Effect of Chaos and Complex Wave Pattern Formation in Migdtighysical Systems: Relativistic
Quantum Tunneling, Optical Meta-materials, and Co-evohary Game Theory
by

Xuan Ni

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Approved August 2012 by the
Graduate Supervisory Committee:

Ying-Cheng Lai, Chair
Richard Akis

Hongbin Yu
Liang Huang

ARIZONA STATE UNIVERSITY

December 2012



ABSTRACT

What can classical chaos do to quantum systems is a fundahigsue highly relevant to a
number of branches in physics. The field of quantum chaos bas hctive for three decades,
where the focus was on non-relativistic quantum systemsithesl by the Schrddinger equation. By
developing an efficient method to solve the Dirac equatichénsetting where relativistic particles
can tunnel between two symmetric cavities through a pakbérrier, chaotic cavities are found to
suppress the spread in the tunneling rate. Tunneling rafpgiven energy assumes a wide range
that increases with the energy for integrable classicabdyns. However, for chaotic underlying
dynamics, the spread is greatly reduced. A remarkablerfeaihich is a consequence of Klein
tunneling, arise only in relativistc quantum systems tiistantial tunneling exists even for particle
energy approaching zero. Similar results are found in graphiunneling devices, implying high
relevance of relativistic quantum chaos to the developrogsitich devices.

Wave propagation through random media occurs in many phlysystems, where interesting
phenomena such as branched, fracal-like wave patternsisan &he generic origin of these wave
structures is currently a matter of active debate. It is offamental interest to develop a minimal,
paradigmatic model that can generate robust branched wam#ses. In so doing, a general obser-
vation in all situations where branched structures emergem-Gaussian statistics of wave intensity
with an algebraic tail in the probability density functiorhus, a universal algebraic wave-intensity
distribution becomes the criterion for the validity of anjnimal model of branched wave patterns.

Coexistence of competing species in spatially extendedystems is key to biodiversity in
nature. Understanding the dynamical mechanisms of cegdstis a fundamental problem of con-
tinuous interest not only in evolutionary biology but alsaionlinear science. A continuous model
is proposed for cyclically competing species and the efféthe interplay between the interaction
range and mobility on coexistence is investigated. A ttarsfrom coexistence to extinction is un-
covered with a non-monotonic behavior in the coexistenobalility and switches between spiral
and plane-wave patterns arise. Strong mobility can eith@mpte or hamper coexistence, while

absent in lattice-based models, can be explained in termsrdinear partial differential equations.
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1. INTRODUCTION
1.1. Dirac equation and relativistic quantum tunneling

Dirac equation, the fundamental equation of relativistiaigtum mechanics, has recently at-
tracted a tremendous amount of attention from a much braaaemunity than that in high-energy
and elementary-particle physics, due to its high relevamgeaphene systems [1-8] and topological
insulators [9, 10]. In the fields where the Dirac equationthaditionally been studied, the solutions
are usually obtained by some perturbative approach. Hawevthe best of our knowledge, a gen-
eral method for completely solving the Dirac equation inasel system adrbitrary geometry does
not exist at the present. The development of such a methbdssaf fundamental interest.

A number of areas in physics can benefit enormously from adi&fti method for solving the
Dirac equation. The most relevant area is graphene physicaphene ribbons exhibit a linear
energy-momentum relation near any of the Dirac points inghergy-band diagram, which is a
characteristic of relativistic quantum motion of masshesmions. In the presence of short-range
potentials, two Dirac points are coupled together. It isstbfibasic interest to investigate the be-
havior of pure Dirac fermions to distinguish them from thdse to the coupling of two relativistic
particles. In a recent work [11], a method was developedudysthe effect of Dirac fermions
in graphene employing the transfer-matrix technique, tiiddresses the transport properties of a
graphene ribbon with periodic boundary conditions in thesverse direction. However, most exist-
ing works on quantum transport properties of graphene mysteere carried out in, for example, the
tight-binding Hamiltonian framework derived from the noglativistic Schrdodinger equation [8].

Another area in physics, where complete solutions of tha®&quation is of paramount im-
portance, is relativistic quantum nonlinear dynamics amaos [12—15]. In particular, in the last
three decades, quantum chaos, an interdisciplinary fieladsiag on the quantum manifestations of
classical chaos, has received a great deal of attentioreipligsics community [16—20]. Indeed,
the quantization of chaotic Hamiltonian systems and theatigres of classical chaos in quantum

regimes are fundamental to physics and have direct apiplicsaih condensed matter physics, atomic



physics, nuclear physics, optics, acoustics, and quantumpuating. Issues that have been pursued
include energy-level statistics, statistical propertiesvave functions, quantum chaotic scattering,
electronic transportin quantum dots, localization, arddffiect of magnetic field. However, existing
works on quantum chaos are concerned almost exclusivellyneib-relativistic quantum mechan-
ical systems described by the Schrodinger equation, wiherdependence of the particle energy
on the momentum is quadratic. A natural question is whethenpmena in non-relativistic quan-
tum chaos can occur irelativistic quantum systems described by the Dirac equation, where the
energy-momentum relation is linear. To address this questquires complete solutions of the
Dirac equation in systems of arbitrary geometrical domagspecially those that allow for chaos in
the classical limit.

Interest in graphene physics and devices calls for an efficreethod to solve the Dirac equa-
tion in arbitrarily shaped domains. In chapter 2, | develapuanerical framework for obtaining
complete eigen-solutions of massless fermions in genexaldimensional confining geometries.
The key ingredients of our method are a proper handling obthendary conditions and an effi-
cient discretization scheme that casts the original egnaiti a matrix representation. The method
is validated by (1) comparing the numerical solutions tdtitaresults for a geometrically simple
confinement, and (2) verifying that the calculated energglispacing statistics of integrable and
chaotic geometries agree with the known results. An apjdicaeexample, the calculation of the
relativistic quantum tunneling rate of massless Dirac fers between a pair of symmetric cavities,
is presented. The method can be reduced to one and exterttiegeaimensions straightforwardly.

To understand the effect of chaos in the classical limit canqum behaviors has been a field
of interest and active pursuit [40]. This field, named quantthaos, finds applications in many
fields in physics such as condensed matter physics, atorg&igsh nuclear physics, optics, and
acoustics. Previous works on quantum chaos focused alxadasa/ely on non-relativistic quantum
systems. A fundamental question is whether phenomena inelativistic quantum chaos can occur

in relativistic quantum systems described by the Dirac equation. This fieldlativistic quantum
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Fig. 1. (a) A closed quantum system of arbitrary shape in timpedsions, (b) the corresponding

opened system, and (c) symmetric double-well used in redédnaneling computations.

chaos [41] is of particular importance because of the relevaf the Dirac equation to graphene
systems [42].

Recently, the remarkable phenomenon of chaos-regulagizadtum tunneling has been uncov-
ered [39], where classical chaos can suppress, significdnd spread in the tunneling rate com-
monly seen in systems whose classical dynamics are redtdaexample, consider the system in
Fig.1, which consists of two symmetrical cavities connddtg a one-dimensional potential barrier
along the line of symmetry. When the classical dynamics alhe&avity is integrable, for sufficiently
large energy the tunneling rate can assume many values ideimterval. Choosing the geometry
of the cavity such that the classical dynamics become ahaati greatly enhance and regularize
guantum tunneling. Heuristically, this can be understesdiollows. When the potential barrier is
infinite, each cavity is a closed system with an infinite setigénenergies and eigenstates. Many
eigenstates are concentrated on classical periodic gidritsing quantum scars [19]. For classically
integrable cavity, some stable or marginally stable péciothits can persist when the potential bar-
rier becomes finite so that each cavity system is effectamlgpen quantum system. Many surviving
eigenstates correspond to classical periodic orbits wiragectories do not encounter the potential
barrier, generating extremely low tunneling rate even wtherenergy is comparable with or larger
than the height of the potential barrier. The eigenstategsponding to classical orbits that inter-

act with the potential barrier, however, can lead to reddyistrong tunneling. In a small energy
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interval the quantum tunneling rate can thus spared oveda minge. However, when the classical
dynamics is chaotic, isolated orbits that do not interat¢hhe potential barrier are far less likely
and, consequently, the states associated with low turqnedies disappear, effectively suppressing
the spread in the tunneling rate.

In chapter 3, | solve the Dirac equation in two spatial dini@msin the setting of resonant tun-
neling, where the system consists of two symmetric cavittamected by a finite potential barrier.
The shape of the cavities can be chosen to yield both regathclaaotic dynamics in the classical
limit. We find that certain pointer states about classicalgaic orbits can exist, which suppress
guantum tunneling, and the effect becomes less severe andeelying classical dynamics in the
cavity is chaotic, leading to regularization of tunnelingndmics even in the relativistic quantum
regime. Similar phenomena have been observed in grapherphygical theory is developed to
explain the phenomenon based on the spectrum of complerezigegies of the non-Hermitian
Hamiltonian describing the effectively open cavity system
1.2. Chaaotic scattering and complex branched wave structurin optical media

Metamaterials are artificially designed, engineered afdidated structures possessing spe-
cial (unconventional) properties that may not be readilgilable from natural materials. The last
decade has witnessed an explosive growth of research omatetdals in terms of both funda-
mental physics and potential applications. A primary regeaterest in metamaterials lies in their
electromagnetic and optical properties. In this regardatiee refractive-index materials [48-53],
also referred to as left-handed media, are one of the moshsively investigated types of meta-
materials. First conceived theoretically by Veselago [54]1968, this extraordinary material with
both negative effective permittivity and permeability éited a remarkable potential for a variety
of applications. For example, superlens [55] made of thightlonegative metamaterials [56] can
overcome the diffraction limit for conventional lenses andke subwavelength imaging possible.
Another important application is invisible materials, wéispecial cloak was realized in recent ex-

periments for electromagnetic wave at optical frequen&iéss8].



Quite recently, a link between optics in metamaterial adelstial mechanics was proposed [59],
making it possible to investigate an array of gravitatiggte@nomena predicted by Einstein’s general
relativity using optical analogies in the laboratory. Feample, in general relativity, light can be
trapped in some specific region in the space where a massivéaiional body exists, but such a
trapping can be realized using metamaterials, generatiragtédicial “black hole” in the laboratory
[59]. From this analogy, insights into the design of novelicad cavities and photon traps can be
gained, with applications in areas such as micro-cavigrias

We first study the light-ray dynamics in a class of inhomogeisgisotropic optical metamate-
rials in the presence of a periodic, external electromagpetturbation. The driving, analogous to,
e.g., a third-body perturbation in classical mechanicsyides a way to break the stable periodic
orbits of light ray in the corresponding static material king complex dynamics possible. Indeed,
Ref. [59] predicted the appearance of chaotic dynamicsisidlass of systems. We then study
a class of time-independent metamaterial systems witHayyging or non-overlapping refractive-
index distributions. For both time-dependent and timeepehdent systems, we find that transient
chaotic dynamics (or chaotic scattering dynamics) [60-e84ight rays are common. This means
that, two incident light rays differing only slightly in itial conditions can exit the metamaterial
system in drastically different states [65]. Besides pitong direct evidence for transient chaos, we
shall establish through computations the dynamical naifitke process, hyperbolic or nonhyper-
bolic (to be explained below). Due to the analogy betweeramaterial optics and gravitational
physics, our results suggest that transient chaos can teeaqunmon in gravitational systems obey-
ing Einstein’s general relativity. In addition, since rayndmics can be experimentally observed
and investigated in optical metamaterials, our resultsfoece the idea that chaotic dynamics in
relativistic gravitational systems can be visualized andigd in laboratory experiments [66].

In chapter 4, | investigate the dynamics of light rays in tasses of optical metamaterial sys-
tems: (1) time-dependent system with a volcano-shapedniolyeneous and isotropic refractive-

index distribution, subject to external electromagneéidgrbations, and (2) time-independent sys-



tem that consists of three overlapping or non-overlappéfigictive-index distributions. Utilizing a
mechanical-optical analogy and coordinate transformatfee wave-propagation problem governed
by the Maxwell's equations can be modeled by a set of ordiddfgrential equations for light rays.
We find that transient chaotic dynamics, hyperbolic or nqrénigolic, are common in optical meta-
material systems. Due to the analogy between light-ray myesin metamaterials and the motion
of light and matter as described by general relativity, @suitts reinforce the recent idea that chaos
in gravitational systems can be observed and studied indédmy experiments.

When waves propagate through random media, extreme evashtsoanplex structures such as
rogue waves and branched, fractal-like wave patterns aam fbhere has been a substantial amount
of interest in complex wave phenomena due to their occue®irca host of physical systems. For
example, in oceanography, rogue waves are an issue of grreem. In the past fifteen years
or so there had been experimental and theoretical studiexyaofe waves arising from long-range
acoustic wave propagation through ocean’s sound chanideV§], as well as large-scale exper-
iments on directional ocean waves to probe the physical ndrdical origin of these extreme
waves [79]. Extreme events and complex wave patterns haeebalen identified in many other
physical situations such as light propagation in doped $ilpfgd, 81], acoustic turbulence in super-
fluid helium [82], resonances in nonlinear optical cavitjg3], linear light-wave propagation in
multi-mode glass fiber [84], and electronic transport in m@mductor two-dimensional electron gas
(2DEG) systems [85]. Despite previous efforts, an acceptddtively complete understanding of
complex extreme waves at the level of fundamental physissilisacking.

To illustrate the extent to which complex branched wavegpast are presently understood, we
choose electronic transport in 2DEG systems as an examplBefl. [85], electron flows from a
guantum point contact were reported to exhibit a strikingniohed or fractal-like behavior with
highly non-uniform amplitude distribution in the physicsdace. The observed separate, narrow
strands of greatly enhanced electron wave intensities aenged to be caused by random back-

ground potentials and quantum coherent phase interfer@momg the electron wave functions.



Subsequently a theory was proposed [86] to predict thestitati distribution of the intensities of
branched electron flows in the presence of weak, correlategsan random potentials.

The generic origin of wave branching behavior is a mattectva debate [87]. A tacit assump-
tion in most previous investigations is nonlinearity in tiederlying medium. In particular, it had
been believed that the existence of many uncorrelatedaipaandomly distributed wave elements
is key to the occurrence of these exotic wave patterns. Télesaents can be, for example, solitons
in nonlinear systems. However, quite recently, it was destrated experimentally in a microwave
system [88] and in a multi-mode optical fiber [84] that braettlvave patterns can occur even in the
absence of nonlinearity. In fact, in the latter case, graiylof light speckles at the fiber exit and in-
homogeneity in the spatial clustering of the speckle pastare speculated to be the two ingredients
that trigger complex wave patterns. These recent works dieasonstrate that nonlinearity is not
absolutely essential for the emergence of these extremesamaguestion of significant theoretical
and experimental interest concerns thus about a minimajsiehl model that can generate robust
branched wave patternso that their generic and physical origin may be elucidaté@ main task
of chapter 5 is to answer this question. A related issue cosdbe statistical properties of these
waves. In this regard, a general observation in all contgkere branched wave structures arise is
the non-Gaussian statistics of the wave amplitude. Tylyithere is a long tail in the probability
density function, which characterizes the extreme intgrdithe waves. An essential requirement
for a valid minimal model of branched wave patterns is thias i1 should generate the universally
observed long-tail distribution in the wave intensity.

1.3. Complex pattern formation in cyclic competition games

The coexistence of competing species in spatially exteededystems is key to biodiversity in
nature. Understanding the dynamical mechanisms of andifeq factors promoting coexistence
are a fundamental problem of continuous interest not onvislutionary biology but also in non-
linear science [113-117]. Species coexistence has beentigated in a variety of systems, such

as in microbes, [118-121], ant colonies [122, 123], pagasiind hosts [124, 125], predator-prey



dynamics [126] and interference competition [127] etc.sirg models are mostimacroscopian
the sense that they focus on the dynamical evolutions ofiep@opulations [113,114]. For any
given species, its population is merely a coarse-grainedage quantity that is not capable of re-
flecting the possibly complicated interactions among ite avdividuals and with those from other
competing species. To gain a deeper and more comprehemsieestanding of the dynamics of
coexistencemicroscopicmodels that describe the competitions among species atvtbedf indi-
vidual interactions of the stochastic nature are neceg3a;, 128-136]. In this regard, a class of
microscopic models is proposed in chapter 6 based on cydig;hierarchical competitions [e.g.,
as described by the classical “rock-paper-scissor” (RR®&)ej on spatial lattices. Such competi-
tions have been observed in several real ecosystems [128138]. The fundamental importance
of RPS-like competition in sustaining biodiversity for lbed resources in nature has been empha-
sized through experimental investigations [118, 119].drkcal and computational studies of the
RPS model have revealed that, due to the presence of stiifyasbcal interaction and disper-
sal can ensure the coexistence of species. More recertlyidoal mobility as a common feature
in ecosystems has been incorporated into spatial gamestay beodel competition dynamics of
species and the organization of spatial patterns [130,1138-

In chapter 6, | propose a model for cyclically competing $ggon continuous space and in-
vestigate the effect of the interplay between the inteoactange and mobility on coexistence. A
transition from coexistence to extinction is uncoveredwaitstrikingly non-monotonic behavior in
the coexistence probability. About the minimum in the ptubiy, switches between spiral and
plane-wave patterns arise. A strong mobility can eithenmie or hamper coexistence, depend-
ing on the radius of the interaction range. These phenomenabaent in any lattice-based model,
and we demonstrate that they can be explained in terms ofneamlpartial differential equations.
Our continuous-space model is more physical and we expedirttlings to generate experimental
interest.

Species coexistence is essential to biodiversity, andatfimdamental issue in ecological sci-



ence. Ecosystems consisting of three species subjectlio cgmpetitions have become a paradigm
to address the coexistence problem. Early works based amgiam models provided useful in-
sights into the dynamics of coexistence at a macroscopét, lbut these models often tended to pre-
dict that coexistence is structurally unstable. To resttiedilemma, microscopic models based on
stochastic interactions at the individual level have be#&moduced. In this regard, the classical game
of rock-paper-scissors (RPS) has been used to mimic cymtpetitions at the microscopic level of
interactions. In fact, the past several years have witgeaggowing interest in this direction, ad-
dressing the role of factors in coexistence such as speaibsity, virus spreading, and intraspecific
competitions, etc. Inspired by these works, here we addnesspecies coexistence problem in the
framework of RPS competitions on spatially extended edesys from a global standpoint, i.e., we
are interested in how the basins of coexistence and exdmmdg&pend on factors such as species mo-
bility, interaction range, and rate of intraspecific conitp@t. An obstacle that needs to be overcome
is to find a suitable representation of the phase space towertipe basin structure in a meaningful
way, as the underlying dynamical system is spatiotempardlextremely high dimensional. We
find the simplex representaticf} in the three-dimensional space of population densitiescaife.
We then use two characterizing methods, namely, final statétee inverse of the convergence time
toward the final state, to map out the structures of the ctemgg and extinction basins by using
direct simulations of the microscopic interaction modelpérticular, basins calculated according to
the final states can identify boundaries among coexistemtex¢inction basins, whereas the points
within a basin are indistinguishable. The basins depictetthé convergence time to reach the final
state provide additional information about the intringifetence inside each extinction basin. The
coexistence basin can emerge at the central aréa stirrounded by three rotationally entangled
extinction basins. The convergence time within each etitindasin increases universally along
the spiral toward the center point. The area of coexisteasalin the phase space measures the
robustness of species coexistence and the convergencwiihie extinction basins quantifies the

degree of extinction. To provide credence for the validityhe basin structures, we derive theoret-



ical models based on partial differential equations, whjigds results that agree well with those
from microscopic models. Our results provide insights itite species coexistence problem at a
global level.

Microscopic models based on evolutionary games on spatatiended scales have recently
been developed to address the fundamental issue of speeristence. In this pursuit almost all
existing works focus on the relevant dynamical behavioigimated from a single but physically
reasonable initial condition. To gain comprehensive amtall insights into the dynamics of co-
existence, In chapter 7, | explore the basins of coexistandeextinction and investigate how they
evolve as a basic parameter of the system is varied. My medsidlic competitions among three
species as described by the classical rock-paper-sciganrgs, and | consider both discrete lattice
and continuous space, incorporating species mobility atrdspecific competitions. The results
reveal that, for all cases considered, a basin of coexistalveays emerges and persists in a sub-
stantial part of the parameter space, indicating that stexce is a robust phenomenon. Factors
such as intraspecific competition can in fact promote coence by facilitating the emergence of
the coexistence basin. In addition, | find that the extintbasins can exhibit quite complex struc-
tures in terms of the convergence time toward the final statdifferent initial conditions. | have
also developed models based on partial differential egnatiwhich yield basin structures that are
in good agreement with those from microscopic stochastitikitions. To understand the origin
and emergence of the observed complicated basin strudsueieallenging at the present, due to the
extremely high dimensional nature of the underlying dyreaingystem.

In chapter 8, we investigate intra- and inter-patch migratiin stochastic games of cyclic com-
petition and find that, in contrast to the understandingéndinrent literature, the interplay between
the migrations at the local and global scales can lead tcst@mecies coexistence in the remarkable
form of target-wave patterns in the absence of any exteordtal. Even in a single-species system,
target waves can arise from rare mutations, leading to dreait of biodiversity. A surprising phe-

nomenon is that the target waves in different patches caibiesgnchronization and time-delayed
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synchronization, the latter potentially enabling preidiciof future evolutionary dynamics. A phys-
ical theory is derived to explain these phenomena.

Formation of self-organized pattern is a fundamental aspfgghysical and biological systems
out of equilibrium. Spiral waves are quite common in a vgratexcitable systems and population
dynamics, such as Belousov-Zhabotinsky reaction [142), 148 cardiac tissue [144], inset popu-
lation dynamics [145] and cyclically competing populasamith mobility [189]. Spiral waves play
significant roles in the dynamics of excitable systems, endneart disease, such as arrhythmia and
fibrillation, which lead to death [144, 190, 191]. Spiral vea\are important in population dynamics
as well. In particular, biodiversity in cyclically competj populations with stochastic interactions
can be maintained and stabilized by entangled moving speeés [189, 192]. The coexistence of
two or more spirals may form multi-armed spiral and antepivaves. These interesting joint spi-
rals have been extensively studied in excitable systenwsdlieally and experimentally [193-198].
However, in the population dynamics in the presence stticha®cesses, multi-armed spirals and
multi-pairs antispirals among entangled spirals is rasakgied and far from being well understood.
There are two important open questions associated witle tiveges: Are they able to be generated
through stochastic interactions and how is their stalfilii@ne of the purpose of this thesis is to
address these questions in the framework of cyclic compeg@mes with mobile individuals.

In chapter 9, we study the formation of multi-armed spiraid anulti-pairs antispirals in spa-
tial rock-paper-scissors game with mobile individuals. #ligcover a set of seed distributions of
species, which is able to produce multi-armed spirals anltl4pairs antispirals with arbitrary num-
bers of arms and pairs based on stochastic processes. Mhggoal waves are also predicted by a
theoretical model based on partial differential equati@ssociated with specific initial conditions.
The spatial entropy of patterns is introduced to differ@etthe multi-armed spirals and multi-pairs
antispirals. For the given mobility, the spatial entropynuilti-armed spirals is higher than that of
single armed spirals. The stability of the waves are explaii¢h respect to individual mobility. Par-

ticularly, we find that both two armed spirals and one pairsgirials transform to the single armed
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spirals. Both multi-armed spirals and multi-pairs antiafs are relatively stable for intermediate
mobility. The joint spirals with lower numbers of arms andrpare relatively more stable than
those with higher numbers of arms and pairs. Our work prevgieantitative insight into pattern

formation through stochastic interactions in the absemexdtable media.
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2. COMPLETE SOLUTION OF DIRAC EQUATIONS FOR MASSLESS FERMIO NS IN
CONFINED GEOMETRIES
2.1. Previous work

In this chapter, we develop a general and efficient methodlt@ she Dirac equation for mass-
less fermions in a two-dimensional closed system. An obstacobtaining a complete solution
of the Dirac equation, which includes both eigenvalues agenéunctions, is the proper handling
of the boundary conditions. We shall develop an efficientr@ization scheme and a physically
meaningful approach to treating the boundary conditioaset on converting the Dirac equation
into a set of matrix equations. In our method, the physicairegtries of the system are well pre-
served. To validate our method, we consider three typespoésentative geometric confinements,
which include domains that generate both integrable andthanotions in the classical limit, and
calculate the complete spectrum of eigenvalues and theiasst eigenvector set. In particular, in
the case of integrable geometries for which analytic ptestis of the eigenvalues and eigenvectors
are available, we obtain excellent agreement between thierical and analytic results. For more
general geometries including classically chaotic sysiénesproperties of our calculated eigenvalue
spectrum, such as the energy level-spacing statisticegagell with the known results for differ-
ent symmetry classes [21]. In fact, our method is capablendirf eigenstates of Dirac fermions
under arbitrarily electrical potential profiles. Our matiormulation can be applied directly to one-
dimensional systems and, by a straightforward extensitimeoDirac spinor to four components and
by a proper revision in the discretization and boundary tangs, the method can be extended to
solving the Dirac equation in three dimensions as well. Toalestrate our method in applications,
we investigate the relativistic quantum tunneling dynan€a Dirac fermion between two sym-
metric cavities connected by a potential barrier, and olesire phenomenon of chaos-regularized
tunneling that has been identified recently in non-relstiziquantum tunneling systems.

We remark that in the earlier work of Berry and Mondragon outrieo billiards [21], eigenval-

ues were computed using the boundary-integral method. #awine Green’s function utilized in
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Fig. 2. Schematic picture of closed Dirac system with aglojtrgeometry and zero outgoing flux
boundary conditioj - n = 0. This boundary condition is equivalent £g/¢ = i exp(ify,) with 6,

being the argument of the surface normal
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the boundary integral is the one associated with open sgsté@imey showed that the higher-order
correction terms of Green’s function due to boundaries docoatribute to the energy spectrum.
However, for a complete solution set, where not only eigkrasbut also eigenfunctions are of
interest, it is necessary to obtain the Green’s functiontlierclosed system, which is not feasi-
ble for arbitrary shaped domains and not necessarily smomtindaries under the framework of
boundary integrals. Consequently, one still needs an apiate discretization scheme to solve the
closed-system Dirac equation, either by numerically eatihg the Green’s function or by solving

the eigenvalue problem directly.

