
Listing Combinatorial Objects

by

Victoria E. Horan

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved September 2012 by the
Graduate Supervisory Committee:

G. Hurlbert, Chair
A. Czygrinow

S. Fishel
C.J. Colbourn

A. Sen

ARIZONA STATE UNIVERSITY

December 2012

ABSTRACT

Gray codes are perhaps the best known structures for listing sequences of

combinatorial objects, such as binary strings. Simply defined as a minimal

change listing, Gray codes vary greatly both in structure and in the types of

objects that they list. More specific types of Gray codes are universal cycles

and overlap sequences. Universal cycles are Gray codes on a set of strings of

length n in which the first n− 1 letters of one object are the same as the last

n − 1 letters of its predecessor in the listing. Overlap sequences allow this

overlap to vary between 1 and n− 1.

Some of our main contributions to the areas of Gray codes and universal

cycles include a new Gray code algorithm for fixed weight m-ary words, and

results on the existence of universal cycles for weak orders on [n]. Overlap

cycles are a relatively new structure with very few published results. We

prove the existence of s-overlap cycles for k-permutations of [n], which has

been an open research problem for several years, as well as constructing 1-

overlap cycles for Steiner triple and quadruple systems of every order. Also

included are various other results of a similar nature covering other structures

such as binary strings, m-ary strings, subsets, permutations, weak orders,

partitions, and designs.

These listing structures lend themselves readily to some classes of combi-

natorial objects, such as binary n-tuples and m-ary n-tuples. Others require

more work to find an appropriate structure, such as k-subsets of an n-set, weak

orders, and designs. Still more require a modification in the representation of

the objects to fit these structures, such as partitions. Determining when and

how we can fit these sets of objects into our three listing structures is the focus

of this dissertation.

i

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Glenn Hurlbert,

for encouraging me to consider graduate school and for not only advising me

on writing my dissertation but also on being a well-rounded mathematician. I

will miss our weekly meetings and the many, many jokes about “fixed weight

Mary”.

Next I would like to thank my committee members for taking the time

to review this document. In addition, they also deserve thanks individually

for the following: Dr. Andrzej Czygrinow for his extra help in preparing for

qualifying and comprehensive exams; Dr. Charles Colbourn for teaching me

about combinatorial designs and answering my many emails; Dr. Arunabha

Sen for welcoming me into his research group and helping me to think about

applications for my research; and last but not least Dr. Susanna Fishel for

teaching me enumerative combinatorics as well as for always being interested

in whatever work I was currently involved in.

For guiding me through the rules of “the real world”, I must recognize Dr.

Warren Debany. Also important to my success are the many individuals at

the School of Mathematical and Statistical Sciences at ASU, AFRL Rome,

and the SMART Scholarship Program.

Finally, none of this would have been possible without the help of my

family. I owe many thanks to my parents, John and Jeanette, and my sister,

Jacqueline, for always encouraging me to work hard but enjoy life at the same

time. You always knew I’d be a mathematician one day, before I even realized

it myself!

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES . vi

CHAPTER

1 Introduction . 1

2 Definitions . 5

2.1 Graph Theory . 5

2.2 Objects and Notation . 7

2.3 Types of Lists . 12

2.3.1 Gray Codes . 12

2.3.2 Universal Cycles 13

2.3.3 Overlap Cycles . 13

2.3.4 Variations . 14

2.4 Common Techniques / Methods 18

2.4.1 Graphical Representations 18

2.4.2 Euler Tours vs. Hamilton Cycles 19

2.5 Alternative Word Representations 21

2.5.1 Natural Representation Choices 22

2.5.2 Dropping Symbols 23

2.5.3 Adding Symbols 24

3 Gray Codes . 26

3.1 Introduction and Definitions 26

3.2 Binary Words of Length n 27

3.3 m-ary Words of Length n 37

3.4 Permutations of [n] . 46

3.5 Subsets . 50

3.6 Weak Orders on [n] . 52

iii

CHAPTER Page

3.7 Partitions . 57

3.7.1 Partitions of an Integer 57

3.7.2 Ordered Partitions of a Set 58

3.7.3 Unordered Partitions of a Set 60

3.8 Designs . 62

4 UCycles . 67

4.1 Introduction and Definitions 67

4.2 Binary Words of Length n 67

4.3 m-ary Words of Length n 72

4.4 Permutations . 74

4.5 Subsets . 76

4.6 Weak Orders . 78

4.7 Partitions . 89

4.7.1 Partitions of an Integer 89

4.7.2 Ordered Partitions of a Set 90

4.7.3 Unordered Partitions of a Set 91

4.8 Designs . 92

5 Overlaps . 94

5.1 Introduction and Definitions 94

5.2 Binary Words of Length n 96

5.3 m-ary Words of Length n 99

5.4 Permutations . 99

5.5 Subsets . 104

5.6 Weak Orders . 105

5.7 Partitions . 109

5.7.1 Partitions of an Integer 109

iv

CHAPTER Page

5.7.2 Ordered Partitions of a Set 109

5.7.3 Unordered Partitions of a Set 110

5.8 Designs . 110

5.8.1 Steiner Triple Systems 117

5.8.2 Steiner Quadruple Systems 141

6 Results . 170

6.1 Gray Codes . 170

6.2 Universal Cycles . 171

6.3 Overlap Cycles . 173

7 Open Problems . 177

7.1 Gray Codes . 177

7.2 Universal Cycles . 178

7.3 Overlap Cycles . 180

BIBLIOGRAPHY . 181

v

LIST OF FIGURES

Figure Page

2.1 Gray code for B(3). 13

2.2 Fano Plane . 14

2.3 Example rosary for permutations of [4] 18

3.1 The Chinese Rings Puzzle . 28

3.2 Transition graph for B2(4) using adjacent transpositions 33

3.3 Various sublists for the FWM algorithm 40

3.4 Permutations of [3] using disjoint cycle representation and their

corresponding strings . 50

3.5 Gray code for unordered partitions of {1, 2, 3, 4} 62

4.1 Cycles found in the transition graph for Bk(n) 70

4.2 G(3): The transition graph for ucycles for weak orders on [3] . . . 80

4.3 Path in G(n, h) illustrating adjacent transpositions 86

5.1 2-Overlap cycle for 4-subsets of [6] 94

5.2 Transition Graph: 2-ocycles for permutations of {1, 2, 3, 4} 107

5.3 Connecting two cycles at overlap point x 120

5.4 Cycle for the proof of Result 5.8.39 163

vi

Chapter 1

INTRODUCTION

Consider the following cyclic string.

S = 0000111101100101

Notice that every binary 4-tuple {a, b, c, d} appears equally often (in fact, ex-

actly once) as a contiguous substring of S. It follows that every n-tuple with

n < 4 appears equally often in S as well. Since these are some of the properties

one might expect of a randomly generated binary string, one could use S as an

approximation to a random string; that is, S is a pseudo-random generator.

Such generators as these have been known for all values of n (as well as for

k-ary in place of binary) since the work of de Bruijn [12] and, independently

good, in the 1940s, who used them in number theoretic and cryptographic ap-

plications. These de Bruijn cycles, as they have come to be known, originated

farther back, however, as discovered (and enumerated) by Flye-St Marie in

the 1890s [39]. Because of the tremendous need for pseudo-random genera-

tors in math and science, de Bruijn cycles have held an important position in

a wide range of applications. they continue to be objects of great study in

mathematics for a number of properties useful for other endeavors. For the

last two decades, structures other than k-ary n-tuples have been investigated

similarly. Our thesis here pushes the envelope of structures used and of types

of cycles allowed, in hopes that new applications to mathematics, computer

science, and elsewhere might be found by knowing the results and techniques

we develop.

1

In the celebrated Art of Computer Programming, Knuth states the follow-

ing [36] (fasc. 1, p. 1).

“Five basic types of questions typically arise when combinatorial

problems are studied, some more difficult than others.

1. Existence: Are there any arrangements X that conform to

the pattern?

2. Construction: If so, can such an X be found quickly?

3. Enumeration: How many different arrangements X exist?

4. Generation: Can all arrangements X1, X2, . . . be visited sys-

tematically?

5. Optimization: What arrangements maximize or minimize f(X),

given an objective function f?”

This dissertation will primarily discuss the fourth question: generation. For

thousands of years, people have been looking for ways to efficiently list/generate

combinatorial objects. While the motivations may be varied, they are linked

together by the desire to compactly, yet completely, represent an entire set

of objects. The three listing structures that this dissertation will focus on

are Gray codes, universal cycles, and overlap sequences. The applications of

these listings range from using Gray codes to solve children’s puzzles or create

efficient position encoders, to using universal cycles to efficiently discover a

password.

In the 1940’s, Frank Gray introduced what is now well-known as the re-

flected binary Gray code as part of a new color television system [21]. in the

next few decades more work was done on expanding these minimal-change

2

listings over other types of objects, such as Johnson’s work on generating per-

mutations by adjacent transpositions [32]. Published in 1978 and then updated

and republished in 1987, Wilf and Nijenhuis brought more attention to Gray

codes as a research area in pure mathematics [50]. In 1993, Chung, Diaconis,

and Graham built on the work of de Bruijn [12] and defined universal cycles,

a more specific type of Gray code [8]. As a way to relax the somewhat restric-

tive universal cycle structure, Godbole, Knisley, and Norwood introduced the

concept of overlap cycles in 2010 [19].

Gray codes have been used for many years in an extremely wide array of

applications. Gray code orderings of binary strings are often used as a means

of solving a synchronization problem. For example, rotary encoders utilize

sequences of on-off switches, which may be thought of as binary strings. As

we move from one binary string to the next, if more than one bit changes

we must flip multiple switches at the same time. If the flips are not exactly

simultaneous, then false intermediary states will be found. The use of Gray

codes eliminates the synchronization problem.

The often quoted application of universal cycles is discovering an ATM

password. Suppose that an ATM requires a 4-digit password, and at any

given time considers the last four numbers entered as an entry attempt. Plug-

ging in all possible 4-digit numbers would require typing in 4 × 104 different

keystrokes. However, if we take advantage of the shifting-window type struc-

ture of the program input, we quickly realize that a universal cycle over all

4-digit numbers will solve the problem using only 104 +3 keystrokes. Thus, on

average, universal cycles would allow us to break into the ATM in a more time-

and energy-efficient manner by saving us from typing approximately 3 × 104

more numbers into the keypad.

3

As a natural extension of the “shifting window” view of universal cycles,

overlap sequences are the newcomers in this area. Given the multitude of ap-

plications for Gray codes and the growing number for universal cycles, overlap

sequences have the potential to be extremely useful structures.

While Gray codes have been well-studied for many years, universal cycles

are relatively new to the scene. Gray codes and orderings in general have been

useful in many applications, such as disk erasure codes [9]. Because of this,

I believe that universal cycles and overlap sequences are not being utilized to

their full extent. My work outside of the university tells me that Gray codes

are well-known, but universal cycles are little known and little understood, let

alone overlap sequences. However, these newer structures have the potential

to be extremely useful - maybe more so than Gray codes in some situations.

Throughout this prospectus we will present many known theorems, as well

as new results. Any claim that is called a result will be a new result, whereas

all others are known and have citations to refer the reader to the source.

Any claims labeled “fact” are trivial results, and will generally be presented

without proof. All necessary background information for this prospectus is

provided in Chapter 2, including the definitions of all combinatorial objects

and structures discussed. Chapter 3 discusses Gray codes, Chapter 4 covers

universal cycles, and Chapter 5 presents overlap sequences. In Chapter 6 we

list our new results, and Chapter 7 provides a list of open problems.

4

Chapter 2

DEFINITIONS

2.1 Graph Theory

This dissertation will utilize many important definitions and theorems from

graph theory. We define a graph G = (V,E) to be a set V of vertices and a

set E of edges. Unless otherwise stated, an edge is an unordered pair {i, j}

with i, j ∈ V . If we consider the edges to be directed then the edge (i, j)

is directed from i to j. If all edges in a graph are directed, we will call it a

directed graph or digraph. We will assume that unless otherwise noted,

“graph” refers to an undirected graph with undirected edges.

Some useful graph structures that will be considered are now defined. Un-

less otherwise noted, all definitions correspond to both directed and undirected

graphs. A walk is a sequence of vertices and edges v1e1v2e2 . . . en−1vn with

vi ∈ V and ej = {vj, vj+1} ∈ E for i ∈ [n] and j ∈ [n − 1], where we use

the notation [n] = {1, 2, . . . , n}. A path is a walk in which no vertices are

repeated. A closed walk is a walk with v1 = vn. A closed walk may also be

referred to as a tour or circuit. A closed walk in which no vertex is repeated

is a cycle.

There are two graph structures that will be crucial to this dissertation:

Euler tours and Hamilton cycles. An Euler tour is a closed circuit in which

every edge of the graph appears exactly once. When the circuit is not closed,

we call it an Euler path. If a graph has an Euler tour, we will call it eulerian.

5

We will characterize eulerian graphs, but first must define a few more terms.

Define a vertex v in an undirected graph to be even if the number of edges

having v as an endpoint is even. This number is called the degree of the

vertex. If every vertex in a graph is even, then we call the graph even. Define

an undirected graph G to be connected if for every pair of vertices (v, w)

there exists a path from v to w in G.

Theorem 2.1.1. ([14], Theorem 1.8.1.) An undirected graph G is eulerian if

and only if it is both even and connected.

This theorem has a corresponding theorem for directed graphs. In a di-

rected graph, we call a vertex v balanced if we have

|{(i, v) | i ∈ V }| = |{(v, i) | i ∈ V }|.

In other words, the number of edges pointing to v, or the indegree of v is

equal to the number of edges directed out of v, or the outdegree. We call a

directed graph G weakly connected if for any pair of vertices (v, w) there

exists an undirected path from v to w, i.e. the graph is connected when all

edges are undirected. The graph G is strongly connected if for all pairs of

vertices (v, w) there is a directed path from v to w. A directed path is a

path that follows the direction of the edges.

Theorem 2.1.2. ([49], p. 60.) A directed graph G is eulerian if and only if

it is both balanced and weakly connected.

The second crucial structure is a cycle in a graph that passes through every

vertex exactly once, otherwise known as a Hamilton cycle. If a graph has

a Hamilton cycle, we will call it hamiltonian. While proving a graph to be

6

eulerian is fairly simple given Theorem 2.1.2, it is not so easy to prove that a

graph is hamiltonian. In general, the problem is very difficult (NP -complete in

fact), but some cases can be solved easily. We will list an important theorem,

and then introduce others as needed throughout the text.

Theorem 2.1.3. (Dirac’s Theorem, [14], Theorem 10.1.1.) Every graph G =

(V,E) with |V | ≥ 3 and minimum degree at least |V |/2 has a Hamilton cycle.

Because of the difference in the level of difficulty between finding Euler

tours and Hamilton cycles, one of the main techniques in this work involves

building transition graphs whose Euler tours correspond to the universal or

overlap question.

2.2 Objects and Notation

This dissertation discusses methods for listing various sets of combinato-

rial objects. We now define completely the types of combinatorial objects

discussed.

An alphabet is a set of symbols. A string of letters from some alphabet

A is a word. A subword is a set of consecutive letters within a word. We

denote the prefix of a word w = w1w2 · · ·wk as w− = w1w2 . . . wk−1 and the

suffix of w as w+ = w2w3 . . . wk. When A ⊆ N = {0, 1, . . .}, we define the

weight of the word w to be

wt(w) =
k∑
i=1

wi.

Define the operation wi ↔ wj on a word w1w2 . . . wn to exchange letters in

7

positions i and j. Define another operation wi ← wj to copy letter wj into

position i in the word.

A binary word of length n is an n-letter word over the alphabet {0, 1}.

We will denote the set of all binary words of length n by B(n). When we

consider the weight of some w ∈ B(n), we notice that wt(w) = |{i | wi = 1}|,

i.e. the number of ones in the word. Define the set of fixed weight binary

words as

Bk(n) = {w ∈ B(n) | wt(w) = k}.

An m-ary word of length n is an n-letter word over an alphabet of cardinal-

itym. Most often we will identify this alphabet with the set {0, 1, 2, . . . ,m−1}.

Define Bm(n) to be the set of all m-ary words of length n, and Bmk (n) to be

the set of m-ary words of length n and weight k.

When we refer to a partition, we first specify what type of partition we

are discussing. A partition of an integer n is a set of integers {i1, i2, . . . ik}

for some k < n with i1, i2, . . . ik ∈ Z+ so that

i1 + i2 + . . .+ ik = n.

Note that this definition does not consider the set to be ordered. That is, the

partitions of 3 given by 1 + 2 and 2 + 1 are equivalent. When given a partition

{i1, i2, . . . ik} of an integer n, we may group together parts of the same size

and write the number of equal parts as an exponent. For example, we may

represent the partition 1 + 1 + 1 + 2 + 3 + 3 as 132132. We will refer to this as

the exponential representation for integer partitions.

A partition of a set A is a partition of A into disjoint subsets of A, say

{A1, A2, . . . , Ak} for some k so that Ai∩Aj = ∅ for all i 6= j. Unless otherwise

specified, we will assume that none of the subsets Ai are empty. In this

8

dissertation, we will be considering both ordered and unordered partitions of

sets. An ordered partition of a set A treats the set of subsets {A1, A2, . . . , Ak}

as an ordered set, or sequence. An unordered partition of the set A treats

the set of subsets as an ordinary, unordered set.

A weak order on [n] is a relation � that is transitive and complete. We

write x ≡ y if x � y and y � x and x ≺ y if x � y but y 6� x. A weak order on

[n] can be written as a permutation of [n] with consecutive symbols separated

by ≡ or ≺ ([29], Problem 482.). For example, 1 ≺ 5 ≡ 3 ≺ 4 ≺ 2 is a weak

order on [5].

Define W(n) to be the set of all weak orders on [n]. For each a ∈ W(n),

we can define the height of an element j ∈ [n] to be the number of symbols ≺

that precede it in the weak order. This gives an alternative representation for

each w ∈ W(n) by a word w1w2 . . . wn where letter wj is the height of element

j. We will always utilize this representation of weak orders, and so we write

w = w1w2 . . . wn. In our previous example, the weak order 1 ≺ 5 ≡ 3 ≺ 4 ≺ 2

corresponds to the string 03121.

We may sometimes refer to the height of a weak order, denoted ht(w).

This is defined to be the maximum letter height in the weak order. In our

example, the string 03121 has height 3. It is often useful to consider only the

subset of W(n) with a specific height. Let 0 ≤ k < n. Define

W(n, k) = {w ∈ W(n) | ht(w) = k}.

Let Wk(n) denote the set of all weak orders on [n] with weight k. When

consideringWk(n), each weak order may be represented by the prefix of the n-

tuple. Then the nth element must be wn = k−
∑n−1

i=1 wi. Call this the prefix

representation. Later, we will generalize this definition to other classes of

9

combinatorial objects. Let W−k (n) denote the set of weak orders of weight k

on [n] using the prefix representation.

Define the multiset of a weak order a = a1a2 . . . an to be the unordered

multiset of elements {a1, a2, . . . an}. Denote this by ms(a). For our example,

the weak order 03121 has multiset {0, 1, 1, 2, 3}. Then we can partitionWk(n)

by grouping together weak orders that have the same multiset. Call this

the multiset partition P = {P1, . . . , Pr}. Define WM(n) = {w ∈ W(n) |

ms(w) = M} and W−M(n) = {w− | w ∈ WM(n)}. Define the ground set of

w = w1 . . . wn ∈ W(n) to be gs(w) = {i | i = wj for some j ∈ [n]}.

The last type of combinatorial objects considered are designs. A design

is a pair (X,B) where X is a finite set of elements, called points, and B is

a (multi)set of subsets of X, called blocks. Designs may also be represented

as set systems or hypergraphs. A simple design is a design in which the

set B has no repeated blocks. We call a design k-uniform if for every B ∈ B,

|B| = k, and a design is r-regular if for every x ∈ X, |{B | x ∈ B ∈ B}| = r.

Given a design (X,B), it is λ-pairwise balanced if for all x, y ∈ X with

x 6= y, we have

|{B | {x, y} ⊆ B,B ∈ B}| = λ.

Lastly, we define a balanced incomplete block design, denoted (v, k, λ)−

BIBD, to be a design (X,B) where

1. |X| = v,

2. (X,B) is k-uniform, and

3. (X,B) is λ-pairwise balanced.

10

Three special types of balanced incomplete block designs that are consid-

ered are Steiner triple systems, denoted STS(v), Steiner quadruple systems,

denoted SQS(v), and twofold triple systems, denoted TTS(v). An STS(v) is a

(v, 3, 1)-BIBD, and a TTS(v) is a (v, 3, 2)-BIBD. An SQS(v) is a 3− (v, 4, 1)-

BIBD, which simply means that every 3-subset of points appears in a unique

quadruple.

In constructing some types of designs, latin squares are often used. Let M

be an n×n array filled with n distinct symbols. If for every row, every symbol

appears exactly once, we say that M is row latin. If for every column, every

symbol appears exactly once, we say that M is column latin. If M is both

row and column latin, then M is a latin square of side n. Given two latin

squares L1 and L2 of side n with symbols from some set X of size n, we call

L1 and L2 orthogonal if for every x, y ∈ X there are unique i, j ∈ [n] such

that L1(i, j) = x and L2(i, j) = y. We call a set of latin squares mutually

orthogonal if any two distinct latin squares from the set are orthogonal. A

set of mutually orthogonal latin squares of side n is often abbreviated as a set

of MOLS(n).

MOLS are equivalent to transversal designs. ([46], pg 144) A transversal

design, TD(k, n), is a triple (X,G,B) such that the following properties are

satisfied:

1. X is a set of kn elements, called points,

2. G is a partition of X into k subsets of size n called groups,

3. B is a set of k-subsets of X called blocks,

4. any group and any block contain exactly one common point, and

11

5. every pair of points from distinct groups is contained in exactly one

block.

Other variations of designs are common, such as a BIBD in which the

number of blocks is equal to v, which is a symmetric design.

2.3 Types of Lists

This dissertation will consider three main listing structures of combinato-

rial objects: Gray codes, universal cycles, and overlap cycles.

2.3.1 Gray Codes

Gray codes were originally developed by Frank Gray [21] as a method of

listing binary n-tuples so that successive words differ in only one position. The

term Gray code has now come to mean a listing of a set C of combinatorial

objects in which successive words differ in some predefined manner. For ex-

ample, if we consider the set of binary words of length 3, or B(3), the original

Gray code in which successive words differ in only one position is shown in

Figure 2.1. Note that this Gray code is cyclic, that is, the minimal change

property is preserved when transitioning from the last element back to the

first. Gray codes will be considered in further detail in Chapter 3.

12

000

001

011

010

110

111

101

100

Figure 2.1: Gray code for B(3).

2.3.2 Universal Cycles

The topic of Chapter 4 is universal cycles. If C is a set of combinatorial

objects each of length k, then a universal string is a word such that each

c ∈ C appears exactly once as a subword, and so that these objects appear

consecutively. If a universal string has the last k− 1 letters matching the first

k−1 letters, we may omit these letters and call the resulting word a universal

cycle or ucycle. For example, a ucycle on the set of all 2-subsets of [5] is

1234531425.

2.3.3 Overlap Cycles

Lastly, we will discuss overlap cycles. Let C be a set of objects represented

as words from an alphabet. An s-overlap cycle O(C, s) for s ∈ N, or s-

ocycle, is an ordered listing of the elements of C so that the last s letters

13

m5 m0 m6
m3

m1

m2 m4
�
�
�
�
�

�
�
�
�
�

A
A
A
A
A

A
A
A
A
A

�
�
�
��

�
�

Q
Q
Q

QQ
Q
Q

Figure 2.2: Fano Plane

of a word are the first s letters of its successor in the listing. For example,

consider the design represented by the Fano plane, shown in Figure 2.2. The

Fano plane represents a (7, 3, 1)-design, in which each block is given by any

set of points that lie on the same line or circle. That is, the blocks are

{1, 2, 5}, {1, 3, 0}, {1, 4, 6}, {2, 3, 6}, {4, 3, 5}, {5, 0, 6} and {0, 2, 4}.

We can represent this design using the 1-overlap cycle

521035416324065.

The blocks are underlined or overlined in order to show the overlap of size one

between consecutive blocks. Overlap cycles will be discussed in Chapter 5.

2.3.4 Variations

When a class of combinatorial objects does not lend itself well to one of

the previously discussed structures, there are several variations that can be

considered.

14

2.3.4.1 Packing Words

A packing word over a set of combinatorial objects is a string with all of

the properties of a universal string, except not every object needs to appear.

With packing words, we generally want to maximize the length of the string,

which will simultaneously maximize the number of objects that appear.

In proving that no ucycle for (n − 2)-subsets of [n] can exist, Stevens, et

al., also proved the following two theorems.

Theorem 2.3.1. [45] The longest possible cyclic packing word of (n − 2)-

subsets of [n] has length n, and a word achieving this bound always exists.

The packing word that always achieves this bound is surprisingly simple:

1, 2, . . . , (n− 1), n.

If we no longer require the packing word to be cyclic, we can create a longer

packing word on the same set of objects.

Theorem 2.3.2. [45] The longest possible packing word of (n− 2)-subsets of

[n] has length 3n− 6 and a word achieving this bound always exists.

In [11], this notion of increasing a packing word to contain as many k-

subsets of [n] as possible is extended. Define a near-ucycle packing as a

sequence S of n packing words so that as n→∞, asymptotically few k-subsets

are omitted from S. Using this definition, they were able to prove the following

result.

Theorem 2.3.3. [11] For all 0 < k < n, near-ucycle packings exist for k-

subsets of [n].

15

While all of these results concern subsets, the techniques may be useful

when consider other objects as well.

2.3.4.2 Covering Words

A covering word over a set of combinatorial objects is a string with all of the

properties of a universal string, except that the words do not need to appear

contiguously. That is, some consecutive objects in the string may have a large

overlap (say n − 1, as desired in a ucycle), while others may have a smaller

overlap (say s, as desired in an s-overlap cycle). Note that any overlap cycle

is a covering word.

2.3.4.3 Multicover Universal Cycles

Covering words are often extended to multicover universal cycles. Let C be a

set of combinatorial objects represented by words of length k. Recall that a

universal string over C is a string in which each c ∈ C appears exactly once, and

each k-letter subword is an object from C. A t-multicover universal string

is a universal string, with the exception that each object appears exactly t-

times. If a t-multicover string has the last k−1 letters matching the first k−1

letters we may omit these letters and call the resulting word a t-multicover

universal cycle. Since each object appears exactly t times, it is clear that

a 1-multicover universal cycle is the standard ucycle discussed in Chapter 3.

From this, we easily get the following fact.

Fact 2.3.4. Let C be a set of combinatorial objects. If a universal cycle over

C exists, then a t-multicover universal cycle exists, and is simply the universal

16

cycle taken t times.

For all of the classes of combinatorial objects that do not easily yield to the

universal cycle structure, it would be interesting to determine the minimum

value for t such that the class of objects allows a t-multicover universal cycle.

In [27], Hurlbert presents many results on multicover ucycles for k-subsets

of [n]. Define U(n, k) to be the minimal t for which a t-cover ucycle exists

for k-subsets of [n]. The main results presented in [27] are as follows. Note

the similarity between Theorem 2.3.5 and Conjecture 4.5.2 (and the discussion

following the conjecture).

Theorem 2.3.5. [27] If k = 2, 3, 4 or 6, then there exists n0(k) such that if

n ≥ n0(k) and gcd(n, k) = 1, then U(n, k) = 1.

Theorem 2.3.6. [27] U(n, k) ≤ k for all n ≥ k.

Much of the work on covering words and multicover universal cycles per-

tains only to k-subsets of [n].

2.3.4.4 Rosaries

While packing and covering words have been discussed largely in terms of sub-

sets, rosaries often involve permutations. A rosary for a set of combinatorial

objects, each of size k, is a cyclic sequence x1x2 . . . xr in which every com-

binatorial object can be found as a subsequence of xi1 , xi2 , . . . , xik for some

{i1, i2, . . . , ik} ⊆ [r]. Note that this subsequence does not need to be consecu-

tive. See Figure 2.3 for an example of a rosary for permutations of [4].

We define the minimum r such that this property holds to be the rosary

number for the set of objects. A well-known conjecture on the rosary num-

17

1

1

4 4

3 3

2 2

Figure 2.3: Example rosary for permutations of [4]

ber for permutations of [n] is the following. Define Πn to be the set of all

permutations of [n].

Conjecture 2.3.7. [22] For all integers n > 1, the inequality r(Πn) ≤ n2

2
is

satisfied.

Several results have been published non-cyclic sequences, such as the fol-

lowing.

Theorem 2.3.8. [37] For n ≥ 3, there exists a string of length n2 − 2n + 4

such that every permutation in Πn appears as a subsequence.

2.4 Common Techniques / Methods

2.4.1 Graphical Representations

The most commonly used method for finding these listings of combinatorial

objects is to create the transition graph. In this directed graph, we define

the set of vertices to be the set of combinatorial objects C. For any c, d ∈ C, we

draw an edge from c to d in the graph if the transition from object c to object d

is allowed under the given type of structure. For example, the transition graph

for a universal cycle on B(3) would have an edge from (0, 0, 0) to (0, 0, 1), but

18

not the reverse from (0, 0, 1) to (0, 0, 0), since the last two letters of (0, 0, 1)

do not agree with the first two letters of (0, 0, 0).

Given this definition of the transition graph, a Hamilton cycle in the graph

corresponds to the listing structure that we desire. This is clear, since follow-

ing a Hamilton cycle we will pass each object from C exactly once, and the

necessary transition properties will be satisfied by our definition of edges in

the graph.

While this structure lays out a straightforward method to find the desired

listing, it is not computationally easy. That is, the problem of finding a Hamil-

ton cycle is a well-known NP -complete problem that cannot be solved easily

in all cases. There are several classes of graphs that can be solved quickly,

such as the n-cube Qn (the transition graph for B(n) under the original Gray

code). However, in general the problem is too difficult to be solved on large

instances. For this reason, we would like to modify the graph to represent

the combinatorial objects as edges instead of vertices. Then we are searching

for an Euler tour, which is a computationally easy problem. The downside to

this approach is that it is not always clear how to obtain this type of eulerian

transition graph.

2.4.2 Euler Tours vs. Hamilton Cycles

Given a graph, the problem of finding an Euler tour and the problem of

finding a Hamilton cycle seem to be structurally very similar, and yet compu-

tationally completely opposite. In this section, we will discuss methods and

19

approaches for dealing with both problems.

If we are searching for an Euler tour in a graph, we can determine whether

such a tour exists using Theorem 2.1.1 for an undirected graph, or Theorem

2.1.2 for a directed graph. To show that a given graph satisfies one of these

theorems, several standard approaches are used. First, to show that a graph

is even or balanced, it is often useful to pair up edges incident to a particular

vertex and show that this pairing defines a 2-regular partition of the incident

edge set. To show that a graph is connected, there are two common techniques.

One technique is to partition the graph into connected subgraphs, and then

show that all of these subgraphs are connected. The other identifies a specific

root vertex, usually referred to as the minimum vertex, and then shows that

a path exists from every vertex to the root.

Once we have determined the existence of an Euler tour in a graph, we

can produce the desired sequence by following the tour and listing the objects

as we visit their corresponding edges in the order of the Euler tour. When

considering overlap cycles, we may omit the non-overlapping portions of each

object in order to more compactly represent the final result.

However, if we are unable to transform our problem into an eulerian-type

problem, we are stuck attempting to determine the hamiltonicity of our tran-

sition graph. Most efficient algorithms for the Hamilton cycle problem deal

only with specific classes of graphs, for example graphs with high minimum

degree. For this reason, there is no standard approach to finding Hamilton

cycles in a graph - different instances may require different methods. While

algorithms for solving these problems will not be a focus in this dissertation,

there are a few theorems that allow us to prove the existence of a Hamilton

cycle easily in specific graphs, such as Dirac’s Theorem (Theorem 2.1.3).

