen sensors.  They also serve as the terminal electron acceptors in Type-

I RCs.  These iron-sulfur clusters are among the lowest potential cofactors found in 

biology and are the starting point for many important reactions in anabolic metabolism 

such as the reduction of NADP+ to NADPH.   

 In the isolated HbRC, the 4Fe-4S cluster FX serves as the terminal electron 

acceptor (20, 21).  The binding site for FX is located at the symmetry axis between two 

copies of the PshA homodimer.  This region of the PshA peptide is the area of highest 

conservation between the HbRC and Photosystem I with 75% sequence identity over a 

12 amino acid range (18).  There are many complicating factors that have limited studies 

on FX in both PSI and the HbRC.  First, the low potential and highly buried nature of FX 

makes it difficult to reduce for investigations by techniques such as EPR.  Additionally, 

the fast spin-spin relaxation properties of the clusters make it difficult to detect even at 

liquid helium temperatures.  Finally, the optical signatures of the cluster are much weaker 

than those of the chlorin radicals generated during charge separation, making detection 

by transient absorption difficult.   

 Despite these complications, several studies have examined the spectroscopic 

properties of FX in the HbRC.  The earliest studies used light-minus-dark difference 

spectra in the visible region to show a species with a broad absorption maximum around 

430 nm, which is characteristic of a reduced Fe-S cluster (49).  Recently, two studies 

have reported different EPR spectra that were both attributed to FX (20, 50).  In the first, 

membrane samples that were pre-reduced with dithionite were measured under 

illumination at 5 K to generate light-minus-dark difference spectra by CW as well as 

transient EPR.  The corresponding signal was attributed to FX in a S=1/2 state with 

similar g-values to those reported for FX in PSI (50).  However, this signal was not 

observed under similar conditions with the isolated HbRC.  The next study illuminated the 
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HbRC at room temperature in the presence of dithionite prior to freezing.  This generates 

a signal which was attributed to FX in a S=3/2 state, similar to a signal observed for the 

4Fe-4S cluster of the reduced nitrogenase Fe protein (20).   

 Given the controversy surrounding the spectroscopic properties of FX in the 

HbRC, three new ways were developed to generate EPR signals that can be attributed to 

FX
-.  Additionally, thin film voltammetry and spectroelectrochemistry were used to 

determine the electrochemical properties of FX in the isolated HbRC.   

 

Direct reduction of Fx by dithionite 

The ascorbate reduced HbRC shows laser flash-induced photobleaching at  

800 nm that recovers by monoexponential decay with a t1/2 of 14 ms.  This has previously 

been identified as charge recombination of the P800+-FX- state (20).  Following treatment 

of this sample with 10 mM dithionite at pH 10 for 30 minutes in the dark, less than 5% of 

the flash-induced photobleaching remains.  Over 99% of the signal is recovered when 

this sample is exposed to oxygen for 2 minutes.  This suggests that dithionite causes 

light-independent reduction of a cofactor of the HbRC that blocks electron transfer to FX 

and is reversible by oxygen exposure.  

 
Figure 9.  Charge recombination kinetics in the HbRC reduced with ascorbate (squares) 
and dithionite (circles) plotted on a logarithmic timescale.  The dithionite-reduced sample 
was exposed to air for 2 minutes prior to recording the “air exposed” trace (triangles).  A 6 
ns saturating laser pulse at 532 nm was used as the excitation source while an 810 nm 
LED was used to probe changes in sample absorbance starting 500 µs after the flash.   
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Millisecond-timescale pump-probe spectroscopy does not have the resolution 

required to study the dithionite-reduced HbRC, so picosecond scale transient absorption 

spectroscopy was used.  Because the only chlorophyll a in the HbRC are bound at the A0 

positions, the electron transfer kinetics of A0 can be directly studied using the transient 

absorption kinetics in the red region on the picosecond to nanosecond timescale (25). 

Global analysis of the transient absorption kinetics from 640-720 nm for the 

ascorbate reduced HbRC shown in Figure 10A identifies four components with 

exponential lifetimes of 3 ps, 25 ps, 725 ps, and a component that does not decay on the 

4-ns timescale of the measurement.  The decay-associated spectra for the 3- and 25-ps 

components show a broad increase in absorption with peaks between 670 nm and 680 

nm.  The broad absorption increase and short lifetime of the 3-ps component is  

characteristic of energy redistribution within the antenna pigments.  The 25-ps 

component corresponds to the trapping time of the HbRC that can be attributed to 

excited-state absorption of antenna Bchl g.  Decay of the excited antenna Bchl g 

corresponds to the  

 

 
 
Figure 10.  Decay-associated spectra from global analysis of the transient absorption of 
HbRC samples in the red region.  Samples were reduced with either 10 mM ascorbate 
and 20 µM PMS (left) or 10 mM dithionite (right).The data was fit using global analysis 
with a sum of 4 exponentials for the ascorbate reduced HbRC and 3 exponentials for the 
dithionite-reduced HbRC.  Samples were excited at 575 nm at a frequency of 1 kHz. 
 

B A 
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formation of the P800+-A0
- state (23).  The 725-ps component in Figure 9 shows 

bleaching centered at 675 nm that is characteristic of P800+-A0
- state, which decays due 

to forward electron transfer to FX (27).  The non-decaying component shows a decay-

associated spectrum that is characteristic of an electrochromic bandshift of A0
 caused by 

the nearby charge of P800+.   

Global analysis of the dithionite-reduced HbRC shown in Figure 10B identifies 

three components with exponential lifetimes of 4 ps, 33 ps, and 14.6 ns.  The lifetimes 

and decay associated spectrum of the 4-and 33-ps components suggest that energy 

trapping by the HbRC may be slightly altered by dithionite treatment, though this is not 

the focus of these measurements.  The 14.6-ns component in the dithionite-reduced 

HbRC is nearly identical to the 725 ps component in the ascorbate reduced HbRC.  This 

suggests that the P800+-A0
- state decays with a lifetime of 14.6 ns rather that the ~700-ps 

decay expected due to forward electron transfer to FX.  This indicates that electron 

transfer from A0 to FX is blocked as suggested by the millisecond pump-probe 

measurements.  The increased lifetime of the P800+-A0
- state can clearly be seen in the 

675 nm transient absorption kinetics in Figure 11.  Additionally, there is a small recovery 

in 675 nm bleaching of the dithionite-reduced HbRC shows that a small population of A0
- 

is reoxidized in the 6-ns timescale of the measurement.  Global analysis gives a lifetime 

of 14.6 ns for this decay, which is very close to the ~17-ns lifetime corresponding to 

P800+A0
- charge recombination (51, 52).  

