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ABSTRACT 

 

Photovoltaic (PV) power generation has the potential to cause a significant impact 

on power system reliability since its total installed capacity is projected to increase at a 

significant rate. PV generation can be described as an intermittent and variable resource 

because its production is influenced by ever-changing environmental conditions.  

The study in this dissertation focuses on the influence of PV generation on trans-

mission system reliability. This is a concern because PV generation output is integrated 

into present power systems at various voltage levels and may significantly affect the 

power flow patterns. This dissertation applies a probabilistic power flow (PPF) algorithm 

to evaluate the influence of PV generation uncertainty on transmission system perfor-

mance. A cumulant-based PPF algorithm suitable for large systems is used. Correlation 

among adjacent PV resources is considered. Three types of approximation expansions 

based on cumulants namely Gram-Charlier expansion, Edgeworth expansion and Cor-

nish-Fisher expansion are compared, and their properties, advantages and deficiencies are 

discussed. Additionally, a novel probabilistic model of PV generation is developed to 

obtain the probability density function (PDF) of the PV generation production based on 

environmental conditions.  

Besides, this dissertation proposes a novel PPF algorithm considering the conven-

tional generation dispatching operation to balance PV generation uncertainties. It is pru-

dent to include generation dispatch in the PPF algorithm since the dispatching strategy 

compensates for PV generation injections and influences the uncertainty results. Fur-

thermore, this dissertation also proposes a probabilistic optimal power dispatching strat-
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egy which considers uncertainty problems in the economic dispatch and optimizes the 

expected value of the total cost with the overload probability as a constraint.  

The proposed PPF algorithm with the three expansions is compared with Monte 

Carlo simulations (MCS) with results for a 2497-bus representation of the Arizona area 

of the Western Electricity Coordinating Council (WECC) system. The PDFs of the bus 

voltages, line flows and slack bus production are computed, and are used to identify the 

confidence interval, the over limit probability and the expected over limit time of the ob-

jective variables. The proposed algorithm is of significant relevance to the operating and 

planning studies of the transmission systems with PV generation installed. 
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Chapter 1 

INTRODUCTION 

1.1 Overview 

In power system operating and planning studies, the reliability of the system should 

be assessed and monitored. The uncertainty affects both the long and medium term system 

planning, and the day-ahead operation. Photovoltaic (PV) power generation has become 

an increasingly important renewable energy resource due to its ability to produce electric 

power at varying capacity levels and at varying voltage levels including both distributed 

generation and dedicated commercial sized plants. Some US state mandates have set a 

goal of 20% renewable generation by 2020 [1]. Increasing amounts of PV generation are 

beginning to have an impact on power transmission systems.  

Compared to conventional generation, PV generation has several differing char-

acteristics. First, PV generation is a variable resource because its production is influenced 

by ever-changing weather conditions, such as solar irradiance and temperature. Therefore, 

PV generation has large variation, which may influence power system operation and per-

formance. As a result of this large variation, probabilistic studies are required for the 

steady state analysis of the power systems integrated with PV generation. Second, resi-

dential roof-top PV generation is not allowed to provide voltage control as mandated by 

IEEE Std 1547. As a consequence conditions could arise due to this restrictions that 

could result in voltage magnitude violations (see Appendix A). In addition, the output of 

PV resources at adjacent locations may be strongly statistically correlated owing to 

common effects such as insolation, temperature and other environmental factors. This 

correlation is considered and statistically characterized. Besides, the stochastic behavior 
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of PV generation usually does not follow a normal distribution. Due to these characteris-

tics, PV generation can potentially cause various power quality issues in power systems 

[2]–[4], such as fluctuation of bus voltage magnitudes and line flows, voltage violations 

and unbalanced power flows. A typical PV generation production daily curve is shown in 

Fig. 1.1.  

 

Fig. 1.1 PV generation output daily curve  

One important aspect to analyze is the uncertainty of the power system with PV 

generation installed. Uncertainty deals with characterizing the possible distribution of the 

expected variable based on its historical statistical data [5]. The probabilistic power flow 

(PPF) algorithm has been successfully utilized for calculating the effect of the propaga-

tion of data inaccuracies through the power flow calculation, thus obtaining a range of 

values for each output quantity that, to a high degree of probability, bounds the operating 
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conditions of the system [5], [6]. This probabilistic algorithm takes into consideration the 

uncertainty of the system information and is able to provide strict bounds for the deter-

mined variables of the system. As an input this approach requires information regarding 

the range of all possible system conditions that might be encountered as a result of ex-

pected uncertainties of loads and other system variables. Assuming that the variable can 

exist anywhere within a precisely restricted interval, the variable is described to vary ac-

cording to some probability distribution. Thus, the system variables can be characterized 

not by a single number but by a range of values [7].  

Typical steady state studies always treat the peak power demands as the worst 

case conditions. Periods of light load are also critical in the assessment of the possible 

state of a power system. While heavy load conditions are generally associated with over-

load, low voltage and generation deficiency, light load conditions may give rise to over-

voltage and undesirable reactive power requirements at generation sites. Thus the sched-

uling for the worst case scenario is not easily defined [8]. Therefore, the steady state 

analysis should not just consider the peak power demand cases.  

Another important aspect of the power system with PV generation is that the sys-

tem can adjust its total conventional generation to match the PV generation changes with 

automatic generation control (AGC) or the day-ahead generation scheduling settlement. In 

actual system operation, the influence of conventional generation should also be consid-

ered, since these resources are essential to balance the power supply and demand, and 

relieve the uncertainty problem. It is not a realistic assumption to let the slack bus gener-

ation balance the change of all the system power injections [43]. The system dispatch 

constraints should be taken into account to compensate for varying PV generation output 
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and to enhance the operational performance of power systems. This dispatching operation 

depends on the change of PV generation and the dispatching strategy. The impact of PV 

generation uncertainty is limited with the generation dispatching operation and should not 

be neglected in system analysis.  

1.2 Literature Review 

Compared to the deterministic power flow, the probabilistic method characterizes 

the uncertainty in system information by describing the variation in terms of a suitable 

probability distribution. Work related to the probabilistic analysis in power system power 

flow first appeared in 1974. Borkowska [6] first proposed the concept of PPF and imple-

mented an algorithm based on convolution. In 1975, Dopazo, Klitin and Sasson created 

another method of applying the probabilistic approach to power system problems called 

stochastic power flow (SPF) [5]. Since then, there have been two primary probabilistic 

analytical approaches proposed, PPF [9]–[12] and SPF [13]–[16]. The inclusion of solar 

resources in the generation mix offers a potentially ideal application of these probabilistic 

algorithms.  

Both the aforementioned methods apply the linearization model to bus voltages 

and line flows as a linear combination of load injections. References [9], [10] extended 

probabilistic analysis techniques to handle AC power flow by modifying the linearization 

formulation. The main difference between the two cited analytical methods, PPF and SPF, 

is the representation of input variables (power injections). In the SPF study, the input 

variables are represented as a mean value vector and a covariance matrix. While in the 

PPF study, the input variables are described by their probability distribution functions 

(PDFs). Comparing the two methods, the SPF method requires less computational time 
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and can provide a rough estimate of the uncertainty impact. In particular, the SPF method 

is suitable for the case of the input variables following a normal distribution. However, 

for general cases, the PPF method is more accurate for system operating studies, espe-

cially for systems with PV generation which is non-normally distributed. In this case the 

method obtains the PDFs of the result variables.  

Monte Carlo simulation (MCS) [17] is a numerical method which involves re-

peated deterministic power flow solutions to render a probabilistic description of the 

output variables. The number of simulations needed increases with the degrees of free-

dom of the solution space, and therefore to obtain accurate results, thousands of simula-

tions (or many more) are usually required. This makes MCS potentially unattractive for 

large systems The Monte Carlo method is utilized in a wide range of engineering areas 

for comparison and validation purposes. The advantage of MCS is that once it has con-

verged, all the PDFs are simultaneously obtained. However, MCS also has some limita-

tions in controlling the convergence of the process for large-scale systems, and this 

method may face some difficulties in dealing with rare events, e.g., to assess very small 

values of indices [18].  

In various PPF studies, the conventional convolution technique is adopted to ob-

tain the resulting PDFs [9]–[12]. The major problem associated with this approach is that 

the process requires a large amount of storage and computation time. In large systems, 

many convolution operations are involved, because integration of PDFs over the range of 

bus voltages and line flows need to be computed. Reference [7] mentions this problem 

and has applied the discrete Fourier transform (DFT) to reduce the computational burden. 
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However, the computation may still be extensive. Note that the DFT is most efficiently 

calculated using the fast Fourier transform (FFT), an exact representation of the DFT.  

To avoid the convolution operation that appears in the calculation of the PDF of a 

linear combination of several random variables, the concept of cumulants is applied. By 

using cumulants, it is possible to obtain the resulting PDF of a linear combination of sev-

eral random variables by a simple arithmetic process instead of convolution. If the cumu-

lants of the distribution are known, there are several types of expansions like the 

Gram-Charlier expansion, Edgeworth expansion, and Cornish-Fisher expansion that can 

fit the profile of the PDF curve. Reference [19] proposes a new method for DC PPF in 

large power systems, and this innovative method combines the concept of cumulants and 

Gram-Charlier expansion theory to obtain PDFs of transmission line flows. Also, [20] 

uses the combined cumulants and the Cornish-Fisher expansion method compared with 

the Gram-Charlier expansion method to show better performance, but [21] analyzes the 

approximating problem of the Cornish-Fisher Expansion and Edgeworth expansion. The 

cumulant method has significantly reduced the computational time while maintaining 

accurate solutions. It enables the operators and planners to obtain the possible ranges of 

power flow and the probability of occurrence quickly since a simple arithmetic process is 

used instead of the complex convolution calculation. However, all the expansions applied 

in the cumulant method may have errors compared to the true PDF curve, since the ap-

plied terms of the expansions is finite. Therefore, the approximating accuracy with regard 

to the order of the expansions needs to be evaluated.  

In most PPF studies, it is assumed that loads are independent variables, it is how-

ever, known that considerable correlation can exist between the various loads [25]. The 
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correlation among PV generations in the neighboring area also cannot be ignored. This is 

particularly the case when the time scale of interest is associated with system planning 

studies. Omission of this correlation can lead to misleading results and create a PDF of 

the output variables that is either narrower or broader than the true PDF. This problem 

can be overcome if a reasonable representation of the correlation is included in the prob-

abilistic power flow analysis.  

One method for treating the correlation among bus loads has been proposed in 

[16]. The model assumes Gaussian distribution of bus loads and a linearized economic 

dispatch model. Reference [5] proposed a method which models the correlation between 

loads using the total load constraint, and assumes that bus voltages and line flows are 

Gaussian distributed, thus only the variance must be computed. Monte Carlo simulations 

indicate that it is unrealistic to assume Gaussian distributions of bus voltages and line 

flows. For this reason, Sauer and Heydt [26] have proposed the use of higher moments 

for accurate representation of the probability distribution functions. Reference [27] pro-

posed a linear dependence model of electric loads, which is suitable for the totally de-

pendent cases. Using a linearized power flow model, a method is proposed which com-

bines Monte Carlo simulation and convolutions. Reference [28] also treated the correla-

tion between loads as approximately linear, and then eliminated the correlation variables. 

In [25] and [29], the load variable is divided into two random variables, a totally de-

pendent variable and a totally independent variable, and this method is suitable for the 

case of small correlations. In [30], joint moments and joint cumulants are applied to solve 

the correlation problems.  
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In the PPF algorithm, the PDFs of the input variables need to be obtained. There-

fore, the probabilistic models of input variables are required to be established, and then 

historical data is used to calculate the model parameters. The PPF algorithm is used in 

[31] to analyze the influences of wind power plants and solar energy plants on voltage 

quality in distribution systems, but the influence of line flow has not been taken into ac-

count. References [32], [33] describe a general probabilistic model of PV generation, 

which assumes that the PV generation active power has a linear relationship with solar 

irradiance. However, references [8], [34] proposed that the power output of a PV array is 

a function of the insolation, ambient temperature and prevailing wind speed. The consid-

eration of these factors can make the PV generation model more reasonable and accurate.  

For the probabilistic model of conventional generation uncertainty, some refer-

ences [10] and [11] treat it as an independent variable with binomial distribution or dis-

crete distribution to consider generation outage. However, under general conditions, the 

change of the conventional output depends on the change of other power injections. 

Small uncertainties can be compensated by the conventional generators with automatic 

generation control (AGC). The large power changes of power demands and PV genera-

tions need to be considered in the day-ahead generation scheduling settlement.  

