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ABSTRACT 

 

With increasing concerns of the intrinsic toxicity of lead (Pb) in 

electronics, a series of tin (Sn) based alloys involving silver (Ag) and copper (Cu) 

have been proposed as replacements for Pb-Sn solder and widely accepted by 

industry. However, they have a higher melting point and often exhibit poorer 

damage tolerance than Pb-Sn alloys. Recently, a new class of alloys with trace 

amount of rare-earth (RE) elements has been discovered and investigated. In 

previous work from Prof. Chawla’s group, it has been shown that cerium (Ce)-

based Pb-free solder are less prone to oxidation and Sn whiskering, and exhibit 

desirable attributes of microstructural refinement and enhanced ductility relative 

to lanthanum (La)-based Sn-3.9Ag-0.7Cu (SAC) alloy. Although the formation of 

RESn3 was believed to be directly responsible for the enhanced ductility in RE-

containing SAC solder by allowing microscopic voids to nucleate throughout the 

solder volume, this cavitation-based mechanism needs to be validated 

experimentally and numerically. Additionally, since the previous study has 

exhibited the realistic feasibility of Ce-based SAC lead-free solder alloy as a 

replacement to conventional SAC alloys, in this study, the proposed objective 

focuses on the in in-depth understanding of mechanism of enhanced ductility in 

Ce-based SAC alloy and possible issues associated with integration of this new 

class of solder into electronic industry, including: (a) study of long-term thermal 

and mechanical stability on industrial metallization, (b) examine the role of solder 

volume and wetting behavior of the new solder, relative to Sn-3.9Ag-0.7Cu 

alloys, (c) conduct experiments of new solder alloys in the form of mechanical 
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shock and electromigration. The research of this new class alloys will be 

conducted in industrially relevant conditions, and the results would serve as the 

first step toward integration of these new, next generation solders into the 

industry.
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1. INTRODUCTION 

Solder is an interconnection material that has been used in electronic 

packaging industry for several decades. Tin (Sn) based solder alloys are the most 

common choice for all proposed solder candidates due to the alloy’s great wetting 

charactistics and tendency for the formation of bonding intermetallic compounds 

with copper, nickel and other metallizations that used in electronic industry, in 

addition to commanding a relatively low cost [1]. Before the potential hazards to 

the environment and human health of lead’s (Pb) containing products were fully 

realized and had become a wide spread concern, the Pb-Sn eutectic alloy was one 

of the most successful eutectic solder alloys used by mankind from ancient times 

(due to its ease in terms of processabiliy) [2]. Although Pb can reduce the melting 

point of Sn when used as an alloying element and improve physical properties 

without affecting the solder chemistry, legislations have been pursued most 

heavily in the European countries and even worldwide during the last 15 years to 

eliminate lead in electronics. Up to now, and with increased attention in recent 

years, a series of Sn base alloys involving silver (Ag) and copper (Cu) have been 

widely accepted as replacements for Sn-Pb solder [3, 4]. However, there is a 

significant marked decrease in the performance of the Sn-Ag-Cu (SAC) alloy, 

compared to the Pb-Sn alloy. Most notably, the higher melting temperature, 

higher undercooling required for solidification, and of particular interest, a low 

ductility, yielding consequently poor mechanical shock resistance [5, 6]. 

Recently, rare earth (RE) doped Pb-free solder alloys have gained 

significant attention from worldwide researchers due to their superior physical 
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and mechanical properties [7-10]. Previous investigations have shown that adding 

RE elements can refine the microstructure of Pb-free solders [11-14], yield 

refined intermetallic particles [15-18], reduce the melting temperature [19, 20], 

decrease the thickness of the Cu6Sn5 layer that forms at the Cu substrate and 

solder interface [21], and improved wetting behavior [14, 20, 22], improved 

electromigration resistance [23] and superior mechanical performance [12-14, 24, 

25] when the RE content is less than 0.5 wt pct. In particular, enhanced 

mechanical properties, such as tensile strength [12, 14], ductility [24, 25] and 

creep resistance [17, 24] of RE-containing solders have been reported.  

In the previous work of Chawla and others have shown that Pb-free solder 

alloys with small amounts of La [26] and Ce [10] elements possess refined 

microstructure, reduced Cu6Sn5 intermetallic compound layer thickness, and 

significantly increased ductility of solder joints compared to the SAC solder alloy. 

Most importantly, Ce-based alloys are less prone to oxidation [27] but still exhibit 

the desirable attributes of microstructural refinement and increased strain-to-

failure relative to SAC solder alloy. Such enhanced ductility has profound 

implications for improving the mechanical shock resistance of SAC solder joints. 

This is by far one of the most important properties for a solder to possess for the 

suitable performance of devices, which experience vibrations, bumping and even 

dropping in real deployment. This property is an important topic of particular 

interest which must be further investigated using mechanical shock behavior 

studies. 
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The proposed mechanism of the enhanced ductility in RE-containing SAC 

solder joint is based on observations of the fracture surface [21]  showing 

according to which voids nucleate at the RESn3 intermetallic particles. However, 

the mechanisms of this cavitation must to be validated both experimentally and 

with numerical simulations based on suitable models.  

In previous studies at the realistic feasibility of Ce-based SAC Pb-free 

solder alloy as a replacement to conventional SAC alloys has been demonstrated. 

However, a survey of the literature shows that there is a lack of fundamental 

understanding on the thermal stability, physical properties and reliability of Ce-

containing lead-free alloy, including isothermal and mechanical stability, 

wettability, the volume effect on microstructural refinement and reliability issues 

in the form of mechanical shock and electromigration tolerance of Ce-containing 

SAC alloy. This dissertation focuses on the possible issues associated with the 

integration of this novel class of solder alloy into the electronic industry and will 

contribute to the ever increasing body of knowledge under the banner of Pb-free 

solders, which is of pressing importance to improve the health of our world.
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2. REVIEW OF LITERATURE 

In recent years, a series of eutectic and near-eutectic Sn-Ag-Cu (SAC) 

alloys have been proposed as acceptable replacements for the Pb-Sn solder by 

industry and are considered to be one of the most successful lead-free solder alloy 

systems [3, 28-32]. The primary reason of that this alloy of ternary composition 

rather than binary composition is due to the realization of the lowest observed 

melting point for this material system [3], as well as superior mechanical 

performance including improved creep and fatigue resistance [33, 34]. However, 

the excessive addition of Cu and Ag often results in the formation of rigid large 

Ag3Sn plates and Cu6Sn5 bricks, which may cause mechanical degradation of, 

solder joints [35, 36]. This literature review mainly focuses on the observed 

microstructures and properties of SAC and SAC alloyed with a fourth element to 

investigate potentially improved performance. 

2.1 Thermal Stability of SAC and RE-Containing SAC Solder Alloys on 

Industrial Metallizations 

2.1.1 Industrial under-bump metallizations 

The metallic substrate is an essential component of flip-chip technology, 

which must be able to provide an excellent solderable surface to form a good 

metallurgical bond. During the reflow process, molten Sn reacts with a Cu 

substrate and forms a nodular Cu6Sn5 intermetallic (IMC) layer at the interface of 

the solder and Cu substrate [37]. During thermal aging, this brittle Cu6Sn5 IMC 

layer grows and an additional Cu3Sn interfacial IMC layer can form between the 

Cu6Sn5 IMC layer and the Cu substrate [33]. The rapid formation of the IMC 
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layer and the consequent consumption of Cu metallization is due to fast diffusion 

of Cu within the molten solder as well as in solid-state solder, which has 

tremendous repercussions on the mechanical and electromigration behavior of the 

ensuing solder joint. 

To minimize the rapid IMC layer growth in Cu under-bump metallization 

(UBM), an alternative Ni-based UBM has been widely used in industry as a 

diffusion barrier against the Cu atoms. Amoung the Ni-based UBM, electroless 

nickel-phosphorus (Ni-P) with an immersion Au layer is considered as a 

promising UBM because of its low cost compared to vacuum deposited Ni and 

electroplated Ni, and its exceptional mechanical properties. The thin Au layer 

serves as a wetting and oxidation protection layer [38]. The interfacial reactions 

between Ni-P and lead-free solders have been widely studied [39-50]. During the 

reflow process, the Au layer is completely dissolved in the solder and forms 

AuSn4 or (Au,Ni)Sn4 IMC particles [39-41]. A thin P-rich Ni-P layer is formed 

between IMC layer and original Ni-P layer as a result of the diffusion of Ni. Since 

the composition and morphology of the interfacial intermetallic depends on the 

solder composition in the Pb-free solder. Without Cu, a thin needle-shaped Ni3Sn4 

layer is formed at the Ni-P/solder interface during reflow. However, the IMC 

layer formed with the Cu-containing solder is very complicated as there is a 

ternary reaction between Ni, Cu and Sn at the interface. Different results in terms 

of IMC phase have been reported in numerous previous studies, such as 

Ni4Cu7Sn6, (Ni,Cu)3Sn4, (Cu,Ni)6Sn5 and Cu26Ni26Sn47 [42-46]. Researchers have 

shown that the IMCs formed at the interface is dependent on the Cu concentration 
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in the solder alloy [47]. Zeng et al. [45] observed that (Cu,Ni)6Sn5 and 

(Ni,Cu)3Sn4 were formed above and below 0.6 at.% Cu in the solder, respectively. 

Yu et al. [48] reported that when the concentration of Cu is between 0.3 wt.% and 

0.7 wt.%, the IMC layer becomes a discontinuous (Cu,Ni)6Sn5 layer forming over 

a continuous (Ni,Cu)3Sn4 layer. Jeon et al. [49] and Alam et al. [50] suggested 

that (Cu,Ni)6Sn5 is the most stable phase, and (Ni,Cu)3Sn4 was formed when the 

Cu inside solder was completely consumed. They found that the morphology of 

(Cu,Ni)6Sn5 is faceted while (Ni,Cu)3Sn4 is needlelike. 

2.1.2 Isothermal aging behavior of Pb-free solders on Cu and Ni-P 

metallizations 

Isothermal aging has been widely used as a successful method to study 

long-term thermal and mechanical stability of solder joints. Isothermal aging test 

conditions vary from room temperature to 200°C with up to 2000 hours of aging 

[51-54]. During solid-state aging under elevated temperature, microstructural 

evolutions such as solder matrix coarsening [52, 55, 56], growth of Cu6Sn5 and 

Cu3Sn intermetallic layers at the solder/Cu interface [55, 57, 58] and consequently 

Kirkendall voids growth [59, 60] will all be accelerated. Although only a few 

studies have been conducted on interfacial reactions between electroless Ni UBM 

and SAC alloy during aging, it was found that the IMC growth on the Ni UBM is 

effectively minimized when the temperature is low [61, 62]. The growth of IMC 

layer and composition change in IMC layer are almost negligible, when the aging 

temperature is lower than 125°C [61,62,47]. After the consumption of Cu is 

completed inside solder with extended annealing, a continuous (Ni,Cu)3Sn4 IMC 



 

  7  

is formed between (Cu,Ni)6Sn5 IMC layer and Ni-P layer [42, 49, 62, 63]. As a 

by-product of Ni diffusion from the Ni-P to IMC/Ni-P interface, a thick P-rich Ni-

P (Ni3P) layer with Kirkendall voids is observed after reflow and annealing [47, 

64], which may potentially deteriorate the mechanical performance of Pb-free 

solder joints. 

As a result of the coarsening of SAC’s microstructure due to thermal 

aging, properties like the hardness of the solder matrix [53, 65-67], tensile 

strength [52], stiffness [51], yield stress, and creep resistance [56] decrease while 

elongation [68] increases. However, the growth of the interfacial intermetallic 

layer complicates the effect of aging on the mechanical behavior of solder joints. 

Deng et al. [53] showed that in quasi-static shear testing, the decrease in shear 

strength is controlled by solder coarsening instead of intermetallic growth. 

However, for high strain rate tests (drop test, ball shear/pull test), it was found 

that mechanical behavior of solder joint is controlled by IMC layer thickness [59], 

rather than the bulk of the solder joint as in quasi-static testing. Dutta et al. [56] 

suggested that the effect of aging on dynamic fracture toughness depends on the 

loading angles, and softening is associated with coarsening which enhances 

toughness in mode I. Ou et al. [69] also observed increase in impact toughness 

with increase in aging time. Additionally, it was found that Kirkendall voids 

formed during the reflow process and during aging may reduce the strength of 

solder joint and degrade drop test performance significantly [70, 71]. Amgai et al. 

[72] and Anderson et al. [60] reported that by adding a suitable 4
th

 element (Ni, 
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Co and Fe) to the SAC alloy, the formation and growth of Kirkendall voids was 

retarded, and drop test performance was consequently improved. 

2.1.3 Isothermal aging behavior of RE containing Pb-free solders on Cu and 

Ni-P metallizations 

Due to the reactive nature of RE elements with oxygen [27], the 

mechanical properties of RE containing solders are degraded even at room 

temperature by RE oxidation and Sn whiskering. Thus, it is critical to understand 

long-term microstructural and mechanical reliability of RE containing solder 

during isothermal aging. It was shown that the IMC layer growth is inhibited as a 

result of higher activation energy of the IMC layer in RE containing solder [73] 

because of the aggregation of RE at the interface between solder and Cu6Sn5 

interfacial layer, and lower activity of Sn in RE containing solder [20, 74, 75]. 

However, this is not sufficient to explain the retarded growth rate of the Cu3Sn 

IMC layer observed during annealing. Pei et al. [76] systematically studied the 

effect of La on the microstructural evolution during thermal aging and proved that 

Sn grain size remains stable and coarsening rate of IMC particles is reduced with 

additional La content. A similar effect on coarsening rate of IMC particles was 

also observed by Hao et al. [75]. It has also been reported that the addition of RE 

elements did not alter the composition of the interfacial IMC layer formed on the 

Ni-P substrate but did in fact reduce thickness of IMC layer [8, 77]. 

Only a limited number of reports focusing on mechanical behavior 

evolution of RE containing lead-free solders during isothermal aging have been 

published. Li et al. [78] showed that although the shear strength of the as-
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reflowed SAC-RE solder joints is lower than that of SAC joints, the deterioration 

rate of shear strength in SAC solder joints is suppressed with addition of RE 

elements. A series of studies [8] on aging behavior of RE containing SnAg and 

SnCu solder joints on Ni metallization showed that RE containing solder joints 

have higher shear strength than joints without RE elements for all aging times. 

2.2  Wetting Behavior of SAC and RE-Containing SAC Solder Alloys 

To obtain successful soldering, a certain degree of wetting of molten 

solder on the metallization is required. Thus, wetting behavior of RE containing 

solders has been intensively studied and compared with conventional lead-free 

solder. There are two common tests to evaluate wettability of novel solders based 

on a review of the relevant literature: spread area test and wetting balance test 

[79-87]. Only spread area test is utilized for determining the wettability of Ce-

containing solder in this thesis and described here in detail, due to its ease in 

terms of accessibility.  

In spread area test [8], a solder disc is brought to melt and spread over the 

substrate with flux applied first in between. The ability of the molten solder to wet 

the substrate is measured by determining the ratio of the as-bonded contact area to 

the original contact area and the contact angle between substrate and liquid solder. 

The relationship between contact angle θ, and the surface energies between 

liquid-vapor γlv, solid-vapor γsv and liquid-solid γls, is given by Young’s equation 

as follows: 
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A good wetting behavior should have a small contacting angle and large 

spreading ratio. As shown in Fig. 1, a contact angle θ of 0° indicates a complete 

wetting, while 180° indicates no wetting at all. 

Spreading area studies on RE containing lead-free solder showed that the 

addition of RE alloying elements can enhance the wetting behavior of the solder 

alloy when the RE addition is low, because the high activity of RE elements can 

significantly decrease surface tension [14, 15, 24, 25, 81, 82]. However, with 

increasing content of RE, the spreading area decreases due to the formation of RE 

oxides during soldering. The suggested optimal RE concentration based on 

wetting behavior is no more than 1.0 wt.% [24]. Wang et al. [83] observed a 

minimum contact angle and maximum spread area with 0.5 wt.% RE addition in 

SnAg solder. A similar trend was also found in wetting balance tests on RE 

containing lead-free solder by measuring wetting force [12, 84-87]. 

2.3 Volume Effect on Microstructural and Mechanical Properties of Pb-Free 

Solders 

Due to the increasing functions in smaller electronic devices, both 

through-hole and ball grid array (BGA) pad pitch decrease with time. The 

International Technology Roadmap for Semiconductors indicates that the I/O 

pitch size will decrease down to 20 μm [88]. Additionally, electronic components 

vary in their sizes, from plastic quad flat pack to BGA and flip-chip, which results 

in a different microstructural and mechanical behavior. Studies on solidification 

behavior on solder joint with different size showed that by reducing the size of the 

solder sphere, both the cooling rate and the degree of undercooling for 



 

    

 

 

 

Figure 1. Schematic diagram of the spread area test. 

 

 

1
1
 



 

12 

solidification increased significantly, which resulted in a refinement of 

microstructure [89, 90]. Decreasing volume of solder joints lead to finer 

microstructure [89], the formation of large Ag3Sn plates [91], slower metallization 

consumption rate and thicker IMC interfacial layer [92], as reported in previous 

investigations. 

It is also well known that mechanical properties obtained from bulk solder 

are incapable of estimating the mechanical behavior when the size of solder is less 

than 100 μm due to the volume effect [93, 94]. In a typical solder joint, solders are 

highly constrained by a stiff metallization (i.e. Cu) and the plasticity of the solder 

is thus restricted. The effect of dimensional constraints on the tensile strength of 

solder joints has been investigated experimentally [95, 96] and numerically [97]. 

The ultimate tensile strength and yield strength increase with decreasing gap size 

owing to increasing mechanical constraint. Decrease in the thickness of the solder 

joint also leads to brittle fracture at the IMC/solder interface, resulting in a 

decrease in fracture strain. Systematically experiments and modeling studies 

conducted by Chawla et al. [98, 99] on lap-shear joints showed that the difference 

between applied shear strain and the actual solder strain increases with a decrease 

in solder gap thickness, and thicker joints would generate more accurate results 

(closer to true shear response). The volume effect on ultimate shear strength is 

similar to that on tensile strength because shear strength increased with a decrease 

of solder volume [100]. 

Very few studies have been carried out on investigating the influence of 

solder composition on the volume effect. Mueller et al. [89] showed that in 
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SnAgCu-Ni solder, Sn grains maintain stable size with decrease in solder ball 

size, indicating that the volume effect can be suppressed with a trace amount 

addition of Ni. However, a thorough study on the volume effect of RE-containing 

SnAgCu solder joints is to our knowledge non-existent. 

2.4 Mechanical Shock Behavior of SAC and RE-Containing SAC Solder Joints 

2.4.1 Testing methods of mechanical shock 

Mechanical shock resistance of solder joint has been considered as critical 

reliability issue to the portable electronic devices. Mechanical shock occurrs when 

electronic devices are dropped during manufacturing or usage, which leading to 

complete failure of the total electronic package due to fracture of critical 

components including solder joints. Typically, the range of strain rate that solders 

experience during mechanical shock or drop is approximately 10
-1

 to 10
2
 s

-1 
[101]. 

Drop testing, single solder ball pull and shear tests have been used in the industry 

to provide qualitative results for quality control. A major disadvantage of these 

methods is that non-uniform strain experienced by solder joints cannot be 

measured [102-104]. Miniature impact tests are used to quantify the impact 

energy of solder [105], however, the major drawback of impact tests is that the 

total fracture energy can not be easily separated from the fracture energy of the 

solder joint [106]. Compared to the previously mentioned methods, screw-driven 

and servohydraulic methods are particularly useful for studying mechanical shock 

of solders due to well controlled strain rates and loads during shock tests [107]. 
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2.4.2 Mechanical shock behavior of Pb-free solders 

Generally, with increasing strain rates from the quasi-static (10
-3

 s
-1

) 

region to the dynamic (200 s
-1

) region, the ultimate tensile strength of solder joint 

increases significantly because of strain hardening [107]. Studies on the effect of 

microstructure showed a strong correlation between microstructure and shock 

performance. It was witnessed that thicker IMC layers induced by aging or 

processing parameters decreased shock resistance owing to the changes in the 

intermetallic layer morphology [108, 109]. Suh et al. suggested that Ag content 

plays an important role in drop performance, because increase in Ag content 

increases the strength of bulk solder and therefore increase the probalility of IMC 

layer fracture [110]. Chong et al. [111] and Chin et al. [112] stated that the 

formation of brittle (Ni,Cu)3Sn4 IMC layer between Ni-P and solder hindered the 

drop performance. Huang et al. [113] studied the effect of microstructure and 

loading condition on shock performance of SAC solder joints by measuring 

mixed-mode fracture toughness. They found out that fracture toughness decreases 

with the increase in mode-mixity, fine microstructure and IMC layer thickness. 

2.4.3 Effect of solder alloy composition on shock behavior 

Although a very few researchers have studied shock performance of RE-

containing SAC solder, it has been shown that the shock performance of lead-free 

solder can be improved by adding trace amount of 4
th

 additional elements. Liu et 

al. showed that trace amount addition of Ce [114], Y [115], Mn [114, 116] and Ti 

[116, 117], can improve the drop resistance of Sn-rich lead free solder. They 

reported that the drop performance of SAC105 + 0.25Mn is even better than that 
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of Sn37Pb solder joints. Amagai et al. [118] found that addition of Co, Ni and Pt 

elements can improve the drop performance of Pb-free solder by suppressing the 

growth of IMC layer. Additionally, shock performance of solder joints can be 

expected to be improved by alloying elements that can reduce IMC layer 

thickness and limit Kirkendall void formation, such as Ni, Ge [119], Co, Fe [60], 

In [118], and Zn [120]. 

2.5 Electromigration Behavior of SAC and RE-Containing SAC Solder Joints 

2.5.1 Fundamentals of electromigration in solder joints 

Due to increase in number of input/output interconnects in a small 

electronic device, the average current density in a solder bump is high enough for 

failure by electromigration to occur [121]. Failure mechanisms of 

electromigration in solder joints can be classified into two types: pancake-type 

voids formation by current-induced Sn self-diffusion [122-124], and extensive 

metallization consumption [125, 126], such as Cu and Ni at cathode side. The two 

major degradation mechanisms of electromigration is controlled by temperature 

[127] and Sn grain orientation [128]. Geometry induced current crowding effect 

was found to exist in flip-chip solder bump [129] and it significantly decrease the 

solder bump life time [130] by rising local temperature [131, 132] and 

accelerating the diffusion rate of Cu and Sn [133, 134]. 

The effect of intermetallics on electromigration and atomic diffusion in 

lead-free solder has gained sufficient attention. Hung et al. [135] found that coarse 

Cu-Zn IMC precipitates formed during solidification could block electromigration 

induced by Sn flux in which Sn extrusion sites were created from precipitates and 
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were randomly distributed within solder. Chen et al. [136] reported that plate-like 

Ag3Sn compound can intercept the Bi migration from the cathode side to anode 

side. A similar effect was also observed in Sb [137], Ni [138], and Cu6Sn5 [139] 

particle-reinforced lead-free solder during electromigration, suggesting that 

electromigration performance of solder can be enhanced with the formation of 

rigid intermetallic precipitates. 

2.5.2 Electromigration behavior of RE-Containing SAC solder 

Electromigration behavior of SAC Pb-free solder has been studied and 

compared with conventional SnPb solder [140, 141]. They found the pancake-

type void formation in SAC solder is much lower than that of SnPb solder if 

tested at the same condition, owing to the higher homologous temperature of SAC 

solder. Additionally, due to mechanically harder Sn matrix and surface oxide, the 

compressive stress at the anode of SAC is relieved by squeezing out the hillocks 

instead of budging of the solder surface [142]. Thus, electromigration studies on 

SAC were mainly focused on polarized effect on IMC growth [143, 144] and 

effective charge number in SAC solder, which can only be determined through 

the measurement of the movement of markers [145-147]. 

Studies on RE-additions to SAC alloys show a large discrepancy in 

reported electromigration behavior. Lin et al. reported that the electromigration 

resistance of SAC [148] and SnZn [149] solder decreased with addition of 0.5 

wt% Ce, which is attributed to higher number of diffusion paths in Ce-containing 

solder. However, He et al. [23] observed enhanced electromigration resistance in 
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RE containing SnBi solder because of suppressed dislocations movement and the 

occurrence of grain boundary sliding. 

2.5.3 Characterization techniques used in electromigration studies 

To characterize electromigration behavior, several novel characterization 

techniques have been applied for the electromigration studies besides the well 

known traditional 2D imaging tools, such as optical and scanning electron 

microscopy. The electromigration induced strain distribution was established 

using the digital image correlation (DIC) method, and large strains were observed 

at large pores and at the corner of the solder joint [143]. Interestingly, a 3D x-ray 

tomography imaging technique was conducted on SnPb solder bump after 

electromigration stressing [150]. Location, shape and size evolution of voids 

formed during electromigration can be revealed in three dimensions and measured 

by reconstructing 3D structure of solder bump after current stressing. Thus, the 

products of effective diffusivity and effective charge number, as well as back-

stress gradient and activation energy can be more accurately calculated. 

Additionally, x-ray diffraction can be utilized to investigate stress evolution [151] 

and in-situ Sn grain orientation [152].
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3. RESEARCH OBJECTIVES AND APPROACH 

Investigation performed in Prof. Chawla’s group has shown that Sn-

3.9Ag-0.7Cu alloy alloyed with very small amount of Ce possesses unique 

mechanical properties and oxidation resistance. This study’s primary foucs is 

regarding the possible issues associated with integration of the new class of Pb-

free solders into the electronic packaging. The main objectives of this 

investigation are: 

1. In-depth study on the mechanism of enhanced ductility in Ce-

containing Sn-3.9Ag-0.7Cu using interrupted shear test and finite 

element modeling. 