 
Table 2.  Broad-band pump-probe fitting parameters and statistics 
 

Ascorbate + PMS Dithionite 
τ  Amplitude τ  Amplitude 

2.9 ± 0.03 ps 1.2 4.0 ± 0.04 ps 1.3 
25.6 ± 0.1 ps 1.4 33.8 ± 0.1 ps 1.6 
725 ± 9.2 ps -1 14.6 ± 0.1 ns -1.2 
10.0 ± 2 ns 0.2 - - 

χ2  = 90.3 χ2 = 84.6 
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Figure 11.  Transient absorption kinetics at 675 nm for HbRC reduced with 10 mM 
ascorbate and 20 µM PMS (♦) 10 mM dithionite (▲).  The data was fit using global 
analysis with a sum of 4 exponentials for the ascorbate reduced HbRC and 3 
exponentials for the dithionite-reduced HbRC.  Samples were excited at 575 nm at a 
frequency of 1 kHz. 
 

Previous reports have attributed the block in electron transfer caused by 

dithionite treatment at high pH to double reduction of the quinone (53).  The nature of the 

cofactor reduced by dithionite cannot be determined using pump-probe spectroscopy, so 

EPR was used to look for any paramagnetic species generated in the process. 

Treatment of the HbRC with 30 mM dithionite in the dark for 30 minutes prior to 

freezing generates a broad resonance in the 1200-2000 G range detectable by X-band 

CW-EPR at 3.5 K.  This is similar to the signal previously reported to be FX
- in a S=3/2 

state (20).  The details of this signal will be discussed below along with the signals 

generated by photoaccumulation methods.      

 

Single-photon counting on dithionite-reduced HbRC 

 Previous reports have shown that heliobacterial membrane samples in which 

electron transfer is blocked past A0 show a long-lived fluorescence component (52).  This 

component, with a lifetime of 17 ns, corresponds to charge recombination of the P800+A0
- 

state.  This charge recombination can generate one of two excited states in competing 
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pathways (or regenerate the ground state via dissipation of heat).  First, the P800 triplet 

state (P800T) can be generated, resulting in relaxation to the ground state via thermal or 

chemical quenching (54).  The second pathway regenerates the singlet-excited state of 

P800 (P800*).  This state relaxes back to the ground state via emission of a photon, or 

fluorescence.  This fluorescence is delayed relative to the fluorescence emission from the  

antenna.  Therefore, I expect to observe a long-lived fluorescence component in the 

HbRC treated with dithionite at pH 10. 

 Figure 12 shows that reduction of the HbRC with dithionite at pH 10 causes little 

change in the fluorescence decay at 810 nm emission.  The emission at 810 nm from the 

untreated HbRC decays with a lifetime of 10-20 ps as shown by Table 3 corresponding to 

the trapping time of the RC.  When dithionite is added to this sample, a minor component 

arises with a lifetime of 2 ns.  This component is likely due to uncoupled pigments, as  

previously reported (23).  No component with a lifetime of ~20 ns is observed in these 

samples.  However, the transient absorption measurements above show that electron  

 

 
Figure 12.  Time-correlated single-photon counting of 810 nm emission using 575 nm 
excitation on HbRC samples subjected to various chemical treatments.  Ascorbate 
reduced samples were treated with 10 mM ascorbate while dithionite-reduced samples 
were treated with 10 mM dithionite for 30 minutes in the dark.  The dithionite sample was 
exposed to air for 2 minutes prior to recording the “Oxygen exposed” data.  The excitation 
frequency was 10 MHz.    



  32 

 

Table 3. TC-SPC fitting parameters and statistics 
 

Sample τ1 τ2 χ2 

HbRC no 
treatment 

15.1 ps 
(99.96%) 

2.35 ns 
(0.04%) 

1.2114 

HbRC 
ascorbate 

17.9 ps 
(99.7%) 

1.495 ns 
(0.28%) 

1.3518 

HbRC 
dithionite 

8.1 ps 
(99.80%) 

2.08 ns 
(0.20%) 

1.2168 

HbRC oxygen 10.22 ps 
(99.89%) 

1.01 ns 
(0.11%) 

1.2923 

 

transfer past A0 is blocked.  One possible explanation is that the P800* state may not be 

formed by charge recombination of the P800+A0
- state in the isolated HbRC.  If this were 

the case, the P800T formation may be much higher in the isolated HbRC than in the 

membrane-bound HbRC.  The triplet yield in membranes of H. chlorum was previously 

reported to be 30% in RCs from the P800+A0
- state, but no studies have determined the 

yield in the isolated HbRC (54).  Another possible explanation is that the P800+A0
- state 

may not recombine with the same mechanism and/or kinetics in the isolated HbRC.  This 

is unlikely based on the preliminary results from ultrafast transient absorption above; 

however, this is beyond the scope of the present work. 

 

Photo-reduction of FX in carbonate-washed membranes 

Previous reports using transient EPR have shown that the P800+FX
- state is 

unstable even at liquid helium temperatures (50).  Therefore, in order to accumulate 

detectable levels of FX
- via photo-reduction, P800+ must be chemically reduced to prevent 

charge recombination.  This process requires a fast chemical donor that can out-compete 

the 15 ms back-reaction from the P800+FX
- state.  The natural donor, cytochrome c553 

reduces P800+ on the microsecond to millisecond timescale, but only when it is tethered 

to the membrane via a lipid tail.    However, the PshB polypeptide that houses the FA/FB 

iron-sulfur clusters is also still present in membrane preparations.  Because there may be 

light-induced changes in the levels of reduced FA/FB that may interfere or overlap with the 
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signal of FX
-, I developed a procedure to remove the FA/FB clusters from membranes prior 

to photo-accumulation.   

While the PshB polypeptide is easily removed during isolation of the HbRC from 

membranes, removal of PshB in the membrane-bound HbRC has proven to be more 

difficult (20, 49).  One possibility is that the liposomes that form in membrane 

preparations shelter the HbRC (and PshB) from the chaotropic agents.  Additionally, even 

when the interaction between PshB and the HbRC is broken, PshB may be trapped 

within the liposome as a soluble protein that can re-bind to the HbRC when the 

chaotropic agents are removed.   These issues can be resolved by washing membranes 

with sodium carbonate at high pH.  This procedure is believed to open liposomes, 

forming flat membrane sheets and stripping peripheral membrane proteins like PshB 

(33).  When the sodium carbonate is removed, the liposomes re-form.  Because 

cytochrome c553 is bound to the membrane via a lipid tail, it should not be removed during 

this procedure (55).   