Significant research has been conducted dealing with different generation sched-

uling approaches in deterministic power flow studies. In [35], the sensitivities of reactive 

power generation with respect to demand were calculated to determine the generators to 

be rescheduled for the purpose of enhancing voltage stability. To minimize the control 

and operating cost, the corrective and preventive actions were determined in [36] using 

optimization. In [37], the direct equilibrium tracing approach was used to examine the 
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voltage stability of the system. Generation scheduling and load curtailment were used in 

[38] as preventive control against voltage instability. The amount of control actions was 

found by using optimization [39]–[42] with system operating constraints to determine the 

correct amount of rescheduling. For the system uncertainty analysis, a realistic generation 

dispatching law is really complex and nearly impossible to handle. In search for a worka-

ble compromise to represent utility’s dispatching policy, [43] proposed simplified dis-

patching law function using a linear model.  

1.3 Problem Statement 

In this dissertation, the PPF algorithm is applied to analyze the uncertainty issues 

in the transmission system with PV generation installed. Since this dissertation focuses 

on large transmission systems, the cumulant method and the linearized model of the 

transmission system are applied to save storage and computational time. The proposed 

algorithm considers the uncertainties of both PV generation and loads. Three different 

types of expansions, Gram-Charlier expansion, Edgeworth expansion, and Cornish-Fisher 

expansion are considered in the proposed algorithm, and their properties, advantages and 

deficiencies are compared. The correlation of PV generations is analyzed in this algo-

rithm, and an approach utilizing the joint moments and joint cumulants is applied.  

A novel probabilistic model of PV generation is also established in this disserta-

tion. The probabilistic model takes into account the performance of PV generation and 

the factors which influence PV generation production. The actual data of PV generation 

obtained from a location in Arizona is analyzed to evaluate the accuracy of the proposed 

probabilistic model. The probabilistic model of load is also established based on actual 

historical load data.  
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This dissertation also proposes a novel PPF algorithm considering the conven-

tional generation dispatch which can balance the variations of PV generation resources. A 

linear model of the change of conventional generation is developed based on the dis-

patching law. To take into account the characteristics of generation dispatching utilizing 

conventional economic dispatch, the linear model utilized in the PPF algorithm is revised. 

Based on the proposed PPF algorithm, a novel dispatching strategy called probabilistic 

optimal power dispatching strategy is proposed to consider the overload probability con-

straint in the economic dispatching strategy. 

The accuracy of the results obtained is compared with the MCS method. The 

convergence and accuracy of MCS is quantified. It is commonly accepted that the PPF 

algorithm can be used to assess the probability of a line flow being greater than its ther-

mal rating and the probability of a bus voltage magnitude being outside its operational 

constraints. These are extremely useful parameters in conducting operating studies of 

transmission systems.  

1.4 Dissertation Organization 

The dissertation is organized as follows: in Chapter 2, some basic concepts in sta-

tistics are defined. The convolution method and cumulant method are presented. Three 

approximation expansions are introduced, and their properties are discussed.  

Chapter 3 gives the outline of the PPF algorithm, which applies the cumulant 

method to obtain the CDFs and PDFs of the determined variables. The probabilistic for-

mulation for power systems is presented, and the probabilistic formulation for the slack 

bus is also established.  The method to deal with the correlation between each variable is 
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analyzed. A novel probabilistic model of PV generation is proposed, and the load proba-

bilistic characteristic is also discussed.  

In Chapter 4, the probabilistic models of PV generation and load are obtained by 

using actual history data. A novel probabilistic model of PV generation is proposed, and 

the load probabilistic characteristic is also discussed.  

Chapter 5 develops the PPF algorithm by considering the generation dispatching 

operation. The probabilistic model of power systems is revised. A novel generation dis-

patching strategy is proposed to consider both the economic cost and the uncertainty in-

fluence.  

In Chapter 6, the proposed approach is illustrated on the Arizona area of the 

WECC system, and the simulation results of the PPF algorithm are discussed.  

Conclusions are included in Chapter 7, and future work is also described.  
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Chapter 2 

STATISTICAL BACKGROUND 

Before the introduction of the PPF algorithm, some basic concepts of statistics are 

introduced. The core mathematical techniques of cumulant method are presented in this 

section. The characteristics of cumulants are the basis of the proposed PPF algorithm. To 

deduce the cumulant method, convolution techniques are necessary to be introduced.  

2.1 Convolution Techniques 

Let x and y be independent random variables with known PDFs fx(x) and fy(y). Let z 

= x + y, the PDF fz(z) is obtained by convolution as follows,  

 
( ) ( ) ( )z x yf z f x f z x dx




   (2-1) 

 
( ) ( )* ( )z x yf z f x f y   (2-2) 

where * denotes the convolution operation.  

Let 1 2, , , nX X X  be n independent variables with known PDFs 

1 21 2( ), ( ), , ( )
nX X X nf X f X f X . 1 1 2 2 n nZ a X a X a X    , 1 2, , , na a a  are sensitivity 

coefficients for Z . Let 1 1 1Y a X , 2 2 2 ,Y a X  …, n n nY a X ,
 
so that the PDFs of 1Y , 

2 ,Y  …, nY  are
1 2

1 2

1 1 2 2

1 1 1
( ), ( ) , ( )

n

n
X X X

n n

YY Y
f f f

a a a a a a
， . Then, the PDF of Z  is given by,  

 1 2

1 2

1 1 2 2

1 1 1
( ) ( )* ( )* * ( )

n

n
Z X X X

n n

YY Y
f z f f f

a a a a a a
   (2-3) 

It is often of interest to characterize variables for the probability parameters as the 

expected value   and the standard deviation  . The expected values of 1 2, , , nX X X  
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are
1 2
, ,

nX X X  ， , and the standard deviations are 
1 2
, , ,

nX X X   . The expected value 

and standard deviation of Z  are given by,  

 
1 2

1 2

1 2

2 2 2 2 2 2 2

1 2

n

n

Z X X n X

Z X X n X

a a a

a a a

   

   

   

   
  (2-4) 

2.2 Cumulant Method 

The main objective of using the cumulant method is to avoid convolution calcula-

tions between the PDFs of input variables and to replace them with a simple arithmetic 

process [19]. The main idea in this approach is to transform the convolution equations to 

linear equations between each variable. In order to motivate the proposed approach, some 

statistical definitions are introduced as follows.  

2.2.1 Characteristic Function (Chapter 15 of [21]) 

The main use of the characteristic function is to transform the convolution rela-

tionship between the PDFs of input variables to a multiplicative relationship. The defini-

tion of the characteristic function is as follows.  

If the random variable x has a cumulative distribution function (CDF) F(x), the 

expected value of the particular function e
itx

 can be written as,  

 
( ) ( ) ( )itx itxt E e e dF x




    (2-5) 

This function of the real variable t, and the imaginary unit i is called the characteristic 

function of the variable x. The second characteristic function is defined as ( )ln t .  

Let x and y be independent random variables with the CDFs Fx(x) and Fy(y). Let z = 

x + y, so that the CDF Fz(z) of z is obtained by convolution,   



14 

 

( ) ( ) ( ) ( ) ( )

( ) ( )* ( )

z x y y x

z x y

F z F z y dF y F z x dF x

F z F x F y

 

 
   



 
  (2-6) 

Let ( )x t , ( )y t  and ( )z t  denote the characteristic functions of x, y and z, respec-

tively.  

 
( )( ) [ ] ( ) ( ) ( ) ( )it x y itx ity

Z x yt E e E e E e t t       (2-7) 

For 1 2, , , nX X X  of n independent variables with the CDFs

1 21 2( ) ( ), , ( )
nX X X nF X F X F X, , the CDF ( )XF X  of the sum 1 2 nX X X X     is 

given by,  

 1 21 2( ) ( )* ( ( )
nX X X X nF X F X F X F X )* *   (2-8) 

Then, for 1 2, , , nX X X  of n independent variables with the characteristic functions 

1 2
( ), ( ) , ( )

nX X Xt t t  ， , the characteristic function ( )X t  of the sum 

1 2 nX X X X     is given by,  

 1 2
( ) ( ) ( ) ( )

nX X X Xt t t t      (2-9) 

The multiplication theorem for characteristic functions is given by,  

 1 2
( ) ( ) ( ) ( )

nX X X Xln t ln t ln t ln t         (2-10) 

2.2.2 Moments and Central Moments 

For a variable x and a positive integer v, the function vx  is integrable with respect 

to the CDF F(x) over ( , )  , the integral 

 
( ) ( )v v

v E x x dF x



     (2-11) 

is called the moment of order v or the v
th

 moment of the distribution x.  
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The moments about the mean value   of x, are often called the central moments,  

 
[( ) ] ( ) ( )v v

v E x x dF x  



      (2-12) 

If x is a sample discrete variable written as 1 2, , , nx x x , the v
th

 moment and central mo-

ment of x are,  

 
1

1
( )

n
v v

v i

i

E x x
n




     (2-13) 

 
1

1
[( ) ] ( )

n
v v

v i

i

E x x
n

  


      (2-14) 

It can be demonstrated that  

 
  1

0

1
v

v k v k

v k

k

v

k
  

 



 
  

 
   (2-15) 

where 
 

!

! !

v v

k k v k

 
 

 
. For a linear function Y aX b  , the v

th
 moment of the variable 

Y  is given by,  

 
1

1[( ) ]
1

v v v v

v v v

v
E aX b a a b b  



 
       

 
  (2-16) 

2.2.3 Cumulants 

If the k
th

 moment of the distribution exists, the characteristic function in terms of 

the moments v , can be developed in terms of a Taylor series centered at zero for small 

values of t,  

 
1

( ) 1 ( ) ( )
!

k
v kvt it o t

v


      (2-17) 

 
1

( ) ( ) ( )
!

k
v kvln t it o t

v


     (2-18) 
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The coefficients v  are called the cumulants or semi-invariants of the distribution. 

The cumulants v  of a linear function Y aX b   are obtained as follows,  

 
1

[ ( )] ( ) ( )
!

k
bit v kvln e at it o t

v





    (2-19) 

where 1 1a b    , and v

v va    for 1v  . 

According to the properties of characteristic functions, if 1 2 nX X X X     

and X1, X2, …, Xn are independent, the characteristic function ( )X t  is given by,  

 1 2
( ) ( ) ( ) ( )

nX X X Xt t t t      (2-20) 

 1 2
( ) ( ) ( ) ( )

nX X X Xln t ln t ln t ln t         (2-21) 

Therefore, 

 1 2, , , ,nX v X v X v X v         (2-22) 

Furthermore, according to (2-22), the following equations can be obtained,  

 1 2 nX X X X         (2-23) 

 1 2

2 2 2 2

nX X X X         (2-24) 

The discussion can be extended to any number of independent variables. If 

 1 1 2 2 n nZ a X a X a X      (2-25) 

Then, the v
th

 cumulant Z is given as follows,  

 1 2, 1 , 2 , ,n

v v v

Z v X v X v n X va a a         (2-26) 

 

2.2.4 Relationship between Cumulants and Moments  

The relationship between the moments and cumulants can be deduced by,  
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=1 =1

[1 ( ) ] ( ) ( )
! !

k k
v v kv v

v v

ln it it o t
v v

 
      (2-27) 

It is seen that n  is a polynomial in 1, , n   and conversely n  is a polynomial in 

1, , n  . The cumulants are related to the moments by the following recursion formula,  

 

1

1

1

1

n

n n m n m

m

n

m
   







 
   

 
   (2-28) 

In particular, 

 

1 1

2 2

2 2 1

3

3 3 1 2 1

2 2 4

4 4 2 1 3 1 2 1

2 2 3 5

5 5 4 1 3 2 3 1 2 1 2 1 1

2 2 3

6 6 5 1 4 2 4 1 3 3 2 1 3 1

3 2 2 4 6

2 2 1 2 1 1

3 2

3 4 12 6

5 10 20 30 60 24

6 15 30 10 120 120

30 270 360 120

  

   

    

       

            

             

     

 

  

  

    

      

      

   

……

 (2-29) 

The expressions of the central moment v  related to the cumulants become,  

 

1

2

2 2

3 3

2

4 4 2

5 5 2 3

2 3

6 6 2 4 3 2

0

3

10

15 10 15



  

 

  

   

     



 



 

 

   

……

  (2-30) 

 

2.2.5 Joint Moments and Joint Cumulants  

In the above analysis, all the input variables are assumed to be independent (un-

correlated). However, in an actual system, the power injections from nearby PV resources 
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are likely to be highly correlated owing to common effects such as weather conditions and 

human-behavior patterns. Thus, the independence assumption of input variables can be-

come less valid, and the power may be correlated in some cases. Therefore, in the PPF 

algorithm it is more realistic to include correlation to statistically characterize the de-

pendence.  