2. A thorough understanding of the viability of RE-containing solders 

reflowed on industrial metallizations, including thermal and 

mechanical stability of Ce-containing Sn-3.9Ag-0.7Cu solder on 

Cu and electroless Ni metallization. 

3. Understand and compare the wetting behavior of both the Ce-

containing Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu solders. This 

would include measurements of both contact angle and spread area 

ratio.  

4. Quantify the role of solder volume on the microstructure of Sn-

3.9Ag-0.7Cu and Ce-containing Sn-3.9Ag-0.7Cu solders. 

Quantitative characterization of critical microstructural features of 

Ce containing Sn-3.9Ag-0.7Cu solder joints with different 

thickness would be conducted. 
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5. Conduct mechanical shock tests on Ce-containing Sn-3.9Ag-0.7Cu 

solder, in comparison to Sn-3.9Ag-0.7Cu solder. Tests would be 

carried out using a servohydraulic load frame with specially 

designed low mass grips.  

6. Evaluate the electromigration performance of Ce-containing Sn-

3.9Ag-0.7Cu solder in comparison to Sn-3.9Ag-0.7Cu, with the 

utilization of the V-groove processing technique. The void growth 

would be revealed by lab-scale x-ray tomography. 

7. Understand the effect of compliant intermetallic phases on the 

enhanced ductility of Sn-3.9Ag-0.7Cu solder. The mechanical 

properties of solder alloys containing soft and hard intermetallics 

would be studied and compared with conventional Sn-3.9Ag-

0.7Cu solder. 

A detailed description of the major objectives is listed below. 

3.1 Mechanism Study of Enhanced Ductility of Ce-Containing SAC Solder 

3.1.1 Ce-containing SAC solder alloy fabrication 

Vacuum-melted ingots of Sn-3.9-0.7Cu with trace amounts of Ce (0.5 

wt.%) were prepared for following studies. High purity Sn-3.9Ag-0.7Cu ingots 

(Indium, Clinton, NY) were cut into small rectangular pieces (6.5 mm × 6.5 mm × 

13 mm) and mixed with Ce shot (ESPI, Ashland, OR). Due to the reactive nature 

of pure Ce with oxygen, the materials were mixed in a quartz ampoule (12 mm in 

diameter) under a sealed glove box with helium atmosphere. The quartz ampoules 

then were evacuated to 10
-5

 torr and sealed. The sealed ampoules were heated to 
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1000 °C for 4 h, and periodically mixed by rotation of the ampoule in order to 

homogenize the liquid metal. The ampoules were water quenched. The ingots 

were removed from the ampoule, and sectioned. 

3.1.2 Lap-shear joints fabrication 

Lap-shear and interrupted shear tests were performed on solder/Cu single 

lap shear joint. As-processed solder ingots were machined into 6.35 mm × 

6.35mm × 0.5mm squares. The oxidation caused by machining process was 

removed by polishing, and ultrasonically cleaned in acetone. Oxygen free copper 

bars (50.8 mm in length and 6.35 mm in thickness) were polished to a 0.05 μm 

finish with colloidal silica solution. A graphite mask was applied to the Cu bar, 

leaving a 6.35 mm ×6.35 mm area for reflow. A rosin mildly activated (RMA) 

flux was applied to the unmasked portions of the Cu bars to improve the wetting 

between the Cu bars and solder. The joint was assembled with the aid of a reflow 

fixture, as shown in Fig. 2 to minimize misalignment, and maintain a consistent 

solder thickness of approximately 500 μm. The entire assembly was heated on a 

hot plate. The typical reflow profile consists of heating the jig to 170 °C for 2 

minutes to allow excess flux to vaporize, then heating to 20 °C above the melting 

point and holding for 40 s and cooling in air on Al blocks. The actual temperature 

of solder during reflow was monitored by inserting a thermal couple inside it, and 

a reproducible cooling rate of 0.7 °C/s. To understand the role of thinner 

intermetallic layer in Ce-containing solder joint on the enhanced ductility, 

mechanical shear behaviors of SAC and SAC-Ce solder joints with constant 

Cu6Sn5 intermetallic layer thickness was studied and compared. SAC solder joint 



 

 

 

 

 

 

Figure 2. Schematic of Cu jig used for assembling lap-shear solder joint
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with consistent intermetallic layer thickness as SAC-0.5Ce was obtained by 

reducing dwell time at melting point from 40 s to 10 s. 

3.1.3 Lap-shear and interrupted shear tests 

Shear testing was conducted using a servo-hydraulic load frame at room 

temperature and a nominal shear strain rate of 10
-3

 s
-1

. For the interrupted shear 

testing, one side of the Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce joints was 

polished to a 0.05 μm finish with colloidal silica solution before shear testing. 

When the desired shear strain values (2%, 10%, 50%) were reached, the 

experiment was interrupted, and the microstructure was examined by optical 

microscopy and SEM. 

3.2 Study of Thermal and Mechanical Stability of Ce-containing Solder on Cu 

and Ni-P Substrate 

3.2.1 SAC and SAC-Ce/Ni-P lap-shear joints fabrication 

Bulk ingots of each solder and lap-shear solder/Cu joints were prepared 

following same procedure as described above. Electroless Ni-P substrate was 

fabricated by depositing Ni-P layers on the polished copper bars with an 

immersion Au plating on top to avoid oxidation of the nickel surface. The reflow 

procedure of solder/Ni-P joints was consistent with typical reflow for solder/Cu 

joints as described above. The thickness of Ni-P and Au layer, as well as P 

content in Ni-P layer was measured by scanning electron microscope and energy 

dispersive spectroscopy. 
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3.2.2 Effect of thermal aging on microstructural and mechanical behavior of 

Ce-containing SAC solder joints 

High temperature stability of solder joint was examined by aging joints for 

250 hours at 95 °C in furnace. After thermal aging, the solder joints were 

sectioned and polished to a 0.05 μm finish with colloidal silica solution for 

microstructure characterization. Strength and ductility of as-reflowed and thermal 

aged joints was evaluated by shear test using a servo-hydraulic load frame at 

room temperature and a nominal shear strain rate of 10
-3

 s
-1

. Quantitative 

microstructure characterization of intermetallic phases was conducted using 

image analysis software (ImageJ, Gaithersburg, MD). Optical and SEM 

micrographs were segmented into binary images and the particles of interest were 

fit to ellipse, to estimate their size and aspect ratio. 

3.3 Study of physical properties of Ce-containing SAC solder 

3.3.1 Evaluation of wettability of Ce-containing SAC solder on Cu substrate 

The wetting behavior of SAC-0.5Ce was studied by reflowing solder discs 

on a Copper substrate, and compared to SAC. The ingots of each material were 

prepared as described above. Each ingot was sectioned into small disks 

approximately 10 mm in diameter and 0.6 mm in thickness. The disks were 

polished and ultrasonically cleaned by acetone before reflow. The copper 

substrate (20 mm × 20 mm × 7.7 mm) was polished to a final finish with 0.05 μm 

colloidal silica solution. The specimens were placed on the center of the copper 

block, and rosin mildly activated (RMA) flux was applied on the surface of the 

copper substrate. The solder discs were heated up to 250 °C at a heating rate of 
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1 °C/s, and then cooled at a nominal cooling rate of 3 °C/s. The specimens were 

maintained above 220 °C for 140 s. The melting solder discs were illuminated by 

a source of visible light, and the contact angles were recorded by a CCD camera 

equipped with an appropriate set of lenses, as shown in Fig. 3. Both spreading 

area ratio of the as-bonded contact and contact angel of SAC and SAC-0.5Ce on 

Cu substrate were measured to indicate the wetting behavior of solder. 

3.3.2 Characterize the melting and solidification behavior of SAC-Ce solder 

Differential scanning calorimetry (DSC) was used to determine the onset 

melting point as well as undercooling value for the solder with 0.5 wt pct Ce 

additions and compare it to the SAC alloy. The measurements were conducted in 

a dry argon atmosphere gas on the calorimeter (model DSC-7, PerkinElmer). 

Sample of 10 to 20 mg were punched from the as-cast and slightly polished solder 

disc and were ultrasonically cleaned in acetone. Samples were weighted and 

placed into Aluminum pans. An empty Aluminum pan was used as a reference 

Samples were then heated and cooled at rates of 0.5 and 1 °C/s in the temperature 

range of 298 K to 573 K (25 °C to 300 °C) to simulate lap shear specimen cooling 

condition. 

3.3.3 Volume effect on microstructure refinement in Ce-Containing SAC solder 

joints 

A Cu/solder/Cu sandwich-like structure will be used to study volume 

effect on microstructural evolution of Ce-containing Sn-3.9Ag-0.7Cu solder joint 

with different solder volume, in comparison with Sn-3.9Ag-0.7Cu solder. The 

ingots of each material will be prepared as described above. 



 

 

 

 

 

 

 

Figure 3. Diagram of an apparatus for measuring wettability of solders on Cu substrate
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Sn-3.9Ag-0.7Cu-0.5Ce and Sn-3.9Ag-0.7Cu solder foils, 6.35 mm in diameter 

and with different thickness (0.2 mm, 0.5 mm, 0.75 mm, 1.00 mm), will be 

reflowed between two polished Cu pellets in a 6061 Al alloy holder to ensure a 

alignment during reflow and cooling, as shown in Fig. 4 at a nominal cooling rate 

of 4 °C/s. The sandwich-like solder joints will be sectioned into two specimens, 

then mounted and polished for examining in a optical microscopy and scanning 

electron microscopy to qualify microstructure and IMC thickness evolution. 

3.4 Mechanical Shock Behavior of SAC and Ce-containing SAC Solder Joints 

3.4.1 Butt solder joint fabrication 

As-processed SAC solder and SAC-Ce solder ingots were machined into 

6.35 mm × 0.5 mm discs. The oxidation caused by machining process was 

removed by polishing and ultrasonically cleaned in acetone. Oxygen-free-high-

conductive (OFHC) copper bars (25 mm long and 6.35 mm diameter) were 

mechanically polished to a 0.05 μm finish with colloidal silica solution. A rosin 

mildly activated flux was applied to the polished portion of Cu bars to improve 

the wetting between the Cu bars and solder. The butt joints for mechanical tensile 

tests were assembled with the aid of a reflow fixture to minimize misalignment 

and maintain a consistent solder thickness of approximately 50 μm. The entire 

assembly was heated on a programmable digital hot plate the solder reached its 

melting temperature. The typical reflow profile consists of heating the jig to 

170 °C for 2 minutes to allow excess flux to vaporize, then heating to 20 °C above 

the melting point and holding for 40 s, removed from the hot plate and cooling in 



 

 

 

Figure 4. Schematic of solder sandwich and Al holder.
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air on aluminum block at ~1 °Cs
-1

. The actual temperature of solder during reflow 

was monitored by inserting a thermal couple inside it. 

3.4.2 Mechanical shock testing 

Mechanical tensile tests were conducted on solder joints over the range of 

stain rates (10
-3

-12s
-1

), using an MTS 810 hydraulic machine. Tests were 

conducted in strain control mode at 10
-3

 and 10
-1

 s
-1

 using an extensometer. Tests 

at 1.5 and 12 s
-1

 were conducted in displacement control mode. For high strain 

rate tests, a small section of the joint was polished to a 0.05 μm colloidal silica 

finish to permit visualization of the joint interfaces for the measurement of strain 

and strain rate, instead of using an extensometer. A Questar QM100 traveling 

microscope was used in conjunction with a Phantom Miro2 high-speed camera to 

measure strain from the displacement of the joint interfaces. A slack adapter was 

utilized to ensure that a well-controlled, linear strain rate was achieved. After tests, 

fracture surface of each joint was analyzed by scanning electron microscopy and 

energy dispersive spectroscopy to determine the failure mechanisms. Energy 

dispersive X-ray spectroscopy (EDS) was used to identify the composition of the 

IMC layer and precipitates on the fracture surfaces. 

3.5 Effect of Electromigration on Microstructure Evolution of SAC and SAC-

Ce Solder Joints 

3.5.1 Fabrication of micron-size butt joints for electromigration testing 

To study the effects of electromigration the microstructural change of Ce-

containing Sn-3.9Ag-0.7Cu solder, micron-size Cu/Solder/Cu butt joints (500 μm 

in diameter) were fabricated, using a V-groove testing methodology [17, 18]. 
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Silicon V-groove was made on a silicon wafer using photolithography and wet 

KOH etching techniques, as shown in Fig. 5. The as-processed solder ingots were 

machined in to 500 μm thick solder disc, then punched to small solder disc with 

500 μm in diameter. The copper wire end (500 μm in diameter) was polished to a 

0.05 μm finish with colloidal silica solution. A rosin mildly activated (RMA) flux 

was applied to the Cu end bars to improve the wetting between the Cu wires and 

solder. The butt joints were assembled by aligning two Cu wires and solder disc 

on Si V-groove, then reflowed on a hotplate using a reflow profile consists of 

heating the fixture to 170 °C for 2 minutes to allow the excess flux to vaporize, 

then heating to 20 °C above the melting point and holding for 50 s, then cooling 

in air on Al blocks. A reproducible cooling rate of 1.4 °C/s was obtained. 

3.5.2 Electromigration testing 

Before electromigration tests, joints were re-enforced by a high 

temperature epoxy resin to avoid brittle failure while transferring the sample to 

the characterization tools. The as-reflowed sample was then polished down until 

half of the solder joint was grounded in order to reach high enough current density 

(10
4
 A/cm

2
), as well as for microstructure examination using microscopies. Butt 

joint and test fixture were preheated inside a furnace at 100 °C for 1 hour to 

stabilize the sample and minimize thermal shock damage to the joints. 

Electromigration tests were performed at elevated temperature (100 °C) with a 

constant current that depends on the sample geometry. The actual temperature of 

specimen during testing was monitored by attaching a thermocouple at cathode 

side of solder joint.



 

 

 

Figure 5. Procedure of processing silicon V-groove using photolithography and KOH etching techniques.
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3.5.3 Characterize microstructural evolution of Ce-containing SAC solder 

induced by electromigration 

The microstructural evolution of the Ce-containing solder joint during 

electromigration was examined by optical and scanning electron microscopy 

during current stressing, and compared with conventional Sn-3.9Ag-0.7Cu joints. 

The electromigration induced voids growth was examined by X-ray tomography 

technique. To reconstruct 3D structure of solder joints, 3D projection images of 

solder joints were collected by a MicroXCT system at Intel (Xradia). After data 

collection, it will be reconstructed by a commercial tomography reconstruction 

software (MIMICS) to create a 3D representation of the object. With 3D structure 

of solder joints, the growth rate of current induced voids at cathode side can be 

measured. 

3.5.4 Characterize current density inside solder joint using finite element 

method 

After obtaining 3D reconstructed microstructure, Finite Element Modeling 

was utilized to predict the current density distribution based on the actual 

geometry and distribution of voids in the solder joint. To conduct Finite element 

analysis on the sample, the volume mesh of the reconstructed model was 

generated by commercial meshing software (Hypermesh) using linear tetrahedral 

elements. The meshed model will be then exported to Abaques for current density 

analysis. In the model, a concentrated current was applied on the cathode side of 

solder, while the anode side was set to be zero potential boundary condition to get 
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a current flow from cathode to anode. The electronic conductivity of SAC and 

SAC-Ce solder was taken to be 8.66 × 10
6
/Ωm and 8.39 × 10

6
/Ωm, respectively. 

3.6 Effect of Complaint Intermetallic Phases on the Enhanced Ductility of 

SAC Solder Joints 

3.6.1 Preparation of Mn and Ca-containing SAC solder alloys 

Ca and Mn were selected as doping elements for SAC alloy due to the 

unique mechanical properties of their intermetallic compounds formed in SAC 

alloy. Vacuum-melted ingots of SAC with 2 wt.% Ca and Mn were prepared for 

nanoindentation, in order to obtaine relatively large intermetallic particles. For 

mechanical testing, we have shown that alloying additions of less than 0.5 wt.% 

provide the best enhancement in ductility. So for shear tests, samples of SAC with 

0.5 wt.% Ca and Mn were fabricated. High purity SAC ingots were cut into small 

rectangular pieces (6.5 × 6.5 × 13 mm) and were mixed with Ca and Mn shot 

(ESPI, Ashland, OR).  Due to their high reactivity, Ca, Mn and solder were mixed 

in a sealed glove box in helium atmosphere, and then sealed in a quartz ampoule 

(12 mm in diameter). With a stopcock the quartz ampoule was evacuated to 10
-5

 

torr and sealed. The sealed ampoules were heat treated at 700°C for 4 hours, and 

periodically mixed by rotating the ampoule, in order to homogenize the liquid 

metal. The ampoules were then furnace cooled for nanoindentation (to obtain 

larger particles) or water quenched for mechanical shear tests. The samples were 

removed from the ampoule, and sectioned. 
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3.6.2 Determine the elastic properties of intermetallic compounds formed in the 

solder alloys using nanoindentation. 

Nanoindentation was conducted on intermetallics in the as-processed Ca 

and Mn containing SAC ingots, as well as on pure Sn. The ingots were sectioned 

and polished to a final finish of 0.05 μm colloidal silica. Samples were mounted 

on aluminum stubs for testing using a mounting adhesive. Nanoindentation was 

carried out by selecting 20 intermetallic particles randomly. The center of each of 

these intermetallics was indented. The nanoindenter was first calibrated by 

measuring Young’s modulus and hardness of a silica standard at a strain rate of 

0.05s
-1

. A continuous stiffness measurement (CSM) technique was used during 

indentation. With the CSM, a load is applied to the indenter tip to drive the 

indenter into the specimen surface while concurrently superimposing an 

oscillating force with a small amplitude (significantly smaller than the nominal 

load). An accurate measurement of the contact stiffness at all indentation depths is 

provided by separating the in-phase and out-of-phase components of the load-

displacement data. The advantage of CSM is that an instaneous measurement of 

modulus and hardness can be obtained during indentation. Thus, multiple 

indentations at different depths are not necessary.  

For all indentations, Young’s modulus was calculated as a function of 

indentation depth, to determine the onset of any pile-up, sink-in or cracking 

during indentation, as well as the thickness of oxidation layer. Indentation was 

carried out using a Berkovich indenter to an average depth of 1000-1500 nm per 

indentation. Young’s modulus for an individual indentation was taken as the 
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average value over a depth range where the modulus was independent of depth, 

i.e, approximately 500-1300 nm. An SEM equipped with Focused Ion Beam (FIB) 

and EDS was used after indentation to ensure that the indentations were located 

on the intermetallics, and to analyze the deformation during indentation. 

Indentation size was much smaller than the size of the individual intemetallic 

particles, so sink-in of the particle during testing was not likely to take place. 

A FIB was used to cross-section oxidized samples of Sn-3.9Ag-0.7Cu-

0.5Ca to study the thickness of oxide layer. Samples were first coated with a 1-

μm-thick Pt layer using the ion beam to protect from subsequent beam damage. A 

trench was milled using the ion beam at 30 kV and a current of 5 nA. The initial 

cleaning cross-section was performed at 30kV and 0.3 nA, with subsequent 

cleaning sections using smaller currents to a final ion bean current of 30 pA. 

3.6.3 Comparison of shear behavior of Ca and Mn-containing SAC solder joints 

shear tests 

In order to understand the relationship between soft intermetallic particle 

and enhanced ductility, it is necessary to conduct mechanical tests on the solder 

alloys with soft and hard particles, to simulate the effect of adding RE-Sn 

intermetallics to the microstructure. Shear testing was conducted using a servo-

hydraulic load frame (MTS systems) at room temperature and a shear strain rate 

of 10
-3

 s
-1

 in displacement control mode. To compensate for the variability in joint 

geometry, the joint thickness and reflowed area were measured in each case, after 

the experiment, to accurately measure the applied stress and strain.
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4. MECHANISMS OF DEFORMATION IN HIGH-DUCTILITY CE-

CONTAINING SN-3.9AG-0.7CU SOLDER ALLOYS 

4.1 Abstract 

Rare earth-containing Pb-free solders have gained widespread attention 

due to their superior ductility relative to conventional Pb-free alloys. Our previous 

work has shown that new Ce-based alloys are also extremely oxidation resistant 

compared to La or Y-containing alloys. In this study, we report on a mechanism-

based model for the large increases in ductility with small addition of rare-earth 

element to Sn-3.9Ag-0.7Cu. The mechanisms of ductility enhancement by Ce 

were observed in a scanning electron microscope, in interrupted shear-tests, where 

CeSn3 particles served as microscopic fracture and void nucleation sites. Micro-

mechanical modeling using the finite element method was used to examine the 

plastic strain field in solder affected by the particles. The concentrated 

deformation band was seen to be disturbed by the particles, resulting in a more 

uniform deformation pattern with reduced strains and thus enhanced ductility of 

the lap-sheared joint. 

4.2 Introduction 

The toxic nature of lead has prompted the electronic packaging industry to 

seek environmentally-friendly Pb-free alloys as replacements to Pb-Sn solder 

alloy. Although a series of near-eutectic Sn-Ag-Cu (SAC) alloys are being used 

[1], there are some drawbacks for SAC alloys. These include higher melting 

temperature and poor mechanical shock resistance, relative to Pb-Sn alloys [2-4]. 
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Rare-earth (RE) elements have been used as fourth alloying element to 

SAC as a means of enhancing both physical and mechanical properties [5-8]. Past 

investigations have shown that by adding RE elements the microstructure of SAC 

solder can be refined [5-11]. Wetting behavior [11-14] and mechanical 

performance [9-11, 15] can be improved when the RE content is less than 0.5 

wt%. In particular, enhanced mechanical properties, such as tensile strength 

[9,11], ductility [15,16], and creep resistance [15,17], of RE-containing solders 

have been reported. 

In our previous work [18,19], we have shown that small additions of La 

and Ce (0.1 and 0.5 wt. %) to SAC alloy refine the Sn dendrite microstructure, 

reduce the Cu6Sn5 intermetallic compound layer thickness, and significantly 

increase the ductility of solder joints compared to SAC alloy. The oxidation 

resistance of La-containing solders is relatively low and the resulting LaSn3 

particles are prone to whiskering during oxidation [20-22]. Ce-based alloys are 

less prone to oxidation but still exhibit the desirable attributes of microstructural 

refinement and increased strain-to-failure, relative to SAC, as in the La-containing 

solders [8, 23].  

For La-containing Sn-Ag-Cu solder, we hypothesized that the main 

mechanism for the higher ductility in these solders is based on microscopic voids 

nucleating at LaSn3 throughout the solder volume [18]. This cavitation based 

mechanism, however, needs to be validated experimentally. Additionally, the role 

of reduced Cu6Sn5 intermetallic layer in RE-containing alloy is still unknown. In 

this study, we have conducted systematic interrupted shear experiments, coupled 
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with microstructural characterization using scanning electron microscopy (SEM), 

on Ce-containing SAC. The behavior of the RE-containing materials was 

compared to that of SAC solder alloys. It will be shown that plasticity around 

CeSn3 intermetallic particles, as well as debonding and fracture of the particles 

takes place. The shear strain is distributed more homogeneously in the RE-

containing solders, compared with SAC. The effect of reduced Cu6Sn5 

intermetallic layer on enhanced ductility is also examined, and it will be shown 

that it was CeSn3 intermetallic particles, not thinner Cu6Sn5 interfacial layer that 

improved ductility. Finally, finite-element method (FEM) was used to model the 

effects of CeSn3 intermetallic compound on strain distribution. The FEM results 

qualitatively corroborate the experimentally-observed behavior. 

4.3 Materials and Experimental Procedure 

Vacuum-melted ingots of Sn-3.9Ag-0.7Cu with trace amounts of Ce (0.5 

wt.%) were prepared. High purity Sn-3.9Ag-0.7Cu ingots (Indium) were cut into 

small rectangular pieces (6.5 mm × 6.5 mm × 13 mm) and mixed with Ce shot 

(ESPI, Ashland, OR). Due to the reactive nature of pure Ce with oxygen, the 

materials were mixed in a quartz ampoule (12 mm in diameter) under a sealed 

glove box with helium atmosphere. The quartz ampoule was then evacuated to 10
-

5
 torr and sealed. The sealed ampoules were heat treated at 1000 °C for 4 h, and 

periodically mixed by rotation of the ampoule, in order to homogenize the liquid 

metal. The ampoules were then water quenched. The solder ingots were removed 

from the ampoule, and sectioned. 
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Mechanical testing was conducted on solder/Cu single lap shear joints. 