The sodium carbonate treatment effectively removes PshB, as shown by the loss 

of the long-lived component in the flash-induced P800 kinetics.  Treatment of these  

 

 
Figure 13.  Photoaccumulation of carbonate-washed membranes and HbRC samples in 
the presence of 10 mM dithionite at pH 6.  Left: Representative transient showing the 
decrease in photobleaching amplitude in carbonate-washed membranes through 25 
consecutive laser flashes.  Change in sample absorbance at 800 nm was monitored 
using an 810 nm LED.  Right: Fraction of the initial photobleaching amplitude plotted 
against the number of flashes.       
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samples with dithionite at pH 6 does not affect the amplitude of the photobleaching 

signal, indicating that FX cannot be directly reduced by dithionite at pH 6.  If the 

carbonate-washed membrane samples are subjected to a series of laser flashes in the 

presence of dithionite at pH 6, the amplitude of the flash-induced bleaching signal 

decreases as a function of the number of flashes as shown in Figure 13.  This indicates 

that reduced electron acceptors accumulate in these samples, causing P800 recovery on 

a timescale faster that the 500-microsecond time resolution of the instrument.  This result 

is consistent with successful photo-reduction of FX in around 85% of HbRCs that will 

cause recombination of the P800+-A0
- state with a 17-20 ns lifetime (51, 52).  Therefore, a 

light-minus-dark EPR difference spectrum of the carbonate-washed should be dominated 

by the signal of FX
-.    

There are three distinct signals in the X-band CW-EPR of the as isolated 

carbonate-washed membranes as shown in Figure 14a.  The resonance around g=6 is 

typical of five-coordinate high-spin iron porphyrins in aqueous solution (56).  The sharper 

resonance at g=4.3 is consistent with “nonspecific” iron (57).  Finally, the resonance in 

the g=2 region is similar to a 3Fe-4S cluster that is observed in membranes of 

Chlorobium tepidum that results from oxidative damage to a 4Fe-4S cluster (58).  Upon 

addition of ascorbate, the resonance around g=2 disappears, indicating the cluster is 

reduced to an EPR silent state while the other signals are unaffected.  When dithionite is 

added at pH 6, a new signal arises in the g=2 region that is consistent with a 4Fe-4S 

cluster in the S=1/2 state.  The effective g-values of 2.04, 1.94, and 1.89 are similar to 

those previously reported and assigned to FX in the HbRC (50).  However, the reduction 

potential of dithionite at pH 6 is not low enough to cause direct reduction of FX shown by 

the optical measurements discussed above.  Additionally, this signal is not observed in 

the isolated HbRC, therefore this is assigned it to a 2Fe-2S or 4Fe-4S cluster that is not 

associated with the HbRC.  When the dithionite treated sample is illuminated at room  
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Figure 14. EPR of carbonate-washed membranes. Samples were frozen as-isolated (a), 
reduced with 10 mM ascorbate (b), or reduced with 10 mM dithionite in the dark (c) or 
after 30 seconds illumination at room temperature (d).  Samples were suspended in 50 
mM MES pH 6 containing 20 mM MgSO4.  All spectra were recorded at 4.8 K at 1 mW 
microwave power, 9.43 GHz microwave frequency, 1 mT modulation amplitude, and 100 
kHz modulation frequency.   
 
temperature prior to freezing, a broad resonance between 120-200 mT is generated.  

This is similar to the signal previously reported to be FX in the S=3/2 state (20).  Because 

the FA/FB clusters have been removed by the washing procedure, the light-minus-dark 

difference spectrum should be largely dominated by the signal that can be attributed to  

FX
-.  The resulting signal will be further discussed below. 

 

Photo-reduction of FX in isolated HbRC 

 The multiple-flash pump-probe method described above was utilized to assess 

conditions in which FX
- could be trapped in the isolated HbRC.  Figure 13 shows that in 

the presence of dithionite at pH 6, the P800 bleaching signal decreases as a function of 

the flash number.  This suggests that FX
- can be trapped in the isolated HbRC under 

similar conditions as those used for the carbonate-washed membranes.  Though the 

efficiency is not as high as in the carbonate-washed membranes, this data suggests that 

a P800-FX
- state can be accumulated in around 50% of RCs.  The difference in photo-
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reduction efficiency is likely due to the lack of cytochrome c553 in the isolated HbRC.  

While dithionite can reduce P800+, it is much less efficient than the natural donor.  

 

EPR of FX 

 Despite the very different conditions amongst the three samples shown in Figure 

15, the spectra are remarkably similar.  They are characterized by a broad peak centered 

at geff=4.3 with a zero-crossing at geff=3.7.  All three spectra show a sharp resonance 

near geff=2 that is most likely unrelated to the FX signal due to its very narrow linewidth.  

Additionally, it appears that there is a broad trough centered at geff=2.0 that is not fully  

resolved due to the presence of the sharp resonances.  The broad features attributed to 

FX
- resemble an axial spectrum with g⊥=3.7 and gll=2.0.  This is consistent with the 

expected geff-values of g⊥≈4 and gll≈2 for transitions between the ms=±1/2 Kramers  

   
Figure 15.  Left: Difference spectra attributed to FX in HbRC (a and b) and carbonate-
washed membrane (c) samples.  a.  The dithionite-reduced HbRC at pH 6 was 
subtracted from the dithionite-reduced HbRC at pH 10.  b.  Light-minus-dark difference 
spectrum of the dithionite-reduced HbRC at pH 6.  c.  Light-minus-dark difference 
spectrum of the dithionite-reduced carbonate-washed membranes. Light treated samples 
were illuminated for 30 seconds at room temperature prior to freezing.  All measurements 
were performed at 3.5 K at 0.25 mW microwave power, 9.43 GHz microwave frequency, 
1 mT modulation amplitude, and 100 kHz modulation frequency.  Right: Fitting of the 
light-minus-dark difference spectra in the isolated HbRC (a) and carbonate-washed 
membranes (b).  Parameters for the fitting of the EPR spectra are shown below in Table 
4.   
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doublet of a S=3/2 system (59).   The S=3/2 ground state of FX
- shown here is consistent 

with previous reports on FX in the HbRC (20).   

 The light-minus-dark difference spectra for the isolated HbRC and carbonate-

washed membranes were fit to a Hamiltonian with S=3/2 as shown in Figure 13.  While 

the zero-field splitting parameters from the two fits are consistent as shown in Table 4, 

the g-tensors are significantly different.  With an E/D value of 0.02, the zero-field splitting 

interaction indicates low rhombic distortion of the electronic environment.  Additionally, 

the large positive D value (>105 MHz) indicates that only the transitions between the 

ms=±1/2 doublet will be observed.  This is consistent with the analysis above.  The 

principle g-values and their corresponding linewidths showed significant variation 

between samples (note that the values in Table 4 are actual rather than effective g-

values discussed above).  While it is possible that these inconsistencies reflect actual 

differences in the FX cluster in the two different environments, they more likely arise due 

to the broad nature and low intensity of the signal.  The subtractions were unable to 

remove all contaminating signals, especially around geff=2, which is the region of highest 

discrepancy between the two simulations.  Though both simulations show a rhombic g-

tensor, further work is needed to improve this aspect of the simulation.   