In Sec. 2.2, we detail our method for obtaining complete temhs of the Dirac equation in
two-dimensional closed systems, focusing on proper hagdif boundary conditions and on the
articulation of discretization scheme. In Sec. 2.3, we destalgorithm using an idealized domain
for which analytic solutions of the Dirac equation can bettrn down, and obtain further validation
by calculating the energy level-spacing statistics foe¢hdifferent types of closed geometries. In
Sec. 2.4, we briefly demonstrate the power of our method imesdthg the problem of chaos
regularized relativistic quantum tunneling. In Sec. 2.6,present conclusions and a discussion.
2.2. Method
2.2.1. Background

A subtle and challenging issue in solving the Dirac equatdhe proper treatment of the bound-
ary conditions [22]. Due to the finite domain and the firstesndature of the Dirac equation, a naive
treatment of the boundary conditions will lead to trivialemen non-physical solutions. One exam-
ple is the relativistic particle in a one-dimensional boxy €#mply letting the whole spinor go to
zero at the walls of the box, only a trivial (all-zero) sotutiof the eigenfunctions are obtained. To
overcome this difficulty, many self-adjoint extensionstu boundary conditions in both Dirac and
Weyl representations have been proposed [23]. For exatnplé+ 1) dimensions, one family of
boundary conditions is to force either the large or the se@ithponent of the spinor to be zero at

the walls of the box. Some variances of these boundary dondialso exist [24, 25], e.g., by as-
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suming that the large component vanishes at one boundatharsthall component vanishes at the
other, or by assuming that both components differ by factarsSome of these boundary conditions
also preserve the physical symmetries, sucl’andC PT symmetries. However, these types of
conditions are not all appropriate i2 ¢ 1) dimensions, because the walls of the box are impene-
trable. Physically, this means that the relativistic cotje= ciT o) normal to the boundaries must
vanish. The vanishing current condition has been used ibdlgemodel [26—-28] of quark confine-
ment, which solves the Dirac equation with a Lorentz scatdemtial. It was assumed that the rest
mass of the particlex(r) is a position-dependent parameter. One could then solséttmite-well
problem for the particle of varying mass, letting the massagimfinity outside the box in order to
take into account the Klein paradox. A similar method wagdeid by Berry et al. [21] for studying
random-matrix theory and energy level-spacing statisticselativistic neutrino billiards.

We consider a two-dimensional closed system within whichlativistic, massless fermion is
confined, as shown schematically in Fig. 2. The system ismeeby the Dirac equation if2 + 1)

dimensions:
ihop(t) = H(t), (2.1)

where the general form of the Hamiltonian is given by
H= c(a - p) + Bmc?, (2.2)

andq is a two-component Dirac spinor. Assuming stationary soitup (t) = ¢ exp(—iEt/h), we
obtain the steady-state Dirac equation

Hy = Ev. (2.3)

In two dimensionsa = o = (0,,0,) and 8 = o, are choices satisfying all anticommuta-
tion/commutation relations of Dirac/Lorentz algebra [29]

To obtain the proper boundary conditions, two methods caerbployed: we either replace
themc?o, term with a potential/ (r)o, in the Hamiltonian and let/(r) go to infinity outside the

domain, or use the vanishing current conditiom = 0, wheren is the boundary surface normal,
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as shown in Fig. 2. The latter method yields
Re(e"¢/x) =0,

where¢ andy are the components of the Dirac spinor= (¢, x)*, andd,, is the argument of the

surface normah. The boundary condition can then be written as [21]

X/ ¢ = i exp(iby). (2.4)

When an external electric potential energyis present,E' is replaced byE — V. For massless

fermion, we can then write the Dirac equation as
[v(o-p)+V]y = EYy, (2.5)

where we replace by v for more generalized cases or, for instance, in graphené¢hdyermi
velocityvy ~ 10°m/s.
2.2.2. Discretization scheme and elimination of fermion dabling effect

To numerically solve the Dirac equation, it is necessaryeweetbp an efficient and physically
meaningful discretization scheme. Unlike the standardrdiization of second order differential
equations such as the Schrodinger equation, discretizfr the massless Dirac equation is a much
harder problem. An important issue is that the usual finiffledince methods fail because they
introduce the so-calletermion-doublingeffect, even for open or periodic boundaries. Fermion
doubling is also a problem for lattice QCD computations [28}-

To explain the fermion-doubling phenomenon, we take thedimensional Dirac equation
ihOp) = thvo 0z, (2.6)
as an example. Using the usual lattice grige nA and the central difference approximation
Dutb(n) = ((n +1) —(n — 1))/(20),
the Fourier transformed equation is

ihdp = [hwo, sin(p,A) /Al = Hip. (2.7)
17



We see that the energy is given by
|E| = |hwoy sin(pg A) /A (2.8)

In the first Brillouin zone (BZ) wherg € [—n/A, w/A], the energy expression means that there are
more than one point satisfying the linear energy-momentlation, implying fermion doubling.
Previous works [30, 31] provided a solution to eliminates thifect.

Figure 3 shows our proposed discretization method, whictsists of two steps. Firstly, we
discretize the whole domain using a two-dimensional latti®he Dirac spinors are evaluated at
lattice points(m,n). Secondly, we evaluate the Dirac equation at the center ai eait cell,
(m+ %, n+ %). In the Hamiltonian, the derivatives of the Dirac spinor approximated by

Ymt+1,n41 + Vmtin — Umntl — Ymn
b

az¢m+%,n+% = 2A
a o wm+1,n+1 + wm,nJrl - wm+1,n - wm,n
y¢m+§,n+% - 2A :

The spinors at the unit cell centers are approximated asvirage of the four spinor values from

the neighboring lattice points, i.e.,

1
mer%,nJr% = Z(wm-ﬁ-l,n-ﬁ—l + wm,n+l + z/Jm-Q—l,n + djm,n) (29)

Using this numerical scheme, the phenomenon of fermion ligguban be eliminated.
2.2.3. Incorporation of boundary conditions and matrix representation of Dirac equation

It is worth noting that in closed systems, such as rectaragiesbilliards, the number of Dirac
equations at unit cell centers (denotedd$ is less than the number of total spinors at lattice
points (denoted a#/), i.e., M < N. The difference needs to be accounted for by the boundary
conditions. To explain how boundary conditions are incoaped in our solution procedure, we write
the Dirac equation in matrix form. In particular, we {et= (11,19, ..., ¥ n)T be the column vector
containing all spinor values on the lattice, whdreactually ha2 N components. LeD,/(2A),
D,/(2A) and A/4 be the matrix form of the operatoés, 0,, and the averaging operator in Eq.
(2.9), respectively. These matrices are all of dimengibix N. In matrix form, Eq. (2.5) becomes

B 2ihv

N (De®0e+ Dy@0y) + VA@ 1| U = EA® 1,0, (2.10)
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Fig. 3. Proposed discretization scheme to eliminate amgifer-doubling effect. A two-dimensional

domain, which exhibits chaos in the classical limit, isstiated to show the discretized lattice. Red
filled circles and blue open circles spaced Ayrepresent the boundary and inner lattice points,
respectively, where the Dirac spinor values are sampled.attual Dirac equations are evaluated at

black cross points, the centers of unit cells.
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Since we hav@ M equations, we neetlV — 2M boundary conditions that can be written as
BV =0, (2.11)

whereBis a(2N — 2M) x 2N matrix. Realizing that not all spinors are independent, emrute

the spinor vector by

U — PO — , (2.12)
Up

whereV ,, are independent Dirac spinors afigh are spinors at the boundary that can be expressed
by other components i , andP is an orthogonal permutation matrix. Defining

2ih
H = _%(Dm®az+Dy®ay)+VA®12 pPT,

A= A®1,PT, andB’ = BPT, we obtain
H'V =EAY, BV =0. (2.13)

Utilizing the boundary conditionsy 5 can be explicitly expressed by . Let B’ = [By, Ba],

whereB; is a square matrix. We write
Up=—-B,'BVUp.

Letting H' = [Hy, Ha] and A’ = [A1, As], whereH, and A, are square matrices, and substituting

Upginto H'V = EA'V, we finally obtain
Hp¥p = EVp, (2.14)

where

Hp = (A; — AyBy ' By) Y (Hy, — HoBy ' By).

One issue with the newly defined Hamiltoniafy, is that it is not Hermitian in general. This non-
hermitian characteristic is caused by the finite domain atiicé approximation of the original
smooth boundaries. However, the eigenvalueslpf are all real. To overcome this difficulty, we
introduce

H = (Hp+H})/2, (2.15)
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Fig. 4. Comparison of numerical and analytical results géaenergies and eigenstates for the ring
cavity. The lowesg0 positive eigenenergy levels and two examples of the eigtstrom numerics
(blue square, or above the energy spectrum) and theory fosd,r below the energy spectrum)

are compared. The convenient unit convention v = 1 was used in the numerical computation.

the Hamiltonian for a new physical system, where the diffiealassociated with non-smooth bound-
aries due to lattice discretization are overcome. For swadlies ofA, the energy spectra of the two
systems are identical, and the eigenstates of the two sgsiesvery close to each other especially
at low energies, where the discretized system mimics thaecguation perfectly.
2.3. Results
2.3.1. Solutions in analyzable geometry

To validate our method, we first choose a simple geometryyfich the eigenvalues and eigen-

states of the Dirac equation can be calculated analyticaily compare directly the numerical results
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Fig. 5. Level-spacing statistics for eigenenergies of g domain.Inset (a) shows spectral staircase
N(E) as a function oft2. The dashed lines represent the linear relationship betw&e) and
E?. Horizontal axes are linear mappings Bf to the rang€0, V], whereN is the total number

of eigenstates. Panel (b) is the cumulative distributiothehearest-neighbor spacifig(.S)as a
function of spectral spacing$, = E2,, — E72. Panel (c) represents the density distributjai5)

of F5(S) in (b). In both middle and bottom row, green dash-dottedsridl, and cyan dashed lines
denote theoretical distribution curves for Poisson, GO,@QUE statistics, respectively. The results

of the ring are obtained through a polar coordinate versfauonumerical method to preserve the

perfect circular symmetry.
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with the analytic ones. Even for very simple geometry, dubécentanglement of the two Cartesian
coordinates in the Dirac equation, the problem is not aitaly solvable except for certain spe-
cial types of boundary conditions for which the variables ba separated. One particular class of

solvable systems are those with circular boundaries, wheseral solutions are

_ Zn(kr)
ty, = Npe™ ,n=0,%1,... (2.16)
SgnE — V)ie Z,, .1 (kr)

wherek = |E — V| /(hv), andN,, is a normalization constant. For ring$, (z), the radial function
of the spinor components, is a linear combination of the-fmsd second-kind Bessel functions,
Jn(z) andY,, (x). However, for circlesZ,(z) = J,(z) because of the divergence Bf(x) at the
origin. For our analytical calculation, we considere a nivith inner and outer radii o2, = 0.5
andR; = 1, respectively. The electrical potential is set to zéfos= 0, for simplicity. Analytically,
one can arrive at the above general solution with potentaing a staircase-like profile in the
radial direction but constant in the angular direction. ldger, one can solve the case with arbitrary
potential numerically, even when the ring is not full. Saitthe potential to be zero, we can find

the energy levels for each angular mode through the inneoatet boundary conditionsE,(ﬁ) =

hok™, wherek" is obtained by solving

s (k) + Ju (kD) [Yara(B2) = Ya(kR)) _ | 217
L . .

[Jnt1(kR2) = Jn(kR2)] [Yns1(kR1) + Yo (kR )]
The eigenstates can be calculated after the normalizatiostantsV,"” are computed. Results of
these analytical calculations as compared with those framarics are shown in Fig. 4. Almost no
discrepancy can be observed. As indirect evidence, thetigalenergy spectrum gives statistical
results (to be discussed below) identical to numericalltgsas shown in Figs. 5-7 (first column)
and in Fig. 8.
2.3.2. Relativistic quantum energy-level statistics andigenstates in two-dimensional geome-
tries
We validate our proposed numerical method by calculatirgethergy level-spacing statistics

[13,14,18,32-38] for relativistic quantum billiards. Eigs 5-7 show results of level-spacing statis-
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Fig. 6. Level-spacing statistics for eigenenergies of thesotic bow-tie domain. Figure legends are

the same as in Fig. 5.
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Fig. 7. Level-spacing statistics for eigenenergies of teotic Africa domain. Figure legends are

the same as in Fig. 5.
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tics for three representative geometric domains: a rédtithally integrable ring, a chaotic billiard
with one geometric symmetry about the central vertical,lewed the so-calledfrica shaped bil-
liard [21] without any geometrical symmetry, respectiveélyrelativistic quantum systems, we have
alinear relation between energy level and the square raspedtral staircas®' (E), F « \/W
where N(E) denotes the number of eigenstates between zero and eRer@g confirm that the
numerical results preserve the physical properties ofythem, we investigate the nearest-neighbor
fluctuations of the energy spectra. For relativisticallggrable quantum systems, for example, cir-
cles or rings governed by the Dirac equation, the level sgpstatistics should be Poisson. For
non-integrable systems, if the system preserves geonsgtmienetry of some kind (such as a sta-
dium billiard), the nearest energy-level spacing statsstall between those of Poisson and GOE
(Gaussian orthogonal ensemble). In the fully chaotic cage, the chaotic billiard in Figs. 6 and
7, the GOE statistics apply. However, if no geometric symmynit present in the system, e.g.,
the African billiard, the level-spacing statistics shoblkel those given by GUE (Gaussian unitary
ensemble) according to the result of Berry and Mondragoh [21

Besides the linear statistics, we also consider an infavebgast-squares statistic of the energy
spectra, the spectral rigidity of the third typ&; [13, 14, 32-38], as a function of energy range
where[0, L] denotes the range of energy levels under considerationrd-8jshows thé\; statistics
for the three domains we considered, as well as theoretipalatation curves for Poisson, GOE, and
GUE statistics, where an excellent agreement is obtaineglifoases.

Representative eigenstates for non-integrable billiardshown in Fig. 9 for the bow-tie chaotic
billiard and in Fig. 10 for the chaotic “Africa” billiard. Tése are in fact examples of relativistic
guantum scars from the Dirac equation. We note that quantans save been observed in graphene
systems [12] in the regime where the energy-momentumoeal&ilinear, but they are still solutions
of the Schrodinger equation obtained by the tight-bindireghod. The scars shown in Figs. 9 and
10 are obtained by solving the Dirac equation which, to owvkedge, have not been reported

previously.
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Fig. 9. Examples of eigenstates of the Dirac equation foneti® chaotic billiard. The maximum
height (vertical distance from tip to base) is set t@nd the distance between two tipRisPanels
(a) and (b) are folr = 12.6756, and (c) and (d) are fab = 23.1622. Panels (a) and (c) show the

¢ components, while (b) and (d) show theeomponents.
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Fig. 10. Examples of eigenstates of the Dirac equation ®cttaotic “Africa” billiard. The domain
is confined within a rectangular baxe [—0.99, 1.35] andy € [—1.22,0.92]. Panels (a) and (b) are
for E = 9.8060, and (c) and (d) are faE' = 19.4444. Panels (a) and (c) show tliecomponents,

while (b) and (d) show thg components.
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2.4. Application: relativistic quantum tunneling

To demonstrate the power of our method for solving the Dirgaoagion in arbitrary two-
dimensional closed systems, we address the problem alisfiatquantum tunneling in classically
chaotic systems. A recent work considered the setting ofsgwometric cavities (potential wells)
connected by a finite potential barrier in the plane, throwbicth a particle can tunnel [39]. It was
showed that for non-relativistic quantum systems govehyethe Schrodinger equation, classical
chaos can regularize quantum tunneling rate. In particidaintegrable systems, when the particle
energy is sufficiently large, the quantum tunneling rate ltave values spread in a range that in-
creases with the energy. However, when the system is cédlgsihaotic, the spread in the tunneling
rate can be reduced significantly. Equipped with our metlooddlving the Dirac equation, we set
out to test whether the same phenomenon can occur in th&istlatguantum regime.

For non-relativistic quantum tunneling, due to the geomelymmetry in the double-well sys-
tems, the eigenstates are either symmetric or antisymmaldut the central barrier. A sym-
metric/antisymmetric pair means that, on one side of thebowell, the eigenfunctions com-
pletely overlap, while on the other side, the eigenfundidiffer by the factor of—1. In non-
relativistic quantum mechanics, tunneling rate is thusnaefias the energy splitting £ between
the symmetric and antisymmetric eigenstate pairs. Thiskbmmunderstood as follows. Sup-
pose we have symmetric and antisymmetric eigenstate pairand 4. Define a new state
() = Pge Bst/h Ly e iBat/h Attimet = 0, 9(0) = ¥g + ¥4 describes a state in which
the particle can be found only on one side of the double-Wid.let this state evolve and find that
attimet, = wh/AEFE, whereAE = |Es — E4|, ¥(to) x s — ¥4, meaning that the particle has
tunneled to the other side of the well. However, for Diraarfiem systems, there is no clear criterion
to separate symmetric/antisymmetric pairs from other thstates. Paraphrasing it, a symmetric
state cannot necessarily be paired with a correspondiigyamnetric state. Moreover, for massless
Dirac fermions, because of the violation of the time-resesymmetry [21], the reflection symme-

try is also broken. As a result, the eigenstate itself doésaee to be symmetric or antisymmetric.
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Fig. 11. Generalized method for obtaining the tunneling.rgh) Pick any eigenstatg,. Renor-
malizing the wave function localized to the left of the pdiehbarrier yields a new wave function
¥ (t = 0). (b) Time evolution of probability for particle to be obsedsin the left part of the billiard,

Pr(t). Tunneling rate is defined &= nAP/AT.

In such situations, a new and more general definition of theeling rate in relativistic quantum
systems is needed.

Our idea is the following. For arbitrary symmetric doublelgystem, we pick a random linear
combination of eigenstates denoted/as- >, a, ¢, (r), where it is not necessary to rurover all
eigenstates. This is feasible because our method allonadgkestates to be solved for any closed
geometry. Figure 11(a) shows an example where only one gtiggeris selected. We then keep only
the left side ofyy, and set the right side and the barrier part)db zero. We re-normalize this state
and denote it ag = Y, a,¥L(r), wherea,’s are the renormalized coefficients, anf (r) =
¥y, (r) for r at the left well, and)X (r) = 0 otherwise. Next, we let this stateevolve with time.

It is necessary to express it in terms of linear combinatiballeeigenstatesy) = > byt (7),
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where the summing index runs through all eigenstates. The coefficidrntan then be calculated

as

b = [ e = [ o S aukar
= ) an /L Uk Pndr, (2.18)

whereD andL are the integration domains of the whole double well and®feft well, respectively.
The time evolution of the statgis then given by)(t) = 3", by meEmt/". Because the particle
state is initially confined within the left well, to charadte the tunneling process of this state, we
calculate the probability that the particle is found in thé& well with respect to timepPy(t) =

I; |4(t)|?dr. An example of the probability evolution is plotted in FigL(b). The tunneling rat&

is found at the time whe#®,, (¢) reaches minimum for the first time, i.&?, = nAP/AT, as shown

in Fig. 11(b). This definition is more general because, far-reativistic quantum tunneling, where
symmetric/antisymmetric eigenstate pairs exist, it resUcAE.

Using our definition of the tunneling rate and employing thetimd for efficiently solving the
Dirac equation developed in this chapter, we have verifiatddfassical chaos can indeed regularize
tunneling even for relativistic quantum systems.

2.5. Boundary conditions in graphene systems

Because of the high relevance of our method for solving thadéquation to experimental
graphene systems, it is insightful to examine such systeitisthie kind of boundary conditions
treated in Ref. [22]. As explored there, graphene lattiomigated in an arbitrary orientation usually
possesses complicated boundary conditions, as can berseeizfls. (3.8) and (3.9) in Ref. [22].
In the summation form in Eq. (3.10), only the terms wjth.| = 1 form the four-component
spinor in the Dirac equation, and the rest of them descrilethe boundary modes decay from the
edge. By such an analysis, the authors of Ref. [22] found fbatost orientations, the boundary
condition should be zigzag-like. The staggered boundatgri@l in graphene mimics the infinite-

mass confinement for Dirac particles, leading to a boundangition that sits on an extreme point
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opposite from the zigzag one. Consequently, the boundarglittons for confined Dirac particles
and for the terminated graphene lattice are somewhat difter

From the point of view of symmetry, graphene system in theabs of magnetic field preserves
the time-reversal symmetry, which is the starting point ef.R22]. The staggered lattice potential
breaks the pseudo-spin symmetry of the sublattice, whisembles the symplectic symmetry of
a spin system but preserves the true time-reversal symm&tanique characteristic of graphene
systems is the occurrence of pseudo-spins. However, tlae Bguation describes the behavior of a
single relativistic quantum particle, for which the pheresran of pseudo-spins does not exist. As a
result, for relativistic quantum systems described by tiradequation, the mass term (not neces-
sarily infinite) breaks the true time reversal symmetry.sidifference can be revealed, for example,
by the statistics of the energy-level spacing in the cowadng classes of classically chaotic bil-
liards, where the graphene billiard exhibits GOE (Gaus§ighogonal Ensemble) statistics, while
the Dirac billiard has the GUE (Gaussian Unitary Ensemlig)sdics.

Reference [22] studies the boundary conditions of a cootisuDirac-like equation for the
pseudo-particles of graphene systems, as imposed by ttretdidattice structure of graphene. A
complete description of graphene incorporating boundareeds four-component spinors due to
the presence of a pseudo-spin for A and B atoms in a unit aedl,adso a pseudo-spin for the two
non-degenerate valleys. The method we have developedue g 2D Dirac equation with two-
component spinors thus describes the relativistic quamiation of the graphene pseudo-particles
in the absence of inter-valley scatterings. Since the bariesl of graphene flakes will in general
mix quantum dynamics associated with the two valleys, thedamponent Dirac equation cannot
provide a complete description of such situations. Our fpisithat, for the first time in the lit-
erature we have developed an efficient method to solve thec@iquation in an arbitrary shaped
billiard, and the method can be used to provide deep undelisig.of phenomena such as scars and
pointer states in quantum dots made of materials with lieeargy-momentum dispersion relation

such as graphene. While in general systems described byithe &guation are not identical to
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experimentally widely investigated quantum-dot systdotsglly the dispersion relation is the same.
Our method can thus be used to probe such quantum-dot syatehtmin deeper insights through
investigation of the Dirac billiards for the low energy sstdespite the differences in the boundary
conditions between the Dirac and experimental graphenerags

2.6. Conclusion

To obtain solutions of the Dirac equation in arbitrary twioidnsional geometries, which in-
clude complete sets of both eigenvalues and eigenfunci®essential for studying and exploring
relativistic quantum behaviors and phenomena in graphgsterss. To our knowledge, prior to the
present work, no such methods existed in the literature. sve ldeveloped a general method to
address this outstanding issue. The innovative aspectsrahethod are a proper incorporation of
the boundary conditions and an efficient discretizatioresuh to represent the Dirac equation in
matrix form. For a classically integrable system in a ciacudomain for which analytic solutions
of the Dirac equation are available, our method yields tegbht are in excellent agreement with
the analytic ones. For general geometries, including tidsese dynamics are chaotic in the clas-
sical limit, our method yields the correct statistics of fwdutions, such as the energy level-spacing
distributions.

We anticipate that our method or its variants will becomesidsol to address a host of prob-
lems arising in the study of relativistic quantum mechamicsondensed matter devices. As a
concrete example, we have outlined how the method can bédpplthe context of resonant tun-
neling to calculate the relativistic quantum tunnelingratt massless Dirac fermions between a pair
of symmetric but in an arbitrary domain.

We have focused our effort on planar system mainly becaagdhgne is two-dimensional. How-
ever, our method can be reduced straightforwardly to oneedsional systems. Extension to three-
dimensional systems is also feasible. Particularly, ing¢tdimensions the Dirac spinor consists of at
least four components and the Dirac tenserand 3 should be modified accordingly. One can still

use the zero outgoing current flux and a similar lattice eiszation, where now the Dirac equation
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needs to be evaluated at the centers of unit lattice cubes.
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3. EFFECT OF CHAOS ON RELATIVISTIC QUANTUM TUNNELING

In this chapter, we address the question of whether chaosegatarize tunneling in relativistic
guantum systems. To be concrete, we study the motion of asasBlirac fermions in the setting
of resonant tunneling to facilitate comparison with the ‘melativistic quantum case. To solve the
Dirac equation in a confined geometry is extremely challeggparticularly due to the difficulty
to incorporate zero-flux boundary conditions. We overcomdifficulty by developing a numer-
ical scheme based on constructing a physically meaninigirmitian Hamiltonian. Our extensive
computations reveal unequivocally the existence of sumgieigenstates that lead to extremely low
tunneling rates. As for the non-relativistic quantum camaking the cavities classically chaotic
can greatly regularize the quantum tunneling dynamics. Xfiboge the practical implications, we
consider resonant tunneling devices made entirely of gnapf42], and calculate the tunneling rate
for different energy values. We obtain qualitatively sanitesults as for massless Dirac fermions.
One unique feature for both the Dirac and graphene systeimshviinds no counterpart in non-
relativistic quantum tunneling devices, is the high tumrgerate in the regime where the particle
energy is smaller than the height of the potential barriehisTs a manifestation of the Klein-
tunneling phenomenon [5, 43, 44]. To explain the numericalifigs, we develop a theory based on
the concept of self energies and the complex energy spedtithe non-Hermitian Hamiltonian for
the “open” cavity.
3.1. Generalizing tunneling rates for the relativistic paticles

Consider the situation where a relativistic Dirac fermierconfined within a two-dimensional
double-well system in which two symmetric cavities are wealoupled by an electrical-potential
barrier placed in between. The system is governed by theBijaation 70,y (t) = I?Izp(t), where
the general form of Hamiltonian is given by = c(a - p) + Bmc?, andy is a two-component
Dirac spinor. Assuming stationary solutiar(t) = v exp(—iEt/h), we obtain the steady-state
Dirac equationdy = E. In two dimensionsp = o = (04,04) and 8 = o, are choices

satisfying all anticommutation/commutation relation®imac/Lorentz algebra [29]. There are two
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major challenges in numerically solving the Dirac equati¢iy) a proper treatment of boundary
conditions and (ii) a efficient and physically meaningfidaitization scheme. Firstly, for boundary
conditions, we can either replace theo, term by a potential/ (r)o in the Hamiltonian and let
U(r) go to infinity outside the domain, or use the vanishing cureemditionj - n = 0, wheren

is the boundary surface normal. We obtain®&p/y) = 0, where¢ andy are the components of
Dirac spinory) = (¢, x)*, andd is the argument of the surface normallt was demonstrated [21]
that the condition is¢/¢ = i exp(if). When an external potenti®l is present, such as the barrier
in our tunneling problem{ is replaced bye — V. Secondly, for a massless fermion, we can write

the Dirac equation as
[v(o - p)+ V] = E, (3.1)

where we have replacedby v for more generalize cases (e.g., in graphene, the Fermiitels
vr ~ 10°m/s). Regarding discretization, the difficulty issue isvie@an doubling [30, 31]. We have
developed and validated an efficient discretization schémeerporating proper boundary condi-
tions, for solving the Dirac equation in arbitrary geomegticonfinements ifi2 + 1) dimensions.
Different from the k-p models (with different flavors 6fband or8-band Luttinger-Kohn model),
a simple lattice grid is used to discretize the two-dimenaiclosed space. However, in solving
massless Dirac fermion systems, a necessary ingredidghéesgo eliminate the fermion doubling
problem is to evaluate the Dirac equations and the Diraospiat two different sets of square lattice
points. Specifically, if one evaluates the Dirac spinor®astions(i, j), the Dirac equations have
to be evaluated dt + 1/2, j + 1/2), otherwise one ends up with two fermions in the first Brilloui
zone, which conflicts with the original single fermion Diraguation.

