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ABSTRACT

Temporal data are increasingly prevalent and importanhadygics. Time series (TS) data are
chronological sequences of observations and an importass of temporal data. Fields such as
medicine, finance, learning science and multimedia ndjugaherate TS data. Each series provide
a high-dimensional data vector that challenges the legmiithe relevant patterns

This dissertation proposes TS representations and methodsipervised TS analysis. The
approaches combine new representations that handleatiansl and dilations of patterns with
bag-of-features strategies and tree-based ensemblénigairhis provides flexibility in handling
time-warped patterns in a computationally efficient waye Ensemble learners provide a classifi-
cation framework that can handle high-dimensional featpexes, multiple classes and interaction
between features. The proposed representations are tef@ldhssification and interpretation of
the TS data of varying complexity.

The first contribution handles the problem of time warpinthwve feature-based approach. An
interval selection and local feature extraction strateggroposed to learn a bag-of-features rep-
resentation. This is distinctly different from common demiy-based time warping. This allows
for additional features (such as pattern location) to béyeiagegrated into the models. The learn-
ers have the capability to account for the temporal inforomathrough the recursive partitioning
method.

The second contribution focuses on the comprehensibifitieomodels. A new representation
is integrated with local feature importance measures fi@®based ensembles, to diagnose and
interpret time intervals that are important to the model.

Multivariate time series (MTS) are especially challengb@erause the input consists of a col-
lection of TS and both features within TS and interactionsvben TS can be important to models.

Another contribution uses a different representation talpce computationally efficient strategies



that learn a symbolic representation for MTS. Relationshigtween the multiple TS, nominal and
missing values are handled with tree-based learners.

Applications such as speech recognition, medical diagnasd gesture recognition are used
to illustrate the methods. Experimental results show thafliS representations and methods pro-
vide better results than competitive methods on a compedreenollection of benchmark datasets.
Moreover, the proposed approaches naturally provideisakito similarity analysis, predictive

pattern discovery and feature selection.
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CHAPTER 1
INTRODUCTION

In the last decade, the increasing use of temporal dataciefipg¢ime series data, has
initiated a great deal of research and development attemptse field of data mining.
Time series data which is chronological sequences of ohtens is one of the impor-
tant class of temporal data. Many data sources in differetddj such as in medicine,
finance, multimedia and learning sciences naturally géedmnae series data. For exam-
ple, an ElectroCardioGram (ECG) is used to identify temppadterns in heart signals to
identify abnormal heart rhythms [6]. Average electricaltage produced by the beating
of the hard muscle is measured over the human body. An ECGusNzed as a 2D plot,
wherez axis is the time ang axis is the average voltage measured by the electrodese In th
field of seismology, seismograms are used to identify seigwénts. A seismogram is a
record of the ground motion produced by an earthquake, sxgipor other ground-motion
sources [7]. The ground motion is identified by a seismogi@pa measuring station as
a function of time. Nowadays, Electroencephalography (E®@ich is the recording of
electrical activity along the scalp is used to understamdbifain activity and connectivity
under different experimental conditions. EEG visualizes oltage fluctuations resulting
from ionic current flows within the neurons of the brain oves time.

Time series data is characterized by its numerical and mamtis nature [8]. Time se-
ries are considered as a whole instead of individual nurakfields because of the temporal
ordering in the data. This makes time series analysis diffdrom other data analysis prob-
lems, in which there is no natural ordering of the observatidvioreover, another problem
is that each series provide a high-dimensional data vels&brchallenges the analysis. The
high-dimensionality can be handled by dimensionality mtidm techniques such as fea-
ture selection when the temporal ordering is not importatdwever, entire series should

1



be considered as a vector in time series analysis problems #ie relations between the
certain time points may be of interest. Therefore, tradilalimensionality reduction tech-
nigues may not work well for the time series data. Real-wtirite series data is often
high-dimensional, contains nonlinear relationships leetwits variates, and has long-range
dependencies. Due to these complexities, time series datagias received great interest
over the past decade.

Time series data mining approaches focus on various prabldine major tasks con-
sidered in this context are pattern discovery and clugiemtassification, rule discovery
and summarization [8]. Although these tasks are presemearately, they are not inde-
pendent. For instance, clustering result on time serieshrajseful to a classification task.
Therefore, a study on one particular task may provide swistto other tasks.

A fundamental problem in time series data mining approachésw to represent the
time series data. The representation is important to desctine useful information from
the high-dimensional data efficiently rather than analyzin finding statistical properties
on the whole series. High-level representation of the palgraw data is generally used
as a feature extraction step, or simply to make the storagesrhission, and computation
of massive dataset feasible in these approaches [9]. Thedimies representation strate-
gies are categorized into two classes [9]: data adaptivep(ae basis representation) and
nondata adaptive (fixed basis representation). Exampléstaf adaptive approaches are
Singular Value Decomposition (SVD) [10], Piecewise Linaad Piecewise Constant mod-
els (PAA) [11] and Symbolic Aggregate Approximation (SAX)2]. Nondata adaptive

approaches represent the time series in the transformdtiorain using mostly Discrete



Fourier Transform (DFT) [13] and Discrete Wavelet TransfdiDWT) [14]. This thesis
explores new adaptive basis representations for timesseldssification.

Time series classification is a supervised learning probfewhich the input consists
of a set of training examples and associated class labeksiewdach example is formed
by one or more time series (variables) and the aim is to lastleéxamples to predefined
classes. Time series classification is an important tadk mény challenging applications
including finance, science, natural language processidgreedicine. For example, a car-
diologist might be interested in analysis of ECG signalsnfrdifferent patients in order to
see whether a particular patients, e.g., patients withtarisf some disease, have different
temporal s in their heart signals than a control group [6isi&elogist aim at discriminating
the nature of the seismic waves to classify events such tsjeakes, mining explosions or
nuclear explosions [7]. Moreover, EEG records are usedéataing environment to under-
stand the perceived difficulty by classifying the EEG sigrizdsed on the puzzle difficulty.
Effective and efficient data mining methods are requiredttier knowledge extraction in
such applications.

The algorithms proposed for time series classification cardisided into instance-
based and feature-based methods in general. Instance-biassifiers predict a test in-
stance based on its similarity to the training instances ekample, nearest neighbor (NN)
classifiers classify objects based on the closest traintagiples in the feature space and
one-nearest-neighbor classifiers with Euclidean (NNBeeln) or a dynamic time warping
distance (NNDTW) have been widely, and successfully usédl®] in time series classi-

fication.



One-nearest-neighbor (NN) classifiers with Euclidearadist do not work well if the
patterns of interest translate or dilate over time. DTW [iB3 method that allows a mea-
sure of the similarity of time series independent of certain-linear variations in the time
dimension. The idea of DTW is illustrated in Figure 1. Euehd distance is computed
by matching the observation at the same time points. Coelye®TW aligns the obser-
vations using a dynamic programming approach that maxsrtize similarity of the time
series while satisfying the time ordering of the observetioTherefore, DTW recognizes

the similarity of the time series better than the Euclidestadce.

A

(a) Euclidean

Figure 1. Euclidean and Dynamic Time Warping distance computatipnThe grey lines
indicate that distance is computed over the observatioeittesr end of the line. Alignment
of two time series by DTW recognizes the similarity of theéesgbetter than the Euclidean
Distance

The majority of the NN classifiers works on the raw (obsendath. On the other hand,
there are studies based on alternative time series repatises. These studies search for
similarity on features instead of the raw data. For examplenbolic Aggregate Approx-
imation (SAX) [12] basically represents the time seriesedasn the mean level of the
intervals extracted from the time series. An NN classifiesdohon this representation
searches for similarity on the mean feature of the interals consider the most accurate
NN classifiers based on the raw data in this thesis.

NN classifiers with appropriate distance measures are knowrovide strong and ro-

bust solutions [21, 22] although their space and time requénts may be problematic for



some application. NN classifiers are easy to understand amebdrequire the setting of
many parameters, but they typically do not provide insight time series features impor-
tant to the classifier. Why a particular instance is assigoedcertain class is not clear.

Feature-based classifiers work on the features of the tinesge reduce the dimension-
ality. They are interpretable and generally faster thataimse-based classifiers depending
on the feature extraction method and classification algworit The feature extraction step
should handle the temporal information relevant to classifin and a classifier that can
take the temporal relations into account is required. Tvpes$yof features are generated in
these approaches, global and local features. Global &saare extracted from each time
series and provide a compact representation of the timessgiich as the mean of all ob-
served values) but they are usually insufficient to repriets®e series information useful to
classifiers. On the other hand, local features are extrdiciedsegments of the time series
and require such segments to be determined. Since the seabféatures may vary in car-
dinality and lack a meaningful ordering, many classifiaatadgorithms requiring feature
vectors of fixed dimension have problems in handling thelltezure set.

In this thesis, we explore the problems related to time seiassification. We pro-
pose time series representations that overcome sometlongaof existing approaches for

classifying the time series. In particular, we considerfthiewing questions in details:

e Long time series with time warped patterns, relatively sfeatures of interest, and
moderate noise, are difficult to identify. What are the baseff the feature-based
approaches in such cases? Are there methods that can hamelledrping with all

the benefits of a feature-based approach?



e Why is a time series assigned to a certain class? Are thelermaspecific to certain

classes? Which patterns are relevant to the classificagh?t

e There might be more than one time series relevant to theifotas®n task and mul-
tiple series challenge the similarity-based approacheala8ility of the approaches
become important as the number of time series increases, Bdsh features within
the time series and interactions between the time seriebe@nportant to models.
Are there computationally efficient strategies to learrmlbrefations simultaneously

for time series classification?

1. A Bag-of-Features framework to classify time series

A framework based on the bag-of-features (BoF) representa proposed to bene-
fit from the speed and other advantages of feature-baseddsetb handle the problems
for which NN classifiers with DTW distance are challenged. #&FBepresentation char-
acterizes complex objects by feature vectors of sub-ahjébt propose interval selection
and local feature extraction strategies to explore timeeseepresentation that can handle
translation and dilations based on the BoF idea.

To capture local information, random subsequences arac&tt from each time series
and further divided into intervals. The subsequences argamly in length and location.
The number of intervals that partition a subsequence ard rethat the interval length
varies with the subsequence length. Several features éauittle mean, standard deviation,
etc.) are extracted from each interval and these featumeprise a row in a new data ma-
trix X (one row for each subsequence). Because the subsequelemdsdseary in length
and location, a particular column i consists of features from different time locations
computed over different length intervals. Consequerttlg, dimilarity between time series

6



can be captured independent of certain non-linear vanistio the time dimension. This
representation captures information in a manner similddT@, but from a very differ-
ent construction. After representing the features of thesequences in data matri, a
classifier is trained assuming that each subsequence hiabtieof the time series from
which it is extracted. Classification results on the subsages are summarized to obtain
the new representation for the time series. This data streictlong with a tree-based en-
semble allows for relevant features to be used by the clessifiile irrelevant one tend to
be ignored.

Our local feature generation scheme allows for a novel sgmtation that captures in-
formation in a manner similar to DTW, we then label the subseges and use a supervised
approach to summarize the local information unlike theteagsstudies. Our supervised ap-
proach allows for desirable properties for time seriessifiaation problem. It provides fast
and efficient time series representation for classificagieen with very basic features such
as slope, mean and variance from the subsequences. Glabalefe (e.g autocorrelation
of the time series) can also be extracted from the time sandscombined with other fea-
tures. Finally time series may be classified via any supedvisarner. We denote the new
algorithm as BoF framework to classify Time Series (TSBF).

In Chapter 3, we will address time series classification lermbbased on bag-of-
features representation. We show how TSBF handles the taingiata and demonstrate
its efficiency and accuracy by comparing to alternative ts@ees classifiers on a full set of

benchmark data sets.



2. Supervised time series pattern discovery through locamportance

In Chapter 4, we consider a framework for finding importaritgras of time series for
classification. We focus on finding the segments of the timmiese¢hat have potential to
distinguish the classes. These segments are referred segibas of interest. Regions of
interests are very important to understand the temporatioels. Moreover, they help to
reduce the effort in searching for the time segments usefaldassifier. After finding the
region of interests for each time series, we generate seqedrom these regions. These
sequences are referred as patterns. We generate multifgdengarom the time series and
find the best matching segments of the time series to theat Then each time series is
represented by the distances of the patterns to the bestimgagegments of the time series.
Another classifier is then trained on this representatiorfediure selection algorithm on
the new feature set allows for finding the patterns that atiealrin classification.

A feature-based algorithm is used to reduce the effort tmerilne search space of
the regions of interest in our algorithm. [23] also discgsd®e necessity of pruning the
search space to find the regions relevant to classificationpaoposes a distance-based
method. Feature-based approaches allow for some despadperties such as handling
the interactions and fast computation. Interaction betwbe features in this context is
the relationship of the patterns over multiple intervakst tmay define a class as discussed
by [23].

In Chapter 4, we will describe how the interpretability ih@wved through the pattern
discovery process. We illustrate the compactness of therepmesentation which reduces

the time and space required for classification.



3. Multivariate time series classification with learned digretization

Chapter 5 proposes a time series representation for ctadgifi of the multivariate
time series (MTS). In the multivariate scenario, there aunitipie variables, each in a time
series, related to the classification task. This problembeas studied in different fields
such as statistics, signal processing and control theely [Phe most common approach
is to obtain a rectangular representation of MTS by tramsiiog the set of multivariate
input sequences to a fixed number of columns using diffeemtangularization approaches
[25]. For example, singular value decomposition (SVD) isduby [26—28]. Principal
component analysis (PCA) is used for both feature sele@mhtransformation by [29].
Any supervised learner can be trained on the transformedfdatlassification. Most of
these approaches assume that the variables are numeowaldr, certain variables of the
series can be nominal or missing.

Another strategy is to modify the similarity-based apprescwhich are used for uni-
variate time series. However, MTS are not only describechbyvariables, but also by re-
lationships between the variables [30]. This potentialjuable information is lost if only
the similarity between the individual variables are takao consideration [28]. Moreover,
as in telecommunication application [25], observations lsa nominal (i.e., call type) for
which similarity computation is not well-defined.

We follow a different approach and propose a symbolic repriedion of MTS that is
then integrated to produce a new type of MTS classifier. Rdtt@n select intervals from
the time series and extract features, the observationitirtie series are recursively par-
titioned into terminal nodes of trees. This leads to a newlmlio representation that is

learned based on the class labels. Furthermore, all tinlesselong with their relation-



ships, are considered simultaneously as the nodes arewtiest Ensembles repeat the
process to strengthen the algorithm. This unique repratentis then summarized in a
high-dimensional codebook. However, another ensembldlésithe high dimensionality
to generate an effective classifier. there is only one semuehsymbols regardless of the
number of variables in a MTS

The relationships between the variables, nominal and ngsslues are handled effi-
ciently with tree-based learning. There is only one segeeicsymbols regardless of the
number of variables in a MTS which makes our method commutally efficient when
compared to similarity-based methods. Our approach cadiddhTS examples with dif-
ferent length and it does not require a special rectangalion mechanism since the final
representation is simply obtained by the frequency of tmel®is over the time series.

Chapter 5 introduces a novel representation for multitautiane series. We show how
the new representation leads to a locality sensitive, Blaknd accurate time series classi-

fier.
4. Contributions

This dissertation proposes time series representatiahsiathods for classification The
approaches combine new representations that handledtiansl and dilations of patterns
with bag-of-features strategies and tree-based ensepdieihg. This provides flexibility
in handling time-warped patterns in a computationally effitway. The ensemble learners
provide a classification framework that can handle highettisional feature spaces, mul-
tiple classes and interaction between features. The pedp@presentations are useful for

classification and interpretation of the time series dataaofing complexity.
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The first contribution handles the problem of time warpinghwa feature-based ap-
proach. An interval selection and local feature extracstmtegy is proposed to learn a
bag-of-features representation. This is distinctly ddfé from common similarity-based
time warping. This allows for additional features (such attgyn location) to be easily
integrated into the models. The learners have the capalolinccount for the temporal
information through the recursive partitioning method.

The second contribution focuses on the comprehensibilitheomodels. A new repre-
sentation is integrated with local feature importance messsfrom tree-based ensembles,
to diagnose and interpret time intervals that are impotiattie model.

Multivariate time series (MTS) are especially challengirmgause the input consists of
a collection of time series and both features within timéeseaind interactions between time
series can be important to models. Another contributiors asdifferent representation to
produce computationally efficient strategies that learpnalm®lic representation for MTS.
Relationships between the multiple time series, nomindl rmissing values are handled
with tree-based learners.

Applications such as speech recognition, medical diagrevsil gesture recognition are
used to illustrate the methods. Experimental results shaithe time series representations
and methods provide better results than competitive metbnd comprehensive collection
of benchmark datasets. Moreover, the proposed approaet@sity provide solutions to

similarity analysis, predictive pattern discovery andudea selection.
5. Organization of this dissertation
The rest of this dissertation is organized as follows. Céaptintroduces the bag-of-

features framework to classify the time series. Chapteogagses a supervised algorithm to

11



discover predictive patterns from the time series. Chaptdzvelops a symbolic represen-
tation for multivariate time series classification. Chaeoncludes and discusses several

directions for future study.
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CHAPTER 2
BACKGROUND

1. Notation

We focus on both univariate and multivariate time seriessification problems in this
dissertation. We first define the key terms used for univatiate series classification.

Definition 1. A univariate time series z" = (27, 2%,...,2%) is an ordered set of
T values. We assume time series are measured at equallydsip@eepoints indexed by
t. Each time series is associated with a class lgbelfor n = 1,2,..., N andy™ €
{0,1,2,...,C —1}. Two time series of each class from a two-class time seréssification
problem are illustrated in Figure Z'(= 400,C = 2,y™ € {0,1}). Time series from class

zero are defined by three peaks, whereas two peaks defin@ogggardless of locations.

N

0 100 200 300 400 0 100 200 300 400

0 100 200 300 400 0 100 200 300 400

Figure 2. Two time series from each class are sho@n 400,C = 2,y"™ € {0,1}). The
number of peaks defines each class. The location of the pgaks important.
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Definition 2. An interval of the time seriesz™, I,,(z"), is a sampling of lengthy < T
of contiguous positions from™ starting at positiorp. Thus,I,,(z") = (x,..., ¥y 1)

for1 <p < T —w+ 1. Two intervals of the first time series are given in Figure 3.

Figure 3. Two intervals (right) {v = 50) extracted from the time series (left). First interval
starts at = 1 (p = 1) and second interval startstat= 200, (p = 200).

Definition 3. A subsequence of the time serieg™(s), is a time series segment con-
sisting ofd contiguous intervals. Figure 4 illustrates a subsequehtme series composed
of d = 5 intervals each of lengthy = 20.

Definition 4. A sliding step of sizer < w is used to generate overlapping inter-
vals fromz". Let I,(z™) be the interval of lengthv which starts at positiorp. A
representative set of intervals of lengthcan be extracted by sliding < w positions
from p acrossz™. The set of the representative intervals of lengttacrossz™ is then
{Li(z"™), 140 (™), ..., [147—(2™)}. Settingr = 1 generates all possible intervals of
lengthw. All possible intervals of lengtw = 40 segmented from the time series using a

sliding step ofr = 20 are illustrated in Figure 5.
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Figure 4. A subsequence starting at time= 200 (right) consists ol = 5 intervals of
lengthw = 20 time units .

Definition 5. A pattern of time seriest”, ¥(z,,), is described by the combination of
certain intervals ofc™. A pattern formed by combining three intervals is scheneatin

Figure 6.

The notation for multivariate time series is slightly difat than that for univariate time

series.

Definition 6. A multivariate time series, (MTS), X™, consists ofA/ univariate time
series each of which h&sobservations where’, (t) denotes the observation at timgom

variablem of MTS n. Formally, MTSX™ is represented by x M matrix as:

where
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Class 0

Figure 5. Shown are 19 intervals of length = 40 segmented from the time series using

a sliding step of- = 20. Mean level of the data points over each interval is reptteskeby

the red line.
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Figure 6. A pattern of time series™ composed of 3 discontiguous intervals. It is a combi-

wherew = 40.

)

("

and /s

Ligo(2™)

)

l.n

(

nation of/2g

each of which is associated with a class lafieffor n

There areN training MTS,

.,C — 1}. Univariate time series is a special case of MTS
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1,2,..

whereM is equal to one.
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2. Dynamic time warping

Dynamic time warping (DTW) is a well-known method for measgrsimilarity be-
tween two given (time-dependent) sequences (e.g. times3axihich may vary in time or
speed. This similarity is measured by finding the optimaratient between two given time
series under certain restrictions. An example alignmeprtagided in Figure 7 from [2]. In-
tuitively, the sequences "warped” non-linearly in the tidimension to measure similarity

independent of certain non-linear variations in the tinmaatision.

- ]
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Figure 7. Time alignment of two time-dependent sequences [2]. Aligpeints are indi-
cated by the arrows

Formally, the objective of DTW is to compare two univariatme seriesz! =
(z1,2d, ..., 2}) of length NV andz? = (2%,23,...,2%,) of length M. To compare two
series, one needs a local cost measure, sometimes alsedeferas local distance mea-
sure [2], which is the evaluation of the local cost measureefh pair of elements of the
time seriesc’ andz2. Then a cost matrix is computed as:

c(zn, ) = [|lzn — 23|

Visual representation of the cost matrixc RV*M is illustrated in Figure 8 for two

time series [2].
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Figure 8. Cost matrix of two time series using the Manhattan distaabsdlute value of
the difference) as local cost measure. Regions of low cesindicated by dark colors and
regions of high cost are indicated by light colors

The goal is to find an optimal path minimizing the overall cost. To determine an
optimal pathp, one could test every possible warping path between thesserhich is
not computationally efficient. Therefore, a dynamic progmsing approach is proposed to

solve this problem. LeD(n,m) be anN x M matrix, which is also referred to as the

accumulated cost matrix, then:

D(n,m) =min{D(n —1,m —1),D(n — 1,m), D(n,m — 1)} + c(z}, z2)
where

n m
D(n,1) =Y ¢(z},z?) andD(1,m) = Zc xt,z7)
k=1 k=1
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To recover the optimal path, tracing back from the uppertroginner of D (denoted as

p = (N, M)) is required:

pi—1 = arg m|n{D(TL - 1am - 1),D(TL - 1,m),D(n,m - 1)}

The optimal path is illustrated in Figure 9(a) (white liney the time series of Figure
8 [2]. Here,p* covers only cells o that exhibit low costs. The resulting accumulated cost
matrix D is also provided in Figure 9(b) [2].

Various modifications have been proposed to better cortiepbssible routes of the

warping paths [2]. We refer to [2] for further details of th@difications of DTW.
3. Bag-of-Features approach

Bag-of-features (BoF) approach characterizes complegctbjby feature vectors of
sub-objects. BoF representations are popular, mostly nmpciber vision as content based
image retrieval [31-33], natural scene classification E#] object detection and recogni-
tion [35—-39] because of their simplicity and good perforaafd0]. A BoF is also referred
to as bag of words [41] (in which occurrences of each word ammied to summarize
the text contents in document), bag of instances in the pialinstance learning (MIL)
literature [42,43] and bag of frames in audio and speechgration [44, 45].

The basic idea is illustrated in Figure 10 for images [3]. Ha traditional approach to
bag-of-words representation, the local image regions esiestimpled using an appropriate
method (e.g., random, interest point detector [46]) andatharized by features computed
from the pixels in the region (e.g., distribution of the pixalues). Each region generates
a vector of features, and there can be many rows generateddach image. A visual
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dictionary (or codebook) is then learned using the coltecof rows from all images (e.g.,
clustering to assign discrete labels to regions). The tiagutlistribution of the regions
is quantized through the codebook (e.g., a histogram of lillgter assignments for the
sampled regions of each instance) as the summary of the image

Similar to the terms used in computer vision problems, tierees segments may con-
tain rich local information about the time series. A BoF exantation allows one to in-
tegrate local information from segments of the time semean efficient way. Moreover,
assumptions on the cardinality of the local feature set atigtms in the same time interval
can be relaxed by this framework.

In areas such as image classification, codebooks can beuwdestin supervised and
unsupervised manners using the local feature set. Ungspdreonstruction often uses
clustering algorithms such as k-means [47-49] or agglotweralustering [50, 51]. The
collection of rows from all images are clustered, and a elu is assigned to each region
as illustrated in 10. An alternative approach to clustei$tg generate a codebook based on
the histogram of the raw features [44]. However, these sgotations are highly dependent
on the histogram generation procedure. Also, similarégdal approaches are proposed in
the MIL literature. Instead of labeling instances, the knitly of the instances within a bag
and between bags are used to construct the codebook [52].

As opposed to the unsupervised case, the class labels atdaugaide the learning
of the codebook in supervised approaches. The class latrethd sample regions are
unknown but the class for of the image is known in these studigs, 42, 53] made use of
similarity information for feature transformation undertin assumptions in MIL. [54,55]

classified regions with decision trees and then predictbdldafor the image. The class
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label defined for each region is the class of the correspgnidiage in these studies. [56]
extended this idea with randomly-created clustering tvdesse leaves define a partitioning
or grouping.
4. Random forest

A RF is an ensemble of decision trees{g;, j = 1,2,...,J}. Each tree is constructed
using a different bootstrap sample from the original datho# one-third of the cases are
left out of the bootstrap sample and not used in the congbrucif the single tree. These
are called out-of-bag (OOB) samples.

The prediction for instance from treeg; is §;(z) = argmax, p§(z), wherep§(z) is
the proportion of class instances in the leaf node thatis assigned to by the rules that
define thej-th tree, forc = 0,1,...,C — 1. Let G(z) denote the set of all trees in the RF

where instance is OOB. The OOB class probability estimatezofs

wherel(-) is an indicator function that equals one if its argumentus tnd zero otherwise.

In the tree growing steps of RF, the best split are determiraesg:d on only a random
sample of features. In this study, features are also refasevariables and both terms
are used interchangeably. The Gini measure of impurityed i determine the feature se-
lected to make the nodal split in the tree construction pec®ften, the number of features
evaluated for split decision ig’v, wherev is the number of features. The random selec-
tion reduces the variance of the classifier, and also redheesomputational complexity
of a single tree fromO(vnlogn) to O(y/vnlogn) (assuming the depth of treed¥log n)
wheren is the number of instances). Therefore, for a large numbégatfires a RF can be
as computationally efficient as a single decision tree.
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RF provides a variable importance measure called Gini Whrigmportance(GVI)
which is the sum of the Gini impurity decrease for a particutaiable over all trees. Let
N7 be the number of observations at ngdef the ;' tree, andV7 (L) and N7 (R) be the
number of observations of the left and right child nodesradpditting, and Iet:lg.’(k) be the
decrease in impurity produced by variallat thep” node of thej* tree.

