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ABSTRACT  
   

Nanoparticles are ubiquitous in various fields due to their unique 

properties not seen in similar bulk materials. Among them, core-shell composite 

nanoparticles are an important class of materials which are attractive for their 

applications in catalysis, sensing, electromagnetic shielding, drug delivery, and 

environmental remediation. This dissertation focuses on the study of core-shell 

type of nanoparticles where a polymer serves as the core and inorganic 

nanoparticles are the shell. This is an interesting class of supramolecular building 

blocks and can "exhibit unusual, possibly unique, properties which cannot be 

obtained simply by co-mixing polymer and inorganic particles".  

The one-step Pickering emulsion polymerization method was successfully 

developed and applied to synthesize polystyrene-silica core-shell composite 

particles. Possible mechanisms of the Pickering emulsion polymerization were 

also explored. The silica nanoparticles were thermodynamically favorable to self-

assemble at liquid-liquid interfaces at the initial stage of polymerization and 

remained at the interface to finally form the shells of the composite particles.  

More importantly, Pickering emulsion polymerization was employed to 

synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-

shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-

monomer. The composite nanoparticles were temperature sensitive and could be 

up-taken by human prostate cancer cells and demonstrated effectiveness in drug 

delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-

dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell 
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composite nanoparticles were synthesized and applied as effective carriers to 

release a rheological modifier upon a pH change. Finally, the research focuses on 

facile approaches to engineer the transition of the temperature-sensitive particles 

and develop composite core-shell nanoparticles with a metallic shell. 
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Chapter 1 

INTRODUCTION 

Nanoparticles have generated great interest in chemistry, physics, biology, 

and engineering. This is due to the fact that nanoparticles have properties that are 

significantly different than those of bulk materials (Jain et al., 2006, Liu et al., 

2001). The high surface-to-volume ratio of nanoparticles makes them a suitable 

carrier or delivery system for drugs, proteins or genes which can be either 

delivered locally or targeted specifically (Ding et al., 2006). The development of 

fabrication routes for inorganic polymer nanocomposites has considerable interest 

as, organic-inorganic hybrid morphologies can provide enhanced mechanical and 

physical properties for a breadth of application areas especially in biological and 

medical applications such as in artificial bones, dental fillings, and drug delivery 

(Sanchez et al., 2005). Among them, core-shell composite nanoparticles are a 

unique class of materials which are attractive for their potential applications as 

delivery vehicles (for drugs, dyes, cosmetics, ink etc.) (Caruso, 2000; Huang et 

al., 1999). Core-shell composite particles can be synthesized by methods of post-

surface-reaction (Lynch, Nawaz, Bostrom, 2005; Ding et al., 2004) electrostatic 

deposition (Dokoutchaev et al., 1999), and layer-by-layer self-assembly (Caruso, 

2001; Caruso, Susha, Giersig M, Möhwald H, 1999; Caruso, Susha A, Caruso, 

2001). Here we employ the concept of Pickering emulsions to synthesize core-

shell composite particles. Pickering emulsion polymerization is superior in several 

aspects: (1) no sophisticated instrumentation is needed; (2) a commercialized 

nanoparticle powder or solution can be used without further treatment; (3) the 
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synthesis can be completed in one-step; and (4) the produced particle dispersion is 

surfactant-free which makes it easier to purify and an excellent material for 

biological applications. Despite these advantages, efforts made to explore and 

utilize the Pickering approach have been scarce, although some related synthesis 

methods have been documented including miniemulsion polymerization (Bon, 

Colver, 2007;  Cauvin, Colver, Bon, 2005), dispersion polymerization (Schmid et 

al., 2007; Yang et al., 2008), inverse suspension polymerization (Duan et al., 

2009; Gao et al., 2009), and inverse emulsion polymerization (Voorn et al., 2006)  

stabilized by fine solid particles. It is worthwhile to note that the composite 

nanoparticle structure in this study is opposite to the often reported core-shell 

structure in which inorganic particles serve as the core and polymer serves as the 

shell (Caruso 2001; Bourgeat-Lami & Lang, 1998; Gu et al., 2004; Guo et al., 

2008; Nagao et al., 2008; Tianbin & Yangchuan, 2006). Here the polymer serves 

as the core and the inorganic particles serve as the shell. Such materials provide a 

new class of supramolecular building blocks and can “exhibit unusual, possibly 

unique, properties which cannot be obtained simply by co-mixing polymer and 

inorganic particles.” (Barthet et al., 1999) 

  In addition to nanoparticles, environmentally responsive materials have 

recently been subjects of great interest due to their versatile applications (Nayak 

& Leon, 2005). Such materials are sometimes termed ‘‘smart’’ since their 

properties allow them to react in a specific way to external stimuli. Hence, such 

‘‘smart’’ materials can be made responsive to various parameters, such as 

temperature, (Pelton, 2000; Hoshino et al., 1987) pH, (Jones & Lyon, 2000; 
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Dupin et al., 2006) light, (Nayak & Lyon, 2004), ionic strength (McPhee et al., 

2006), and magnetic fields (Zrinyi, 2000). Applications of these systems range 

from drug delivery (Das et al., 2006; Nayak et al., 2004; Soppinath et al., 2005), 

biosensing (Hu et al., 1998), chemical separation (Kawaguchi & Fujimoto, 1999), 

biomaterials (Sahiner et al., 2006; Bouillot & Vincent, 2000) to catalysis 

(Bergbreiter et al., 1998; Biffis et al., 2003; Lu et al., 2006; Lu & Mei 2006). 

Some of these systems are based on polymeric materials such as poly(N-

isopropylacrylamide) (PNIPAAm) or related copolymers (Nayak & Leon, 2005; 

Pelton, 2000).  “Smart” polymers typically respond by large changes triggered by 

small changes in environment. The “smart” polymers studied during the course of 

this dissertation usually undergo fast and reversible changes in the microstructure 

from a hydrophilic to a hydrophobic state that are in response to a stimulus in the 

environment.   This phenomenon is reversible, the system returning to its initial 

state when the trigger is removed. The driving force behind these transitions 

varies, with common stimuli including neutralization of charged groups by either 

a pH shift  or  the  addition  of an oppositely  charged  polymer,  changes  in  the 

efficiency  of the  hydrogen  bonding with  an increase in temperature or ionic 

strength, and collapse  of hydrogels  and  interpenetrating polymer networks. 

Even the latest among these have been the electric, magnetic, light or radiation 

induced reversible phase transitions. Such a change in the property of “smart” 

polymers has shown various applications in biological systems as will be detailed 

later on in the dissertation. In this study, N-isopropylacrylamide (NIPAAm) is 

incorporated as a co-monomer in order to impart temperature sensitivity to the 
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core-shell nanoparticles. In aqueous media, PNIPAAm exhibits a lower critical 

solution temperature (LCST) at about 32°C, which is close to the physiological 

temperature (Heskins & Guillet, 1968; Schild, 1992; Wu & Wang, 1998; Hellweg 

et al., 2004; Cho et al., 1997; Jones & Lyon, 2003; Dingenouts et al., 2001). 

Below the LCST, the polymer chains are soluble in water due to the formation of 

hydrogen bonds between the water molecules and the amide side chains. When 

the temperature increases, the polymer undergoes a volume phase transition. 

Water is expelled from the interior, thus causing a drastic decrease in volume 

above the LCST of the polymer. 

The main theme of this dissertation is to apply the concept of nanoparticle 

self-assembly in Pickering emulsions to synthesize organic-inorganic core-shell 

structured composite particles and understand the polymerization mechanisms. 

Furthermore, facile approaches have been developed to validate the 

environmental responsiveness of the core-shell composite particles and to 

engineer their physical properties.  Several applications of these composite 

particles are explored, for example, the polystyrene/PNIPAAm-silica 

nanoparticles have demonstrated efficiency in targeted drug delivery and cancer 

therapy.  

This dissertation is structured as follows. Chapter 2 offers the background 

of Pickering emulsions which are the basis of this dissertation. In Chapter 3, 

synthesis and characterization of core-shell composite particles via Pickering 

emulsion polymerizations and exploration of polymerization mechanisms are 

addressed. Chapter 4 focuses on the temperature responsiveness of the composite 
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nanoparticles and their application as a drug delivery vehicle. Chapter 5 

summarizes how to tune the transition temperature of the thermally responsive 

nanoparticles using methods during synthesis as well as post synthesis. Whereas, 

Chapter 6 details the development of pH responsive composite nanoparticles and 

the effort of changing the shell material from silica to gold and the challenges 

resolved during this process. The dissertation concludes with a summary and 

suggestions for future work, presented in Chapter 7. 
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Chapter 2 

BACKGROUND OF PICKERING EMULSIONS AND THEIR 

APPLICATIONS  

2.1 Introduction  

 The concepts of self-assembly at liquid-liquid interfaces and consequently 

Pickering emulsions can be extended to design environmentally sensitive 

nanoparticles. The adsorption of solid particles onto the interface between two 

immiscible liquids is a spontaneous process towards a lower total free energy 

configuration. Small molecule surfactants near the liquid interfaces tend to have 

continuous adsorption and desorption behaviors (Binks, 2002), in sharp contrast 

with most solid particles which attach to liquid interfaces irreversibly. The 

particle desorption energy quantifies how strongly the particles can be held at the 

interface. This desorption energy equals the negative value of the particle 

adsorption energy and can be expressed by the equation for spherical particles 

nk ; B H rozov, 2006; Horozov, Binks, Aveyard, & Clint, 2006) (Bi s, 2002 inks & o

ௗ௘ܩ∆ ൌ aଶγ୭୵ሺ1ߨ േ cos θሻଶ                                     (2.1) 
 

where a is the particle radius, γow is the oil-water interfacial tension, θ is the three-

phase contact angle measured through the water phase, and the sign inside the 

bracket is positive for desorption into or adsorption from oil and negative for 

desorption into or adsorption from water. The contact angle (θ) of colloidal 

particles determines the preferable position of particles at liquid interfaces (Binks, 
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2002). For a spherical colloidal particle with smooth surface at an oil-water 

e, according to Young’s equation,  interfac

cos ߠ ൌ ఊ೛೚ିఊ೛ೢ
ఊ೚ೢ

                                        (2.2) 
 

where γ is the interfacial tension of particle-oil (po), particle-water (pw), or oil-

water (ow) interface (Binks & Horozov, 2006).  

According to Equation 2.1, the desorption energy depends on the square of 

the particle radius, as plotted in Figure 2.1a taking θ = 90° and γow = 50 mN/m 

(Binks, 2002). For particles with intermediate hydrophobicity (θ = 90°) in the size 

range from several nanometers to several microns, the desorption energy is 

significantly higher than the thermal energy of several kT, so that particles are 

attached at the interface irreversibly (Binks, 2002). For extremely small particles 

(radius ≤ 1 nm), the detachment energy becomes comparable to the thermal 

energy (kT) and the particles might detach from the interface. The wettability of 

the particles is another important parameter in Equation 2.1, which determines 

how strongly the particles can be held at the interface. The particle is most 

strongly held at the interface for θ = 90°, when particles are equally wetted by 

both oil and water (γpo = γpw), and the strength falls rapidly on either side of 90° 

(Denkov, Ivanov, Kralchevsky, & Wasan, 1992). This is illustrated in Figure 2.1b, 

which shows the dependence of the energy required to remove a 10-nm spherical 

particle from the oil-water interface with an interfacial tension γow = 36 mN/m on 

the contact angle (Binks & Lumsdon, 2000c).  

 



 

Figure 2.1  

Variation of the energy (E) required to remove a spherical particle from a planar 

oil-water interface at 298 K with (a) the particle radius r and (b) the water 

contact angle θ. Adapted from (Binks, 2002) and (Binks & Lumsdon, 2000c) 

respectively. 

Solid particles self-assembled at liquid interfaces could function as 

surfactants to stabilize an emulsion. An emulsion is commonly defined as a 

mixture of one liquid phase dispersed in another immiscible liquid. Typically, 

emulsions are stabilized by emulsifying agents, such as amphiphilic small 
  8 



molecule surfactants or polymers. Solid particles were identified as another type 

of emulsifying agent since the pioneering studies by Ramsden in 1903 (Ramsden, 

1903) and Pickering in 1907 (Pickering, 1907). Such emulsions stabilized by solid 

particles are often referred to as Pickering emulsions, solid-stabilized emulsions, 

or particle-laden emulsions. Interfacial energy calculations show that the surface 

roughness may influence particle adsorption at the interface. Quantitatively, the 

surface area of a rough particle can be defined as r times larger than that of a 

spherical particle having a smooth surface (Y. Nonomura, Komura, & Tsujii, 

2005; Nonomura, Komura, & Tsujii, 2006). By plotting the normalized interfacial 

adsorption energy ΔGad/πa2γAB versus normalized immersion depth z/a for 

particles with various roughness at γAP/ γAB =0.4 and γBP/ γAB =0.5 (Figure 2.2), the 

immersion depth at minimum interfacial energy for particle adsorption is 

determined to be . So, the surface roughness makes 

hydrophilic (or hydrophobic) particles appear even more hydrophilic (or 

hydrophobic) and consequently the range of particle wettability suitable for 

interfacial adsorption becomes narrower (Nonomura et al., 2005; Nonomura et al., 

2006).  

arz )cos1(min θ−=
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Figure 2.2  

The plot of the normalized interfacial adsorption energy versus normalized 

immersion depth for particles with various roughnesses. The inset scheme 

illustrates a particle (P) adsorbing at the Liquid A-Liquid B interface at an 

immersion depth z. Adapted from (Nonomura et al., 2005). 

For non-spherical particles, the preferred particle orientation at the 

interface may be predictable based on interfacial free energy evaluations, as the 

orientation leading to a maximum interfacial energy reduction is preferred (Boker, 

He, Emrick, & Russell, 2007). The order of stability for prolate, spherical, and 

oblate nanoparticles equally wetted by the two immiscible phases at various 

orientations with respect to the liquid interface is shown in Figure 2.3 (Bresme & 

Oettel, 2007; Bresme & Faraudo, 2007; Faraudo & Bresme, 2003; Faraudo & 

Bresme, 2004). For example, the parallel orientation is preferred to the 

perpendicular orientation for tri-n-octylphosphine oxide (TOPO) covered CdSe 

nanorods (~8 nm in diameter, 39-40 nm in length) adsorbed at toluene-water 

interfaces, since the interfacial energy is lowered ~40 times more when the 
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nanorods are oriented parallel to the interface (He et al., 2007). Similar to 

elongated nanoparticles, micron-sized ellipsoids also prefer to stay at liquid 

interfaces in the orientation parallel to the liquid interface (Loudet, Alsayed, 

Zhang, & Yodh, 2005; Loudet, Yodh, & Pouligny, 2006; Madivala, Fransaer, & 

Vermant, 2009). The ellipsoid microparticle is equilibrated at a position with less 

volume in the water phase at the water-decane interface than at the water-air 

interface (Madivala et al., 2009). 

 

Figure 2.3  

Relative stability of non-spherical nanoparticles at fluid interfaces depending on 

the particle shape and orientation. Adapted from (Bresme & Oettel, 2007). 

Most previous studies focus on the emulsifier function of colloidal 

particles to stabilize a Pickering emulsion (Akartuna et al., 2008; Chen, Colver, & 

Bon, 2007; Madivala, Vandebril et al., 2009; Melle, Lask, & Fuller, 2005; 

Stancik, Kouhkan, & Fuller, 2004; Tsuji & Kawaguchi, 2008). In comparison, the 

self-assembled particle structures and the underlying particle interactions at 

liquid-liquid interfaces are much less understood, despite the importance in 

various applications. Pickering emulsions are known for their high stability which 

is a direct consequence of the large adsorption energy of colloidal particles at an 
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oil/water interface. This provides a large energy barrier against the particle 

desorption that usually accompanies droplet coalescence. For microparticles in a 

small amount of water with continuously reduced thickness due to evaporation, 

Pieranski (Pieranski, 1980) observed that the particles adsorb onto the air-water 

interface from the bulk only when the thickness of water phase decreases “very 

rapidly”. When depositing particles at planar liquid interfaces, an alcohol is 

usually used to aid particle adsorption onto the liquid interfaces, which would 

create strong convective fluxes and turbulence near the interface (Horozov et al., 

2006). In many Pickering emulsions, not all the particles adsorb onto the droplet 

interfaces and free particles dispersed in the liquid phase are usually observed 

(Tarimala & Dai, 2004). Particle wettability studies show that this energy is 

proportional to the square of the particle radius and is of the order of 107 kT for 

micrometer scale particles and interfacial tensions as shown in equation 2.3 

(Pieranski, 1980). 
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ଶ                                                       (2.3) 

This equation assumes the particles are spherical and the contact angle 

obeys the Young’s equation. The adsorption energy for bare particles is a function 

of the interfacial tensions between oil and water and the particle with both phases 

(γow, γpo, γpw). This means that larger particles are more strongly attached to the 

interface than nanoparticles and micrometer scale particles typically act as more 

efficient emulsifiers than nanoparticles. For droplet coalescence to take place, 

particles must desorb from the interface due to the decrease in the overall surface 

area. However, the high adsorption energy of Pickering emulsifiers prevents 
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particles from desorbing and effectively stabilizes droplets from coalescing 

together. Typically Pickering emulsions follow the empirical Bancroft rule where, 

the phase that initially contains the dispersed particles becomes the continuous 

phase in the emulsion. There may be exceptions to this rule, usually the preferred 

emulsion type is normally determined by particle wettability. For a contact angle 

measured through water (<90°), the particle mostly stays in the aqueous phase and 

an oil-in-water (o/w) emulsion forms. For a more hydrophobic particle, the 

contact angle being (>90°) a water-in-oil emulsion (w/o) forms. The “preferred” 

emulsion type is defined as the type of emulsion (o/w or w/o) that forms at a 1:1 

oil:water ratio, however some emulsion systems have the potential to 

catastrophically phase invert by increasing the content of the discontinuous phase. 

Previous studies by Binks and Lumsdon found that hydrophilic and hydrophobic 

silica stabilized oil-in-water (o/w) and water-in-oil (w/o) emulsions, respectively 

and each dispersed 70 volume% of the discontinuous phase in the emulsion. 

When the discontinuous phase was increased above this volume fraction, the 

emulsions catastrophically phase inverted (o/w becoming w/o, or vice versa), 

representing an “anti-Bancroft” emulsion. Charges on the particle result in 

complex particle-particle interactions that affect adsorption behavior at the droplet 

interface. Weak particle attractions could cause an enrichment of particles on the 

droplet interface, enhancing emulsion stability. However, too large of an 

attraction would result in particle clusters that may destabilize the droplets. 

Particles also exhibit long range repulsive forces due to the dipole moment they 

adopt upon adsorption to the oil/water interface. These particle interactions are 
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expected to influence the packing of particles at the interface and particle 

adsorption energy, and thus the interfacial response to bending and dilatational 

forces. Pre-flocculated particles before emulsification can enhance emulsion 

stability, however this behavior is system dependent. Dense particle clusters can 

form a protective network around droplets preventing droplet coalescence. 

   The structure of self-assembled microparticles at the emulsion droplet 

interface is rich, depending on the particle concentration and chemistry (A rough 

schematic is shown in Figure 2.4a). Dai and coworkers (Dai et al., 2008; Tarimala 

& Dai, 2004; Tarimala et al., 2006) reported the rich morphology of polystyrene 

microparticles when they self-assemble onto poly(dimethylsiloxane) (PDMS, 5 

cSt)-in-water emulsion interfaces, as shown in Figure 2.4. For single-species 

sulfate-treated polystyrene (S-PS) particles of 1.1 μm (bulk concentration of 

0.3%), the particles self-assemble at the emulsion interface, but do not fully cover 

it, although there is excess number of particles in the water phase (Figure 2.4b). 

The partial coverage does not seem to be dynamically affected by time since there 

is no noticeable change in the interfacial particle concentration during a three-day 

sample aging. At the oil–water interface, the particles form small patches with 

local hexagonal order; these domains are separated by other particle-free domains. 

The type of aggregation is likely to be the diffusion limited cluster aggregation 

(DLCA) (Tarimala & Dai, 2004).  

Dai and coworkers also reported the self-assembly of particles with 

different size and hydrophobicity on the same emulsion droplet interface 

(Tarimala & Dai, 2004). Figure 2.4c shows a mixture of the S-PS particles with 
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diameters of 1.1 and 4.0 μm that are simultaneously assembled at the Pickering 

emulsion droplet interface. Similar observations have been made on systems 

involving mixtures of 0.2 and 1.1 μm S-PS particles, although the images are not 

shown. Figure 2.4d shows the sequential scanning result of a three-dimensional 

fluorescent image of a PDMS (5 cSt)-in-water Pickering emulsion droplet 

containing S-PS (sulfate-treated polystyrene, relatively hydrophobic, in green, 

excited by the argon laser) and C-PS (carboxylate-treated polystyrene, relatively 

hydrophilic, in red, excited by the He–Ne laser) particles of 1.1 μm, which is the 

result of assembly from equal bulk concentration of 0.15% by particles. It is 

hypothesized that the particles form a semi-double-layer configuration at the oil-

water interface, in that the distance from the particle center positions to the liquid 

interface does not equal for different types of particles. To maintain the three 

phase contact angle determined by particle surface and liquid phase properties, 

hydrophilic C-PS particles may prefer the position with more particle volume in 

the aqueous phase, while hydrophobic S-PS particles may be positioned towards 

the oil phase.  



 

 

Figure 2.4 

Confocal laser scanning microscope images showing the rich morphology of 

microparticles at PDMS-in-water Pickering emulsion interfaces. The solid 

particles are S-PS except in (d) which is a mixture of S-PS (in green) and C-PS 

particles (in red). Adapted from (Dai et al., 2008); (a) is a schematic 

representation of the other figures. 

Pickering emulsions are often encountered in various industrial processes, 

consumer products, and research and development (R&D) challenges. For 

example, in the chemical flooding processes in tertiary (enhanced) oil recovery, 

solid particles in the oil well, such as clays, scales and corrosion products, can 

self-assemble at the oil–water interfaces (Kokal, 2005). Emulsification is 
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necessary and beneficial in the extraction process, and demulsification to separate 

the water and surface active molecules or solids from the oil is required after the 

extraction (Sullivan & Kilpatrick, 2002; Yan & Masliyah, 1995a; Yan & 

Masliyah, 1995b; Yan & Masliyah, 1996; Yan, Kurbis, & Masliyah, 1997; Yan, 

Gray, & Masliyah, 2001). In the cosmetics industry, emulsions stabilized by metal 

oxide particles, such as titanium oxides, are potential attractive alternatives to 

replace conventional surfactants, leading to new skincare and sunscreen 

formulations (Stiller et al., 2004). In many daily food emulsions, the emulsion 

stabilization is provided by solid particles (Dickinson, 2010; McClements, 2004; 

Rousseau, 2000), such as egg yolk particles in mayonnaise (Kim et al., 2009; 

Kiosseoglou, 2003; Santipanichwong & Suphantharika, 2009) and fat crystals in 

margarine (Garti, Binyamin, & Aserin, 1998). Recently, using Pickering emulsion 

droplets as delivery vehicles for controlled release of therapeutic substances in 

pharmaceutical formulations has received increasing attention (Frelichowska et 

al., 2009; Frelichowska, Bolzinger, Pelletier, Valour, & Chevalier, 2009; Simovic 

& Prestidge, 2007). For instance, Frelichowska and coworkers demonstrated the 

topical delivery of lipophilic drugs using oil-in-water (o/w) Pickering emulsion 

droplets (Frelichowska, Bolzinger, Pelletier et al., 2009) and hydrophilic drugs 

using water-in-oil (w/o) Pickering emulsion droplets (Frelichowska et al., 2009).  

Solid-stabilized emulsions, also have the ability to provide a simple and 

convenient experimental template to meet various requirements, such as changing 

property of solid particles, oil phase viscosity and interfacial curvature. The 

confocal laser scanning microscope (CLSM) is a useful and convenient tool to 
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investigate the dynamics of particles at emulsions interfaces. Pickering emulsions 

have been employed as an experimental template and confocal laser scanning 

microscopy as a tool to study the dynamics of solid particles at liquid-liquid 

interfaces by Dai and coworkers. More specifically, the diffusion behavior of 

colloidal particles at oil-water interfaces were studied using Pickering emulsions 

as templates. The solid particles are sulfate modified polystyrene microparticles 

with diameters of 1.1 µm and the oil phase as polydimethylsiloxane oil (PDMS) 

or octamethyltrisiloxane with different viscosities (Wu and Dai, 2006).  

The two most interesting characteristics for Pickering emulsions are the 

excellent long-term stability and the unique structure. First, emulsion stability is 

particularly enhanced by the particle-laden interfaces compared to using 

surfactant molecules as the stabilizer. The densely-packed particles at the 

interface could serve as a mechanical barrier to droplet coalescence (Ashby & 

Binks, 2000), and Ostwald ripening can be slowed down or arrested because of 

the high desorption energy of the particles and capillary effects (Ashby & Binks, 

2000; Tcholakova, Denkov, & Lips, 2008).  

The unique structure of Pickering emulsions open a new avenue to 

engineer advanced materials, such as core-shell structured composite particles 

(Fortuna et al., 2009; Li et al., 2008), colloidosomes (Cayre et al., 2004), and 

microcapsules (Bon & Chen, 2007). For example, Weitz and coworkers 

(Dinsmore et al., 2002; Hsu et al., 2005) prepared hollow particles with permeable 

shells based on the self-assembly of colloidal particles at emulsion droplet 

interfaces, as shown in Figure 2.5. The shell is a monolayer of colloidal particles 



with tunable properties, such as the permeability, elastic moduli, and breaking 

forces. The hollow particles have potential applications in encapsulation and 

controlled release of active ingredients such as drugs, vitamins, and fragrances. 