For non-relativistic quantum tunneling, due to geometyimmetry in the double-well systems,
the eigenstates are either symmetric or antisymmetric tatheucentral barrier. In this case, the
tunneling rate is simply proportional to the energy spigti\ £ between the pairing symmetric and
antisymmetric eigenstates [39]. However, for relaticigjuantum tunneling, only in one spatial

dimension can the symmetric and antisymmetric eigenstitse pe defined. In fact, for both Dirac
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fermion in(2 + 1) dimensions and graphene systems, the symmetric and antisyio eigenstates
are not necessarily in pair. A more general, physically rmegnl definition of the tunneling rate
is thus needed. Our approach is the following. For an argisgmmetric double-well system, first
we choose a random linear combination of eigenstates, dérast) = > a,,(r). We then
set values of) on the right side and barrier region to be zero and renore#lizThe new state
is denoted ag) = >, a,¥L(r), wherea,’s are the renormalized coefficients (r) = 1,,(r)
for r in the left well, andyZ(r) = 0 otherwise. Next, we let this state evolve with time and
express it in terms of the linear combination of all eigetestay) = Y bmt®m(r), where the
indexm runs through all eigenstates. The coefficisptcan be calculated ds, = fD v hdr =
[pn > antbkdr = a, [, ¥5,¥ndr, whereD and L denote the integration domains of the
whole double well and the left well, respectively. The timelation of the state) is then given
by (t) =3, bmtbme Emt/h Because the particle state is initially confined within tesfe well,
to characterize the tunneling process of this state, weilzdkethe probability that the particle may
be found in the left well with respect to timé(¢t) = [, [¢(t)|*dr. The tunneling rate? can
be determined whef, () reaches minimum for the first time, i.?, = rAP/AT, whereAP is
the probability difference between the initial value and finst minimum ofP. (¢), andAT is the
time it takes to reach the minimum. This definition is genbedause for non-relativistic quantum
tunneling where symmetric/antisymmetric eigenstatespdarexist, it reduces tA FE.
3.2. Numerical evidence

We now present numerical evidence for the effect of chaosetativistic quantum tunneling.
Figure 12 shows the generalized tunneling d@@teersus the normalized enerdg)/V; for massless
Dirac fermion in the double-well barrier system for two tgpé geometry: one classically integrable
and another chaotic. For the integrable geometry, we obsbevexistence of states with extremely
low tunneling rates, as indicated by the arrow in Fig. 12{)ese correspond to states localized
nearly entirely in the left or right side of the potential bar, which “survive” the tunneling process

between the two sides, as indicated by the accompanyirgrpaitlocal density of states (LDS). We
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Fig. 12. Tunneling rates and LDS patterns for massless Daanion in integrable and chaotic
double-well systems, whekgandy are two components of the Dirac spinor. A unit syster

¢ = 1 has been used in our calculations. The barrier héight about60 under such unit system.
For the rectangle double-well, the width and the height atéc and1, respectively. The bow-tie
chaotic shape is obtained by cutting the rectangle withetlares such that the cut parts are(el
measured on both sides of the baseline and central veitieadi the rectangle. The theoretical ratio
of the left well width to the barrier width should I2&:1 for the rectangle, however, this ratio may

vary after discretization.
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note that, in non-relativistic quantum transport, theseediectively quantum pointer states [45, 46].
In relativistic quantum systems, we observe that both corapts of the underlying Dirac spinor

exhibit a heavy concentration of the probability in orbiisrey which particles travel vertically back

and forth on either side, parallel to the barrier. For theoticageometry, while signatures of pointer
states can still be found, they are weak as compared witretimothe integrable counterpart, as
shown in Fig. 12(b) and the accompanying LDS pattern. Anmalsgbehaviors occur when the

entire cavity is made of graphene, as shown in Fig. 13. Thukoth Dirac fermion and graphene
systems, we observe that classical chaos can greatly sspiwe spread in the quantum tunneling
rate, as in non-relativistic quantum systems [39].

A common phenomenon between Dirac-fermion and graphemeelimg systems is that, for
small energies, pointer states are far less likely than mnetativistic quantum systems. Conse-
guently, in both systems, the tunneling rate can be quigelaven in the small energy regime, as
shown in Figs. 12 and 13. This is the direct consequence dhki@neling [5, 43, 44], which finds
no counterpart in non-relativistic quantum mechanics wltiee tunneling rate tends to zero as the
energy is decreased to zero [39]. Although both systems aoast identical relativistic behaviors
at low energies, and both prove chaos regularization to besrgal phenomenon across quantum
systems, one should not confuse one system with the otherdifference between the two systems
lies in the number of massless (quasi-)particles. It isrdleat the system described by Eq.(3.1)
contain a single massless Dirac fermion. On the other hand, graphene system in the low energy
limit, the two electron states at different atoms (commamaljed A andB) in a unit cell can be think
of as the two states of a massless quasi-particle’s psepido4dowever, there are actually two of
these massless particles close to the two distinct Dirattg.oin presence of a spatially short-range

potential, the coupling between the two Dirac points becoapparent.
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Fig. 13. Tunneling rates and LDS patterns in integrable dratic graphene double-well systems,
where A and B denote the two distinct types of atoms a graphene unit cglhtdbinding model is
used in calculation for graphene systems. The barrier h&dixed atlf ~ 0.67¢ (with ¢ denoting
the nearest-neighbor hopping integral). After convertindpe’, = ¢ = 1 unit system, the geometric

measures and the barrier potential are the same as the Biingtefermion system.
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3.3. Analytical theory
3.3.1. The self-energy approach

To understand the effect of chaos on relativistic quantumeling, we develop a theory based
on the self-energy concept widely employed in the study @idum transport [15,47]. The basic
observation is that pointer states generally result in lomneling rate. Thus, when pointer states are
present, the coupling between the two wells is weak. Thedlimprate can thus be approximated
as the escaping rate of Dirac fermions between two nearkedioweakly coupled wells. Let the
left well be denoted by superscript), and the barrier together with the right well denoted by
superscrip{2). The Dirac equations for the whole double-well system cawbgen in terms of

the Hamiltoniand?, and H- for the separated closed wells as

Hy Vip P P
=F , (3.2)

Vo1 Ha P P2
whereV;; are the coupling matrices. Note that, if the left well weseit closed, the correspond-
ing equation isf () = B4, which becomes$H; + X)) = Ey() when weak coupling
to the right well is taken into account, whe® = V;,GFV5; is the self energy due to the bar-
rier and the right well, and?* = (E + in — Hy)~ ! is the retarded Green’s function. For each
eigenstate in the left well, the energy shift can be obtathealigh first-order perturbation theory as
(21 = (pM 28| (M), which is typically complex. The real part of this shift clyas the oscillat-
ing frequency of the corresponding eigenstate, while tregimary part, denoted by, introduces
a decay factoexp(—coyt/h) in the time evolution of the probability, which describes #scaping
rate of the Dirac fermions from the left to the right well. dhat, since the whole system is closed,
~ only describes the transient behavior associated witlicteisttunneling from left to right, with
any recurring behavior neglected. If we let the right wellesxd to infinity so that there is no re-

flection, the system is equivalent to a single left well cedplvith an semi-infinite lead through a

potential barrier, and will be the tunneling rate for the single left-well system.
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Fig. 14. Schematic diagram for one-dimension tunneling.
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3.3.2. One dimensional model

To gain insights and also to validate that our proposed dyants indeed proportional to the
tunneling rate, we consider a one-dimensional system fartwthe Dirac equation can be solved and
the self-energy and consequentlgan then be calculated analytically through the Green’stfan,
as shown in Fig. 14. Specifically, the one-dimensional Déuation i —ihvo, 0, ) = (E—V ).

Since the potential is zero in the left well (of widih,.), the solution is

cos(knx — )

isin(knz — )

wherek,, = (n + 1/2)7/L,. For the right part, the barrier has widii andV = V;, and the right
well has widthL andV = 0. We obtain the solution

Ajet Ty, 4+ Age”nTy_,  barrieg

Ui (@) =

AzeFn®y 4 Age”*nTy_ | right-well,
wherek,, = E/(hw) = [VoW/(hw) + (m + 1/2)7] /(L + W), kp = kn — Vo /() uy = (1,1)T
andu_ = (1,—1)7 are bases for the spinor, and the coefficiehtare determined by the boundary
conditions. Note that this is a combined solution for béth< Vy andE > V;. To calculate the

self energy(>%), we discretize the space and introduce the Green’s functidt;, z;). The self

energy can be expressed as [47]
(57) = Ly — a)Vi2GR(Ly + a, Ly + a)Var ¥V (L — ),

wherex = L, is the junction between the left well and the barrier, andctigpling components are
Vig = le = —ihvo,. The Green’s function can be calculated explicitly in tmeitiL — co. After
a substantial amount of algebra we obtain the following egsgion for the tunneling rate:

(hw)? . hon
Tl [cos(2ka)Im(C) — sin(2ka)Im(S)] — Snl,E

’Y:

where the quantitie§S andC are given by

o sin(2ka)
S = dk——"—"—
/0 E +in — hok’

o cos(2ka)
c = dk—F"—"—.
/0 E +in — hk
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The integrals can be evaluated explicitly and we finally obte~ hv/(2L,). In one spatial dimen-
sion the standard tunneling rafel’ can also be analytically calculated through symmetry abnsi
erations. We obtaidME ~ fvr/(2L,) and consequently; ~ AFE /7. These analytic predictions
have been verified numerically.
3.3.3. Two dimensional tunneling

For tunneling systems in two spatial dimensions, even whergeometry is regular it is not
possible to calculate the tunneling rate analytically, tuéhe entanglement of the two Cartesian
coordinates in the Dirac equation. The problem is solvablg for certain special types of boundary
conditions for which the variables can be separated. Ortephar class of such systems is tunneling
between two concentric ring regions, where the first cagityiven byR,; < r < Ra, the potential
barrier is located in the regioR: < r < Rg, and the second cavity is in the regidiy < r <
R4. When all four radii are large, this ring-shaped doublehigineling system is topologically
equivalent to a rectangular double-well with periodic bdarry condition in one direction. We have
solved the Dirac equation, calculated the Green’s fundiwhthe self energy, and finally obtained
a close-form expression for the tunneling rgtewhich involves various eigenstates that can be
evaluated numerically. A representative behavioy a a function of the energy is shown in Fig. 15,
which is qualitatively similar to that in the rectangulamudhe-well system. Of particular importance
to the aim of this chapter are pointer states with extra@mdinlow tunneling rates, which are the
causes of the tunneling spread.
3.4. Summary

In summary, we have established the phenomenon of chaakrizgd tunneling in the rela-
tivistic quantum regime for both Dirac fermion and graphtmaeling systems. While tunneling in
non-relativistic quantum mechanics has been well studiedte are two major challenges in inves-
tigating the phenomenon in relativistic quantum systerokit®n of the Dirac equation in general
two-dimensional spatial geometry and physically meanihdéfinition of the tunneling rate. We

have overcome these difficulties and developed numericéthads and analytic theory to reveal
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Fig. 15. Theoretical tunneling ratefor Dirac fermion in the two-dimensional ring system as de-
scribed in the text. The eigenstates associated with ther iand outer ring regions are calcu-
lated numerically by solving the Dirac equation with propeundary conditions. The parameters
areR; = 5, R, = 10, andVy, = 5. The dimensions for the outer part alRy = 10.2, and

Ry — Ry =3(Ry — Ry).
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the generic features of relativistic quantum tunneling. ild/tve focus on resonant tunneling, the
methodology developed here can be extended to other iistetiguantum transport systems, such

as various electronic transport devices made of graphene.
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4 . TRANSIENT CHAOS IN OPTICAL METAMATERIALS
4.1. Background

Optical metamaterials, also referred to as negative riéfeaindex materials, are artificially de-
signed materials with unconventional properties thatr@tmaterials do not typically possess. Al-
though the concept of metamaterials was proposed thealigtin 1968, explosive growth in re-
search occurred only about a decade ago, where now the asdsbame one of the most active,
interdisciplinary fields. Significant applications inckuduperlens overcoming the optical diffrac-
tion limit and electromagnetically invisible materialsui@ recently, a correspondence of light-ray
dynamics in optical metamaterials to general gravitatispstems was suggested and signatures of
chaos were revealed, opening the avenue to explore fundalplenomenain gravitational physics
that otherwise would not have been possible to be testedborddory experiments. In this chapter,
we further probe chaos in metamaterial systems. In paatictiirough systematic computations of
light-ray trajectories in two classes of systems, one tilapendent and another time-independent,
we establish the existence of transient chaotic dynamigt byperbolic and nonhyperbolic, in
these systems. In light of the analogy between metamatgstals and gravitational physics, our
results suggest that transient chaos can be quite commaoauiitagional systems obeying Einstein’s
general relativity.

In Sec. 4.2, we describe the equations of motion governiagdimamical behavior of light
rays in optical metamaterials. In Sec. 4.3, we demonstratsient chaos in metamaterial systems
with time-dependent refractive index. In Sec. 4.4, we preseidence of transient chaos in time-
independent systems. A brief conclusion is offered in Sex. 4
4.2. Equations of motion

In general relativity, the geometry of the space is desdriipethe four-dimensional space-time
metric g, (x, t). The propagation of light rays in this empty but curved sgiae which follows

the natural geodesic lines, is governed by the Lagrangian

E = %[goo(x, t)iQ — gij (X, t).%‘l.%'j] (41)
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Here, the Einstein summation convention is used for spetiatdinate indicesand;j, andc = 1 is
used. To relate the light propagation in curved space taitithe composite material, one needs to
perform coordinate transformations [67] to Maxwell's etijolas. For isotropic media, an effective
refraction index can be defined as= \/M, whereg = g;; (1 = 1,2,3). Here we consider
media with centro-symmetric effective refractive indexand light-ray trajectory in the system
can be further confined to the plane= (x, y) due to the nature of planar motions of light rays in a
centrally symmetric potential, as an orthogonal transtdfom always exists which brings theaxis
to be perpendicular to the plane of motion.

We now demonstrate that, after an appropriate coordinatesformation, the Lagrangian be-
comes

L= 5[ (o0 + P23, 4.2)

wherep = |r|, ¢ denotes the azimuthal angle, and the derivatives are wéher to the proper
time 7. In particular, the key to the optical-mechanical analagthie invariance of the Maxwell’s
equations under coordinate transformations. It was detraied [67] that the general covariant

form of the free-space Maxwell’s equations

FMU,X + F)\H,V + FIJ)\,M = 0,

PR, = "
is equivalent to the constitutive equations

D = ceE+c¢c'wxH
B = pupH-c'wxE.
Here, the optical medium has the permittivity and permégitiénsorse = u = /—g9% /goo,

whereg = det(g,,,) andw; = go;/goo. Consider now light-ray motion in a special curved space-

time metricg,,,, with the line element

ds? = goodt? — gsda’da’. (4.3)
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We can perform the coordinate transformatigh = h;z? (no summation) that relates it to the
Minkowski space, wheré; = ,/g; denote the Lamé coefficients of the transformation. To take
into account the effect of the time-dilation factg¥oo, we use the normalized field quantitie§ =
VIooE' andH" = /go0H*, which are observable in experiments. The material prégsein this
case can be written as

€ij = Mij = hihahsdij/(hiv/goo)- (4.4)
For centrally symmetric space-time metric the line elentwmt be expressed using the spherical
coordinates as

ds? = goodt?® — g,p(dp* + p*dQ?). (4.5)
By defining an effective refractive index = \/m, we arrive at the transformed Lagrangian
(4.2). This particular refractive index could be realizegerimentally using pure dielectric materi-
als that are non-dissipative and non-dispersive.

By reversing such coordinate transformation, the liglytsreotion in the material in flat space-

time (as the case in a laboratory) is equivalent to that intgdogt curved space-time, which can be

studied by using the Euler-Lagrangian equations. We obtain

o=,
o= [P (0" + 0]/, (4.6)
= n(p,t)(p2+v2)1/2,

wherevy(p,t) = 1 + pd,Inn(p,t), and all derivatives marked by prime are with respect to the
azimuthal angle, e.g.,0’ = dp/d¢. For static media [i.ed;n(p, t) = 0], a recent stability analysis
[59] provided a sufficient condition for having stable osbitside the potentialdy(p)/dp < 0,

leading to a well-behaved refractive-index function

n(p) ~ exp [/ dpy(p)/pl/p- (4.7)

A convenient case is given by the condition

n(p) = no(p/a) exp (=2p/a),
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whereq is the radius of the circular orbit, amg is a constant characterizing the maximum refractive
indexn,,... = no/(2¢). Figure 16 presents a schematic illustration of the stdfiactve refraction
index with an outer boundapy,,..., outside which the refractive index (p) is truncated to unity.
There are many periodic light-ray orbits [Figs. 16(b) andc)within the interaction regiop <
Pmae N this static system, making it a high quality optical cgvilowever, in the presence of a time-
dependent, external electromagnetic source, light-r@jgdtories inside the cavity become more
complicated. The time-dependent refractive index can bete as:(p, t) = n(p) + An(t), where
An(t) = Enmae sin(wt), &€ andw are the intensity and the angular frequency of the pertimbat
respectively. A possible experimental realization of fhesturbation could be adding a small time-
varying magnetic field perpendicular to the plane of the thaterial plate. For linearly polarized
light with magnetic component perpendicular to the makgtene, this arrangement causes a small
varying term in the effective permeability, and thus pdytuthe refractive index in the desired way.
4.3. Transient chaos in systems with time-dependent refraiwe index

Two parameters characterizing the initial conditions @&f thy dynamics are the impact param-
eterb and the time.,,.c,- at which the light ray enters the interaction region defined & p,qz-
The parametet,,;.,- is necessary to completely determine the trajectorieghbf liays because the
refractive index is time-dependent. The initial timg,.,- can affect the light-ray trajectories inside
the interaction region even though two beams of light aradaed toward the interaction region
with the same impact parameter. The two initial conditioas be conveniently defined as follows.
The center of the potential is set at the origin in the planke Tight rays are sent from far field
(p > pmaz) in thex direction toward the center of the interaction region. Tieact parameter is
thenb = |y|. The timet.,:. then marks the instant when the light ray reaches the circuiter
boundary. Since the external perturbatitn(¢) has the period” = 27 /w, it is convenient to use
tenter[mMod(T)] as the entering time. Figures 17(a) and 17(b) shemytarallel but closely separated
incoming light-ray trajectories entering the interactregion at the same time, where the resulting

trajectories inside the interaction region are also clek®vever, for another pair of nearby incident
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Fig. 16. (a) Static effective refractive index and (b,ch#aperiodic light ray orbits. In (a), the
refractive index is truncated to unity fpr> p,,.. = 1.74a, and the parameters atig = 18.65 and
a = 15um. In (b), the periodic orbit has the peri@ad and radius:. In (c), the periodic orbit has

the perioddw. The labels x,y and the subsequent occurrences are pgsitiameters.
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beams entering simultaneously, the trajectories are catelpldifferent, as shown in Figs. 17(c) and
17(d). The light-ray trajectories can thus be highly sévesib the initial conditions, suggesting the
emergence of transient chaos.

We now explore the dynamics of light rays in terms of the scatt) functions, which are some
guantities characterizing the rays after the interactiersws the impact parameter. In this regard,
it is necessary to compensate the influence of the entermagyti,..,- on the light trajectory, which
can be quite significant if incident light rays are launched,, from a line segment perpendicular to
the incident direction. To achieve this, we send the lighgsfaom an arc of radiug,,,,, such that
the wave front of the incident light beam coincides with thien boundary of the refractive index
potential if the time-dependent terfan(¢) were not present. In such an arrangement, the incident
light rays with different impact parameters enter the iatéion region at the same time, and so the
scattering function can be obtained with respect to a singlat variable, i.e., the impact parameter.
The light rays stay in the region for a certain amount of timeg,, and then leave the interaction
region. The output variables, the anglé) mod2=)] and delay timé je;q,, (b)[modT)], are then
plotted as functions of impact paramebeas shown in Figure 18. These plots are characteristic of
transient chaos in open Hamiltonian systems [60].

There are two types of transient chaos in open Hamiltoniatesys: hyperbolic [68] and non-
hyperbolic [69, 70]. Of particular relevance to our work #re rigorous results on nonhyperbolic
chaotic dynamics in soft-wall billiards [71-73]. In hypeiiz systems, all periodic orbits are unsta-
ble and the decay of particles from the interaction regioexisonential [68]. In contrast, in non-
hyperbolic dynamics, there are Kolmogorov-Arnold-MogeA/M) tori and nonattracting chaotic
sets coexisting in the phase space, and the particle de@geabraic [69, 70]. To determine the
nature of transient chaos of optical rays in metamateriats,compute and analyze the phase-
space structure. In particular, without the time-depeh@enturbation, there are two stable peri-
odic orbits in the phase space, as shown in Figs. 16(b) ang).1B( fact, if the refractive index

n(p) = no(p/a)e*QP/“ were not truncated fop > p,,q2, it can be less than unity. In that case,
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Fig. 17. Scattering trajectories from two pairs of nearhtiahconditions. The dash-dotted circles

mark the outer boundary of the static refractive index pid&rand the (green) triangles and (red)

circles mark the incoming and outgoing positions of light ed the boundary, respectively. All

incident photons are sent from the: to +x direction and the impact parametebis: |y|. The upper

two panels (ab = 1.50002a, tepier = 0.774T) and (b:b = 1.50003a, tepier = 0.774T) show two

nearby incident positions with similar outgoing photorjectories, while the bottom two panels

(c: b = 1.35995a, tenier = 0.854T) and (d: b = 1.35996a, tepier = 0.854T) show two nearby

incident rays with drastically different outgoing trajedes, indicating a sensitive dependence on

initial conditions. The parameters are= 15um, w = 6¢/a, andé = 0.2.
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Fig. 18. (a) Delay-time functiof.iq, (b)[modT")] and (b) angle functiod(b)[mod2)] for £ =

0.2.

more periodic orbits of periods of multiples #f can exist, e.g., the third possible periodic orbit has
period6x. Physical reality requires, however,(p) > 1 so that the truncation is necessary. Besides
the periodic orbits of period&r and4r, there are an infinite number of quasiperiodic orbits in the
interaction region. When the time-dependent perturbasistarned on, unstable periodic orbits are
created, some of these quasiperiodic orbits survive, fogriAM tori, and nonattracting chaotic
sets arise through the typical mechanism of homocliniefteefinic intersections between the stable
and the unstable manifolds of the unstable periodic orBissthe intensity of the perturbation is
increased, the regions containing the KAM tori shrink arel¢haotic regions become more exten-
sive in the phase space. A typical phase-space structunevensin Fig. 19(a), where we observe
both KAM tori and chaotic regions surrounding the centralMAsland. Transient chaos is thus
nonhyperbolic in this case. We note that, an analogous ofesgstems in classical mechanics ex-
ists, namely soft-wall billiards with repulsive potensigdor which certain rigorous results on chaotic

dynamics are available [71-73].
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Fig. 19. (a) Phase-space structure on a Poincaré surfaeetidn for = 0.2. There are both KAM
islands and chaotic regions, indicating nonhyperboliogi@nt chaos. The data points are sampled
att = mT for m € N. (b) Fraction of light rays remaining in the interactionim@yas a function of
time. We see that the decay is mostly algebraic, except éoinitial small-time interval where the

decay is exponential as demonstrated by the plot in the.inset
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That the transient chaotic dynamics is nonhyperbolic cafuliber verified by examining the
decay law of light rays. In particular, we defid¥t) to be the fraction of a large number of light
rays (or photons in the short wavelength limit) still reniagnin the interaction regiop < py,q. at
time ¢t. Because of the time-dependent nature of the refractivexingte launch a large number of
incident light rays successively and uniformly distritdibe one period” of the external perturbation
An(t). The decay law of the light rays is shown in Fig. 19(b), wheresee thafk(t) decreases
exponentially for smalt but algebraically for most of the time interval consider&de have, for
t < 8.7, R(t) ~ e~ wherea = 2.3, and fort > 8.7, R(t) ~ t~” wherej ~ 1.4.

4.4. Transient chaos in systems with time-independent refictive index

To demonstrate the generality of transient chaos in optiegtamaterial systems, we now con-
sider a class of systems in which the refractive index is {independent. In contrast to the time-
dependent case where chaos has been uncovered previddisithfse has been no study of chaos
in time-independent metamaterial systems. Our systemistensf three equally spaced, static,
volcano-shaped refractive index potentials, as showngs.ED(a) and 20(b). The Lagrangian of the
system is of the same form as Eq.(4.2) except that now thaatdfe index is constant. Moreover,
due to the loss of the central symmetry in the potential, atit@dal dynamical variablg,, the

velocity angle with respect to thez direction, is needed to describe the dynamics. We obtain

& = cosby,/n(z,y), (4.8)
y = sin@v/n(x,y),
6, = (dv/db,)-Vn/n?

wherev is the unit vector in the velocity direction, and the deriwas are with respect to any affine
parameter. In this system, the characteristics of trahsiemos can be quite different in terms of
whether the three refractive index potentials overlap.ufég 20(a) and 20(b) show two different
configurations of the potentials. In Fig.20(a) where theepbtials are spatially separated, there are
stable periodic orbits in each potential region and unstabbits circling the three potentials. In

the overlapping case [Fig.20(b)], some of the stable ogs#sdestroyed, giving rise to complicated
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trajectories. In this case, light ray trajectories can laupack and forth between the original sta-
ble orbits within a single potential region and the unstatlgts that connect the three potentials,
forming new unstable periodic orbits.

For the time-independent case, two convenient dynamicahlas characterizing the transient
dynamics are the impact parameter and the angle of incidgritday. To be concrete, we focus
on scattering functions and the decay law with respect t@tian in the impact parameter. An
example of sensitive dependence of the trajectories omalimionditions is shown in the bottom
panels of Fig. 20. In the non-overlapping potential case,dtable orbits inside each potential
region cannot be reached by the trajectories starting fratside, i.e., the stable and unstable orbits
are well separated. Figure 20(c) shows two distinct trajées from two extremely closed initial
impact parameters. For the overlapping case, Figs. 20(pae) show two different trajectories
from two nearby impact parameters. One can still see thdigheray encircles around the original
stable orbits within the single potential region but findégves, due to the fact that the overlapping
regions break the original stable orbits and connect thetimet@egions outside.

Typical scattering functions, where the incident angléeflight rays is fixed to be along ther
direction, and the associated light-ray decay law are showig.21. We observe typical features
of transient chaos. As shown in Fig.21(c), the decay law poagntial in this case, indicating the
hyperbolic nature of the transient chaotic dynamics. Thesiglal reason is that, since the potentials
are non-overlapping, the stable and unstable periodi¢aé well separated in the phase space.
Since decay law is meaningfully defined by light rays fromsadg the interaction region in all
directions with random impact parameters, the KAM islandsa®inding the stable periodic orbits
are isolated from the regions outside and so are inaccedsilthese rays, as shown in Figs. 22(a)
and 22(b). For the overlapping-potential case, the dynauimiaonhyperbolic, as demonstrated by
the phase-space structures shown in Figs. 22(c) and 22{dfisl case, three potentials penetrate
into each other so that the originally inaccessible KAMnsla are now accessible to light rays

initiated afar from the interaction region, leading to ageddraic decay law, as shown in Fig.21(f).
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Fig. 20. Time-independent effective-index distributicor {a) three separated potentials =
(2.5/v/3)"maz,» and (b) three overlapping potentials= (1.5/v/3)rq4.. Sensitive dependence
of light ray trajectories on initial conditions are shown@e). The dash-dotted circles, (green) tri-
angles and (red) circles have the same meaning as in Figot Thé-non-overlapping potential case
(a), we show two trajectories in (c). The trajectory markgdHhz solid lines is fob = 2.92724527,
and the one marked by dashed line is for a slightly diffetemalue (increased by0~%). In (d)
b = 2.69012, and (e)b = 2.69013, two distinct trajectories from two close impact paramefer

the overlapping potential case (b) are shown.
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Fig. 21. For the non-overlapping refractive-index potentase ¢ = (2.5/vV3)"maz), (a,b)
scattering functions and (c) exponential light-ray decamy.| For the overlapping case (=

(1.5/v/3)rmaz), (d,e) scattering functions and (f) algebraic light-ragay law.
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Fig. 22. Phase-space structure for the non-overlappiby &ad overlapping (c,d) potential cases.
The points are sampled when the direction of velocity (repnéed byd,) forms /2 angle with
respect to the polar angle This angle can be adjusted so that the resulting phase-stagram

looks similar but with each KAM island rotated.