N?(L)
9

N;

N?(R)
NP
J

The decrease in impurity i (k) = G — (

! G?(L) +

G’ (R)) whereG’ (L)
andG?(R) are the Gini indices of the left and right node respectiveilgl @5 is the Gini

index of the parent node. The Gini Variable importance ofalde % is defined as

J
Vi) =5 S (3 (k)

Jj=1 p€S;

whereIJ’.’(k) is an indicator variable for whether variabitevas used to split node of tree
j andsS; is the set of split nodes of the trge

To summarize, an instance is labeled through a majorityngoéipproach using the
tree results for which it is OOB. The estimates computed f@@B predictions are easily
obtained and have been shown to be good estimates of geaémli error [57]. Variable
importance is important to find out the features relevartiécctassification task. Moreover,
RF has several advantages when compared to other classHigis dimensional feature
spaces, multiple classes, and missing values are handéedinBar models and interactions
between features are allowed. It is scale invariant andstdiououtliers, and computations

are reasonable even for large datasets.
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Figure 9. (a) Cost matrix: as in Figure 8 and (b) accumulated cost mafpixvith optimal
warping pathp* (white line).

(i) Region detection (ii) Feature extraction (iii) Vector quantization
K-means

:U:H» Hz:.» TDUT»

Figure 10. Four steps to compute the bag-of-words representationnfagés [3]. (i—
i) obtain the visual dictionary (or codebook) by vectoragizing the feature vectors of
sampled regions using an appropriate method (k-meansghggtin this example), and
(iv) compute the image histograms — bag-of-words — for irsa@ecording the obtained
codebook. (i) shows three columns representing the imagéseach row is a feature
vector of a sampled region from the corresponding image. sEmepled regions are then
labeled by unsupervised learning at the subsequent step.
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CHAPTER 3
A BAG-of-FEATURES FRAMEWORK TO CLASSIFY TIME SERIES

1. Abstract

Time series classification is an important task with manyllehging applications.
Nearest-neighbor classifiers with Dynamic Time Warping () Tdistance is a strong so-
lution in this context, but its performance degrades withgldime series, relatively short
features of interest, and moderate noise. On the other featdye-based approaches have
been proposed as both classifiers and to provide insighthieteeries, but these approaches
have problems handling translations and dilations in Igedterns, which can be impor-
tant for classification. Considering the shortcomings ahbapproaches, we present a
framework to classify time series based on a bag-of-featuepresentation (TSBF). Lo-
cal information is captured from multiple subsequencescsetl from random locations
and of random lengths and partitioned into shorter intstv@lonsequently, features com-
puted from these subsequences measure properties atulifiecations and dilations when
viewed from the original time series. This provides a featoased approach that can han-
dle warping, although in a substantially different manmenf DTW. We further partition
subsequences into intervals to detect patterns represkeyi® series of measurements over
shorter time segments. Local features are aggregated ioton@act codebook through
class probability estimates from a supervised learner.ithahcl information (such as sub-
sequence locations) are easily integrated through a féisteet learner that handles mixed
data types, different units, etc., and relevant globaliiegt can easily supplement the code-
book in our framework. We compare our classifier to well-knawearests from the UCR
time series database.

Key words: supervised learning, feature extraction, codkb
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2. Introduction

Classification of time series is an important task with mahgllenging applications
such as signature verification, speech recognition or finhanalysis. The algorithms pro-
posed for time series classification can be divided intoamst-based and feature-based
methods. Instance-based classifiers predict a test irstagged on its similarity to the
training instances. For time series, one-nearest-neigf) classifiers with Euclidean
(NNEuclidean) or a dynamic time warping distance (NNDTW)dnheen widely, and suc-
cessfully used [15-19]. Although Euclidean distance i®tand space efficient, it is often
weak in terms of prediction accuracy [17]. DTW [20] allows &asure of the similarity
independent of certain non-linear variations in the tinraeafision, and is considered as a
strong solution for time series problems [58]. Despite e that finding DTW distance
without any modification on the algorithm is known to be cotapionally demanding for
many applications [22], fast lower bounding function isdibg [59] to prune the time series
that cannot be the best match. Significant improvement ieaeth in terms of computa-
tion time when the bounding scheme is used together withxingebut a 1-NN classifier
using DTW is still less tractable for real-time classificatiof time series [23]. Also, a
DTW solution typically does not provide insight into timeries features important to the
classifier. For example, [60] proposed a decision tree ambravhich splits instances based
on DTW distance between a pair of time sequences. It is fastapared to NNDTW in
terms of testing, but the information provided is limitecchese of the feature representa-
tion. On the other hand, [61, 62] proposed an approach to fibdexjuences of the time
series which are thought to be maximally representativeatdss. These subsequences are

called shapelets and algorithms based on shapelets dteilitterpretability. Because the
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information provided by time series shapelets is limiteth&ir presence or absence and the
computation time required for generating them is significi28] proposed a more expres-
sive shapelet representation by combining multiple stetipéh logic expressions that can
be faster and more accurate. Another approach that makes tgesimilarity of the series
based on the subsequences is to use kernel-based clas$ifiese approaches find a kernel
function based on the similarity between the time serieadallregions. [63] similarly gen-
erated subsequences from the time series and defined spailarity kernels based on the
subsequences (distance-based approach), with classififleim a support vector machine
(SVM).

Feature-based approaches work on the feature vectorstextfaom a set of instances.
They are generally faster than instance-based classipending on the feature extraction
method and classification algorithm. [64] used knots froreagwise-linear approximation
of the time series to detect patterns and classify the sdf88% proposed an automated
approach for feature extraction using a genetic algorithhen the extracted features were
taken as inputs to a SVM [66]. [67] proposed a multi-layercpptron neural network fed
by statistical features such as means and standard desatidculated from the time series.
[68] used intervals of time series to extract features orctvlai SVM was trained.

Two types of features are generated in feature-based ap®aglobal and local fea-
tures. Global features are a compact representation ofntarices (such as the mean
value). On the other hand, local features are extracted fegments of the time series
and require such segments to be determined. Standardicktasn algorithms can be built
on global features easily, but they may omit important latelracteristics. Local features

can supplement global information with useful patternd,tba set of local features may
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vary in cardinality and lack a meaningful ordering. These laasic problems for many
classification algorithms requiring feature vectors ofdixitmension.

Methods based on features of intervals (such as [69, 70)nssshat patterns exist in
the same time interval over the instances, but a patterndiéfates a certain class may
exist anywhere in time, as well as be dilated in time. DTWmfits to compensate for
possible time translations/dilations between featuraswith long time series, relatively
short features of interest, and moderate noise, the cégdbil DTW is degraded.

Our work is based on the bag-of-features (BoF) approach iohwdomplex objects are
characterized by feature vectors of sub-objects. BoF septations are popular, mostly
in computer vision as content based image retrieval [31—+3&ural scene classification
[34] and object detection and recognition [35-39] becaustnear simplicity and good
performance [40]. A BoF is also referred to as bag of word$ (#ilwhich occurrences of
each word are counted to summarize the text contents in datynbag of instances in the
multiple instance learning (MIL) literature [42, 43] andgoaf frames in audio and speech
recognition [44, 45].

The basic idea is that local image descriptors are samplad as appropriate method
(e.g., random, interest point detector [46]) and charasdrby their feature vectors (e.g.,
distribution of the pixel values). A visual dictionary (avaebook) is then learned using the
vectors of visual descriptors (e.g., clustering to assigordte labels to descriptors). The
resulting distribution of descriptors is quantized thriouige codebook (e.g., a histogram of
the cluster assignments for the sampled descriptors ofieatance) as the summary of the
image. Similar to the terms used in computer vision probleinmse series segments may

contain rich local information about the time series. A Bepresentation allows one to
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integrate local information from segments of the time seiean efficient way. Moreover,
assumptions on the cardinality of the local feature set atidms in the same time interval
can be relaxed by this framework. Three implementatioreiséul this framework are local
feature extraction, codebook generation and classificdtmn the codebook.

Studies on BoF representations for time series data areetinmith few studies in au-
dio and speech recognition literature [44, 45, 71-73]. Temaes similarity based on a
bag-of-words representation was considered by [74]. Alswe series were discretized by
symbolic aggregate approximation (SAX) and time serieewepresented as words using
the symbols generated by this approach ( [12]). Similaritghe time series were then
computed using the histogram of the occurrences of wordss.igsimilar to the codebook
generation from patches used in computer vision problemg.2], the speech signals were
represented as images through preprocessing (simulatimie detection, temporal inte-
gration) and patches were segmented from the images. Usatgnguantization, segments
were represented by sparse codes and they were aggregateghthistograms to generate
features at the bag level. [45] used a clustering approastintonarize the local information
to a bag level.

Histogram-based approaches for image classification gmubldo not take the spatial
location of the local patches into account in codebook gdimar. Analogously, BoF mod-
els in time series ignore the temporal ordering inhererttésignal and, therefore, may not
identify a specific content or pattern [75]. Also, [74] conmitexd that most of the existing
work on time series similarity focuses on distance-baseilaiity. They claimed that such

approaches can work well for short time series, but may diegi@ long time series. They
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argued that it is more appropriate to measure similaritynffogher-level structures (e.g.,
bag of words) in long time series, rather than point to pdotal comparisons.
Consequently, we consider a different direction in this kvoe use a feature-based
approach, but extract multiple subsequences from eachsemes, and these subsequences
are selected from random locations and of random lengthsrefdre, features computed
from these subsequences (e.g., mean, standard deviateagune properties at different
locations and dilations when viewed from the original tinegiess. We form a matrix of
these features, but the value in roand row; of the same column may be calculated from
subsequences that differ in location and/or length. Theawifes are input to a tree-based
(recursive partitioning) ensemble that enables subseggeamlevant to the class to be par-
titioned from others. In this manner, we provide a featussda approach that can handle
warping, although in a substantially different manner fidomw. Furthermore, BoF meth-
ods disregard location information. Instead, we furthetian subsequences into inter-
vals to detect patterns represented by a series of measuieower shorter time segments.
Subsequences are labeled and a supervised learner is wsggtuct a compact codebook
from simple class probability distributions. Our supeedspproach provides fast, efficient
time series representation for classification, even witly basic features such as slopes,
means and variances from the subsequences. Additionairiafion (such as subsequence
locations) are easily integrated through a learner thatllearmixed data types, different
units, etc., and relevant global features can easily supgié the codebook in our frame-
work. Finally, time series may be classified via any superviearner. We demonstrate
TSBF is efficient and accurate by comparing to alternativestseries classifiers on a full

set of benchmark datasets.

29



The remainder of this paper is organized as follows. Se@i@novides background.
We summarize the problem and describe the TSBF frameworleatid®h 4. Section 5
demonstrates the effectiveness and efficiency of TSBF lingesn a full set of benchmark
datasets from UCR time series database [76]. We discuss $3BRavior for certain
datasets, explain how TSBF works on an example and comptré dgical-Shapelets in

Section 6. Conclusions are drawn in Section 7.
3. Background

Noncontiguous patterns in time is another problem whickctéf the performance of
DTW. An example from the OSULeaf dataset (from [76]) is ithased in Figure 11. The
aim is to classify the leaves based on their shapes. The bounéla leaf image is repre-
sented as time series using the angles between consecixtivg@ints. Because orienta-
tions of the leaf pictures are different, shifts and nonigudus patterns are observed in the
time series representations. Consequently, it is impbttaallow for features useful to the
classifier to occur at different times in different time ssrinstances. On the other hand, the
images can be aligned to avoid the discontinuity, but thégsdgferent problem considered
in the context of rotation invariance [77] which is not calesied here.

BoF representations are based on local feature extractichvgamples a representa-
tive set of subsequences from the time series, and an effeneheffective representation
of the time series is required [40]. A piecewise-linear agpnation is the most commonly
used preprocessing step for the discretization of the dataining time series [78]. Time
series approximation is an active research topic and a ampsive literature review of

time series segmentation approaches is provided by [8, 78].
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Figure 11. (a) Two sample instances from the same class from the OSUédaget. The
orientations of the leaves are different and this shiftégpas in the time series. (b) Time
series representations of three leaves from same clagsrrigabighlighted are contiguous,
but the similar pattern appears in the beginning and enchéobbttom series.

In areas such as image classification, codebooks can bewtiestin supervised and
unsupervised manners using the local feature set. Undapdreonstruction does not make
use of the class information from the bag. A histogram of dares from the patches can
be used as the codebook ( [44]) in some unsupervised apg®adobwever these represen-
tations are highly dependent on the histogram generatiocepure. Therefore, clustering
algorithms such as k-means [47-49] or agglomerative cingt¢50, 51] over large sets of
training patches are proposed to better represent the fiegtaire set for image classifica-
tion. [72] followed a similar approach after changing thpresentation of the audio data

to images. In contrast to our method, regions are selectédaniorganized approach (not

random), mean features are the focus (without locationighes are clustered with k-means
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and a codebook (unsupervised) is generated based on thibulish of the cluster assign-
ments. Also, similarity-based approaches are proposekdeirMiL literature. Instead of
labeling instances, the similarity of the instances withimag and between bags are used to
construct the codebook [52].

As opposed to the unsupervised case, the class labels atdaugaide the learning
of the codebook in supervised approaches. [33, 42, 53] msel@fusimilarity information
for feature transformation under certain assumptions ih.f84, 55] classified descriptors
with decision trees and then predicted labels for the bagsc[&6] extended this idea with
randomly-created clustering trees whose leaves definditigrang or grouping.

A random forest (RF) classifier [57] is used here to both gareerlass probability esti-
mates for codebooks and to classify time series. A RF is asneble ofJ decision trees,
{9;,7 = 1,2,...,J}. Each tree is constructed from a different bootstrap sampthe
original data. The instances left out of a bootstrap sampderat used in the construction
of a single tree are called out-of-bag (OOB) instances. &hewde of each tree, a RF
considers the best split based on only a random sample afrésatOften, the sample size
is /v, wherev is the number of features. The random selection reducesatiienee of the
classifier, and also reduces the computational complekitysingle tree fromO(vnlogn)
to O(y/vnlogn) (assuming the depth of tree 3(logn) wheren is the number of in-
stances). Therefore, for a large number of features a RFeas bomputationally efficient
as a single decision tree.

The prediction for instance from treeg; is §;(z) = argmax, p§(z), wherep§(z) is
the proportion of class in the corresponding leaf of theth tree, forc =0,1,...,C — 1.

Let G(z) denote the set of all trees in the RF where instanée OOB. The OOB class
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probability estimate of is

C _ 1 . _
pi(z) = @) Z I(9(z) = c)

9;€G(x)
where(+) is an indicator function that equals one if its argument i tand zero other-

wise. The predicted class i§x) = argmax,p°(z). The estimates computed from OOB
predictions are easily obtained and have been shown to lwkagtionates of generalization

error [57]. We use OOB class probability estimates in thiskwo

Although other classifiers can be used in our framework, Rivides a number of de-
sirable properties for the time series problem. High-disiemal feature spaces, multiple
classes, and missing values are handled. Nonlinear modélsteractions between fea-
tures are allowed. Class probability estimates based on @&Bnces are provided. It
is scale invariant and robust to outliers, and computatemesreasonable even for large
datasets. Furthermore, the recursive partitioning in Réwal one feature to be used to
separate some sets of time series and (potentially) a eliffdeature to separate others.
Because class-relevant patterns might appear at difféne@tiocations between series, this
capability to split on different features is important tdewve the time warping through a
feature-based approach (after it is combined with the nansl@bsequence selection).
4. Time Series Classification with a Bag of Features

A univariate time seriesg” = (z,z%,...,27) is an ordered set df’ values. We
assume time series are measured at equally-spaced timis.pdife consider univariate
time series for simplicity although our method can be exteint multivariate time series
in a straight-forward manner. Each time series is assatiaféh a class label™, for
n=1,2,...,Nandy” € {0,1,2,...,C —1}. Given a set of unlabeled time series, the task
of time series classification is to map each time series tambtiee predefined classes.
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Note that we first standardize each time series to zero meduu@in standard devi-
ation. This adjusts for potentially different baselinessoales that are not considered to
be relevant (or persistent) for a learner. The basic elesnafndur framework for time se-
ries classification are illustrated in Figure 12. We use &suged method to generate the
temporal dictionary or codebook. Our implementation isialty simpler than this generic
description. We use the class probability estimates frompgivised learner to generate

the codebook in our approach. Details are provided in tHeviimhg sections.

Time series (a)
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Figure 12. Generic description of the time series classification withag-of-features
(TSBF) algorithm. Subsequences are sampled from each @messand features are ex-
tracted from the subsequences (left). Subsequence featteesummarized with temporal
words that are used to form a temporal dictionary or codebddie distribution over the
codebook can be described with histograms, and a supeteigater is trained on the his-
tograms.

4.1. Subsequences and feature extraction

Time series classification approaches that are based oal glaperties of a time series
can potentially be improved with local patterns that mayraethe class. Therefore, we

represent each time series with feature vectors derived fobsequences. However, to
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capture patterns along the time series, each subsequéncepresented by the features of
smaller segments called intervals. A fixed-length windomsgmentation has the potential
to omit patterns because they may appear with differentthsngnd be split across the
time points [8]. Thus, we generate subsequences of randogthlé, and segment them
using the same number of intervals to preserve the same mushlbeaturesd for each
subsequence. This results in intervals of random length= %S which provides some
desirable properties. This allows for generation of sflésed on the features of different
length intervals in tree-based models. Therefore, théioakhips of patterns with different
lengths can be better captured.

We set a lower bound on the subsequence lehgtlin) as a proportion: (0 < z < 1)
of the length of the time series. Thus,> [,,,;, = z x T. We also set a minimum interval
lengthw,,,;, SO that extracted features are meaningful (that is, we avaidpe computed
from an interval with one point). Givenandw,,;, the number of intervals to represent the
subseguence is determineddas- {%J Note that although andw,,;, are fixed, the

actual length of an intervalb; can vary with the random samples. Consider the number of

T

=
Wmin

subsequences generated to represent a time series. Tdnere% J possible intervals
in a time series if the time series is represented using tmémim interval length. For
any subsequence withintervalsr — d intervals are not covered by this subsequence. We
generater — d subsequences. With this setting, for every interval theeetgd number of
subsequences that cover it is at least one.

Given the subsequence and interval calculation, we exteattires from each inter-

val and combine them to represent the subsequence. Intefairesfy(t1,t2),k =

1,2,...,K for (0 < t; <ty <T) are calculated from the data betwegrand¢,. Linear

35



regression models are fit on the intervals to extract featufer each interval, the slope of
the fitted regression line, mean of the values, and variafite walues are extracted. These
features are important for classification because theyigeanformation about the shape,
level and the distribution of the values. A feature vectordsubsequence concatenates the
features from alll intervals in the subsequence. In addition, the mean andnagiof all
the values in the subsequence, together with the start ahtinee points are also included
in the feature vector. Start and end points introduce thatioae information which might
be important for classification. That is, hete= 4 subsequence-level features are added.
The set of subsequencé® for time seriesn is built by generating: — d subsequences
randomly. As an illustration fof” = 100,z = 0.5, w.,,;, = 10, three subsequences are
shown in Figure 13. Subsequencef time seriesc™ is denoted as™(s).

The local feature extraction algorithm for the time serggiven in Algorithm 1 and
illustrated in Figure 13. Hergy(¢1,t2) is denoted ag;i(s) for simplicity, wherei is the
interval andk is the feature index. The mean and variance of the valueiauhsequence
s are given asneans andvar;, respectively. The start and end points are represented as

sty ande;.

Algorithm 1 Local feature extraction from the subsequences of timese¥i

Set subsequence countas 1
repeat
Generate a subsequence lengtke [z x T',T] and a starting point for subsequence
pe{1,2,...,.T —I,+1}
Set the feature set of subsequer@sS™ = ()
for i =1toddo
Add features from interval of subsequence™(s) to S”
end for
Add subsequence features$® for subsequence” (s)
Set the class label of subsequentés) asy™, s = s + 1
until s >r —d

36



x"(1) [,=80 wlzjsgao/sj x"(2) =50 w,=10 (50/5) x7(3) ;=60 w,=12 (60/5)

3
0"?6’ 80

—-'--.
Qm\// 0L—~"T0 80 I
(1) faall)
faa(1) f.(1) feall)
f12(1) f52(1) fall)
fis(1) \ ‘
v
L5 [f1a(2) fi2(1) f1s(1) f2u(1) f22(1) f2s(1) wemnns f52(1) fs2(1) fss(1)|mean; vary st; e,
f11(2) f12(2) f13(2) F21(2) f22(2) f23(2) oooens f52(2) f52(2) f53(2) |mean; var, st; e,
f11(5) 12(5) f15(5) f21(5) f22(5) f23(5) woveeerns f51(5) f52(5) fs3(5)|means vars sts es

| J
Sn

Figure 13. Interval and subsequence generation and representatifise§uences of ran-
dom length are sampled from the time series (top). Each gubsee is partitioned into
intervals of lengthw, = %S whered is determined byw,,;, andz asd = [%J =5
(middle). A subsequence is represented by features cothfrat@m the intervals (bottom).
Each instance in the feature matrix represents a subsegju€he number of subsequences
generated for the time series|i§2| —5 =5

4.2. Codebook and learning

After the local feature extraction for each time series,\& dataset is generated where

each subsequence from each time series becomes an instdmecelass label defined for

37



each instance is the class of the corresponding time s&¥esain a supervised learner on
the new dataset and extract histograms from the classificegisults (such as error rates or
class probability estimates) to construct a codebook.

In our approach, we use a classifier that generates a clasahility estimate for each
instance (subsequence). The estimate provides informaticthe strength of an assign-
ment. Letp”(s) denote the class probability estimate for clafsom subsequence of
seriesz™. For each time series” and each class the distribution of (s) overs is sum-
marized with a histogram withbins (denoted by a vectaf’). The vectors are concatenated
over each class to form the codebookk™, for time seriest”. Because the sum of class
probability estimates for a subsequence is equal to onefgttares for one class can be
dropped in the codebook. We use equally-spaced bins in quoagh so thatC' — 1) x b
features are in the codebook. We aim to capture the detaiteaimilarity between subse-
guences with the histograms of class probability estimafbe relative frequencies of the
predicted classes for the subsequences supplements thieoodd That is, if we generate
10 subsequences for a single time series in a two-classgonodohd seven subsequences are
assigned to one class, the relative frequency of this c&BslD = 0.7. The information
provided by the relative frequencies is less detailed, oéaningful summary, of the class
probability estimates.

A codebook is an effective way to simplify the informatiortlre subsequences in terms
of speed and good discrimination [40, 56]. Using the préalist of a classifier trained
on the subsequence information, we produce the codebodkeasutnmary of the local

information. We use a RF to generate the class probabiliiynates, although another
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learner that provides class probability estimates can bd ursthe framework. We denote
the RF applied to the subsequence datasé&iasub.

Moreover, global features such as autocorrelation aréyeéasoduced to obtain a better
representation of a time series. In addition to representaf the time series as codebooks,
we can add any global feature that has the potential to ingptiog classification results.
After adding the global features, any supervised learnerbsaused to classify the time

series. The main algorithm is summarized in Algorithm 2.

Algorithm 2 TSBF (Time Series Classification Based on a Bag-of-FeaRegsesentation)

for all time seriesc™ do

Standardize the time series

Generate the features for subsequerfes
end for

N
Build a classifier orU S™
n=1

for all time seriesc™ do
Construct the codebook using classification results
Generate global features

end for

Classify the time series using the codebook and the glob#lifes
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Figure 14. More specific description of the time series classificatiathva bag-of-features (TSBF) algorithm. Subsequences are
sampled from the time series and features are extractedtfirersubsequences (left). Each subsequence is labeledheittiass of

the time series, and a learner generates class probalstityages. Histograms of the class probability estimatesganerated (and
concatenated) to summarize the subsequence informatidtohalfeatures are added. A final classifier is then trainedhennew
representation to assign each time series.



Given the codebook and the global features, a RF is appliethtsify the dataset of
time series. This RF is denoted A¢'ts. RF is competitive with the widely used learners on
high-dimensional problems [79]. Fast evaluation is anoitih@ortant requirement for most
of the time series classification tasks and RF is fast in t@frbsth training and evaluation.
Moreover, it is inherently multiclass; therefore, builgiseveral binary classifiers (as for
one-versus-one training in a support vector machine) igemired. Figure 14 illustrates
some of the steps of our approach. The TSBF is slightly sintpbn the generic algorithm
in Figure 12 because a supervised learner generates clalsabpity estimates that are
directly used as inputs to histograms. We consider the tiad to form the histograms of
the class probability estimates and the frequency of thdigel classes as the temporal

dictionary (codebook) in our specific approach.

4.3. lllustrative Examples

We discuss how the BoF approach handles patterns with twplesiexamples. The
first example illustrates location invariance. Considerva-tlass problem in which series
from class zero are defined by three peaks, whereas two peéike dlass one, regardless
of locations. Two time series from each class are illustrate=igure 15. These series are
standardized. Methods built on interval features whichuagsthat patterns exist in the
same time interval over the series can have problems, asishawur small analysis below.

The location of the peaks for the series in Figure 15 e 40], [60,80],
[105,125],[130, 150], [165,185] and [310,330]. Suppose that subsequences of length 80
are generated and characterized with the mean over twoatggleach of length 40) for il-
lustration purposes. The subsequences are generateddimg shanner with an overlap of
one interval (and this yields 9 subsequences per seriegptBéhe mean features of inter-
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Figure 15. Two time series from each class are shown. The number of pkdk®es each
class. The location of the peaks is not important.

val 1 and 2 agf, and fs, respectively, The two series of each class are illustreté&dgure
15. Figure 16(a) provides the histogram of the class prdibabstimates fromR F'sub for
two time series of different classes. As given in Figure L6éasupervised learner can sep-
arate the two classes based on the subsequence distrébulomerical results are shown
later in this section. The subsequence location featueeaa@rimportant for this particular
example.

A different type of example defines the classes by the locatwf the peaks (Figure
17). If the peak is in the first half of the time series, theesers class zero, and otherwise it
is class one. Suppose we generate the subsequences in thevagms we did for the first

example with an interval length of 5. We use a smaller infdar@gth here to demonstrate
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the effects of subsequence lengths in the following expamim The distributions of the

subseguences from each time series are the similar if ondnrimeerval features are used.
However, subsequence location features (i.e., the stdread point features) capture the
location information for the subsequences. The distrilbutf the subsequences is illus-
trated on the three-dimensional feature space in Figutte) I6{e location feature provided
in the figure is the average of the start and end point of theesyience (i.e. midpoint of

the subsequence).