For two random variables x and y, the covariance between x and y is given by,  

 
cov( , ) [( )( )]x yx y E x y      (2-31) 

By using the linearity property of expectations, (2-31) can be simplified to,  

  cov( , ) x yx y E xy      (2-32) 

If x and y are two scalar random variables with a joint probability density function f (x, y), 

the covariance between x and y is,  

 
cov( , ) ( , ) x yx y xyf x y dxdy  

 

 
     (2-33) 

If x and y are two sample discrete variables with two series of n measurements written as 

1 2, , , nx x x  and 1 2, , , ny y y , the mean value of x and y is 
1

1 n

x i

i

x
n




  , 
1

1 n

y i

i

y
n




  , 

and the covariance between x and y is given by,  

 
1

1
cov( , ) [( ) ( )] ( )( )

n
T

x y i x i y

i

x y E x y x y
n

   


        (2-34) 

The correlation coefficient between x and y is given by,  

 

cov( , )
=

x y

x y


 
  (2-35) 

where |ρ| ≤ 1. If ρ = 0, x and y are independent. If ρ > 0, x and y are positively dependent. 

If ρ < 0, x and y are negatively dependent. The concept of correlation is readily extended 
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to the vector case. Let X1, X2, …, Xn be n elements of the vector X. The joint probability 

density function is f (X1, X2, …, Xn), and the joint characteristic function ψ (t1, t2, …, tn) is 

given by,  

 

1 2

1 2 1 2

( , , , ) ( )

= ( , , , )

T

T

it X

n

it X

n n

n

t t t E e

e f X X X dX dX dX



  

  



   
  (2-36) 

where t = (t1, t2, …, tn)
T
, X = (X1, X2, …, Xn)

T
.  

Similar to the calculation of moments in (2-11), one of the v
th

 order joint moments 

of the n variables is,  

 

1 2

1, 2, , 1 2

1 2

1 2 1 2 1 2

( )

( , , , )

v v vn

v v vn n

v v vn

n n n

n

E X X X

X X X f X X X dX dX dX



  

  



    
  (2-37) 

where v1 + v2 + … + vn = v.  

Similar to (2-17) and (2-18), the Taylor series expansion of the joint characteristic 

function is,  

 

1 2

1 2
1 2 1, 2, ,

1, 2, , 0

( )( ) ( )
( , , , )

1! 2! !

vnv v

n
n v v vn

v v vn

itit it
t t t

v v vn
 





    (2-38) 

 

1 2

1 2
1 2 1, 2, ,

1, 2, , 0

( )( ) ( )
( , , , )

1! 2! !

vnv v

n
n v v vn

v v vn

itit it
ln t t t

v v vn
 





    (2-39) 

where κv1,v2,…, vn is the v
th

 order joint cumulant of the n variables. The relationship between 

joint moments and joint cumulants is rather complex, and the theoretical derivation of this 

relationship is shown in [30]. As an example, the joint cumulants among four random 

variables is given by,  
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1, 2 1, 2 1 2

1, 2, 3 1, 2, 3 1, 2 3 1, 3 2 2, 3 1 1 2 3

1, 2, 3, 4 1, 2, 3, 4 1, 2, 3 4 1, 2, 4 3 1, 3, 4 2

2, 3, 4 1 1, 2 3, 4 1, 3 2, 4 1, 4 2, 3

2

2(

v v v v v v

v v v v v v v v v v v v v v v v v v

v v v v v v v v v v v v v v v v v v v v

v v v v v v v v v v v v v v v v

   

          

       

       



 

    

   

   

 1, 2 3 4 1, 3 2 4 1, 4 2 3 2, 3 1 4

2, 4 1 3 3, 4 1 2 1 2 3 4) 6

v v v v v v v v v v v v v v v v

v v v v v v v v v v v v

          

         

  

  

  (2-40) 

In particular, for two random variables x and y, the second order joint cumulants are,  

 

2

2,0

2

0,2

1,1 cov( , )

x

y

x yx y

 

 

  





 

  (2-41) 

For n input variables, the number of the v
th

 order of self and joint cumulants among the 

input variables can be determined as [15],  

 

 

 ,

1 1 !

! 1 !
n v

n v n v
N

v v n

    
  

 
  (2-42) 

Thus, the number of self and joint cumulants for different numbers of input variables is 

shown in Table 2.1. It is observed that the number of self and joint cumulants increases 

dramatically as the degrees of freedom increases (i.e., when more input variables and more 

orders of joint cumulants are considered).  

 

Table 2.1 Number of self and joint cumulants 

No. of input 

variables 

No. of v
th
 order of self and joint cumulants 

1st 2nd 3rd 4th 5th 

1 1 1 1 1 1 

10 10 55 220 715 2002 

100 100 5050 171700 4.42E06 9.20E07 

1000 1000 500500 1.67E08 4.19E10 8.42E12 
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2.2.6 Cumulants of a Linear Combination of Variables 

Section 2.2.3 discusses the cumulants of a linear combination of independent var-

iables (see (2-26)), and the correlated case is discussed in this section.  

For Z = a1X1 + a2X2, it could be demonstrated [20] that the v
th

 order cumulants of Z 

are given by,  

 
1 1

, 1 2 1,( 1)

1 0

!

1!( 1)!

v
v v v

Z v v v v

v

v
a a

v v v
 








   (2-43) 

Without loss of generality for Z = a1X1 + a2X2 + … + anXn , the equations (2-29), 

(2-37) and (2-40) can be used to evaluate the cumulants of Z as,  

 

,1 ,1

1 1 1
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n
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i

E a X a a

E a X E a X

a a a

a a a

E a X
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 

  


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 
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  



 
    

 

      
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 

 

 
  

 

  

 

 

 



2

32

1 1 1

3 2

,3 , ,,
1 1, 1,

3 +2

= 3 6
i i j ki j

n n n

i i i i i i

i i i

n n n

i X i j i j k X X XX X
i i i j i i j k

E a X E a X E a X

a a a a a a  

  

     

         
          

            

 

  

  

  (2-44) 

In particular, if X1, X2, …, Xn are independent, the v
th

 order cumulant of Z is given 

by,  

 1 2, 1 , 2 , ,n

v v v

Z v X v X v n X va a a         (2-45) 
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For the random variable z = x + y, according to (2-44), the mean value of z is 

z x y    , and the standard deviation of z is 
2 2 +2z x y x y      . Three cases of 

different correlations between x and y are discussed as follows.  

 

A.  Totally independent case 

If the two variables x and y are totally independent, the correlation coefficient 

between x and y is 0  , and the standard deviation of z is 
2 2

z x y    . 

B.  Totally dependent case 

For the positively correlated condition between x and y, the correlation coefficient 

between x and y is 1  , so the standard deviation of z is z x y    . Since 

2 2

x y x y      , the standard deviation of the sum of the totally positive correlated 

variables is no less than that of the totally independent variables. It means that the result-

ing PDF of z is flatter and broader. 

For the negatively correlated condition between x and y, the correlation coefficient 

between x and y is 1   , so the standard deviation of z is 
z x y    . Since 

2 2

x y x y      , the standard deviation of the sum of two totally negative correlat-

ed variables is no more than that of two totally independent variables. 

C.  Partially dependent case 

If 0 < |ρ| < 1, the variables x and y are partially correlated, and the standard devia-

tion of z is 
2 2 2z x y x y       .  
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 If 0 1  , x and y are partially positive correlated.  

 
2 2 2 2 2x y x y x y x y               (2-46) 

The above equation indicates that the standard deviation of the sum of the partial-

ly positive correlated variables is no less than that of the totally independent variables but 

no greater than that of the totally positively dependent variables.  

If 1 0   , x and y are partially negative correlated.  

 
2 2 2 22x y x y x y x y               (2-47) 

Thus, the standard deviation of the sum of the partially negative correlated varia-

bles is no greater than that of the totally independent variables but no less than that of the 

totally negatively dependent variables.  

According to the above analysis, the correlation among the input variables influ-

ences the uncertainty results significantly and cannot be ignored.  

2.3 Approximation Expansions of CDF and PDF 

When the moments and cumulants of the variables are known, the next step is to 

obtain the CDF and PDF of the variables. There are different approaches by using various 

types of series expansions to approximate the true function. Most of these series expan-

sions are based on orthogonal functions and their properties. Thus the effectiveness of the 

expansions and their truncated forms depends on how similar the actual variables behave 

as compared to the orthogonal functions used. The coefficients in the expansions can be 

computed from the moments or cumulants of the distribution through the utilization of 

basic properties of orthogonal functions.  
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Three different approximation expansions are introduced as follows. The variable x 

in the three expansions should be rendered to standard measure (mean value of zero and 

standard deviation of unity). If the variable x has mean value   and standard deviation  , 

the variable should be normalized as 
* x

x





 , and the cumulant should be normalized 

as * v
v v





 . 

 

2.3.1 Gram-Charlier Type A Series Expansion 

If a random variable x is normalized, according to Gram-Charlier Type A series 

expansion theory [22] [45], the CDF and the PDF of x can be written as,  
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


  (2-48) 

where n is the total order number of the Gram-Charlier expansion; ( )x  and ( )x rep-

resent the CDF and PDF of the standard normal distribution with 0   and 1  ;  

 

2 /21
( )

2

xx e


   (2-49) 

i  is index corresponding to the order of Gram-Charlier expansion; ic  is the constant co-

efficient of the Gram-Charlier expansion,  

 
( 1) ( ) ( )i

i ic f x H x dx



     (2-50) 

where ( )iH x  is the Hermite polynomial. 
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In this case the orthogonal series expansion is in terms of the classical orthogonal 

functions, the Hermite polynomials, defined as,  

 

2 2/2 /2( ) ( 1)
n

i x x

i n

d
H x e e

dx

    (2-51) 

Thus, the Hermite polynomials are calculable as,  

 
( ) 1

( ) ( 1)
( )

n
i

i n

d x
H x

dx x




    (2-52) 
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   (2-53) 

The first ten probability Hermite polynomials are given by,  
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  (2-54) 

The expressions for the vc  constant coefficients are given by,  
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  (2-55) 

The convergence properties of the Gram-Charlier Type A expansion depends on 

the form of the variables and their similarity to the Hermite polynomial functions. Some 

research efforts assess the convergence in certain given applications as poor (Chapter 17 

of [22]). The concept of convergence is that the approximation expansion in (2-48) con-

verges to F(x) if the approximation expansion tends to F(x) for every x as n → ∞. That is, 

the truncation of the series expansion is at the n
th

 term. It is proved that the infinite series 

in (2-48) converges for every x if the integral  

 
2

-
exp( / 4) ( )x dF x



   (2-56) 

is convergent, and if F(x) is of bounded variation in (-∞, ∞). The inference is that the 

density function f(x) must fall to zero faster than exp (x
2
/4) for the series to converge 

which is often too restrictive for practical applications.  
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2.3.2 Edgeworth Expansion 

If a random variable x is normalized, the Edgeworth series expansion may be of 

value, and this expansion for order n can be written as,  

 
 

2
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1
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   

   
    (2-57) 

where {km} in the inner summation consists of all non-negative integer solutions of the 

equation k1 + 2k2 + … + nkn = n, and r = k1 + k2 + … + kn. In order to obtain the cor-

responding expansion for ( )F x , ( )x  is replaced by ( )x . The detailed theoretical der-

ivation can be found in [21] and [22]. The Edgeworth expansion in powers of n
-3/2

 is given 

as follows. The terms of order n
-v /2

 contain the cumulants κ3,…, κv+2.  
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  
   

   

  

  (2-58) 

Reference [22] shows that under fairly general conditions the Edgeworth expansion 

has asymptotic properties, which means that the difference between the true function and 

the partial series of the first N terms is of a lower order than the N
th

 term in the sum [21].  

 

2.3.3 Cornish-Fisher Expansion 

The Cornish-Fisher expansion is used to approximate the variable’s quantile, which 

is the inverse function of the CDF. The quantile x of the probability q is the root of the 

distribution function F(x) = q. The method is based on the cumulants of the variable and the 

quantiles of the standard normal probability distribution. The theoretical derivation is 
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given in [23]. If the variable is normalized, considering the first five orders of cumulants, 

the expansion is given by,  
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  (2-59) 

where q is the probability, x(q) is the quantile of the variable, ξ(q) is the quantile of the 

standard normal distribution, 
1( ) ( )x q F q , 

1( ) ( )q q  .  

When the quantiles of each probability are calculated, the CDF curve of the vari-

able x can be drawn by using x(q)―q curve.  

