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ABSTRACT 

The electrochemical behavior of nanoscale solids has become an 

important topic to applications, such as catalysis, sensing, and nano-electronic 

devices. The electrochemical behavior of elemental metal and alloy particles was 

studied in this work both theoretically and experimentally. A systematic 

thermodynamic derivation for the size-dependent Pourbaix Diagram for elemental 

metal particles is presented. The stability of Pt particles was studied by in situ 

electrochemical scanning tunneling microscopy (ECSTM). It is shown that small 

Pt particles dissolve at a lower potential than the corresponding bulk material. For 

the alloy particles, two size ranges of AuAg particles, 4 nm and 40 nm in 

diameter, were synthesized by co-reduction of the salts of Au and Ag from an 

aqueous phase. The alloy particles were dealloyed at a series of potential by 

chronoamperometry in acid, and the resulting morphology and composition were 

characterized by electron microscopy, energy dispersive X-ray spectroscopy 

(EDX). In the case of the smaller particles, only surface dealloying occurred 

yielding a core-shell structure. A porous structure was observed for the larger 

particles when the potential was larger than a critical value that was within 50 mV 

of the thermodynamic prediction.    
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Chapter 1 

INTRODUCTION 

 
Dealloying is a corrosion process that results in the selective dissolution of 

one or more elements from an alloy. Research and speculation on the mechanism 

of dealloying of bulk materials dates back almost 100 years [1]. In the past 25 

years, considerable experimental and theoretical work has been done which has 

provided a basis for understanding this process in bulk alloys [2–9]. Although 

several groups have reported the dealloying behavior of Pt alloy particles, 

generally emphasizing the composition and structure of the dealloyed particles 

[4–6], to the best of our knowledge, little work has been done examining the 

details of the dealloying mechanism for nanoscale alloys. The major objectives of 

this research project are to study the electrochemical stability and corrosion 

behavior of elemental metals/alloys at the nanoscale, and to develop a continuum 

model to understand and predict this behavior. 

A fundamental understanding of the corrosion behavior for nano-

structures is extremely important in the electrochemistry field. This information is 

essential both theoretically and technologically in areas ranging from sensing to 

energy storage and production [10–13]. In some applications, corrosion of the 

alloy is what we want to avoid since the resulting porous structure may be brittle 

and has been linked to stress corrosion cracking in many alloy systems [14,15]. 

However, in other areas, different degrees of dealloying are used to fabricate a 

variety of structures that have novel properties. An important example of this 

relates to Pt or Pt alloy catalysts that are used or are planning to be used as 
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cathodes in polymer electrolyte membrane fuel cells [16–19]. It is reported by 

Stamenkovic that surface dealloyed Pt-M (M=Ni, Cu, Fe, Co) nanoalloy catalysts 

show significantly enhanced oxygen reduction behavior [19]. Another paper from 

Shao’s group [16] shows that Pt coated porous Pd-Cu nanoparticles also exhibit 

much higher oxygen reduction reaction activity than the state-of-the-art Pt/C 

catalysts. Understanding the thermodynamics and kinetics of dealloying and the 

stability of these structures at the nanoscale is very important. 

The key factor that differentiates dealloying behavior of nanoparticles 

from that of the bulk, is the size effect which causes larger specific surface area, 

lower electrochemical equilibrium potential, lower melting point, etc. [20,21]. 

The richness of this project lies in that there are two intrinsic length scales. One is 

set by the composition which is estimated from percolation theory [2]. The other 

is the actual physical size of the alloy nanoparticles. It is expected that the 

interaction of these length scales drive different phenomena differentiating 

nanoparticle dealloying from that in a bulk alloy. 

This dissertation is organized in four chapters. In Chapter 2, a detail 

description of the experimental methods, procedures and equipments covered in 

the project is introduced. Chapter 3 includes the theoretical thermodynamic 

derivation for the size dependent electrochemical stability for elemental metal 

nanoparticles, and the experimental results and analysis on the stability of Pt 

nanoparticles. The background and experimental work on dealloying behavior of 

alloy particles is presented in Chapter 4. In the background, the dealloying of bulk 

materials is summarized from both theoretical and experimental point of view, 
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and a general thermodynamic analysis on nanoparticle dealloying is presented.  

The experimental results and analysis on the dealloying of AuAg alloy particles in 

two size ranges is then described.  
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Chapter 2 

TECHNIQUES AND EXPERIMENTAL PROCEDURES 

 
2.1 Electrochemistry experiments 

All glassware and the electrochemical cell that was used for experiments 

were cleaned using hot concentrated HNO3 (60°C) for 10 minutes and then rinsed 

with de-ionized water seven times. Then they were cleaned in hot concentrated 

H2SO4 (60°C) for 10 minutes and then rinsed with de-ionized water for seven 

times. Finally, they were rinsed with Barnstead Nanopure (>18 MΩ cm) water 

seven times. After the acid clean, the glassware and Teflon cells were dried in an 

oven set at ~70°C. 

The simplest setup for an electrochemistry experiment includes three 

electrodes. The “working” electrode is the electrode for which the reactions that 

one is interested in occur. The reference electrode is used to gauge the potential 

and the counter electrode passes all the current needed to balance the charge.  

The reference electrode usually contains a redox system with prescribed 

concentrations of each component of the redox reaction [22]. The most frequently 

used standard reference electrodes in aqueous electrolyte are mercury/mercurous 

sulfate electrode (Hg/Hg2SO4, MSE), saturated calomel electrode (Hg/Hg2Cl2, 

SCE), silver/silver chloride electrode (Ag/AgCl) and mercury/mercury oxide 

electrode (Hg/HgO). Since most commercial MSE and SCE reference electrodes 

use glass frits, they are normally used in acid or neutral electrolyte, while 
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Hg/HgO is used in basic solutions. All the standard electrodes used in the 

experiment of this project were ordered from Koslow Scientific Company.  

To increase the ion conductivity and prevent contamination, a salt bridge 

is used between the electrolyte and the reference electrode. The salt bridge 

normally uses a similar electrolyte as the reference electrode in order not to 

introduce an extra liquid-phase junction. For example, 0.1 M KCl is used for the 

salt bridge for a SCE.  

Besides standard reference electrode, certain elemental metals can be used 

as pseudo-reference electrodes in some electrolytes. For example, for an acid 

solution containing Ag+, a Ag wire can be used as a reference electrode for which 

the equilibrium potential is determined by the Nernst equation:  

].ln[0  Ag
nF
RTEE    (2.1) 

The potentials of the most frequently used reference electrodes are listed in Table 

2.1.  

Table 2.1 Equilibrium potentials of frequently used reference electrodes 

Electrode 
Potential vs. 

NHE at 25°C 
Reference 

Hg/Hg2Cl2, KCl (sat'd) 0.241V [22,23] 

Ag/AgCl, KCl (sat'd) 0.197V [22] 

Hg/Hg2SO4, K2SO4(sat'd) 0.65V [23] 

Hg/HgO, KOH (20%) 0.098V [24] 

Ag/Ag+, Ag+ (1M) 0.8V  

Cu/ Cu2+, Cu2+ (1M) 0.34V  

Pd/H, H2SO4 (0.1M) 0V [25] 
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The noble metal electrodes, such as Au, Pt, Ir and Pd, are normally 

cleaned in hot nitric acid and sulfuric acid, and then annealed in a H2 flame. For 

Cu and Ag electrodes, dilute nitric acid (conc. HNO3 : H2O = 1 : 2) is used to 

remove the surface oxide.  

All the dealloying experiments in this project were performed using a 

Gamry Series G potentiostat. 

2.2 Microscopy 

Several microscopy and spectroscopy techniques were used for sample 

characterization in this project, such as scanning electron microscopy (SEM), 

transmission electron microscopy (TEM), scanning transmission electron 

microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), electron 

energy loss spectroscopy (EELS), scanning probe microscopy (SPM) including 

scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The 

principles for the techniques and the equipments that were used in experiment are 

described below.  

2.2.1 SEM 

All electron microscopes use a beam of electrons to generate a variety of 

signals from a specimen which come from electron-sample interactions. Those 

signals can provide all kinds of information about the specimen, such as 

morphology, structure and chemical composition.  



7 

 
Figure 2.1. Types of signals generated from electron-sample interactions [26]. 

 
In SEM, the electron beam energy is typically between 0.2 keV to 30 keV, 

which is focused by a condenser lenses to a spot size of 1~5 nm in diameter. The 

major signal that is used for imaging is secondary electrons (<50 eV) which 

originate within a few nm from the sample surface. The secondary electron image 

reflects the surface morphology and topography of the specimen. Besides 

secondary electron, characteristic X-rays are also generated by electron 

interactions, which can be used for compositional analysis.     

A Nova 200 NanoLab DualBeam-SEM/FIB operated and maintained by 

the LeRoy Eyring Center for Solid State Science (LE-CSSS) at Arizona State 

University was used to characterize the surface morphology in the project. The 

accelerating voltage is in the range from 0.2 kV to 30 kV and probe current is 

from 98 pA to 20 nA. The beam resolution can achieve 1.0 nm [27].        

2.2.2 TEM 

In TEM, an electron beam passes through the specimen and an image is 

formed from the interaction between electrons and the sample. The beam energy 
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is in the range of 100~400 keV which is much higher than that of the SEM. A thin 

“electron transparent” specimen is necessary to avoid multiple scattering events 

which makes interpretation of the image contrast complicated. In theory, because 

of the small de Broglie wavelength of electrons, TEM can achieve atomic scale 

resolution. 

There are three stages of lenses in TEM optics. The first stage includes 

two condenser lenses which are used for beam formation and focusing. The 

second stage is the objective lens which is the most important lens in the TEM. 

The objective lens forms an inverted image of the sample, and this image is 

subsequently magnified. The third stage includes intermediate lenses and 

projector lenses which are used to further magnify the image formed by objective 

lens [28].   

Compared to the parallel electron beam in a conventional TEM, STEM 

uses a focused beam that is scanned over the sample in a raster. The optics 

difference between TEM and STEM is shown in Figure 2.2. 
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Figure 2.2. Structures and optical paths of TEM and STEM [29]. 

 
In STEM, a very important technique is high angle annular dark-field 

(HAADF) imaging. Here the image is formed by collecting the scattered electrons 

from a very high angle (>10°) which is highly sensitive to variations in the atomic 

number and sample thickness as shown by the following equation:  

,2tzI      (2.2) 

in which, z is the atomic number of the element and t is the sample thickness.  

Two analytical techniques, EDX and EELS, which are incorporated with 

STEM were used for the elemental analysis in this project.   

The fundamental principle of EDX is that each element has a unique 

atomic structure; and the excited X-rays are characteristic of that element, so the 

elemental composition information of the sample can be determined from the 
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generated characteristic X-rays. When a high-energy electron beam interacts with 

the sample, an inner shell electron of the sample element can be excited and 

ejected. Then, an outer shell electron with a higher energy fills the hole and the 

energy difference between higher energy and lower energy shell may be released 

in the form of an X-ray. The intensity and energy of the X-rays emitted from a 

specimen can be measured by the energy-dispersive spectrometer [28].  

 

 

 

 

Figure 2.3. (A)  Principle of X-ray generation when the electron beam interacts 
with materials. (B) Schematic diagram of the interface between the EDS and the 
TEM stage showing how the detector can “see” X-rays from regions other than 
the beam-specimen interaction volume over the undesired collection angle [28]. 

A 

B 
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The most frequently detector for EDX is silicon-lithium [Si(Li)] 

semiconductor detector. It is a reverse-biased p-i-n diode. When X-rays interact 

with the detector, the energy transfers electrons from the valence band to the 

conduction band, which creates electron-hole (e-h) pairs. The energy required for 

each transfer in Si is ~3.8 eV, so the number of e-h pairs created is proportional to 

the incoming X-ray energy [28]. As shown in Figure 2.3(B), the detector is 

located at the side of the specimen and the collection angle Ω is in the range of 

0.03 steradian (sr) to 0.3 sr, which is a small fraction of the total X-ray generation 

(4π sr).  

The typical EDX spectrum is a plot of X-ray intensity versus X-ray energy 

ranging from 0 keV to 40 keV. The characteristic X-rays appear Gaussian-shaped 

peaks superimposed on a background of bremsstrahlung X-rays. The 

peak/background (P/B) ratio increases with the accelerating voltage. Three key 

parameters are considered: spatial resolution, energy resolution and chemical 

sensitivity. Although there is a large interaction volume with specimen for X-rays, 

the spatial resolution is close to the beam size for ultrathin specimens in TEM. 