20

2.5 Alternative Word Representations

For some of the structures and sets of combinatorial objects, we may not

be able to create the listing desired using the objects in their “standard”

representation. The standard representation for a set of combinatorial

objects must be defined, for most sets have multiple representations, all of

which may be commonly used in the literature. Listed below, we briefly define

the standard representation for each class of objects considered. Most classes

have alternative representations that will be defined throughout.

Binary n-tuples: A binary n-tuple will be represented as a word of length

n over the alphabet {0, 1}.

m-ary Words: An m-ary word of length n will be represented as a word of

length n over the alphabet {0, 1, . . . ,m− 1}.

Permutations: A permutation will be represented in functional notation as

a word. For example, the permutation 312 corresponds to the function

f : [3]→ [3] given by f(1) = 3, f(2) = 1, and f(3) = 2.

Subsets: A subset will be represented as an unordered word. For example,

the 2-subsets of [3] in standard representation are 12, 13, and 23. Note

that 12 is equivalent to 21 since the word is unordered.

Partitions of Integers: A partition of an integer will be represented as a

word. For example, the partition 5 = 1 + 2 + 2 is written as 122. If the

partition is unordered, then the word is unordered, i.e. 122 is equivalent

to 212 and 221.

21

Partitions of Sets: A partition of a set will be represented by a word, repre-

senting the set, separated with vertical bars. For example, the partition

of {1, 2, 3} given by splitting the set as {1, 2}, {3} is represented by 12|3.

Note that the ordering within partition sets is irrelevant, as well as the

position of the partition set as a whole. For example, 12|3 is equivalent

to 21|3, 3|12, and 3|21.

Weak Orders: A weak order will be represented as a word of length n using

the height of each element as defined in Section 2.2.

Designs: A design will be represented as a list of blocks. Each block in a

design will be represented as an unordered word, just as with subsets.

2.5.1 Natural Representation Choices

Many of the classes of combinatorial objects discussed have several natural

representation choices other than the standard representation that we have

defined. For example, subsets of [n] could also be represented as a binary

string on length n, with a 1 in position i if and only if i is in the subset. We

will refer to this as the subset membership representation. It is also often

called the incidence vector.

Permutations also have many possible representations. For example, in-

stead of the standard functional notation, we could write a permutation in

disjoint cycle representation. Each permutation can be partitioned into

disjoint cycles, for example the permutation 13254 in standard notation is

represented as (1)(23)(45) using the disjoint cycle representation. For other

22

representations of permutations, see [44], Section 1.3. Depending on the type

of listing desired and the subset of the combinatorial class being considered,

we may need to utilize these other natural representations.

2.5.2 Dropping Symbols

One method of altering the standard representation is to drop unnecessary

symbols. For example, the first n−1 letters of a permutation of [n] completely

determines the last. Thus we can utilize what we call the prefix representa-

tion in which we drop the last letter of each string in standard representation.

The prefix representation can be used on any set C of combinatorial objects

in which every object c = c1c2 . . . cn ∈ C has the last letter cn completely

determined by the first n − 1 letters. We can use the same type of prefix

representation for fixed weight binary strings and fixed weight weak orders.

Every element in each of these classes of combinatorial objects has the last

letter completely determined by the previous letters.

In these examples of the prefix representation, it is trivial in a word of

length n to recover the nth letter using the first n − 1 letters. When a given

substring of the word completely defines the combinatorial object, we call

that substring a basis for the object. If we represent every word by a basis,

we are listing the words using a basis representation. For example, in a

(v, k, 1)−BIBD, we may drop up to k−2 symbols, leaving at least 2 symbols

to represent each block. Since λ = 1 in this case, each set of two symbols

appears in exactly one block, making this a valid representation in which each

23

block has a unique representative. The string of size two is a basis for the

entire block. However in this case, it is not such a trivial task to recover

the original block containing a given pair of elements. In fact, the simplest

way to recover the original block from the design is to have a lookup table to

refer to. In this case, it is reasonable to ask whether the benefits of dropping

unnecessary symbols outweigh the computational cost of referencing a lookup

table to recover each block from a defining pair of elements. For this reason,

overlap cycles could be a useful alternative to universal cycles. Some classes

of objects cannot be conformed to the structure of a universal cycle without

dropping symbols, but by considering an overlap cycle instead, we may be able

to leave all symbols in place.

2.5.3 Adding Symbols

In some instances, we may have a class of combinatorial objects that does

not conform to the desired listing structure. If dropping symbols is not an

option and we are unwilling to change the kind of structure, it may be possible

to add symbols to the given alphabet to obtain the listing that we are looking

for.

For example, consider attempting to find a universal cycle for permuta-

tions. If we represent each permutation completely in the standard repre-

sentation, it is not possible to construct a universal cycle. To illustrate this,

consider the transition graph in this scenario. If we look at a specific per-

mutation w1w2 . . . wn, the only outneighbor in the transition graph will be

24

w2 . . . wnw1. In fact, the transition graph will consist of disjoint cycles that

correspond to the rotation of one permutation, similar to the setup illustrated

in Figure 4.1. Thus the transition graph is not connected, so it is not possible

to find a Hamilton cycle. We will see in Section 4.4 that it is possible to find a

ucycle for permutations using the prefix representation, but if we do not want

to drop symbols we must find some alternative representation method.

One method is to utilize order isomorphic representations, and is discussed

in [31]. In this paper, the size of the alphabet for permutations of [n] is

increased from n symbols to n + 1 symbols. Over this new alphabet, two

representations of permutations a1a2 . . . an and b1b2 . . . bn are order isomor-

phic if ai < aj if and only if bi < bj for all 1 ≤ i, j ≤ n. Using this idea,

universal cycles for permutations can be constructed with order isomorphic

representations.

Another alternative is to consider equivalence class representations [28]. In

this method, the size of the alphabet for permutations of [n] is again increased

from n symbols to n+1 symbols. However, this time, we define a relationship∼

between words a = a1a2 . . . an and b = b1b2 . . . bn over this new larger alphabet

by a ∼ b if and only if there exists some k such that for all i ∈ [n] we have

ai− bi ≡ k (mod n+1). Then ∼ defines an equivalence relation in which each

equivalence class represents a unique permutation. Using this representation,

universal cycles for permutations can be constructed.

25

Chapter 3

GRAY CODES

3.1 Introduction and Definitions

Definition 3.1.1. A Gray code for a set of combinatorial objects is an or-

dering of the set so that successive elements satisfy a given minimal change

property.

We call a Gray code cyclic if the transition from the last element to the

first in the list also satisfies the minimal change property.

For example, consider the set of partitions of 4, shown below.

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1


If we consider each partition to have length 4 (adding zeros as needed), then

we define our minimal change property so that to move from one partition to

the next we decrease one part by 1 and increase another by 1. Then one type

26

of Gray code that utilizes this minimal change property is:

4 + 0 + 0 + 0

3 + 1 + 0 + 0

2 + 2 + 0 + 0

2 + 1 + 1 + 0

1 + 1 + 1 + 1

Note that this Gray code is not cyclic. In fact, when we examine the first

partition in our list, 4 + 0 + 0 + 0, we see that there is only one possible

predecessor or successor, 3 + 1 + 0 + 0, since we only have one part that can

be decreased. Thus there is no cyclic Gray code possible using this minimal

change property and this set of objects.

3.2 Binary Words of Length n

One of the first examples of a Gray code is the Chinese Rings puzzle,

illustrated in Figure 3.1 ([36], fasc. 2, p. 5). While the origins of the puzzle

are unclear, it is believed to have been first created around the end of the

second century A.D. The puzzle consists of several interlocked rings that only

allow two moves:

1. The last ring on the right can be taken off of or placed back on to the

top rod.

2. Any other ring can be moved on or off of the top rod if and only if its

neighbor ring to the right is on the bar, and all rings to the right of the

neighbor ring are off of the rod.

27

Figure 3.1: The Chinese Rings Puzzle

It is not immediately obvious how this puzzle relates to our initial discussion.

However, if there are n rings, we may number the rings from 1 to n and define

word w = w1w2 . . . wn ∈ {0, 1}n to be defined where wi = 1 if and only if ring

i is on the top rod. Now each state of the puzzle is represented by a binary

word of length n. The initial state in which all rings are on the top rod is

represented by the word 11 · · · 1 and the final state in which all rings are off

of the top rod is represented by the word 00 · · · 0. To move to the next state,

we may change only one letter in the word that represents the current state,

according to the rules outlined above. Thus the solution to the Chinese Rings

puzzle is also an algorithm to generate a binary Gray code.

One of the major results that spurred research in this area was the de-

velopment of the reflected binary code, described in Theorem 3.2.1. This

cyclic Gray code is over the set B(n), the set of binary words of length n.

Theorem 3.2.1. [21] There exists a cyclic Gray code listing of B(n) with

successive elements differing in exactly one bit.

Proof. We show Gray’s original construction of the reflected binary code. This

is done in a recursive manner in which all binary words of length n are gener-

ated using the code for binary words of length n− 1.

28

Our initial case is for n = 1, and we have the code:

0

1

Now suppose that we have the reflected binary code for B(n − 1). We

construct the reflected binary code for B(n) as follows.

1. List the code for B(n− 1).

2. Next list the code for B(n − 1) backwards, i.e. the last element is now

the first.

3. For each word from (1), add a 0 to the front.

4. For each word from (2), add a 1 to the front.

We now show that this gives a code in which successive elements only differ

in one position. First note that the initial code for B(1) satisfies this property.

Now given that B(n−1) is correct, we know that the lists generated from steps

(1), (3), and (2), (4) are both incomplete codes in which successive elements

differ in only one position. Thus we need only compare the words at the end

of one list and the start of the next. Note that in both cases (the words in

positions 1 and 2n, and the words in positions 2n−1 and 2n−1 + 1) the words

only differ in the first entry, and thus satisfy the necessary property. Thus the

code generated has successive elements differing in only one position.

29

For example, we obtain B(2) from the initial given code for B(1) as shown

below.

0

1
→

0

1

1

0

→

00

01

1

0

→

00

01

11

10

This code has many applications. One particular benefit of the reflected

binary code is that it avoids the problem of timing multiple bit flips so that

they occur at exactly the same time. It requires only one bit flip at each

stage. It also implies a useful result from graph theory. Recall that the graph

Qn is the graph whose vertex set is the set B(n) and two vertices have an

edge between them if and only if they differ in exactly one bit. Applying the

reflected binary code, we see that the graph Qn has a hamiltonian cycle.

If we now restrict our attention the set Bk(n), we see that we cannot

possibly hope to find a Gray code with the same property. For if we change a

word from Bk(n) to move to another word that differs in only one bit, we are

no longer considering a word of weight k. We have changed a bit from 0 to 1,

or vice versa. This means increasing or decreasing the weight of the original

word by one, respectively.

However, if we allow ourselves to consider allowing more than one bit to

change at each step, we arrive at what are called revolving door combina-

tions.

Theorem 3.2.2. (Revolving Door Combinations, [41], p. 28.) There exists a

Gray code listing for Bk(n) in which successive elements differ in exactly two

positions.

30

Proof. Let L(n, k) denote the desired listing for Bk(n). Assume that L(n, k)

starts with the lexicographically smallest string and ends with the largest. We

will show that

L(n, k) = (0)⊕ L(n− 1, k), (1, 0)⊕ L(n− 2, k − 1), (1, 1)⊕ L(n− 2, k − 2)

where L(n, k) denotes the list L(n, k) in reverse order and v⊕L(n, k) denotes

the word v appended to the start of each word in the list L(n, k).

We will prove that this holds by induction. The base cases are displayed

in the table below. ∣∣∣∣∣∣∣∣∣∣
n \ k 0 1 2

1 0 1

2 00 01, 10 11

∣∣∣∣∣∣∣∣∣∣
First, from the structure of the list, every string from Bk(n) must appear at

least once in L(n, k). Every string that starts with 0 appears in (0)⊕L(n−1, k),

every string that starts in 10 appears in (1, 0) ⊕ L(n− 2, k − 1), and every

string that starts in 11 appears in (1, 1)⊕ L(n− 2, k − 2).

All that remains is to show that the minimal change property holds at

the two points where one sublist meets another, and that our list begins with

the minimum and ends with the maximum. Other than these two intersection

points, we know that the minimal change property must hold by the induction

hypothesis.

The first intersection we must check is between the last word of (0) ⊕

L(n− 1, k) and the first word of (1, 0)⊕ L(n− 2, k − 1). Since the last word

of L(n− 1, k) is 1k0n−k−1 and the first word of L(n− 2, k − 1) is 1k−10n−k−1,

we see that the intersection strings differ in the first two positions.

Next we must check the last word, say x, of (1, 0)⊕L(n− 2, k − 1) and the

31

first word, say y, of (1, 1) ⊕ L(n − 2, k − 2). Again, we know exactly what x

and y are. We must have x = 100n−k−11k−1 and y = 110n−k1k−2, which differ

in positions 2 and n− k + 2.

Lastly we must check that this list begins with the minimum string and

ends with the maximum string. Since the first string in (0)⊕L(n− 1, k) must

be 00n−k−11k = 0n−k1k, the list begins with the minimum string. Similarly,

the last string in (1, 1)⊕L(n− 2, k− 2) must be 111k−20n−k = 1k0n−k, and so

the list ends with the maximum string.

To make this result stronger, we may restrict the locations of the two

changed bits.

Theorem 3.2.3. ([36] fasc. 3, p. 11.) There exists a Gray code listing of

Bk(n) allowing only the operations wi ↔ wi+1 and wi ↔ wi+2.

In fact, this is as good as we can hope for. It is not possible to restrict

the positions to be adjacent as before. For example, consider the set B2(4).

Shown in Figure 3.2 is the transition graph. It is immediately clear that this

graph is not hamiltonian, and since it does not even contain a Hamilton path,

it is impossible to find a Gray code with this minimal change property. The

following theorem tells us when we can expect to find a Gray code for Bk(n)

using adjacent transpositions.

Theorem 3.2.4. [33] Let n, k ∈ Z+. There exists a Gray code for Bk(n) using

adjacent transpositions when:

• k = 3 or 4 and n is odd, or

• k = 5 and n 6= 7.

32

0011 0101 1001

0110 1010 1100

Figure 3.2: Transition graph for B2(4) using adjacent transpositions

There does not exist a Gray code for Bk(n) using adjacent transpositions when:

• both n and k are even, or

• k = 2 or n− 2 and n is odd.

Instead of considering fixed weight, we could consider alternative weight

restrictions on B(n).

Open Problem 3.2.5. Is there a Gray code for the set Bo(n), the set of all

odd-weight binary strings of length n? What about for Be(n), the set of all

even-weight binary strings of length n?

Many of the open problems in this area fall into one of two categories:

finding Gray codes under a different definition of minimal change, or finding

Gray codes for a restricted subset of B(n) using some previously defined notion

of minimal change.

Note that depending on the application, the definition of minimal change

varies greatly. This can be seen in the variety of published results in this area.

For example, we have the following variations on Gray codes for B(n).

We define an equivalence class ∼ in which for a1a2 . . . an, b1b2 . . . bn ∈ B(n),

we have

a1a2 . . . an ∼ b1b2 . . . bn ⇔ ∃j ∈ [n] s.t. ajaj+1 . . . ana1a2 . . . aj−1 = b1b2 . . . bn.

33

We define necklaces over B(n) to be these equivalence classes under ∼. It is

standard practice to represent each necklace by the lexicographically largest

string in the equivalence class.

Theorem 3.2.6. [47] There is a Gray code listing of necklaces of 0’s and 1’s

with fixed weight where adjacent elements differ by a single transposition of a

0 and 1.

Another example is known as “balanced Gray codes”. Given a Gray code

for B(n), define the delta sequence δ0, . . . , δ2n−1 where δi indicates the posi-

tion of the change between the (i−1)th and ith binary words in the list. Next

define the transition count of a specific delta sequence to be (c0, . . . , cn−1)

where cj is the number of times δk = j.

Theorem 3.2.7. (Balanced Gray Codes, [36], fasc. 2, p. 14.) For all n ≥ 1,

there is a Gray code for B(n) with transition counts (c0, c1, . . . cn−1) that satisfy

the condition

|cj − ck| ≤ 2 for 0 ≤ j < k < n.

Another type of Gray code considers the run lengths of delta sequences.

Given a delta sequence, we define the run length to be the minimum k such

that there exists some i with δi = δi+k.

Open Problem 3.2.8. ([36], fasc. 2, p. 15.) Let r(n) be the maximum value

r such that a Gray code for B(n) exists with run length at least r. What are

the values of r(n)?

The values for n up to 8 are known, however the values beyond that are

yet to be determined.

34

As far as Gray codes for restricted subsets of B(n), we consider the subset

of B(n) that consists of strings that do not contain k consecutive 0’s.

Result 3.2.9. For all n ≥ 0 and k ≥ 1, there exists a Gray code listing for

the set

B̂k(n) = {b ∈ B(n) |6 ∃i ∈ [n− k + 1] with bi = bi+1 = · · · = bi+k−1 = 0}

in which successive elements differ in exactly one position.

Proof. Let L(n) denote the desired listing for B̂k(n). We proceed by induction

on n. Our base cases are as follows. For n = 0, our set is empty so the claim

is vacuously true. When n = 1, the only choice for k ≤ n is k = 1. For this

listing we have the sequence 1. When k > n, we choose the listing 1, 0. When

n = 2 and k = 1, we know the set: B̂1(2) = {11}. Thus there is only one

possible listing: 11. When n = 2 and k = 2, we can use the listing 01, 11, 10.

For n = 2 and k > 2, a possible listing is 01, 11, 10, 00.

For the cases with n > 2, we want to list the elements of B̂k(n) so that the

number of zeros at the end of each string is a non-decreasing function. We call

this the non-decreasing property. Note that this property is maintained

in our base cases.

For n > 2, we claim that one possible listing is

L(n) =

 L(n− 1) ⊕ 1,

L(n− 1)∗ ⊕ 0,

where L(n−1)∗ is the listing for B̂k(n−1) with strings ending in 0k−1 omitted,

and L(n− 1) is the listing for B̂k(n− 1) in reversed order. To show that this

listing works, we must show three things: (1) the nondecreasing property is

35

maintained, (2) successive elements differ in exactly one position, and (3) the

last string does not end in k zeros.

First, the beginning portion of L(n) given by L(n− 1)⊕1 has every string

ending in 1, so has zero 0’s at the end. The last portion of L(n), given

by L(n − 1)∗ ⊕ 0 has every string ending in 0. Since L(n − 1) satisfies the

nondecreasing property, we know that L(n − 1)∗ ⊕ 0 must also. Since every

string in L(n−1)∗⊕0 has at least one 0 at the end, the nondecreasing property

is satisfied over the entire listing L(n).

Second, note that in both L(n− 1) and L(n−1)∗, successive elements differ

in exactly one position by the recursive construction. Thus L(n− 1)⊕ 1 and

L(n − 1)∗ ⊕ 0 also satisfy our Gray code property. So we only need to show

that the last element of L(n− 1) ⊕ 1 and the first element of L(n − 1)∗ ⊕ 0

differ in exactly one position. By the nondecreasing property, we know that

the last element of L(n− 1)⊕ 1 ends in 1, and so is the the same as the first

element of L(n− 1)∗, and hence they only differ in the last position.

Lastly, by the nondecreasing property, the last string in L(n− 1)∗ ends in

10k−2. Thus the last string in L(n− 1)∗ ⊕ 0 ends in 10k−1. Thus L(n) is one

possible listing for B̂k(n) that satisfies the desired minimal change property.

Because |B̂2(n)| = Fn+1, where Fm denotes the mth Fibonacci number, the

preceeding theorem can be used to construct Gray codes for any other set in

bijection with B̂2(n), such as the set of compositions of n into odd parts (see

[44] for more examples).

Another variation on restricted subsets of B(n) is the set of strings of

balanced parentheses. When we consider a word of 2n nested parentheses, we

36

can choose to associate it with a binary word of length 2n by assigning 1 to

represent a left parenthesis and a 0 for a right parenthesis, or vice versa.

Theorem 3.2.10. ([36], fasc. 4, p. 8.) It is possible to create a Gray code

listing for the set of all possible words of length 2n of nested parentheses so

that successive words differ by either of the following two operations: () ↔)(

or ())↔))(.

Since it is well-known that the number of strings of balanced parentheses

of length 2n is Cn, where Cm is the mth Catalan number, this theorem can be

used to find Gray codes for various other structures, such as Dyck words (see

[44] for more examples).

3.3 m-ary Words of Length n

Recall that the set of m-ary words of length n are identified with words on

the alphabet {0, 1, . . . ,m− 1}. We will denote the set of all such m-ary words

of length n by Bm(n). Using this notation, we see that the set of all binary

words of length n is denoted by B2(n). The first main theorem in this area is

very similar to what we saw for binary words.

Theorem 3.3.1. [17] For every n,m ∈ Z+, there exists a Gray code listing

for Bm(n) so that each word differs from its successor in exactly one index

position.

Proof. We define the Gray code recursively. First, for our base case, when

n = 0 we have an empty list of words. Next, suppose that we have the desired

37

listing for Bm(n− 1), call it Lm(n− 1). Let Lm(n− 1) denote the list written

in reverse, with the last word first. Then we construct Lm(n) as shown below:

Lm(n) =



0 Lm(n− 1)

1 Lm(n− 1)

2 Lm(n− 1)

...

m− 1

 Lm(n− 1) if m− 1 is even,

Lm(n− 1) if m− 1 is odd

It is clear inductively that this has the desired minimal change property.

Clearly the empty string has the desired property for our base case. Then,

if Lm(n − 1) satisfies the minimal change property, then so does Lm(n− 1).

Note that the last element of Lm(n − 1) is the same as the first element of

Lm(n− 1) and that the first element of Lm(n − 1) is the same as the last

element of Lm(n− 1). So, whenever we change the value of the first letter, all

other letters remain constant. Whenever the first letter remains constant, we

know by the induction hypothesis that the rest of the word only changes in

one position.

Next, we consider fixed weight m-ary words of length n. Recall that the

weight of a word is the sum of its letters. The following result is known and

published in [48], however we provide an alternative algorithm.

Result 3.3.2. There exists a Gray code listing for Bmk (n) in which successive

words differ in at most two positions.

We will present an algorithm and then prove that it is correct. First, we

define a few simple functions that will be used in the algorithm. Given a list

38

L, Rev(L) produces the list in reversed order. The second function needed is

the exponent function, defined as:

Expo(L, e) =


L if e ≡ 0 (mod 2)

Rev(L) if e ≡ 1 (mod 2).

Finally, the function Pref(a, L) adds the prefix a to every string in list L.

This operation may also be denoted a⊕L. Now we can provide the following

algorithm, borrowing the reflection idea from Gray’s original algorithm for

binary words [21]:

FWM(m, n, k):

L = [];

if (m-1)n >= k and k >= 0 then

if (m-1)n = 0 then

L = [[]];

for i from 0 to min(m-1, k) do

M = Pref(i, Expo(FWM(m, n-1, k-i), i));

L = L, M;

return L;

We will work through an example of the algorithm when we run FWM(3,4,5).

In the lists, double lines indicate changes in our outer loop, and single lines

indicate changes in the secondary loop.

We begin with L, an empty list.

39

A B C

0 1 2 2
0 2 1 2
0 2 2 1

1 2 2 0
1 2 1 1
1 2 0 2
1 1 1 2
1 1 2 1
1 0 2 2

2 0 1 2
2 0 2 1
2 1 2 0
2 1 1 1
2 1 0 2
2 2 0 1
2 2 1 0

Figure 3.3: Various sublists for the FWM algorithm

Starting with i = 0, we need to determine

M = 0⊕ FWM(3,3,5) = Pref(0,Expo(FWM(3,3,5), 0)).

We start by determining this sublist, FWM(3,3,5).

FWM(3,3,5)= [0⊕ FWM(3,2,5), 1⊕ Rev(FWM(3,2,4)), 2⊕ FWM(3,2,3)]:

For these sublists, we have:

1 2 2

2 1 2

2 2 1

Returning to our original list, this sequence is preceded by a 0 to produce

list A in Figure 3.3. When i = 1, our list continues with list B in the same

figure. When i = 2, our list finishes with list C from the figure.

40

This gives us the final list:

0 1 2 2

0 2 1 2

0 2 2 1

1 2 2 0

1 2 1 1

1 2 0 2

1 1 1 2

1 1 2 1

1 0 2 2

2 0 1 2

2 0 2 1

2 1 2 0

2 1 1 1

2 1 0 2

2 2 0 1

2 2 1 0

Next, we describe more clearly what is happening in this algorithm. The

algorithm is recursive, and the strings are organized so that every string be-

ginning with i comes before every string beginning with i+1. However, within

these subsets of our list the ordering is not so simple. When we consider a

sublist of strings that all begin with the same prefix w1w2 . . . w`, we can deter-

mine whether the list is reversed or not by considering
∑`

i=1wi. If the sum is

odd the list is reversed and if the sum is even then it is not. This immediately

tells us the ordering of the (`+ 1)st elements in this sublist.

41

Lemma 3.3.3. The first element of the list FWM(m,n,k) is

0 · · · 0r(m− 1) · · · (m− 1),

where k = q(m−1)+r for some q and r where 0 ≤ r < m−1. To determine the

last element of the list, we define u1 = min{m−1, k} and k−u1 = q′(m−1)+r′

for some q′ and 0 ≤ r′ < m− 1. Then the last element of the list is

u =

 u1(m− 1) · · · (m− 1)r′0 · · · 0, if u1 is even, and

u10 · · · 0r′(m− 1) · · · (m− 1), if u1 is odd.

Proof. It is clear from the algorithm that any list always starts with the mini-

mum string in lexicographic order. Thus the list must start with 0 · · · 0r(m−

1) · · · (m− 1).

To find the last element of the list, we proceed by induction on n. For our

base case, we consider n = 1. When n = 1, clearly there is only one string: k.

Note that this agrees with our definition of u.

Before considering the two cases of u1 either odd or even, we note that if

u1 = k then the string must be

u10 · · · 0

and our claim is satisfied. So we may now assume that u1 = m− 1.

When u1 is even, we are searching for the last element of the list

u1 ⊕ FWM(m,n-1,k-u1).

Note that u1 even implies that m− 1 is even. In this case, we know that the

second letter is u2 = min{m− 1, k− (m− 1)}. As before, if u2 = k− (m− 1),

then the only string possible is

(m− 1)(k −m+ 1)0 · · · 0,

42

which meets our requirements. So we assume that u2 = m− 1, which is even.

So now we know that the last element of the list must be

u1 ⊕ (m− 1) · · · (m− 1)r′′0 · · · 0 = (m− 1) · · · (m− 1)r′0 · · · 0,

where 0 ≤ r′′ < m−1 and there is some q′′ so that k−2(m−1) = q′′(m−1)+r′′.

When u1 is odd, we are searching for the last element of the list

u1 ⊕ Rev(FWM(m,n-1,k-u1)),

which is the same as searching for the first element of the list

u1 ⊕ FWM(m,n-1,k-u1).

By the first part of the claim, this is

u10 · · · 0r(m− 1) · · · (m− 1),

where k − u1 = q(m− 1) + r for 0 ≤ r < m− 1.

Corollary 3.3.4. For all m,n, k, the first element of FWM(m,n,k) and the

first element of FWM(m,n,k-1) differ in exactly one position.

Proof. By Lemma 3.3.3, we have the first element of FWM(m,n,k-1) is

0 · · · 0r(m− 1) · · · (m− 1),

with 0 ≤ r < m− 1. Then the first element of FWM(m,n,k) must be

0 · · · 0(r + 1)(m− 1) · · · (m− 1),

where 1 ≤ r + 1 ≤ m− 1. These only differ in one position.

Corollary 3.3.5. For all m,n, k, the last element of FWM(m,n,k) and the last

element of FWM(m,n,k-1) differ in exactly one position.

43

Proof. We proceed by induction on n. When n = 1, then the two strings

must differ in exactly one position. We now assume that n > 1. Define

u1 = min{m− 1, k}. By Lemma 3.3.3, the last element of FWM(m,n,k) is

u =

 u1(m− 1) · · · (m− 1)r′0 · · · 0, if u1 is even, and

u10 · · · 0r′(m− 1) · · · (m− 1), if u1 is odd.

As before, if u1 = k, then this string is u = k0 · · · 0 and the last element of

FWM(m,n,k-1) is (k − 1)0 · · · 0, which clearly only differs in one position. If

u1 = (m− 1) 6= k, then we consider the last element of FWM(m,n,k-1), which

we will call v. In this case we must have u1 = v1, and so we consider the

two substrings u2u3 . . . un and v2v3 . . . vn. If u1 is even, then these are the last

elements of the lists FWM(m,n-1,k-u1) and FWM(m,n-1,k-u1-1), respectively.

By the induction hypothesis these must differ in exactly one position, and we

are done. If u1 is odd, then our two substrings are the first elements of the lists

FWM(m,n-1,k-u1) and FWM(m,n-1,k-u1-1), which by Corollary 3.3.4 differ in

exactly one position.

We are now ready to prove that our algorithm is correct.

Proof of Result 3.3.2. We will show by induction that the algorithm provided

produces the desired Gray code. For our base cases, when n = 1 the lists are

easily constructed. If m − 1 ≥ k, then we get the list [k], otherwise we have

an empty list.

For n > 1, suppose we want to construct the desired Gray code for Bmk (n).

We will show that FWM(m,n,k) is correct. By our induction hypothesis, for

each i from 0 to min(m− 1, k), our sublist M has adjacent elements differing

in exactly two positions. All that remains is to check that this minimal change

property is maintained as i increases.

44

First, when i increases from an odd to an even number, we have the tran-

sition:

i ⊕ Rev(FWM(m,n-1,k-i))

(i+ 1) ⊕ FWM(m,n-1,k-i-1)

By Corollary 3.3.4, the adjacent elements of these two sublists differ in ex-

actly one position, which together with the leftmost position gives exactly two

positions.

When i increases from an even number to an odd number, we have the

transition:

i ⊕ FWM(m,n-1,k-i)

(i+ 1) ⊕ Rev(FWM(m,n-1,k-i-1))

Clearly the adjacent elements of these two sublists differ in the first coordinate,

so we must check that they only differ in one other position at their meeting

point - that is, that the last element of FWM(m,n-1,k-i-1) differs from the

last element of FWM(m,n-1,k-i) in at most one position. To prove this, we

use Corollary 3.3.5.

Another restriction that we can consider for Bm(n) is when we restrict the

multiset. In comparison, note that B2
k(n) consists of all words with multiset

{0n−k, 1k}. Thus from the example illustrated in Section 3.2 (Figure 3.2), we

see that it is not always possible to find a Gray code listing for words from

Bm(n) with fixed multiset when we restrict our listing to allow only adjacent

transpositions. However, there does exist a Gray code for BM(n) when we

transpositions are not required to be adjacent.

45

Theorem 3.3.6. ([36], fasc. 2, p. 39) Given a multiset M of size n with

elements from {0, 1, . . . ,m− 1}, there is a Gray code listing for the subset of

Bm(n) with multiset M in which each word differs from its successor by the

transposition of two elements.

3.4 Permutations of [n]

Under the standard representation, we note that permutations of [n] can

be identified with n-ary words of length n with multiset {0, 1, . . . , n−1}. From

Figure 3.2, it may seem unreasonable to hope for a Gray code listing allowing

transposition of adjacent elements. However, the following well-known result

proves that this is possible.

Theorem 3.4.1. [32] Gray codes for permutations exist when we allow trans-

position of adjacent elements.

Theorem 3.4.1 is a direct corollary to the following well-known result.

Theorem 3.4.2. [32] The set of all permutations of n distinct objects can be

generated by allowing only transposition of adjacent elements.

Proof. We prove this result using a recursive construction. When n = 1, there

is only one permutation, and hence only one way to list it. For n > 1, suppose

that we have a listing L(n−1) of all permutations of [n−1] so that successive

elements differ by an adjacent transposition. For each permutation in L(n−1),

we will create n new permutations of [n] using the following algorithm to create

the new list L(n).