There is then a crossover from exponential to algebraicydesa system parameter changes so that
the refractive-index potentials begin to overlap with eatler, a known phenomenon in chaotic
scattering in potential systems [74, 75].
4.5. Conclusion

We have demonstrated transient chaotic dynamics of light i optical metamaterials under
time-dependent perturbations, which can be realized bytamreal electromagnetic field. The tran-
sient dynamics is typically nonhyperbolic in this case. \&eealso demonstrated that, even without

the external time-dependent perturbations, transierdsban arise from a class of static refractive-
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index potential configurations. To our knowledge, chaogitical metamaterial systems with static
refractive index has not been observed previously. A rigenmathematical understanding of the
chaotic dynamics in optical metamaterials is not availabtbe present, but insights can be obtained
from previous mathematical works on chaos in soft-wallidnitls [71-73]. Based on the recently
established connection between optical metamaterialranelativistic gravitational systems [59],
our results reinforce the idea that complex chaotic dynaimithe latter can potentially be observed

and tested in laboratory experiments using optical metairiads.
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5. EMERGENCE OF SCALING ASSOCIATED WITH COMPLEX BRANCHED WA VE
STRUCTURES IN OPTICAL MEDIUM

Branched wave structures, an unconventional wave projagpattern, can arise in random
media. Experimental evidence has accumulated, revedlingdcurrence of these waves in systems
ranging from microwave and optical systems to solid-staeémbs. Experiments have also estab-
lished the universal feature that the wave-intensitystiati deviate from Gaussian and typically pos-
sess a long-tail distribution, implying the existence dftsgily localized regions with extraordinarily
high intensity concentration (“hot” spots). Despite poas efforts, the origin of branched wave pat-
tern is currently an issue of debate. We here propose a “naifiimodel of wave propagation and
scattering in optical media, taking into account the esabpihysics for generating robust branched
flows: (1) a finite-size medium for linear wave propagatiod é2) random scatterers whose refrac-
tive indices deviate continuously from that of the backgmmedium. We find, through extensive
numerical simulations and a detailed theoretical analyiséd branched wave pattern can emerge as
a general phenomenon in wide parameter regime in betweenmdhk-scattering limit and Ander-
son localization. The basic physical mechanisms to formdirad waves are breakup of waves by a
single scatterer and constructive interference of brokares from multiple scatterers. Despite sim-
plicity of our model, analysis of the scattering field natiyrgields an algebraic (power-law) statistic
in the high wave-intensity distribution, indicating thatranodel is able to capture the generic phys-
ical origin of these special wave patterns. The insightst®ained can be used to better understand
the origin of complex extreme wave patterns, whose occae®nan have significant impact on the
performance of the underlying physical systems or devices.
5.1. Method

In this chapter, we focus on wave propagation in two-dimamesi optical medium and propose a
class of models for branched wave patterns which contaitbas physical elements: (1) a uniform
medium of finite size and (2) spatially localized scatterarslomly distributed in the medium, the

refractive indices of which deviate from that of the backgrd medium. The deviations can occurin

63



both ways which, in the case of negative deviation, may espwead to scatterers that are effectively
negative-indexed, onetamaterialsThe second element is required for generating dynamiasizkey
simple linear wave propagation. We shall demonstrate tlciit 8 minimal model can generate robust
branched wave patterns, regardless of the detailed distibof the refractive-index deviations
associated with the random scatterers. We will derive #tezally that the model can naturally
yield an algebraic (or power-law), long-tail type of dibtition of the wave intensities.

More specifically, the model, approach, and findings of oudican be described, as follows.
We consider the setting where a polarized monochromatit figopagates in a dielectric optical
medium with random structural imperfections charactetiag random refractive-index disorders
(scatterers) of size comparable to the wavelength. Our rinaiescheme employs the standard
finite-difference frequency-domain (FDFD) method [89—82Falculate the intensity of scattered
field through multiple scatterers. In the weak scatteringtlii.e., when the wavelengthis much
smaller than the mean free pdtlwe obtain striking branching flow structures of propagatight,
similar to those observed in the 2DEG and microwave trangpqeriments. As the spatial density
of the scatterers is increased, the intensity patternd@xhire pronounced fractal-like behavior,
where branches of extraordinarily high intensities ten@nbance themselves when forking into
narrower and even smaller paths. Anderson localizatioigbtf is also observed as the mean free
path approaches the strong scattering limit( A). Our extensive numerical computation also
confirms that the branched structure can result from theticausf the flow rather than the valleys
of the random scatterers. We find that branched waves gatig@cise in the regime between weak
scattering and strong localization of light waves.

In order to obtain a comprehensive understanding of theroeece of branched waves in op-
tical media and also to uncover their statistics, we devaldptailed analytic theory. Utilizing the
Green'’s function method, we treat the scattering of twoetisional polarized light wave off a single
scatterer and obtain a theoretical explanation for theoready the wavelength needs to be com-

parable to the size of the scatterer in order for noticeabgel fluctuations of branching strands to
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be observed. In contrast to the existing theory [86] whichlslevith stretches and folds in classical
ray dynamics in a concrete and somewhat abstract manneth@any enables us teisualizethe
branching flow structures of the scattered light intensitiedifferent angular directions. Based on
the results from scattering off a single scatterer, we neberel our treatment to multiple scatterers.
In this case, coherent backscattering and recurrent neultigattering become important, and they
together contribute dominantly to the formation of extréni@rge amplitude events. This unstable
branch stretching and accumulation process is highly tems$b the scatterers’ spatial distribution
and thus is critical to the formation of fractal-like wavettpans. Because of the large intensity
fluctuations caused by wave interference and the complekitandom-scatterer configuration, it
is essential to focus on the statistical distribution fimrciof light intensities. We have succeeded
in deriving a formula for the distribution function of hightensities, which follows an algebraic
(power-law) scaling law in the weak-scattering limit. Thigans that, associated with the branched
waves, there are points in the space at which exceedingjg latensities can arise, the “hot” spots,
in contrast to situations governed by Gaussian type of sityedistributions [93—96]. Note that the
algebraic distribution was previously observed in elatzdransport in 2DEG systems [86]. In the
optical media, however, away from the weak-scatteringtli@ig., A/ ~ 0.35), our theory pre-
dicts a small deviation from the algebraic scaling law, Inat dverall distribution is still markedly
long-tailed.

A brief account of some of the above results has been publighd. The purpose here is
to provide a comprehensive treatment with a detailed thieateanalysis and extensive numerical
results. The chapter is organized as follows. In Sec. 5.2deseribe our model and present
extensive numerical evidence of branched wave patterrnsiced media with negative- and positive-
index disorders, and a mixture of both. In Sec. 5.3, we develdetailed analytic theory based
on electromagnetic wave scattering to uncover the physidgin underlying the emergence of
branched wave structures. The theory allows us to predicighnificant statistical behaviors of these

complex wave patterns, which are verified numerically. Qasions and discussions are presented
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in Sec. 5.4.
5.2. Numerical results

We consider a polarized, monochromatic, Gaussian lighinbpeopagating in a dielectric
medium of refractive indexq, where the medium has embedded within it§élfandom scatterers.
The spatial distribution function of the refractive index the whole system can be written as

N

n(r) =no+ Y _ An;exp[—|r — r;|*/(207)], (5.1)

=1
whereAn; is the magnitude of the refractive index of thle scatterer relative to that of the medium,
andr = (z,y) is a two-dimensional vector. Each scatterer is charaeéfizy a Gaussian-shaped
refractive index profile, whose effective radiussis To simulate the scattering of electromagnetic
waves, we use the standard FDFD method [92]. The waveleagihdsen to bé = 1um so that
the scattering strength ratioAg! ~ 0.35.

Figures 23(a-d) show, for a rectangular medium of 8izemx 70um andN = 300, four typical
cases of the distribution of the scattering field strengtiere the scatterers have negative refractive-
index variations fAn; < 0) for panels (a,b), and positive variatioAf; > 0) for panel (c), and a
mixed distribution of negative and positive variations famel (d). Signatures of branched wave
patterns, especially a fractal-like branching structare, apparent in all cases. Numerically, we
observe that the shape of the refractive-index distrilmagigsociated with the random scatterers does
not have a significant effect on the emergence and the 8tatiproperties of the branched wave
structures. However, in order to preserve high numericali@cy and reduce artificial reflection
effect, we have chosen some smoothly varied shape, suck @atssian shape. As will be derived
analytically, in order to observe sharp, narrow, brankh{liows, the sizes of the scatterers should be
comparable to the wavelengih Note that, the wave patterns for the negative and positiviation
cases exhibit somewhat different branched forking stmestu This is largely due to the fact that
higher refractive-index regions attract light rays whaever refractive-index regions repel them. In
the short-wavelength limit, the negative-indexed scatteare equivalent to repulsive potential hills,

while the positive ones are effectively attractive potantiells for light rays. In both cases, chaos
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Fig. 23. For a rectangular optical medium of sk&:m x 70um with N = 300 spatially localized,
Gaussian-shaped scatterers, typical spatial distribsitad the magnetic field strengtfif| of the
scattered waves. In each case, an external polarized, miamatic, Gaussian wave of width =
1um and unit intensity is sent from the top of the region. Forgdsifa) and (b), the refractive-index
variations are negativeAn, = —0.5. The variation is positive for panel (cin; = 0.5. For panel
(d), An; is randomly selected from the range0.5,0.5]. Other parameters are the same for all

panelsing = 1, A = 1um, ande = 0.22. We observe signatures of branched, fractal-like wave

patterns in all cases.
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Fig. 24. Positions of scatterers (marked by red circlespprof various wave paths. Intensive wave
branches tend to go through various boundaries of scatt@rgtead of passing through the various

smooth valleys in between. Red arrow marks the position &tmterference fringes are observed.

can arise in the zero wavelength limit.

Figure 24 shows the positions of the random scatterers isupesed on top of the branched
wave pattern. A feature typical of the observed fractad-likave patterns is that the wave branches
tend to pass along the sides of the scatterers instead of gmiough the smooth valleys among
the scatterers. This feature appears to be shared by elecbranched wave patterns in 2DEG
systems [85, 86], where it was suggested that the wave beanoly result from caustics in the
corresponding classical regime. As for 2DEG systems, wedaliserve fringe patterns (e.g., marked
by a red arrow in Fig.24), which are separated in space bytab@u It is known that coherent

backscattering [98] of light by disorders is responsibletfe formation of these fringe patterns.
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Fig. 25. Emergence of localization of light as the numberisbders is increased & = 2000.

Other parameters are the same as in Fig.23.

More specifically, light backscattered by the disordersHig. 24, close to the arrow along the
propagating direction of light) tends to interfere with fleeward propagating light, giving rise to
the fringes separated by half-wavelength.

To gain more physical insights, we increase the scattetirgngth ratio to some value close
to the loffe-Regel criterion defined byl < 1 so that localization of light is anticipated [99, 100].
For A/l ~ 1, with a small imaginary part added to the dielectric constdthe scatterer to model
possible absorption effects, we observe extremely loedlight-wave pattern, as shown in Fig.25.
The simulation is performed for media of the same size asgn E8, but for clarity we show only
the upper part of the region because most light in the strocglized state concentrates within this
region. As the number of scatterers is increased, the piidlpal light paths connected by them to
form cycles increases as well. Due to the time reversal syimyroélight propagation, paths having
the same cycles but propagating in the opposite directimnfare constructively with the original
circle paths, giving rise to strongly localized concentnatof light intensities. In fact, as strong-
scattering regime is approached, the system exhibits aiti@amsimilar to that typically seen in an

electronic system, which is transformed from a conductingrt insulating (localized) state.
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5.3. Emergence of branched waves and their scaling behaviaheory

The problem setting is wave propagation in a two-dimengioptical medium with randomly
positioned scattering centers. The material is assumed tsdiropic andinear, it is neither dis-
persive nor dissipative, and there is no source (free chargearrent). For disorders with centro-
symmetric refractive index distribution, the propagatiirgction of light wave with linear polariza-
tion is confined within a two-dimensional plane [97]. To becete, we focus on the TE mode, for

which the magnetic field strength is given By= He,. The Maxwell's equations foH lead to
1 2
V x EVXH = k°uH, (5.2)

wherek = w/c is the vacuum wave vector,and . are the relative permittivity and permeability,
respectively. The refractive indexis = /. For polarized light, Eq. (5.2) becomes the following

Helmholtz equation for the scalar field:

(V2 +k°n?)H = Vi ovm. (5.3)

n

The goal of our theoretical analysis is to calculate thetsdag field and its statistical distribution
throughout the medium. Our approach is to first analyze the fiem a single scatterer and then
extend the result to multiple scatterers to obtain thestiedil properties of the resulted wave in-
tensity. We assume that the random scatterers are far amiayefach other as compared with their
sizes, which can be ensured if they are sparsely distribotéed medium. The shape of the random
scatterers will also be taken into account in the analysis.
5.3.1. Scattering wave field from a single scatterer

Consider a single scatterer located at the origin. Withoss lof generality, we set, = 1.
For the single-scatterer system we use approximated Gausisaped disorders as in our numerical
computation, but analysis indicates that the shape of g@dér does not have a significant impact
on the statistical properties of the wave intensity distidm.

To proceed, we decompose the magnetic fiHldnto an incident and a scattering part, i.e.,

H = H' + H*. The incident field is a plane wavé® = e***, whereas the scattering part is the
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response of the small scatterer to the incident plane waveq, Were not unity, the plane wave

should bez?*"0® instead. For field far away from the scatterer, ires> o, Eq. (5.3) becomes

(V2 +E?) H(v) = fi + fo + f3, (5.4)
where
Al = —(V2+kn2)H,
fa(r) = VH'-Vn/n,
fs(r) = VH® Vn/n.

At far field whereH® > H* is satisfied, onlyf; and f, contribute to the lowest-order approxima-
tion. In particular, to the lowest order, bogh and f, contain ther—!/2 term at far field ofH*,
whereasfs; has ther—! term. It is thus reasonable to consider contributions franand £, only.
Higher-order corrections due to the source tggnean be obtained by using recursive iterations, but
their contributions to the wave field are insignificant andsthwill not be included in our analysis.

The Green'’s function associated with Eq. (5.4) is
(V> + k) G(r,r') = =5(r — 1').

The standard solution to the Green'’s function in two dimensis given by

1

Glr,x') = 3 b (kfr = 1/)),

wherehél) = Jy + 1Y} is the Hankel function of the first kind. The scattering fiethahen be
written as the summation of two convolution operations:
Ho(r)rs = Y (G [))(r),
j=1.2
whereH?(r) = (G = f;)(r), (j = 1,2). Physically, the two scattering field$} and /75 result from
the inhomogeneity:(r) in the refractive-index profile and its spatial variatiovs(r), respectively,

as shown in Fig. 26.

71



(b)

Fig. 26. Approximations of (ap? and (b)Vn/n as functions of the distance from center of the
scatter. Blue solid lines represent the refractive-indefiles of the Gaussian-shaped scatterer and
the red dashed lines are the polynomial approximations. tyjpieal parameters shown here are

no =2,An =0.5,0 = 0.2um,a = 1, andg = 2/3.

Fig. 27. Integration domaif(r’) of a single scatterer located at the origin with a truncatetius

r,. The incident beam is frome-direction and the scattered fielﬂ;‘ is evaluated at far field.
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The scattering fields due tfy and fo can be calculated separately. For example, in order to

obtainH; analytically, we approximate the refractive index of thatterer as

An)? — An An) (=), r<r
2~ ) A (1 am () ren. (5.5)

1, > Tp,

An + 2
Ty = Qo) ——
b An+1

is the truncated boundary of the scatterer, arnislthe parameter that controls the width of variation

where

in n2, as shown in Fig. 26(a). This form of the refractive indexdiion with a finite domain of
disorder profile allows us to evaluate analytically the teratg field at far field by integrating the

convolution, which requires the asymptotic form of the Helrfunction at far field:

1) 1o o mx LT
ho (2> 7) (2) exp(i[z 4])-

The integration is confined within the shaded area in Figi.27,D(r’) : |r'| < r. The conditions
to ensure the validity of the far-field approximatien= k|r — r’| >> 1/4 can be estimated, as
follows. ForAn = —0.5, A = 1um, o0 = 0.22, anda = 1, we haver, ~ 0.38 pym, andr >
2[10 - (1/4)/k 4+ 5] ~ 1.56 um. This means that, in & pm x 70 um medium, we can have
up to 1000 disorders while still maintaining the sparsity conditipmpvided that the disorders are
arranged on a lattice. Since, in our simulation, the disasrdee randomly placed in the medium, the
acceptable maximum number of disorders is considerabdy |Eising the asymptotic form of the

Hankel function, the fieldZ; (r) becomes
W), = [[a Geanpw)

D(r’)
_ /i(l) N2 1.2.2Y ika!
= dr4h0 (klr = '|)(—=V k“n®) e
D(r’)

i /2 -
- 2 - k3/2
4\/;e

An+1
An {7( T;j )10 (An+ 210
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where the integralsl(g) (r) of orders? = 0, 2 are of the following form:

zk\r r'|+z")
I(E) //drr .
V-

v/ |<rp

Similarly, for H3(r) resulting from the source tertf, we expandvn/n as

An Br r /
Vn TTAn ( 202) (_F)v STy,

(5.6)
n

0, >y,

r/cr\/§
b — ﬁ

An approximate form ofVn/n is shown in Fig. 26(b), where we use matched values aind

where

£ so that the boundaries are identical for both integratiomalas, i.e.,r, = r;. Under these

approximationsH; can be written as

s 1 2 —1Z
Hy(r)rsr =~ —Z\/;e T2

A B e o
(1+ An)o? | 20272 2

where the integral,ﬁy) for orders? = 0, 2 are defined to be

etk (lr—r'|+a")

BN

To calculatel;l)’s, we use polar coordinates, as depicted in Fig. 27. In th®orer > r;, the

1) = // dr’ r'* x

[r/|<r)

approximations
r—r|~r—%-1v'=r—1"cos(¢p —¢)

and
1

— x|l 4 L cos(¢p — @)

|r — r/| 2r
hold, wheref is the unit vector in the direction af, ¢ and¢’ (cf. Fig. 27) are the polar angles of
andr’, respectively. It can be shown that all the integrals inedlin the two scattering fields have

the general form
2
Iy (r, ¢) = / dr’ / d¢’ '™ cos” ¢’ cos” (¢ — ¢')
(5.7)
-exp(ikr’[cos ¢’ — cos(p — ¢')]),
74



whereR denotes, or rj, andr, u, v € N. More specifically,lj(.e) can be expressed usitlg,, s,

T 1
Il(o) — etk [p=1/21 00+ 57,73/21201 7
T 1 1
11(2) — pikr r_1/21300 + 57,—3/21401 7
3 - (5.8)

_ 1
12(0) = e 1712 0 + §7°_3/21311 )

. [ 1 1
12(2) — pikr 7;1/2[410 + 5r73/21511

A key step in obtaining the scattering field is then to intégia,,, (r, ¢). Takel,o; for example.

We first integrate the’ part by expressing the exponent as

cos ¢’ — cos(¢p — ¢') = \/2 —2cos¢ sin(f — ¢'),

where
. 1—-coso¢ sin ¢
= —————, andcosf = ———.
St V2 —=2cos¢d’ o8 V2 —2cosd

The integrallzg; then becomes

Ty 27
Loi(r,¢) = /O dr'r'? /O d¢’ cos(¢ — ¢')
-explikr’y/2 — 2 cos ¢ sin(f — ¢')]
= 2misin(¢ —0)

T
/ dr'r? J (kr'\/2 — 2 cos ¢)
0

72 Jo(krpy/2 — 2 cos @)
ky/2 —2cos ¢

= —mik '} Jo(krp\/2 — 2 cos @),

= —2misin(¢ —0)

where in the last step, we have uséd(¢ — ) = /2 —2cos¢/2. All the integrals are Bessel
functions, or more generally, hypergeometric functionsteAevaluating alll,,,, integrals, we

obtain the final scattering fields as

eikr eikr
HY(r,¢)rsr, = ann ﬁfbl(‘b) + 0123—/2‘1/1(¢)a
Tikr Tikr (59)

st (Ta ¢)r>>rb = a21 mbe (¢) + aQQm‘PQ(@a
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where the angular functions are

Ja(krpy/2 — 2 cos @)

®1(¢) = 2 — 2cos0 )
Wy (g) = B2 —2c059)

1 V2-2cosé (5.10)
Ba(g) = J2krsVZ—2c039) |
Uy(¢) = J4(k;‘7m),

and the coefficients;;’s are given by

i /2 _i=x n(An + 1)1}
a12—7mk 1/2<Z ;6 4) ( 0_2 )ba
(5.11)
P12 .« Anr,
=9k 3/2 1\/j —iZ b
as ™ 1 71'6 4 (ATL + 1)0_21
P12 .« Anry?
T 7o I a4 b
22 ™ iV ze (An + 1)0?
By considering only the lowest order /2, we can write the scattering field in the form
ikr
s (&
H*(r, ¢)r>>rb,r;7 = m‘p((b)a (5.12)

where®(¢) = a11P1(4) + a21P2(4). While Eq.(5.12) is derived under the assumptign= 1,
the cases whergg is not unity can be treated by using the simple substitutions> kny and
An — An/ng.

Figures 28(a) and 28(b) show the behavior of the angulardp@s} for two distinct cases, cor-
responding to extreme cases of small and large scatterastevagth ratios, respectively. When the
ratior, /X is small [Fig. 28(a)], the scattering field is nearly unifoimall directions from the scat-
terer. In contrast, as the size of the scatterer is incressdtatr, /\ becomes large, the energy
associated with the incident wave concentrates mostlydrirtbident direction, leaving oscillating
fields of small amplitude in other directions, as shown in. 2§(b). The inset of Fig. 28(b) indi-
cates the oscillatory behavior of the scattering field, Whigpresents the branched but somewhat

weak wave flow patterns in different directions. An optimatio r, /A can be found in between the
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Fig. 28. Angular distributions of the scattering fidltf (r = const., ¢) for two different scatterer-
wavelength ratiosr,/)). Assumingr, = r;,, we compute the angular functiofis and®, corre-
sponding to scattered fields of order'/? under two cases: (a),/\ = 0.3 and (b)r,/\ = 3. The

inset of (b) shows the oscillating behavior tor> 0.5.

two cases shown in Fig. 28, implying that the branched streamerges only when the size of the
scatterer is comparable to the incident wavelength.

The scattering field structure calculated directly from Ef9) is shown in Fig. 29. In the
forward (+z) direction, the strength of the scattering field decreas#s tive radius and the field
is composed of a series of magnified flows radiating in alldioms. This faithfully reproduces
the typical behavior of the scattering field obtained fromedi FDFD simulation where the main
wave branches fork into smaller ones when encounteringatfe index disorders. Note that in
Figs. 29(e) and 29(f), both the /2 andr—3/2 terms have been taken into account, butithé&/?
term is significantly weaker than the /2 term in magnitude [as evidenced in Figs. 29 (a-d)],
providing further validation of Eq. (5.12).

Our expression for the scattering field of a single scatterevides qualitative explanation as

to why a highly non-uniform structure associated with thifean arise. In particular, the analytic
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result explains, instead of a uniform spread of the scatefeld in all directions, it tends to form
a branched structure with hot spots. In the presence of phelsicatterers, each scattering event
gives rise to a few dominant branches that spread out to fdr f®ome of the remaining scatter-
ers are located within the large branches while most ottetesers are located outside any large
branched structure. These latter group of scatterers asntally not affected by the scattering
field. Second-stage scattering will also induce some largedhes, which can possibly “meet” with
the branches from the first-stage scattering and generastraotive interference. Highly localized
structure of the field can result from such interference. dfiobabilities of destructive and construc-
tive interferences are approximately the same. Howevecesihe higher-level scattering fields are
necessarily weaker than the ancestor wave branches, #dsslglgenerated intense branches cannot
be eliminated, especially for the branches near the ceiectibn of the propagation. This pro-
vides a plausible explanation as to why in most cases thagdsgt branch in our simulation either
is along the center direction or titles slightly to one sidde former is due to equal probabilities
that the random scatterers appear on both sides of the mapagation direction, and the latter is
caused by the asymmetric distribution of the refractiveeindf the scatterer on both sides. This
branch-accumulation process is extremely sensitive taif@ders’ spatial distribution, leading to
the emergence of branched wave patterns.
5.3.2. Multiple disorders

Based on the results from a single scatterer, we now andtgzeciattering field due to multiple
random scatterers. Although a general analysis of cohsmattering of light in random medium
has been available for many years (see, for example, Rdj, [28 focus here is on the emergence
and statistical properties of branched waves. To make sisdBasible, we assume that all scatterers
have the same size and are relatively far from each other> r;,, as shown in Fig. 30, where
r;; is the distance between scattereesid;j, andr, is the size of each scatterer. The scatterers can
then be regarded as weakly correlated, rendering appiicalylanalysis leading to Eq.(5.12) of the

scattering field from a single scatterer. Letenote the primary scatterer and consider another scat-
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terer, denoted by. Waves scattered fromncan undergo a secondary scattering process off scatterer
j. Let the original incident wave direction bex and the direction fronito j be+z’. The primary
scattering field is the incident wave of secondary scatjesffiscattererj. The transformation from
frame @’,y’) to frame @, y) is
r = R(¢;)r’ + 1y,
cos¢; —sing;
whereR(¢;) = is the rotation operator. According to Eq. (5.12), we write

sin ¢ coS @
the scattering field from scatterein the vicinity of scatterej as

eik|Rr'+rij ‘ eik}’rw‘ eik’r'/ cos (25/

-9 N o—— ]
T O Y e )
eik}’rw‘ X ,
~ = ¢(¢j)ezkm )
Tij

Since theei**’ term is now the incident plane wave for the secondary sdadfgrocess, to the
lowest orderr—/2, the scattering fields from the first and second stages diffeonly a fixed
pattern factor. To define this factor properly, we consitieze¢ scatterers (denotedhy, ¢) through
which the light passes successively, forming a multiplétedag process. The cumulative factor
can then be defined as

iklrs—ri]

i j,0 = ——= ¥ [arccos(e;; - €j¢)],
|rj — i

wheree;; is the unit vector in the direction af; — r;.