The energy resolution shows the capability of identifying elements by 

distinguishing peaks. For a typical Si(Li) detector, the energy resolution is ~130 

eV. The chemical sensitivity is just the detectability of one element, which 

depends on P/B ratio [28].   

EELS is another spectroscopy technique that is widely used on many 

electron microscopes. During the electron-sample interaction, part of the electrons 

are inelastically scattered and lose a certain amount of the energy. This energy 
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loss is related to the elemental information and atomic bonding state, which is the 

principle of EELS. The energy resolution for EELS can be less than 1 eV and the 

spatial resolution depends on the beam size. In an EELS spectrum, the low-loss 

region (<50 eV) contains electrons that have interacted with the weakly bound 

outer-shell electrons of the atoms, so it could give information about the 

electronic properties of the specimen. Electrons in the high-loss region have 

interacted with the more tightly bound inner-shell electrons, which gives 

information on the composition of the specimen. 

Compared to EDX, EELS works better for relatively low atomic numbers 

(up to Zn), and it also has the capability of measuring the chemical bonding and 

local electronic state besides the composition analysis. In principle, EELS has a 

higher energy resolution and sometimes better spatial resolution than EDX. 

However, since the major signals for elemental analysis have an extended energy 

range above the ionization energy and sit on a high background, quantitative 

microanalysis using EELS is less accurate compared with EDX  [28]. 

Two microscopes were used in this project. Both are maintained by LE-

CSSS. JOEL-2010F TEM operated at 200 kV is equipped with a Schottky Field 

Emission Gun. The resolution could reach 0.19 nm. This microscope can operate 

in TEM and STEM modes and it is equipped with an Enfina PEELS Detector and 

EDAX Acquisition system for X-ray detection [30]. The other microscope is 

JEOL-ARM200F aberration corrected STEM equipped with a Schottky field 

emission gun and a CEOS CESCOR hexapole aberration corrector that enables 

imaging resolution of 78 pm, and beam current densities of 8 nA/nm2. The 
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microscope can be operated in high angle and medium angle annular dark-field 

STEM modes as well as bright field and annular bright field modes. It is equipped 

with a JEOL 50 square millimeter (0.3 St.) windowless light-element-sensitive X-

ray detector [31].  

2.2.3 SPM 

The principle of STM is described in Figure 2.4. Basically, when a metal 

tip is brought close to a conducting sample surface, electron tunneling can happen 

under an applied bias between the two electrodes. The most simple physical 

model for this process is based on a assumption of a rectangular barrier between 

the two electrodes. The tunneling current decays exponentially with barrier width 

d as shown in equation (2.3) at a small bias V:  

,
2/)(22 eVmd

seVI       (2.3)  

where ρs is the local density of state (DOS) near the Fermi level of the sample, Φ 

is the average work function of sample and tip. With a typical workfunction value 

~5 eV, when the distance changes 1 Å, the current changes about one order of 

magnitude. In vacuum STM, this tunneling distance is below 1 nm, while in 

electrochemical STM, it can be several nano-meters (nm).   
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Figure 2.4. Schematic description of the STM working principle [32]. 
 

The probe tip is attached to a tube that consists of piezoelectric materials 

controlling the tip motion in x, y and z directions. The bias voltage between tip 

and sample is between 10 mV and 5 V and the tunneling current is typically 

between 10 pA and 5 nA. The electric feed-back loop contains a current amplifier 

that converts the tunneling current into voltage. When the surface is chemically 

uniform, which means the local DOS is constant across the surface, topography 

information can be generated by either measuring the tunneling current while 

keeping the height of the tip constant (current mode) or measuring the tip 

displacement in z direction while keeping the tunneling current constant (height 

mode). In the height mode, the tip moves up and down according to the 

topography of the surface, so the scan speed and the data acquisition are limited 

by the finite response time of the feed-back loop. For the current mode, the 

current variation is monitored and recorded without moving the tip vertically, so 
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the surface must be quite flat in order to prevent tip crashing and scanning can be 

much faster than the height mode.  

AFM is another scanning probe technique. Instead of using a tunneling 

current signal to detect the tip-sample distance, it uses the relationship between 

tip-sample distance and atomic force. Imaging is accomplished using a very sharp 

tip attached to the end of a cantilever. When the tip is very close to the sample 

surface, the atomic force between the tip and sample results in a deflection of the 

cantilever–the amount of which can be detected by an array of laser diode 

detectors. There are two frequently used modes in AFM: contact mode in which 

cantilever deflection is used as the feedback signal, and tapping mode in which 

the cantilever is driven to oscillate near its resonance frequency and the distance 

changes cause the oscillation amplitude changes.    

All the STM experiments were carried out with a Molecular Imaging (MI) 

Pico Scan 300S scanner, Digital Instrument (DI) nanoscope E controller, and DI 

nanoscope software.  

The AFM experiments were carried out in tapping mode with a Veeco 

Dimension 3100 AFM. The most common used probe for AFM tapping mode is 

made by silicon with a resonant frequency around 300 kHz.      

2.3 ECSTM 

2.3.1 Setup 

The setup for ECSTM experiments was the same as the STM experiment.  

The potential control was provided by MI 300S Pico bi-potentiostat.  
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2.3.2 Cell and electrodes 

All glassware and the electrochemical cell that were used in ECSTM were 

cleaned using hot concentrated HNO3 (60°C) for 10 minutes and then rinsed with 

de-ionized water seven times. Then they were cleaned in hot concentrated H2SO4 

(60°C) for 10 minutes and then rinsed with de-ionized water seven times. Finally, 

they were rinsed with Barnstead Nanopure (>18 MΩ cm) water seven times. The 

cell and glassware were then soaked in Piranha solution (concentrated 

H2SO4:30% H2O2 = 3:1) for at least 24 hours, followed by multiple rinsing in 

Barnstead Nanopure (>18 MΩ cm) water. The custom made Teflon-liquid cell of 

1 cm3 volume used in the experiment is shown in Figure 2.5. It exposes 0.23 cm2 

surface area of the sample.  

 
Figure 2.5. Customized ECSTM cell and sample holder. The two metal wires are 
the counter and reference electrodes (CE and RE). The bare area in the center of 
the Teflon cell is the working electrode (WE). 
  

If there is a certain concentration of Ag+ or Cu2+, the corresponding metal 

wire was used as reference electrode. In other cases, the most frequently used 

reference electrode in ECSTM cell for acid and neutral electrolyte was the 
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Palladium Hydrogen (Pd-H) electrode, which is ~ 50 mV vs. RHE [33–35]. The 

electrolyte that is used to prepare Pd-H electrode is 0.1 M H2SO4. MSE is used as 

reference electrode. Palladium (Pd) wire (99.99%) as the working electrode is 

flamed annealed thoroughly before experiment to get rid of the residual hydrogen 

in the wire. PtIr wire is used as counter electrode. There are mainly four steps to 

load H into Pd wire. The first step is to run cyclic voltammetry of the Pd wire to 

make sure that there is no residual H in the wire, since the Pd-H electrode won’t 

be stable if there is residual H initially. The second step is to accumulate H around 

the Pd wire through applying a negative potential. The third step includes loading 

H and stripping ~15% of the loaded H. The time for loading and stripping 

depends on the length of the Pd wire and concentration of the electrolyte. The last 

step is measuring the open circuit potential for several hours to see whether the 

electrode potential is stable. Normally, the potential of a good Pd-H electrode 

won’t drift more than 5 mV overnight and the stability may last 1-2 days.   

2.3.3 Substrates 

For most STM and ECSTM experiments, Au thin film deposited by e-

beam deposition was used as substrate. The vacuum chamber used for Au 

deposition is shown in Figure 2.6. A high purity Au (99.99%) source was cleaned 

in hot acid, rinsed with nanopure water and air dried. The sample holder was 

immersed in isoproponal and ultrasonically cleaned for 20 min. The base pressure 

of the vacuum chamber was normally ~2 10-7 torr. Typically Au thin films were 

deposited onto a freshly cleaved mica substrate (from SPI, Grade V-4 Mica) at 

340°C ~370°C with an e-beam evaporation gun. The first 10 nm Au film is 



18 

deposited at a rate of 0.1 Å/s as a seeding layer and then ~100 nm Au is deposited 

at 0.2 Å/s.  

 
Figure 2.6. Vacuum chamber used for e-beam deposition. 

 
For the in-situ ECSTM experiment on Pt nanoparticle stability, 

Au0.95Ag0.05{111} films were used as substrates. A high purity Ag (99.99%) 

source was cleaned in dilute nitrate acid (conc. HNO3 : H2O = 1 : 2), rinsed with 

nanopure water and air dried. A 10 nm Au film was deposited at 0.1 Å/s as a 

seeding layer and then 150 nm of the AuAg alloy layer was deposited at 0.1 Å/s 

for Ag and 2.5 Å/s for Au. The addition of 5 at% Ag to the Au film was to help to 

avoid the 223  surface reconstruction which is lifted in 0.1 M H2SO4 at ~0.55 

V NHE. The lifting of the reconstruction results in the formation of variously 

sized gold clusters on the surface which look quite similar to the Pt particles of 

interest [36]. Ancillary experiments have shown that this alloy surface was stable 

to morphology change in 0.1 M H2SO4 up to ~ 1.2 V vs. NHE. 
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2.3.4 Tip 

The most frequently used materials for making STM tip are tungsten wire 

and Pt/Ir wire (80%Pt).  

The old method of making Pt/Ir tip is a one step method. The electrolyte 

solution consists of CaCl2 (sat.)/H2O (15/30 mL). About 2~3 mm Pt/Ir wire is 

immersed in the electrolyte and electrochemically etched under a 30 Vrms/60 Hz 

potential until the wire in the solution drops off and the circuit is off. The SEM 

image of the general shape for the tip made by this method is shown in Figure 2.7. 

While tips produced in this manner do not appear to be sharp, there is no problem 

getting nice images on all sorts of sample surfaces with it since tunneling only 

happens between several atoms at the tip end and the sample surface. However, 

this method is not repeatable as only 3~4 tips out of ten are good enough for 

doing experiments. To improve the tip quality and yield, a new two-step method 

was investigated [37,38].  

 
Figure 2.7. SEM image of a PtIr tip made by traditional one step method. 

 
The schematic setup is shown in Figure 2.8. The first step is similar to the 

old etching method. About 1.5 mm wire is immersed into the electrolyte and a 
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multi-meter is used to monitor the current of the reaction. Instead of etching it 

until the end falls off, the reaction is stopped when the current is lower than 40 nA 

which is about a tenth of the current at the beginning of etching. The shape of the 

tip after step one is shown in Figure 2.9(A). The purpose of step one is to get a 

thin enough neck and a decent size head.  

 

 
Figure 2.8. Schematic diagrams of the setups for two-step method of making PtIr 
tip. 
 

In the second step, the tip is bent 90° about 2~3 mm above the droplet and 

immersed into H2SO4/H2O (90/10 mL). Another Pt/Ir wire is used as both 

reference and counter electrode. BioLogic VMP3 potentiostat is used to generate 

a square wave at 500 Hz reaching 10 V for 0.2 ms and -0.5 V for 1.8 ms. The 

neck of the droplet becomes thinner and thinner and the head finally fall off which 
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can be observed by eye. Then the potential is switched to a negative DC voltage 

of -1.1 V for 2 minutes to reduce the surface oxide. Figure 2.9(B) is the SEM 

image of the tip end and it can be seen that this method gives a much sharper tip 

shape than the old method. The problem with this two-step method is that the 

thinner tip end is soft and fragile, so it can not last very long during scanning 

especially for rough surface. 

 

 
Figure 2.9. (A) Optical microscope image of the tip shape after step one. (B) SEM 
image of the tip shape after step two. 
 

A Tungsten tip is made by etching a wire in 1 M NaOH using a 10~12 V 

AC potential [39]. A small amount of ethyl alcohol is added to the etching 

A 

B 
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solution to inhibit bubble formation. Then the tip is rinsed with de-ionized water 

and dried in air. This is a quite repeatable method for producing sharp tips (Figure 

2.10(A)), so W tips are widely used in vacuum STM. However, since W is easily 

oxidized in air, to use it in air, we electro-deposited a thin Au layer on the tip. 