As-processed solder ingots were machined into 6.35 mm × 6.35 mm × 0.5 mm 

squares. These were lightly polished to remove oxidation caused by the 

machining process, and ultrasonically cleaned in acetone. Oxygen free copper 

bars (50.8 mm and 6.35 mm in thickness) were polished to a 0.05 μm finish with 

colloidal silica solution, and etched in 2 vol.% nitric acid for 10 seconds to 

remove residual oxides. A graphite mask was applied to the Cu bars, leaving a 

6.35 mm × 6.35 mm area for reflow. A rosin mildly activated (RMA) flux was 

applied to the unmasked portions of the Cu bars to improve the wetting between 

the Cu and the solder. The joint was assembled with the aid of a reflow fixture, to 

minimize misalignment, and maintain a consistent solder thickness of 

approximately 500 μm. The entire assembly was heated on a hot plate with a 

reflow profile as shown in Fig. 6. The assembly was held at 170 °C for 120 

seconds, to allow excess flux to vaporize. The temperature was then raised until 

the solder reached 220 °C and was held for 40 seconds. The assembly was then 

removed from the hot plate and air-cooled on an aluminum heat sink. The actual 

temperature of solder during reflow was monitored by inserting a thermal couple 

inside it, and a reproducible cooling rate of 0.7 °C/s was obtained. The cooling 

rate was measured from the peak temperature to 150 °C, because the joint 

microstructure does not change significantly below this temperature during 

cooling [24-26]. A reproducible solder thickness of 500 μm was obtained in all 

joints. SAC solder joint with consistent intermetallic layer thickness as SAC-

0.5Ce was obtained by reducing dwell time at melting point from 40 s to 10 s.



 

 

 

Figure 6. Reflow profile for lap shear specimens. The input profile is shown in black, while the actual temperature 

profile is shown in red.
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Shear testing was conducted using a servo-hydraulic load frame at room 

temperature and a nominal shear strain rate of 10
-3

 s
-1

. For the interrupted shear 

testing, one side of the Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce joints was 

polished to a 0.05 μm finish with colloidal silica solution before shear testing. 

When the desired shear strain values (2%, 10%, 50%) were reached, the 

experiment was interrupted, and the microstructure was examined by optical 

microscopy and SEM. 

4.4 Results and Discussion 

4.4.1 Interrupt shear testing 

Representative shear stress shear strain curves for of SAC and SAC-0.5Ce 

are shown in Fig. 7. Table 1 summarizes some of the mechanical properties 

measured, such as ultimate shear strength and strain-to-failure. The strain-to-

failure was defined as the strain when the stress reached 1 MPa. Our results on 

Ce-containing solder were similar to what we reported on La-doped materials [8]. 

The ultimate shear strength decreases with an increase in Ce content. Alloys 

containing 0.5 wt% Ce showed an approximate decrease of 25% in strength 

compared to SAC solder. More importantly, the strain-to-failure of SAC-0.5Ce 

increased significantly, nearly 50% over that of SAC. To give a better view of 

enhanced ductility, the work of fracture of SAC-0.5Ce joints was also measured 

by integration of the stress-strain curve and compared with SAC joints. As shown 

in the Table 1, the addition of Ce not only significantly enhanced strain-to-failure 

but also the toughness of SAC solder joints. 



 

 

 

Figure 7. Typical shear stress-shear strain curves and fracture surfaces after monotonic shear testing: (a) SAC and (b) 

SAC-0.5Ce solder joints. The SAC-0.5Ce joints exhibit higher ductility. Fracture of SAC occurs very close to the 

Cu6Sn5/solder interface. 
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Table 1. Summary of shear behavior of SAC and SAC-Ce solder joints. 

 

Solders 

Ultimate Shear 

Strength 

(MPa) 

Strain-to-

Failure 

(%) 

Work of 

Fracture (J/m
3
) 

SAC 24.2 ± 5.2 104.5 ± 3.7 14.2 ± 2.9 

SAC-0.5Ce 21.8 ± 2.3 164.9 ± 58.9 21.6 ± 8.9 

 

Examination of the fractured surfaces, Fig. 7, of the SAC-0.5Ce and SAC 

joints revealed classical ductile and brittle fracture, respectively. For Sn-3.9Ag-

0.7Cu-0.5Ce the fracture occurred through the bulk solder, which resulted in a 

relatively tortuous fracture path, with visible steps on the fracture surface. 

Fracture in Sn-3.9Ag-0.7Cu occurred close to the interfacial region between the 

solder and Cu6Sn5 intermetallic, exposing the tips of the Cu6Sn5 nodules in some 

areas [27]. 

We previously proposed a hypothesis for the increased ductility of SAC 

by RE elements, such as La and Ce [18,19]. This hypothesis was based on the 

mechanisms of localized nucleation and growth of microscopic voids at RESn3 

intermetallic particles, which minimize strain localization and crack growth along 

the brittle Cu6Sn5 intermetallic/solder interface. To validate this hypothesis 

experimentally, interrupted shear tests were conducted on SAC and SAC-0.5Ce 

solders. The samples were initially polished on a side and the microstructure, at 

each strain value, was studied by optical microscopy and SEM. The 

microstructural evolution of deformation in the SAC solder, observed by optical 

microscopy, is shown in Fig. 8. The deformation of SAC in the linear-elastic 

regime appeared to be quite small. At the ultimate shear strength of the solder, 



 

43 

extensive plastic deformation was observed. The distribution of the deformation is 

not uniform, with a large degree of strain intensification near the solder/Cu 

interface. This effect becomes more obvious at higher strain values. This is 

indicative of a large degree of plastic strain localization at the solder/Cu interface. 

Thus, the plastic deformation in the solder is quite localized and inhomogeneous, 

which causes fracture in SAC to be localized to a very small fraction of the joint. 

In the SAC-0.5Ce the degree of deformation becomes noticeable after the 

yield point. It is interesting to note, however, that the deformation of the solder is 

more homogeneously distributed and less concentrated at the intermetallic/solder 

interface, compared to SAC solder, even at higher shear strain (50%). The 

decrease in strain localization suppresses and delays the onset of crack growth 

along the brittle Cu6Sn5 intermetallic/solder interface. 

The reason for the deformation being “spread out” over the entire joint 

volume of Sn-Ag-Cu-0.5Ce solder was further investigated using SEM. Figure 9 

shows SEM images of as-deformed CeSn3 particles at different shear strain 

values. In the linear elastic region, no deformation of CeSn3 particles was 

observed. A significant amount of plastic strain appears to be present in the Sn 

matrix region surrounding the particles. Some evidence of debonding and fracture 

of CeSn3 particles was also observed at higher strain (50%). Cracked particles 

don’t carry any load, therefore the strength of the Ce containing Sn-Ag-Cu is 

lower than that of Sn-Ag-Cu. The plasticity around the particle, debonding and 

intermetallic fracture all contribute to an increase in fracture energy. Plastic 

deformation surrounding the particles helps in the homogenization of 



 

 

 

Figure 8. Optical microscopy images of interrupted shear testing of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce at 

different strain values (Arrows indicating shear direction of joints). The SAC-Ce allow shows homogeneous strain 

distribution while SAC fails bey strain localization close to the copper/solder interface.
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Figure 9. Scanning electron microscopy images of interrupted shear test of CeSn3 intermetallic particles in Sn-3.9Ag-

0.7Cu-0.5Ce solder joints. Note plasticity around the particles, debonding, and fracture. 
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deformation, and minimization of strain localization at the solder/Cu6Sn5 

interface. This is further discussed in the following section on finite element 

modeling of deformation. 

4.4.2 Effect of Cu6Sn5 layer thickness on shear behavior of SAC and SAC-Ce 

joints 

In this section, we discuss the shear behavior of the solder alloys. It has 

been shown that the intermetallic layer thickness plays an important role in the 

mechanical behavior of solder joints, especially at high strain rate tests [30,31]. In 

addition the formation of Kirkendall voids may increase with increasing thickness 

of the intermetallic layer, which can also reduce the ductility of solder joint [29,32, 

33]. Therefore, it is important to understand the effects of thinner Cu6Sn5 

intermetallic layer on enhanced ductility in SAC-Ce. To eliminate the effect of 

Cu6Sn5 intermetallic layer thickness, mechanical shear behavior of SAC and 

SAC-0.5Ce alloy must be compared with constant Cu6Sn5 intermetallic layer 

thickness.  In the previous work, we have shown that the thickness of 

intermetallic can be controlled by dwell time above the melting point of solder or 

thermal aging [34]. However, for thermal-aging, the microstructure of the bulk 

solder, such as Sn dendrites and Ag3Sn particles, also coarsens. To obtain SAC 

and SAC-0.5Ce with constant intermetallic layer thickness and compatible 

microstructure, Sn-3.9Ag-0.7Cu solder joints were processed by modified reflow 

profiles, i.e. when the Sn is molten over shorter periods of time in contact with 

Cu, less intermetallic layer grows at Cu/Solder interface. Here the solder 
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microstructure of both SAC and SAC-0.5Ce solder joints is controlled by a 

constant cooling rate [35]. 

As shown in the Fig. 10, with decrease in dwell time in the reflow profile 

of SAC solder, the intermetallic layer thickness decreased gradually without 

significantly altering the morphology of the Cu6Sn5 nodules nor the 

microstructure of solder matrix [36], thereby providing a means to isolate the 

effect of intermetallic layer thickness. By measuring the thickness of 

intermetalliclayer with different dwell time, it was found that the intermetallic 

layer thickness of SAC solder with 10s dwell time is close to that of SAC-0.5Ce 

solder joint formed by a typical reflow profile (40s dwell time). The 

representative shear stress strain curves of SAC and SAC-Ce with different 

intermetallic layer thicknesses are shown in Fig. 11, and results are summarized in 

Table 2. It is clear that strain-to-failure of SAC solder joint did not increase with a 

decrease in intermetallic layer thickness, indicating that intermetallic thickness 

does not play a critical role in the enhanced ductility observed in SAC-0.5Ce 

solder. 

Table 2. Summary of monotonic shear test of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-

0.7Cu-0.5Ce solder joints. 

Solder 

alloys 

Dwell time 

(second) 

Cu6Sn5 layer 

thickness (μm) 

Ultimate 

shear strength 

(MPa) 

Strain to 

failure (%) 

SAC 
40 4.0 ± 2.1 24.2 ± 5.2 104.5 ± 3.7 

10 2.7 ± 0.9 22.8 ± 2.7 92.8 ± 51.5 

SAC-0.5Ce 40 2.6 ± 1.0 21.8 ± 2.3 164.9 ± 58.9 



 

 

 

 

 

Figure 10. Backscatter electronic microscopy images for Cu6Sn5 intermetallic layer of Sn-3.9Ag-0.7Cu solders with 

different dwell time.

4
8
 



 

  49 

It has also been shown that the solder joint behavior is strain-rate-

dependent, being controlled by either solder or the intermetallic layer [31,37]. At 

the lower strain rate regime (quasi-static), the mechanical properties of solder 

joint are controlled by the deformation of the solder matrix, while at higher strain 

rates, the Cu6Sn5 intermetallic layer controls the deformation behavior of the 

joint. Additionally, the intermetallic layer controls the quasi-static mechanical 

behavior of solder joint only when the layer thickness is large enough (greater 

than 10 μm) [44]. Since the strain rate used in this study is in quasi-static regime 

(10
-3

 s
-1

) and the intermetallic layer thickness is relatively small (4 μm for SAC 

joint), it is not surprising that intermetallic layer thickness does not contribute to 

the enhanced ductility in SAC-Ce solder joint. 

4.4.3 Finite element analysis 

To provide a mechanistic rationale for the proposed ductility enhancement 

mechanism caused by the CeSn3 particles, numerical finite element modeling was 

carried out. The model configuration, as well as the loading and boundary 

conditions, are schematically shown in Fig. 12. The solder is bonded to two large 

copper substrates, and experiences the same kind of shear deformation as in the 

actual experiment. In the modeling horizontal displacements (Δl in the x-

direction) were imposed at the far right end of the lower copper substrate. The x-

direction motion of the far left edge of the upper copper was forbidden, but 

movement in the y-direction was allowed except that the lower-left corner of the 

upper copper was totally fixed. The model dimensions are: h = 0.5 mm, w = 1 

mm, H = 2.5 mm and L = 0.5 mm. The relative thicknesses of solder and substrate



 

 

 

Figure 11. Shear stress vs. shear strain curves of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder joints reflowed 

with different dwell time. 
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were chosen such that apparent bending resulting from the shear loading is kept at 

minimum. The calculations were based on the plane strain condition, which 

effectively simulates the nominal simple shearing mode of the solder [38-40]. The 

nominal shear strain during deformation is defined to be Δl/h. In the model Cu is 

taken to be elastic, with Young’s modulus of 114 GPa and Poisson’s ratio of 0.31. 

The solder alloy is assumed to be elastic-perfectly plastic, with Young’s modulus 

48 GPa, Poisson’s ratio 0.36, and yield strength 47.9 MPa. For simplicity the rate-

independent material behavior is not included here, as it will not affect the salient 

results considered in the present analysis. Two forms of particle dispersion are 

considered (see Fig. 13 below), one with an area fraction of 5% (model A) and the 

other 8% (model B). The size, geometry, and spatial distribution of the particles 

are arbitrary. In actual materials, the particles are much smaller and more densely 

distributed than those adopted here. Nevertheless, the present models suffice for 

qualitative illustration of the particle-mediated deformation field developed in the 

solder. The particles are also elastic-perfectly plastic, with their properties 

estimated from nanoindentation measurements [28]. Their Young’s modulus, 

Poisson’s ratio and yield strength are, respectively, 64 GPa, 0.3, and 356 MPa. 

Note that the yield strength of the particles is much greater than that of the solder 

matrix. In the model the solder was discretized into 5000 four-noded linear 

elements, and each Cu substrate was discretized into 2400 elements. The mesh 

convergence was checked by another set of preliminary calculations using twice 

the number of elements in the model. The finite element program Abaqus [41] 

was employed for the modeling.



 

 

 

 

 

Figure 12. Schematic of the solder joint model, along with the loading and boundary conditions, used in the lap-shear 

modeling. 
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The results are shown in Fig. 13. In Fig. 13(a) the contour plot of 

equivalent plastic strain in the solder for the case without intermetallic particles, 

when the applied nominal shear strain is 0.08, is presented. The corresponding 

contour plots for model A (5 % particles) and model B (8% particles) are shown 

in Figs. 13(b) and (c), respectively. In Fig. 13(a) two distinct plastic deformation 

bands inside the homogeneous solder, originating from the four corners but 

predominantly parallel to the interfaces, are evident. Eventual failure can be 

expected to follow the strong plastic band which leads to a fracture path close to 

the interface, as was observed experimentally in Fig. 8. When discrete compliant 

particles exist, Figs. 13(b) and (c), the plastic flow field is seen to be disturbed to 

a great extent. The concentrated band becomes branched due to the blocking 

particles, and the maximum plastic strain is significantly reduced. This trend is 

more apparent in the case of more finely distributed particles (Fig. 13(c)). In 

general, the plastic deformation field becomes more uniform when the particles 

exist. 

Results in Fig. 13 may also be presented in a more quantitative way. Figure 

14(a) shows the area fractions of the solder matrix in which the equivalent plastic 

strain is above 0.15 (i.e., the red color regions in Fig. 14), for the case of no 

particles as well as for models A and B. It is clear that the pure solder (free of 

particles) possesses the largest area fraction with high plastic strains. The 

existence of particles results in a significant decrease in the high-strain region, 

especially in the case of more finely distributed particles (model B). Figure 14(b) 

shows the averaged equivalent plastic strains within the solder areas considered in



 

 

 

 

 

 

 

Figure 13. Contour plots of equivalent plastic strain in the solder containing LaSn3 intermetallic particles with area 

fractions of (a) 0, (b) 5% and (c) 8%, when the applied nominal shear strain is at 0.08.
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Fig. 14(a) (i.e., areas having equivalent plastic strains greater than 0.15, or the red 

color regions in Fig. 13). The pure solder is seen to have the greatest strain value, 

0.224, and the values for models A and B are 0.211 and 0.190, respectively. 

Therefore not only does the incorporation of particles decrease the largest area of 

high plastic strains, but its average strain value is also lower. It can thus be 

expected that the initiation of damage in the solder with finer particles will be 

delayed. This naturally leads to an improvement of overall ductility under the 

same type of lap-shear loading. The proposed mechanism in Section 4.4.1 is seen 

to be consistent with the present modeling results. 

There is an interesting observation worthy of discussion. Conventional 

thinking stipulates that reinforcing a ductile matrix with strong particles results in 

composite strengthening (such as in typical particle-reinforced metal matrix 

composites). Ductility will then be reduced due partly to the localization of plastic 

flow field within which an elevated plastic strain level commonly exists, leading 

to easier damage initiation. In the present experiment and modeling, however, an 

opposite trend is seen. The primary difference between the present study and 

those of particle-reinforced composites lies in the deformation pattern caused by 

the different macroscopic loading mode [42]. Within the context of typical 

particle strengthening, deformation is nominally uniform in the homogeneous 

matrix when no particles are present (typical tensile testing of bulk specimens). 

The presence of particles perturbs the deformation and induces locally higher 

plastic strains. In substrate constrained deformation, however, such as the current 

lap-sheared solder or tensile loading of a butt-joint solder, deformation is 



 

 

 

 

 

Figure 14. (a) Area fractions of the solder matrix having equivalent plastic strain greater than 0.15 (the red color regions 

in Fig. 13) in the three models. (b) The average equivalent plastic strain values within the same solder matrix regions in 

(a). 
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inherently highly localized in the homogeneous matrix free of particles (Fig. 

13(a)). The added particles then serve to diffuse the strain concentration and result 

in locally lower plastic strains, which aids in delaying fracture. 

4.4.4 Damage evolution for SAC and SAC-0.5Ce solder joints 

Here, we propose a modified fracture model for the Ce-containing solders 

based on the observations from interrupted shear tests [42] and findings from this 

study. The schematic of damage accumulation is shown in Fig. 15. For the SAC 

solder alloy, the crack initiated and propagated close to the intermetallic/solder 

interface due to the strain localization at the interface [43, 44]. Thus, in the SAC 

solder alloy, fracture is localized in a very small fraction of the joint, causing low 

ductility in the solder joint. In Ce-containing SAC solder, the cracking and 

debonding of CeSn3 intermetallic particles contributed significantly to the amount 

of plastic deformation, thus allowing deformation to be distributed uniformly over 

the entire joint’s volume. Due to minimized plastic strain localization, the crack 

grew away from the brittle Cu6Sn5 intermetallic/solder interface resulting in 

enhanced ductility for the SAC-0.5Ce solder joints. 

4.5 Conclusions 

The monotonic shear behavior of Ce containing SAC solder was 

investigated, and compared with that of pure SAC alloy. Based on the experiment 

and modeling results, the following conclusions can be drawn. The SAC alloy 

with Ce additions exhibited higher strain-to-failure and lower strength compared 

with SAC. 



 

 

 

Figure 15. Damage accumulation schematic for Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder joints.
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1. The interrupted shear testing and characterization by optical 

microscopy and SEM shows that the CeSn3 intermetallic particles 

are directly responsible for the higher ductility observed in Ce-

containing SAC alloy.  Plasticity around the particles, debonding, 

and fracturing of CeSn3 intermetallic particles contribute to an 

increase in fracture energy as well as homogenization of the plastic 

strain in the solder region. 

2. Studies on the effect of thinner Cu6Sn5 intermetallic layer 

thickness on ductility showed that is not due to the thin Cu6Sn5 

intermetallic layer, but the preexisting CeSn3 intermetallic 

particles. 

3. Numerical finite element modeling illustrated that the existence of 

intermetallic particles in the solder serves to disturb the 

concentrated plastic deformation band during the lap-shear 

loading. The overall plastic flow field becomes more uniform, with 

a reduced maximum strain magnitude. Delayed fracture can thus 

be expected, leading to enhanced ductility. 
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5. THERMAL AND MECHANICAL STABILITY OF CE-CONTAINING 

SN-3.9AG-0.7CU LEAD-FREE SOLDER ON CU AND ELECTROLESS 

NI-P METALLIZATIONS 

5.1 Abstract 

Rare-earth containing solders have been shown to exhibit improvements in 

both physical and mechanical properties. However, the reactive nature of RE 

elements with oxygen may degrade the mechanical properties even under room 

temperature aging. In this article, we report on the microstructure and mechanical 

properties of as-processed and thermal aged Ce-containing Sn-3.9Ag-0.7Cu 

solder reflowed on electroless Ni-P and Cu metallizations. The microstructure of 

both as-reflowed and thermal aged Ce-containing Sn-3.9Ag-0.7Cu solder joints 

are more refined compared with conventional Sn-3.9Ag-0.7Cu solder joints. The 

(Cu,Ni)6Sn5 intermetallic layer formed at Cu/Ce-containing solder interface is 

thinner than that of Sn-3.9Ag-0.7Cu solder. The monotonic shear behavior of as-

reflowed and thermal aged Sn-3.9Ag-0.7Cu-0.5Ce/Cu and electroless Ni-P lap 

shear joints was studied, and compared with Sn-3.9Ag-0.7Cu. It was found that 

both as-reflowed and thermal aged Ce-containing Sn-3.9Ag-0.7Cu exhibit higher 

strain-to-failure compared with Sn-3.9Ag-0.7Cu solder joints. 

5.2 Introduction 

In recent years, a series of eutectic of near-eutectic Sn-Ag-Cu alloys have 

been proposed as replacements of Pb-Sn solder, due to their superior creep and 

fatigue resistance [1-5]. However, adding excessive amount of Ag and Cu often 
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results in formation of rigid large Ag3Sn plates and Cu6Sn5 particles, which also 

result in low ductility and poor mechanical shock resistance [6, 7]. 

In our previous work, we have shown that Sn-3.9Ag-0.7Cu Pb-free solder 

alloys doped with small amounts of La [8, 9] and Ce [10] elements posses refined 

microstructure, reduced Cu6Sn5 intermetallic compound (IMC) layer thickness, 

and, most importantly, significantly increased ductility compared to Sn-3.9Ag-

0.7Cu alloy. Such enhanced ductility has profound implications for improving the 

mechanical shock resistance of solder joints. 

Due to the reactive nature of rare-earth element with oxygen [11], rare-

earth containing solder may experience severe oxidation and degradation in 

mechanical properties, wettability [12-15] and rapid formation of Sn whiskers on 

the solder surfaces [16, 17]. We have reported that Ce-based solder alloys are 

much less prone to oxidation but still exhibit the desirable attributes of 

microstructural refinement and increased ductility relative SAC as in the La-based 

solders [11]. However, little work has been conducted on the thermal stability of 

Ce containing solder, especially mechanical stability. Much work remains to be 

done in order to understand the effect of thermal aging on the microstructure and 

mechanical properties of rare-earth containing solder joint. 

Additionally, electroless Ni-P metallization has been widely used as 

diffusion barrier for Cu due to its excellent properties and low cost [18, 19]. It is 

well known that interfacial reaction between Sn-rich alloys and Ni-P metallization 

results in the formation of Ni-Sn or Ni-Sn-Cu intermetallic layers. The nature of 

this reaction depends on the Cu content in the lead-free solder, and a thin P-rich 
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layer formed between the IMC and the Ni-P layer formed during the reflow 

process [20-22]. Relatively few studies have been done on the solderability and 

mechanical properties of Ce-containing lead-free solder joint on Ni-P 

metallization. It has been reported, however, that the addition of RE elements do 

not alter the composition of the intermetallic layer formed on electroless Ni-P 

substrate, The addition of RE does reduce the rate of increase in IMC thickness, 

and decrease in shear strength of SnAgCu solder during thermal aging [14, 23]. 

In this study, we investigated the interfacial reaction between Ce-

containing Sn-3.9Ag-0.7Cu and eletroless Ni-P metallization. Isothermal aging 

was conducted on Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder joint on Cu 

and Ni-P metallization. The microstructure and mechanical properties of Sn-

3.9Ag-0.7Cu-0.5Ce solder joints was studied, and compared with that of Sn-

3.9Ag-0.7Cu solder joints. It will be shown that the ductility of Ni-P based solder 

joint can be significantly enhanced with adding trace amount of Ce. Ce-containing 

solder have excellent oxidation resistance so that thermal aged Ce-containing 

solder still exhibited larger strain-to-failure in comparison with aged Sn-3.9Ag-

0.7Cu solder joints. 

5.3 Materials and Experimental Procedure 

Vacuum-melted ingots of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu with 0.5 

wt% Ce were prepared. High purity Sn-3.9Ag-0.7Cu ingots (Indium) were cut 

into small rectangular pieces (6.5mm × 6.5mm ×13mm) and mixed with Ce shot 

(ESPI, 99.995% pure). Due to the reactive nature of pure Ce with oxygen, the 

materials were mixed in a quartz ampoule (12 mm in diameter) under a sealed 
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glove box in helium atmosphere. The quartz ampoule was then evacuated to 10
-5

 

Torr and sealed. The sealed ampoules were heat treated at 1,000°C for 4 h, and 

periodically mixed by rotation of the ampoule, in order to homogenize the liquid 

metal. The ampoules werewater quenched, removed from the ampoule, and 

sectioned. The Sn-Ag-Cu ingot was prepared by the same process as the Sn-

3.9Ag-0.7Cu-0.5Ce ingot. 

Thermal and mechanical stability tests were performed on 

solder/metallization single lap shear joint. Two different metallizations were 

studied: oxygen free Cu and electroless Ni-P plated Cu bars. Oxygen free copper 

bars (50.8 mm and 6.35 mm in thickness) were polished to a 0.05 μm finish with 

colloidal silica solution. Electroless Ni-P substrate was fabricated by depositing 7 

μm Ni-P layer on the polished Copper bars with an immersion Au-Pd layer (0.1 

μm) plating on top to avoid oxidation of the nickel surface. A graphite mask was 

applied to the Cu or Ni-P bars, leaving a 6.35 mm by 6.35 mm area for reflow. A 

rosin mildly activated (RMA) flux was applied to the unmasked potions of the Cu 

or Ni-P bars to improved wetting between the metallization and the solder. The 

entire assembly was heated on a digital hot plate. The standard reflow profile is 

described as follow: the assembly was held at 170°C for 120 seconds to allow 

excess flux to vaporize. The temperature was then raised over the melting point of 

Sn-3.9Ag-0.7Cu (240 °C) and held for 40 seconds. The assembly was then 

removed from the hot plate and air cooled on an aluminum heat sink. The 

temperature in the solder was monitored using a thermocouple, and a reproducible 

cooling rate of 0.6 °C/s was obtained. The cooling rate was measured from the 
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peak temperature to 150 °C, because the joint microstructure does not change 

significantly below this temperature during cooling [24, 25]. 