Let the subscrip® denote infinity where the incident wave is originated, ansliage that the
incident wave beam is first scattered by only one scatterdee|éd byl. Treating the field poinf as
another scatterer, we obtain the total field from all poss#ishttering paths,

qo,1,5 + Z q0,1,iq1,i,j + Z 40,1,iq1,i,0Gi,0,5 + - - - - (5.13)
i il
If the scatterers are randomly distributed, the summatimr the same scattering level will not
cause order-of-magnitude changes in the scattering fiele tal the fact that complex variables of
similar magnitude but of random phases will cancel eachrptfemerating a complex number close

to the origin in the complex plane. In order to obtain an amakgxpression for the total scattering
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field so that its statistical properties can be analyzed,®egno make approximations on eagh

term. Specifically, we write

Gije = q(p, o) = p~ /% exp(ikp) (),

wherep is the distance between each pair of scattererssaisdhe angle determined by the relative
positions of the three consecutive scatterers. Under gnsoximation, the sum of the first terms
in Eq. (5.13) becomes

Sm=a+¢"+q +-+q"

Lettingq = ae'®, wherea > 0, we get the sum of the geometric series = ac®® /(1 — ae'?). Sim-
ilar to geometric series of real numbedise [0, 1) is the condition that guarantees the convergence
of the sum. In our case, this condition is satisfied becausasseme weakly correlated scatterers

so thata — 0. The total intensity of the scattering field is then

aet? 2
I(p, @) = 9| = ‘m

Under the assumption that— 0, the intensity can be written as

2

;o act® — o2
|1 =2acosf + a2
a2

%

2 3
- x 4 0.
1 —4acosf a” + fa”cos

To the lowest order, the intensity can be expressed in thasfmlg simple form:

=2 (5.14)

which is similar to that in the case of a single scatterer. sThireasonable because, under the
assumption of weakly correlated scatterers, contribstfoom higher-level scattering processes are
negligibly small.
5.3.3. Scaling laws for intensity distribution

The probability distribution of the intensity of the scaitg field can be obtained if the distri-

butions of the position parametessand are available. To be concrete, dengig,(p, ¢) as the
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joint probability density function (PDF) of random variaBp andy. The expressiod = I(p, ¢)
alone is not sufficient to derive the PDF of the intensity. Wianeeded is an auxiliary function

J = J(p,p). We have

1,J),0(I,J
fI(I) _ /,f],,](la J)dJ _ fP-ﬂP(p( a()[ f)( ))dJ, (515)
‘det (6(/)#7)) ’
where ggijig is the Jacobian matrix associated with the correspondarmstormation. The joint

PDF of the variables in the polar coordinate is proportidadhe unit area of the two-dimensional
plane,f, , ~ p, and a proper choice fof(p, ¢) is J = ¢. We then obtain the following algebraic

scaling law of the PDF with respect to the intensity of thettecang field:

fr(I) o< I77] (5.16)

wherey = 3 for our minimal model.

To verify the algebraic scaling law, we carry out extensi@bB computations for different
realizations of random scatterers of different densitidsich are uniformly distributed within a
35um x 70pum rectangular dielectric medium, as shown in Figs. 31 andoB2wo cases. From
these results (and many other cases as well), we observeh@dwave patterns and the associated
algebraic scaling law for the high intensity distributiohtle large branches, as predicted by our
theory. Especially, when the random scatterers are weakhglated, the algebraic (or power-law)
scaling behavior is quite robust, implying the existencéhot” branches with extremely high local
intensities. As the density of the random scatterers isedesed, this hallmark of branched waves
tends to be somewhat weakened because, when the scatterdisther apart, the intensity of
the wave scattered from one scatterer may already have nwealsgnificantly before reaching
the next scatterer, making it less probable for fields froffedint levels of scattering to interfere
constructively.

5.3.4. Effect of shape of random scatterer
Our theoretical analysis and numerical simulations inéitaat the shape of the random scatterer

has little effect on the scaling law associated with theristiy of the branched wave patterns. The
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shape, however, can affect the weight of each of-therm as well as the weights of tli&’ and 55
terms in, for example, the scattering fields in Fig. 29. Bsedthe total scattering field is the sum of
all terms, a change in the shape of the scatterer can indutamge in the pattern of the scattering
fields. But if the scatterers are sparse in the medium, tleetetan still be quite small. Additional
insights can be obtained by examining the process leaditigetscattering intensity given by Eg.
(5.14). When we perform the integration to obtain the PDtdrisity, the polar anglé part only
contributes to the normalization constant while the expbralue —3 remains unchanged. This
treatment is valid for the lowest-order approximation déirsity, in which the scatterer shape can
only affect the angulay part and therefore will not affect the field intensity distrion. When
high-order terms are included, the polar angle may becorpeitant, in which case the shape of
the scatter can affect the algebraic scaling exponent ibridseched wave intensity distribution.
5.4. Conclusions and discussions

Branched structures are an extreme type of wave phenomanaehe historically documented
in oceanography. Recent experimental efforts have demaied{ however, that they can occur
in a wide variety of physical systems such as two-dimensielectron gas, superfluid Helium,
microwave systems, optical fibers, and optical cavitiessgite the intense efforts, the physical
origin of branched waves remains to be elusive and an agtdetbated issue. For example, ear-
lier it had been thought that nonlinearity, or weak nonliitgashould be a necessary condition for
branched waves, but very recent experiments demonstiaé@ven linear medium can generate
these waves [84, 88]. It seems from all previous works, thetigat random wave scattering is a
necessary condition for the emergence of branched wavasahy experiments, significant devi-
ations of the light intensity from the Gaussian distribotisere observed. In fact, a characteristic
feature of branched waves is the “long-tail” distributiontheir intensities, leading to localized re-
gions in the space with significantly higher intensity thhage in the rest. A paradigmatic model
that contains absolutely the minimal physical ingredieetsessary for branched waves is needed to

understand the origin of these exotic waves.
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We have proposed a minimal model to explain the emergenceaothed waves. Our model
contains two essential ingredients: (1) a finite mediumifadr wave propagation, and (2) random
scatterers in the medium whose physical properties defrmtethose of the background medium.
To facilitate computation and theoretical analysis, weeheansidered wave systems in two dimen-
sions. For numerical simulations we assume a generic forthefefractive-index distribution
function for each scatterer. For analytic treatment, weshesed an approximate form of the index
function. In both cases, robust branched wave patterns i@ rnge of system parameters with
algebraic (power-law) tails in the distribution of the wamtensity have been observed or predicted,
indicating that branched waves are a general phenomergargdtess of the difference in the phys-
ical properties of the random scatterers. Our analysisestgghat the origin of branched waves
can be attributed to two basic phenomena: (1) break-up oéwsna single scatterer, and (2) con-
structive interference of “broken waves” by multiple seatrs randomly located in the space. Note
that these two phenomena are fairly “elementary” in wavesptsy and we believe that they explain
why branched waves should be a universal phenomenon imal$kif wave systems. Although our
computations and analysis are for optical waves, the phlsisights should be applicable to many
other wave systems in various areas of science and engigeeri

We mention that, in electromagnetics, coherent multipédtecing of light through random me-
dia was studied extensively in the past [98,101,102], alifxdhese studies were not directly pointed
at the phenomenon of branched wave structures. A relatetbpienon is Anderson localization
of light in random media. In particular, a basic theory in sisattering of electromagnetic waves in
random media is the scaling theory of localization [103]ewehthe scattering strength, character-
ized by the ratio of wavelength and the math free pathincreases asdecreases. In the classical
limit where A/l < 1, phase correlation is weak so that the approximation ofassdfding multiple
scattering can be used. However, in the strong scattering tonstructive and destructive wave in-
terferences become dominant. In this case, one\hag, and the phenomenon of light localization

emerges, similar to the phenomenon of Anderson localimaticondensed matter physics [104].
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In fact, Anderson localization of light was theoreticalledicted [99, 100] and experimentally con-
firmed [105-108].

The study of complex wave patterns in optical media and tnaiterlying physical mechanism
can have broader applications. For example, structuratdiss are inherent to the fabrication pro-
cess of many optical devices such as photonic crystals [1i@, and the occurrence of extremely
high intensity wave branches can be detrimental to the deyi@ration due to the random nature
of the waves. Even worse, the existence of hot spots of eixeeisgensities associated with the
branched wave structures can cause irreversible damage tetiice. On the other hand, since
the random, spatially localized disorders that we treahis thapter can have positive or negative
refractive constants, our work may be relevant to the extteractive field of optical metamateri-
als [111,112] and devices. From a different perspective pibssibility that branched waves with
hot spots can be induced in realistic optical media impligeptial applications in defense, where
defeating adversarial systems using electromagneticsiawe significant interest. Suppose an ad-
versarial system that contains some optical media pose®attHnducing branched waves in the
media may cause desirable damages to the intended opeshtimnsystem.

A final remark is that, the algebraic scaling exponent 3 in the intensity distribution of
branched waves is obtained for Gaussian type of refraatidex distribution function or its approx-
imation for random scatterers. Deviation from the Gausshape can cause the scaling exponent
to be different. Thus, in general we do not anticipate to iobitae exponent value of 3 associated
with branched waves. However, the algebraic scaling miair the long-tail behavior is generic for

branched waves arising in different fields.
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Fig. 29. Forward+{z) scattering fields. Panels (a) and (c) show the magnituderaffrd scattering
fields of order-—1/2 from the source ternf; in Eq. (5.4), while panels (b) and (d) show the field
magnitude of order—3/2 from the source ternf,, which are much smaller at far field. The total
field magnitudd H; | and|H>| from two source terms are shown in (e) and (f), respectivélye
incident wave (of wavelength = 1um) is sent in thetz direction on a scatterer located at the
origin. The parameters characterizing the refractivesiidinction of the scatterer ase= 0.22um

andAn = —0.5.
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Fig. 30. Multiple scattering from two scatterers, labelsd andj and separated by distanjs;|.
In the case of well-separated scatterers, the final saagtégld can be interpreted as a cumulative
scattering process by multiple scatterers, with each iddal scattering event being analogous to

the scattering of a single disorder.
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Fig. 31. (a) Distribution 0800 random scatterers in3um x 70um uniform medium. (b) Branched
wave magnitude from FDFD simulation. The incident wave igarm with width A and sentin the
+y direction, where\ = 1um, ng = 1, An = —0.5, 0 = 0.22m. (c) Numerically obtained scaling
law of the high intensity distribution (blue circles) anettheoretical prediction (solid line I—3).
Slight deviation from the predicted pow-law scaling is alved at extreme high intensities due to

the violation of sparse scatterer assumption in theory.
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Fig. 32. (a) Distribution 060 random scatterers in3um x 70pm uniform medium. (b) Branched
wave magnitude from FDFD simulation. The incident wave isarm with width A and sentin the
+y direction, where\ = 1um,ng = 1, An = —0.5, 0 = 0.23um. (c) Numerically obtained scaling

law of the high intensity distribution (blue circles) anettheoretical prediction (solid line 1—3).
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6 . CYCLIC COMPETITION OF MOBILE SPECIES ON CONTINUOUS SPACE : PAT-
TERN FORMATION AND COEXISTENCE
6.1. Background

All existing microscopic models of the competition dynamad dispersing species assume lat-
tices as the underlying spatial structure on which movemehindividuals and their interactions
with neighboring individuals occur. While there were effoto investigate the effect of shortcuts
among non-adjacent sites on the competition dynamics [l#1], in these models the space is still
discrete. Considering that, in realistic ecosystems, tysipal space that supports the dynamics is
continuous, it is of interest to ask what might happen to Rp&anhics and species coexistence in
a continuous space. The purposes of this chapter is to shiglissue. In particular, we construct
a continuous-space RPS model for mobile species and adahiedsindamental question: what is
the role of species-interaction range in coexistence? i¥hige has not been investigated in previous
discrete-space models, as the interaction range was yifimated to neighboring individuals. In our
continuous-space model, the interaction range becomegsicphparameter that can be adjusted.
Since, in discrete-space models, mobility is the singletnroportant parameter whose effect on
species coexistence has been the focus of most previous ywmrkcontinuous-space model allows
us to explore the fundamental interplay between two pamrsgte., mobility and interaction range,
with respect to coexistence/extinction.

Our main results are the following. (1) When the interacsoale in the continuous space is
increased, the probability of coexistence exhibits a namaotonic behavior with one local minimum
and one local maximum, regardless of the size of the contisspace. Close to the minimum, a
switching behavior in the spatial patterns occurs betwedralsand plane waves, as a result of
the collision of spirals and stochastic effects. (2) Cantita the basic result from the discrete-
space models that high mobility induces extinction, we fimat the role of mobility as to whether
it promotes or prevents coexistence depends on the rangeatiélsinteraction. To substantiate

these findings, we have derived a theoretical model basedmimear partial differential equations
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(PDESs) to analyze some of the results obtained from diremtilsitions of RPS dynamics. The PDE
model can successfully reproduce the dependence of thed givelength on the interaction range
as well as the switch from plane waves to spiral waves. Howelie model cannot reproduce
the non-monotonic coexistence probability due to the ateseri intrinsic stochastic effect. Our

continuous-space RPS model enriches greatly the posisibild explore and predict the dynamics
of cyclically interacting species in a physically more istid way, facilitating experimental research
on species competitions and biodiversity.

In Sec. 6.2, we describe the RPS model on continuous spadrwastigate species coexistence
with respect to interaction range, pattern formation, ardividual mobility. In Sec. 6.3, a PDE
model is proposed to explain the results produced by sttichasdel and an explanation for the
transition between spiral- and plane-wave patterns ingerfraxamining the wavelength. In Sec. 6.4,
we study an alternative model for specie coexistence byragpg competition and reproduction in
the RPS game. Conclusions are presented in Sec. 6.5.

6.2. Competition dynamics on continuous space
6.2.1. Model description

We consider three cyclically competing subpopulationfe(red to as A, B and C) on a square

cell of linear sizeL. = 1 under periodic boundary conditions. The species compedteasich other

for limited resources according to the following genergsu

AB %5 AA,
BC % BB, (6.1)

cA-% Oc,

which occur only if the distance between two individualsasd than, the interaction radius. At
each simulation step, a randomly chosen individutbm one species eliminates, within its in-
teraction range, one individuglfrom the next species in the cycle at rate At the same time;
reproduces at the position ¢f In this sense, competition and reproduction occurs sanalusly

and the two processes are combined. Mobility is incorpdriz® the dynamics such that individu-
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als can move to a random position within the same range ofisadand this occurs at rate The
probabilities of competition and movements are normallzgdu + s), i.e., their probabilities are
u/(u + s) ands/(u + s), respectively. In the absence of mobility, the probabitificompetition
is 1, regardless of the value of Individuals from all three species are represented bytpdinthe
plane at different locations. Initially the plane is randgmopulated with individuals from all three
species. To make an unbiased comparison for different ptipualsizes, we normalize the radius
by the average distance between individu@s= /N, with N being the total population size.
6.2.2. Species coexistence and pattern formation

We first study the case where mobility is absent and focus erffiect of interaction range on
the coexistence probability...... The results are shown in Fig. 33. We find that, when the radius
R is close to zero, the system reaches a trivial, static ctangs state where the average distance
between individuals is greater than the interaction rasgeeffectively there are no interactions
among most individuals and no death/birth can occur, inreshto what can happen in a dynamic
equilibrium. AsR exceeds the critical valuBr ~ 1.0, the system experiences an abrupt transition
to a dynamical coexistence state in which all species seliivithe form of certain spatial patterns.
WhenR is increased fronkr, p.oe €Xhibits a non-monotonic behavior, reaching a local mimmu
at Rz, and a local maximum a® ;.. > Rasin. This is counterintuitive because one may expect a
monotonic decrease ..., based on the existent result in the literature that localattions ensure
coexistence while it is lost at larger scales [118, 119]. Eesv, our results demonstrate a nontrivial
transition inp..., from small to large values with an optimal degree of coexristeoccurring for
R = Rpq.. We observe further that coexistence is ruled out for langeraction range, which is
consistent with the results froEvcoli experiment [118, 119].

For R < Rz, the underlying spatial pattern switches between spirdipdane waves in time,
as shown in Fig. 34 (top row). Both types of patterns are ikgligt stable to generate coexistence
but, due to the stochastic effect, intermittent switchasvben the patterns occur. The evolutions

of species densitiep{, p», Or p.) associated with the two types of patterns are also quiferdifit.
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Fig. 33. Coexistence probability.,.. as a function of the radiug of interaction range in the
absence of individual mobility foN = 3000, L = 1, wherep.,... is defined to be the ratio of the
number of the survival cases to the total num280§ of independent simulation realizations. The
probability is calculated after a transient tiriecx N from random initial configurations with the
same densities of three species. The inset shows the demendiR,, Ry, and Ry, on the

population sizeV.
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In particular, in the spiral-wave phase each density eiibiatively high frequency oscillations as
compared to the plane-wave phase [Fig. 34(a)]. Figure 3hd)s the average densities of the three
species over a time window. Typical patterns occurring tigaswitching points are also shown in
Fig. 34 (bottom row, left two panels). The transition fronapé to spiral wave patterns occurs due
to the stochasticity-induced penetration of individudlere species into the domain of neighboring
species and exclusion of individuals of the next speciebercyclic loop. At the mixing point, due
to the cyclic competition, three species twist and formaipiraves, breaking the plane wave. On the
other hand, the transition from spiral to plane wave can belzed to the collision of two large local
spiral waves. After they collide and vanish, the outgoingefeont becomes approximately straight,
decreasing significantly the curvature of the wave. Thusmthe wavelength of spiral waves is
proper, stochastic effects intrinsic to the underlyingayical system can trigger the transition. In
general, the probability of finding the switch between dparad plane waves is related with the
probability of species coexistence. There are two majaations along which the plane wave can
travel: axial and diagonal directions, as shown in Fig. 3attfm row, right two panels), due to the
symmetry in both orthogonal axes. It is noteworthy thatalpiraves are quite common in excitable
media and population dynamics [142-146], and travelingesadvave been found in a number of
cyclic populations [147]. However, the switch between the types of waves is rarely studied,
especially in stochastic systems. In this regard, our wedvides quantitative insight into this
issue.

Since the nontrivial relations between the normalizedctele rangeR and the coexistence
probability P,,.,. and the pattern switch are for the special casé ef 1, it is of interest to justify
the validity of such results in general cases. We take intowaat the effect of the size of the square
lattice on the coexistence curve by defining a rescaledtimteangeR;, = (r/d—1)/L+1, where
r € [0, L] is the physical or original selection range, ahet L/+/N is the average distance between
two neighboring individuals when individuals are unifoyndlistributed on the square cell initially.

ForL = 1, we haveR. (L = 1) = r/N = R so that the rescaled selection rarige reduces to

93



t=200 t=4000 t=700 t=9000

% 2000 4000 6000 8000 __ ;!
a
08 T T T T
x| ® o T
. \ } : ——— <p >
V 04y c

- .‘l _“‘\‘?1

’ iop t‘;
H AN FAt
¥ ‘\Ji]“} AETA

Fig. 34. ForN = 10000 and R = 4.25, pattern transition between plane waves and spiral waves
(top row), (a) the corresponding time series of speciesitleps, (b) average species densi, ),

{pv), {pe), typical patterns about the transition point (two left panbottom row), and plane wave
traveling along diagonal directions (two right panels,tbot row). Red (gray) , blue (dark gray),
and green (light gray) represent speciesB, andC, respectively. The rapid oscillations in the
density are due to the fact that, in the spiral-wave phasectinved boundaries between different
species generate relatively large interaction areas $arthay more individuals can interact with
others in a random manner. The average species dépsitytaken by down-sampling the original

time series and the average values are taken over 100 tipe ste
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the normalized selection randge shown in Figure 33. The interpretation &f;, is understood as
follows. The average distanckbetween neighboring individuals is the first critical dista above
which the system experiences an abrupt transition froricstatlynamical coexistence, thus we set
d to be the unit of the selection range. The scale fattdris used to normalize the size of the square
cell. The rescaled selection ranffg can ensureg?;, = R = 1 whenr = d. Figure 35 shows the
effect of the cell size associated with different populatié on the coexistence probabilify.,c. .

We can see that.,., does not depend on the size of the square lattice except &l gapulations,
e.g.,N = 1500 and N = 2000, where the stochastic effect becomes more prominent, sapipg
coexistence because of the spatial non-uniformity, leattinower peak values ¢f.,.... In contrast,
for N > 2000, the curves op.... ~ Ry collapse into a single one, regardless of the size of the
square cell, indicating that the siZehas little effect on coexistence.

Although the cell size, with respect to the rescaled selection ratyehas little effect on the
coexistence behavior and the spatial pattern, it is of ésteo explore how the cell sizeinfluences
the pattern switch for fixed physical selection rangeWe have thus carried out simulations by
fixing the density of individuals and choosing some typiales ofr. As shown in Fig. 36(a); is
chosen to be at the peak of the coexistence probalility, for L? = 2. The switch between spiral
and plane waves is found to be quite common under this condiiiig. 36(a)]. However, for the
same value of, whenL? is reduced ta /2, the pattern switches no longer occur and two species
become extinct [Fig. 36(a)]. This phenomenon can be expthly taking the relationship between
L and Ry, into account. For fixed values ofand species densities, according to the definition of
the rescaled selection randg,, we haveR;, ~ 1/L. If L is reducedR,, is enhanced, resulting
in a change ink;, from that associated with the local maximumyf,.. to that in the extinction
region, as shown in Fig. 35. Further insights can be obtaysgkamining the wavelength, which
is determined exclusively by, irrespective of the value of. When L is reduced for fixed-,
the wavelength becomes relatively larger as compareld &amd exceeds the cell size, leading to

extinction. We have also examined the values @fbout the local minimum value d?.,... As
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shown in Fig. 36(c), fol.? = 5/6, there are switches between the two kinds of patterns. Hemwev
whenL? is increased t@, switches can never occur [Fig. 36(d)] becaifisedue to the increase of
L is changed to the left side of the local minimum, which is @léof the pattern switch region.
We have also studied the size effect on the spatial patterrwtier values of. The effect can be
explicitly predicted in terms of the change in the rescalddaion range?;. All these imply that
the cell size has a great influence on the spatial pattern fixed physical selection range. The
spatial patterns are thus determined by the rescaled isel@ahgeR;, with respect to different cell
sizes.
6.2.3. Role of individual mobility

We next investigate the role of individual mobility. A masompic mobility can be defined
by rescaling the mobile rate of individuals using the system populatiov according toM =
s/N [132,133]. We find that mobility can either promote or hampeexistence, depending on
the interaction radiug, in contrast to previous results [132] that large mobilitgitally leads to
extinction. ForR =~ Ry, the coexistence probability.,.. can be enhanced by mobility, as
shown in Fig. 37(a). We see that there exists an optimal vafuaobility M at whichp.,e. is
considerably larger than that without mobility, suggeg@npositive role of mobility on continuous
plane in promoting coexistence. However, in other regidn® @alues,p...,, can be reduced by
increasingM, as shown in Fig. 37(b). These results reveal a more contpticale of mobility in
ecosystems than previously thought: species movementsnoegsential life-sustaining resources
can either facilitate or jeopardize coexistence. Speciagements are somewhat equivalent to the
expansion of interaction range in the sense that indiviloatside the range of a certain individual
can be reached when the individuals are mobile. We can tisealeethe value oR by the mobility
and the resulting curve in Fig. 33 would shift to the left byraadl amount so that the value of
Peoex At Razin 1S @augmented. This phenomenon is illustrated in Fig. 38. #esee that not only
at R ~ Ry, (as evidenced in Fig. 37), but also within a relatively larggion of the selection

range around? =~ R);;, can mobility promote biodiversity. In the meantime, the atdge role of
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—©—N = 1500, L* = 1/2
—£—N = 2000, L% = 2/3
—7—N = 2500, L = 5/6
—=—N = 3000, L>=1

N = 6000, L® =2

Fig. 35. The effect of the size of the square cell on the coexce probabilityp.,., with respect
to the rescaled selection ranffg,. We compute coexistence curves for five different combamesti
of the cell sizel. and the total populatio@. The non-monotonic behavior @f,.. ~ Ry is
independent of the cell size, as indicated by the collapgbethree curves into a single one for
N = 2500, 3000, 6000. The peaks forN = 1500 and2000 are lower, due to a relatively stronger

stochastic effect for smaller values .
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Fig. 36. Spatial patterns at physical selection range 0.0913 for (a) cell sizeL? = 2 and (b)
L? = 1/2, and atr = 0.0365 for (c) cell sizeL? = 5/6 and (d)L? = 2. For all these patterns,
the densityN/L? of individuals is fixed to b&000. In (a), the rescaled selection rangg = 3.82,
which corresponds to th®,,,.. in Fig. 35. Spiral waves and plane waves can switch betwegmn ea
other at thisR,. In (b), species go extinct for smaller cell size than (apduseR; = 6.66, is in
the extinction region. In (c)R; = 2.10, close toR,;,, in Fig. 35; while in (d), by increasing,,

Ry decreases td.71, which is outside of the pattern switch region (the peakjhsbpattern switch

never occurs. The color (grayscale) scheme is the same &g 84F
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Fig. 37. ForN = 3000, coexistence probability...,. as a function of the individual mobility/
for different values of interaction range. (a) ForR = Ry, = 2.5, a proper value of\/ can
considerably enhance the coexistence probabilify... (b) In other region of?, as isM increased,

coexistence is always inhibited.
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Fig. 38. Comparison of the coexistence curvesibr= 0 andM = 3.3 x 10~ (u = s), where
the population size i& = 3000. When mobility is present, in the region between two dastms)

mobility promotes coexistence. Other parameters are tie s& in Fig. 33.

mobility in biodiversity can also be seen in other region&igf. 38 around the peak of.,....
6.3. PDE model and explanation for the coexistence-extirion transition
6.3.1. Derivation of PDE model

We now derive a set of partial differential equations basedh® complex Ginsburg-Landau
equation (CGLE) to explain our numerical findings. The #tgrpoint is to decompose the reaction
AB — AAasAB — A® + Ao — AA, wherep denotes an empty position. The two
reactions occur simultaneously within the range of radius. et a(r,t), b(r,t) andc¢(r, t) denote

the densities at position and timet for the three subpopulations, respectively. We obtain the
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following PDEs:

dra(r,t) = DAa(r,t) +c(r,t)] + [1— p(r,t)] & -

Jg, dr'a(r',t) —a(r,t)g= [ dr'c(r',t),

Ob(r,t) =  DA[b(r,t) +a(r,t)] +[1 — p(r’t)]SLR .

Je, dr'b(r',t) —b(r, t)ﬁ Jg, dr'a(r',t),

dpe(r,t) = DA[e(r,t) +b(r,t)] + [1 — p(r,t)] g -

Jo. dr'c(r',t) — c(r,t)é Jo. dr'b(r', ),

(6.2)

where D is a diffusion constant induced by the finite interactiongeyG,. specifies the circular
interaction domain of radiu® centered atr, p(r,t) is the total species density arft} is the
area of the interaction domaifd,.. We use the average density within the interaction range to
approximate the density at the center. To explain the coctstn of the PDE model, we consider
the density of one species, sayr,t). Firstly, the increment iru(r,¢) with time at positionr,
d:a(r,t), is proportional to the probability of empty space densityp(r, ¢) and the average density
of its own species within its interaction ran@e/ Sr) jGT dr’a(r',t), according to the reaction rule
Ao — AA. Secondly, the decrement of the density of spediegth respect to times-0;a(r, t),

is proportional to the density of itsedf(r, t) and its prior species in the cycle within the interaction
range(1/Sr) fGr dr’c(r', t), according to the reaction ru@A — C©@. However, to incorporate
the long-range interaction parameterized by selectioged) diffusions of both A and C should
be taken into account, which are characterized by two ddfutermsDA[a(r,t) 4+ ¢(r,t)]. The
diffusion term on the right-hand side of the first equatio&m (6.2) thus characterizes the copying
of an individual from prior specie to the neighborhood of adividual from next species; while

other terms in the equation correspond to the competiti@hraproduction. Although mobility
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Fig. 39. Pattern transition from a plane to a spiral wave adipted by the theoretical PDE models.