Before coating, the tip was etched for a few second in NaOH solution to remove 

the oxide on the surface. Then the Au was electrochemically deposited onto the W 

tip in a two electrode electrochemical cell. The W tip was the cathode and a 

glassy carbon rod was used as the anode. The electrolyte was 1.5 mM HAuCl4 + 

Glycol:HCl (3:1). A 3 V DC potential was applied between the two electrodes and 

the W tip taken out every 10 s to check the color of the deposited Au. The total 

deposition lasted for 2 minutes. A very light yellow color could be seen at the top 

end of the tip after deposition. The Au coated W tip was checked in SEM and it 

was found that the Au layer was quite rough. The coated tip was tested for STM 

imaging and there was no problem for imaging Au thin films or HOPG. 

 
Figure 2.10. (A) SEM image of bare W tip. (B) SEM image of Au coated W tip. 

 

A B 
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To minimize the background Faradaic current from the tip in ECSTM 

experiments, the as prepared tips are normally coated with an insulator such as 

Apiezon wax to reduce the bare area of the tip. Since the most frequently used 

tunneling current is ~1 nA, the Faradaic current from the tip should be less than 

20 pA. The prescription for Apiezon coating involves heating the wax to ~180 °C. 

The bare tip is immersed in the wax for a few seconds. Then the wax coated tip 

cools down at room temperature in air. The coated tip is examined in optical 

microscope to ensure that only the very end of the tip from which tunneling 

occurs is wax-free.  
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Chapter 3 

CORROSION OF ELEMENTAL METAL PARTICLES 

 
3.1 Background 

3.1.1 Stability of elemental metal nanoparticle 

When a single component solid, β, of radius r is in equilibrium with a 

surrounding fluid phase, α, Gibbs [40] showed that the chemical potential in the 

fluid is given by  

sslssl NVrPTSU /])/2([       (3.1) 

in which s and l refer to the solid and fluid phase, (Us–TSs) is Helmholtz free 

energy, Pl is the pressure in fluid phase, Vs is molar volume of solid, Ns is the 

number of atoms per molar, r is the size of solid and  is the interfacial free 

energy. The chemical potential in the solid when it is under uniform hydrostatic 

stress is given by 

sslsss NVrfPTSU /])/2([         (3.2) 

In this expression, f is the surface stress. So, the chemical potential difference in 

the solid and fluid phase is given by, 
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In this expression, ss NV /  is the atomic volume. It can be noted that for a 

planar solid surface, since r , equation (3.3) reduces to ls   . Also, for 

fluid/fluid systems, since f , we could get ls   .   
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For a multi-component solid, Cahn [20] showed that the chemical 

potential difference of a substitutional specie X between solid and fluid phase is 

given by,  

r
fls 


)(2 

      (3.4) 

In this expression,  is the average molar volume of the multi-component solid. 

Based on the equilibrium conditions, we have derived the equilibrium 

equations for a finite size elemental particle. The relevant electrochemical and 

chemical equilibria that we considered are represented by the following set of 

equations:  

(a) Mn+ + ne- = M  

(b) MaOn + 2nH+ + 2ne- = aM +nH2O  

(c) MaOn + 2nH+ = aMn+ + nH2O 

Assuming nMa  is the equilibrium metal-ion activity for planer solid, and 

nMa  is the equilibrium ion activity for a finite size particle. The chemical 

potential of the liquid phase at nMa is, 

 )/ln()(   nnn MMBMll aaTka     (3.5) 

The chemical potential of the solid is, 

rfa nMls /2)(        (3.6) 

 Applying equilibrium condition (3.3), we obtain,  
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So, at fixed concentration of metal cation, the equilibrium potential difference 

between a finite size solid and a planar solid surface is,  
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For substitutional specie in a multi-component solid, the chemical potentials of 

the liquid phase and solid phase at nMa are, 
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Applying equilibrium condition (3.4), we obtain,  
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If we envision the MaOn as a M-MaOn “alloy” and oxygen as a “substitutional” 

component in the lattice, the equilibrium condition of reaction (c) is,  
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In this expression, the subscript  MOM na /  refers to the oxide-covered particle.  

Since the addition of reactions (a) and (c) yields (b), the equilibrium 

condition for equation (b) would be the addition of equilibrium conditions for (a) 

and (c), which is,  
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Equations (3.8) and (3.13) give the size-dependent standard equilibrium 

potentials of reactions (a) and (c). Based on these equations, the size dependent 

potential-pH diagrams can be constructed if the parameter values in the equations 

are available.   

For the case of Pt, the electrochemical and chemical equilibrium equations 

for bulk solid are:  

(A)  Pt2+ + 2e- = Pt   

)log(0295.0188.1 2
/ 2

 PtE PtPt   

(B)  PtO + 2H+ + 2e- = Pt +H2O  

pHE PtOPt 059.098.0/   

(C)  PtO + 2H+ = Pt2+ + H2O      

       pHPt 206.7)log( 2 
 

To get the corresponding equilibrium equations for particles, several 

parameters are needed. Pt , PtPtO / and Ptf  generated by first principle 

calculations can be obtained from publications [41–43]. The PtPtOf /  was measured 

by a technique described in a prior publication by our group[44].  

Assuming the concentration of Pt2+ in the electrolyte is 10-6 M and using 

the parameters given in Table 3.1, equation (3.8) and (3.13) can be numerically 

written as  

).();/2(11310112/ nmrrE mPtPt     (3.14) 

).();/2(2159980/ nmrrpHE mPtPtO    (3.15) 

In pH~1 electrolyte, equation (3.15) becomes 
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).();/2(21922/ nmrrE mPtPtO     (3.16) 

Figure 3.1 is the E-pH diagram of Pt with different sizes generated using the 

equations (3.14) and (3.15). Figure 3.2 shows the size dependent equilibrium 

potential in pH~1 electrolyte.  

Table 3.1 Parameter values used in the evaluation of 2/ PtPtE  and PtPtOE /  for Pt 
particle. 

Parameter value Method and Measurement 
Pt  2.4 J/m2 First Principles Calculation [41] 

PtPtO /  0.5 J/m2 First Principles Calculation [43] 

Ptf  
5.6 J/m2 First Principles Calculation [42] 

PtPtOf /  
3.0 J/m2 Measured by wafer curvature 

Pt  
9.09×10-6 m3 Unit cell 

PtO  
14.9×10-6 m3 Unit cell [45] 

PtPtO /  
10.7×10-6 m3 Mean value for a Pt particle 2-5 nm in 

radius 
 

 
Figure 3.1. Particle-size dependent E-pH diagram for Pt/10-6M Pt2+ [46]. 
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Figure 3.2. Stability of Pt particles in pH~1 electrolyte containing 10-6 M Pt2+ 
showing the different dissolution mechanisms for different particle sizes. 
 

Similarly, the E-pH diagram and size dependent electrochemical 

equilibrium diagram for Cu and Ag could be plotted. Assuming the concentration 

of Cu+ or Ag+ in the electrolyte is 10-6 M and using the parameters given in Table 

3.2 for Cu, equation (3.8) and (3.13) can be numerically written as  

).();/2(144.016.0/ nmrrE mCuCu    (3.17) 

).();/2(071.0059.0471.0/2
nmrrpHE mCuOCu   (3.18) 

While for Ag, the equations can be written as  

).();/2(133.044.0
/

nmrrE
AgAg

    (3.19) 

).();/2(123.006.0173.1/2
nmrrpHE AgOAg    (3.20) 
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Table 3.2. Parameter values used in the evaluation of equilibrium potential of Cu. 

Parameter value Method and Measurement 
Cu  1.95 J/m2 LDA Calculation [41] 

OCu2
  0.8 J/m2 First Principles Calculation [47] 

Cuf  1.95 J/m2 LDA Calculation [48] 

CuOCuf /2  1.0 J/m2 Estimate 

Cu  7.1×10-6 m3 Unit cell 

OCu2
  23.4×10-6 m3 Unit cell [49][47] 

CuOCu /2
  1.4×10-5 m3 Mean value for a 2-5 nm Cu particle in 

diameter 
 

 
Figure 3.3. Particle-size dependent E-pH diagram for Cu/10-6M Cu+. 
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Figure 3.4. Stability of Cu particles in pH = 10 (solid lines) and pH = 8 (green 
dash lines) electrolyte containing 10-6 M Cu+. 

 
Table 3.3. Parameter values used in the evaluation of equilibrium potential of Ag. 
Parameter value Method and Measurement 

Ag  1.25 J/m2 DFT Calculation [50] 

OAg2
  0.5 J/m2 Estimate 

Agf  1.7 J/m2 [51] 

AgOAgf /2  1.0 J/m2 Estimate 

Ag  10.27×10-6 m3 Unit cell 

OAg2
  31.6×10-6 m3 Unit cell [49] 

AgOAg /2
  15.5×10-6 m3 Mean value for a 2-5 nm Ag particle in 

diameter 
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Figure 3.5. Particle-size dependent E-pH diagram for Ag/10-6M Ag+. 

 

 
Figure 3.6. Stability of Ag particles in pH=14 (black lines) and pH=13 (red dash 
lines) electrolyte containing 10-6 M Ag+. 
 

3.2 Experiment 

The electrochemical stability of individual Pt particles with a radius in the 

range of 0.6 – 1.5 nm has been investigated using Electrochemical Scanning 

Tunneling Microscope (ECSTM) in a prior paper by our group [36]. The results 
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fit well with the theoretical anticipation. Here we carried out a similar set of 

experiments over a larger range of particle size [46]. 

The working electrolyte used for the ECSTM experiment was 0.1 M 

H2SO4 (GFS Chemicals, VERITAS® DOUBLE DISTILLED), which was 

prepared using Barnstead Nanopure (18 MΩ cm) water. A freshly prepared 

hydrogen loaded palladium wire was used as a reference electrode. All potentials 

quoted unless otherwise noted are with respect to the reference electrode. The 

stability of the reference electrode was checked against a MSE and was found to 

be better than ±10 mV over 24 hours. The counter electrode was a Pt wire.  

Au0.95Ag0.05{111} film was used as substrate for the particles in ECSTM 

experiments. The particles in the solution were diluted in isopropyl alcohol and 

sprayed onto a fresh Au0.95Ag0.05 film. The concentration of the particles was 

adjusted to get ~ 20 particles in a 100100 nm area. 

3.3 Result and analysis 

Figure 3.7 shows a series of ECSTM images of Pt particles on Au0.95Ag0.05 

{111} surface in an air saturated 0.1 M H2SO4 solution. The starting voltage on 

the working electrode was 550 mV and the particles were stable for more than 30 

minutes of scanning which implied that tip induced dissolution effects was not an 

observable phenomenon in this experiment. Then the potential was increased in a 

stepwise fashion by 50 mV increments until 1.2 V and held for several scans at 

each potential. Finally the potential was pulsed back to 650 mV. The potential-

time protocol of the experiment is shown in Table 3.4. All the images shown in 

Figure 3.7 correspond to the last scan at that potential. Figures 3.8-3.11 show the 
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zoomed views of frame 1-4 of Figure 3.7. Smaller particles almost always 

disappeared in one scan (~150 s) while larger particles survived for much longer 

times. It was observed that the dissolution potential of the particles increased with 

increasing particle size for particles larger than ~ 2 nm in radius, which is 

expected to be the boundary of two different dissolution mechanisms. As shown 

in Figure 3.7, the largest particles still present even after ~ 30 minutes at 1200 

mV. It was observed that the particle 3 in Figure 3.11 developed well-defined 

facets during dissolution which can be explained that this family of step 

orientations has the lowest energy and therefore dissolves slowest.  

Table 3.4.  Potentials hold times for the ECSTM experiment 
Voltage (V, vs NHE) Hold Time (min) 

0.7 4 
0.75 4 
0.8 4 

0.85 5 
0.9 15 

0.95 17 
1.0 13 

1.05 40 
1.1 58 

1.15 28 
1.2 33 
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Figure 3.7. ECSTM topographic height mode images showing Pt-black particles 
on Au0.95Ag0.05 {111} surface in 0.1 M H2SO4. Images show the sample over a 
scan size of 178 178 nm at potentials of (A) 650 mV. (B) 950 mV. (C) 1200 mV 
and (D) 650 mV after the potential step protocol shown in Table 3.4. 
 