 With a linewidth of nearly 50 mT, the FX signal is unusually broad.  Several 

factors may cause such a large line broadening.  Figure 16A shows that the spin-spin 

 
Table 4.  EPR spectra simulation parameters  
 

Isolated 
HbRC 

Carbonate-washed 
membranes Parameters 

 S=3/2 S=3/2 
gx 2.08 2.05 
gy 1.88 2 
gz 1.98 1.97 

ΔBx (mT) 324 317 
ΔBy (mT) 435 357 
ΔBz (mT) 103 44 
D (MHz) >105 >105 

E/D 0.02 0.02 
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Figure 16. Pulsed X-band EPR measurements on the dithionite -educed HbRC at pH 10.  
A.  T2 measurement fit to a monoexponential decay with τ = 490 ns.  B.  Fast-Fourier 
transform of 3-Pulse ESEEM data taken with a (π/2-τ-π/2-t-π/2-τ-echo) sequence.  The 
length of the π/2 pulse was 8 ns while the length of τ was 144 ns.  Both datasets were 
collected at a magnetic field position of 209 mT with a microwave frequency of 9.68 GHz. 
 

relaxation (T2) time of FX signal is 490 ns at 4 K.  Fast spin relaxation times are a major 

contributing factor to line broadening.  Fast spin relaxation times are characteristic of 

 metals, especially metal clusters like FX.  In addition, the T2 measurement shows strong 

modulation of the echo decay that is indicative of magnetic interactions between the 

electron spin of the FX cluster and nearby magnetic centers.  The 3 –pulse ESEEM 

measurement in Figure 16B show a large peak around 8 MHz, which corresponds to the 

Larmor frequency of protons at 200 mT applied magnetic field.  This suggests that the 

echo modulation is largely caused by hyperfine interactions with the nuclei of protons.  

The peaks below 5 MHz likely arise due to nitrogens from the backbone or sidechains of 

nearby amino acid residues.  In addition, there are small, unidentified peaks around 12 

and 18 MHz that may come from hyperfine or dipolar interactions.  The hyperfine 

interactions detected by pulsed EPR are not resolved in the CW-EPR spectra and are 

another major source of line broadening.         
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Electrochemical properties by thin film voltammetry   

 In order to study the electrochemical properties of redox cofactors in proteins, the 

redox state of the cofactor must be monitored as a function of the potential (60).  The 

potential of the solution can be varied directly using electrodes or through chemical 

titrations using oxidants or reductants.   The redox state of cofactors can be monitored 

using a variety of methods such as spectroscopic markers or current flow to and from the 

solution.  Thin film voltammetry is a popular method for studying the electrochemical 

properties of membrane proteins, especially photosynthetic RCs (61-63).  In thin film 

voltammetry, a modifier such as dimyristoylphosphatidylcholine (DMPC) is mixed with the 

protein of interest at an electrode surface.  The modifier should form a monolayer or 

bilayer on the electrode surface into which the protein of interest can be embedded (64).  

By varying the potential applied to the electrode surface and monitoring current flow, the 

 

 

Figure 17. Schematic representation of the set-up for thin-film voltammetry 
measurements with the HbRC. 
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midpoint potential of the cofactor can be approximated.  As the applied potential nears 

the midpoint potential of the cofactor, electrons will flow to (or from) the electrode and 

cause a peak in current.  Here, a DMPC modifier is used on a glassy carbon (GC) 

electrode to study the low-potential acceptors of the isolated HbRC.  A representation of 

the thin-film voltammetry set-up is shown in Figure 17. 

 The cyclic voltammogram (CV) of the HbRC on the DMPC modified GC electrode 

in Figure 18A shows peaks in both the oxidative and reductive scan direction centered 

around -370 mV vs. NHE.  Similar results were attained using the more sensitive 

technique of differential pulse voltammetry seen in Figure 18B.  The average E1/2 of this 

signal obtained in six independent measurements is -372 ± 17 mV.    This signal is not 

present in the DMPC modified GC electrode without the HbRC, so it can be attributed to 

a redox center of the HbRC.  The presence of peaks in both scan directions is consistent 

with the chemical reversibility of reduction of FX after exposure to oxygen shown above.  

Additionally, the separation of the peaks in the CV is less than 59 mV, which is 

characteristic for adsorbed species.  This indicates that the signal comes from the HbRC 

that is bound in close proximity to the electrode.   

       
Figure 18. Cyclic (A) and differential pulse (B) voltammograms for the HbRC/DMPC 
monolayer (black lines) and DMPC coated (blue lines) glassy carbon electrodes.  The CV 
data was collected at a scan rate of 150 mV/s.  The DPV data was taken a sample width 
of 17 ms, pulse amplitude of 25 mV, pulse width of 50 mV, and pulse period of 200 ms. 
All measurements were performed in 50 mM Tris pH 8 working solution.    
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 The -372 mV value observed here is close to the value of -414 mV previously 

observed in a reductive titration of the HbRC isolated from H. gestii (53).  In this study, 

the amplitude of P800 photobleaching on the microsecond timescale was monitored as a 

function of solution potential, using additions of dithionite in the presence of mediators to 

change the potential.  Because the data fit to a Nernst equation with n=2, it was attributed 

to double reduction of MQ.  However, double reduction of MQ should not block electron 

transfer to FX (28).  The results from EPR and ultrafast absorption suggest that the 

blockage of electron transfer is a result of the direct reduction of FX by dithionite.  

Therefore, the species with a potential of -414 mV identified in previous studies was most 

likely FX.  The two-electron fit of the data may have been an artifact due to complications 

caused by the presence of mediators.  This will be discussed further in the following 

section.  The species with a potential of -372 mV observed here is tentatively assigned to 

FX.  A spectroelectrochemical titration should be used as an independent method of 

confirming this value.  However, a method must be designed that avoids the need for 

mediators.   

