
Modeling Time Series Data for Supervised Learning

by

Mustafa Gokce Baydogan

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved August 2012 by the
Graduate Supervisory Committee:

George C. Runger, Chair
Robert Atkinson

Esma Gel
Rong Pan

ARIZONA STATE UNIVERSITY

December 2012

ABSTRACT

Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are

chronological sequences of observations and an important class of temporal data. Fields such as

medicine, finance, learning science and multimedia naturally generate TS data. Each series provide

a high-dimensional data vector that challenges the learning of the relevant patterns

This dissertation proposes TS representations and methodsfor supervised TS analysis. The

approaches combine new representations that handle translations and dilations of patterns with

bag-of-features strategies and tree-based ensemble learning. This provides flexibility in handling

time-warped patterns in a computationally efficient way. The ensemble learners provide a classifi-

cation framework that can handle high-dimensional featurespaces, multiple classes and interaction

between features. The proposed representations are usefulfor classification and interpretation of

the TS data of varying complexity.

The first contribution handles the problem of time warping with a feature-based approach. An

interval selection and local feature extraction strategy is proposed to learn a bag-of-features rep-

resentation. This is distinctly different from common similarity-based time warping. This allows

for additional features (such as pattern location) to be easily integrated into the models. The learn-

ers have the capability to account for the temporal information through the recursive partitioning

method.

The second contribution focuses on the comprehensibility of the models. A new representation

is integrated with local feature importance measures from tree-based ensembles, to diagnose and

interpret time intervals that are important to the model.

Multivariate time series (MTS) are especially challengingbecause the input consists of a col-

lection of TS and both features within TS and interactions between TS can be important to models.

Another contribution uses a different representation to produce computationally efficient strategies

i

that learn a symbolic representation for MTS. Relationships between the multiple TS, nominal and

missing values are handled with tree-based learners.

Applications such as speech recognition, medical diagnosis and gesture recognition are used

to illustrate the methods. Experimental results show that the TS representations and methods pro-

vide better results than competitive methods on a comprehensive collection of benchmark datasets.

Moreover, the proposed approaches naturally provide solutions to similarity analysis, predictive

pattern discovery and feature selection.

ii

To my family

iii

ACKNOWLEDGMENTS

I want to express my deep and sincere gratitude to my advisor,Dr. George Runger, for his

encouragement and generous support throughout my study at ASU. He offered me great research

opportunities, resources, and trust which allowed me to fully explore the research area. Without

his brilliant guidance, this dissertation would not have been possible.

I would also like to convey thanks to my dissertation committee: Dr. Robert Atkinson, Dr.

Esma Gel, and Dr. Rong Pan for their valuable comments on thisdissertation. I also would like to

extend my gratitude to my industry collaborators: Dr. Eugene Tuv, and Dr. Ben Nelson.

My family supported me in every step I have taken since the very beginning of my graduate

studies. I am mostly grateful to my father Mehmet Baydogan, my mother Perihan Baydogan, my

sister Banu Gokcen Baydogan for their love and support. Without them, this work could not have

been completed.

I am deeply indebted to my friends, Baykal Hafizoglu, Nedim Yel, Muhsin Menekse, Ahmet

Cemal Durgun, Kerem Demirtas, Aysegul Demirtas and Tulin Inkaya, for their help, stimulating

suggestions and encouragement. My special thanks go to my friends Mustafa Yuksel and Caglar

Ata for their support through the course of this dissertation. Thanks for giving me a shoulder to

lean on whenever I need.

Finally, my recent happiest moments were all with you, DidemYamak. Thank you for your

love, trust, and understanding. Thank you for providing me the continued moral support and en-

couragement to pursue my dreams. I am grateful to our journeyso far and I am excited about our