 

A B 

C D 

3 

4 

2 

1 



36 

 

 
Figure 3.8. Zoomed images of the frame 1 in Figure 3.7. Scan size 50 50 nm. 
(A) 650 mV: The mean radii of the particles present in this image are: particle 1, 
rm = 2.05 nm; particle 2, rm = 2.33 nm; particle 3, rm = 2.21 nm; particle 4, rm = 
3.08 nm; particle 5, rm = 2.70 nm; particle 6, rm = 2.10 nm. (B) 900 mV: Particles 
1 and 3 are dissolving. (C) 1100 mV: Particles 1, 2, 3 and 6 are almost gone. 
Particle 4 is becoming smaller. (D) 1200 mV: Particle 5 is much smaller than 
original size. 
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Figure 3.9. Zoomed images of the frame 2 in Figure 3.7. Scan size 52 52 nm. 
(A) 650 mV: The mean radii of the particles present in this image are: particle 1, 
rm = 2.22 nm; particle 2, rm = 1.90 nm; particle 3, rm = 2.10 nm; particle 4 rm = 
2.13 nm; particle 5, rm = 3.27 nm; particle 6, rm = 1.94 nm. (B) 1000 mV: 
Particles 1-4 are dissolving. (C) 1200 mV: Particle 5 is becoming smaller. (D) 650 
mV: Particles 1, 2, 3, 4 and 6 are almost gone.  
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Figure 3.10. Zoomed images of the frame 3 in Figure 3.7. Scan size 41 41 nm. 
(A) 650 mV: The mean radii of the particles present in this image are: particle 1, 
rm = 2.08 nm; particle 2, rm = 3.23 nm; particle 3, rm = 1.96 nm; particle 4, rm = 
2.80 nm. (B) 900 mV: Particles 1 and 3 start dissolving while 2 and 4 are stable. 
(C) 1100 mV: Particles 1 and 3 disappear. Particles 2 and 4 are becoming smaller. 
(D) 1200 mV. 
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Figure 3.11. Zoomed images of the frame 4 in Figure 3.7. Scan size 48 48 nm. 
(A) 650 mV: The mean radii of the particles present in this image are: particle 1, 
rm = 1.88 nm; particle 2, rm = 2.79 nm; particle 3, rm = 7.2 nm. (B) 950 mV: 
Particles 1 and 2 are dissolving while no obvious change for particle 3. (C) 1050 
mV. (D) 1200 mV: particles 1 and 2 have disappeared while particle 3 is still 
present. 
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Figure 3.12. Influence of the Pt particle size (2/rm) on the dissolution and 
oxidation potentials. A linear fit to the data (red points) yields Vdiss = 1051–
122(2/rm) which should be compared to equation (3.14). The blue points 
correspond to those particles that formed an oxide and followed a chemical 
dissolution route. 
 

Figure 3.12 shows the influence of particle size on dissolution and 

oxidation potentials. The blue and red spots correspond to the experiment data 

and the lines correspond to equation (3.14) and equation (3.16). The data set from 

our prior publication [36] is also included in this figure. Particle radius were 

calculated by 2/rm=1/r1+1/r2, in which rm is the mean radius of the particle, and r1 

and r2 correspond to half the length of the major and minor axis of the ellipsoid-

shaped particle measured by STM software. The potential at which there was an 

obvious size decrease for the particle was recorded to be the dissolution potential. 

It can be seen that the experiment result agrees well with the thermodynamic 

prediction. Several potential sources of errors are discussed as follows.  
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The major source of experimental error results from determining the 

oxidation potential of large particles. In our data analysis, we assume that the 

potential at which a particle gets smaller is strongly correlated to the oxidation 

potential given by equation (3.16), however, this is only valid when chemical 

dissolution is not a rate-limiting step, which means PtO dissolves chemically as 

soon as it is formed. So the potential at which obvious size change is observed 

corresponds to an upper bound for the oxidation potential. According to equation 

(3.12), the solubility of PtO for a rm = 6 nm particle in a pH = 1 electrolyte is 

about 10-8 M. For a PtO particle of 2 nm in radius, the solubility is about 10-6 M.  

Assuming there are 30 Pt particles of 3 nm in radius in 180180 nm area and the 

particle density is uniform on the substrate, the Pt2+ concentration is 310-7 M if 

all the particles form oxide and dissolve chemically. This concentration is an 

upper limit because the oxide only forms on the surface for a lot of particles. It is 

apparent that the larger the particle is, the more difficult the dissolution of the 

oxide is.   

Two other possible sources of error exist in the thermodynamic 

calculation. One is the accuracy of the first principle calculation for Pt , 

PtPtO / and Ptf . Depending on the approximation in the calculation, the results can 

vary by as much as 15%. The PtPtOf / is calculated using Ptf and the 

experimentally measured f upon forming a monolayer of PtO on Pt(111). The 

f  measurement is within ~10% of that calculated by Feibelman for 1/4 of an 

adsorbed oxygen monolayer on Pt(111) [52]. The second source of error is from 
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assuming a stoichiometric PtO oxide with a bulk PtO crystal structure. However, 

the surface energies of various platinum oxide forms are calculated to be 

0.5 0.15 J/m2 [43]. 

3.4 Summary 

The electrochemical stability of elemental metal nanoparticles was studied 

and presented in this chapter. A thermodynamic derivation based on the Gibbs 

Thomson equation was carried out on metal particles and particle size dependent 

electrochemical potential-pH diagram were constructed. Since the construction of 

E-pH diagram for metal particles needs the data for surface energy and surface 

stress for metal oxide, which is presently not available for many metals, the E-pH 

diagram was only constructed for Pt, Ag and Cu particles. Accordingly, the 

electrochemical stability of Pt particles with a diameter ranging from 1 to 10 nm 

in 0.1 M H2SO4 was experimentally studied by in-situ ECSTM. The experiment 

results agree well with the thermodynamic expectation. Pt particles of diameter 

less than ~ 4 nm dissolve via a direct electrochemical pathway, while larger 

particles form oxide, which chemically dissolves. 
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Chapter 4 

DEALLOYING OF ALLOY PARTICLES 

 
4.1 Background  

4.1.1 Dealloying behavior of bulk alloy 

Dealloying refers to the selective dissolution of one or more components 

from an alloy. This process can be electrochemically driven in systems where a 

large electrochemical potential difference exists between the elemental standard 

potentials. The voltage onset of the selective dissolution in an alloy is 

conventionally defined as the critical potential, which marks the transition from a 

“passivated” alloy surface to selective dissolution. Below the critical potential 

only surface dealloying occurs and the surface remains macroscopically flat. 

Above the critical potential the less noble component is selectively dissolved 

resulting in the production of nanoporous structures with a completely 

interconnected ligament-void structure as shown in Figure 4.1 [5]. Initially, 

nanoporous structures were observed in stress corrosion cracking [14,15]. Later, 

interests extended to the creation of skeletal structures for advanced applications 

[10–13,53–56]. It is recognized today that selective dissolution results in 

nanoporosity formation in many alloy systems [8,15,57–60].  
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Figure 4.1. SEM images of nanoporous gold made by selective dissolution of 
silver from AgAu alloys: (A) Cross-section of dealloyed AuAg thin film; (B) 
Plan-view of dealloyed AuAg [5]. 
 

Experimentally, there are two typical ways to determine the critical 

potential, which are, polarization and the current decay method. In the 

polarization method, the critical potential is determined as the potential 

corresponding to a fixed, (arbitrarily) prescribed current density by analyzing the 

electrochemical polarization data. A schematic illustration of a polarization curve 

for dealloying is shown in Figure 4.2. In polarization data since the critical 

potential is  associated with the knee in the curve, it can be seen that this is not 

sharply defined. The shape of the knee is affected by sweep rate, alloy, and 

electrolyte composition. The ambiguity in defining a critical potential is further 

shown in Figure 4.3.   

500 nm 

120 nm 

A B 
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Figure 4.2. Schematic illustration of the polarization behavior of dealloying. The 
current rise is not sharp which results in ambiguity in the determination of the 
critical potential [6]. 
 

 
Figure 4.3. Current-voltage behavior for the dealloying of a Ag0.72Au0.22 alloy in 
an electrolyte containing 1 M dissolved Ag+ (black line) and 0.001M Ag+ (red 
curve). The shaded regions correspond to the range in critical potentials that can 
occur depending on how Vcrit is measured [9]. 
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For the current decay method, the critical potential represents the potential 

marking the transition from current decay to steady-state current in a series of 

potential hold measurements. Corcoran has done some systematic work on 

determining the critical potential for AuAg and PtCu alloys using this method 

[8,61]. The SEM images of the dealloyed surface showed that porosity could be 

formed when the dealloying potential is above the critical potential determined by 

current decay. Figure 4.4 is an example of the current decay experiment for 

Ag0.7Au0.3 alloy. Table 4.1 compares the critical potential measured by current 

decay method and polarization method. Column 1 is determined by measuring the 

potential necessary for the current to reach a value of 1.0 mA/cm2 [6] and column 

2 gives the critical potential values as determined by the potential hold data [61]. 

It can be seen that the current decay method provides a more conservative 

determination of the critical potential. The critical potential measured by 

polarization method can be 200-300 mV higher than that found by the current 

decay method. 

 



47 

 
Figure 4.4. An example of the current decays method showing current response of 
Ag0.7Au0.3 in 0.1 M HClO4 held at the indicated potentials [61].  
 
Table 4.1. Critical potential values (V vs. NHE) vs. alloy composition determined 
by the indicated methods [61]. 

Alloy composition Ecrit(Fixed current) Ecrit (Potential hold) 
Ag80Au20 1.09 0.79~0.82 
Ag75Au25 1.16 0.93~0.94 
Ag70Au30 1.22 0.99~1.02 

 
In an ideal ApB1-p binary alloy where A is the less noble element, the 

dissolution of A on the surface results in vacancy cluster formation. The initial 

size of the vacancy cluster is determined by an intrinsic length scale which is 

given by    ppaa  1/1 , where a is the nearest neighbor spacing [62]. 

Thermodynamically, dealloying starts from the dissolution of the largest less 

noble metal clusters on the surface of a solid solution alloy. Assuming the void-

cluster is a cylindrically shapped “pit”, the dissolution overpotential would be 

   AaABelecBAAcrit akTnqVVV ln/)(4 ///       (4.1) 
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This number should be a lower limit for bulk dealloying. Considering the 

case for a AuAg alloy in the composition range of 70%~95% Ag, 

AgAuelecAu //    and AgakT ln  is in the range of 0-20mV. The critical potential is 

plotted vs. the reciprocal of the intrinsic size of Ag clusters in Figure 4.5.  

 

Figure 4.5. critV  as a function of inverse length scale for the AuAg alloy. For 
Au20Ag80 alloy, the overpotential is ~0.2V vs. Ag/Ag+. If assuming [Ag+] is 10-6 
M, the critical potential would be 0.64 V.  
 

To describe and explain the dealloying process, a kinetic model was 

developed to calculate the critical potential by Sieradzki [6]. It is believed that 

critical potential results from a competition between dissolution of the less noble 

component, (which results in surface roughening porosity formation), and 

surface-diffusion induced smoothening of the more noble component (assumed to 

be potential independent which causes the surface to passivate). The critical 

overpotential, EEcritcrit  , for selective dissolution of A is given by [6]   
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where a  is the intrinsic length scale, nq/   is the coefficient of a 

composition modulated curvature effect in which   is a measure of a local 

composition fluctuation, sD is the surface diffusivity and sN  is the number of 

atoms per unit area. The first part of Equation (4.2) represents the dissolution 

overpotential resulting from a local composition modulated curvature effect, 

which is a thermodynamic term. The second part corresponds to the kinetic 

overpotential, related to diffusional covering.    

The microscopic detail of porosity formation during dealloying was 

modelled by kinetic Monte Carlo simulations which incorporated site 

coordination-dependent surface diffusion of all alloy components and site 

coordination-dependent dissolution of the less noble atoms [63]. The type of atom 

is assigned in a 3D lattice at random based on a probability determined by the 

composition. The time evolution of the system is governed by the KMC 

algorithm. If there are N total events that can occur and the rate constant is ki for 

the ith event, then there would be a finite probability of an event occurring in a 

period of time. The simulations progress by picking a random event according to 

its probability and then the time in the simulation advanced according to the rate 

constant of that event. In the dealloying process of a AuAg alloy, two events are 

considered: the diffusion of the two types of atoms and dissolution of less noble 

atoms. The rates of diffusion and dissolution of an atom with n neighbors are 

expressed as: 
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where bE  is near-neighbor bond energy,   is the dissolution potential, D and E  

are the attempt frequencies. bE  is set as 0.15 eV, D  is 1013 s-1 and E  is 104 s-1. 