 

2.3.4 Comparison among the Three Expansions 

Since the three expansions are all related to the normal distribution, the approxi-

mation is expected to be more accurate to fit a nearly normal distribution. The deficiencies 

of the three expansions are summarized as follows [21]-[24].  

― The convergence and accuracy of the three approximations do not necessarily im-

prove with increasing orders of truncation of the series.  

― The three expansions do not guarantee monotonicity and convergence.  

― The CDF of the Gram-Charlier and Edgeworth expansions do not necessarily exist 

in the range 0~1.  

― Edgeworth and Cornish-Fisher expansion becomes less and less reliable when the 

probability is near 0 or 1.  
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Although both Edgeworth and Cornish-Fisher expansions also have convergence 

problems, the convergence properties of the Gram-Charlier expansion depend on the ap-

plication. As a result, the Gram-Charlier series has limited applicability except for nearly 

normal distribution of the variables. In practical applications, the primary concern in not 

whether the infinite series is convergent, but whether a finite number of terms suffice to 

give a satisfactory approximation of the PDF [22]. It is possible that the first few terms of 

Gram-Charlier expansion give a good fit even though the infinite series diverges. Refer-

ence [21] gives an example of the   
  distribution, in which the Gram-Charlier expansion 

is divergent while Edgeworth expansion gives a better result. For / 2x v  , the PDF of 

  
  distribution is shown as follows.  

 

   
 

/2 1
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2 exp 2 / 2
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f x v

v


   
 


  (2-60) 

where Γ(x) is gamma function given by 

 
1

0

( ) x tx t e dt



      (2-61) 

Let v = 5. Considering the first six orders of cumulants, the PDF and CDF curves 

of   
  distribution approximated by different types of expansions are shown Fig. 2.1 and 

Fig. 2.2. It shows that the Gram-Charlier expansion is divergent, since the distribution 

does not meet the convergence requirements that 
2

-
exp( / 4) ( )x dF x



  must be conver-

gent, and the density function f(x) falls to zero slower than exp (x
2
/4).  
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Fig. 2.1 PDF curves of 2

v  distribution approximated by different types of expansions 

 

Fig. 2.2 CDF curves of 
2

v  distribution approximated by different types of 

expansions 
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In [20] and [46], some examples show that the Cornish-Fisher expansion gives a 

better performance for non-normal distribution. However, the Cornish-Fisher and Edge-

worth expansions may have an error in the tail regions, e.g. the two ends of the CDF curve.  

For example, the Beta distribution PDF is as follows, 

  
11( )

( ) 1 0 1
( ) ( )

baa b
f x x x x

a b

 
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 

，   (2-62) 

Let a = 2, b = 0.5. Considering the first six orders of cumulants, the CDF curves of 

the three approximations are shown in Fig. 2.3, which indicates the Cornish-Fisher and 

Edgeworth expansions become unreliable as the probability is close to 1. Reference [24] 

discussed the tail behavior problem of Cornish-Fisher and Edgeworth expansions.  

 

Fig. 2.3 CDF curves of Beta distribution approximated by different types of 

expansions 
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In many engineering applications, performance in the tail regions is very important 

and often the main reason for the study at hand. In short, the application of a particular 

expansion is dependent on the PDF of the variables.  
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Chapter 3 

PROBABILISTIC POWER FLOW ALGORITHM 

In operating and planning studies of power systems, the security of the system 

should be assessed and monitored. The PPF algorithm can efficiently characterize the 

impact of variable uncertainties on power system performance. This method permits the 

power injection variables to vary probabilistically and provides results in terms of proba-

bilistic measures instead of deterministic values which are more realistic.  

3.1 Probabilistic Formulation for Power System 

In conventional power flow studies, all the variables have deterministic values. In 

general, the form of the power flow equations is as follows. 

For the power injections,  

 
1

1

( cos sin )

( sin cos )

n

i i k ik ik ik ik

k

n

i i k ik ik ik ik

k

P V V G B

Q V V G B

 

 





 

 




  (3-1) 

For the line flows,  
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where Pi and Qi are injected active and reactive powers at bus i. Pik and Qik are the active 

and reactive line flow in branch ik. Vi and Vk are the bus voltage magnitude at bus i and bus 

k respectively. θik is the difference in voltage angles between bus i and k. Gik and Bik are the 

real and imaginary parts of the admittance matrix of branch ik respectively. tik is the 

transformer off nominal turn ratio of branch ik. 
0

0

=
p s

ik

p s

n n
t

n n
. np and ns are the number of 
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turns of primary and secondary winding. np0 and ns0 are the nominal number of turns of 

primary and secondary winding. If the actual turns ratio is equal to the nominal ratio, tik 

=1.   

For the transmission system, to calculate the line flows through the transmission 

lines, the following model is used.  

+ik ikG jB

+ki kiP jQ

+si siG jB
+sk skG jB

Bus i Bus k

+ik ikP jQ

 

Fig. 3.1 Lumped transmission line model 

 

The transformer model is shown in Fig. 3.2, and the equivalent circuit model of 

the transformer used in this power flow calculation is given in Fig. 3.3.  
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Fig. 3.2 Transformer model 
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Tap Side Impedance Side
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Fig. 3.3 Equivalent circuit model of transformer 

In the deterministic power flow studies, the calculation is usually done using the 

nonlinear Newton-Raphson approach. The known quantities are the injected active power 

iP  at both PQ buses and PV buses except the slack bus, the injected reactive power iQ  at 

PQ buses, and the voltage magnitude iV  at PV buses.  

Let y be the input variable vector for active and reactive power injections, x be the 

state variable vector for bus voltage magnitudes and angles, z be the output variable vector 

for line flow active powers and reactive powers, g be the bus power injection function and 

h be the line flow function. The equations for the power injections and line flows (3-1) and 

(3-2) can be expressed as follows,  

 

 

 

y g x

z h x






  (3-3) 

When the variation of power injection uncertainties is not large, the error due to 

linearization may be acceptable. Expanding (3-3) around the operating point by using 

Taylor’s series and omitting the terms which are the second order and higher, the equations 

are shown as follows,  
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  (3-4) 

where x , y  and z  are the uncertainty variable vectors of x, y and z; G is the Ja-

cobian matrix at the operating point and can be expressed as 

0

( )

X X

g X
G

X 





; K is the 

inverse matrix of G and is referred to as a sensitivity matrix; H can be expressed as 

0

( )

X X

h X
H

X 





; L is the sensitivity matrix of line flows and can be expressed as L=HK.  

From the linearized models established in (3-4), x  and z  establish the linear 

relationship with y
 as follows,  
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where 1,2, ,i n ; 1,2, ,j l ; n is the number of buses; l is the number of branches; 

ika  and 
jkb  are the sensitivity coefficients, which are obtained from K and L, respec-

tively. 

If the PDFs of ky  are known as ( )
ky kf y  , let k ik ky a y    and 

k jk ky b y   , 

then the convolution method can be applied to obtain the PDFs of ix  and 
jz  as fol-

lows,  
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The expected values and standard deviations of ix  and 
jz  are given by,  
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  (3-7) 

This is the central concept of the probabilistic power flow study, namely repre-

senting line power flow as a linear combination of random variables (the bus demands and 

injections).  

3.2 Probabilistic Formulation for Slack Bus 

Since the power injection equations of the slack bus are not included in the Jaco-

bian matrix, the linear model for the slack bus is not included in Section 3.1. At the slack 

bus, both the bus voltage angle and voltage magnitude are fixed. The deterministic value 

of the active power slackP  and reactive power slackQ  of the slack bus can be calculated 

from the line flows of the branches connected with the slack bus as follows,  

 

1

1

sl

slack branch i

i

sl

slack branch i

i

P P

Q Q












  (3-8) 

where 
branch iP  and 

branch iQ  are the active power and reactive power of the line flow 

through the i
th

 branch connected with the slack bus; sl is the number of branches connected 

with the slack bus.  

Thus, the uncertainty variables slackP  and slackQ  are represented as follows,  
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i
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
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  

  




  (3-9) 

The PDFs of 
branch iP  and 

branch iQ , ( )
branch iP branch if P   and ( )

branch iQ branch if Q   

are obtained from Section 3.1.  

Thus, the PDFs of slackP  and slackQ  are given as follows,  

1 2

1 2

1 2

1 2

( ) ( )* ( )* * ( )

( ) ( )* ( )* * ( )

slack branch branch branch sl

slack branch branch branch sl

P slack P branch P branch P branch sl

Q slack Q branch Q branch Q branch sl

f P f P f P f P

f Q f Q f Q f Q

   

   

    

    
 (3-10) 

It can be observed that when the slack bus uncertainty is large, the uncertainty of 

the line flows through the branches connected with the slack bus is also large, since the 

compensation is made through these branches. If the slack bus location is changed to an-

other generation bus, the variance characteristics of the line flows will also be changed.  

3.3 Probabilistic Formulation for Apparent Power of Line Flow 

In Section 3.1, the probabilistic model for both active power and reactive power 

through the branches are calculated. Then, the probabilistic model for the apparent power 

can also be obtained easily. For branch i, the deterministic value of the apparent power Si 

can be calculated as,  

 
2 2

i i iS P Q    (3-11) 

Then, the uncertainty of the apparent power is represented as a truncated Taylor 

series,  

 2 2 2 2
= +i i i i i i

i i i

i ii i i i

P P Q Q P Q
S P Q

S SP Q P Q

 
    

 
  (3-12) 
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When the PDF of iP  and iQ  of branch i are obtained, let i
i i

i

P
P P

S
    and 

i
i i

i

Q
Q Q

S
   , then the PDF of iS  is calculated as follows,  

 
( ) ( )* ( )

i i i

i i i i
S i P i Q i

i i i i

S S S S
f S f P f Q

P P Q Q
  

       (3-13) 

 

3.4 Probabilistic Power Flow based on Cumulants 

The foregoing sections introduce the probabilistic power flow based on the con-

volution method. The main disadvantage of this method is the computationally burden-

some convolution operation which may not be suitable for large systems. On the other 

hand, one assumption of the convolution method is the statistical independence of the 

input variables. This assumption is not realistic for many actual conditions in power sys-

tems. Especially, PV generation productions in adjacent locations may be highly corre-

lated. To solve these problems, the probabilistic power flow based on cumulants is pro-

posed.  

Based on the cumulant method mentioned in Section 2.2, the computational pro-

cedure to obtain the cumulants of the voltages and line flows consists of the following:  

1. Use the conventional power flow calculation from the Newton-Raphson algo-

rithm to compute the expected values of the state variables (bus voltage magnitudes and 

angles) and the output variables (line flow active powers and reactive powers). The sensi-

tivity matrices K and L of the bus voltages and the line flows are also obtained, according 

to (3-4);  
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2. Compute the self and joint moments of the power injections (loads and PV 

generations) according to (2-11) and (2-37);  

3. Compute the self and joint cumulants of the power injections according to the 

relationship between the cumulants and moments, using (2-29) and (2-40);  

4. Compute the cumulants of the bus voltages and the line flows based on the lin-

ear relationship using the sensitivity matrices K and L according to (2-44) (use (2-45) for 

the independent case);  

5. Calculate the central moments of the bus voltages and the line flows based on 

the relationship between the cumulants and the central moments according to (2-30);  

6. Select various types of expansions (Gram-Charlier expansions, Edgeworth ex-

pansions, and Cornish-Fisher expansions) to approximate the CDFs and PDFs of the bus 

voltages and the line flows, and use the cumulants of the variables to calculate the con-

stant coefficients of the selected expansion according to Section 2.3.  

 

3.5 Evaluation of the Accuracy of PPF and MCS Results 

In order to evaluate the accuracy of the PPF solution, the results are compared 

with the reference results. The average root mean square (ARMS) error is computed as 

the accuracy index [18]. The statistical points are chosen from the range of the CDFs of 

both PPF and MCS in a certain interval. 

 

2

PPF, Ref ,

1

( )
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N

i i

i

F F

N








  (3-14) 
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where PPF,iF  and Ref ,iF  are the i
th

 value on the CDF curves by the PPF algorithm and 

the reference, respectively. The parameter N is the number of selected points which are 

chosen from the range of the CDFs within a certain interval. 

The Monte Carlo simulation (MCS) results, which can provide considerably ac-

curate results [47] are used as a reference in the case study. The accuracy and conver-

gence of MCS need to be evaluated. [18] uses a parameter as follows.  