adventure ahead.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

1. A Bag-of-Features framework to classify time series 6

2. Supervised time series pattern discovery through local importance 8

3. Multivariate time series classification with learned discretization 9

4. Contributions . 10

5. Organization of this dissertation 11

2 BACKGROUND . 13

1. Notation . 13

2. Dynamic time warping . 17

3. Bag-of-Features approach . 19

4. Random forest . 21

3 A BAG-of-FEATURES FRAMEWORK TO CLASSIFY TIME SERIES24

1. Abstract . 24

2. Introduction . 25

3. Background . 30

4. Time Series Classification with a Bag of Features 33

4.1. Subsequences and feature extraction 34

4.2. Codebook and learning . 37

4.3. Illustrative Examples . 41

v

CHAPTER Page

5. Experiments and Results . 47

5.1. Classification accuracy . 48

5.2. Computational complexity . 56

6. Discussion . 59

6.1. What OOB error rates provide . 59

6.2. Shapelets and TSBF . 60

7. Conclusions . 63

4 SUPERVISED TIME SERIES PATTERN DISCOVERY THROUGH LOCAL

IMPORTANCE . 64

1. Abstract . 64

2. Introduction . 65

3. Background . 71

3.1. Random Forest . 71

3.2. Local importance measure from random forests 73

3.3. Tree models with interval features 75

3.4. Shapelets . 78

4. Supervised Time Series Pattern Discovery through Local Importance . . 79

4.1. Region of Interest Selection based on Local Importance. 79

4.2. Pattern Discovery and Classification 84

4.3. Feature selection and summary using TS-PD 88

4.4. Parameters of TS-PD . 90

5. Experiments . 94

5.1. Computational accuracy . 96

vi

CHAPTER Page

5.2. Computational complexity . 100

5.3. Complexity reduction . 106

6. Discussion . 108

6.1. Illustrative example . 108

6.2. Interpretability . 110

6.3. Gesture recognition: an application of TS-PD to multivariate time

series classification . 112

6.4. Logical-Shapelets and TS-PD . 114

7. Conclusion . 115

5 MULTIVARIATE TIME SERIES CLASSIFICATION WITH LEARNED DIS-

CRETIZATION . 122

1. Abstract . 122

2. Introduction . 123

3. Background . 131

4. Approach . 132

4.1. Time Series Discretization using Tree-Based Classifiers 133

4.2. Classification . 135

5. Experiments and Results . 136

5.1. Univariate Time Series . 137

5.2. Multivariate Time Series . 145

6. Description of MTS datasets . 147

6.1. Arabic speech recognition . 148

6.2. Japanese Vowels . 148

vii

CHAPTER Page

6.3. Pen-Based recognition of handwritten digits 149

6.4. ECG . 149

6.5. Robot execution failures . 149

6.6. Wafer . 150

6.7. Australian sign language (AUSLAN) 150

6.8. Brazilian sign language (LIBRAS)150

6.9. Character trajectories . 151

6.10. Motion recognition-CMUMOCAP S16 151

6.11. Gesture recognition-uWaveGestureLibrary 151

6.12. Sensitivity Analysis . 152

6.13. Computational Time Analysis . 152

7. Conclusion . 154

6 CONCLUSIONS AND FUTURE WORK . 159

1. Conclusions . 159

2. Future Work . 161

2.1. Local feature extraction . 161

2.2. Absence of the label information162

2.3. Beyond time series . 162

2.4. Similarity kernels . 163

REFERENCES . 164

viii

LIST OF TABLES

Table Page

1 Average test error rates over 10 replications for TSBF, TSBF without the

subsequence location features (TSBF w/o location) and baseline RF classi-

fier applied to two synthetic datasets. 44

2 Average test error rates over 10 replications for TSBF, andRF classifiers

trained on an unsupervised codebook generated byK-means clustering ap-

plied to two synthetic datasets. .. 46

3 Characteristics of the time series datasets. 47

4 Parameter settings of TSBF . 49

5 Error rates of TSBF for four different settings ofz based on average, max-

imum and minimum of 10 replications, nearest-neighbor classifiers with

dynamic time warping distance . 52

6 Computation times of TSBF for different parameter settings. 57

7 Test and OOB error rates for different settings of maximum subsequence

length. 60

8 Error rates of Logical-Shapelets and TSBF on 8 datasets. 62

9 Parameters of TS-PD . 91

10 The OOB and test error rates ofRFint on CBF dataset for different interval

settings. 93

11 Characteristics of the datasets 95

12 Error rates of TS-PD (w = 6, 2000 trees) for different settings ofL 97

13 Error rates of TS-PD (w = 6, 2000 trees) for different settings ofL (con-

tinued) . 98

ix

Table Page

14 Computation times of TS-PD (w = 6, 2000 trees) for different settings ofL 101

15 Computation times of TS-PD (w = 6, 2000 trees) for different settings of

L (continued) . 102

16 Error rates and computation times of TS-PD (w = 6, L = 4, 1000 trees) for

different training data sizes. .. . 107

17 Error rates of Logical-Shapelets and TS-PD 115

18 Sample database with 3 MTS from 2 classes 134

19 Parameter settings of TSBF .136

20 Characteristics of the univariate time series 139

21 Selected parameters based on OOB error rates. OOB error and test error

rates of S-MTS . 143

22 Selected parameters based on OOB error rates. OOB error and test error

rates of S-MTS (continued) . 144

23 Characteristics of MTS . 145

24 Cross-validation error rates for S-MTS (10 replications) 147

25 Test error rates for S-MTS (10 replications) 148

x

LIST OF FIGURES

Figure Page

1 Euclidean and Dynamic Time Warping distance computation [1] 4

2 Two time series from each class are shown (T = 400, C = 2, yn ∈ {0, 1}) . 13

3 Two intervals (right) (w = 50) extracted from the time series (left) 14

4 A subsequence starting at timet = 200 (right) consists ofd = 5 intervals

of lengthw = 20 time units . 15

5 Intervals of lengthw = 40 segmented from the time series using a sliding

step ofr = 20 . 16

6 A pattern of time seriesxn composed of 3 discontiguous intervals. 16

7 Time alignment of two time-dependent sequences [2] 17

8 Cost matrix of two time series using the Manhattan distance[2] 18

9 Optimal warping pathp∗, cost matrixc and accumulated cost matrixD . . . 23

10 Four steps to compute the bag-of-words representation for images [3] . . . 23

11 Instances from the OSUleaf dataset. 31

12 Generic description of the time series classification with a bag-of-features

(TSBF) algorithm. 34

13 Interval and subsequence generation and representation. 37

14 More specific description of the time series classification with a bag-of-

features (TSBF) algorithm. 40

15 The number of peaks example time series 42

16 Distributions of the subsequences in the feature spaces of interval means

for two examples . 50

17 One time series from each class with peak location 51

xi

Figure Page

18 The average OOB error rates on the training data of RFts andRFsub over

all datasets. 51

19 Scatter plot of error rates from TSBF and NNDTWNoWin. 53

20 Scatter plot of error rates from TSBF and NNDTWBestWin. 54

21 Boxplot of the replication results for TSBF (z = 0.5). 55

22 Computation time of TSBF over all datasets for allz settings 58

23 OOB error rates of TSBF (z = 0.5) with b = 10 and withb = 50 61

24 Two sample time series from different classes. 67

25 Training time series instances from CBF dataset. 76

26 Decision trees built using C4.5 [4] on the interval features. 77

27 Illustration of the classes for Gun-Point dataset. 79

28 Illustration of feature generation on the intervals of one time series from

CBF dataset. 81

29 Three time series from CBF dataset and corresponding local importance plot. 83

30 Normalized local importance information on CBF dataset and time series

of each class . 84

31 Illustration of distance computation over the time series for a generated

patterns . 86

32 Variable importance ofRFpattern based on Gini measure on CBF dataset 89

33 First 12 important patterns of TS-PD for CBF dataset 90

34 The OOB error rates ofRFint andRFpattern of CBF dataset 92

35 Progress of OOB error rates and test error rates overL settings. 94

36 Scatter plot of error rates of TS-PD vs NNDTWNoWin and NNDTWBestWin. 99

xii

Figure Page

37 Training and testing times of TS-PD on Two Patterns dataset for increasing

dataset sizes . 104

38 Training and testing times of TS-PD for FacesUCR dataset for differentw

andL settings. 106

39 Training and testing times for series of different length. 106

40 Illustration of the transformation of a face image to the time series. 108

41 The progress of the OOB error rate ofRFint 109

42 Normalized local importance information on FacesUCR andtime series of

each class . 116

43 The OOB error rates ofRFpattern over trees forw = 20, L = 4 117

44 First five important patterns of TS-PD (Gun-Point dataset) 118

45 First five important patterns of TS-PD (Sony AIBO Robot) 119

46 First five important patterns of TS-PD (Coffee) 120

47 Univariate representation of the accelerometer data. 120

48 Gesture vocabulary from [5] and important patterns 121

49 SAX representation with a word size of 8 and alphabet size of 3 126

50 Alternative representations for MTS 127

51 One time series of each class from CBF dataset. 140

52 The feature space and the partitions (symbols) from the decision tree 141

53 A visual example of the representation based on symbol frequencies 142

54 Boxplot of OOB error rates and test error rates for each combination setting

over multiple trees for Non-Invasive Fetal ECG Thorax1 dataset 156

55 The mean computation times with changingR andJins 157

xiii

Figure Page

56 The mean computation times with changing the number of training in-

stances and time series lengths .157

57 The boxplot of the computation times of S-MTS with changing the number

of variables . 158

xiv

CHAPTER 1

INTRODUCTION

In the last decade, the increasing use of temporal data, especially time series data, has

initiated a great deal of research and development attemptsin the field of data mining.

Time series data which is chronological sequences of observations is one of the impor-

tant class of temporal data. Many data sources in different fields, such as in medicine,

finance, multimedia and learning sciences naturally generate time series data. For exam-

ple, an ElectroCardioGram (ECG) is used to identify temporal patterns in heart signals to

identify abnormal heart rhythms [6]. Average electrical voltage produced by the beating

of the hard muscle is measured over the human body. An ECG is visualized as a 2D plot,

wherex axis is the time andy axis is the average voltage measured by the electrodes. In the

field of seismology, seismograms are used to identify seismic events. A seismogram is a

record of the ground motion produced by an earthquake, explosion, or other ground-motion

sources [7]. The ground motion is identified by a seismographat a measuring station as

a function of time. Nowadays, Electroencephalography (EEG) which is the recording of

electrical activity along the scalp is used to understand the brain activity and connectivity

under different experimental conditions. EEG visualizes the voltage fluctuations resulting

from ionic current flows within the neurons of the brain over the time.

Time series data is characterized by its numerical and continuous nature [8]. Time se-

ries are considered as a whole instead of individual numerical fields because of the temporal

ordering in the data. This makes time series analysis different from other data analysis prob-

lems, in which there is no natural ordering of the observations. Moreover, another problem

is that each series provide a high-dimensional data vector that challenges the analysis. The

high-dimensionality can be handled by dimensionality reduction techniques such as fea-

ture selection when the temporal ordering is not important.However, entire series should

1

be considered as a vector in time series analysis problems since the relations between the

certain time points may be of interest. Therefore, traditional dimensionality reduction tech-

niques may not work well for the time series data. Real-worldtime series data is often

high-dimensional, contains nonlinear relationships between its variates, and has long-range

dependencies. Due to these complexities, time series data mining has received great interest

over the past decade.

Time series data mining approaches focus on various problems. The major tasks con-

sidered in this context are pattern discovery and clustering, classification, rule discovery

and summarization [8]. Although these tasks are presented separately, they are not inde-

pendent. For instance, clustering result on time series maybe useful to a classification task.

Therefore, a study on one particular task may provide solutions to other tasks.

A fundamental problem in time series data mining approachesis how to represent the

time series data. The representation is important to discover the useful information from

the high-dimensional data efficiently rather than analyzing or finding statistical properties

on the whole series. High-level representation of the original raw data is generally used

as a feature extraction step, or simply to make the storage, transmission, and computation

of massive dataset feasible in these approaches [9]. The time series representation strate-

gies are categorized into two classes [9]: data adaptive (adaptive basis representation) and

nondata adaptive (fixed basis representation). Examples ofdata adaptive approaches are

Singular Value Decomposition (SVD) [10], Piecewise Linearand Piecewise Constant mod-

els (PAA) [11] and Symbolic Aggregate Approximation (SAX) [12]. Nondata adaptive

approaches represent the time series in the transformationdomain using mostly Discrete

2

Fourier Transform (DFT) [13] and Discrete Wavelet Transform (DWT) [14]. This thesis

explores new adaptive basis representations for time series classification.

Time series classification is a supervised learning problemin which the input consists

of a set of training examples and associated class labels, where each example is formed

by one or more time series (variables) and the aim is to label test examples to predefined

classes. Time series classification is an important task with many challenging applications

including finance, science, natural language processing and medicine. For example, a car-

diologist might be interested in analysis of ECG signals from different patients in order to

see whether a particular patients, e.g., patients with a history of some disease, have different

temporal s in their heart signals than a control group [6]. Seismologist aim at discriminating

the nature of the seismic waves to classify events such as earthquakes, mining explosions or

nuclear explosions [7]. Moreover, EEG records are used in a learning environment to under-

stand the perceived difficulty by classifying the EEG signals based on the puzzle difficulty.

Effective and efficient data mining methods are required forthe knowledge extraction in

such applications.

The algorithms proposed for time series classification can be divided into instance-

based and feature-based methods in general. Instance-based classifiers predict a test in-

stance based on its similarity to the training instances. For example, nearest neighbor (NN)

classifiers classify objects based on the closest training examples in the feature space and

one-nearest-neighbor classifiers with Euclidean (NNEuclidean) or a dynamic time warping

distance (NNDTW) have been widely, and successfully used [15–19] in time series classi-

fication.