To further describe the characteristics of our approachdiseard the location features
so that the interval means are not sufficient features whenl#ss is defined by peak loca-
tion. However, such a situation can be handled with a simppgaach. That is, generate
longer subsequences. Consider the case where a subseguireceme series itself. Then
classifiers (such as trees) based on features (such as rfreamgijxed intervals can easily
identify these classes. Our approach could also handldyhigenerating multiple random
subsequences based on a minimum subsequence length. sélsingthe smaller the mini-
mum subsequence length, the more subsequences are gersrdéscribed in Section 4.1.
This increases the likelihood of having longer subsequendée present an example anal-
ysis below. However, our basic algorithm considered in tkgeeements section includes
location features.

In order to illustrate the BoF approach we generate symtlugtta for each of these
examples. The first and second examples are referred to asithieer of peaks and the
peak location examples, respectively. The length of eawh Heries is set to 400 and 200
time units, respectively. Following the class definitiong generate a small dataset with

10 time series from each class for training. Then, 200 timese@er class are generated for
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testing. Table 1 summarizes the average test error rated@veplications of two versions
of TSBF which are the regular and TSBF without the subsequértation features. We
also include a row for a RF classifier (with 500 trees) basethermean features computed
from non-overlapping intervals of five time units each. TRiE might be considered a
simple, baseline approach to classify the time series. Weider four levels of minimum
subsequence length settingss {0.1,0.25,0.5,0.75}, bin size of 10 and 500 trees in both
RFs RF'subandRFts). We also set an upper limit on the subsequence length (gle:rast
a proportionu) in these synthetic examples to illustrate the role of liocateatures in the
results for TSBF, but the default TSBF algorithm does notausdh an upper limitf = 1).

Also, the number of sequences per times series followed thel formula described in

Section 4.1.
Test Error Rate
Method Lower Bound Upper Bound Example with Example with
Factor Factor Peak Location Number of Peaks

TSBF 0.1 1 0.005 0.001
TSBF 0.25 1 0.011 0
TSBF 0.5 1 0.012 0

TSBF 0.75 1 0.01 0.001
TSBF w/o location 0.1 0.25 0.441 0

TSBF w/o location 0.1 0.5 0.244 0.002

TSBF w/o location 0.1 0.75 0.056 0.014
TSBF w/o location 0.25 0.5 0.289 0
TSBF w/o location 0.25 0.75 0.098 0
TSBF w/o location 0.5 0.75 0.074 0

RF 0.11 0.16

TABLE 1. Average test error rates over 10 replications for TSBF, T8BRout the subse-
guence location features (TSBF w/o location) and baselielBssifier (last row) applied
to two synthetic datasets. The TSBF performance is alwdgtvwely good for the number
of peaks example because it is amenable to the bag of featppgeach. Error rates for
the peak location example are lower when longer subseqs@mneallowed to be generated
without the location features.

The results from these simple examples illustrate progexif the BoF approach. As

expected, for the number of peaks example all the TSBF #tgos perform well, better

44



than an RF based on fixed intervals. This shows the strengtiedoF approach and the
limitations of features from fixed intervals in such exansple

For the peak location example, the error rates for TSBF dpetantially smaller than
the error rate of RF classifier. This illustrates the probkemeneric classifier can have
with location invariance. For this experiment only, to stulkde effects, we constrained the
maximum subsequence length. The results wite: 0.1, = 0.25 show much poorer
performance with the constrained shorter intervals wherdbation features are not used.
For intermediate constraints (suchzas= 0.25,u = 0.5) the performance results are rel-
atively moderate. However, even with a smalE= 0.1, the results improve substantially
when we relax the maximum constraintito= 0.75. Without the location features, longer
subsequences are required to capture certain characterist

Another mini experiment is designed to compare our supeivgoF approach to an un-
supervised one with a codebook derived fréfrmeans clustering. In the unsupervised ap-
proach, the Euclidean distance between the subsequerneasigel by our BoF approach is
computed. Ther-means clustering with differetsettings is used to label subsequences.
We use the histogram of the cluster assignments to genbdatotebook. To avoid a nor-
malization step because of the differences in scales ofttter teatures (i.e. mean, variance
and slope have different scales), only the mean featurdsedhtervals and subsequences
are used. In a similar manner, the location features aredigearded. Consequently the
results here should not be compared with those in Table ltifigeseries are standardized
in the algorithm. We train an RF on the unsupervised codelfooklassification. Table
2 summarizes the average test error rates over 10 rephsatibT SBF and BoF approach

with an unsupervised codebook.
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Test Error Rate
Method Lower Bound Example with Example with
Factor Peak Location Number of Peaks
TSBF (w/o locations, means only) 0.1 0.021 0.026
K-means g = 10) 0.1 0.011 0.427
K-means = 25) 0.1 0.012 0.411
K-means g = 50) 0.1 0.006 0.356
TSBF (w/o locations, means only) 0.25 0.026 0.006
K-means g = 10) 0.25 0.011 0.458
K-means g = 25) 0.25 0.013 0.452
K-means = 50) 0.25 0.021 0.398
TSBF (w/o locations, means only) 0.5 0.035 0.007
K-means g = 10) 0.5 0.013 0.497
K-means = 25) 0.5 0.005 0.444
K-means = 50) 0.5 0.014 0.430
TSBF (w/o locations, means only) 0.75 0.022 0.040
K-means g = 10) 0.75 0.034 0.490
K-means g = 25) 0.75 0.017 0.466
K-means g = 50) 0.75 0.012 0.465

TABLE 2. Average test error rates over 10 replications for TSBF, aRdIBssifiers trained
on an unsupervised codebook generatedibyneans clustering applied to two synthetic
datasets. TSBF uses mean features only (location featlorg with slopes, variances,
etc., are omitted).

The TSBF performance is substantially better for the numbpeaks example because
Euclidean distances are not descriptive in this case. Oritiner hand, our supervised
approach uses only the relevant features from the supdriésening and generates the
class probability estimates (codebook) accordingly. €lae not dramatic differences in
error rates withk.

Error rates for the peak location example are comparable tilfte series of this dataset
are not noisy as illustrated in Figure 17 and our local feaxtraction scheme generates
subsequences that can characterize the time series walkeQuaently, the classes can be

well clustered with Euclidean distance. Still, TSBF evethait location features (or other

features such as slopes and variances) is competitive fiorpemce.
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5. Experiments and Results

We tested TSBF on a full set of time series data from [76]. Taiasgkt characteristics
are given in Table 3. This is a good testbed with diverse dbariatics such as length of

the series, number of classes, etc., which enables a coammigh evaluation.

Number of | Training Test Time series
classes | instances| instances| length

50words 50 450 455 270
Adiac 37 390 391 176
Beef 5 30 30 470
CBF 3 30 900 128
Coffee 2 28 28 286
ECG200 2 100 100 96

FaceAll 14 560 1,690 131
FaceFour 4 24 88 350
Fish 7 175 175 463
GunPoint 2 50 150 150
Lightning2 2 60 61 637
Lightning7 7 70 73 319
OliveQil 4 30 30 570
OSULeaf 6 200 242 427
SwedishLeaf 15 500 625 128
Syntheticcontrol 6 300 300 60

Trace 4 100 100 275
TwoPatterns 4 1,000 4,000 128
Wafer 2 1,000 6,164 152
Yoga 2 300 3000 426

TABLE 3. Characteristics of the time series: number of classes, aumibtraining in-
stances, number of testing instances, and lengths of tiness& he performance analysis
of the algorithms on this diverse set of data provides a wéaging comparison.

Our algorithm does not require the setting of many pararmsetad it is robust to the
settings. A RF is insensitive to both the number of trees d&ednumber of candidate
attributes scored to potential split a node [57]. For examplgure 18 illustrates how the
OOB error rate changes as the number of trees increase8Aeub and RF'ts. Error
rates provided are the average OOB error rate based onlyednaining data over all 20
datasets. This error rate is a good estimate of generalizatiror [57]. This parameter is

not determined using the accuracy on the test data. As théewai trees increases, the
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error rates improve, but the marginal gain is comparablyllsafier 400 trees. Therefore,
the number of trees is set to 500 for both forests. Althougisetehe level as 500 trees for
all datasets, this parameter may be adjusted for each thtsse on the OOB error rate of
RF. If fewer trees are enough for certain datasets, thisedunce the computation time.
The number of features evaluated at each node of the tre¢ te e default which
equals the approximate square root of the number of featureerefore, the number of
features generated fdRF'sub is K = 3 features per interval plus four features for the
subsequence=3 x d + 4). For RF'ts the number of features & — 1) x b features for
class probability estimates plg&' — 1) features for class frequencies (C' —1) x (b+1)).
The codebook is determined from three parameters. We sisgtlthe minimum in-
terval lengthw,,,;,, as five time units in order to have meaningful features (sscsi@es).
This setting can be adjusted based on the dataset chastcgein favor of our algorithm
(as discussed in Section 6), but we did not modify it becauseandom subsequence gen-
eration scheme allows for larger interval lengths to ocdure number of bing is set to
10 in our experiments. This parameter is expected to have d sffedt on performance,
if it is set large enough, because of the embedded featulesioa in RFs. We illustrate
some effects of this parameter in Section 6. We tested owritig for different mini-
mum subsequence length settingand compare the differences in the results. We replicate
TSBF 10 times with different seeds. Classification accueaysolution characteristics are

discussed in the following sections.

5.1. Classification accuracy

TSBF with the given settings is compared to nearest neighfidN) classifiers with
DTW. Two versions of DTW are considered: NNDTWBestWin (alsferred to as NNBest-
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Parameter Levels

number of trees 500
number of features in each splity/numberof features
z {0.1,0.25,0.5,0.75}
b 10

TABLE 4. Parameter settings of TSBF

DTW) [17] searches for the best warping window, based onrtirihg data, then uses the
learned window on the test data, while NNDTWNoWin has no weypvindow. Note that
DTW is a strong solution for time series problems in a var@tgomains [58], although it
is limited in real-time applications because of computaiagequirements [23]. The results
for NN classifiers are obtained from [76]. Table 5 summaribesaverage, maximum and
minimum error rates from 10 replications of our algorithmtbae test data. Features gener-
ated for the test data are based on the same subsequenaan®gainerated for training.

We also compare our results with Logical-Shapelets [23]chvtsignificantly outper-
forms the original shapelet representation proposed bl [B&cause this comparison is
not based on all datasets due to the computational requitsnoé Logical-Shapelets, we
compare TSBF to Logical-Shapelets in Section 6.2.

We use the same approach proposed by [21] to compare reSaliter plots are used
to conduct pairwise comparisons of error rates. Each apiesents the approach under
consideration and each dot represents the error rate fatiaydar dataset. The line = y
is drawn to represent the region where both methods perfooutahe same. A dot above
the line indicates that approach on tKeaxis has better accuracy than the oneYoaxis.

If a dot is further from the line, the margin of accuracy imyEment is greater. A method

can be regarded as superior to other if there are more dotseside of the line.
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Figure 16. Distributions of the subsequences in the feature spacastef/al means for
two examples.
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[4s]

TSBF (z = 0.1) TSBF (z = 0.25) TSBF (z = 0.5) TSBF (z = 0.75) NNDTW

average max min average max min average max min average maxn MBestWin NoWin

50Words 0.200 0.213 0.185 0.191 0.204 0.180 0.199 0.215 20.18.202 0.215 0.185 0.242 0.310
Adiac  0.416 0.448 0.394 0.286 0.304 0.271 0.237 0.258 0.2152330 0.251 0.217 0.391 0.396
Beef 0.333 0433 0.233 0.350 0.433 0.267 0.307 0.367 0.20®230. 0.300 0.133 0.467 0.500

CBF 0.001 0.003 0.000 0.005 0.008 0.002 0.008 0.011 0.006 160.00.023 0.010 0.004 0.003
Coffee  0.054 0.071 0.036 0.004 0.036 0.000 0.000 0.000 0.000004 0.036 0.000 0.179 0.179
ECG 0.183 0.230 0.140 0.138 0.160 0.120 0.155 0.190 0.130450.10.190 0.120 0.120 0.230

Face (all) 0.282 0.300 0.265 0.217 0.241 0.199 0.234 0.2492050. 0.246 0.256 0.229 0.192 0.192
Face (four) 0.045 0.068 0.034 0.038 0.045 0.034 0.035 0.04B230 0.026 0.045 0.011 0.114 0.170
Fish 0.095 0.114 0.080 0.071 0.091 0.034 0.076 0.114 0.0630730. 0.086 0.046 0.160 0.167
Gun-Point  0.017 0.033 0.013 0.011 0.027 0.000 0.011 0.020000. 0.007 0.013 0.000 0.087 0.093
Lighting-2  0.256 0.279 0.230 0.249 0.279 0.213 0.225 0.23®@1® 0.218 0.230 0.197 0.131 0.131
Lighting-7 0.262 0.288 0.219 0.307 0.329 0.260 0.290 0.30274€ 0.271 0.301 0.219 0.288 0.274
OliveOil 0.120 0.167 0.100 0.113 0.167 0.067 0.130 0.167 0®@.1 0.137 0.167 0.100 0.167 0.133
OSU Leaf 0.261 0.277 0.231 0.233 0.256 0.202 0.279 0.314 40.24.330 0.360 0.298 0.384 0.409
Swedish Leaf 0.173 0.195 0.152 0.089 0.101 0.080 0.067 0.@/@62 0.075 0.088 0.053 0.157 0.210
Synthetic Control  0.064 0.100 0.037 0.019 0.037 0.007 0.008013 0.003 0.011 0.020 0.007 0.017 0.007
Trace 0.013 0.020 0.000 0.020 0.020 0.020 0.020 0.020 0.02M200 0.030 0.010 0.010 0.000

Two Patterns  0.003 0.007 0.001 0.001 0.003 0.000 0.001 0.@B00 0.007 0.013 0.003 0.002 0.000
Wafer 0.008 0.010 0.007 0.004 0.005 0.004 0.004 0.006 0.0020040 0.006 0.003 0.005 0.020
Yoga 0.162 0.187 0.151 0.160 0.172 0.150 0.163 0.180 0.1471460. 0.157 0.135 0.155 0.164

TABLE 5. Error rates of TSBF for four different settings ofbased on average, maximum and minimum of 10 replicatioremese
neighbor classifiers with dynamic time warping distanceerghNNDTWBestWin searches the best warping window baseden t
training data, NNDTWNoWin has no warping window.



Figure 19 summarizes the performance of TSBF against NND®WIN for different
levels ofz. It can be observed that TSBF performs better than NNDTWNo®ki most of

the datasets for all levels.
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Figure 19. TSBF outperforms NNDTWNoWin for most of the datasets inzdktvels

Performance of NNDTWBestWin against TSBF with differergettings is illustrated
in Figure 20. The performance of TSBF is still better than DWith the best window
setting. The error rates of TSBF on OSU Leaf dataset is mudilem The explanation
relies on the connection of the time series classificatidhéamage classification problem
introduced in Section 2. Content- based image retrievairidkgns [31-33] are based the
BoF idea to handle the invariances in terms of rotation andtlon. Consequently, TSBF

can handle the rotational invariance for this particulgasdet.
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We also illustrated the performance of TSBF 0.5) over the replications to illustrate

the random behavior of the algorithm in Figure 21. The rarafesyror rates are reason-

able for most of the datasets. However certain datasetsasuBeef and ECG have larger

ranges compared to others. This is mainly due to the few nuofliest instances for these

datasets (30 and 100, respectively). Thus, a single mssfitation increases the error rate

substantially and this results in higher variability.
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Figure 20. TSBF outperforms NNDTWBestWin for most of the datasets lix #vels
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5.2. Computational complexity

TSBF is implemented in both C and R Software and our expetisngse a Windows 7
system with 8 GB RAM, dual core CPU (i7-3620M 2.7 GHz). We userni for building
the RFs and implemented the algorithms for subsequence atebook generation in C,
because R is computationally inefficient in execution ofldups. Moreover, although the
CPU can handle four threads in parallel, only a single thisaged.

The overall computational complexity of our algorithm isim due to RF'sub. The
time complexity of building a single tree IRF'sub is O(y/vnlogn) wherev = K x d+ L
is the number of features extracted from each subsequedcgiathe number of training
instances folRF'sub. The size of the training data fét F'sub depends on the total number
of time series for training and the number of subsequencesrgied for each time series
|S™|. We generate: — d subsequences for each time series (whkre L%J) The
smallerz, the more subsequences are generated, but with fewerdedtureach.

Computation times for training TSBF are provided in Tablen€l dlustrated in Figure
22 for all z settings to show how training time changes with differermapseter settings.
The difference in computation times is due to the number bssguences and features
generated in each setting as provided in the complexityyasalTSBF (z=0.25) and TSBF
(z=0.5) take longer compared to other settings.

We also provide the testing time which is the time requiredcfassifying one object
(feature generation and classification through RFs) ansl riibt affected significantly by
different parameter settings as illustrated. Our appraoalobs less than a second to classify
single time series after the models are built. It is very &asdl convenient for real time

classification of time series data.
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A

TSBF (z=0.1) TSBF (z=0.25) TSBF (z=0.5) TSBF (z=0.75)

Train T.(s) TestT.(s) TrainT.(s) TestT.(s) TrainT.(s) TestT.(s) TrainT.(s) TestT. (s)
50Words 48.36 0.0083 69.91 0.0077 71.42 0.0062 42.62 0.0037
Adiac 22.68 0.0046 28.09 0.0043 27.95 0.0037 15.13 0.0025
Beef 3.90 0.0129 6.53 0.0143 7.34 0.0120 4.41 0.0092
CBF 0.25 0.0011 0.37 0.0011 0.36 0.0011 0.23 0.0006
Coffee 1.07 0.0045 1.79 0.0051 1.74 0.0065 1.17 0.0038
ECG 0.87 0.0012 0.96 0.0008 0.94 0.0007 0.52 0.0008
Face (all) 12.64 0.0022 17.15 0.0019 17.68 0.0016 11.57 0.0010
Face (four) 1.50 0.0068 2.44 0.0072 2.61 0.0069 1.65 0.0044
Fish 34.25 0.0141 59.79 0.0153 65.46 0.0147 36.24 0.0116
Gun-Point 0.74 0.0015 0.83 0.0016 0.79 0.0022 0.47 0.0010
Lighting-2 12.04 0.0181 20.70 0.0223 25.25 0.0250 15.46 0.0138
Lighting-7 4.34 0.0067 6.74 0.0056 7.37 0.0062 4.56 0.0038
OliveQil 7.19 0.0214 10.76 0.0196 11.43 0.0177 6.71 0.0121
OSU Leaf 32.12 0.0125 59.86 0.0135 71.65 0.0128 38.66 0.0087
Swedish Leaff 11.00 0.0026 14.23 0.0020 14.41 0.0015 9.04 0.0009
Synthetic Control 1.53 0.0006 1.63 0.0006 1.42 0.0004 0.77 0.0002
Trace 4.19 0.0047 7.12 0.0046 7.04 0.0042 3.63 0.0042
Two Patterns  16.93 0.0022 26.90 0.0019 31.75 0.0016 20.03 0.0009
Wafer 23.90 0.0020 36.67 0.0020 42.22 0.0017 24.35 0.0010
Yoga 49.55 0.0116 94.31 0.0128 120.18 0.0122 62.83 0.0080

TABLE 6. Computation times of TSBF for different parameter settinfyse differences in computation times are due to the number o
subsequences and features generated in each setting.mEeheetjuired to test a single time series is also given (arsdrbludes the
time required for feature generation).
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6. Discussion
6.1. What OOB error rates provide

Although our parameters are constant over all datasets;aurid use OOB error to tune
the parameters for each dataset. This could potentiallydwgpthe classification results
further.

For example, withe = 0.1 TSBF performs reasonably well, but the accuracy is slightly
worse compared to othersettings, especially for some datasets (i.e., Adiac, Sshddeaf).
With w,,,;,, fixed, a smaller value fot reducesi (becausel = {%J) and subsequences
are represented by fewer features. Because we generatraength subsequencds €
[z x T,T]), longer subsequences are characterized by longer itgemeere the level of
detail provided by the features is reduced. This can affeetperformance for certain
datasets for which the level of detail is important.

On the other hand, an upper bound on the random subsequergid tEn help to
improve the accuracy (i.e., generate subsequences ohléngt [z x T, u x T| whereu
is the bounding factor). Becausgds fixed (based omw,,;, andz), a shorter subsequence
produces shorter intervals. The performance is provided:fe- 0.25 in Table 7 on the
datasets for which TSBE:(= 0.1) performs worse than the others. We generate the same
number of subsequences as in original case. We again réeoaiverage error rate over 10
replications. Both OOB error rates on the training data anor eates on the test data are
shown in the table. The results are improved when an upperdoi.25 x T'is introduced
on the maximum subsequence length.

The OOB error rates are based on the training data only. Qoesdy, after an analysis

of OOB error rates foR F'ts for certain settings, the setting providing the best erate can
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be determined. This idea is similar to searching for bestiawwnof DTW on the training
data. Table 7 illustrates that OOB error rates are consistih the error rates on the test
data (which is consistent with our claims). For the reswdorted in Table 5 we did not
search for best level of any parameters. Better accuracpaantially be achieved through
analysis of OOB error rates with respect to different patemsettings £, wy,;, etc.), and

this can be conducted for each dataset.

u = 0.25 u = 1 (original)
Test error OOB erroff Test error OOB errof
Adiac 0.358 0.378 0.416 0.423
Swedish Leafi 0.136 0.126 0.173 0.180

TABLE 7. Test and OOB error rates for different settings of maximuysssguence length.
Originally we do not have an upper bound on the subsequengghleAn upper bound of
u X T is introduced. The test and OOB error rates improve wihea 0.25 (in a similar
manner) for the datasets here.

The number of bing is set tol0 in our experiments. This parameter is expected to have
a small effect on performance, if it is set large enough, beeaf the embedded features
selection in RFs. For example, we again illustrate the us2@B error estimates to find an
appropriate level for this parameter. More bins provideseardetailed information about
the class probability estimates and results in a largertmmale Figure 23 provides OOB
error rates of TSBFA = 0.5) with b = 10 and withb = 50. The results withh = 10 are
slightly better than witth = 50. We do not provide the OOB error rates for othesettings,

but the behavior is similar to TSBE & 0.5) for different settings ob.

6.2. Shapelets and TSBF

Shapelets are defined as the time series subsequences whhihdy likely to repre-

sent a class [61]. Also, [23] extended the approach to melspapelets with certain rules
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Figure 23. OOB error rates of TSBFz(= 0.5) with b = 10 and withb = 50. The results
with b = 10 are slightly better than with = 50.

to represent classes. Although shapelet methods are cistased methods and ours is a
feature-based one, both exploit local patterns relatede@lasses. Logical-Shapelets tries
to find subsequences that express class relations based¢tingand reuse of computa-
tions, and pruning of the search space [23]. Our algorithnegees subsequences from the
time series and evaluates them based on the informationugaig a supervised classifier
on the features. Instead of trying to find rules frétd# sub, we make use of the summa-
rized version of this information which is the class assignts of the subsequences. The
prediction results are used to determine efficient reptatiens for the time series through
the BoF idea.

We compare the performance of TSBF to Logical-Shapeletcdaiain datasets. In
order to be fair in terms of comparison, we set the parametetise logical shapelet al-
gorithm so that it searches for all possible shapelets. WMewédecause of the computa-

tional requirements of this algorithm, we could not achithie for certain datasets. There-
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fore, we perform this comparison based on a subset of thesetataBeef, CBF, Coffee,
ECG and Trace. Moreover, we tested our algorithm on thrediadal datasets discussed
in [23]. These datasets are Cricket, Sony AIBO Robot anddPaghks. Three parameters of
Logical-Shapelets are the maximum and minimum length oStiapelet and the step size.
We set the maximum to the series length, the minimum as twa}a® step size to one.
Furthermore, we do not tune the parameters of TSBF for thedagasets; we use the same
settings as previously. We also do not compare the algosiihrterms of computation time
because the comparison depends to a large extent on paraegiegs. The results are

provided in Table 8.

TSBF NNDTW
z=01 2=025 2z=05 2z=0.75| Logical-Shapelety BestWin NoWin
Beef 0.333 0.350 0.307 0.223 0.600 0.467 0.500
CBF 0.001 0.005 0.008 0.016 0.336 0.004 0.003
Coffee 0.054 0.003 0.000 0.004 0.071 0.179 0.179
ECG 0.183 0.138 0.155 0.145 0.140 0.120 0.230
Trace 0.013 0.020 0.020 0.02 0.530 0.010 0.000
Sony A.R.| 0.250 0.178 0.135 0.175 0.041 0.305 0.275
Cricket 0.020 0.026 0.041 0.040 0.010 0.051 0.010
Passgraphs 0.301 0.322 0.293 0.253 0.298 0.260 0.282

TABLE 8. Error rates of Logical-Shapelets and TSBF on 8 datasets.FTI8B better or
comparable performance on the datasets except for Sony Ri@0t.

TSBF has better or comparable performance on the datasedpteior Sony AIBO
Robot (and TSBF is still better than NNDTWBestWin and NNDT@\Min on this dataset).
Recall that the parameters of Logical-Shapelets are sdtatdttsearches over the entire
space which increases the computational time significaRtiyentially equivalent accuracy
can be obtained with alternative settings on the paramebetsour objective here is to
assess the accuracy. Also, we do not provide the time fangeisécause both algorithms are

very fast in classification. Shapelets facilitate somerpriability. Still, the information
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provided by RFs such as variable importance, proximity,, €&n be used to improve the

interpretability of TSBF [57].
7. Conclusions

A framework is presented to learn a bag of features reprasentfor time series clas-
sification. Subsequences extracted from random locatiod®firandom lengths provides
a method to handle the time warping of patterns in a featased approach. Furthermore,
the partition into intervals allows one to detect patteragresented by a series of mea-
surements over shorter time segments. The supervised aadeliows one to integrate
additional information (such as subsequence locatiomsygh a fast, efficient learner that
handles mixed data types, different units, etc. TSBF pex/@ comprehensive representa-
tion that handles both global and local features. The flexXilalg of features representation
allows for the use of any supervised learner for classificatiOur experimental results
shows that TSBF gives better results than competitive naistibo the benchmark datasets
from UCR time series database [76]. Although our focus ia #tudy is on the classifica-
tion of the time series, the bag of features approach can joetad to other applications

such as similarity analysis, clustering, and so forth.
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CHAPTER 4
SUPERVISED TIME SERIES PATTERN DISCOVERY THROUGH LOCAL
IMPORTANCE

1. Abstract

Similarity search and classification on time series daedbhas received great interest
over the past decade. Nearest neighbor (NN) classifiersamiippropriate distance mea-
sure are widely used to solve this problem. Dynamic Time \kigrpDTW) distance pro-
vides accurate results but its performance degrades with time series, relatively short
features of interest, and moderate noise. The space andutatiopal requirements are
problems of NN classifiers for the applications in which thsaurces are limited. In many
time series classification problems, the question is bigsiahout the reason why a time
series is assigned to a certain class. NN classifiers lacagpect of interpretability since
they are based on the similarity of the whole time seriealjh temporal relations within
the time series are important.