Wu and coworkers (Wu et al., 2009) synthesized magnetic hollow particles with a 

permeable shell of silica and Fe3O4 particles with the potential application as a 

magnetic adsorbent for wastewater treatments. The synthesis is via interfacial sol-

gel reactions of silica at Fe3O4 particle-laden interfaces in Pickering emulsions. 

Pickering emulsions also offer a new approach to synthesize core-shell structured 

composite particles as detailed in Chapter 3. 

 

Figure 2.5 

(a) Scanning electron microscope image of a dried, 10-µm-diameter colloidosome 

composed of 0.9-µm-diameter polystyrene spheres. (b and c) Close-ups of (a) and 

(b), respectively. The arrow points to one of the 0.15-µm holes that define the 

permeability. Adapted from (Dinsmore et al., 2002). 

 

  19 



  20 

Another recent and exciting development in the field of Pickering 

emulsions has been the study of particle self-assembly in ionic liquid-water 

emulsions (Ma & Dai, 2010). Ionic liquids are a unique collection of liquid 

materials composed solely of ions. Under ambient conditions, room temperature 

ionic liquids (RTILs) stay as liquids, whereas conventional salts are in the 

crystalline state. This is because, in RTILs, the Coulombic attractions of ion pairs 

are damped due to the large ion size and the lattice-packing is frustrated due to the 

sterical mismatch of irregular shaped ions (Hayes, Warr, & Atkin, 2010). Ionic 

liquids may be either composed of an organic cation and an inorganic anion or 

completely inorganic (Ohno, 2005). The organic cations can be either aprotic or 

protic (Angell, Byrne, & Belieres, 2007; Freemantle, 2010; Ohno, 2005). The 

protic cations are formed by the transfer of a proton from a Brønsted acid to a 

Brønsted base, which lead to the assembly of H-bonded networks mimicking 

water (Fumino, Wulf, & Ludwig, 2009; Greaves, Weerawardena, Fong, 

Krodkiewska, & Drummond, 2006; Greaves & Drummond, 2008b; Hayes et al., 

2010; Ohno, 2005). Ionic liquids, especially RTILs, have many unique properties, 

such as the negligible volatility, non-flammability, high thermal and chemical 

stability, high ionic conductivity, and large electrochemical window (Zhang, Sun, 

He, Lu, & Zhang, 2006). In addition, the chemical and physical properties of ionic 

liquids can be custom tailored via the choice of cations and anions. They have 

been given attractive nicknames such as “green solvents” and “designer solvents” 

(Freemantle, 2010), ionic liquids have broad applications. For example, ionic 

liquids have been used as solvents in polymerizations (Kubisa, 2009; Lu, Yan, & 
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Texter, 2009), inorganic syntheses (Alammar & Mudring, 2009; Khare et al., 

2010), enzymatic reactions (Yang & Pan, 2005), and extractions (Chapeaux et al., 

2008; Huddleston, Willauer, Swatloski, Visser, & Rogers, 1998; Poole & Poole, 

2010; Visser et al., 2001). They have also been employed as advanced materials 

including ionic lubricants (Bermudez, Jimenez, Sanes, & Carrion, 2009; Zhou, 

Liang, & Liu, 2009) and ionic gels (Lu et al., 2009; Torimoto, Tsuda, Okazaki, & 

Kuwabata, 2010; Ueki & Watanabe, 2008).  

Ionic liquids can be selected or designed to be immiscible and form liquid 

interfaces with an organic solvent or water (Freemantle, 2010). Common ionic 

liquids which have been used in biphasic liquid systems include aprotic 

imidazolium-based ionic liquids with hexafluorophosphate ([PF6]), 

tetrafluoroborate ([BF4]), bis(trifluoromethylsulfonyl)imide ([NTf2]), and chloride 

anions, as well as protic ionic liquid ethylammonium nitrate (EAN) (Binks, Dyab, 

& Fletcher, 2003; Greaves & Drummond, 2008a; Qiu & Texter, 2008). The 

miscibility with water or organic solvents is primarily determined by the anions, 

although the cations may also affect the hydrophobicity and hydrogen bonding 

ability (Huddleston et al., 1998; Welton, 1999). For example, 1-butyl-3-

methylimidazolium tetrafluoroborate ([BMIM][BF4]) and 1-ethyl-3-

methylimidazolium chloride ([EMIM]Cl) are miscible with water and immiscible 

with the oils hexadecane, toluene, and Miglyol 810N (a medium chain length 

triglyceride with 8-10 carbons in each chain supplied by S. Black, UK) (Binks et 

al., 2003); [BMIM][NTf2] and [EMIM][NTf2] are immiscible with both water and 

the above three oils (Binks et al., 2003); and 1-butyl-3-methylimidazolium 
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hexafluorophosphate ([BMIM][PF6]) is immiscible with water (Wong, Chen, 

Chang, & Chou, 2002). 

In recent years, ionic liquid based microemulsions have received 

significant attention (Greaves & Drummond, 2008a; Qiu & Texter, 2008). Such 

microemulsions contain two liquid phases, at least one of which is ionic liquids, 

and are stabilized by small molecule surfactants. Nonionic surfactants Triton X-

100 (TX-100) (Behera, Malek, & Pandey, 2009; Cheng et al., 2007; Gao et al., 

2004; Gao, Zhang et al., 2006; Gao et al., 2005; Gao et al., 2007), Tween 20 (Gao 

et al., 2006), and Tween 80 (Zheng & Eli, 2009) have been demonstrated to 

effectively stabilize microemulsions of ionic liquids, such as [BMIM][PF6]  and 

[BMIM][BF4], and water or other organic solvents (Greaves & Drummond, 

2008a). In comparison to the microemulsions, which are often considered 

thermodynamically stable, very few studies on thermodynamically unstable but 

kinetically stable ionic liquid based emulsions have been reported, especially for 

those stabilized by solid particles. In the pioneering work by Binks and coworkers 

(Binks et al., 2003; Binks, Dyab, & Fletcher, 2007), a series of stable ionic liquid 

emulsions stabilized solely by fumed silica nanoparticles were successfully 

prepared and the emulsion stability and phase inversions were investigated (Binks 

et al., 2003; Binks, Dyab, & Fletcher, 2007). However, it is still unclear what the 

particle self-assembled structure at ionic liquid-water interfaces are and how the 

particles partition in the dispersed and continuous phases. These two questions are 

important in various fundamental researches and applications, such as in the 

active debate on the complicated interactions between interfacial particles 
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(McGorty et al., 2010; Oettel & Dietrich, 2008) and in the synthesis of novel 

materials using Pickering emulsion droplets as templates (Bon & Chen, 2007; 

Cayre et al., 2004; Fortuna et al., 2009; Li et al., 2008). 

Comparisons are drawn between ionic liquid-in-water Pickering emulsions 

and oil-in-water Pickering emulsions containing the same particles. First, 

aggregates of fully covered droplets were frequently observed in ionic liquid-in-

water emulsions containing S-PS/A-PS binary particles, whereas in PDMS oil-in-

water emulsions containing the same particles, there were hardly any fully 

covered Pickering emulsion droplets. The absence of fully covered emulsion 

droplets were also noticed in other PDMS-water emulsion systems including S-

PS, C-PS, and AS-PS particles, as reported in previous publications (Dai et al., 

2008; Tarimala & Dai, 2004; Tarimala et al., 2006). The contrast seems to suggest 

that the S-PS/A-PS particles have a stronger affinity to the ionic liquid-water 

interfaces than the PDMS-water interfaces, although free particles not attached to 

interfaces are still present. The distinction between the ionic nature of the ionic 

liquid and the molecular nature of PDMS should be at least one of the important 

factors, if not the primary factor, in determining the affinity of particles to liquid 

interfaces.  

Second, particles form aggregates instead of colloidal lattices at ionic 

liquid-water droplet interfaces despite the surface packing densities being high 

(Figure 2.6) or low (Figure 2.7). Long-range ordered non-close packed colloidal 

lattices observed in oil-in-water Pickering emulsions, due to the enhanced 

electrostatic repulsion through the oil phase (Aveyard, Clint, Nees, & Paunov, 
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2000; Aveyard et al., 2002; Leunissen, Zwanikken et al., 2007), were not 

observed at ionic liquid-water emulsion interfaces. Obviously, the enhanced 

electrostatic interactions through the oil phase due to the residual charge at 

particle-oil interface are no longer valid for particles at ionic liquid-water 

interfaces. The ionic strength of [BMIM][PF6] is calculated to be 4.86 M. When 

the PDMS is substituted by [BMIM][PF6], the electrostatic repulsion through the 

ionic liquid phase between charged colloidal particles is screened beyond the 

Debye length, which is normally in the range of several nanometers (Min et al., 

2009), and thus eliminates long-range lattice structure formation at the 

[BMIM][PF6]-water interfaces. This is consistent with the melting of the colloidal 

lattice with large lattice spacing at oil-water interfaces with increasing electrolyte 

concentration in the oil phase reported previously (Leunissen, Zwanikken et al., 

2007), which also supports the importance and necessity of Coulomb repulsion 

through the oil phase in the lattice structure formation. The formation of particle 

aggregates at partially covered droplets might be driven by attractive interparticle 

forces although the origin of the attraction is still debatable. An early study on 

particle monolayers at air-water interfaces attributes the driving force for particle 

aggregation to the van der Waals force (Robinson & Earnshaw, 1992). 
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Figure 2.6  

Confocal microscope images (overlays of depth-series images) of [BMIM][PF6]-

in-water emulsion droplets with 0.004 g (a) S-PS/A-PS and (b) S-PS/AS-PS binary 

particles. The scale bars represent 10 µm. 

 

 

 

Figure 2.7  

A representative confocal microscope image (a) and the corresponding 

transmitted light image (b) of a [BMIM][PF6] droplet in water with a low 

coverage of A-PS particles. 
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2.2 Important Factors in Pickering Emulsion Formation and Stability  

A brief introduction about the relevant factors involved in forming and 

stabilizing a Pickering emulsion is presented, keeping in mind these challenges 

were studied before embarking on the synthesis route. 

2.2.1 Particle Type 

Pickering emulsions may be stabilized by solid particles of various 

chemical compositions. The most commonly studied particle stabilizers include 

silica particles, clay minerals, and polystyrene latex particles. Silica particles with 

various degrees of silanization, including amorphous fumed silica powders and 

silica colloidal particle dispersions, have been used to investigate various aspects 

of oil-water emulsification such as phase inversion (Binks & Lumsdon, 2000a; 

Binks & Rodrigues, 2003), oil phase polarity (Binks & Lumsdon, 2000b; Binks & 

Clint, 2002), aqueous phase composition (Binks & Lumsdon, 2000b), and 

temperature-dependent stability (Binks & Whitby, 2003). The clay particles form 

“card-house structures” due to their plate shape and unique distribution of surface 

charging sites, which add complexities to the stability and phase transition 

properties of Pickering emulsions (Ashby & Binks, 2000; Li et al., 2009; 

Nonomura & Kobayashi, 2009). Polystyrene latex particles can be surface 

modified by various functional groups, such as sulfate (Binks & Lumsdon, 2001; 

Golemanov, Tcholakova, Kralchevsky, Ananthapadmanabhan & Lips, 2006; 

Tarimala & Dai, 2004), aldehyde-sulfate (Binks & Lumsdon, 2001), or 

carboxylate groups (Tarimala & Dai, 2004), to tune the surface wettability. Using 

polystyrene particles with different surface functional groups labeled with 
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different fluorescent dyes, Dai and coworkers studied the simultaneous self-

assembly of particles with different wettability to emulsion droplet interfaces, 

investigated the dynamics of particles, and developed microrheology at liquid-

liquid interfaces (Dai et al., 2008; Tarimala & Dai, 2004; Tarimala et al., 2006; 

Wu, Song & Dai, 2009; Wu & Dai, 2006; Wu & Dai, 2007).  

2.2.2 Particle Concentration 

Increasing particle concentration has been shown to enhance the stability 

of a Pickering emulsion by reducing the droplet size or increasing the continuous 

phase viscosity (Binks & Whitby, 2004; Yang et al., 2006; Yang, Niu, Lan & Sun, 

2007). The inverse of droplet size increases linearly with the particle mass, as 

reported by Gautier and coworkers, for 145 nm silica particle-hexadecane-water 

systems (Gautier et al., 2007), which is roughly consistent with Binks and 

Whitby’s study on 25 nm silica particle-poly(dimethylsiloxane)-water systems at 

low particle concentrations (Binks & Whitby, 2004). At higher silica particle 

concentrations, the droplet size remains constant and the continuous phase 

viscosity increases with particle concentration, which enhances the emulsion 

stability (Binks & Whitby, 2004). Significant continuous phase viscosity increase, 

up to gelation, has been reported and attributed to the formation of three-

dimensional particle networks in the particle-concentrated continuous phase 

(Abend, Bonnke, Gutschner & Lagaly, 1998; Binks & Lumsdon, 2000a; 

Neuhausler, Abend, Jacobsen & Lagaly, 1999; Yang et al., 2006; Yang et al., 

2007). Although the high continuous phase viscosity is beneficial to the emulsion 

stability, it may cause problems in the production and applications of the 
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emulsion, and thus a proper particle concentration needs to be selected with 

caution. 

Increasing particle concentration may also induce phase inversions in 

some special cases. One example is the phase inversion from o/w to w/o with 

increasing particle concentration in silicone oil-water emulsions stabilized by 

silica particles with intermediate wettability initially dispersed in the oil phase 

(Binks, Philip & Rodrigues, 2005). This might be explained by a wettability 

change at increasing particle concentration in the oil phase. Since the particles 

form aggregates in the oil phase, the increase in particle concentration promoted 

more hydrogen bond formation between silanol groups at particle surfaces, which 

leads to the decrease of effective surface silanol group content and the 

corresponding increase of hydrophobicity (Binks et al., 2005).  

Although the effect of particle concentration to the emulsion stability and 

phase transition has been studied, the determination of a proper particle 

concentration to stabilize an emulsion remains a challenge. Theoretically, the 

amount of particles needed to stabilize an emulsion can be easily calculated if the 

total volume of the dispersed phase and the droplet diameter are known, assuming 

the droplets are fully covered and all the particles are attached at the interface. 

However, the real problems are much more complicated, since the above 

assumptions are not always true. First, emulsion droplets can be stabilized by 

either fully covered or partially covered particle layer at the interface. Binks and 

Whitby (Binks & Whitby, 2004) proposed that droplet stability requires a close-

packed layer of particles, supported by scanning electron microscope images 
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showing continuous, densely packed layers of silica particles at the 

poly(dimethylsiloxane)-water interface.  

The emulsion stability is likely explained by the static steric hindrance 

mechanism. However, Vignati and coworkers (Vignati, Piazza & Lockhart, 2003) 

discovered that emulsions can be stabilized with only approximately 5% particle 

coverage at the interface. A closer observation on the self-assembled particle 

structure at the contact region of two droplets reveals a monolayer structure, 

which suggests a single layer of particles is bridging two droplet interfaces to 

prevent film drainage. Second, free particles dispersed in the continuous phase are 

frequently observed in Pickering emulsions (Tarimala & Dai, 2004). The degree 

of interfacial particle attachment, defined by the weight percentage of interfacial 

particles in all the particles, is related to the particle wettability (Horozov & 

Binks, 2006), which is difficult to accurately determine especially for colloidal 

particles. The partial droplet coverage and the fractional interfacial adsorption 

should be taken into account when estimating the proper particle concentration in 

a Pickering emulsion system. 

2.2.3 Particle Wettability 

The intrinsic particle wettability is largely determined by the surface 

functional groups. In most cases, hydrophilic particles tend to stabilize o/w type 

Pickering emulsions and hydrophobic particles tend to stabilize w/o type 

Pickering emulsions (Midmore, 1998; Tambe & Sharma, 1994), as the positions 

of particles at the interface being more protruded into the water or oil phase. For 

example, in silicone oil-water systems, the emulsion type is w/o when stabilized 
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by highly hydrophobic silica particles, but o/w when stabilized by less 

hydrophobic silica particles (Binks et al., 2005). However, the opposite scenario 

is observed in triglyceride oil-water systems (Binks & Rodrigues, 2003). When a 

mixture of hydrophobic and hydrophilic particles is used as the stabilizer, 

transitional phase inversion in either direction is demonstrated by changing the 

ratio of hydrophobic and hydrophilic particles (Binks & Lumsdon, 2000d). The 

transitional phase inversion is induced by changing the effective wettability of 

particle stabilizers, analogous to changing the system hydrophile-lipophile 

balance (HLB) in conventional emulsions while keeping the volume ratio of the 

two liquid phases constant (Binks & Lumsdon, 2000d). This is consistent with 

Dai and coworkers’ microscopic observation that both hydrophobic particles and 

hydrophilic particles can simultaneously self-assemble onto the same droplet 

interface (Tarimala & Dai, 2004).  

The effective particle wettability can be influenced by the initial location 

of the particle due to contact angle hysteresis. In emulsions stabilized by silica 

particles with intermediate wettability, catastrophic inversion induced by 

increasing the fraction of the dispersed phase is dependent on the phase in which 

the particles are initially dispersed (Binks & Lumsdon, 2000b; Binks & 

Rodrigues, 2003). During the transition from w/o to o/w or w/o/w with increasing 

water phase fraction, the water phase fraction at inversion was found to be below 

0.5 for particles starting in water and above 0.5 for particles starting in oil. At 

water phase fraction of 0.5, particles with intermediate hydrophobicity prefer to 

stabilize emulsions with the continuous phase being the phase in which the 
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particles were initially dispersed, possibly due to the contact angle hysteresis 

(Binks & Lumsdon, 2000b; Binks & Rodrigues, 2003). For particles entering the 

interface from the oil phase, an advancing water contact angle is preferred, while 

for particles entering from the water phase, a receding water contact angle is 

preferred. The advancing contact angle is normally greater than the receding 

contact angle, which renders the particles to be more hydrophobic and prefer w/o 

emulsions when starting from the oil phase (Binks & Rodrigues, 2003). The 

effective particle wettability may also be tuned by the surrounding liquid phases, 

such as the adsorption of surfactants or polar species onto the particle surface or 

the effect of aqueous phase pH on the surface group dissociation. These factors 

will be discussed in the following sections. 

2.2.4 Presence of Surfactants 

The stability of Pickering emulsions may be influenced by the addition of 

surfactants. Through systematic investigations using hydrophilic silica particles 

with nonionic surfactants (Binks, Desforges & Duff, 2007), negatively charged 

silica particles with cationic surfactants (Binks, Rodrigues & Frith, 2007), and 

positively charged silica particles with anionic surfactants (Binks & Rodrigues, 

2007), Binks and coworkers identified the competition of surfactant adsorption on 

the particle surface or the liquid-liquid interface and found that the particle 

flocculation caused by surfactant adsorption at silica colloidal particle surfaces 

enhances emulsion stability. Different from Binks’ approach of mixing the 

surfactant with particles before emulsification, Whitby and coworkers (Whitby, 
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Fornasiero & Ralston, 2009) diluted the prepared particle-stabilized emulsion in a 

surfactant and salt solution.  

At surfactant concentrations below the critical micelle concentration, 

adsorption of surfactants onto the fumed partially hydrophobised silica is not 

significant and the emulsion stability is not affected by the presence of 

surfactants. Above the critical micelle concentration, the surfactant destabilizes 

the emulsion by causing rapid creaming and flocculation of drops. The presence 

of surfactants may also affect the phase inversion behavior of emulsions. Binks 

and Rodrigues (Binks & Rodrigues, 2009) reported the double inversion of silica 

particle stabilized emulsions induced by double-chain cationic surfactants. The 

first inversion is due to the adsorption of double-chain cationic surfactants on 

particle surface in a monolayer which increases hydrophobicity and reduces the 

negative surface charge.  

Further adsorption of the surfactants on particle surfaces makes the 

particles more hydrophilic and positively charged by forming a surfactant bilayer. 

The combined effect of surfactant adsorption on both particle surfaces and droplet 

interfaces triggers the second inversion. On the contrary, Nonomura and 

Kobayashi (Nonomura & Kobayashi, 2009) reported the hindering effect of an oil 

soluble silicone surfactant (polyoxyethylene-methylpolysiloxane copolymer, KF-

6015) to the phase inversion of water/silicone oil emulsion stabilized by plate-

shaped clay particles from w/o state to o/w state with the increase of water phase 

fraction. In the presence of surfactants, the affinity of the particles to the oil phase 

is tuned too high for phase inversion.  
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2.2.5 Liquid Phase Polarity 

The polarities of the two immiscible phases are important in determining 

the preferred position of particles at the interface and the emulsion type. For 

emulsions composed of water and oils of various polarities, the particle contact 

angle measured from the aqueous phase increases as the liquid-liquid interfacial 

tension decreases (Binks & Lumsdon, 2000b; Binks & Clint, 2002). At polar oil 

(ester and alcohols)-water interfaces, particles of intermediate wettability appear 

relatively hydrophobic and prefer to stabilize w/o emulsions. In comparison, at 

non-polar oil (alkanes)-water interfaces, particles of intermediate wettability 

appear relatively hydrophilic and prefer to stabilize o/w emulsions (Binks & 

Lumsdon, 2000b).  

As illustrated in Figure 2.8, the volume fraction of water at emulsion 

phase inversion (ϕw) depends on the work of adhesion of the two liquid phases 

(Wa = γpo + γpw - γow), which increases as the polarity of the oil increases. The oil 

phase of the emulsions shown in Figure 2.8 (with Wa values in the brackets, in the 

unit of mJ/m2) are eugenol (99.3), undecan-1-ol (90.9), cineole (83.2), methyl 

myristate (76.2), isopropyl myristate (71.1), toluene (65.0), 50 cSt 

poly(dimethylsiloxane) (54.9), 0.65 cSt poly(dimethylsiloxane) (49.2), 

cyclohexane (45.1), dodecane (44.4), heptanes (41.0), and perfluoroheptane 

(28.0). Except for the perfluoroheptane system (Wa = 28.0 mJ/m2), the phase 

inversion occurs at higher volume fraction of water with increasing Wa (or oil 

polarity), until above Wa = 72 mJ/m2, when the oil has very high polarity, 

emulsion remains w/o at all ϕw. Furthermore, the addition of polar oils to the non-



polar oil phase of a silica particle stabilized emulsion, up to a critical polar/non-

polar oil ratio, makes the hydrophilic silica particles appear more hydrophobic 

and improves the emulsion stability through adsorption of the polar species on 

silica surfaces via hydrogen bonding (Binks & Whitby, 2005). 

 

Figure 2.8  

Volume fraction of water at inversion of emulsions vs. work of adhesion between 

oil and water for oil-water emulsion systems stabilized by partially hydrophobic 

SLM 081 silica particles. Arrows indicate that emulsions remain w/o up to at least 

ϕw = 0.95. Adapted from (Binks & Lumsdon, 2000b). 

2.2.6 Aqueous Phase pH 

The aqueous phase pH tunes the particle wettability and surface charge 

which influences the emulsion stability. For emulsions stabilized by silica or clay 

particles, with the increase of aqueous phase pH, emulsions initially being w/o 

experience a transitional phase inversion to o/w emulsions (Binks & Lumsdon, 

2000b) and emulsions originally being o/w are destabilized (Yan & Masliyah, 
  34 
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1996; Yan et al., 1997; Yan & Masliyah, 1996). A possible explanation is that, in 

the high pH environment, uncharged silanol groups at particle surface dissociate 

to negatively charged SiO- groups and thus make the particles more hydrophilic 

(Binks & Lumsdon, 2000b). In the case of transitional phase inversion, adjusting 

aqueous phase pH provides an alternative way to change the system hydrophile-

lipophile balance (HLB) other than adding surfactants (Binks & Lumsdon, 

2000b). In the case of destabilization, important applications can be found in oil 

recovery aiming to demulsify the crude oil in water emulsions after extraction and 

obtain a higher percentage of recovery (Yan et al., 1997). It is worthwhile to note 

that, for acidic pH, although the particles have less negative surface charges, silica 

particles have been shown not to coagulate, even at a NaCl concentration of 5 M 

below pH of 5, which excludes the contribution of coagulation to the higher 

emulsion stability (Binks & Lumsdon, 1999; Simovic & Prestidge, 2003). This 

non-DLVO colloid stability behavior is attributed to particle hydration; the 

coagulation is prevented by a water layer formed at the particle surface through 

forming hydrogen bonding with silanol groups (Allen & Matijevi, 1969; Abend et 

al., 1998; Allen & Matijevi, 1970; Simovic & Prestidge, 2003). Different from 

silica or clay particles, plate-like layered double hydroxides (LDHs) particles are 

positively charged and the surface charge density decrease with increasing pH 

(Yang et al., 2007). Losing part of the surface charge, LDHs particles have a 

stronger tendency to aggregate and adsorb at liquid interfaces to stabilize the 

emulsion, except that, at very high pH (pH = 12.47), particles aggregate into large 

flocculates and become sediments instead of adsorbing at the oil-water interface. 
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For emulsions stabilized by LDHs particles, the stability of o/w emulsions to 

coalescence and creaming improves with increasing pH up to pH = 11.98 (Yang 

et al., 2007).  