Red (gray), green (light gray), and blue (dark gray) represpeciesA, B, andC, respectively.

in the stochastic model is not explicit, a finite interactramge plays the same role in individual
mobility as the diffusion term in the PDE model.

We solve Eq. (6.2) numerically by discretizing the unit spato aK x K square lattice so
that solving three partial differential equations is egigwt to solving3 K2 ordinary differential
equations. In particular, let(ry,r2,t), b(r1,72,t), ande(rq,r2,t) denote the species densities
at site(ry,72), (r1,72,= 1,..., K) and at timet for A, B, C, respectively, where;, r» are the
coordinates of the two spatial dimensions. The terms coimgithe diffusion operatoA can be

approximated by using the finite-difference method:

Aa(ri,ra) =~ [a(r; —1,73) +a(r +1,72) +a(ry,re — 1)

+ a(ry,re+1)— 4a(r1,7"2)]/(57")2,

subject to periodic boundary conditions. Hére= L/K denotes the grid size. The integration

term

SLR / ] dr'a(r’,t)

is thus replaced by the sum

1
N_ Z a’(mv n, t)v
mn,a(m,n,t)€G(r1,r2)
whereG(r1, o) represents the circular interaction range with radiusentered at sitér;, r2), and

Npg is number of sites insidé'(r1,r2). The whole system is then transformed to a set of coupled
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Fig. 40. ForN = 10000, dependence of spatial correlatiéhy 4 (a) and correlation length.,,,

(b) on the interaction rang®& from both stochastic simulation?( = 2.5) and the PDE model
(D = 0.00045R?), whereC 4 4 as a function ofR is obtained from Egs. (6.3) and (6.4). Here, we
select a spatial positionand calculate” 4 4 as a function ofr — /| according to Eqg. (6.3). We
then count allC'4 4's with the samér — 7’| and calculate an average of them, which yi€ld, as

a function of the normalized distanég

ordinary differential equations and can be solved usingséaydard numerical integration method.
To incorporate stochasticity intrinsic to the evolutiondynamics in the game framework, we add
a small noise term in the PDEs, which results in switchingsnfplane to spiral waves [Fig. 39].
However, the imposed stochastic terms is incapable of miadihe non-monotonic dependence
of the coexistence probability on the interaction radiusase the intrinsic stochasticity, which is
essential to the evolution of the ecosystem, cannot be ibescexactly by an extra term that is
independent of the system dynamics.
6.3.2. Wavelength and spatial correlation

Assessing the wavelength of the spiral waves is key to utateting the transition from coex-
istence to extinction as the interaction radiRiss increased. The wavelength can be determined by

103



the method in Ref. [133]. Specifically, the spatial coriielafunction of one of the species, say A,

between locations andr’ can be defined as

Caa(lr =r'|) = (a(r,t)a(r’,1)) = (a(r,t)){a(r’, 1)), (6.3)

where(...) denotes the time average after the system has reached g stetd The final spatial

correlationC'4 4 is given by the average of all correlation values that hagesttme spatial length,

1
Nr,r’

Caa(l) = > Caallr—7)). (6.4)

[r—r’|=l
To compare results from different simulation settings, wtiply the lengthl by v/N to yield R.
The wavelength is proportional to the critical spatial etation: C 44 (Lcorr) = Caa(0)/e [133].
The results of wavelength calculation from the stochastrmkation and the PDE model are dis-
played in Fig. 40. For the spatial correlation function [FI§(a)], the results from both approaches
agree well with each other for large valuesifvalidating our PDE model. Furthermore, we ob-
serve from Fig. 40(b) thak.,,- is approximately a linearly increasing function®f suggesting the
relationD ~ R2.

The coexistence-extinction transition in Fig. 33 can thembderstood based on the spatial pat-
terns associated with the correlation between the waviieargl the interaction radius, as follows.
For R = R, We have numerically found that species coexist through an-spiral waves
whose wavelength approaches the size of the entire squgiomreThe anti-spiral waves are rela-
tively stable, leading to the local maximumpp,.... As R is increased fronk,,,.., due to the linear
correlation, the wavelength will exceed the size of the sgaad extinction becomes more likely,
as reflected by the sharp decreasedn.. For R < R, the wavelength is decreased together
with an increase in the number of spirals. In this case,siolis of spirals begin to occur, leading
to transitions between the spiral and plane waves, whichregg coexistence. This effect leads to
a local minimum inp..e,. at Ryrn on the left hand side oRRj.... However, for smaller values
of R, the spatial region is shared by a number of spiral waves aflsmavelength. The collision

among some of them will be accompanied by the generationroéswew small spirals, which will
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not affect the dynamical equilibrium of the system. As a liesiie coexistence probability is large.
This phenomenon is consistent with previous results frosordie-lattice models in the literature
that small interaction scales ensure species coexisténdact, when the wavelength of spirals is
small compared to the size of the spatial region, plane wareanlikely to arise [148].
6.4. Alternative model: separating reproduction from competition

We consider a more general scenario by separating congpeditid reproduction in the model in
Section 6.2. We aim to examine whether the non-monotonialiehin the coexistent probability
and the switchings of spatial patterns hold for this mordiséa interaction. In this new model,

three subpopulations interact with each other on a squdlrefdimear sizeL as follows:

AB — A, A® —> AA,
BC — Bo, Bo — BB, (6.5)

CA— Co, Co— CC,

whereo stands for empty site. As before, the competition and regwhoin occur only in a circular
region of radiug". At each simulation step, a randomly selected individualls one individualy
from next species. At the same tinideaves its offspring at a random location within the intéicac
range. Initially, the cell is randomly occupied by threedpe whose densities are approximately
identical. The main difference between this model and thdeh(6.1) lies in the locations of the
offsprings. Specifically, in model (6.1), the offspring of edividual replaces another individual
from the next species in the cycle; whereas in the model (818)place of birth is random.
Stochastic simulations are carried out for different valagthe interaction radiug, as shown
in Fig. 41. The coexistence probability,.,. exhibits a non-monotonic behavior with respectio
with a peak at abouR = 4, analogous to the result from model (6.1). This implies thatnon-
monotonic dependence of species coexistence on intemaeti@e is an intrinsic feature of cyclic
competition dynamics on continuous space, regardlesseoplice of the birth of descendants.

Spatial patterns and time series of the species densitedisplayed in Fig. 42(a). We observe
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Fig. 41. Coexistence probabiliy.,.,. as a function of normalized interaction radiksin model

(6.6) in the absence of individual mobility. Other parametze the same as in Fig. 33.

switchings between spiral and plane waves, where the timessaf the former exhibit fluctuations
with higher frequency than the latter.

Since the birth locations of offsprings are random, we stilgdyspatial distribution of species
associated with two types of wave patterns. Since the resswrithin the square cell are limited
and fixed, the spatial distribution of species indicatesueses utilization. For example, if individ-
uals are uniformly distributed on the space, resourcesudie dsed and the competitions among
species are relatively mild. In contrast, if species disp@nhomogeneously on the space, some
areas with high species densities are faced with severeatitiop due to the shortage of resources.
To characterize the resource utilization, we investiglagedverlap in the interaction ranges among

individuals, which can be simply measured by the distancergnindividuals. To be concrete, we
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Fig. 42. For model (6.6) witlV = 3000 and L = 1, (a) spatial patterns and the corresponding
time series of species densjty and (b) time series of the overlapping distaizgin the interaction

range. The color (grayscale) scheme for spiral and planesvathe same as in Fig.34.
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define the overlapping distance between individualsd;j as

2r — dij, if dij < 2r
Di; = (6.6)
0, otherwise,

whered;; is the distance betweérandj. Then the total overlapping distance is

D,= Y D (6.7)

The lower the value ob,,, the more the resources are utilized. The time serid3 oforrespond-
iNg to peoe, fOr spiral waves and plane waves are shown in Fig 42(b). Wetfiatlplane waves
tend to benefit more from the utilization of resources thataspvaves. This is due to the fact
that the boundaries among species associated with planesveaie shorter than those with spiral
waves. Since competition and reproduction occur near thederies among different species, the
spiral waves with longer boundaries can induce more spati@rogeneity caused by reproduction
at random locations.
6.5. Conclusion

In conclusion, we have generalized cyclic-competitionaiyits to continuous space and ad-
dressed a key issue: the interplay between interactiorerand species mobility and its role in
coexistence. Model predictions in both the small and largid of the interaction range are consis-
tent with those from th&.coliexperiments. In the intermediate interaction range, awudyspredicts
a non-monotonic behavior in the coexistence probabilifyiclv is independent of the size of the
square cell, the populations size and the relationship dsstveompetition and reproduction. Near
the local minimum of the probability, a transition betwegiral and plane wave patterns arises,
where coexistence can be greatly enhanced through a prbpé&recof the mobility. When the
reproduction process is separated from the competitia pthne waves of species organization
benefits more from the utilization of resources than theaspiaves. We have derived a general
PDE model with results that agree with those from directlsistic simulations of the competition
dynamics. Our work provides a more comprehensive and pliysiclerstanding of the dynamics

of cyclically competing populations with respect to thedamental issue of coexistence.
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7 . BASINS OF COEXISTENCE AND EXTINCTION IN SPATIALLY EXTEND ED
ECOSYSTEMS OF CYCLICALLY COMPETING SPECIES
7.1. The rock-paper-scissors game

Species diversity is ubiquitous in nature. Uncovering thetdrs that support biodiversity
is a fundamental problem in interdisciplinary science. disial to biodiversity is species coex-
istence, a problem that has been investigated experinhentamputationally and theoretically
[114,117,149-155]. In this regard, empirical observatitnom experimental studies suggested
non-hierarchical, cyclic competitions among species amanrtant mechanism for species coexis-
tence, the essential features of which can be captured bghttthhood game “rock-paper-scissors”
(RPS) [115]. In a RPS game, three strategies form a cyclic éoa@ any strategy can defeat the one
next to it in the loop. Indeed, cyclic competitions of the RiR8ure have been found in different
contexts in ecosystems and in laboratory experiments ds Wgdical examples include colicino-
genic microbes’ competition [120], mating strategies dfesblotched lizards in California [139],
and competition among mutant strains of yeast [138] and ceehinvertebrates [137]. In computa-
tional and theoretical exploration of species coexistetieRPS game has been a paradigm [156],
where it was found that the incorporation of spatial strueis absolutely necessary to model the
competition dynamics in real ecosystems [118, 156]. Thiduis to the fact that, for well-mixed
populations under global interactions, macroscopic patpr models based on ordinary differen-
tial equations (ODES) predicted that species coexistenhoastable in the RPS game [114]. That
is, stochastic effects and small external perturbationtgpitally destroy species coexistence, in
contrast to empirical observations. Computational stitlieeve shown that, when spatial structure
is introduced into the RPS game, species coexistence camieestable and robust, which is con-
sistent with experimental observations [118, 119, 157}.ex@ample, in both simulations and E. coli
experiments [118], it was found that local interactions digppersal enable coexistence of all three
species in the RPS game while coexistence is lost when tHegical processes take place over

large scale so that the spatial structure is effectivelyayed out. Notice that, two features appear
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in the RPS game model when spatial structures are takendotwat: (1) the underlying dynamics
becomes spatiotemporal as the RPS competitions how oc&yaice, (2) the model becomes-
croscopicas competitions must now be treated at the level of specigdinals, in contrast to the
macroscopic population models described by ODEs.

Spatially extended RPS game models thus provide a poweniatoscopic paradigm to ad-
dress various fundamental issues associated with spemigsstence in realistic ecosystems. For
example, when competitions are deemed to occur on spacisstie of species mobility becomes
important [158, 159]. Indeed, mobile behaviors rangingrfitmacteria run to animal migration play
an important role in species coexistence. In the work of Rmibach et al. [158, 159], a critical
mobility value has been identified, below which specieslgtabexist in the form of moving spiral
waves on spatially extended scales, whereas above treatniobility, the wavelength of the spiral
waves exceeds the size of the underlying spatial struatesalting in extinction of two species with
only one surviving species [158, 159]. The formation of nmav$piral waves induced by stochastic
interactions at a microscopic level is a surprising findsigce these waves arise mostly in models
based on partial differential equations (PDEs). This figdias stimulated a series of subsequent
works. For example, in Refs. [132, 134], instability of thgasgal patterns and the effect of noise
were investigated. In Ref. [160], it was found that breakiing conservation law was crucial for
the formation of spiral waves. In Ref. [161], a zero-one lviravas revealed in that the weakest
species has the highest survival probability. The effeaenb-sum and non-zero sum in the payoff
matrix in the RPS game was investigated in Refs. [162] an@][1&spectively. It was reported
in Ref. [164] that intraspecific epidemic spreading can prtanspecies coexistence, whereas inter-
species epidemic spreading tends to suppress speciesteoed. In Ref. [165], it was reported
that intraspecific competition can effectively promotedersity. The RPS game has also been
extended to more than three species in Ref. [166] and toadatiall-world networks in the pres-
ence of shortcuts [140, 141]. In a fairly recent work [16#trepy production has been used to

characterize non-equilibrium behavior in the RPS game.
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In a recent Rapid Communication [136], we proposed to exploe concept of attraction basin
in spatially extended PRS game dynamics. This was motilatélde consideration that basin struc-
ture provides a more comprehensive characterization ofidimeequilibrium dynamics in the RPS
game. In contrast to most previous works where computatiodsanalysis were carried out with
respect to a single initial configuration with identical sjgs densities, basin structure obtained from
all possible initial densities of species can yield a “gldipécture of the coexistence dynamics. In
Ref. [163], the authors studied the fixation probabilitytie leterministic RPS game, which depends
on the initial densities of three species, with respect th kero-sum and non-zero sum assumptions
in finite populations. A graphical representation analagtmuthe method in [136] is exploited to
characterize the fixation probability. This issue, howgigesomewhat different from species coex-
istence in mobile populations. In nonlinear dynamics, thsifs of attraction and the boundaries
among different basins are a fundamental problem [168]umamrk, the basin structures were in-
vestigated for RPS game dynamics of mobile individuals. gimpose of this chapter is to provide
a more extensive treatment of the problem of basins in djyatistended RPS game models. In
particular, we propose a different method to explore basyn®sorting to the convergence time for
different initial configurations. This time can not only tiiguish the boundaries among extinction
and coexistence basins, but also reveal the intrinsicrdifiee within each extinction basin. Such a
difference cannot be detected using the final-state claiaation method [136]. Going beyond the
model in Ref. [136] that treated only mobile populationshadyclic competition on lattice, here we
consider two additional types of model extension: (i) mepibpulations with intraspecific competi-
tions, and (ii) populations dispersing on a continuous gaplgical space with adjustable interaction
ranges. Results of basins are obtained from both microscefmichastic simulations and models
based on PDEs, and a good agreement between the two typesulié ie demonstrated with re-
spect to the structures of coexistence and extinction bagie note that the area of the coexistence
basin in the phase space provides a meaningful measuredivdisity, which is unable to be quan-

tified when identical initial densities are used as in moswjmus works. In all cases considered
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in this chapter, the extinction basins show a universatimial structure toward the central point
in the phase space. The investigation of basins leadsiantitativeinsights into the evolutionary
dynamics in spatial RPS game under various conditions.

In Sec. 7.2, we describe the spatial RPS model with mobilithaals and two methods for
computing attraction basins. In Sec. 7.3 and 7.4, we applp#sin characterizations to RPS games
with intraspecific competitions on lattice and games oniooiius geographical space, respectively.
Conclusions are presented in Sec. 7.5.

7.2. Basins of coexistence and extinction
7.2.1. Model of RPS games in spatially extended ecosystems

The cyclic-competition model with mobile individuals wasgginally proposed in Ref. [150,
158], where each site of a square lattice with periodic bamdondition can be occupied by an
individual from one of the three species or left empty so thasystem has a finite carrying capacity.
Interactions and dispersing behaviors among neighboitieg are described by the following set of

rules:

AB % Az, BC L Bw, C(CA-SCo, (7.1)
Ao 5 A4, Bo Y BB, Co - cc, (7.2)
A0 -S04, BO-50B, CO-5%0C, (7.3)

where A, B andC denote the three cyclically competing specigsepresents empty sites and
denotes any species or empty sites. Relation (1) denotaythie competitions, i.e., one species
preys on a less-predominant species in the cycle (d.gan kill B, B out-compete€’, C'in turn
out-competes A, leaving behind empty sites). Relationsg@)esents reproduction of an individual
at a neighboring empty site with rate Relation (3) defines migration by position exchange betwee
two neighboring individuals or between one individual ame of its neighboring empty sites. Mi-
gration occurs at rate To be concrete, at each time step, a randomly chosen individteracts
with or moves to one of its nearest neighbors at random. Fop#ir of neighboring sites, cyclic

competition, reproduction and migration occur at the philiges o /(1 + o + €), p/(1n + o + €)
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ande/(u + o + €), respectively, so that the rates of competition, repradacind migration are
normalized. Whether the interaction can successfully nisadetermined by the states of both sites.
For example, if reproduction is chosen but there are no esity, the reaction fails. According to
the theory of random walk [169], individual mobility/ is defined as\/ = ¢(2N)~1, to which the
number of sites explored by one mobile individual per umitgiis proportional. An actual time step
is defined when each individual has interacted with othecge @m average. In other words, in one
actual time, N pairwise interactions will have occurred.

In Ref. [136], we introduced the concept of attraction basithe RPS game. Let, be the
fraction of empty site. For example, we canfixto be10% of the N lattice sites. Since the initial
densities of three species satisfy+ n;, + n. = 1 — nyg, all possible combinations of,, n;, andn,.
define a triangular region. The phase space at fimre 0 can thus be represented by the simpiex
defined by this triangle. There are four possible final stat@gsesponding to three extinction states,
each converging to one of the three single species, and ésterse state. In the phase spate
the coordinates of a point denote a combination of the indgasities of the three species, and we
can use four different colors to represent the final statbge. basins can thus be defined by regions
in S2, within which initial densities converge to the same finakst Alternatively, the basins can
be characterized by the convergence timéor each point inS;. Note that different initial states in
the same basin cannot be distinguished by the final statéhdiutconvergence timesg can be quite
different. For computational convenience, we use the diyahtt. to distinguish different points in
Sa.

In Ref. [158], a critical mobilityM, = (4.5 4+ 0.5) x 10~* was derived for identical initial
densities of three subpopulations. Har < M., species can stably coexist while faf > M.,
only one species can survival finally and coexistence is /& investigate basins of coexistence
and extinction in the two regions separated\fy by varying M. Numerical simulations are imple-
mented for a large tim&' that scales with the system si2e To make an unbiased comparison with

previous works, we assume equal reaction probabilitiessfjaroduction and competition rates, i.e.,
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1 = o = 1. The mobility M is thus the only control parameter of the system. In our satmhs,
square lattices witd00 x 100 sites are used and the simulation time is chosen & be 5000 to
ensure that the final state can be reached from any initiak goiS;.
7.2.2. Basin structure from microscopic simulations

Figures 43(a-e) show the basin structuresinfor different values ofM for both regions of
M < M.and M > M,.. The basins for all values af/ exhibit rotational symmetry around
the center point ofS,. For M < M., e.g., @M = 5x 107°, (b) M = 1 x 10~%, and (c)
M = 3 x 10~%, there exists a coexistence basin at the central are® @ind three extinction
basins are rotationally entangled around the coexisteas@bAsM is increased, the coexistence
basin shrinks toward the center point together with the esjoa of the three extinction basins.
This indicates that population mobility tends to inhibitegéstence forM < M., as the area of
coexistence basin decreases by increagifig In previous works that focus on identical initial
densities of species (corresponding to the a single poiskjnts center), the effect of mobility
on coexistence cannot be revealed in this parameter redienevspecies can always coexist. The
basins thus provide a global picture of the coexistencelpnobAt the boundaries among different
basins, the final state depends sensitively on the initetesand small initial perturbations can
drive the system to an entire different final state. As sood/asxceeds the critical valug/,,
the coexistence basin vanishes, as exemplified by Fig. 48(d)/ = 1 x 10~3. We see that, in
this case, the phase spaggis shared exclusively by three extinction basins. The cqraent is
where all three basins meet. At this point, the final convecgestate is hard to be predicted due
to the presence of stochastic effect and the sensitivitynaf Btate to small variations in the initial
densities. Further increase bf, e.g., (€)M = 5 x 10~3 leads to the same structure of extinction
basins as shown in Fig. 43(d) fdf = 1 x 10~3. We can expect the same basin structures for
very large values o, which correspond to the well-mixed and globally intenagtcase without
the restriction of lattice links. Our finding is thus consist with the known result that global

interactions can exclude coexistence in the RPS game.
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Fig. 43. Basin structures of mobile individuals with cyaimmpetition on lattice for different values
of mobility by using the characterizations of final state andvergence time. Panels (a-e) are the
basins obtained by using the final state fidr = 5 x 1072, 1 x 1074, 3 x 1074, 1 x 10~2 and

5 x 1073, respectively. Panels (f-j) are the basins obtained bygusie convergence time. The
mobility values in (f-j) are the same as those in (a-e), respaly. Panels (a’-j’) are the basins
obtained by the PDEs under the same set of mobility values @sj). The final state is represented
by one of the four colors at each point from stochastic sitiada using 30 random realizations
of the cyclic competition dynamics, under the same init@idition, on a giver100 x 100 square
lattice. Blue, yellow and red denote the three single-ssestates composed of speciesB and

C, respectively. Green denotes coexistence of species ist¢laey state. For each realization, the
simulation consists df000 x N time steps. We have checked thao0 x N time steps are sufficient

long for the system reaching a steady state.
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Basin structures obtained by using the inverge. of convergence time in the phase sp&ge
is shown in Figs. 43(f-j), corresponding to panels (a-e3peetively. We see thdt/¢. offers a
detailed characterization of the different states withaoteextinction basin, where/t. decreases
along the rotational structure of the basin toward the e¢atea. An interesting behavior is that the
boundaries of basins can be identified solely baseqd anthe sense that there is sharp transition in
1/t. from one extinction basin to another when crossing the bagnd-or the coexistence basin,
since species can always coexistin the basin tends teo and1/t. equals zero, so all points appear
identical in the coexistence basin. The boundary betweerdlexistence and extinction basins is
thus unequivocal sinck in the extinction basins is always finite.
7.2.3. Basin structure from PDE model

The PDEs can be derived by a continuous approximation fahtiee reactions among geograph-
ically neighboring individuals. Let,(r,t), ny(r,¢) andn.(r,t) be the densities of populations
B and(C at timet and siter = (r1,72) in the two-dimensional space, respectively. Neighbors are
located at + dr - e;, where{e;} (i = 1, 2) are the base vectors of the two-dimensional lattice. We

have, for the average value of an arbitrary populatignt), the following evolutionary equation:

2

Oyna(r, £) = % S {2€na(r £ 67 - e1,1) — na(r, 1)
+,i=1
+  png(r £ 07 - e, t)[1 — ng(r,t) — np(r,t) — ne(r, t)]
— one(r £ 6r- e, t)ng(r,t)},

(7.4)

wherez is the number of nearest neighbors of each lattice site. ®right-hand side of the equation,
the first term denotes the exchange process, where the megyhbving into a site and the individual
at this site moving out to its neighbors will induce an inseand a decreaseiin (r), respectively.
The second term describes the increase,ifr) due to reproduction, and the third term characterizes
the decrease in,(r) due to competition. We set the length of the lattice to unitgl,ehence, the

distance between two nearest neighborg-is= 1/4/N. For N — oo and the lattice size fixed to
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1,0r — 0. Thusr can be treated as a continuous variable. Using Taylor exgats the second

order, we have
ng(r £ 0r - e;,t)
= ng(r,t) £ 6rding(r,t) + %51"231-271@(1‘, t) + O(6r%).

The first term on the right-hand side of the Eq. (7.4) becomes

€

NN

2
Z [na(r £ 67 -e;,t) — ng(r,t)] = §6r28i2na(r, t).
+,i=1

By rescaling the exchange ratevith system sizeéV and a fixed (diffusion) constadt/ according
to

e=2MN, (7.5)
we have

%572 = M, (7.6)

wheredr = 1/v/N. For other terms in the Eq. (7.4), only the zeroth-order dbations ton, (r, t)
in the expansion ofi,(r & dr - e;, t) are important in the large system-size or the— 0 limit.

These considerations lead to the following set of PDEs:

Ong = MV?ng+ ung(1 — p) — oneng,
Oy = MV?np + pny(1 — p) — ongne, (7.7)
One. = MV?n.+ pn.(1 — p) — onpne,

wherep = n,(r,t) +ny(r, t) + n.(r, t) is the local species density aihd- p denotes the density of
empty sites. Basin structures in the PDE model can be olatédiypaumerically solving the equations
for random initial species densities. Specifically, for anitaary density, at = 0, only one quantity

of ng(re,my), no(ry, ) andn.(ry, ) is equal to one and the other two are zero, the probability
of which is determined by the initial densitiesf, n;, andn,. altogether. For the PDEs, extinction
is defined when the density of any species is less @ The species preyed by the extinction
species is the exclusive survivor. The definition takes amttount the physical meaning of survival

in that the number of survival species cannot be less than one
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The results of basins from the PDE model are shown in Figaa'43(which correspond to the
stochastic simulation results in (a-j), respectively. We that the results from the PDE model are
in good agreement with simulations in terms of both the basinctures and the areas of coexis-
tence and extinction basins for different values of indidtimobility. The stochastic fluctuations
in the basins obtained from the PDE model is a result of th@lmandomness of species densities
[na(re,my), np(rs, ry) andn.(ry, r,)] used in the numerical solution of the PDEs.

Our exploration of basin structures in terms of the final @gence state, the inverse of the
survival time, and the PDE model thus provides a more complieture concerning the emergence
and loss of biodiversity in the spatial RPS game in the prsehindividual mobility.

7.3. Basins of spatial RPS dynamics with intraspecific compigon

In nature, intraspecific competitions are quite common H173]. Individuals within the same
species do compete for essential life-sustaining resesigeh as food, water, light, and opposite sex,
etc.. Intraspecific competitions can have a significant chpa species diversity in both predator-
prey-like interaction and cyclic-competition systemstraspecific competition is also quite com-
mon in various food chains. Here we explore the basin stradtuthe presence of intraspecific

competitions, which can be incorporated in the game modgém 7.2 as follows:

AA 2 Az, BB -2 Be, cC - Co, (7.8)

whered represents empty sites. Due to the competition of two ne&ight individuals in the same
species, one individual will die at random and leave itsesitgty at rate. Intraspecific competition
occurs with probabilities/ (p+u+o+¢) and the rates of inter-species competition, reproductioin a
motion are normalized by + 1 + o + € as well. We set the summation of intraspecific competition,
interspecific competition, and reproduction rates t@bee.,p + o + 1 = 2 so that the dependence
on the mobility probability is the same as compared to models in Sec. 7.2.