3

One-nearest-neighbor (NN) classifiers with Euclidean distance do not work well if the

patterns of interest translate or dilate over time. DTW [20]is a method that allows a mea-

sure of the similarity of time series independent of certainnon-linear variations in the time

dimension. The idea of DTW is illustrated in Figure 1. Euclidean distance is computed

by matching the observation at the same time points. Conversely, DTW aligns the obser-

vations using a dynamic programming approach that maximizes the similarity of the time

series while satisfying the time ordering of the observations. Therefore, DTW recognizes

the similarity of the time series better than the Euclidean distance.

Figure 1. Euclidean and Dynamic Time Warping distance computation [1]. The grey lines
indicate that distance is computed over the observations ateither end of the line. Alignment
of two time series by DTW recognizes the similarity of the series better than the Euclidean
Distance

The majority of the NN classifiers works on the raw (observed)data. On the other hand,

there are studies based on alternative time series representations. These studies search for

similarity on features instead of the raw data. For example,Symbolic Aggregate Approx-

imation (SAX) [12] basically represents the time series based on the mean level of the

intervals extracted from the time series. An NN classifier based on this representation

searches for similarity on the mean feature of the intervals. We consider the most accurate

NN classifiers based on the raw data in this thesis.

NN classifiers with appropriate distance measures are knownto provide strong and ro-

bust solutions [21, 22] although their space and time requirements may be problematic for

4

some application. NN classifiers are easy to understand and do not require the setting of

many parameters, but they typically do not provide insight into time series features impor-

tant to the classifier. Why a particular instance is assignedto a certain class is not clear.

Feature-based classifiers work on the features of the time series to reduce the dimension-

ality. They are interpretable and generally faster than instance-based classifiers depending

on the feature extraction method and classification algorithm. The feature extraction step

should handle the temporal information relevant to classification and a classifier that can

take the temporal relations into account is required. Two types of features are generated in

these approaches, global and local features. Global features are extracted from each time

series and provide a compact representation of the time series (such as the mean of all ob-

served values) but they are usually insufficient to represent time series information useful to

classifiers. On the other hand, local features are extractedfrom segments of the time series

and require such segments to be determined. Since the set of local features may vary in car-

dinality and lack a meaningful ordering, many classification algorithms requiring feature

vectors of fixed dimension have problems in handling the local feature set.

In this thesis, we explore the problems related to time series classification. We pro-

pose time series representations that overcome some limitations of existing approaches for

classifying the time series. In particular, we consider thefollowing questions in details:

• Long time series with time warped patterns, relatively short features of interest, and

moderate noise, are difficult to identify. What are the benefits of the feature-based

approaches in such cases? Are there methods that can handle time warping with all

the benefits of a feature-based approach?

5

• Why is a time series assigned to a certain class? Are there patterns specific to certain

classes? Which patterns are relevant to the classification task?

• There might be more than one time series relevant to the classification task and mul-

tiple series challenge the similarity-based approaches. Scalability of the approaches

become important as the number of time series increases. Also, both features within

the time series and interactions between the time series canbe important to models.

Are there computationally efficient strategies to learn both relations simultaneously

for time series classification?

1. A Bag-of-Features framework to classify time series

A framework based on the bag-of-features (BoF) representation is proposed to bene-

fit from the speed and other advantages of feature-based methods to handle the problems

for which NN classifiers with DTW distance are challenged. A BoF representation char-

acterizes complex objects by feature vectors of sub-objects. We propose interval selection

and local feature extraction strategies to explore time series representation that can handle

translation and dilations based on the BoF idea.

To capture local information, random subsequences are extracted from each time series

and further divided into intervals. The subsequences vary randomly in length and location.

The number of intervals that partition a subsequence are fixed so that the interval length

varies with the subsequence length. Several features (suchas the mean, standard deviation,

etc.) are extracted from each interval and these features comprise a row in a new data ma-

trix X (one row for each subsequence). Because the subsequences selected vary in length

and location, a particular column inX consists of features from different time locations

computed over different length intervals. Consequently, the similarity between time series

6

can be captured independent of certain non-linear variations in the time dimension. This

representation captures information in a manner similar toDTW, but from a very differ-

ent construction. After representing the features of the subsequences in data matrixX, a

classifier is trained assuming that each subsequence has thelabel of the time series from

which it is extracted. Classification results on the subsequences are summarized to obtain

the new representation for the time series. This data structure along with a tree-based en-

semble allows for relevant features to be used by the classifier while irrelevant one tend to

be ignored.

Our local feature generation scheme allows for a novel representation that captures in-

formation in a manner similar to DTW, we then label the subsequences and use a supervised

approach to summarize the local information unlike the existing studies. Our supervised ap-

proach allows for desirable properties for time series classification problem. It provides fast

and efficient time series representation for classificationeven with very basic features such

as slope, mean and variance from the subsequences. Global features (e.g autocorrelation

of the time series) can also be extracted from the time seriesand combined with other fea-

tures. Finally time series may be classified via any supervised learner. We denote the new

algorithm as BoF framework to classify Time Series (TSBF).

In Chapter 3, we will address time series classification problem based on bag-of-

features representation. We show how TSBF handles the temporal data and demonstrate

its efficiency and accuracy by comparing to alternative timeseries classifiers on a full set of

benchmark data sets.

7

2. Supervised time series pattern discovery through local importance

In Chapter 4, we consider a framework for finding important patterns of time series for

classification. We focus on finding the segments of the time series that have potential to

distinguish the classes. These segments are referred as theregions of interest. Regions of

interests are very important to understand the temporal relations. Moreover, they help to

reduce the effort in searching for the time segments useful to a classifier. After finding the

region of interests for each time series, we generate sequences from these regions. These

sequences are referred as patterns. We generate multiple patterns from the time series and

find the best matching segments of the time series to these patterns. Then each time series is

represented by the distances of the patterns to the best matching segments of the time series.

Another classifier is then trained on this representation. Afeature selection algorithm on

the new feature set allows for finding the patterns that are critical in classification.

A feature-based algorithm is used to reduce the effort to prune the search space of

the regions of interest in our algorithm. [23] also discusses the necessity of pruning the

search space to find the regions relevant to classification and proposes a distance-based

method. Feature-based approaches allow for some desirableproperties such as handling

the interactions and fast computation. Interaction between the features in this context is

the relationship of the patterns over multiple intervals that may define a class as discussed

by [23].

In Chapter 4, we will describe how the interpretability is achieved through the pattern

discovery process. We illustrate the compactness of the newrepresentation which reduces

the time and space required for classification.

8

3. Multivariate time series classification with learned discretization

Chapter 5 proposes a time series representation for classification of the multivariate

time series (MTS). In the multivariate scenario, there are multiple variables, each in a time

series, related to the classification task. This problem hasbeen studied in different fields

such as statistics, signal processing and control theory [24]. The most common approach

is to obtain a rectangular representation of MTS by transforming the set of multivariate

input sequences to a fixed number of columns using different rectangularization approaches

[25]. For example, singular value decomposition (SVD) is used by [26–28]. Principal

component analysis (PCA) is used for both feature selectionand transformation by [29].

Any supervised learner can be trained on the transformed data for classification. Most of

these approaches assume that the variables are numerical; however, certain variables of the

series can be nominal or missing.

Another strategy is to modify the similarity-based approaches which are used for uni-

variate time series. However, MTS are not only described by the variables, but also by re-

lationships between the variables [30]. This potentially valuable information is lost if only

the similarity between the individual variables are taken into consideration [28]. Moreover,

as in telecommunication application [25], observations can be nominal (i.e., call type) for

which similarity computation is not well-defined.

We follow a different approach and propose a symbolic representation of MTS that is

then integrated to produce a new type of MTS classifier. Rather than select intervals from

the time series and extract features, the observations in the time series are recursively par-

titioned into terminal nodes of trees. This leads to a new symbolic representation that is

learned based on the class labels. Furthermore, all time series, along with their relation-

9

ships, are considered simultaneously as the nodes are constructed. Ensembles repeat the

process to strengthen the algorithm. This unique representation is then summarized in a

high-dimensional codebook. However, another ensemble handles the high dimensionality

to generate an effective classifier. there is only one sequence of symbols regardless of the

number of variables in a MTS

The relationships between the variables, nominal and missing values are handled effi-

ciently with tree-based learning. There is only one sequence of symbols regardless of the

number of variables in a MTS which makes our method computationally efficient when

compared to similarity-based methods. Our approach can handle MTS examples with dif-

ferent length and it does not require a special rectangularization mechanism since the final

representation is simply obtained by the frequency of the symbols over the time series.

Chapter 5 introduces a novel representation for multivariate time series. We show how

the new representation leads to a locality sensitive, scalable and accurate time series classi-

fier.

4. Contributions

This dissertation proposes time series representations and methods for classification The

approaches combine new representations that handle translations and dilations of patterns

with bag-of-features strategies and tree-based ensemble learning. This provides flexibility

in handling time-warped patterns in a computationally efficient way. The ensemble learners

provide a classification framework that can handle high-dimensional feature spaces, mul-

tiple classes and interaction between features. The proposed representations are useful for

classification and interpretation of the time series data ofvarying complexity.