46

For each permutation w in L(n-1) do

If position of w on L(n-1) is odd then

For i from n down to 1 do

Insert n into w in position i

If position of w on L(n-1) is even then

For i from 1 up to n do

Insert n into w in position i

First note that this produces every permutation of [n]. This is because for

each permutation of [n− 1], the algorithm adds the letter n in every position

possible.

To see that this only transposes adjacent elements, first consider the part

of L(n) that is created from one word w in L(n − 1). At each step in the

given algorithm, we are either moving the letter n one position to the right or

to the left, both of which can be done using an adjacent transposition. Next,

consider a point where we shift from a word w to a word v in L(n− 1). The

position of the letter n is the same in the last word created from w, say w∗,

and in the first created from v, say v∗, and it is either in the first position or

the last position. Thus since w and v differ by an adjacent transposition, so

must w∗ and v∗.

In [41], Nijenhuis and Wilf have several exercises asking for various Gray

codes for different objects. The following theorem is the solution to one.

Theorem 3.4.3. [51] There exists a Gray code for the set of permutations

of [n] in which an element is obtained from its predecessor by applying either

σ = (1 2 . . . n) or τ = (1 2).

47

Beyond this, the other results in this area focus on restricted subsets of the

set of all permutations. For example, we have the following theorems, which

we will include without proof.

Theorem 3.4.4. [3] There exists a cyclic Gray code listing for the set of

derangements of [n] so that successive elements differ in at most four positions.

Theorem 3.4.5. [2] There exists a cyclic Gray code listing for the set of

permutations of [n] with k cycles so that successive elements differ by a product

with a three-cycle.

Another way to restrict the class of permutations of [n] is to consider only

permutations that avoid some specified pattern. For example, a permutation

that avoids the pattern 123 cannot have any increasing subsequence of length

three. In [15], many results are given on various classes of pattern-avoiding

permutations, such as permutations of [n] that avoid the pattern 231.

One problem that does not appear to have been considered yet concerns

permutations with fixed rank. The rank of a permutation is defined as the

distance from the identity permutation in the Cayley graph with adjacent

transpositions as generators. This subset of permutations leads us to several

ope problems.

Open Problem 3.4.6. What is a good minimal change property for the set

of permutations with fixed rank?

Open Problem 3.4.7. Does there exist a Gray code listing for the set of

permutations with fixed rank?

48

In considering these open problems, another way to state the definition

is that a permutation of rank k can be written as an ordered product of k

generators. So perhaps a solution to the following problem could be helpful.

Open Problem 3.4.8. Does there exist a Gray code listing for the set of per-

mutations with fixed rank k when these permutations are written as a product

of k generators?

This leads us to consider alternate representations for permutations. We

can represent a permutation in terms of its cycles. This is done by first rep-

resenting a permutation as a product of disjoint cycles. Then we rotate each

cycle to start with the largest element, and then order the cycles by the starting

element, from smallest to largest. In this manner, we can write the permuta-

tion as a word. Wilf asks the following:

Open Problem 3.4.9. [50] If we choose to represent permutations in cycle

form, is there an interesting Gray code listing?

We find the following Gray code using a straightforward bijection.

Result 3.4.10. There exists a Gray code for permutations using the disjoint

cycle representation in which consecutive strings differ by a transposition of

adjacent elements.

Proof. From Stanley [44], we know that there is a bijection between permuta-

tions in the functional notation and permutations in the disjoint cycle notation.

This is obtained by mapping a permutation in disjoint cycle notation to per-

mutation written as a word in functional notation as follows. See Figure 3.4

for an example of this mapping.

49

(3)(2)(1)
(3)(12)
(23)(1)
(2)(13)
(132)
(123)

-

-

-

-

-

-

321
312
231
213
132
123

Figure 3.4: Permutations of [3] using disjoint cycle representation and their
corresponding strings

1. Rotate each cycle so that it starts with the least element.

2. Order the cycles in decreasing order by starting element.

3. Remove the parentheses.

This process can be easily reversed. By Theorem 3.4.1, we know that a Gray

code for permutations using the functional notation exists when we allow trans-

position of adjacent elements. Thus using the same algorithm, we obtain a

Gray code for permutations in disjoint cycle notation (written as a string, as

shown above).

As an example, consider the permutations of [3]. In Figure 3.4, we list each

permutation in disjoint cycle notation, and their corresponding strings.

3.5 Subsets

Consider the set of all subsets of [n]. We must first decide how we want

to represent these subsets. If we are looking for a Gray code listing, it may

be difficult to define minimal change if we list them directly, since the subsets

50

have cardinalities ranging from 0 (the empty set) to n. An alternative choice

is to use the subset membership representation: Each subset is a binary word

of length n with a 1 in position i if and only if i is a member of the subset.

From this definition, we clearly have the following fact.

Fact 3.5.1. [50] There is a bijection between the set of all binary words of

length n and the set of all subsets of [n] using the subset membership repre-

sentation.

Now that we have this fact, we consider the Gray codes for B2(n) that

were determined in Section 3.2. The first one discussed was the reflected

binary code. In this cyclic Gray code the minimal change property ensures

that each word differs from its successor in one position. Translating this back

to subsets, this is equivalent to a cyclic Gray code for subsets in which each

word is modified by either adding an element to or deleting an element from

the current subset to obtain the next one in the list. This is summarized in

the following corollary.

Corollary 3.5.2. There is a cyclic Gray code for the set of subsets of [n] in

which a subset of [n] is obtained from its predecessor by adding or removing

an element.

Next if we consider the revolving door code from Section 3.2, we focus on

the set B2
k(n). This set is the set of all k-subsets of [n] under the correspondence

discussed in Fact 3.5.1. Using this representation, the revolving door code

gives us a cyclic Gray code for the set of k-subsets of [n] in which each word

is obtained from its predecessor by swapping out one set member, that is,

51

removing an element from the set and adding a new one to obtain a different

k-subset of [n]. This is stated in the corollary below.

Corollary 3.5.3. There is a cyclic Gray code for the set of k-subsets of [n]

in which a subset differs from its predecessor in exactly one element.

We can also restrict the minimal change property even more. Suppose that

we write all k-subsets of [n] as strictly increasing vectors, that is we order each

subset from smallest element to largest.

Theorem 3.5.4. [16] If we write the k-subsets of [n] as a strictly increasing

vector, we can find a Gray code listing so that successive elements differ only

in a single component.

An alternative restriction is to limit what values are allowed to be inter-

changed.

Theorem 3.5.5. [50] Suppose that the minimal change properties allowed for

k-subsets of [n] are for i ∈ [n]:

1. delete i and adjoin i+ 1, or

2. delete i+ 1 and adjoin i.

There is a Gray code listing using this property if and only if either k ∈

{0, 1, n− 1, n}, or if n is even and k is odd.

3.6 Weak Orders on [n]

Knuth proves the following theorem, which leads to Open Problem 3.6.2.

52

Theorem 3.6.1. ([36], fasc. 2, Problem 106, p. 119.) For every n, there

exists a Gray code for the weak orders on [n] so that two consecutive objects

differ by one of the two elementary operations wi ↔ wj or wi ← wj.

Open Problem 3.6.2. ([29], Problem 482.) For which positive integers n does

there exist a Gray code for the weak orders on [n] allowing only elementary

operations of the form wi ↔ wi+1 and wi ← wi+1?

In [29], Knuth gives the following example when n = 3:

201, 210, 120, 102, 012, 021, 011, 101, 001, 010, 110, 100, 000.

When we consider only the elements ofW(n) with maximum height, we are

actually considering the set of all permutations of [n]. In this case, Theorem

3.4.1 from Section 3.4 tells us that we can in fact find a Gray code on the

set of permutations so that consecutive objects differ only by transposition of

adjacent elements.

A Gray code as in Open Problem 3.6.2 must list all elements ofW(n, n−1)

before any elements fromW(n, n−2), which then must be before elements from

W(n, n − 3), and so on until the last element is from W(n, 0). To transition

from a word w ∈ W(n, h) to some u ∈ W(n, h− 1) with 0 ≤ h < n, we must

copy over the letters with maximum height. After this copy operation, there

is no way to recover the lost letter and return to listing weak orders containing

letters of height h. This gives us the following result.

Result 3.6.3. In a Gray code for weak orders using the operations wi ↔ wi+1

and wi ← wi+1, all words from W(n, h) must appear before all words from

W(n, h− 1), where 0 ≤ h ≤ n− 1 and 1 ≤ i ≤ n− 1.

53

Because of this, if we can answer the following problem, then we might

have an answer to Open Problem 3.6.2.

Open Problem 3.6.4. For which positive integers n and h with 0 ≤ h < n

does there exist a Gray code for W(n, h) using the operations wi ↔ wi+1 and

wi ← wi+1?

If we can answer Open Problem 3.6.4 successfully, then we can hope to find

some way to connect the lists that correspond to each set W(n, h) to answer

Open Problem 3.6.2. For a few specific values of h, we know that we can find

the Gray code desired in Open Problem 3.6.4. For example, when we look at

the set W(n, 1), we are examining the set of binary words minus the word 1n.

We define

B∗(n) = B(n) \ 1n.

Open Problem 3.6.5. Can we find a Gray code for the set B∗(n) using the

operations wi ↔ wi+1 and wi ← wi+1?

In working towards a solution to Open Problem 3.6.5, we have the following

result.

Result 3.6.6. There is a Gray code for B∗(n) using only the following oper-

ations:

wi ↔ wi+1,

wi ↔ wi+2, and

wi ← wi+1.

To prove this, we use the following theorem.

54

Theorem 3.6.7. ([36], fasc. 3, p. 11.) If 0 < k < n, there is a Gray

code listing for Bk(n) using only the operations wi ↔ wi+1 and wi ↔ wi+2.

Furthermore, this listing can be chosen to begin with 1k0n−k and end with

01k0n−k−1.

Proof of 3.6.6 . For each k, we define the listing from Theorem 3.6.7 as Lk(n).

Let Lk(n) denote this listing in reverse order. Then we claim that the following

sequence produces the desired Gray code:

Ln−1(n)

Ln−2(n)

Ln−3(n)

Ln−4(n)

...

This sequence looks like:

Ln−1(n) : 01n−1

...

1n−10

Ln−2(n) : 1n−202

...

01n−20

Ln−3(n) : 01n−302

...
...

It is clear that at each transition from one sublist to the next, only the copy

operation wi ← wi+1 is used. All that remains is to check that we can use the

copy operation to append 0n to the end of our list. Depending on whether n

55

is odd or even, our listing will end with either L1(n) or L1(n). If it ends with

L1(n), then our list ends with 010n−2 and so we may copy over the sole 1 to

obtain 0n. If the listing ends with L1(n), then it ends with 10n−1 and so again

we may copy over the only 1 to obtain 0n. Either way, we obtain a Gray code

for B∗(n) using only the given operations.

Result 3.6.8. Let M = {0, 1, . . . , n−1}. There exists a Gray code for the set

WM(n) using the operation wi ↔ wi+1.

Proof. The set of weak orders on [n] with multiset {0, 1, . . . , n− 1} is the set

of permutations of {0, 1, . . . , n − 1}, and so this result follows from Theorem

3.4.2.

If we next consider the set of weak orders with fixed multiset, we note that

it is not possible to find a Gray code using the operation wi ↔ wi+1. This is

clear from the example in Figure 3.2. Note that in the case of fixed multiset,

the operation wi ← wi+1 cannot be used.

Another option is to consider alternative representations. We may be able

to make use of order isomorphic representations or equivalence class represen-

tations that will allow us more freedom with our elementary operations. With

these alternative representations, we may not need to list all elements with

bounded height together.

With Open Problem 3.6.2, Knuth also asked the following.

Open Problem 3.6.9. ([29], Problem 482.) For which positive integers n

does there exist a Gray code for the weak orders on [n] where two consecutive

objects always differ in exactly one position?

56

3.7 Partitions

3.7.1 Partitions of an Integer

When we consider partitions of an integer n, we must first determine what

minimal change property to utilize in creating a Gray code. Note that we

cannot only change one part to move up in the list, as this would change the

sum of the parts from n. Thus we first consider changing two parts as little

as possible to obtain the following theorem.

Theorem 3.7.1. [43] Fix n ∈ Z+. There is a Gray code listing for the parti-

tions of n in which a partition differs from its predecessor in two parts: one

part increased by one and one part decreased by one.

One way to restrict the set of partitions of an integer is to set an upper

bound on the size of the parts.

Theorem 3.7.2. [43] For all n ≥ k ≥ 1, there is a way to list all partitions

of n into integers of size at most k so that each partition differs from its

predecssor in two parts: one part increased by one and one part decreased by

one. One can also create this Gray code so that, unless n = 6 and k = 4, it

starts with the lexicographically smallest word and ends with the largest.

The proof of this result includes the recursive construction of the Gray

code broken down into many cases, with several cases written out explicitly.

Note that this result also proves the existence claimed in Theorem 3.7.1 by

considering the case when we set k = n.

57

Another restriction to consider is the set of Fibonacci sequences. These

are the ordered partitions of an integer n into parts of size one, two, and zero.

This set is closely related to the set B̂2(n), as discussed following Result 3.2.9.

Result 3.7.3. There is a Gray code listing for the set of Fibonacci sequences in

which a partition differs from its predecessor in two parts: one part increased

by one and one part decreased by one.

Proof. This is direct from Theorem 3.7.2 with k = 2.

For example, we may consider n = 4, in which case both 1 + 1 + 1 + 1 and

2+2 are partitions. However, we must view the latter sequence as 2+2+0+0.

Then we can move from 2 + 2 to 1 + 1 + 1 + 1 via the following listing when

we allow two parts to change: one increasing by one and the other decreasing

by one.

1 + 1 + 1 + 1

2 + 1 + 1 + 0

2 + 2 + 0 + 0

3.7.2 Ordered Partitions of a Set

An ordered partition P = {P0, P1, . . . , Pk} of an n-set can be defined as

follows. First assume that none of the Pi’s are empty. Identify the n-set

with the set [n]. Label the partitions by their index. Then we define a word

58

w = w1w2 . . . wn to correspond to the ordered partition by setting wi = j if

and only if i ∈ Pj.

Theorem 3.7.4. ([29], Problem 482.) There is a bijection between the set of

ordered partitions of [n] and the set of weak orders on [n].

Proof. Using the word representation given above for an ordered partition, we

see that every ordered partition corresponds to exactly one weak order, so the

map is well-defined. Note that the assumption of no empty parts ensures that

every integer from 0 to k appears in the word, and hence the word is a weak

order.

Next, given a weak order we can reverse the map to define a partition of

[n] that maps to the weak order. Note that there is one and only one partition

that maps to each weak order, and so the map is one-to-one and onto.

Given the previous result, we can find Gray codes for ordered partitions

whenever we can find Gray codes for the corresponding weak orders. Thus,

we get the following corollary to a theorem from Section 3.6.

Result 3.7.5. For every n, one can list the ordered partitions of [n] so that

two consecutive words differ by one of the two elementary operations wi ↔ wj

or wi ← wj.

Proof. This is a direct corollary to Theorem 3.6.1.

59

3.7.3 Unordered Partitions of a Set

We now consider when the partition is unordered. Some identify this set

of partitions as the set of distinct ways to place n labeled balls into unlabeled

boxes.

Theorem 3.7.6. [35] It is possible to arrange the set of all partitions of an

n-set in a list so that each partition is obtained from its immediate predecessor

by changing the class of exactly one element.

This theorem has several proofs by construction. We will include one below,

given by Knuth but unpublished, and summarized in [35].

Proof. The construction is recursive. Suppose that we have the correct Gray

code listing for the set of all partitions of [n−1], call it L(n−1) = (L1, L2, . . .).

For any partition Li of [n − 1], define the children of Li to be any partition

of [n] obtained from Li by either adding n to an existing part, or adding n as

a singleton part to Li. Order the children of Li in a list Li(n) = (L1
i , L

2
i , . . .)

where Lji is obtained from Li by adding n to the jth part of Li (putting the

partition with n as a singleton last). Let Li(n) denote the list of children

from Li reversed. Then we obtain the Gray code listing for partitions of [n]

as follows:

L(n) =



L1(n)

L2(n)

L3(n)

L4(n)

...

60

It is clear that if L(n − 1) is correct, then so is this construction of L(n).

This is because, as in the proof of Theorem 3.2.1, the only points to check are

where the sublists meet. However, at these points, the position of n is held

constant since the direction of the sublists alternate depending on parity. Thus

the desired property is preserved because the remaining positions of [n − 1]

are determined by L(n− 1).

All that remains is to provide a base case. It is clear that when n = 1,

there is only one possible partition, {1}.

For an example, consider when n = 4. A valid ordering for n = 3 is as

follows:

(123)

(12)(3)

(1)(2)(3)

(1)(23)

(13)(2)

First we must consider the children of each partition listed. These are given

in the following chart.

Children

(123) (1234), (123)(4)

(12)(3) (124)(3), (12)(34), (12)(3)(4)

(1)(2)(3) (14)(2)(3), (1)(24)(3), (1)(2)(34), (1)(2)(3)(4)

(1)(23) (14)(23), (1)(234), (1)(23)(4)

(13)(2) (134)(2), (13)(24), (13)(2)(4)

61

(1234)

(123)(4)

(12)(3)(4)

(12)(34)

(124)(3)

(14)(2)(3)

(1)(24)(3)

(1)(2)(34)

(1)(2)(3)(4)

(1)(23)(4)

(1)(234)

(14)(23)

(134)(2)

(13)(24)

(13)(2)(4)

Figure 3.5: Gray code for unordered partitions of {1, 2, 3, 4}

Alternating lists of children forwards and backwards, we end up with the

Gray code in Figure 3.5.

Open Problem 3.7.7. Is there a Gray code listing for the set of all partitions

of an n-set with part size at most k?

3.8 Designs

Given the definition of a transversal design in Section 2.2, we know that in

any TD(k, n), every pair of points from distinct groups is contained in exactly

one block. Thus we can represent each block by a pair of points.

62

Fact 3.8.1. There is a basis representation for any TD(k, n) such that each

block is represented by a string of length 2.

In order to more specifically select which points we will use to represent

each block, we use the following theorem.

Theorem 3.8.2. ([46], p. 146.) Suppose that n ≥ 2 and k ≥ 3. Then there

exists a set of k − 2 MOLS of side n if and only if there exists a TD(k, n).

While the proof of this result is not difficult, we will be mostly interested

in the construction of a TD(k, n) from a set of k − 2 MOLS of side n, labeled

arbitrarily as L1, L2, . . . , Lk−2. The TD(k, n) blocks are defined as follows.

Fix (i, j) ∈ [n] × [n]. Let Lh(i, j) denote the entry in row i, column j, in Lh.

Define the blocks of our TD(k, n) to be {i, j, L1(i, j), L2(i, j), . . . , Lk−2(i, j)},

with the first element in group G1, the second in group G2, and so on until

the last element is in group Gk.

From this construction, we see that each block is completely defined by

the two elements, i and j in groups G1 and G2. If we use this as our basis

representation, it is clear that every pair (i, j) must appear, i.e. the set of

blocks using the basis representation corresponds to the set of all n-ary words

of length 2. This is summarized in the following fact.

Fact 3.8.3. There is a direct correspondence between the blocks of a TD(k, n)

and the set of all n-ary words of length 2.

Using this representation we can find a Gray code for any TD(k, n) when-

ever there exists a Gray code for n-ary words of length 2. Thus we get the

following corollary.

63

Result 3.8.4. For every n ∈ Z+, there exists a Gray code listing for the blocks

of any TD(k, n) using the basis representation so that each word differs from

its successor in exactly one index position.

Proof. Under the correspondence from Fact 3.8.3, this is a direct corollary to

Theorem 3.3.1.

It is important to note that this representation of a TD(k, n) is not unique,

and so several transversal designs could have the same representation, and

hence the same Gray code.

Similar to Theorem 3.8.2, we can relate MOLS and BIBDs.

Theorem 3.8.5. [46], p. 139. Let n ≥ 2. Then the existence of any one of

the following designs implies the existence of the other two designs.

• n− 1 MOLS of side n.

• a projective plane of order n, or an (n2 + n+ 1, n+ 1, 1)-BIBD.

• an affine plane of order n, or an (n2, n, 1)-BIBD.

In particular, this theorem together with Theorem 3.8.2 implies that from

either a (n2 + n + 1, n + 1, 1)-BIBD or a (n2, n, 1)-BIBD, we can construct a

TD(n + 1, n), and vice versa. This suggests that there may be some way to

construct a Gray code for projective and affine planes from the corresponding

transversal designs.

Open Problem 3.8.6. Is there a Gray code for projective planes or affine

planes?

To consider more general BIBDs, for any (v, k, λ)-BIBD, define a κ-inter-

secting Gray code for 0 < κ < k as a listing of the blocks of the design such

64

that consecutive blocks intersect in exactly κ points. For example, the Gray

code that we constructed in Result 3.8.4 is a 1-intersecting Gray code. Finding

κ-intersecting Gray codes is similar to (and in some cases exactly the same as)

finding Hamilton cycles in the block intersection graph of a design. The block

intersection graph of a design represents blocks as vertices and draws an

edge between blocks if and only if the blocks share a common element. In the

case of (v, k, 1)-BIBDs, a Hamilton cycle in the block intersection corresponds

to a 1-intersecting Gray code. For more on block intersection graphs, see

[1, 24, 42], among others.

Dewar proves the following theorem in her dissertation, and poses the

question that follows.

Theorem 3.8.7. [13] With “sporadic” exceptions, for v ≡ 1, 3, 4, 7 (mod 12),

there is a TTS(v) that admits a 2-intersecting Gray cycle for its blocks.

Open Problem 3.8.8. [13] Does there exist a TTS(v) with v ≡ 0, 6, 9 (mod 12)

that admits a 2-intersecting Gray cycle?

In her dissertation, Dewar uses a construction that involves cyclic designs

and difference sets, which we will not discuss. We would like to consider Open

Problem 3.8.10 in the hopes of a simpler, or at least different, construction.

First, we define the direct product for Steiner triple systems.

Construction 3.8.9. (Direct Product, [10], p. 39.) Let v, w ∈ Z+. If there

exists an STS(v) and an STS(w), then there exists an STS(vw).

Construction. Suppose that (X,A) is an STS(u) and (Y,B) is an STS(v). We

identify X with Zu and Y with Zv. Then we construct a new STS(uv) = (Z, C)

65

with points:

Z = Zu × Zv

and blocks:

1. {(i, a), (i, b), (i, c)} with i ∈ Zu and {a, b, c} ∈ B,

2. {(i, a), (j, a), (k, a)} with {i, j, k} ∈ A and a ∈ Zv, and

3. {(i, a), (j, b), (k, c)} with {i, j, k} ∈ A and {a, b, c} ∈ B.

Open Problem 3.8.10. Suppose that the design (X,B) is the direct product

of two Steiner triple systems that admit Gray codes. Does (X,B) also admit

a Gray code under the same (or a similar) minimal change property?

Define a t-swap Gray code on a design (X,B) to be an ordering of the

blocks in B as B1, B2, . . . , Bn in which |Bi ∩Bi+1| ≥ t.

Lemma 3.8.11. Given a design (X,B) with block size k, if an s-overlap cycle

exists for (X,B), then (X,B) has a (k − s)-swap cyclic Gray code.

Proof. An s-overlap cycle on (X,B) requires consecutive blocks to share s

elements. Since each block contains k points, and any two adjacent blocks

in the overlap cycle share at least s points, they can differ by at most k − s

points. Thus, listing the blocks from B in the order that they appear in the

s-overlap cycle gives us a cyclic Gray code on (X,B).

66

Chapter 4

UNIVERSAL CYCLES

4.1 Introduction and Definitions

A universal cycle or ucycle over a set of combinatorial objects C is

defined as a cyclic sequence of letters in which every object in C is represented

once and only once in a consecutive manner. For example, consider the set of

weak orders of [3]. This set consists of the following objects:

W(3) =

 000, 001, 011, 010, 100, 101, 110,

021, 102, 012, 120, 201, 210


A ucycle on W(3) is 0001101201021.

4.2 Binary Words of Length n

Universal cycles on B(n) are also referred to as binary de Bruijn cycles.

The first main result in this area has been proven by many.

Theorem 4.2.1. [12, 20, 39] For all n ∈ Z+ there exists a universal cycle on

B(n).

Proof. We construct the transition graph G(n) with the elements of B(n)

represented as edges, and show an Euler tour in the graph. To do this, we let

the vertex set of G(n) equal B(n− 1). Then we add a directed edge from one

67

vertex v to another w if the last n− 2 letters of v are equal to the first n− 2

letters of w.

From the definition of G(n), at each vertex w1w2 . . . wn−1 we can pair each

outgoing edge w1w2 . . . wn with an incoming edge wnw1w2 . . . wn−1. From this,

it is clear that the indegree of each vertex is equal to its outdegree.

Next, we show a path from any arbitrary vertex to the vertex 00 · · · 0.

This proves that the graph is weakly connected. Consider an arbitrary vertex

w1w2 . . . wn−1. There is a path from this vertex to 00 · · · 0 as shown below:

w1 . . . wn−1 → w2 . . . wn−10→ w3 . . . wn−100→ · · · → wn−10 · · · 0→ 00 · · · 0.

Since the graph is balanced and weakly connected, it is eulerian by Theorem

2.1.2. The Euler tour corresponds to a universal cycle on B(n).

We now restrict our attention to fixed weight binary words. Note that if

we use the standard word representation for elements of Bk(n), the transition

graph will consist of disconnected cycles. The only words that can be reached

from a given word are rotations, i.e. we find cycles of the form shown in Figure

4.1. To cope with this, we must consider some alternative representation, so

we begin with the following result.

Result 4.2.2. Let n ∈ Z+, and let M be some fixed multiset of size n. Define

the set A to be the set of all permutations of M . Then there exists a ucycle

for A using the prefix representation.

Proof. Construct a graph GM with

V (GM) = {v = a1a2 . . . an−2 | v = a− for some a ∈ A−}

and

68

E(GM) = {(u, v) | u = a− and v = a+ for some a ∈ A−}.

Note that the edges in this graph correspond to the elements of A−, so we

would like to find an Euler tour in GM , which will produce a ucycle as desired.

For any vertex w1 . . . wn−4wn−3wn−2 corresponding to word w = w1 . . . wn,

there is an undirected path to the vertex w1 . . . wn−4wn−2wn−3. This path is:

w1 . . . wn−4wn−3wn−2 ← wnw1 . . . wn−4wn−3

← wn−1wnw1 . . . wn−4

→ wnw1 . . . wn−4wn−2

→ w1 . . . wn−4wn−2wn−3.

Thus we can always find an undirected path from one vertex to another

whose difference is the transposition of elements n − 1 and n − 2. Since we

also have paths from a vertex v = w−− to ρ(v) = ρ(w)−− (where ρ is the

previously defined rotation function), we can find an undirected path between

any two vertices that differ by adjacent transpositions. Then, since the set of

all adjacent transpositions generate all permutations of a set (see [32]), there

exists an undirected path between any vertices with the same multiset, so the

graph GM is weakly connected.

Note that the graph GM must also be balanced, since having fixed multiset

ensures that any edge

w1 . . . wn−2 → w2 . . . wn−1

can be balanced by the edge

wn−1w1 . . . wn−3 → w1 . . . wn−2.

Thus the graph is balanced and connected, and so is eulerian by Theorem

2.1.2.

69

w1w2 . . . wn

w2w3 . . . wnw1

· · ·

wnw1 . . . wn−1
@@R

��	@@I

���

Figure 4.1: Cycles found in the transition graph for Bk(n)

Corollary 4.2.3. There is a universal cycle on Bk(n) using the prefix repre-

sentation.

Proof. The set Bk(n) can be viewed as the set of all words with multiset

{0n−k, 1k}. Applying Result 4.2.2, we know that a universal cycle on this set

exists using the prefix representation.

Another alternative is to consider binary n-tuples with weights having the

same parity. Let Bo(n) denote the subset of B(n) in which all words have odd

weight, and let Be(n) denote the subset of B(n) in which all words have even

weight.

Result 4.2.4. The sets Bo(n) and Be(n) admit universal cycles using the prefix

representation.

Proof. First, note that it is valid to apply the prefix representation to these

sets. Depending on the parity of the prefix of the n-tuple, the nth bit will

be either 0 or 1 if the prefix parity either does or does not match the set

considered, respectively.

Next, note that we must have B−o (n) = B(n−1) = B−e (n). This is straight-

forward, for if we consider any word in B(n − 1), it either has the correct

70

weight parity (and so we add 0 to the end of the word), or it does not (and so

we add 1 to the end of the word).

Finally, since we have already seen that B(n − 1) must allow a ucycle in

Theorem 4.2.1, both B−o (n) and B−e (n) also admit ucycles.

As another possible restriction to the set of all binary strings, we would like

to consider the following question. Note that we saw the Gray code version in

Theorem 3.2.10.

Open Problem 4.2.5. Is there a universal cycle on the set of words of length

2n of balanced parentheses using some representation?

Note that we must use an alternative representation, as otherwise we would

arrive at a word starting with a right parenthesis, which is invalid. One choice

for an alternative representation is to assign 0 to a left parenthesis and 1 to a

right parenthesis, or vice versa. Note that if this assignment is constant over

the entire set of words, we will have the same problem with words starting with

the representative for a right parenthesis. Thus we consider an assignment to

be made for each word individually. However even with this representation

we run in to trouble, as now we are considering a specific subset of fixed

weight binary strings, which we have shown in Figure 3.2 do not allow ucycles

without changing the representation. For this problem of balanced parentheses

represented as binary strings, we have yet to find a representation that works.

Fortunately, there are many representations for strings of balanced parentheses

(see [44]).

71

4.3 m-ary Words of Length n

When we extend our alphabet from size two to size m, have a similar

theorem to Theorem 4.2.1. We define an m-ary de Bruijn cycle of order

n to be a universal cycle over the set of m-ary strings of length n.

Theorem 4.3.1. [12, 20, 39] De Bruijn cycles exist for any m and any n.

Proof. We can prove this result in much the same way as Theorem 4.2.1 in

Section 4.2. We construct the transition graph G(n) with the elements of

Bm(n) represented as edges and show that an Euler tour must exist in the

graph.

Define the transition graph G(n) with vertex set equal to Bm(n− 1), and

draw an edge from vertex w1w2 . . . wn−1 to v1v2 . . . vn−1 if wi+1 = vi for all

i ∈ [n − 2]. Then an Euler tour in this graph will correspond to a universal

cycle on the set Bm(n).

First we must show that the graph is balanced. This is clear, since at vertex

w1w2 . . . wn−1, we can pair together every outgoing edge w1w2 . . . wn−1wn with

incoming edge wnw1w2 . . . wn−1.

Next we show that the graph is weakly connected. This again is clear,

since there must be a path from any vertex w1w2 . . . wn−1 to the vertex 0n−1

72

by following the path

w1w2 . . . wn−1 → w2w3 . . . wn−10

→ w3w4 . . . wn−10
2

...

→ wn−10
n−2

→ 0n−1.

Thus since the graph is balanced and weakly connected, we may apply

Theorem 2.1.2 to see that G(n) must be eulerian.

There are also many interesting algorithms for generating universal cycles

of m-ary words of length k. For example, in [18], Fredricksen and Maiorana

were able to create an algorithm that generated a list of necklaces in decreasing

order, and then use this list to generate the m-ary de Bruijn sequence for words

of length n. For the definition of necklaces, see Section 3.2.

When we consider restricting the set of m-ary words, it is a natural exten-

sion from the work on binary words to consider m-ary words of fixed weight.

Open Problem 4.3.2. Is there a universal cycle on the set of fixed weight

words?

In Section 4.6 we consider a similar question for fixed weight weak orders.

It may be possible that some of the results in Section 4.6 can be transformed

to help solve Open Problem 4.3.2. There may be some way to apply the ideas

and results that we have found in Section 4.6 to help us answer this question.

One other idea is to create equivalence classes on the set Bmk (n) that can each

be represented by a unique weak order. For example, on B4
8(3) we might have

that 044 and 233 both correspond to the weak order 011.