In this work, we present an exploratory approach that findgéigions of the time se-
ries that have potentially representative patterns to bd tw classification based on a lo-
cal importance measure. We address the limitations of aeaeighbor classifiers through
sampling the patterns from these regions. The distancemefderies segments to the se-
lected patterns from the interesting regions are used agésao a random forest classifier.
We compare our classifier to well-known nearest-neighbassifiers, with dynamic time
warping distance measures. Experimental results shovethatigorithm provides compa-
rable and interpretable results than competitive methoddhe benchmark data sets from
the UCR time series database.

Key words: supervised learning, time series, classifinatio
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2. Introduction

Time series data mining is an important task with many chgileg applications includ-
ing finance, science, medicine and multimedia. Effectivaefficient data mining methods
are required for the knowledge extraction from time serigloases since analysis and
modeling of time series data can be time consuming due togtsdimension. Classifica-
tion is the primary goal in many of the applications. For epéama cardiologist might be
interested in analysis of ECG signals from different paen order to see whether a par-
ticular type of patients has a different temporal patterth@ir heart signals than a control
group [6]. Seismologist aim at discriminating the naturdh& seismic waves to classify
events such as earthquakes, mining explosions or nuclplystons [7].

The algorithms proposed for time series classification camisided into instance-
based and feature-based methods. Instance-based dlagsiidict a test instance based on
its similarity to the training instances. For time serigsg-mearest-neighbor (NN) classifiers
with Euclidean (NNEuclidean) or a dynamic time warping aiste (NNDTW) have been
widely, and successfully used [15-19]. DTW [20] is a methlogt tallows a measure of
the similarity independent of certain non-linear variaidn the time dimension, and is
considered as a strong solution for time series problems [58

Feature-based approaches work on the feature vectorstextfaom a set of instances.
[64] used knots from a piecewise linear approximation oftiime series to detect patterns
and classify the time series. [65] proposed an automaterbapip for feature extraction
using a genetic algorithm, then the extracted features vad@n as inputs to a support
vector machine (SVM) [66]. [68] used intervals of time serie extract features on which

a SVM was trained. [80] proposes an efficient multivariateiglen tree approach which
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selects the interval features by fitting Fused-Lasso lmgisgression models [81] at each
tree node.

NN classifiers with appropriate distance measures are kmowe accurate and robust
methods [21, 22] although their space and time requirenmeatsbe problem depending on
the application. NN classifiers are easy to understand ambtcequire setting of many
parameters, but they typically do not provide insight iritoe series features important to
the classifer. On the other hand, feature-based approachésterpretable and generally
faster than instance-based classifiers depending on thedeaxtraction method and clas-
sification algorithm. Two types of features are generatetthéise approaches, global and
local features. Global features are a compact represamtafithe instances (such as the
mean value) and not sufficiently expressive for classificatil herefore, local features are
extracted from segments of the time series to obtain a ddteglpresentation. However, the
set of local features may vary in cardinality and lack a megfinil ordering. These are basic
problems for many classification algorithms requiring @eatvectors of fixed dimension.

Methods based on features of intervals (segments) (su€i® a&)]) assume that patterns
exist in the same time interval over the instances, but @pathat defines a certain class
may exist anywhere in time. We illustrate this problem onrtlsgtic dataset illustrated in
Figure 24. There are time series from two classes in thisdatand the location of the peak
determines the class label. Class 0 has the peak in at a rdndation between time 0 and
100 where class 1 has the peak between 100-200. An intexatirk based classifier can
determine the peaks and classify well in the training datajtbmay fail for a test instance

which has a peak at a different location (i.e. a location wheaining time series has no
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peaks) when a feature vector of fixed dimension is used. Taeyat handle the invariance

in terms of location.
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Figure 24. Two sample time series from different classes. If the peak ike first half of
the time series, the series is labeled as class zero analigfed as class one otherwise.

Although DTW attempts to compensate for possible time tediosis and dilations be-
tween features, the capability for DTW is degraded with Itinte series, relatively short
features of interest, and moderate noise. Moreover uradetisty what exactly relates to the
class is not trivial task. On the other hand, feature basedoaphes can be interpretable
but they have certain problems with location invariance.nggguently, an important re-
search task is to identify the regions (segments) of timeserseful to the classifier that
can occur at different times in different time series instaand make classification based
on these segments. [82] proposes a bag-of-features appfb&BF) to handle the possible
time translations and dilations between the features. olilgh the classification perfor-
mance of TSBF is good, further analysis of the prediction ef®dre required to identify
the important features (regions) for classification.

Our work is based on finding the segments of the time seridshtae potential to
describe a class. These segments are referred as the régiterest. We make use of the
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structure of a supervised feature-based learner to igehgfregion of interest in our study.
Region of interests are very important to understand th@oeah relations. Moreover they
help to reduce the effort in searching for the time segmegitsted to the classification
task. [23] also discusses the necessity of pruning the spiaite potential segments and
proposes a distance based method. Feature-based appr@dicie for some desirable
properties such as handling the interactions and fast ctatipo. Interaction between the
features in this context is the relationship of the pattewver multiple intervals that may
define a class as discussed by [23].

Considering the strength of the feature based approachtegaim a classification al-
gorithm on an interval feature representation to find théoregof the time series that are
informative. We segment the time series using overlappitervals to reduce the probabil-
ity of missing a pattern and generate features on the irlgerVéie build a classifier on the
interval representation and compute a local importancesoredor each interval of each
time series. Local importance [57] is a measure which igedl#o the effect of a feature
for predicting an outcome of interest. In time series contiexcal importance of a certain
interval feature for a particular time series provides linfation about the relevance of the
pattern observed on the corresponding interval to the ifitzetson task. Once the local
importances are identified, the similarity between the tgades can be sought over the
important patterns instead of the whole time series. Simtg @levant segments of the
time series are considered for the classification, thetresllibe less affected by the noise
and the computation and storage requirements can be redigreficantly with the shorter
representation. More significantly, this type of repreaton will handle the translations

and dilations inherent in the time series.
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Local importance computation is the key step in our approdtis information is ob-
tained from a fast feature-based learner which allows fdalirfip regions of the time series
relevant to classification. The patterns in the intervalhvigatures having high local im-
portance values constitute the region of interest. Aftedifig the region of interests for
each time series, we generate sequences from these reglmse sequences are referred
as patterns in our study. We generate multiple patterns fin@ertime series and find the best
matching subsequences of the time series to these pat&sed bn a distance measure. A
new feature set based on the distances of the patterns teshenatching subsequences of
the time series is used to build another classifier for firedsification. A feature selection
algorithm on the new feature set allows for finding the pagéhat are critical in classifica-
tion. In addition to their interpretability, patterns ar@ngpact compared to the whole time
series which reduces the time and space required for ctzg®f [23].

Focusing on the smaller segments of the time series forifitad®on is an active re-
search area. Recently, many of the work has focused on thactgh of interpretable
patterns for classification of large time series datab&%$61,83,84]. Criticizing the disad-
vantages of NN classifiers in terms of computational requénets and interpretability, [60]
proposed a method that searchs for the best subsequencexharstive way for decision-
tree induction. However, at each split they computed and tise DTW distance of the
entire time series to the subsequences instead of comphgrdjstance of the subsequence
to the related region of the time series. [61] also proposeapproach to find subsequences
of the time series which are thought to be maximally repriedime of a class and compared
the subsequences to the relevant regions of the time setike [60]. These subsequences

are called shapelets and algorithms based on the shapaiéiate interpretability. Since
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the information provided by time series shapelets is lithiie their presence or absence
and computation time required for generating them is sicanifi, [23] proposes a more ex-
pressive shapelet representation by combining multipkpelets in logic expressions such
that complex concepts can be described. It is faster cordparshapelets and has better
accuracy since it can combine multiple shapelets for dlaatibn of the time series. [84]
proposes a similar approach for early classification of tamges. The goal is to find the
time segments that achieves a certain level of classifitaozuracy as early as possible.
These approaches search for the predictive regions ofrtieederies through efficient rep-
resentations and search techniques.

The closest works in terms of overall approach are [23, 60, These studies aim at
finding the representative subsequences of the time sefesused in decision trees. How-
ever [60] exhaustively search for the subsequences, [PBréfoses pruning techniques for
finding the shapelets where we propose an efficient feataseedbmethod to discover the
region of interest. After finding the subsequences, [60] mat@ the distances to the whole
time series using DTW but we find the distances based on therashing subsequences
from the time series as in [23, 61]. Our shapelet representatheme allows for handling
the interaction that might be important to classificati@®][also discusses the necessity of
accounting for the interaction and an approach that corshime shapelets through logic
expressions are proposed in their study. Our approach usssdam forest classifier in
which interpretability is achieved through the generatdran importance measure using
the structure of the classifier.

In this paper, we propose a supervised Time Series Pattegoary algorithm (TS-

PD). A large number of local features are extracted fromrvatls. Subsequently, a local
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importance measure is generated for each interval of the denies using a random forest
classifier. After regions of interests are identified forreéime series using the local im-
portance values, potential shapelets are generated. Baelsdries is then represented by
their distances to the potential shapelets and a new featatex of distances is used for
classification. We demonstrate TS-PD is efficient, accuaateinterpretable on a full set of
benchmark data sets [85].

The remainder of this paper is organized as follows. Se@ipnovides background.
We summarize the problem and describe the TS-PD framewo8edation 4. Section 5
demonstrates the effectiveness and efficiency of TS-PDdtnteon a full set of benchmark
datasets from UCR time series database [85]. We discussDIsSHehaviour for certain
datasets, explain how TS-PD works on an example in Secti@ofclusions are drawn in

Section 7.
3. Background
3.1. Random Forest

A random forest (RF) classifier [57] is used here to both geahe regions of interest
and classify time series. A RF is an ensemble/afecision trees{g;,j = 1,2,...,J}.
Each tree is constructed using a different bootstrap safrme the original data. About
one-third of the cases are left out of the bootstrap samplenahused in the construction
of the single tree. These are called out-of-bag (OOB) sasnple

The prediction for instance from treeg; is §;(z) = argmax,p§(z), wherep(x)
is the estimated proportion of clasdn the corresponding leaf of thgth tree, forec =

0,1,...,C — 1. Let G(z) denote the set of all trees in the RF where instanie OOB.
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The OOB class probability estimate ofs

o) = — ji(x) =c

9;€G(z)

wherel(-) is an indicator function that equals one if its argumentus &nd zero otherwise.
The predicted class §(x) = argmax, p°(z).

To summarize, an instance is labeled through a majorityngoéipproach using the
tree results for which it is OOB. The estimates computed f@@B predictions are easily
obtained and have been shown to be good estimates of geaémalierror [57].

In the tree growing steps of RF, the best split are determiraesgtd on only a random
sample of features. In this study, features are also refersevariables and both terms are
used interchangeably. Often, the sample sizgiswherev is the number of features. The
random selection reduces the variance of the classifieralsodeduces the computational
complexity of a single tree fror® (vn logn) to O(v/vnlogn) (assuming the depth of tree
is O(log ) wheren is the number of instances). Therefore, for a large numbégattires
a RF can be as computationally efficient as a single decissan t

The Gini measure of impurity is used to determine the vagiaglected to make the
nodal split in the tree construction process. This allowsafgariable importance measure
called Gini Variable Importanc&=V I') which is the sum of the Gini impurity decrease for
a particular variable over all trees. Lb’gp be the number of observations at nqdef the
jh tree, andN]f’(L) andN]’.’(R) be the number of observations of the left and right child
nodes after splitting, and Ia‘g’(k:) be the decrease in impurity produced by varidbé the

pt" node of thej*” tree.
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. o L NOL) p N7 (R) ~p p
The decrease inimpurity i (k) = G — (=57~ G’ (L) + —%7—G"%(R)) whereG* (L)
J J

andG?(R) are the Gini indices of the left and right node respectiveilgl @5 is the Gini

index of the parent node. The Gini Variable importance ofalde % is defined as

Vi) =5 S (X (k)

Jj=1 p€S;

whereIJ’.’(k) is an indicator variable for whether variabitevas used to split node of tree
j andsS; is the set of split nodes of the trge

Variable importance is important to find out the featuresvaht to the classification
task. We use a RF classifier for time series classificationuinstudy. Our time series
representation scheme allows for finding the importanepastefficiently using the variable
importance. Moreover, RF has several advantages when cedimeother classifiers. High
dimensional feature spaces, multiple classes, and missilgs are handled. Nonlinear
models and interactions between features are allowed. sltdke invariant and robust to

outliers, and computations are reasonable even for laigseis.

3.2. Local importance measure from random forests

A random forest classifier is not directly interpretablecsiit is a combination of mul-
tiple unpruned trees build on the random subspaces of therésa However there are
important measures that can be derived from the foresttateusuch as feature importance
discussed in Section 3.1. Other than the Gini variable itapae, an accuracy based feature
importance is also discussed by [57]. To compute this fedtaportance, local importance

of a feature is computed for each instance based on the changecuracy of the classifier

73



when the features are perturbed. This information is thegmeagted to obtain the accuracy
based feature importance in [57].

RF local importance for featurke of instancen, LI;(n), is defined as follows. For
each tregy; of the forest, consider the associated OOB sample repes&ytOOB(g;)
(instances not included in the bootstrap sample used to graiand let the proportion of
votes for the correct class hg for instancen based on the trees in which instances
OOB. Now, randomly permute the values of the feattiiea OO B(g;) to get a perturbed
sample denoted by)OEk(gj) and prediction based on the perturbed sample provides a
new proportion of voteszg for instancen. Local importance for featurg of instancen is

then equal td.I(n) = v, — vk.

If the number of votes for the correct class decreases wittpénturbed OOB data for
particular feature of an instance, we can say that featurgsphn important role in the
classification of the instance in consideration. Convgrsethe number of votes does not
change or increases, the feature is not found to be infovmati

A global feature importance is computed by aggregating dloallimportances over
all instances by [57]. However, local importance is a betscription of the patterns of
the time series that can be related to the classification.oBajlfeature importance is not
descriptive enough because of the translations and dikafio the time series. Features
generated over different regions of the time series may lpoitant to classification for
different time series and a global feature importance Iltsedetailed information about the
translations and dilations. Although the local importaimfermation is provided by [86] as

a visualization tool, their focus is on generating a gloleatfire importance by aggregating

the local importance information. On the other hand, amslgEthe local importance is
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required for the time series classification problems bexafithe temporal ordering of the

features.

3.3. Tree models with interval features

In tree-based models developed for time series such asfgdilires (such as mean,
deviation, etc.) are extracted for the intervals segmefnted the time series. The intervals
and features are selected in a way that the splitting aiteés maximized when the collec-
tion of time series is partitioned into child nodes. A typieaample of a rule for interval
split in a node for a time series isiriance(I [t1,t2]) < threshold, where the notation
indicates that a series for which the variance over thevatér , ¢5] is less than or equal to
a threshold is assigned to the left child, and assigned taghechild otherwise.

Segmentation of the time series and feature extractiorineysampling representative
set of intervals from the time series. The focus should behensegments and features
that are the most informative for classification. Pieceiisgar approximation is the most
commonly used preprocessing step for the discretizatigheoflata in mining time series
databases [78]. Time series approximation is an activarelse¢opic and a comprehensive
literature review of time series segmentation approachesavided by [8, 78]. How seg-
mentation affects the performance of the tree-based mdasieiscussed in the following
paragraph on a simple example.

We illustrate the approach for building a tree-based modeCBF dataset from [85]
given in Figure 25 to discuss the strengths and weaknesgeseobased models built on
interval features. We segment the time series using a fixxadisiervals and generate the

mean, variance and slope features for each interval. Hkmge $s computed by fitting

75



a regression line using the data points of the interval. @lgh fixed-length interval for

segmentation is prone to omit certain patterns [8], it iyeasinderstand.

— cylinder (c1)
— bell (c2)
— funnel (c3)

2
|

Figure 25. 30 training instances from CBF dataset. Cylinder, Bell andrtel are labeled
as 'cl,c2 and ¢3’ and represented by 'black, red and gremees liespectively.

The length of the CBF dataset is 128 and we start the analydisntervals of size 5
time units. This make$128| = 25 intervals plus the last interval with three observations
(128 — 125). Thus,26 x 3 = 108 features are extracted for each time series. We also
generate second set of features by setting the intervaltsid® time units in order to
illustrate the effect of the choice of interval length paeten. Two decision trees built using
C4.5 [4] are illustrated in Figure 26. Each node in the trggeagents a specific feature and
interval. For example, the first node of (@)terval(8) [36,40] -mean, is the mean of the
data points between 36 and 40 where 8 represents the intgrval

As discussed earlier, comprehensibility of a classifierghlly important in this domain.

Trees provide set of rules that leads to a classificationvengn Figure 26. The important
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interval(8)[36,40]_mean interval(4)[31,40]_mean

<0432 >0.432 <0.329 »0.329

interval(14)[66,70]_mean

=<0.251 >0.251 <-0.068 >-0,068

interval(5)[41,50]_slope

(12.0)

c3 cl c3 <l
(7.0) (11.011.0) (7.0) (11.0/1.0)

(a) (b)

Figure 26. Decision trees built using C4.5 [4] on the interval featurekeft (a) is
the tree built on the intervals of 5 time units. Right (b) i® ttiee built on the inter-
vals of length 10. Each node represents a specific featurandmdal. For example,
interval(8)[36, 40]-mean is the mean of the data points between 36 and 40 where 8 rep-
resents the interval id.
time intervals found to be important are not the same for betbs if the splits are consid-
ered. This simple example illustrates that there mighttewidtiple regions that are related
to classification and there is a possibility of missing dartagions because of the feature
generation scheme. Moreover as discussed by [84], extrdetseures do not stay in the
same data space of the input data therefore it may not be@asgérstand the information
provided by the features. In other words, the informaticovted by the raw data points
is lost by the transformation to the feature space. This & @fnthe motivations of the
time series classification studies based on the distanst=auh of features [23, 60, 61]. A
similarity based approach based on the raw values of subsegs are claimed to be more
intuitive since there is no transformation of the data irideaextraction.

Another problem discussed in Section 2 is the location iawae. Trees built on inter-

val features generate the rules based on fixed locationg dfdming data however patterns

defining a class may shift on a test instance. A test instanore fhe cyclinder class may
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have longer tails and have a small mean on the intervals bat®& and 40, this instance
will be classified as bell (c2) by both trees. Although tree@terval features provide inter-
pretable results, they may fail in classification becausth@iocation invariance inherited
in the time series. Please note that the example tries sirdélie potential problems of the
feature based approaches in terms of comprehensibilityitadwbs not consider different

sampling strategies or alternative feature definitions.

3.4. Shapelets

Shapelets are defined as the time series subsequences wehrigtdy likely to repre-
sent a class. Instance based approaches require compiariganentire dataset which is
a problem in terms of space and computational requiremarntssiource limited systems
such as sensor nodes, cell phones, mobile robots, smaretoy23]. Shapelets are shorter
and finding the distance to the shapelet is faster comparechtputing the distance to the
whole time series. Classification algorithms based on dbtgpare also interpretable.

The main idea is that there exist local patterns related eéocthsses in a time series
classification problem. Extracting the relevant part oftthree series is important since NN
neighbor classifiers account for the entire time series lagygladre prone to misclassification
because of the curse of dimensionality. An example from f&ih Gun-Point dataset is
provided in Figure 27. The aim is to classify a motion as "Gan”NoGun” through time
series generated by mapping the motions as in Figure 27. ldpeket found for "NoGun”

class is represented by red line which desribes a certaimopfenon called overshoot [61].

78



NoGun —

g I l ‘ —‘ ‘ ‘
~ — — e
- — — =
o e =
- ”-/ H ___—‘"- ___f'-

Figure 27. lllustration of the classes for Gun-Point dataset. A "dipbbserved for NoGun

class since the actor put her hand down by her side, andanzatries her hand a little

too far and then she tries to correct for it (a phenomenon knas overshoot). On the
other hand, actor returns her hand to her side carefully vgherhas the gun and no dip is
seen [61]. Shapelet discovered for "NoGun” class is givendohline.

4. Supervised Time Series Pattern Discovery through Localnhportance

We propose a method to discover the regions of the time stvéshas potential to
have information about the classes. This discovery relethe results of a random forest
classifier built on interval features. A local importanceasgre is computed for the inter-
val features of each time series. Consequently, poterditdms from the time series are
sampled based on the local importance of the intervals. Afefihd the best matching sub-
sequences of each time series to each pattern using a disteeasure and generate a new
feature set based on the distances between best matchsegsemces and the patterns. A
RF classifier is built on the new feature set to find the labkth®@time series. Then RF is

used to find the patterns that are important for classifinatio

4.1. Region of Interest Selection based on Local Importance

We represent each time series with feature vectors deriwed intervals to capture
patterns along the time series. A fixed-length interval &grsentation has the potential to

omit patterns because they may appear with different lengtid be split across the time
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points [8]. We slide the windows to extract overlapping ®guences from the time series
to reduce the opportunity to miss patterns. Before going dgtails of the algorithm, we
define notations used in the paper.

Definition 1. A univariate time series z" = (27, 2%,...,27) is an ordered set of
T values. We assume time series are measured at equallydsip@eepoints indexed by
t. Each time series is associated with a class lgBelfor n = 1,2,...,N andy” €
{0,1,2,...,C —1}.

Definition 2. An interval of the time seriesz", I,(«"), is a sampling of lengty < T’
of contiguous positions from™ starting at positiorp. Thus,I,,(z") = (x,..., ¥y 1)
fori<p<T-w+1

Definition 3. A sliding step of sized < w is used to segment overlapping inter-
vals from 2”. Let I,(z") be the interval of lengthu which starts at positiorp. A
representative set of intervals of lengihcan be extracted by sliding < w positions
from p acrossz™. The set of the representative intervals of lengttacrossz™ is then
{L(2™), [11q(z™), ..., [1;17—w(x™)}. Settingd = 1 generates all possible intervals of
lengthw. We aim at generating overlapping intervals to avoid mgsirpattern, therefore
d < wis preferred.

Given the time series™ of lengthT and an interval lengthy, intervals are segmented
using a sliding step of acrossI’. This segmentation is illustrated in Figure 28 for one of
the instances in CBF datasé/(= 128, w = 20, d = 10). Linear regression models are fit
on the intervals to extract features. The following featumee extracted for each interval:

slope of the fitted regression line, mean of the values, neei@f the values. More features
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can be extracted to include detailed information aboutrtervals but three features which

gives information about the level and shape of the intervabkid in this study.

o
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Figure 28. lllustration of feature generation on the intervals of oineetseries from CBF
dataset. The parameters are sebas 20,d = 10. 12 intervals and their means are given.

A random forest classifieRR Fint, is trained on the interval feature representation and
local importance of each interval is computed during thimiing of R F'int as described in
Section 3.2. The algorithm for computing the local impoc&wof each interval is provided
in Algorithm 3. Since each interval may be described by mldtifeatures (i.e. slope,
mean, etc.), we set the interval importance as the maximutheofocal importances of
the features. Intuitively, if there is at least one reldtiienportant feature observed for the
interval, the importance of the interval is set based on tbetnmportant interval feature.
In order to visualize the local importance, we normalize ltheal importance values so
that importance of the intervals of a time series sums up & d@rhe intervals with high
importance values have potential to contain the pattetateceto class.

Local importance values are computed for all instancesresidad of starting the search
for the patterns from an arbitrary time point as in other shefpstudies [23, 60, 61, 84],
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Algorithm 3 Local importance computation

for all time seriesc™ do

Standardize the time series

Generate the interval features
end for
Build a random forest on the interval feature GR#'int)
for all time seriest™ do

for all intervali do

Let local importance of intervalbe max (LI(z")) whereF (i) is the set of fea-

feF(i)
tures of intervak
end for
Normalize local importance over all intervalsf time seriesc™
end for

we use the region of the time series that are found to be impbrtUnlike the existing
work which finds the important regions based on the simjlasite generate features on
the intervals and use a supervised learner to find out th@gene Approximating the
information by feature extraction from intervals and usingupervised learner that allows
for the interactions provides fast discovery of the impairt@gions of the time series.

We illustrate the idea of local importance using time seofesach class from CBF in
Figure 29 M = 128, w = 10,d = 10). We do not use overlapping intervals (i®¢= w)
in this particular example in order to simplify the represéion. In a random forest, 500
trees are built and selected number of features at eaclisptjtiare root of the number of
features unless otherwise stated for the illustrationgedlntervals with the highest local
importance values are represented on the right for eachsgmes. The local importance
information matches with class definitions and these loegions can separate these time
series which supports our idea of focusing on the local regio

Interval length setting is a smoothing parameter in ourrilgm because of the features

considered for each interval. The level of detail decreasethe interval length increases
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Figure 29. Three time series from CBF dataset and corresponding logadritance plot.
The intervals are labeled dginterval id). For each interval, there are three measuggser
senting the local importance of slope, mean and variandargsain the order from left to
right. Three intervals with the highest local importanckiga are represented on the right.

(i.e. slope becomes meaningless) therefore smaller adtkmmgths should be preferred for
an application where features of interest are short. Assgirttiat there is no information
provided about the application, this parameter is set basdice analysis of OOB error rates
from RFint. The interval lengths providing smaller OOB error ratesuithdoe preferred

for the analysis. If the interval length is set too small foe tase where feature of interest

is long, multiple short intervals will be found to be imparta

83



The normalized importance values against the intervalbusstriated in Figure 30 for
each class on CBF dataset & 10, d = 5). The regions with high importance values
have potential to contain the patterns related to class.tiieframe between 20 and 80
where the mean differences are found to be important for mwioste training instances.
The regions in the beginning and end are also found to be igpioior certain instances of

class cylinder which matches with the class definitions.

Cylinder

normalized importance

000 010 020

0 20 40 60 80 100 120 0 20 40 60 a0 100 120

Bell

normalized importance

000 0410 020

normalized importance

000 0410 020

0 20 40 &0 80 100 120 0 20 40 &0 80 100 120

Figure 30. Normalized local importance information on CBF datasdt)(knd time series
of each class (right). The regions with high importance af@imative when time series are
compared and the class definitions are considered. The ptaemare setas = 10,d = 5.