In MCS, the input variable x is a sampled as 1 2, , , Nsx x x . y = V(x). The esti-

mated expected value of y is as,  

 
   

1

1 Ns

i

i

E y V x
Ns 

    (3-15) 

where  E y  is not the true mean value but an sample mean value. All the result varia-

bles can be estimated by (3-15) by using various function V. The variance of the estimat-

ed value is given by,  

  
 var

var
y

E y
Ns

      (3-16) 

where  var y  is the variance of y. Equation (3-16) indicates that the uncertainty of the 

estimated value depends on the variance of the test function V and the sampling number 

Ns. The accuracy of MCS increases with a larger sample number. The uncertainty is usu-

ally represented as the coefficient of variation,  

 

 

 

var E y

E y


 
 

   (3-17) 

Substituting (3-16) into (3-17),  
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 

 
2

var y
Ns

E y

 
 

  (3-18) 

Equation (3-18) can be used to determine the required number of simulations for a 

given  . A larger number of simulation reaches low uncertainty level  , but the com-

putational burden also increases.  

 

3.6 Confidence Level and Overlimit Probability 

A confidence level is an interval in which a measurement or trial fails corresponding to a 

given probability. System planning studies are aimed at determining the value of 10% and 

90% probability level that the voltage magnitude and line flow will not exceed specified 

limits, since this would roughly indicate the desired range of the variables [19]. 

Consequently, accurate estimation of 10% and 90% confidence levels has important 

meaning to a system planner. The confidence level can be read directly from the CDF 

curve of the expected variable. Therefore, the confidence level of the bus voltage 

magnitudes and line flows can be obtained. For example,  

Fig. 3.4 shows a CDF curve of a bus voltage magnitude, and the confidence in-

terval is indicated from 1.0460 to 1.0493.  
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Fig. 3.4 Cumulative distribution function curve 

 

When the CDF ( )F v  of the variable v is computed, the complementary distribu-

tion function ( )L v  can be obtained, which is defined as follows,  

 
 ( ) 1 ( )L v F v P V v     (3-19) 

The complementary distribution function represents the probability that the varia-

ble exceeds a certain value. Therefore, the overlimit probability of the variable v is 

limit( )L v . For example, a complementary distribution function curve is shown in Fig. 3.5. 

From this curve, the overvoltage probability (greater than 1.05) is observed to be 3.216%. 

It can be used in power system reliability analysis.  
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Fig. 3.5 Complementary distribution function curve 

Hourly simulations can be automated by repeating the PPF algorithm to obtain the 

bus i voltage CDF ( )ij iF v  in hour j of the day, and the complementary distribution func-

tion is ( ) 1 ( )ij i ij iL v F v  . From the complementary distribution function, the overvoltage 

probability of bus i in hour j is calculated by the equation lim( )ij ij itP L V . Then, the ex-

pected overvoltage time (in hours) for bus i per day is obtained by the equation 

24

1

( 1 )ij

j

P h


 .  
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For the whole system, the overvoltage probability in hour j is 

,

1

1 (1 )
n

system j ij

i

P P


   , and the expected overvoltage time (in hours) of the system per day 

is 
24

,

1

( 1 )system j

j

P h


 . 

By repeating the above steps, the daily overvoltage probability and expected 

overvoltage time for one year can be calculated. Then the annual expected overvoltage 

time for bus i is  
365 24

1 1

1k

ij

k j

P h
 

 , and the annual expected overvoltage time for the system 

is 
365 24

,

1 1

1k

system j

k j

P h
 

（ ）. If it is roughly assumed that the everyday overvoltage probability is 

the same, the annual expected overvoltage time for bus i is 
24

1

365 1ij

j

P h


 （ ）, and the 

annual expected overvoltage time for the system is 
24

,

1

365 ( 1 )system j

j

P h


  .  
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Chapter 4 

PROBABILISTIC MODELS OF PV GENERATION AND LOAD 

As stated in Chapter 3, the probabilistic models of power injections need to be es-

tablished before applying the PPF algorithm. Section 4.1 and 4.2 introduce the probabil-

istic models of both PV generation and load, respectively. The probabilistic characteris-

tics of PV generation and load are evaluated.  

 

4.1 Probabilistic Model of PV Generation 

PV generation can only work in the daytime, and its production is easily influ-

enced by the environmental conditions since the PV output depends on the insolation [33]. 

The quantity and quality of the solar irradiance are variable related to the geographical 

condition and time, which is predictable. However, meteorological conditions such as 

cloud and fog are less predictable and act quickly. Therefore, the PV generation output is 

not easy to be controlled by the system operators. The probabilistic characteristic of PV 

resource should be different in various locations and time with different weather condi-

tions.  

 

4.1.1 Uncertainty Analysis for Actual History Data of PV Generation 

To study the uncertainty of PV generation production, the actual history data of 

PV generation is observed. A typical PV production curve measured at 12:00 pm in 

Tempe, Arizona for a period for a period of two years is shown in Fig. 4.1, and the prob-

ability density function (PDF) curve is shown in Fig. 4.2.  



47 

 

Fig. 4.1 Production fluctuation of PV generation from 2009 to 2010 

 
Fig. 4.2 Probability density function curve of the PV production 
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The actual data of a typical PV generation (shown in Fig. 4.1) is analyzed. It is 

observed that the PV generation production is periodic. For this reason, the FFT method 

is applied to obtain the amplitude spectrum in frequency domain. The result excluding the 

DC component is shown in Fig. 4.3.  

 

Fig. 4.3 Amplitude spectrum of PV generation production 

 

Fig. 4.3 indicates the PV generation production, which is easily affected by sea-

sonal environmental conditions is highly periodic. The periodic components which can be 

easily predicted are deterministic in nature. In the absence of meteorological factors, PV 

generation output is very predictable, since the solar orbit can be determined.  
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Solar elevation angle for specific location and solar time, which is the angle be-

tween the direction of the geometric center of the sun and the horizon, can be determined 

as follows [56],  

 
sin =cos cos cos +sin sinS        (4-1) 

where θS is the solar elevation angle; ω is the solar time; δ is the current sun declination; 

  is the local latitude.  

Tempe is located at a latitude of 33.41°N, longitude of 111.91°E. According to 

(4-1), sin θS at 12:00 pm for two years is shown in Fig. 4.4.  

 
Fig. 4.4 Curve of sin θS at 12:00 pm for two years.  

 

The extraterrestrial solar irradiance is approximately in portion of sin θS, and this 

variation component is easily determined. To evaluate the uncertainty of PV generation, 

the least square method is applied to determine the periodic component which is predict-

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Day

s
in

 θ
s



50 

able in the system operation. In this method, the PV production is assumed as a linear 

function of sin θS, 

 
= sin +SP a b   (4-2) 

where a and b are unknown parameter. Let Y be the PV production, and X be sin θS, a and 

b can be determined when the actual data of X and Y are already known. 

 2 2
=

( )

n n n

n n

n XY X Y

a b Y aX
n X X



 


  

 
，   (4-3) 

Without considering meteorological and weather factors, the PV production P = 

sin θS is drawn in Fig. 4.5.  

 

Fig. 4.5 Production curve of PV generation P = sin θS 

 

ε is assumed to be a residual of the linear model, which is considered to be the 

unpredictable component of PV generation uncertainty.  
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= ( + )Y aX b    (4-4) 

By applying the least squares method, the PDF curve of unpredictable component 

of PV production is shown in Fig. 4.6. According to the result curve, the unpredictable 

uncertainty is still large after removing the changing solar position impact. It indicates 

that the changing weather condition is the dominant factor for the PV generation output.  

 
Fig. 4.6 PDF curve of unpredictable component of PV production 

This analysis method can be applied to estimate the probabilistic characteristics of 

PV generations in various locations with different weather conditions.  

As a comparison, another result is obtained by simply filtering the periodic com-

ponents of PV production (shown in Fig. 4.1). The production curve regarded as the un-

certainty of PV generation is shown in Fig. 4.7, and the PDF curve is shown in Fig. 4.8. 

Table 4.1 compares the standard deviation and coefficient of variation (CV) of PV pro-

duction in different cases.  
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Fig. 4.7 Production fluctuation of PV generation after filtering 

 

Fig. 4.8 PDF curve of PV production after filtering the periodic components 
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Table 4.1 Comparison of the uncertainty results of PV production 

  Fig. 4.2 Fig. 4.5 Fig. 4.6 Fig. 4.8 

Standard deviation 

(kW) 
22.42 8.77 20.64 19.84 

Coefficient of 

variation* (%) 
27.81% 10.88% 25.60% 24.61% 

* Coefficient of variation – the ratio of the standard deviation to expected value of PV 

production (80.62 kW).  

 

The results demonstrate that the periodic variation of PV generation is mainly 

caused by the solar position in accordance with an annual cycle. It can be also observed 

that PV production has a small and predictable variation on sunny days.  

 

4.1.2 Probabilistic Model of PV Generation 

The actual history data of PV generation production discussed in Section 4.1.1 

can be used to calculate the moments and cumulants directly. According to the actual da-

ta, the probabilistic model can be established to predict the distribution of PV generation 

production.  

In order to establish the probabilistic model of PV generation, the performance 

model should be studied first. The modeling step requires a thorough understanding of the 

physical process. When designing a PV generation system, it is necessary to predict its 

expected energy production. References [33] showed that the total active power P  has a 

linear relationship with solar irradiance r as follows,  

 
P rA   (4-5) 

where r denotes the solar irradiance; A is the total area of the PV module;   is the PV 

generation efficiency. 
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However, another reference [8] proposed that the PV generation production is a 

function of the insolation, ambient temperature, and prevailing wind speed. The last two 

factors are influential in determining the cell operating temperature which, in turn, affects 

the output. Reference [34] also gave a practical data curve of the PV generation produc-

tion shown in Fig. 4.9.  

 

Fig. 4.9 PV power curve at three operating temperatures [34] 

 

Fig. 4.9 shows that the PV generation power production is as a function of effective 

irradiance and cell operating temperature. From the solar cell characteristics, there is a 

temperature coefficient k. When the cell operating temperature increases by 1 C , the ac-

tive power output decreases by k. k is provided by PV generation manufacturers. In a 
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practical PV solar module in [8], 0.52%k   . Thus, the active power output of PV gen-

eration can be expressed as follows,  

 
(1 )P rA k T     (4-6) 

where T  is the uncertainty of the PV cell temperature.  Let R rA  and 1T k T   , 

 
P RT   (4-7) 

In the PPF algorithm, the PDF of PV generation output where the probability is 

approximated as a function needs be defined. Let the PDFs of R
 

and T  be ( )Rf R  and 

( )Tf T . The parameters R and T are independent, so that their joint PDF is as follows,  

 , ( , ) ( ) ( )R T R Tf R T f R f T   (4-8) 

According to the following theorem of the PDF of a product (proved in Appendix 

C), the PDF of PV generation output can be obtained. If X and Y have joint PDF f (u), 

show that the PDF of U = XY is given by,  

 

1
( ) ( , / )Uf u f x u x x dx






    (4-9) 

Thus, the PDF of P is as follows,  

 

1
( ) ( ) ( )P R T

P
f P f R f R dR

R






    (4-10) 

According to [32], [33], the solar irradiance r accounts for cloud cover and other 

insolation reducing phenomena during a certain interval. It has been shown that the solar 

irradiance r can be described reasonably well by a beta distribution,  

 

1 1

max max

( )
( ) 1

( ) ( )

a b

r

a b r r
f r

a b r r

 

    
    
     

  (4-11) 
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where maxr is the maximum solar irradiance; a and b are the shape parameters of the dis-

tribution. 
2(1 ) / 1a         , 

2(1 ) (1 ) / 1b          .  

Let R rA , the PDF of R  is deduced as follows,  

 

1 1

max max

( )
( ) 1

( ) ( )

a b

R

a b R R
f R

a b R R

 

    
    
     

  (4-12) 

where Rmax is the maximum value of R.  

T  is the forecast error of the PV cell temperature. Its PDF can be obtained from 

historical data. The forecast error can be used to reflect the random variable. In the absence 

of the PDF of the forecast error, the normal distribution is used often to express the fore-

cast error, since it has traditionally been considered adequate for representations of certain 

forms of random error [15]. Therefore, in this dissertation, T  is assumed to follow the 

normal distribution, 2~ (0, )TT N  . 
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221
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T

T

T

T

f T e 











    (4-13) 

Let 1T k T   ,  
2

~ (1, )TT N k
. Reference [34] proposed the expected PV 

cell operating temperature with an accuracy of about 5 C  . So this dissertation assumes 

that 0T  , 5T  . ~ (0 25)T N ， . 
2~ (1,25 )T N k .  

Then, the PDF of P can be expressed as follows, 
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f P
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Fig. 4.10 shows the proposed probabilistic model curve in comparison with the 

PDF of the actual data excluding the periodic data discussed in Section 4.1.1.  