Microstructure characterization was conducted on the lap-shear joints 

reflowed on Cu or Ni-P substrate before and after thermal aging. Lap-shear joints 

were sectioned and polished to a final finish of 0.05 μm colloidal silica. Optical 

microscopy, scanning electron microscopy (SEM), and image analysis were 

conducted to quantify the microstructure. This included secondary Sn dendrite 

size and CeSn3 intermetallic size. Energy dispersive spectroscopy (EDS) analysis 

was also used to confirm the composition of the electroless plated Ni-Au 

metallization and intermetallic layer. Quantitative microstructure characterization 

was conducted using image analysis software (ImageJ, Gaithersburg, MD). Both 

optical and SEM micrographs were segmented into black and white images. The 

intermetallic phases of interest were fit to ellipses to estimate their size and aspect 

ratio. 

The strength and ductility of as-reflowed and thermal aged joints were 

evaluated by monotonic shear test using a servo-hydraulic load frame at a nominal 

shear strain rate of 10
-1

 s
-1

.  

5.4 Results and Discussion 

5.4.1 Microstructural characterization of as-reflowed solder joints 

Representative microstructures of as-reflowed Sn-3.9Ag-0.7Cu and Sn-

3.9Ag-0.7Cu-0.5Ce solder joints are shown in Fig. 16. As expected, the 

microstructure of near-eutectic Sn-3.9Ag-0.7Cu solder joint on both Cu and Ni-P 

metallization consisted of Sn-dendrites and a eutectic mixture of Ag3Sn and 



 

68 

Cu6Sn5 intermetallics distributed in a Sn-rich matrix. Electroless Ni-P substrate 

had no noticeable effect on the microstructure of the as-reflowed solder, although 

a small amount of AuSn4 intermetallic particles formed in the solder matrix. The 

alloys doped with Ce formed dendritic RE-Sn intermetallic particles. The Ce-Sn 

phase diagram predicts the formation of an intermetallic phase, CeSn3, for Sn 

concentrations greater than 73 wt% Sn. EDS results confirmed that the atomic 

ratio between Sn and Ce is approximately 3:1. The Sn dendrite size for as-

reflowed solder joints is shown in Table 1. A smaller Sn dendrite size in as-

processed Ce-containing joints indicates that the microstructure was refined by 

addition of RE element. The microstructural refinement of Sn matrix in Ce-

containing solder joint is due to the large amount of heterogeneous nucleation 

sites provided by CeSn3 [9] and reduced undercooling [26].  

Figures 17 and 18 show the metallization/solder interface for Cu and Ni-P 

substrates. Both Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce reacted with the Cu 

substrate forming a thin Cu6Sn5 layer with nodular morphology. The intermetallic 

layer thickness was measured from SEM images and is shown in Table 3. Note 

that the intermetallic layer thickness in Ce-containing Sn-3.9Ag-0.7Cu is 

approximately 50% lower than that of the Sn-3.9Ag-0.7Cu alloy. Thickness of 

brittle Cu6Sn5 intermetallic layer plays a crucial role in mechanical shock 

behavior of lead-free solder joint, that strength of solder joint under high-strain 

rate tests is controlled by the strength of intermetallic layer and joints with thicker 

intermetallic layer are more prone to brittle fracture in the joints [27]. Therefore, 

thinner Cu6Sn5 intermetallic layer in Ce-containing could potentially improve the 



 

 

 

Figure 16. Optical microscopy images of as-reflowed Sn-3.9Ag-0.7Cu (top raw) and Sn-3.9Ag-0.7Cu-0.5Ce (bottom 

raw).
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mechanical shock resistance of Sn-3.9Ag-0.7Cu solder joint [28]. Decreasing in 

intermetallic layer thickness of rare-earth solder systems has been widely reported 

in the literature [29, 30]. The reason for this phenomenon was explained by the 

aggregation of rare earth element between solder and Cu6Sn5 interfacial layer and 

therefore retard the growth of Cu6Sn5 layer [31,32]. However, such rare-earth rich 

layer was failed to observe at solder/metallization interfacial region. As 

mentioned above, Ce was aggregated inside the Sn-rich solder in the form of 

CeSn3 intermetallic which agrees very well with Sn-Ce phase diagram. 

Additionally, a detailed TEM analysis indicating that the tin grains nucleate and 

grow from the faceted edges of the RESn3 IMC [9]. Thus, we believe that reduced 

intermetallic thickness in Ce-containing solder joints can be explained by a lower 

time for solder remains in liquid state due to lower undercooling in Ce-doped 

solder alloy, and a lower time for the reaction between solder and metallization 

consequently [10]. Upon reflow, the intermetallic layer formed at the solder/Ni-P 

interface had a very different morphology than the scallop-like Cu6Sn5 layer 

observed on Cu substrate, as shown in Fig. 18. The morphology of intermetallic 

formed in Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce on Ni-P substrate was 

similar, with a faceted-like morphology. As with the Cu6Sn5 intermetallic layer, 

the IMC layer thickness on Ni-P substrate was measured from SEM images and 

summarized in Table 3. As expected, the intermetallic layer on Ni-P substrate is 

significantly thinner than that on Cu substrate due to the existence of the Ni 

diffusion barrier. It is interesting to note that the thickness of intermetallic layer in 



 

 

 

 

 

 

Figure 17. Backscatter electron microscopy images of as-reflowed Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce on Cu 

substrate.
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Table 3. Summary of microstructure characterization results for as-reflowed and thermal-aged Sn-3.9Ag-0.7Cu and Sn-

3.9Ag-0.7Cu-0.5Ce/Cu and Ni-P joints. 

 

Sn-3.9Ag-0.7Cu Sn-3.9Ag-0.7Cu-0.5Ce 

As-reflowed Thermal-aged As-reflowed Thermal-aged 

Cu Ni-P Cu Ni-P Cu Ni-P Cu Ni-P 

β-Sn 

dendrit

es 

Secondary 

dendrite 

length (μm) 

15.5±7.

4 

21.8±1

3.5 

24.7±9.

4 

25.6±1

0.2 

11.7±8.

3 

13.6±5.

8 

21.9±1

3.5 

19.9±8.

7 

Secondary 

dendrite 

spacing 

(μm) 

10.4±4.

9 

13.7±7.

0 

14.2±6.

7 

14.8±6.

6 
8.9±4.6 9.5±3.0 

12.8±9.

3 

15.8±6.

1 

IMC 

layer 

Thickness 

(μm) 
4.0±2.1 2.2±0.4 6.3±2.3 2.1±0.5 2.6±1.0 1.5±0.6 

4.1 

±1.7 
2.1±0.8 

CeSn3 

IMC 

particl

e size 

Major axis 

(μm) 
N/A N/A N/A N/A 2.5±1.2 3.5±2.8 2.5±1.6 3.4±1.4 

Minor axis 

(μm) 
N/A N/A N/A N/A 1.3±0.5 1.9±0.9 1.2±0.4 2.1±0.6 

Aspect ratio N/A N/A N/A N/A 2.1±1.2 1.8±0.1 2.1±1.0 1.7±0.4 
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as-processed Sn-3.9Ag-0.7Cu-0.5Ce is even smaller than that of Sn-3.9Ag-0.7Cu 

solder/Ni-P joint. The composition of this IMC layer was investigated using EDS 

line scans, as shown in Fig. 18.  It is quite clear that Sn, Cu and Ni is uniformly 

distributed in the IMC layer indicating that only one type of intermetallic formed 

during reflow. After reflow, the immersion Au layer was rapidly dissolved in the 

solder and formed AuSn4 IMC particles inside the solder matrix. A P-rich (Ni3P) 

region is present in between Cu-Ni-Sn IMC layer and the Ni-P layer due to Ni 

diffusion from original Ni-P to intermetallic layer [33]. As a result of self-

diffusion of Ni atoms in Ni-P layer, Kirkendall voids could form and grow inside 

P-rich layer during reflow and thermal annealing [33, 34]. Large amount of 

Kirkendall voids existing in P-rich layer could deteriorate the mechanical 

performance of Ni-P based solder joints. It is also interesting to note that a 

significant amount of Cu existed in the intermetallic layer. There are two 

available Cu resources in the Ni-P based solder joint, the oxygen-free copper 

substrate beneath the Ni-P layer and Cu in the Sn-3.9Ag-0.7Cu solder matrix. The 

Ni layer plated on Cu metallization is fairly thick and remains after reflow. Thus, 

it is unlikely for Cu to diffuse from Cu metallization through this barrier and react 

with the molten solder. Studies on interfacial reaction between solders without Cu 

and Ni-P showed that only needle-like Ni3Sn4 was formed [35]. Thus, we believe 

that Cu diffused from the solder instead of the Cu metallization. The detailed 

composition of intermetallic layer was further investigated by EDS, as 

summarized in Table 4. The atomic ratio distribution of Sn, Ni, Cu indicates that 

(Cu,Ni)6Sn5 intermetallic is formed between the solder and Ni-P.  This finding 



 

 

 

Figure 18. Backscattered electron microscopy images of as-reflowed Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce 

reflowed on electroless Ni-P substrate.
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agrees very well with results from the literature, where it was shown that 

(Cu,Ni)6Sn5 intermetallic is formed when the Cu content is higher than 0.7 wt.% 

[20, 36]. The intermetallic layer formed in Sn-3.9Ag-0.7Cu solder joint was 

composed of approximately 42 at.% Sn, 25 at.% Ni, and 33 at.% Cu. On other 

hand, the intermetallic layer formed in Ce-containing SAC solder had a 

composition of approximately 49 at.% Sn, 17 at.% Ni, and 33 at.% Cu. Clearly 

the amount of Ni in as-reflowed Sn-3.9Ag-0.7Cu joint is higher than that of Sn-

3.9Ag-0.7Cu -0.5Ce joint. The difference in composition and intermetallic 

thickness between Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder joints can 

both be explained by the significantly reduced undercooling in Ce-containing Sn-

3.9Ag-0.7Cu, which results in less time for Ni to diffuse through intermetallic. 

Therefore, one may expect that the formation of a P-rich layer and potential 

Kirkendall voids to be retarded in as-processed Ce-containing solder joint during 

reflow. 

Table 4. Composition of (Cu,Ni)6Sn5 layer in as-reflowed and thermal-aged Sn-

3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce/Ni-P joints. 

Alloys SnL (At%) NiK (At%) CuK (At%) 

As-reflowed SAC 41.8 ± 1.9 25.3 ± 2.4 32.9 ± 0.6 

As-reflowed SAC-Ce 48.7 ± 3.7 16.8 ± 1.4 32.8 ± 4.7 

Aged SAC 42.6 ± 1.6 20.6 ±0.7 36.8 ± 1.3 

Aged SAC-Ce 45.9 ± 3.1 18.4 ±1.4 35.7 ± 2.1 
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5.4.2 Microstructural evolution of solder joints after thermal aging  

Thermal aging of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solders 

reflowed on Cu and Ni-P joints was performed at 95
o
C for 250 hours. Typical 

microstructures of thermal aged solder joints are shown in Fig. 19 (optical 

microscopy images) and Fig. 20 (backscattered electron microscopy images). 

Table 3 summarizes quantitative microstructural feature of thermal aged SAC and 

SAC-Ce solder joints, including CeSn3 IMC size, aspect ratio, interfacial IMC 

layer thickness. Sn dendrite size in solders/Cu joints increased after annealing 

indicating the microstructure of aged solder joints coarsened. The IMC layer 

thickness for both Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder joints 

increased and morphology of Cu6Sn5 IMC layer remained scalloped after thermal 

aging. Note that the IMC layer thickness in thermal aged Ce-containing Sn-

3.9Ag-0.7Cu joint is still lower than that of aged SAC joints due to the thinner 

initial intermetallic layer. The microstructure of thermally aged Ce-containing Sn-

3.9Ag-0.7Cu is still finer than that of aged Sn-3.9Ag-0.7Cu. There was no 

evidence that the addition of trace amount of Ce accelerated or retarded solder 

microstructure coarsening and IMC layer growth. 

The quantitative measurements of (Cu,Ni)6Sn5 layer thickness before and 

after aging are shown in Table 3. For the Ni-P metallization, no noticeable Ni 

layer consumption can be observed and the growth of (Cu,Ni)6Sn5 intermetallic 

layer in Sn-3.9Ag-0.7Cu during thermal aging is relatively undetectable, 

compared with the Cu6Sn5 intermetallic layer. This is due to relative low thermal 

aging temperature. As indicated in literature [21], the growth of (Cu,Ni)6Sn5 



 

 

 

Figure 19. Optical microscopy images of thermal aged Sn-3.9Ag-0.7Cu (left column) and Sn-3.9Ag-0.7Cu-0.5Ce (right 

column) reflowed on Cu (top row) and electroless Ni-P substrate (bottom row).
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Figure 20. Backscattered electron microscopy images of aged Sn-3.9Ag-0.7Cu (left column) and Sn-3.9Ag-0.7Cu-0.5Ce 

(right column) on Cu (top row) and electroless Ni-P (bottom row).
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intermetallic layer is negligible when the aging temperature is lower than 125 °C. 

However, note that the initial thinner (Cu,Ni)6Sn5 layer in Sn-3.9Ag-0.7Cu-0.5Ce 

solder joints grew up to 2.4 m after thermal aging which is in the same 

magnitude as the aged SAC solder joint. As discussed previously, the thinner 

(Cu,Ni)6Sn5 IMC layer in as-reflowed Sn-3.9Ag-0.7Cu-0.5Ce joint is due to 

insufficient time for Cu diffusing from solder matrix to the interface. During 

thermal aging, remaining Cu in the solder matrix kept on diffusing to interfacial 

region, results in the growth of IMC layer in Ce-containing solder. On the other 

hand, IMC layer thickness in Sn-3.9Ag-0.7Cu remained stable during thermal 

aging. This implies that the growth of (Cu,Ni)6Sn5 layer on the Ni-P substrate is 

controlled by the long range Cu diffusion from solders matrix to interfacial region 

during reflow and low temperature annealing. 

The CeSn3 particle size before and after thermal aging was measured 

based on  backscattered scanning electron microscopy images by ImageJ, as 

shown in Fig. 21. To quantitative measure the microstructure, the BSEM image 

was segmented into black and white images. Then the CeSn3 IMC particles were 

fit to ellipses to estimate their size and aspect ratio. Table 3 summarizes the 

results from quantitative measurement of CeSn3 particle size for both as-reflowed 

and thermal-aged joints on different metalllizations. For both Cu and Ni-Au 

metallization, the size of CeSn3 (major axis, minor axis and aspect ratio) is almost 

identical for as-reflowed and thermal-aged joints, indicating no coarsening of 

CeSn3 particles during thermal aging. Also note that little oxidization of CeSn3 

intermetallic particles took place during thermal aging, and there was no hillock-
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type Sn whiskers growth observed surround rare-earth particles. This result is 

consistence with our previous study on oxidation behavior of rare-earth 

containing SAC solder alloy that Ce-containing solder has excellent oxidization 

resistance [11]. 

5.4.3 Mechanical evolution of solder joint after thermal aging 

The representative shear stress-shear strain curves of Sn-3.9Ag-0.7Cu and 

Sn-3.9Ag-0.7Cu-0.5Ce on Cu metallization are shown in Fig. 22. Table 5 

summarizes the mechanical properties of the joints, including ultimate shear 

strength, strain-to-failure, and work of fracture. Work of fracture was calculated 

by integration of the stress-strain curve. For the as-reflowed solder/Cu joints, the 

ultimate shear strength decreased slightly, while the strain-to-failure and work of 

fracture increased significantly by doping with Ce, nearly 150% over that of the 

SAC joints. In our previous study on the mechanisms of enhanced ductility of Ce-

containing solder joints [37], we have shown that the decrease in ultimate shear 

strength in as-reflowed Ce-containing solder joints is due to CeSn3 intermetallic 

particles fracture and debonding under loading, and the increase in ductility with 

adding Ce is a result of the more homogeneously distributed plastic strain due to 

relatively soft CeSn3 intermetallic particles. Moreover, as indicating by 

nanoindentation results [38], the CeSn3 intermetallic are relatively compliant, 

with Young’s modulus significantly lower than that of Ag3Sn and Cu6Sn5 

intermetallics. It is likely that appreciable amount of deformation takes place in 

these Ce-containing phases as well, contributing to the enhancement in work of 



 

 

 

Figure 21. Backscattered electron microscopy images of CeSn3 intermetallic particle formed in as-reflowed (left column) 

and aged (right column) and Sn-3.9Ag-0.7Cu-0.5Ce on Cu (top row) and electroless Ni-P (bottom row).

8
1
 



 

82 

fracture. Our preliminary results have shown that such enhanced ductility could 

improve the shock resistance of Sn-3.9Ag-0.7Cu solder joints [28]. 

Table 5. Monotonic shear results for as-reflowed and thermal-aged Sn-3.9Ag-

0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce/Cu joints. 

 

Sn-3.9Ag-0.7Cu Sn-3.9Ag-0.7Cu-0.5Ce 

As-reflowed 
Thermal-

aged 
As-reflowed 

Thermal-

aged 

Ultimate Shear 

Strength (MPa) 
23.4 ± 4.0 25.2 ± 3.0 22.7 ± 3.5 21.9 ± 3.5 

Strain to Failure 

(Pct) 

103.3 ± 

77.3 

129.5 ± 

30.4 

155.5 ± 

35.1 

197.7 ± 

38.0 

Work of fracture 

(J/m
3
) 

14.2 ± 2.9 22.0 ±7.0 21.6 ± 8.9 23.4 ± 6.6 

 

After thermal aging, both Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce 

solder joints experienced a decrease in ultimate shear strength but increase strain-

to-failure and work of fracture, which can be explained by solder matrix softening 

[39, 40]. Due to the concern of oxidation induced degradation in mechanical 

performance of rare-earth containing solder joint, it is important to compare 

mechanical property of aged Ce-containing solder with conventional lead-free 

solder joints. It is interesting to note that over all strain-to-failure and work of 

fracture of aged Sn-3.9Ag-0.7Cu-0.5Ce solder joint is still larger than that of aged 

Sn-3.9Ag-0.7Cu joints, indicating that Ce element did not undergo severe 

oxidation. Thus, it is safe to state that the ability of CeSn3 particles on enhanced 

ductility was not compromised by thermal aging. 
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The representative shear behaviors of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-

0.7C-0.5Ce on electroless Ni-P metallization are shown in Fig. 23, respectively. 

Table 6 summarized shear behavior of the joints, including ultimate shear strength, 

strain-to-failure and work of fracture. The trend of mechanical evolution of Sn-

3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder joints on electroless Ni-P 

metallization is similar to those on Cu metallization. As mentioned above, the 

microstructure characterization did not reveal significant difference between Cu 

and Ni-P metallization except the interfacial intermetallic layer and trace amount 

AuSn4 particles formed during reflow process, because the microstructure of 

solder matrix is controlled by cooling rate and aging history which is same for 

both metallizations. The quasi-static shear behavior of solder joint is primarily 

controlled by the mechanical properties of the solder body, instead of the 

intermetallic layer [41]. Therefore, the improvement of ductility in Ni-P based Sn-

3.9Ag-0.7Cu solder joint with adding trace amount Ce element, as well as lower 

ultimate shear strength can be expected. Similar as Cu based solder joint, the 

strain-to-failure and work of fracture of aged Ce-containing solder is larger than 

that of aged Sn-3.9Ag-0.7Cu solder joint. Nonetheless, the addition of Ce does 

not deteriorate the mechanical shear performance Sn-3.9Ag-0.7Cu solder joints 

after elevated temperature aging.



 

 

 

Figure 22. Shear-stress-vs-shear-strain curve for as-reflowed and thermal aged Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-

0.5Ce/Cu joints tested in monotonic shear.
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Figure 23.Shear-stress-vs-shear-strain curve for as-reflowed and thermal aged Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-

0.5Ce/Ni-P joints tested in monotonic shear. 

8
5
 



 

86 

Table 6. Monotonic shear results for as-reflowed and thermal-aged Sn-3.9Ag-

0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce/Ni-P joints. 

 

Sn-3.9Ag-0.7Cu Sn-3.9Ag-0.7Cu-0.5Ce 

As-reflowed 
Thermal-

aged 
As-reflowed 

Thermal-

aged 

Ultimate Shear 

Strength (MPa) 
26.0 ±4.8 25.9± 3.5 24.5± 4.1 21.9± 4.5 

Strain to 

Failure (Pct) 
120.6 ± 59.9 129.7± 33.5 152.5 ± 37.2 195.3 ± 39.5 

Work of 

fracture (J/m
3
) 

15.8 ±11.1 22.5 ±8.1 21.1 ±7.2 30.2 ±9.4 

 

5.5 Conclusions 

The reliability performances of Ce-containing Sn-3.9Ag-0.7Cu/Cu and Ni-

P joints was studied in form of isothermal aging, and compared with conventional 

Sn-3.9Ag-0.7Cu joints. The following conclusions are drawn from the 

experimental results: 

 Addition of Ce results in Sn microstructure refinement and reduced 

intermetallic layer thickness on both Cu and electroless Ni-P substrate. 

 Interfacial intermetallic layer formed between solders/Ni-P is identified as 

(Cu,Ni)6Sn5 for both Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder 

by EDS results. 

 The overall intermetallic layer in aged Sn-3.9Ag-0.7Cu/Cu joints is lower 

than that of aged Sn-3.9Ag-0.7Cu joint due to thinner initial layer. 
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 Monotonic-shear results of as-reflowed joints show that Ce-containing 

Sn-3.9Ag-0.7Cu joints exhibit enhanced ductility on both Cu and Ni-P 

substrate. 

 Ce-containing Sn-3.9Ag-0.7Cu have excellent oxidation resistance that 

mechanical performance of Ce-containing joints does not deteriorate by 

isothermal aging. 
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6. EFFECT OF CERIUM ADDITION ON WETTING, UNDERCOOLING 

AND VOLUME EFFECT OF SN-3.9AG-0.7CU LEAD-FREE SOLDER 

6.1 Abstract 

In this article, we report the effect of cerium (Ce) addition on wettability, 

microstructure and mechanical properties of Sn-3.9Ag-0.7Cu (SAC) solders. It 

was found that the wettability of Ce-containing solder on Cu substrate is 

comparable to that of SAC solder. The microstructure of lap-shear joints 

containing 0.5 wt. pct Ce rare-earth elements showed finer microstructure and a 

thinner Cu6Sn5 intermetallic layer at the Cu/solder interface. Using differential 

scanning calorimetry (DSC), it was found that the magnitude of undercooling was 

significantly reduced with the addition of Ce. The monotonic shear behavior of 

reflowed Sn-3.9Ag-0.7Cu-0.5Ce (SAC-Ce)/Cu lap shear joints was studied, and 

compared with the SAC alloy. Ce-containing alloys exhibited a slight decrease in 

the ultimate shear strength, but higher elongation and work of fracture compared 

with SAC. The effect of Cu6Sn5 intermetallic layer thickness on ductility was also 

studied. It was found that the presence of CeSn3 intermetallic particles, and not 

the thin Cu6Sn5 intermetallic layer, were responsible for the improved ductility 

demonstrated by Ce-containing solders. 

6.2 Introduction 

With the increasing concerns over the intrinsic toxicity of Pb [1], several 

novel Sn-rich Pb-free solders have been developed as replacements for Pb-Sn 

solder in electronic industry [2-3]. Among those Pb-free solder alloys, Sn-Ag-Cu 

alloys have been considered as one of the most promising alternatives for Pb-Sn 
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solder [4-5]. However, due to the brittle nature of Ag and Cu containing 

intermetallic compounds, the Sn-Ag-Cu alloys often exhibit poorer damage 

tolerance than Pb-Sn [6-7]. 

In recent years, rear-earth (RE) elements have been selected as a fourth 

alloying element for the Sn-Ag-Cu solder system to improve both physical and 

mechanical properties [8-18]. It has been shown that the addition of different RE 

elements can decrease the alloy melting temperature [8-9], enhance the wetting 

behavior [9-12], refine solder microstructures [12-15], and, in particular, improve 

mechanical performance [10, 12, 15-18]. Regarding mechanical properties, 

improvements in tensile strength [12,15-17], ductility [16,18], and creep 

resistance [16,17] due to addition of RE elements in SAC alloys have been 

reported. 

In our previous reports, it has been shown that both shear strain-to-failure 

and work of fracture of Sn-3.9Ag-0.7Cu sold joints can be significantly increased 

by adding trace amount of La and Ce (nearly 50% over that of SAC, with a small 

penalty in ultimate shear strength) [20-22]. Additionally, Ce-based alloys are less 

prone to oxidation and Sn whiskering [23,24] and have excellent thermal stability 

[22], compared with other RE containing SAC alloys. Thus, Ce-containing SAC 

solders are promising alloys, due to their excellent mechanical properties as well 

as better oxidation resistance. However, few studies on the wettability of rare-

earth containing solders have shown a large discrepancy [25,26] 

Due to the increasing functionality in small electronic devices, solder pitch 

size will decrease down significantly [27]. Volume variations in solder joint 
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causes a different microstructural and mechanical behavior [28-30]. To our 

knowledge, a thorough study on the volume effect of RE-containing SAC solder 

is almost non-existent. 