73

4.4 Permutations

Universal cycles for permutations were first introduced by Chung, Diaconis,

and Graham, in [7]. They unsuccessfully searched for a method to find such a

ucycle for permutations using order isomorphic representations and allowing

more than n symbols in the alphabet used for the words representing permu-

tations of [n]. Note that permutations listed in our standard representation

give the same complications as fixed weight binary words - only rotations can

be obtained, leading to a transition graph consisting of disconnected cycles.

The following conjecture was put forth.

Conjecture 4.4.1. [7] For n ≥ 3, only n + 1 symbols are needed to create a

universal cycle on the set of all permutations of [n].

In 1996, Hurlbert and Isaak answered this conjecture using an equivalence

class representation.

Theorem 4.4.2. [28] There exists a complete family of equivalence class uni-

versal cycles for permutations of {1, 2, . . . , n} using the symbols {0, 1, 2, . . . , n}.

Hurlbert and Isaak proved the previous result by examining the equivalence

classes under a specific relation on the set of permutations of {0, 1, . . . , n}.

They first showed that a universal cycle exists for a carefully identified set of

representatives for the equivalence classes, and then showed that this ucycle

can be “lifted” back to a family of universal cycles in which each equivalence

class is represented exactly once. Each class member is used as an equivalence

class representative in exactly one of the cycles in the family.

74

Some of the techniques used to prove Theorem 4.4.2 may be useful in other

unanswered questions. For example, in Open Problem 4.3.2 we will need to

utilize some sort of equivalence class representation.

In 2009, Johnson used a different technique to answer Conjecture 4.4.1

using order isomorphic representations. Again, the ideas developed in this

paper may be useful in solving some of our questions that cannot be solved in

a more straightforward manner.

Theorem 4.4.3. [31] Universal cycles exist for the set of permutations of

{1, 2, . . . , n} using order isomorphic representations with an alphabet of n+ 1

characters.

Johnson proved his result inductively. He began by partitioning the transi-

tion graph containing vertices corresponding to n-permutations of {0, 1, . . . , n}

into many short cycles that are simply cycles created by applying the rotation

function to one string repeatedly. He was able to increase these short cycles

by linking together pairs that exhibit similar strings. He continued to enlarge

the cycles until he finds one of length n! and each permutation of [n] is order

isomorphic to some vertex in the cycle. At this point, he found a universal

cycle.

Note that given our results in Section 4.6 on weak orders on [n], we can

prove the existence of universal cycles for permutations of [n] easily using the

prefix representation.

Theorem 4.4.4. Universal cycles exist for the set of permutations of [n] using

prefix representations.

Proof. Note that we can consider permutations on the set {0, 1, . . . , n − 1}

75

instead of [n]. Then each permutation can be viewed as a weak order of [n]

with multiset {0, 1, . . . , n − 1}. It is clear then that the set of weak orders

with fixed multiset {0, 1, . . . , n− 1} is the same as the set of permutations on

{0, 1, . . . , n − 1}. Then by Result 4.2.2 in Section 4.6, we know that this set

allows a universal cycle using the prefix representation.

So far, the only result found that restricts the set of permutations considers

the set of k-permutations of [n].

Theorem 4.4.5. [30] For every k ≥ 3 and n ≥ k + 1, there is a universal

cycle on the set of k-permutations of [n].

Since no other results have been found, we pose the following question.

Open Problem 4.4.6. What sets of restricted permutations of [n] allow uni-

versal cycles?

4.5 Subsets

Universal cycles for k-subsets of [n] appear to be more difficult to find than

universal cycles for other combinatorial structures. One reason for this is the

idea that subsets are unordered sets, whereas all other objects that we have

considered are ordered sets. If we assume that our vertices represent strings

(i.e. the letters are ordered), each subset of size k would have k! different

vertices associated with it. Then a Hamilton cycle in the transition graph

does not correspond to a universal cycle. We must determine which ordering

of the k-subset to use in the universal cycle.

76

Theorem 4.5.1. [7] If a ucycle for k-subsets of [n] exists for n, k ∈ Z+, then

k must divide
(
n−1
k−1

)
.

Proof. Consider an arbitrary element x ∈ [n]. If a universal cycle for k-subsets

of [n] exists, then each occurrence of x in the ucycle is used to represent exactly

k of the
(
n
k

)
subsets. Note that there are exactly

(
n−1
k−1

)
subsets that contain

x. Thus the total number of occurrences of x in the ucycle is
(
n−1
k−1

)
divided by

k. Since we are assuming the ucycle to exist, this number must be an integer.

Thus, we have k |
(
n−1
k−1

)
.

From this necessary condition, the following conjecture was formed.

Conjecture 4.5.2. [7] Given k ∈ Z+, there is some n0(k) ∈ Z+ so that for

all n ≥ n0(k), a universal cycle for k-subsets of [n] exists, provided k divides(
n−1
k−1

)
.

Progress on this conjecture has been slow. In 1993, Jackson proved the

conjecture for k = 3 or 4 with n relatively prime to k [30]. In 1994, Hurlbert

was able to prove that it holds for k = 3, 4 or 6 with n relatively prime to k

[26]. However, beyond this, the conjecture remains open.

Nonexistence results in this area are scarce. One of the few results is as

follows.

Theorem 4.5.3. [45] For n ≥ 4, no universal cycles for (n− 2)-subsets of [n]

exist.

If we consider the subset membership representation instead of the stan-

dard subset representation, then the set of all k-subsets of [n] corresponds to

the set Bk(n), the set of all binary words of length n and weight k.

77

Corollary 4.5.4. There is a universal cycle for the set of k-subsets of [n]

using the prefix representation of the subset membership representation.

Proof. This is direct from Corollary 4.2.3 in Section 4.2.

If we also consider the set of all subsets of [n] using the subset membership

representation, we are now looking at the set B(n). We saw in Section 4.2 that

this too admits a universal cycle for all n ∈ Z+.

Corollary 4.5.5. There is a universal cycle for the set of subsets of [n] using

the subset membership representation.

Proof. This is a direct corollary from Theorem 4.2.1 in Section 4.2.

Recently, Blanca and Godbole in [5] have produced some new results in

this area, one of which is the following.

Theorem 4.5.6. [5] Let A be the set of all subsets of [n] with size between p

and q for p < q. Let A′ be the set of strings representing A using the subset

membership representation. There exists a univeral cycle for A′.

4.6 Weak Orders

As no work appears to have been done in this area, we begin with a straight-

forward question.

Question 4.6.1. Is there a universal cycle for W(n)?

For example, one ucycle for W(3) is:

0001101201021.

78

Let w = w1w2 . . . wn ∈ W(n). Define the rotation function ρ fromW(n)

to itself by ρ(w) = w2w3 . . . wnw1.

Fix n ∈ Z+ and define the graph G(n) as follows:

V (G(n)) = {v = v1 . . . vn−1 | v = w− for some w ∈ W(n)}

and

E(G(n)) = {(v1, v2) | v1 = w− and v2 = w+ for some w ∈ W(n)}

Note that the edge set is well defined, since any prefix w− of some w ∈ W(n)

is also a suffix of the word wnw1w2 . . . wn−1 ∈ W(n).

The first result answers Question 4.6.1.

Result 4.6.2. For all n ∈ Z+, there exists a ucycle on W(n).

Proof. For n = 1, we get the universal cycle 0. For n ≥ 2, we show a method

to explicitly construct a ucycle on W(n) using the graph G(n).

By the construction of G(n), it is clear that an Euler tour will correspond

to a ucycle. Using Theorem 2.1.2 from Section 2.1, we need only show that the

graph is weakly connected and balanced and we are done. The graph is clearly

balanced, since any incoming edge (w1 . . . wn−1, w2 . . . wn) can be paired with

the outgoing edge (w2 . . . wn, w3 . . . wnw1) at the vertex w2 . . . wn.

Next, we will show a path from any vertex w1 . . . wn−1 to the vertex 00 . . . 0.

We may apply the rotation function ρ to w, where w = w1 . . . wn ∈ W(n), as

many times as necessary until we arrive at some u = u1u2 . . . un ∈ W(n)

with un equal to the height of w. Then u is represented in G(n) as the edge

(u1 . . . un−1, u2 . . . un). Since un is a maximum letter in w, we must also have

u1 . . . un−10 ∈ W(n), and so we have (u1 . . . un−1, u2 . . . un−10) ∈ E(G(n)).

79

�
��21 �
��02

�
��00 �
��10 �
��11

�
��12 �
��01

�
��20

�

��

6

�

?

?

?

�
�
��

�
�
��

�
�
��

@
@
@R

?

Figure 4.2: G(3): The transition graph for ucycles for weak orders on [3]

Note that u2 . . . un−10 has more zeros than w1 . . . wn−1. Repeating this process,

we add more zeros at every step, which eventually must terminate when we

arrive at the vertex with n− 1 zeros. Thus, we have a path from w1 . . . wn−1

to 00 . . . 0, and so G(n) is weakly connected.

Figure 4.2 shows an example of the graph G(3). It produces the universal

cycle 000120110102 for n = 3 (among others).

Next we consider some classes of restricted weak orders.

Question 4.6.3. Is there a ucycle for Wk(n)?

To answer Question 4.6.3, we will construct a new transition graph, Gk(n).

Define

V (Gk(n)) = {v = w1 . . . wn−2 | v = w− for some w ∈ W−k (n)}

and

E(Gk(n)) = {(v1, v2) | v1 = w− and v2 = w+ for some w ∈ W−k (n)}.

80

As before, this definition of edges is well-defined, for if w1w2 . . . wn−1 ∈ W−k (n),

then wn−1w1w2 . . . wn−2 ∈ W−k (n). Using this graph, we obtain the following

result.

Result 4.6.4. For all n, k ∈ Z+ with n ≥ 3 and k ≤
(
n
2

)
, there exists a ucycle

for W−k (n).

Since the vertices in our transition graph Gk(n) are words of length n− 2,

we identify the vertex v that is the minimum word in lexicographic order as

the minimum vertex. It will be useful to determine exactly what word v is,

and so we have the following fact, together with a lemma.

Fact 4.6.5. ([36], fasc. 3, p. 19.) For every k ∈ Z+, there are unique a, b ∈ N

with a ≥ b so that k =
(
a
2

)
+
(
b
1

)
.

Lemma 4.6.6. Fix n, k ∈ Z+. Define

w = [0, b− 1]b2[b+ 1, a]

with k =
(
a
2

)
+
(
b
1

)
and a ≥ b, and adding additional 0’s to the front to create

a word of length n. Then the minimum vertex v in Gk(n) is v = w−−.

Proof. If we are looking for the element w ∈ Wk(n) with w−− minimum in

lex order, we may consider only the elements of Wk(n) with the largest two

elements in positions n−1 and n. These elements must be as large as possible

in order to get the smallest elements possible in positions 1 to n − 2, so the

string we desire will have letters of the largest height possible. Note that if

ht(w) = h and w ∈ Wk(n), then we must have k ≥
(
h+1
2

)
. Thus we choose wn

as large as possible so that
(
wn+1

2

)
≤ k <

(
wn+2

2

)
=
(
wn+1

2

)
+ (wn + 1).

81

Now, by our choice of wn, the remaining weight after removing 0, 1, 2, . . . , wn

is 0 ≤ k−
(
wn+1

2

)
< wn+1. Thus k−

(
wn+1

2

)
∈ {0, 1, . . . , wn}, and so k−

(
wn+1

2

)
is equal to some element b ≤ wn. Then we can add another letter b to the

string to obtain a word with a multiset of cardinality at most n. If the multi-

set contains less than n elements, we add 0’s until it has size n. Sorting this

multiset from smallest element to largest we obtain the desired weak order

w.

Before we begin the proof of Result 4.6.4, we define one more term. We

say that there is a duplicate at index i if wi = wi+1 > 0 for some string

w1w2 . . . wn ∈ W(n). Now we are finally ready to prove Result 4.6.4.

Proof of Result 4.6.4. First, note that if k >
(
n
2

)
, then it is not possible

to construct a weak order on [n] with weight k. The maximum weight weak

order possible is one with multiset {0, 1, . . . , n− 1}, which must have weight

n−1∑
i=0

i =

(
n

2

)
.

We would like to show an undirected path from any vertex x−− = x1x2 . . . xn−2

to the minimum vertex v−− = v1v2 . . . vn−2 in Gk(n). Since x ∈ Wk(n)−−, we

may define xn−1, xn accordingly so that x ∈ Wk(n). By Result 4.2.2, we may

assume that x1 ≤ x2 ≤ . . . ≤ xn−2 ≤ xn−1 ≤ xn. Our first observation is

that if x has either no duplicates or one duplicate then we must have x = v,

and hence x−− = v−−. This follows from the fact that the minimum vertex

writes weight k in the most compact way possible, i.e. with either zero or one

duplicate. Now we assume that x has at least two duplicates, and we have

several cases depending on the relationship between ht(v) and ht(x).

82

If ht(x) = ht(v) = h, then using Result 4.2.2 we may rewrite both weak

orders as

x = [0, h]xh+2xh+3 . . . xn and v = [0, h]vh+2vh+3 . . . vn

where xh+2 ≤ xh+3 ≤ · · · ≤ xn and vh+2 ≤ vh+3 ≤ · · · ≤ vn. Now since x 6= v

there must be indices i < j with i, j ∈ {h + 2, h + 3, . . . , n} so that xi > vi

and xj < vj. Using Result 4.2.2 again, we can reorder the letters of x so that

we have

x−− = xixj[0, h]xh+2xh+3 . . . xn−2 (with xi, xj missing from the end).

Then we have the undirected path:

xixj[0, h]xh+2xh+3 . . . xn−2 → xj[0, h]xh+2xh+3 . . . xn−2xn−1

→ [0, h]xh+2xh+3 . . . xn (with xi, xj missing)

← (xj + 1)[0, h]xh+2xh+3 . . . xn−1

← (xi − 1)(xj + 1)[0, h]xh+2xh+3 . . . xn−2

Continuing in this manner, we will eventually arrive at a permutation of the

vertex v−−, which then connects to v−− using Result 4.2.2.

If ht(x) < ht(v), then we recall that x must have at least two duplicates,

say at xi and xj. Using Result 4.2.2, rewrite x with xi, xj at the front, i.e. we

now consider the vertex

x−− = xixjx1x2 . . . xn−2.

83

Then we have the undirected path:

xixjx1x2 . . . xn−2 → xjx1x2 . . . xn−2xn−1

→ x1x2 . . . xn−2xn−1xn

← (xj + 1)x1x2 . . . xn−2xn−1

← (xi − 1)(xj + 1)x1x2 . . . xn−2

We continue to decrease xi and increase xj until either xi = 0 or xj = ht(x)+1.

In either case, we have removed a duplicate. Continuing, we will eventually

arrive at a vertex with either 0 or 1 duplicates, which as stated previously

must be a permutation of the minimum vertex v−−.

Next, we note that it is not possible to have ht(x) > ht(v), as otherwise x

would have been chosen as the minimum vertex (v was chosen so as to have

maximum height). Thus in all cases we have shown an undirected path from

x−− to v−−, so the graph must be weakly connected.

Lastly, the graph must be balanced, since any outgoing edge from vertex

w1 . . . wn−2 to w2 . . . wn−1 can be paired with the incoming edge wn−1w1 . . . wn−3

to w1 . . . wn−2 and this pairing gives a unique incoming edge for each outgoing

edge.

The next theorem discusses fixed height weak orders. Note that fixed height

weak orders can be thought of as surjective functions from [n] to {0, 1, . . . , h}.

While the following theorem appears in [4], we offer a shorter alternative proof

to our Corollary 4.6.8.

Theorem 4.6.7. [4] A ucycle of onto functions from [n] to {0, 1, . . . , h} exists

if and only if n > h+ 1.

84

Corollary 4.6.8. For all n ∈ Z+ and all h ∈ N with 0 ≤ h < n − 1, there

exists a universal cycle for W(n, h).

Proof. We construct the standard transition graph G(n, h) as follows. We

define

V (G(n, h)) =W−(n, h) =W+(n, h)

and

E(G(n, h)) = {(v, w) | v ∈ W−(n, h), w ∈ W+(n, h),

and vi = wi+1 for 1 ≤ i < n− 1}

= W(n, h).

Note that if w1w2 . . . wn ∈ W(n, h) then wnw1w2 . . . wn−1 ∈ W(n, h) and so

G(n, h) is balanced.

To finish the proof, we must show that the graph is connected. Define our

minimum vertex in the graph to be v− = 0n−h−1[1, h]. Let x− = x1x2 . . . xn−1

be an arbitrary vertex, and define xn so that x = x1x2 . . . xn−1xn ∈ W(n, h).

We will show a path from x− to the minimum vertex v− by first illustrating that

all permutations of the minimum vertex are connected, and then describing a

path from x− to some permutation of v−.

Starting from the vertex v− = 0n−h−1[1, h], we show that any adjacent

transposition can be reached by a path. Since adjacent transpositions gener-

ate all permutations, this proves that all permutations of v− are connected.

Let w1w2 . . . wn−1 be a permutation of v−. We will show that the letters

wi and wi+1 may be transposed. First, we note that {w1, w2, . . . , wn−1} =

{0, 1, 2, . . . , h} by the definition of v−. Then we find the path as shown in

Figure 4.3. Note that along this path, every edge contains all letters from

85

w1w2 . . . wn−1 → w2w3 . . . wn−1wi

→ w3w4 . . . wn−1wiw1

... (rotations of the weak order w1w2 . . . wn−1wi)

→ wi+1wi+2 . . . wn−1wiw1w2 . . . wi−1

→ wi+2wi+3 . . . wn−1wiw1w2 . . . wi−1wi+1

→ wi+3wi+4 . . . wn−1wiw1w2 . . . wi−1wi+1wi
... (rotations of the weak order

w1w2 . . . wi−1wi+1wiwi+2wi+3 . . . wn−1wi)

→ w1w2 . . . wi−1wi+1wiwi+2wi+3 . . . wn−1

Figure 4.3: Path in G(n, h) illustrating adjacent transpositions

the set {w1, w2, . . . , wn−1} = {0, 1, 2, . . . , h}, and so is a valid weak order from

W(n, h).

Now let x− = x1x2 . . . xn−1 ∈ V (G(n, h)) be arbitrary. We want to define

a path from x− to some permutation of the minimum vertex in G(n, h) by

repeatedly replacing any duplicates in x with 0. To create this path, we first

define xn so that x = x1x2 . . . xn ∈ W(n, h). Then if x has a duplicate at index

i, we can replace it by following the path:

x1x2 . . . xn−1 → x2x3 . . . xn−1xn

... (rotations of x)

→ xixi+1 . . . xnx1x2 . . . xi−2

→ xi+1xi+2 . . . xnx1x2 . . . xi−1

→ xi+2xi+3 . . . xnx1x2 . . . xi−10

Repeating this procedure, we will eventually arrive at a vertex that is the

prefix of some weak order y that is a permutation of 0n−h[1, h]. Following

86

rotations, we can find a path to a vertex that is a permutation of v−. Thus

there exists a path from x− to v−.

By Theorem 2.1.2, since G(n, h) is balanced and connected, it is eulerian.

Therefore we can find a ucycle by following the Euler tour in G(n, h).

Finally, we prove the following result on the subset of fixed weight, fixed

height weak orders on [n].

Result 4.6.9. For every n, k, h ∈ Z+ with k ≤
(
n
2

)
, n > 2, and 0 ≤ h < n,

there is a ucycle for W−k (n, h).

Proof. We construct the transition graph Gk(n, h) as usual, with

V (Gk(n, h)) =W−−k (n, h)

and

E(Gk(n, h)) =W−k (n, h).

First, we note that the graph is even, since if w1w2 . . . wn−1 ∈ W−k (n, h), then

w2 . . . wn−1w1 ∈ W−k (n, h).

Next we must show that the graph is connected. We define the minimum

vertex v = v1v2 . . . vn−2 by constructing a specific weak order w in Wk(n, h),

and then removing the last two elements. Any weak order in Wk(n, h) must

contain the letters 0, 1, 2, . . . , h, which have total weight k′ =
∑h

i=0 i. Define

s = s1s2 . . . sn−(h+1) to be the lexicographically minimum element of the set

Bh+1
k−k′(n−(h+1)), the set of words of length n−(h+1) and weight k−k′ using

the alphabet {0, 1, 2, . . . , h}. Then extend s to be a weak order by defining

w = s1s2 . . . sn−(h+1)01 . . . h. At this point we have w ∈ Wk(n, h), but we

reorder the letters of w so that

w = [0, h]wh+2wh+3 . . . wn, where wh+2 ≤ wh+3 ≤ · · · ≤ wn,

87

or w = [0, h]s1s2 . . . sn−(h+1).

Then define the minimum vertex to be v = w1w2 . . . wn−2.

Now we consider an arbitrary vertex x = x1x2 . . . xn−2, and we will show

that it is connected to the minimum vertex. Since x ∈ W−−k (n, h), we define

xn−1 and xn so that x1x2 . . . xn ∈ Wk(n, h). Then, by Lemma 4.2.2, we know

that x must be connected to some vertex

y = [0, h]yh+2yh+3 . . . yn−2, where yh+2 ≤ yh+3 ≤ · · · ≤ yn−2.

If y = v, then we are done. Otherwise, there exists i, j ∈ {h+2, h+3, . . . , n−2}

so that yi > vi and yj < vj. Using rotations and Lemma 4.2.2, there exists a

path in Gk(n, h) from y to the vertex

yiyjy1y2 . . . yi−1yi+1 . . . yj−1yj+1 . . . yn−2.

Define yn−1 and yn so that y1y2 . . . yn ∈ Wk(n, h). Then we construct the

following path in Gk(n, h):

yiyjy1y2 . . . yi−1yi+1 . . . yj−1yj+1 . . . yn−2

→ yjy1y2 . . . yi−1yi+1 . . . yj−1yj+1 . . . yn−2yn−1

→ y1y2 . . . yi−1yi+1 . . . yj−1yj+1 . . . yn−1yn

→ y2 . . . yi−1yi+1 . . . yj−1yj+1 . . . ynvi

→ y3 . . . yi−1yi+1 . . . yj−1yj+1 . . . ynvivj

Reordering (by Lemma 4.2.2) and shuffling/replacing elements, we can find a

path to the vertex

y1y2 . . . yi−1viyi+1 . . . yj−1vjyj+1 . . . yn−2.

88

Note that by requiring that both v and y start with [0, h], we are ensured that

these intermediary vertices always contain the set {0, 1, 2, . . . , h}, and hence

all edges represent valid weak orders in W−k (n, h). Continuing this process,

eventually we will arrive at v. Since the graph is even and connected, it must

be eulerian by Theorem 2.1.2.

4.7 Partitions

4.7.1 Partitions of an Integer

Finding universal cycles for the set of partitions of an integer appears to

be an area not yet considered in the literature. We pose several open problems

to consider.

Open Problem 4.7.1. For what values of n is there a universal cycle for:

1. the set of ordered partitions of n?

2. the set of unordered partitions of n?

3. the set of k-partitions of n?

We may also consider partitions in which the actual parts are bounded,

such as Fibonacci sequences (see Section 3.7.1 for definitions).

Open Problem 4.7.2. For what values of n is there a universal cycle for the

set of Fibonacci sequences?

89

This last question may be easier to answer using an alphabet with more

than two symbols, so we are also interested in the following.

Open Problem 4.7.3. What is the smallest number of symbols needed to find

a universal cycle for the Fibonacci sequences of n?

4.7.2 Ordered Partitions of a Set

As was explored in Section 3.7.2, there is a direct correspondence between

the set of ordered partitions of an n-set and the set of weak orders of [n]. Thus

we have the following results, obtained as corollaries to results in Section 4.6.

Result 4.7.4. For all n ∈ Z+, there is a universal cycle for the set of all

ordered partitions of an n-set in which an ordered partition is represented by

its corresponding weak order.

Proof. This is direct from Result 4.6.2.

Result 4.7.5. For all n ∈ Z+, there is a universal cycle for the set of all

ordered partitions of an n-set with fixed part sizes in which an ordered partition

is represented using the prefix representation of the corresponding weak order.

Proof. The set of ordered partitions with fixed part sizes corresponds directly

to the weak orders with fixed multiset. Thus, a universal cycle exists as a

direct corollary to Result 4.2.2.

90

Result 4.7.6. For all n ∈ Z+ and all h ∈ Z+ ∪ {0} with 0 ≤ h < n, there

exists a universal cycle for the set of all ordered partitions of an n-set into

exactly h parts.

Proof. This is direct from Result 4.6.8.

Since we have been able to apply several of the results from Section 4.6, it

may be interesting to consider the following question.

Open Problem 4.7.7. Under the correspondence from Theorem 3.7.4, what

does the set Wk(n) correspond to in ordered partitions of an n-set?

4.7.3 Unordered Partitions of a Set

Universal cycles for unordered partitions of a set were first introduced in

[7]. Chung, et al., chose a representation of the partition as a word in which

the ith and jth symbols of the word are the same if and only if i and j

are in the same part of the partition. Using this representation, they create

the standard transition graph. Then the graph is modified to group together

elements depending on the partition structure of the first n− 1 letters of each

word. From this, they are able to find the following result.

Theorem 4.7.8. [7] Universal cycles of unordered partitions of [n] using only

n symbols always exist for n ≥ 4.

Using the same representation, Hurlbert proved the following theorem, in

which part sizes are restricted.

91

Theorem 4.7.9. [25] Universal cycles of unordered partitions of [n] with part

sizes at most k exist for all 4 ≤ k ≤ n.

Another consideration is to restrict the number of parts.

Theorem 4.7.10. [25] Universal cycles for (n− 1)-partitions of [n] exist for

all odd n ≥ 3.

This theorem uses a slightly different representation. In this case, each

(n − 1)-partition is represented by its unique part of size two. Thus these

words can be viewed as all possible 2-subsets of [n].

4.8 Designs

To discuss universal cycles for BIBDs, we need one more definition. Let

(V,B) be a (v, k, λ)-BIBD and let κ ∈ Z+ with κ ≤ k. Let b = |B| and let each

B ∈ B be represented by a string x0x1 . . . xκ−1, where xi ∈ B for 0 ≤ i < κ.

The string a0a1 . . . ab−1 is a universal cycle of rank κ for (V,B) if for each

block B ∈ B there exists some i such that aiai+1 . . . ai+κ−1 = x0x1 . . . xκ−1,

where x0x1 . . . xκ−1 is the string representative for B. This is essentially the

same definition for universal cycle that we have been considering throughout

this chapter, with the modification that each block may be represented (in a

possibly non-unique and non-distinct manner) by a string of length κ ≤ k.

Using this notion of rank κ ucycles, Dewar finds the following results. The

first is quite similar to Theorem 4.5.1 (a necessary condition for ucycles for

k-subsets of [n]).

92

Theorem 4.8.1. [13] Let S = (V,B) be a (v, k, λ)-BIBD. If there exists a rank

k ucycle for S, then k divides r, where r = λ(v − 1)/(k − 1).

Theorem 4.8.2. [13] For v ≡ 1, 4, 7 (mod 12), there exists a TTS(v) that

admits a 2-intersecting Gray cycle for its blocks, which can be written as a

ucycle of rank three.

Theorem 4.8.3. [13] Every cyclic symmetric (v, k, λ)-BIBD, k ≥ 3, admits

a ucycle of rank two.

Dewar also states the following conjectures.

Conjecture 4.8.4. [13] For each v ≡ 10 (mod 12), v ≥ 22, there exists a

TTS(v) that admits a rank three ucycle.

Conjecture 4.8.5. [13] For each v ≡ 1 (mod 12), with v ≡ 0 (mod 5) there

exists a TTS(v) that admits a ucycle of rank three.

Conjecture 4.8.6. [13] For each v ≡ 4 (mod 12), with v ≡ 0 (mod 5), there

exists a TTS(v) that admits a ucycle of rank three.

93

Chapter 5

OVERLAP CYCLES

5.1 Introduction and Definitions

Definition 5.1.1. Let S be a set of objects represented as words from an

alphabet. An s-overlap cycle, or s-ocycle, O(S, s) for s ∈ N is an ordered

listing of the elements of S so that the last s letters of a word are the first s

letters of its successor in the listing.

An example is shown below in Figure 5.1 to illustrate an overlap cycle for

4-subsets of [6] with s = 2. We may also write the overlap cycle as a string,

as we do for universal cycles. This example corresponds to the word

123415261346124516352436254635.

When writing out overlap cycles, we can list out the sequence fully, or we

can choose to omit letters that do not appear as an overlap (hidden letters).

1234 - 3415 - 1526 - 2613 - 1346 - 4612 - 1245

6

4516

6

1635�3524�2436�3625�2546�4635�3512

?

Figure 5.1: 2-Overlap cycle for 4-subsets of [6]

94

When we omit hidden letters, the cycle is written in compressed form. For

example, a 1-ocycle for an STS(7) with overlap points underlined is

2, 1, 0, 3, 4, 2, 5, 0, 6, 4, 1, 5, 3, 6, 2,

and in compressed form we use only the underlined points and write

20456132.

Note that by this definition, a universal cycle of words of length n is an

overlap cycle with s = n−1. We can view overlap cycles as a “near” result for

universal cycles. In this case, we are hoping to maximize the overlap as much

as possible with the hope of eventually achieving an overlap of n − 1. In the

case of an overlap of size s, the total length of the compressed word is n − s

times the length of a universal cycle on the set of objects, should one exist.

Definition 5.1.2. Let S(n,m) be the set of all n-letter words from an alphabet

of size m. For s ∈ N with n > s, the alphabet overlap graph G(S(n,m), s)

is the graph whose vertex set is S(n,m) and an edge from v to w if and only

if the last s letters of v are the first s letters of w.

This definition defines a transition graph, which is very useful in conjunc-

tion with the following theorem.

Theorem 5.1.3. [19] The alphabet overlap graph is hamiltonian for all non-

trivial values of the parameters.

Aside from this important and useful result, the area of overlap cycles

seems largely undeveloped.

95

5.2 Binary Words of Length n

The set of binary words of length n, B(n), corresponds to the set of all

n-letter words from an alphabet of size two. Thus we have the following direct

corollary from Theorem 5.1.3.

Corollary 5.2.1. For all n, s ∈ N with n > s, there exists an overlap cycle

O(B(n), s).

Proof. By Theorem 5.1.3, the corresponding alphabet overlap graphG(S(n, 2), s)

is hamiltonian. From a Hamilton cycle in the graph we can obtain the desired

overlap cycle.

Note that since Theorem 5.1.3 refers only to the complete set of binary

strings of length n, we must consider any restricted subset separately.

Open Problem 5.2.2. For what restricted subsets of B(n) do there exist

alphabet overlap cycles?

However, we do have a corresponding lemma to Lemma 4.2.2.

Lemma 5.2.3. Let n, s ∈ Z+ with n
2
≤ s ≤ n − 2, and let M be some fixed

multiset of size n. Define the set A to be the set of all permutations of M . If

gcd(s, n) = 1, then there is an s-ocycle for A.

Proof. We first construct the transition graph with vertices as s-prefixes and

suffixes of words in A, and edges representing the words themselves. Since any

s-prefix of a string in A is also an s-suffix, the graph must be balanced.

In order to prove that the transition graph is eulerian, and thus complete

the proof, all that remains is to show that the graph must be connected, which

96

will be done by showing that from an arbitrary vertex we may transpose any

two adjacent letters. Consider w = w1w2 . . . wn ∈ A with s-prefix ws− =

w1w2 . . . ws, and let g = gcd(s, n). When we examine all rotations of the

vertex w, beginning with ws−, we see that through rotations the only vertices

reached are ones that begin with wcg for 1 ≤ c ≤ n
g
. If g = 1, then our

rotations will take us through every possible consecutive s-substring of w.

Thus we need only show one adjacent transposition in w, and all others may

be reached through rotations. This is done through the following path, in

which u v denotes that v is reached by following rotations of u. We can

transpose ws−1 ↔ ws by following the undirected path given below.

w1w2 . . . ws−2ws−1ws wnw1 . . . ws−2ws−1

 wn−1wnw1 . . . ws−2

 wnw1 . . . ws−2ws

 w1 . . . ws−2wsws−1

Thus we can transpose a pair of adjacent letters in ws−, and so we are done.