4.2. Pattern Discovery and Classification

After finding the regions of interest, important intervate ased to search for similarity
between the time series. Intervals are used as referenegnsand distance between the
time series and reference patterns are computed. Theakst@tween each pattern and the
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time series is later used as a feature in the learning afgoriBefore going into details of
the pattern discovery approach, we provide the definitiain@terms used in this section.

Definition 4. A pattern of time seriesc™, ¥!(x,,), is obtained by combining the mdst
important intervals ok™. A pattern setS(z") consists of the patterns from the time series
z".

Patterns are generated starting from the interval that ie$atgest local importance
(U!(x,)). These patterns are referredlasgel 1 patterns For each time series, we add
these patterns to our pattern sefz”). In the second pass, first two important inter-
vals constitutes the pattern which is included in Sét™) aslevel 2 patterns Follow-
ing the same manner, we generate all patterns up to lewd add them to the pattern
setS(z"). Thus,S(z") = {V!(z,), ¥%(z,),..., ¥ (z,)} where¥!(z,) = {I'(z™)},
U2(z,) = {I'(2™), I?(2™)}, ..., Ul (z,) = {I'(z), I*(2"),..., I'(2™)} wherel!(z")
is the!*” important interval of time series”, the interval notation is changed here to rep-
resent the importance of an interval. We keep the tempolaiaoa between the intervals
while generating the patterns. In other words, pattern nasain discontiguous intervals
as illustrated in Figure 31 if the most important intervadlshe time series are not contigu-
ous. This way, we keep the information provided by the temlpalations between the
intervals which might be important to classification.

Pattern setS(z™) contains the patterns generated by combining certain numibe
intervals up tol. Let S be the set of all possible patterns from all time series, (i.e
S = L]j S(z™)) and suppose we enumarate the patterns inSsas ¥; wherei is the

n=1

pattern index.
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Definition 5. Best Matching Subsequence (BMS)f time seriesz,,, is the subse-
guence that has the minimum distance to the patierimhe minimum distance is referred
to asBest Matching Distance (BMD)given by D(z,,, ¥;). D(z,, ¥;) is the minimum of
the distances computed by slididg over the time series,, as schematized in Figure 31.
The subsequence providing the minimum distance is calle®& Bk, to ¥;. The distance
measure considered in this study is the Euclidean distdtiemugh other distance measures
(i.e. Manhattan) can be used. If a pattern contains disgoatis intervals, we only consider
the relevant matching sections of the subsequences fandistcomputation as illustrated

in Figure 31

Figure 31. lllustration of distance computation over the time ser@safgenerated patterns
(represented by blue). This pattern includes two sepamatervals. Dashed lines stand for
the regions that are not included in the pattern. The distamcomputed by sliding the
pattern over the time series.

After constructing the pattern sét we computeD(z,, ¥;) for all time series and
pattern pairs. A feature vector faf* is then obtained by combining the BMD af* to
all patterns in sefS. A new feature matrix is created using BMD of the time seres t
the patterns and build a random foreBtF'pattern, on the new feature set. Our pattern
discovery and classification algorithm is summarized inofillpm 4.

The discontinguous intervals in the patterns allow for tiagdhe interaction between
the patterns of the time series. [23] similarly combinespstets through logical expres-
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Algorithm 4 Supervised Time Series Pattern Discovery through Locabhapce (TS-PD)

Compute local importance using Algorithm 3 for all time ssti”, setS = ()
for all time seriest™ do

Generate pattern sef{z"), for all levels up toL, setS = S U S(z")
end for
Generate a new feature set using the BMI«,,, ¥,;)) of the time series™ to each
pattern¥; € S and build a random foresR(F'pattern) on this representation to obtain
final classification.

sions. Although our pattern generation scheme and sittyileomputation is different com-
pared to [23], the idea of multiple segments’ being inforreats similar.

One can claim that there is a redundancy in the pattern seiroéaeries since the same
intervals are shared by the patterns (i.e. the most impoitiderval is seen for patterns
of all levels). However BMS may be different and higher lepakterns may be better
in terms of descriptiveness. Although this will increase tomputation time required
for distance computation, the increase is not significarteshigher level patterns already
has the intervals of the lower level patterns and distancepcdation can be done in an
incremental manner. In other words, once the distanceshéhighest level patterns are
computed, we also obtain the distances for the lower leviétipe.

Similar or same patterns may be generated by our patterrajemescheme since we
do not consider the similarity of the patterns in S§etThis may result in highly correlated
features but RF is robust to correlated features. Althouglerfeatures add computational
complexity toR F'pattern, the search for the similarities between the patternsnsietited
with the random feature sampling mechanism in RFs. An effigeuning algorithm to
reduce the number of patterns in the Setnay improve TS-PD but our algorithm is not
severely affected by the correlated features in terms afracy since a RF classifier has

the embedded feature selection [57].
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4.3. Feature selection and summary using TS-PD

TS-PD is based on the trees built on the random subspaces didiances to the pat-
terns. It does not provide a result that is directly intetgupée since there are multiple trees
and structure of trees are based on the distances to mutitierns. However, we can use
Gini importance fromR F'pattern to sort the patterns in terms of predictive power. This
allows for finding the important patterns for each class whicings the interpretability.
However since a large number of patterns could be generatgidsome of them might be
redundant or ignorable, a further feature selection praeechay be useful.

Feature subset selection methods such as CFS [87], FCBFABH [89] can be used
to select the relevant patterns in our study, and a disausdiout these methods is provided
in [90]. However, this will add complexity to the algorithritherefore we use the variable
importance measure @t F'pattern for finding the informative patterns. This measure is
computed online and the only drawback is that it does notrgéma compact set of patterns.
We order the patterns based on their information value wimak include some redundant
patterns. One can select the ones that are thought to bamekvd use the distance values
to generate rules on the patterns.

The variable importance computed BF pattern on CBF dataset is illustrated in Fig-
ure 32. The average of the decreases in Gini impurity is gdemlfor the first 20 important
distance features. Variable importance can be used to firti@patterns that are important
to classification. A compact representation may not be plessince some of the patterns
share the same information as discussed. The patterns folraimportant for classifica-
tion is schematized in Figure 33. First 12 important pateme represented based on their

importance values. The first two important pattern from blalss represents the increasing
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Figure 32. Variable importance oR F'pattern based on Gini measure on CBF dataset{
10,d = 5, L = 3). The plot does not illustrate the importance of all feagunly first 20
important features are provided. y axis represents the tidegpatterns.
time segment. In this particular example the most impoypatiern is found to be dével 3
patternand it consists of separated intervals. Third patt@awe{ 3 represents the decreas-
ing behavior of the funnel clasg.1*" pattern level 2 is from the cylinder class capturing
the straight segments of the cylinder shape.

The interpretability of TS-PD is achieved through the imiance values as given in
Figure 33. We provide an ordered list of patterns based an itng@ortance instead of
generating a set of patterns used for classification untikeekisting work [23, 60, 61, 84].

All patterns are associated with an importance value whichbe interpreted as how well

they describe a certain concept.
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Figure 33. First 12 important patterns of TS-PD for CBF dataset=£ 10,d = 5, L = 3)
represented by blue dots, the order, id of the pattern anddiresponding time series is
provided in the titles of the plots.

4.4. Parameters of TS-PD
Although we propose TS-PD as a time series classifier, owrigign is more of an
exploratory tool for time series classification. The partrseshould be set based on the

preliminary analysis of the time series. We summarize thiarpaters of our algorithm in
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Table 9 categorized with respect to their type and discuasthe parameters should be set

in this section.

Random forest Feature generation Pattern
Number of trees Interval lengthw Maximum level L
Number of features in each split  Sliding stepd

TABLE 9. Parameters of TS-PD

The number of features evaluated at each split and the nuofbeees are the pa-
rameters of both RF. The number of features evaluated at m@abd of the tree is set to
default [57] which is equal to the square root of the numbedeafures. As stated by [57],
RF is insensitive to the number of features selected to satih node. The number of trees
is determined based on the OOB error rates over trees. Figuitkistrates how the OOB
error rate changes as the number of trees increaseB Kont and RF'pattern on CBF
dataset with the following settingss(= 10,d = 5, L = 3). The plots indicate that the
results are insensitive for number of trees greater thartr4@g.

Interval and sliding step length are feature generatioarpaters ofRFiint. Setting
sliding step too small will result in correlated features tBe other hand, the probability of
missing a pattern increases as sliding step increases, Whtui the sliding step as the half
of the interval length. Assuming that the model with the lzesturacy provides better local
importance results, OOB error rate Bff'int is used to setv. This parameter should be
large enough so that features like slope and variance areingéal. Experimentation with
different interval lengths will lead to a reasonable settifi this parameter. The change of
OOB and test error rates @tFint for CBF dataset with different interval length settings
is provided in Table 10 to illustrate how is set. Settingv = 16 provides the minimum
OOB error rate thus it is a good choice for interval length. &\ provide the test error
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Figure 34. The OOB error rates oRF'int (left) and R Fpattern (right) of CBF dataset
(w = 10,d = 5, L = 3). OOB error rate for each class and average of them are gvid
The plots indicate that the results are insensitive to tmebar of trees when it is sufficiently
large (500 in this case).
rate for RFint to illustrate that OOB errors are good estimator of the gdization error.
On the other hand, the difference of OOB error rates are gatfaant. If OOB error rates
are around the same level fABiF'int as in the example, setting smaller is suggested since
we are interested in finding shorter patterns so that timeired) for distance computation
will be smaller.

The maximum pattern level settind;, works as an upper bound on the number of
intervals to be included in the pattern. This does not affezperformance of our algorithm
if set large enough. However largérlevels result in more patterns to be generated which
is not computationally efficient. Although the pattern leisethe same for all time series
in our approach, it can be set for each class using the cemdspy local importance plot.
Detailed analysis of the local importance plots may helpucaty the testing time. The
number of peaks in the local importance plots is a good estimat the pattern level.

Figure 30 illustrates the local importance of each seriabft#rent classes for CBF dataset
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w OOB Error Rate Test Error Rate

6 0.167 0.066

8 0.100 0.044
10 0.067 0.032
12 0.067 0.024
14 0.067 0.027
16 0.018 0.000
18 0.067 0.023
20 0.033 0.028

TABLE 10. The OOB and test error rates &ffint on CBF dataset for different interval
settings. There are 30 training instances for this dataseefore single misclassification
increases error rate significantly. Interval length of Xfeiunits provides the minimum
OOB error rate. On the other hand, the differences of OOB eates are small therefore
settingw smaller is suggested since we are interested in findingestmatterns so that com-
putation time required for distance computation is de@@adest error rate is consistent
with the OOB error rate.

(w = 10,d = 5). SettingL. = 4 or L. = 5 is reasonable when the number of peaks in the
local importance plot are considered for time series of ededs .
After understanding the structure of the time series, th&@@or rates ofR F'pattern
for different L settings are analyzed. Largéris expected to lead to better results up
to certain level since more expressive patterns are gemklst including more intervals.
However the distance may become meaningless because ofitge af dimensionality
if the length of the pattern gets too large. Although runniRgpattern for different L
settings introduces complexity, computation time foritesaind required space for storing
the patterns can be reduced with the compact set of pattbtamed by smallef. level.
Figure 35 illustrates the progress of the error rates on CR&set for the setting =
6,d = 3 and all L levels up to 15. OOB error rates becomes stable dfter 8 which is
consistent with the test error rates. Test error rates angded to illustrate the effectiveness

of OOB error rates in terms of generalizability. Settihdarger may result in overfitting
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since the distances of the patterns to the training data are pnecise and dependent on the
training data as longer patterns are generated. Overfjitipigjem is also discussed by [23]
and the number of patterns to be generated is fixed to cerntaitber (4 in their case) to
overcome this problem. The same phenomenon is observecedd@®B error rates when
L is larger than 10. Test error rates also show the same behaymvever the effect of

overfitting is not severe because of the random selectioeatfifes at each split.

OOB error rate of RFpattern (CBF) Test error rate of RFpattern (CBF)
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Figure 35. Progress of OOB error rates and test error rates aveettings. OOB error

rates becomes stable after= 8 which is consistent with the test error rates. Setting

larger may result in overfitting since the distances of thigepas to the training data are
more precise and dependent on the training data. Whisrlarger than 10, slight increase
on OOB error rates which is an indication of overfitting is ebh®d.

5. Experiments

We test TS-PD on 43 time series data from [85]. The datasetcteaistics are given
in Table 11. This is a good testbed with diverse charactesisuch as length of the series,
number of classes etc. which enables a comprehensive ggalua

In order to show the effectiveness of TS-PD in terms of aagunae test our algorithm
with fixed w and L settings. Fixed parameters are considered to illustratedbustness of
TS-PD although the settings can be adjusted based on theatatiaaracteristics in favor of

our algorithm (as discussed in Section 6.1). Thus, wesset6 in order to have meaningful
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Number of classes$ Training caseg Testing cases Time series length

50words 50 450 455 270
Adiac 37 390 391 176
Beef 5 30 30 470
CBF 3 30 900 128
Coffee 2 28 28 286
ECG200 2 100 100 96

FaceAll 14 560 1,690 131
FaceFour 4 24 88 350
Fish 7 175 175 463
GunPoint 2 50 150 150
Lightning2 2 60 61 637
Lightning7 7 70 73 319
OliveOil 4 30 30 570
OSULeaf 6 200 242 427
SwedishLeaf 15 500 625 128
Syntheticcontrol 6 300 300 60

Trace 4 100 100 275
TwoPatterns 4 1,000 4,000 128
Wafer 2 1,000 6,164 152
Yoga 2 300 3000 426
ChlorineConcentration 3 467 3,840 166
CinC_ECG.torso 4 40 1,380 1,639
Cricket.X 12 390 390 300
CricketY 12 390 390 300
CricketZ 12 390 390 300
DiatomSizeReduction 4 16 306 345
ECGFiveDays 2 23 861 136
FacesUCR 14 200 2,050 131
Haptics 5 155 308 1,092
InlineSkate 7 100 550 1,882
ItalyPowerDemand 2 67 1,029 24

MALLAT 8 55 2,345 1,024
Medicallmages 10 381 760 99

MoteStrain 2 20 1,252 84

SonyAIBORobot Surface 2 20 601 70

SonyAIBORobot Surfacel 2 27 953 65

StarLightCurves 3 1,000 8,236 1,024
Symbols 6 25 995 398
TwolLeadECG 2 23 1,139 82

uWaveGestureLibranX 8 896 3,582 315
uWaveGestureLibrany 8 896 3,582 315
uWaveGestureLibrary 8 896 3,582 315
WordsSynonyms 25 267 638 270

TABLE 11. Characteristics of the datasets: number of classes, nuailigining cases,
number of testing cases, and lengths of time series. Therpeathce analysis of the algo-
rithms on this diverse set of data provides a wide-rangingparison.

features (such as slopes). Maximum pattern level settimgti®sL € {2,4,6,8,10} to

illustrate the progress of RFpattern’'s OOB and test errtasraver differentl settings.

Although, patterns generated with= 10 may be insufficient to describe certain features
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for long time series, the same levels are considered on talets for illustration purposes.

The number of trees for both forest is set to 2000.

5.1. Computational accuracy

TS-PD with the given settings is compared to nearest neigh{dtN) classifiers with
DTW. Two versions of DTW are considered: NNDTWBestWin (aisferred to as NNBest-
DTW) [17] searches for the best warping window, based on thieihg data, then uses
the learned window on the test data, while NNDTWNoWin doessearch for any con-
straints on the warping path. Note that DTW is a strong smtukinown for time series
problems in a variety of domains [58] although it may not bitadlle for certain applica-
tions because of computational and space requirementsTg8]results for NN classifiers
are obtained from [85]. Tables 12 and 13 summarizes the O@Btest error rates for
RFpattern for all L settings. For certai, settings, TS-PD is not run (represented as ’-')
since the pattern is potentially longer than the time sekids also compare our results with
Logical-Shapelets [23] which significantly outperforms triginal shapelet representation
proposed by [61]. Since this comparison is not based on #&dsdts because of the com-
putational requirements of Logical-Shapelets, we comp&+€°D to Logical-Shapelets in

Section 6.4.
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RFpattern NNDTW

OOB error rate Test error rate BestWin  NoWin
L=2 L=4 L=6 L=8 L=10|L=2 L=4 L=6 L=8 L=10

50Words| 0.404 0.336 0.329 0.331 0.329 0.354 0.295 0.273 0.266 0.257 0.242 0.310
Adiac | 0.287 0.285 0.282 0.287 0.29% 0.243 0.246 0.240 0.248 0.246 0.391 0.396
Beef | 0.500 0.467 0.533 0.400 0.467 0.367 0.333 0.233 0.233 0.267 0.467 0.500
CBF| 0.100 0.067 0.033 0.033 0.033 0.113 0.078 0.033 0.027 0.038 0.004 0.003
Coffee| 0.000 0.000 0.000 0.000 0.000 0.000 0.036 0.036 0.036 0.03¢6 0.179 0.179
ECG| 0.150 0.170 0.160 0.120 0.130 0.220 0.220 0.200 0.180 0.190 0.120 0.230
Face (all)| 0.086 0.068 0.054 0.046 0.045 0.234 0.234 0.254 0.263 0.258 0.192 0.192
Face (four)| 0.167 0.083 0.042 0.042 0.000 0.295 0.091 0.114 0.102 0.045 0.114 0.170
Fish| 0.200 0.194 0.206 0.200 0.206 0.154 0.189 0.166 0.166 0.166 0.160 0.167
Gun-Point| 0.080 0.100 0.060 0.060 0.060 0.067 0.047 0.060 0.040 0.060 0.087 0.093
Lighting-2 | 0.150 0.117 0.117 0.117 0.133 0.311 0.246 0.262 0.279 0.279 0.131 0.131
Lighting-7 | 0.314 0.229 0.257 0.243 0.2430.384 0.329 0.329 0.301 0.288 0.288 0.274

OliveQil | 0.100 0.067 0.033 0.100 0.067 0.267 0.200 0.200 0.200 0.200 0.167 0.133

OSU Leaf| 0.315 0.245 0.250 0.250 0.235 0.380 0.310 0.314 0.318 0.302 0.384 0.409

Swedish Leaff 0.098 0.096 0.098 0.092 0.098 0.096 0.086 0.090 0.098 0.10]1 0.157 0.210
Synthetic Controll 0.030 0.017 0.020 0.023 0.028 0.033 0.023 0.017 0.010 0.017 0.017 0.007
Trace| 0.000 0.000 0.000 0.040 0.020 0.010 0.000 0.000 0.020 0.020 0.010 0.000

Two Patterns| 0.005 0.000 0.000 0.000 0.001 0.004 0.001 0.000 0.000 0.001 0.002 0.000

Wafer | 0.020 0.011 0.005 0.006 0.006 0.020 0.010 0.006 0.005 0.00%5 0.005 0.020

Yoga | 0.217 0.187 0.187 0.187 0.187 0.181 0.174 0.149 0.156 0.14% 0.155 0.164
ChlorineConcentration) 0.298 0.315 0.315 0.315 0.3183 0.319 0.312 0.317 0.335 0.344 0.350 0.352
CinC_LECGtorso| 0.425 0.400 0.350 0.475 0.3750.459 0476 0491 0452 0.452 0.070 0.349

TABLE 12. Error rates of TS-PDy = 6,2000 trees) for different settings of, nearest-neighbor classifiers with dynamic time
warping distance, where NNDTWBestWin searches the begtimgwindow based on the training data, NNDTWNoWin has nqoivey
window.
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RFpattern NNDTW
OOB error rate Test error rate BestWin NoWin
L=2 L=4 L=6 L=8 L=10|L=2 L=4 L=6 L=8 L=10

CricketX | 0.295 0.269 0.244 0.236 0.241 0.318 0.297 0.274 0.256 0.272 0.236 0.223
CricketY | 0.369 0.331 0.313 0.305 0.274 0.385 0.338 0.315 0.287 0.251 0.197 0.208
CricketZ | 0.338 0.308 0.279 0.256 0.269 0.321 0.262 0.233 0.244 0.218 0.180 0.208
DiatomSizeReduction 0.063 0.063 0.063 0.063 0.063 0.108 0.131 0.075 0.127 0.124 0.065 0.033
ECGFiveDays| 0.217 0.174 0.130 0.130 0.087 0.233 0.224 0.256 0.289 0.252 0.203 0.232
FacesUCR| 0.150 0.150 0.125 0.100 0.100 0.224 0.186 0.150 0.105 0.094 0.088 0.095

Haptics| 0.458 0.432 0.387 0.394 0.394 0.532 0.558 0.513 0.516 0.519 0.588 0.623
InlineSkate| 0.640 0.700 0.680 0.670 0.690 0.660 0.631 0.604 0.611 0.611 0.613 0.616
ItalyPowerDemand 0.030 0.075 - - 0.048 0.049 - 0.045 0.050

MALLAT | 0.036 0.036 0.018 0.018 0.036 0.065 0.043 0.038 0.030 0.02¢
Medicallmages| 0.262 0.252 0.255 0.249 0.262 0.289 0.283 0.278 0.284 0.27]
MoteStrain| 0.300 0.200 0.250 0.150 0.100 0.154 0.105 0.114 0.121 0.12]
SonyAIBORobot Surface 0.050 0.150 0.150 0.150 0.150 0.153 0.123 0.143 0.098 0.06}
SonyAIBORobot Surfacell 0.222 0.259 0.148 0.148 0.148 0.256 0.248 0.196 0.187 0.199 0.141 0.169
StarLightCurves) 0.037 0.033 0.036 0.038 0.042 0.039 0.037 0.037 0.037 0.038 0.095 0.093

5 0.086 0.066
|
|
b
)
3
Symbols| 0.240 0.120 0.040 0.040 0.040 0.169 0.150 0.134 0.067 0.104 0.062 0.050
)
3
b
b
3

0.253 0.263
0.134 0.165
0.305 0.275

TwolLeadECG| 0.043 0.087 0.130 0.087 0.087 0.143 0.163 0.147 0.105 0.139 0.132 0.096
uWaveGestureLibrarX | 0.232 0.227 0.224 0.209 0.203 0.250 0.228 0.210 0.206 0.203 0.227 0.273
uWaveGestureLibraryy | 0.280 0.267 0.276 0.267 0.265 0.303 0.291 0.299 0.298 0.296 0.301 0.366
uWaveGestureLibrary | 0.288 0.263 0.270 0.259 0.267 0.284 0.266 0.269 0.264 0.266 0.322 0.342

WordsSynonymg 0.502 0.427 0.408 0.386 0.401 0.469 0.406 0.409 0.378 0.368 0.252 0.351

TABLE 13. Error rates of TS-PDy = 6, 2000 trees) for different settings df (continued), nearest-neighbor classifiers with dynamic
time warping distance, where NNDTWBestWin searches thewaping window based on the training data, NNDTWNoWin has n
warping window. For certaiw and L combination, TS-PD is not run (represented as ’-’) sincepthiitern is potentially longer than the
time series.



We use the same idea proposed by [21] for comparison of TSsRither algorithms.
Pairwise comparison of error rates is done using scattés plavhich each axis represents
the approach under consideration and each dot representyrdr rate for a particular
dataset. The line = y is drawn to represent the region where both methods perfbouta
the same. A point above the line indicates that approacheX taxis has better accuracy
than the one oY axis. If a point is further from the line, the margin of acayamprove-
ment is greater. A method can be regarded as superior toibthere are more points on
one side of the line. Figure 36 illustrates the comparisom®PD with NNDTWNoWin
and NNDTWBestWin. The error rates 6f= 10 are used for comparison since we expect
TS-PD to provide stable results after certdisetting based on our discussion. We use the
result of the largest possiblesetting for the cases that pattern length is larger tharirie t

series length (i.e. error rate of TS-HD= 4 is used for ItalyPowerDemand dataset).
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Figure 36. Scatter plot of error rates of TS-PD vs NNDTWNoWin and NNDT&&B
Win. TS-PD with the given settings provides comparable lteda NNDTWNoWin and
NNDTWBestWin

TS-PD with the given parameters provides comparable sesulWNDTWNoWin and
NNDTWBestWin. For certain instances such as CEBCG torso, DTW based classifiers
have significantly better error rates. This is related toptudlem structure and the param-
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eter settings. Note that the maximum possible pattern hlewgh the given settings is 60
time units which may create problems for certain datasetghich features of interest are
long (length of the series is 1639 for CilEXCG.torso dataset). For example, setting the
parameters a® = 50, L = 10 for CinC_ECG torso dataset reduces to OOB and test error
rates from 0.375 and 0.452 to 0.35 and 0.343, respectivély,tihe same number of trees.
This again confirms our discussion about setting the paemetfter the analysis of the

OOB error rates of? F'int and local importance plots.