10

The first contribution handles the problem of time warping with a feature-based ap-

proach. An interval selection and local feature extractionstrategy is proposed to learn a

bag-of-features representation. This is distinctly different from common similarity-based

time warping. This allows for additional features (such as pattern location) to be easily

integrated into the models. The learners have the capability to account for the temporal

information through the recursive partitioning method.

The second contribution focuses on the comprehensibility of the models. A new repre-

sentation is integrated with local feature importance measures from tree-based ensembles,

to diagnose and interpret time intervals that are importantto the model.

Multivariate time series (MTS) are especially challengingbecause the input consists of

a collection of time series and both features within time series and interactions between time

series can be important to models. Another contribution uses a different representation to

produce computationally efficient strategies that learn a symbolic representation for MTS.

Relationships between the multiple time series, nominal and missing values are handled

with tree-based learners.

Applications such as speech recognition, medical diagnosis and gesture recognition are

used to illustrate the methods. Experimental results show that the time series representations

and methods provide better results than competitive methods on a comprehensive collection

of benchmark datasets. Moreover, the proposed approaches naturally provide solutions to

similarity analysis, predictive pattern discovery and feature selection.

5. Organization of this dissertation

The rest of this dissertation is organized as follows. Chapter 3 introduces the bag-of-

features framework to classify the time series. Chapter 4 proposes a supervised algorithm to

11

discover predictive patterns from the time series. Chapter5 develops a symbolic represen-

tation for multivariate time series classification. Chapter 6 concludes and discusses several

directions for future study.

12

CHAPTER 2

BACKGROUND

1. Notation

We focus on both univariate and multivariate time series classification problems in this

dissertation. We first define the key terms used for univariate time series classification.

Definition 1. A univariate time series, xn = (xn1 , x
n
2 , . . . , x

n
T) is an ordered set of

T values. We assume time series are measured at equally-spaced time points indexed by

t. Each time series is associated with a class labelyn, for n = 1, 2, . . . , N and yn ∈

{0, 1, 2, ..., C −1}. Two time series of each class from a two-class time series classification

problem are illustrated in Figure 2 (T = 400, C = 2, yn ∈ {0, 1}). Time series from class

zero are defined by three peaks, whereas two peaks define classone, regardless of locations.

Figure 2. Two time series from each class are shown (T = 400, C = 2, yn ∈ {0, 1}). The
number of peaks defines each class. The location of the peaks is not important.

13

Definition 2. An interval of the time seriesxn, Ip(xn), is a sampling of lengthw < T

of contiguous positions fromxn starting at positionp. Thus,Ip(xn) = (xnp , . . . , x
n
p+w−1)

for 1 ≤ p ≤ T − w + 1. Two intervals of the first time series are given in Figure 3.

Figure 3. Two intervals (right) (w = 50) extracted from the time series (left). First interval
starts att = 1 (p = 1) and second interval starts att = 200, (p = 200).

Definition 3. A subsequence of the time series, xn(s), is a time series segment con-

sisting ofd contiguous intervals. Figure 4 illustrates a subsequence of time series composed

of d = 5 intervals each of lengthw = 20.

Definition 4. A sliding step of size r < w is used to generate overlapping inter-

vals from xn. Let Ip(xn) be the interval of lengthw which starts at positionp. A

representative set of intervals of lengthw can be extracted by slidingr < w positions

from p acrossxn. The set of the representative intervals of lengthw acrossxn is then

{I1(xn), I1+r(x
n), . . . , I1+T−w(x

n)}. Settingr = 1 generates all possible intervals of

lengthw. All possible intervals of lengthw = 40 segmented from the time series using a

sliding step ofr = 20 are illustrated in Figure 5.

14

Figure 4. A subsequence starting at timet = 200 (right) consists ofd = 5 intervals of
lengthw = 20 time units .

Definition 5. A pattern of time seriesxn, Ψ(xn), is described by the combination of

certain intervals ofxn. A pattern formed by combining three intervals is schematized in

Figure 6.

The notation for multivariate time series is slightly different than that for univariate time

series.

Definition 6. A multivariate time series, (MTS), Xn, consists ofM univariate time

series each of which hasT observations wherexnm(t) denotes the observation at timet from

variablem of MTS n. Formally, MTSXn is represented byT ×M matrix as:

Xn = [xn1 , x
n
2 , . . . , x

n
m, . . . , xnM]

where

xnm = [xnm(1), xnm(2), . . . , xnm(T)]
′

15

Figure 5. Shown are 19 intervals of lengthw = 40 segmented from the time series using
a sliding step ofr = 20. Mean level of the data points over each interval is represented by
the red line.

Figure 6. A pattern of time seriesxn composed of 3 discontiguous intervals. It is a combi-
nation ofI120(xn), I160(xn) andI300(xn) wherew = 40.

There areN training MTS, each of which is associated with a class labelyn, for n =

1, 2, . . . , N andyn ∈ {0, 1, 2, ..., C − 1}. Univariate time series is a special case of MTS

whereM is equal to one.

16

2. Dynamic time warping

Dynamic time warping (DTW) is a well-known method for measuring similarity be-

tween two given (time-dependent) sequences (e.g. time series) which may vary in time or

speed. This similarity is measured by finding the optimal alignment between two given time

series under certain restrictions. An example alignment isprovided in Figure 7 from [2]. In-

tuitively, the sequences ”warped” non-linearly in the timedimension to measure similarity

independent of certain non-linear variations in the time dimension.

Figure 7. Time alignment of two time-dependent sequences [2]. Aligned points are indi-
cated by the arrows

Formally, the objective of DTW is to compare two univariate time seriesx1 =

(x11, x
1
2, . . . , x

1
N) of lengthN andx2 = (x21, x

2
2, . . . , x

2
M) of lengthM . To compare two

series, one needs a local cost measure, sometimes also referred to as local distance mea-

sure [2], which is the evaluation of the local cost measure for each pair of elements of the

time seriesx1 andx2. Then a cost matrix is computed as:

c(x1n, x
2
m) =

∥

∥x1n − x2m
∥

∥

Visual representation of the cost matrixc ∈ RN×M is illustrated in Figure 8 for two

time series [2].

17

Figure 8. Cost matrix of two time series using the Manhattan distance (absolute value of
the difference) as local cost measure. Regions of low cost are indicated by dark colors and
regions of high cost are indicated by light colors

The goal is to find an optimal pathp minimizing the overall cost. To determine an

optimal pathp, one could test every possible warping path between the series which is

not computationally efficient. Therefore, a dynamic programming approach is proposed to

solve this problem. LetD(n,m) be anN × M matrix, which is also referred to as the

accumulated cost matrix, then:

D(n,m) = min{D(n− 1,m− 1),D(n − 1,m),D(n,m− 1)} + c(x1n, x
2
m)

where

D(n, 1) =
n
∑

k=1

c(x1k, x
2
1) andD(1,m) =

m
∑

k=1

c(x11, x
2
k)

18

To recover the optimal path, tracing back from the upper right corner ofD (denoted as

pl = (N,M)) is required:

pl−1 = arg min{D(n− 1,m− 1),D(n − 1,m),D(n,m − 1)}

.

The optimal path is illustrated in Figure 9(a) (white line) for the time series of Figure

8 [2]. Here,p∗ covers only cells ofc that exhibit low costs. The resulting accumulated cost

matrixD is also provided in Figure 9(b) [2].

Various modifications have been proposed to better control the possible routes of the

warping paths [2]. We refer to [2] for further details of the modifications of DTW.

3. Bag-of-Features approach

Bag-of-features (BoF) approach characterizes complex objects by feature vectors of

sub-objects. BoF representations are popular, mostly in computer vision as content based

image retrieval [31–33], natural scene classification [34]and object detection and recogni-

tion [35–39] because of their simplicity and good performance [40]. A BoF is also referred

to as bag of words [41] (in which occurrences of each word are counted to summarize

the text contents in document), bag of instances in the multiple instance learning (MIL)

literature [42,43] and bag of frames in audio and speech recognition [44,45].

The basic idea is illustrated in Figure 10 for images [3]. In the traditional approach to

bag-of-words representation, the local image regions are first sampled using an appropriate

method (e.g., random, interest point detector [46]) and characterized by features computed

from the pixels in the region (e.g., distribution of the pixel values). Each region generates

a vector of features, and there can be many rows generated from each image. A visual

19

dictionary (or codebook) is then learned using the collection of rows from all images (e.g.,

clustering to assign discrete labels to regions). The resulting distribution of the regions

is quantized through the codebook (e.g., a histogram of the cluster assignments for the

sampled regions of each instance) as the summary of the image.

Similar to the terms used in computer vision problems, time series segments may con-

tain rich local information about the time series. A BoF representation allows one to in-

tegrate local information from segments of the time series in an efficient way. Moreover,

assumptions on the cardinality of the local feature set and patterns in the same time interval

can be relaxed by this framework.