 

Fig. 4.10 PDF curve of PV generation for both probabilistic model and actual data 

To quantify the accuracy of the probabilistic model, the ARMS error is computed. 

Regarding the actual data as the reference, the ARMS error in Fig. 4.10 is 0.377%. It is 

observed that the novel probabilistic model gives an accurate approximation.  

 

4.2 Probabilistic Model of Loads 

Loads are randomly distributed variables, because there are many exogenous fac-

tors that could influence loads, such as the variation in customer’s behaviors, the varia-

tion in environmental conditions, and the variation in electrical appliances and installa-

tions. The probabilistic models of loads may vary significantly for different customers 

and conditions. Therefore, the probabilistic model for the load needs to be established by 
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observing the historic data of specific loads. There are 46 available models for different 

customer classes in [48]. The most usual assumption for electric loads is normal distribu-

tion. In [49], the load model is described as a beta probability distribution. In the CAISO 

load modeling approach, the obtained load is established as a hyperbolic distribution [50].  

In this study, the actual data of loads is observed. The load data were obtained 

from the Electric Reliability Council of Texas (ERCOT) [54]. The same steps as for the 

PV generation model are applied to load data. The periodic components are removed 

from the actual load data by simple subtraction of the assumed form. The PDF curve of 

the load uncertainty is given in Fig. 4.11. The coefficient of variation (CV) of the load is 

10.60%. The ARMS error of the load model in Fig. 4.11 is 0.0139%. According to the 

depicted curve, it is reasonable to assume that this is a rough approximation of a normal 

probability density.  

 

Fig. 4.11 PDF curve of load for both probabilistic model and actual data  
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Chapter 5 

PROBABILISTIC POWER FLOW CONSIDERING GENERATION DISPATCHING 

OPERATION 

In the previous analysis, the behavior of conventional generation operation is not 

considered in the probabilistic model of power systems, and it assumed that the genera-

tors’ outputs are fixed and all the uncertainties of PV generations and loads are compen-

sated by the slack bus alone, which is not realistic. This assumption could be acceptable 

when the variances of PV generations have a small value or are located near the slack 

bus.  

When the PV penetration increases, the stochastic characteristic of PV generation 

might exert detrimental impacts on the active power balance in bulk systems. These vari-

ations of PV generation sources should be compensated by the generation dispatching 

operation with automatic generation control (AGC) or the day-ahead generation schedul-

ing settlement, and several generation sources may need to be adjusted. Therefore, it is 

more realistic to consider the generation dispatch in the PPF algorithm.  

As the foregoing discussion illustrates, the representation of the utility company 

operating policy in the event of generation surplus or deficiency forms an important aspect 

of the PPF computation [43], so that the correct allocation of conventional generation is 

also considered in the PPF algorithm. Under actual conditions, the generators should be 

scheduled to accommodate the uncertainties in power systems.  

5.1 Probabilistic Model of Generation Dispatching Operation 

In actual applications, realistic dispatching laws are complicated and could cause 

significant computational problems. Therefore these dispatching laws are complicated for 
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the PPF algorithm to handle. To find a meaningful approach to represent the dispatching 

laws, a linear model is adopted [43]. The linear model of generation dispatching operation 

is given by,  

 ,+gen PV gen FP T P P      (5-1) 

where ΔPgen and ΔPPV are the uncertainty variable vectors of Pgen and PPV. T is the sensi-

tivity matrix of conventional generation. Tij represents the change in the i
th

 generation for a 

unity change in the j
th

 PV generation. ΔPgen,F is the redistribution of the available genera-

tion for some generation outage. Under normal conditions (no generator outages), 

, 0gen FP  .  

 gen PVP T P     (5-2) 

In this research, the outage conditions are excluded. References [11] and [51] 

considered the outage conditions. This dissertation only considers the dispatching strategy 

of balancing the PV generation variation. 

Equation (5-2) shows how the generation sources balance the changes of PV gen-

eration. This model also indicates that the variations of conventional generation sources 

depend on the variations of the PV generation and various dispatching strategies. The 

conventional generation production variations are not independent variables and are 

functions of PV generation uncertainties.  It is expected that systems with very high pen-

etration of PV resources will require attention to the high ramp rate capabilities of con-

ventional generation resources to balance the PV generation. For the generators with low 

ramp rate, the associated element value in the T matrix in (5-2) is set to zero.  

The T matrix may be selected as follows [43], 
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― by deciding how a PV generation change is to be shared among the neighboring 

generators;  

― by fitting a linear model over a reasonable set of conditions as obtained using an 

optimal power flow program;  

― by using optimal sensitivity equations, which adjust the generations to minimize 

the cost [55].  

Since the probabilistic model of PV generation is known, the probabilistic model 

of each conventional generation production can be obtained based on the established dis-

patching model in (5-2).  

 

5.2 Probabilistic Model of Power System Considering the Generation 

Dispatching Operation 

In Section 3, the linear models for bus voltages and line flows have been formu-

lated without considering the generation dispatching operation in (3-4). When the linear 

model of the generation dispatching operation is established, the linear model of the 

power system is revised. Expanding the first equation in (3-4) (the linear model of power 

injection), 

  , , ,
L PV gen

L

PV

P P P Q

gen

P

PP
K K K K K

PV Q

Q



 
 

                   

  (5-3) 

Then, (5-3) can be modified as follows,  
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  = , ,
L PV gen

L

P P Q PV P gen

P

K K K P K P
V

Q


 

   
         

  (5-4) 

Substituting equation (5-2) in equation (5-4),  

  = , ,
L PV gen

L

P P Q PV P PV

P

K K K P K T P
V

Q


 

   
         

  (5-5) 

Then, equation (5-5) is rewritten as, 

  = , + ,
L PV gen

L

P P P Q PV

amend

P

K K K T K P
V

Q
K


 

             

  (5-6) 

By adding the generation dispatching operation model, the K matrix is revised to 

Kamend matrix. The L matrix should be also revised as Lamend = HKamend. The linear model of 

the power system in (3-4) is now changed to be,  

 
amend

amend amend

x K y

z HK y L y

  

    

  (5-7) 

Since the generation dispatching operation is used to compensate the uncertainties 

of PV generation resources, the uncertainty influence on power systems will be changed 

by using the probabilistic model in (5-7).  

 

5.3 Probabilistic Optimal Power Dispatching Strategy 

As mentioned in the above sections, the high level of uncertainty of PV genera-

tion may seriously impact power system performance. However, the generation dispatch 

can compensate the change of PV generation, limit the influence of the PV, and improve 
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power system reliability. Based on the PPF algorithm considering generation dispatch, a 

dispatching strategy is proposed considering both the economic cost and the uncertainty 

influence of the PV. The objective of the dispatch is to minimize the total cost of genera-

tions.  

Since the PDF of PV generation is known (see Section 4), based on the estab-

lished linear model of generation dispatching operation shown in (5-2), the moments and 

cumulants of the generation output can be computed by using the cumulant method. The 

PDF of the generation output can be approximated by using Gram-Charlier Type A ex-

pansion,  

 ,

, ,( )

,

0, ,

1
( ) ( )

!gen i

n
j gen i gen ij

P gen i

jgen i gen i

c P
f P

j




 


    (5-8) 

The cost function for each generator is given as ,( )i gen iC P , the expected value of 

the generation cost is,  

 ,, , , ,( ) ( ) ( )
gen ii gen i i gen i P gen i gen iE C P C P f P dP       (5-9) 

In the actual system operation, the operators prevent the overload of each system 

branch. Since the CDF Fk(x) of the line flow k can be approximated from the proposed 

PPF algorithm using the Gram-Charlier expansion, the overload probability (OLP) of the 

line flow k is given by,  

 
limit, branch,( )

0 branch,

OLP 1 ( )
!

n
j k kj

k

j k

c x

j







    (5-10) 

where limit, kx  is the thermal limit of the line flow k.  

Then, the probabilistic optimal dispatching strategy is established as follows,  
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― The objective of the dispatch is to minimize the expected value of total generation 

cost based on (5-9);  

― The OLP of each line flow, which is calculated based on the proposed PPF algo-

rithm considering the generation dispatch according to (5-10), is constrained to a 

certain limit;  

― The changes in PV generation levels are balanced by the dispatching strategy based 

on (5-2), and the sum of the power increments of PV generations is compensated by 

the sum of the increments of conventional generators.  

 

,

, ,

min ( )

Subject to

OLP

1 0

G

G PV

N

i gen i

i

k

gen PV

N N

gen i PV i

i i

ij

E C P

P T P

P P

T



  



  

   

  



 

 (5-11) 

where   is the overload probability limit. NG and NPV are the number of generations and 

the number of PV generation resources, respectively. OLPk represents the overload prob-

ability of line k; and T represents the matrix of the dispatching law. For the generators 

that cannot perform fast rescheduling, the associated element value in the T matrix can be 

set to zero. This would mean that only the generators with high ramp rates are considered 

in the optimal dispatching strategy. 

By solving this optimization problem, the optimal dispatching matrix T can be 

obtained. This optimal dispatching strategy considering uncertainty factors may lead to a 
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less expensive and better dispatch in the sense that uncertainty is modeled rather than ig-

nored.  
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Chapter 6 

CASE STUDY 

This chapter presents an example of the use and performance of the proposed PPF 

algorithm on a realistic power system. The results and analysis of the study conducted are 

presented.  

6.1 Test System Description 

The proposed PPF algorithm and probabilistic optimal power dispatching strategy 

have been implemented using MATLAB, and tested on the Arizona area of the WECC 

transmission system consisting of 2497 buses and 2971 lines. The test system has 1070 

loads, 174 conventional generators and 179 PV generation resources. A full description 

of this system is found in [53], and a representation of the area is shown in Fig. 6.1. 

Arizona 

Area

Slack Bus

Line 

19034-19080 Line 

86291-14006

Bus 84417

Bus 84511

Line 

14356-17013

Line 

14350-19060

 

Fig. 6.1 Simplified portion of the WECC in Arizona (■– PV generation locations; 

○–conventional generator locations) 
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In the case study, the probabilistic models of PV generation and load discussed in 

Section IV are applied with the same CVs. The PV generation penetration is varied up to 

20%.  

6.2 PPF Results for Various Types of Expansions 

In this section, the three expansions (Gram-Charlier expansion, Edgeworth ex-

pansion, and Cornish-Fisher expansion) mentioned in Section 2.3 are applied to approx-

imate the CDF of both system voltages and line power flows.  

The PV generation penetration is set to be 20% of the load. The correlation coef-

ficient among the PV resources is set to be 0.5 for illustration purposes. The case study 

takes into account the first six self cumulants. The second order joint cumulants among PV 

resources is considered, and it is assumed that the joint cumulants of order higher than two 

are zero. In order to evaluate the accuracy of the result, MCS with 10,000 samples is uti-

lized as a comparative reference, and the parameter   (shown in (3-18)) is set as less 

than 1% for all the result variables. The MCS uses the nonlinear Newton-Raphson ap-

proach. The ARMS error is computed as the accuracy index of the approximation expan-

sions. The CDF curves from MCS and the three different expansions are analyzed for the 

bus voltages and line flows of the test system. In the case study, the observed buses and 

branches are near the PV generation locations and are subjected to more uncertainty in-

fluence.  

Fig. 6.2 and Fig. 6.3 show the CDF curves of the voltage magnitude at bus 84417 

and the line flow through line 14356-17013. Table 6.1 and Table 6.2 compare the mean 

value, the standard deviation, the ARMS error, the confidence level (10% and 90%), 
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steady-state overvoltage (or overload conditions) probability and computing time. Fig. 6.4 

and Table 6.3 show the probabilistic results of the slack bus output.  