5.2. Computational complexity

TS-PD is implemented in R Software and our experiments usenays 7 system
with 8 GB RAM, dual core CPU (i7-3620M 2.7 GHz). We use R only building the
RFs and implemented the algorithms for feature generatmhdéstance computation in
C, because R is computationally inefficient in executionhef lbops. Moreover, although
the CPU can handle four threads in parallel, only a singleatthis used. The computation
times of TS-PD {v = 6,2000 trees) for different settings of are provided in Tables 14

and 15.
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TOT

Training time (secs) Test time (secs)
L=2 L=4 L=6 L=8 L=10|L=2 L=4 L=6 L=8 L=10
50Words| 74.63 95.35 123.26 150.63 181.480.0097 0.0112 0.0131 0.0151 0.01
Adiac | 49.85 73.64 98.43 112.65 137.310.0052 0.0067 0.0082 0.0102 0.00
Beef| 1.24 1.35 1.42 1.56 1.76| 0.0090 0.0093 0.0093 0.0093 0.00
CBF | 0.59 0.64 0.78 0.74 0.86| 0.0003 0.0003 0.0002 0.0004 0.00
Coffee| 0.59 0.71 0.61 0.67 0.80| 0.0068 0.0036 0.0068 0.0071 0.00
ECG| 1.93 2,51 2.68 2.85 3.03| 0.0022 0.0018 0.0026 0.0029 0.00
Face (all)| 73.85 95.23 117.86 13541 158.170.0048 0.0066 0.0078 0.0085 0.00
Face (four)| 0.71 0.72 0.87 0.87 0.89| 0.0023 0.0027 0.0022 0.0027 0.00
Fish| 13.86 18.35 22.79 2851 34.61 0.0105 0.0120 0.0139 0.0151 0.01
Gun-Point| 0.78 0.81 0.96 1.05 1.30| 0.0009 0.0015 0.0014 0.0013 0.00
Lighting-2 | 2.85 3.32 3.78 4.54 552 0.0144 0.0133 0.0141 0.0144 0.01
Lighting-7 | 2.73 3.22 3.71 4.11 4.66| 0.0067 0.0078 0.0071 0.0085 0.00
OliveQil | 1.25 1.30 1.54 1.60 1.58| 0.0113 0.0123 0.0090 0.0097 0.01
OSU Leaf| 16.84 22.03 27.87 36.51 45.510.0095 0.0098 0.0107 0.0119 0.01
Swedish Leafl 58.45 86.26 104.45 123.53 191.520.0053 0.0069 0.0077 0.0088 0.00
Synthetic Control| 10.27 12.07 14.78 16.72  18.92 0.0018 0.0024 0.0026 0.0023 0.00
Trace| 3.13 3.34 4.39 5.41 6.26 | 0.0059 0.0086 0.0070 0.0064 0.00
Two Patterns| 165.13 217.21 294.93 358.69 483.360.0092 0.0115 0.0142 0.0163 0.01
Wafer | 420.35 608.73 786.82 928.63 1151.34.0128 0.0141 0.0189 0.0222 0.02
Yoga | 32.18 4577 60.05 82.29 104.670.0077 0.0097 0.0114 0.0155 0.01
ChlorineConcentratior) 71.32 121.89 157.26 206.80 300.020.0057 0.0076 0.0091 0.0103 0.01
CinC_ECG_orso| 6.02 5.58 6.33 6.91 8.18| 0.0044 0.0062 0.0083 0.0087 0.01
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TABLE 14. Computation times of TS-PDu( = 6, 2000 trees) for different settings af. Testing time is the computation time of
classifying single time series. For certallmnd L combination, TS-PD is not run (represented as '-’) sinceplitéern is longer than the
time series.
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Training time (secs) Test time (secs)

L=2 L=4 L=6 L=8 L=10|L=2 L=4 L=6 L=8 L=10
CricketX | 55.44 7586 9359 116.22 130.300.0114 0.0145 0.0171 0.0184 0.0196
CricketY | 53.78 63.62 7753 89.56 113.500.0109 0.0143 0.0162 0.0177 0.0192
CricketZ | 58.75 74.32 83.71 106.47 112.140.0119 0.0134 0.0148 0.0191 0.0180
DiatomSizeReduction 0.55 0.50 0.57 0.64 0.64| 0.0009 0.0008 0.0009 0.0009 0.0012
ECGFiveDays| 0.42 0.42 0.53 0.42 0.60| 0.0002 0.0003 0.0003 0.0004 0.0004
FacesUCR 11.36 13.11 16.68 17.40 21.30 0.0018 0.0020 0.0026 0.0028 0.0030
Haptics| 25.45 32.03 37.95 49.47 63.99 0.0188 0.0230 0.0248 0.0283 0.0311
InlineSkate| 25.12 2854 33.14 38.79 48.57 0.0192 0.0220 0.0229 0.0242 0.0289

ItalyPowerDemand 0.83 0.85 - - - 0.0001 0.0001 - - -

MALLAT | 7.10 6.84 7.87 8.47 10.13/ 0.0044 0.0055 0.0065 0.0067 0.0078
Medicallmages| 29.48 47.00 54.93 61.12 68.92 0.0031 0.0037 0.0044 0.0052 0.0049
MoteStrain| 0.36 0.38 0.46 0.43 0.53| 0.0001 0.0002 0.0002 0.0002 0.0002
SonyAIBORobot Surface 0.24 0.28 0.24 0.36 0.38| 0.0001 0.0001 0.0002 0.0001 0.0001
SonyAIBORobot Surfacell 0.35 0.42 0.49 0.42 0.56| 0.0001 0.0002 0.0001 0.0002 0.0001
StarLightCurves| 450.63 652.21 992.21 1496.34 2068.20.0577 0.0807 0.1030 0.1292 0.1529
Symbols| 1.37 1.44 1.61 1.44 1.63| 0.0009 0.0010 0.0010 0.0012 0.0015
TwolLeadECG| 0.49 0.47 0.58 0.63 0.59| 0.0001 0.0001 0.0002 0.0001 0.0002
uWaveGestureLibrarX | 278.50 408.43 484.23 642.23 762.760.0224 0.0284 0.0341 0.0382 0.0408
uWaveGestureLibran)y | 283.78 439.94 508.32 786.38 917.280.0206 0.0259 0.0299 0.0347 0.0370
uWaveGestureLibrarZ | 290.61 412.75 527.15 670.36 757.§80.0223 0.0292 0.0354 0.0394 0.0422
WordsSynonymg 31.10 35.95 44.88  55.28 64.39 0.0074 0.0081 0.0086 0.0099 0.0092

TABLE 15. Computation times of TS-PDuy( = 6, 2000 trees) for different settings af (continued). Testing time is the computation
time of classifying single time series. For certdiand L combination, TS-PD is not run (represented as ’-’) sincepthigern is longer
than the time series.



There are three components of TS-PD, local importance ggoey pattern discovery
and distance computation, classification. We will disciresdomplexity of each compo-
nent instead of providing an overall computational comitjegince our approach is an
exploratory tool where user should find out certain settithgsugh the analysis of OOB
errors and visual tools presented.

Computational complexity of the local importance generats mainly due taR Flint.
Time complexity of building single tree d® F'int is O(,/v N log N) wherev is the num-
ber of features extracted from each time series &nid the number of training instances.
Smaller interval and sliding step lengths result in largenber of features foR Fint how-
ever the increase in the complexity is comparably smallesimly subset of features are
considered at each split. However, one may want to generate trees when number
of features is large since the probability of selecting efstiure decreases. The num-
ber of trees is decided by the analysis of the OOB error reBasne discussion holds for
RFpattern, the classification component of TS-PD, since it is also arclgssifier.

Pattern discovery and distance computation requires sagnpf the important inter-
vals and finding the distances of these samples to each ties.s€he time to compute the
distance of a pattern to the time serieg)i&: M) wherez is the length of the pattern and
M is the length of the time series. The length of the patterreterthined by the interval
lengthw and maximum level setting in our algorithm. Although we generafe patterns
from each time series, the complexity of distance computatioes not change since the
distances can be computed for all patterns in the same Idugs, The complexity of com-
puting all pattern distances (=M ) wherez is now the length of the levdl pattern which

is z = Lw in the worst case. The length of the pattern can be lesszhanw because of
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the overlapping intervals generated. The minimum poségolgth isz = (L — 1) x d + w
when all intervals overlap (i.e. all firdt important intervals are contiguous).

The computation times of TS-PD with increasing trainingadat size)V, are illustrated
in Figure 37 on Two Patterns dataset £ 6, L. = 5,1000 trees). This increase is mainly
due to the complexity oR F'pattern which isO(,/][S||N log N). The number of patterns
in the setS increases as the number of training time series increasgsisihe main reason
of the practically quadratic complexity on the number of itaéning time series illustrated
in Figure 37. The training time increasesidbecomes larger due to the combined effect of
the increase in the number of features and the training @atdhe other hand, the increase
in the time for classifying an instance is practically lindecause of the increase in the
number of patterns. On the other hand, there are severaltevegguce the complexity such

as pruning the pattern set or downsampling the training astdiscussed in Section 5.3.
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Figure 37. Training (left) and testing (right) times of TS-PD on Two feahs dataset for
increasing dataset sizes & 6, L. = 5, 1000 trees).

We illustrate the behavior of the computation times witHedtént I. andw settings in
Figure 38 for FacesUCR dataset. The increase in the numbeattdrns with largel.
setting is the main reason of the increase in training tintfee domplexity added by intro-
ducing largerl is mainly because of the increase in the number of feature fpattern.
The computation time required for computation of the distsnalso increases but it is not
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significant since the distance computation is done in asipgbs for all possible patterns.
Considering the training times, the practical complexity 8-PD is approximately linear
on L setting when other parameters are fixed.

Larger interval setting results in longer patterns thatines larger computation time
however the training times are slightly smaller or aboutghme level whed. is larger as
in Figure 38. This is mainly due to the less number of featamsidered folR F'int since
the number of features is less for largersettings which will reduce the training time of
RFint significantly. Moreover, the number of features stays tmestor R F'pattern for
respectivel settings.

To classify a time series, distances to each pattern is ctadmver the time series.
The time required for testing is mainly due to this distanoeputation. After the distance
computation, the object is classified by traversing thestoé& F'pattern which is very fast.
Time for distance computation increaseslamcreases however this increase is not large
because of the efficient distance computation for the diffepattern levels as described
earlier. Therefore time to classify an instances does roease significantly as illustrated
in in Figure 38. Computation time is almost linear to the gratievel setting.

We also consider the computation times of TS-PD for timeeseof different length.
These datasets are ItalyPowerDemand, Synthetic Contfot;, ECBF, Trace, OliveQil,
MALLAT and InlineSkate (the lengths of the time series are@® 96, 128, 275, 570, 1024
and 1882 respectively). We randomly selected 30 trainiataimces from each dataset. The
computation times are illustrated in Figure 38 € 6, L. = 3, 1000 trees). Similar discus-
sion in terms of the number of features holds for longer tierées. The number of features

increases foR F'int for longer series and the training time increases. Sinyilanhe for
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Figure 38. Training (left) and testing (right) times of TS-PD for Fad&R dataset for
differentw and L settings. Emprically, the training and test times is lineih the pattern
level setting.

distance computation is larger for longer time series. Tdraputation time changes in a

linear fashion with the change in the length of the time seviben other parameters are

fixed.

5.3. Complexity reduction

The complexity of TS-PD can be reduced in several ways. 8ingit same patterns

are not pruned in this study, thus pruning similar pattenmsroves the overall computation

time. Moreover, a subset of instances can be selected terpageneration based on certain
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Figure 39. Training (left) and testing (right) times for series of difént length{) = 6, L. =
3,1000 trees). There are 30 training instances for each time series
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N Error rates Comp. Time (secs)
OOB Test | Train Test

50 | 0.060 0.065 3.99 0.0041
100 | 0.060 0.063] 8.35 0.0081
200 | 0.050 0.049| 23.37 0.0157
400 | 0.050 0.048| 74.59 0.0320
750 | 0.041 0.040| 262.96 0.0610
1000 | 0.037 0.037| 515.11  0.0814

TABLE 16. Error rates and computation times of TS-PD & 6,L = 4,1000 trees)
for different training data sizes. The training time is sfgantly smaller when TS-PD
is trained on less number of instances. However, the changfgeitest error rate is not
substantial. If there are certain constraints on the coatjout time or space availability,
training on smaller datasets may be preferred.
criterion to reduce the computation time. For instance,ngk similarity computation
between the training instances (i.e. finding similar insg@nbased on Euclidean distance)
and discarding the similar train instances may help to redine computational effort.
StarLightCurves dataset is used to illustrate how the caatiom time and accuracy are
affected when the training data is downsampled. It is theadrtbe largest datasets with
1000 training and 8236 test instances of 1024 time units.lofg randomly sample 50,
100, 200, 400, 750 instances while keeping the class diiritis same as the original data
and report the computation times and error rates of TS4PB=(6, L = 4, 1000 trees) in
Table 16. The training time is significantly smaller when PB-is trained on less number
of instances. However, the change in the test error ratetisubstantial. If there is certain

constraints on the computation time and space availghii@ining on smaller datasets may

be preferred.
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6. Discussion
6.1. lllustrative example

TS-PD is proposed as an exploratory tool for the analysib®titme series for classi-
fication purposes and parameters should be set after aedetaiblysis of the certain mea-
sures such as local importance and OOB error ratgsfaint and R F'pattern. Although
TS-PD is robust to these parameters if they are set withinumdmry as shown in Sec-
tion 5.1 over all datasets, we will illustrate the steps eféimalysis on FacesUCR dataset in
this section. FacesUCR data consists of face images of giadtudents transformed into
time series. An example of this conversion is provided iruFegd0. There are 14 students
and 2250 pictures are taken under different conditions aagtass/no glass or expressions.
The length of the series is 131 time units and the training dansists of 200 time series

where the rest is used for testing.

()

t
L

\

Figure 40. lllustration of the transformation of a face image to thediseries.

First step in TS-PD is the local importance generation thhoimterval feature gener-
ation and classification b F'int. The parameters to be set are the number of trees and

interval length (assuming that the sliding window is fixedha#f of the interval length).
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We start with the smallest interval length that will generateaningful patterns which is
6 and increment it by 2 up to 40 to see how the OOB error ratesgehalnitially we set
the number of trees as 1000. OOB error ratedor= 6 over trees and OOB error rates of
RFint for differentw settings are given in Figure 41. The progress of the OOB eates
shows that 1000 trees are more than enoughufer 6. We use the same level for other
settings assuming that the number of trees will be suffidiena dataset with less number
of features. Interval lengths between 14 and 24 can be ustheé @#rgterval length setting as

they provide lower error rates.

OOB error of RFint over trees QOB error of RFint over different interval settings

OO0B error rate

OOB error rate
010 012 014 016 018
L L L L L
—
-\
h.

J\ /
e o gre g et P
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Trees w

Figure 41. OOB error rates ofRF'int over trees forw = 6 (left), OOB error rates of
RFint (number of trees=1000) for different settings of intenaddth (right).

Local importance plots and time series are provided for etams$s in Figure 42 after
settingw = 20 considering the OOB error rates in Figure 41. The next stepS#PD is
to set the pattern level. In this particular example, sgtfiras 3 or 4 seems reasonable by
looking at each local importance plot.

Local importance plot does not only provide insight abowt pgattern level, it also
illustrates the difficulty of the classification problem. ridider the time series from 'class
2', most of the time series of this class does not overlap Usaf certain variations in
the time series. Similar observation can be done consmgléha local importance plot.
Variation of the patterns within the class can be observeuh fihese plots.
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Last step is the training ok F'pattern on the distance features. Number of trees is
again set based on the OOB error rate over the trees. The f{pldO8 error rates over
trees for REpattern (L = 4) is given in Figure 43 for 1000 trees. OOB error rate of
RFpattern is 0.095 and the test error rate over 2050 time series is 0.086 error rates

of NNDTWBestWin and NNDTWNoWin are 0.088 and 0.095 respetyi

6.2. Interpretability

Section 4.3 discusses how interpretability is achieved $PD. We will illustrate the
comprehensibility of our classifier on certain examplesssehexamples include Gun-Point,
Sony AIBO Robot and Coffee datasets.

6.2.1. Gun-Point. Gun-Point dataset is one of the most studied time seriesifitas
tion problem [21]. The aim is to classify a motion as 'Gun’ BloGun’ through time series
generated by mapping the motion of two actors. For the Gussclhe actors "have their
hands by their sides, draw a gun from a hip-mounted holsbén} i at a targer for approxi-
mately one second, and then return the gun to the holstehairdheinds to their sides” [61].
In the NoGun class, actors do the same movements as in thel&swathout a gun. In-
stead they use their index finger to point to a target. TheeafoNoGun class, the step of
drawing the gun from holster and returning it back is skipp€de dataset characteristics
are the same as provided in Table 11.

The interval length is set as = 20 after the analysis of the OOB errors &fFint
with 1000 trees for interval lengths between 4 and 40. Welset 3 considering the
local importance plots. The test error ratel®F pattern is 0.06 where the error rates of
NNDTWBestWin and NNDTWNoWin are 0.087 and 0.093 respedtivén addition to
better accuracy, TS-PD is very fast in classification whemmared to nearest neighbor
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classifiers. It only requires the distance computation efghtterns to the time series and
tree traversal oveR F'pattern.

The first five important patterns frofR F')pattern are schematized in Figure 44. All
patterns are generated from the time series of Gun classrefimns refer to the actions,
"draw a gun from a hip-mounted holster” and "return the guthiholster and their hands
to their sides”. The first two patterns are from the same tieres and both of them are
found to be important. This illustrates the redundancydssiscussed in Section 4.3. A
feature selection algorithm can be used to find the compéacf patterns in that case.

6.2.2. Sony AIBO RobotThis dataset is created by [91] and the task is to classify
the surface types using the measurements of the tri-axiglerometer from Sony AIBO
Robot [23]. Only the X-axis readings of the accelerometgravided in [85]. Two types
of surfaces, carpet and cement, are considered in thisedat&€ement floors are harder
resulting in sharper changes in the accelaration [23]. Tdtasgt characteristics are the
same as provided in Table 11.

The algorithm parameterss = 20,d = 10,L = 2 lead to a test error rate of
0.036. Logical-shapelets [23] also achieve the same eater where the error rates of
NNDTWBestWin and NNDTWNoWin are 0.305 and 0.275 respebtivEhe improvement
in error rate is substantial compared to NN classifiers. Tigortant patterns provided in
Figure 45 are similar to the shapelets by [23] and they refelifferent shifts-of-weight in
the walk cycle on the carpet floor.

6.2.3. Coffee. The task is to classify the coffee species in instant coffedss dataset.

A chemical analysis, called Diffuse Reflectance Infraredries Transform (DRIFT), is
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used to discriminate between two species of coffees as éaadmd Robusta [92]. The
characteristics of the dataset is provided in Table 11.

The parameters are setas= 6,d = 3, . = 3 after the analysis of the dataset char-
acteristics. All test instances are classified correctlyT®PD where the error rates of
NNDTWBestWin and NNDTWNoWin are 0.179. The first five impaotipatterns and the
training time series are schematized in Figure 46. [92kst#tat certain spectral regions
represent the caffeine bands. These regions correspome tinte frame between 187.7
and 247.3 as discussed by [61]. Some of the important pats@ebetween these regions

as illustrated in Figure 46.

6.3. Gesture recognition: an application of TS-PD to multivaria time series classifica-
tion

We illustrate the effectiveness of TS-PD only on univaritiee series in Section 5.
TS-PD can be extended to the multivariate time series @leason (MTSC) by changing
the representation. We will discuss how TS-PD can be extetwenultivariate case on a
gesture recognition problem proposed by [5].

A single three-axis accelerometer is used to collect data fright users to characterize
eight gesture patterns. The library, uWaveGesturelLib@mysists over 4000 samples each
of which has the accelerometer readings in three dimen§i@ns, y and z) [5]. Individual
axes are considered in Section 5 for the univariate casalétasets are uWaveGestureLi-
brary X, uWaveGestureLibrary!, uWaveGestureLibraryZ). However handling this prob-
lem as a MTSC problem may provide better results by takingrttezaction between the

individual axes into account.
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We transform the multiple time series representation toigauate one by concatenat-
ing each axis as illustrated in Figure 47. This transforamaprovides desirable properties
for our approach. The interaction between the time seridgtair correlation are two im-
portant aspects for MTSC. Our tree based local importancergdon scheme handles both
in efficient way. Interaction is naturally handled by RFs weheorrelation is not a problem
as RF works on the random subsets of the features. On thelwhdr the length of the
concatenated series can get larger as the number of tines sscreases but RFs can handle
large number of features with the random sampling of theufeat

Local importance generation is the core component of TSdPBl&ssification of mul-
tivariate time series. TS-PD is modified slightly to handleltiwariate case in our study.
Interval features are generated for each time series arghtmrated, then regions of inter-
est for each axis are discovered. The rest of the algoritiiheisame as what is done for the
univariate time series with one difference. We considepigerns within the boundary of
each time series. Suppose a pattern that has one intermakfioh time series is generated
using the importance values, first interval in the pattewveha stay in the first time series
in the distance computation stage. Computing the distahaepattern from one series to
different time series does not make sense.

This dataset has 896 training and 3582 test time series. {Domlhe three axes results
in a time series of length 945 time units. OOB and test err@sraf TS-PD{ = 20, L =
5,1000 trees) are 0.066 and 0.069 respectively. Considering tlug extes provided in
Tables 12 and 13, the error rate reduces significantly if dlsk ts taken as a multivariate
time series classification. Figure 48 provides the gestomabulary from [5] (bottom)

and important patterns from two classes. Two series froresclaand 8 represents the
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circular movement in opposite directions. Patterns et¢chfor these instances represent
the segments related to change in the direction during tikalar movement. The change
is opposite in the sign for different classes which refeesdincular movement in opposite

directions.

6.4. Logical-Shapelets and TS-PD

We compare the performance of TS-PD to Logical-Shapelaetsddain datasets. In
order to be fair in terms of comparison, we set the paramefdogjical shapelet algorithm
so that it will search for all possible shapelets. Howevecadd not achieve this because of
the computational requirements of the algorithm for cartitasets. Therefore we perform
this comparison based on a subset of the datasets. Thesetdaiee Beef, CBF, Coffee,
ECG and Trace. Three parameters of Logical-Shapelets amm#ximum and minimum
length of the shapelet and the step size. We set the maximogthles the time series
length, minumum as two and we take step size as one. This diiesenessarily mean
that the best accuracy is obtained on the test set with thtinge since the shapelets are
evaluated based on the training set. Moreover, we testedlgarithm on two additional
datasets discussed in [23]. These datasets are CricketaasdrBphs. The explanations of
these datasets can be found in the original paper [23]. Weotltune the parameters of
our algorithm for the new datasets, we set£ 6, L. = 10,2000 trees). We also do not
compare the algorithms in terms of computation time bectheseomparison depends to a
large extent on parameter settings. The results are prbud€able 17.

TS-PD has better or comparable performance on the datagmtptdor ECG dataset
(and TS-PD is still better than NNDTWNoWin on this data s&gcall that the parame-
ters of Logical-Shapelets are set so that it searches ogegrttire space which increases
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TS-PD (OOB) TS-PD (Test) Logical-Shapelets NNDTWBestWin NDNTWNoWin

Beef 0.467 0.267 0.600 0.467 0.500
CBF 0.033 0.038 0.336 0.004 0.003
Coffee 0.000 0.036 0.071 0.179 0.179
ECG 0.130 0.190 0.140 0.120 0.230
Trace 0.023 0.017 0.530 0.010 0.000
Sony A.R. 0.150 0.065 0.036 0.305 0.275
Cricket 0.000 0.000 0.041 0.051 0.010
Passgraphs 0.261 0.260 0.298 0.260 0.282

TABLE 17. Error rates of Logical-Shapelets and TS-PD on 8 dataset$?[¥ 8as better or
comparable performance on the datasets except ECG.

the computational time significantly. Potentially equeral accuracy can be obtained with
alternative settings on the parameters, but our objecave is to assess the accuracy. Also,
we do not provide the time for testing because both algosthra very fast in classification.

7. Conclusion

A framework is presented to analysis of time series for diaation. To find the inter-
esting regions of the time series for classification, a suped learner is trained on the local
features to generate alocal importance measure. Regiangi@sts are important to under-
stand the underlying relations in the time series. Oncedbm®ns of interests are identified
for each time series using the local importance valuesngtiatgpatterns are generated from
these regions. This allows for pruning the search spaceouiittosing information about
the time series in an efficient way. Each time series is theresented by their distances to
the potential patterns and a new feature matrix of distaizcased for classification. TS-
PD is comprehensible and our experimental results showittigates comparable results
to competitive methods on the benchmark data sets from UGR sieries database [85].
Although our focus in this study is on the classification af thme series, TS-PD can be

easily adjusted to other applications such as similarighesis, clustering, and so forth.
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Figure 42. Normalized local importance information on FacesUCR )laftd time series
of each class (right). The parameters are set as20,d = 10.

116



QOB error rate
025 0.30 0.35 040
1 1 ] 1

0.20
|

0 200 400 600 800 1000

Trees

Figure 43. The OOB error rates aR F'pattern over trees forw = 20, L = 4
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Order: 1 Pattern number: 26 from time series 13 class 1 Order: 2 Pattern number: 25 from time series 13 class 1
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Figure 44. First five important patterns of TS-Plw (= 20,d = 10, L. = 3) represented
by blue dots (Gun-Point dataset), the order of the impogaiat of the pattern and the
corresponding time series is provided in the titles of tt@glthe last is the plot of the
training time series.
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Order: 1 Pattern number: 10 from time series 6 class 2 Order: 2 Pattern number: 12 from time series 7 class 2
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Figure 45. First five important patterns of TS-Plw (= 20,d = 10, L. = 2) represented
by blue dots (Sony AIBO Robot), the order of the importanceofi the pattern and the
corresponding time series is provided in the titles of thatgylthe last is the plot of the
training time series.

119



Order: 1 Pattern number: 68 from time series 26 class 1 Order: 2 Pattern number: 26 from time series 9 class 2
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Figure 46. First five important patterns of TS-Pv(= 6,d = 3, L = 3) represented by
blue dots (Coffee), the order of the importance, id of theéguatand the corresponding time
series is provided in the titles of the plots, the last is tho¢ @f the training time series.
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Figure 47. Univariate representation of the accelerometer data.
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Order: 1 Pattern number: 17 from time series 7 class 7
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Figure 48. Gesture vocabulary from [5] (bottom). Important pattemesibustrated for two
series of class 7 and 8 (top). The segments related to charthe direction during the
circular movement are discovered.
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CHAPTER S
MULTIVARIATE TIME SERIES CLASSIFICATION WITH LEARNED
DISCRETIZATION

1. Abstract

Multivariate time series (MTS) classification has receigedat interest over the past
decade with the increase in the number of temporal datasedg#férent fields, such as
medicine, finance and multimedia. Similarity based appreacuch as nearest neighbor
classifiers with Dynamic Time Warping (DTW) are which are cessfully used for clas-
sification of univariate time series however the similadogmputation is unclear for mul-
tivariate data since MTS are not only described by the vlrgabut their relation. These
approaches lose the relation among the variables of thesseyi breaking them into mul-
tiple univariate time series. Another strategy is to obtairectangular representation of
MTS by transforming the set of multivariate input sequertoes fixed number of columns
using different rectangularization approaches such a&ipal component analysis. Most
of these approaches assume that the variables are nunterigaver certain variables of
the series can be nominal or missing.

In this paper, we follow a different approach and proposeral®yjic representation
of MTS for classification. MTS observations are first disazed to obtain the symbolic
representation. Then, the distribution of the symbols @aarh time series is computed
and used for classification. The relation of the individuatiables is taken into account
with the proposed representation. Moreover, MTS with n@inand missing values are
handled efficiently with tree-based learners. An enserddenker that scales well with
large number of variables and long time series is used. Qumoaph does not break MTS

into multiple univariate series which makes it computadibnefficient when compared to
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other approaches. Our experiments demonstrate the eéfieeis of the proposed approach
in terms of accuracy and computation times in both univatiate series and MTS datasets.