Assuming the exchange current for Ag/10-6Ag+ is 0.1 mA/cm2, the “standard” 

potential of Ag/Ag+ sits near 0.7 eV. 

This model successfully reproduced the classical phenomenology of 

dealloying, such as the polarization curve behavior and porosity formation above 

the critical potential. However, since the dissolution rate is expressed as an 

exponential function of the potential instead of the hyperbolic sine behavior of the 

Butler-Volmer (BV) equation, this expression is only valid in a potential range 

away from the equilibrium potential. The critical potential is defined as the 

potential at which there is a continuous steady dissolution flux and corresponding 

porosity formation. Figure 4.6 shows the critical potential ranges determined by 

simulations at different compositions.  
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Figure 4.6. Critical potential vs. alloy composition by current decay method. The 
black squres correspond to the upper bound for the critical potential above which 
porosity forms. The red round dots corresponds to the lower bound below which 
the surface passivates [63].  
 
4.1.2. Dealloying behavior of alloy nanoparticles 

As described previously, there we two particle size ranges examined in our 

experiments. For particles between 20 nm to 100 nm at which Gibbs-Thomson 

effect is not observable, the dealloying behavior is expected to be similar to bulk 

materials. For a size range between 2 nm to 10 nm in diameter, the crystal 

structure is still identical to the corresponding bulk solid and quantum size effects 

are not apparent [64,65].   

The difference between chemical potentials of the liquid and solid phase 

for substitutional specie in a finite size multi-component solid has been shown in 

equation (3.11) in Chapter 3. For ApB1-p binary alloy, component A can be 

envisioned as a substitutional specie, so the difference between equilibrium 

potential for in nanoscale and that for bulk is given by     
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Here alloyf is the surface stress of the alloy, alloy  is the solid/liquid interfacial free 

energy, alloy is the average atomic volume of the solid, and A is the partial 

atomic volume of the A component in the alloy. This equilibrium potential 

corresponds to the surface dealloying potential in nanoscale structures.  

“Bulk” dealloying at the nanoscale, it is still an open question. Firstly, 

since smaller particles have a larger specific area, (e.g. ~200 atoms on the surface 

out of 300 atoms in total for a particle of 1nm in radius), it is expected that the 

dealloying behavior is more like surface dealloying and the dealloying potential 

will be closer to the thermodynamic equilibrium potential for the less noble metal. 

Secondly, as particle size goes down, the diffusion term that was negligible for 

the case of bulk AgAu alloys may contribute significantly to surface passivation, 

owing to the lower melting point for nanoparticles [21]. The melting point for a 

gold particle with 3 nm in diameter is about 70% of the melting point for bulk 

gold. The surface diffusivity of the bulk gold is about 10-18 m2/s in 0.5 M H2SO4 

in air [66], while the diffusivity of 3 nm gold particle is about 10-14 m2/s because 

of the melting point reduction. Curvature effect for nanoparticles facilitates the 

dissolution of Ag, while the higher diffusivity of Au in nanoparticles accelerates 

the surface passivation process. Thirdly, the intrinsic length scale defined in 

percolation theory is also size-dependent [62], which might have an effect on the 

dealloying parting limit and critical potentials.  
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KMC simulations were also applied to examine the dealloying behavior of 

nanoparticles [67]. The particles with 4~17 nm in diameter in the composition 

range between 65% and 85% Ag were examined. It was found that as the 

electrochemical potential increased, the propensity for porosity evolution 

increased. The critical potential was “defined” as the potential at which the 

probibility of getting a porous particle was ~50%. It was explained that the 

diffusion induced passivation became more dominant as the particle size 

decreases, so the porosity evolution actually required a higher electrochemical 

potential.  

There have been several groups that have published some experimental 

results about Pt alloy nanoparticle dealloying [17,18,63–69]. In most papers, 

before the chemical or electrochemical dealloying, the alloy nanoparticles are 

annealed, forming a surface segregated Pt layer. Different composition and 

morphologies of the dealloyed products are reported depending on the size and 

the composition of the alloy nanoparticles. When the composition of the less 

noble metal is lower than 50% ~ 60%, only surface dealloying occurs and core-

shell structures finally form [73]. In the case of Pt alloy particles, when the 

composition of the less noble metal is higher than some threshold composition, a 

porous structure is observed for particles larger than 10 nm in diameter, and core-

shell structure is observed for smaller particles [17,68,72,74]. The pore size is 

about 1~2 nm for Pt based alloy particles and coarsens to about 3~5 nm after 

extended voltage cycling. The residual composition of the less noble metal after 
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dealloying is generally lower for the porous structure than the core-shell structure 

[73].   

 
Figure 4.7. (A) Porous structure of a dealloyed PtCu particle (~12nm in diameter) 
and corresponding EELS map. The green color corresponds to Pt and the red 
color corresponds to Cu. The contrast differences in the HAADF image on the 
particle could result from atomic number difference or thickness difference. 
However, the contrast differences couldn’t be so large if there was only 
composition variation. So, it is considered that this is a porous structure. (B) Core-
shell structure of a dealloyed PtCu particle (~ 8nm in diameter) and corresponding 
EELS map [68].  
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Figure 4.8. Schematic description of the evolution in morphology and 
composition of a Pt0.5Co0.5 cathode catalyst caused by acid leaching and voltage 
cycling. The upper panel represents skeleton PtxCo particles obtained after acid 
leaching and transforming via Ostwald ripening into core/shell particles. The 
lower panel is a proposed mechanism for the formation of percolated PtxCo alloy 
particles deriving from precursors with higher than average Co content 
(“Pt<0.5Co>0.5”) and resulting in Pt-rich spongy particles. TEM bright-field images 
and spot-resolved EDS compositions of the various types of aged nanoparticles 
are shown on the right-hand side [73]. 
 
4.1.3. Nanoparticle Synthesis 

Particle synthesis and properties have been well documented in many 

review articles [75–80]. In principle, there are two different approaches to 

synthesize nanocrystals: the “top-down” approach, which utilizes physical 

methods, and the “bottom-up” approach, which employs solution-phase colloidal 

chemistry [78]. Most physical methods have advantages in obtaining 

nanoparticles with high purity while it is hard to get uniform size particles. The 

chemical methods, based on solution-phase colloidal chemistry, can be used to 

obtain nanoparticles with narrow size distribution and well-controlled shape. 

However, in order to get isolated stable nanoparticles, this kind of method always 
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needs protective coating shells which must be removed in order to interrogate 

their electrochemical behavior. The representative chemical methods for metal 

nanoparticle synthesis are: chemical reduction of metal salts, electrochemical 

reduction and controlled decomposition [81].  

The chemical reduction of the metal salts in solution is the most widely 

practiced synthesis method. Common reducing agents used include alcohols, 

sodium citrate, sodium borohydride and hydrogen. Because of the large specific 

surface area for small size particles, a surface stabilizer is needed to avoid particle 

agglomeration. Basically, depending on the interaction between the particles and 

the capping layers, the stabilization can be achieved by three methods: 

electrostatic stabilization (such as sodium citrate), steric stabilization (vinyl 

polymers, such as PVP and PVA), and ligand molecules (amines, phosphines, 

thiols) forming covalent interactions with particles.  

The electrochemical reduction usually contains two steps. Firstly, metal 

ions are formed by anodic dissolution. Secondly, the metal ions are reduced at the 

cathode, where nucleation and growth occur. Capping agents are also needed to 

get stable particles with well controlled sizes [75]. 

The controlled decomposition method is based on the fact that some 

organometallic compounds can decompose thermally to their respective metals 

under relatively mild conditions. For example, the thermolysis of precursors such 

as palladium acetate, palladium acetylacetonate and platinum acetylacetonate in 

high-boiling organic solvents such as methylisobutylketone can generate 

organosols of palladium and platinum [81].  
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4.2 Dealloying of 4nm AuAg alloy nanoparticles 

Two directions of study were carried out for the dealloying behavior of 

small AuAg alloy particles: in-situ ECSTM experiments and ex-situ dealloying 

experiments. For the in-situ experiment, similar experimental protocols as that 

conducted on Pt particles was carried out. Successively higher potentials were 

applied on alloy electrodes and ECSTM images were taken to record the size and 

morphology change of the particles at different potentials. The dealloying 

potential corresponded to the potential at which the electrode changed size. For 

ex-situ experiments, dealloying was carried out by chronoamprometry. The 

dealloyed sample was then characterized using electron microscopy, EDX and 

EELS, and compared with the original particle size and composition.   

4.2.1 AuAg alloy nanoparticle fabrication and synthesis  

4.2.1.1 Nanoelectrode fabrication by drilling holes 

The first method that was tried to fabricate nanoelectrodes for in-situ 

ECSTM experiments is a physical method that was developed based on a 

technique introduced by a group in Delft University of Technology [82,83]. 

Briefly, nano-sized holes were drilled in silicon nitride (SiN) membrane followed 

by vacuum-based metal deposition from the bottom. Then SiN was removed 

afterward and nanoelectrodes were generated. Figure 4.9 is a schematic diagram 

of this fabrication technique. The detailed experiment process is shown as follows. 
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Figure 4.9. Main steps of the nanoelectrode fabrication. (A) Hole drilling in the 
SiN membrane with a focused electron beam; (B) E-beam deposition of gold on 
the bottom-side; (C) Dissolution of SiN layer by HF. 
 

First, nano-holes were drilled in a 30 nm thick commercial SiN membrane 

provided by Norcada Inc. Although thinner commercial SiN membranes are 

available, these starting surfaces are always warped or wavy which makes AFM 

imaging on those films nearly impossible. Roughness of the SiN film was 

checked in AFM and the largest fluctuation was less than 0.5 nm. Nanopore 

fabrication was carried out using a JEOL 2010F field-emission TEM. To get an 

intense enough electron-beam intensity, the highest extraction voltage (7.6 kV) 

and the largest spot size (spot size 1) were used with the condenser aperture 

retracted. Hole-sizes from 2 nm to 50 nm as shown in Figure 4.10 can be 

generated by adjusting the beam intensity and the time of stay. The holes arrays 

were then imaged in AFM as shown in Figure 4.11(A).  

30 nm SiN membrane 

300 nm Au 
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Figure 4.10. TEM images of nanopores in SiN membrane. (A) An array of holes. 
(B) Hole size is 60 nm in diameter. (C) Holes size is 3 nm in diameter. 
 

 
Figure 4.11. (A) AFM topography image of the nanopores before deposition. Scan 
size 3.5  3.5 μm. (B) AFM topography image of the nanoelectrodes after 
deposition and SiN removal. Scan size 2.82.8 μm. (C) Zoomed image of one 
electrode in (B), Scan size 600600 nm.  
 

According to Krapf’s paper, sputtering Au to cover one side of a pore 

results in an inverted pyramid geometry [83]. The top side of the pore was 

covered by a 0.35 nm Cr adhesion layer followed by a 150 nm Cu by e-beam 

evaporation. It was expected that a Cu pit structure similar to reference [83] could 

be obtained. Next the membrane was turned over and a 0.35 nm Cr layer followed 

by a 150 nm Au was deposited from the back side of the membrane. The base 

pressure of the e-beam evaporization was 10-7 Torr. Finally, the Cu layer was 

dissolved by HNO3. The sample was then checked in AFM, however, the 

nanoelectrode structures reported by Krapf were not found on our samples and 

only holes were seen. At first, it was thought Au did not penetrate through the 

B C A 

A B C 
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holes, however, even for 50 nm holes, no electrode was seen in AFM. It was 

guessed that maybe the Cu layer did not form a concave structure, while instead, 

it partially filled the holes. So the step of Cu deposition on the top side was 

discarded and only a 0.35 nm Cr layer followed by a 150 nm Au was deposited 

from the back side of the membrane. Then the SiN membrane was removed by 

HF acid. After that, the sample was examined in AFM and arrays of 

nanoelectrodes were visible as shown in Figure 4.11(B) (C).    