2.2.7 Ionic Strength 

The main effect of electrolytes in the aqueous phase is to screen the 

particle charge, which would lead to particle coagulation. Weak flocculation 

facilitates particle adsorption at liquid interfaces and improves emulsion stability, 

but demulsification might occur when the flocculation extent is too high (Aveyard 

et al., 2003). This is illustrated by Binks and coworkers in a fumed silica 

stabilized emulsion with salt LaCl3 (Binks & Lumsdon, 1999), as shown in Figure 

3.2. At low pH, emulsions are unstable as the particles are stabilized from 

coagulation. At high pH, with increasing salt concentration, the emulsion 

becomes more stable as particles start to coagulate, but demulsifies due to 

extensive coagulation at even higher salt concentration. Furthermore, Yang and 

coworkers reported the effect of NaCl salt in promoting particle adsorption at 

interfaces in a liquid paraffin-in-water  emulsion stabilized by plate-like layered 

double hydroxides (LDHs) particles (Yang et al., 2006). The enhanced particle 

adsorption is supported by the experimental observation that, in the particle 

concentration range of 2 to 4 wt% in water, the aqueous phase separated from the 

emulsion phase changes from aqueous dispersion of particles to clear aqueous 

phase as the salt concentration is increased to 0.1 M.  

 

 



 

 

Figure 2.9  

Stability to creaming (open points, left hand ordinate) and coalescence (filled 

points, right hand ordinate) after 30 min of 20 vol% toluene-in-water emulsions 

stabilised by 0.5 wt.% Aerosil 200 as a function of LaCl3 concentration. (a) pH 2, 

(b) pH 10. Adapted from (B. P. Binks & Lumsdon, 1999). 
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2.2.8 Liquid Phase Viscosity 

Liquid phase viscosities may affect emulsion formation during the process 

of particle attaching to the interface. Fournier and workers (Fournier, Fradette & 

Tanguy, 2009) studied the effect of dispersed phase viscosity on Pickering 

emulsions using a series of silicone oils of varying viscosities dispersed in 

distilled water stabilized by fine iron powders. Experimental results show that the 

emulsified oil volume fraction decreases with the increasing of oil phase 

viscosity, which might be explained by the increased resistance to particle 

penetration across the interface during the particle attachment at the interface. The 

resistance increases with the oil viscosity and becomes a barrier at an o/w 

viscosity limiting ratio of ~1250-1400, above which emulsions could not be 

generated with the specific oil-water mixing ratio and procedure in their 

experiments. This limit is proposed to be “governed by equilibrium between the 

anchoring time needed for the particle to attach itself at the interface and the shear 

forces in the fluid that can remove the particle from the interface.” (Fournier et 

al., 2009) However, higher continuous phase viscosity improves the emulsion 

stability, as discussed earlier, when excess particles increase the continuous phase 

viscosity at increasing particle concentration. 

2.2.9 Particle Shape and Surface Roughness 

Although spherical particles with relatively smooth surface have been 

employed in most of the studies for simplicity, non-spherical particles and rough 

particles are present in many industrial processes. The emulsifying power of non-

spherical particles has been shown to be stronger than spherical particles. 



Madivala and coworkers (Madivala, Vandebril, Fransaer & Vermant, 2009) 

reported that non-spherical particles with an aspect ratio (AR) above the critical 

value 4.4 for 1 wt% hematite particles in decane-water systems can function as 

emulsifiers (Figure 2.10d-f), while spherical or lower aspect ratio particles with 

the same surface wettability fail to stabilize an emulsion (Figure 3.3a-c). 

Moreover, the amount of emulsified phase increases with the particle aspect ratio, 

similar to the effect of increasing the concentration of particles at the same aspect 

ratio. Particles with rough surfaces have been shown to provide less emulsion 

stability than smooth particles, probably because the surface roughness modifies 

the surface wettability and reduces the fraction of particle adsorption at the 

interface (Vignati et al., 2003). 

 

Figure 2.10  

Effect of particle aspect ratio (AR) on the emulsifying behavior of decane-water 

system (1:1) with 1 wt% hematite particles in the aqueous phase. Adapted from 

(Madivala, Vandebril et al., 2009). 

  39 



  40 

Chapter 3 

CORE-SHELL COMPOSITE NANOPARTICLES VIA PICKERING 

EMULSION POLYMERIZATION  

3.1 Emulsion Polymerization 

As discussed previously, solid particles can self-assemble at liquid 

interfaces and function as emulsifiers in Pickering emulsions. In this chapter, 

particles are used as the stabilizers in emulsion polymerizations to synthesize 

organic-inorganic core-shell composite particles. To understand Pickering 

emulsion polymerization we must first be familiar with the process of emulsion 

polymerization. Traditionally, emulsion polymerization has been used to generate 

micro and nanoparticles. As we shall proceed with this discussion, we shall find 

that emulsion polymerization has many advantages (van Herk, 2005). Emulsion 

polymerization is a type of radical polymerization that usually starts with an 

emulsion incorporating water, monomer, and surfactant. The most common type 

of emulsion polymerization is an oil-in-water emulsion, in which droplets of 

monomer (the oil) are emulsified (with surfactants) in a continuous phase of 

water. Water-soluble polymers, such as certain polyvinyl alcohols or 

hydroxyethyl celluloses, can also be used to act as emulsifiers/stabilizers.  

The name "emulsion polymerization" is a misnomer that arises from a 

historical misconception. Rather than occurring in emulsion droplets, 

polymerization takes place in the latex particles that form spontaneously in the 

first few minutes of the process. These latex particles are typically 100 nm in size, 

and are made of many individual polymer chains. The particles are stopped from 
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coagulating with each other because each particle is usually surrounded by the 

surfactant ('soap'); for example in ionic surfactants, the charge on the surfactant 

repels other particles electrostatically. When non-ionic water-soluble polymers 

are used as stabilizers instead of soap, the repulsion between particles arises 

because these water-soluble polymers form a 'hairy layer' around a particle that 

repels other particles, because pushing particles together would involve 

compressing these chains. 

Emulsion polymerization is used to manufacture several commercially 

important polymers. Many of these polymers are used as solid materials and must 

be isolated from the aqueous dispersion after polymerization. In other cases the 

dispersion itself is the end product. A dispersion resulting from emulsion 

polymerization is often called a latex (especially if derived from a synthetic 

rubber). They are finding increasing acceptance and are preferred over solvent-

based products in these applications as a result of their eco-friendly characteristics 

due to the absence of VOCs (Volatile Organic Compounds) in them (Odian, 

2004). Additionally, emulsion polymerization is used in the production of a wide 

range of specialty polymers including adhesives, paints, and binders for 

nonwoven fabrics, additives for paper, textiles and construction materials, impact 

modifiers for plastic matrices, diagnostic tests, and drug-delivery systems. The 

development of this industry has been due to both the possibility of producing 

polymers with unique properties. The term emulsion polymerization encompasses 

several related processes: (1) conventional emulsion polymerization, (2) inverse 

emulsion polymerization, (3) miniemulsion polymerization, (4) dispersion 



  42 

polymerization, and microemulsion polymerization. Conventional emulsion 

polymerization accounts for the majority of the world’s production (~20 X 106 

tons/year). All these techniques, which are leading to various kinds of polymer 

dispersions, are characterized by their heterogeneous nature. Polymer dispersions 

are defined as colloidal systems where the polymer is finely distributed in a 

liquid-dispersion medium in the form of stable individual particles. It might be 

useful to define emulsion polymerization in a general way as polymerization or 

copolymerization in aqueous systems of any combinations of monomers, which 

lead to water-insoluble polymers or copolymers in the form of individual polymer 

particles with a size distribution of diameters in a range typically lower than 1 μm. 

The polymer or copolymer particles swell after nucleation with the monomers. 

These swollen particles represent the nucleus where most of the monomer is 

polymerized. In many cases (especially in industrial systems), emulsifiers are 

present during the polymerization to stabilize the large interfacial area.  

The mechanism of emulsion polymerization has been reviewed several 

times during the last decade (van Herk, 2005; Tauer et al., 2008). In general, 

particle nucleation is assumed to take place either via micellar or homogeneous 

nucleation in dependence on the hydrophilicity of the monomer and the surfactant 

concentration. The micellar mechanism considers a smooth transition from a 

monomer swollen micelle to a polymer particle after entry of a free radical and is 

applied for hydrophobic monomers such as styrene. For more hydrophilic 

monomers such as methyl methacrylate, the homogeneous nucleation mechanism 

assumes that a single growing water-born oligomer radical precipitates when it 
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becomes insoluble in the aqueous phase. The amount of growth of the particles is 

mainly determined by both the monomer and the initiator concentration per 

particle. The analysis of particle nucleation, and eventually, formation requires 

slowing down the reaction rate and a combination of various methods. The studies 

that have been done, on this mechanism in literature, obtained so far do not 

specify the location nucleus or locus of particle formation. It has been observed 

that particle nucleation can take place outside the micelles and subsequent particle 

growth can thus occur. 

Next we shall take a look of the various established advantages as well as 

disadvantages of the emulsion polymerization method: 

Advantages of emulsion polymerization include (Odian, 2004): 

• High molecular weight polymers can be made at fast 

polymerization rates. By contrast, in bulk and solution free radical 

polymerization, there is a tradeoff between molecular weight and 

polymerization rate. 

• The continuous water phase is an excellent conductor of heat and 

allows the heat to be removed from the system, allowing many 

reaction methods to increase their rate. 

• Since polymer molecules are contained within the particles, 

viscosity remains close to that of water and is not dependent on 

molecular weight. 

• The final product can be used as is and does not generally need to 

be altered or processed. 
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Disadvantages of emulsion polymerization include (Odian, 2004): 

• Surfactants remain in the polymer or are difficult to remove, 

especially if the remnants of the stabilizer are adsorbed on the 

particle surface. 

• For dry (isolated) polymers, water removal is an energy-intensive 

process. 

• The inability to run the process continuously, unless several batch 

reactors are alternated, then the process may be continuous from 

that point on. 

• Emulsion polymerizations are usually designed to operate at high 

conversion of monomer to polymer. This can result in significant 

chain transfer to polymer.  Chain transfer reactions reduce the 

average molecular weight of the final polymer leading to 

anomalies or defects in the final polymer product. 

3.2 Pickering Emulsion Polymerization 

Employing solid particles, instead of surfactants, as the sole stabilizer into 

emulsion polymerization (Pickering emulsion polymerization) offers a novel one-

step method to synthesize organic-inorganic core-shell structured composite 

particles. In the past decade, several different methods have been developed to 

synthesize core-shell composite particles. These methods can be sorted in two 

categories. One is the deposition of inorganic nanoparticles on preformed organic 

particle surfaces via electrostatic attraction or chemical bondings formed in situ 

(Caruso, 2001; Caruso, Susha, Giersig, & Möhwald, 1999; Caruso, Susha, & 
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Caruso, 2001; Dokoutchaev et al., 1999). These methods usually require multiple 

steps and are tedious to implement. The other category is the heterophase 

polymerizations in the presence of nanoparticles, including emulsion 

polymerization (Chen, Zhou, You, & Wu, 2005; Cheng, Chen, Zhou, & Wu, 

2006), dispersion polymerization (Hong, Han, Hong, & Shim, 2008; Percy et al., 

2003; Schmid, Fujii, & Armes, 2005; Schmid, Fujii, & Armes, 2006; Schmid et 

al., 2007; Yang et al., 2008), miniemulsion polymerization (Bon & Colver, 2007; 

Cauvin et al., 2005; Luo, Dai, & Chiu, 2008; Qiao, Chen, Zhou, & Wu, 2007; 

Tiarks, Landfester, & Antonietti, 2001), inverse emulsion polymerization (Voorn, 

Ming, & van Herk, 2006), and suspension polymerization based on inverse 

Pickering emulsions (Gao et al., 2009). In these heterophase polymerizations, 

pretreatment of nanoparticles are sometimes required and the stabilizing effect is 

usually provided by surfactants, co-monomers, initiators, solely or cooperatively 

with nanoparticles, and the inorganic nanoparticles are incorporated via 

electrostatic interactions or acid-base interactions.  

In comparison, to conventional emulsion polymerization, Pickering 

emulsion polymerization uses nanoparticles as the sole stabilizing agent and 

nanoparticles are incorporated due to their self-assembly at monomer-aqueous 

phase interface and continuous attachment until the end of the polymerization. 

This novel technique has several advantages: (1) no sophisticated instrumentation 

is needed; (2) a commercialized nanoparticle powder or solution can be used 

without further treatment; (3) the synthesis can be completed in one-step; and (4) 

the produced particle dispersion is water-based and surfactant-free. Despite the 
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above advantages, the effort to explore and utilize Pickering emulsion 

polymerizations is very limited, and the polymerization mechanism and the 

nanoparticle incorporation mechanism remain unclear.  

An interesting approach is to use a soft interface, i.e. liquid-liquid or 

liquid-gas, as a tool to capture particles and guide their assembly, whereby the 

interface acts as a template. In our group we look at this interface-driven assembly 

process of colloidal particles and combine this with polymer chemistry to create a 

variety of complex supracolloidal structures. It has been found that Pickering 

Emulsion polymerization offers a facile approach to get the same result from 

emulsion polymerization excluding most of the disadvantages (Ma et al. 2010). A 

simple schematic of this is represented in Figure 3.1. Employing solid particles, 

instead of surfactants, as the sole stabilizer into emulsion polymerization 

(Pickering emulsion polymerization) offers a novel one-step method to synthesize 

organic-inorganic core-shell structured composite particles. This is in contrast to 

emulsion polymerization where surfactants are required as stabilizers. 

 

 

 



 

Figure 3.1 

Schematic representation for Pickering emulsion polymerization process 

compared to conventional emulsion polymerization process.  

The advantages of this novel technique have been listed in the introduction 

to this dissertation. Despite having its advantages, efforts to explore and utilize 

Pickering emulsion polymerizations have been limited, and the polymerization 

mechanism and the nanoparticle incorporation mechanism remain unclear. Lee 

and coworkers (Lee, Hong, Choe, & Shim, 2007) successfully synthesized 

polystyrene-silica composite particles using positively charged silica 

nanoparticles and anionic initiator KPS via soap-free emulsion polymerization; 

however, the silica nanoparticles needed to be added 30 minutes after the 

initiation which complicated the process. When silica nanoparticles were present 

at the initial stage of polymerization, the charge neutralization leads to irreversible 

particle agglomerations. The composite particle structure in this study is opposite 

to the often reported core-shell structure in which inorganic particles serve as the 

core and polymer serves as the shell (Bourgeat-Lami & Lang, 1998; F. Caruso, 
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2001; Gu, Kondo, & Konno, 2004; Guo et al., 2008; Nagao, Yokoyama, Saeki, 

Kobayashi, & Konno, 2008; Tianbin & Yangchuan, 2006); here the polymer 

serves as the core and the inorganic particles serve as the shell. Such materials 

provide a new class of supramolecular building blocks and can “exhibit unusual, 

possibly unique, properties which cannot be obtained simply by co-mixing 

polymer and inorganic particles.” (Barthet, Hickey, Cairns, & Armes, 1999) For 

example, recent work (Schmid, Tonnar, & Armes, 2008) demonstrated that thin 

films made of polystyrene-silica core-shell composite particles remain 

transparent, even at silica loading as high as 39%. The transparency is due to the 

well-dispersibility of silica in the polymer matrix, which cannot be achieved 

simply by co-mixing the polystyrene and silica particles. 

3.3 Synthesis Methodology 

Materials 

IPA-ST (Nissan Chemicals) is a dispersion of 10–15 nm silica 

nanoparticles in 2-isopropanol at a concentration of 30–31 wt %. Nonionic azo 

initiator VA-086 (98%, 2,2-azobis(2-methyl-N-(2-hydroxyethyl)propionamide), 

Wako Chemicals), anionic initiator potassium persulfate (KPS, 99%, Acros 

Organics), styrene monomer (99.9%, Fisher), N-isopropylacrylamide monomer 

(NIPAAm, 97%, Aldrich), 2-(N,N-Dimethylamino)ethyl methacrylate, (99%, 

Polysciences Inc.), L-α-Phosphatidylcholine, (Sigma Aldrich) and water (HPLC 

grade, Acro Organics) were used in the polymerization without further 

purification. The nonpolar dye BODIPY (493/503) (4,4-difluoro-1,3,5,7,8-
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pentamethyl-4-bora-3a,4a-diaza-s-indacene) was obtained from Invitrogen, 

Molecular Probes. 

 Composite Particle Synthesis 

The composite particles were prepared using the following procedure. 

First, water, IPA-ST and styrene were agitated mechanically with an IKA Ultra 

Turrax T25 homogenizer at 10,800 rpm for 2 minutes in an ice bath. Second, the 

emulsion was degassed with nitrogen and kept in nitrogen atmosphere under 

magnetic stirring. When the temperature was raised to 70 °C, the initiator aqueous 

solution was added to start the polymerization. In the synthesis using VA-086 as 

the initiator, a typical formulation includes 8 mL styrene, 52.5 mL water, 20 g 

IPA-ST silica nanoparticle dispersion, and 0.06 g initiator VA-086. In the 

synthesis of thermal sensitive composite nanoparticles, usually 0.66 g NIPAAm, 

3.76 g styrene, 32 mL water, 4.1 g IPA-ST silica nanoparticle dispersion, 0.037 g 

initiator VA-086, and 1 µg BODIPY 493/503 were used. A typical formulation of 

the pH responsive nanoparticle type A includes 2.21 g DMA, 2.21 g styrene, 32 

mL water, 4.1 g IPA-ST silica nanoparticle dispersion, 0.037 g initiator VA-086. 

The composite particles were sampled at different time intervals ranging from 3 h 

to 24 h for further characterizations. For experimental purposes the typical 

formulations varied for different setups and will be specified for the exceptions 

made. 
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3.4 Characterization of Composite Particles 

Polystyrene-silica nanocomposite particles were successfully prepared by 

formulating 8 mL styrene, 52.5 mL water, 20 g IPA-ST silica nanoparticle 

dispersion, and 0.06 g initiator VA-086. The particle size, characterized by 

dynamic light scattering (DLS), is 203.9±51.6 nm in diameter with mono-

distribution (the standard deviation here represents the half width of the particle 

size distribution). Figure 3.2a is a representative SEM image of the composite 

particles sampled at 5 hour reaction time. The roughness of the composite particle 

surfaces suggests that the composite particles are covered by silica nanoparticles. 

The core-shell structure can be clearly observed in the TEM image presented in 

Figure 3.2b. In many regions, the thickness of the shell is close to the size of one 

silica nanoparticle (10–15 nm), which may suggest a monolayer coverage.  

The silica shell can be removed by excess amount of hydrofluoric acid 

(HF) solution. As shown in Figure 3.2c, after the HF etching treatment, the 

particle surfaces become smooth and reveal the polystyrene core. Energy 

dispersive x-ray (EDX) spectrum confirms that a substantial amount of Si and O 

exist, as shown in Figure 3.5d. Note that the relative intensity of the peak does not 

necessarily correspond to the true atom ratio in the sample, since the penetration 

depth of the electron beam is unknown. The penetration depth depends on various 

factors, such as the electron beam voltage, the nature of the sample, and the 

Au/Pd coating thickness. The EDX result only provides qualitative information 

regarding the existence of silica, which is composed of Si and O, in the composite 

particles.  



 

 

Figure 3.2  

(a) An SEM image of composite particles, (b) a TEM image of cross-sectioned 

composite particles, (c) an SEM image of composite particles after HF etching, 

and (d) the EDX spectrum of composite particles. The scale bars represent 200 

nm.  

The silica content was quantitatively determined by TGA, as shown in 

Figure 3.3 (solid line). Two samples were measured: the composite particles 

(solid line) and the composite particles after removal of the silica component by 

hydrofluoric acid etching, which is essentially polystyrene cores (dashed line). 

The polystyrene cores have a residual weight of approximately zero at 800 °C. 

Thus it is reasonable to assume that the major weight loss during heating is 

associated with the thermo-oxidative degradation of polystyrene and the residue 
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close to 800 °C is solely silica. The silica content of the composite particles is 

approximately 20 wt %. Although some silica nanoparticles remain in the 

continuous phase and are washed off by centrifuging-redispersing cycles, the 

silica content of particles prepared via Pickering emulsion polymerization using 

nonionic initiator VA-086 is significantly higher than that of particles (1.1 wt %) 

prepared via dispersion polymerization using nonionic initiator AIBN (Schmid et 

al., 2007). The improvement is likely due to the distinct polymerization 

mechanisms. In contrast to the dispersion polymerization in which the polystyrene 

monomers are dissolved in alcohols, the emulsion polymerization here contains 

distinguished liquid-liquid interfaces due to the immiscibility between the 

monomers and the aqueous continuous phase.  

Therefore the nanoparticles, even in the absence of electrostatic 

interactions, are thermodynamically favorable to self-assemble and remain at the 

liquid-liquid interfaces, following the same argument in Pickering emulsions 

(Binks & Horozov, 2006). At the initial stage of polymerization, the nanoparticles 

provide stability to the monomer droplets. During the nucleation stage, silica 

nanoparticles are at the interfaces between the monomer phase and continuous 

phase. It is worthwhile to note that the role of silica nanoparticles described here 

is not the same as that in the polymerization involving oppositely charged initiator 

and nanoparticles (Schmid et al., 2007). In the alcoholic dispersion 

polymerization presented by Schmid and coworkers, densely covered 

polystyrene-silica core-shell composite particles were successfully prepared by 

using cationic initiator AIBA (2,2’-azobis(isobutyramidine) dihydrochloride) 



instead of the nonionic initiator AIBN (Schmid et al., 2007). The silica 

incorporation is likely promoted by the electrostatic attraction between the 

cationic initiator and the anionic nanoparticles. The initiator molecules or residues 

adsorb onto the silica nanoparticle surfaces after initiation (Schmid et al., 2007), 

and thus the silica nanoparticles function as the surface-active initiator residue. 

The mechanism of the core-shell structure formation in Pickering emulsion 

polymerization will be detailed later on. 
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Figure 3.3  

Thermogravimetric analysis of the nanocomposite particles prepared using VA-

086 as the initiator before (solid line) and after (dashed line) HF etching 

treatment. 

The glass transition temperatures (Tg) of the composite particles and HF 

treated particles, determined by DSC, are 103.8±0.2 °C and 100.7±0.1 °C 

respectively. The HF treated particles are assumed to be pure polystyrene and the 

Tg value is close to the reference value of 100 °C (Brandrup & Immergut, 1989). 
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The presence of the silica elevated Tg by approximately 3 °C, possibly due to the 

immobility of polymer chain at silica surface. It may also be worthwhile to note 

that, depending on the silica nanoparticle source, Percy and coworkers (Percy et 

al., 2004) observed either a slightly elevated Tg or a depressed Tg  in polystyrene-

silica composite particles prepared by emulsion polymerization using an anionic 

initiator APS (ammonium persulfate) and a catalyst TEMED (N,N,N’,N’-

tetramethylethylenediamine) at 25 °C.  

In the above experiments, VA-086 was used as the initiator. VA-086 is a 

water-soluble nonionic initiator and no success has been reported in surfactant-

free emulsion polymerization of styrene (Torii, Fujimoto, & Kawaguchi, 1996). In 

order to verify the sole stabilizing effect of silica nanoparticles, emulsifier-free 

emulsion polymerization using VA-086 as the initiator in the absence of 

nanoparticles was performed. No polystyrene particle formation was observed in 

the product, evidenced by SEM experiments. These experiments show that the 

initiator VA-086 has little effect on stabilizing the system in emulsion 

polymerization and therefore silica nanoparticles here are the only source of 

stabilizer. In addition, VA-086 is neutral in charge and thus is expected to 

minimize any electrostatic interactions with the negatively-charged silica 

nanoparticle surfaces.  

3.5 Probable Mechanisms 

The mechanism of conventional emulsion polymerization stabilized by 

surfactants has been under active discussion for over half a century and some 

consensus has been reached. Harkins proposed three loci of particle nucleation in 
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1947 (Harkins, 1947), which are later developed into at least three different 

nucleation mechanisms (Chern, 2006; Lovell & El-Aasser, 1997): the micellar 

nucleation, the homogeneous coagulative nucleation, and the droplet nucleation. 

Upon initiator addition and decomposition, free radicals form in the aqueous 

phase. The micellar nucleation (Chern, 2006; Tauer et al., 2008) begins with the 

capture of free radicals by micelles, proceeds with the continuous swelling and 

polymerization of monomers in the monomer-swollen particles, and finally 

terminates with the exhaustion of monomers. While some researchers believe that 

the micellar nucleation mechanism dominates at a surfactant concentration above 

the critical micelle concentration, doubts have also been raised on the insufficient 

experimental evidence (Tauer et al., 2008). In the absence of micelles, the 

homogeneous coagulative nucleation mechanism is likely dominant. In 

homogeneous coagulative nucleation (Chern, 2006; Feeney, Napper, & Gilbert, 

1984; Feeney, Napper, & Gilbert, 1987; Yamamoto, Kanda, & Higashitani, 2004; 

Yamamoto, Kanda, & Higashitani, 2006), monomers dissolve in water and 

undergo radical polymerization to form oligomers. The oligomers coagulate to 

form embryos, nuclei, and primary particles sequentially. These primary particles, 

stabilized by the adsorption of surfactant molecules, could grow either via 

swelling of particles by monomers or deposition of oligomers onto their surfaces 

(Yamamoto, Nakayama et al., 2006). Finally, droplet nucleation is another 

possible mechanism in conventional emulsion polymerization. Here the monomer 

droplets may be subjected to the oligomeric radical entry and solidify into 

particles, following the droplet nucleation mechanism. Droplet nucleation is 
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usually minor in emulsion polymerization, except in miniemulsion polymerization 

when hydrophobic initiators are used.  