Key words: supervised learning, multivariate time serdassification
2. Introduction

Similarity search and classification on time series daedbhas received great interest
over the past decade. Multivariate time series (MTS) diassion is a supervised learning
problem in which the input consists of a set of training exiEmpand associated class labels,
where each example is formed by one or more time series (asia MTS data is common
in different fields, such as in medicine, finance and multime@onsider a patient’s medi-
cal record, there are information in the medical record froaitiple sources such as the test
values, observations, actions and related responsesddthiprovides a complex character-
ization of the patient’s status and certain relations iahtin the records may be important.
Another example from multimedia applications is the motapture studies in which po-
sition of a set of joints from humans performing a series sk tia tracked by markers [93].
Learning scientists are interested in electroencephapdgyr (EEG), which is the record-
ing of electrical activity along the scalp to understand fireceived difficulty for a puzzle
solving task in a learning environment. Moreover, in the domnof relational marketing,
the behavior of customers is observed through time, and itteiractions and responses
are represented as MTS. An application illustrated by [25bout a telecommunication
company analyzing the customer’s loyalty using the infdiomaabout the transactions of
each customer recorded along the time periods, describddragion, economic value and

number of calls of different type (i.e. cell to cell, cell fnidline etc.).
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There are several approaches proposed to classify MTS. Asioned by [24], this
problem have been studied in different fields such as statistignal processing and con-
trol theory. We refer reader to [24] for an extensive revidwhese studies. The most
common approach is to obtain a rectangular representati®iT 8 by transforming the set
of multivariate input sequences to a fixed number of colunsnsgudifferent rectangulariza-
tion approaches [25]. For example, singular value decoitipogSVD) is used by [26—28].
Principal component analysis (PCA) is used for both feasatection and transformation
by [29]. Any supervised learner can be trained on the transfd data for classification.
Most of these approaches assume that the variables areinahiemwever certain variables
of the series can be nominal or missing.

Another strategy is to modify the similarity based appr@actvhich are successfully
used for univariate time series. For example, [5, 94] focugesture recognition based
on dynamic time warping (DTW) distance. DTW [20] allows a @@ of the similarity
independent of certain non-linear variations in the timmefision, and is considered as
a strong solution for time series problems [58]. Anotherrapph that makes use of the
similarity of the series is to use kernel-based classififiisese approaches find a kernel
function determined by pairwise similarities between thlagiables of MTS. [95] makes
use of kernels based on the dynamic time warping for braiivigctlassification. [25]
also proposes a temporal discrete SVM for MTS classificati@verall similarity between
the time series are taken into consideration through thectieg function with a term that
depends on the warping distances [25].

The similarity based approaches are successful for uabeatime series. However

MTS are not only described by the variables but their retaf80]. Therefore the relation
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among the variables are lost if only the similarity betwdwenitdividual variables are taken
into consideration [28]. Moreover as in telecommunicatimplication [25], observations
can be nominal (i.e. call type) for which similarity comptita is not well-defined.

High dimensionality introduced by multiple variables andder series is another im-
portant challenge for MTS classification. The number of cotapons required can in-
crease substantially with the increasing number of vaggfar similarity based approaches.
Also, approaches should scale well with the length of the tsmries, since the number of
observations can be large depending on the application.

High-level time series representations are proposed fterdnt data mining tasks to
deal with high dimensionality introduced by longer timeisef12]. These include Fourier
transforms, wavelets, piecewise polynomial models, etif@6] provides a good summary
of these approaches. These representations are propaosednierical time series. The
Symbolic Aggregate approXimation (SAX) [12] and more rdteimdexable SAX [97] is a
commonly used symbolic time series representation bea#utsesimplicity and effective-
ness in univariate time series [98]. SAX divides the timeeseinto same length segments
and each segment is represented by a symbol based on the alaanof the observa-
tions. The number of segments is called "word size” [12]. sTigipresentation is similar
to Piecewise Aggregate Approximation (PAA) [99]. Howeube symbols are assigned to
each segment assuming that the observed values are comnmg fGaussian distribution in
SAX. Based on the alphabet size (i.e. number of possible signkequiprobable intervals
are obtained using the Gaussian distribution assumptidrttensegments are represented
by the symbols. Figure 49 illustrates the idea of symbolzesentation on univariate time

series data for which word size is 8 and alphabet size is 3.
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Figure 49. SAX representation with a word size of 8 and alphabet size of 3
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There are many time series classifiers based on symboliesemiation. [98] proposes
a Bag-of-Patterns approach that makes use of SAX repréiwentar univariate time series.
For each time series, words are generated by combining dgmbing a sliding window
approach to capture the patterns over time. Each time gsriben represented by the fre-
guency of the words and nearest neighbor classifiers aretasgdssify test series. For
MTS data, two alternative representations illustrated igufeé 50 are commonly consid-
ered. MTS with)M variables and” observations can discretized to obtain 1D representation
using vector quantization approaches similar to the regmtation obtained for univariate
series [100]. Alternatively, each variable of MTS can becditized and combined to ob-
tain 2D representation of MTS. [101] presents two MTS regméations based on SAX to
classify physiological data. They generate multivariateds by combining the symbols of
each variable at particular time and uses Bag-of-Pattgspsoach to classify MTS. This
representation is called multivariate Bag-of-Patterrtsiamay capture the relationship be-
tween the time series by combining individual represemiati However, the length of the
words obtained by concatenating the symbols of the vasafdeeach segment may in-

crease substantially as the number of variables incredss potentially affects the quality

126



of the information since longer words will carry less infation (i.e. curse of dimension-

ality). Also, the represantation is not sensitive to dilati and translations of the patterns
since words are combined at particular time. They also membacked Bags-of-Patterns
that concatenates the representation of multiple unieasieries into a single one. However,

this representation does not take the relationship bettfeevariables into account.

Time Series X 1D Representation 2D Representation
g 1o(X) g 20(X)
1 2 . . M 1 2 . M
1 e a a b e
2 e a C d f
3 c a e f
e
T — b d a j

Figure 50. Alternative representations for MTS. MTS willf variables and” observations
are mapped to 1D representation by the functipn (left) or 2D representation in which
each variable of MTS mapped to 1D representatiorydy (right). Although the length
of the symbolic representation is provided to be the sanig, déscan be smaller based on
the mapping strategy. Similarly, 2D representation mag hkve fewer columns thah/
depending on the mapping.

[93] is another study working on finding predictive pattefos MTS based on SAX
representation. This approach considers each variableT& d&parately and generates a
2D representation. Salient variables of MTS are identifiest by using certain statistical
performance measures efficiently computed using inteitigata structures such as the trie
described in [102]. Then predictive patterns are identifiigdach variable. Rules for clas-
sification based on predictive patterns are then searchdbdeonombined set of patterns
from individual variables. Identification of patterns orckandividual variable without

taking other variables into consideration makes this aggragreedy since the relation be-
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tween the variables may carry the real description of a cermpystem [30]. Although
the patterns are combined later to account for the reldiipaswith this approach, there
is a potential to miss a certain pattern that may appear wniiaupt when time series are
considered separately in the first step.

In this paper, we propose an approach to obtain a one-diorassymbolic representa-
tion of MTS (S-MTS) for classification. As opposed to SAX, SFBllabels each observa-
tion instead of the segments of the time series. Obsengtindiscretized in a supervised
manner using tree learners to obtain the symbolic repratsent To achieve this, each ob-
servation is considered to be an instance and the labelishassto be the same as its time
series. Observed value for each variable of MTS and the tidexi are the features for
each instance. In other words, there is no feature extradie observed value is used as
the feature and we fuse the local information by introdu@hgervation time as a feature of
the instance. This way, we form a matrix of these featuresevimvs represent the obser-
vation and columns are the observed values and the time afdbervation. Tree learners
are then trained on this representation to partition themasion space. The terminal node
of the trained tree is considered to be a symbol in S-MTS.rEi§2 illustrates the idea of
discretization on three univariate time series provide&igure 51. Partitioning obtained
from each tree is used as the symbols. This representalmnsab-MTS to consider all
variables of MTS simultaneously. Consequently, the distion of the symbols over each
time series is computed and used for classification. The sigwve locality sensitive since
the observation times are used as features as schematigapliie 52(a).

[24] also discusses necessity of alternative representafor MTS classification. A

concept called metafeature is introduced and used to uré$TS series by [24]. How-
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ever metafeatures must be defined by users in this approawofQhe metafeatures dis-
cussed in the paper is based on partitioning of the featureespsing Voronoi tiling. Each
region of the Voronoi diagram is used as a metafeature. Thii@aing is not supervised
in this approach and also designing a good metafeature iametsy task as mentioned
by [24].

[103] proposes a similar approach for multidimensionalveuclassification. They
discretize the observations space of each variable sepagatin the existing MTS classifi-
cation methods based on the symbolic representations. \Baietble of MTS is partitioned
into the rectangular regions of equal dimensions. Then ldmsification rules are discov-
ered based on the common regions through which only curvemefclass pass. Their
proposed approach has similarities to [93] in terms of tlserdtization and rule genera-
tion. Since the discretization does not consider the vesasimultaneously and rules are
discovered based on each individual variable, there is entiat to miss the interaction
of the variables. Also both approaches require modificattorhandle the categorical and
missing data.

There are some similarities of our approach with [56] in terof the discretization
process. [56] proposed Extremely Randomized Clusterimgdts (ERC-Forests) for image
classification problems. Trees are trained on the featwteaated from image patches in
a supervised manner and the terminal nodes are consideteditalividual clusters. An
image is represented as the histogram of the cluster id gbdbehes segmented from the
images (visual codebook) and any supervised learner caaibhed on the visual codebook.
Unlike [56], we do not generate features. We train the treafidcretize each observation.

Although [56] works on images and locality may be importahgy do not consider the
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location information as a feature during the tree learnimgtead, they proposed saliency
maps for identifying important locations of the images.

S-MTS generates a symbolic representation for MTS claasific using supervised
learning. The interactions between the variables of MTSharelled efficiently with a tree
based discretization approach. Moreover, MTS with nomamal missing values are han-
dled efficiently with tree learners. An ensemble learnet flcales well with large number
of variables and long time series is used. Although the egeymbolic representation is
of the same length as the time series, it does not generatplmuépresentations for each
variable of MTS. Therefore S-MTS scales well with the numdferariables of MTS which
makes it computationally efficient when compared to oth@ragches. Our approach can
handle MTS examples with different length and it does nouirega special rectangu-
larization mechanism since the representation is simptgionéd by the frequency of the
symbols over the time series. Any learner can be trained etiedtures representing the
frequency of each symbol over each time series in our framewidoreover, this symbolic
representation can be used by any document classificatimmoagh as used by [98]. Our
experiments demonstrate the effectiveness of the propmgeehach in terms of accuracy
and computation times in both univariate time series and ddt8sets.

The remainder of this paper is organized as follows. Se&iprovides background and
related work. We summarize the problem and describe theefrenrk in Section 4. Section
5 demonstrates the effectiveness and efficiency of our gexgpapproach by testing on a
full set of benchmark univariate time series datasets frabiRUime series database [76]

and MTS datasets from [104, 105]. Conclusions are drawn @ti@e7.
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3. Background

Decision tree learners are comprehensible models witkfaatory accuracy and are
successfully used in many applications. Univariate treed sis CART [106] and C4.5 [4]
split data based on only one variable at each node, and tedsrared to splits that are
orthogonal to the variable’s axis [107].

Tree ensembles are proposed to avoid from the greedy natuneivariate trees. A
random forest (RF) classifier [57] is used here to partittmnfeature space. A RF is an en-
semble ofJ decision trees{g;,j = 1,2,...,J}. Each tree is constructed from a different
bootstrap sample of the original data. The instances leéfoba bootstrap sample and not
used in the construction of a single tree are called outagf{®OB) instances.

At each node of each tree, a RF considers the best split basaaya random sample
of features. Often, the sample size\j%, wherev is the number of features. The random
selection reduces the variance of the classifier, and athaces the computational com-
plexity of a single tree fronO(vnlogn) to O(y/vnlogn) (assuming the depth of tree is
O(logn) wheren is the number of training (in-bag) instances). Therefaveaflarge num-
ber of features and instances, a RF can be as computati@ffadignt as a single decision
tree.

The prediction for instance from treeg; is §;(z) = argmax, p§(z), wherep§(z) is
the proportion of class in the corresponding leaf of theth tree, forc =0,1,...,C — 1.
Let G(z) denote the set of all trees in the RF where instanée OOB. The OOB class

probability estimate of is

o) = — ji(x) =c¢

9;€G(z)
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where(-) is an indicator function that equals one if its argument i tand zero other-
wise. The predicted class i§x) = argmax,p°(z). The estimates computed from OOB
predictions are easily obtained and have been shown to likasgtionates of generalization
error [57].

RF provides a number of desirable properties for the timesquroblem. High-
dimensional feature spaces, hominal features, multiplesels, and missing values are han-
dled. Nonlinear models and interactions between featureallbwed. It is scale invariant

and robust to outliers, and computations are reasonabtefertarge data sets.
4. Approach

A multivariate time seriesX ™, is anM -variable time series each of which HE®bser-
vations wherer}, is themth variable and:], (t) denotes the observation at time~ormally,

MTS exampleX™ is represented by x M matrix as:

where

Ty = [, (1), 20,(2), . 27, (T)]

There arelV training MTS, each of which is associated with a class latieffor n =
1,2,...,Nandy" € {0,1,2,...,C — 1}. Given a set of unlabeled MTS, the task is to map
each MTS to one of the predefined classes. Univariate tiniessisra special case of MTS
whereM is equal to one. In the following sections, the definitionsuase that all variables

of MTS are numerical unless stated otherwise.
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4.1. Time Series Discretization using Tree-Based Classifiers

We propose a method to discretize MTS using an ensembleeofdagners. Instead of
extracting features from each time series, each obsernveticonsidered to be an instance

in our approach. This is achieved by creating a matrix obimsesD yr rs Where

Dnrxm =
N N N
_.Z'l .Z'2 (L’M ]

which is the concatenation of training MTS as illustratedable 18. We assume that
the label of each instance is the same as the time series aralsiupervised approach to
discretize the feature space. The features are obtainedapping D 7« s t0 the feature
space® v (2n+1)- In other words, the rowof Dy« is a set of observations at certain
time pointt;. Letd;; be theij*" entry of the matrixD y7x 57 Which is basically the observed

variablej for instancei. Then the row of ® y7, (21741 iS:

[tz’, din,din — di—1)y1, diz, dio — di—1y2, - -+ s dings ding — d(i—l)M]

The first feature is the time index. Then for each variable,gererate two features
and concatenate them over the variables. The first one isbervation itself where the
difference between consecutive time points is the secomaife. Figure 52(a) illustrates
the time and observation feature on a 2D plot for the threeaniaite time series in Figure

51. The difference between consecutive time points capttire information about the
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trend in the time series which might be important to classiit®n. Suppose a time series
constantly increases after certain time point which wilulein positive differences. A tree
learner can capture this information if the increase igeelavith the class. This difference

is not available for the first observation of MTS which is assd to be missing in our

representation.
Series| Time Index | Pressure Temperature Energ{lass
1 1 2.70 80.50 4.50 1
1 2 3.20 78.40 6.70 1
1 3 4.20 67.90 3.40 1
1 4 8.20 89.50 7.20 1
1 5 8.90 85.70 5.70 1
2 1 10.01 88.00 505| O
2 2 11.28 89.94 504| 0
2 3 12.54 91.19 504| 0
2 4 13.81 93.25 501, O
3 1 16.34 97.54 502 1
3 2 17.61 99.66 501 1
3 3 18.87 101.60 490| 1
3 4 20.14 103.54 495| 1
3 5 22.67 107.43 495| 1
3 6 21.15 106.50 497 1

TABLE 18. Sample database with 3 MTS from 2 classes (1,0 and 1 respkggtivl here
are three observed variable®/ (= 3): pressure, temperature and energy. The series are of
length 5,4 and 6 respectively.

If observations are nominal, only the time point of the olsaon and the observation
itself are considered to be features. For both numericahantinal values, there may exist
missing values. Missing values are handled by the treedesin our approach. Also, the
number of observations may differ across different MTS.

After obtaining the features, tree learners are trained® @, 25/41) assuming that
each instance has the same class label as its time series. waljj each instance of
DNy (2m+1) 1S Mapped to a terminal node of the tige This RF is referred a& Flins

(RandomForest trained on thnstances). Although the trees of RF without any modi-
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fication are unpruned, we restrict the number of terminalesoof each tree t& which
determines the alphabet size in our approach. Second pamisi¢the number of trees of
RFins given by J;,s. Each tree ofR Flins provides a symbolic representation for the time

series.

4.2. Classification

A Bag-of-Words approach is used to classify the time sergeseth on the symbolic
representations described by each treg@éfins. However there is no word generation
process in the proposed approach. Each symbol is simplydsed to be a word and the
frequency of the symbols are used to classify the time sefibe frequency vector is de-
fined by the number of symbol occurences in the representafibis vector is normalized
by the number of observations.

Formally, letH;(X"™) be theR x 1 frequency vector of the terminal nodes from the
representation defined by treggfor MTS X™. We concatenate the frequency vectors from
each of theJ;,, trees of RF'ins (i.e. H;(X™)) to obtain the final representation of each
time series. This representation is of lendthx .J;,,; assuming that each trge providesRR
symbols. Figure 53 illustrates the representation of tiemes based on symbol frequencies
R = 4. Since each tree oRF'ins is trained on a random subsample of features and
instances, the final representation includes differentwief the same time series.

A classifier is then trained on the symbol frequencies coatpfir each time series.
The frequency representation can be large based on thegsettk andJ;,,;. Therefore, a
scalable classifier that can handle interactions and ediwaek such as RF is preferred for
this task. This RF is referred d@&F'ts (RandomForest trained on theme series) for which
we trainJy, trees.
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To classify a test series, the frequency representatiobtaired after generating the
features and traversing the treesitiins. Then traversing the trees &fF'ts based on the

frequency representation provides the classificationtresu
5. Experiments and Results

We test our approach on both univariate and MTS datasets.al@arithm does not
require the setting of many parameters and it is robust te¢tténgs. The number of trees
trained to obtain the symbolic representatiofy,() and the alphabet siz&?] are two im-
portant parameters of the algorithm. The levels considinedach parameter are provided
in Table 19 for each time series type. Larger levels aredhitted for MTS classification in

order not to lose potential information with larger numbevariables of MTS.

Time Series
Parameter Univariate Multivariate
Jins {25,50,100} {50,100}
R {5,10,25,50} {50, 100,200}

TABLE 19. Parameter settings of TSBF

RF is insensitive to both the number of trees and the numbeandidate attributes
scored to potential split a node [57];s can be determined based on the progress of OOB
error rates over trees. The number of features evaluatealcatreode of the tree is set to
the default which equals the approximate square root of tneter of features. There are
2 x M + 1 features forR Fobs assuming that all variables are numerical. The number of
features arék x J;,,, for REFts.

To set the parameters of S-MTS for each dataset, the algoidtihun 10 times with dif-
ferent seeds for each,,; and R combinations. Once the final representation frBifiins

obtained,J;; is set based on the progress of the OOB error rates fRdms. The mean
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and the standard deviation of OOB error rates from 10 rejubica are used to determine
Jis. In our experiments, the error rates at discrgtdevels which are multiples of 50 trees
are considered. We add more treeditbts if the mean OOB error rate improves at least
one standard deviation from the mean OOB error rate fromiqueMevel. Figure 54 (left
column) illustrates how the OOB error rate for Non-Invasietal ECG Thoraxl dataset
changes ad;, increases. The marginal gain becomes insignificant afrésine/;; for all
Jins @and R combinations. The aim of using such a criterion is to obthaleast complex
model.

After settingJ;s, R andJ;,s are chosen based on the size of the representation which
is R x Ji,s. Starting from the smallest x J;,s, we search for the smallest representation
providing the best OOB error rate based on the same decistenian used for setting/;

(i.e. one deviation difference). Differetand.J;, s settings may provide the samiex J;,,.
We basically selecR and.J;,s combination providing the minimum mean OOB error rate
in such cases. The aim is to obtain a compact representdtibie time series. The model

with selected parameters is used for the classificationeofebt time series.

5.1. Univariate Time Series

45 univariate time series from [76] are used to illustrate ¢ffectiveness of our ap-
proach for univariate time series classification. The ddtakaracteristics are given in
Table 20. This is a good testbed with diverse charactesistich as length of the series,
number of classes etc. which enables a comprehensive ggalua

We compare the error rates on the test data to nearest nesg(itd) classifiers with
DTW. Two versions of DTW are considered: NNDTWBestWin [1éhsches for the best
warping window, based on the training data, then uses theddavindow on the test data,
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while NNDTWNoWin has no warping window. Note that DTW is acstg solution for
time series problems in a variety of domains [58]. The erates for nearest neighbor
classifiers are obtained from [76]. We also compare our ambrao NN classifier based
on Bag-of-Patterns representation by [98]. This comparis@one on a subset of datasets
since [98] reports results on 20 of the datasets. Tables @2213ummarizes the results of
each algorithm. Last row compares our classifier based onuh#er of wins/losses/ties
for the algorithm on the column. Our algorithm performs &ethan NNDTWBestWin and
NNDTWNoWin for 32 and 31 of the datasets where it has lowesreates for 12 out of 20
datasets when compared to NN classifier based on Bag-arRattepresentation by [98].

Moreover, selected model parameters are provided in T2ilesd 22.
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# of Dataset Size
classes Train Test Length
50Words| 50 450 455 270

Adiac 37 390 391 176

Beef 5 30 30 470
CBF 3 30 900 128
Coffee 2 28 28 286
ECG 2 100 100 96
Face (all)| 14 560 1,690 131
Face (four) 4 24 88 350
Fish 7 175 175 463
Gun-Point 2 50 150 150
Lighting-2 2 60 61 637
Lighting-7 7 70 73 319
OliveOil 4 30 30 570
OSU Leaf 6 200 242 427
Swedish Leaff 15 500 625 128
Synthetic Control| 6 300 300 60
Trace 4 100 100 275
Two Patterns 4 1,000 4,000 128
Wafer 2 1,000 6,174 152
Yoga 2 300 3000 426
ChlorineConcentrationn 3 467 3,840 166
CinC_ECG._torso 4 40 1,380 1,639
Cricket X 12 390 390 300
CricketY 390 390 300
Cricket.Z 390 390 300
DiatomSizeReduction 16 306 345
ECGFiveDays 23 861 136
FacesUCR 200 2,050 131
Haptics 155 308 1,092
InlineSkate 100 550 1,882
ItalyPowerDemand 67 1,029 24
MALLAT 55 2,345 1,024
Medicallmages 381 760 99
MoteStrain 20 1,252 84

SonyAIBORobot Surface
SonyAIBORobot Surfacel

20 601 70
27 953 65

StarLightCurves 1,000 8,236 1,024
Symbols 25 995 398
TwolLeadECG 23 1,139 82

uWaveGestureLibranx
uWaveGestureLibrany
uWaveGestureLibrary 896 3,582 315
WordsSynonymsg 267 638 270

Non-Invasive Fetal ECG Thorax[l 42 1,800 1,965 750
Non-Invasive Fetal ECG ThoraxR 42 1,800 1,965 750

896 3,582 315
896 3,582 315

N = = PP
FoowonvowndnNNMNEFoNnNaR s Ol

TABLE 20. Characteristics of the univariate time series: number a$sgs, number of
training instances, number of testing instances, and heofgime series.
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Figure 51. One time series of each class from CBF dataset.
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(b) Decision Tree

Figure 52. The feature space and the partitions (symbols) from thesiectree
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Treel Tree 2 P Tree J;,.

Series Ay By C, Dy Ag B, C; D,
1 0.25 033 017 025 | 0.00 000 075 0.25|. . .| 000 0.25 050 025
2 0.17 066 017 000 | 0.00 050 0.00 050|. . .| 000 0.33 025 042
N 0.50 050 000 000|025 025 0.00 050|. . .| 017 033 025 0325

Figure 53. A visual example of the representation based on symbol é&ecjes. Each col-
umn denotes a symbol from a treel®f'ins (R = 4), and each row denotes a multivariate
time series.
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evT

0O0OB Test Nearest Neighbor (NN)DTW
Jins R Jis | Mean| Mean Min  Max | BestWin  NoWin BOP
50Words| 100 50 400| 0.315| 0.286 0.270 0.299 0.242 0.310 0.466

Adiac | 100 50 300| 0.260| 0.241 0.228 0.266 0.391 0.396 0.432

Beef| 50 25 200| 0.227| 0.270 0.200 0.333 0.467 0.500 0.433

CBF| 25 50 50| 0.030| 0.031 0.019 0.048 0.004 0.003 0.013

Coffee| 25 10 501 0.021| 0.014 0.000 0.036¢ 0.179 0.179 0.036

ECG| 25 5 400(0.120| 0.168 0.140 0.200 0.120 0.230 0.150

Face (all)| 100 10 400| 0.124| 0.185 0.165 0.198 0.192 0.192 0.219

Face (four)] 100 50 200| 0.142| 0.130 0.114 0.182 0.114 0.170 0.023

Fish| 50 50 350|0.141| 0.153 0.126 0.177 0.160 0.167 0.074

Gun-Point| 25 10 50| 0.018| 0.027 0.020 0.047 0.087 0.093 0.027
Lighting-2 | 25 50 50 0.153| 0.267 0.213 0.293 0.131 0.131 0.164
Lighting-7 | 25 10 150| 0.247| 0.281 0.247 0.313 0.288 0.274 0.466
OliveOil | 25 25 501 0.190| 0.187 0.133 0.30Q0 0.167 0.133 0.133
OSULeaf| 25 25 400| 0.285| 0.382 0.355 0.409 0.384 0.409 0.256
Swedish Leaff 25 50 300( 0.101| 0.086 0.078 0.093 0.157 0.210 0.198
Synthetic Controll 100 50 500( 0.016| 0.022 0.007 0.040 0.017 0.007 0.037
Trace| 25 10 50| 0.003| 0.000 0.000 0.000 0.010 0.000 0.000

Two Patterns| 100 200| 0.000| 0.001 0.001 0.002 0.002 0.000 0.129
Wafer| 25 5 50 | 0.000| 0.000 0.000 0.000 0.005 0.020 0.003

Yoga| 100 50 200| 0.063| 0.085 0.066 0.109 0.155 0.164 0.170
win/loseltie over first 20 datasets ~ 13/7/0 13/6/1  12/1/1

al

TABLE 21. Selected parameters based on OOB error rates. OOB erroesinertor rates. Error rates for nearest-neighbor classifie
with dynamic time warping distance and Bag-of-Patternsasgntation with the Euclidean distance
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(0]0]2] Test Nearest Neighbor (NN)DTW

Jins R Jis | Mean| Mean Min  Max | BestWin NoWin
ChlorineConcentratio 50 25 450/ 0.278| 0.326 0.316 0.335 0.350 0.352
CinC_LECGtorso| 25 50 200| 0.038| 0.110 0.096 0.129 0.070 0.349
CricketX | 50 50 400| 0.225| 0.289 0.272 0.297 0.236 0.223
CricketY | 25 50 400| 0.258| 0.289 0.274 0.300 0.197 0.208
CricketZz | 50 50 500| 0.254| 0.253 0.238 0.267 0.180 0.208
DiatomSizeReduction 50 10 50| 0.088| 0.055 0.026 0.095 0.065 0.033
ECGFiveDays| 100 10 250| 0.087| 0.182 0.143 0.214 0.203 0.232
FacesUCR 100 50 150/ 0.107| 0.155 0.146 0.163 0.088 0.095
Haptics| 25 25 150| 0.405| 0.501 0.481 0.523 0.588 0.623
InlineSkate| 25 25 250| 0.493| 0.543 0.500 0.571 0.613 0.616
ItalyPowerDemand 50 50 50 | 0.037| 0.037 0.028 0.052 0.045 0.050
MALLAT | 100 50 450| 0.038| 0.052 0.045 0.059 0.086 0.066
Medicallmages| 50 25 300| 0.230| 0.250 0.238 0.263 0.253 0.263
MoteStrain| 25 10 250| 0.005| 0.055 0.044 0.068 0.134 0.165
SonyAIBORobot Surface 25 5 50 | 0.035| 0.187 0.146 0.240 0.305 0.275
SonyAIBORobot Surfacell 25 5 50| 0.081| 0.138 0.100 0.189 0.141 0.169
StarLightCurves| 25 50 200| 0.025| 0.023 0.021 0.0253 0.095 0.093
Symbols| 25 25 50| 0.100| 0.056 0.030 0.101 0.062 0.050
TwolLeadECG| 100 50 250| 0.000| 0.022 0.017 0.029 0.132 0.096
uWaveGestureLibranX | 50 50 200| 0.182| 0.175 0.166 0.183 0.227 0.273
uWaveGestureLibraryy | 50 50 150| 0.225| 0.252 0.246 0.257 0.301 0.366
uWaveGestureLibrary | 25 50 100| 0.238| 0.246 0.238 0.256 0.322 0.342
WordsSynonyms 25 25 200/ 0.369| 0.407 0.390 0.426 0.252 0.351
Non-Invasive Fetal ECG Thorax{l 25 50 300| 0.117| 0.107 0.099 0.112 0.185 0.209
Non-Invasive Fetal ECG ThoraxR 50 50 200| 0.084| 0.077 0.074 0.083 0.129 0.135
win/lose/tie over all 45 datasets  32/13/0 31/13/1

TABLE 22. Selected parameters based on OOB error rates (continu€B.gdror and test error rates. Error rates for nearest-beigh
classifiers with dynamic time warping distance.