In areas such as image classification, codebooks can be constructed in supervised and

unsupervised manners using the local feature set. Unsupervised construction often uses

clustering algorithms such as k-means [47–49] or agglomerative clustering [50, 51]. The

collection of rows from all images are clustered, and a cluster ID is assigned to each region

as illustrated in 10. An alternative approach to clusteringis to generate a codebook based on

the histogram of the raw features [44]. However, these representations are highly dependent

on the histogram generation procedure. Also, similarity-based approaches are proposed in

the MIL literature. Instead of labeling instances, the similarity of the instances within a bag

and between bags are used to construct the codebook [52].

As opposed to the unsupervised case, the class labels are used to guide the learning

of the codebook in supervised approaches. The class labels for the sample regions are

unknown but the class for of the image is known in these studies. [33, 42, 53] made use of

similarity information for feature transformation under certain assumptions in MIL. [54,55]

classified regions with decision trees and then predicted labels for the image. The class

20

label defined for each region is the class of the corresponding image in these studies. [56]

extended this idea with randomly-created clustering treeswhose leaves define a partitioning

or grouping.

4. Random forest

A RF is an ensemble ofJ decision trees,{gj , j = 1, 2, . . . , J}. Each tree is constructed

using a different bootstrap sample from the original data. About one-third of the cases are

left out of the bootstrap sample and not used in the construction of the single tree. These

are called out-of-bag (OOB) samples.

The prediction for instancex from treegj is ŷj(x) = argmaxc p
c
j(x), wherepcj(x) is

the proportion of classc instances in the leaf node thatx is assigned to by the rules that

define thej-th tree, forc = 0, 1, . . . , C − 1. LetG(x) denote the set of all trees in the RF

where instancex is OOB. The OOB class probability estimate ofx is

pc(x) =
1

|G(x)|
∑

gj∈G(x)

I(ŷj(x) = c)

whereI(·) is an indicator function that equals one if its argument is true and zero otherwise.

In the tree growing steps of RF, the best split are determinedbased on only a random

sample of features. In this study, features are also referred as variables and both terms

are used interchangeably. The Gini measure of impurity is used to determine the feature se-

lected to make the nodal split in the tree construction process. Often, the number of features

evaluated for split decision is
√
ν, whereν is the number of features. The random selec-

tion reduces the variance of the classifier, and also reducesthe computational complexity

of a single tree fromO(νη log η) to O(
√
νη log η) (assuming the depth of tree isO(log η)

whereη is the number of instances). Therefore, for a large number offeatures a RF can be

as computationally efficient as a single decision tree.

21

RF provides a variable importance measure called Gini Variable Importance(GV I)

which is the sum of the Gini impurity decrease for a particular variable over all trees. Let

Nρ
j be the number of observations at nodeρ of thejth tree, andNρ

j (L) andNρ
j (R) be the

number of observations of the left and right child nodes after splitting, and letdρj (k) be the

decrease in impurity produced by variablek at theρth node of thejth tree.

The decrease in impurity isdρj (k) = Gρ
j − (

N
ρ

j
(L)

N
ρ

j

Gρ
j (L)+

N
ρ

j
(R)

N
ρ

j

Gρ
j (R)) whereGρ

j (L)

andGρ
j (R) are the Gini indices of the left and right node respectively and Gρ

j is the Gini

index of the parent node. The Gini Variable importance of variablek is defined as

GV I(k) =
1

J

J
∑

j=1

(
∑

ρ∈Sj

dρj (k)I
ρ
j (k))

whereIρj (k) is an indicator variable for whether variablek was used to split nodeρ of tree

j andSj is the set of split nodes of the treej.

To summarize, an instance is labeled through a majority voting approach using the

tree results for which it is OOB. The estimates computed fromOOB predictions are easily

obtained and have been shown to be good estimates of generalization error [57]. Variable

importance is important to find out the features relevant to the classification task. Moreover,

RF has several advantages when compared to other classifiers. High dimensional feature

spaces, multiple classes, and missing values are handled. Nonlinear models and interactions

between features are allowed. It is scale invariant and robust to outliers, and computations

are reasonable even for large datasets.

22

(a) (b)

Figure 9. (a) Cost matrixc as in Figure 8 and (b) accumulated cost matrixD with optimal
warping pathp∗ (white line).

Figure 10. Four steps to compute the bag-of-words representation for images [3]. (i–
iii) obtain the visual dictionary (or codebook) by vector quantizing the feature vectors of
sampled regions using an appropriate method (k-means clustering in this example), and
(iv) compute the image histograms – bag-of-words – for images according the obtained
codebook. (ii) shows three columns representing the imagesand each row is a feature
vector of a sampled region from the corresponding image. Thesampled regions are then
labeled by unsupervised learning at the subsequent step.

23

CHAPTER 3

A BAG-of-FEATURES FRAMEWORK TO CLASSIFY TIME SERIES

1. Abstract

Time series classification is an important task with many challenging applications.

Nearest-neighbor classifiers with Dynamic Time Warping (DTW) distance is a strong so-

lution in this context, but its performance degrades with long time series, relatively short

features of interest, and moderate noise. On the other hand,feature-based approaches have

been proposed as both classifiers and to provide insight intothe series, but these approaches

have problems handling translations and dilations in localpatterns, which can be impor-

tant for classification. Considering the shortcomings of both approaches, we present a

framework to classify time series based on a bag-of-features representation (TSBF). Lo-

cal information is captured from multiple subsequences selected from random locations

and of random lengths and partitioned into shorter intervals. Consequently, features com-

puted from these subsequences measure properties at different locations and dilations when

viewed from the original time series. This provides a feature-based approach that can han-

dle warping, although in a substantially different manner from DTW. We further partition

subsequences into intervals to detect patterns represented by a series of measurements over

shorter time segments. Local features are aggregated into acompact codebook through

class probability estimates from a supervised learner. Additional information (such as sub-

sequence locations) are easily integrated through a fast, efficient learner that handles mixed

data types, different units, etc., and relevant global features can easily supplement the code-

book in our framework. We compare our classifier to well-known nearests from the UCR

time series database.

Key words: supervised learning, feature extraction, codebook

24

2. Introduction

Classification of time series is an important task with many challenging applications

such as signature verification, speech recognition or financial analysis. The algorithms pro-

posed for time series classification can be divided into instance-based and feature-based

methods. Instance-based classifiers predict a test instance based on its similarity to the

training instances. For time series, one-nearest-neighbor (NN) classifiers with Euclidean

(NNEuclidean) or a dynamic time warping distance (NNDTW) have been widely, and suc-

cessfully used [15–19]. Although Euclidean distance is time and space efficient, it is often

weak in terms of prediction accuracy [17]. DTW [20] allows a measure of the similarity

independent of certain non-linear variations in the time dimension, and is considered as a

strong solution for time series problems [58]. Despite the fact that finding DTW distance

without any modification on the algorithm is known to be computationally demanding for

many applications [22], fast lower bounding function is used by [59] to prune the time series

that cannot be the best match. Significant improvement is achieved in terms of computa-

tion time when the bounding scheme is used together with indexing, but a 1-NN classifier

using DTW is still less tractable for real-time classification of time series [23]. Also, a

DTW solution typically does not provide insight into time series features important to the

classifier. For example, [60] proposed a decision tree approach which splits instances based

on DTW distance between a pair of time sequences. It is fastercompared to NNDTW in

terms of testing, but the information provided is limited because of the feature representa-

tion. On the other hand, [61, 62] proposed an approach to find subsequences of the time

series which are thought to be maximally representative of aclass. These subsequences are

called shapelets and algorithms based on shapelets facilitate interpretability. Because the

25

information provided by time series shapelets is limited totheir presence or absence and the

computation time required for generating them is significant, [23] proposed a more expres-

sive shapelet representation by combining multiple shapelets in logic expressions that can

be faster and more accurate. Another approach that makes useof the similarity of the series

based on the subsequences is to use kernel-based classifiers. These approaches find a kernel

function based on the similarity between the time series in local regions. [63] similarly gen-

erated subsequences from the time series and defined spatialsimilarity kernels based on the

subsequences (distance-based approach), with classification from a support vector machine

(SVM).

Feature-based approaches work on the feature vectors extracted from a set of instances.

They are generally faster than instance-based classifiers depending on the feature extraction

method and classification algorithm. [64] used knots from a piecewise-linear approximation

of the time series to detect patterns and classify the series. [65] proposed an automated

approach for feature extraction using a genetic algorithm.Then the extracted features were

taken as inputs to a SVM [66]. [67] proposed a multi-layer perceptron neural network fed

by statistical features such as means and standard deviations calculated from the time series.

[68] used intervals of time series to extract features on which a SVM was trained.

Two types of features are generated in feature-based approaches, global and local fea-

tures. Global features are a compact representation of the instances (such as the mean

value). On the other hand, local features are extracted fromsegments of the time series

and require such segments to be determined. Standard classification algorithms can be built

on global features easily, but they may omit important localcharacteristics. Local features

can supplement global information with useful patterns, but the set of local features may

26

vary in cardinality and lack a meaningful ordering. These are basic problems for many

classification algorithms requiring feature vectors of fixed dimension.