Based on the fundamental understandings in conventional emulsion 

polymerization, possible Pickering emulsion polymerization mechanisms are 

proposed, taking into account the differences between fine solid particles and 

surfactant molecules. Since the nanoparticles do not form micelles like surfactant 

molecules, micellar nucleation is excluded. Thus there are two possible nucleation 

mechanisms involved in the initial stage of Pickering emulsion polymerization. 

Homogeneous coagulative nucleation is likely to be the dominating mechanism 

here, which yields the sub-micron-sized particles. The droplet nucleation might 

also occur, which yield micron-sized particles. The two mechanisms are 

illustrated in Figure 3.4. Upon initiator addition, monomers dissolved in the 

aqueous phase, react with decomposed initiators and form oligomers with 

radicals. In homogeneous coagulative nucleation, the oligomers coagulate into 

nuclei, which subsequently become monomer swollen particles. Nanoparticles 

self-assemble at the interfaces between monomer and the continuous phase to 

provide stability. With the continuous supply of monomer molecules from the 

monomer droplets through diffusion, the particle size growth is mainly achieved 

by monomer swelling into the core and polymerizing within the core. In contrast, 

in droplet nucleation, initiated oligomers with radicals enter monomer droplets, 

which subsequently polymerize into solid cores without significant size growth.  



 

Figure 3.4  

Schematic illustration for possible mechanisms of Pickering emulsion 

polymerization. 

Figure 3.5 shows the dependence of particle size and surface coverage on 

reaction time and initiator concentration. The composite particles were sampled 

from 3 h to 24 h reaction time and the initiator concentration relative to the 

monomer amount was selected to be 0.83, 2.5, and 4.2 wt % respectively. At 3 h 

reaction time, well after the nucleation stage, nanocomposite particles with dense 

silica coverage were obtained. Since VA-086 initiator residues cannot provide 

sufficient stabilization to the monomer-swollen particles, silica nanoparticles 

would self-assemble at interfaces to provide stabilization and thus lead to high 

silica coverage. 
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Figure 3.5  

The Plot of particle size versus reaction time and SEM images in polymerizations 

using: 0.83 wt % (▲, a-c), 2.5 wt % (□) and 4.2 wt % (▼, d-f) VA-086. The error 

bars indicate the width of the particle size distribution and the scale bars 

represent 100 nm. 

During the first 3 to 7 hours of reaction, the particles in all three systems 

experienced comparable particle size growth. The two systems with higher 

initiator concentrations ceased to grow soon after 7 hours of reaction time, 

whereas the system with the lowest initiator amount continued to grow 

significantly and produced the largest size of composite particles at 24 hour 

reaction time. The trend was confirmed by SEM experiments (images not shown). 

At initiator concentration 0.83 wt %, the silica coverage decreased with the 

particle size growth and the silica nanoparticles formed patches on the composite 
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particle surface with a low coverage. This might be an indication that the surface 

area of the polystyrene core increases with the particle growth without a 

significant increase of silica continuously attaching onto the polystyrene core. The 

particle growth mechanism is likely due to the swelling of particles by monomers 

in the continuous phase. The same mechanism explains the surface coverage 

decrease in the system containing 2.5 wt % of initiator (images not shown) and 

from 3 h to 11 h in the system containing 4.2 wt % of initiator. Comparing the 

particle sizes at 24 hour reaction time, a decrease in particle size occurred when 

the initiator amount was increased from 0.06 g to 0.18 g. The dependence of 

particle size on initiator concentration herein is in reverse trend with that in solid-

stabilized alcoholic dispersion polymerization (Schmid et al., 2007). The 

difference probably originates from the distinct particle growth mechanisms 

(Yamamoto, Nakayama et al., 2006). In this emulsion polymerization, a larger 

number of nuclei likely formed at the initial stage of polymerization, so the 

particle size decreased with increasing initiator concentration, given a fixed 

amount of monomer and assuming the same monomer conversion. Further 

increasing the initiator amount from 0.18 g to 0.30 g did not have significant 

influence on particle size.  

One possible explanation would be that the available amount of silica 

nanoparticles did not provide sufficient stability to an even larger number of 

nuclei, and thus oligomers, embryos, and nuclei coagulate until the remaining 

smaller number of nuclei could be sufficiently stabilized. These observations 

suggest that the Pickering emulsion polymerization using VA-086 as the initiator 
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mainly follows the homogeneous coagulative nucleation mechanism. One 

remaining mystery is the unexpected silica coverage from 11 h to 24 h in the 

system with 4.2 wt % initiator. Although the origin is unclear, it is tentatively 

attributed to the unusual silica coverage increase to the deposition of oligomers on 

the polystyrene core, which adsorbed onto silica nanoparticles in the continuous 

phase (Yamamoto, Nakayama et al., 2006). Excess initiator molecules might 

generate a large number of oligomers in the continuous phase, which could 

possibly adsorb onto silica nanoparticles. Thus when the oligomers on silica 

nanoparticles attach to preformed polystyrene surfaces, the silica nanoparticles are 

anchored there. It is also possible that the surface coverage increase might be due 

to the adsorption of depleted or close to depleted monomer droplets with a size 

below that of particles. It is also worthwhile to note that the continuous phase 

contains approximately 21% isopropanol. The existence of isopropanol might 

increase the solubility of the monomer and the degree of polymerization required 

for an oligomer to be insoluble in the continuous phase, however, the solubility of 

monomer in the continuous phase is still low enough to enable emulsification and 

subsequent emulsion polymerization.  

Influence of particle size on the core-shell composite particles 

 As discussed before in the last chapter, the size and shape of the 

stabilizing nanoparticle in the Pickering emulsion can influence the final 

composite particle yielded. Previous composite nanoparticles discussed in this 

section were synthesized using IPA-ST which is a spherical silica nanoparticle 

dispersion of the size order 10-15 nm. Further studies were done using IPA-ST-L 
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which is a spherical silica dispersion of the size order of 40-50 nm. In general the 

concentration of the nanoparticle dispersion used to stabilize the emulsion was 

also varied as a parameter. However, as pointed out earlier in this dissertation, 

higher concentration than the weight percentage used for synthesis led to gelation. 

Lower concentrations, did not form an emulsion and synthesis could not be 

carried out. In the case of the larger size of silica particles, micron as well as sub-

micron size of particles were observed (Figure 3.6a, b). This implies that of the 

mechanism types discussed previously in this chapter, both types of mechanisms 

are applicable in the formation of these composite particles. As discussed in the 

previous section, based on the fundamental understandings in conventional 

emulsion polymerization, possible Pickering emulsion polymerization 

mechanisms have been proposed, taking into account the differences between fine 

solid particles and surfactant molecules. Thus there are two possible nucleation 

mechanisms involved in the initial stage of Pickering emulsion polymerization. 

Homogeneous coagulative nucleation, which yields the sub-micron-sized particles 

as well as, droplet nucleation, which yield micron-sized particles seem to occur. 

The two mechanisms have been illustrated in Figure 3.4. 

 

 

 

 

 

 



 

 

Figure 3.6 

SEM images of composite particles synthesized with varied types of silica 

nanoparticles. Scale bars of each sub figures are as follows: (a) 1µm (b) 1µm. 
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Chapter 4 

TEMPERATURE RESPONSIVE COMPOSITE NANOPARTICLES WITH 

SILICA AS SHELL MATERIAL  

4.1 Introduction 

“Smart” materials that respond to environmental changes, such as 

temperature or pH, are attractive means for designing “intelligent” drug carrier 

systems. In this study, N-isopropylacrylamide (NIPAAm) is incorporated as a co-

monomer in order to impart temperature sensitivity to the core-shell 

nanoparticles. Poly (N-isopropylacrylamide) (PNIPAAm) is a well-understood 

temperature sensitive gel, which undergoes volume shrinkage at a transition 

temperature of approximately 32°C in pure water (Lee et al., 2007). Below this 

temperature which is referred to as the lower critical solution temperature 

(LCST), the polymer chain is hydrophilic because the hydrogen bonding between 

the hydrophilic groups and water molecules dominates; above the LCST, the 

polymer chain becomes hydrophobic due to the weakened hydrogen bonding at 

elevated temperatures and the interactions among hydrophobic groups (Schild, 

1992). To synthesize PNIPAAm chains in solutions, techniques such as free 

radical initiation in organic solutions, redox initiation in aqueous medium, ionic 

initiators, and radiation of aqueous medium are used (Teo et al., 2010). One 

advantage of using PNIPAAm is that it can be engineered to possess transition 

temperatures slightly above physiological temperatures (e.g., at 38-39 °C) (Qiu & 

Park, 2001), that can be exploited for selective and controlled delivery at the 

tumor site using external stimuli (e.g. laser irradiation) which is suitable for 



  64 

triggered in vivo drug delivery. Recently a “nanopump” system was reported 

using a block copolymer poly(L-lactide-star block-N-isopropylacrylamide) 

(PLLA-sb-PNIPAAm) for controlled drug release (Wang et al., 2008). The 

PNIPAAm block leads to the shrinkage of the complex micelles and pumps the 

drug out when the temperature is above the LCST. However, the nanoparticles 

constructed out of the block polymer have a tendency to aggregate together if the 

temperature is above the LCST (Wei et al., 2007). This was likely due to the loss 

of amphiphilic property of the block copolymer above the LCST as PNIPAAm 

blocks transformed into their hydrophobic character. In this work, we report a 

different synthetic pathway and use Pickering emulsion polymerization which 

provides adequate stability as evidenced by zeta potential measurements. Cancer 

drug candidate 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG), an 

ansamycin antibiotic which binds and inhibits Hsp90 (Heat Shock Protein 90), is 

incorporated into the core during synthesis and used as a hydrophobic drug in the 

release experiments.  Figure 4.1 illustrates a hypothesized core-shell “smart” 

nanoparticle and its release of drugs upon temperature change.   

 A major problem associated with the controlled release of drugs is the 

sensitivity of the dosage from properties to the variations of pH and transit in the 

human gastrointestinal (GI) tract (Moe¨s, 1989). Consequently in some cases, the 

drug targeting to some specific areas of the GI tract, like the colon is difficult. 

Several innovative approaches have been considered to overcome those 

difficulties and among these, the use of stimuli-sensitive materials is promising. 

Different kinds of stimuli such as temperature (Cammas et al., 1992; Yoshida et 
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al., 1992; Serres et al., 1996; Ichikawa and Fukumori, 1997; Kono et al., 1999; 

Ichikawa and Fukumori, 2000; Peppas et al., 2000), pH (Okatata et al., 1982; 

Dong et al., 1992; Kim et al., 1994; Brazel & Peppas, 1996; Serres et al., 1996), 

pressure (Tanaka et al., 1998) or electric fields (Eisenberg & Grodzinsky, 1984) 

can be used in order to provoke the drug release. Thermosensitive polymers such 

as Poly-N-isopropylacrylamide (PNIPAAm) and its copolymers have recently 

been proposed for the delivery and selective release of drugs (Okano et al., 1990; 

Yoshida et al., 1992; Kiolchob et al., 1998; Kono et al., 1999). PNIPAAm is a 

water soluble polymer that precipitates out of water when the solution is heated 

above its cloud point of about 32 °C (Heskins & Guillet, 1968; Kubota et al., 

1990; Wu & Zhou, 1995). It therefore exhibits an inverse solubility curve with a 

lower critical solution temperature (LCST), contrary to most polymers, which 

exhibits an upper critical solution temperature (UCST) in organic solvents. This 

inverse behavior is neither novel nor unique to PNIPAAm since most non-ionic 

water-soluble polymers that owe their solubility to hydrogen bonding (with water) 

also exhibit similar behavior. However, unlike poly(acrylamide) or poly(ethylene 

oxide) (Ataman & Boucher, 1982; Ataman, 1987; Plate et al., 1999), which have 

LCST values near or above the boiling point of water, the PNIPAAm LCST is 

close to the physiological temperature which makes it a very attractive candidate 

in the field of controlled-drug delivery. Moreover, the transition is found to be 

reversible and rather abrupt (Wu & Zhou, 1997). Finally, the LCST of PNIPAAm 

that is about 32 °C in water can be easily modified by co-polymerization 

(Ringsdorf et al., 1992; Feil et al., 1993) with hydrophilic (increase) or 



hydrophobic (decrease) monomers, or by addition of salts (Schild & Tirrell, 1990) 

or surfactants (Schild & Tirrell, 1991) to the aqueous polymer solutions. The 

practical applications of PNIPAAm and its copolymers can be found in 

comprehensive review papers published by Schild (Schild, 1992) and Ichikawa 

(Ichikawa & Fukumori, 1997). It is the relatively recent recognition of the 

transition of PNIPAAm as a potential thermosensitive shrinking device that 

prompted a surge of interest in the polymer. However, the need of a certain 

environmental temperature change to obtain significant variations of the polymer 

properties is an important limiting factor for the potential in vivo applications of 

thermosensitive polymers like PNIPAAm. 

 

 Figure.4.1 

 Schematic illustration of the polystyrene/PNIPAAm composite nanoparticles 

responding to temperature change and releasing encapsulated drugs. 
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Controlled release systems deliver a drug at a predetermined rate for a 

definite time period. In general, release rates are determined by the design of the 

system and may be dependent of environmental conditions, such as temperature 

or pH. These systems can also deliver drugs for long time periods (days to years). 

Although vesicles or drug macromolecule conjugates may prolong release, 

optimal control is obtained if the drug is placed in a polymeric material or pump. 

Controlled release systems differ from older "sustained release" or "slow release" 

preparations that include complexes (to salts or ion- exchange resins), 

suspensions, emulsions, slowly dissolving coatings that do not dissolve in the 

stomach yet do dissolve in the intestine (enteric coatings), and compressed tablets. 

Cellular uptake and cytotoxicity were studied in prostate cancer cells incubated at 

37°C, with composite nanoparticles encapsulating 17-AAG and their controls.  

The synthesis and characterization methods used for these experiments are 

typically the same as outlined in section 3.2, however to evaluate the effectiveness 

of the temperature sensitive composite nanoparticles as controlled release systems 

cellular uptake, cytotoxicity and drug release experiments were done. 

4.2 Thermoresponsiveness of the Composite Particles 

  Different ratios of styrene/NIPAAm were used in the formulation of the 

polystyrene/PNIPAAm-silica core-shell nanoparticles. The work reported here 

contain 0%, 5%, 10%, 15%, 25%, 50%, and 75% of NIPAAm by weight during 

the synthesis; the percentage of 15% NIPAAm is used for all studies unless noted. 

Pickering emulsion polymerization was performed using VA-086 as the initiator. 

In order to verify the sole stabilizing effect of silica nanoparticles, emulsifier-free 



  68 

emulsion polymerization using VA-086 as the initiator in the absence of silica 

nanoparticles was also conducted. No particle formation was observed in the 

product, as evidenced by SEM images. These experiments suggest that the 

initiator VA-086 has little effect on stabilizing in emulsion polymerization and 

therefore silica nanoparticles are the only source of stabilizer when present (Ma & 

Dai, 2009; Ma et al., 2010). Figure 4.2a is a representative SEM image of the 

composite particles sampled at 5-hour reaction time which shows that the 

particles tend to be spherical. The roughness of the composite particle surfaces 

suggests that the composite particles are covered by silica nanoparticles; this is 

contrasted by the smooth surface of the hydrofluoric acid (HF)-treated particles in 

Figure 4.2b. HF dissolves the silica layer and leaves behind the smooth polymer 

surface. It is also evidenced by the blue line in the FTIR spectrum in Figure 4.2c 

which shows that the composite particles have a characteristic strong peak at 1104 

cm-1, corresponding to the asymmetrical vibration of the Si-O-Si bond.  Such a 

peak is absent in the red line in Figure 4.2c which represents the HF-treated 

composite particles. FTIR is a strong analytical tool which gives information 

about specific chemical bonds simply by interpreting the infrared absorption 

spectrum; here it is used to identify the presence of silica.  The measurement of 

zeta potential allows predictions about the storage stability of a colloidal 

dispersion. Particle aggregation is less likely to occur for charged particles (high 

zeta potential) due to electric repulsion. The mean zeta potential for the drug 

loaded polystyrene/PNIPAAm-silica nanoparticles was -48.1 mV. Therefore, this 

system has a relative good stability and dispersion quality. 



 

 

 

 

 

Figure 4.2 

(a) An SEM image of the composite particles (b) SEM image taken after HF 

etching process (the scale bar represents 500 nm). (c) An FTIR spectrum of the 

composite nanoparticles where the blue line represents the composite particles 

and the red line is a sample of composite particles treated with HF. The box 

highlights the difference between the two spectra near 1104 cm-1 which 

corresponding to the asymmetrical vibration of the Si-O-Si bond. 
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  To supplement the results summarized in Figure 4.2, the surface 

morphology of these composite nanoparticles were also studied using atomic 

force microscopy (AFM). AFM or scanning force microscopy (SFM) is a very 

high-resolution type of scanning probe microscopy, with demonstrated resolution 

on the order of fractions of a nanometer, more than 1000 times better than the 

optical diffraction limit. The AFM is one of the foremost tools for imaging, 

measuring, and manipulating matter at the nanoscale. The information is gathered 

by "tapping" the surface with a mechanical probe. Piezoelectric elements that 

facilitate tiny but accurate and precise movements on (electronic) command 

enable the very precise scanning. In some instruments, electric potentials can also 

be scanned using conducting cantilevers. In newer more advanced versions, 

currents can even be passed through the tip to probe the electrical conductivity or 

transport of the underlying surface.  

The aim of this study was to compare the surface morphology of the 

composite nanoparticles with or without silica. Four types of nanoparticles were 

synthesized: 1. Polystyrene nanoparticles without silica, stabilized by the 

surfactant SDS (Figure 4.3a). 2. Polystyrene nanoparticles with silica (Figure 

4.3b). 3. Polystyrene/PNIPAAm nanoparticles without silica, stabilized by SDS 

(Figure 4.3c). 4. Polystyrene/PNIPAAm-silica nanoparticles with silica (Figure 

4.3d). Tapping mode images were taken using a Agilent Technologies 5500 

system AFM. 

 

 



 

Figure 4.3 

AFM images depicting the surface roughness of the various types of nanoparticles 

studied: (a) Polystyrene nanoparticles without silica, stabilized by the surfactant 

SDS (b) Polystyrene nanoparticles with silica (c) Polystyrene/PNIPAAm 

nanoparticles without silica, stabilized by SDS (d) Polystyrene/PNIPAAm-silica 

nanoparticles. 
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 The images gathered from this AFM study reiterate that the surface 

roughness is a direct consequence of the silica shell of these composite 

nanoparticles. For Figure 4.3 (a) and (c) the surface of the spheres are smooth as 

there is no silica present, which is a contrast to Figure 3.6 (b) and (d) where the 

surface of the spheres are rough due to the presence of silica on their surface. 

The synthesized polystyrene/PNIPAAm-silica core-shell nanoparticles are 

responsive to thermal stimuli. Figure 4.4 shows the dependence of average 

diameter of the composite particles on temperature. The average particle size at 

25°C is approximately 92 nm. The size decreases sharply as the temperature 

reaches 32°C, around the LCST for homopolymer PNIPAAm and size change is 

nearly reversible upon cooling. Control experiments of polystyrene-silica 

nanoparticles did not show a size transition over a temperature range of 25-45°C 

(data not shown). The transition temperature is not shifted by the silica 

nanoparticle encapsulation. This is consistent with the recently reported 

composite microspheres with a PNIPAAm core and a silica shell which also show 

a volume transition starting at 32°C (Duan et al., 2009). It is likely due to the fact 

that silica particles are physically adsorbed on the surfaces of PNIPAAm 

microspheres thus no chemical bond formation with silica occurs which might 

change the transition temperature. Moreover, the copolymerization with styrene 

has no significant effect on the transition temperature. One hypothesis is the 

relative phase separation of PNIPAAm and polystyrene within the core. Duracher 

et al. studied PNIPAAm-polystyrene particles and suggest a PNIPAAm-rich shell 

and a polystyrene-rich core structure (Duracher et al., 1998). Such phase 



separation may also occur in the core of the composite particles here although 

detailed morphology is unknown. The hydrodynamic sizes of 

polystyrene/PNIPAAm-silica of various compositions of core-shell nanoparticles 

were measured by DLS at different temperatures. It was found that when the 

concentration of PNIPAAm is high, the volume change is more significant with 

temperature change. 
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Figure 4.4  

(a) The dependence of average diameter of composite nanoparticles (15% 

NIPAAm) on temperature. The error bars show standard deviations of particles 

made in three different batches. The transition temperature is around 32°C. Their 

size transition is nearly reversible. 

Effect of Styrene/NIPAAm Ratio 

The hydrodynamic sizes of polystyrene/PNIPAAm-silica of various 

compositions of core-shell nanoparticles were measured by DLS at different 

temperatures, and the results are shown in Figure 4.5. The hydrodynamic sizes of 
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the nanoparticles decreased as the temperature increased from 25°C to 40°C, and 

the transition temperature for the various compositions of nanoparticles was 

observed to be 32°C. From Figure 4.5 we infer that when the concentration of 

PNIPAAm is high, the volume change is more significant upon temperature 

change. 
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Figure 4.5 

 The dependence of average diameter of composite nanoparticles with different 

amounts of NIPAAm on temperature. The error bars show standard deviations of 

particles made in three different batches. 
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4.3 Temperature Responsive Composite Nanoparticles and their Potential     

     Applications in drug delivery  

Effect of Temperature and NIPAAm Concentration on Drug Release 

The drug candidate used in the release experiment is 17-AAG, an 

ansamycin antibiotic which binds to Hsp90 (Heat Shock Protein 90). Hsp90 plays 

a key role in regulating the physiology of cells exposed to environmental stress 

and in maintaining the malignant phenotype of tumor cells. Hsp90 client proteins 

are important in the regulation of the cell cycle, cell growth, cell survival, 

apoptosis, and oncogenesis. 17-AAG binds with a high affinity into the domain of 

adenosine triphosphate (ATP) binding pocket in Hsp90 and induces the 

degradation of proteins that require it for conformational maturation. Heat Shock 

Protein 90 (Hsp90) is of significant interest in cancer therapy because it helps in 

cell survival and tumor cell proliferation.  

The main obstacle to the delivery of 17-AAG is its poor water solubility 

and it requires complicated formulations with Cremophor EL (CrEL), DMSO, or 

EtOH before parenteral administration (Shin et al., 2009). This is undesirable as 

CrEL is known to induce hypersensitivity reactions and anaphylaxis, and requires 

patient pretreatment with antihistamines and steroids before administration 

(Xiong et al., 2009). A safer administration of 17 AAG can be made by a 

surfactant free delivery system rather than using harmful surfactants to solubilize 

the drug. . Therefore, it requires a viable drug carrier for its time-controlled 

release.     Composite core-shell nanoparticles loaded with 17AAG were used for 

the drug release experiments. The amount of drug released was determined by UV 
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analysis. Absorbance (at a wavelength of 332 nm) of a number of standard 

solutions of the reference substance at concentrations encompassing the sample 

concentrations was measured using a Biotek Microplate Reader and the 

calibration graph was constructed.  

The release study of 17-AAG from the nanoparticles was first performed 

in deionized water. The composite nanoparticles encapsulated with 17-AAG to be 

tested were divided into two parts. The first portion was kept at room temperature 

and the second was in a temperature-controlled water bath at 40°C during the 

duration of the experiment. At regular time intervals, the samples were taken out 

and then centrifuged at 10,000 rpm for 3 min in a Beckman Coulter tabletop 

centrifuge and 100 µL of the supernatant was drawn out from release system for 

analysis. We have also performed DLS experiments on the supernatant to verify 

the absence of nanoparticles. Cumulative drug release measurements were 

performed. Figure 4.6 depicts the cumulative fractional drug release-time plot of 

17-AAG from drug loaded nanoparticles at various time intervals at room 

temperature and 40°C. At room temperature there was no significant release of 

the drug. However, at a higher temperature of 40°C, the drug release from the 

nanoparticles reached a maximum after 7 h. 
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Figure 4.6 

Drug release versus time curve indicating release at room temperature (yellow 

triangles) and at 40°C (green circles). There is no release at 25°C which is below 

the transition temperature of the composite particle. The cumulative fractional 

release is shown as an inset where the maximum amount of drug release value is 

taken at 40°C for 10 hours; diffusion model parameters have been calculated 

from these data. 

 Drug release was triggered upon heating at 40°C. As seen previously drug 

release is suppressed below the LCST at 25°C and there is no release from 

polystyrene-silica nanoparticles which served as the control. Figure 4.7 shows 

maximum release occurs from 15% of NIPAAm formulation. The release is 

quantified using concentration, which is obtained from the plate reader.  17-AAG 

release from the nanoparticles is summarized in Figure 4.7. This representation 

clearly shows the difference in amounts of release for different samples which 

would not have been possible if the cumulative fractional release representation 
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was used. Figure 4.8 suggests that the most efficient drug releasing concentration 

of NIPAAm is 15% and the least efficient is 75%. Obviously, this observation is 

inconsistent with the size change measured in Figure 4.5. To further understand 

how the maximum release of drug from 15% NIPAAm sample takes place, we 

performed a drug encapsulation efficiency experiment. In order to calculate the 

encapsulation efficiency, the amounts of drug present in the nanoparticles before 

and after the polymerization reaction were determined using the plate reader. The 

supernatant was measured for absorbance in each case and the background 

readings were taken into consideration after performing the same experiment 

using polystyrene/PNIPAAm-silica core-shell nanoparticles without drug loaded. 