In this study, wettability, solidification and volume effect of Ce-containing 

SAC solders were examined. The effect of Ce addition (0.5 wt. pct) on 

microstructure and physical behavior of SAC alloy was investigated and 

compared to SAC alloy. It will be shown that the refined microstructure of SAC-

0.5Ce solder is due to reduced undercooling for solidification from increase in 

heterogeneous nucleation sites. The size of the solder volume has significant 

effect on the microstructure evolution within SAC solder joint. 

6.3 Materials and Experimental Procedure 

Vacuum-melted ingots of Sn-3.9Ag-0.7Cu with trace amount of Ce (0.5 

wt.%) were prepared. High purity SAC ingots (Indium, Ithica, NY) were cut into 

small rectangular pieces (6.5 × 6.5 × 13 mm) and mixed with Ce shot (ESPI, 

Ashland, OR). Due to the reactive nature of pure Ce with oxygen, the materials 

were mixed in a quartz ampoule (12 mm in diameter) under a sealed glovebox 

with helium atmosphere. The quartz ampoule was then evacuated to 10
-5

 torr and 

sealed. The sealed ampoules were heat treated at 1000°C for 4 hours, and 

periodically mixed by rotation of the ampoule, in order to homogenize the liquid 

metal. The ampoules were then water quenched, removed from the ampoule, and 

sectioned. 

The wetting behavior of SAC-0.5Ce was studied by reflowing solder discs 

on a Copper substrate, and compared to SAC. The ingots of each material were 
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prepared as described above. Each ingot was sectioned into small disks 

approximately 10 mm in diameter and 0.6 mm in thickness. The disks were 

polished and ultrasonically cleaned by acetone before reflow. The copper 

substrate (20 mm × 20 mm × 7.7 mm) was polished to a final finish with 0.05 μm 

colloidal silica solution. The specimens were placed on the center of the copper 

block, and rosin mildly activated (RMA) flux was applied on the surface of the 

copper substrate. The solder discs were heated up to 250°C at a heating rate of 

1°C/s, and then cooled at a nominal cooling rate of 3°C/s. The specimens were 

maintained above 220 °C for 140 s. The molten solder discs were illuminated by a 

source of visible light, and the contact angles were recorded by a CCD camera 

equipped with an appropriate set of lenses. Both spreading area ratio of the as-

bonded contact and contact angle of SAC and SAC-0.5Ce on Cu substrate were 

measured to quantify the wetting behavior of the solder. 

Differential scanning calorimetry (DSC) was used to determine the onset 

of melting and the degree of undercooling for both SAC and SAC-Ce solder 

alloys. The measurements were conducted in a dry argon atmosphere gas in a 

calorimeter (model DSC-7, Perkin Elmer). Samples (10 to 20 mg) were punched 

from the as-cast ingots, slightly polished, and ultrasonically cleaned in acetone. 

Samples were weighed and placed on Aluminum pans. Samples were then heated 

and cooled at rates of 0.5 °C/s in the temperature range of 298 K to 573 K (25 °C 

to 300 °C). 

A Cu/solder/Cu sandwich-like structure was used to study volume effect 

on the microstructural evolution in Ce-containing SAC and SAC solder joints 
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with different solder volume. SAC-0.5Ce and SAC solder foils, 6.35 mm in 

diameter and with different thickness (0.2 mm, 0.5 mm, 0.75 mm and 1.00 mm), 

were reflowed between two polished Cu pellets in a 6061 Al alloy holder to 

ensure an alignment during reflow and cooling, at a nominal cooling rate of 4 

°C/s. The sandwich-like solder joints were sectioned into two specimens, then 

mounted and polished to a 0.05 microns colloidal silica. These specimens were 

then examined in an optical microscope and scanning electron microscope to 

quantify the microstructure of solder matrix and IMC layer thickness. 

6.4 Results and Discussion 

6.4.1 Wetting behavior of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce alloys 

In order to form a good intermetallic bond between the substrate and the 

solder, the solder must have adequate wettability on the substrate during reflow 

process. It is important to investigate the wetting behavior of rare earth-containing 

alloys, due to concern over the reactive nature of rare-earth elements with oxygen 

and the possible negative effect on wetting behavior.  In this study, the wetting 

behavior of SAC and SAC-0.5Ce solders on Cu metallization was studied. 

Typical images recorded during the reflow process are shown in the Fig. 24.  

Due to the temperature difference between solder/air interface and 

solder/substrate contact surface, thermal capillary motion of the molten solder 

surface resulted in a receding contact angle at solder/Cu interface [31]. Since the 

reflectivity of the Cu substrate is low, it is very difficult to define a triphase line 

and then draw a “tangent line” (red arrows in Fig. 24) to measure the contact 

angle. Normally, the contact angle of solder has been measured by 



 

 

  

Figure 24. Typical optical image of molten solder on Cu substrate for contact angle measurement. Note receding contact 

angle due to Marangoni flow. 
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cross-sectioning of samples after solidification [32]. To accurately measure the 

contact angle between molten solder and Cu substrate, a procedure was developed 

to draw the tangent line at the interface, as shown in Fig. 25. The original image 

was segmented using image analysis software (ImageJ, Gaithersburg, MD), and 

the profile of the solder surface was subtracted from the segmented image. 

Assuming that the molten solder has a spherical shape, a circle of best fit of the 

solder surface profile was then obtained. The origin of the coordinate system was 

defined as the intersection of the best-fit circle and the top surface of the Cu 

substrate. A tangent line was drawn at this point. The sine of the contact angle is 

then given by: 

     
     
 

 
√      

 
 

where R is the radius of best-fit circle and (xc, yc) is the coordinate of center of the 

circle. Another important parameter affecting the contact angle is the dwell time 

above the melting point. A series of in-situ images of the solder melting process, 

as well as the contact angle curve as a function of dwell time for molten solder on 

Cu substrate are shown in Fig. 26. Note the “plateau” regions in Fig. 26, where 

the contact angle is independent of depth after approximately 6 seconds of dwell 

time. The wetting angle was determined by taking the average values of wetting 

angles in the plateau region. 

The as-bonded contact area of solder can also be measured to give us 

another measure of wetting. The contact angle and ratio of the as-bonded to 

original contact area of both SAC and SAC-Ce solder alloys are shown in Fig. 27.



 

 

  

Figure 25. Schematic of measuring wetting angle of molten solder on Cu substrate based on optical images. 
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It is clear that the wettability of SAC-0.5Ce solder is comparable with SAC, and 

the formation of CeSn3 intermetallics does not deteriorate the wettability of SAC 

solder on Cu substrate. 

Previous studies on RE-containing solders show a large discrepancy in 

reported wetting behavior. For example, studies on RE-containing solder showed 

that the addition of RE alloying elements can enhance the wetting behavior of the 

solder alloy when the RE addition is low [12, 13, 15, 32, 33], while another 

showed no evidence of such improvement in wettability [16].  It is interesting to 

note that the variability in wetting behavior is likely attributed to a discrepancy in 

microstructure [12-16], i.e., formation of discrete RE-Sn intermetallics. The 

enhancement in wetting behavior of solder alloy by the addition of RE elements 

was only observed in the alloys with low content of RE, and most importantly, 

without the formation of RE-Sn intermetallics [13, 15, 16 32], indicating that 

wettability of solder alloy may be somehow deteriorated by RE-Sn intermetallics. 

However, results in this study and previous studies [16] show that the wettability 

is not affected by the addition of Ce up to 0.5 wt.%, even with the existence of 

CeSn3 intermetallics. 

6.4.2 Differential scanning calorimetry 

Generally, the microstructure of solder joins is controlled by the 

solidification behavior of the solder during the reflow process. It has been 

reported that the microstructure of solder can be significantly refined by 

introducing a 4
th 

alloying element, such as REs [20], Co [34], Mn, Ti [35], Ni [36], 

and Zn [37]. 



 

 

 

Figure 26. Wetting behavior of solder on Cu substrate as function of dwell time above solder melting point. 
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Figure 27. Quantitative measurement of contact angle and spreading area ratio of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-

0.5Ce solder reflowed on Cu substrate.
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The critical nucleus size in heterogeneous nucleation is given by: 

   (
      
  

)
 

  
 

Where γSL is the solid/liquid interfacial energy, Lv is the latent heat of fusion per 

unit volume, Tm and ΔT are the melting temperature and degree of undercooling, 

respectively. It is clear that, for a given critical size, undercooling can be reduced 

by heterogeneous nucleation. Although it has been previously reported that the Sn 

grains in RE-containing alloys nucleate and grow from the faceted edges of the 

primary RE-Sn intermetallics during solidification [21], the undercooling of RE 

containing solder has not been studied in detail [30]. 

DSC was used to investigate the solidification behavior of both solder 

alloys. The heat-flow-vs-temperature curves, on both heating and cooling, for 

SAC and SAC-0.5Ce solders at different scanning rates are shown in Fig. 28. The 

results are summarized in Table 7. The melting onset temperature (Tm) and 

solidification onset temperature (Ts) are indicated in the Fig. 28. The undercooling 

(ΔT) is defined as the temperature gap between Tm and Ts: 

         

Both SAC and SAC-0.5Ce show a single endothermic peak at the onset of melting 

for SAC alloy. The addition of RE elements to SAC did not significantly alter the 

melting characteristics, as the onset melting point was almost identical for both 

SAC and SAC-0.5Ce solders. However, it is interesting to note that the Ce-

containing SAC alloy had a significantly higher onset point for solidification, 

compared with SAC solder, indicating that the undercooling value of SAC was 

significantly decreased by adding 0.5wt% Ce. This result indicates that 



 

 

 

Figure 28. The DSC thermograms for Sn-3.9Ag-0.7Cu (red) and Sn-3.9Ag-0.7Cu-0.5Ce (blue).

1
0
2
 



 

103 

pre-formed CeSn3 intermetallics can promote the solidification of solder more 

rapidly through heterogeneous nucleation at CeSn3 particles, which results in the 

finer microstructure and potentially suppress the formation of large Ag3Sn plates, 

which will be shown in the following section. 

Table 7. The DSC results for Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solders. 

Solders 
Onset Liquidus 

(°C) 

Onset 

Solidification (°C) 

Undercooling 

(°C) 

Sn-3.9Ag-0.7Cu 222 187 35 

Sn-3.9Ag-

0.7Cu-0.5Ce 
223 210 13 

 

6.4.3 Solder volume effect on microstructural refinement in Sn-3.9Ag-0.7Cu and 

Sn-3.9Ag-0.7Cu-0.5Ce/Cu joints 

The size of the solder volume has a significant effect on the microstructure 

of solder joints, varied by altering the cooling rate and undercooling behavior. 

Therefore, the volume effect on the microstructural evolution of Ce-containing 

SAC/Cu joints with different gap thickness (0.2 mm, 0.5 mm, 0.75 mm, and 1.00 

mm) was studied using optical and scanning electronic microscopy. By varying 

the thickness of solder gap, different ratios of solder volume to Cu pad area can be 

achieved. Fig. 29 shows optical microscopy images of cross-section views of 

SAC and SAC-Ce joints with different solder thicknesses. Quantitative 

measurements of β-Sn dendrites size resulted, CeSn3 IMC particle size and the 

thickness of Cu6Sn5 IMC layer at solder/Cu interface are summarized in Table 8. 

As a result of large supercooling experinced in near-eutectic Sn-3.9Ag-0.7Cu 

solder, the microstructure was dominated by β-Sn dendrites surrounded with a 
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mixture of eutectic Ag3Sn, Cu6Sn5 and Sn. The cross-section images of SAC 

solder joints show an increasingly heterogeneous microstructure in the central 

region with increasing thickness of joints. It is interesting to note that in the 

central region of 1.00 mm thick SAC joint coarse microstructure that large Ag3Sn 

plates embedded in coarse β-Sn dendrites have been formed upon solidification. 

The formation of Ag3Sn plates may deteriorate mechanical properties of SAC 

joints [38, 39]. The finer microstructure of Ce-containing solder, specifically the 

suppression of Ag3Sn plate and the decrease in the spacing of the Sn dendrites, 

can be explained by the reduced undercooling in RE-containing solder. The 

microstructure in solder/Cu interfacial regions was found to be much finer. It was 

found that the spacing of the β-Sn dendrites was smaller compared to center 

region and was solidified from interface to centre, which is normally observed in 

faster cooled samples (e.g. water quenched) [40]. It is believed that cooling rate 

close to the solder/Cu interface is higher than that of the central region due to 

poor thermal conductivity of solder alloy. Temperature gradient between the outer 

and central regions results in directional dendritic growth at the interface of 

solder/Cu. The area of coarsened β-Sn dendrites in central region was gradually 

minimized with decreasing the thickness, and only fine directional β-Sn dendrites 

were observed in the joint with 200 μm thickness, indicating that it was cooling 

rate that controlled solidification behavior of SAC joint with decreasing solder 

volume. In contrast with SAC alloy, the microstructure in SAC-Ce/Cu joint with 

thick solder gap was finer than that of SAC joints, and microstructure of SAC-Ce 

solder joint was less affected by temperature gradient and variation in solder 



 

 

 

Figure 29. Optical images of Sn-3.9Ag-0.7Cu (top row) and Sn-3.9Ag-0.7Cu-0.5Ce (bottom row) solder joints with 

different solder thicknesses: 0.2 mm, 0.5 mm, 0.75 mm and 1.00 mm.
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thickness. As shown in Fig. 29, small and random orientated β-Sn dendrites 

homogenously distributed in the center and interface regions. Large Ag3Sn plates 

were not observed even in the thickest SAC-Ce joints, as a result of the lower 

undercooling value. Most importantly, it was found the microstructure of SAC-Ce 

joints was relatively less sensitive to the volume change. Note that SAC-Ce solder 

joint with largest solder volume remains solidified with a fine β-Sn dendrites 

structure. This indicates that the volume effect is suppressed by the addition of 

Ce. It is interesting to note that Sn dendrite sizes in SAC and SAC-Ce solder 

joints with minimum solder thickness are comparable, indicating that refinement 

effect by CeSn3 particles is not as pronounced as in thicker joint. This might be 

attributed to increase in the relative size of CeSn3 intermetallic with decreasing 

solder volume, which means relative less heterogeneous nucleation sites in the 

smaller solder joints. Therefore, CeSn3 intermetallic size needs to be decreased to 

improve the refinement effect in the smaller solder joints. 

The volume effect on the thickness of Cu6Sn5 IMC layer formed at 

solder/Cu interface was also studied using backscattered electron microscopy, as 

shown in Fig. 30. The IMC layer thickness of SAC and SAC-Ce joints do not 

show strong differences with varying thickness of solder gap, which may be due 

to relatively short dwell time above the melting point of solders in this case. It 

was found that the IMC layer thickness in Ce-containing solder joints was 

alwaysless than that of SAC joints regardless of solder volume. Moreover, the 

size and geometry of CeSn3 IMC particle was not affected by the volume of 

solder.



 

 

Table 8. Microstructure characterization comparison of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder joints with 

different thicknesses. 

 Sn-3.9Ag-0.7Cu Sn-3.9Ag-0.7Cu-0.5Ce 

 
Solder 

thickness 
0.2mm 0.5mm 0.75mm 1.00mm 0.2mm 0.5mm 0.75mm 1.00mm 

Sn-rich 

dendrite 

Secondary 

dendrite 

length (μm) 

8.5±3.3 13.0±7.6 15.6±11.0 33.4±21.4 10.1±4.0 11.4±6.1 11.0±7.0 11.8±6.8 

Arm 

spacing 

(μm) 

6.3±1.9 8.1±4.0 11.6±6.5 24.8±14.6 7.5±2.9 7.7±3.8 8.5±4.7 8.3±3.3 

IMC Thickness (μm) 3.7±0.8 4.7±3.2 3.9±1.6 4.6±2.5 2.9±0.7 2.4±0.6 2.2±0.9 2.8±0.8 

CeSn3 

particle size 

Major axis 

(μm) 
N/A N/A N/A N/A 1.4±0.6 2.1±0.9 1.8 ±0.8 2.5 ± 1.1 

Minor axis 

(μm) 
N/A N/A N/A N/A 0.6±0.3 0.9 ± 0.4 0.8 ± 0.3 1.1 ± 0.6 

Aspect ratio N/A N/A N/A N/A 2.5±1.5 2.7 ±1.9 2.6 ± 1.5 2.8 ± 2.1 
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Figure 30. Backscattered electron microscopy images of Sn-3.9Ag-0.7Cu (left column) and Sn-3.9Ag-0.7Cu-0.5Ce 

(right column) joints with different solder thicknesses: 0.2 mm, 0.5 mm, 0.75 mm, 1.0 mm.
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6.5 Conclusions 

The mechanisms for formation of refined microstructure, wettability of the 

novel Ce containing Pb-free solder, as well as volume effect were investigated. 

Based on the experimental results, the following conclusions can be drawn: 

1. The results of wetting behavior of SAC and SAC-0.5Ce indicate 

that SAC-Ce solder has comparable wetting behavior to SAC 

solder on Cu substrate. 

2. DSC results revealed that refined microstructure in Ce-containing 

alloys is due to reduced undercooling value.  

3. The microstructure of SAC can be refined with Ce addition. DSC 

result reveals that the refined microstructure as well as thinner 

Cu6Sn5 intermetallic layer may both be due to the reduction in 

undercooling, by increasing the amount of heterogeneous 

nucleation sites, i.e. CeSn3 intermetallic. 

4. The SAC-Ce alloy showed constant microstructure refinement 

with variation of solder volume, indicating that both the 

microstructure of the solder matrix and the interfacial intermetallic 

layer thickness is less affected by the variation of solder volume.  
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7. MECHANICAL SHOCK BEHAVIOR OF SN-3.9AG-0.7CU AND SN-

3.9AG-0.7CU-0.5CE SOLDER JOINTS 

7.1 Abstract 

Sn-Ag-Cu lead-free solder have been shown to have inferior mechanical 

shock resistance to that of Pb-Sn alloy. Sn-rich solders containing rare earth 

elements have been shown to have superior mechanical properties when 

compared to conventional Sn-Ag-Cu solder, in terms of strain-to-failure. In this 

study, we report on the mechanical shock behavior of Sn-3.9Ag-0.7Cu and Ce-

containing Sn-3.9Ag-0.7Cu alloys over the strain rate range of 10
-3

-12s
-1

. Failure 

mechanisms of solders in different strain regimes are investigated based on the 

fractography analysis. It will be shown that the shock performance of Sn-3.9Ag-

0.7Cu solders can be improved with addition of trace amount of Ce in the solder 

matrix controlled regime. The role of CeSn3 intermetallics on the enhanced 

dynamic performance is discussed. 

7.2 Introduction 

In recent years, a series of eutectic or near-eutectic Sn-rich solder alloys 

containing Ag and Cu have been proposed as replacements for Pb-Sn solder [1-3]. 

However, adding excessive amount of Cu and Ag results in the formation of 

Ag3Sn and Cu6Sn5 intermetallics, which may cause mechanical degradation of 

solder joints [4-6], in particular, lower ductility, and poor damage tolerance [7,8]. 

To further improve the mechanical and physical properties of Sn-Ag-Cu 

Pb-free solder, Pb-free solder alloys containing rare earth elements have been 

proposed and studied [9-11]. Preliminary investigations have shown that the 
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addition of trace amounts of rare earth (RE) elements can refine the 

microstructure of the solder alloy [12-15], refine intermetallic particle size [16-

19], enhance wettability [15,20,21] and electromigration resistance [22], and 

improve mechanical properties [23-25]. Our previous work has also shown that 

Pb-free solder alloys doped with small amount of La and Ce possess refined 

microstructure, reduced thickness of Cu6Sn5 intermetallic layer, and most 

importantly, better ductility in comparison to conventional Sn-3.9Ag-0.7Cu alloy 

[25-27]. In addition, Ce-containing Sn-Ag-Cu alloys are less prone to oxidation 

[28] and exhibit excellent thermal stability [29] relative to other rare earth 

containing Sn-Ag-Cu, e.g., La and Y-containing solders. 

Mechanical shock resistance, which is directly related to the ductility of 

solders [30], has been considered as a critical reliability issue to the electronic 

devices, since solder joints may experience mechanical shock when a device is 

mishandled or dropped during manufacturing or usage [31-33]. An improvement 

in shock resistance in Pb-free solder joint over a range of strain rates is needed. 

Although enhanced ductility in Ce-containing Sn-Ag-Cu solder has profound 

implications for improving the mechanical shock resistance, such improvement 

needs to be validated experimentally. However, the mechanical shock behavior of 

solder alloys bonded to the substrates by IMC layer is quite complex. It has been 

hypothesized that the solder joint behavior is strain-rate dependent, being 

controlled by either solder or the IMC layer. A schematic representation of this 

behavior is shown in Fig. 31 [1]. Our work on the mechanical shock behavior of 

Sn-rich alloys has shown that at lower strain rates the strength is controlled by the 
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ductile deformation of the solder, while at high strain rates it is controlled by the 

strength of the IMC layer [34,35]. Thus, it is important to study the shock 

behavior of Sn-3.9Ag-0.7Cu and Ce-containing Sn-3.9Ag-0.7Cu alloys at 

different strain rate regimes. 

In this study, the mechanical shock behavior of Sn-3.9Ag-0.7Cu and Sn-

3.9Ag-0.7Cu-0.5Ce solder joints was systematically investigated over the strain 

rate range of 10
-3

 to 12 s
-1

. The fracture mechanisms were characterized by 

fractographic analysis using scanning electronic microscopy (SEM) and energy 

dispersive X-ray spectroscopy (EDS). It will be shown that an increase in strain 

rate leads to a transition from solder-controlled to intermetallic layer-controlled 

fracture in both Sn-Ag-Cu and Ce-containing Sn-Ag-Cu alloys. Also, a significant 

increase in strain-to-failure can be obtained with a small addition of Ce in the 

solder matrix-controlled regime. The mechanisms for the enhanced shock 

performance in Ce-containing solder are also discussed in detail. 

7.3 Materials and Experimental Procedure 

Vacuum-melted ingots of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu with 0.5 

wt% Ce were prepared. High purity Sn-3.9Ag-0.7Cu ingots (Indium Corp., Utica, 

NY, USA) were cut into small rectangular pieces (6.5mm × 6.5mm ×13mm) and 

mixed with Ce shot (ESPI, 99.995% pure). Due to the reactive nature of pure Ce 

with oxygen, the materials were mixed in a quartz ampoule (12 mm in diameter) 

under a sealed glovebox with helium atmosphere. The quartz ampoule was then 

evacuated to 10
-5

 Torr and sealed. The sealed ampoules were heat treated at 1000 

°C for 4 h, and periodically mixed by rotation of the ampoule, in order to 



 

  

 

 

 

 

Figure 31 Schematic showing how dynamic solder joint strength is controlled by bulk solder strength at lower strain rate 

and by strength of interfacial intermetallic layer at higher strain rates.
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homogenize the liquid metal. The ampoules were then water quenched. The 

solder ingots were then removed from the ampoules and sectioned. 

As-processed Sn-3.9Ag-0.7Cu solder and Sn-3.9Ag-0.7Cu-0.5Ce solder 

ingots were machined into 6.35 mm × 0.5 mm discs. The oxidation caused by the 

machining process was removed by polishing and ultrasonically cleaned in 

acetone. Oxygen-free-high-conductive (OFHC) copper bars (25 mm long and 

6.35 mm diameter) were mechanically polished to a 0.05 μm finish with colloidal 

silica solution. A rosin mildly activated (RMA) flux was applied to the polished 

portion of the Cu bars to improve the wetting between the Cu and solder. Butt 

joints for mechanical tensile tests were assembled with the aid of a reflow fixture 

to minimize misalignment and maintain a consistent solder thickness of 

approximately 50 μm. The entire assembly was heated on a programmable digital 

hot plate (Torrey Pines Scientific, San Marcos, CA, USA) until the solder reached 

its melting temperature. The typical reflow profile consisted of heating the sample 

to 170 °C for 2 minutes to allow excess flux to vaporize, then heating to 20 °C 

above the melting point and holding for 40 s, removing from the hot plate and 

cooling in air on an aluminum block. The approximate cooling rate of the solder 

was 1 °Cs
-1

. 

The microstructure of as-reflowed solder joints was characterized using 

optical and SEM (FEI-XL30, Hillsboro, Oregon). The features of interest 

included secondary Sn dendrite size and arm spacing, RE intermetallic size, and 

Cu6Sn5 intermetallic layer thickness. Quantitative microstructural characterization 

was conducted using image analysis software (ImageJ, NIH, Bethesda, MD, 
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USA). Optical and SEM micrographs were thresholded and segmented into binary 

images and the particles of interest were fit to ellipses, to estimate their size and 

aspect ratio. The intermetallic layer was also isolated by segmenting 

backscattered SEM micrographs, and the thickness of intermetallic layer was then 

measured using ImageJ. 