Methods based on features of intervals (such as [69, 70]) assume that patterns exist in

the same time interval over the instances, but a pattern thatdefines a certain class may

exist anywhere in time, as well as be dilated in time. DTW attempts to compensate for

possible time translations/dilations between features, but with long time series, relatively

short features of interest, and moderate noise, the capability for DTW is degraded.

Our work is based on the bag-of-features (BoF) approach in which complex objects are

characterized by feature vectors of sub-objects. BoF representations are popular, mostly

in computer vision as content based image retrieval [31–33], natural scene classification

[34] and object detection and recognition [35–39] because of their simplicity and good

performance [40]. A BoF is also referred to as bag of words [41] (in which occurrences of

each word are counted to summarize the text contents in document), bag of instances in the

multiple instance learning (MIL) literature [42, 43] and bag of frames in audio and speech

recognition [44,45].

The basic idea is that local image descriptors are sampled using an appropriate method

(e.g., random, interest point detector [46]) and characterized by their feature vectors (e.g.,

distribution of the pixel values). A visual dictionary (or codebook) is then learned using the

vectors of visual descriptors (e.g., clustering to assign discrete labels to descriptors). The

resulting distribution of descriptors is quantized through the codebook (e.g., a histogram of

the cluster assignments for the sampled descriptors of eachinstance) as the summary of the

image. Similar to the terms used in computer vision problems, time series segments may

contain rich local information about the time series. A BoF representation allows one to

27

integrate local information from segments of the time series in an efficient way. Moreover,

assumptions on the cardinality of the local feature set and patterns in the same time interval

can be relaxed by this framework. Three implementation issues in this framework are local

feature extraction, codebook generation and classification from the codebook.

Studies on BoF representations for time series data are limited with few studies in au-

dio and speech recognition literature [44, 45, 71–73]. Timeseries similarity based on a

bag-of-words representation was considered by [74]. Also,time series were discretized by

symbolic aggregate approximation (SAX) and time series were represented as words using

the symbols generated by this approach ([12]). Similarity of the time series were then

computed using the histogram of the occurrences of words. This is similar to the codebook

generation from patches used in computer vision problems. In [72], the speech signals were

represented as images through preprocessing (simulation,strobe detection, temporal inte-

gration) and patches were segmented from the images. Using vector quantization, segments

were represented by sparse codes and they were aggregated through histograms to generate

features at the bag level. [45] used a clustering approach tosummarize the local information

to a bag level.

Histogram-based approaches for image classification problems do not take the spatial

location of the local patches into account in codebook generation. Analogously, BoF mod-

els in time series ignore the temporal ordering inherent in the signal and, therefore, may not

identify a specific content or pattern [75]. Also, [74] commented that most of the existing

work on time series similarity focuses on distance-based similarity. They claimed that such

approaches can work well for short time series, but may degrade for long time series. They

28

argued that it is more appropriate to measure similarity from higher-level structures (e.g.,

bag of words) in long time series, rather than point to point,local comparisons.

Consequently, we consider a different direction in this work. We use a feature-based

approach, but extract multiple subsequences from each timeseries, and these subsequences

are selected from random locations and of random lengths. Therefore, features computed

from these subsequences (e.g., mean, standard deviation) measure properties at different

locations and dilations when viewed from the original time series. We form a matrix of

these features, but the value in rowi and rowj of the same column may be calculated from

subsequences that differ in location and/or length. These features are input to a tree-based

(recursive partitioning) ensemble that enables subsequences relevant to the class to be par-

titioned from others. In this manner, we provide a feature-based approach that can handle

warping, although in a substantially different manner fromDTW. Furthermore, BoF meth-

ods disregard location information. Instead, we further partition subsequences into inter-

vals to detect patterns represented by a series of measurements over shorter time segments.

Subsequences are labeled and a supervised learner is used toconstruct a compact codebook

from simple class probability distributions. Our supervised approach provides fast, efficient

time series representation for classification, even with very basic features such as slopes,

means and variances from the subsequences. Additional information (such as subsequence

locations) are easily integrated through a learner that handles mixed data types, different

units, etc., and relevant global features can easily supplement the codebook in our frame-

work. Finally, time series may be classified via any supervised learner. We demonstrate

TSBF is efficient and accurate by comparing to alternative time series classifiers on a full

set of benchmark datasets.

29

The remainder of this paper is organized as follows. Section3 provides background.

We summarize the problem and describe the TSBF framework in Section 4. Section 5

demonstrates the effectiveness and efficiency of TSBF by testing on a full set of benchmark

datasets from UCR time series database [76]. We discuss TSBF’s behavior for certain

datasets, explain how TSBF works on an example and compare itto Logical-Shapelets in

Section 6. Conclusions are drawn in Section 7.

3. Background

Noncontiguous patterns in time is another problem which affects the performance of

DTW. An example from the OSULeaf dataset (from [76]) is illustrated in Figure 11. The

aim is to classify the leaves based on their shapes. The boundary of a leaf image is repre-

sented as time series using the angles between consecutive pixel points. Because orienta-

tions of the leaf pictures are different, shifts and noncontiguous patterns are observed in the

time series representations. Consequently, it is important to allow for features useful to the

classifier to occur at different times in different time series instances. On the other hand, the

images can be aligned to avoid the discontinuity, but this isa different problem considered

in the context of rotation invariance [77] which is not considered here.

BoF representations are based on local feature extraction which samples a representa-

tive set of subsequences from the time series, and an efficient and effective representation

of the time series is required [40]. A piecewise-linear approximation is the most commonly

used preprocessing step for the discretization of the data in mining time series [78]. Time

series approximation is an active research topic and a comprehensive literature review of

time series segmentation approaches is provided by [8,78].

30

Figure 11. (a) Two sample instances from the same class from the OSUleafdataset. The
orientations of the leaves are different and this shifts patterns in the time series. (b) Time
series representations of three leaves from same class. Patterns highlighted are contiguous,
but the similar pattern appears in the beginning and end for the bottom series.

In areas such as image classification, codebooks can be constructed in supervised and

unsupervised manners using the local feature set. Unsupervised construction does not make

use of the class information from the bag. A histogram of the features from the patches can

be used as the codebook ([44]) in some unsupervised approaches, however these represen-

tations are highly dependent on the histogram generation procedure. Therefore, clustering

algorithms such as k-means [47–49] or agglomerative clustering [50, 51] over large sets of

training patches are proposed to better represent the localfeature set for image classifica-

tion. [72] followed a similar approach after changing the representation of the audio data

to images. In contrast to our method, regions are selected with an organized approach (not

random), mean features are the focus (without location), patches are clustered with k-means

31

and a codebook (unsupervised) is generated based on the distribution of the cluster assign-

ments. Also, similarity-based approaches are proposed in the MIL literature. Instead of

labeling instances, the similarity of the instances withina bag and between bags are used to

construct the codebook [52].

As opposed to the unsupervised case, the class labels are used to guide the learning

of the codebook in supervised approaches. [33, 42, 53] made use of similarity information

for feature transformation under certain assumptions in MIL. [54,55] classified descriptors

with decision trees and then predicted labels for the bag class. [56] extended this idea with

randomly-created clustering trees whose leaves define a partitioning or grouping.

A random forest (RF) classifier [57] is used here to both generate class probability esti-

mates for codebooks and to classify time series. A RF is an ensemble ofJ decision trees,

{gj , j = 1, 2, . . . , J}. Each tree is constructed from a different bootstrap sampleof the

original data. The instances left out of a bootstrap sample and not used in the construction

of a single tree are called out-of-bag (OOB) instances. At each node of each tree, a RF

considers the best split based on only a random sample of features. Often, the sample size

is
√
ν, whereν is the number of features. The random selection reduces the variance of the

classifier, and also reduces the computational complexity of a single tree fromO(νη log η)

to O(
√
νη log η) (assuming the depth of tree isO(log η) whereη is the number of in-

stances). Therefore, for a large number of features a RF can be as computationally efficient

as a single decision tree.

The prediction for instancex from treegj is ŷj(x) = argmaxc p
c
j(x), wherepcj(x) is

the proportion of classc in the corresponding leaf of thej-th tree, forc = 0, 1, . . . , C − 1.

Let G(x) denote the set of all trees in the RF where instancex is OOB. The OOB class

32

probability estimate ofx is

pc(x) =
1

|G(x)|
∑

gj∈G(x)

I(ŷj(x) = c)

whereI(·) is an indicator function that equals one if its argument is true and zero other-

wise. The predicted class iŝy(x) = argmaxc p
c(x). The estimates computed from OOB

predictions are easily obtained and have been shown to be good estimates of generalization

error [57]. We use OOB class probability estimates in this work.

Although other classifiers can be used in our framework, RF provides a number of de-

sirable properties for the time series problem. High-dimensional feature spaces, multiple

classes, and missing values are handled. Nonlinear models and interactions between fea-

tures are allowed. Class probability estimates based on OOBinstances are provided. It

is scale invariant and robust to outliers, and computationsare reasonable even for large

datasets. Furthermore, the recursive partitioning in RF allows one feature to be used to

separate some sets of time series and (potentially) a different feature to separate others.