Since the hole-array was located in about 11 µm2 area on a TEM grid, it 

was difficult to locate it and engage the tip in our STM system. However, this 

would be a very promising technique for fabricating nanoelectrodes for in situ 

ECSTM experiment to study the dealloying behavior in nanoscale once we have 

the STM system equipped with the optical positioning system to locate the 

position of the electrode. Although there are lots of challenges for this technique, 

such as fabricating smaller electrode, how to remove the SiN film without 

dealloying the alloy electrode, and whether one can deposit an alloy film that is 

strong enough after removing the SiN and at the same time is transparent in TEM, 

there are still many advantages. The size and position of the electrode is well 

controlled. The electrical contact is much better than nanoparticles “soft landed” 

on a surface. The electrodes are quite reproducible. What is most important is that 

a post mortem analysis of the composition and morphology could be done on 

those fixed nanoelectrodes.  
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4.2.1.2 Chemical synthesis of nanoparticles and characterization 

Adenosine triphosphate (ATP) coated AuAg alloy nanoparticles were 

synthesized by coreduction of the corresponding salts in aqueous solvent 

developed by Buttry D [84]. Chloroauric acid (HAuCl4) and Silver nitrate 

(AgNO3) were used as precursors of the particles. Sodium borohydride (NaBH4) 

was used as reducing agent and ATP was added as a capping material. The molar 

ratio of precursors : capping : reducer was 1:1:16.7 which gave the best particle 

size distribution. The molar concentrations of HAuCl4 and AgNO3 were 

calculated based on the solubility of AgCl (Ksp = 1.810-10) to avoid the AgCl 

precipitation during synthesis. For Au25Ag75 particle, HAuCl4 (3.8710-7 mol), 

AgNO3 (1.16  10-6 mol) and ATP (1.547  10-6 mol) were added to 100 mL 

nanopure water in flask under bubbling N2, and the solution was stirred at room 

temperature for 15 min [84]. Freshly prepared NaBH4 (5 mM, 5 mL) was then 

quickly added into the flask with continued stirring. The solution immediately 

changed to a light yellow color. Then the solution was continually stirred and 

bubbled for 3 hrs to allow for the growth of particles to completion. Since the 

concentration of the precursors was very low, the particle solution was then 

concentrated from 100 mL to ~2 mL on a rotary evaporator. 

The color of the particle solution is dependent on the composition of the 

particle. A pure Ag particle solution is light yellow while a Au particle solution 

shows a wine red color. The color of AuAg particle is yellowish red and becomes 

deeper for particles containing a higher Au%. The AuAg particle solution was 

analyzed using Cary 50 Bio UV-Visible spectrophotometer and the UV-vis 
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spectroscopic analysis shown in Figure 4.12 suggested that alloy particles instead 

of core-shell structure or other segregated structures were formed.      

 

Figure 4.12. UV-vis of ATP coated AuAg nanoparticles with different 
compositions. 
 

The size distrubution and composition of the particles were characterized 

by JEOL 2010F. A Cu grid with carbon film (Ted Pella Inc.) was plasma cleaned 

for 10 s to get rid of the static electricity, and then a 20 uL particle solution was 

dropped on the grid and air dried. Typical probe currents for EDX analysis are 0.5 

nA and 1.0 nA. The imaging mode for the observation of supported nanoparticles 

is high angle annular dark-field (HAADF) using an efficient, low-noise 

scintillator-photomultiplier detector. Condenser aperture #1 (120 μm) was used to 

give more X-ray signal. The X-ray collection angle of the Si(Li) detector is 0.12 

sr. To get more X-ray signal, the sample holder was tilted 15 degree towards the 

detector. To get rid of the C contamination, beam flooding was carried out by 

showering the sample for about 15 min using a strong beam current (anode 
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extraction voltage: 7.6 kV) in TEM mode at low magnification (3000X) with no 

condenser aperture. A hard X-ray aperture located between a condenser lens and 

an objective lens was inserted to adsorb spurious X-rays that generated by high-

energy bremsstrahlung X-rays and uncollimated electrons.  

Since there are a relatively small number of atoms in one particle (e.g. 

there are only ~ 500 atoms in a d = 2 nm particle), the generated X-ray signal is 

extraordinarily weak and long acquisition times are required for high statistical 

precision. Secondly, beam damage is a serious problem, especially for Ag when a 

longer collecting time is used. In principle, there are three kinds of beam damage 

mechanisms [28], which are ionization damage, knock-on damage (or sputtering) 

and heating. Ionization damage happens when inelastic scattering (mainly 

ionization) breaks the chemical bonds of the materials. The ionization cross-

section increases as the electron energy decreases. Knock-on damage is the 

displacement of atoms from the crystal lattice which creates point defects. The 

higher the beam energy, the easier this can happen. The beam damage of AuAg 

nanoparticles was studied by Braidy [85] and the main damage mechanisms were 

discussed. It was calculated that the minimal knock-on threshold incident electron 

energies for Ag and Au are ~127 keV and ~ 216 keV. Their experiment showed 

that the damage of Ag was almost reduced to zero when the beam energy was 

lowered from 200 keV to 100 keV with the same current density, so it was 

concluded that knock-on damage was the main mechanism that caused Ag loss.    

The EDX analysis was made by scanning a small raster over a single 

particle instead of using the spot mode. This scanning mode can reduce the beam 
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damage problems, and sample drift problems could be avoided by adjusting the 

position of the raster to trace the particle [86]. Because there might be beam 

damage problems, a sequence of spectra with different collecting times were 

recorded. HAADF images were taken for each particle both before and after the 

EDX acquisition to record size change of the particle.  

Each EDX spectrum was exported and re-plotted in Origin. The 

background intensity is found by averaging the bremsstrahlung intensity on the 

left and right of the characteristic peak, then integrating the intensity in two 

identical windows on either side of the peak. The peak intensity of Au Lα and Ag 

Lα peaks were calculated by integrating the number of counts N in the peaks 

above the background. The intensity errors (defined as the relative deviation of 

the peak intensity) were calculated by NN /3 . Whether the spectrum is good 

enough to yield a satisfactory quantification is decided by a determination limit 

[28]:  

  2/15.12/1150 bpeak II     (4.6) 

In this equation, bI is the background intensity. Once equation (4.6) is satisfied, 

the atomic ratio of Ag and Au can be calculated by the Cliff-Lorimer equation 

[28]:  
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(4.7) 

where kAB is called Cliff-Lorimer factor and this number is given by the Genesis 

EDAX. For thin samples, X-ray fluorescence and absorption effects can be 
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neglected. The errors of the Ag and Au atomic fraction of each spectrum are 

calculated from the intensity errors.  

About 100 EDX spectra were taken for ATP coated AuAg particles. The 

atomic percent of Au was 24.5% 2%, and the dispersion resulting from counting 

error for each spectrum was within  4%.  

 

Figure 4.13. TEM images of ATP coated AuAg particles. 
 
4.2.2 In-situ ECSTM experiment of AuAg nanoparticles 

The dealloying behavior of chemically synthesized alloy AuAg particles 

with a diameter of 3~6 nm was studied with in-situ ECSTM in 0.1 M H2SO4.  

Since ATP coated AuAg particles was dispersed in water and the adhesion 

between particle and Au thin film substrate was not great, the particle might 

disperse into water when it was exposed to the electrolyte during ECSTM 

experiment. To avoid this problem, ligand exchange was done to transfer the 

particles from aqueous to organic phase with a modified method described in 

literature [87]. Briefly, 0.5 mL dodecanthiol (DDT) and 2 mL acetone were added 

into 1 mL particle solution. Particles were extracted into DDT by swirling the 

A B 
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solution for a few seconds. It could be observed that the color went to the organic 

phase from the aqueous phase which indicated that particles had been transferred 

into DDT. Then two phases were separated and the excess DDT in the organic 

phase was washed by diluting in 1 mL toluene and 3 mL methanol, and then spun 

down and re-suspended in 1 mL hexane. The TEM and STEM-EDX results 

showed that there was no observable change on composition for the particles after 

ligand exchange. The average composition of this batch of particles is 42% 

Au±3%, and the dispersion resulting from counting error for each spectrum was 

within ±5%. Figure 4.14 showed the TEM images of the AuAg particles before 

and after ligand exchange. 

 
Figure 4.14. (A) ATP coated AuAg particles. (B) DDT coated AuAg particles. 

 
The DDT coated Au40Ag60 particles were sprayed onto a piece of Au (111) 

thin film. Then the thiol coating was removed by either heating in forming gas 

(N2/5%H2) at 250°C for 30 min [88] or reductive desorption in NaOH [89,90]. 

The dealloying of the particles was examined in an air saturated 0.1 M H2SO4 

solution with a Pd-H wire as reference electrode by in situ ECSTM. The starting 

A B 
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voltage applied on the working electrode was 200 mV vs. NHE. Then the 

potential was increased in a stepwise fashion by 50 mV increments until 900 mV.  

Since the particle density was very low, this experiment was carried out on 

several samples. The ECSTM height mode images at different potentials for one 

sample were shown in Figure 4.15. Dealloying potential is defined as the potential 

at which there is an observable size change of the particles and it is plotted vs. the 

particle sizes including all the experimental data as shown in Figure 4.16.  

 

 
Figure 4.15. ECSTM topographic height mode images showing AuAg particles on 
Au {111} surface in 0.1 M H2SO4. Images show the sample over a scan size of 
122 ×122 nm at potentials of (A) 230 mV. (B) 290 mV. (C) 390 mV and (D) 540 
mV.  
 

A B 

C D 
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Figure 4.16. Influence of particle sizes on the dealloying and dissolution 
potentials. Red line: Ag particle dissolution potential with 10-6 M Ag+ calculated 
by Gibbs Thomson equation, the slope is 0.133 V·nm; Black spot: In-situ ECSTM 
experimental data for Au40Ag60 particle dealloying, the slope is 0.4 V·nm. 
Vertical error bars correspond to -50 mV, and horizontal error bars indicate 
measurement errors of ~5%. 
 
According to Gibbs-Thomson equation 

,2
nqr

V 


     (4.8) 

in which V  is the dissolution potential difference between the bulk alloy and 

finite size particle,   is surface energy,  is the atomic volume (10.21 cm3 for 

Au), q is charge of one electron, n is charge transferred and r is the size of the 

particles. This equation can be re-written as  

       .2
nqr

V 

     (4.9) 

For pure Ag particle, 
r

V 2Δ  is 0.133 V·nm, which is the slope of the red line in 

Figure 4.16. While the slope for the dark spots in Figure 4.16 is 0.4 V·nm and the 
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intercept with the y axis is 0.83 V which corresponds to the dealloying potential 

for the bulk sample. Based on the slope of the fit to the data, the surface energy is 

3.78 J/m2. It can be seen that the dealloying potential of AuAg particle is close to 

the Ag particle dissolution potential for smaller particles, and the discrepancy 

becomes larger when the particle size increases. Considering a Au40Ag60 particle 

with diameter of 3 nm, there are 830 atoms in total and 430 atoms are on the 

surface. Only surface dealloying would make the particle size shrink to ~2.3 nm 

in diameter. So the potential at which there was observable size change for small 

particle would be more close to the Ag/Ag+ equilibrium potential. However, for 

larger particles, the size change must correspond to a certain degree of bulk 

dealloying, which happens at least 400 mV higher than the Ag/Ag+ equilibrium 

potential for Au40Ag60 alloy according to thermodynamic calculation as shown in 

Figure 4.5.  

There are several phenomena that need to be addressed. During the 

ECSTM experiment, for the particles smaller than 4 nm in diameter, most of them 

finally disappeared. This may be because that a more open structure was formed 

during dealloying and the tip effect just accelerated the Au surface diffusion. A 

comparison experiment was carried out by scanning an area including several 

particles with the same experimental conditions at 0.2 V for a long time and it was 

found that the size of the particles also shrank as time increased which should be 

from the tip effect, however the decay rate was much slower. It is suspected that 

the size change in a short time during the ECSTM experiment on AuAg particle 

dealloying should be mainly ascribed to the Ag dissolution, while in a long range 
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of time, the size decay should result from a combination of dealloying and Au 

atom surface diffusion.   