 

pH dependence of FX reduction by dithionite 

 As described above, the P800 photobleaching signal on the millisecond 

timescale correlates with the redox state of FX.  This provides a spectroscopic marker 

that can be used to follow the redox state of FX as a function of potential.  The midpoint 

potential can be determined by varying the ambient reduction potential of the solution and 

monitoring the redox state of FX using pump-probe spectroscopy (60).  The traditional 

approach to varying the potential of the solution has been to add small amounts of 

reductant, such as dithionite, in the presence of redox mediators.  The mediators help 

impose a more stable equilibrium ambient potential and enhance the rate of electron 

transfer reactions (60).  However, mediators will interact with all redox active species in 

solution.  This has caused problems with previous titrations involving the HbRC because 

many of the common mediators used are very effective electron donors to P800+ (53).  
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Mediators like neutral red can reduce P800+ on the sub-millisecond timescale, which will 

cause a loss of P800 photobleaching signal that is not due to reduction of FX.  An 

alternative approach that does not require mediators can utilize the pH sensitivity of the 

reduction potential of dithionite.  The mechanism of reduction by dithionite involves the 

hydroxide ion as a reactant, therefore at higher pH, dithionite has a lower potential (65).  

By varying the pH of the solution from 6 to 10, the midpoint potential of dithionite varies 

from -176 mV to -648 mV, respectively (66).  Therefore, the potential of a solution can be 

varied by changing the pH in the presence of a large excess of dithionite.  The large 

excess of dithionite will enhance the rate of electron transfer and help maintain a stable 

solution potential, thereby avoiding the need of mediators.  If the P800 photobleaching 

amplitude reaches an equilibrium in the presence of excess dithionite that varies as a 

function of the pH, this method should allow spectroelectrochemical measurements on 

FX. 

 Figure 19 shows that as pH of the solution changes in the presence of excess 

dithionite, the P800 photobleaching signal on the millisecond timescale decreases.  This 

is attributed to reduction of FX that blocks electron transfer and causes charge  

 
Figure 19.  The pH dependency of FX reduction by dithionite.  The P800 photobleaching 
signal was measured before and after a 1 hour treatment of 10 mM dithionite at the 
corresponding pH.  The fraction of FX reduced was defined as the loss in the P800 
photobleaching signal following dithionite treatment relative to the initial signal prior to 
treatment. Each point represents the average of at least 3 measurements. 
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recombination of the P800+A0
- state on the nanosecond timescale as shown by the  

ultrafast absorption and EPR results above.  Because the amplitude of the P800 

photobleaching in these samples was stable for over 3 hours following dithionite 

treatment, the redox state of FX reaches an equilibrium that is dependent on pH.  This is 

most likely due to differences in the ambient solution potential as a result of the pH 

dependence of the reduction potential of dithionite (65).  The potentials of the dithionite 

solutions at each pH were measured in the presence of mediators and the data was fit to 

the Nernst equation with Em=-502 mV and n=0.99.  Further work will be required to 

confirm this value. 

 

Discussion 

 The direct reduction of FX in the HbRC by dithionite at pH 10 suggests that it has 

a higher midpoint potential than its counterpart in PSI.  The midpoint potential of FX in PSI 

is reported to be between -670 and -700 mV while the midpoint potential of FX in the 

HbRC has not previously been reported (67, 68).  Using thin film voltammetry, a redox 

active species associated with the HbRC was identified with a potential of -372 mV.  The 

preliminary spectroelectrochemical measurements indicate the midpoint potential of FX in 

the HbRC in solution is -502 mV.  These two values differ by over 100 mV, however, a 

large disparity is typical between values from thin-film voltammetry and electrochemical 

titrations (64).  While both values are significantly higher than the midpoint potential value 

reported for FX of PSI, they are consistent with values from other low potential 4Fe-4S 

clusters such as those of Complex I and bacterial ferredoxins (69, 70). With a much 

higher reduction potential, the reduced state of FX would be more stable in the HbRC 

than in PSI.  This is consistent with the >10 fold greater lifetime of the P800+ FX
- state of 

the HbRC compared with the P700+ FX
- in PSI (20, 21, 71).   

The large disparity in the potential of FX in the HbRC and PSI is surprising given 

that the FX binding site is the area of highest conservation between the peptides that form 

the core dimer in these complexes (18).  A higher potential was predicted for FX in the 
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HbRC based on a net positive charge in the binding domain, however this would not 

account for such a large effect (18).  It is also important to note that the sequence 

conservation does not necessarily correlate with structural conservation between the 

dimers at this site.  Small differences in the arrangement of the peptides may lead to 

small differences in the geometry of the cluster, which can correlate to large differences 

in the potential of the cluster (72).  Without a crystal structure of the isolated HbRC, such 

differences are impossible to predict.  However, there are major structural differences 

that can be predicted based on genetic information alone.  The isolated HbRC is 

comprised only of a homodimer of PshA, while PSI contains a total of 12 subunits (3, 18).  

Subunits like PsaC in PSI bury FX deep within the complex while the FX cluster in the 

HbRC must be close enough to the surface of the complex to directly reduce soluble 

acceptors (24, 73).  This would give FX a much higher solvent accessibility in the HbRC, 

which is a major contributing factor that determines the reduction potential of cofactors in 

proteins (74-76).  

 Another major difference between the properties of FX in PSI and the HbRC is 

the spin state.  The ground-state of FX in PSI is S=1/2 while the results above show that 

the ground-state of FX in the HbRC is S=3/2, as was previously reported (20, 77).  The 

cause of this difference is unknown, but it hints at structural differences in the protein 

environment surrounding the cluster.  As suggested above, there may be small 

geometrical differences between the two clusters that may cause a higher potential in the 

HbRC as well as a different ground spin state.  Further investigations using pulsed EPR 

techniques such as ENDOR and HYSCORE may provide insight on the differences in the 

interaction of the electron spin of the clusters with the surrounding environment.  

However, without a crystal structure or the ability to make point mutations to the HbRC, 

such data would be difficult to interpret.   

 The simulations of the CW-EPR spectra suggest a low degree of rhombic 

distortion surrounding the FX cluster.  This lowered anisotropy may be a reflection of the 

perfect C2 symmetry that the homodimeric HbRC should exhibit.  The rhombic nature of 
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the g-tensor may indicate anisotropy in the spin distribution on the cluster.  However, 

further investigations are needed using EPR to improve the interpretation of the FX
- 

signal.  The axial zero-field splitting parameter (D) could be determined by measuring at 

higher field using Q-band where other transitions involving the ms=±3/2 may be observed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  46 