Because class-relevant patterns might appear at differenttime locations between series, this

capability to split on different features is important to achieve the time warping through a

feature-based approach (after it is combined with the random subsequence selection).

4. Time Series Classification with a Bag of Features

A univariate time series,xn = (xn1 , x
n
2 , . . . , x

n
T) is an ordered set ofT values. We

assume time series are measured at equally-spaced time points. We consider univariate

time series for simplicity although our method can be extended to multivariate time series

in a straight-forward manner. Each time series is associated with a class labelyn, for

n = 1, 2, . . . , N andyn ∈ {0, 1, 2, ..., C −1}. Given a set of unlabeled time series, the task

of time series classification is to map each time series to oneof the predefined classes.

33

Note that we first standardize each time series to zero mean and unit standard devi-

ation. This adjusts for potentially different baselines orscales that are not considered to

be relevant (or persistent) for a learner. The basic elements of our framework for time se-

ries classification are illustrated in Figure 12. We use a supervised method to generate the

temporal dictionary or codebook. Our implementation is actually simpler than this generic

description. We use the class probability estimates from a supervised learner to generate

the codebook in our approach. Details are provided in the following sections.

Figure 12. Generic description of the time series classification with abag-of-features
(TSBF) algorithm. Subsequences are sampled from each time series and features are ex-
tracted from the subsequences (left). Subsequence features are summarized with temporal
words that are used to form a temporal dictionary or codebook. The distribution over the
codebook can be described with histograms, and a supervisedlearner is trained on the his-
tograms.

4.1. Subsequences and feature extraction

Time series classification approaches that are based on global properties of a time series

can potentially be improved with local patterns that may define the class. Therefore, we

represent each time series with feature vectors derived from subsequences. However, to

34

capture patterns along the time series, each subsequences is represented by the features of

smaller segments called intervals. A fixed-length window for segmentation has the potential

to omit patterns because they may appear with different lengths and be split across the

time points [8]. Thus, we generate subsequences of random length ls and segment them

using the same number of intervals to preserve the same number of featuresd for each

subsequence. This results in intervals of random lengthws = ls
d

which provides some

desirable properties. This allows for generation of splitsbased on the features of different

length intervals in tree-based models. Therefore, the relationships of patterns with different

lengths can be better captured.

We set a lower bound on the subsequence lengthl(min) as a proportionz(0 < z ≤ 1)

of the length of the time series. Thus,ls ≥ lmin = z × T . We also set a minimum interval

lengthwmin so that extracted features are meaningful (that is, we avoida slope computed

from an interval with one point). Givenz andwmin the number of intervals to represent the

subsequence is determined asd =
⌊

z×T
wmin

⌋

. Note that althoughz andwmin are fixed, the

actual length of an intervalws can vary with the random samples. Consider the number of

subsequences generated to represent a time series. There arer =
⌊

T
wmin

⌋

possible intervals

in a time series if the time series is represented using the minimum interval length. For

any subsequence withd intervalsr − d intervals are not covered by this subsequence. We

generater − d subsequences. With this setting, for every interval the expected number of

subsequences that cover it is at least one.

Given the subsequence and interval calculation, we extractfeatures from each inter-

val and combine them to represent the subsequence. Intervalfeaturesfk(t1, t2), k =

1, 2, . . . ,K for (0 < t1 ≤ t2 ≤ T) are calculated from the data betweent1 andt2. Linear

35

regression models are fit on the intervals to extract features. For each interval, the slope of

the fitted regression line, mean of the values, and variance of the values are extracted. These

features are important for classification because they provide information about the shape,

level and the distribution of the values. A feature vector for a subsequence concatenates the

features from alld intervals in the subsequence. In addition, the mean and variance of all

the values in the subsequence, together with the start and end time points are also included

in the feature vector. Start and end points introduce the location information which might

be important for classification. That is, hereL = 4 subsequence-level features are added.

The set of subsequencesSn for time seriesn is built by generatingr − d subsequences

randomly. As an illustration forT = 100, z = 0.5, wmin = 10, three subsequences are

shown in Figure 13. Subsequences of time seriesxn is denoted asxn(s).

The local feature extraction algorithm for the time series is given in Algorithm 1 and

illustrated in Figure 13. Herefk(t1, t2) is denoted asfik(s) for simplicity, wherei is the

interval andk is the feature index. The mean and variance of the values in the subsequence

s are given asmeans andvars, respectively. The start and end points are represented as

sts andes.

Algorithm 1 Local feature extraction from the subsequences of time seriesxn

Set subsequence count ass = 1
repeat

Generate a subsequence lengthls ∈ [z × T, T] and a starting point for subsequence
p ∈ {1, 2, ..., T − ls + 1}
Set the feature set of subsequences asSn = ∅
for i = 1 to d do

Add features from intervali of subsequencexn(s) to Sn

end for
Add subsequence features toSn for subsequencexn(s)
Set the class label of subsequencexn(s) asyn, s = s+ 1

until s > r − d

36

Figure 13. Interval and subsequence generation and representation. Subsequences of ran-
dom length are sampled from the time series (top). Each subsequence is partitioned into
intervals of lengthws = ls

d
whered is determined bywmin andz asd =

⌊

0.5∗100
10

⌋

= 5
(middle). A subsequence is represented by features computed from the intervals (bottom).
Each instance in the feature matrix represents a subsequence. The number of subsequences
generated for the time series is

⌊

100
10

⌋

− 5 = 5

4.2. Codebook and learning

After the local feature extraction for each time series, a new dataset is generated where

each subsequence from each time series becomes an instance.The class label defined for

37

each instance is the class of the corresponding time series.We train a supervised learner on

the new dataset and extract histograms from the classification results (such as error rates or

class probability estimates) to construct a codebook.

In our approach, we use a classifier that generates a class probability estimate for each

instance (subsequence). The estimate provides information on the strength of an assign-

ment. Letpnc (s) denote the class probability estimate for classc from subsequences of

seriesxn. For each time seriesxn and each classc, the distribution ofpnc (s) overs is sum-

marized with a histogram withb bins (denoted by a vectorhnc). The vectors are concatenated

over each classc to form the codebook,hn, for time seriesxn. Because the sum of class

probability estimates for a subsequence is equal to one, thefeatures for one class can be

dropped in the codebook. We use equally-spaced bins in our approach so that(C − 1)× b

features are in the codebook. We aim to capture the details ofthe similarity between subse-

quences with the histograms of class probability estimates. The relative frequencies of the

predicted classes for the subsequences supplements the codebook. That is, if we generate

10 subsequences for a single time series in a two-class problem and seven subsequences are

assigned to one class, the relative frequency of this class is 7/10 = 0.7. The information

provided by the relative frequencies is less detailed, but ameaningful summary, of the class

probability estimates.

A codebook is an effective way to simplify the information inthe subsequences in terms

of speed and good discrimination [40, 56]. Using the predictions of a classifier trained

on the subsequence information, we produce the codebook as the summary of the local

information. We use a RF to generate the class probability estimates, although another

38

learner that provides class probability estimates can be used in the framework. We denote

the RF applied to the subsequence dataset asRFsub.

Moreover, global features such as autocorrelation are easily introduced to obtain a better

representation of a time series. In addition to representation of the time series as codebooks,

we can add any global feature that has the potential to improve the classification results.

After adding the global features, any supervised learner can be used to classify the time

series. The main algorithm is summarized in Algorithm 2.

Algorithm 2 TSBF (Time Series Classification Based on a Bag-of-FeaturesRepresentation)

for all time seriesxn do
Standardize the time series
Generate the features for subsequencesSn

end for

Build a classifier on
N
⋃

n=1

Sn

for all time seriesxn do
Construct the codebook using classification results
Generate global features

end for
Classify the time series using the codebook and the global features

39

Figure 14. More specific description of the time series classification with a bag-of-features (TSBF) algorithm. Subsequences are
sampled from the time series and features are extracted fromthe subsequences (left). Each subsequence is labeled with the class of
the time series, and a learner generates class probability estimates. Histograms of the class probability estimates are generated (and
concatenated) to summarize the subsequence information. Global features are added. A final classifier is then trained onthe new
representation to assign each time series.

40

Given the codebook and the global features, a RF is applied toclassify the dataset of

time series. This RF is denoted asRFts. RF is competitive with the widely used learners on

high-dimensional problems [79]. Fast evaluation is another important requirement for most

of the time series classification tasks and RF is fast in termsof both training and evaluation.

Moreover, it is inherently multiclass; therefore, building several binary classifiers (as for

one-versus-one training in a support vector machine) is notrequired. Figure 14 illustrates

some of the steps of our approach. The TSBF is slightly simpler than the generic algorithm

in Figure 12 because a supervised learner generates class probability estimates that are

directly used as inputs to histograms. We consider the bins used to form the histograms of

the class probability estimates and the frequency of the predicted classes as the temporal

dictionary (codebook) in our specific approach.