Using the continuous approximation, we can derive a PDE tiozha the four types of reactions

for spatiotemporal dynamics of RPS game under intraspedfigetition [165]. The model is given

118



15 . .

0.5

Fig. 44. Dependence of extinction probability on the inpexdfic competition rate and mobility
M, where regions | and Il denote coexistence and extinctidrawers, respectively. Simulation
results are obtained by averaging over 50 random initialigarations on a lattice of siz€0 x 100.
The boundary between regions | and Il are obtained by the PBiehiEq. (7.9). We select four sets

of parameter combinations to explore the basin structures.
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Fig. 45. Basins of mobile individuals with inter-specieglantraspecific competitions on lattices
for (a,b)M =1 x 102 andp = 0.1, (c,d)M =1 x 1073 andp = 0.2, (e, M =5 x 10~° and

p = 0.1, and (g,h)M = 1 x 1073 andp = 0.8. Panels (a), (c), (e), and (g) are obtained by the
final-state criterion, and panels (b), (d), (f) and (h) adewated according to the convergence time.

Other simulation parameters are the same as for Fig. 44.
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by

Oneg = MV?ng + png(1 — p) — oneng — (p/2)nana,
Oy = MYy + pny(1 — p) — onany — (p/2)npns, (7.9)
One = MV?n.+ unc(1 — p) — onpne — (p/2)nene.

Numerical solution of the PDEs yields two dynamical regionthe parameter space, as shown in
Fig. 44, where region | corresponds to coexistence and md@jiim extinction. In each region, we
select two groups of parameter combinatiohs, (p) to explore the basin structures. The chosen
points are marked in Fig. 44. Results from direct stochastiwlations are shown in Fig. 45. For
the two points in the extinction region [(a) and (c)], we alvedhree entangled extinction basins that
meet at the center of the phase spégewhich is similar to the basins in the absence of intraspecifi
competition in Sec. 7.2. In this region, intraspecific cofitjpm is not sufficient to induce the
coexistence basin. In contrast, in the coexistence red@nahd (b)], a large area of coexistence
basin dominates the central aregsef In particular, for strong intraspecific competition (larealue
of p), the phase spac® is almost exclusively a coexistence basin and the extindtasins almost
vanish [Fig. 45(g)]. Such a domination of the coexistencsirb& general for large values pf
indicating that coexistence is strongly promoted by irgessfic competitions. The inverse of the
convergence time/t. identifies the boundaries among different extinction b&sind between the
extinction and coexistence basin. Within each extinctiasity, 1/¢. decreases along the rotational
direction of the basins toward the central area, which iglairo the situation without intraspecific
competition. Another feature is that the rising of coexistebasin whep exceeds the critical value
0.7 is quite sharp. Thatis, fgr < 0.7 in the extinction region, coexistence basin does not exist.
Forp > 0.7, a vast area of coexistence basin arises and dominatesale$shassociated with the
loss of the extinction basins. In this regard, the phasesitian from extinction to coexistence at the
critical valuep = 0.7 is of the first order.
7.4. Basins of RPS dynamics on continuous space

Most existing models based on stochastic interactiongwaessliscrete lattices as the underlying

spatial structure, on which cyclic competition, reprodouectand movement occur among neighbor-
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Fig. 46. Schematic illustration of continuous-space modehree subpopulations, A, B and C
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represented by red, yellow and blue, respectively, dorairath other in a cyclic manner. (a) An
individual belonging to A randomly selects an individual Bthin its selection range R, where B
is next to A in the cyclic competing loop. (b) The A individudlls the B individual and at the

same time replicates itself. If within the interaction rangn individual cannot find any inferior

individual, nothing happens.
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Fig. 47. Basins of cyclically competing subpopulations ontiuous geographical space for (a,b)
the interaction radiu® = 0.045, (c,d) R = 0.07 and (e,f)R = 0.1. Panels (a), (c) and (e) are

obtained according to the final-state criterion while pargb), (d) and (f) are calculated according
to the convergence-time criterion. The number of individisfixed at 3000 and size of the square
cellis1 x 1. Each point in the phase space is obtained by 100 differatizations. The initial

positions of individuals in the geographical space are oand

123



ing sites. In such a case, the underlying geographical dpatiscrete. In realistic ecosystems, the
intrinsic geographical space can be continuous. In this@gonve study RPS dynamics with indi-
viduals dispersing on a continuous space, which allowsffeetof nonlocal interactions on species
coexistence to be studied in terms of basin structures. tmmamdel, we assume that individuals
of the three species are randomly dispersed on a squarefdiglear size. = 1 under periodic
boundary conditions. A competition occurs only if the gexgaiical distance between two cyclic
individuals is less than the interaction radidsas schematically illustrated in Fig. 46. At each sim-
ulation step, an individual is randomly selected. For exanip Fig. 46(a), an individual belonging
to speciesd is chosen. After this, within the interaction range, théndividual randomly kills an
individual belonging taB which is next toA in the cyclic competition loop. At the same time, the
A individual reproduces itself at the position of tieindividual. If the A individual cannot find
any B individual within the range, no interaction occurs. Theeraf killing is . Note that the
absolute value of the rate only affects the evolution speed of the system but does filteince
the convergence toward the final state. The radiusf interaction range is thus the sole physical
parameter in the model.

We calculate the basins in the simplgxby using different initial densities of three species. Be-
cause of the absence of empty sites in the continuous spaamrtge o5; is unity. Basin structures
for different values of? obtained from stochastic simulations are shown in Fig. Apadrticular, we
observe that the area of the coexistence basin@amonotonifunction of R. WhenR is increased
to 0.045, coexistence is lost, as shown in Fig. 47(a), an@ flsean entangled and disordered region
in the central area where small deviations in the initialgies could lead to completely different
final extinction states. This behavior is distinct from thas the lattice models treated in Secs. 7.2
and 7.3. Except the central region, three extinction basihibit a rotational symmetry around the
central point, similar to the behavior in the lattice modeéds R reaches 0.07 [Fig. 47(c)], a small
coexistence basin re-emerges at the center and the degmtatidn of the three extinction basins

is reduced as compared to that in Fig. 47(a). This behavioomdrary to the existing result from
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lattice models in the literature that local interactionsmpte coexistence while it is lost at larger
interaction scale. For larger interaction range, €= 0.1 [Fig. 47(e)], coexistence basin vanishes
again and the rotational degree of extinction basins isaeddurther. We have examined that #or
larger than 0.1, the phase spatds shared exclusively by three extinction basins. The pispsge
structures obtained by the convergence-timia Figs. 47(b,d,f) are consistent with those from the
final-state criterion. In particular, the characteristiéshe behavior of. in each extinction basin
are qualitatively similar for discrete-lattice and contus-space models. While the basin structures
exhibit some small difference for small [Figs. 47(a)] andy&a[Figs. 47(e)] values aR, extinction
is the exclusive outcome in these cases.
7.5. Conclusion

In conclusion, we have studied basins of species coexist@mad extinction in three spatial RPS
game models: (1) mobile species on lattice, (2) mobile gzeen lattice with intraspecific compe-
tition, and (3) mobile species on continuous space. Tweraitare used to characterize the basin
structures in the phase spagg the final state and the convergence time. We have found dhat f
all three models, three extinction basins spirally entarmgbund the center point ish,. About the
center, a coexistence basin can emerge, depending on dragiars of the underlying spatiotempo-
ral dynamical system. The boundaries among basins can tiegdisshed by the final convergence
state and the fine structure within each single basin candmdver by the convergence time, which
exhibits a general behavior in that it increases along tiralspf the basin toward the central area,
signifying a dependence of the degree of extinction (withensame basin) on initial configurations.
There is a sharp transition in the convergence time at thademy between two extinction basins,
so the boundary can also be identified by this time. In the istemxce basin, the convergence time
tends to infinity, separating the coexistence from extorchasins in a straightforward manner.

For each model, a set of PDEs can be derived to capture thefbasires of the spatiotemporal
evolutionary dynamics and we find that the PDEs can geneeeti@ Istructures that are consistent

with those from microscopic stochastic simulations. Wliile computational efforts establish a
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plausible picture for the basin structures associated thighevolutionary dynamics of cyclically
competing species on spatially extended scales and thprebigle deeper insights into the species
coexistence problem, the dynamical origin of the emergehtiee basin structure revealed in this

chapter is not understood at the present. Further effottssrdirection are required.
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8 . PATTERN FORMATION, SYNCHRONIZATION AND OUTBREAK OF BIOD IVER-
SITY IN CYCLICALLY COMPETING GAMES
8.1. Background

Biodiversity is ubiquitous in nature and fundamental toletion in ecosystems [114,174,175].
Evolutionary game theory [117,176-179] has been used asdigen to address the coexistence of
competing species, which is the key to sustaining biodixeiSyclic, non-hierarchical competitions
have been observed in a plethora of real ecosystems, rafrgimgmicrobes to mating strategies
of side-blotched lizards in California [120, 180-182]. Toderstand the role of the competitions
in biodiversity, microscopicgame models based on stochastic interactions on spatietynaed
scales using, e.g., the classical rock-paper-scissoregamave been exploited to understand the
dynamics of species coexistence [120]. More recently, tfeaf mobility in coexistence has also
been investigated [130, 183-185] with the finding that grtmtal mobility can cause non-local
interactions, which under certain circumstances tend tog®s coexistence through the formation
of moving spiral waves of population densities in the phyképace [184].

In this chapter, motivated by the ubiquity of long-distanseasonal migrations in nature, we
address their effect on species coexistence. We find argiritienomenon: long-range migration
in combination with local dispersal can promote and stabifipecies coexistence. In particular, we
consider species movements on two distinct spatial scalgs-patch and inter-patch migrations.
The resulting microscopic model based on stochastic ictierss, as will be explained, is quite
different from the classical, coupled patchy models desttiby deterministic differential equa-
tions [155, 186]. We will show that migrations at the distispatial scales can result in species
coexistence inargetwave patterns [187]. Associated with coexistence, synthation and time-
lagged synchronization emerge among spatial patterndgfaraht patches, stabilizing coexistence.
The time-lagged synchronization can potentially be usegrédlict the spatiotemporal evolution
of species. In addition, we find that rare mutations, in ceration with long-range migrations,

can induce a spontaneous outbreak of biodiversity. Oudtsesat only provide insights into the
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dynamics of global oscillations induced by long-distamtteriactions among cyclically competing
species [188], but also have implications to the emergendenaaintenance of order from ran-
domness and disorder in natural and social systems thralfgborganization in the absence of any
central control.
8.2. Model description

We consider multiple-patch systems of three subpopulafi@ierred to as, b andc) under both
intra- and inter-patch migration. Within each patehb andc interact with each other according to
the following rules: (1hb —= a@, be — bD, ca — c@; (2) a@ % aa, b = bb, c& - cc;
and (3)a® — Ga, b® — Ob, c® — Gc¢, whered represents empty sites aadrepresents any
species or empty sites. Relations (1-3) define competiteproduction and intra-patch migration
that occur at the rates, o ande, respectively. The occurrence probabilities are norradliay
(u+ o + ). Since our focus is on the role of mobility, we set= o = 1 without loss of generality.
The individual mobility is defined a8/ = £(2/N)~!, which is proportional to the number of sites
explored by one individual per time step [184]. Initiallpdividuals are randomly located over all
patches, each of which is represented by a latticé of L sites with open boundary conditions.
At each simulation step, a random pair of neighboring sieselected for one interaction from (1-
3) according to their probability. Whether the chosen ation can actually occur is determined
by the states of both sites. An actual time stép defined when each individual has experienced
interaction once on average, i.e., in one time stepairwise interactions will have occurred. Inter-
patch migration is a type of long-distance species movesranbng different patches. In a certain
period, a mutual migration takes place among patches, wirgerandomly selected individual
migrates from one patch to a random location in the targebregf another patch and vice versa
(see Fig. 48). The speed of inter-patch migration is deteechby the parametét,,, the actual time

between two successive mutual migrations.

128



Inter-patch migration

A B

e ® target

Fig. 48. lllustration of inter-patch migration in a two-phtecosystem with open boundary condi-
tions. There is a periodic migration between two patchesaah time step7;,, (n = 1,2, ...), one
randomly selected individual migrates from patch A to pdcand vice versa. The the migration
(target) region can be of any size and at any location in tihehpdf the target area contains several
sites, we randomly pick one site. If there are more than tviohges, each migration individual first
randomly chooses a patch and then occupies a target sitedtegs of the original individual at the

site. The individual with inter-patch migration leavessite empty in the original patch.

8.3. Results on multiple forms of synchronization

We first study an ecosystem of two patches, where a singlettargion is located at the center of
each patch for inter-patch migration (Fig. 49). Without thigration, in each patch two species will
become extinct and only one species can prevail. When patrh migration occurs, a predominant
species can arise due to the difference in the initial diessétt ~ 2500, as shown in Fig. 49.
After this event, species superior to the dominant one ircytodic-competition loop appear around
the target points in both patches, inducing target wavesatiray from their respective target points
and propagating outward. For large times, the target waees the two patches tend to synchronize
with each other at = 25000. When synchronization occurs, it can be maintained anefisehen a
strong order in the system dynamics. We have examined a-flate systems starting from single
specie on each patch and a four-patch systems when the lzocgtions deviate from the centers of
patches. e.g., at the corner of each patch. We observe synizhd target waves as well.

The area of target in each patch can have a significant influendhe pattern formation and
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Fig. 49. Emergence of target waves and pattern synchrimizata two-patch system with initially
mixed populations fold = 0.7 x 10~* andT;,, = 1. Each patch has siz90 x 300 and target is

at center. The initial densities of species in the first patep, = 0.6 andp, = p. = 0.2, and in
the second patch ayg = 0.6 andp, = p. = 0.2. Red, blue and yellow colors represent the three

species:, b andc, respectively, and empty sites are denoted by gray.
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synchronization. As shown in Fig. 50, we observe synchation of target waves when the target
area is small. In this case, time series of densities of acpdat species in the three patches exhibit
a phase-synchronized behavior. For a large target areékiagty different type of synchronization
occurs: time-delayed synchronization. In this case, the series of species densities from the three
patches exhibit the same periGtbut there is a time lag of abofit/N,, among them, wher&/,, is

the number of patches [Fig. 50(b-d)]. Time series of sped@wsities can be used to characterize
the correlation and difference among target-wave patfeons different patches.

We introduce an order parameter defined by the phase diffefegtween the species densities,
as shownin Fig. 50(b). Specifically, the average period esaomputed by the time interval between
two neighboring peaks. Since the densities in the thredpatexhibit similar oscillating behaviors,
we define an average perid@) obtained from, say,, in three patches. We can then calculate the
order parameter of phase synchronization between eacbfgatches. For example, f@& andC,

the order parameteys ¢ reads

npe =1 — (min(Atpc, (T') — Atpc)) s
" T)/2 |

(8.1)

where(- - - ) g stands for the average over all pairs of neighboring peaksand C and the value
of min(Atpe, (T) — Atpe) is always less thadT') /2. If p,’s from B and C display a phase
coherence)tgc tends to zero anglgc approaches unity. If the phases are incohengst, tends
to zero. The overall order parametgcan be defined by the average of order parameters over all
patchesn = (nas + nac + nsc)/3. Lag synchronization, however, needs to be characteriged b
all pairs of order parameters. Since the time delay for eadhigT'/3, for lag synchronization we
havenap = nac = nsc = 1/3.

The order parameter enables us to quantify the dependemeatefn synchronization on both
M andT,,. As shown in Fig. 51, fol/ < 2 x 10~°, target waves become unstable and break into
small spiral waves (the three insets in region I). Once kpisaes have appeared, they are robust,
making the appearance of target waves difficult. For largeegofT;,,, because of the low inter-

patch migration frequency, species coexistence in each jatuled out. Based on these results, we
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Fig. 50. (a) Phase synchronization and (b) time-delayedtsgmization among target waves pat-
terns in a three-patch system for small and large migraaoget area, respectively. The param-
eters areM = 0.8 x 107* and7,, = 1. (c) Time-delayed synchronization for a two-patch
(M = 0.6 x 1074) and (d) a four-patch}¢/ = 1.2 x 10~* and7,, = 1) system, where the
evolutions of densities of species whose distances froroehéal target site are less thay2 are
displayed. The target radii for synchronization and lagckyanization are 15 and 40, respectively

andL = 300.
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have identified three regions in the parameter space: {lspave region, (1) target-wave region
and (1) extinction region. Of interest is region Il whengnghronization occurs as a result of both
intra- and inter-patch migration.

To gain further insights into pattern synchronization, welg the number of rings,. associated
with the target waves when synchronization occurs. Withosg of generality, we consider two
patchesA andB. In each patch, the central specigis surrounded by andb is surround by:. The

average lengtli,. of an arbitrary species id is

L, =TV =

- (8.2)

(pp(b))’

whereV is the front propagation velocity of target waves dhds the time interval between two

(pB(c)

successful inter-patch migrations between two patchege M@t only when speciasmoves to
the migration target can a new ring be generated. Becausachttime step, the individual that
executes actual migration is random, the time intefvébr patch A is determined by the average
species densitie§ g (c)) and{pp (b)) in patchB from which individuals migrate, and vice versa.
Given the lengths of the rings,. is given byn, = L/(v/2L,). SinceV does not depend on the
inter-patch migration paramety,, the front propagation velocify can be obtained by casting the
cyclically competing game in the framework of complex GinalrLandau equation (CGLE) [184].
The spreading velocity of the propagating wave fronts caddiermined by linearizing the CGLE
around the unstable poin®);z(r,t) = MAz(r,t) + (c1 — iw)z(r,t) + o(z?). The spreading
velocity is = 2+/c; M, where the coefficient is given byt = uo/[2(3u + o)]. Due to pattern
synchronization, the densities of species in patchnd patchB are identical:p4(b) = pp(b)
andpa(c) = pp(c), we can then estimate the densities of spetiaadc in patch A during the
propagation of the central ring occupied byfrom zero to lengthL,. The average density of
reads: (pa(c)) = fLZL [r(z + L;)* — n2?]/(L?L,)dz = 4nL?/L* Analogously, the outside
boundary of specieskto the center ranges fromto L., yielding (p4 (b)) = 2wL?/L>. Inserting
(pa(c)) and{p (b)) into Eq. (8.2) yields

~1/3
L 2T, uo
nr_\/iLT_<7TL1/3U+UM) . (8.3)
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Fig. 51. In a three-patch system, dependence of the ordameder, on M andT,,. The radius

of migration target is 10, centered at the lattice. Threesphare identified in the parameter space:
() spiral waves, (ll) target-wave region in which there isymchronization subregion, and (lll)
extinction region defined by the criterion that in any pattlasy time, the number of individuals
in a species is less than three. The size of each pat®dlisc 300 and initially there is a single
species in each patch. The inset at the upper-right corntbeislependence of,. on T;,, in the

synchronization regime fab/ = 10~°. The curve is the theoretical results from Eq. (8.3).
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Fig. 52. For a three-patchi( B, C) system, (a) mean value and standard deviation of order pa-
rametern and (b) the number of rings, as a function of the radius of target region. Parameters

areL = 300, M = 0.8 x 10~* and7,, = 1. Data points are obtained from 20 independent real-

izations, where) = (nap + nac + npc)/3 and the bars represent the standard deviations. There
are three distinct dynamical behaviors: synchronizatiaegion I, lag synchronization in region Il,

and disorder in other regions.
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Fig. 53. In a two-patch system, outbreak of biodiversityrirrandom, rare mutations in a single
species world for = 0.7 x 10~* andT;,, = 2. Each lattice size i800 x 200 with a central target

region, and the mutation probability for each individuallis™" at each time step. The quantity
pmin 1S defined as the density of the least frequent species irch materaged over the two patches.

Synchronized target waves are associated with the outlfdakdiversity.

The analytical result is in good agreement with numericalgations (inset at the upper-right corner
of Fig. 51). We have also investigated the transition fromcyonization to lag synchronization as
the target area is increased [Fig. 52(a)]. We see that themysxperiences synchronization (single-
site target), disorder, synchronization (region ), digarand lag synchronization (region Il). The
number of rings,. is confined to a certain range when synchronization behswaiocur, as shown
in Fig. 52(b).

An interesting issue is whether the combination of two typlesigrations can induce spon-
taneousoutbreak of biodiversity from rare mutations in a singlecses world. To address this, we
consider a two-patch system with an identical single sjgedige randomly reset the state of each
individual with a small probability to mimic the effect of random mutations. We then examine the
spatial patterns and the lowest dengity;,, of the species in each patch, where a near-zero value

indicates extinction. As shown in Fig. 53, after a relagviging transient time, a sudden change

136



from zero inp,,;, occurs, signifying coexistence. Accompanying this argagawave patterns in
both patches, ensuring persistence of all three speciés.olitbreak of biodiversity is triggered by
the occasional appearance of new species in combinatibrthégtinter-patch migration. In contrast,
without the inter-patch migration (effectively a singlatph environment), even though three species
can occasionally appear simultaneously, the large diffe¥e among their densities will lead quickly
to a predominant species, excluding the other two specegpmesented by the small fluctuations
of pmin about zero.
8.4. conclusion

In conclusion, our computations and analysis demonsthatethe interplay between intra- and
inter-patch migrations in multi-patch ecosystems undeticyompetition can lead to remarkable
target-wave patterns originated from stochastic intéastin the absence of any external control.
These waves can form regardless of the area and the positiha migration target and the num-
ber of patches. Strikingly, depending on the area of the atigm target, synchronization and lag
synchronization in the target-wave patterns among diffepatches can occur. The synchroniza-
tion state in fact stabilizes species persistence in a faabée order, in contrast to the view that
population synchronization is a cause for global popufaggtinction, whereas lag synchroniza-
tion enables prediction of the future spatiotemporal etofuof species based on current dynamical
behavior. Analytic insights into the synchronization dgmes have been obtained through the the-
oretical framework of CGLE. We have also observed the phemam of outbreak of biodiversity
from a single-species world through rare mutations. Ourlteare relevant to issues of pattern for-
mation, control in excitable systems, and the origin of oatésing from self-organization in social

and natural systems.
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9. MULTI-ARMED SPIRALS AND MULTI-PAIRS ANTISPIRALS IN SPAT IAL ROCK-
PAPER-SCISSORS GAMES

Non-hierarchical cyclic competitions have been obsermesinumber of real ecosystems, rang-
ing from colicinogenic microbes competition to mating tegaes of side-blotched lizards in Califor-
nia[120,137-139,199]. The essential features of such etitigm can be captured by the childhood
game “rock-paper-scissors” (RPS). In the game, speciedstence, as the key factor for maintain-
ing biodiversity, has been given much attention, espgcialithe conditions that ensure species co-
existence [115, 165, 200—205]. Both laboratory experiraadttheoretical model have revealed that
spatial structure by confining local interaction is necesfa stabilizing species coexistence [199].
Otherwise, stochastic effect and external perturbationezsily ruin biodiversity. Quite recently,
individual mobility has been incorporated in the spatiaBRfame [130, 183, 189, 192]. It has been
found that individual mobility induces entangled movingrapwaves which preclude species from
extinction [189]. The stochastic game has been casted seoaf partial differential equations by a
continuous approximation[192]. In this thesis, we invgeste the origin of multi-armed spiral waves
and multi-pairs antispiral waves on the basis of the spRi® game with mobile individuals, which
is unaddressed prior to our work. We find that the joint spiraves can spontaneously arise due to
the interaction of neighboring spirals and the type of thetjspirals is determined by the position
and rotational directions of neighboring spirals. In parér, we discover a general set of seeds of
species distribution, which is capable of producing maltiaed spirals with arbitrary numbers of
arms and antispirals with arbitrary numbers of pairs. Terde patterns generated from stochas-
tic simulations are reproduced by solving a set of partifiédintial equations from specific initial
conditions. We have also discussed the stability of thet giral waves with respect to individual
mobility.
9.1. The RPS Model

We consider the spatial RPS game proposed in Ref. [189]. dofdeL x L square lattice with

no flux boundary conditions sustain mobile individuals Inglng to one of the three speciet, B
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andC. Each node can either host one individual of a given specigsan be vacant. Vacant sites,
denoted by, are also the so-called resource sites where individuapedies reproduce offspring.

The dynamical process can be described as following:

1 1 1

AB— A , BC—B® , CA—(C® (9.1)
A® -+ AA , Be - BB , Ce-5CC (9.2)
Ao 04 , Bo-LeB , Co-LoC (9.3)

where® denotes any species or vacant sites. These reactionsleuree processes, i.e. com-
petition, reproduction and exchange, occurring only betweeighboring nodes. In reaction (1),
speciesA eliminates specieB at a ratel, whereby the node previously hosting spediesecomes
vacant. In the same manner speciegan kill species”, and specieg’ can kill speciesd, thus
forming a closed loop. In reaction (2), individuals placeddfispring to a neighboring vacant node
® at aratel. Reaction (3) defines exchange process where an individohbhages its position with
an individual belonging any specie or an empty site at ayat&ccording to the theory of random
walks [206], mobility of individuals)M is defined as:M = ~/2N, whereN = L x L and M
represents the typical area explored by one mobile indaligar unit time.

We apply stochastic algorithm developed by Gillespie tausate the system’s evolution, where
the occurring probabilities of reactions are determinethieyr rates. In our model, competition and
reproduction occur with probability/ (v + 2), whereas exchange (moving) occurs with probability
~v/(y + 2). At each step, an individual is randomly selected to intevath one randomly selected
neighboring site. In a Mote Carlo step, all individuals sgkested once on average.

9.2. Multi-armed spiral patterns

A critical value M, = (4.5 4 0.5) x 10~ of mobility has been identified in Ref. [189]. Below
M., three subpopulations can stably coexist in the form of mgspiral waves; while abov#/,,
the wave length of spirals exceeds the size of underlyingéatind biodiversity is lost. Here, we
focus on the biodiversity region fav/ < M.. In this region, by carrying out sufficient stochastic

simulations from random initial distributions of specieg found there is chance to observe both
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Fig. 54. Spatial patterns in RPS game fdr= 5.0 x 10~°. Panels (b) and (e) are obtained from
random distribution of three species initially. In pand}, (c), (d), and (f), the system starts from

specific seed distributions of three species= 512 for all panels.
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Fig. 55. In panel (a), extinction probabilit#..; as a function of mobilityd/. Seed distribution
of species for producing (b) two-armed spiral, (c) one patispiral, (d) multi-armed spirals with

arbitrary numbers of arms and (e) antispirals with arbjtrarmbers of pairs.

multi-armed spirals and multi-pairs antispirals, as showifig. 54(b) and (e). In Fig. 54(b), there is
atwo-armed spiral and an one-pair antispiral, which arermmbin in Fig. 54(a) and (c), respectively.
A one-armed spiral and a two-pairs antispiral can be fourtign54(e) and their enlarged versions
are displayed in Fig. 54(d) and (f), respectively. We alsotfibthat these patterns can last for relative
long time and then they may disappear or transform to singhed spirals with the initial conditions
of species randomly distributing on the lattice. In the iratmed spirals, the arms rotate in the same
direction with the same speed, resulting exclusively frémelsastic interactions among neighboring
individuals. In the antispirals, the two spirals of a paitate with the same speed but in reverse
directions. The identical rotational speed of sub-spirathe waves ensures their stable existence.
It worth mentioning that patterns in Fig. 54 are obtainedrfmo flux boundary conditions, and we
also examine the phase transition of system from biodietsiuniformity with no flux boundary
conditions. As shown in Fig. 55(a), a critical mobility. emerges at.5 x 10~4, which is the same
as the result of periodic boundary conditions in Ref. [189].