CHAPTER 6.  DOUBLE REDUCTION OF MQ BY THE HBRC  

Background 

One of the major uncertainties surrounding the HbRC (and the Type-I RCs of 

other anoxygenic bacteria) is the function of the quinones.  While quinones are found in 

the isolated HbRC, they do not seem to be obligate intermediates in electron transfer like 

the quinones of PSI or Type-II RCs (26-28).  It has been proposed that the quinones in 

the HbRC may serve as an alternative electron pathway that is activated when the 

standard electron acceptor pool is reduced (78).  When electron transfer from the HbRC 

is slowed due to accumulation of reduced electron acceptors, electrons will become 

trapped at the three iron-sulfur clusters of the RC.  Eventually, FX could accumulate in the 

reduced state and block electron transfer past A0.  In the HbRC with reduced FX, further 

excitation leads to a P800+A0
-MQ FX

- state that can relax through two pathways.  The first 

pathway would involve charge recombination between P800+ and A0
-.  This can form the 

triplet state of P800 that may be detrimental to the organism.  This has been observed 

through EPR and ultrafast spectroscopy (51, 79).  Alternatively, if the quinone can serve 

as a two-electron acceptor, the P800+A0
-MQ FX

- state can relax through double reduction 

of the quinone to a P800+A0 MQH2 FX state.  This pathway would have two major benefits 

for the organism.  First, it would minimize triplet formation in the HbRC.  Next, the double 

reduced quinone could leave the binding pocket and be re-oxidized by the cytochrome 

b6c complex.  This would contribute to the formation of a proton gradient that can be 

harvested to make ATP, allowing utilization of energy that would otherwise be lost.    

Traditional studies on the function of the quinone in the HbRC have focused on 

observing a semiquinone state through EPR or ultrafast spectroscopy (23, 54).  Such 

studies have been unable to detect a semiquinone radical.  An X-band EPR difference 

spectrum of illuminated the HbRC in the presence of dithionite was originally attributed to 

a semiquinone radical, but it was later found that this signal most likely came from SO2
- 

radicals generated by illumination (23, 80). However, if the quinone is double reduced to 

the quinol state, a semiquinone state may never be observed.  The presence of two one-
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electron donors in close proximity to the quinone would likely make the lifetime of the 

semiquinone state too short to detect.  Therefore, alternative methods must be used to 

detect reduction of the quinone to the quinol state.  Here, the RP-HPLC method that was 

developed using menD1 PSI is used to separate and detect any MQH2 generated in the 

HbRC after various light and chemical treatments (45).    

 

 Detection of MQH2 

 The HPLC method used must be able to separate both MQ and MQH2 from the 

other pigments and cofactors present in the acetone extracts of the HbRC.  Anaerobically 

isolated membranes can be used as standards as they contain all of the pigments 

present in the isolated HbRC, as well as MQ and MQH2 in approximately equal 

abundance (23).  Separation can be achieved by subjecting the extracts to the same RP-  

HPLC protocol that was used during studies on PSI.  Figure 20A shows a representative 

trace separating the primary species of interest.  The MQ8, MQ9, and MQH2(9) peaks 

can be integrated to allow independent quantification.  While MQH2(8) is not resolved 

with this method, it can be assumed that the ratio of MQ:MQH2 for MQ8 and MQ9 are 

approximately equal. 

 

Photoaccumulation of the isolated HbRC 

 Earlier I showed via RP-HPLC that menD1 PSI doubly reduces PQ in the 

presence of ascorbate and PMS after 64,000 saturating laser flashes.  Ascorbate serves 

as a mild reductant while PMS serves as a fast electron donor that catalyzes the re-

reduction of the oxidized special pair.  When a similar light and chemical treatment is 

applied to the HbRC, no MQH2 is detected.  This method is capable of detecting 

conversion of <2% of the MQ9 to MQH2, therefore the quinone reducing activity of the 

HbRC under these conditions is very low.  Additionally, there is significant damage to the 

HbRC as shown by conversion of Bchl g to Chl a as well as loss in P800 photobleaching 

signal (not shown).  One possible problem is that PMS is not a fast enough reductant to 
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out-compete the 14 ms back-reaction of the P800+ FX
- state.  The results from EPR and 

pump-probe spectroscopy above show dithionite can out-compete this back-reaction, 

leading to a rapid accumulation of reaction centers a P800-FX
- state.  This will enable use 

of more mild light treatments that will minimize photodamage to the HbRC. 

 Treatment of the HbRC with dithionite may cause artifactual reduction of MQ that 

is not due to the light treatment.  To avoid “dark reduction” of extracted quinones, 

dithionite was removed by passing HbRC samples over a 50-kDa cutoff membrane.  

Extracts of HbRC samples treated with dithionite at pH 6 in the dark that were prepared 

in this manner show no detectable levels of MQH2.  However, around 50% of the 

quinones in HbRC samples are reduced following treatment with dithionite at pH 10 in the 

dark.  The fraction reduced varies depending on the length of time between the removal 

of dithionite from the samples and the extraction.  This suggests that MQH2 generated 

during dithionite treatment is re-oxidized by the lengthy procedure (~30 minutes) of 

dithionite removal.  Therefore, the redox state of the quinones in the HbRC samples 

treated with dithionite cannot be measured accurately.  

 

 Photoaccumulation of HbRC in membranes 

 In heliobacterial membrane samples, cytochrome c553 serves as an electron 

donor to the HbRC, reducing P800+ on the millisecond timescale.  Cytochrome c553 can 

be reduced by ascorbate, making dithionite treatment for membrane samples 

unnecessary.  This will simplify and shorten the extraction protocol and minimize the risk 

of dark reduction of quinones.  However, I showed above that around half of the quinones 

in anaerobically isolated membrane samples are reduced.  Samples with quinones in the 

fully oxidized state are preferential for these studies.  This can be achieved by isolating 

the heliobacterial membranes in aerobic environments under vary low light to minimize 

damage to the HbRC.  The quinones of samples isolated in this manner are fully 

oxidized, suggesting that MQH2 can be oxidized by oxygen either directly or with the aide 

of a membrane-bound complex.  Because MQH2 in membranes may be re-oxidized by  
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Figure 20.  HPLC chromatograms showing separation of MQH2 and MQ using the 
absorbance of the eluent monitored at 246 nm. A. Carbonate-washed membranes were 
treated with 20 mM ascorbate at pH 6 in the dark.  B.  Carbonate-washed membranes 
were treated with 20 mM ascoorbate at pH 6 and subjected to 5,000 laser flashes prior to 
extraction. The 100 µL samples were rapidly extracted with 500 µL acetone following light 
(or dark) treatment.   
 

complexes such as the cytochrome b6c complex, it is important to extract the quinones as 

rapidly as possible following the light treatment.  Finally, carbonate-washed membranes 

were used rather than the native membranes to increase the photoaccumulation 

efficiency by removing PshB.  In the presence of PshB (and FA/FB) double reduction of 

the quinone is a four-photon, four-electron process as compared the two-photon, two 

electron-process in carbonate-washed membranes.  This is because reduction of the 

quinone presumably requires stable reduction of FX, which will not occur if FA/FB are 

oxidized. 