4.2.3 Ex-situ dealloying experiment of AuAg nanoparticles 

Chemically synthesized ATP coated AuAg nanoparticles were also used 

for the ex-situ dealloying behavior study in nanoscale. A TEM grid was used as 

the substrate for particles in the dealloying experiment since post TEM 

characterization on the composition and morphology of particles would be carried 

out and it was not easy to transfer the particles to a TEM sample holder after 

dealloying. For grid selection, two factors had to be considered. Firstly, the grid 

must be conductive and stable enough during the particle dealloying experiment. 

Secondly, to get a reliable EDX result, the X-ray peaks of the grid materials 

should not overlap with the peaks of Au and Ag from particles. So, Au, Pt and Pd 

are not good candidates. For W, the Lβ line has some overlap with the Au Lα line. 

A Ni grid was considered as the best possible substrate. Although the equilibrium 

potential for Ni is very low, we determined that a Ni grid could survive within a 

certain amount of time for potential holding since there is an oxide layer on the 

surface.  

ATP coated Au25Ag75 alloy nanoparticles with diameter ~4 nm were 

dispersed on C film coated Ni grid (Pacific Grid-Tech). The dealloying 

experiment was carried out in 0.1 M H2SO4(GFS Chemicals, VERITAS® 

DOUBLE DISTILLED), which was prepared using Barnstead Nanopure water. 

MSE was used as reference electrode. All potentials quoted are with respect to the 

normal hydrogen electrode (NHE). The counter electrode was a PtIr wire. The Ni 



71 

grid with particles was held on a piece of Au film by Au wires and dipped in the 

electrolyte. The particles were dealloyed by chronoamperometry with a series of 

potentials ranging from 0.1 V to 1.4 V. For dealloying at potentials above the 

open circuit potential of Au substrate (~0.75 V), the dealloying time was 30 s and 

after that the sample was quickly washed in nanopure water. While for dealloying 

at potentials lower than the open circuit potential, to avoid the OCP dealloying, 

the electrolyte was diluted gradually by 105 times with nanopure water while the 

potential was held on the sample. The particles were also dealloyed at 0.9 V with 

different length of time: 30 s, 2 min and 10 min.  

The composition and morphology of the dealloyed particles were checked 

in TEM and STEM-EDX. There was no observable difference on the composition 

for the sample dealloyed at 0.9 V for different length of time, which indicates that 

30 s is long enough for dealloying the particles ~4 nm in diameter. The average 

composition of 100 particles on each sample dealloyed for 30 s was plotted vs. the 

dealloying potential in Figure 4.17 and the error bar for each point corresponds to 

the standard deviation of the composition analysis.  It has been reported that Ag 

atoms are highly enriched on the surface of AuAg alloy and the atomic percent of 

Ag on the surface for Au25Ag75 alloy could be around 90%~100% [91]. If 

assuming a surface layer of pure Ag and the 2nd layer has a Ag % less than 75% to 

give a total average of 75 at% Ag for a AuAg particle with a 4 nm in diameter 

particle, the resulting compositions of the particles vs. the number of layers 

dealloyed is calculated and shown in Table 4.2.  
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Table 4.2. Theoretical calculation for the resulting composition with different 
depths of dealloying 

# of surface laylers dealloyed 1 2 3 4 
Au at% of dealloyed particles 37% 45% 60% 78% 

 
The Ag loss for particles dealloyed at 0.1 V is less than the 1st layer dealloying, 

which may result from the chemical dissolution of the surface oxide of Ag. For 

the particles dealloyed at 0.3V, the final average Au% is ~37% which corresponds 

to 1st layer dealloying. This potential is about 120 mV lower than the open circuit 

potential of bulk Ag in deaerated 0.1M H2SO4. In Figure 4.17, it could be seen 

that as the voltage increases, more Ag is dissolved. However, even up to 1.4V, the 

Au composition is ~65%, which corresponds to 3~4 ML dealloying depth.  

  

Figure 4.17. Composition of dealloyed Au25Ag75 particles vs. dealloying voltages. 
For each sample, ~100 spectra were taken and the standard deviations of the 
compositions were plotted as the error bars in the figure.  
   

The atomic structure and composition of the particles dealloyed at 1.4V 

were examined in the aberration-corrected JEOL ARM200F STEM at 80 KV. 
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This low voltage could effectively reduce the beam damage on the particles [85]. 

No porous particles were observed for the dealloyed samples. The HAADF 

images of AuAg particles dealloyed at 1.4V are compared with the original AuAg 

particles shown in Figures 4.18 and 4.19, and it is observed that the dealloyed 

particles show a more open surface structure than the original particles. There are 

more single atoms around particles for the dealloyed sample compared with the 

original sample.  

 

Figure 4.18. Aberration-corrected BF and HAADF images for original ATP 
coated AuAg particle.  
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Figure 4.19. Aberration-corrected BF and HAADF images for ATP coated AuAg 
particles dealloyed at 1.4 V in 0.1 M H2SO4. Free atoms around the particles 
could be seen in HAADF image.  
 

The composition distribution in individual AuAg particle dealloyed at 1.4 

V was examined by a combination of HAADF image and Ag electron energy loss 

spectroscopy (EELS) mapping by aberration-corrected microscope, since EELS 

signal for Au is quite weak. Figure 4.20 is a dealloyed AuAg particle and the inset 

image is the overlying of Ag EELS map (red) and HAADF image (blue). The 

center pink area is where Ag EELS signal and HAADF image overlaps. EELS 

line scan on another dealloyed particle is shown in Figure 4.21, in which the green 

profile is the HAADF image intensity profile and the red curve is the Ag EELS 

line scan profile. The EELS results show that the dealloyed particles have a core-

shell structure and almost no Ag is left in the outer shell. 

 

Figure 4.20. Aberration corrected HAADF image and corresponding EELS map 
of a AuAg nanoparticle dealloyed at 1.4 V. Blue: dark field image intensity; Red: 
Ag EELS intensity. It could be seen that this particle shows a core-shell structure 
and has almost no Ag in the shell. 
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Figure 4.21. Aberration corrected HAADF image and corresponding EELS line 
scan of a AuAg nanoparticle dealloyed at 1.4 V. Green: intensity profile of the 
HAADF image; Red: EELS line profile of Ag.  
 

4.3 Large AuAg particle dealloying 

4.3.1 Particle synthesis and characterization  

Citrate coated AuAg alloy nanoparticles were synthesized by a method 

reported by Link S et al. [92]. Briefly, HAuCl4 (3.87 10-7 mol) and AgNO3 

(1.1610-6 mol) were added to 100 mL nanopure water and the solution was 

stirred and boiled. Sodium citrate solution (1 mL, 1% by mass), as the capping 

and reducer, was added into the boiling solution and the solution was further 

boiled and stirred for 30 min. During stirring and boiling, the solution turned to a 

light yellow color. After the reaction, the solution was left to cool to room 
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temperature. The flask used for synthesis should be quite clean, unless there 

would be precipitates formed on the wall and the yield would be quite low. 

Finally, the particle solution was concentrated from 100 mL to ~2 mL on a rotary 

evaporator. Over concentrating the solution would cause the precipitation of 

particles, since citrate is a capping materials working as electrostatic stabilizer 

which is quite weak.   

As prepared particles were loaded on a carbon coated Au grid (Ted pella 

Inc.) and dealloyed by holding the potential at 1.2 V vs. NHE or cyclic 

voltammetry between 0.6 V to 1.2 V for 50 cycles with a scan rate of 50 mV/s. 

No obvious feature was observed for the dealloyed particles. It was speculated 

that the composition in individual particle might not be quite uniform. To get 

more homogeneous composition distribution, the particles were annealed in 

400°C in forming gas (5%H2/N2) for an hour. The size distribution and 

composition of the annealed particles were characterized by STEM-EDX using 

JEOL-2010F at 200KV. The composition of individual particles was determined 

from the Au and Ag signals collected by scanning the beam in an area only 

containing the particle examined. The EDX spectra from about 100 particles were 

collected and the average composition of the AuAg particles was 22% Au ± 3%, 

and the dispersion resulting from counting error for each spectrum was with ± 

1.5%. The HAADF STEM image showed that the z-contrast in an individual 

particle was quite uniform. EDX line scan across one particle was collected and 

the composition variation was within ± 5%.  
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Figure 4.22. EDX line scan across a citrate AuAg particle. The average 
composition of this particle is 22% Au.  
 
4.3.2 Dealloying experiment of large AuAg particles 

The dealloying experiment was carried out in air at room temperature in 1 

M HClO4 (GFS Chemicals, VERITAS® DOUBLE DISTILLED). MSE was used 

as reference electrode. All potentials quoted are with respect to the NHE. The 

counter electrode was a PtIr wire. The C coated Au TEM grid with particles was 

held on a piece of Au film by Au wires and dipped in the electrolyte. The particles 

were dealloyed by chronoamperometry with different potentials ranging from 

0.54 V to 1.3 V. The dealloying time listed in Table 4.3 was decided by aiming to 

get a 25 nm dealloying depth based on the charge integration from Corcoran’s 

current decay curve [61] as shown in Figure 4.23. 
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Figure 4.23. Current response of Ag0.75Au0.25 and Ag0.8Au0.2 bulk samples in 0.1 
M HClO4 held at the indicated potentials. All potentials are referenced to NHE 
[61]. 
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Table 4.3. Dealloying time at each potential 
Dealloying potential (V vs. NHE) Dealloying time  

0.54 6 hrs 
0.64 6 hrs 
0.74 5 hrs 
0.84 30 mins 
0.9 2 mins 
0.9 30 mins 
0.9 5 hrs 
1.1 30 mins 
1.3 30 mins 

 
For samples dealloyed at potentials above 0.9 V, all the particles showed a 

porous structure. For sample dealloyed at 0.74 V, 35% of ~200 examined 

particles were porous and some particles showed some degree of surface roughing 

as seen in Figure 4.27. For sample dealloyed at 0.64 V, only 2~3% of ~ 200 

particles were porous. There was no porous particle observed for the sample 

dealloyed at 0.54 V.  

Comparing the samples dealloyed at 0.9 V for different times, it was found 

that the longer the dealloying time, the larger the ligaments size. This 

phenomenon could be well shown in KMC simulation for dealloying with 

different length of time. Figure 4.30 includes the morphologies for a Au20Ag80 

particle with a radius of 45 atoms (9.6 nm) dealloyed at 1.05 eV for different 

length of time by KMC simulation. It can be seen that at the early stage, the 

surface roughing wave length is small and the particle is only partially dealloyed. 

As the time evolves, ligaments become larger and continuous because of Ag 

dissolution and Au ligament coarsening. Most particles dealloyed at 0.54 V look 

similar to the original particles. Compared with the sample dealloyed at 0.9 V for 

5 hrs and above 0.9 V, the porous structure of the samples dealloyed at 0.64 V 
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and 0.74 V was not as “deep” and coarsened up. One possible reason may be that 

the surface diffusivity of Au at lower potential is lower than that at higher 

potentials (i.e., potential dependent surface diffusion) so the buried Ag atoms 

couldn’t easily be exposed. As shown in Figure 4.32, the diffusivity at 0.84 V in 1 

M HClO4 could be 4~5 times of the value at 0.74 V [93]. Further experiments are 

needed to check the dealloying behavior and resulting morphology variation by 

only tuning the surface diffusivity while keeping the dissolution rate constant. An 

interesting phenomenon is that either the porous structure or surface roughing of 

order 2~3 nm was quite stable even after several days.   

 
Figure 4.24. HAADF image of citrate-AuAg particles after annealing in forming 
gas (N2/ 5%H2) at 400°C for 1hr. The average size is 45 nm in diameter and 
average composition is 21± 3 at% Au. The contrast in individual particles is quite 
uniform.   
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Figure 4.25. HAADF images of citrate-AuAg particles dealloyed at 0.54 V for 6 
hrs in 1 M HClO4 in air. (A) Most particles still looked like original particles. (B) 
Very few particles showed some surface roughing which is quite similar to the 
sine wave appeared at the initial stage of dealloying schematically described in 
(C). 
 
 

C 

A B 
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Figure 4.26. HAADF images of citrate-AuAg particles dealloyed at 0.64 V for 6 
hrs in 1 M HClO4 in air. (A) Most particles looked like original particles. (B) 
Some particles showed some surface roughing. (C) Less than 5% particles 
showed some porous feature based on the examination of 200 particles. 