Mechanical shock experiments were conducted on solder joints over a 

range of stain rates (10
-3

-12 s
-1

), using an MTS 810 servohydraulic machine (MTS 

Systems, Minneapolis MN). Tests were conducted in strain control mode at 10
-3

 

and 10
-1

 s
-1

 using an extensometer. Tests at 1.5 and 12 s
-1

 were conducted in 

displacement control mode. For the higher strain rate tests, a small section of the 

joint was polished to a 0.05 μm colloidal silica finish to permit visualization of 

the joint interfaces for the measurement of strain and strain rate, instead of using 

an extensometer. A Questar QM100 (New Hope, PA, USA) traveling microscope 

was used in conjunction with a Phantom Miro2 (Wayne, NJ, USA) high-speed 

camera to measure strain from the displacement of the joint interfaces. A slack 

adapter was utilized to ensure that a well-controlled, linear strain rate was 

achieved. After tests, fracture surface of each joint was analyzed by scanning 

electron microscopy and energy dispersive spectroscopy to determine the failure 

mechanisms. Energy dispersive X-ray spectroscopy (EDS) was used to identify 

the composition of the IMC layer and precipitates on the fracture surfaces. 
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7.4 Results and Discussion 

7.4.1 Microstructure characterization 

Fig. 32 shows representative microstructures of the as-reflowed Sn-3.9Ag-

0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solders joints. A typical microstructure of as-

processed Sn-3.9Ag-0.7Cu solder ingot consists of Sn dendrites surrounded by a 

eutectic mixture of Ag3Sn and Cu6Sn5 intermetallics in a Sn-rich matrix. Ce-

containing intermetallic phases were formed with the addition of trace amount of 

Ce. These intermetallics were uniformly distributed in the Sn matrix, as shown in 

Fig. 32. Three dimension visualization and TEM studies of RESn3 intermetallic 

showed that they are complex dendrites with a faceted geometry [26,36]. In the 

as-reflowed Sn-Ag-Cu and Ce-containing Sn-Ag-Cu solder joints, a nodular type 

Cu6Sn5 intermetallic layer was formed at the Cu/Solder interface, as shown in Fig. 

33. Table 9 summarizes quantitative measurements of microstructural features 

after reflow for conventional Sn-Ag-Cu and 0.5 wt.% Ce containing alloys, 

including the Sn dendrite size and arm spacing, and the Cu6Sn5 intermetallic layer 

thickness. It is interesting to note that the average Sn dendrite size in Ce-

containing Sn-3.9Ag-0.7Cu solder joint is approximately 35 % smaller than that 

of Sn-Ag-Cu solder joint, indicating that the microstructure of Sn matrix is finer 

in Ce-containing alloy compared with the base Sn-Ag-Cu alloy. It is believed that 

the Sn grains in RE-containing alloy are nucleating and growing from the faceted 

edges of the RE-containing intermetallics during solidification [26]. Thus, the 

decrease in the Sn dendrite size and spacing is due to the large number of 

heterogeneous nucleation sites provided by RE-Sn intermetallics. Also note that 



 

 

 

 

Figure 32. As-processed optical images of left: Sn-3.9Ag-0.7Cu and Right: Sn-3.9Ag-0.7Cu-0.5Ce solder joints
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Figure 33. Backscatter electron microscopy images of as-reflowed Sn-3.9Ag-0.7Cu (left) and Sn-3.9Ag-0.7Cu-0.5Ce 

(right) solder joints 
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in the Ce-containing alloy, the Cu6Sn5 intermetallic thickness is approximately 25 % 

smaller compared to that of Sn-Ag-Cu alloy. It has been reported that the lower 

intermetallic thickness in Ce-containing solder is due to the lower degree of 

undercooling and less time for reaction between molten Sn and the Cu substrate 

[27]. Although it was believed that lower brittle intermetallic layer thickness 

could have a substantial impact on the mechanical behavior of joints, systematic 

studies on the effect of IMC thickness showed that the intermetallic layer plays a 

less important role when the thickness of intermetallic layer is relatively thin (<10 

μm), i.e., in this IMC thickness range the mechanical behavior is solder-controlled 

[35]. 

Table 9. Summary of microstructure characterization results for as-reflowed and 

thermal-aged Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder joints. 

 Sn-3.9Ag-0.7Cu 
Sn-3.9Ag-0.7Cu-

0.5Ce 

β-Sn 

dendrites 

Secondary dendrite 

length (μm) 
18.8 ± 2.8 12.4 ± 3.9 

Secondary dendrite 

spacing (μm) 
11.9 ± 2.3 8.3 ± 1.6 

IMC layer Thickness (μm) 4.3 ± 1.8 3.3 ± 1.3 

 

7.4.2 Mechanical tensile behavior of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu 

solder joints 

In this section, we discuss the mechanical shock properties of the Sn-

3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder joints at different strain rates. A 

detailed description of the testing methods can be found elsewhere [35].  
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Representative tensile stress-strain curves of solder joints are shown in Fig. 

34. The tensile behavior is summarized in Table 10, including ultimate tensile 

strength and strain-to-failure. In order to quantitatively compare the strains at 

failure, a procedure was developed to determine the onset of failure. The strain to 

failure was taken as a deviation of 5 % from a linear regression fit to the end of 

the stress-strain curve [25]. It have been previously reported that for the quasi-

static shear behavior of solder joints, small additions of Ce can significantly 

increase the strain-to-failure with a slight drop in shear strength [27]. The results 

on quasi-static tensile behavior showed a similar trend to the shear behavior of 

Ce-containing solder joints. The ultimate tensile strength of joints decreased with 

a small addition of Ce. The alloy containing 0.5 wt.% Ce showed approximately 

30% decrease in tensile strength compared to Sn-Ag-Cu solder. More importantly, 

the strain-to-failure of Sn-Ag-Cu-0.5Ce increased by over 100% to that of Sn-Ag-

Cu. Such an increase in strain-to-failure in Sn-Ag-Cu-0.5Ce solder joints indicates 

that the ductility of Sn-Ag-Cu solder can be significantly improved by adding 

trace amount of Ce. 

With increasing strain rate, the dynamic strengths of as-reflowed solder 

joints first increased in the strain rate range 10
-3

 to 1.5 s
-1

, then decreased in the 

strain rate range 1.5 to 12 s
-1

 for both Sn-Ag-Cu and Ce-containing Sn-Ag-Cu 

solder alloys. Although the dynamic strength of Ce-containing Sn-Ag-Cu is still 

lower than that of Sn-Ag-Cu alloy at intermediate strain rate, the strength of both 

alloys is comparable at highest strain rate. This trend indicated that the 10
-3

-1.5 s
-1 

is solder-controlled and the higher range, over 12 s
-1

, is intermetallic-controlled. 



 

 

 

Figure 34. Tensile stress vs. strain curve for Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce/Cu solder joints tested at 

different strain rate (from 10
-3

 to 12 s
-1

) 
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This discussed in more detail in the next session on fractographic analysis. Strain-

to-failure of both Sn-Ag-Cu and Sn-Ag-Cu-0.5Ce alloys decreased with 

increasing strain rate, due to the transition of failure mode from ductile to brittle. 

It is interesting to note that Ce-containing alloy still showed impressive gain in 

strain-to-failure, nearly 100% over that of Sn-Ag-Cu when the strain rate was at 

around 1.5 s
-1

. Such gains in strain-to-failure started to decrease in the 

intermetallic-controlled regime, i.e. only 20 % improvement is gained at 12s
-1

. 

The mechanism of enhanced shock resistance in Ce-containing Sn-Ag-Cu alloy 

will be further discussed in the fractographic analysis section below. 

Table 10. Dynamic tensile results for Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce 

solder joints 

 Ultimate tensile strength (MPa) Stain to failure 

Strain 

rate (s
-1

) 
10

-3
 1.6 12 10

-3
 1.6 12 

SAC 
50.0 ± 

1.4 

111.5 ± 

12.0 

48.3 ± 

3.4 
9.0 ± 2.8 0.9 ± 0.2 0.8 ± 0.2 

SAC-

0.5Ce 

37.0 ± 

3.5 

74.0 ± 

4.6 

52.0 ± 

2.1 

20.6 ± 

10.2 
2.1 ± 0.6 0.9 ± 0.3 

 

7.4.3 Fractographic analysis 

The fracture surface of as-reflowed Sn-Ag-Cu and Ce-containing Sn-Ag-

Cu solder joints were examined to elucidate the relationship between fracture 

mechanism and mechanical performance. Fig. 35 shows representative fracture 

surfaces of Sn-Ag-Cu and Ce-containing Sn-Ag-Cu solder joints at different strain 

rates. At lower strain rates, the fracture surfaces revealed a classical void 
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nucleation, growth, and coalescence process in the solder region of both Sn-Ag-

Cu and Sn-Ag-Cu-0.5Ce alloys. However, cracking in the Sn-Ag-Cu joint was 

observed to propagate along the interfacial region between the solder and Cu 

substrate. Energy dispersive X-ray spectroscopy (EDS) identified broken Cu6Sn5 

nodules tips at the bottom of dimples. This indicated that voids in Sn-Ag-Cu 

joints were nucleated in Solder/Cu interfacial regime due the stress concentrations 

created by the Cu6Sn5 nodules, followed by crack propagation into the 

intermetallic layer as the voids grew and coalesced. In contrast, fracture in Ce-

containing Sn-Ag-Cu joints occurred through the solder, instead of solder/Cu 

interface. Voids caused by the fracture process are much larger in scale than for 

the Sn-Ag-Cu joints, and CeSn3 intermetallic particles were also identified at the 

bottom of most dimples in the Sn-Ag-Cu-0.5Ce joints using EDS. This 

fractography indicated that CeSn3 intermetallics are directly responsible for the 

increase in ductility in Sn-Ag-Cu-0.5Ce joints. Previously, it has been reported 

that the ductility enhancement in Ce-containing solder joints is due to relatively 

more homogeneous plastic deformation band, which is disturbed by CeSn3 

intermetallic particles during the lap-shear loading [37]. Similar to our work on 

lap-shear experiments, one can expect that the large plastic deformation bands 

exist at the Sn-Ag-Cu solder/copper interface during tensile loading. Such a 

unique deformation pattern is due to the substrate constraint imposed by the 

geometry of the solder joint [38] and responsible for the fracture morphology in 



 

 

 

Figure 35. Tensile fracture morphology of Sn-3.9Ag-0.7Cu (top row) and Sn-3.9Ag-0.7Cu-0.5Ce (bottom row) solder 

joints at different strain rates. 
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Sn-Ag-Cu joints [39]. Thus, CeSn3 intermetallic particles serve to diffuse the 

strain concentration, as well as creating voids nucleation sites during the fracture 

process, which result in delayed fracture and enhanced ductility in the Ce-

containing alloy.  

Increasing the strain rate changed the fracture morphology from ductile to 

cleavage, as shown in Fig. 35. The transition in fracture morphology has also been 

reported by several authors [40,41]. At intermediate strain rate, fracture in Sn-Ag-

Cu alloy occured in the interior of Cu6Sn5 intermetallic layer due to an increase in 

stress triaxiality in the solder matrix, less time for stress relaxation, and highly 

localized brittle fracture at the intermetallic layer. In general, the fracture surface 

in Sn-Ag-Cu joint at intermediate strain rate consisted of a mixture of ductile 

dimples and fully exposed or fractured Cu6Sn5 nodules. At the strain rate 

corresponding to the transition between solder-controlled and intermetallic-

controlled strength region, the area ratio of ductile to cleavage fracture in the 

intermetallic was found to be ~1 (by image analysis), indicating that both fracture 

mechanisms contributed equally to the overall strength of the joint at this strain 

rate. A decrease in strain-to-failure with an increase in strain rate can be also 

explained by the increase in area fraction of cleavage fracture and less ductile 

dimple fracture. It is important to note that large dimples with CeSn3 intermetallic 

particles at the bottom still can be found in the fracture surface of Ce-containing 

Sn-Ag-Cu solder joints at intermediate strain rate. It is not surprising that CeSn3 

intermetallic particles can serve as voids nucleation sites at intermediate strain 

rate, because this strain rate is still in the solder matrix controlled region. Thus, 



 

128 

such CeSn3 nucleated dimples are responsible for the improvement in ductility at 

intermediate strain rate.  

Higher strain rates promoted more intermetallic layer cleavage fracture in 

both Sn-Ag-Cu and Sn-Ag-Cu-0.5Ce alloys. An increase in brittle cleavage 

fracture is due to the increase in solder yield strength and higher concentrated 

stress in the intermetallic layer. Therefore, at the highest strain rate, the fracture 

surface in both Sn-Ag-Cu and Ce-containing Sn-Ag-Cu joints consisted of 

cleavage fracture surface of the Cu6Sn5 IMC layer.  Very little solder was found 

on the cleavage fracture surface, indicating that the mechanical properties of 

solder joints tested was dominantly controlled by the intermetallic layer. 

Therefore, the strain-to-failure of Ce-containing Sn-Ag-Cu alloys is comparable 

to that of Sn-Ag-Cu. 

The fracture mechanisms in Sn-Ag-Cu and Sn-Ag-Cu-0.5Ce solder joints, 

as a function of strain rate, are summarized in Fig. 36. It is clear that the ultimate 

tensile strength of solder joints increased in the strain rate range 10
-3

 to 1.6 s
-1

 for 

both Sn-Ag-Cu and Sn-Ag-Cu-0.5Ce. The dynamic strengths of the solder joints 

then decreased monotonically when strain rate was larger than 1.6 s
-1

. The strain-

to-failure of both Sn-Ag-Cu and Sn-Ag-Cu-0.5Ce decreased rapidly with 

increasing strain rate, due to a transition in fracture from the solder to the brittle 

IMC. It is important to note that the strain-to-failure of Sn-Ag-Cu-0.5Ce is 

significantly larger than that of Sn-Ag-Cu solder joint when the strain rate is 

lower than 1.6 s
-1

. The schematics of fracture behavior of Sn-Ag-Cu and Sn-Ag-

Cu-0.5Ce solder joints at different strain rates are shown in Fig. 36. In the solder 
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controlled regime, strain homogenization bands, and voids in Sn-Ag-Cu-0.5Ce 

solder joints were nucleated by CeSn3 intermetallic particles, and crack 

propagation along the intermetallic layer is less likely to take place in comparison 

to Sn-Ag-Cu joints, which results in a higher macroscopic ductility and better 

shock resistance in the Ce-containing solder. 

7.5 Conclusions 

The mechanical tensile behavior of Sn-Ag-Cu and Ce-containing Sn-Ag-

Cu solder joints consists of solder-controlled and intermetallic-controlled strength 

regimes over a range of strain rates. In the solder-controlled regime, ductile 

fracture is dominant while in the intermetallic layer-controlled regime, cleavage 

fracture through the intermetallic layer dominates. The ductility of Sn-Ag-Cu can 

be improved by addition of Ce with a small penalty in ultimate tensile strength 

when the strain rate is in the solder matrix controlled regime. The fracture 

mechanism of the Ce-containing Sn-Ag-Cu alloy is dominated by CeSn3 

intermetallics, which homogenize the strain and contribute to void nucleation and 

growth in the solder-controlled regime. These mechanisms result in larger degree 

of homogeneous plastic strain, and cosenquently, higher ductility. The dynamic 

tensile strength and strain to failure of Sn-Ag-Cu and Sn-Ag-Cu-0.5Ce are 

comparable in the intermetallic layer-controlled regime.
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Figure 36. Ultimate tensile strength and strain-to-failure of Sn-Ag-Cu and Sn-Ag-

Cu-0.5Ce solder joints, plotted as a function of strain rates. The fracture 

schematics for Sn-Ag-Cu and Sn-Ag-Cu-0.5Ce solder joints are shown at top and 

bottom, respectively.
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8. ELECTROMIGRATION BEHAVIOR OF SN-3.9AG-0.8CU AND SN-

3.9AG-0.8CU-0.5CE LEAD-FREE SOLDER JOINTS 

8.1 Abstract 

Our research has shown that Cerium (Ce)-containing Sn-3.9Ag-0.7Cu 

alloy exhibits desirable attributes of microstructural refinement, increased 

ductility and mechanical shock performance, while possess better oxidation 

resistance than other rare-earth containing solder. In addition to the beneficial 

mechanical properties, it is imperative to study reliability performance of the 

novel solder alloys in the form of electromigration experiments, in comparison to 

Sn-3.9Ag-0.7Cu. In this study, electromigration test was conducted on solder 

joints at elevated with a constant current using a V-groove testing methodology. 

The microstructural change of solder joints during electromigration was 

investigated by scanning electron microscopy, and the void growth was monitored 

utilizing three-dimensional X-ray microtomography imaging technique. The 

current density inside solder matrix was determined by 3-D structure based Finite 

Element Modeling. Finally, the product of diffusivity and effective charge number 

of solder joints during electromigration was calculated from both marker 

displacement and 3-D voids growth. 

8.2 Introduction 

The shift in semiconductor manufacturing from lead (Pb) based solder to 

Pb-free has caused reliability concerns for future electronic packaging platforms, 

due to the low ductility and poor mechanical shock resistance of Sn-Ag-Cu solder 

alloys [1-3]. Recently, a series of rare-earth containing Sn-3.9Ag-0.7Cu Pb-free 



 

135 

solders focused on solving these reliability issues has been proposed [4-6]. It has 

been shown that the addition of a trace amount rare-earth elements can refine the 

microstructure, reduce the interfacial intermetallic layer thickness, and, most 

importantly, increase ductility and shock performance of solder joints. Oxidation 

behavior studies on rare-earth containing solder indicate that Ce-based solder 

alloy possess the best oxidation resistance [7] and thermal stability [8]  among the 

rare-earth containing solders. 

Although previous studies have established the realistic feasibility of a Ce-

based solder alloy as a replacement to conventional SAC alloys, eletromigration 

behavior of Ce-containing solder still need to be investigated, due to the concerns 

of increased current density in shrinking packaging size [9]. Electromigration 

behavior of SnAgCu lead free solder has also been studied and compared with 

conventional SnPb solder [10]. Generally, SnAgCu solder have much better 

electromigration performance, owing to high homologous temperature and high 

Young’s modulus. However, very few studies have been carried out on the 

electromigration behavior of RE containing lead-free solder, and they show a 

large discrepancy in the literature. Lin et al. reported that the electromigration 

resistance of SnAgCu [11] and SnZn [12] solder decreased with addition of 0.5 

wt.% Ce, which is attributed to finer microstructure in Ce-containing solder and 

current induced massive Cu diffusion. In contrast, He et al. [13] observed 

enhanced electromigration resistance in RE containing SnBi solder because of 

suppressed movement of dislocations and grain boundary. Much work remains to 
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be done in order to understand the electromigration behavior of Ce-based lead-

free solder. 

None-destructive X-ray tomography has been utilized as a powerful 

imaging tool to visualize intrinsic microstructure of solder joint, especially pore 

characteristics [14, 15]. In electromigration studies, 3D synchrotron tomography 

imaging technique has been conducted on SnPb solder bumper for fully 

understanding the shape and size evolution of current induced voids [16]. 

However, no such work has been reported on lead-free solders. 

In this study, the electromigration behavior of Ce-containing Sn-3.9Ag-

0.7Cu was compared with Sn-3.9Ag-0.7Cu by examining the microstructure 

evolution using SEM and X-ray tomography. The product of diffusivity and 

effective charge number of lead-free solder was also calculated based on the 

surface marker displacement and 3D voids growth. Finally, the current density 

distribution in the actual solder joint was studied using Finite Element Modeling 

(FEM), and the effect of preexisting voids on current distribution will be 

discussed.  

8.3 Materials and Experimental Procedure 

Vacuum-melted ingots of Sn-3.9Ag-0.7Cu with trace amounts of Ce (0.5 

wt.%) were prepared. High purity Sn-3.9Ag-0.7Cu ingots (Indium, Clinton, NY) 

were cut into small rectangular pieces (6.5 mm × 6.5 mm × 13 mm) and mixed 

with Ce shot (ESPI, Ashland, OR). Due to the reactive nature of pure Ce with 

oxygen, materials were mixed in a quartz ampoule (12 mm in diameter) under a 

sealed glove box with helium atmosphere. The quartz ampoule then was then 
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evacuated to 10
-5

 torr and sealed. The sealed ampoules were heated to 1000 °C for 

4 hours, and periodically mixed by rotation of the ampoule in order to 

homogenize the liquid metal. The ampoules were water quenched, removed from 

the ampoule and sectioned. 

To study the effects of electromigration the microstructural change of Ce-

containing Sn-3.9Ag-0.7Cu solder, micron-size Cu/Solder/Cu butt joints (500 μm 

in diameter) were fabricated, using a V-groove testing methodology [17, 18]. 

Silicon V-groove was made on a silicon wafer using photolithography and wet 

KOH etching techniques. The as-processed solder ingots were machined in to 500 

μm thick solder disc, then punched to small solder disc with 500 μm in diameter. 

The copper wire end (500 μm in diameter) was polished to a 0.05 μm finish with 

colloidal silica solution. A rosin mildly activated (RMA) flux was applied to the 

Cu end bars to improve the wetting between the Cu wires and solder. The butt 

joints were assembled by aligning two Cu wires and solder disc on Si V-groove, 

then reflowed on a hotplate using a reflow profile consists of heating the fixture to 

170 °C for 2 minutes to allow the excess flux to vaporize, then heating to 20 °C 

above the melting point and holding for 50 s, then cooling in air on Al blocks. A 

reproducible cooling rate of 1.4 °C/s was obtained. 

Before electromigration tests, joints were re-enforced by a high 

temperature epoxy resin to avoid brittle failure while transferring the sample to 

the characterization tools. The as-reflowed sample was then polished down until 

half of the solder joint was grounded in order to reach high enough current density 

(10
4
 A/cm

2
), as well as for microstructure examination using microscopies. Butt 
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joint and test fixture were preheated inside a furnace at 100 °C for 1 hour to 

stabilize the sample and minimize thermal shock damage to the joints. 

Electromigration tests were performed at elevated temperature (100 °C) with a 

constant current that depends on the sample geometry. The actual temperature of 

specimen during testing was monitored by attaching a thermocouple at cathode 

side of solder joint. 

The microstructural evolution of the Ce-containing solder joint during 

electromigration was examined by optical and scanning electron microscopy 

during current stressing, and compared with conventional Sn-3.9Ag-0.7Cu joints.  

The electromigration induced voids growth was examined by X-ray tomography 

technique. To reconstruct 3D structure of solder joints, 3D projection images of 

solder joints were collected by a MicroXCT system at Intel (Xradia, Concord, 

California). After data collection, it will be reconstructed by a commercial 

tomography reconstruction software (MIMICS, Materialise, Ann Arbor, MI) to 

create a 3D representation of the object. After obtaining a 3D reconstructed 

microstructure, Finite Element Modeling was utilized to predict the current 

density distribution based on the actual geometry and distribution of voids in the 

solder joint. To conduct Finite element analysis on the sample, the volume mesh 

of the reconstructed model was generated by commercial meshing software 

(Hypermesh, Altair Engineering Inc., Troy, MI) using linear tetrahedral elements. 

The meshed model will be then exported to Abaques (Dassault systems simulia, 

Providence, RI) for current density analysis. In the model, a concentrated current 

was applied on the cathode side of solder, while the anode side was set to be zero 
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potential boundary condition to get a current flow from cathode to anode. The 

electronic conductivity of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder was 

taken to be 8.66 × 10
6
/Ωm and 8.39 × 10

6
/Ωm, respectively [19]. 

8.4 Results and Discussion 

8.4.1 Finite Element Modeling results 

It is well known that vaporized flux during reflow can produce pores near 

the solder/Cu interface [14]. The void formation inside solder joint is a complicate 

process with several different sources, and it is extremely difficult to control 

during the reflow process. It has been reported that the presence of voids can 

increase solder electronic resistivity [20] and electromigration resistance [21]. 

Therefore, it is important to determine the effect of void characteristics on the 

electromigration behavior of solder joint. Instead of characterizing voids size and 

distribution using metallographic techniques, x-ray microtomography was utilized 

to understand the effect of pore size, distribution and location on the current 

density distribution as a simple and non-destructive technique. 

Fig. 37 shows a typical “virtual” cross-section through the 3D tomography 

reconstruction of a solder joint. The solder matrix and pores can be separated 

based on the different gray scale, which is determined by the attenuation of x-rays 

through the joint [22]. To accurately reconstruct the size and shape of pores, a 

novel and semi-automatic segmentation algorithm known as Livewire® was used 

to create 2D and 3D masks for all the pores (Mimics, Materialise, Ann Arbor, MI) 

[23]. The typical 3D reconstructed model of Sn-3.9Ag-0.7Cu is shown in Fig. 37. 

Most of the pores are distributed close to the interfaces between the Cu and solder



 

 

 

Figure 37. Image of butt solder/Cu joint showing direction of virtual cross-sectioning. 2D virtual cross-section data is 

also shown, along with segmented gray scale image and 3D reconstructed structure of solder joint 
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Some fairly large pores appear to accumulate at both the surfaces. Note that the 

pore size and distribution is extremely inhomogeneous, therefore the results from 

two-dimensional images always misrepresent pore characteristics. Using the 

Mimics software, the pore size and the volume of porosity can be quantitatively 

measured. 