 As shown in Figure 20A, the quinones in the aerobically isolated carbonate-

washed membrane samples treated with ascorbate in the dark are fully oxidized.  

Ascorbate is only a mild reductant so it is not surprising that it cannot reduce MQH2 in the 

dark.  Figure 20B shows that MQH2 can be generated in carbonate-washed membranes 

treated with ascorbate following 5,000 laser flashes.  Comparison of the integrated peak 

areas suggests that 60% of the quinones in the extract are in the MQH2 form.  However, 

the ratio of quinones (MQ + MQH2) to Bchl g suggests that there are only ~2 quinones 

per HbRC in the sample while the expected ratio is 4-5 quinone per HbRC in membranes 

B A 
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(for both light and dark treated samples).  The low quinone content is due to the high 

water content in the acetone extracts.  This will limit the solubility of the very hydrophobic 

cofactors such as the quinone and carotenoid and lead to lower extraction efficiency 

compared to less hydrophobic cofactors like Bchl g.   The similar quinone content of the 

light and dark treated samples suggests that MQ and MQH2 have similar extraction 

efficiencies.  Therefore, the redox state of the quinones in the extract should reflect the 

redox state of the quinones in the membrane sample.  However, the quinone extraction 

procedure must be redesigned to enable complete extraction of quinones and allow 

complete quantification. 

 

Discussion 

The light-dependent reduction of MQ to MQH2 in heliobacterial membrane 

samples shown here suggests that the HbRC is capable of doubly reducing quinones. 

This is the first direct evidence for double reduction of quinones in the HbRC.  Further 

studies will be needed to evaluate the physiological relevance of this activity.  Unlike PSI, 

the quinone is not an obligate intermediate in electron transfer for the HbRC (28). 

Therefore, double reduction of the quinone in the HbRC should have no deleterious 

effects.  In fact, this activity may potentially be advantageous for the organism if the 

quinol can leave the binding site.  It would provide the HbRC an alterative electron 

acceptor when the pool of soluble acceptors becomes reduced.  Past studies in cells of 

H. modesticaldum have shown that electron transport from the HbRC to soluble electron 

acceptors can easily be blocked (81).  In this case, electrons are trapped on the 

intermediate acceptors of the HbRC like A0 and FX, inactivating the RCs.  The quinones 

present in the HbRC may reoxidize these intermediate electron acceptors and reactivate 

these RCs.  Additionally, the reduced quinones may be oxidized by the cytochrome b6c 

complex, contributing to the formation of a proton gradient that allows formation of ATP. 

Future studies should test the efficiency of quinone reduction by the HbRC by 

determining the fraction of MQ reduced to MQH2 as a function of the number of charge-
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separation events (saturating laser flashes).  This could help determine whether this 

function is likely to occur in a natural system or only under extreme lighting conditions 

that the organism is unlikely to experience.   Additionally, the activity should be studied in 

the presences of various compounds that should inhibit the process.  Methyl and benzyl 

viologen can be used to prevent stable reduction of FX, which should decrease the 

quinone-reducing efficiency of the HbRC.  Also, inhibitors of the QB-binding site of Type II 

RCs like terbutryn may decrease the efficiency of photoreduction of the quinone by the 

HbRC by blocking the MQ binding sites.  If this were the case, it would suggest MQH2 

and/or MQ could diffuse from the binding site of the HbRC and allow cyclic electron 

transfer between the HbRC and the cytochrome b6c complex.  This would greatly 

strengthen the case that quinone double-reduction is a physiologically relevant function of 

the HbRC in vivo.   
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CHAPTER 7.  DISCUSSION 

Antenna size 

 The antenna size of the HbRC is rather small at 22 Bchl g per reaction center, as 

shown in Chapter 4.  PSI on the other hand binds almost 100 chlorophylls per reaction 

center (3).  One potential reason for this large disparity could be the different 

environments in which the organisms that utilize these complexes are found.  

Cyanobacteria, which utilize PSI, are generally found in aquatic systems where iron is 

often a limiting nutrient (82-84).  A functioning complex requires at least 12 irons per 

monomeric PSI (3).  Therefore, it is advantageous for cyanobacteria to utilize large 

antenna (as well as external antenna complexes) in order to minimize the number of PSI 

complexes (and iron) required to utilize the available light.  On the other hand, 

heliobacteria are generally found in soil systems where iron is comparably more available 

(85).  Furthermore, the functional HbRC may only require 4 irons, though this has never 

been demonstrated in vivo (24).  Therefore, iron limitation may not have been an 

important driving factor in the evolution of the HbRC.  In order to harvest more light 

energy, heliobacteria would likely just synthesize more RCs.  Additionally, the main 

pigment of the HbRC, Bchl g, is much more labile than chlorophyll a (15, 86).  Therefore 

a large antenna size may be disadvantageous in the HbRC due to the potential damage 

to the antenna pigments.  If damage to antenna pigments were a driving factor in the 

evolution of the HbRC, it would be advantageous to maintain a low ratio of pigments per 

reaction center.          

 

Electrochemical properties of FX 

 The results of Chapter 5 suggest the midpoint potential of FX in the HbRC is 

much higher than the midpoint potential of FX in PSI (67, 68).  The potential for FX in the 

HbRC shown here is consistent with the values of other low potential 4Fe-4S clusters.  

Therefore, it is likely that the last common ancestor between PSI and the HbRC had a 

4Fe-4S cluster with a potential similar to the value for FX in the HbRC.  The low potential 



  53 

of FX in PSI may have arisen directly or indirectly as a result of selective evolution.  In 

other words, a lower potential for the cluster may have been evolutionarily advantageous 

or resulted indirectly as a consequence of selection for another property.  

The low potential of FX in ancestral forms of PSI may have been advantageous to 

destabilize the P700+ FX
- state.  The rate of forward electron transfer from FX to FA/FB is 

still faster than the back-reaction by orders of magnitude.  Therefore, back-reaction from 

FX should only occur when electron transfer to FA/FB is blocked.  In this case, charge 

recombination would be advantageous.  Increasing the rate of this back-reaction would 

minimize the risk of doubly reducing the quinones bound at the A1 position (discussed 

further below) that inactivates PSI (38, 39, 45).  Double reduction of the quinone should 

not inactivate the RC, so destabilizing the P800+ FX
- state would not be advantageous 

(28).  In fact, destabilizing the P800+ FX
- may have been disadvantageous.  The PshB 

peptide that houses the FA/FB clusters in heliobacteria may not form a tight interaction 

with the HbRC in the way that PsaC (housing FA/FB) is tightly bound to PSI (87).  For the 

majority of the evolution of heliobacteria (and the HbRC), it is likely that HbRC in vivo 

resembled the isolated HbRC described above, where FX is the terminal electron 

acceptor that reduced soluble ferredoxins and other soluble electron carriers.  In this 

case, a long-lived P800+ FX
- state would be advantageous to account for the slower, 

diffusion-limited electron transfer to FA/FB (or other acceptors).  Indeed, the lifetime of 

P800+ FX
- state is over 10 fold greater than the lifetime of the P700+ FX

- state (20, 21, 71). 