 
 

A B 
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Figure 4.27. HAADF images of porous structure of citrate-AuAg particles 
dealloyed at 0.74 V for 6 hrs in 1 M HClO4 in air. Only ~35% particles show 
porous structure based on the examination of 200 particles as shown in (A), and 
the pore size looks smaller (3~5 nm) compared with those dealloyed at higher 
voltage. (B) Some particles only show roughing to a certain depth. The porous 
structure and surface roughing are quite stable even after several days.  
 
 

 
Figure 4.28. HAADF images of porous structure of citrate-AuAg particles 
dealloyed at 0.84 V for 30 mins in 1 M HClO4 in air. 

A B 

A B 
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Figure 4.29. HAADF images for porous structure of citrate-AuAg particles 
dealloyed at (A) 0.9 V vs. NHE for 2 mins. (B) 0.9 V vs. NHE for 30 mins.  (C) 
0.9 V vs. NHE for 6 hrs and the ligament size is 7~8 nm. (D) 1.1V vs. NHE for 
30min, the ligament size is similar to that in (C). All were dealloyed in 1 M 
HClO4 in air. All the particles showed a porous structure.  

C D 

A B 
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Figure 4.30. KMC simulation of Au20Ag80 particle (r=45, which is 9.6 nm) 
dealloying at 1.05eV for: (A) 6 s; (B) 50 s; (C) 400 s; (D) 1757 s.  
 

 
Figure 4.31. HAADF images of porous structure of citrate-AuAg particles 
dealloyed at 1.3 V vs. NHE for 15min in 1 M HClO4 in air. (A) Most particles 
show a smaller pore size than particles dealloyed at lower potentials. The pore 
size is less than 2 nm and the ligament size is 3-4 nm. (B) Very few particles look 
similar to the particles dealloyed at lower potentials.  
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Figure 4.32. Variation of surface diffusion coefficients at different potentials for 
Au in 1 M HClO4 at room temperature [93]. 
 

The size distribution and percent of porous particles for samples dealloyed 

at different potentials are shown in Figure 4.33. There is almost no size change for 

particles dealloyed at 0.54 V. As the dealloying voltage increases, the average 

size becomes smaller. For the sample dealloyed at 1.3 V, the morphology of most 

particles as shown in Figure 4.31(A) show a smaller pore and ligament size than 

the particles dealloyed at lower potentials. There are two possibilities that this 

structure forms. The first one is that since the dealloying rate is too high, the as 
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formed porous structure collapses. In that case, the average size of the dealloyed 

particles should be much smaller than that dealloyed at 1.1 V. The second 

possibility is that the voltage reaches the Au oxidation region, so the surface 

diffusivity of Au is much slower which makes the final pore size smaller than that 

for the lower voltage.  Based on the size distribution analysis as shown in Figure 

4.33, the second explanation seems more reasonable.  
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Figure 4.33. Size distribution and percent of porous particles for the original 
citrate-AuAg particles and the particles dealloyed at different potentials. Blue: # 
of particles at each size normalized by the total # of particles examined. Red: # of 
porous particles at each size normalized by the total # of particles examined. For 
particles with diameter a nm, it includes all the particles with diameter in the 
range between (a-2.5) nm and (a+2.5) nm. Frequency is calculated by dividing the 
number of particle at each diameter by the total number of particle. For each 
sample, 100~200 particles were examined.  
 

Considering that the particle size is above 20 nm in diameter, no Gibbs-

Thomson size effect on dealloying would be expected. If we define the critical 

potential as the potential at which the possibility of forming porous structure is 

50%, the critical potential for AuAg particle with 79% Ag is ~0.74V, which is 

~50 mV lower than the critical potential determined by current decay method for 

the bulk Au20Ag80 alloy [61]. Thermodynamically, if assuming [Ag+] is 10-6 M, 

the lower limit of critical potential for Au20Ag80 bulk alloy is 0.64 V according to 

Figure 4.5. The result from KMC simulation for Au20Ag80 bulk alloy is ~ 0.9 V 

[63], which is also ~ 200 mV higher than the OCP of Ag/Ag+ 0.7 V.  

To make a comparison between this particle dealloying and the bulk 

sample dealloying, Au20Ag80 foil (1 mm thick) was polished with sand paper 
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(2400 grit) and dealloyed at 0.74 V with the same procedure as the particle 

dealloying experiment. The dealloyed surface was checked by SEM and no 

obvious porous feature was observed. One possibility is that the surface is too 

rough and the dealloyed features are masked by surface amplitude fluctuations.  

4.4 coating effect 

The effect of the ATP and citrate coating on the dealloying behavior was 

checked on a bulk AuAg alloy. Three pieces of Au28Ag72 alloys with the same 

surface areas were immersed overnight in ATP solution in water (0.01 M, which 

is a much higher concentration than that used in particles synthesis), and citrate 

solution in water (1%, same concentration as that in particles synthesis). 

Dealloying was carried out in 0.1 M H2SO4 by linear sweep up to 1.5 V vs. NHE. 

MSE was used as reference electrode and PtIr wire was used as counter electrode. 

The polarization curves of the two samples were compared with a bare Au28Ag72 

sample. All three samples showed similar polarization curves.  
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Figure 4.34. Anodic polarization curves for Au28Ag72 samples with difference 
coatings in 0.1 M H2SO4. Scan rate = 5 mV/s.   
 

To further confirm whether the sample has been dealloyed uniformly, 

those three dealloyed samples were annealed in air at 250°C for 10 min (to make 

porosity evolution more evident) and the surfaces were checked in SEM on Nova 

200 Nanolab. The citrate and ATP coated samples showed uniform porous 

structure similar to the bare sample as shown in Figure 4.35.  
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Figure 4.35. SEM images of Au28Ag72 samples with difference coatings dealloyed 
by linear voltage sweep up to 1.5V vs. NHE in 0.1M H2SO4. (A) Bare sample: (1) 
120KX; (2) 350KX. (B) ATP coated sample: (1) 120KX; (2) 350KX. (C) Citrate 
coated sample: (1) 120KX; (2) 350KX. Since the samples were dealloyed up to 
1.5V vs. NHE, Au should have been oxidized, so the pore size is quite small.   
 

A(1) 

B(1) 

A(2) 

B(2) 

C(1) C(2) 
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4.5 Summary 

Dealloying of nanoparticles has become an important topic in various 

applications. The background of bulk alloy dealloying behavior and some recent 

work about alloy nanoparticle dealloying was introduced and summarized in this 

chapter. Experimentally, dealloying behavior of different size range AuAg 

particles were studied. The surface dealloying potential of small particles with 4 

nm in diameter showed a depression resulting from a Gibbs Thomson effect and 

no bulk dealloying was observed for this set of small particles. Large particles ~ 

45 nm in diameter dealloyed and formed porous structures at a potential quite 

close to the thermodynamic limit for bulk dealloying.   

Small ATP coated AuAg particles ~4 nm in diameter were synthesized by 

chemical reduction and characterized by TEM and STEM-EDX. The size and 

composition distributions were quite narrow. In the in-situ ECSTM experiment, 

ATP coated Au40Ag60 particles was ligand exchanged by DDT into organic phase 

and the particles were dispersed on a Au thin film. Dealloying behavior of the 

particles in 0.1 M H2SO4 was studied by in-situ ECSTM from 0.2 V to 0.9 V vs. 

NHE. The dealloying behavior of ATP coated Au25Ag75 particles was studied ex-

situ by STEM and EDX in 0.1 M H2SO4 in the potential range from 0.1 V to 1.4 

V vs. NHE. The morphological and compositional analysis showed that surface 

dealloying started from 0.3 V, which is ~ 120 mV lower than the open circuit 

potential of Ag/Ag+. This value was consistent with the themodynamic 

calculation based on Gibbs Thomson equation. Even up to 1.4 V, there were only 

less than 3~4 layers on the surface dealloyed and core-shell structure was formed 
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for the particles in this size range which were consistant with the KMC simulation 

result. The high resolution HAADF image by aberration corrected STEM showed 

a more open surface structure for some dealloyed particles compared with original 

particles.     

Large citrate coated Au20Ag80 particles ~45 nm in diameter were 

synthesized by co-reduction of Au and Ag salts in aqueous phase. The as 

synthesized particles were annealed in forming gas at 400°C for 1 hr to get a more 

homogenous composition distribution. The size and composition of annealed 

particles were characterized in STEM and EDX. Dealloying behavior of this 

particles in 1 M HClO4 was studied ex-situ by STEM. The particles were 

dealloyed at a series of potentials from 0.54 V to 1.3 V vs. NHE. The lowest 

potential that porous structure could be observed was 0.64 V which is close to the 

thermodynamic limit for bulk dealloying at this composition. About 50% particles 

formed porous structure after dealloying for the sample dealloyed at 0.74 V and 

all particle formed porous structures for sample dealloyed above 0.9 V. The 

average ligament size was 7~8 nm for the particles dealloyed between 0.9 V and 

1.1 V.       
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APPENDIX A 

AU 2D ISLANDS DECAY 
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 The stability of Au islands from lifted reconstruction in 0.1M H2SO4 was 

studied by in situ ECSTM.  Fresh deposited Au (111) film was used as the 

working electrode and Pd-H wire was used as reference electrode. A PtIr tip 

coated by Apiezon wax was used for scanning and the leaking current was less 

than 20 pA. The tunneling current for imaging was 0.6nA. The potential was 

ramped up to 1.2 V to lightly oxidized the Au surface and then jumped back to 0.8 

V at which lots of Au island (3-8 nm in diameter) appeared on the surface. Then 

the voltage was increased with a 20 mV step up to 1.15 V vs. NHE. Figure A.1 

are the ECSTM images at selective voltages and Figure A.2 shows the plot of the 

island sizes versus voltages at which there is an obvious size change of the 

islands.  
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Figure A.1. ECSTM images of the Au 2D island decay as voltage increases. 
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Figure A.2. Au island sizes (1/r) versus dissolution potentials. 

For 2D islands, the Gibbs-Thomson equation transforms to  

.
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Assuming during the dissolution process, Au became Au+, the calculated surface 

energy is 2.55J/m2, which is about twice of the known value.  If calculate the step 

energy based on this surface energy:  
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According to Giesen’s paper[94][95], the step energy for Au is even less than 

0.1eV (~0.04eV) and the step energy for Ag is ~0.3eV.

 



 
 

APPENDIX B 

CLUSTER DEPOSITION ON SPUTTERED HOPG 
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 Another technique of preparing particles [96] was tried to see whether it 

would increase the adhesion between particles and substrate for ECSTM 

experiment. HOPG was selected as substrate and sputtered by Argon ions (0.5 KV 

beam voltage, 3 mA emission current, 2 s) to generate a decent density of defects. 

Then this sputtered surface was thermal annealed in air at 530°C for 40 min to 

coarsen the defects and burn away the sputtered C around the defects. Figure B.1 

are the HOPG surface before sputtering, after sputtering, and after heat treatment. 

Then ~0.5 monolayer Au was deposited on the sputtered HOPG surface with a 

rate of 0.1 Å/s at 340°C. The resulting surface was checked in STM with a 

tunneling current of 200 pA. The adhesion between particles and substrate was 

still not quite good. STM images in Figure B.2 show that some particles were 

pushed away after one scan.   
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Figure B.1. STM height mode images for: (A) Fresh HOPG surface. (B) HOPG 
surface after sputtering. (C) HOPG surface after heat treatment. 
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Figure B.2. STM images (100  100 nm) of Au clusters deposited by E-beam 
deposition on sputtered HOPG surface: (A) 1st scan. (B) 2nd scan.  
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APPENDIX C 

CALCULATION OF MOLAR VOLUME FOR METAL OXIDE 
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 Ag2O and Cu2O compounds are both cuprite structure, which is made up 

by two interpenetrating lattices, one fcc of metal atom and one bcc of oxygen 

atom as shown in Figure C.1. The lattice constant is 4.27 Å for Cu2O and 4.72 Å 

for Ag2O [49][47]. The molar volume of Cu2O and Ag2O would be:  

(4.27×10-8)3×0.5×6.02×1023 cm3 = 23.4×10-6 cm3. 

(4.72×10-8)3×0.5×6.02×1023 cm3 = 31.6×10-6 cm3. 

 

 
Figure C.1. The cuprite structure. The full circles are fcc unit cell of metal atoms 
and the dashed circles are oxygen atoms [49]. 
 

                                  
 
 