Although an increase in the PNIPAAm concentration results in greater size 

reduction, it is observed that 17-AAG encapsulates less at high PNIPAAm 

concentrations, as shown in Figure 4.8.  This is likely due to the fact that 17-AAG 

is a hydrophobic drug and is encapsulated less when there is a low percentage of 

polystyrene in the nanoparticle. 
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Figure 4.7 

Drug release versus time curve for nanoparticles with different amounts of 

NIPAAm. For Polystyrene(0% NIPAAm) nanoparticles there is hardly any release 

observed. 

 

 

Figure 4.8 

Summary of the cumulative drug release and encapsulation efficiencies for the 

different types of nanoparticles. 
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For further uptake, cytotoxic and analysis studies, (unless mentioned) the 15% 

NIPAAm containing nanoparticles was chosen and used as these are the most 

efficient i.e. release the maximum amount of drug compared to the other 

formulations of nanoparticles. 

 For decades, polymeric systems have been used for pharmaceutical 

applications, especially to provide controlled release of drugs. Drug–polymer 

systems may also be useful in protecting the drug from biological degradation 

prior to its release. The development of these devices started with the use of non-

biodegradable polymers, which rely on the diffusion process, and subsequently 

progressed to the use of biodegradable polymers, in which swelling and erosion 

take place. Based on the physical or chemical characteristics of polymer, drug 

release mechanism from a polymer matrix can be categorized in accordance to 

three main processes (systems) (Leong & Langer, 1987), which are: 

1. Drug diffusion from the non-degraded polymer (diffusion-controlled system). 

2. Enhanced drug diffusion due to polymer swelling (swelling-controlled system). 

3. Drug release due to polymer degradation and erosion (erosion-controlled 

system). 

In all three systems, diffusion is always involved. For a non-biodegradable 

polymer matrix, drug release is due to the concentration gradient by either 

diffusion or matrix swelling (enhanced diffusion). For biodegradable polymer 

matrix, release is normally controlled by the hydrolytic cleavage of polymer 

chains that lead to matrix erosion, even though diffusion may be still dominant 

when the erosion is slow. This categorization allows mathematical models to be 
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developed in different ways for each type of system. Mathematical modeling of 

drug release provides insights concerning mass transport and chemical processes 

involved in drug delivery system as well as the effect of design parameters, such 

as the device geometry and drug loading, on drug release mechanism. Thus, the 

optimized device design for a required drug release profile can be predicted using 

a systematic approach with a minimum number of experimental studies. 

 The “anomalous” transport of drug release is often identified in swelling 

controlled systems since both diffusion and dissolution occur altogether and they 

are quite indistinguishable. Here, the drug transport is commonly modeled as 

diffusion in which the diffusion coefficient depends strongly on polymer 

concentration since polymer swelling and relaxation enhance the drug mobility, 

whereas the polymer dissolution is modeled to follow first-order kinetics at the 

interface with surrounding medium. In the simplest manner, researchers 

(Korsmeyer et al. and Yasuda et al.) developed a semi-empirical equation based 

on a power-law expression to describe the drug release from swelling-controlled 

systems as follows: 

ሻݐሺܯ
ሺ∞ሻܯ

ൌ  ௡ݐ݇

Where, k is a constant and n is the diffusional exponent. The power-law equation 

can be observed as the superposition of two processes of Fickian diffusion and 

“Case-II transport”. It has a feature to identify the relative importance between 

Fickian diffusion (n=0.5) and “Case-II transport” (n=1). The “anomalous 

transport” takes place where phenomena of both processes are coupled. For 

spheres, the n values are in the range of 0.43 and 0.85 for diffusion and “Case-II 
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transport” drug release, respectively. Besides the dependence on the geometry, the 

value of n may also be influenced by particle size distribution as observed by 

Ritger et al. (2003). For a hypothetical mixture of 20% 20-μm, 60% 100-μm, and 

20% 500-μm spheres, the n values for Fickian diffusion and the “Case-II 

transport” become 0.30 and 0.45, respectively. In comparison to the release 

profile from monodispersed particles, this mixture shows an acceleration of drug 

transport at early times due to the portion of particles smaller than the mean size 

and retardation at longer times due to the portion of particles larger than the mean 

size.  

A major challenge in drug delivery for anticancer agents is the poor 

aqueous solubility of many anticancer drugs. Due to the low aqueous solubility of 

the drug and low diffusivity within the polymer matrix, the release profile is 

generally very slow. An example is in the delivery of a promising anticancer 

agent paclitaxel which is found to be useful against a wide spectrum of 

carcinomas, especially in breast and ovarian cancer. Its low aqueous solubility 

and high crystallinity make it difficult to be encapsulated in biodegradable 

microparticles at reasonably high drug loading (>30%) and the drug release by 

diffusion is generally very low. The use of nanoparticles provides a solution to the 

slow release profile by providing a much larger surface area, but compromised 

with the slower diffusivity in the polymer matrix due to the more compact 

structures resulted from the fabrication techniques. For a monolithic system with 

uniform drug distribution with the polymeric matrix, release is generally governed 

by diffusion or erosion mechanisms. Drug release from common polymeric 
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nanoparticles, such as PLA and PLGA, is mainly due to diffusion, drug 

dissolution and subsequently surface erosion or bulk degradation. The effective 

diffusion coefficient of drug follows the combined effects of diffusion through 

particle pores and diffusion through an intact polymer matrix and is a function of 

the tortuosity and porosity of the polymer (Arifin et al., 2006). The release profile 

of highly hydrophobic drug from polymeric systems is mainly influenced by drug 

diffusion mechanism as detailed in the following paragraphs. 

The cumulative fractional drug release is calculated as Mt/M∞, where t is 

the release time, Mt is the amount of drug released at a time t and M∞ is the 

amount of drug released at time infinity. Infinity is taken to be when the 

maximum amount of drug gets released and there is no subsequent release after 

infinity. The concentration of the drug in the sample solution was read from the 

calibration curve as the concentration corresponding to the absorbance of the 

solution. To determine the release mechanisms of the composite nanoparticle 

system an equation proposed by Yasuda et al. (Yasuda et al., 1968) was used, 

which analyses the release behavior of a solute from a polymer matrix, ெሺ௧ሻ
ெሺஶሻ

ൌ

 ሺ∞ሻ is the total amountܯ ,௡ where M(t) is the amount of drug released at time tݐ݇

of drug released at a time ∞ which is taken to be the saturation time when no 

further amount of drug is released, k is a constant related to the physical 

properties of the system, and the index, n, is the diffusional component that 

depends on the release mechanism.  

When n=0.5, the solute is released by Fickian diffusion; when 0.5<n<1.0, 

the solute is released by non-Fickian diffusion and when n=1, there is zero order 
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release (Yasuda et al., 1968).  For example for 15% of NIPAAm as monomer 

amount, the calculated n value is 0.73 which indicates the non-Fickian diffusion. 

The mathematical model indicates that the drug diffusion behavior is non-Fickian 

and the rate of drug release is due to the combined effect of drug diffusion and 

polymer response due to increase in temperature. Several non-degradable drug-

releasing systems have been found to have this kind of non-Fickian release 

behavior as reviewed by Fu (Fu & Kao, 2010). Especially in the comprehensive 

study by Grassi and colleagues (Grassi & Grassi, 2005) studying theophylline 

release from different kinds of HPMC tablets (hydroxyl propyl methylcellulose), 

propose a semi-empirical model based on the fact that release kinetics is in their 

case primarily determined by drug diffusion through the gel layer surrounding the 

dry tablet core. Also this builds on the physical frame of the model suggested by 

Higuchi (Higuchi, 1963) because in addition to drug diffusion, Grassi et al., 

thought that relaxation of the gel layer of the tablets they studied, contributed to 

the non-Fickian type of diffusion they observed.  

The “n” value along with their standard deviation corresponding to each 

formulation of the different type of composite nanoparticles used in this study has 

been summarized in table 4.1. In general, drug diffusion, polymeric matrix 

swelling, and material degradation are suggested to be the main driving forces for 

solute transport from drug containing polymeric materials (Arifin et al., 2006). 

Specifically, Fick’s law of diffusion provides the fundamental understanding for 

the description of solute transport from polymeric materials. Fickian diffusion 

refers to the solute transport process in which the polymer relaxation time (tr) is 



much greater than the characteristic solute diffusion time (td).  This td can be 

defined as the ratio of the release liquid diffusion coefficient at equilibrium and 

the square of a characteristic length (radius in case of spherical matrices) 

(Coviello et al., 2005) and experimentally may be determined by knowing the 

above physical properties of the system. 

NIPAAm % “n” value S.D. 

10 0.69 0.0021 

15 0.73 0.0081 

25 0.66 0.0055 

50 0.63 0.0032 

75 0.60 0.0074 

 

Table 4.1 

“n” values of each type of nanoparticle used in the study. 

  The solute diffusion coefficient can be characterized in terms of the 

diffusion coefficient of the solute in the pure solvent (Diw) as well as the network 

porosity (ε) and tortuosity (τ).  Additionally, the manner in which the solute 

partitions itself within the pore structure of the network will affect the diffusion of 

the drug.  This phenomenon is described in terms of the partition coefficient, Kp. 

These parameters can be incorporated to describe the transport of the drug in the 

membranes in terms of an effective diffusion coefficient (Deff):  

τ
εp

iweff

K
DD =
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When tr ≈ td, the macroscopic drug release becomes anomalous or non-Fickian 

(Grassi & Grassi, 2005). The purpose of mathematical modeling is to simplify the 

complex release process and to gain insight into the release mechanisms of a 

specific material system. In literature, well-established models have been 

developed to describe drug release based on the mechanisms related to Fickian 

and non-Fickian diffusion. However, it is also acknowledged that the disparities 

that exist between theories and experimental data are present since there are 

multiple driving forces involved in a single type of release process. In particular, 

non-degradable polymers have been widely applied in the fabrication of drug 

delivery vehicles (Pillai & Panchangula, 2001). These polymers include 

polyurethanes, silicone rubber, polyethylene vinyl acetate, just to name a few. 

Solute transport from non-degradable polymeric systems is mainly considered as 

diffusion driven (Katz et al., 2004). Non-degradable polymers can be classified 

into “reservoir-” and “matrix-” type vehicles (Fung & Saltzman, 1997). By 

definition, reservoir-type devices refer to those having an inert coating material, 

which functions as a rate-controlling membrane. The release rate remains 

relatively constant and is not affected by concentration gradient, but most likely is 

related to the thickness and permeability of polymeric membrane. In contrast, for 

matrix-type devices, drug release is more likely to be Fickian diffusion driven, 

which is associated with concentration gradient, diffusion distance, and the degree 

of swelling (Siepmann & Siepmann, 2008; Lin et al., 1985). As discussed, 

diffusion, erosion, and degradation are the most important mechanisms for solute 

transport from polymeric matrices (Arifin et al., 2006). In the thermoresponsive 
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system we are studying, we can discard erosion and degradation as possible 

mechanisms as the composite nanoparticles consist of neither erodible nor 

degradable polymers. The release in our system is due to a combination of drug 

diffusion and the thermal response of PNIPAAm which constitutes a non-Fickian 

release. Several studies on PNIPAAm release similary indicate a non-Fickian type 

of release (Akdemir & Apohan, 2007; Jones et al., 2008; Molina et al., 2011). 

Several commonly used power law equations for modeling release kinetics are 

summarized (Table 4.2). These models are easy to use and the established 

empirical rules may help explain transport mechanism(s). For instance, Ritger-

Peppas equation has been applied to describe the release of sodium salicylate 

from HPMC tablets, indicating a non-Fickian drug release mechanism. The study 

also revealed that polymer swelling was involved in the release process and the 

authors suggested that the conclusion of a non-Fickian drug release mechanism, 

can be simply based on the diffusional exponent, n, of the Peppas models (Ferrero 

et al., 2009). Comparing the models in Table 4.2 and the diffusional exponents we 

have derived from experimental results in Table 4.1, we find that the more general 

Ritger-Peppas model still conforms with our system. This is because all “n” 

values lie between 0.5 and 1 which has the physical interpretation of following 

non-Fickian diffusion. 
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Model Ex ion press Application Reference 

Higuchi ܯሺݐሻ
ሺ∞ሻܯ ൌ  ଵ/ଶݐ݇

Fickian diffusion (Higuchi, 1963) 

Ritger-Peppas ܯሺݐሻ
ሺ∞ሻܯ ൌ  ௡ݐ݇

n=1, 0 order 

diffusion 

n=0.5, Fickian 

diffusion 

0.5<n<1, non-

Fickian diffusion 

(Ritger & Peppas, 

1987) 

Zero-order ܯሺݐሻ
ሺ∞ሻܯ ൌ  ݐ݇

0 order diffusion (Serra et al., 2006) 

 

Table 4.2 

Review of mathematical models for drug release kinetics. 

Cellular Uptake and Cytotoxicity Studies 

Composite core-shell nanoparticles, loaded with BODIPY 493/503 dye in 

the core for imaging and as a model drug, were used in cellular uptake 

experiments. Prostate cancer cells (PC3 and PC3-PSMA) were seeded in a 24-

well plate at a density of 50,000 per well and incubated overnight at 37°C and 5% 

CO2. Dye-containing nanoparticles were added to cancer cells in the absence of 

serum for 0.5, 1.0, 1.5, and 5 h (Figure 4.9) following which, nanoparticles and 

serum-free medium were removed and cells were washed five times using 1X 

phosphate buffered saline (PBS). Cells were stained with the nuclear stain 

Hoechst 33258 (MP Biomedicals) and then mounted for analysis using a laser 
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scanning Nikon C2 confocal microscope (Nikon Instruments Inc., Melville, NY). 

Images were acquired and stacked using NIS-Elements Microscope Imaging 

Software (Nikon Corporation) at 60× water objective with a z-step of 0.4 μm slice 

and with PMT scanners at 1024 × 1024 pixels. The cytotoxicity of nanoparticles 

(NPs) was determined using 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyl 

tetrazolium bromide (MTT) assay. Prostate cancer cells were cultured in medium 

(RPMI 1640 plus 10 % fetal bovine serum and 1% penicillin/streptomycin) under 

5% CO2 at 37oC. Cells were seeded in a 96-well plate at a cell density of 5,000 

cells per well and allowed to attach overnight prior to NP treatment (0.01-1 

μg/ml). At 72 h after treatment with different doses of NPs, 10 μl of MTT reagent 

was added to each well and incubated under 5% CO2 at 37°C for 4 h, followed by 

addition of detergent. Absorbance at 570 nm was determined with microplate 

reader (Biotek Synergy 2). Studies were performed with at least 4 individual 

samples and repeated 3 times. Any interference from NPs alone (i.e. without 

cells) was normalized for all samples. Two-tailed Student's t-test was employed 

for statistical analysis. 

It was hypothesized that polystyrene/PNIPAAm-silica core-shell 

nanoparticles are sufficiently small to be taken up by cancer cells. Cell uptake 

experiments were performed using human prostate cancer cells (50,000/well in 24 

well plates). The uptake of the composite nanoparticles by PC3 and PC3-PSMA 

cells following incubation for 0.5, 1, 1.5 and 5 h (Figure 4.9 & 4.10) was 

visualized using confocal microscopy. In Figure 4.9, at a nanoparticle dosage of 0 

(control), 0.025 and 0.05 µg/ml, the human prostate cancer cells take up dye-
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loaded composite nanoparticles and traffic them throughout the cytoplasm while 

remaining viable after incubation for 5 h. Visible green fluorescence in Figure 4.9 

suggests that composite nanoparticles are internalized in both the PC3 and PC3-

PSMA cells. Initial internalization of nanoparticles in both PC3 and PC3-PSMA 

cells was observed after 1 h of incubation (Figure 4.10). A control was kept under 

observation at the different times with no nanoparticles. Uptake was observed at 

lower concentration of 0.025 µg/ml and at a higher concentration of 0.05 µg/ml. 

The higher concentration case shows presence of some debris which may be due 

to some cell death as indicated by cytotoxicity experiments. Nanoparticles could 

be transported into the cell by either specific (receptor-targeted) or nonspecific 

cellular uptake mechanisms depending on the surface properties. Since the 

nanoparticles are not conjugated with any antibody, the uptake behavior here is 

nonspecific. Nonspecific uptake of nanoparticles has recently attracted much 

attention in the development of new strategies for designing efficient nano-

carriers, though specific uptake is a more developed strategy as more control is 

possible and effects on cell functions are easier to predict. Our findings suggest 

that the thermally sensitive composite nanoparticles can be taken up by prostate 

cancer cells, which opens new opportunities in controlled drug delivery. Further 

research in our laboratory will involve conjugation of targeting biomolecules on 

the surface of these nanoparticles in order to facilitate selective delivery to 

prostate cancer cells.  



 

Figure 4.9  

Cellular uptake of BODIPY 493/503 dye -loaded core-shell nanoparticles by PC3 

and PC3-PSMA human prostate cancer cell lines following 5 h treatment. 

Untreated PC3 and PC3-PSMA cells were used as controls. In all cases, cellular 

nuclei were stained using Hoechst 33258. The top row shows overlays of green 

(BODIPY) and blue (Hoechst) fluorescence images.  The bottom row shows 

overlays of fluorescence images and their corresponding differential interference 

contrast (DIC) images.  

Additionally, from figure 4.10 we can infer that the fluorescent dyes were 

present in the cytoplasm and at the same focal plane of the cancer cell nuclei, 

which is a consequence of nanoparticle internalization inside the cells. We saw 

the presence of the particles in the nuclear plane in approximately 60-90 min after 

incubation. Some BODIPY fluorescence in the cytoplasm could be due to the 

presence of dye that diffuses from the nanoparticles. However, the presence of 

punctate structures in the nuclear plane is a likely indication that the nanoparticles 

are present in cytoplasmic vesicles. Freely diffusing dye would likely show a 
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uniform spread throughout the cytoplasm, which is not the case. This 

demonstrated the capability of delivering molecules into cancer cells using the 

temperature sensitive composite nanoparticles. Eventually, this strategy can result 

in lower toxicities towards non-malignant cells and other organs in vivo. We next 

compared the ability of 17-AAG-containing polystyrene/PNIPAAm-silica core-

shell nanoparticles (17-AAG-PS/PNIPAAm) to induce death in prostate cancer 

cells, and compared it with cell death induced by polystyrene-silica nanoparticles 

(PS), 17-AAG-loaded polystyrene-silica nanoparticles (17-AAG-PS) and 

polystyrene/PNIPAAm-silica nanoparticles (PS/PNIPAAm). Two-tailed student's 

t-test was employed to compare the two groups, 17-AAG- PS/PNIPAAm and 

PS/PNIPAAm. 



 

 

Figure 4.10.   
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Cellular uptake of BODIPY 493/503 dye -loaded core-shell nanoparticles by PC3 

and PC3-PSMA human prostate cancer cell lines following 0.5, 1 and 1.5 h 

treatment. Untreated PC3 and PC3-PSMA cells were used as controls. In all 

cases, cellular nuclei were stained using Hoechst 33258. The top row (a and c) 

shows overlays of green (BODIPY) and blue (Hoechst) fluorescence images.  The 

bottom row (b and d) shows overlays of fluorescence images and their 

corresponding differential interference contrast (DIC) images. 
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As seen in Figure 4.11a, thermoresponsive nanoparticles loaded with 17-

AAG (17-AAG-PS/PNIPAAm) induced the greatest dose-dependent death in PC3 

cells at nanoparticle dosages from 0.01 to 1 µg/ml compared to other nanoparticle 

formulations. Drug-loaded nanoparticles are minimally toxic at lower doses (0.01 

µg/ml), but induce death in 35 – 90% of the PC3 population at doses from 0.03-

0.3 µg/ml. This is statistically significant from other nanoparticle formulations 

tested under similar conditions (Figure 4.11a), indicating that uptake and drug 

release of the 17-AAG containing nanoparticles resulted in death of PC3 cells. 

The nanoparticles were not as efficacious in inducing death in PC3-PSMA cells 

compared to PC3 cells (Figure 4.11b).  While 17-AAG containing nanoparticles 

demonstrated higher average losses in cell viability in PC3-PSMA cells compared 

to other nanoparticle formulations, these differences were not statistically 

significant except at the highest concentration (0.3 µg/ml). This can be explained 

in part by the susceptibility of this cell line to nanoparticles without the drug; 

while ‘bare’ nanoparticles do not result in loss of viability of PC3 cells, they 

induce death in a large population of PC3-PSMA cells in a dose-dependent 

fashion. In addition, previous results in our laboratory have demonstrated 

differential therapeutic efficacy in these cell lines due to differential intracellular 

trafficking and localization of nanoparticles (Barua & Rege, 2009; Barua & Rege, 

2010). These differences in closely related cell lines underscore the role of the 

cancer cell phenotype in determining efficacy of delivered nanoparticle 

therapeutics and are currently under investigation in our laboratories. In addition, 

it is hypothesized that conjugation of prostate cancer cell specific biomolecules 



(e.g. antibodies to the Prostate-Specific Membrane Antigen (Rege et al., 2007)) 

will help receptor-mediated uptake of these nanoparticles leading to increased 

efficacies. 

(a) 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11  

Cytotoxicity of 17-AAG loaded particles against prostate cancer cell lines (a) 

PC3 (b) PC3-PSMA Two-tailed student's t-test was employed to compare between 

17-AAG-PS/PNIPAAm and PS/PNIPAAm treatment. 
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Additionally, above a concentration of 0.3 µg/ml of nanoparticle dosage 

considerable aggregation was observed as confirmed by DLS studies summarized 

in Figure 4.12. Over successively higher periods of time, the size of the composite 

nanoparticles increases drastically indicating aggregation. The zeta potential data 

were measured at pH 7. In water, there is no aggregation observed in various 

concentrations. However aggregation is observed in serum free media (SFM) at 

and above 0.3 µg/ml, possibly due to the high concentration of salt in the solution 

of SFM which may be classified as salt induced aggregation. 

 

Figure 4.12 

Stability of the composite nanoparticles in serum free media summarized by DLS 

studies each sub figure represents a particular type of composite nanoparticle:-

(a) PS-PNIPAAm (b) PS-PNIPAAm (17-AAG) (c) PS (d) PS (17-AAG) 
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The focus of this section was to employ a unique drug delivery vehicle which 

can be taken up by cancer cells and can release the loaded drug. 

Polystyrene/PNIPAAm-silica core-shell nanoparticles were successfully 

synthesized with N-isopropylacrylamide incorporated into the core of the 

nanocomposite as a co-monomer. The work has demonstrated the temperature 

sensitivity, controlled drug release properties of the synthesized core-shell 

nanoparticles, and their effectiveness for inducing death of human prostate cancer 

cells. The collapse of the PNIPAAm resulted in the shrinkage of composite 

particles at temperatures above the LCST which makes them promising as a 

unique drug delivery vehicle. The next chapter will focus on further 

understanding of modification of the transition temperature of the composite 

particles to just above physiological temperature (i.e. 37 °C) for in vivo drug 

delivery for destruction of the human prostate cancer tumors.  
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Chapter 5 

TUNING THE TRANSITION TEMPERATURE OF POLY(N-

ISOPROPYLACRYLAMIDE) BASED CORE-SHELL COMPOSITE 

NANOPARTICLES 

5.1 Introduction 

The focus of this chapter is to tune the transition temperature of the 

thermo-responsive composite core-shell nanoparticles synthesized using Pickering 

emulsion polymerization. As discussed in the previous chapter, the synthesized 

PS/PNIPAAm-silica core-shell nanoparticles are temperature sensitive with a 

transition near 32°C in pure water; an increase of the N-isopropylacrylamide 

monomer enhances the degree of transition. PNIPAAm is a well-understood 

temperature sensitive gel, which undergoes volume shrinkage at a transition 

temperature (lower critical solution temperature (LCST)) of approximately 32°C 

in pure water (Lee et al., 2007). This temperature effect is due to the disruption of 

hydrogen bonds with water and the increasingly hydrophobic interactions among 

isopropyl groups (Qiu & Park, 2001). One specific goal of the work is to 

investigate how to manipulate the transition temperatures of the 

polystyrene/PNIPAAm-silica composite nanoparticles, and what the effects of 

crosslinker, co-monomer, surfactant, and co-solvent are on their transition 

temperature and dimension change.  The ease of changing the transition 

temperature and thus the stimulus response of these composite nanoparticles can 

consequently make them suitable for temperature responsive applications. By 

making these composite nanoparticles tunable to a particular temperature range 
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would significantly expand their applications as sensing probes, functional 

materials, and drug delivery vehicles.  In addition, such tunability has been less 

explored at the nanoscale, especially in a complicated structural hierarchy. For 

example research has been done on bulk PNIPAAm, to change the transition 

temperature for various applications: Kanazawa et al.  (1997) recognized the 

possibility of changing the LCST parameter through the addition of different 

chemical groups. Kanazawa’s group investigated the reversible changes of 

PNIPAAm once modifying it with a carboxyl end. They attached the carboxyl-

terminated PNIPAAm chains to (aminopropyl)silica and used it as packing 

material for HPLC analysis of steroids. Similarly, Okano’s group (1996) 

expanded on their success by using different modifiers to enhance hydrophobicity 

of bulk PNIPAAm through the attachment of butyl methacrylate (BMA), a 

hydrophobic comonomer. In this work, we comprehensively attempt to change the 

transition temperature of the composite nanoparticles using facile methods during 

as well as post synthesis. 