It is interesting to find that the multi-armed spirals and tipdirs antispirals can arise from
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some specific distribution of three subpopulations. As showFig. 55(b) and Fig. 55(c), square,
triangle and circle symbols stand for a small amount of tlstggopulations which are placed on
a lattice with no flux boundary condition. Other sites of th#ite are left empty. In the early
stage, each pile of individuals expand due to reproducidter the boundaries of different species
encounter, populations begin to rotate because of theccgoinpetition. Finally, after the systems
reaching a non-equilibrium steady state, a two-armedIsqiicha one-pair antispirals emerge. Let'’s
see Fig. 55(b), the six pile of species placed around a cirden the order A, B, C, A, B, and C.
The six piles can be separated into two groups, each of whinkains three species. During the
evolution, each group form an arm. Due to the spatial symnodéthe two group, the wave lengthes,
rotation speeds and directions of the two arms are the sawieg gise to a steady two-armed spiral
(Fig. 54(a)). In contrast, to generate antispirals, we riegaace an arbitrary species at the center
of a circle and the other two species around the circle (Fifc)y, leading to a steady one-pair
antispiral (Fig. 54(c)).

By extending the simple configuration in Fig. 55(b) and (cg discover a general route to
generate multi-armed spirals with arbitrary numbers ofsaamd antispirals with arbitrary numbers
of pairs. To articulate the method, we should define the lmadiin the initial distribution of species.
As shown in Fig. 55(d), the cell of multi-armed spirals is qgeed of three species in the order A,
B and C. The cell of antispiral contains two species except#ntral species. The central species
can be arbitrary, but once the central species is fixed, thésdeed as well. For the multi-armed
spirals, the number of arms is determined by the number ts.dalgeneral, one arm can be formed
by one cell, so that by adjusting the number of cells, one ddaio multi-armed spirals with any
number of arms. For the antispiral, the number of cells eqied number of antispiral pairs. One-
pair antispirals is different from this regulation, as simawFig. 55(c). Two cells with reverse orders
are required to create one-pair antispirals, as shown irbBig). Stochastic simulation results from
a set of seed distribution with different numbers of cellsgtrown in top panels of Fig. 56 for multi-

armed spirals and in top panels of Fig. 57 for multi-pairdsqitals, respectively. The patterns
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Fig. 56. Multi-armed spirals with one, two, three and foumarby stochastic simulations (top

panels) and by solving PDEs (bottom panels). The paramatenrd = 5.0 x 10~° andL = 512.

justify the generate route to producing multi-armed spieald multi-pairs antispirals.

Itis noteworthy that a large number of arms or pairs is ndilstbecause of the stochastic effect.
Although all arms or pairs can be formed, after a while, sommeszor pairs will be intruded by
neighboring arms or pairs and disappear. The no flux bouncamgitions are also necessary to
generate the waves. In contrast, for periodic boundaryitiond, the joint spirals in global scale
will be destroyed and break into small spirals. The symmeftthe distribution of cells sustains the
stability of multi-armed spirals and multi-pairs antigp#, and better symmetry lead to more stable
waves. The radii of the circle and the number of individual®ach pile do not affect the wave
patterns.

9.3. Predictions by PDE model and the spatial entropy
The patterns generated by stochastic simulations can Hecfed theoretically by a set of partial

differential equations (PDEs). As derived in the works ofdRenbach et al. [189, 192], starting
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Fig. 57. Antispirals with one, two, three and four pairs lyciastic simulations (top panels) and by

solving PDEs (bottom panels). The parameters are the samé-ap 56.

from rate equations and applying the continuous approximatve have

dra(r,t) = DVZ3a(r,t) +a(r,t)(1 —p) — c(r,t)a(r, t),
Oib(r,t) = DV2b(r,t) +b(r,t)(1 — p) — a(r, t)b(r, 1), (9.4)
Oie(r,t) = DV2¢(r,t) + c(r,t)(1 — p) — b(r,t)c(r, t),

wherea(r,t), b(r,t) anda(r,t) are the densities of species B, C at positionr and timet,

p = a(r,t) + b(r,t) + c(r,t) is the local species density atd- p denotes the density of empty
sites. Eulerian difference method and Runge-Kutta meth®dpplied to solve the PDEs. The initial
conditions arei(r) = b(r) = ¢(r) = 0 for all spatial coordinate except the initial seed species in
Fig. 55. In the coordinate of seed, one species’s densitydsand the others are zero. The patterns
generated by numerically solving the PDEs are exhibitetiénbiottom rows of Fig. 56 and Fig. 57
for multi-armed spirals and multi-pairs antispirals, restively. The theoretical patterns are in good
agreement with simulation patterns. The colors in the tstizal patterns are determined by the
densities of three species on all the spatial sites. For pamt an arbitrary locatiofr) and timet,

the sitei is denoted by the color of species A with probabilityr, t), by B’ color with probability

b(r,t), and by C’s color with probability(r, ¢).
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Fig. 58. The spatial entropy varying with time B = 5.0 x 10> for multiple armed spirals
and antispirals obtained from PDE method, single armed laree tarmed spirals in (a), two armed
and four armed spirals in (b), two armed and three pairs @irdis in (c), four armed and four

pairs antispirals in (d). The pattern formations are shawhdttom panels of Fig. 56 and Fig. 57

respectively.l = 512 for all panels.
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(b) obtained at time of .45 x 10° and2.15 x 10° respectively.L = 512 for all panels.
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To quantitatively investigate the emergence of multi-atrapirals and multi-pairs antispirals,

we define the spatial entropy of patterns according to Shaentropy [208]:

S =— Zlepilnpi , (9.5)

wherez is the number of the clusters formed by individuals of the sapmecies ang; is the prob-
ability of the cluster with size of, p, = x/N. Here, the sizer is the number of individuals of
the same species in the cluster. Fig. 58 shows spatial gndfopulti-armed spirals and multi-pairs
antispirals as function of time with PDE method. Averageaiealof spatial entropy are 3.4, 3.7, 3.8,
and 4.0 for one-armed, two-armed, three-armed, and fonedusspirals respectively, while average
values of spatial entropy are 3.8 for both one-pair and tawspantispirals, 4.0 for both three-pair
and four-pairs antispirals. One can find that the spatiabpgtof single spirals is smaller than that
of multi-armed spirals and multi-pairs antispirals.

Since multi-armed spirals and multi-pairs spirals are aiplst at too small or large mobility,
without loss of generality, we investigate the evolveméipiadtern and spatial entropy & = 4.0 x
10~° with stochastic algorithm. Fig. 59 shows the spatial entreylving with Monte Carlo (MC)
time for two armed spirals and one pair antispirals whichgfarm to the single armed spirals, and
one can find that the two armed spirals and one pair antispgrakrge in the system at beginning,
as shown in left insets of Fig. 59(a) and Fig. 59(b) respebtjwhile after long time evolving both
two armed spirals and one pair antispirals become the sargied spirals, as shown in right insets
of Fig. 59(a) and Fig. 59(b) respectively. In addition, thatsal entropy for both two armed spirals
and one pair antispirals induces after the transformation.

9.4. Stability of spiral anti-spiral patterns

Finally, we examine the stability of spirals and antisgnalth respect to the individual mobility
M. The results are carried out from a number of independefizagians. The shadow and gray
regions in Fig. 60 (a) denote one-armed spirals and two-éspigals emerging stably in the system,
respectively. There are three regions: for small valuea/ofe.g.,M < 1.0 x 10~°, both single

spiral and two-armed spiral break into a number of smalldgirfor large values oM/, e.g.,M >
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1.0 x 10~3, biodiversity is lost and spirals disappear; for interna¢elivalues of\/, both spirals
survive. The single spiral is more stable then the two-arepé@l and the latter can transform to the
former. The similar phenomenon is also observed for muiigpantispirals. As shown in Fig. 60
(b), one-pair and two-pairs antispirals exist stably inghadow and gray region respectively. There
exhibit three regions and the one-pair is more stable therivib-pair, similar to the multi-armed
spirals. The top panels of Fig. 60 demonstrate that at thaedemies of three regions, the two-pair
antispirals reduces to single spiral.

Spatiotemporal patterns have been investigated extdépsiamging from chemical reactions
on catalytic surfaces to propagating signals in aggregatiitroorganisms [209]. It is found that
patterns in excitable media emerge primarily due to thabilties induced by the interplay between
the fast excitatory and slow recovery variables. This kifidnechanism explain well the multi-
armed spirals and antispirals emerging in the Belousovbdtiasky (BZ) reaction [195] as well
as cardiac substrate [195], and aggregating amoeba D.idiksoo [194]. However, multi-armed
spirals and multi-pairs antispirals in our systems emeegabse of cyclic interaction in populations
of three species with the same mobility. In this chapter, axetexplore the origin and stability of
multi-armed spirals and multi-pairs antispirals in thetsgaock-paper-scissors game with mobile
individuals. The two types of joint spirals are naturallysebved by stochastic simulations. We have
discovered a set of seed distributions of species, whicblesta produce multi-armed spirals and
multi-pairs antispirals with arbitrary numbers of arms andi-pairs. The availability of the seed for
producing the waves are justified by both stochastic sinmrlatand a theoretical model described by
a set of partial differential equations. The theoreticatgras is consistent with numerical patterns.
We have also discussed the stability of multi-armed spiald multi-pairs antispirals depending
on the individual mobility. We found that in the intermediahobility, both waves are relatively
stable, whereas for low mobility, the spirals in the glolzzlle breaks into small spirals and for high
mobility, spirals disappear due to the loss of biodiveraitee have also found that large numbers of

arms or anti-pairs weaken the stability of the joint spiisl the joint spirals with larger numbers
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Fig. 60. The shadow and gray region indicate emerging stelipe- and two-armed spirals respec-
tively in panel (a), and show appearing stably of one- andpaios antispirals respectively in panel

(a). Results are obtained from 100 different independetizations,L = 512.

of arms or anti-pairs can transform to less numbers of armatspairs. Our work gains insight

into the pattern formation through stochastic procesgeershan deterministic equations.
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APPENDIX A

CALCULATION OF ONE- AND TWO-DIMENSIONAL RELATIVISTIC TUNNELING RATES
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To understand the quantum tunneling in the relativistigtiend the tunneling behavior for our
double-well system, we develop a theory based on the setfygromncept already employed by
the electron transport theory [210-212]. Noting that theptimg strength between the two wells is
rather weak, we consider an equivalent system where theliagrbetween left and right wells can
be treated as the escaping rate of Dirac fermions betweenlbsed but weakly coupled wells. Let
the left well be denoted by superscrift), and the barrier together with the right well denoted by
superscrip{2). The Dirac equations for the whole double-well system cawbgen in terms of

the Hamiltonians for the separated closed wells,

Hy Vip ) pd
—F , (A1)
Va1 Ho p@ @

whereV;; are the coupling matrices. If the left well were itself cldsthe equation should be
Hip® = BrpM). (A.2)
However, due to the weakly coupled right part to the left wadw the equation becomes
(Hy + 7)) = By, (A.3)

wherex? = Vi,GEVy, is the self energy for the barrier and the right well, Wit = (E + in —
H,)~! denoting the retarded Green'’s function. For each eigenefahe left well, the energy shift

can be obtained through the first order perturbation thesry a
(B7) = (WsRph). (A.4)

This energy shift is typically complex. The real part of thidft changes the oscillating frequency
of the corresponding eigenstate, while the imaginary piaripted by—~, introduces a decay factor
exp(—C~t/h) in the time evolution of Dirac fermion probability, whichstzibes the escaping rate
of the Dirac fermions from the left well to the right part. ahat since the whole system is still
closed;y only describes the a transient event that the particle fariran left to right, while ignores

the recurring of the state from right to left. If we let thehtgwnell be infinite long in which case
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no reflective wave is detected, the situation becomes assiefjiwell coupled with an semi-infinite
lead by a potential barrier, andwill then be the tunneling rate for the single left well syate
A.1l. One-dimensional solution

Let us first consider the simplest case, a one-dimensiomat@iquation. Not only for its sim-
plicity, but the one-dimensional Dirac equation also presgsome of the important properties in the
tunneling rate, e.g., the large tunneling rates for smatgies. We start by solving one dimensional
Dirac equation

(—ihvoada )t = (B = V)i (A5)

separately for the two closed systems. For the left well aftivi.,,, V' = 0, so the solution is

cos(knx — %)

B (@) = —— exp(iZ) (A.6)
VI y isin(k,x — 7)

wherek,, = (n + 1/2)7/L,. For the right part, the barrier has widii andV = 1, and the right
well has widthL andV' = 0. We obtain the solution

TIETS B (A7)

AzetFn®y 4 AygemHnTy_

wherek,, = E/(hw) = [VoW/(hw) + (m + 1/2)7] /(L + W), kp = kn — Vo /() uy = (1,1)T
andu_ = (1, —1)7 are bases for the spinor, and the coefficiehtare determined by the boundary
conditions. Note that this is a combined solution for< Vy, andE > V. We are only interested
in the junction between the left well and the right part whire coupling locates, and so far we
have assumed-coordinate to be continuous. What we need is the Greenitiimon a discrete

lattice, having lattice points spaced bybetween two points along-axis. We express the energy

shift using the discrete lattice,
(=) = oV (Le = a)V12G*(Ly + a, Ly + ) Vart) ) (L — a), (A8)

wherex = L, is the junction between the left well and the barrier, andaeplingVis = le =

—ihvo,. Let us compute the Green’s function

Lo+ o)Ly + a)

A9
E + in — hok, (A-9)

GR (L, +a,L +a):z¢§?)(
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To eliminate reflection back to the left well, we let the rigill be infinite long, i.e.L. — oo so

that the summation changes to integration

> = L+Ww /dk. (A.10)

™
k
Note that|A;|? = 1/[4(L + W)], which cancels thd, + W factor in Eq. (A.10). The Green’s

function value atr = L, + a becomes

1 [ L+ M,
QR o — [ LMk A1l
_>27r/0 E+in — hok’ A1)

wherels is a2 x 2 identity matrix and

sin(2ka)  icos(2ka)
M, = . (A.12)
—icos(2ka) —sin(2ka)
The integral over;, diverges, but the imaginary part of the integral is finite jakheventually con-

tributes toy. This imaginary contribution turns out to bewn /(27 L, E). To calculate the integral

for the components aff;, we define

o sin(2ka)
= dk——F7"—"—
S /0 E +in— hok
o cos(2ka)
= dk——"—"— A.13
© /0 E +in— hvk ( )

The ratey can be expressed by these integrals

_ (w2 g hn

v = nL. [cos(2ka)lm(C) — sin(2ka)Im(S)] 5nL,E (A.14)
We calculate the integrals andC', and usey ~ F; = hvk,, we obtain
hv . . 2aVy .
Yo = “ L. Im {2CI(—2kna —140d) cos (4kna i + z§>
n [77 + 2Si(2kna + ié)} sin <4kna _ 2o | 15)]
hv
hvd

- A.15
AnalL k' ( )

whereé = 2an/(hv), and C{z) and S{z) are cosine and sine integrals defined as follows.

Ci(x) dt

Vo-i-ln(a:)—i-/aEM

0 ¢
Si(z) = /O %(t)dt,
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wherevy, is Euler-Mascheroni constant. Wherandn are small, IniCi(—2k,a —id)] =~ —m/2[1 +

u(hvk — n)], whereu(-) is a step function. So fdt > n/(%v), we obtain a constant expression for

71
hv
2L,

v = (A.16)

We can also find the consta@itby comparing the result with that from solving the whole diedb
well system directly.

Considering the symmetry of the double-well system, thetgmi ) = (¢, x)” must be divided
into two types, symmetric and antisymmetric. We set theiori the the center of the double-
well, so that for the first componemt symmetric and antisymmetric solutions requifé0) = 0
and¢(0) = 0, respectively. Interestingly, the second component isrsgtric when the first is
antisymmetric, and vice versa. We name the symmetry typerdicg to the first component, and
compute the energy levels féf < Vj. For symmetric and antisymmetric states, the energy levels

are

WVo/2+ (ng + 1/4)hvr

E
s Lo+ W)/2

B WVo/2+ (na — 1/4)hvr
A Lo+ W/2 ’

whereng,n4 € Z. Because these energy levels are equally spaced, the espagyng between

symmetric and antisymmetric states is

hom

AE = ————.
2L, +W

(A.17)

Comparing theA E with v, and noting thatL,, > W, we have the coefficient’ = 7. Figure
61 shows bot\E and 7~ with the numerical simulation. The simulation and thé’ actually
describe exactly the same system. We can seerthatlculated from the equivalent system using
the self-energy method agrees witt¥s quite well, which demonstrates that the tunneling rate is

almost constant for all energies in one dimension.
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Fig. 61. (Color online.) Theoretical tunneling rates congolawith numerics for one-dimensional
massless Dirac fermion. Two theoretical curves are plottesl from computing the energy spac-
ings between symmetric/antisymmetric eigenstate pairthiowhole double-well system, andy
from the self-energy method. Inset shows zoom-in viewAgi,, € [0.3,0.5] where they curve

overlaps withy(k > §) curve.
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A.2. Two-dimensional solution

To validate our proposed theory analytically in two dimensiis a rather hard problem. This
is largely due to the entanglement of the two Cartesian éoateks in the first order Dirac equation.
The problem is solvable only for certain types of boundamyditions via separation of variables.
One particular case is the circular boundary condition.dima a ring with a thin concentric ring-
shaped barrier in it, which makes it a ring double-well. Wh#éifour radii are large, this ring double-
well is equivalent topologically to a rectangular doublelhwith periodic boundary condition in one

direction. To solve the two-dimensional Dirac equation
(—ihvo - V) = (E — V), (A.18)

we need to use polar coordinatesd). Used, +i0, = exp(+i6)(9, +i0s/r), the general solutions

are of the following form

_ Zn(Ar)
¥y, = e? . n=+1,42,... (A.19)
SQNE — V)ie" Zy 1 (Ar)
whereZ, (z) = AJ,(x) + BY,(x) is the linear combination of the first and second kind Bessel
functions, and\ = |E — V| /(hv).
Using the same strategy, we separate the ring double-weltwo parts, the inner ring (denoted
by superscrip{(1)) and the outer part (denoted by supersc(ipf consisting of the barrier ring

and the outer ring. To be able to obtain an analytical expader the energy levels, we use the

asymptotic form of the Bessel functions fors |n? — 1/4],

J(z) ~ \/gcos(a: - % - g) (A.20)
Yo(z) ~ \/gsin(x - ”—2” - g). (A.21)

Applying two boundary conditions at= R;, R, and the normalization, we have for large radii, the

solution for the inner ring is
1 sin(ky, (r — Ra) + 3mw/4)
Y5 = N—=e'* , (A.22)
’ T .
—iet® cos(ky (1 — Ra) + 37/4)
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wherek,, = (m +1/2)1/(Ry — R1), m = 0,1,2,..., andN = (2n(Ry — R;))~ /2. Note that
the eigen-energiuk,,, doesn’t depend on the angular quantum numbeneaning that all different
angular modes are degenerate for a single energy levelh@hjsens when we let the ring be infinite
large, the radial functions take the trigonometric formg &lne variation of the functions become
periodic so that the energy levels are equally spaced. Hemviéwe were to use the original radial
solution, the energy levels are found through the zerostefjgr order Bessel functions, and thus
are spaced with a decreasing spacing. In that case, bedéfasend integer order Bessel functions
differ in zeros, the eigen-energies are non-degeneratethEmuter part, the solutions combining

E < VyandE > Vyis

N L gind sin(ke(r — Rg) + w/4)
L gin

S

—ie' cos(kp(r — Ra) + 7/4)
o) — . , (A.23)

sin(ke(r — Ry) + 37/4)

in

=
=t

—ie' cos(ke(r — Ry) + 37/4)

wherek, = [(Rs — R2)Vo/(hv) + (£ 4+ 1/2)7] /(R4 — R2), andk, = k¢ — Vo /(hw). Similar to one
dimension, the Green'’s function at the coupling boundasy- a is

2, )2 (1,60

(
R . ’ _ £, )
GE(r,0;7,0") = Zn: %: B = hoke (A.24)

Let the outer boundary be infinite, the summation dyeturns into integration, we have

GR e [ e M A.25
_’Xn:(zw)mg/o E +in— ok’ (A.-25)

where

1+sin(2ka)  ie™" cos(2ka)
M, = . (A.26)

—iei? cos(2ka) € 0=0)[1 — sin(2ka)]

The energy shift is given by

(2R, = / a8 / a0 6P (0) Vi G (0; 0 )V o) (01, (A.27)
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wherezpfi?j(e’) is computed at = R, — a, and the coupling matrix for two dimensions is obtained
as follows. We know
0 e 0 —ie ™ | g
o-V= or + =,
e? 0 ie? 0

(A.28)

r

so the coupling matrix should be for We take out the integration over the coordin#anded’,

27 27
/ do / dg'e’i=mO=0" — (27)25,,. (A.29)
0 0

This Kronecker delta cancels the summation owerThe final expression for rate is exactly
the same as in one dimension, i.e., Eq. (A.14) and (A.16). réhson for the same rateas in
one dimension largely owes to the degeneracy of the angudem Because all tangent modes are
degenerate for one specific energy level that depends oadied function only, one cannot separate
this system from a true one-dimensional system. Theref@meatey must be the same as that in
one dimension.

While the two-dimensional solution we have presented heme $pecial case where we have
used the large asymptotic form of radial functions, the general solution ¢ircular boundaries
is not the like. As we have discussed earlier that for a aeeakergy level, the degenerate angular
modes require infinit&; condition, however, for finite rings, different angular nescassociate with
different energy levels. Therefore, the tunneling ratedifdte rings have a wide spread instead of
a single straight line. In order to obtain ratdor finite size rings, we must solve for the eigenstates
numerically. Using the general solution for finite innergireq. (A.19), the normalization of the
eigenstates, and the boundary conditighs 1 (kn R;)/Zn(kmR;) = £1 atr = R;, i = 1,2, we
can find the rootg,,, for each angular mode numerically. For the outer part, however, things get
more complicated by considering the ring with potential &mel outer ring, and most importantly,
to eliminate reflection, we need to 9 to infinite. This means we need to sum over infinite terms
of k¢ in EQ. (A.24). A workaround for the infinity is to set a thre#thé,,,,,. for the summation, and

the criteria for choosing sudh,, ... is the quality of the orthogonality,

> e mede) ~ L - ). (A.30)
{é:kf<k7naz}7n
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Fig. 62. (Color online.) Theoretical ratefor two-dimensional ringsn denotes the angular quan-
tum number, and; are thei?” energy level for allh. The eigenstates of the inner ring are found
numerically, while the Green’s function values for the oytart are calculated analytically using

Eq. (A.25). The radii and potential af¢y = 5, R, = 10, andV, = 5.

However, as number of eigenstatebelow k.. increases, the computation burden increases as
/2. For fast computations, we consider two approximated tegal the outer part: one uses the
analytical solution of Green'’s function in Eq. (A.25), ahe bther uses a relatively larger outer ring
to numerically calculate the rates. Thevalues are shown in Fig. 62 and Fig. 15 for the above two
schemes, respectively.

In Fig. 62, one can see that the tunneling rates of angulaesfmat the same energy level (e.g.
ko andk, in Fig. 62) separate and scatter into a wide range, insteeld stering together as a single

point, which is the case in one dimension and two-dimensiimgs with all infinite radii. Figure 15
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shows a complete numerically solution to the ratfor rings with finite radii. A truey should be
calculated by setting the outermost boundA&ryto infinity, however, a finiteR, is computationally
much easier to handle, and is enough to show qualitativelytttere exist some points with very
low tunneling rates, which are the survival states from thening process of the originally closed
left well (inner ring). One might notice that many points amcentrating at the high energy, low
tunneling rate region. This is actually an artificial effedttoduced by finiteR,. With a finite Ry,
some fast tunneling states may appear to be slow ones duereftbcted waves. Also, the threshold
kmaz introduced for fast computation may break the orthogopatindition Eq. (A.30), which will
affect high energy states even severely.
A.3. Non-relativistic quantum tunneling

For non-relativistic integrable systems (Fig.63), one saa that different energy states may
have the same tunneling rate. This is because the partiagieeminim can be separated intpand
py. While tunneling rates only relate fg., those modes with different, but having the samg,
contribute a horizontal line in the figure. When the shap@bexs chaotic, these orbits are broken

and mixed together, giving rise to a uniform rate of tunrglin
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Fig. 63. (Color online.) Tunneling rates and LDSs for cleaksystems.

175



APPENDIX B

ACHIEVEMENTS DURING PHD STUDIES

176



Following are the relevant publications on the topics pnésein this dissertation.

1.

2.

10.

X. Ni, L. Huang, Y.-C. Lai, and C. Grebogi, “Scarring of Ba fermions in chaotic billiards”,
Phys. Rev. 86, 016702 (2012). (Chapter 2)

X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaon relativistic quantum
tunneling”, Europhysics Lette@8, 50007 (2012). (Chapter 3)

. X. Ni, and Y.-C. Lai, “Transient chaos in optical metamatis”, Chaos21, 033116 (2011).

(Chapter 4)

. X. Ni, W.-X. Wang, and Y.-C. Lai, “Origin of branched waveisctures in optical media and

long-tail algebraic intensity distribution”, Europhysitetters96, 44002 (2011). (Chapter 5)

. X. Ni, W.-X. Wang, Y.-C. Lai, and C. Grebogi, “Cyclic comjiteon of mobile species on

continuous space: Pattern formation and coexistence’s.PRev. E82, 066211 (2010).
(Chapter 6)

. X.Ni, R. Yang, W.-X. Wang, Y.-C. Lai, and C. Grebogi, “Basiof coexistence and extinction

in spatially extended ecosystems of cyclically competpecses”, Chaog0, 045116 (2010).
(Chapter 7)

. W.-X. Wang, X. Ni, Y.-C. Lai, and C. Grebogi, “Pattern foation, synchronization, and

outbreak of biodiversity in cyclically competing gameshyB. Rev. E83, 011917 (2011).
(Chapter 8)

. L.-L. Jiang, W.-X. Wang, Y.-C. Lai, X. Ni, “Multi-armed $m@ls and multi-pairs antispirals in

spatial rockpaperscissors games”, Phys. Let878 2292 (2012). (Chapter 9)

Other works that have not been included in this dissertatreristed below.

. W.-X. Wang, X. Ni, Y.-C. Lai, and C. Grebogi, “Optimizingontrollability of complex

networks by minimum structural perturbations”, Phys. Reg5, 026115 (2012).

R.-Q. Su, X. Ni, W.-X. Wang, and Y.-C. Lai, “Forecastingshronizability of complex net-
works from data”, Phys. Rev. 85, 056220 (2012).

177