 Conversely, the lower potential of FX in PSI may not have been directly selected 

for as proposed above.  As suggested in Chapter 5, the lower potential of FX in PSI may 

be due to decreased solvent accessibility relative to FX in the HbRC.  The lower solvent 

accessibility in PSI is due to the presence of 10 additional subunits in cyanobacterial PSI 

compared to the isolated HbRC (3, 48).  The additional subunits in PSI most likely 

conferred some unrelated selective advantage but may have lowered the potential of FX 

as a result.  Another possible reason for the large difference in potential may be 

differences in geometry of the two clusters.  Geometrical differences to the clusters may 
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arise due to, among other things, the heterodimeric nature of PSI compared to the 

homodimeric nature of the HbRC.  The evolutionary advantage of a PSI heterodimer is 

still unclear, but probably did not directly relate to changing the potential of FX. 

 

Double reduction of quinones by PSI and the HbRC 

 All known photosynthetic RCs can be classified as either Type-I or Type-II and 

likely evolved from a universal common ancestor (2).  The properties of the last common 

ancestor of modern photosynthetic RCs have been a subject of debate for 30 years.  

Namely, did it reduce iron-sulfur clusters as in Type-I RCs, or quinones as in Type-II 

RCs?  Alternatively, some have proposed it may have functioned as both a Type-I and 

Type-II RC, making it a “Type-1.5” RC (78).  This Type-1.5 RC would be capable of 

reducing soluble electron acceptors like a Type-I RC, as well as internally bound 

quinones like a Type-II RC.  Genetic data, which has long been the cornerstone of 

evolutionary studies, is unable to resolve such detailed questions of function.  Therefore, 

determining the full range of functional capabilities of the modern RCs is important for 

improving the understanding of the evolution of photosynthesis.  

 The present work shows that PSI is capable of doubly reducing quinones. 

However, the quinone double-reduction activity is unlikely to be of any physiological 

relevance.  It requires either strong reducing conditions imposed by dithionite (as shown 

previously) or recruitment of a foreign quinone (38, 39, 45).  Above, I showed the first 

evidence that the HbRC is capable of doubly reducing quinones.  As discussed in 

Chapter 6, this may be a physiologically relevant activity of the HbRC in vivo, though 

further studies will be required to test this hypothesis.  The mechanism quinone double-

reduction activity of these RCs may provide insight on the early evolution of 

photosynthetic RCs.  All known photosynthetic RCs bind quinones, which many believe 

suggests that the universal common ancestor to all RCs utilized a quinone as a terminal 

electron acceptor.  While the last common ancestor may have used a quinone as a two-

electron acceptor, it is unlikely that it utilized a Type-II mechanism.  The Type-II 
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mechanism described in Chapter 1 relies on functional asymmetry of the two branches of 

cofactors.  However, the last common ancestor was almost certainly homodimeric.  It is 

unlikely that homodimeric peptide environment could develop functional asymmetry 

between the two branches of cofactors.   Therefore, it is important to determine the 

mechanism of quinone reduction in the functionally symmetric Type-I RCs shown above.   

 In PSI, a “pseudo” Type-II mechanism is theoretically possible.  That is, the 

double reduction of PQ may be the result of a dismutation reaction between two 

semiquinones on opposite branches of the PSI complex.  This is unlikely because once 

the PQ on one branch became fully reduced the dismutation reaction would no longer be 

possible.  Therefore, only 50% of quinones could be reduced via this mechanism.  The 

results in Chapter 3 show that ~75% of the quinones are doubly reduced, so an 

alternative mechanism must be utilized.  Another mechanism involves reduction of a 

semiquinone by the primary acceptor A0.  In the case where FX is reduced, further charge 

separation will yield a P700+ A0 PQ- FX
- state.  Next, P700+ would need to be re-reduced 

before back-reaction from PQ-.  Finally, a second charge separation will generate a 

P700+ A0
- PQ- FX

- state where PQ- can be fully reduced by A0
-.  Though this mechanism 

could account for the >50% reduction of PQ observed, it is unlikely due to the short 

lifetime of the P700+ PQ- state.  The lifetime of P700+PQ- is ~8 µs while PMS re-reduces 

P700+ with a maximal rate of 2.4 ms (88, 89).  Therefore, generation of a P700+ A0
- PQ- 

FX
- state is improbable.  The final mechanism for double reduction of PQ in PSI is 

analogous to the mechanism for double reduction of quinones in the HbRC proposed in 

Chapter 6 following accumulation of a P700 A0 PQ- FX
- state.  Further excitation would 

lead to reduced states of A0 and FX, which could reduce PQ sequentially, generating a 

semiquinone intermediate, or simultaneously to fully reduce PQ to PQH2.  Of the three 

mechanisms discussed here, this is the most likely because it can account for reduction 

of >50% of PQ to PQH2 and does not rely on a long-lived semiquinone intermediate 

state.  Because a semiquinone state has never been observed in the HbRC, this is also 

the most likely mechanism by which the quinone in the HbRC would be doubly reduced.      
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The mechanism for quinone double reduction in two functionally symmetric Type-

I RCs shown here provides insight on how Type-I and Type-II RCs may have diverged 

from a common ancestor.  Due to the common features observed in Type-I and Type-II 

RCs, all modern RCs most likely diverged from a homodimer that bound two quinones 

(78).  It is possible that these quinones served as two electron acceptors similar to the 

modern Type-II RCs, though it would require a distinct mechanism due to the functional 

asymmetry of the Type-II mechanism.  The modern RCs transfer a single electron per 

excitation; however, the one-electron reduced state of a quinone is generally unstable.  

The asymmetry of the Type-II RCs most likely evolved to stabilize the semiquinone to 

allow for a second charge separation, and second electron to fully reduce the 

semiquinone.  Alternatively, the last common ancestor may have utilized a more stable 

one-electron acceptor such as an iron-sulfur cluster, mononuclear iron, or heme to store 

the first electron rather than the quinone itself.  Type-I RCs may have branched off when 

the intermediate acceptor developed the ability to reduce soluble electron acceptors.  The 

Type-II RCs developed the ability to stabilize the semiquinone state, foregoing the need 

for an intermediate electron carrier.  This divergence occurred over 3 billion years ago 

making it unlikely that the evolutionary development of the modern photosynthetic RCs 

will ever be understood (13).   
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