5.2 Experimental 

Materials 

The following materials are used for the core-shell composite nanoparticle 

synthesis: IPA-ST (Nissan Chemicals), which is a dispersion of 10-15 nm silica 

nanoparticles in 2-isopropanol at a concentration of 30-31 wt %.  Nonionic azo 

initiator VA-086 (98%, 2,2-azobis(2-methyl-N-(2-hydroxyethyl)propionamide), 

Wako Chemicals), styrene monomer (99.9%, Fisher), N-isopropylacrylamide 

monomer (NIPAAm, 97%, Aldrich), N,N,-dimethylaminoethylmethacrylate 
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(DMA, Polysciences, Inc.) water (HPLC grade, Acros Organics), and N-N’-

methylenebisacrylamide (MBA, 99.5%, Fluka) were used in the polymerization 

without further purification. 

After the synthesis, sodium dodecyl sulfate (SDS, 99.7% Fisher 

Scientific), Cetyl tetra ammonium bromide (CTAB, 99.8% Sigma Aldrich), 

Triton X-100 (laboratory grade, Sigma Aldrich), methanol (99.5%, Acros 

Organics), and tetrahydrofuran (THF, 99.9%, Acros Organics), were used, 

respectively, without further purification. 

Materials Synthesis 

 Water, IPA-ST, NIPAAm and styrene were agitated mechanically with an 

IKA Ultra Turrax T25 homogenizer at 10,800 rpm for 2 min in an ice bath to 

emulsify. The emulsion was then degassed with nitrogen and kept in a nitrogen 

atmosphere under magnetic stirring. When the temperature was raised to 70 °C, 

the initiator aqueous solution was added to start the polymerization, which lasted 

for 5 hours.  A typical formulation of the thermo-responsive nanoparticle includes 

0.66 g NIPAAm, 3.76 g styrene, 32 mL water, 4.1 g IPA-ST silica nanoparticle 

dispersion, and 0.037 g initiator VA-086. Before characterization, the synthesized 

nanoparticles were washed twice by centrifuging-redispersing cycles using an 

Eppendorf 5810R centrifuge.  

Characterization Techniques 

 Particle size distributions of the composite nanoparticles were measured 

using a Brookhaven 90Plus Particle Size Analyzer with the dynamic light 

scattering (DLS) technique. The washed composite nanoparticles were further 
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dispersed in water to appropriate concentrations before measurements. The 

specimens for scanning electron microscope (SEM) were then sputter coated with 

gold and viewed by SEM-XL30 (FEI). Specimens for SEM experiments were 

prepared by placing a droplet of the nanoparticle samples onto mica substrates 

and dried in air. Fourier transform infrared spectra (FTIR) were scanned over the 

range of 400-4000 cm-1 with potassium bromide pellets on a Bruker IFS 66V/S 

FTIR spectrometer. Surface tension measurements were conducted using an 

Attension 701 tensiometer using the Du Nuoy ring method. 

5.3 Results and Discussion 

5.3.1 Polystyrene/PNIPAAm-silica core-shell nanoparticles  

The hydrodynamic sizes of polystyrene/PNIPAAm-silica of core-shell 

nanoparticles were measured by DLS at different temperatures, and the results are 

shown in Figure 5.1. The hydrodynamic sizes of the nanoparticles decreases as 

the temperature increased from 25°C to 40°C, and the transition temperature for 

the various compositions of nanoparticles is observed to be 32°C. This is 

consistent with the recently reported composite microspheres with a PNIPAAm 

core and a silica shell made by inverse suspension polymerization, which also 

show a volume transition starting at 32°C (Duan et al., 2009). They reported that 

the phenomenon was most likely due to the fact that silica particles are physically 

adsorbed on the surfaces of PNIPAAm microspheres. Thus, there is no chemical 

bond formation with silica which might change the transition temperature. 

Interestingly, the co-polymerization with styrene here has no significant effect on 

the transition temperature as well. One hypothesis is the relative phase separation 
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of PNIPAAm and polystyrene within the core. Duracher et al. studied PNIPAAm-

polystyrene microparticles and suggested a PNIPAAm-rich shell and a 

polystyrene-rich core structure by analyzing SEM images taken during the 

reaction (Duracher et al., 1998). Such phase separation may also occur in the core 

of the composite nanoparticles here, although detailed morphology is difficult to 

reveal.  

Figure 5.1 also suggests that when the concentration of the PNIPAAm is 

high, the maximum diameter change is more significant. Control experiments of 

polystyrene-silica nanoparticles did not show a size transition over a temperature 

range of 25-45°C (data not shown). The percentage dimension change of the 

nanoparticles vs. the amount of NIPAAm monomer in the synthesis is shown in 

the inset of Figure 5.1.  Over the experimental range, there seems to exist a linear 

relationship, which reveals a simple way to tune the degree of the transition.   

 

 



 

Figure 5.1  

Dependence of average diameter of the composite nanoparticles on temperature. 

Each colored symbol signifies a different amount of NIPAAm percentage used 

during synthesis: blue squares for 75%, yellow triangles for 50%, green inverted 

triangles for 25%, red circles for 15% and black diamonds for 10%of NIPAAm. 

The error bars show standard deviations of particles made in three different 

batches. The inset shows the maximum size change of the composite nanoparticles 

as a function of the amount of NIPAAm content in the synthesis.  

5.3.2 Effect of a crosslinker or an additional co-monomer  

We next evaluate the effect of a crosslinker or an additional co-monomer 

on the thermal transition of the composite nanoparticles. A crosslinker, N-N’-

Methylenebisacrylamide (MBA), was incorporated into the synthesis.  Figure 5.2 

shows that with successively higher crosslinker content, the transition 

temperatures and the degree of size transition change in different directions. The 
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temperature dependent hydrodynamic radius shows a continuous decrease when 

approaching the transition temperature. The results indicate that there is only a 

slight increase in the transition temperature with increasing crosslinker amount; 

this implies that the transition temperature is only slightly influenced by the 

network crosslink density.  As anticipated, the composite nanoparticles with a 

lower crosslinker content are more “flexible” in nature having a greater size 

transition. As the figure reveals, the composite nanoparticles with the highest 

crosslinking amount undergo the most ‘‘flat” transition, the more crosslinker 

present, the more the “rigidity” of the composite nanoparticles, making the 

amount of volume transition lesser. These results for composite nanoparticles are 

in fact similar to macrogels. As investigated by Burmistrova et al. for crosslinked 

PNIPAAm-co-AAm, the amount the volume transition decreases with increasing 

cross-linker content due to decreasing polymer chain length between two cross-

linkers and as a consequence increases the gels stiffness (Burmistrova et al., 

2011). 

 



 

Figure 5.2  

Normalized hydrodynamic radius of the composite nanoparticles showing the 

effect of crosslinker MBA. (Each colored symbol signifies a different amount of 

MBA percentage used during synthesis; blue diamonds for 2%, red triangles for 

1%, purple squares for 0.5% and green circles for 0%). The amount of NIPAAm 

present in the synthesized composite nanoparticles was 15% as represented in 

these graphs. Inset shows the relationship between the amount of crosslinker 

(MBA) with the maximum size change and transition temperature. 

Next, we investigate the addition of a co-monomer in the synthesis process 

to tune the transition temperature of the composite nanoparticles. The temperature 

effect of the PNIPAAm is due to the disruption of hydrogen bonding with water 

and increasing hydrophobic interactions among isopropyl groups when 

temperature increases. In order to raise the transition temperature of the 

nanoparticles, we hypothesize that an inclusion of an additional hydrophilic 
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polymer is suitable. It is known that the LCST of bulk PNIPAAm can be tailored 

by controlling the incorporation of hydrophilic (Zhang et al., 2007) or charged 

(Tian et al., 2008) co-polymeric components.  The additional hydrophilic nature 

shall increase the tendency of the nanoparticles to hydrogen bond with water thus 

the contraction in size is hypothesized to occur at a higher temperature.  

Bulk composite materials containing copolymers of NIPAAm and DMA 

have been reported (Aguilar et al., 2007) to have increasing values of transition 

temperature with increasing DMA content.  A similar example shows that when 

NIPAAm is copolymerized with hydrophilic monomers such as acrylamide 

(AAm), the transition temperature increases up to about 45ºC when 18% of AAm 

is incorporated, whereas the transition temperature decreases to about 10ºC when 

40% of hydrophobic N-tert-butylacrylamide (N-tBAAm) is added (Aguilar et al., 

2007). In this study, we have tried to employ poly (N,N,-

dimethylaminoethylmethacrylate (PDMA), which has a LCST of ~50 oC 

(Orakdogen, 2011) in order to change the transition temperature of the PNIPAAm 

based composite nanoparticles. Other polymers with thermoresponsive properties 

include poly(N,N-diethylacrylamide) (PDEAAm) with an LCST over the range of 

25 °C to 32 °C, poly(N-vinlycaprolactam) (PVCL) (Orakdogen, 2011) with an 

LCST between 25 °C and 35 °C. To increase the transition temperature close to 

the body temperature (37°C) for future potential use in drug delivery we choose 

DMA as a comonomer.  

Figure 5.3 shows that by incorporating 1.5%, 3% and 6%, DMA 

monomer, respectively, during the synthesis, the resulting composite 
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nanoparticles showed an increase in transition temperatures.  We anticipate the 

transition temperature of the composite nanoparticles to change using a simple 

formula using weighted averages: 

ܶ ൌ   ଵܶሺ ଵܺሻ ൅ ଶܶሺܺଶሻ

ଵܺ ൅ ܺଶ
 

Where T is the transition temperature of the composite nanoparticle with 

varying monomer content. T1 is the LCST of PDMA, T2 is the LCST of 

PNIPAAm, X1 is the amount of DMA, and X2 is the amount of NIPAAm used in 

the synthesis process before.  Figure 5.3 suggests that the calculated and 

experimental values are reasonably consistent over the experimental range.  

In their classical study of the LCST of water-soluble polymers, Taylor and 

Cerankowski proposed as a general rule that the LCST will increase with 

increasing hydrophilicity of the polymer (Taylor & Cerankowski, 1975). At low 

temperatures, hydrogen bonding between the hydrophilic segments of the polymer 

chain and water molecules is dominant, leading to enhanced dissolution in water 

(Qiu & Park, 2001). The increase in temperature causes partial displacement of 

water from the polymer coil, weakening the hydrogen bonds, and an increase of 

the hydrophobic interactions between the hydrophobic segments of the polymer 

macromolecules (Markicheva et al., 1991). Consequently, the polymers collapse, 

aggregate, and phase separate because the intra- and intermolecular hydrogen 

bonds between the hydrophobic parts of the polymer molecules are favored 

compared to the water molecules, which are re-organized around the non-polar 

polymer. Similarly we can apply this concept to our system and find that it leads 

to the shift of transition temperature to higher values. When increasing the 



amount of DMA in the reaction, the synthesized material becomes more 

hydrophilic and forms more hydrogen bonds between the polymer sections and 

water molecules, requiring more energy to break these hydrogen bonds between 

the prepared composite nanoparticles and water, therefore exhibiting a higher 

transition temperature.  

 
Figure 5.3  
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The effect of the co-monomer DMA on the transition temperature of the 

synthesized composite nanoparticles.  The red circles are the calculated values 

and the black squares are the experimental results. 

5.3.3 Effect of surfactants on transition temperature 

We discussed in the previous section how interactions with hydrophilic or 

hydrophobic components are known to be essential for inducing a change in the 

transition temperature of PNIPAAm. In this section we examine the employment 

of surfactants in post synthesis situations and how they affect the transition 

temperature of the polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica 
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core-shell nanoparticles. In general, the entropy of a system should increase with 

a rise in temperature. In the case of PNIPAAm, as the temperature is raised, the 

polymer network shrinks to a compact state and its entropy decreases. The 

entropy decrease of the network should be compensated by an increase of entropy 

of the water molecules (Kokufuta et al., 1993). It is then expected that a chemical 

compound in the water with hydrophilic and hydrophobic characters should affect 

the phase transition properties of PNIPAAm.  

Surfactants are well suited for this purpose as they contain both 

hydrophobic and hydrophilic parts. Surfactants are compounds that lower the 

surface tension of a liquid, the interfacial tension between two liquids, or that 

between a liquid and a solid. Surfactants may act as detergents, wetting agents, 

emulsifiers, foaming agents, and dispersants. Surfactants are usually organic 

compounds that are amphiphilic, meaning they contain both hydrophobic groups 

(their tails) and hydrophilic groups (their heads). Therefore, a surfactant contains 

both a water insoluble (or oil soluble) component and a water soluble component. 

Surfactants will diffuse in water and adsorb at interfaces between air and water or 

at the interface between oil and water, in the case where water is mixed with oil. 

The insoluble hydrophobic group may extend out of the bulk water phase, into the 

air or into the oil phase, while the water soluble head group remains in the water 

phase. This alignment of surfactants at the surface modifies the surface properties 

of water at the water/air or water/oil interface.  

In this work, the effects of anionic (SDS), cationic (CTAB) and non-ionic 

(Triton X-100) surfactants were studied.  The composite nanoparticles were 



equilibrated in various concentrations of these surfactants and we then examine 

their transition temperatures as shown in Figure 5.4. 
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Figure. 5.4 

 Transition temperatures as a function of the concentration of surfactants, SDS, 

CTAB and Triton X-100, respectively. The blue circles are for SDS, red squares 

for CTAB and green triangles for Triton X-100. 

The nonionic surfactant does not induce a change in the transition 

temperature of the composite nanoparticles. It is likely due to the absence of 

electrostatic interactions between the nonionic surfactant and the composite 

nanoparticles.  Triton X-100 essentially belongs to the class of long chain 

alcohols and is generally a polyoxyethylene glycol octylphenol ether (C8H17–

(C6H4)–(O-C2H4)1–25–OH). This compound does not have electrostatic 

interactions as it does not contain any ionic sub group in structure. Another 

relevant explanation is that Triton X-100 did not complex with the composite 

nanoparticles to be able to change their nature to hydrophilic or hydrophobic 
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(Tam et al., 1994). Therefore it does not affect the transition temperature of the 

composite nanoparticles. 

5.3.4 Effect of co-solvent on the transition temperature 

The dependence of the transition temperature of dispersions of composite 

nanoparticles on solvent composition are examined and compared to the reported 

PNIPAAm bulk behavior in similar solvent mixtures. We chose methanol and 

THF as solvents for studying the phase transition of the composite temperature 

sensitive nanoparticles. These solvents were mixed with water and the composite 

nanoparticles were equilibrated in them. The transition temperatures of these 

nanoparticles were then measured using the DLS technique detailed previously. 

With the addition of methanol there is an initial depression of the transition 

temperature below volume fraction of ~0.5 and then a sudden increase above 

volume fraction of ~0.5 (Figure 5.5).  The experimental measurements are limited 

due to the temperature limitation of our DLS instrument.  The results observed for 

our composite nanoparticles are well in accordance with previously reported 

phenomena by analyzing the cloud points for bulk PNIPAAm exhibiting 

cononsolvency in mixed aqueous solutions using a spectrophotometer (Winnik et 

al., 1990). Detailed work explaining the driving force for cononsolvency is the 

preference of water to complex with methanol rather than with bulk PNIPAAm 

gel has been done by Schild et al. (Schild et al., 1991) Their results have also been 

digitized and overlayed in Figure 5.5 to draw direct comparisons.  
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Figure.5.5   

Effect of co-solvents on the transition temperatures of the composite 

nanoparticles. Black squares are using THF as a solvent and red circles are using 

methanol as a solvent.  Comparison with bulk PNIPAAm gels in mixed aqueous is 

included by digitizing the experimental data published by Schild et al. (Figure 2 

in reference) and overlaying their results (represented by lines) with our work on 

the composite nanoparticles. 
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The transition temperatures of the composite nanoparticles decrease with 

increase in concentration of methanol until ~50% methanol, beyond that the 

transition temperatures increase sharply.  It has been discussed previously that the 

relevant interactions must arise from local contacts between polymer and solvent. 

The nature of solvent structure of methanol-water mixtures has been studied 

extensively (Winnik et al., 1990; Schild et al., 1991). At low methanol 

concentration, water molecules form a disordered tetrahedral structure around an 

alcohol molecule (Crowther & Vincent, 1998)  and water-methanol form a cage-
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like hydrated clathrate complex. These clathrate structures compete with 

PNIPAAm for the water molecules that hydrate the polymer. Due to removal of 

the water molecules from the interior of the composite nanoparticles to form the 

clathrate structures, the transition temperature keeps decreasing. However once 

the methanol amount dominates above 0.5 volume fraction, the transition 

temperatures increase for higher amounts of methanol in the system. This is in 

accordance with expected behavior of PNIPAAm in mixed aqueous solutions 

because methanol is a better solvent than water for PNIPAAm (Hirotsu, 1987). 

This means as the methanol content increases there is no longer enough water to 

form clathrate structures for all the methanol molecules, i.e. not enough water to 

provide spaces for all the methanol molecules. These methanols are now free to 

interact with polymer segments. This implies that the methanol-polymer 

interactions become stronger which in turn increases the transition temperature of 

the composite nanoparticles. Changes in transition temperatures of the composite 

nanoparticles observed for increasing volume fractions of methanol reveal the 

importance of the free energy of association in methanol-polymer, water-polymer, 

and methanol-water.  Calculations based on the Flory-Huggins solution theory 

suggest that the cononsolvency phenomenon occurs from perturbation between 

water-methanol interactions. Also it seems likely that the water-methanol 

complexes are preferred to the typical PNIPAAm-water hydrogen bonds resulting 

in the observed transition phenomena of the system. We have also performed a 

similar study using THF in water solvent mixtures and observed a similar trend as 

those of water-methanol mixtures, as included in Figure 5.5. 
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5.4 Conclusion 

The focus of this work is to synthesize thermo-responsive composite core-

shell nanoparticles using Pickering emulsion polymerization and more 

importantly, to tune the transition of these nanoparticles. The synthesized 

polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell 

nanoparticles are temperature sensitive with a transition near 32°C in pure water; 

an increase of the N-isopropylacrylamide monomer enhances the degree of 

transition.  In addition, the transition temperature can be tuned using facile 

approaches such as incorporating a crosslinker or co-monomer during the 

synthesis and by adding a surfactant and co-solvent in the media.  The work also 

suggests that tunability of the transition temperature of these composite 

nanoparticles follow similar mechanisms like those at the macroscopic level. 
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Chapter 6 

OTHER RESPONSIVE PROPERTIES OF CORE-SHELL COMPOSITE 

PARTICLES 

6.1 pH Responsive Composite Nanoparticles for Oil-Water Interfacial   

     Engineering 

Introduction 

The recent oil spill (largest spill in history) in the Gulf of Mexico has 

caused a tremendous and unpredictable environmental disaster.   The catastrophic 

explosion caused discharges of up to 100,000 barrels per day and the oil slick 

already covers a surface area of 10,000 square miles (Farrell, 2011). Other than 

the emergency of stopping the oil leak, there is also an urgency to generate 

effective, efficient and environmentally benign solutions to clean-up the massive 

spill. Traditional major oil clean-up techniques include controlled burning, 

utilizing dispersants and bioremediation (http://en.wikipedia.org/wiki/Oil_spill). 

Although these have been in practice for years, each has significant 

disadvantages, or may not be applicable for the current massive oil spill. For 

example, controlled burning is limited to small areas and causes significant air 

pollution; dispersants break oils into small droplets to be carried away by water 

current but cause significant water and deep-water contamination; bioremediation 

often uses microorganisms such as bacteria to decompose oil but doesn’t produce 

short-term results, is pollute-site specific, and only targets certain ingredients of 

crude oils.  It is also worthwhile to note that all of the above only “clean-up” the 

surface but do not recover oil.  There is a critical call for innovative solutions to 

http://en.wikipedia.org/wiki/Oil_spill
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meet the challenges to clean-up and recover massive and unpredictable oil spills 

such as the current disaster in the Gulf of Mexico. This work focuses on 

performing novel interfacial engineering through functionalized nanoparticles. 

Surfactants are well-known for equilibrating at oil-water interfaces and serving as 

emulsion stabilizers (Adamson, 1982; Israelachvili, 1991). In addition to 

surfactants, as discussed previously in this dissertation, solid particles were 

identified as a new type of emulsifying agent since the pioneering study by 

Pickering in 1907 (Pickering, 1907). Recently, there have been growing interests 

(Lin et al., 2003; Dinsmore et al., 2002; Velev & Nagayama, 1997; Wang & 

Hobbie, 2003; Melle, et al., 2005; Binks & Lumsdon, 2001; Shah et al., 2003; 

Binks & Lumsdon, 2000; Tarimala & Dai, 2004; Dai et al., 2005; Ma & Dai, 

2009; Dai et al., 2008; Ma & Dai, 2009; Ma & Dai, 2010; Ma et al., 2010)  in 

investigating the particles at oil-water interfaces, for example, Pickering 

emulsions, due to potential tremendous applications.  Here, composite 

nanoparticles, instead of surfactants, were employed to equilibrate at oil-water 

interfaces (illustrated in Figure 6.1), with an ultimate objective to subsequently 

engineer the interface and separate/recover the oil layer. 

As previously detailed in this dissertation studies have demonstrated that 

polystyrene (PS)/poly(N-isopropyacrylamide) (PNIPAAm)-silica core-shell 

nanoparticles synthesized using Pickering emulsions as templates are temperature 

responsive (Ma et al., 2010) and the responsiveness of the particle diameter 

increases with increasing the percentage of NIPAAm, as shown in Figure 4.5.  

More importantly, these core-shell nanoparticles only release drugs (17-
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mperature change, Figure 4.6).    

 

imilar to the encapsulation of a drug into the PS/PNIPAAm-silica core-

shell na

equilibrate at the oil-water interface and environmentally respond to pH.   

(Allylamino)-17-demethoxygeldanamycin) at an elevated temperature (“smart” in 

responsive of a te

 

 

 

 

 

 

 

 Figure 6.1 

 particles equilibrate at oil-water interfaces;   

of 

Functionalized nanoparticles/

they will be designed to either (a) completely immerse in or (b) protrude out 

the oil layer. 

S

noparticles in Figure 4.7, a rheological thickener, such as hydrophobically 

modified ethoxylated polyurethane based thickeners (HEUR) (Orgiles-Calpena et 

al., 2009) can be encapsulated into the pH sensitive composite nanoparticles. It is 

important to note that rheological modifiers have already been used in certain 

oilfield treatments such as fracturing and gravel packing.  In this research, the 

rheological thickener is anticipated to be released when the nanoparticles 
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degree 

 

Figure 6.2  

Schematic of equilibrium swelling versus pH for pH sensitive polymers. (Adapted 

n et al., 1993) 

y modifier which temporarily “thicken/solidify” the 

oil lay

The aim of this section is to synthesize stable, aqueous dispersions of 

nanoparticles that respond to pH. For bulk pH sensitive material, the equi

of swelling can be changed suddenly by several orders of magnitude near 

the acidity constant of the material (Figure 6.2). Example of monomers used for 

pH sensitive polymers include acrylic acid, p-styrene sulfonic acid, crotonic acid, 

vinyl pyridine and aminoethyl methacrylate.  

from Scranto

The synthesized pH responsive nanoparticles will encapsulate and release 

chemicals such as a rheolog

er that can be removed by “skimming”. Skimming is one practical 

technique to clean-up oil spills but only applies to calm water and the low oil 

viscosity challenges such a practice; the temporary thickening of the oil layer and 

the embedding of the nanoparticles will make it feasible. For example, 
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hat pH sensitive or pH responsive polymers are materials 

the surrounding medium by 

varying

polystyrene (PS) /poly(N,N,-dimethylaminoethylmethacrylate) (PDMA)-silica 

nanoparticles will be synthesized to validate the pH responsiveness to sea water:  

at low pH, the PDMA is hydrophilic whereas at high pH, it is hydrophobic (Dai et 

al., 2008; Zhang et al., 2008) and the transition pH (approximately 7.6) is in the 

range of sea water.   

pH responsiveness of the composite nanoparticles.  

It is known t

which will respond to the changes in the pH of 

 their dimensions. Such materials swell or collapse depending on the pH 

of their environment. This behavior is exhibited due to the presence of certain 

functional groups in the polymer chain There are two kinds of pH sensitive 

materials: one which have acidic group like  (-COOH, -SO3H) and swell in basic 

pH, and others which have basic groups like (-NH2) and swell in acidic 

environments (Shi et al., 2009).  Polyacrylic acid is an example of the former 

and Chitosan is an example of the latter (Bonina et al., 2004). The mechanism of 

response is same for both, just the stimuli vary. The response is triggered due to 

the presence of ionizable functional groups (like -COOH, -NH2) which get 

ionized and acquire a charge (+/-) in a certain pH. The polymer chains now have 

many similarly charged groups which cause repulsion and hence the material 

expands in dimensions. The opposite happens when pH changes and the 

functional groups lose their charge hence the repulsion is gone and the material 

collapses back.  
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oethyl methacrylate (DMA) monomer, L-α-Phosphatidylcholine 

(lecithi

 

Figure 6.3  

 SEM images of the composite particles, the rough surface indicating silica outer 

ale bars are (a) 2µm and (b) 500nm 

In this study, a mixture of styrene (St) monomer, 2-

N,Ndimethylamin

n)  and VA-086 initiator was used as a dispersed phase and an aqueous 

phase containing water acted as the continuous phase. A mechanical stirrer was 

used to form the uniform droplets. Polymerization reaction occurred at 70 ◦C. 