In fact, when s < n
2

we can always find an s-ocycle.

Lemma 5.2.4. Let n, s ∈ Z+ with 1 ≤ s < n
2
. Let M be a multiset of size

n. Define the set A to be the set of all permutations of M . Then there is an

s-ocycle for A.

Proof. Construct the transition graph with vertices as s-prefixes and s-suffixes

of words in A, and edges representing the words themselves. Fix an arbitrary

vertex vs− = v1v2 . . . vs as the minimum vertex. To prove the existence of an

Euler tour, and thus prove the existence of an s-ocycle, we will show that from

any vertex ws− = w1w2 . . . ws, we can find a path to the minimum vertex.

97

Compare vs− and ws−, and consider the first position in which they differ,

say index i. In other words, vi 6= wi, and for all 1 ≤ j < i we have vj = wj.

We will set w = w1w2 . . . wn ∈ A so that w has s-prefix ws−. We have two

cases.

1. First, if vi ∈ {wi+1, wi+2, . . . ws}, then we use the following undirected

path, in which we merely transpose letters wi and vi in ws−.

w1w2 . . . wi−1wiwi+1 . . . vi . . . ws → wn−s+1wn−s+2 . . . wn

← w1w2 . . . wi−1viwi+1 . . . wi . . . ws

2. Second, if vi ∈ {ws+1, ws+2, . . . wn}, then vi does not appear in vertex

ws−. Note that vertex ws− = w1w2 . . . ws is connected to any s-suffix,

which consists of all s-permutations of the set

B = M \ {w1, w2, . . . ws}.

Thus vi ∈ B, so we may choose an edge leaving ws− that leads to an

s-suffix not containing vi, i.e. vi does not appear in either vertex. In this

case, we may simply replace wi with vi as shown in the following path.

w1w2 . . . wi−1wiwi+1 . . . ws → wn−s+1wn−s+2 . . . wn

← w1w2 . . . wi−1viwi+1 . . . ws

At this point, we are one step closer to the minimum vertex, as now the

two vertices agree in the first i positions. Repeating, we will eventually find

a path to the minimum vertex. Thus, the graph is connected. Finally, since

clearly any s-suffix of a string in A is also an s-prefix, the graph is balanced

and hence eulerian.

98

5.3 m-ary Words of Length n

As in Section 5.2, we have a direct corollary from Theorem 5.1.3.

Corollary 5.3.1. For all m,n, s ∈ N with n > s, there exists an overlap cycle

O(Bm(n), s), where Bm(n) is the set of all m-ary words of length n.

Proof. By Theorem 5.1.3, the corresponding alphabet overlap graphG(S(n,m), s)

is hamiltonian. From a Hamilton cycle in the graph we can obtain the desired

overlap cycle.

To consider any subsets of Bm(n), we must consider some alternative ap-

proach.

Open Problem 5.3.2. For what restricted subsets of Bm(n) do there exist

alphabet overlap cycles?

5.4 Permutations

When searching for overlap cycles of permutations, we can no longer apply

Theorem 5.1.3, since a set of permutations is not a set of all words of a given

length over some fixed alphabet. For example, a set of permutations does not

contain any words with repeated letters, while these are clearly to be included

in the set referred to in Theorem 5.1.3.

In the following question, define the permutation overlap graph P (k, n, s)

to be the graph whose vertex set is the set of all k-permutations of [n] and an

99

edge from v to w if and only if the last s letters of v are the first s letters of

w.

Question 5.4.1. ([29], Problem 481.) Is the permutation overlap graph P (k, n, s)

Hamiltonian whenever k < n? In other words, is there always an s-overlap

cycle for k-permutations of [n] when k < n?

To answer this question, we will use several lemmas. We begin by extending

Lemma 5.2.3 from Section 5.2.

Result 5.4.2. Let n, s ∈ Z+ with n ≥ 2. If either (1) 1 ≤ s < n
2
, or (2)

gcd(s, n) = 1 with n
2
≤ s < n − 1, then there exists an s-ocycle on the set of

permutations of [n].

Proof. This is merely a concise restatement of Lemmas 5.2.3 and 5.2.4 with

M = {1, 2, . . . , n}.

Note that this result also shows that under the given conditions, all per-

mutations of an [n]-set are connected within a larger transition graph. We

can extend this to k-permutations of [n] to begin to answer the Question 5.4.1

from [29].

Result 5.4.3. Let n, s, k ∈ Z+ with 1 ≤ k < n. If either (1) 1 ≤ s < k
2
, or

(2) gcd(s, k) = 1 with k
2
≤ s < k − 1, then there exists an s-ocycle on the set

of k-permutations of [n].

Proof. First, construct the transition graph with vertices of length s (s-prefixes

of k-permutations) and edges representing k-permutations. We allow an edge

from vertex u to vertex v if and only if u is an s-prefix and v is an s-suffix

100

for some k-permutation. We will show that this graph is balanced and weakly

connected, and thus is eulerian. From an Euler tour, we can find an s-ocycle.

Define the minimum k-permutation v = 123 . . . k, and the minimum vertex,

vs−, in the transition graph to be the s-prefix of v. Let ws− = w1w2 . . . ws

be the prefix of an arbitrary k-permutation w1w2 . . . wk. By Result 5.4.2, all

permutations of a k-set are connected under our hypotheses, so we may assume

that w is ordered as w1 < w2 < · · · < wk. We will show that there is a path

in the graph from ws− to vs−. Define

D = {w1, w2, . . . , wk} \ {1, 2, 3, . . . , k}

and

D = {1, 2, 3, . . . , k} \ {w1, w2, . . . , wk}.

Note that if D = ∅, then w is a permutation of v and so by the comments

following Result 5.4.2, we know that there exists a path. For D 6= ∅, we

choose d letters a1, a2, . . . , ad ∈ D, where d = min{k − s, |D|}. If d < k − s,

then we may also select letters ad+1, ad+2, . . . , ak−s ∈ {ws+1, ws+2, . . . , wk}.

Now in our graph we follow the edge corresponding to the k-permutation

w1w2 . . . wsa1a2 . . . ak−s. By following this edge, we have found a k-permutation

with more letters in common with v than w did. Since Result 5.4.2 implies

that all permutations of a k-set are connected in the transition graph, we may

arrange this string in increasing order, and by repeating this procedure we will

eventually find a k-permutation that is simply a permutation of v, at which

point we are done.

Since we have shown that the graph is connected, we need only show that

the graph is balanced in order to prove that an Euler tour exists. However it

101

is clear that the graph is balanced, as any prefix of a k-permutation is also a

suffix of a k-permutation.

Finally, we may extend this result to consider s-ocycles for k-permutations

of [n], without the conditions needed in Result 5.4.3.

Result 5.4.4. For all n, s, k ∈ Z+ with 1 ≤ s < k < n, there is an s-ocycle

for k-permutations of [n].

Proof. We construct the standard transition graph G where vertices of length

s correspond to s-prefixes of k-permutations of [n], and edges correspond to

k-permutations of [n]. If we can show that this graph is eulerian, then we have

shown that there exists an s-ocycle for k-permutations of [n]. First, we note

that since any s-prefix of a k-permutation is also an s-suffix of a k-permutation,

the graph is balanced. All that remains is to show that the graph is connected.

Define the minimum vertex vs− = 12 . . . s, and let ws− = w1w2 . . . ws be

an arbitrary vertex in the graph, which we assume to be an s-prefix of the

k-permutation w = w1w2 . . . wk. We will frequently refer to rotations of a

vertex. This is defined as following the edges of the cycle corresponding to

rotations of a k-permutation that the vertex is an s-prefix for.

We next compare ws− with vs−. Let i be the first index in which wi 6= vi

and let g = gcd(s, k). If g = 1, we are done by the previous result. Otherwise,

we note that rotations of w partition the string into blocks of length g. All

addition in indices will be modulo k. We have two cases.

Case 1: If i 6∈ {wi+1, wi+2, . . . , wk}:

Rotate w so that wi is in the first block. This means that we are con-

102

sidering some vertex

wi−twi−t+1 . . . wi−t+s−1,

with t ≤ g − 1, or i ∈ [i − t, i − t + g − 1]. Follow the edge out of this

vertex that corresponds to a rotation of w. This takes us to the vertex

wi−t+k−swi−t+k−s+1 . . . wi−t+k−1.

Next we follow the backwards edge corresponding to the k-permutation

wi−twi−t+1 . . . wi−1(i)wi+1 . . . wi−t+k−1.

Now we are at the vertex

wi−twi−t+1 . . . wi−1(i)wi+1 . . . wi−t+s−1.

Finally we follow rotations of this vertex to end at the vertex

12 . . . (i)wi+1wi+2 . . . s.

This vertex is closer to the minimum vertex since the first i letters agree.

Repeating this procedure, we will eventually arrive at the minimum ver-

tex.

Case 2: If i ∈ {wi+1, wi+2, . . . , wk}:

Rotate w so that i is in the first block. We are now considering some

vertex

a1a2 . . . as

with i ∈ {a1, a2, . . . , ag}, so assume that i = aj. Note that

|[n] \ {w1, w2, . . . , wk}| > 1,

103

so choose some x in this set. We follow the edge from a1a2 . . . as corre-

sponding to a rotation of a1a2 . . . aj−1(i)aj+1 . . . ak, which we recall is a

rotation of w. This takes us to the vertex

ak−s+1ak−s+2 . . . ak,

which does not contain the letter i. From this vertex we follow the

backward edge

a1a2 . . . aj−1(x)aj+1 . . . ak.

Note that i does not appear in this edge, so we can go to Case (1).

When we have finished, we will have arrived at the minimum vertex. Thus

the graph is weakly connected, and so is eulerian.

We finish the section by answering Question 5.4.1.

Result 5.4.5. The permutation overlap graph P (k, d, s) is hamiltonian when-

ever k < d.

Proof. The permutation overlap graph P (k, d, s) is hamiltonian if and only if

there exists an s-ocycle for k-permutations of [d]. Thus by Result 5.4.4, we

are done.

5.5 Subsets

The example in Section 5.1, Figure 5.1, shows a 2-overlap cycle for 4-subsets

of [6]. Define
(
[n]
k

)
to be the set of all k-subsets of [n].

104

Open Problem 5.5.1. For what values of n, k, s does there exist an overlap

cycle O
((

[n]
k

)
, s
)

?

In this case, we are not searching for a Hamilton cycle or an Euler tour in

the transition graph, since we must have one vertex or edge to represent each

possible ordering of a subset. Recall from Theorem 4.5.1 that it is necessary

that k |
(
n−1
k−1

)
for a universal cycle for k-subsets of [n] to exists. Expanding on

this, we suggest the following question.

Open Problem 5.5.2. Is there a necessary condition for overlap cycles for

k-subsets of [n], as Theorem 4.5.1 is for ucycles?

5.6 Weak Orders

We begin with a general result.

Result 5.6.1. For all n, s ∈ Z+ with 1 ≤ s ≤ n − 1, there is an s-ocycle for

W(n).

To prove this, we have two cases: 1 ≤ s ≤ n
2

(vertices do not need to

overlap to make a weak order), and n
2
< s ≤ n − 1 (vertices must overlap to

make a weak order). First, we define the s-prefix, ws−, and s-suffix, ws+, of a

word as:

ws− = w1w2 . . . ws

and

ws+ = wn−s+1wn−s+2 . . . wn.

105

Fact 5.6.2. If w = w1w2 . . . wn ∈ W(n), then any permutation of the letters

of w is also in W(n).

In light of this fact, we note that {ws− | w ∈ W(n)} = {ws+ | w ∈ W(n)}.

In fact, these two sets are also equal to the set

Ws(n) = {w = w1w2 . . . ws | w is a subword of some w′ ∈ W(n)}.

Proof of Result 5.6.1. We define a transition graph Gs(n) as follows. Let

V (Gs(n)) be equal to the set of all possible overlaps, i.e. V (Gs(n)) =Ws(n).

Define E(Gs(n)) to contain one edge for each weak order by creating a directed

edge (u, v) for each weak order w that begins with u and ends with v. We will

show that this graph contains an Euler tour, which will give us an s-ocycle for

W(n).

First, Gs(n) must have d+(u) = d−(u) for all u ∈ V (Gs(n)), since any

permutation of a weak order is again a weak order. That is, if u = u1u2 . . . us

is a prefix of some weak order u1u2 . . . un, then we have the incoming edge:

us+1us+2 . . . unu1u2 . . . us

and the outgoing edge

u1u2 . . . usus+1 . . . un.

Thus we can pair together each incoming edge with an outgoing edge, so we

must have d+(u) = d−(u).

Lastly we must show that Gs(n) is connected. We will show that any

vertex v is connected to the vertex 0s. Let v = v1v2 . . . vs ∈ V (Gs(n)) with

h = ht(v). If s ≤ n
2
, then we can always find an edge (v, u) to some vertex u

with ht(u) < h. If s > n
2
, the weak order v1v2 . . . vsvs+1 . . . vn is represented by

106

12

21

34

43

Q
QQ
�

��

13

31

24

42

Q
QQ
�
��

14

41

23

32

Q
QQ
�

��

Figure 5.2: Transition Graph: 2-ocycles for permutations of {1, 2, 3, 4}

the edge (v, vn−svn−s+1 . . . vn). Note that ht(vn−svn−s+1 . . . vn) ≤ h, and that

any letter vi of maximum height in vn−svn−s+1 . . . vn must have n− s ≤ i ≤ s.

Thus by repeating this procedure (at most n times if s = n− 1 and vn−1 has

maximum height in v), we reach some vertex u ∈ V (Gs(n)) with ht(u) < h.

In either case, we have moved to a vertex with smaller height. By repeating

this procedure, we will eventually reach a vertex with height 0. The only vertex

with height 0 is the vertex 0s, and so we have arrived at our destination.

Since our graphGs(n) is connected and d+(u) = d−(u) for all u ∈ V (Gs(n)),

we must have an Euler tour in the graph. This Euler tour will translate to an

s-ocycle on W(n).

When we consider s-ocycles for fixed weight weak orders on [n], we no-

tice that the following theorems follow immediately from their corresponding

results about ucycles with very small adjustments. Note, however, that we

must consider whether or not s and n are relatively prime. For example, if

we consider all permutations of the set {1, 2, 3, 4}, the transition graph for

2-ocycles is disconnected, as shown in Figure 5.2.

Result 5.6.3. Let n, s, k ∈ Z+ with 1 ≤ s ≤ n − 2 and k ≤
(
n
2

)
. If we have

gcd(s, n) = 1, then there is an s-ocycle for Wk(n).

Proof. Small adjustments to the proof of Result 4.6.4 (see Result 5.2.3).

107

Result 5.6.4. Let n, s, h, k ∈ Z+ with 1 ≤ s ≤ n−2, k ≤
(
n
2

)
, and 0 ≤ h < n.

If gcd(s, n) = 1, then there is an s-ocycle for Wk(n, h).

Proof. Small adjustments to the proof of Theorem 4.6.9.

To produce an ocycle equivalent of Theorem 4.6.8, we can simplify the

proof since we are now dealing with overlaps of at most n − 2, and again we

require that gcd(s, n) = 1.

Result 5.6.5. For all n, s, h ∈ Z+ with 1 ≤ s ≤ n− 2, gcd(s, n) = 1, and also

with 0 ≤ h ≤ n− 1, there is an s-ocycle for W(n, h).

Proof. We define our transition graph as usual, with

V (Gs(n, h)) =Ws(n, h) and E(Gs(n, h)) =W(n, h).

Clearly the graph is balanced, so we need only show that it is connected.

Define the minimum vertex vs to be the first s letters of the weak order v =

[0, h]0n−h−1. Let xs = x1x2 . . . xs be an arbitrary vertex in the graph. We

assume that xs is an s-prefix of some x = x1x2 . . . xn ∈ W(n, h). Applying

Lemma 5.2.3, we may assume that x is ordered in any manner we would like,

and so we can assume that x = [0, h]xh+2xh+3 . . . xn. If s ≤ h + 1, then the

first s letters of x equals vs and we are done. Otherwise, s ≥ h + 2, and we

follow the edge that corresponds to the weak order

[0, h]xh+2xh+3 . . . xs0 · · · 0.

Applying Lemma 5.2.3 again, we can reorder this weak order to find a path to

the vertex that consists of the first s letters of [0, h]0 · · · 0xh+2xh+3 . . . xs, and

we are one step closer to the minimum vertex. Repeating, we will eventually

108

arrive at the minimum vertex vs. Thus the graph is connected, and so contains

an Euler tour, and hence an s-ocycle.

5.7 Partitions

As seen in Sections 5.4 and 5.5, we cannot apply Theorem 5.1.3 to any

types of partitions.

5.7.1 Partitions of an Integer

Let n ∈ Z+, and let P (n) be the set of partitions of n.

Open Problem 5.7.1. For what values of n and s does there exist an overlap

cycle O(P (n), s)?

We may also ask the same question for restricted subsets of P (n), such as

the Fibonacci sequences.

Open Problem 5.7.2. For what restricted subsets of P (n) can we find an

overlap cycle?

5.7.2 Ordered Partitions of a Set

Under the correspondence discussed in Theorem 3.7.4, we obtain the fol-

lowing results as corollaries to similar results in Section 5.6.

109

Corollary 5.7.3. For all n, s ∈ Z+ with 1 ≤ s ≤ n − 1, there is an s-ocycle

for the set of all ordered partitions of an n-set.

Proof. This is immediate from Result 5.6.1.

Corollary 5.7.4. For all n, s, h with 1 ≤ s ≤ n − 2, gcd(s, n) = 1, and

h ≤ n − 1, there exists an s-ocycle for the set of all ordered partitions of an

n-set into exactly h parts.

Proof. This is immediate from Result 5.6.5.

Corollary 5.7.5. Let n, s ∈ Z+ with 1 ≤ s ≤ n − 2. If gcd(n, s) = 1, then

there is an s-ocycle for the set of all ordered partitions of an n-set with fixed

part sizes.

Proof. This is immediate from Lemma 5.2.3.

5.7.3 Unordered Partitions of a Set

Open Problem 5.7.6. For what types of sets can we find overlap cycles for

the set of unordered partitions of the set?

5.8 Designs

In this section, we will often use the notation x ⊕ B where B is a block

in the block set of a design. If B = {a, b, c}, we define x ⊕ B = {xa, xb, xc},

where xa is short-hand for the ordered pair (x, a). This notation will also be

110

used with ucycles and overlap cycles, i.e.,

x⊕A = xa0, xa1, . . . , xan, xa0

if A = a0, a1, . . . , an, a0 is a ucycle or ocycle.

Open Problem 5.8.1. For what types of designs do there exist overlap cycles?

We can answer this question easily for transversal designs and 1-overlap

cycles. We know from Result 3.8.3 that for all n ≥ 2, k ≥ 3, and any TD(k, n),

we have a basis representation for the blocks of the design in which each block

is represented by a string of length two, and the set of these strings corresponds

to the set of all n-ary words of length two. Thus we have the following result.

Result 5.8.2. For all n ≥ 2, k ≥ 3, and any TD(k, n), there is a universal

cycle on the blocks of the design using a basis representation in which each

block is represented by a string of length two, which corresponds to its points

from groups 1 and 2.

Proof. By Result 3.8.3, we know that there is a direct correspondence between

this basis representation and the set of all n-ary words of length two. Then

by Theorem 4.3.1, there is a universal cycle for this basis set.

As stated previously, this representation discards many points in each

block, so the representation of two different transversal designs could be iden-

tical. Depending on the application, it might be wiser to consider the overlap

cycle listing structure to preserve this data.

Result 5.8.3. For all n ≥ 2 and k ≥ 3 and any TD(k, n), there exists a

1-overlap cycle, O(TD(k, n), 1).

111

Proof. Using Result 5.8.2, we know that a universal cycle exists for any TD(k, n)

using a basis representation in which each block is represented by a string of

length two. Consider one block in particular, say {b1, b2, . . . , bk} represented

by the string b1b2. Somewhere in the universal cycle appears the pair b1b2 con-

secutively. We can replace b1b2 by b1b3b4 . . . bkb2. Doing this for each block,

we have transformed the universal cycle into a 1-overlap cycle.

Recall the definition of κ-intersecting Gray code for a (v, k, λ)-BIBD. This

Gray code requires that successive blocks intersect in exactly κ points. Unfor-

tunately, the location of these κ points is not specified. If we can restrict the

positions of these κ points, we may be able to create an overlap cycle for the

designs that admit κ-intersecting Gray codes.

While the κ-intersecting Gray code may be a step in the right direction,

Dewar’s discussion of universal cycles over designs ([13], p. 87) may be of

more use to us. Dewar utilizes the basis representation for designs, in par-

ticular showing an example that uses two elements to represent each block

from the Fano plane (see Figure 2.2). This representation allows the ucycle

5134620. However, note that for each block B = {a, b, c} we may increase the

representation from two elements to the full block representation by “stuffing”

the third block element in between, as in the proof of Result 5.8.3. This con-

verts our ucycle to the 1-overlap cycle 52103541632406. For a more general

example, we have the following corollary to Dewar’s Theorem 4.8.3 in Section

4.8.

Corollary 5.8.4. Every cyclic symmetric (v, k, 1)-BIBD with k ≥ 3 admits a

1-overlap cycle.

Proof. Let S = (V,B) be a cyclic symmetric (v, k, 1)-BIBD with k ≥ 3. Since

112

λ = 1, any pair of elements from V appears in only one block from B. Then any

block B ∈ B can be represented by any two elements from B. Thus a ucycle

of rank two can be converted to a 1-overlap cycle by stuffing the additional

k − 2 elements in each block between its representatives. By Dewar’s result

4.8.3 in Section 4.8, we know that such a ucycle must exist.

Design theory has many constructions for BIBDs that are recursive. We are

interested in these recursive constructions, i.e. given base designs that admit s-

overlap cycles, does the design constructed also admit an s-overlap cycle? We

now present several different constructions paired with corresponding results

on overlap cycles.

Theorem 5.8.5. (Sum Construction, [46].) Suppose there exists a (v, k, λ1)-

BIBD and a (v, k, λ2)-BIBD. Then there exists a (v, k, λ1 + λ2)-BIBD.

Construction. Let (X,A) be a (v, k, λ1)-BIBD and (X,B) be a (v, k, λ2)-BIBD.

Then the pair (X,A ∪ B) is a (v, k, λ1 + λ2)-BIBD.

Result 5.8.6. Let (X,A) and (X,B) be (v, 3, 1)-BIBDs. Suppose that both

(X,A) and (X,B) admit 1-overlap cycles called O(A) and O(B), respectively.

Then the (v, 3, 2)-BIBD (X,A ∪ B) using the sum construction also admits a

1-overlap cycle.

Proof. Define a graph G on X with edge (v, w) if vxw appears (in order) as

a block in the ucycle O(A) or O(B) for some x ∈ X. Note that the graph is

balanced, since the edges of O(A) and O(B) form two edge-disjoint circuits on

X. If we can show that the graph is connected, then G must be eulerian, and

an Euler tour will correspond to a 1-overlap cycle on (X,A ∪ B).

113

Note that if the graph is not connected, then the two circuits CA and CB

that correspond to O(A) and O(B) must be not only edge-disjoint, but also

vertex-disjoint. If we can show that both CA and CB contain at least |X|/2

vertices, then the two cycles cannot be vertex-disjoint, and hence the graph

must be connected.

Consider CA. If fewer than |X|/2 vertices appear as overlap points in CA,

then the maximum number of blocks that can appear in CA is:(
v/2

2

)
=

(v2 − 2v)

8
.

We know that the number of blocks in A is equal to:

(v2 − v)

k2 − k
=

(v2 − v)

6
.

In order for CA to cover the entire design (X,A), we must have that:

(v2 − 2v)

8
≥ (v2 − v)

6
. (5.1)

We can rewrite (5.1) as:

(v2 − 2v)

8
≥ (v2 − v)

6
v − 2

4
≥ v − 1

3

−2 ≥ v

Thus we have a contradiction, and so CA must contain more than |X|/2 ver-

tices. The same argument follows to show that CB must contain more than

|X|/2 vertices. Therefore the two cycles cannot be vertex-disjoint, and hence

the graph is connected.

Open Problem 5.8.7. Can we generalize Result 5.8.6 using the Sum Con-

struction with λ1, λ2 ∈ Z+?

114

For example, we know that there exists a 1-overlap cycle for the unique

(7, 3, 1)-BIBD. It is:

752137426354167

when our design has X = {1, 2, 3, 4, 5, 6, 7} and

B = {1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7} and {3, 5, 6}.

From this, we can apply Result 5.8.6 to find a (7, 3, 2)-BIBD that admits a 1-

overlap cycle. Alternatively, we could also have used the following construction

theorem and corresponding ocycle result.

Theorem 5.8.8. [46] Suppose there exists a (v, k, λ)-BIBD. Then there exists

a (v, k, sλ)-BIBD for all integers s ≥ 1.

Construction. If (X,A) is a (v, k, λ)-BIBD, construct a (v, k, sλ)-BIBD by

repeating each block from A s times.

Result 5.8.9. If (X,A) is a (v, k, λ)-BIBD that admits a t-overlap cycle, then

the (v, k, sλ)-BIBD constructed from Theorem 5.8.8 also admits a t-overlap

cycle.

Proof. Let O(A) be the t-overlap cycle for (X,A). Then concatenating O(A)

with itself s times gives a t-overlap cycle for (X, s · A), the (v, k, sλ)-BIBD

constructed from Theorem 5.8.8.

Note that Result 5.8.6 could potentially find a simple design (a design

without repeated blocks) with a 1-overlap cycle, while Result 5.8.9 will never

find a simple design.

115

Theorem 5.8.10. (Block Complementation, [46].) Suppose that for k ≤ v−2

there exists a (v, b, r, k, λ)-BIBD. Then there also exists a (v, b, b− r, v−k, b−

2r + λ)-BIBD.

Construction. If (X,A) is a (v, b, r, k, λ)-BIBD with k ≤ v−2, then (X, {X\A |

A ∈ A}) is a (v, b, b− r, v − k, b− 2r + λ)-BIBD.

Result 5.8.11. Given (X,A) = (v, b, r, k, λ)-BIBD, we can construct the block

complementation of it to create a new design. This design is (X,A), which is

a (v, b, b− r, v− k, b− 2r+λ)-BIBD. If v− 2k ≥ 2 and (X,A) has a 1-overlap

cycle, then (X,A) also has a 1-overlap cycle.

Proof. Let the blocks in A appear in the following order in the sequence:

A1, A2, . . . , Ab. We claim that one can find a 1-overlap cycle for A in which

the blocks are ordered as A1, A2, . . . , Ab.

Note that we have:

|Ai ∩ Aj| = |X| − |Ai ∪ Aj|

= |X| − (|Ai|+ |Aj| − |Ai ∩ Aj|)

= |X| − |Ai| − |Aj|+ |Ai ∩ Aj|

≥ v − 2k

≥ 2.

We order the points in the blocks as follows. Let x ∈ A1 ∩ Ab. We know

that such an x must exist, since we just showed that any two blocks intersect

in at least two points. Next, we order the points of block Ai, assuming that

A1, . . . , Ai−1 have already been ordered in a manner that ensures that the last

point y of Ai−1 is a point in Ai. We need to order the points of Ai so that y is

116

first and so that the last point z in Ai appears in Ai+1. Since |Ai ∩Ai+1| ≥ 2,

we know that we have two choices for z. Thus, even if y ∈ Ai ∩ Ai+1, there

is still another point in the intersection to choose for z. Putting z last in Ai,

we may order the remaining points however we choose. This will give us a

1-overlap cycle for (X,A), but the sequence might not be cyclic.

To show that we must be able to make a cyclic overlap cycle, note that the

existence of a 1-overlap cycle for (X,A) implies that |Ai ∩ Ai+1| ≥ 1 for each

i ∈ [b]. Thus we have

|Ai ∩ Ai+1| ≥ v − 2k ≥ 2 + 1 = 3.

So when we are choosing an element from Ab to place last, we want to ensure

that the first element in A1 is the same. The only fixed elements are the first

element from Ab and the last element from Ai, so we must have a third element

in Ab ∩ A1 that can be placed last in Ab and first in A1.

5.8.1 Steiner Triple Systems

Because any two blocks in a Steiner triple system (STS) can share at most

one point in common, finding a ucycle over the blocks of an STS is clearly

impossible - they would need to overlap in two points. To remedy this problem,

Dewar introduces a modified ucycle structure in [13]. A rank two universal

cycle is a ucycle on a block design in which each block is represented by

just two of its elements. Since any pair of points appears in exactly one

block of an STS, they completely identify a unique block in the triple system.

Dewar constructs rank two ucycles for the special class of cyclic Steiner triple

117

systems. A cyclic design has automorphism group containing the cyclic group

of order v, isomorphic to Zv, as a subgroup. Since this subgroup contains the

automorphism π : i 7→ i + 1 (mod v), this implies that we can partition the

blocks into classes so that within one class each block can be obtained from

any other by repeated applications of π on the block elements.

Theorem 5.8.12. ([13], p. 200) Every cyclic STS(v) with v 6= 3 admits a

ucycle of rank two.

One weakness in the rank k ucycle structure is that much information from

the design is discarded. While the result allows us to write the list of blocks as

a modified ucycle, it is not easy to recover the design from a given ucycle. If

we are considering a different type of object that is easily computed from the

basis representation, rank k ucycles are a suitable listing structure. However,

given just two points of a block, the only way to recover the missing point is

to have a lookup table at hand, which (depending on applications) may defeat

the purpose of creating a compact listing in the first place. In some instances

a lookup table is practical, for example if the block representatives obey the

same cyclic symmetry. For general designs, however, this does not apply, and

so we consider overlap cycles as a way to preserve the necessary data.

When writing out ocycles, we can list the sequence fully or we can choose

to omit points that do not appear as an overlap (hidden points). When we

omit the hidden points, we say that the cycle is written in compressed form.

Using this concept, we can view Dewar’s rank two ucycles as compressed 1-

ocycles and easily obtain the following corollary to Theorem 5.8.12.

Corollary 5.8.13. Every cyclic STS(v) with v 6= 3 admits a 1-ocycle.

118

It is widely known that there exists a cyclic STS(v) for all v ≡ 1, 3 (mod 6)

except v = 9 (See [10], Theorem 7.3). We will consider a different class

of Steiner triple systems, namely automorphism free (AF) Steiner triple

systems, and prove the following result using recursive constructions.

Result 5.8.14. For every n ≡ 1, 3 (mod 6) with n ≥ 15, there exists an AF

STS(n) with a 1-ocycle.

We also include two other direct constructions of 1-ocycles for a Steiner

triple system of each order (Results 5.8.23 and 5.8.25), as well as another re-

cursive construction (Result 5.8.21). While Dewar constructs rank two ucycles

for all cyclic designs of each order, these direct constructions may be a simpler

method of finding an ocycle when any STS(v) will do.

Our method of finding ocycles will be the same for each construction. We

will first construct one long cycle out of many smaller cycles of various sizes

by connecting them together. The connection of two cycles is performed as

follows. When two cycles have an overlap point in common, we can connect

the two cycles at that point. See Figure 5.3 for an example of connecting Cycle

1 and Cycle 2 at point x. Following Cycle 1 clockwise to the point x, we then

continue on Cycle 2 clockwise until we return to x, at which point we return

to Cycle 1 and continue clockwise on to our starting point.

5.8.1.1 Recursive Constructions of AF Steiner Triple Systems

It is interesting to note that the following constructions are still valid when we

remove the automorphism-free requirement. However, the newly constructed

STS is no longer guaranteed to be automorphism-free.

119

Cycle 1 Cycle 2sx

Figure 5.3: Connecting two cycles at overlap point x

Theorem 5.8.15. [38]. Let v ∈ Z+ with v ≥ 15. If there exists an AF

STS(v), then there exists an AF STS(2v + 1).