After obtaining 3D reconstructed microstructure, Finite Element Modeling 

was utilized to predict the current distribution based on the actual geometry and 

distribution of voids in the solder joint. Fig. 36 shows the simulation results of 

current density distribution in a joint with a total applied current of 10 A at 

cathode side, and compared to a joint with the same geometry but excluding all 

pre-existing voids. It is well known that eletromigration induced failure in 

conventional flip-chip structures is dominated by the current crowding effect in 

the solder region induced by the geometry of solder joint, where the maximum 

current density at contact window can be several orders higher than the solder 

matrix [24, 25]. Such current crowding effect increase the complexity of 

comparison between solders and accelerates the joints failure. In contrast, V-

groove testing methodology provides more uniform current density distribution 

without this crowding effect [26]. It can be observed in Fig. 38 that the current 

distribution in the solder region is very uniform and no current crowding area can 

be observed in the solder joint without pre-existing voids. However, in solder 

joint with pre-existing voids, local geometry distortion by reflow porosity leads to 

current crowding at the interface between solder and porosity. It is important to 

note that the current density in the crowding region is only ~4 times larger than 
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that of the solder matrix, which is significantly lower than the current crowding 

effect in a flip-chip structure. The current crowding region is also relatively small 

and highly localized at solder/Cu interface, as the current distribution in the rest 

solder region is uniform. Therefore, that crowding effect induced by pre-existing 

void does not appear to play as crucial a role in V-groove methodology as it does 

in flip-chip structures, although the failure in current crowding region can be 

accelerated due to larger electromigration driving forces. Moreover, 3D structure-

based finite element modeling results are also used to determine the applied 

current in Sn-3.9Ag-0.7Cu-0.5Ce joint in order to obtain same current density as 

Sn-3.9Ag-0.7Cu joint. 

8.4.2 Microstructural evolution of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce 

during electromigration 

Joule heating generated during current stressing caused higher local 

temperature in solder joints than ambience, which may accelerate the effect of 

electromigration and alter dominate diffusion species in solder joint. Kao et al. 

reported that test temperature plays crucial role on the degradation mechanism of 

electromigration (panacake-type void vs. metallization consumption) [27]. The 

actual temperature at the solder joint was monitored during the electromigration 

test by thermal couple attached at cathode side. To minimize thermal shock on 

joints, the test fixture was stabilized inside the furnace at elevated temperature 

(100 °C) before testing and the electromigration test was performed inside furnace
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to obtain accelerated result. It was found that for current density around 10
4
 

A/cm
2
, temperature increased 34 °C and 35 °C for Sn-3.9Ag-0.7Cu and Sn-

3.9Ag-0.7Cu-0.5Ce respectively, which is reasonable because the resistance 

coefficient of Sn-3.9Ag-0.7Cu is similar to that of Sn-3.9Ag-0.7Cu-0.5Ce alloy 

[19]. Due to the elevated test temperature, the Sn self-diffusion induced panacake-

type void formation can be expected to be dominant failure mechanism in this 

study. 

To characterize electromigration induced microstructural evolution of Sn-

3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder joints, backscatter scanning 

electron microscopy was utilized due to its atomic number (Z) contrast. Fig. 39 

and Fig. 40 showed microstructure of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-

0.5Ce at different stressing time. The observed region was the Cu/solder interface 

because depletion and extrusion is most likely formed there, and the current 

crowding occurs in this region, as indicated by FEM results. For the as-reflowed 

joint, the scalloped Cu6Sn5 layer formed at Sn-3.9Ag-0.7Cu-0.5Ce /Cu interface is 

thinner than that of Sn-3.9Ag-0.7Cu solder joints, as was reported before. After 

100 hours current stressing, noticeable amount of Cu was consumed and the 

intermetallic layer was becoming thinner at the cathode side indicating Cu 

dissolution into the solder matrix. Cu then diffused to cathode side and excessive 

intermetallic compounds formed at the anode side. It was also noted that the 

pancake type voids started to form between Cu6Sn5 layer and solder matrix at 

cathode side in Sn-3.9Ag-0.7Cu joint after 100 hours stressing, as a result of 

current accelerated Sn self-diffusion. Such a phenomenon is a clear indication that 



 

 

 

 

 

  

Figure 38. Finite element modeling results of current density inside Sn-3.9Ag-0.7Cu solder (a) with porosity; (b) 

without porosity 
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both Cu consumption and pancake-type voids formation in Sn-3.9Ag-0.7Cu joints 

are the dominant failure mechanism in Sn-3.9Ag-0.7Cu. This is consistent with 

literature that Sn and Cu electromigration flux turns to be comparable when the 

solder temperature is above 80 °C. As a result of Sn self-diffusion, compressive 

stresses built up inside solder joint. The cross-sectioned surface of Sn-3.9Ag-

0.7Cu solder remained rather flat due to the mechanical harder solder matrix of 

Sn-3.9Ag-0.7Cu solder, as indicated in Fig. 40. The compressive stress was 

relaxed by squeezing out the hillocks of intermetallic at anode side [28]. 

In comparison to Sn-3.9Ag-0.7Cu solder joints, the microstructural 

evolution of Sn-3.9Ag-0.7Cu-0.5Ce solder joints is shown in Fig. 40. Similar as 

Sn-3.9Ag-0.7Cu, both voids formation and metallization consumption were 

observed at the cathode side. The pancake-type void formed at cathode side is 

significantly less than that of Sn-3.9Ag-0.7Cu, and substantial amount of Cu6Sn5 

intermetallic compounds accumulated near the anode and centra regions. The 

reason for accelerated Cu atom diffusion in Ce-containing Sn-3.9Ag-0.7Cu solder 

can be explained by the finer microstructure [4], and fast diffusion path provided 

by grain boundary of Sn. As indicated in the Fig. 42, Sn grain sliding occurs at 

grain boundary to minimize the total resistance along the current direction due to 

the anisotropic resistance properties of Sn [29, 30]. Meanwhile, Cu6Sn5 

intermetallic compound accumulated along the grain boundary and numerous 

newly formed Cu6Sn5 intermetallic dispersed in the middle of the solder alloy. 

The Cu6Sn5 intermetallic layer at the anode side also showed inhomogeneous 

growth rate respect to the Sn grain boundary, that Cu6Sn5 intermetallic at region A



 

 

 

 

  

Figure 39. Backscatter electron microscopy images of cross-section of Sn-3.9Ag-0.7Cu/Cu solder joint after current 

stressing for: (a) 0 hour; (b) 48 hours; and (c) 96 hours. 
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Figure 40. Backscatter electron microscopy images of the cross-section of Cu/Sn-3.9Ag-0.7Cu-0.5Ce/Cu butt joints 

after current stressing at current 10 A and 100 °C for: 0 hour and 300 hours. 
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 (right side of grain boundary) grew faster than region B. These phenomena are 

clearly indicating Sn grain boundary can act as an effective diffusion barrier for 

migration of Cu atom driven by current [31]. In Sn-3.9Ag-0.7Cu-0.5Ce solder, 

one may expect more high-angle grain boundaries present inside the finer solder 

matrix than Sn-3.9Ag-0.7Cu. Therefore, excessive amount Cu6Sn5 intermetallic 

compound formed in the central region of the solder joint.  Such accelerated Cu 

atom diffusion and substantial Cu6Sn5 intermetallic compound formation inside 

solder joint can greatly retard the Sn atom diffusion since critical product of 

Cu6Sn5 is 4-5 times larger than that of Sn [32]. It is interesting to note that unlike 

Sn-3.9Ag-0.7Cu, the Sn extrusion and surface bulge is observed in the solder 

central region, where CeSn3 particles are densely distributed. Sn extrusion always 

formed at the top side relative to nearby CeSn3 particles. Considering the current 

induced Sn diffusion direction is from top to bottom, it is hypothesized that the 

formation of Sn extrusion is due to the block effect of immobile CeSn3 

precipitates [33], as well as solder matrix softening by CeSn3 particles [34]. 

Therefore, one may expect that current induced Sn atom migration is interrupted 

by CeSn3 particles and the compressive stress localization at the anode side, 

which may initiate crack [28], can be branched. However, the blocking effect of 

CeSn3 particles does not contribute to the enhanced electromigration resistance of 

Ce-containing solder in this case due to the existence of a free surface, as the back 

stress is released by forming Sn extrusion at the solder surface. Thus, the 

suppressed pancake-type voids formation in Ce-containing solder is mainly 



 

 

 

 

  

Figure 41. Backscatter electron microscopy images of central region of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce 

joints after current stress for 200 hours (Arrow indicating current direction). 

1
4
9
 



 

 

  

Figure 42. Backscatter electron microscopy images of anode side of Cu/Sn-3.9Ag-0.7Cu-0.5Ce/Cu butt joints after 

current stressing for 100 hours. 
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because of quick formation of the Cu6Sn5 intermetallic compound. Although 

consumption of Cu metallization could cause catastrophic failure in thin-film Cu 

UBM [11], rapid formation of Cu6Sn5 intermetallic compound is favorable for 

electromigration resistance in thick Cu UBM [35]. Moreover, the electromigration 

performance of Ce-containing solder can be further improved in actual solder 

bumper, where free surface does not exist.  

8.4.3 Electromigration behavior of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce 

solders 

The drift velocity of Sn atom and the product of diffusivity and effective 

charge are normally measured for quantitative comparison of electromigration 

resistance between different solder alloys. One way to quantitatively measure the 

drift velocity in butt solder joint is to measure the marker displacement on the 

solder surface. Markers can be polishing compound introduced during polishing 

or visible intermetallic compound, such as CeSn3. Only markers that are 20 μm 

away from cathode side are selected for the measurement, to eliminate the effect 

of back stress gradient [36]. The average diffusivity can be calculated by 

assuming that current induced Sn migration is uniform across the solder cross-

section: 

  
 

   
 

Where D is the displacement measured from marker movement, Ω is the average 

atomic volume of Sn-rich solder alloy, which can be approximately calculated by 

the lattice parameter of Sn (0.0027 nm
3
) [37], t is the duration of the 
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electromigration test. Thus, the value of electromigration induced Sn atomic flux 

can be obtained: JEM= 6.5 × 10
5
 atoms/cm

2
s. As proposed by Huntington and 

Grone, the driving force for electromigration can be calculated by [38]: 

     
    

Where Z* is the effective charge number of the migrating ion in electromigration 

(Sn in this case), e is the charge of an electron and E is the electric field. By 

assuming back stress is completely released at free surface, the atomic flux in 

units of atoms/cm
2
 can then be taken as: 

     
 

  
     

Where C is the concentration of atoms per unit volume and D/kT is the atomic 

mobility of Sn atom. On the basis of the above equations, we can obtain the 

values of the product of diffusivity and effective charge number for Sn-3.9Ag-

0.7Cu which is 0.774 × 10
-10

 cm
2
/s. The result obtained from Blech strips test 

structure is slightly larger than was obtained in this study, because of the smaller 

current density and higher silver content in the this study [39]. And the DZ* of 

Sn-3.9Ag-0.7Cu is one order smaller than that of Sn-Pb solder, which is due to 

smaller modulus and lacking of diffusion barrier in Sn-Pb solder [16]. It should be 

noted that the DZ* of Ce in Sn-3.9Ag-0.7Cu solder could not be measured from 

marker displacement on the solder surface as the pancake-type voids growth in 

Sn-3.9Ag-0.7Cu-0.5Ce was extremely limited. 

3D void growth of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce solder 

joint were also studied using high resolution X-ray tomography technique. 3D 
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rendering was performed at 0, 100, 200, 300 and 550 hours. The void at cathode 

and anode sides were reconstructed separately for side-by-side comparison of the 

samples, as shown in Fig. 43 and 44. It is clear that the Sn-3.9Ag-0.7Cu solder 

showed massive void growth and movement after only 100 hours stressing, which 

correlates very well with the surface observation. After 300 hours stress, the 

cathode side of Sn-3.9Ag-0.7Cu solder joint is saturated with voids. By 

examining the size and distribution of individual void during electromigration, it 

was found that the growth of preexisting voids is less pronounced than that of 

newly nucleated voids. Void also prefer to nucleate at void dense region, where 

current density is higher due to the current crowding effect. In comparison, almost 

no void growth and void nucleation take place on the Sn-3.9Ag-0.7Cu-0.5Ce 

solder joint, even after 550 hours current stressing. The volume change of the 

pancake-type void growth during electromigration can be accurately measured 

from 3-D render structure. The electromigration induced atomic flux calculated 

based on 3-D structure is JEM= 5.8 × 10
5
 atoms/cm

2
s which is slightly smaller 

than that obtained from surface marker movement. This is reasonable because of 

the over-estimated cross-section area in previous result. The Sn flux in Sn-3.9Ag-

0.7Cu-0.5Ce, however, cannot be measured due to smaller void growth in the Ce-

containing solder. As the formation of Cu6Sn5 is the dominate phenomenon in Ce-

containing solder, it would be interesting if one could resolve Cu6Sn5 phases from 

X-ray tomography images, which is possible due to the difference of X-ray 

attenuation coefficient between Cu6Sn5 and Sn. Unfortunately, the X-ray flux of a 

lab-scale X-ray tomography tool is too low to visualize contrast difference 



 

 

  

Figure 43. Sn-3.9Ag-0.7Cu void growth over time, showing 3-D rendering (top) and cathode void top view (bottom). 
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Figure 44. Sn-3.9Ag-0.7Cu-0.5Ce void growth over time, showing 3-D rendering (top) and cathode void top view 

(bottom). 
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between Cu6Sn5 and Sn is very close. This problem can be solved by utilizing 

synchrotron tomography [40]. 

8.5 Conclusions 

The electromigration behavior of Sn-3.9Ag-0.7Cu-0.5Ce solder joint was 

studied by silicon V-groove methodology and compared with conventional Sn-

3.9Ag-0.7Cu solder. Based on the experimental results, the following conclusion 

can be drawn. 

1. Preexisting voids can alter current distribution inside solder by 

introducing current crowding region. 

2. Microstructure characterization indicates that the dominant failure 

mechanism of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce in this 

study is both due to pancake-type voids formation and 

metallization consumption, respectively. 

3. As a result of finer microstructure, Cu atom diffusion is 

accelerated in Sn-3.9Ag-0.7Cu-0.5Ce solder, and rapid Cu6Sn5 

formation retard pancake-type voids formation at the cathode side. 

4. CeSn3 intermetallic particles can block the Sn diffusion by forming 

Sn extrusion, which may also benefit electromigration performance 

of Ce-containing solder. 

5. The product of effective charge number and diffusivity is 

calculated based on the surface mark movement, and was found 

that electromigration resistance of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-
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0.7Cu-0.5Ce are significantly higher than that of Sn-Pb solder 

alloy. 
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9. ENHANCING THE DUCTILITY OF SN-AG-CU LEAD-FREE 

SOLDER JOINTS BY ADDITION OF COMPLIANT 

INTERMETALLICS 

9.1 Abstract 

Tin (Sn)-rich lead (Pb)-free solders containing rare-earth (RE) elements 

have been shown to exhibit desirable attributes of microstructural refinement and 

enhanced ductility relative to conventional Sn-3.9Ag-0.7Cu lead-free solder, due 

to the unique mechanical properties of RE-Sn intermetallics. However, the roles 

of soft intermetallic phase in the enhanced ductility of Pb-free solder still needs to 

be further investigated. In this study, Ca and Mn were selected as doping elements 

for Sn-Ag-Cu solder. The mechanical properties of Ca-Sn and Mn-Sn 

intermetallics as a function of indentation depth were measured by 

nanoindentation using continuous stiffness method (CSM). The microstructure 

and mechanical properties of as-reflowed Ca and Mn-containing Sn-Ag-Cu solder 

joints were studied and compared with that of conventional Sn-Ag-Cu and RE-

containing solder joints. It is shown that soft intermetallics result in higher 

ductility in Pb-free solders. 

9.2 Introduction 

Due to increasing demands to find a replacement of Pb-Sn solder [1], a 

series of rare earth (RE) doped lead (Pb)-free solder alloys have gained significant 

attention due to their superior physical and mechanical properties [2-4]. Previous 

investigations have shown that adding RE elements can refine the microstructure 

of Pb-free solders [5-7], refined intermetallic particle size [8-10], reduce melting 
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temperature [11,12], decrease the thickness of the intermetallic layer that forms 

between solder and substrate [5,13], improve wettability [4,12], and promote a 

strong bond to semiconductors [14,15].  Enhanced electromigration resistance 

[16], good thermal stability [17,18] and reasonable oxidation resistance [19] have 

also been shown. In particular, RE doped lead-free solders have been reported to 

have excellent mechanical properties, i.e., increased strength [20,21], strain-to-

failure [9,22,23], and improved creep resistance [24,25].  

We have shown that Pb-free solder alloys containing small amounts of La 

[17,22] and Ce [5,18,23] exhibit a significant enhancement in ductility, in 

comparison to conventional Sn-3.9Ag-0.7Cu (SAC) solder. The proposed 

mechanism for this is based on the soft RE-Sn intermetallics [5] formed inside 

RE-containing Pb-free solders [23]. However, while experiments do show that 

RE-Sn intermetallics enhance ductility of RE-containing solders, the precise 

mechanisms for this enhancement have not been studied in detail. In order to 

understand the relationship between soft intermetallic particle and enhanced 

ductility, it is necessary to conduct mechanical tests on the solder alloys with soft 

and hard particles, to simulate the effect of adding RE-Sn intermetallics to the 

microstructure. It has been reported that small addition of Mn can form MnSn2 

phase in Sn-rich Pb-free solder with modulus and hardness values (143.9 ± 1 GPa 

and 8.9 ± 0.1 GPa respectively) significantly higher than RE-Sn and other 

traditional intermetallics formed in Pb-free solder [26]. CaSn3 is formed in Ca-

containing Sn-rich alloys. More importantly, it has the same crystal structure as 
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CeSn3 and LaSn3 (cubic, L12) [27], but with a much lower melting point, 

indicating that it might be a softer phase [28]. 

In this study, Ca and Mn were each added to SAC. The geometry and 

composition of intermetallic phases formed in the as-processed alloys was studied 

using scanning electron microscopy (SEM) and energy dispersive spectroscopy 

(EDS). The Young’s modulus and hardness of intermetallics were measured by 

nanoindentation (with a comparison to pure Sn and RE-Sn intermetallics). The 

microstructure and mechanical properties of Ca and Mn solders joint were 

examined, and compared to SAC and RE-containing SAC. It will be shown that 

the Young’s modulus and hardness values of CaSn3 are significantly lower than 

that of RE-Sn intermetallics, while MnSn2 is a much stiffer and harder 

intermetallic. Only the solder joints containing soft intermetallic particles 

exhibited enhanced ductility compared to SAC. This study shows that one way to 

obtain softer, more ductile Pb-free solders, with properties approaching that of 

Pb-Sn, is to add compliant intermetallics to the microstructure. 

9.3 Materials and Experimental Procedure 

Vacuum-melted ingots of SAC with 2 wt.% Ca and Mn were prepared for 

nanoindentation, in order to obtain relatively large intermetallic particles. For 

mechanical testing, we have shown that alloying additions of less than 0.5 wt.% 

provide the best enhancement in ductility. So for shear tests, samples of SAC with 

0.5 wt.% Ca and Mn were fabricated. High purity SAC ingots (Indium, Ithica, 

NY) were cut into small rectangular pieces (6.5 × 6.5 × 13 mm) and were mixed 

with Ca and Mn shot (ESPI, Ashland, OR).  Due to their high reactivity, Ca, Mn 
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and solder were mixed in a sealed glove box in helium atmosphere, and then 

sealed in a quartz ampoule (12 mm in diameter). With a stopcock the quartz 

ampoule was evacuated to 10
-5

 torr and sealed. The sealed ampoules were heat 

treated at 700°C for 4 hours, and periodically mixed by rotating the ampoule, in 

order to homogenize the liquid metal. The ampoules were then furnace cooled for 

nanoindentation (to obtain larger particles) or water quenched for mechanical 

shear tests. The samples were removed from the ampoule, and sectioned. 

Microstructural characterization was conducted on the as-processed ingot 

material. Ingots were sectioned and polished to a final finish of 0.05 μm colloidal 

silica. Optical microscopy, scanning electron microscopy (SEM), and quantitative 

image analysis (ImageJ, Gaithersburg, MD) were conducted to quantify the size 

and spacing of RE-containing intermetallic phases. The intermetallic phases of 

interest were fit to ellipses to estimate their size and aspect ratio. Energy 

dispersive spectroscopy (EDS) was also used to confirm the composition of the 

RE-containing intermetallics. 

Nanoindentation was conducted on intermetallics in the as-processed bulk 

ingots, as well as on pure Sn. The ingots were sectioned and polished to a final 

finish of 0.05 μm colloidal silica. Samples were mounted on aluminum stubs for 

testing using a mounting adhesive (Crystalbond
TM

, West Chester, PA). 

Nanoindentation was carried out by selecting 20 intermetallic particles randomly. 

The center of each of these intermetallics was indented. The nanoindenter was 

first calibrated by measuring Young’s modulus and hardness of a silica standard 

at a strain rate of 0.05s
-1

. A continuous stiffness measurement (CSM) technique 
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was used during indentation. With the CSM, a load is applied to the indenter tip to 

drive the indenter into the specimen surface while concurrently superimposing an 

oscillating force with a small amplitude (significantly smaller than the nominal 

load). An accurate measurement of the contact stiffness at all indentation depths is 

provided by separating the in-phase and out-of-phase components of the load-

displacement data [29]. The advantage of CSM is that an instaneous measurement 

of modulus and hardness can be obtained during indentation. Thus, multiple 

indentations at different depths are not necessary. 

For all indentations, Young’s modulus was calculated as a function of 

indentation depth, to determine the onset of any pile-up, sink-in or cracking 

during indentation [30], as well as the thickness of oxidation layer. Indentation 

was carried out using a Berkovich indenter to an average depth of 1000-1500 nm 

per indentation. Young’s modulus for an individual indentation was taken as the 

average value over a depth range where the modulus was independent of depth, 

i.e, approximately 500-1300 nm. An SEM equipped with Focused Ion Beam 

(FIB) and EDS was used after indentation to ensure that the indentations were 

located on the intermetallics, and to analyze the deformation during indentation. 

Indentation size was much smaller than the size of the individual intermetallic 

particles, so sink-in of the particle during testing was not likely to take place. 

A FIB was used to cross-section oxidized samples of Sn-3.9Ag-0.7Cu-

0.5Ca to study the thickness of oxide layer. Samples were first coated with a 1-

μm-thick Pt layer using the ion beam to protect from subsequent beam damage. A 

trench was milled using the ion beam at 30 kV and a current of 5 nA. The initial 
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cleaning cross-section was perform at 30kV and 0.3 nA, with subsequent cleaning 

sections using smaller currents to a final ion bean current of 30 pA. 

Mechanical shear tests and interrupted shear tests were conducted on 

solder/Cu single lap shear joints. As-processed solder ingots were machined into 

6.35 × 6.35 × 0.5 mm squares. These were lightly polished to remove oxidation 

caused by the machining process, and ultrasonically cleaned in acetone. Oxygen 

free copper bars (50.8 mm in length and 6.35 mm in thickness) were polished to a 

0.05 μm finish with colloidal silica solution. A graphite mask was applied to the 

Cu bars, leaving a 6.35 × 6.35 mm area for reflow. An RMA flux was applied to 

the unmasked portions of the copper bars to improve the wetting between the 

copper and the solder. The joint was assembled with the aid of a reflow fixture, to 

minimize misalignment, and maintain a consistent joint solder thickness of 

approximately 500 μm. The entire assembly was heated on the hot plate. The 

typical reflow profile consisted of heating the jig to 170°C and held at the same 

temperature for 120 sec, to allow excess flux to vaporize. The temperature was 

then raised until the solder reached 220 °C and was held for 40 s. The assembly 

was then removed from the hot plate and air-cooled on an aluminum heat sink. 

The actual temperature of solder during the reflow process was monitored using a 

thermocouple placed inside, and a reproducible cooling rate of 0.7°C/s was 

obtained. The cooling rate was measured from the peak temperature to 150°C, 

because the joint microstructure does not change significantly below this 

temperature during cooling [31-33]. A reproducible solder thickness of 500 μm 

was obtained in all joints. Shear testing was conducted using a servo-hydraulic 
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load frame (MTS systems, Minneapolis, MN) at room temperature and a shear 

strain rate of 10
-3 

s
-1

 in displacement control mode. To compensate for the 

variability in joint geometry, the joint thickness and reflowed area were measured 

in each case, after the experiment, to accurately measure the applied stress and 

strain. 

9.4 Results and Discussion 

9.4.1 Microstructural characterization 

9.4.1.1 As-processed microstructure 

Fig. 45 shows the microstructure of as-processed Sn-3.9Ag-0.7Cu-0.5Ca 

and Sn-3.9Ag-0.7Cu-0.5Mn water quenched ingots. All microstructure consisted 

of Sn-dendrites and a eutectic mixture of Ag3Sn and Cu6Sn5 intermetallics 

distributed in the Sn-rich matrix. Both Ca and Mn-containing solder consisted of 

homogeneously distributed intermetallic phases (darker phases in the 

micrographs). Ca-Sn intermetallics had a dendritic geometry, which have been 

also observed in other rare-earth lead-free solder systems [5], while Mn-Sn 

intermetallic had a more needle-like geometry. To measure the mechanical 

properties of Ca-Sn and Mn-Sn intemetallics, furnace cooled solder ingots with 2 

wt pct Ca and Mn were also prepared, as shown in Fig. 46. A slower cooling rate 

also yielded a microstructure consisting of Sn-rich dendrites and eutectic region, 

but relatively larger intermetallics were observed in the Sn-rich matrix. Note that 

all the Ca and Mn phases are considerably larger in size than obtained in the water 

quenched sample. Both furnace cooled Ca and Mn phases had a faceted geometry. 