Representative SEM images of the composite particles are shown in Figure 6.3. 

These nanoparticles were found to be sensitive to a pH stimulus. As can be seen 

from Figure 6.4 control polystyrene nanoparticles did not show any change of 

hydrodynamic diameter with a pH stimulus. However, for a concentration of 50% 

and 75% DMA the size of the nanoparticles decrease upon increasing the pH of 

the surrounding environment.  
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Figure 6.4  

The dependence of average diameter of composite nanoparticles with different 

amounts of DMA on pH. The error bars show standard deviations of particles 

made in three different batches. 

The nanoparticles exhibit pH-sensitive behavior due to protonation/de-

protonation of N, N-dimethylaminoethyl groups in PDMA component of the 

composite. Owing to bearing weak acidic or basic groups that ionize in a given 

pH range of the swelling medium, investigations of the swelling behavior of pH-

responsive gels has gained noticeable interests (Orakdogen, 2011). Since PDMA 

is a pH-responsive polybase and it has amine groups in its side chain, in recent 

years much more attention has been directed to pH-dependent swelling of PDMA 

(Dai et al., 2008; Zhang et al., 2008; Meng et al., 2009). The tertiary amine groups 

on PDMA are weakly basic (as they have a lone pair of electrons) and can gain 

protons under acidic condition and release them under basic condition. In the 
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structure of PDMA, the presence of hydrophobic basic group together with 

hydrophilic group makes it a special hydrogel which exhibits a combined pH- and 

temperature sensitivity.  

The variations in the pH of the surrounding medium cause changes in the 

interactions between polymer chains or between polymer chains and solvent at the 

molecular level (Carlsson et al., 2010). pH-dependent swelling behavior of the 

composite PS/PDMA-silica nanoparticles were investigated in buffer solutions of 

various pH’s. Since, in the molecular structure of PDMA, there is an active amino 

group with strong basicity, the protonation of the tertiary group could induce the 

size transition to change with changing pH.  The tertiary amine groups on PDMA 

are weakly basic and thus, at room temperature, as the pH is lowered to the acidic 

region, the tertiary amine side chains of the polymer become protonated, 

increasing the charge density of the network and causing the PDMA to swell. This 

leads to the change in size of the composite nanoparticles as characterized by 

DLS. 

Next, during the synthesis process lecithin was included as a starting 

material and the composite nanoparticles were synthesized with lecithin. The pH 

responsiveness of these composite nanoparticles was similarly characterized using 

DLS. The effect of loading lecithin in the nanoparticles was observed (Figure 

6.5). 
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The dependence of average diameter of composite nanoparticles with different 

amounts of lecithin in 50% DMA particles on pH. The error bars show standard 

deviations of particles made in three different batches. 

It was found that increasing the lecithin content leads to decrease in the 

sensitivity of the nanoparticles to the environmental pH. This is likely because 

lecithin is not pH sensitive and does not change in size with a pH stimulus. 

Interestingly, the size of the lecithin incorporated nanoparticles get larger when 

the amount of lecithin is increased. This is intuitive because just the lecithin 

content varies in the formulation of these nanoparticles.   

Encapsulation and release of a rheology modifier 

The science that studies the relation between the flow of materials and 

applied forces is called rheology. It is important during the processing and 
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application of innumerable products that occur in everyday life. Rheology 

properties control the sagging of adhesives, the settling of fillers, the stability of 

cosmetic emulsions or even the processability of concrete (Galan & Singer, 

2011). Careful study of rheological properties using advanced instrumentation and 

theory is therefore of paramount importance. In case the bulk fluid does not have 

the desired rheological profile, a rheology modifier is needed to tune the 

properties of the fluid as needed. For example, lecithin has the property to shear 

thin water (Schipunov & Hoffman, 2000). 

It was found that when the synthesized pH sensitive composite 

nanoparticles were loaded with lecithin, they show release when subjected to a pH 

stimulus. These composite nanoparticles were kept in a pH 7 and as well as pH 10 

environment. Centrifugation was performed and the supernatants collected.  

These supernatants were taken as samples and rheology profiles were done on 

them using a TA Instruments AR-G2 rheometer equipped with a 60 mm cone. 

A rheometer is a laboratory device used to measure the way in which a liquid, 

suspension or slurry flows in response to applied forces. It is used for those fluids 

which cannot be defined by a single value of viscosity and therefore require more 

parameters to be set and measured than is the case for a viscometer. It measures 

the rheology of the fluid. Typically for samples with lower viscosity a cone type 

geometry is used. The sample subjected to a higher pH showed a shear thinning 

effect as expected from lecithin. However for control polystyrene nanoparticles as 

well as for lower pH no shear thinning was observed. This implies that lecithin 



released from the pH stimuli induced composite nanoparticles has the ability to 

shear thin water. These results are summarized in Figure 6.6.  

 

Shear rate [1/s]

0 20 40 60 80 100

V
is

co
si

ty
 [P

a.
s]

0.0

0.2

0.4

0.6

0.8

1.0
25% rheological modifier at pH 10
25% rheological modifier at pH 7
Water 

 

 

 

 

 

 

 

 

Figure 6.6 

Release of lecithin from composite nanoparticles in water indicated by shear 

thinning flow curves for pH 10. No release observed for pH 7; water is the 

control. 

To confirm lecithin release in water from the pH responsive nanoparticles 

Fourier transform infrared spectroscopy (FTIR) characterization was done. FTIR 

is a technique which is used to obtain an infrared spectrum of absorption, 

emission, or photoconductivity of a solid, liquid or gas. An FTIR spectrometer 

simultaneously collects spectral data in a wide spectral range. This confers a 

significant advantage over a dispersive spectrometer which measures intensity 

over a narrow range of wavelengths at a time.  Water was tested as blank control. 

Next the pH responsive nanoparticles containing lecithin were divided into two 
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parts. The first part was kept in pH 7 solutions for 48 h and the second was kept in 

pH 10 solutions for 48 hours. These parts were then centrifuged to spin down the 

nanoparticles and the supernatants then extracted for making the test samples. It 

was found that for the higher pH samples characteristic peaks for lecithin were 

present as shown in Figure 6.7. 

 

Figure 6.7  

FTIR readings of water (control) samples of released lecithin from high pH 10 

and no release from low pH 7. 

These regions correspond to OH stretching vibrations between 3600–3000 

cm−1 (high absorbance peak for water; –C=O stretching and OH bending 

vibrations between 1770–1500 cm−1; and C–O–C, P–O–C and P=O stretching 

vibration between 1200–1050 cm−1. For water and the sample subjected to lower 

pH no peaks for lecithin were observed. Once it was established that the released 
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lecithin can shear thin water we wanted to see if lecithin interacts with dodecane 

(Figure 6.8).  

 

Figure 6.8 

For various concentrations of lecithin in dodecane, the viscosity changes as a 

function of shear rate. 

Thus next, different concentrations of lecithin were added to dodecane to 

see if it changes the bulk viscosity. This means that the bulk fluid was changed to 

dodecane. Various concentrations of lecithin were added to dodecane and the 

rheology profile observed.  Here no shear thinning behavior is observed for 

different lecithin concentrations.  Now, lecithin has a long non polar tail with a 

small polar head (Figure 6.9) which is why it is often used as an emulsifier 

(Weete et al., 1994). When lecithin “dissolves” in dodecane, only van der Waals 

forces (intermolecular) exist among the nonpolar solvents. The same is true for 
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the nonpolar solutes. Thus, all the lecithin in the solution is subject only to van 

der Waals forces, and solution can occur. Random motion of solute molecules 

will cause some of them to leave the surface of the solute. There can be solvation 

in such cases, but the forces involved are far weaker than those in solutions 

involving polar compounds. The nonpolar particles are simply dispersed. Thus, 

lecithin will disperse in dodecane randomly. 

  

Figure 6.9 

Chemical structure of a typical lecithin molecule.(Sigma-Aldrich) 

The increase in viscosity for greater amounts of lecithin dispersed in 

dodecane arises from the multiple Van der Waals attraction forces between these 

non-polar entities. An analogous increase in viscosity is observed commonly in 
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the case of syrup compared to water, where sugar syrup has a greater viscosity 

than water.  

Conclusion 

 It has been demonstrated that pH responsive core-shell composite 

nanoparticles can be synthesized using the Pickering emulsion polymerization 

method. The core of these composite nanoparticles has been successfully 

modified to be pH sensitive by incorporating a polymer that responds to a change 

of pH in the environment. The amount of responsiveness of the nanoparticles can 

be tuned by increasing or decreasing the amount of pH responsive monomer 

added during the synthesis process. A rheology modifier, lecithin was 

encapsulated within this system and when the system was subjected to basic pH 

the nanoparticles decreased in size. This direct shrinking of the nanoparticles 

expelled the encapsulated lecithin into the surrounding fluid, which in turn 

changed the fluid’s rheological properties. 

6.2 Development of Metallic Shell Composite Particles 

6.2.1 Introduction 

 .  In the last decade, many research interests have focused on polymer-

gold nanocomposites for different applications in the fields of electronics, optics, 

catalysis and biology (Niemeyer, 2001; Daniel & Astruc, 2004). As a well-

explored field of research, various polymer-gold nanocomposites have been 

synthesized using physical or chemical approaches (Sudeep & Emrick, 2007; 

Wuelfing, Gross, Miles & Murray, 1998; Ohno, Morinaga, Koh, Tsujii & Fukuda, 

2005; Ohno, Koh, Tsujii & Fukuda, 2003; Shan & Tenhu, 2007) and have shown 
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much potential for applications in advanced material science. Particularly, the 

“smart” nanocomposites consisting of gold nanoparticles and intelligent polymers 

display fascinating capabilities (Li, Gunari, Fischer, Janshoff & Schmidt, 2004; 

Liu, Yang, Liu & Tong, 2003; Cui, Tao, Tian, He & Li, 2006; He, Kuller, Grunze 

& Li, 2007), and therefore there is a need to devise a way to exploit a facile path 

for fabricating environmentally responsive materials which can be further used in 

a variety of novel technological applications (Owens et al., 2007; Kim & Lee, 

2006; Shan et al., 2004). 

A lesser explored field has been the study of a core-shell type of 

nanoparticle where a polymer serves as the core and inorganic nanoparticles are 

the shell. This is an interesting class of supramolecular building blocks and can 

“exhibit unusual, possibly unique, properties which cannot be obtained simply by 

co-mixing polymer and inorganic particles” (Barthet et al., 1999). We have 

extended this approach towards making organic cores with gold shells. For these 

types of composite particles, the polymer cores formed within the surfaces or 

shells of gold nanoparticles can not only enhance the stability of polymer cores 

intensively, but also it is possible to functionalize the polymer core due to the 

special properties which may be imparted by choosing the core polymer after 

careful consideration. Recently, core-shell composite particles consisting of a 

polymer core and metal shell have shown much potential in advanced materials 

(Zhu et al., 2004). Several methods have been developed to fabricate a metal shell 

around polymer nanoparticles and can be broadly classified into two categories: 

bottom-up and top-down. Nanotechnology techniques for top down fabrication 
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vary but can be split into mechanical and chemical fabrication techniques. One of 

the most well-known top down fabrication technique is nanolithography. In this 

process, the required material is protected by a mask and the exposed material is 

etched away. Depending upon the level of resolution required for features in the 

final product, etching of the base material can be done chemically using acids or 

mechanically using ultraviolet light, x-rays or electron beams. Areas involving 

bottom up fabrication are already quite successful. A key method in this approach 

is “self-assembly” of core-shell composite particles. The bottom-up approaches 

can be further segmented into three classes: (i) simultaneous fabrication, where 

both the core and the protective shell formation take place simultaneously; (ii) 

sequential fabrication, where the core is fabricated followed by the formation of a 

protective shell, and (iii) displacement reaction (redox) fabrication, wherein the 

protective shell is fabricated through a typical oxidation-reduction type of 

displacement chemical reaction mechanism (Wei et al., 2011). Other well-

researched preparative methods for mainly (core-shell) nanoparticles have been 

detailed in literature including the direct-synthesis method, “graft-to” strategy, 

“graft-from” strategy and physical adsorption method, in which the surface-

initiated radical polymerization such as atom-transfer radical polymerization and 

reversible-addition fragmentation chain-transfer radical polymerization displayed 

several advantages for well-defined nanostructures (Yong et al., 2006). However, 

in contrast to these techniques of fabrication, we attempt to synthesize composite 

nanoparticles with a polymer core and a metal shell using the method of Pickering 

emulsion polymerization. Previously in this thesis, we have discussed the 
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synthesis of the composite polymer-silica nanoparticles using Pickering emulsion 

polymerization.  In this section we try to see if the same synthesis strategy can be 

employed to synthesize core-shell composite particles with a gold shell. To date 

most of these particles have been synthesized with polymer shells and inorganic 

cores  (as discussed previously in chapter 3) while here,  it is proposed to reverse 

this with polymer cores and metallic shells (example gold) to achieve large 

radiative property shifts in the visible-infrared wavelengths.  One broader impact 

of the proposed work is listed as follows.  The technological opportunities that 

may be enabled by developing dynamically controllable radiative properties 

within the proposed composite nanoparticle dispersions are immense.  One 

potential system that may result from such a system is a dual use solar thermal 

collector/night-sky radiatior, (Figure 6.10).  It has been demonstrated that the use 

of dispersions of nanoparticles acting as direct absorption receivers (Otanicar et 

al., 2010; Tyagi et al., 2009) offer improved efficiencies over conventional 

surface based receivers.  Furthermore, similar advantages may be available in 

systems utilizing radiative emission as their main form of heat transfer.  By being 

able to dynamically control where the peak absorption (emission) wavelength 

occurs, it should be possible to create one system that acts as a direct absorption 

receiver for capturing solar thermal energy during the day and at night the system 

would shift operation into a night-sky radiator for cooling purposes. 

 

 

 



 

   

Figure 6.10 

Potential dual-use solar thermal collector/night-sky radiator using core-shell 

multifunctional nanoparticles 

6.2.2 Materials 

The following materials are used for the core-shell composite nanoparticle 

synthesis: spherical gold nanoparticles dispersed in iso-propanol, (wt% 3.0%, 

Nanopartz Inc.), Nonionic azo initiator VA-086 (98%, 2,2-azobis(2-methyl-N-(2-

hydroxyethyl)propionamide), Wako Chemicals), styrene monomer (99.9%, 

Fisher), N-isopropylacrylamide monomer (NIPAAm, 97%, Aldrich) and water 

(HPLC grade, Acros Organics) were used in the polymerization without further 

purification. 

6.2.3 Materials Synthesis 
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 0.1 ml gold nanoparticles dispersion, 5ml water and 0.1 g styrene were 

sonicated by VCX 500 ultrasound sonicator at 21 amplitude for 15 seconds to 
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form emulsion. The emulsion was then immediately moved to a 3-neck 15ml 

flask under magnetic stirring at 300 rpm, and was degassed with nitrogen for 15 

minutes. After the solution was heated to 65 °C, 0.007 g VA-086 initiator was 

injected into the flask; the reaction lasted for 4 hours. The reaction procedure and 

reaction time was the same with the synthesis of polystyrene-gold composite 

particles. Before characterization, the synthesized nanoparticles were washed 

twice by centrifuging-redispersing cycles using a Beckman Microfuge 18 

centrifuge for 10 minutes at 4000 rpm.  The asymmetric particles were collected 

by using GD/X™ 0.2 µm PTFE syringe filter. 

6.2.4 Characterization Techniques 

Particle Size Distribution Measurement 

Particle size distributions of the synthesized composite particles were 

analyzed by NICOMP 380 ZLS with dynamic light scattering (DLS) technique. 

The washed composite nanoparticles were further diluted with water before 

measurements to avoid particle aggregation. The NICOMP distribution was 

adopted to analyze the result.  

Transmission Electron Microscopy (TEM) and Energy-dispersive X-ray 

Spectroscopy (EDX) 

The TEM images were obtained by Philips CM-200 FEG. The TEM 

specimen was prepared by placing one droplet of the sample onto TEM 200 mesh 

copper grids with Lacey Formvar/Carbon film or Formvar/Carbon film and dried 

in air. 
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Scanning Electron Microscope (SEM) 

The specimens for scanning electron microscope (SEM) were then sputter 

coated with gold for 100 seconds and viewed by SEM-XL30 (FEI). Specimens 

SEM experiments were prepared by placing a droplet of the nanoparticle samples 

onto mica substrates and dried in air.  

6.2.5 Results and Discussion 

Asymmetric and non-asymmetric gold-composite articles 

 Using the Pickering emulsion polymerization synthesis method discussed 

in the materials synthesis section, there were two kinds of composite particles 

formed. The first being the usual core-shell type of composite particle of the size 

order of 400-500 nm with the organic core of the composite particle being 

covered by gold nanoparticles (these we term as “non-asymmetric”). The 

formation requirements and process of this type of composite particle has been 

previously discussed in Chapters 2 and 3. The second, more unusual type of 

composite particle was of the size order of 160-180 nm and is termed as 

“asymmetric”; these have an eccentric structure, these nanoparticles were uniform 

in size and morphology, with each organic bead containing only one gold 

nanoparticle at its surface. Figure 6.11 depicts the results of the synthesis process:  



  

Figure 6.11 

(a) TEM micrograph of non-asymmetric composite particles; (b) SEM image of 

non-asymmetric composite particles. 

 In this study the preparation procedure of these composite particles was 

analyzed in detail and applied by varying the type of gold nanoparticles used and 

by varying the amount of concentration. This type of bimodal distribution is in 

contrast to a study by Ohnuma et al., where asymmetric gold-polystyrene 

composites similar to this system were developed (Ohnuma et al., 2009). They 

had a unimodal size distribution of asymmetric composite particles and their 

synthesis method was different than the one listed here since they used a 

precipitation polymerization method. In contrast to emulsion polymerization, 

precipitation polymerization is a heterogeneous polymerization process that 

begins initially as a homogeneous system in the continuous phase, where the 

monomer and initiator are completely soluble, but upon initiation the formed 

polymer is insoluble and thus precipitates, forming the product. Another major 

difference from our one-step synthesis process is that they introduced gold 

nanoparticles into the reaction mixture a few minutes after polymerization had 

  136 



  137 

been induced, whereas in our reaction, the gold nanoparticles act as a stabilizer in 

the system from the starting of the fabrication process. For the non-asymmetric 

composite particles (Figure 6.11 a, b) the assumed reaction mechanism is the 

same type of Pickering emulsion polymerization as discussed in Chapter 3. 

However, to identify the reaction mechanism of the asymmetric composite 

particles a study was done on their time dependent growth formation (Figure 

6.12). Figure 6.12(a) shows a schematic illustration of the procedure used to form 

the asymmetric gold composite particles and TEM micrographs of samples 

obtained at different stages of the synthesis process. As can be seen from Figure 

6.12(b) around this point, polystyrene oligomers and/or monomers started to 

nucleate by attaching onto the surface of the gold nanoparticles, which then grew 

in size as the polymerization process proceeded and finally grew into spheres the 

shape of a droplet which has a defined shape dictated by surface tension. Figure 

6.12(c) shows the TEM micrograph of an intermediate sample observed at 1 hour 

into the reaction. An occlusion or bump type of formation of polystyrene can be 

seen forming on the surface of a gold nanoparticle through a heterogeneous 

nucleation process. As polymerization continued, this polystyrene nucleus 

gradually grew larger (around 40 nm) as shown in Figure 6.12(c). This nucleus 

finally grew into a sphere, as shown in Figure 6.12(d, e) for a sample present 4 

hours into the reaction. It is worthwhile to note that all of the polystyrene 

components showed a spherical shape regardless of their structural morphologies 

or orientations with the original gold nanoparticles. 



 

 

Figure 6.12 

Schematic illustration of the procedure for generating asymmetric gold composite 

particles (a) TEM micrographs indicating reaction intermediates obtained at (b) 

0.5 hours (c) 1 hour (d) 4 hours Individual scale bars are as indicated in the 

figures and inset; (e) SEM image of the asymmetric composite particles 
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The asymmetric gold composite particles containing gold nanoparticles 

were uniform in size, with an average diameter 180 nm in size. For every 

asymmetric composite particle formed, the polystyrene component contained only 

one gold nanoparticle partially embedded in the surface. As can be clearly seen in 

Figure 6.12(d, e), the gold nanoparticle slightly protruded from the surface of the 

polystyrene component, rather than being confined within the center of each 

composite particle. This appears to be a direct consequence of the growth 

mechanism detailed before. As clearly indicated by the TEM micrographs in 

Figure 6.12(b)-(d), the polystyrene component seems to grow in a nonuniform 

fashion from the surface of the gold nanoparticle while the polymerization took 

place. 

Pickering emulsion polymerization as a formation method of nanoparticles 

has been established during the course of this dissertation. Also, as has been 

discussed in a previous study (Binks et al., 2006), many types of nanoparticles, 

including silica, clay, and polymer species, are very effective as emulsion 

stabilizers in the absence of any other surface-active species when the particle 

wettability is suitable. However, in this study involving gold nanoparticles a 

bimodal kind of structure of composite nanoparticles was found to have been 

formed. It is therefore relevant to question why the gold particles used here do not 

stabilize the emulsion drops in the present system in the same way as silica 

particles do, even when they are clearly observed to adsorb at the oil-water 

interface (Binks et al., 2006). For most nanoparticle-stabilized emulsion systems 

reported in literature, the nanoparticle concentration must be on the order of 1 wt 
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% to provide good long-term emulsion stability. In the system studied here, the 

concentration of gold particles used initially was only ~0.005 wt %, which may 

simply be too low to impart long-term emulsion stability against coalescence. To 

observe how the formation of the composite particles behave as a function of the 

amount of stabilizing gold nanoparticles, successively higher gold concentrations 

were used. Another factor that may contribute to the poor emulsion stabilization 

by gold nanoparticles is that the Hamaker constant for gold surfaces interacting 

across water or hydrocarbons is 40 X 10-20 J. This is indicative of the fact that the 

van der Waals attractive forces that are involved in destabilizing the gold 

nanoparticle emulsions are higher than those for silica or polymers for which the 

corresponding Hamaker constants are in the range of 0.5-0.8 X 10-20 J (Binks et 

al., 2006).  
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Chapter 7 

SUMMARY AND FUTURE WORK 

7.1 Summary 

This dissertation presents a broad investigation ranging from the synthesis 

of core-shell composite particles, through Pickering emulsion polymerizations, to 

their characterizations as well as applications. We started by exploring how to 

apply the concept of interfacial particle self-assembly in emulsion 

polymerizations (Pickering emulsion polymerizations) to synthesize organic-

inorganic core-shell composite particles and discussed the polymerization 

mechanisms. Polystyrene-silica core-shell composite particles, with a silica 

content of 20 wt%, were successfully synthesized by one-step Pickering emulsion 

polymerization. Possible mechanisms of Pickering emulsion polymerization were 

also explored. The nanoparticles are thermodynamically favorable to self-

assemble and remain at the liquid-liquid interfaces. At the initial stage of 

polymerization, the nanoparticles provide stability to the monomer droplets. 

During the nucleation stage, the nanoparticles remain at the interfaces between the 

monomer and continuous phases. Homogeneous coagulative nucleation was 

identified as the dominating mechanism in the polymerization when using VA-

086 as the initiator. The research has both fundamental and practical applications 

and has potential impacts in multiple industries, such as the chemical, food, 

cosmetics, pharmaceutical, electronics and oil industries.   

Next, temperature sensitive nanoparticles were synthesized and these were 

applied in controlled drug delivery. The core-shell nature of these nanoparticles 
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were determined  by etching away the silica shell using HF acid and observing the 

surface morphology by SEM as well as chemically identifying the absence of the 

shell using FTIR. We have developed a unique drug delivery model vehicle which 

can be taken up by cancer cells and release the loaded drug at elevated 

temperatures. The composite nanoparticles are temperature sensitive and can be 

taken up by human prostate cancer (PC3 and PC3-PSMA) cells. An anticancer 

agent 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) has been loaded 

into the polymeric cores during formation of the nanoparticles and drug release 

has been successfully observed at higher than ambient temperatures. The ability 

of the various nanoparticles for inducing death in human prostate cancer cells has 

been evaluated. 

The transition temperature of the synthesized temperature sensitive core-

shell composite nanoparticles was around 32°C. However, if the temperature 

responsiveness can be tuned to different values, then these composite 

nanoparticles can have lasting applications in various fields as temperature 

sensors; also their dimension change property can be exploited as delivery 

vehicles at specific temperatures. After the efficient implementation of this study 

in a drug delivery application, we realized the need to tune the transition 

temperature of these composite nanoparticles to be near the human physiological 

temperature.   A number of methods were investigated for tuning the transition 

temperature of the nanoparticles which can be broken down into two categories: 

synthesis modification and post synthesis modification. The polymer core was 

modified using the addition of either a crosslinker or a co-monomer during the 
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synthesis and resulted in a maximum transition shift of 2 to 6 degrees respectively 

over the experimental range. Post synthesis, the nanoparticles were equilibrated in 

surfactant mixtures as well as co-solvent mixtures. Addition of these increased the 

transition temperature as has been detailed in chapter 5. Also, it is worthwhile to 

mention that the tunability of the transition temperature of these nanoparticles 

show similar trends as those observed for macroscopic bulk gels of similar 

polymer formulations. 