Construction. Let (X,A) be some STS(v) with v ≥ 15, and identify X with

Zv. Then we construct a new design (Y,B) with points:

Y = (Z2 × Zv) ∪ {∞}

and blocks:

1. {(1, a), (1, b), (1, c)} with {a, b, c} ∈ A,

2.
{

(0, x), (0, y),
(
1, x+y

2

)}
with {x, y} ⊂ X, and

3. {(0, x), (1, x),∞} with x ∈ X.

Theorem 5.8.16. [38]. Let v ∈ Z+ with v ≥ 15. If there exists an AF

STS(v), then there exists an AF STS(2v + 7).

Construction. Suppose that (X,A) is an STS(v) with v ≥ 15, and identify X

with Zv. Then we construct a new design (Y,B) with points:

Y = (Z2 × Zv) ∪ {∞i | |i| ≤ 3}.

120

Fix (Z, C) as some STS(7). The blocks in our new design are as follows:

1. {(1, i), (1, j), (1, k)} with {i, j, k} ∈ A,

2. {∞i,∞j,∞k} with {i, j, k} ∈ C,

3. {(0, x), (0, x+ 2), (0, x+ 6)} with x ∈ Zv,

4. {(0, x), (1, x+ y), (0, x+ 2y)} with {x, y} ⊂ Zv and |y| > 3, and

5. {∞i, (1, j), (0, i+ j)} with |i| ≤ 3 and j ∈ Zv.

5.8.1.2 Base Cases

The recursive constructions given in the previous subsection require six base

cases in order to construct recursively an AF STS(v) for every v ≡ 1, 3

(mod 6) with v ≥ 15. These base cases are AF Steiner triple systems of order

v = 15, 19, 21, 25, 27, 33. We also provide 1-ocycles for a non-cyclic STS(v)

for v = 9, 13. We include a 1-ocycle for the cyclic STS(7) as it is used in the

second recursive construction.

v = 7 : We use the cyclic (7, 3, 1)-design and produce the 1-ocycle:

2, 1, 0, 3, 4, 2, 5, 0, 6, 4, 1, 5, 3, 6, 2

or, since each pair appears in exactly one block, we may omit the non-overlap

points to write it in compressed form as:

(2, 0, 4, 5, 6, 1, 3, 2).

v = 9 : We use the non-cyclic design from [40] and produce the 1-ocycle:

0, 1, 2, 8, 5, 3, 4, 1, 7, 8, 6, 3, 0, 4, 8, 1, 3, 7, 2, 4, 6, 1, 5, 7, 0

121

or in compressed form:

(0, 2, 5, 4, 7, 6, 4, 8, 3, 2, 6, 5).

v = 13 : We use the non-cyclic design from [38] and produce the 1-ocycle:

1, 2, 0, 9, 10, 12, 1, 3, 5, 7, 11, 9, 6, 7, 12, 8, 4, 9, 5, 10, 8, 6, 3, 11, 10, 7, 4,

4, 0, 3, 7, 2, 5, 12, 3, 9, 8, 2, 10, 6, 5, 0, 12, 11, 2, 4, 6, 1, 9, 7, 0, 8, 11, 1.

v = 15 : We use the AF design from [40] and produce the 1-ocycle:

210 807 5b7 da4 b94

0a9 73c 742 4e5 48c

971 ce1 2dc 52a c95

153 1db cb0 a7e 58d

304 b82 0de eb6 d76

461 236 e83 6ca 689

1a8 605 39d a3b 9e2

122

v = 19 : We use the AF design from [34] and produce the 1-ocycle:

1, 2, 3 6, 15, 8 15, 17, 10 16, 11, 14 19, 1, 18 17, 2, 19

3, 5, 6 8, 1, 9 10, 5, 14 14, 17, 7 18, 2, 16 19, 14, 8

6, 2, 4 9, 2, 11 14, 6, 9 7, 15, 9 16, 3, 19 8, 16, 7

4, 10, 13 11, 5, 13 9, 19, 13 9, 12, 18 19, 15, 4 7, 4, 3

13, 1, 12 13, 8, 17 13, 18, 7 18, 15, 11 4, 8, 12 3, 17, 18

12, 2, 14 17, 9, 5 7, 12, 11 11, 1, 10 12, 15, 3 18, 8, 5

14, 1, 15 5, 12, 19 11, 4, 17 10, 2, 8 3, 13, 14 5, 4, 1

15, 13, 2 19, 11, 6 17, 12, 6 8, 11, 3 14, 18, 4

2, 5, 7 6, 13, 16 6, 18, 10 3, 9, 10 4, 9, 16

7, 1, 6 16, 5, 15 10, 12, 16 10, 7, 19 16, 1, 17

v = 21 : We use the AF design from [38] to produce the 1-ocycle:

00,∞1, 11 05,∞1, 16 12, 14, 08 16, 18, 03 01, 10, 15 05, 10, 14 05, 03, 04

11,∞0, 01 16,∞0, 06 08,∞2, 11 03,∞2, 15 15, 12, 18 14, 13, 06 04, 01, 07

01,∞1, 12 06,∞1, 17 11, 13, 17 15, 17, 02 18, 10, 02 06, 11, 15 07, 08, 06

12,∞0, 02 17,∞0, 07 07,∞2, 10 02,∞2, 14 02, 11, 16 15, 14, 07 06, 03, 00

02,∞1, 13 07,∞1, 18 10, 12, 06 14, 16, 01 16, 13, 10 07, 12, 16 00, 04, 08

13,∞0, 03 18,∞0, 08 06,∞2, 18 01,∞2, 13 10, 11, 03 16, 15, 08 08, 01, 03

03,∞1, 14 08,∞1, 10 18, 11, 05 13, 15, 00 03, 17, 12 08, 13, 17 03, 07, 02

14,∞0, 04 10, 00,∞0 05,∞2, 17 00, 18, 14 12, 11, 04 17, 16, 00 02, 04, 06

04,∞1, 15 ∞0,∞1,∞2 17, 10, 04 14, 11, 17 04, 18, 13 00, 01, 02 06, 01, 05

15,∞0, 05 ∞2, 00, 12 04,∞2, 16 17, 18, 01 13, 12, 05 02, 08, 05 05, 07, 00

123

v = 25 : We use the AF design from [38] to produce the 1-ocycle:

∞1, 00, 11 18,∞0, 08 06,∞3, 10 04,∞5, 11 07, 08, 06 13, 16, 14 14,∞6, 06

11,∞0, 01 08,∞1, 10 10,∞2, 07 11,∞4, 05 06, 03, 00 14, 17, 15 06, 01, 15

01,∞1, 12 10,∞0, 00 07,∞3, 11 05,∞5, 12 00, 04, 08 15, 18, 16 15,∞6, 07

12,∞0, 02 00,∞3, 13 11,∞2, 08 12,∞4, 06 08, 01, 03 16, 10, 17 07, 02, 16

02,∞1, 13 13,∞2, 01 08,∞3, 12 06,∞5, 13 03, 07, 02 17, 11, 18 16,∞6, 08

13,∞0, 03 01,∞3, 14 12,∞2, 00 13,∞4, 07 02, 04, 06 18, 12, 10 08, 03, 17

03,∞1, 14 14,∞2, 02 00,∞5, 16 07,∞5, 14 06, 01, 05 10,∞6, 02 17, 00,∞6

14,∞0, 04 02,∞3, 15 16,∞4, 01 14,∞4, 08 05, 07, 00 02, 06, 11 ∞6,∞2,∞0

04,∞1, 15 15,∞2, 03 01,∞5, 17 08,∞5, 15 00, 04, 18 11,∞6, 03 ∞0,∞3,∞1

15,∞0, 05 03,∞3, 16 17,∞4, 02 15,∞4, 00 18,∞6, 01 03, 07, 12 ∞1,∞4,∞2

05,∞1, 16 16,∞2, 04 02,∞5, 18 00, 01, 02 01, 05, 10 12,∞6, 04 ∞2,∞5,∞3

16,∞0, 06 04,∞3, 17 18,∞4, 03 02, 08, 05 10, 13, 11 04, 08, 13 ∞3,∞6,∞4

06,∞1, 17 17,∞2, 05 03,∞5, 10 05, 03, 04 11, 14, 12 13,∞6, 05 ∞4,∞0,∞5

17,∞0, 07 05,∞3, 18 10,∞4, 04 04, 01, 07 12, 15, 13 05, 00, 14 ∞5,∞6,∞1

07,∞1, 18 18,∞2, 06

124

v = 27 : We use the AF design from [38] to produce the 1-ocycle:

00,∞, 10 19, 18, 12 07,∞, 17 04, 00, 12 01, 06, 1(10) 0(11), 03, 17

10, 0(12), 01 12, 1(10), 16 17, 06, 08 12, 0(12), 05 1(10), 05, 02 17, 02, 0(12)

01,∞, 11 16, 15, 10 08,∞, 18 05, 01, 13 02, 07, 1(11) 0(12), 04, 18

11, 12, 10 10, 1(12), 1(11) 18, 07, 09 13, 00, 06 1(11), 06, 03 18, 03, 00

10, 19, 1(10) 1(11), 12, 14 09,∞, 19 06, 02, 14 03, 08, 1(12) 00, 07, 01

1(10), 1(12), 11 14, 16, 11 19, 08, 0(10) 14, 01, 07 1(12), 07, 04 01, 08, 02

11, 13, 15 11, 19, 17 0(10),∞, 1(10) 07, 03, 15 04, 09, 10 02, 09, 03

15, 17, 1(11) 17, 10, 18 1(10), 09, 0(11) 15, 02, 08 10, 08, 05 03, 0(10), 04

1(11), 19, 16 18, 1(11), 11 0(11),∞, 1(11) 08, 04, 16 05, 0(10), 11 04, 0(11), 05

16, 17, 1(12) 11, 00, 02 1(11), 0(10), 0(12) 16, 03, 09 11, 09, 06 05, 0(12), 06

1(12), 18, 14 02,∞, 12 0(12),∞, 1(12) 09, 05, 17 06, 0(11), 12 06, 00, 07

14, 19, 15 12, 01, 03 1(12), 0(11), 00 17, 04, 0(10) 12, 0(10), 07 07, 01, 08

15, 1(10), 18 03,∞, 13 00, 09, 1(11) 0(10), 06, 18 07, 0(12), 13 08, 02, 09

18, 16, 13 13, 02, 04 1(11), 08, 01 18, 05, 0(11) 13, 0(11), 08 09, 03, 0(10)

13, 1(11), 1(10) 04,∞, 14 01, 0(10), 1(12) 0(11), 07, 19 08, 00, 14 0(10), 04, 0(11)

1(10), 17, 14 14, 03, 05 1(12), 09, 02 19, 06, 0(12) 14, 0(12), 09 0(11), 05, 0(12)

14, 10, 13 05,∞, 15 02, 0(11), 10 0(12), 08, 1(10) 09, 01, 15 0(12), 06, 00

13, 17, 12 15, 04, 06 10, 0(10), 03 1(10), 07, 00 15, 00, 0(10)

12, 15, 1(12) 06,∞, 16 03, 0(12), 11 00, 05, 19 0(10), 02, 16

1(12), 13, 19 16, 05, 07 11, 0(11), 04 19, 04, 01 16, 01, 0(11)

v = 33 : We use the AF design from [38] to produce the 1-ocycle:

125

13,∞1, 02 ∞2, 00, 13 12, 15, 0(12) 08, 15, 1(14) 01, 0(10), 08 02, 1(11), 10

02,∞2, 15 13, 01, 15 0(12), 19, 13 1(14), 12, 09 08, 00, 07 10, 0(13), 12

15,∞1, 04 15, 03, 17 13, 16, 0(13) 09, 16, 10 07, 03, 0(12) 12, 00, 14

04,∞2, 17 17, 05, 19 0(13), 1(10), 14 10, 0(10), 13 0(12), 0(14), 01 14, 02, 16

17,∞1, 06 19, 07, 1(11) 14, 17, 0(14) 13, 1(10), 0(11) 01, 0(13), 0(11) 16, 04, 18

06,∞2, 19 1(11), 09, 1(13) 0(14), 1(11), 15 0(11), 15, 19 0(11), 08, 02 18, 06, 1(10)

19,∞1, 08 1(13), 0(11), 10 15, 18, 00 19, 12, 0(10) 02, 03, 06 1(10), 08, 1(12)

08,∞2, 1(11) 10, 19, 01 00, 1(12), 16 0(10), 14, 18 06, 00, 05 1(12), 1(14), 0(10)

1(11),∞1, 0(10) 01, 1(10), 1(14) 16, 19, 01 18, 11, 09 05, 0(11), 07 0(10), 15, 16

0(10),∞2, 1(13) 1(14), 17, 00 01, 1(13), 17 09, 13, 17 07, 04, 02 16,∞0, 06

1(13),∞1, 0(12) 00,∞0, 10 17, 1(10), 02 17, 10, 08 02, 0(13), 0(12) 06, 11, 12

0(12),∞2, 10 10, 15, 1(10) 02, 1(14), 18 08, 12, 16 0(12), 0(11), 00 12,∞0, 02

10,∞1, 0(14) 1(10), 1(11), 00 18, 1(11), 03 16, 1(14), 07 00, 0(14), 0(13) 02, 1(12), 1(13)

0(14),∞2, 12 00, 19, 1(13) 03,∞0, 13 07, 11, 15 0(13), 08, 03 1(13),∞0, 0(13)

12,∞1, 01 1(13), 16, 0(14) 13, 18, 1(13) 15, 1(13), 06 03, 09, 0(13) 0(13), 18, 19

01,∞2, 14 0(14),∞0, 1(14) 1(13), 1(14), 03 06, 10, 14 0(13), 0(10), 04 19,∞0, 09

14,∞1, 03 1(14), 14, 19 03, 10, 19 14, 1(12), 05 04, 0(14), 05 09, 14, 15

03,∞2, 16 19, 1(10), 0(14) 19, 1(12), 04 05, 1(14), 13 05, 02, 0(10) 15,∞0, 05

16,∞1, 05 0(14), 18, 1(12) 04, 11, 1(10) 13, 1(11), 04 0(10), 07, 0(14) 05, 10, 11

05,∞2, 18 1(12), 15, 0(13) 1(10), 1(13), 05 04, 1(13), 12 0(14), 0(11), 06 11,∞0, 01

18,∞1, 07 0(13), 17, 1(11) 05, 12, 1(11) 12, 1(10), 03 06, 0(12), 0(10) 01, 1(11), 1(12)

07,∞2, 1(10) 1(11), 14, 0(12) 1(11), 1(14), 06 03, 1(12), 11 0(10), 03, 0(11) 1(12),∞0, 0(12)

1(10),∞1, 09 0(12), 16, 1(10) 06, 13, 1(12) 11, 19, 02 0(11), 09, 04 0(12), 17, 18

09,∞2, 1(12) 1(10),∞0, 0(10) 1(12), 10, 07 02, 01, 00 04, 08, 0(12) 18,∞0, 08

1(12),∞1, 0(11) 0(10), 17, 11 07,∞0, 17 00, 0(10), 09 0(12), 09, 05 08, 13, 14

0(11),∞2, 1(14) 11, 14, 0(11) 17, 1(12), 12 09, 07, 01 05, 08, 0(13) 14,∞0, 04

1(14),∞1, 0(13) 0(11),∞0, 1(11) 12, 13, 07 01, 05, 03 0(13), 07, 06 04, 10, 1(14)

0(13),∞2, 11 1(11), 11, 16 07, 14, 1(13) 03, 00, 04 06, 08, 09 1(14), 0(12), 11

11, 00,∞1 16, 17, 0(11) 1(13), 11, 08 04, 06, 01 09, 0(14), 02 11, 0(14), 13

∞1,∞0,∞2 0(11), 18, 12

126

5.8.1.3 Recursive Constructions of 1-Overlap Cycles

Result 5.8.17. If there exists an AF STS(v) with a 1-ocycle, then there exists

an AF STS(2v + 1) with a 1-ocycle when v ≥ 15.

Proof. Using Construction 5.8.15, we construct an overlap cycle for (Y,B) as

follows. We will construct a 1-overlap cycle for triples of type (1), and then for

the triples of types (2) and (3), and finally show that these cycles can be joined.

Step 1: Triples of type (1). Let O be a 1-ocycle on A. Then {1} ⊕ A

(placing a 1 as a first coordinate before each point in every block in A) also

has a 1-ocycle, given by {1} ⊕O.

Step 2: Triples of type (2). We first define the difference of a triple

to be the smaller of x− y and y− x (modulo v). Then we partition the set of

triples of type (2) depending on their difference d. This creates an equivalence

relation on the set of triples of type (2). We will construct 1-ocycles for each

equivalence class separately.

d = 1: We have the overlap cycle (in compressed form, with hidden elements

removed):

(0, 0), (0, 1), (0, 2), . . . , (0, v − 1), (0, 0).

d = 2: Similar to d = 1, we have the compressed ocycle:

(0, 0), (0, 2), (0, 4), . . . , (0, v − 1), (0, 1), (0, 3), . . . , (0, v − 2), (0, 0).

d ≥ 3: We follow the same procedure as for d = 1, 2, except if d | v the

procedure will not produce a cycle that covers all triples. However, when

127

this happens we can repeat the process beginning with the first triple

that remains unused. In this manner, we will obtain several disjoint

ocycles, and every triple of type (2) with the given difference d will be

covered by one of these cycles.

Note that for difference d = 1, every point of type (0, x) for x ∈ X appears

as an overlap point. Thus for all overlap cycles associated with d ≥ 3, we can

join them to the cycle for d = 1. We reserve the ocycle corresponding to d = 2

to include with the triples of type (3).

Step 3: Triples of type (3). We construct an ocycle to include triples

of type (2) with d = 2 and triples of type (3) as follows. First, connect pairs

of triples of the form:

(1, x+ 1) (0, x) (0, x+ 2)

and

(0, x+ 2) ∞ (1, x+ 2).

Then we may use all of these pairs to form the ocycle (displayed as a circle):

(1, 1), (0, 0), (0, 2), ∞, (1, 2), (0, 1),

∞, (0, 3),

(0, 1), (0, v − 1), (1, 0), . . . , (1, 3), ∞,

This cycle accounts for v of these pairs of triples, and since no triple is covered

twice it must cover all triples of type (2) with d = 2 and all triples of type (3).

To connect all of the constructed cycles, we note that the cycle created in

128

Step 3 contains the points (0, x) and (1, x) for every x ∈ X as an overlap.

Thus we can connect the cycle created in Step 1 to this cycle, as well as

the cycle created in Step 2. This produces one long 1-ocycle that covers all

triples.

Result 5.8.18. If there exists an AF STS(v) with a 1-ocycle, then there exists

an AF STS(2v + 7) with a 1-ocycle, when v ≥ 15.

Proof. Using Construction 5.8.16, we will find ocycles for subsets of blocks,

and show that they can be combined to form one long ocycle for the entire

design.

Step 1: Triples of type (1). Let O be a 1-ocycle on A. Then {1} ⊕A also

has a 1-ocycle, given by {1} ⊕O.

Step 2: Triples of type (3). We construct one long cycle (displayed as

a circle):

(0, 0), (0, 6), (0, 2), (0, 8), (0, 4),

(0, 4), . . . ,

(0, v − 2), . . . , (0, 1), (0, 5), (0, v − 1),

Note that since v must always be odd, we see the point (0, x) for every x ∈ Zv

as an overlap point in this cycle.

Step 3: Triples of type (4) with |y| > 4. We start by creating the

ocycle(s) (in compressed form, with hidden elements removed):

(0, 0), (0, 2y), (0, 4y), (0, 6y), . . . , (0, 0).

129

Note that if gcd(y, v) = 1 this creates one cycle, but otherwise will create

several disjoint cycles. These cycles contain all triples of type (4) associated

with a particular y. Note also that in each cycle, all of the points (0, x) for

every x ∈ Zv appear as overlaps. Thus we can connect all of these cycles to

the cycle from Step 2.

Step 4: Triples of type (4) with |y| = 4 and type (5) with i = −3. We

begin by pairing up blocks as follows so as to partition B:

{(0, x), (0, x+ 8), (1, x+ 4)}

and

{(1, x+ 4), ∞−3, (0, x+ 1)}.

We can connect up these pairs in order, starting with the pair that begins

(0, 0) and then moving to the pair that begins (0, 1), and so on. We will even-

tually end with the pair starting (0, v − 1) and ending (0, 0). Thus we have

an overlap cycle. Note that in this cycle the points (0, x) and (1, x) appear as

overlap points for every x ∈ Zv.

Step 5: Triples of type (2). The triples of type (2) correspond to an

STS(7). We have shown in Section 5.8.1.2 that a 1-ocycle exists for the unique

STS(7). We will use the cycle from Step 4 to join the triples of type (2). If

we break the cycle from Step 4 between the blocks

{(0, v − 8), (0, 0), (1, v − 4)} and

{(1, v − 4), ∞−3, (0, v − 7)},

130

and also between the blocks

{(1, 3), ∞−3, (0, 0)} and

{(0, 0), (0, 8), (1, 4)},

then we now have two 1-overlap paths:

(0, 0), (0, 8), (1, 4), . . . , (0, v − 8), (0, 0), (1, v − 4)

and

(1, v − 4),∞−3, (0, v − 7), . . . , (1, 3),∞−3, (0, v − 7).

We can swap the order of the last two elements in the first path, and swap

the order of the first two and the order of the last two elements in the second

path to obtain the following two 1-ocycles:

(0, 0), (0, 8), (1, 4), . . . , (0, v − 8), (1, v − 4), (0, 0)

and

∞−3, (1, v − 4), (0, v − 7), . . . , (1, 3), (0, v − 7),∞−3.

Now we have ∞−3 as an overlap point in the second cycle and so we can join

this ocycle to the STS(7) ocycle (which contains every point∞i as an overlap

point).

Step 6: Triples of type (5) with i 6= −3. We construct three separate

ocycles as follows. For k ∈ {−2, 0, 2}, construct the cycle:

(0, 0), (1, k), (0, 1), (1, k + 1), . . .

When k = −2, this covers all triples of type

{(0, x), (1, x− 2),∞2} and {(0, x), (1, x− 3),∞3}.

131

When k = 0, this covers all triples of type

{(0, x), (1, x),∞0} and {(0, x), (1, x− 1),∞1}.

When k = 2, this covers all triples of type

{(0, x), (1, x+ 2),∞−2} and {(0, x), (1, x+ 1),∞−1}.

These three cycles cover all triples of type (5) with i 6= −3.

The cycles from Steps 2, 3, 5, and 6 all contain the point (0, x) for every

x ∈ Zv, and so can be connected. The cycles from Steps 1, 5, and 6 all contain

the point (1, x) for every x ∈ Zv \ {v − 4}, and so can be connected. Since

the cycle from Step 5 appears in both cases, these two long cycles can also be

connected. Thus, all triples are contained in one of the connected cycles, and

so we have a 1-ocycle that covers all blocks.

We are now ready to prove Result 5.8.14.

Proof of Result 5.8.14. We proceed by induction on n. For n = 15, 19, 21, 25, 27,

and 33, we have shown ocycles in Section 5.8.1.2.

For n ≥ 37 and n ≡ 1 (mod 12), there exists v ≡ 3 (mod 6) so that

n = 2v + 7. Note that n ≥ 37 implies that v ≥ 15. Thus we use Result 5.8.18

to find the STS(n).

For n ≥ 39 and n ≡ 3 (mod 12), there exists v ≡ 1 (mod 6) so that

n = 2v + 1. Note that n ≥ 39 implies that v ≥ 19. Thus we use Result 5.8.17

to find the STS(n).

For n ≥ 31 and n ≡ 7 (mod 12), there exists v ≡ 3 (mod 6) so that

n = 2v + 1. Note that n ≥ 31 implies that v ≥ 15, so we use Result 5.8.17 to

find the STS(n).

132

For n ≥ 45 and n ≡ 9 (mod 12), there exists v ≡ 1 (mod 6) so that

n = 2v + 7. Note that n ≥ 45 implies that v ≥ 19, so we use Result 5.8.18 to

find the STS(n).

Corollary 5.8.19. For every n ≥ 15 with n ≡ 1, 3 (mod 6), there exists an

AF STS(n) with a rank two ucycle.

Proof. Using Result 5.8.14, we construct an AF STS(n) with a 1-ocycle. The

1-ocycle in compressed form is a rank two ucycle.

5.8.1.4 Other STS Constructions with Overlap Cycles

In this section, we look at several other known constructions for Steiner triple

systems, and show their corresponding 1-ocycle constructions.

Recall Construction 3.8.9, the direct product of two Steiner triple systems.

An interesting consequence of the direct product is the following theorem.

Theorem 5.8.20. ([10], Lemma 7.12) The automorphism group of the di-

rect product of two triple systems is the direct product of their automorphism

groups.

This theorem implies another method for constructing AF Steiner triple

systems that admit ocycles. Beginning with two AF Steiner triple systems

with corresponding 1-ocycles, we can use the following result to construct a

1-ocycle on their AF direct product.

Result 5.8.21. If there exists an STS(u) with a 1-overlap cycle and an STS(v)

with a 1-overlap cycle, then there exists an STS(uv) with a 1-ocycle.

Proof. Let (X,A) be an STS(u) and (Y,B) be an STS(v) that admit the

1-ocycles O(A) and O(B), respectively. We construct an STS(uv) using Con-

133

struction 3.8.9 (the direct product). For each i ∈ Zu, we have a 1-ocycle

covering the triples of type (1), namely i ⊕ O(B). Similarly, for each a ∈ Zv,

we have a 1-ocycle covering the triples of type (2): O(A)⊕ a. Lastly, for each

A = {i, j, k} ∈ A and each B = {a, b, c} ∈ B, we can construct the following

1-ocycle:

{(i, a), (j, b), (k, c)}

{(k, c), (j, a), (i, b)}

{(i, b), (j, c), (k, a)}

{(k, a), (j, b), (i, c)}

{(i, c), (j, a), (k, b)}

{(k, b), (j, c), (i, a)}

To connect cycles covering triples of types (1) and (2), we connect wherever

possible. Starting with 0⊕O(B), we connect all cycles over triples of type (2).

Then, starting with an arbitrary, already connected, cycle over triples of type

(2), we repeat the process by adding cycles over triples of type (1) wherever

possible. We continue this process of extending our cycle until we no longer

are able to add any more cycles.

We will always be able to continue to connect cycles, except when all cycles

are connected, or:

1. there exists i ∈ Zu that never appears as an overlap point in O(A),

and/or,

2. there exists a ∈ Zv that never appears as an overlap point in O(B).

If we have both cases, then we choose a block A ∈ A containing i and a block

B ∈ B containing a. Then we arrange the cycle covering the triples from A×B

to begin with (i, a). Since two points of A must appear as overlap points in

134

O(A) and i is not one of them, we must have that j and k are overlap points

in O(A). Similarly, b and c must be overlap points in O(B). Thus we can

connect the cycle for A× B to the cycles k ⊕O(B) and O(A)⊕ c. Note that

since each block can only contain one hidden element, this process will never

use a block from A or B more than once. If only case (1) or case (2) holds

(but not both), this process is repeated with an arbitrary choice of block from

B.

We now consider the direct constructions of Steiner triple systems.

Theorem 5.8.22. ([6], Prop. 8.2.1, p. 110) If n ≡ 3 (mod 6), there exists an

STS(n).

Construction. Suppose that n ≡ 3 (mod 6); then n = 3m for some m odd.

The point set is made up of three copies of the integers modulo m. Formally:

X = Z3 × Zm.

Blocks are of two types:

1. {(a, i), (a, j), (a+ 1, k)} with i+ j = 2k for each a ∈ Z3

2. {(0, i), (1, i), (2, i)} for each i ∈ Zm

Result 5.8.23. For n ≡ 3 (mod 6) with n > 3, there exists an STS(n) that

admits a 1-ocycle.

Proof. We will use Construction 5.8.22 to create an STS(n), then construct

1-ocycles to cover each type of triples, and finally show how to connect them

into one large cycle. First, note that we have m ≥ 3 since n > 3, and so there

135

exists at least three triples of each kind.

Step 1: Triples of type (1) with a = 1. Define the distance for the

triple {(1, i), (1, j), (2, k)} to be the value min{i− j, j − i}, where subtraction

is done in the group Zm. Partition the blocks of type (1) into classes so that

the blocks {(1, i), (1, j), (2, k)} and {(1, r), (1, s), (2, t)} are in the same class if

and only if they have the same distance. This defines an equivalence relation

on the set of blocks of type (1) with m−1
2

different equivalence classes. Create

a cycle using the set of blocks having the form {(1, i), (1, i+1), (2, i+ m−1
2

+1)}

as shown below in compressed form:

(1, 0)(1, 1)(1, 2) · · · (1,m− 1)(1, 0).

Create similar (possibly shorter) cycles using the blocks within each other

equivalence class. This creates at least one cycle, if not several disjoint cycles,

for each equivalence class. Since the first cycle created (using blocks with dis-

tance 1) has every point (1, i) as an overlap point, we can combine all of these

cycles to make one long cycle.

Step 2: Triples of type (1) with a = 2. Repeat as in Step 1. We pay

careful attention to attach the cycle for distance 2 blocks at the point (2, 0).

Note that this is possible since distance 2 also creates one long cycle cover-

ing the entire equivalence class, as m must be odd. Now we may be assured

that the cycle corresponding to distance 2 does not have any cycles attached

at the overlap point (2, 1) between the blocks {(2,m − 1), (0, 0), (2, 1)} and

{(2, 1), (0, 2), (2, 3)}. Then, when we have combined all blocks of type (1)

with a = 2 to make a cycle, we convert the cycle to a string by cutting it

136

between these two blocks and then reversing the order of the last two points.

In other words, we now have a string that begins with (2, 1)(0, 2)(2, 3) and

ends with (2,m− 1)(2, 1)(0, 0).

Step 3: Triples of type (2) and (1) with a = 0. Repeat as in Step

1 excluding the equivalence class with distance 2. For these excluded blocks,

we partition the set of blocks of type (1) and (2) into sets of size two by

grouping together:

{(0, i), (2, i), (1, i)} and {(1, i), (0, i− 1), (0, i+ 1)}.

Clearly the blocks in each set of size two can form a 1-overlap string, and

then we can combine each of these strings to obtain a 1-ocycle of the form

(displayed in a circle):

(0, 1) (2, 1) (1, 1) (0, 0) (0, 2) · · · (0, i)

(0,m− 1) (2, i)

(1, 0) (2, 0) (0, 0) · · · (0, i+ 1) (0, i− 1) (1, i)

or in compressed form

(0, 1)(1, 1)(0, 2)(1, 2) · · · (0, i)(1, i)(0, i+ 1)(1, i+ 1) · · · (0, 0)(1, 0)(0, 1).

Step 4: Combining the triples from Step 1 and Step 3. Since the cy-

cles created in Step 1 and Step 3 both contain every point (1, i) as an overlap

point, we can combine these two cycles. More importantly, we have a choice of

where to combine the cycles, since we have at least two choices for an overlap

point (1, i). We choose to combine the two cycles at an overlap point other

137

than (1, 1). Then, we can create a string from this cycle by cutting it between

the blocks {(0, 1), (2, 1), (1, 1)} and {(1, 1), (0, 0), (0, 2)} (from cycle from Step

3), and reversing the order of the first two and the last two elements. In other

words, we now have a string that begins with {(2, 1), (0, 1), (1, 1)} and ends

with {(1, 1), (0, 2), (0, 0)}.

To create our final 1-ocycle, we recall that our string from Step 2 also begins

with the point (2, 1) and ends with the point (0, 0), and so we can combine

these two strings into one large cycle by reversing the order of the string from

Step 4.

Theorem 5.8.24. ([46], p. 128) If n ≡ 1 (mod 6), then there is an STS(n).

Construction. If n ≡ 1 (mod 6), then n = 6t + 1 for some t ∈ Z. We define

the point set as

Y = (Z2t × Z3) ∪ {∞}.