Energy Dispersive Spectroscopy (EDS) analysis of the alloys was conducted to 
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confirm the composition of the particles, as summarized in Table 11. Analysis of 

the particles yielded an atomic ratio between Mn and Sn of approximately 2:1, 

indicating a stroichiometry of MnSn2, which was also confirmed by the Mn-Sn 

phase diagram [35]. However, EDS results on the Ca-Sn intermetallic yielded an 

atomic ratio between Sn and Ca significantly larger than predicted by the Ca-Sn 

phase diagram (3:1), due to the oxidation of Ca-Sn intermetallics and Calcium 

oxide being dissolved during sample preparation, i.e., polishing. To study the 

composition of Ca-Sn intermetallic and measure the thickness of the oxidize 

layer, a small cross-section trench was milled on the surface of a partially 

oxidized Ca-Sn particle using FIB, and the concentrations of Sn, Ca, oxygen (O) 

elements were measured on cross-section by means of EDS line scans. A typical 

concentration profile is shown in Fig. 47. The concentration of Sn and Ca in oxide 

layer is very low. The dotted line in the figure denotes the depth of oxygen 

penetration, which is also indicated in the EDS line scan results. The thickness of 

oxide layer measured from EDS results was around 0.8 μm. The atomic ratio 

between Ca and Sn below the oxide layer is approximately 3:1, confirming the 

composition of the unoxidized intermetallic particle as CaSn3. 

Table 11. EDS analysis of Mn-Sn and Ca-Sn intermetallic phases in as-processed 

alloys. 

Alloy Sn (At. Pct) 
Ca, Mn  

(At. Pct) 
O (At. Pct) 

Sn/Mn, Ca 

Ratio 

SAC-0.5Ca 53.8 ± 2.0 8.3 ± 1.2 37.9 ± 2.5 6.6 ± 1.0 

SAC-0.5Mn 67.6 ± 2.1 32.4 ± 2.1 0 2.1 ± 0.2 



 

 

 

Figure 45. As-processed optical images of left: Sn-3.9Ag-0.7Cu-0.5Mn and Right: Sn-3.9Ag-0.7Cu-0.5Ca, and EDS 

spots scan results on intermetallic phases.
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Figure 46. As-processed optical images of left: furnace cooled Sn-3.9Ag-0.7Cu-2Mn and Right: furnace cooled Sn-

3.9Ag-0.7Cu-2Ca.
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From Fig. 48 it appears that the size and distribution of the CaSn3 and 

MnSn2 intermetallics are nearly the same. This is further confirmed by the 

quantitative measurements as shown in Table 12, which includes particle size and 

aspect ratio for the intermetallics present in Ca and Mn containing Sn-3.9Ag-

0.7Cu solder alloys. The size and aspect ratio of intermetallic particles were 

measured by fitting the phases of interest into ellipses. A more detailed 

description of this technique can be found elsewhere [5]. Note that the size of 

CaSn3 and MnSn2 intermetallics is much larger than the size of the individual 

indentation size. Thus, particle sink-in during testing is less likely to take place. 

Table 12. Summary of microstructure characterization for as-processed solder 

alloys 

 Water quenched Furnace cooled 

 SAC-0.5Ca SAC-0.5Mn SAC-2Ca SAC-2Mn 

Major axis 

(μm) 
58.3 ± 23.8 121.0 ± 42.1 527.1 ± 369.0 281.2 ± 112.4 

Minor axis 

(μm) 
23.3 ± 9.4 9.0 ± 2.3 140.7 ± 60.5 62.2 ± 17.9 

Aspect ratio 2.9 ± 1.9 14.4 ± 6.7 3.8 ± 2.6 5.4 ± 3.5 

 

9.4.1.2 Reflowed microstructure 

In this section, we describe the microstructure of solder alloys after 

reflow. The as-reflowed microstructures of the solder joints with 0.5 wt. % Ca and 

Mn are shown in Fig. 48. Table 13 summarizes the microstructural features 

quantified in the as-reflowed solder joints, including secondary dendrite size and 

spacing, and the Cu6Sn5 intermetallic layer thickness. Compared to typical Sn-

3.9Ag-0.7Cu solder joint, the average Sn dendrite size of Ca and Mn-containing 



 

 

 

Figure 47. SEM image of cross-section of as-polished Ca-Sn intermetallic and EDS line scan results for partially 

oxidized Ca-Sn intermetallic alone the yellow arrow. Note that SEM image is viewed in a tilted angle (θ = 52°).
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joints is approximately 70 and 50 % smaller than for Sn-Ag-Cu, respectively. 

Previously, it has been reported that the microstructure refinement in rare-earth 

containing solder is due to the suppressed undercooling during solidification by 

the large number of heterogeneous nucleation sites provided by RESn3 particles 

[5]. Alloys doped with Ca and Mn did not exhibit significant segregation of the 

intermetallics (relative to the as-processed condition). Also, according to the 

phase diagrams, the melting point of CaSn3 and MnSn2 phases is above the peak 

temperature of the reflow profile. Therefore, it is reasonable for us to believe that 

CaSn3 and MnSn2 intermetallic particles remain solid during reflow and also 

serve as heterogeneous nucleation sites, with the Sn grains are nucleating and 

growing from the faceted edges of the primary intermetallics.  

Table 13. Summary of microstructure characterization results for reflowed 

solder joints 

 SAC SAC-0.5Mn SAC-0.5Ca 
SAC-0.5Ce 

[18] 

Sn dendrite 

length (μm) 
27.7 ± 10.2 14.4 ± 8.8 8.3 ± 3.7 11.6 ± 4.1 

Sn dendrite 

spacing (μm) 
11.6 ± 4.1 10.2 ± 4.7 8.8 ± 2.4 7.6 ± 2.6 

Cu6Sn5 IMC 

thickness (μm) 
4.0 ± 2.1 2.0 ± 0.8 3.3 ± 1.1 2.6 ± 1.0 

 

The interface between the solder and Cu substrate for all alloys is 

characterized by the formation of a thin Cu6Sn5 intermetallic layer [35,36]. This 

intermetallic layer is characterized by a nodular morphology (Fig. 49). It is 

interesting to note that the intermetallic layer thickness in the Ca-containing 
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alloys is much lower than that in Sn-Ag-Cu (approximately 60% less) and Ce and 

La-doped alloys (approximately 10% less). It has been reported that the lower 

intermetallic thickness of Cu6Sn5 in rare-earth containing solder joint is due to 

smaller degree of undercooling and less time for reaction between solder and Cu 

substrate [5]. For the Ca-containing solder joint, due to the lighter atomic mass of 

Ca, there are more heterogeneous nucleation sites in the similar joint volume 

compared to Ce and La-containing solder joints. Thus, one can expect that 

undercooling in Ca-containing solder is lower, which equates to less time for 

reaction with the substrate and a lower intermetallic thickness than that of Ce and  

La-containing solders. However, the intermetallic layer thickness of Mn-

containing solder joint is only slightly thinner than that of Sn-Ag-Cu solder joint. 

This might be due to the different crystal structure and geometry of intermetallic 

phases (bulky vs. dendritic). The heterogeneous nucleation ability of different 

intermetallic systems requires further study. 

9.4.2 Nanoindentation 

Nanoindentation was carried out on pure Sn, CaSn3, and MnSn2 

intermetallics at room temperature. Fig. 50 shows representative load-

displacement curves for all the materials tested, to an indentation depth of 1500 

nm for CaSn3 and 1000 nm for other materials. The relatively larger indentation 

depth in CaSn3 intermetallic phase is due to the existence of a fairly thick oxide 

layer as indicated in the previous section. It can be seen from the curves that for 

the same maximum indentation depth, the maximum loads obtained are different, 



 

 

 

 

Figure 48. As-reflow optical images of left: Sn-3.9Ag-0.7Cu-0.5Mn and Right: Sn-3.9Ag-0.7Cu-0.5Ca solder joints. 
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indicating differences in hardness between the materials. All the intermetallics 

had maximum loads higher than that of pure Sn. The maximum load in CaSn3 at 

1000 nm indentation depth is only slightly higher than that obtained for pure Sn, 

while MnSn2 exhibited highest maximum load. Pure Sn and CaSn3 intermetallic 

phase are both very soft materials, and exhibited significant plasticity during 

testing. Also note multiple pop-in events in MnSn2 intermetallic, which were also 

observed in Cu6Sn5 and Ag3Sn under low-strain-rate nanoindention tests, 

indicating deformation in MnSn2 consists of discrete events of isolated shear 

banding [37]. Young’s modulus and hardness curves as a function of depth for 

pure Sn, CaSn3 and MnSn2 are shown in Figs. 51a and Fig. 51b, respectively. 

Young’s modulus and hardness of CaSn3 and MnSn2 are summarized in Table 14 

and compared to that of pure Sn. A summary of Young’s modulus and hardness 

values for RE-Sn and other typical intermetallics in Sn-rich lead-free solders, i.e., 

CeSn3, LaSn3, YSn3, Cu6Sn5, and Ag3Sn, is also provided for comparison. 

Young’s modulus of a material can be calculated from the reduced modulus 

according to the following equation [38]: 

 
 

  
 
    

 
 
    

 

  
 

Where E and ν are Young’s modulus and Poisson’s ratio, respectively, and the 

subscript i refers to the indenter. Provided Poisson’s ratio for the material is 

known, the calculation is straightforward. Unfortunately, the Poisson’s ratios for 

the MnSn2 intermetallic being studied here are yet to be determined. A Poisson’s 

ratio of 0.3 was assumed for the intermetallic. 



 

 

 

 

 

Figure 49. SEM images of the Cu substrate/solder interface in reflowed joints for Sn-3.9Ag-0.7Cu-0.5Mn (left) and Sn-

3.9Ag-0.7Cu-0.5Ca (right).
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This assumption can be validated: a change in the Poisson’s ratio of 0.1 (the upper 

limit for the Poisson’s ratio of the traditional Pb-free intermetallics) only produces 

a change of 1 GPa in the calculated Young’s modulus, which is well within 

experimental error. 

In Fig. 51a, note the “plateau” regions where the modulus is independent 

of depth. For MnSn2 intermetallic phase, a stable plateau in Young’s modulus was 

observed after approximately 300 nm, while it gradually decreased after 600 nm. 

Therefore the presence of the plateau indicates that the contribution from sink-in 

or crack effect is small up to depths of 600 nm for MnSn2 intermetallic. Young’s 

modulus of CaSn3 intermetallic first increases up to an indentation depth of 800 

nm, then reaches a stable plateau after 800 nm. Lower Young’s modulus up to the 

800 nm might be attributed to the porous oxide layer in CaSn3. It’s interesting to 

note that the thickness of oxide layer measured by nanoindentation method agreed 

well with the FIB results.



 

 

 

Figure 50. Representative load vs. displacement curves for pure Sn, MnSn2 and CaSn3, indented to a depth up to 1500 

nm. Note large variation in maximum load for each phase.
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Table 14. Young’s moduli and hardness of intermetallics in Pb-free solder and 

pure Sn. 

Phase Young’s modulus (GPa) Hardness (GPa) 

Pure Sn 49 ± 2 0.15 ± 0.03 

MnSn2 

141 ± 4 8.00 ± 0.30 

143.9 ± 1 [26] 8.9 ± 0.1 [26] 

CaSn3 29 ± 5 0.34 ± 0.09 

YSn3 98 ± 4 [40] 3.47 ± 0.27 [40] 

CeSn3 69 ± 3 [40] 1.30 ± 0.03 [40] 

Cu6Sn5 134.2 ± 6.7 [39] 6.12 ± 0.17 [39] 

Ag3Sn 78.9 ± 3.7 [39] 3.25 ± 0.18 [39] 

 

Hardness and Young’s modulus values obtained for pure Sn agree well 

with literature values obtained through nanoindentation [39]. MnSn2 had the 

highest hardness of the intermetallics tested. The hardness value of CaSn3 is very 

similar to that of pure Sn, and significantly less than traditional intermetallics 

formed in Pb-free and RE-Sn intermetallics, such as CeSn3 and LaSn3. As pointed 

out previously, we believe that these softer and less stiff RE-Sn intermetallic 

phases are directly responsible for the higher ductility observed in these materials, 

by undergoing a significant amount of plastic deformation and homogenizing the 

strain in the solder joint during loading. To further prove this assumption, it is 



 

 

 

Figure 51. Nanoindentaion behavior of pure Sn, CaSn3 and MnSn2 intermetallics, (a) left: Young’s modulus-

displacement curve and (b) right: hardness-displacement curve. Young’s modulus and hardness value were averaged 

from the plateau between 300-600 nm for Sn and MnSn2, 800-1200 nm for CaSn3.
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interesting to compare the ductility of Sn-Ag-Cu solder (CaSn3) with softer 

intermetallic to those with a stiffer intermetallic phase (MnSn2). This is further 

discussed in the next section on mechanical properties of Ca and Mn-containing 

lead-free solders. 

From the Table 14, it can be observed that Young’s modulus of CaSn3 is 

also lower than all the other intermetallics, even lower than that of pure Sn. 

Similar to the hardness, MnSn2 intermetallic phase have highest Young’s modulus 

among all the intermetallics, which is approximately 4 times higher than for 

CaSn3, due to its lower Sn content. It have been reported that CeSn3 and LaSn3 

formed in rare-earth containing solder have significantly lower modulus and 

hardness than that of traditional intermetallics formed in lead-free solder [40]. 

CaSn3 has the same atomic ratio and crystal structure as CeSn3 and LaSn3 (cubic, 

L12), but has a much lower melting point [28]. Thus, one can expect CaSn3 to be 

a softer and more compliant intermetallic, compared to CeSn3 and LaSn3. 

Although there were no direct measurements of mechanical properties of CaSn3 in 

the literature, our experimentally measured values correspond well with the 

calculated Young’s modulus using first-principle methods (24.9 GPa) [27]. 

Differences between the intermetallic phases may also be observed from 

the SEM images of the residual indents. Fig. 52 presents representative SEM 

images of as-polished CaSn3 particles. A large degree of hillock type Sn whiskers 

growth can be seen on the surface of CaSn3 particles. The formation of Sn 

whiskers can be explained by the oxidation of CaSn3 particles during the sample 

preparation [41]. An explanation for this is as follows. In the oxidized CaSn3 
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intermetallics, Sn atoms migration from oxidized CaSn3 particles results in the 

phase separation between pure Sn and Ca oxide. The oxidation of these CaSn3 

phase may lead to a significant volume increase, which develops a compressive 

stress as the source of Sn whiskers. In addition, the migration of Sn to form 

whiskers also results in the formation of large degree porosity in these structures, 

which decreases modulus and hardness of oxide layer. 

Indentation in the MnSn2 intermetallics is smaller than in pure Sn and 

CaSn3. Little evidence of pile-up or sink-in is present in the indentation 

micrographs for CaSn3 and MnSn2. Note that cracks are visible around the MnSn2 

indentation, and they are emanating from the corner of indenter. Cracking was 

only present in the stiffer, harder intermetallics, i.e., MnSn2 and YSn3 [40]. 

Neither cracks, nor nanoindentaion induced whiskering were observed around or 

within the indentation in the CaSn3. 

9.4.3 Mechanical shear behavior of Ca and Mn-containing Sn-3.9Ag-0.7Cu 

solder joints 

In this section, we discuss the shear behavior of the Ca and Mn-containing 

Sn-Ag-Cu solder joints, and compare with Sn-Ag-Cu and RE-containing Sn-Ag-

Cu lead-free solder joints. Table 15 summarizes the shear properties of SAC-

0.5Ca and SAC-0.5Mn, compared with Sn-Ag-Cu-0.5RE (Ce and Y) solder 

joints. The relatively small wt. % of Ca and Mn is due to its lighter atomic mass 

than RE elements. Based on the nanoindentation test results, intermetallics formed 

inside the fourth element doped lead-free solder can be separated into two groups: 

soft (CaSn3, CeSn3) and brittle (YSn3 and MnSn2) intermetallics. All the alloys 



 

 

 

Figure 52. Scanning electron micrographs of indentations in (a) pure Sn, (b) CaSn3 and (c) MnSn2 intermetallics. Pile-up 

can be seen around the indentation edge in pure Sn. Sn whisker can be seen in CaSn3, while cracks present around the 

indent in MnSn2. 
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were compared with conventional Sn-Ag-Cu solder joints as a baseline. It is 

interesting to note that all the alloys containing soft intermetallic particles show a 

drop in strength compared to SAC, but with an increase in elongation. For 

example, the stain-to-failure of Sn-3.9Ag-0.7Cu-0.5Ca, increased by about 60% 

over that of Sn-3.9Ag-0.7Cu. In contrast, alloys containing hard intermetallic 

phases, such as YSn3 and MnSn2, exhibited elongations similar to that of Sn-Ag-

Cu. Since MnSn2 phases are significantly harder and stiffer than the other 

intermetallics in Pb-free solder alloys, this phase may act as strengtheners during 

loading, and Mn-containing alloy exhibits the highest ultimate shear strength 

among the 4
th

 elements doped solder alloys. Such trend can be better revealed by 

plotting ultimate shear strength and strain to failure values of solder joints 

containing different intermetallics as a function of Young’s modulus, as shown in 

Fig. 53. The red and blue lines are the ultimate shear strengths and strains to 

failure respectively. It is clear that a decrease in Young’s modulus of 

intermetallics caused a reduction in ultimate tensile strength, but increase in strain 

to failure. An explanation for this will be discussed in details below.



 

 

 

Figure 53. Ultimate shear strength and strain to failure of solder joints, plotted as a function of Young’s modulus of 

intermetallics. Increase in Young’s modulus of intermetallics increase the USS but reduce the strain to failure of solder 

joints. 
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Table 15. Monotonic shear results for Sn-3.9Ag-0.7Cu and Sn-3.9Ag-

0.7Cu-0.5Ca and Mn. 

Alloys 
Ultimate shear 

strength (MPa) 
Strain-to-failure 

 Sn-3.9Ag-0.7Cu 24.2 ± 5.2 104.5 ± 3.7 

Alloys 

containing soft 

intermetallic 

Sn-3.9Ag-0.7Cu-

0.5Ca 
21.3 ± 0.3 170.0 ± 21.9 

Sn-3.9Ag-0.7Cu-

0.5Ce 
21.8 ± 2.3 164.0 ± 57.0 

Alloys 

containing stiff 

intermetallic 

Sn-3.9Ag-0.7Cu-

0.5Mn 
23.2 ± 1.1 118.3 ± 14.5 

Sn-3.9Ag-0.7Cu-

0.5Y [5] 
20.1 ± 3.7 107.0 ± 21.9 

 

It has been reported that the increase in ductility with doping of Ce is 

caused by the CeSn3 intermetallic, which nucleates and grow voids in the solder 

interior and minimizes strain localization along the brittle Cu6Sn5 

intermetallic/solder interface [23]. Additionally, for the soft intermetallic 

particles, it is likely that an appreciable amount of deformation takes place in 

these phases as well, contributing to the enhancement in ductility. However, the 

solder joint containing harder intermetallic particles (YSn3 and MnSn2) behave in 

a different way, may be due to the morphology and individual properties of those 

intermetallic particles. It is likely that the change from dendritic (CeSn3 and 

CaSn3) to bulky (MnSn2) and needlelike (YSn3) microstructures adversely affects 

void nucleation. In addition, because those intermetallic particles are significantly 
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harder and stiffer, one can expect a negative contribution to ductility from the 

deformation of these intermetallics. 

9.5 Conclusions 

The Young’s modulus and hardness of CaSn3 and MnSn2 intermetallics 

that form in 4
th

-element doped Sn-rich lead-free solders were measured utilizing 

nanoindentaion using the continuous stiffness measurement (CSM), and 

compared with the properties of pure Sn, RE-Sn and other traditional 

intermetallics formed in RE-containing lead-free solders. Both the Young’s 

modulus and the hardness of MnSn2 are significantly larger than that of other 

materials. In contrast, CaSn3 is a much softer intermetallic with Young’s modulus 

even lower than the pure Sn. The hardness value of CaSn3 was comparable to 

pure Sn and was significantly lower than RE-Sn intermetallics and other 

intermetallics formed in Pb-free solder. Mechanical shear studies of Ca and Mn-

containing solder indicate that only compliant intermetallics, such as CeSn3 and 

CaSn3, can improve the ductility of Sn-rich lead-free solders. 
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10. CONCLUDING REMARKS 

10.1 Summary of Research Findings 

A synopsis of the most important results is presented in this section: 

 The interrupted shear testing and characterization by optical microscopy 

and SEM shows that the CeSn3 intermetallic particles are directly 

responsible for the higher ductility observed in Ce-containing SAC alloy.  

Plasticity around the particles, debonding, and fracturing of CeSn3 

intermetallic particles contribute to an increase in fracture energy as well 

as homogenization of the plastic strain in the solder region. 

 Numerical finite element modeling illustrated that the existence of 

intermetallic particles in the solder serves to disturb the concentrated 

plastic deformation band during the lap-shear loading. The overall plastic 

flow field becomes more uniform, with a reduced maximum strain 

magnitude. Delayed fracture can thus be expected, leading to enhanced 

ductility. 

 Studies on the effect of thinner Cu6Sn5 intermetallic layer thickness on 

ductility showed that the thin Cu6Sn5 intermetallic layer in SAC-Ce solder 

joint does not contribute to the enhanced ductility. 

 The results of wetting behavior of SAC and SAC-0.5Ce indicate that 

SAC-Ce solder has comparable wetting behavior to SAC solder on Cu 

substrate. 

 The microstructure of SAC can be refined with Ce addition. DSC result 

reveals that the refined microstructure as well as thinner Cu6Sn5 
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intermetallic layer may both be due to the reduction in undercooling, by 

increasing the amount of heterogeneous nucleation sites, i.e. CeSn3 

intermetallic. 

 SAC-Ce alloy shows constant microstructure refinement with the variation 

of solder volume, indicating that both microstructure of solder matrix and 

interfacial intermetallic layer thickness is less affected by the volume 

variation. 

 The shock behavior of Sn-Ag-Cu can be improved by addition of Ce with 

a small penalty in ultimate tensile strength when the strain rate is in the 

solder matrix controlled regime. The fracture mechanism of the Ce-

containing Sn-Ag-Cu alloy dominated by CeSn3 intermetallics nucleated 

voids and growth in the solder-controlled regime. Dynamic tensile 

strength and strain to failure of Sn-Ag-Cu and Sn-Ag-Cu-0.5Ce are 

comparable in the intermetallic layer-controlled regime. 

 Microstructure characterization indicates that the dominant failure 

mechanism of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce in this study is 

both due to pancake-type voids formation and metallization consumption, 

respectively. The product of effective charge number and diffusivity 

calculated based on the surface mark movement indicates that 

electromigration resistance of Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu-0.5Ce 

are significantly higher than that of Sn-Pb solder alloy. 

 The addition of Ca results in the formation of large, dendritic intermetallic 

particles (CaSn3). Nanoindentation results indicate that CaSn3 is a much 
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softer intermetallic with Young’s modulus even lower than the pure Sn. 

The hardness value of CaSn3 was comparable to pure Sn and was 

significantly lower than RE-Sn intermetallics and other intermetallics 

formed in Pb-free solder. Mechanical shear studies of Ca and Mn-

containing solder indicate that only compliant intermetallics, such as 

CeSn3 and CaSn3, can improve the ductility of Sn-rich lead-free solders. 

10.2 Recommendations 

The current study has successfully established realistic feasibility of Ce-

containing SAC lead-free solder alloy as a replacement to the conventional SAC 

alloys. In addition to the enhanced ductility and excellent oxidation resistance of 

Ce-containing SAC, it has been demonstrated that Ce-containing SAC alloy have 

enhanced mechanical shock and electromigration performance compared to 

traditional SAC alloys. The thermal stability and wettability of Ce-containing 

SAC alloy is comparable to the conventional SAC alloy. Studies on the 

mechanism for the enhanced ductility observed in Ce-containing SAC solder 

indicate that the soft CeSn3 IMC particles play an important role in homogenizing 

the plastic strain in the solder and improving the shock resistance of SAC alloy. 

While a significant amount of progress has been made, there are several 

areas of research which require attention in order to further develop high ductility 

lead-free solder alloys in the future: 

 With decreasing size of electronic devices, the bump and pitch size 

decreases accordingly. However, studies on the volume effect in SAC-Ce 

solder showed that the refinement effect of Ce-containing intermetallics 
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decreases with decreasing the solder joint size due to the relatively large 

intermetallic particle size. Therefore, it is important to minimize the CeSn3 

particle size before implementation of this novel solder alloy into 

microelectronic packaging. 

 Electromigration studies showed that the dominant phenomenon is current 

induced Cu diffusion. However, the X-ray flux of a lab-scale X-ray 

tomography tool is too low to visualize any constrast difference between 

Cu6Sn5 and Sn. Therefore, it would be informative to perform an in-situ 

synchrotron tomography study on solder joints during electromigration 

testing. 

 The crystallographic orientation of Sn matrix may affect the mechanical 

and electromigration behavior of the solder joint. Therefore, it would be 

interesting to study the effect of Sn grain orientation on the 

electromigration behavior by performing in situ electromigration testing in 

a SEM coupled with an Orientation Image Mapping system. 

 It was shown that the mechanical shear performance of conventional SAC 

alloys can be improved by the addition of soft intermetallic compounds, 

such as Ce-Sn and Ca-Sn intermetallics. However, both rare earth 

elements and calcium react with oxygen, which often results in the 

formation of Sn whiskers and the degradation of mechanical properties. 

Therefore it is necessary to develop a novel soft particle reinforced lead-

free solder alloy, which is not suspectible to oxidation. Soft particles can 
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be introduced by either alloying with a 4
th

 element which can react with 

the Sn-rich solder or nano-size particles.
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