In addition, we have incorporated 2-(N, N-dimethylamino) ethyl 

methacrylate into the Pickering emulsion polymerization and synthesized pH 

responsive core-shell composite nanoparticles which release rheological modifiers 

upon pH change. The nanoparticles exhibit pH-sensitive behavior due to 

protonation/de-protonation of N, N-dimethylaminoethyl groups in the PDMA 

component of the composite. During the synthesis process lecithin was included 

as a starting material and the composite nanoparticles were synthesized with 

lecithin with a view to release this encapsulated material on a given pH stimulus. 

Lecithin is a well-studied chemical that is often used as a rheology modifier in 

applications ranging from the food industry to the pharmaceutical industry. In this 

case we have demonstrated the release of lecithin from pH sensitive composite 

nanoparticles by changing the pH levels of the bulk fluid, and that consequently, 

modifies the rheological properties of water. 

 Also, the shell material of these core-shell composite nanoparticles has 

been successfully changed from silica to gold. Following the Pickering emulsion 

polymerization synthesis method, described in the dissertation, we observed a 
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bimodal type distribution of particles with polystyrene as a core and gold as a 

shell having different surface morphologies i.e. asymmetric and non-asymmetric 

composite particles. The mechanism for the formation of the asymmetric particles 

was investigated using time as a variable during different stages of the synthesis 

process and thus we were able to observe the particle growth process with the 

help of TEM images and a schematic for the formation mechanism was 

consequently hypothesized. 

 As seen during the course of this dissertation, Pickering emulsion 

polymerizations could be used to synthesize a variety of composite particles of 

different chemistry. This work has consisted of mainly the synthesis, related 

characterizations and tuning these fabricated composite nanoparticles for a host of 

interesting applications. Depending on the applications, polystyrene was 

substituted by other hydrophobic emulsion polymers, or a co-monomer was 

mixed with styrene to synthesize composite particles with a polystyrene-based 

polymer core. Also, silica nanoparticles were substituted by other nanoparticles. 

To be able to change the core as well as the shell of these composite nanoparticles 

in a facile, one-step manner of synthesis opens up many potentially exciting 

avenues for future research which shall be discussed further in the next section 

comprising of future work in succession to this dissertation. 
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7.2 Future Work 

In the case of the pH sensitive composite nanoparticles, future studies 

include identifying potential rheology modifiers for oils such that they can be 

encapsulated in the composite pH responsive nanoparticles and then released is 

currently being studied. In this direction certain hydrostearic acid (HSA) based 

organogels seems a potentially attractive candidate. These are systems containing 

a majority oil component as solvent that exhibit elastic, gel-like properties and 

can be formed by a large variety of different low molecular weight gelators. 12-

hydroxy stearic acid (HSA) or other like compounds will be considered and its 

ability to gel various organic solvents, such as dodecane, silicone oil (PDMS) will 

be studied. Gelation typically occurs above a concentration of 0.1–0.8 wt% and 

the gelation concentration is related to the polarity of the oil (Burckhardt et al., 

2009) the macroscopic gel properties can be characterized by means of oscillatory 

rheology experiments, differential scanning calorimetry (DSC) and optical 

microscopy. A drawback of using macroscopic organogels is releasing them into 

the bulk surroundings. Hence specific studies need to be done upon the type of 

modifier that will be used and encapsulation and release studies in the 

experimental system under consideration should be done.  

 It is worthwhile to note that the viscoelasticity of the interface can be 

monitored in-situ by the recently developed interfacial microrheology (Jian & 

Dai, 2006; Wu & Dai, 2007; Wu et al., 2009).  Laser scanning confocal 

microscopy can be employed, Leica SP5, to perform particle tracking and monitor 

the rheological change of the oil-water interfaces upon the release of the 
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rheological thickener. As discussed in experiments in chapter 6, the released 

rheology modifier will be primarily characterized by rheological experiments (as 

the feasibility of this technique has been demonstrated.) 

For prospective future studies, Pickering emulsion polymerizations could 

be used to synthesize other composite particles of different chemistry. Synthesis 

of composite core-shell nanoparticles with a metallic shell and manipulating the 

core-shell nanoparticle volume ratio and understanding the structure-property of 

these nanoparticles in dispersions is an objective discussed in this study and its 

consequent application is outlined next. In the proposed work, the synthesis of the 

temperature-sensitive core-shell multifunctional nanoparticles will follow the 

developed experimental protocol: Other than controlling the volume change due 

to thermal response, it is also proposed to tune the core-shell nanoparticle size in 

general, as needed. This can be achieved by following an already developed 

theory (Gilbert, 1995) for use in conventional emulsion polymerizations,  

Mn~Rp ekdt Mo/kd[I]o                           (1) 

where Rp is the rate of overall emulsion polymerization, kd is the rate 

constant of decomposition of the initiator, [I]o is the initiator concentration, Mo is 

the initial monomer concentration, and t is the reaction time. Mn is the 

instantaneous number average molecular weight and directly associated with the 

particle size.  

With respect to applications, the combination of metallic nanoparticles and 

intelligent polymers provides a facile path for intelligent materials. For example, 

the metallic shell of the composite core-shell nanoparticles can be chosen to 
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exhibit spectral radiative properties (for example gold) or magnetic properties (for 

example iron oxide). Nanoparticles are known to offer a variety of benefits for 

thermal transport and of particular relevance here are the vast changes to the 

radiative properties that can be achieved through the dispersion of nanoparticles. 

In particular, a dispersion of core-shell multifunctional nanoparticles capable of 

dynamically changing their volume and thus their spectral radiative properties 

will be created.  Preliminary experiments as detailed in Chapter 6 have shown that 

these multifunctional nanoparticles consisting of a metal shell and polymer core 

are capable of being synthesized.  Further tuning of the size ratio of the core and 

shell can be done by modifying the synthesis process and by including a 

temperature responsive polymer in the core of these composite particles. Also, the 

subsequent experiments will largely focus on measuring the spectral radiative 

properties of different dispersions at different temperatures and thus different 

volumes using spectrophotometric and DLS techniques.   
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APPENDIX A  

THE STATUS OF RECYCLING OF PRINTED CIRCUIT BOARD USING A 

GREEN PROCESS 
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1. Introduction 

Widespread use of electronic equipment and shortening of product life 

cycles have created the challenging task of dealing with the ever-increasing 

quantity of obsolete electronic equipments. Among the challenges to successful 

electronic equipment recycling, printed circuit board (PCB) primary components 

in every type of electronic products; recycling is recognized as one of the most 

difficult tasks because of their complex construction and complicated material 

composition (Pitts &Mizuki, 1996). PCB scraps are generated from almost all 

kinds of end-of-life electrical and electronic products.  It is reported that about 

50,000 tons of PCB scraps is produced each year in United Kingdom and only 

15% of those is currently subjected to any form of recycling, while remaining 

85% is consigned to landfill (Goosey et al., 2003). 

PCBs contain three basic components regardless of their construction: 1) a 

non-conducting substrate or laminate, 2) conductive circuits printed on or inside 

the substrate and, 3) mounted components.  The most widely used substrate is 

(flame retardant) FR4, which is made up of glass fiber reinforced epoxy resin with 

a brominated flame retardant in the epoxy matrix.  FR2 is another type of 

commonly seen substrate which is made up of paper reinforced phenolic resin 

with added flame retardants (Zhang & Gao, 2004).  PCBs contain not only a 

significant amount of precious metals (gold, silver, palladium, etc.) and base 

metals (copper, iron, aluminum, tin, etc.) but also hazardous elements such as 

lead, mercury, antimony, cadmium, chromium and beryllium (Zhang & Gao, 
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2004).  This is why it is essential to have proper recycling processes for PCB 

disposal as these toxic elements could lead to serious environmental 

contamination. 

The traditional PCB recycling technology focuses more on  separating 

objective metals and fiber glasses but pays less attention to efficiency and 

economic returns. For instance, most recycling processes can only recover 28 

wt% metals from PCBs, resulting in more than 70% of PCB scraps not being 

efficiently recycled and ending up in landfill (Zhang & Gao, 2004). A traditional 

PCB recycling process usually includes three steps: pretreatment, 

shredding/separation and mechanical/chemical refining (Zhang & Gao, 2004). 

The pretreatment stage includes a composition analysis and disassembly of the 

reusable and hazardous components.  Since the main objective of the recycling is 

to minimize the damage to the environment and maximize material recovery, a 

composition analysis is necessary not only to obtain the detailed material 

information of PCBs, but also to give an estimation of the cost incurred and profit 

realized from the PCB recycling.  The purpose of disassembly is to remove 

reusable and hazardous components in order to isolate them from subsequent 

treatments.  Shredding/separation are the next alternative step after disassembly.  

The PCB substrates are treated with shredding machines to be fragmented into 

small particles typically between 100 and 300 µm (Zhang & Gao, 2004).  These 

particles can be further separated by techniques based on component differences 

in size, density, magnetic, electrostatic, eddy current and gravity (Goosey et al., 
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2003).  Finally, thermal, mechanical or chemical (or combined) processing are 

employed to collect the final recycled products. Here we report the development 

and understanding of an alternative green supercritical fluid (SCF) carbon dioxide 

(CO2) based process to delaminate the PCBs such that the metals and glass fibers 

retain their original form and can be recovered. The process temperature is set 

higher than the glass transition temperature of the polymer within the PCBs. This 

can cause polymer decomposition which leads to the delamination of the PCBs. 

2. Experimental 

2.1 The PCBs and Supercritical CO2 Process 

   The PCBs were kindly supplied from S1 Technology Inc. A supercritical 

carbon dioxide (CO2) process was designed and developed to delaminate/recycle 

PCBs with details discussed in Section 3.1.   The main components in the process 

include a HiP GC-21 high  pressure  vessel,  low  temperature  and  high  

temperature  laboratory  ovens,  pressure transducers, thermometers and a CO2 

supply.  The PCB were placed in the high pressure vessel and undergo a 

supercritical CO2 process with controllable temperature, pressure and co-solvents 

(if any) and processing time.  

2.2 Material Characterization 

In order to understand the mechanisms of PCB delaminating/recycling, we 

have performed various materials characterization using a differential scanning 

calorimeter (TA Instruments SDT Q600), a dynamic mechanical analyzer (TA 

Instruments DMA Q800), and a Fourier Transform Infrared Spectrometer (Bruker 
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IFS 66V/S).  Differential scanning calorimetry (DSC) was used to measure the 

glass transition temperature of the PCBs before and after supercritical CO2 

treatments.  The measurements were performed in a nitrogen atmosphere. After a 

heating and cooling cycle up to 240 °C at 10 °C/min to eliminate the thermal 

history, the glass transition temperature was analyzed from data of the second 

heating scan from 25 to 240 °C at 10 °C/min, with the TA Universal 

Analysis software. During a dynamic mechanical analyzer (DMA) experiment, 

the delaminated (supercritical CO2 treated) and control (untreated) PCBs were 

dissembled manually and loaded onto the tension clamp. The temperature was 

varied from 25 to 250°C ramped up at a rate of 3 °C/min. A preload force of 

0.01N and force track of 125% was chosen in accordance with the recommended 

values for the clamp. Fourier transform infrared spectrometer (FTIR) experiments 

were performed to evaluate the molecular “fingerprints” of PCBs.  The polymeric 

parts were scraped off from the PCBs and then grinded and pressed with 

potassium bromide (KBr) to form pellets. FTIR spectra were scanned over the 

range of 400-4,000 cm-1. 

3. Results and discussion 

3.1 Validation of a Supercritical CO2 Process for PCB Delaminating/Recycling 

An SCF is defined as a substance above its critical temperature (Tc) and 

critical pressure (Pc), where it remains as a single phase, having gas-like diffusion 

rate, viscosity, and liquid-like densities (Kazarian, 2000, Smith, Van Ness & 

Abbott, 2001, Prausnitz, 1999). It can effuse through solids like a gas, and 
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dissolve materials like a liquid. In addition, close to the critical point, small 

changes in pressure or temperature result in large changes in density, allowing 

many properties of a supercritical fluid to be "fine-tuned". Supercritical fluids are 

suitable as a substitute for organic solvents in a range of industrial and laboratory 

processes. Carbon dioxide and water are the most commonly used supercritical 

fluids, being used for decaffeination and power generation, respectively. In 

addition, there is no surface tension in a supercritical fluid, as there is no 

liquid/gas phase boundary. By changing the pressure and temperature of the fluid, 

the properties can be "tuned" to be more liquid- or more gas-like. One of the most 

important properties is the solubility of material in the fluid. Solubility in a 

supercritical fluid tends to increase with density of the fluid (at constant 

temperature). Since density increases with pressure, solubility tends to increase 

with pressure. The relationship with temperature is a little more complicated. At 

constant density, solubility will increase with temperature. However, close to the 

critical point, the density can drop sharply with a slight increase in temperature. 

Therefore, close to the critical temperature, solubility often drops with increasing 

temperature, then rises again. 

All supercritical fluids are completely miscible with each other so for a 

mixture a single phase can be guaranteed if the critical point of the mixture is 

exceeded. The critical point of a binary mixture can be estimated as the arithmetic 

mean of the critical temperatures and pressures of the two components, 

Tc(mix) = (mole fraction A) x TcA + (mole fraction B) x TcB.  
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Figure A1 shows a projection of a phase diagram. In the pressure-

temperature phase diagram the boiling separates the gas and liquid region and 

ends in the critical point, where the liquid and gas phases disappear to become a 

single supercritical phase. At well below the critical temperature, e.g., 280K, as 

the pressure increases, the gas compresses and eventually (at just over 40 bar) 

condenses into a much denser liquid, resulting in the discontinuity in the line 

(vertical dotted line). The system consists of 2 phases in equilibrium, a dense 

liquid and a low density gas. As the critical temperature is approached (300K), the 

density of the gas at equilibrium becomes denser, and that of the liquid lower. At 

the critical point, (304.1 K and 7.38 MPa (73.8 bar)). There is no difference in 

density, and the 2 phases become one fluid phase. Thus, above the critical 

temperature a gas cannot be liquefied by pressure. At slightly above the critical 

temperature (310K), in the vicinity of the critical pressure, the line is almost 

vertical. A small increase in pressure causes a large increase in the density of the 

supercritical phase. Many other physical properties also show large gradients with 

pressure near the critical point, e.g. viscosity, the relative permittivity and the 

solvent strength, which are all closely related to the density. At higher 

temperatures, the fluid starts to behave like a gas. For carbon dioxide at 400 K, 

the density increases almost linearly with pressure. 

Many pressurised gases are actually supercritical fluids. For example, 

nitrogen has a critical point of 126.2K (- 147 °C) and 3.4 MPa (34 bar). 

Therefore, nitrogen (or compressed air) in a gas cylinder above this pressure is 



actually a supercritical fluid. These are more often known as permanent gases. At 

room temperature, they are well above their critical temperature, and therefore 

behave as a gas, similar to CO2 at 400K above. However, they cannot be 

liquefied by pressure unless cooled below their critical temperature. The gas-like 

and liquid-like properties combined together can give the SCF appropriate 

thermodynamic properties that make it a highly useful and environmentally 

benign solvent for various applications. 

 

Figure A1 

Pressure-temperature phase diagram for carbon dioxide. 
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 Recently, supercritical fluids have been employed for waste material 

recycling with the potential to satisfy both economic and environmental demands.   
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It has been found that near critical and supercritical water oxidation techniques 

can partially or completely break down rubber waste materials (Parl et al., 2001). 

Electronic wastes can be dissembled with zero emission using supercritical water 

oxidation. Up to 50% reduction in weight can be achieved and organic epoxy 

resin material can be converted into carbon dioxide, water, nitrogen and bromide 

(Eyerer, 1998).  The residuals of electronic wastes after the supercritical water 

oxidation treatment contain merely fiberglass and metals.  In this work, we 

validated a supercritical carbon dioxide (CO2) process delaminate/recycle PCBs.  

Supercritical CO2 has a critical temperature of 31°C and pressure of 73.8 bars 

(Rothman et al., 2002).   Figure A2 is a schematic diagram of the supercritical 

CO2 process.  During the experiments, we first systematically evaluated the effect 

of process conditions and time on PCB delaminating.  The processing 

temperature, pressure and time varied from 100-260 oC, 100-379 bar and 3-6 

hours, respectively.  We discovered that a combination of medium processing 

temperature, pressure and time is sufficient to delaminate the PCBs.  For example, 

we found that at a combination of temperature as low as 180 oC and pressure as 

low as 138 bar could successfully delaminate PCBs and enable subsequent 

recycling. In addition, a small amount such as 7% of water as co-solvent 

improved the effectiveness of delaminating the bonding materials with the process 

temperature and pressure being below the critical temperature and pressure of 

water (Tc water = 374 oC and Pc = 221 bar (Rothman et al., 2002)). 
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Figure A2 

  A schematic diagram of the supercritical CO2 process for 

delaminating/recycling PCBs. 

3.2 Exploring PCB Delaminating Mechanisms 

It is intuitive to enquire delaminating mechanisms of the PCB boards 

under a supercritical CO2 process such as at 180 oC and 138 bar with 7% of water.  

Thus we have performed a series of materials characterization and compared the 

PCBs before any supercritical fluid process (control) versus those that went 

through the process.  First, we performed DSC experiments detailed above to 

quantify the glass transition temperatures.  The glass-liquid transition (or glass 

transition for short) is the reversible transition in amorphous materials (or in 

amorphous regions within semicrystalline materials) from a hard and relatively 

brittle state into a molten or rubber-like state. An amorphous solid that exhibits a 

glass transition is called a glass. Despite the massive change in the physical 
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properties of a material through its glass transition, the transition is not itself a 

phase transition of any kind; rather it is a laboratory phenomenon extending over 

a range of temperature and defined by one of several conventions. Upon cooling 

or heating through this glass transition range, the material also exhibits a smooth 

step in the thermal expansion coefficient and in the specific heat, with the location 

of these effects again being dependent on the history of the material. However, 

the question of whether some phase transition underlies the glass transition is a 

matter of continuing research. The glass transition temperature Tg is always lower 

than the melting temperature, Tm, of the crystalline state of the material, if one 

exists. The glass transition of a liquid to a solid-like state may occur with either 

cooling or compression. The transition comprises a smooth increase in the 

viscosity of a material by as much as 17 orders of magnitude without any 

pronounced change in material structure. The consequence of this dramatic 

increase is a glass exhibiting solid-like mechanical properties on the timescale of 

practical observation. This transition is in contrast to the freezing or 

crystallization transition, which is a first-order phase transition and involves 

discontinuities in thermodynamic and dynamic properties such as volume, energy 

and viscosity. In many materials that normally undergo a freezing transition, rapid 

cooling will avoid this phase transition and instead result in a glass transition at 

some lower temperature. Other materials, such as many polymers, lack a well-

defined crystalline state and easily form glasses, even upon very slow cooling or 

compression. 
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Below the transition temperature range, the glassy structure does not relax 

in accordance with the cooling rate used. The expansion coefficient for the glassy 

state is roughly equivalent to that of the crystalline solid. If slower cooling rates 

are used, the increased time for structural relaxation (or intermolecular 

rearrangement) to occur may result in a higher density glass product. Similarly, by 

annealing (and thus allowing for slow structural relaxation) the glass structure in 

time approaches an equilibrium density corresponding to the supercooled liquid at 

this same temperature. Tg is located at the intersection between the cooling curve 

(volume versus temperature) for the glassy state and the supercooled liquid. 

The configuration of the glass in this temperature range changes slowly 

with time towards the equilibrium structure. The principle of the minimization of 

the Gibbs free energy provides the thermodynamic driving force necessary for the 

eventual change. It should be noted here that at somewhat higher temperatures 

than Tg, the structure corresponding to equilibrium at any temperature is achieved 

quite rapidly. In contrast, at considerably lower temperatures, the configuration of 

the glass remains sensibly stable over increasingly extended periods of time. 

Thus, the liquid-glass transition is not a transition between states of 

thermodynamic equilibrium. It is widely believed that the true equilibrium state is 

always crystalline. Time and temperature are interchangeable quantities (to some 

extent) when dealing with glasses, a fact often expressed in the time-temperature 

superposition principle. On cooling a liquid, internal degrees of freedom 

successively get removed out of equilibrium.  



Figure A3 shows the overlay of DSC curves of the control (untreated) and 

the samples that went through the supercritical CO2 process at the pressure of 172 

bar and the temperature of 150 oC, 180 oC, and 200 oC, respectively.  The glass 

transition temperatures (both onset and half-height, as labeled on the curves) did 

not exhibit significant differences of the samples before (control) and after the 

supercritical CO2 processes. 

 

 
Control

SCFT = 180oC

SCFT = 200oC

SCFT = 150oC

   

 

 

 

 

 

 

Figure A3 

  Differential scanning calorimetry (DSC) overlay of the control and the PCBs 

going through the supercritical CO2 process at 172 bar, 7% water, but 

different temperatures.  

 

This is surprising since it is known that a supercritical fluid process can 

cause a subsequent chain scissoring, often referred to as degradation, which 
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produces resin fragment with shorter chain length and lower molecular weight 

(Yu & Zhang, 1998).  For example, recycling of high value carbon fiber from 

polymer composites using supercritical n-propanol (Jiang et al., 2007) and 

nearcritical and supercritical water (Hernanz et al., 2008) have been reported; 

both work suggest polymer degradation as the primary mechanism for fiber and 

resin separation.  Since polymer degradation leads to significant changes in 

physical properties such as glass transition temperature and cross link density, the 

DSC results do not support such hypothesis when the PCB substrates undergo a 

supercritical CO2 process at 172 bar, 150-200 oC and 7% water. 

Subsequently, we further verified the observation by the DMA 

experiments and in this study, the peak value of tan δ curve as shown in Figure 

A4 was used to determine the glass transition temperature.  The DMA 

experiments also suggest that there is no significant difference in glass transition 

temperature when comparing the samples before (control) and after the 

supercritical process (same process conditions as those samples in the DSC 

experiments).  It is also worthwhile to note that we characterized the crosslink 

density through its correlation with rubbery plateau (E´), 3ρRT/E´, where ρ is the 

density, R is the gas constant, and T is the temperature.   Taking into account the 

standard deviation of results, the samples did not reveal meaningful difference in 

crosslink density, which further eliminates the hypothesis chain scissoring under 

such process conditions.  

 



 
 
 
 
 
 Rubbery Plateau

 
 
 
 
 
    
 
 
Figure A4 
 
  A representative dynamic mechanical analyzer (DMA) run of PCB after going 

through a supercritical carbon dioxide process at 180oC, 172 bar, and 7% water.  

The experimental frequency is 1 Hz. 

Finally, we try to understand why a small amount (7%) of water improved 

effectiveness of delamination of the bonding materials when the process 

temperature was significantly below the critical temperature and pressure of water 

(Tc, water = 374 oC and Pc = 221 bar (Prausnitz, 1999)). The commonly used 

bonding material is brominated bisphenol-A epoxy based material, which includes 

a basic epoxy resin, crosslinking component, and brominated fire retardants.  

Water has recently been identified as a unique agent under sub- and supercritical 

conditions (Shibasaki et al., 2004, Bellissent-Funel, 2001, Goedkoop & 

Spriensma, 2000, Li et al., 2007, Huisman et al., 2000). For example, sub- and 

supercritical water has effectively converted an epoxy resin into carbon dioxide 
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and water through a hydrolysis and oxidation mechanism (Fromonteil et al., 

2000).  Recovery of waste polystyrene to styrene monomer by supercritical water 

partial oxidation has also been performed (Lilac & Lee, 2001).  Diphenylether can 

be decomposed into phenol in the reaction in supercritical water with the addition 

of a base compound Na2CO3 (Shibasaki et al., 2004).  Surprisingly, our work so 

far suggests that water caused neither additional chemical reaction nor additional 

decomposition of the epoxy resins under the tested conditions, likely due to the 

fact the process was operated at a non-supercritical condition of water.   Although 

7% water is sufficient to improve the delamination process, we have included 

high water contents in order to study the mechanism and performed FTIR 

experiments.  The FTIR spectrums suggest that the PCB boards, which went 

through a high percentage water during the supercritical CO2 process contained 

high tracer amount of water molecules. This is evidenced by the more prominent 

peaks at the wavenumber of 3450 cm-1 (where water molecule resonates), as  

shown  in  Figure A5.  However, the FTIR scans revealed signals of neither 

formation of any new substances nor changes of other molecular “finger prints” 

over the experimental wavelength range (Figure A5). The evidence of no 

formation of new substances such as hydrocarbons and noxious gases commonly 

found in the pyrolysis of PCBs (Chien et al., 2000) further reinforced the 

environmentally benign nature of the developed supercritical CO2 process. 



 
Figure  A5 

  Overlay of Fourier transform infrared spectrum (FTIR) of PCB boards after 

going through different SCF processes.  T = 180oC; P = 172 bar; water 

percentage: W1(solid red line): 0%, W3(dotted and dashed green line): 20%; 

W4(dotted blue line): 31%.  The water percentage was increased solely for the 

purpose of studying mechanisms. 

 

4. Conclusion 

An environmentally benign supercritical CO2 process has been designed 

and validated for PCB recycling. Using supercritical carbon dioxide as a solvent 

and with an additional small amount of water, the PCB scraps delaminated easily 

and separated into copper foil, glass fiber and polymer which can then be further 

recycled.  In addition, we have performed a systematic study of the effects of 
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process conditions such as pressure, temperature, time and co-solvent on PCB 

delamination/recycling. From the experimental results of DSC, DMA and FTIR, 

we suggest that neither chain scissoring (polymer degradation) nor any additional 

reaction occurred during the developed supercritical CO2 process.  Such PCB 

delaminating/recycling method has the advantages of automatic separation and 

being environmentally benign compared to the traditional recycling process.   
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