Then we define three types of blocks:

1. Ax = {(x, 0), (x, 1), (x, 2)} for 0 ≤ x ≤ t− 1.

2. Bx,y,i = {(x, i), (y, i), (x ◦ y, i + 1)} for each x, y ∈ Z2t with x < y and

each i ∈ Z3, with the operation x ◦ y = π(x+ y (mod 2t)) where

π(z) =

 z/2, if z is even,

(z + 2t− 1)/2, if z is odd.

3. Cx,i = {∞, (x+ t, i), (x, i+ 1)} for each 0 ≤ x ≤ t− 1 and i ∈ Z3.

138

Result 5.8.25. For n ≡ 1 (mod 6) with n > 1, there exists an STS(n) that

admits a 1-overlap cycle.

Proof. We will use Construction 5.8.24 to construct an STS(n). Then we show

how to construct disjoint cycles for most triples of type (2), as well as disjoint

cycles for triples of types (1) and (3), and finally we show how to combine

them to make one large 1-ocycle containing all triples.

Step 1: Triples of type (2). The triples of type (2) can be partitioned

based on the pair {(x, i), (y, i)}. Similar to Result 5.8.23, we define the dis-

tance of the triple to be the smaller of x−y and y−x (modulo 2t). Then, we

can partition the set of triples of type (2) into classes that share the same dis-

tance for each difference k < t. Following the method from Result 5.8.23 (Step

1), we can create disjoint cycles that contain all of these triples. Note that

the triples corresponding to distance 1 make one long cycle for each second

coordinate. This cycle is (in compressed form):

(0, i)(1, i)(2, i) . . . (2t− 1, i) for i ∈ Z3.

These cycles contain every point from Z2t × {i} as an overlap point, and so

we can hook up all of them to make three long cycles - one for each i ∈ Z3.

These cycles cover all triples of type (2) except those with distance t.

Step 2: Triples of types (1), (2), (3). We begin by partitioning the

triples of type (3) into classes that contain the following blocks:

{∞, (x+ t, 0), (x, 1)}, {∞, (x+ t, 1), (x, 2)}, {∞, (x+ t, 2), (x, 0)}.

139

Note that no other triples of type (3) contain any points with x or x+ t as a

first coordinate. This set of blocks has a corresponding triple of type (1):

{(x, 0), (x, 1), (x, 2)}.

It also has a corresponding triple of type (2) with distance t:

{(x, i), (x+ t, i), (x ◦ (x+ t), i+ 1)} for i ∈ Z3.

Using these blocks and defining y = x + t, we create the following cycle (dis-

played as a circle):

x2 (x ◦ y)0 y2 x0 ∞ x1

∞ y0

y1 (x ◦ y)2 x1 x2 x0 (x ◦ y)1

or in compressed form

x2 y2 ∞ y0 x0 x1 y1 x2 .

This creates a set of disjoint cycles that cover all of the remaining triples.

To combine all of our cycles and create our final 1-ocycle, we note that the

cycles from Step 2 each have at least one overlap point of the form (x, 1) with

x ∈ Zt, and so we can hook these cycles all up to the cycle from Step 1 that

corresponds to i = 1. Also, each of the cycles from Step 2 has overlap points

(x, i) corresponding to each i = 1, 2 and each x ∈ Zt, so we can connect the

remaining two cycles from Step 1.

We may use these direct constructions to provide an alternative proof that

there exists a 1-ocycle for an STS of each possible order.

140

Theorem 5.8.26. For every n ≡ 1, 3 (mod 6), there exists an STS(n) that

admits a 1-ocycle.

Proof. For n ≡ 3 (mod 6) with n ≥ 7, we apply Result 5.8.23 to obtain the

desired system. For n ≡ 1 (mod 6) with n ≥ 7, we apply Result 5.8.25 to

obtain the desired system.

Corollary 5.8.27. For every n ≥ 7 with n ≡ 1, 3 (mod 6), there exists an

STS(n) with a rank two ucycle.

Proof. Using Theorem 5.8.26, we construct an STS(n) with a 1-ocycle. The

1-ocycle in compressed form is a rank two ucycle.

5.8.2 Steiner Quadruple Systems

A 3-(v, 4, 1)-design is known as a Steiner quadruple system of order v, or

SQS(v). The existence of Steiner quadruple systems was completely deter-

mined by H. Hanani in 1960.

Theorem 5.8.28. [23] An SQS(v) exists if and only if v ≡ 2, 4 (mod 6).

To prove this result, Hanani used six different recursive constructions and

various base cases. Using these constructions, we create 1-overlap ucycles for

each SQS(v).

5.8.2.1 Hanani’s Constructions

To begin, we make a note that Hanani defines two systems of unordered pairs

in [23]. These systems, referred to as Pα(m) and P ξ(m), are necessary for

141

his constructions of Steiner quadruple systems. However, our methods of

constructing ocycles do not depend on the precise definitions of these sets,

so we refer the reader to [23] for a complete definition, which will be omitted

here. Also, within each construction, once a condition is imposed on a variable

the same conditions are to be upheld for the remainder of the construction.

The first construction produces an SQS(2n) from an SQS(n).

Construction 5.8.29. Let (X,B) be an SQS(n). Let X = {0, 1, . . . , n − 1},

and define a new point set Y = {0, 1} × X. The blocks on Y that form an

SQS(2n) are as follows.

1. {a1x, a2y, a3z, a4t} where {x, y, z, t} ∈ B and a1 + a2 + a3 + a4 ≡ 0

(mod 2).

2. {0j, 0j′, 1j, 1j′} for j 6= j′.

The second construction produces an SQS(3n− 2) from an SQS(n).

Construction 5.8.30. Let (X,B) be an SQS(n). Define

X = {0, 1, 2, . . . , n− 2} ∪ {A}.

Let B = BA ∪ BA, where BA denotes all blocks containing A, and BA denotes

all blocks not containing the point A. We construct new blocks on the set

Y = ({0, 1, 2} × {0, 1, 2, . . . , n− 2}) ∪ {A}.

Note that Y has cardinality 1 + 3(n − 1) = 3n − 2. The new blocks are as

follows.

1. {a1x, a2y, a3z, a4t} for {x, y, z, t} ∈ BA and a1+a2+a3+a4 ≡ 0 (mod 3).

142

2. {A, b1u, b2v, b3w} for {A, u, v, w} ∈ BA and b1 + b2 + b3 ≡ 0 (mod 3).

3. {iu, iv, (i+ 1)w, (i+ 2)w} for i ∈ {0, 1, 2} and {A, u, v, w} ∈ BA.

4. {ij, ij′, (i+ 1)j, (i+ 1)j′} for i ∈ {0, 1, 2}, j, j′ ∈ {0, 1, 2, . . . , n− 2} and

j 6= j′.

5. {A, 1j, 2j, 3j} for j ∈ {0, 1, 2, . . . n− 2}.

The third construction creates an SQS(3n − 8) from an SQS(n) if n ≡ 2

(mod 12).

Construction 5.8.31. Let (X,B) be an SQS(n) with n ≡ 2 (mod 12). Let

X = {0, 1, 2, . . . , n− 5} ∪ {Ah : h ∈ {0, 1, 2, 3}}.

We will make the assumption that {A0, A1, A2, A3} is a block in B. Define

Y = ({0, 1, 2} × {0, 1, 2, . . . , n− 5}) ∪ {Ah : h ∈ {0, 1, 2, 3}}.

Note that Y has cardinality 3(n− 4) + 4 = 3n− 8. We construct blocks on Y

as follows.

1. {A0, A1, A2, A3}

2. {ix, iy, iz, it} where {x, y, z, t} ∈ B\{A0, A1, A2, A3}. (If one of x, y, z, t

is Ah, omit the i.) We denote this operation by i⊕(B\{A0, A1, A2, A3}).

3. {Aa1, 0a2, 1a3, 2a4} where a1 + a2 + a3 + a4 ≡ 0 (mod n− 4).

4. {(i + 2)b3, i(b1 + 2k + 1 + i(4k + 2)− d), i(b1 + 2k + 2 + i(4k + 2) + d),

(i + 1)b2} where n − 4 = 12k + 10, b1 + b2 + b3 ≡ 0 (mod n − 4), and

d ∈ {0, 1, . . . , 2k}.

143

5. {irα, isα, (i+1)r′α, (i+1)s′α} where [rα, sα], [r′α, s
′
α] ∈ Pα(6k+5) (possibly

the same) where α = 4k + 2, 4k + 3, . . . , 12k + 8.

The fourth construction makes an SQS(3n − 4) from an SQS(n) whenever

n ≡ 10 (mod 12).

Construction 5.8.32. Let (X,B) be an SQS(n) with n ≡ 10 (mod 12). Let

X = {0, 1, 2, . . . , n− 3} ∪ {A0, A1}.

Define

Y = ({0, 1, 2} × {0, 1, . . . , n− 3}) ∪ {A0, A1}.

Note that Y has cardinality 3(n− 2) + 2 = 3n− 4. We construct blocks on Y

as follows.

1. {ix, iy, iz, it} where {x, y, z, t} ∈ B, or i⊕ B. (If one of x, y, z, t is Ah,

omit the i.)

2. {Aa1, 0a2, 1a3, 2a4} where a1 + a2 + a3 + a4 ≡ 0 (mod n − 2) and also

a1 ∈ {0, 1} and a2, a3, a4 ∈ {0, 1, 2, . . . , n− 2}.

3. {(i+2)b3, i(b1+2k+1+i(4k+2)−d), i(b1+2k+2+i(4k+2)+d), (i+1)b2}

where n = 12k + 10, b1 + b2 + b3 ≡ 0 (mod n− 2), and d = 0, 1, . . . , 2k.

4. {irα, isα, (i+1)r′α, (i+1)s′α} where [rα, sα], [r′α, s
′
α] ∈ Pα(6k+4) (possibly

the same) where α = 4k + 2, 4k + 3, . . . , 12k + 6.

The fifth construction produces an SQS(4n− 6) from an SQS(n).

Construction 5.8.33. Let (X,B) be an SQS(n) with

X = {0, 1, . . . , n− 2} ∪ {A0, A1}.

144

Define

Y = ({0, 1} × {0, 1} × {0, 1, . . . , n− 3}) ∪ {A0, A1}.

Note that Y has cardinality (2)(2)(n − 2) + 2 = 4n − 6. We construct blocks

on Y as follows:

1. h ⊕ i ⊕ B where h ∈ {0, 1} and i ∈ {0, 1}, and we ignore the prefix hi

from the points A0, A1 ∈ X.

2. {A`, 00(2c1), 01(2c2 − ε), 1ε(2c3 + `)} where `, ε ∈ {0, 1} and, defining

n = 2k, we also have c1 + c2 + c3 ≡ 0 (mod k).

3. {A`, 00(2c1 + 1), 01(2c2 − 1− ε), 1ε(2c3 + 1− `)}.

4. {A`, 10(2c1), 11(2c2 − ε), 0ε(2c3 + 1− `)}.

5. {A`, 10(2c1 + 1), 11(2c2 − 1− ε), 0ε(2c3 + `)}.

6. {h0(2c1 + ε), h1(2c2− ε), (h+1)0rc3 , (h+1)0sc3} where [rc3 , sc3] ∈ P c3(k)

and c3 ∈ {0, 1, . . . , k − 1}.

7. {h0(2c1 − 1 + ε), h1(2c2 − ε), (h+ 1)1rc3 , (h+ 1)1sc3}.

8. {h0(2c1 + ε), h1(2c2 − ε), (h+ 1)1rk+c3 , (h+ 1)1sk+c3}.

9. {h0(2c1 − 1 + ε), h1(2c2 − ε), (h+ 1)0rk+c3 , (h+ 1)0sk+c3}.

10. {h0rα, h0sα, h1r′α, h1s′α} with [rα, sα], [r′α, s
′
α] ∈ Pα(k) where we have α

from the set {0, 1, . . . , n− 4}.

The sixth and final construction produces an SQS(12n − 10) from an

SQS(n), and begins with the constructions of an SQS(14) and an SQS(38).

145

SQS(14) (listed as a 1-ocycle):

2043 0BC2 C841 38B5 0BD6 B9CA 259C

3162 28B1 19B4 5AC3 6BC1 A05B CA68

25D3 1250 4095 36AD 18D6 B79D 80B9

37A2 03B1 5134 DBC3 629D DA7C 9158

28C3 1460 4265 36C4 DB51 CD40 8249

3560 0781 57A4 48B6 17C5 08A4 9368

07C3 19D0 48D5 60A7 51A6 4B07 87A9

38D0 0AC1 57D0 7196 69B5 749C 9CD8

09A3 19A2 08C5 62C7 5C6D CDA4 87CB

39B2 2CD1 5BC4 73B6 D59A 4B2D B17A

2680 17D3 4783 64D7 A26B D872 A964

0792 38A1 3D49 7586 B34A 27B5 4AD1

2AD0 139C 9573 69C0 A8DB 58A2 1472

SQS(38):

We identify the points from the SQS(14) with the set

X = {0, 1, 2, . . . , 11} ∪ {A0, A1},

and let B be the set of blocks form the SQS(14) on X. Then we define our

new point set Y as

Y = ({0, 1, 2} × {0, 1, 2, . . . , 11}) ∪ {A0, A1}.

Note that Y has cardinality (3)(12) + 2 = 38. The blocks on Y are as follows:

1. i⊕ B, where we omit the prefix i for A0 or A1.

2. {Ah, 0b1, 1b2, 2(b3+3h)}, where b1+b2+b3 ≡ 0 (mod 12) and h ∈ {0, 1}.

146

3. {i(b1 + 4 + i), i(b1 + 7 + i), (i+ 1)b2, (i+ 2)b3}.

4. {ij, (i+1)(j+6ε), (i+2)(6ε−2j+1), (i+2)(6ε−2j−1)} where ε ∈ {0, 1}.

5. {ij, (i+ 1)(j + 6ε), (i+ 2)(6ε− 2j + 2), (i+ 2)(6ε− 2j − 2)}.

6. {ij, (i+ 1)(j + 6ε− 3), (i+ 2)(6ε− 2j + 1), (i+ 2)(6ε− 2j + 2)}.

7. {ij, (i+ 1)(j + 6ε+ 3), (i+ 2)(6ε− 2j − 1), (i+ 2)(6ε− 2j − 2)}.

8. {ij, i(j + 6), (i+ 1)(j + 3ε), (i+ 1)(j + 6 + 3ε)}.

9. {i(2g+ 3ε), i(2g+ 6 + 3ε), i′(2g+ 1), i′(2g+ 5)} for i′ 6= i and g from the

set {0, 1, 2, 3, 4, 5}.

10. {i(2g + 3ε), i(2g + 6 + 3ε), i′(2g + 2), i′(2g + 4)}.

11. {ij, i(j + 1), (i+ 1)(j + 3e), (i+ 1)(j + 3e+ 1)} for e = 0, 1, 2, 3.

12. {ij, i(j + 2), (i+ 1)(j + 3e), (i+ 1)(j + 3e+ 2)}.

13. {ij, i(j + 4), (i+ 1)(j + 3e), (i+ 1)(j + 3e+ 4)}.

14. {irα, isα, i′r′α, i′s′α} where [rα, sα], [r′α, s
′
α] ∈ Pα(6) for α = 4, 5.

Construction 5.8.34. Let (X,B) be an SQS(n). Let

X = {B} ∪ {0, 1, 2, . . . , n− 2}.

Let BB be the subset of B with blocks containing B, and BB to be the comple-

ment. Define

Y = ({0, 1, 2, . . . , n− 2} × {0, 1, 2, . . . , 11}) ∪ {A0, A1}.

Note that Y has cardinality (n − 1)(12) + 2 = 12n − 10. We construct blocks

on Y as follows:

147

1. i ⊕ B(14) for i ∈ {0, 1, . . . , n − 2} and where i is omitted if the point is

of the form Ah.

2. a) {Ah, ub1, vb2, w(b3+3h)} where {u, v, w,B} ∈ BB and with b1, b2, b3

satisfying b1 + b2 + b3 ≡ 0 (mod 12).

b) {uα1, vα2, wα3, wα4} where α1, α2, α3, α4 are the second indices (in

order) of blocks of types (3) - (7) in the SQS(38).

c) {iβ1, iβ2, i′β3, i′β4} where {i, i′, B} defines a unique block in BB and

β1, β2, β3, β4 are the second indices (in order) of blocks of type (8)

- (14) in the SQS(38).

3. {xa1, ya2, za3, ta4}, where {x, y, z, t} ∈ BB and {a1, a2, a3, a4} satisfy

a1 + a2 + a3 + a4 ≡ 0 (mod 12).

Theorem 5.8.35. For n ≡ 2, 4 (mod 6) with n > 4, there exists an SQS(n).

Proof. Proceed by induction on n. Since it is not possible to create a 1-ocycle

for an SQS(2) or SQS(4), we begin our base cases with n = 8, 10. If n = 8, we

have the following SQS, arranged in 1-ocycle form:

2148, 8523, 3684, 4578, 8156, 6287, 7813, 3576, 6471, 1572, 2163, 3274, 4135, 5462.

When n = 10, we have the following SQS(10), arranged in 1-ocycle form:

2145 6907 1372 7268 2694 7491

5263 7108 2483 8379 4681 1693

3674 8192 3594 9480 1583 3608

4785 2903 4506 0591 3705 8520

5896 3401 6157 1602 5297 0472

148

Before Construction 5.8.34, we illustrated an SQS(14) and an SQS(38).

Let n ≥ 16 with n ≡ 4, 8 (mod 12). Then for some v ≡ 2, 4 (mod 6), we

have n = 2v. Since n ≥ 16 implies v ≥ 8, we use Construction 5.8.29.

Let n ≥ 22 with n ≡ 4, 10 (mod 18). Then for some v ≡ 2, 4 (mod 6), we

have n = 3v − 2. Since n ≥ 22 implies v ≥ 8, we use Construction 5.8.30.

Let n ≥ 26 with n ≡ 2, 10 (mod 24). Then for some v ≡ 2, 4 (mod 6), we

haven = 4v − 6. Since n ≥ 26 implies v ≥ 8, we use Construction 5.8.33.

Let n ≥ 26 with n ≡ 26 (mod 36). Then for some v ≡ 10 (mod 12), we

have n = 3v − 4. Since n ≥ 26 implies v ≥ 10, we use Construction 5.8.32.

Let n ≥ 34 with n ≡ 34 (mod 36). Then for some v ≡ 2 (mod 12), we

have n = 3v − 8. Since n ≥ 34 implies v ≥ 14, we use Construction 5.8.31.

Let n ≥ 86 with n ≡ 14, 38 (mod 72). Then for some v ≡ 2, 4 (mod 6), we

have n = 12v − 10. Since n ≥ 86 implies v ≥ 8, we use Construction 5.8.34.

5.8.2.2 Ocycles and Hanani’s Constructions

Every result in this section will be proven in the same manner. First, each

type of block will generate individual ocycles. Then we will illustrate how to

connect all cycles together to form one 1-ocycle that covers all blocks.

Result 5.8.36. Let (X,B) be an SQS(n). Then there exists an SQS(2n) that

admits a 1-ocycle.

Proof. We use Construction 5.8.29. To create cycles on the quadruples we do

the following.

1. Fix a1, a2 ∈ {0, 1} and {x, y, z, t} ∈ B. We have two choices for a3,

and this choice completely determines a4. Thus by fixing a1, a2 and

149

{x, y, z, t}, we have identified two blocks of type (1). We can construct

the short 2-block 1-ocycle as shown below:

a1x . . . a2y . . . a1x.

2. For each d ∈ {1, 2, . . . , bn
2
c}, define the following cycle:

00 10 1d 0d

0d 1d 1(2d) 0(2d)

0(2d) 1(2d) 1(3d) 0(3d)

...

We continue this cycle until we arrive back at 00. At this point, if

gcd(d, n) = 1, we will have covered all blocks of difference d. However,

if gcd(d, n) > 1, then we may need multiple cycles to cover all blocks.

In this case we just start anew with the first block missed.

To connect these cycles, we look to the blocks of type (2). Note that when

d = 1 we will obtain one long cycle, call it C, that has all points 0j with

j ∈ {0, 1, 2, . . . n − 1} as overlap points. Then we can join all cycles from

(2) to C. To attach the cycles of type (1), we utilize cycles from (1) with

a1 = 0. We can connect these all to C using the overlap points a1x = 0x.

For the remaining cycles with a1 = 1, it is again possible to connect to C as

follows. If a2 = 0 we can attach at the points a2y = 0y on C, and if a2 = 1

we can attach at the points a2y = 1y that exist on the cycles from (1) with

a1 = 0, a2 = 1.

Result 5.8.37. Let (X,B) be an SQS(n). Then there exists an SQS(3n− 2)

that admits a 1-ocycle.

150

Proof. We use Construction 5.8.30. To create cycles on the quadruples we do

the following.

1. Fix a1, a2 ∈ {0, 1, 2} and a block {x, y, z, t} ∈ BA. Note that these

choices determine a set of three blocks in the SQS(3n − 2) since we

may choose any a3 ∈ {0, 1, 2}, but then our choices have completely

determined a4. For each a1 ∈ {0, 1, 2} and {x, y, z, t} ∈ BA, we create

the 1-ocycle

0z a1x a4t 0y

0y 1z a4t a1x a2 = 0

a1x 0y a4t 2z

2z 1y a4t a1x

a1x a4t 1z 1y a2 = 1

1y a4t 0z a1x

a1x 2z a4t 2y

2y 1z a4t a1x a2 = 2

a1x a4t 2y 0z

2. Fix {A, u, v, w} ∈ BA and choose b1 ∈ {0, 1, 2}. This identifies three

blocks:

{A, 0v, b03w, b1u}, {A, 1v, b13w, b1u}, and {A, 2v, b23w, b1u},

where {b03, b13, b23} = {0, 1, 2}. Note that the order of {b03, b13, b23} depends

entirely on our choice of b1. We can string together the groups of three

151

blocks for each choice of b1 to create the following 1-ocycle:

0v A 0w 0u

0u 1v 2w A b1 = 0

A 0u 1w 2v

2v 1u 0w A

A 1v 1w 1u b1 = 1

1u 0v 2w A

A 2v 2w 2u

2u 1v 0w A b1 = 2

A 2u 1w 0v

3. Fix {A, u, v, w} ∈ BA and i ∈ {0, 1, 2}. The three blocks identified create

a 1-ocycle:

iu (i+ 1)w (i+ 2)w iv

iv (i+ 1)u (i+ 2)u iw

iw (i+ 1)v (i+ 2)v iu

4. For each choice of j and j′, we create the short cycle:

0j 0j′ 1j′ 1j

1j 1j′ 2j′ 2j

2j 2j′ 0j′ 0j

5. We can create the short strings:

0j 1j 2j A

A 2(j + 1) 1(j + 1) 0(j + 1)

To create an ocycle, we will utilize a few of the cycles from (4). For

each even j ∈ {0, 1, 2, . . . , n − 1}, set j′ = j + 1. Then we modify the

152

corresponding cycle from (4) to include one of the short strings as shown:

0j 0j′ 1j′ 1j

1j 1j′ 2j′ 2j

2j 2j′ 0j′ 0j

→

0j 0j′ 1j′ 1j

1j 1j′ 2j′ 2j

2j 2j′ 0j 0j′

0j′ 1j′ 2j′ A

A 2j 1j 0j

Note that this also ensures that A appears as an overlap point, so, to-

gether with C from (4), we are ensured that every point appears as an

overlap point.

To connect these cycles and make one ocycle, we consider the blocks of type

(3). Fix i ∈ {0, 1, 2} and u ∈ {0, 1, 2, . . . , n − 2} and let v vary through

{0, 1, 2, . . . , n−2}\{u}. Then each of these cycles from (3) containing {A, u, v}

has the point iu as an overlap point, so we can connect all of the cycles to

make a long cycle, call it Ci,u. To connect C0,u, C1,u, and C2,u we use a cycle

from (4) with j = u. Now we have created a cycle containing every point

ij ∈ {0, 1, 2}×{0, 1, 2, . . . , n−2} as an overlap point, so every other cycle can

connect to this one.

Result 5.8.38. Let (X,B) be an SQS(n) with n ≡ 2 (mod 12) that admits a

1-ocycle. Then there exists an SQS(3n− 8) that admits a 1-ocycle.

Proof. We use Construction 5.8.31. We create cycles as follows on each set of

blocks.

1. We will add this block to a cycle over blocks of type (2).

153

2. If we have an overlap cycle on (X,B), call it C, then for each i ∈ {0, 1, 2}

we get a cycle Ci by preceding each letter x ∈ {0, 1, 2, . . . , n − 5} by

i and leaving all terms Ah with h ∈ {0, 1, 2, 3} unchanged. However,

since each cycle uses the block {A0, A1, A2, A3} so we can only use one

of these cycles, say C0. For C1 and C2, we get two strings by removing the

block {A0, A1, A2, A3}. Note that C1 and C2 can then be joined together

at the endpoints. For example, if the block appears as A0, A1, A2, A3

(in order) in C, then we create the cycle

A3 C1 A0 C2 A3

where C2 is the string C2 listed in reverse order.

3. If we fix a1, a2, then we have restricted our attention to n − 4 distinct

blocks. Since n− 4 is even, so we make the following cycles:

Aa1 · · · 0a2

0a2 · · · Aa1

Aa1 · · · 0a2
...

0a2 · · · Aa1

4. We will arrange each block so that the overlap points are (i + 2)b3 and

(i+ 1)b2. Any choice of b2, b3 ∈ {0, 1, 2, . . . n− 5} completely determines

b1, and by choosing b2, b3, i, d, we have identified a unique block. Fix

b2 6= b3 and d, and then we will create one cycle as follows. The cycle

154

when b2 6= b3 is:

0b3 · · · 1b2

1b2 · · · 2b3

2b3 · · · 0b2

0b2 · · · 1b3

1b3 · · · 2b2

2b2 · · · 0b3

When b2 = b3, we have the shorter cycle:

0b2 · · · 1b2

1b2 · · · 2b2

2b2 · · · 0b2

5. Fix α, and arbitrarily order the set

Pα(6k + 5) = {[r(1), s(1)], [r(2), s(2)], . . . , [r(t), s(t)]}.

For each d = 0, 1, 2, . . . , t− 1, we create a cycle Cd as follows:

0r(1) 0s(1) 1s(1 + d) 1r(1 + d)

1r(1 + d) 1s(1 + d) 2s(1 + 2d) 2r(1 + 2d)

2r(1 + 2d) 2s(1 + 2d) 0s(1 + 3d) 0r(1 + 3d)

...

2r(1− d) 2s(1− d) 0s(1) 0r(1)

This cycle will always eventually reach the final block. However, it may

or may not also cover (among others) the intermediary blocks

{1r(1−d), 1s(1−d), 2s(1), 2r(1)} and {0r(1−d), 0s(1−d), 1s(1), 1r(1)}.

155

If Cd misses these intermediary blocks, then we create a new cycle similar

to Cd, but we replace 0, 1, 2 with either 1, 2, 0 or 2, 0, 1, respectively.

To connect all of these cycles, we first focus on the cycles from (4). We

create one long cycle by fixing b2 = 0 and creating a cycle Cb3 for each b3 from

the set {0, 1, 2, . . . , n− 5}. We connect all of these cycles at their points 00 to

create one long cycle C that has every element from the set

{0, 1, 2} × {0, 1, 2, . . . , n− 5}

as an overlap point Using this cycle C, we can connect every other cycle to C

to make one long cycle containing all quadruples.

Result 5.8.39. Let (X,B) be an SQS(n) with n ≡ 10 (mod 12) that admits

a 1-ocycle. Then there exists an SQS(3n− 4) that admits a 1-ocycle.

Proof. We use Construction 5.8.32. To form cycles, we do the following for

each type.

1. If C is a cycle on (X,B), then i⊕ C is a cycle on quadruples of type (1)

for each i ∈ {0, 1, 2}.

2. If we fix a1, a2, then we have restricted our attention to n − 2 distinct

blocks. Note that n− 2 is even, and so we make the following cycles:

Aa1 · · · 0a2

0a2 · · · Aa1

Aa1 · · · 0a2
...

0a2 · · · Aa1

156

3. We will arrange each block so that (i+ 2)b3 and (i+ 1)b2 are the overlap

points. Any choice of b2, b3 ∈ {0, 1, 2, . . . n−3} completely determines b1,

and by choosing b2, b3, i, d we have identified a unique block. Fix b2 6= b3

and d, and we can create one cycle as follows. The cycle when b2 6= b3

is:

0b3 · · · 1b2

1b2 · · · 2b3

2b3 · · · 0b2

0b2 · · · 1b3

1b3 · · · 2b2

2b2 · · · 0b3

When b2 = b3, we have the shorter cycle:

0b2 · · · 1b2

1b2 · · · 2b2

2b2 · · · 0b2

4. Fix α. Arbitrarily order the set

Pα(6k + 4) = {[r(1), s(1)], [r(2), s(2)], . . . , [r(t), s(t)]}.

For each d = 0, 1, 2, . . . , t− 1, we create a cycle Cd as follows:

0r(1) 0s(1) 1s(1 + d) 1r(1 + d)

1r(1 + d) 1s(1 + d) 2s(1 + 2d) 2r(1 + 2d)

2r(1 + 2d) 2s(1 + 2d) 0s(1 + 3d) 0r(1 + 3d)

...

2r(1− d) 2s(1− d) 0s(1) 0r(1)

157

This cycle will always eventually reach the final block. However, it may

or may not also cover (among others) the intermediary blocks

{1r(1−d), 1s(1−d), 2s(1), 2r(1)} and {0r(1−d), 0s(1−d), 1s(1), 1r(1)}.

If Cd misses these intermediary blocks, then we create a new cycle similar

to Cd, but we replace 0, 1, 2 with either 1, 2, 0 or 2, 0, 1, respectively.

To connect all of these cycles, we first focus on (3). We create one long

cycle by fixing b2 = 0 and creating a cycle Cb3 for each b3 ∈ {0, 1, 2, . . . , n−3}.

We connect all of these cycles at their points 00 to create one long cycle C

that has every overlap from the set

{0, 1, 2} × {0, 1, 2, . . . , n− 3}.

Using this cycle C, we can connect every other cycle to C to make one longer

cycle containing all quadruples.

Result 5.8.40. Let (X,B) be an SQS(n) that admits a 1-ocycle. Then there

exists an SQS(4n− 6) that admits a 1-ocycle.

Proof. We use Construction 5.8.33. To create cycles on these blocks, we do

the following.

1. If C is a 1-overlap cycle on B, then for each choice of h, i ∈ {0, 1} we

create the cycle h⊕ i⊕ C.

2. We will combine these with the triples of type (3). Note in particular

that each block is completely determined by our choice of 2c
(2)
2 − ε(2)

and 2c
(2)
3 + `(2) from {0, 1, 2, . . . , n− 3}, where superscript (2) denotes a

158

variable corresponding to a block of type (2), and similarly a superscript

(3) for blocks of type (3).

3. Note that each block is completely determined by choosing 2c
(3)
2 −1−ε(3)

and 2c
(3)
3 + 1− `(3) from {0, 1, 2, . . . , n− 3}. Fix x ∈ {0, 1, 2, . . . , n− 3},

and define the cycles as follows, alternating between blocks of type (2)

(where x = 2c
(2)
3 + `(2)) and (3) (where x = 2c

(3)
3 + 1− `(3)).

We will connect pairs of blocks (one of type (2) and one of type (3))

with 2c
(2)
2 − ε(2) = 2c

(3)
2 − 1− ε(3). Note that this implies that ε(2) 6= ε(3).

These blocks are connected to make short strings as shown by matching

a block of type (2) and (3) in which 2c
(2)
2 − ε(2) = 2c

(3)
2 − 1− ε(3) :

1ε(2)x, A`(2), 00(2c
(2)
1), 01(2c

(2)
2 − ε(2))

01(2c
(3)
2 − 1− ε(3)), 00(2c

(3)
1 + 1), A`(3), 1ε(3)x

To connect these two-block strings, we define

y = 2c
(2)
2 − ε(2) = 2c

(3)
2 − 1− ε(3),

and we let y range from 0 up to n − 3 to create a cycle covering all of

these strings.