5.2. Multivariate Time Series

We test our proposed approach on datasets from differeficappns such as speech
recognition, activity recognition, medicine and etc. 15 Mffom [76, 104, 108, 109] are
used to illustrate the performance of our approach. Thesdatdharacteristics are given in
Table 23. We randomly selected train and test samples i¢ tisamo default train/test split
provided for the datasets. Datasets are described in Sdctad available in [110].

These datasets are commonly used to evaluate MTS classifiemsever, due to the
high number of classes, some studies downsample certasedstto fewer classes or in-
stances (i.e. [28] uses instances from 25 classes of AUSLKMN)eover, some algorithms
preprocess the data for different purposes such as smgathinbtaining an appropriate
representation (i.e. [28, 30] truncates some datasetstéinatime series of same length).

We compare S-MTS to the approaches using whole datasetuwviny preprocessing.

# of # of Dataset Size
classes variables Length Train  Test CcVv Source
AUSLAN 95 22 45-136 1140 1425
Pendigits 10 2 8 300 1069210-fold  [104]
Japanese Vowels 9 12 7-29 270 370
Robot Failure
LP1 4 6 15 38 50
LP2 5 6 15 17 30
LP3 4 6 15 17 30 5-fold  [104]
LP4 3 6 15 42 75
LP5 5 6 15 64 100
ECG 2 2 39-152 100 100
Wafer 2 6 104198 208 sge ‘0ol (109
CMU_MOCAPS16 2 62 127-580 29 29 10-fold  [108]
ArabicDigits 10 13 4-93 6600 2200 x
CharacterTrajectories 20 3 109-205 300 2558 x [104]
LIBRAS 15 2 45 180 180 X
uWaveGestureLibrary 8 3 315 200 4278 x [76]

TABLE 23. Characteristics of MTS: number of classes, number of veEslength of
time series, number of training instances and number ahtgststances. Column "CV”
provides if comparison is also done based on the crossat@id The source of the datasets
are in the last column. Test performance is also reportedlfoiatasets.
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Most of the studies working on MTS classification follow aféient strategy for exper-
imentation which makes the comparison of the approachésudif For instance, [25,111]
evaluates the performance using cross-validation. To Ada& comparison with the com-
petitor algorithms, we also follow their experimentatidnategy and discuss the perfor-
mance of the approaches. The datasets for which CV is pegfbare given in Table 23.
Before doing the cross validation, we combine the training &st data to obtain a single
dataset. Our cross validation scheme is similar to the ccmmeended by [112]. We first
divide the dataset inté subsets wheré changes based on the number of instances. To
set the parameters for each fold, each parameter combiniatiun on the training fold
five times and the parameters are set based on the OOB eesusihg the same decision
criterion discussed in Section 5. Once the parameters aealtthrough this process, the
classification of the test instances of the fold are perfakm@/e also run the main cross
validation five times to obtain a reasonable estimate of éréopmance of our algorithm.

NN classifiers k € {1, 3,5}) with DTW distance are considered for comparisons with
S-MTS on the test data. Each time series is standardizedvi® danean of zero and a
standard deviation of one before distance computation.p@&gDTW distance between
univariate series), andx?2, is defined byDTW (x},, #2,) then the DTW distance between

two MTS, X! and X2, dist( X', X?) is computed as:

M
dist X', X?) = Y DTW (z},,22,)

m=1

Table 24 summarizes the results from our cross-validatigrements and reported
error rates from other papers. S-MTS performs better whempeoed to the classification

approaches considered by [25]. [111] reports the erros fatenearest neighbor classifiers
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with DTW distance. S-MTS outperforms the similarity basegraaches for two of the
datasets. The best error rate for AUSLAN reported by [24]rdenf an ensemble of 11
different classifiers trained on the extracted metafeatu8eMTS performs equally well for
this particular dataset. S-MTS and predictive motif disggvapproach from [93] provide

perfect accuracy for the motion capture dataset.

[25] NNDTW (k=3) [111] | Tclass [24]] [93]
S-MTS | TDVM SVMptw 1INNwp | NoWin  BestWin Voting Motif
Japanese Vowels 0.029 | 0.034 0.054 0.077
Pendigits 0.013 | 0.037 0.066 0.055
Robot Failure
LP1 0.095 | 0.148 0.182 0.182
LP2 0.355 | 0.362 0.362 0.404
LP3 0.223 | 0.319 0.342 0.383
LP4 0.056 | 0.145 0.128 0.137
LP5 0.263 | 0.329 0.379 0.348
ECG 0.147 0.189 0.172
Wafer 0.011 0.091 0.066
AUSLAN 0.025 0.021
CMU_MOCAP.S16| 0.000 0.000

TABLE 24. Cross-validation error rates for S-MTS (10 replicatiorBgst cross-validation
error rates reported by other MTS classification papers.

The error rates on the test data for S-MTS and nearest neigidssifier with DTW
distance are given in Table 25. The datasets are sorted bagad number of variables to
illustrate the effectiveness of S-MTS. S-MTS provides dretesults for the datasets with
larger number of variables where the performance is corbpafar the remaining datasets.
S-MTS performs equally well ArabicDigits and Japanese \Iewdataset when compared

the other studies in the literature.
6. Description of MTS datasets

The description of each dataset is provided to illustraggdimge of the application areas

for which S-MTS can be employed.
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0oB S-MTS NNDTW-NoWwin
Jins R J;s | mean| mean min  max| k=1 k=3 k=5 | Other
CMU_MOCAP_S16 50 50 50| 0.000| 0.003 0.000 0.0340.069 0.138 0.172

AUSLAN 50 200 200| 0.022| 0.047 0.034 0.060 0.238 0.246 0.222
ArabicDigits 100 50 500| 0.030| 0.064 0.062 0.068 0.092 0.075 0.075 0.069 by [113]
Japanese Vowels 50 100 300| 0.018| 0.026 0.016 0.032 0.351 0.357 0.351 0.032 by [64,114]
0.059 by [103]

Robot Failure

LP1 50 50 50| 0.084|0.160 0.120 0.220 0.280 0.240 0.40(

LP2 100 100 300 0.094| 0.227 0.167 0.2671 0.467 0.567 0.567

LP3 50 50 100| 0.271| 0.243 0.167 0.333 0.500 0.533 0.567

LP4 50 50 50| 0.062|0.113 0.067 0.133 0.187 0.160 0.187

LP5 50 100 450| 0.156| 0.350 0.310 0.390 0.480 0.530 0.57(
Wafer 100 200 400 0.019| 0.024 0.018 0.031 0.023 0.034 0.04(

CharacterTrajectories 100 50 250| 0.032| 0.040 0.037 0.044 0.040 0.054 0.061
uWaveGestureLibrary 50 100 450| 0.044| 0.084 0.081 0.086 0.071 0.083 0.087

LIBRAS 50 200 200 0.101|0.114 0.100 0.133 0.200 0.217 0.289
ECG 100 50 200f 0.086| 0.204 0.190 0.22¢ 0.150 0.190 0.19(
Pendigits 50 50 150| 0.050| 0.084 0.078 0.08% 0.088 0.111 0.125

TABLE 25. Test error rates for S-MTS (10 replications), nearestin®g classifiers with
dynamic time warping distance. Best error rates reportedtbgr MTS classification pa-
pers.

6.1. Arabic speech recognition

[113] introduces a learning method for a graphical prolistil model for discrete
speech recognition. To evaluate their approach, a datdsere8800 time series of 13
Frequency Cepstral Coefficients (MFCCs) are created. Thergwent involved 44 males
and 44 females Arabic native speakers between the ages Mdndepresent ten spoken
Arabic digit. Each person has 10 repetitions of each digitheir experiments, the dataset
is divided into two parts: a training set with 75% of the saesphnd a test set with 25%
of the samples. The reported error rates on the test data.@88and 0.0690 for two

approaches proposed by [113].

6.2. Japanese Vowels

Utterances of two Japanese vowels by nine male speakerslieted for this dataset
[103]. For each utterance, 12-degree linear predictionyaisais applied to obtain a

discrete-time series with 12 linear predictive coding (DRE@pstrum coefficients. This
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forms a time series whose length is in the range 7-29 and eziohqf a time series is of

12 variables for each utterance.

6.3. Pen-Based recognition of handwritten digits

[115] create a digit database using a tablet that senalsdy tablet coordinates and
pressure level values of the pen at a sampling rate of 108endnds. OnlyxH, y) coordi-
nate information is used for digit recognition. A MTS of 8 granits with two variables is

then used to classify the digits.

6.4. ECG

The ECG database comprises a collection of time-seriessdédavhere each file con-
tains the sequence of measurements recorded by one etedinddg one heartbeat. Each
heartbeat has an assigned classification of normal or alathoAth abnormal heartbeats are

representative of a cardiac pathology known as supracetfdri premature beat.

6.5. Robot execution failures

This dataset contains force and torque measurements orobafbér failure detection
[116]. Each failure is characterized by 15 force/torque @asicollected at regular time

intervals. Five datasets are introducted for differentrieey problems for these dataset:

LP1.: failures in approach to grasp position.

LP2: the failures in transfer of a part.

LP3: position of part after a transfer failure

LP4: failures in approach to ungrasp position
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e LP5: failures in motion with part

6.6. Wafer

The wafer database comprises a collection of time-seriess#ds where each file con-
tains the sequence of measurements recorded by one vatwamber sensor during the
etch process applied to one silicon wafer during the mamufa®f semiconductor micro-
electronics. Each wafer has an assigned classificationrofalamr abnormal. The abnormal
wafers are representative of a range of problems commomguertered during semicon-

ductor manufacturing.

6.7. Australian sign language (AUSLAN)

Australian sign language (AUSLAN) is the language used byAhstralian communi-
ties with hearing disabilities [24]. Two gloves with magugtosition trackers are used to
collect the data. Each hand generates 11 features whiclst8nmeasures of orientation
(roll, pitch, yaw), 3 measures of position (x,y,z) and 5 nueas of finger bends. MTS is
obtained by combining the features of both hand updated @tfriines per second. 27

samples of 95 signs results a dataset of size 2565 signs.

6.8. Brazilian sign language (LIBRAS)

[117] introduces a dataset to recognize the movement tydd8RAS (official Brazil-
ian sign language). The hand movement is represented aseehiglonal curve performed
by the hand in a period of time. There are 15 movement typestenckntroid pixels of the
hand are found, which compose the discrete version of theauith 45 points. This way,

a movement is described by a MTS of length 45 time units withriZzables.
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6.9. Character trajectories

The data consists of 2858 character samples. Each chasaatgte is a 3-dimensional
pen tip velocity trajectory. Multiple, labelled samplespei tip trajectories recorded whilst
writing individual characters. All samples are from the sawriter, for the purposes of

primitive extraction. Only characters with a single penvdsegment were considered.

6.10. Motion recognition-CMU.MOCAP_S16

The CMU Motion Capture database [108] provides MTS datashets provides the
position information of a sets of joints from humans perforgncertain tasks. We consider
the data from Subject 16 since it is one of the few datasetshidma sufficient examples
for illustration. The task is to predict if subject is walgiror running. The data has the

information from 62 different joint positions recorded forarying amount of data [93].

6.11. Gesture recognition-uWaveGestureLibrary

A single three-axis accelerometer is used to collect data &ight users to characterize
eight gesture patterns. The library, uWaveGestureLib@ysists over 4000 samples each
of which has the accelerometer readings in three dimengiens, y and z) [5]. Individual
axes are considered in Section 5.1 for the univariate chealétasets are uWaveGestureLi-
brary_X, uWaveGestureLibrary, uWaveGestureLibrarZ). However handling this prob-
lem as a MTS classification problem may provide better redufttaking the interaction

between the individual axes into account.
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6.12. Sensitivity Analysis

The univariate dataset Non-Invasive Fetal ECG Thoraxlsdata used to discuss the
convergence properties of S-MTS. It provides reasonalteben of training and test time
series. Moreover, it has large number of classes and lomgisscompared to the other
datasets. Although one dataset is used for the illustragonilar discussion in terms of
S-MTS behavior holds for other datasets. The boxplot of O@8 test error rates are
provided in Figure 54 to illustrate how S-MTS performs withck setting combination
over multiple trees (confidence intervals are for 95% sigaifce level). We add the results
for R = 100 for the givenJ;, s settings to further investigate the behavior of S-MTS.

The error rates become more stable when time series areseepee by larger number
of trees and/or more symbols. The decrease in the errorasge®t significant after certain
number of trees folRF'ts for most of the settings (around,; = 300 for most of the
setting combinations). Similarly, increasing the symhné sloes not improve the results
significantly afterR = 50. Similar discussion holds for the test error rates. As given
Table 22,J;,s = 25, R = 50, J;s = 300 is used to classify test series based on OOB error
rates. The error rates improve slightly with = 100 but the marginal gain is very small
where the size of representation increases significanttys also supports our procedure

for parameter selection discussed in Section 5.1.

6.13. Computational Time Analysis

Here we empirically evaluate the runtime of S-MTS with diffiet settings of problem
characteristics and algorithm parameters. S-MTS is imptdad in both C and R Software

and our experiments use a Windows 7 system with 8 GB RAM, dua €PU (i7-3620M

152



2.7 GHz). Although the CPU can handle four threads in pdradiely a single thread is
used.

The overall computational complexity of S-MTS is mainly daeRFs trained to obtain
the symbolic representatiorkR¢'ins) and classification R F'ts). The time complexity of
building a single tree in RF i©(\/vnB). For RFins, v = 2M + 1 is the number of
featuresy) = (N x T') is the number of training instances afid= R — 1 is the depth of the
tree in the worst case assuming that the depth takes thesigrgssible value. This makes
O(V2M + 1(N x T)(R — 1)) in the worst case. FaRFts,n = N, v = R x Ji,s and
8 =log N (assuming the depth of treedlog N)) which isO(v/R x Ji,sN(log N)).

StarLightCurves dataset from [76] is used to demonstrageeffect of the parameters
Jins, N, T and R on the computation times. For multivariate case, how S-M&Ralbes
with changing number of variable¥/, is illustrated on AUSLAN dataset from [104]. For
each data set, we randomly selected {0.2,0.4,0.6,0.8,1} proportion of number of
instances qv), number of observationsy{) and number of variablesi{;). The levels
considered foi? and J;,,; are R € {10, 20, 30,40, 50}, J;,s € {20, 40, 60,80,100}. The
number of trees iR F'ts is fixed asJ;; = 500 since the change in the computation time
depends on the RF complexity which is linear with number @é$t Here 10 replications
are conducted for each setting combination.

We first illustrate the computational times with changiRa@and J;,,; whered = 1 for
remaining parameters. Figure 55 schematizes the avergditne and test time with these
parameters. Time for training increases linearly with theréase inR and J;,s which is
consistent with the complexities @®Fins and RF'ts. Furthermore, linear behavior of

the training time with the increase in the representatiae §i.e. bothR and J;,;) is an
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advantage of the proposed approach. This behavior is dueetselection of square root
of the features to evaluate at each split node. Time fomgsticreases with the increase
in the representation size but this increase is too smalesBtMTS is very fast in terms
of classification. It only requires traversal of the trees itk F'ins and RF'ts after feature
representation.

For fixed values oR and J;,,;, computation times with changiny andT" are analyzed.
Figure 56 illustrates the mean computation times of S-MT3¥fe- 30 andJ;,,s = 60. The
runtime increase with the number of training instances ngéw series is consistent with
O(Nlog N) from RFts and O(N x T) from RF'ins. Testing time is not affected by
the number of training series since the computation reguirdy the traversal of trees in
the forest which is independent of the number of trainingeser On the other hand, it
increases linearly as the length of the series increases symbol assignment is done for
each observation of the test series.

S-MTS computation times with changing the number of vadalare illustrated in Fig-
ure 57 when other parameters are fixed. The runtime incregiseh& number of variables
is consistent withO(v/2M + 1) from RFins. Testing time is not affected significantly by
the number of variables.

7. Conclusion

A framework is presented to obtain a symbolic represemtatioMTS (S-MTS) for
classification. Observations are discretized in a supsdvisanner using tree learners to
generate the symbolic representation. Since an obsanviatia row of data where each
column is the observed value of each variable of MTS, our isigesd approach consid-

ers all variables of MTS simultaneously during the diseagton process which makes it
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computationally efficient when compared to other approscheis way, the relation be-
tween the individual variables is taken into account. MeezoMTS with nominal and
missing values are handled efficiently with tree learnemscehe symbolic representation
is generated for MTS, the frequency of the symbols are uselssify MTS. An ensemble
learner that scales well with large number of variables ang time series makes S-MTS
computationally efficient. Our experiments demonstratedffectiveness of the proposed
approach in terms of accuracy and computation times in boivariate time series and
MTS datasets. Although we provide a simple classificatigor@gch where frequency of
each symbol is used as a feature, potentially better acceeathbe obtained by modifying
the bag-of-words approach or use of string similarity késmma the proposed representa-
tion. Moreover, proposed representation can be used folasity analysis, clustering, and

so forth.
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Figure 54. Boxplot of OOB error rates (left column) and test error rdtaght column) for
each combination setting over multiple trees for Non-liwagetal ECG Thorax1 dataset
(10 replications, confidence intervals for 95% significaleel). The error rates become
more stable when time series are represented by larger mahtvees (larget/;,,s) and/or
more symbols (largeR). The decrease in the error rates are not significant aftéaice
number of trees oR F'ts for most of the settings (arounfl; = 300). Similarly, increasing
the symbol size does not improve the results significantsrdt = 50. Similar discussion
holds for the test error rates.
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Figure 56. The mean computation times with changing the number ofitrgimstances
and time series length®?(= 30, J;,s = 60 andJ;; = 500). The runtime increase with
the number of training instances or longer series is cardistithO (N log N) from RFE'ts
andO(N x T') from RF'ins. Testing time is not affected by the number of training serie
but it increases linearly as the length of the series ineeas
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK
1. Conclusions

This dissertation proposes time series representatiahsnathods for supervised time
series analysis. The approaches combine new represestdtiat handle translations and
dilations of patterns with bag-of-features strategiestegelbased ensemble learning. This
provides flexibility in handling time-warped patterns in @mputationally efficient way.
The ensemble learners provide a classification framewarticm handle high-dimensional
feature spaces, multiple classes, missing values ancatien between features. The pro-
posed representations are useful for classification aedpirgtation of the time series data
of varying complexity.

In our first study, a framework based on the bag-of-featuses ) representation is pro-
posed to benefit from the speed and other advantages ofddadged methods to handle
the problems for which NN classifiers with DTW distance arellegmged. We propose in-
terval selection and local feature extraction strategiesxplore time series representation
that can handle translation and dilations based on the Be&. ido capture local infor-
mation, random subsequences are extracted from each tifas aad further divided into
intervals. The subsequences vary randomly in length araditot The number of intervals
that partition a subsequence are fixed so that the intemgthevaries with the subsequence
length. Several features (such as the mean, standardidayiatc.) are extracted from
each interval and these features comprise a row in a new det&mX (one row for each
subsequence). Our local feature generation scheme altmvesrfovel representation that
captures information in a manner similar to DTW. We then lldibe subsequences and use
a supervised approach to summarize the local informatiaur. sOpervised approach pro-
vides desirable properties for time series classificatibiprovides fast and efficient time
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series representation even with a collection of basic featsuch as slope, mean and vari-
ance from the subsequences. Global features (e.g., argtatimm of the time series) can
also be extracted from the time series and combined withatelmok.

Our second study explores a time series representatiorlitbafs for interpretability.
We consider a framework for finding important patterns ofetiseries for classification.
We focus on finding the segments of the time series that hawemnia to distinguish the
classes. These segments are referred as the regions esinteegions of interests are very
important to understand the temporal relations. Moredbery help to reduce the effort in
searching for the time segments useful to a classifier. Aiftding the region of interests for
each time series, we generate sequences from these regloese sequences are referred
as patterns. We generate multiple patterns from the timessand find the best matching
segments of the time series to these patterns. Then eaclséiies is represented by the
distances of the patterns to the best matching segments tifith series. Another classifier
is then trained on this representation. A feature selealgarithm on the new feature set
allows for finding the patterns that are critical in classifion.

Our third study presents a framework to learn a symbolicasgmtation of MTS that
is then integrated to produce a new type of MTS classifier.h&athan select intervals
from the times series and extract features, the obsergaiticthe time series are recursively
partitioned into terminal nodes of trees. This leads to a sgmvbolic representation that
is learned based on the class labels. Furthermore, all tamess along with their rela-
tionships, are considered simultaneously as the nodesoastracted. Ensembles repeat
the process to strengthen the algorithm. This unigue reptason is then summarized in

a high-dimensional codebook. However, another ensembldlés the high dimensional-
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ity to generate an effective classifier. there is only oneaisage of symbols regardless of
the number of variables in a MTS. Our approach can handle M&8ples with different
lengths and it does not require a special rectangularizatiechanism because the final
representation is simply obtained from the frequency ofgmabols over the time series.
Applications such as speech recognition, medical diagrevsil gesture recognition are
used to illustrate the methods. Experimental results shaitlhe time series representations
and methods provide better results than competitive metbnd comprehensive collection
of benchmark datasets. Although we present tools that gl&caple to and effective for a
wide range of important problems, there is a potential torowe and extend the proposed

approaches which is further discussed in Section 2.
2. Future Work
2.1. Local feature extraction

Our approaches presented in Chapters 3 and 4 are featwe-&ad require features to
be defined. The extracted features are related to the shaipe trihe series segments (such
as the slope of the fitted regression line, the mean and ariaver the segment). Pro-
posed approaches may be improved by considering featuedsddo application specific
properties. For instance, extracting linear predictivdicg (LPC) features from speech
signals [118] for a speech recognition task may help to hdvetir classifier. Since RFs
can handle large number of features in a computationallgieffi manner, potentially better
performance with reasonable computation times might bailodd when more features are

added. Furthermore, features can be learned in a manntxdétethe work in Chapter 5.
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2.2. Absence of the label information

In many real-world time series classification scenarioguaimg a large amount of
labeled training data is expensive and time-consuming.i-Sapervised learning (SSL) is
the machine learning paradigm concerned with utilizingabeled data to try to build better
classifiers [119]. In general, SSL makes use of both labeiddialabeled data for training—
typically a small amount of labeled data with a large amouniirdabeled data. It falls
between unsupervised learning (without any labeled mgidiata) and supervised learning
(with completely labeled training data). Therefore SSL banthought as an attempt to
reconcile classification and clustering, two contrastingdes of data analysis [120]. Our
proposed approaches are flexible to make use of the unlabéechation since RF enables

a proximity measure that can be used for clustering [57].

2.3. Beyond time series

Although we mainly focus on time series analysis, many iggasented in this disser-
tation can be extended to the spatial domain such as imagg@stories etc. TSBF uses
subsequences to classify the time series, as shown in CHApESBF can be extended
to classification of images by sampling patches (samplinyvim dimensions) instead of
sampling subsequences. A supervised learner trained omtge patches may provide
better representations for images when compared to ungs@drcodebooks. The pattern
discovery approach presented in Chapter 4 can be used tchéniciteresting regions of
images for classification. Also the same idea can be invastigfor object detection. The

time series discretization approach for MTS, described hapfer 5, can be extended to
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images and motion video analysis since both images and maitieos can be considered

to be special types of multivariate time series data.

2.4. Similarity kernels

The similarity of time series based on subsequences mighiseéd to obtain kernel-
based classifiers [63]. Subsequences are generated arttzgdanto symbols. The simi-
larity of the time series is then computed using the stripgegentation of the subsequences.
Such a similarity measure, based on the similarity of sulbsecgs, is a distance-based ap-
proach. A support vector machine (SVM) [121] with the defitkkedhel is used to classify
the time series. How the similarity of subsequences can blilufor classification was
further discussed by [122].

Our proposed approaches can be extended to define kerndkr $orthe one in [63].
The similarity information fromR F'sub in Chapter 3 and? F'ts from Chapters 4 and 5 pro-
vide a similarity measure between subsequences and tiies, s@spectively. Such kernels

have been obtained from RF models previously [123], but oiotifne series problems.
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