 
Fig. 6.2 CDF curves of the voltage magnitude at bus 84417 for three different types of 

expansions 

 

Table 6.1 Comparison of the results for the voltage magnitude at bus 84417 for three 

different types of expansions* 

  MCS GC EW CF 

mean / pu 1.12406 1.12722 1.12722 1.12722 

stand deviation / pu 0.02913 0.02488 0.02488 0.02488 

ARMS 0 0.24% 0.21% 0.17% 

10% confidence level / pu 1.08550 1.09135 1.09008 1.08992 

90% confidence level / pu 1.15063 1.15179 1.15024 1.15069 

OVP (>1.1 pu) 83.23% 85.36% 84.70% 84.03% 

Time / s 2147.30 452.14 452.15 452.14 

*OVP – steady state overvoltage probability; GC – Gram-Charlier; EW – Edgeworth; CF – 

Cornish-Fisher.  
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It can be observed from Fig. 6.2 and Table 6.1 that the Cornish-Fisher expansion 

provides a better curve fit for the CDF curve of the voltage magnitude at bus 84417, at 

least over a given range of |V|. Additionally, cumulant methods can save computational 

time compared with MCS.  
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Fig. 6.3 CDF curves of the line flow through line 14356-17013 in three different types of 

expansions 

Table 6.2 Comparison of the results for the line flow through line 14356-17013 for three 

different types of expansions* 

  MCS GC EW CF 

mean / pu 1.24516 1.24500 1.24500 1.24500 

stand deviation / pu 0.03192 0.03217 0.03217 0.03217 

ARMS 0 0.01813% 0.01809% 0.01806% 

10% confidence level / pu 1.20423 1.20408 1.20409 1.20409 

90% confidence level / pu 1.28575 1.28641 1.28642 1.28641 

OLP (>1.2 pu) 92.06% 92.07% 92.07% 92.07% 

*OLP – overload probability.  
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Fig. 6.4 CDF curves of the slack bus active power for three different types of expansions 

 

Table 6.3 Comparison of the results for the slack bus active power for three different types 

of expansions 

  MCS GC EW CF 

mean / pu 6.63984 6.66000 6.66000 6.66000 

stand deviation / pu 6.51580 6.53959 6.53959 6.53959 

ARMS 0 2.56E-05 2.38E-05 2.56E-05 

10% confidence level / pu -1.28500 -1.32951 -1.25194 -1.21708 

90% confidence level / pu 15.08250 15.07947 15.22006 15.18475 

 

The results for the slack bus active power production indicate that the variance of 

the slack bus production is large (the CV of the slack bus output is 98.13%) due to the 

assumption that all the power uncertainty is balanced by the slack bus generation alone.  
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According to the results of the line flow through line 14356-17013 and the slack 

bus active power, all the three expansions give good approximations because the indicat-

ed line flow probability distribution is qualitatively close to normally distributed.  

For some non-normal distributions, the CDF curve cannot be fit well with some of 

the expansions. For example, the CDF curves of the voltage magnitude at bus 84511 are 

shown in Fig. 6.5 for the three exemplar expansions. It can be observed that the Cor-

nish-Fisher and Edgeworth expansions perform worse at the probability close to 1, and 

the Gram-Charlier expansion gave a better approximation. Fig. 6.5 also indicates that the 

Cornish-Fisher and Edgeworth expansions are not always more accurate than the 

Gram-Charlier expansion, since they may have “unreliable tail behavior” in some cases. 

Depending on the ultimate application of the CDF curves, these issues may be problem-

atic.  

 
Fig. 6.5 CDF curves of the voltage magnitude at bus 84511 for three different types of 

expansions 
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6.3 PPF Results for Different PV Generation Correlations 

As stated in the foregoing paragraphs, the neighboring PV resources may be 

highly correlated. To evaluate the effect of PV generation correlation on the transmission 

system uncertainty, the results for three different representative correlation levels are 

compared. In these simulations, the correlation coefficient ρ among PV resources is set to 

be 0.0, 0.5 and 1.0, and all the CDF curves are approximated by the Gram-Charlier ex-

pansion. If ρ = 0.0, all the PV resources are statistically independent. In contrast, all the 

PV resources are totally positively dependent in the case of ρ = 1.0. Since the neighbor-

ing PV generations are typically positively correlated, the negative correlation cases (ρ < 

0.0) are not considered.  

Fig. 6.6 shows the CDF curves of the steady state voltage magnitude at bus 84511 

(see Fig. 6.1) for different PV generation correlation conditions. Table 6.4 compares the 

mean value, the standard deviation, the confidence level (10% and 90%), steady state 

overvoltage probability and computing time for each of the correlation cases. As a com-

parison, the CDF curves and simulation results of the steady state voltage magnitude at 

bus 84511 by using MCS are shown in Fig. 6.7 and Table 6.5, respectively.  
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Fig. 6.6 CDF curves of the steady state voltage magnitude at bus 84511 for different PV 

generation correlations (Corr Coeff –correlation coefficient) 

 

Table 6.4 Comparison of the results for the steady state voltage magnitude at bus 84511 for 

different PV generation correlations 

  Corr Coeff = 0.0 Corr Coeff = 0.5 Corr Coeff = 1.0 

mean / pu 1.14027 1.14027 1.14027 

stand deviation / pu 0.03514 0.03998 0.04436 

10% confidence level / pu 1.08726 1.08537 1.08136 

90% confidence level / pu 1.17397 1.18301 1.19052 

OVP (>1.1 pu) 86.49% 85.91% 83.99% 

Time / s 135.69 452.14 453.34 
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Fig. 6.7 CDF curves of the steady state voltage magnitude at bus 84511 by using MCS for 

different PV generation correlations 

 

Table 6.5 Comparison of the MCS results for the steady state voltage magnitude at bus 

84511 for different PV generation correlations 

  Corr Coeff = 0.0 Corr Coeff = 0.5 Corr Coeff = 1.0 

mean / pu 1.14318 1.14327 1.14430 

stand deviation / pu 0.03611 0.04066 0.04580 

10% confidence level / pu 1.08883 1.08561 1.08060 

90% confidence level / pu 1.17588 1.18275 1.18799 

OVP (>1.1 pu) 87.21% 85.65% 84.38% 

 

Fig. 6.8 and Table 6.6 show the CDF curves and simulation results of the line 

flow through line 14356-17013 for different PV generation correlation conditions.  
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Fig. 6.8 CDF curves of the line flow through line 14356-17013 for different PV generation 

correlations 

 

Table 6.6 Comparison of the results for the line flow through line 14356-17013 for 

different PV generation correlations 

  Corr Coeff = 0.0 Corr Coeff = 0.5 Corr Coeff = 1.0 

mean / pu 1.24500 1.24500 1.24500 

stand deviation / pu 0.03050 0.03217 0.03376 

10% confidence level / pu 1.20463 1.20408 1.20187 

90% confidence level / pu 1.28556 1.28641 1.28830 

OLP (>1.2 pu) 92.36% 92.07% 90.95% 

 

Based on the results obtained by increasing the correlation coefficient among PV 

resources, it is observed that the mean values of both bus voltage magnitude and line flow 

are constant, but the standard deviations increase.  
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According to the results, the totally dependent condition has the maximum uncer-

tainties of bus voltages and line flows. The minimum uncertainties of bus voltages and 

line flows occur in the totally independent condition. The uncertainties of the partially 

dependent condition are in the middle. The results indicate that the more positive correla-

tion the PV generations have, the more uncertainties of bus voltages and line flows occur. 

The uncertainty problems become more serious since neighboring PV generation outputs 

change with a similar trend (i.e., positive correlation).  

On the other hand, the comparison of the computation time shown in Table 6.4 

indicates that the consideration of correlation among the PV resources increases the 

computational burden, because a large number of joint cumulants and joint moments 

need to be calculated.  

 

6.4 PPF Results for Different PV Generation Penetrations 

To evaluate the influence of PV generation uncertainty, different PV generation 

penetration conditions of 0%, 5%, 10%, 15% and 20% of total load are observed. The 

correlation coefficient among PV resources is fixed at 0.5. The Gram-Charlier expansion 

is again utilized to approximate the CDF curves. The CDF curves and simulation results of 

the steady state voltage magnitude at bus 84511 for different PV generation penetrations 

are shown in Fig. 6.9 and Table 6.7, respectively.  

Fig. 6.9 and Table 6.7 show that the steady state voltage violation problem and 

uncertainty problem are more serious when PV generation penetration increases, as ex-

pected, since PV generation is not allowed to provide voltage control.  
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Fig. 6.9 CDF curves of the steady state voltage magnitude at bus 84511 for different PV 

generation penetrations 

 

Table 6.7 Comparison of the results for the steady state voltage magnitude at bus 84511 for 

different PV generation penetrations 

 
PV generation penetration 

Index 0% 5% 10% 15% 20% 

mean / pu 0.86940 0.96489 1.03640 1.09360 1.14027 

stand deviation / pu 0.01169 0.01955 0.02871 0.03533 0.03998 

10% confidence level / pu 0.85449 0.93929 0.99830 1.04600 1.08537 

90% confidence level / pu 0.88432 0.98808 1.06899 1.13253 1.18301 

OVP (>1.1 pu) 0.00% 5.2E-8% 0.25% 48.76% 85.91% 

 

The CDF curves and the simulation results of the line flow through line 

14350-19060 for different PV generation penetrations are displayed in Fig. 6.10 and Table 

6.8. According to the results, the overload probability is relieved with the increase of PV 
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generation penetration, since PV generation usually supplies the load locally and reduces 

the line flows on most transmission lines.  

 

Fig. 6.10 CDF curves of the line flow through line 14350-19060 for different PV 

generation penetrations  

 

Table 6.8 Comparison of the results for the line flow through line 14350-19060 for 

different PV generation penetrations 

 
PV generation penetration 

Index 0% 5% 10% 15% 20% 

mean / pu 1.24500 1.22000 1.19400 1.16800 1.14100 

stand deviation / pu 0.02661 0.02676 0.02712 0.02791 0.02898 

10% confidence level / pu 1.20457 1.18558 1.15921 1.13233 1.10412 

90% confidence level / pu 1.28564 1.25302 1.22769 1.20301 1.17766 

OLP (>1.2 pu) 92.36% 77.22% 41.15% 11.96% 2.47% 
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6.5 PPF Results considering Generation Dispatching Operation 

The proposed PPF algorithm considering generation dispatching operation is also 

tested in the Arizona area of the WECC transmission system.  

This case study uses the economic dispatch (the optimal sensitivity equations) to 

obtain the T matrix. To examine the advantages of the algorithm, the PPF algorithm 

without considering the generation dispatch is also applied, and it assumes that the slack 

bus generation entirely balances the system uncertainty. To evaluate the result accuracy 

and efficiency, MCS for the two cases with 10000 samples (the coefficient of variation β 

is set as less than 1% for all the result variables) is applied as a reference. Considering 

that the neighboring PV generation productions are typically positively correlated, the 

correlation coefficient among PV resources is chosen to be +0.3 for testing the proposed 

algorithm.  

Fig. 6.11-Fig. 6.14 show the CDF curves of the voltage phase angle and voltage 

magnitude at bus 84417 and the line flow active power and reactive power through line 

86291-14006, respectively. Table 6.9-Table 6.12 list the ARMS error, mean value, 

standard deviation and the confidence level of 10% and 90%. These data are compared 

versus MCS results. Table 6.13 compares the computational time of different algorithms.  
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Fig. 6.11 CDF curves of the voltage angle at bus 84417 considering generation dispatching 

operation 

 

 

Table 6.9 Comparison of the results for the voltage angle at bus 84417 considering 

generation dispatching operation 

 
With dispatching Without dispatching 

Index MCS PPF MCS PPF 

ARMS / % 0 0.03854% 0 0.05321% 

mean / radians 0.17742 0.17977 0.17720 0.17977 

stand deviation / radians 0.05618 0.05872 0.16605 0.15893 

10% confidence level / radians 0.10043 0.10361 -0.04514 -0.02415 

90% confidence level / radians 0.24108 0.25326 0.37469 0.38313 
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Fig. 6.12 CDF curves of the voltage magnitude at bus 84417 considering generation 

dispatching operation 

 

Table 6.10 Comparison of the results for the voltage magnitude at bus 84417 considering 

generation dispatching operation 

 
With dispatching Without dispatching 

Index MCS PPF MCS PPF 

ARMS / % 0 0.04960% 0 0.03692% 

mean / pu 1.12773 1.12722 1.1271 1.12722 

stand deviation / pu 0.01794 0.01837 0.0181 0.01805 

10% confidence level / pu 1.10328 1.10003 1.10237 1.10055 

90% confidence level / pu 1.14579 1.1475 1.14547 1.14724 
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Fig. 6.13 CDF curves of the line flow active power through line 86291-14006 considering 

generation dispatching operation 

 

 

Table 6.11 Comparison of the results for the line flow active power through line 

86291-14006 considering generation dispatching operation 

  With dispatching Without dispatching 

Index MCS PPF MCS PPF 

ARMS / % 0 0.0035% 0 0.0095% 

mean / pu 2.97683 2.97500 2.97683 2.97500 

stand deviation / pu 0.46272 0.48561 1.48475 1.47075 

10% confidence level / pu 2.37775 2.35294 1.17150 1.09162 

90% confidence level / pu 3.55900 3.59756 4.91375 4.86092 
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Fig. 6.14 CDF curves of the line flow reactive power through line 86291-14006 

considering generation dispatching operation 

 

 

Table 6.12 Comparison of the results for the line flow reactive power through line 

86291-14006 considering generation dispatching operation 

  With dispatching Without dispatching 

Index MCS PPF MCS PPF 

ARMS / % 0 0.01450% 0 0.00694% 

mean / pu -1.96665 -1.95600 -1.96629 -1.95600 

stand deviation / pu 0.04902 0.05067 0.05686 0.05546 

10% confidence level / pu -2.02840 -2.03089 -2.03889 -2.03719 

90% confidence level / pu -1.90307 -1.90104 -1.89388 -1.89511 
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Table 6.13 Comparison of the computational time in different algorithms 

Algorithm computational time / s 

MCS with dispatching model 2303.12 

MCS without dispatching model 2270.10 

PPF with dispatching model 476.43 

PPF without dispatching model 458.92 

 

Compared to the MCS result, the proposed PPF method can provide accurate ap-

proximate CDF curves requiring much less computational time. According to the results, 

the generation dispatching model has a significant influence on the uncertainties of bus 

voltage angles and line flow active powers but little effect on the uncertainties of bus 

voltage magnitudes and line flow reactive powers. The reason is that the generation dis-

patch only deals with the active power variation of PV generation, which has a strong 

coupling with the bus voltage angles and line flow active powers.  