159

10x · · · 010

010 · · · 11x

11x · · · 011

011 · · · 10x

10x · · · 012

012 · · · 11x

...

01(n− 4) · · · 11x

11x · · · 01(n− 3)

01(n− 3) · · · 10x

For each choice of x we will have one cycle, and each cycle has length

2(n− 2), covering a total of 2(n− 2)2 blocks.

4. We will combine these with the triples of type (5). Note in particular

that each block is completely determined by our choice of 2c2 − ε and

2c3 + 1− ` from {0, 1, 2, . . . , n− 3}.

5. We proceed in a manner similar to (3). Note that each block is com-

pletely determined by choosing 2c2 − 1 − ε and 2c3 + ` from the set

{0, 1, 2, . . . , n−3}. Fix x ∈ {0, 1, 2, . . . , n−3}, and define a cycle, which

alternates between blocks of type (4) (where x = 2c3 + 1− `) and blocks

160

of type (5) (where x = 2c3 + `), as shown below.

00x · · · 110

110 · · · 01x

01x · · · 111

111 · · · 00x

00x · · · 112

112 · · · 01x

...

11(n− 4) · · · 01x

01x · · · 11(n− 3)

11(n− 3) · · · 00x

6. We will combine these with the triples of type (8).

7. We will combine these with the triples of type (9).

8. Note that the first two terms in both (6) and (8) are the same. For each

choice of 2c1 + ε, 2c2− ε ∈ {0, 1, 2, . . . , n−3}, we create the short 2-block

cycle:

h0(2c1 + ε) · · ·h1(2c2 − ε)

h1(2c2 − ε) · · ·h0(2c1 + ε)

where the first block is of type (6) and the second block is of type (8).

161

9. Note that the first two terms in both (7) and (9) are the same. For each

choice of 2c1 − 1 + ε, 2c2 − ε ∈ {0, 1, 2, . . . , n − 3} we create the short

2-block cycle:

h0(2c1 − 1 + ε) · · ·h1(2c2 − ε)

h1(2c2 − ε) · · ·h0(2c1 − 1 + ε)

where the first block is of type (7) and the second block is of type (9).

10. We use a similar method as in previous constructions. Fix α and write

Pα(k) = {[r(1), s(1)], [r(2), s(2)], . . . , [r(t), s(t)]}. For each difference d

from 2 to b t
2
c we define several cycles. For each difference, the pairs will

be partitioned into sets of a certain size, say sd. The number of cycles

defined will depend on whether sd is even or odd.

For example, for difference 2, if s1 is even then we have the four cycles

(two for each choice of h ∈ {0, 1}) for each partition class:

h0r(1) · · · h1r(3)

h1r(3) · · · h0r(5)

h0r(5) · · · h1r(7)

...

h1r(t− 1) · · · h0r(1)

and

h1r(1) · · · h0r(3)

h0r(3) · · · h1r(5)

h1r(5) · · · h0r(7)

...

h0r(t− 1) · · · h1r(1)

162

h0r(1) h0s(1) h1s(2) h1r(2)
h1r(2) h1s(2) h0r(2) h0s(2)
h0s(2) h1s(1) h1r(1) h0r(2)
h0r(2) h0s(2) h1s(3) h1r(3)
h1r(3) h1s(3) h0r(3) h0s(3)
h0s(3) h1s(2) h1r(2) h0r(3)
...
h0r(t) h0s(t) h1s(1) h1r(1)
h1r(1) h1s(1) h0r(1) h0s(1)
h0s(1) h1s(t) h1r(t) h0r(1)

Figure 5.4: Cycle for the proof of Result 5.8.39

If s1 is odd we have the following two cycles (one for each choice of h):

h0r(1) · · · h1r(3)

h1r(3) · · · h0r(5)

h0r(5) · · · h1r(7)

...

h0r(t− 1) · · · h1r(1)

h1r(1) · · · h0r(3)

h0r(3) · · · h1r(5)

h1r(5) · · · h0r(7)

...

h0r(t− 1) · · · h1r(1)

We construct cycles in a similar manner for each partition set of each

difference.

All that remains are the blocks of differences 0 and 1. We will construct

two cycles, one for each choice of h as shown in Figure 5.4:

Now we must connect all of these cycles. Note that the cycles described in

(3) and (5) contain as overlap points all points of the form 11y for every

163

y ∈ {0, 1, 2, . . . , n − 3}, regardless of our choice of x. Thus we can connect

all of these cycles together to make one cycle. This one long cycle contains

as overlap points all points of the form hiy for h ∈ {0, 1}, i ∈ {0, 1}, and

y ∈ {0, 1, 2, . . . , n − 3}. Thus we can connect everything to this cycle, since

no points A` are used as overlap points.

Result 5.8.41. Let (X,B) be an SQS(n) that admits a 1-ocycle. Then there

exists an SQS(12n− 10) that admits a 1-ocycle.

Proof. We begin by proving that the construction for an SQS(38) admits a 1-

ocycle. To construct a 1-overlap cycle, we look at each type of block separately.

1. Since we have a 1-overlap cycle for the SQS(14), clearly we can construct

one cycle for each i on these types of blocks.

2. Fix b1 and b2 and construct a short 2-block cycle by changing h from 0

to 1.

0b1 A0 2b3 1b2

1b2 2(b3 + 3) A1 0b1

3. Fix {b2, b3} = {x, y} with x 6= y and create the cycle:

0x · · · 1y

1y · · · 2x

2x · · · 0y

0y · · · 1x

1x · · · 2y

2y · · · 0x

164

When we have b2 = b3 = x we have the shorter cycle:

0x · · · 1x

1x · · · 2x

2x · · · 0x

4. We will combine blocks of type (4) with blocks of type (6).

5. We will combine blocks of type (5) with blocks of type (7).

6. Note that the first term and the third term in the blocks of type (4) are

the same as those for the blocks of type (6). Using this, we create short

two-block cycles by fixing ε and connecting the blocks as shown:

ij . . . (i+ 2)(6ε− 2j + 1) . . . ij.

7. Note that the first term and the last term in the blocks of type (5) are

the same as those for the blocks of type (7). Using this, we create short

two-block cycles by fixing ε and connecting the blocks as shown:

ij . . . (i+ 2)(6ε− 2j − 2) . . . ij.

165

8. For each choice of ε ∈ {0, 1}, we have two blocks of type (8) containing

both ij and i(j+6). We connect these as shown to create short two-block

cycles:

ij . . . i(j + 6) . . . ij.

9. We will combine these with the blocks of type (10).

10. Fix g ∈ {0, 1, 2, 3, 4, 5}, ε ∈ {0, 1} and i ∈ {0, 1, 2}. Then we have two

choices for i′ ∈ {0, 1, 2} \ {i}, so we have narrowed our consideration to

2 blocks of type (9) and 2 blocks of type (10). In any order, we list them

in a 1-overlap cycle as:

i(2g + 3ε) . . . i(2g + 6 + 3ε) . . . i(2g + 3ε) . . . i(2g + 6 + 3ε) . . . i(2g + 3ε)

11. Fix i, j. This restricts us to four blocks - one for each e ∈ {0, 1, 2, 3}.

Form a 1-overlap cycle as follows:

ij . . . i(j + 1) . . . ij . . . i(j + 1) . . . ij.

12. Same as (11).

166

13. Same as (11).

14. Fix i, i′ ∈ {0, 1, 2} (distinct) and α ∈ {4, 5}. Order the pairs in Pα(6) ar-

bitrarily as {[r(1), s(1)], [r(2), s(2)], . . . , [r(t), s(t)]}. For each difference

d = 1, 2, . . . , bt/2c, we construct the string S1 as follows:

ir(1) is(1) i′s(1 + d) i′r(1 + d)

i′r(1 + d) i′s(1 + d) is(1 + 2d) ir(1 + 2d)

ir(1 + 2d) is(1 + 2d) i′s(1 + 3d) i′r(1 + 3d)

...

Continue this string until we arrive at a block that ends with either ir(1)

or i′r(1). We construct S2 from S1 by swapping i and i′ everywhere. If

S1 ends in ir(1), then S2 ends in i′r(1), and both are cycles. If S1 ends in

i′r(1), then S2 ends in ir(1) and we can connect S1 and S2 to make one

cycle. If d divides t, then we repeat the procedure, replacing [r(1), s(1)]

with a pair from Pα(6) that was not used in creating S1 and S2.

To connect all of these cycles, we look to the blocks of type (2). Fix b1,

and connect all of the short cycles corresponding to this b1 together at the

point 0b1. Note that this cycle has as overlap points 0b1 and every point

1j for j ∈ {0, 1, 2, . . . , 11}. Do this for each choice of b1, and then each of

these cycles contains the point 10 as an overlap, so they can all be connected.

From this, we have constructed one cycle that contains every point ij with

i, j ∈ {0, 1, 2, . . . , 11} as an overlap point. All other cycles can be connected

to this.

167

The general SQS(n)→ SQS(12n− 10) construction: To construct

an overlap cycle, we look at each type of block separately.

1. Since we can construct a 1-ocycle on B(14), we can construct a 1-ocycle

on i⊕ B(14) for each choice of i.

2. a) These blocks are completely determined by our choice of any b1, b2 ∈

{0, 1, . . . , 11} and h ∈ {0, 1}. If we fix b1, b2, then we can connect

the two blocks identified as follows:

ub1 · · · vb2 · · ·ub1.

We do this for each choice of b1 and b2 to make many short 2-block

cycles.

b) These blocks have structure similar to their corresponding blocks

from the SQS(38). Therefore, we make cycles in exactly the same

way for blocks of type (4) - (7) in the SQS(38). For blocks of type

(3) in the SQS(38), we can use the same structure, since only the

last 2 points are used as overlaps. In this SQS(12n− 10), this cor-

responds to the points wα3, wα4, and so we can create cycles in the

same way.

c) We make cycles in the same way as in the SQS(38) for blocks of

type (8) - (14).

3. Fix {x, y, z, t} ∈ BB. Our new block is completely determined by choos-

ing a1, a2, a3 ∈ {0, 1, . . . , 11}. If we fix a1, a2 and let a3 run through

168

the set {0, 1, . . . , 11}, then we have identified 12 blocks, all of which

contain the points xa1 and ya2. Using these as our overlap points, we

have a 1-ocycle covering these twelve blocks, which in compressed form

is xa1, ya2, xa1, ya2, . . . , xa1, ya2.

To connect all of these cycles, we look to the blocks of type (2). Fix u, b1,

and let everything else vary. These many short cycles can all be connected at

the point ub1, and the cycle created contains every point as an overlap point,

except A0, A1. We can connect all other cycles to this one.

All of these constructions together with base cases proves the following

result.

Result 5.8.42. For all n ≡ 2, 4 (mod 6) with n ≥ 8, there exists an SQS(n)

that admits a 1-ocycle.

Proof. These constructions, together with Theorem 5.8.35 and the correspond-

ing base cases, produce a 1-ocycle for each order.

We end with the following open problem.

Open Problem 5.8.43. For which of Hanani’s six SQS constructions can we

find 2-overlap cycles?

169

Chapter 6

RESULTS

6.1 Gray Codes

Of the three list types discussed (Gray codes, universal cycles, and overlap

cycles), Gray codes are the oldest, and hence most developed. One of our

main contributions to this area is a simplified Gray code for fixed weight m-

ary words (Theorem 3.3.2).

3.2.9: For all n ≥ 0 and k ≥ 1, there exists a Gray code listing for the set

B̂k(n) = {b ∈ B(n) |6 ∃i ∈ [n− 1] with bi = bi+1 = · · · = bi+k−1 = 0}

in which successive elements differ in exactly one position.

3.3.2: There exists a Gray code listing for Bmk (n) in which successive words

differ in at most two positions.

3.4.10: There exists a Gray code for permutations using the disjoint cycle

representation in which consecutive elements differ by a transposition of

adjacent elements.

3.6.3: In a Gray code for weak orders using the operations wi ↔ wi+1 and

wi ← wi+1, all words from W(n, k) must appear before all words from

W(n, k − 1), where 0 ≤ k ≤ n− 1 and 1 ≤ i ≤ n− 1.

3.6.6: There is a Gray code for B∗(n) using the operations wi ↔ wi+1, wi ↔

wi+2, and wi ← wi+1.

170

3.7.3: There is a Gray code listing for the set of Fibonacci sequences in which

a partition differs from its predecessor in two parts: one part increased

by one and one part decreased by one.

3.8.4: For every n ∈ Z+, there exists a Gray code listing for the blocks of any

TD(k, n) using the basis representation so that each word differs from

its successor in exactly one index position.

6.2 Universal Cycles

There has been much interest in the applications of universal cycles and de

Bruijn sequences in the past few years. Our major achievement in this area

was to determine the existence of ucycles for weak orders (Theorem 4.6.2)

and several restricted subsets (Theorems 4.6.4, 4.6.8, and 4.6.9). This is an

area that has not yet been considered but works very nicely within the ucycle

structure.

4.2.2: Let n ∈ Z+, and let M be some fixed multiset of size n. Define the set

A to be the set of all permutations of M . Then there exists a ucycle for

A using the prefix representation.

4.2.3: There is a universal cycle on Bk(n) using the prefix representation.

4.2.4: The sets Bo(n) and Be(n) admit universal cycles using the prefix rep-

resentation.

4.4.4: Universal cycles exist for the set of permutations of [n] using prefix

representations. (Alternative proof)

171

4.6.2: For all n ∈ Z+, there exists a ucycle on W(n).

4.6.4: For all n, k ∈ Z+ with n ≥ 3 and k ≤
(
n
2

)
, there exists a ucycle for

W−k (n).

4.6.8: For all n ∈ Z+ and all h ∈ N with 0 ≤ h < n − 1, there exists a

universal cycle for W(n, h). (Alternative Proof)

4.6.9: For every n, k, h ∈ Z+ with k ≤
(
n
2

)
and 0 ≤ h < n, there is a ucycle

for W−k (n, h).

4.7.4: There is a universal cycle for the set of all ordered partitions of an

n-set for all n ∈ Z+ in which an ordered partition is represented by its

corresponding weak order.

4.7.5: For all n ∈ Z+, there is a universal cycle for the set of all ordered

partitions of an n-set with fixed part sizes in which an ordered partition

is represented using the prefix representation of the corresponding weak

order.

4.7.6: For all n ∈ Z+ and all h ∈ Z+ ∪ {0} with 0 ≤ h < n, there exists

a universal cycle for the set of all ordered partitions of an n-set into

exactly h parts.

5.8.2: For all n ≥ 2, k ≥ 3, and any TD(k, n), there is a universal cycle on

the blocks of the design using a basis representation in which each block

is represented by a string of length two.

172

6.3 Overlap Cycles

Overlap cycles are the newest listing structure discussed. Very little re-

search has been done in this area, and we proved many interesting results.

One in particular that has been posed as a research problem at conferences

and in papers is the question of the existence of s-ocycles for k-permutations

of [n]. We were able to positively answer this question (Theorem 5.4.4), as

well as consider 1-ocycles over other interesting objects, such as Steiner triple

and quadruple systems (Theorems 5.8.14 and 5.8.42, respectively).

5.2.3: Let n, s ∈ Z+ with n
2
≤ s ≤ n − 2, and let M be some fixed multiset

of size n. Define the set A to be the set of all permutations of M . If

gcd(s, n) = 1, then there is an s-ocycle for A.

5.2.4: Let n, s ∈ Z+ with 1 ≤ s < n
2
. Let M be a multiset of size n. Define the

set A to be the set of all permutations of M . Then there is an s-ocycle

for A.

5.4.2: Let n, s ∈ Z+ with n ≥ 2. If either (1) 1 ≤ s < n
2
, or (2) gcd(s, n) =

1 with n
2
≤ s < n − 1, then there exists an s-ocycle on the set of

permutations of [n].

5.4.3: Let n, s, k ∈ Z+ with n ≥ 2 and k < n. If either (1) 1 ≤ s < k
2
, or (2)

gcd(s, k) = 1 with k
2
≤ s < k − 1, then there exists an s-ocycle on the

set of k-permutations of [n].

5.4.4: For all n, s, k ∈ Z+ with 1 ≤ s < k < n, there is an s-ocycle for

k-permutations of [n].

173

5.6.1: For all n ∈ Z+ and for all s ∈ Z+ with 1 ≤ s ≤ n − 1, there is an

s-ocycle for W(n).

5.6.3: Let n, s, k ∈ Z+ with 1 ≤ s ≤ n− 2 and k ≤
(
n
2

)
. If gcd(s, n) = 1, then

there is an s-ocycle for Wk(n).

5.6.4: Let n, s, h, k ∈ Z+ with 1 ≤ s ≤ n − 2, k ≤
(
n
2

)
, and 0 ≤ h < n. If

gcd(s, n) = 1, then there is an s-ocycle for Wk(n, h).

5.6.5: For all n, s, h ∈ Z+ with 1 ≤ s ≤ n−2, gcd(s, n) = 1, and 0 ≤ h ≤ n−1,

there is an s-ocycle for W(n, h).

5.7.3: For all n, s ∈ Z+ with 1 ≤ s ≤ n− 1, there is an s-ocycle for the set of

all ordered partitions of an n-set.

5.7.4: For all n, s, h with 1 ≤ s ≤ n− 2, gcd(s, n) = 1, and h ≤ n− 1, there

exists an s-ocycle for the set of all ordered partitions of an n-set into

exactly h parts.

5.7.5: Let n, s ∈ Z+ with 1 ≤ s ≤ n − 2. If gcd(n, s) = 1, then there is an

s-ocycle for the set of all ordered partitions of an n-set with fixed part

sizes.

5.8.3: For all n ≥ 2 and k ≥ 3 and any TD(k, n), there exists a 1-overlap

cycle, O(TD(k, n), 1).

5.8.6: Let (X,A) and (X,B) be (v, 3, 1)-BIBDs. Suppose that both (X,A)

and (X,B) admit 1-overlap cycles called O(A) and O(B), respectively.

Then the (v, 3, 2)-BIBD (X,A∪ B) using the sum construction also ad-

mits a 1-overlap cycle.

174

5.8.9: If (X,A) is a (v, k, λ)-BIBD that admits a t-overlap cycle, then the

(v, k, sλ)-BIBD constructed from Theorem 5.8.8 also admits a t-overlap

cycle.

5.8.11: Given (X,A) = (v, b, r, k, λ)-BIBD, we can construct the block com-

plementation of it to create a new design. This design is (X,A) =

(v, b, b − r, v − k, b − 2r + λ)-BIBD. If v − 2k ≥ 2 and (X,A) has a

1-overlap cycle, then (X,A) also has a 1-overlap cycle.

5.8.14: For every v ≡ 1, 3 (mod 6) with v ≥ 15, there exists an AF STS(v)

with a 1-ocycle.

5.8.17: If there exists an AF STS(v) with a 1-ocycle, then there exists an AF

STS(2v + 1) with a 1-ocycle when v ≥ 15.

5.8.18: If there exists an AF STS(v) with a 1-ocycle, then there exists an AF

STS(2v + 7) with a 1-ocycle, when v ≥ 15.

5.8.21: If there exists an STS(u) with a 1-overlap cycle and an STS(v) with

a 1-overlap cycle, then there exists an STS(uv) with a 1-ocycle.

5.8.23: For n ≡ 3 (mod 6) with n > 3, there exists an STS(n) that admits a

1-ocycle.

5.8.25: For n ≡ 1 (mod 6) with n > 1, there exists an STS(n) that admits a

1-overlap cycle.

5.8.36: Let (X,B) be an SQS of order n. Then there exists an SQS of order

2n that admits a 1-ocycle.

5.8.37: Let (X,B) be an SQS of order n. Then there exists an SQS of order

3n− 2 that admits a 1-ocycle.

175

5.8.38: Let (X,B) be an SQS(n) with n ≡ 2 (mod 12) that admits a 1-ocycle.

Then there exists an SQS(3n− 8) that admits a 1-ocycle.

5.8.39: Let (X,B) be an SQS(n) with n ≡ 10 (mod 12) that admits a 1-

ocycle. Then there exists an SQS(3n− 4) that admits a 1-ocycle.

5.8.40: Let (X,B) be an SQS(n) that admits a 1-ocycle. Then there exists

an SQS(4n− 6) that admits a 1-ocycle.

5.8.41: Let (X,B) be an SQS(n) that admits a 1-ocycle. Then there exists

an SQS(12n− 10) that admits a 1-ocycle.

5.8.42: For every v ≡ 2, 4 (mod 6) with v > 4, there exists an SQS(v) that

admits a 1-ocycle.

176

Chapter 7

OPEN PROBLEMS

7.1 Gray Codes

3.2.5: Is there a Gray code for the set Bo(n), the set of all odd-weight binary

strings of length n? What about for Be(n), the set of all even-weight

binary strings of length n?

3.2.8: Let r(n) be the maximum value r such that a Gray code for B(n) exists

with run length at least r. What are the values of r(n)?

3.4.6: What is a good minimal change property for the set of permutations

with fixed rank?

3.4.7: Does there exist a Gray code listing for the set of permutations with

fixed rank?

3.4.8: Does there exist a Gray code listing for the set of permutations with

fixed rank k when these permutations are written as a product of k

generators?

3.4.9: If we choose to represent permutations in cycle form, is there an inter-

esting Gray code listing?

3.6.2: For which positive integers n does there exist a Gray code for the weak

orders on [n] allowing only elementary operations of the form wi ↔ wi+1

and wi ← wi+1?

177

3.6.4: For which positive integers n and h with 0 ≤ h < n does there exist a

Gray code for W(n, h) using the operations wi ↔ wi+1 and wi ← wi+1?

3.6.5: Can we find a Gray code for the set B∗(n) using the operations wi ↔

wi+1 and wi ← wi+1?

3.6.9: For which positive integers n does there exist a Gray code for the weak

orders on [n] where two consecutive objects always differ in exactly one

position?

3.7.7: Is there a Gray code listing for the set of all partitions of an n-set with

part size at most k?

3.8.6: Is there a Gray code for projective planes or affine planes?

3.8.8: Does there exist a TTS(v) with v ≡ 0, 6, 9 (mod 12) that admits a

2-intersecting Gray cycle?

3.8.10: Suppose that the design (X,B) is the direct product of two Steiner

triple systems that admit Gray codes. Does (X,B) also admit a Gray

code under the same (or a similar) minimal change property?

7.2 Universal Cycles

4.2.5: Is there a universal cycle on the set of words of length 2n of balanced

parentheses using some representation?

4.3.2: Is there a universal cycle on the set of fixed weight words?

4.4.6: What sets of restricted permutations of [n] allow universal cycles?

178

4.5.2: Given k ∈ Z+, there is some n0(k) ∈ Z+ so that for all n ≥ n0(k), a

universal cycle for k-subsets of [n] exists, provided k divides
(
n−1
k−1

)
.

4.7.1: For what values of n is there a universal cycle for:

1. the set of ordered partitions of n?

2. the set of unordered partitions of n?

3. the set of k-partitions of n?

4.7.2: For what values of n is there a universal cycle for the set of Fibonacci

sequences?

4.7.3: What is the smallest number of symbols needed to find a universal

cycle for the Fibonacci sequences of n?

4.7.7: Under the correspondence from Result 3.7.4, what does the set Wk(n)

correspond to in ordered partitions of an n-set?

4.8.4: For each v ≡ 10 (mod 12), v ≥ 22, there exists a TTS(v) that admits

a rank three ucycle.

4.8.5: For each v ≡ 1 (mod 12), with v ≡ 0 (mod 5) there exists a TTS(v)

that admits a ucycle of rank three.

4.8.6: For each v ≡ 4 (mod 12), with v ≡ 0 (mod 5), there exists a TTS(v)

that admits a ucycle of rank three.

179

7.3 Overlap Cycles

5.2.2: For what restricted subsets of B(n) do there exist alphabet overlap

cycles?

5.3.2: For what restricted subsets of Bm(n) do there exist alphabet overlap

cycles?

5.5.1: For what values of n, k, s does there exist an overlap cycle O
((

[n]
k

)
, s
)

?

5.5.2: Is there a necessary condition for overlap cycles for k-subsets of [n], as

Theorem 4.5.1 is for ucycles?

5.7.1: For what values of n and s does there exist an overlap cycle O(P (n), s)?

5.7.2: For what restricted subsets of P (n) can we find an overlap cycle?

5.7.6: For what types of sets can we find overlap cycles for the set of unordered

partitions of the set?

5.8.1: For what types of designs do there exist overlap cycles?

5.8.7: Can we generalize Result 5.8.6 using the Sum Construction with λ1, λ2 ∈

Z+?

5.8.43: For which of Hanani’s six SQS constructions can we find 2-overlap

cycles?

180

BIBLIOGRAPHY

[1] B. Alspach, K. Heinrich, and B. Mohar, A note on hamilton cycles in
block-intersection graphs, Finite Geometries and Combinatorial Designs -
Contemporary Mathematics 111 (1990), 1–4.

[2] J.-L. Baril, Gray code for permutations with a fixed number of cycles,
Discrete Mathematics 30 (2007), 1559–1571.

[3] J.-L. Baril and V. Vajnovszki, Gray code for derangements, Discrete Ap-
plied Mathematics 140 (2004), 207–221.

[4] A. Bechel, B. LaBounty-Lay, and A. Godbole, Universal cycles of discrete
functions, Congr. Numer. 189 (2008), 121–128.

[5] A. Blanca and A.P. Godbole, On universal cycles for new classes of com-
binatorial structures, SIAM Journal on Discrete Mathematics 25 (2011),
1832–1842.

[6] P. Cameron, Combinatorics: Topics, techniques, algorithms, Cambridge
University Press, 1995.

[7] F. Chung, P. Diaconis, and R. Graham, Universal cycles for combinatorial
structures, Discrete Mathematics 110 (1992), 43–59.

[8] , Universal cycles for combinatorial structures, Discrete Mathe-
matics 110 (1993), 43–59.

[9] M. B. Cohen and C. J. Colbourn, Optimal and pessimal orderings of
Steiner triple systems in disk arrays, Theoretical Computer Science 297
(2003), 103–117.

[10] C. J. Colbourn and A. Rosa, Triple systems, Oxford Mathematical Mono-
graphs, 1999.

[11] D. Curtis, T. Hines, G. Hurlbert, and T. Moyer, Near-universal cycles for
subsets exist, SIAM Journal of Discrete Mathematics 23 (2009), no. 3,
1441–1449.

181

[12] N. G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch 49
(1948), 758–764.

[13] M. Dewar, Gray codes and universal cycles for designs, Ph.D. thesis,
Carleton University, 2007.

[14] R. Diestel, Graph theory, electronic ed., Springer-Verlag Heidelberg, New
York, 2005.

[15] W.M.B. Dukes, M.F. Flanaga, T. Mansour, and V. Vajnovszki, Combina-
torial Gray codes for classes of pattern avoiding permutations, Theoretical
Computer Science 396 (2008), 35–49.

[16] P. Eades and B. McKay, An algorithm for generating subsets of fixed size
with a strong minimal change property, Information Processing Letters
19 (1984), 131–133.

[17] M.C. Er, On generating the n-ary reflected Gray codes, IEEE Transactions
on Computers C-33 (1984), no. 8, 739–741.

[18] H. Fredricksen and J. Maiorana, Necklaces of beads in k colors and k-ary
de Bruijn sequences, Discrete Mathematics 23 (1978), 207–210.

[19] A. Godbole, D. Knisley, and R. Norwood, On α-overlap graphs, Proc. of
the Forty-First Southeastern International Conference on Combinatorics,
Graph Theory, and Computing, Congr. Numer. 204, 2010, pp. 161–171.

[20] I. J. Good, Normally recurring decimals, J. London Math. Soc. 21 (1946),
167–179.

[21] F. Gray, Pulse code communication, U.S. Patent 2632058, Filed November
13, 1947, Issued March 1953.

[22] H. Gupta, On permutation-generating strings and rosaries, Lecture Notes
in Mathematics: Combinatorics and Graph Theory (1981), 272–275.

[23] M. Hanani, On quadruple systems, Canadian Journal of Math. 12 (1960),
145–157.

182

[24] D. R. Hare, Cycles in the block-intersection graph of pairwise balanced
designs, Discrete Mathematics 137 (1995), 211–221.

[25] G. Hurlbert, Universal cycles: on beyond de Bruijn, Ph.D. thesis, Rutgers
University, 1990.

[26] , On universal cycles for k-subsets of an n-set, SIAM Journal of
Discrete Mathematics 7 (1994), no. 4, 598–604.

[27] , Multicover ucycles, Discrete Mathematics 137 (1995), 241–249.

[28] G. Hurlbert and G. Isaak, Equivalence class universal cycles for permu-
tations, Discrete Mathematics 149 (1996), 123–129.

[29] B. Jackson, B. Stevens, and G. Hurlbert, Research problems on Gray
codes and universal cycles, Discrete Mathematics 309 (2009), 5341–5348.

[30] B. W. Jackson, Universal cycles for k-subsets and k-permutations, Dis-
crete Mathematics 117 (1993), 141–150.

[31] J. R. Johnson, Universal cycles for permutations, Discrete Mathematics
309 (2009), 5264–5270.

[32] S. M. Johnson, Generation of permutations by adjacent transposition,
Mathematics of Computation 17 (1963), no. 83, 282–285.

[33] J. T. Joichi and D. E. White, Gray codes in graphs of subsets, Discrete
Mathematics 31 (1980), no. 1, 29–41.

[34] P. Kaski, P.R.J. Österg̊ard, O. Pottonen, and L. Kiviluoto, A catalogue
of the Steiner triple systems of order 19, Bull. Inst. Combin. Appl 57
(2009), 35–41.

[35] R. Kaye, A Gray code for set partitions, Information Processing Letters
5 (1976), no. 6, 171–173.

[36] D. E. Knuth, The art of computer programming, vol. 4, Addison-Wesley
Professional, 2005.

183

[37] P.J. Koutas and T.C. Hu, Shortest string containing all permutations,
Discrete Mathematics 11 (1975), 125–132.

[38] C. C. Lindner and A. Rosa, On the existence of automorphism free Steiner
triple systems, Journal of Algebra 34 (1975), 430–443.

[39] C. Flye-Sainte Marie, Solution to problem number 58, l’Intermediaire des
Mathematiciens 1 (1894), 107–110.

[40] R. Mathon and A. Rosa, 2 − (v, k, λ) designs of small order, The CRC
Handbook of Combinatorial Designs (C.J. Colbourn and J.H.Dinitz, eds.),
CRC Press, Boca Raton, FL, 2007, pp. 25–58.

[41] A. Nijenhuis and H. S. Wilf, Combinatorial algorithms: For computers
and calculators, second ed., Academic Press, Inc., 1978.

[42] D. Pike, Hamilton decompositions of block-intersection graphs of steiner
triple systems, Ars Combinatorica 51 (1999), 143–148.

[43] C. D. Savage, Gray code sequences of partitions, Journal of Algorithms
10 (1989), 577–595.

[44] R. P. Stanley, Enumerative combinatorics: Volume i, Cambridge Univer-
sity Press, 1997.

[45] B. Stevens, P. Buskell, P. Ecimovic, C. Ivanescu, A. Muslim Malik,
A. Savu, T. S. Vassilev, H. Verrall, B. Yang, and Z. Zhao, Solution
of an outstanding conjecture: the non-existence of universal cycles with
k = n− 2, Discrete Mathematics 258 (2002), 193–204.

[46] D. R. Stinson, Combinatorial designs: Constructions and analysis,
Springer-Verlag New York, Inc., 2004.

[47] T. Ueda, Gray codes for necklaces, Discrete Mathematics 219 (2000),
235–248.

[48] T. R. Walsh, Loop-free sequencing of bounded integer compositions, J.
Combin. Math. Combin. Comput. 33 (2000), 323–345.

184

[49] D. B. West, Introduction to graph theory, second ed., Prentice Hall, 2001.

[50] H. S. Wilf and A. Nijenhuis, Combinatorial algorithms: An update, Soci-
ety for Industrial Mathematics, January 1, 1987.

[51] Aaron Williams, Solving Wilf ’s sigma-tau, SIAM Conference on Discrete
Mathematics (2012).

185