On the other hand, the results also indicate that the generation dispatch decreases 

the uncertainties of both bus voltage angles and line flow active powers in most cases. 

This occurs because the change of conventional generation always balances the variation 

of PV generation based on the generation dispatching law. However, the uncertainties 

increase in some cases, where the buses and branches are generally close to the conven-

tional generators. An example is shown in Fig. 6.15 and Table 6.14. Line 19034-19080 is 

near a generator. The result indicates that the uncertainty in line flow active power in-

creases when the generator dispatch is considered. 
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Fig. 6.15 CDF curves of the line flow through line 19034-19080 considering generation 

dispatching operation 

Table 6.14 Comparison of the results for the line flow through line 19034-19080 

considering generation dispatching operation 

 
With dispatching Without dispatching 

Index MCS PPF MCS PPF 

ARMS / % 0 0.04332% 0 0.03114% 

mean / pu 1.90253 1.90500 1.90652 1.90500 

stand deviation / pu 0.18075 0.17556 0.00705 0.00702 

10% confidence level / pu 1.68267 1.68101 1.89738 1.89600 

90% confidence level / pu 2.13831 2.13053 1.91546 1.91401 

 

Slack bus is used to balance all the power in the system, and the uncertainty of the 

slack bus influences the system operation and generation cost. The CDF curves and un-

certainty results of the slack bus active power are given in Fig. 6.16 and Table 6.15.  
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Fig. 6.16 CDF curves of the slack bus active power considering generation dispatching 

operation 

 

 

Table 6.15 Comparison of the results for the slack bus active power considering generation 

dispatching operation 

  With dispatching Without dispatching 

Index MCS PPF MCS PPF 

ARMS / % 0 0.0223% 0 0.0827% 

mean / pu 6.68253 6.66000 6.67305 6.66000 

stand deviation / pu 0.86451 0.82700 5.21365 5.15182 

10% confidence level / pu 5.58115 5.60103 0.33500 0.06406 

90% confidence level / pu 7.77826 7.72040 13.42900 13.26683 
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According to the results shown in Fig. 6.16 and Table 6.15, the standard deviation 

of the slack bus active power output with the generation dispatching model is 0.82700 pu; 

this generation level is much smaller than the power level without the generation dis-

patching model, namely 5.15182 pu. The slack bus output uncertainty is reduced since 

other conventional generators share in balancing the PV generation variation.  

The results also illustrate that the generation dispatching behavior plays an im-

portant role in determining the impact of the system uncertainties and cannot be ignored. 

 

6.6 PPF Results for the Probabilistic Optimal Power Dispatching Strategy 

The proposed probabilistic optimal power dispatching strategy is also applied to 

the test system. As stated in Section 5.3, the objective is to minimize the expected value 

of the total cost of generation production under the overload probability limit. The control 

variable T matrix is obtained based on the proposed dispatching strategy. The proposed 

PPF algorithm is used as a test tool to evaluate the validity of the proposed strategy. In 

this case study, the overload probability limit   is set to be 5%. As a comparison, the 

case of economic dispatch (not considering the overload probability constraint) and the 

case without considering the generation dispatch (slack bus generator balances the varia-

tions of all the PV generations) are also applied.  

Table 6.16 shows the total cost of various generation dispatching strategies. The 

result indicates that the case without dispatching costs most, since the slack bus genera-

tion compensates the system uncertainty alone. The proposed dispatching strategy costs a 

little more than the economic dispatch, since the overload probability constraint is con-

sidered. 
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The CDF curves and results of the line flow in line 86291-14006 are shown in Fig. 

6.17 and Table 6.17. According to the PPF results, the proposed dispatching strategy 

performs better to limit the overload probability. Economic dispatch reduces operating 

cost but it cannot be utilized to control line overload problems. 

 

Table 6.16 Comparison of the cost of different generation dispatching strategies 

  Proposed dispatch Economic dispatch Without dispatching 

Expected value of 

total cost ($) 
78960.4 78949.3 79877.4 

 

 

Fig. 6.17 CDF curves of the line flow through line 86291-14006 for different generation 

dispatching strategies 
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Table 6.17 Comparison of the results for the line flow through line 86291-14006 for 

different generation dispatching strategies 

  Proposed dispatch Economic dispatch Without dispatching 

OLP* 0.04995 0.10878 0.36419 

mean / pu 3.56600 3.56600 3.56600 

stand deviation / pu 0.26347 0.35185 1.25443 

10% confidence level / pu 3.22857 3.11530 1.95968 

90% confidence level / pu 3.90382 4.01710 5.17456 

*The thermal limit of the line flow is 4.0 pu.  
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Chapter 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Main Conclusions 

In this dissertation, the PPF algorithm is used to evaluate the probabilistic charac-

teristics of transmission systems with PV generation installed. Compared with the deter-

ministic power flow method, the PPF algorithm has the ability to assess the system in a 

broader sense, including system reliability and performance. The cumulant method is ap-

plied to compute the CDF instead of using convolution calculations. The cumulant 

method is potentially suitable for large transmission systems.  

This dissertation compares three types of approximation expansions based on 

cumulants, Gram-Charlier expansion, Edgeworth expansion, and Cornish-Fisher expan-

sion. It can be concluded that all the three expansions are accurate methods when the ob-

jective distribution is close to a normal distribution. In many practical cases, the Cor-

nish-Fisher and Edgeworth expansions can result in accurate models, but these two ex-

pansions may have the problems of bad tail behavior. The approximation used by cumu-

lant methods must consider accuracy in the tail region since extreme behavior (e.g., far 

from the mean) is often of the greatest engineering interest. Because no established, 

straightforward approach exists for determining the type of expansion to use and the 

number of terms to use, care must be taken to examine the expansion on a use by case 

basis.  

In this dissertation, the correlation among the input random variables is consid-

ered by using joint cumulants. This approach increases the computational burden.  



91 

Since different locations have their own geographical and environmental condi-

tions, the probability distributions of PV generation are also various. The change of solar 

position has very limit influence on PV production variation. Clearness and brightness of 

the sky can have a significant positive impact on PV generation production. The varied 

meteorological conditions make a dominant impact on the PV generation output. 

A novel probabilistic model of PV generation is developed based on the environ-

mental conditions that impact PV behavior. Compared to the actual data of PV generation, 

the novel probabilistic model gives an accurate approximation.  

In this dissertation, the proposed PPF algorithm based on the cumulant method 

takes into account conventional generation dispatch. The dispatch of conventional re-

sources of high ramp rate compensates the variations of PV generation resources. The 

results show that the consideration of generation dispatch significantly influences the PPF 

results and should not be neglected in the PPF algorithm. The probabilistic optimal power 

dispatching strategy is proposed to consider the uncertainty problem in the generation 

cost optimization. 

The proposed method is applied to the Arizona area of the WECC system for dif-

ferent levels of PV generation penetration. To evaluate the accuracy of the results, MCS 

with 10,000 samples is utilized as a comparative reference. Based on the probabilistic 

results and analysis, the following conclusions can be drawn:  

1. The PPF algorithm offers an efficient method to calculate the impact of PV 

generation in terms of steady state bus voltages and line flows.  

2. The positive correlation among the PV resources makes the uncertainty prob-

lem more serious. In the case study, the standard deviation of the steady state voltage 
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magnitude increases from 0.03514 pu to 0.04436 pu when the correlation coefficient 

among PV generations increases from 0.0 to 1.0.  

3. PV generation uncertainty has an influence on the system uncertainty when PV 

generation penetration is high.  

4. The steady state voltage magnitude violation problems are more serious in the 

cases with increased penetration of PV generation. For the system considered, steady 

state overvoltages do not occur with no PV installed, but at 20% PV penetration, over-

voltages are expected 86.49% of the time.  

5. Since most PV generation is close to loads, the power flow bottlenecks are re-

lieved in some transmission lines. In the test system, an example considered shows that 

the overload probability reduces from 92.36% to 3.23%, when the PV penetration in-

creases from 0% to 20%.  

6. Although PV generation uncertainty has a strong impact on the system uncer-

tainty problem, the generation dispatching behaviors reduce the uncertainty influence of 

PV generation.  

7. The consideration of generation dispatch decreases the variances of bus voltage 

angles and line flow active powers in most cases, but has little effect on the bus voltage 

magnitudes and line flow reactive powers. The reason is that the generation dispatching 

operation only balances the active power of PV generation.  

8. The consideration of generation dispatching operation decreases the variance of 

the slack bus output, since other conventional generations share the work of balancing the 

PV generation uncertainties.  
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9. Probabilistic optimal power dispatch can optimize the expected total generation 

operating cost constrained by line overload probability.  

 

7.2 Future Work 

Based on the conclusions obtained from the dissertation, the research work in this 

project could continue along the following paths.  

― The PPF algorithm could also consider the systems with other renewable energy 

such as wind generation to evaluate the uncertainty impact.  

― The impact of the uncertainty of network topology on the power system should be 

further considered in the PPF algorithm.  

― The probabilistic analysis for contingencies in transmission systems with PV gen-

eration will be the next step of research.  
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APPENDIX A 

CAUSE OF THE VOLTAGE VIOLATION PROBLEM 
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This section discusses the reason of the voltage violation problem. As shown in 

Fig. A.1, in the two-bus system, the generation is at a PV bus, and the load is at a PQ bus. 

If the current in the system is predominantly inductive or capacitive, the voltage drop jIX 

primarily changes the voltage magnitude of 2U  (as shown in Fig. A.2 and Fig. A.3). On 

the other hand, if the current in the system is more in phase with the voltage, the voltage 

drop jIX primarily changes the voltage angle of 2U , and the voltage magnitude is nearly 

unchanged (shown in Fig. A.4). Therefore, the overvoltage problem occurs in the case 

where the leading reactive power is in the dominant position and there is a huge amount 

of reactive power in the system (shown in Fig. A.3). Thus, the voltage violation can be 

relieved by decreasing the system reactive power.  
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Fig. A.1 Two-bus system 
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Fig. A.2 Predominantly inductive current
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Fig. A.3 Predominantly capacitive current 
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Since the voltage violation occurs when the PV generation penetration is increas-

ing, this research focuses on the high PV generation penetration situation and determines 

approaches to reduce the bus voltage magnitude and sustain the voltage within an ac-

ceptable limit. 
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APPENDIX B 

INTRODUCTION OF CDF AND PDF 
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In this section, cumulative distribution function (CDF) and probability density 

function (PDF) are introduces as follows [22][44].  

The cumulative distribution function (CDF) F(x) of the random variable X is at a 

value less than or equal to x and is defined as,  

 
( ) ( )F x P X x    (B-1) 

The general properties of the CDF are listed as follows,  

― F(x) is a non-decreasing function;  

― 0 ( ) 1F x  , (- )=0F  , (+ )=1F  ;  

― 0 0( ) 1 ( )P x x F x  
;  

― ( ) ( ) ( )P a x b F b F a    ;  

― 0 0 0( ) ( ) ( )P x x F x F x  
.  

For a continuous random variable x, the probability density function (PDF) f(x) is 

defined as,  

 

( )
( )

( ) ( )
x

dF x
f x

dx

F x f u du




 

  (B-2) 

The PDF describes the relative likelihood of this random variable x to take on a 

given value.  
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APPENDIX C 

PDF OF PRODUCT 
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If 1 2   , and  1 2,   joint PDF is  1 2,f x x . 
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Thus, the PDF of x is as follows,  
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