4.3. Illustrative Examples

We discuss how the BoF approach handles patterns with two simple examples. The

first example illustrates location invariance. Consider a two-class problem in which series

from class zero are defined by three peaks, whereas two peaks define class one, regardless

of locations. Two time series from each class are illustrated in Figure 15. These series are

standardized. Methods built on interval features which assume that patterns exist in the

same time interval over the series can have problems, as shown in our small analysis below.

The location of the peaks for the series in Figure 15 are[20, 40], [60, 80],

[105, 125],[130, 150], [165, 185] and [310, 330]. Suppose that subsequences of length 80

are generated and characterized with the mean over two intervals (each of length 40) for il-

lustration purposes. The subsequences are generated in a sliding manner with an overlap of

one interval (and this yields 9 subsequences per series). Denote the mean features of inter-

41

Figure 15. Two time series from each class are shown. The number of peaksdefines each
class. The location of the peaks is not important.

val 1 and 2 asf1 andf2, respectively, The two series of each class are illustratedin Figure

15. Figure 16(a) provides the histogram of the class probability estimates fromRFsub for

two time series of different classes. As given in Figure 16(a) , a supervised learner can sep-

arate the two classes based on the subsequence distributions. Numerical results are shown

later in this section. The subsequence location features are not important for this particular

example.

A different type of example defines the classes by the locations of the peaks (Figure

17). If the peak is in the first half of the time series, the series is class zero, and otherwise it

is class one. Suppose we generate the subsequences in the same way as we did for the first

example with an interval length of 5. We use a smaller interval length here to demonstrate

42

the effects of subsequence lengths in the following experiment. The distributions of the

subsequences from each time series are the similar if only mean interval features are used.

However, subsequence location features (i.e., the start and end point features) capture the

location information for the subsequences. The distribution of the subsequences is illus-

trated on the three-dimensional feature space in Figure 16(b).The location feature provided

in the figure is the average of the start and end point of the subsequence (i.e. midpoint of

the subsequence).

To further describe the characteristics of our approach, wediscard the location features

so that the interval means are not sufficient features when the class is defined by peak loca-

tion. However, such a situation can be handled with a simple approach. That is, generate

longer subsequences. Consider the case where a subsequenceis the time series itself. Then

classifiers (such as trees) based on features (such as means)from fixed intervals can easily

identify these classes. Our approach could also handle thisby generating multiple random

subsequences based on a minimum subsequence length setting. Also, the smaller the mini-

mum subsequence length, the more subsequences are generated as described in Section 4.1.

This increases the likelihood of having longer subsequences. We present an example anal-

ysis below. However, our basic algorithm considered in the experiments section includes

location features.

In order to illustrate the BoF approach we generate synthetic data for each of these

examples. The first and second examples are referred to as thenumber of peaks and the

peak location examples, respectively. The length of each time series is set to 400 and 200

time units, respectively. Following the class definitions,we generate a small dataset with

10 time series from each class for training. Then, 200 time series per class are generated for

43

testing. Table 1 summarizes the average test error rates over 10 replications of two versions

of TSBF which are the regular and TSBF without the subsequence location features. We

also include a row for a RF classifier (with 500 trees) based onthe mean features computed

from non-overlapping intervals of five time units each. ThisRF might be considered a

simple, baseline approach to classify the time series. We consider four levels of minimum

subsequence length settings,z ∈ {0.1, 0.25, 0.5, 0.75}, bin size of 10 and 500 trees in both

RFs (RFsub andRFts). We also set an upper limit on the subsequence length (denoted as

a proportionu) in these synthetic examples to illustrate the role of location features in the

results for TSBF, but the default TSBF algorithm does not usesuch an upper limit (u = 1).

Also, the number of sequences per times series followed ther − d formula described in

Section 4.1.

Test Error Rate
Method Lower Bound Upper Bound Example with Example with

Factor Factor Peak Location Number of Peaks
TSBF 0.1 1 0.005 0.001
TSBF 0.25 1 0.011 0
TSBF 0.5 1 0.012 0
TSBF 0.75 1 0.01 0.001

TSBF w/o location 0.1 0.25 0.441 0
TSBF w/o location 0.1 0.5 0.244 0.002
TSBF w/o location 0.1 0.75 0.056 0.014
TSBF w/o location 0.25 0.5 0.289 0
TSBF w/o location 0.25 0.75 0.098 0
TSBF w/o location 0.5 0.75 0.074 0

RF 0.11 0.16

TABLE 1. Average test error rates over 10 replications for TSBF, TSBFwithout the subse-
quence location features (TSBF w/o location) and baseline RF classifier (last row) applied
to two synthetic datasets. The TSBF performance is always relatively good for the number
of peaks example because it is amenable to the bag of featuresapproach. Error rates for
the peak location example are lower when longer subsequences are allowed to be generated
without the location features.

The results from these simple examples illustrate properties of the BoF approach. As

expected, for the number of peaks example all the TSBF algorithms perform well, better

44

than an RF based on fixed intervals. This shows the strength ofthe BoF approach and the

limitations of features from fixed intervals in such examples.

For the peak location example, the error rates for TSBF are substantially smaller than

the error rate of RF classifier. This illustrates the problema generic classifier can have

with location invariance. For this experiment only, to study the effects, we constrained the

maximum subsequence length. The results withz = 0.1, u = 0.25 show much poorer

performance with the constrained shorter intervals when the location features are not used.

For intermediate constraints (such asz = 0.25, u = 0.5) the performance results are rel-

atively moderate. However, even with a smallz = 0.1, the results improve substantially

when we relax the maximum constraint tou = 0.75. Without the location features, longer

subsequences are required to capture certain characteristics.

Another mini experiment is designed to compare our supervised BoF approach to an un-

supervised one with a codebook derived fromK-means clustering. In the unsupervised ap-

proach, the Euclidean distance between the subsequences generated by our BoF approach is

computed. ThenK-means clustering with differentk settings is used to label subsequences.

We use the histogram of the cluster assignments to generate the codebook. To avoid a nor-

malization step because of the differences in scales of the other features (i.e. mean, variance

and slope have different scales), only the mean features of the intervals and subsequences

are used. In a similar manner, the location features are alsodiscarded. Consequently the

results here should not be compared with those in Table 1. Thetime series are standardized

in the algorithm. We train an RF on the unsupervised codebookfor classification. Table

2 summarizes the average test error rates over 10 replications of TSBF and BoF approach

with an unsupervised codebook.

45

Test Error Rate
Method Lower Bound Example with Example with

Factor Peak Location Number of Peaks
TSBF (w/o locations, means only) 0.1 0.021 0.026

K-means (k = 10) 0.1 0.011 0.427
K-means (k = 25) 0.1 0.012 0.411
K-means (k = 50) 0.1 0.006 0.356

TSBF (w/o locations, means only) 0.25 0.026 0.006
K-means (k = 10) 0.25 0.011 0.458
K-means (k = 25) 0.25 0.013 0.452
K-means (k = 50) 0.25 0.021 0.398

TSBF (w/o locations, means only) 0.5 0.035 0.007
K-means (k = 10) 0.5 0.013 0.497
K-means (k = 25) 0.5 0.005 0.444
K-means (k = 50) 0.5 0.014 0.430

TSBF (w/o locations, means only) 0.75 0.022 0.040
K-means (k = 10) 0.75 0.034 0.490
K-means (k = 25) 0.75 0.017 0.466
K-means (k = 50) 0.75 0.012 0.465

TABLE 2. Average test error rates over 10 replications for TSBF, and RF classifiers trained
on an unsupervised codebook generated byK-means clustering applied to two synthetic
datasets. TSBF uses mean features only (location features along with slopes, variances,
etc., are omitted).

The TSBF performance is substantially better for the numberof peaks example because

Euclidean distances are not descriptive in this case. On theother hand, our supervised

approach uses only the relevant features from the supervised learning and generates the

class probability estimates (codebook) accordingly. There are not dramatic differences in

error rates withk.

Error rates for the peak location example are comparable. The time series of this dataset

are not noisy as illustrated in Figure 17 and our local feature-extraction scheme generates

subsequences that can characterize the time series well. Consequently, the classes can be

well clustered with Euclidean distance. Still, TSBF even without location features (or other

features such as slopes and variances) is competitive in performance.

46

5. Experiments and Results

We tested TSBF on a full set of time series data from [76]. The dataset characteristics

are given in Table 3. This is a good testbed with diverse characteristics such as length of

the series, number of classes, etc., which enables a comprehensive evaluation.

Number of Training Test Time series
classes instances instances length

50words 50 450 455 270
Adiac 37 390 391 176
Beef 5 30 30 470
CBF 3 30 900 128
Coffee 2 28 28 286
ECG200 2 100 100 96
FaceAll 14 560 1,690 131
FaceFour 4 24 88 350
Fish 7 175 175 463
GunPoint 2 50 150 150
Lightning2 2 60 61 637
Lightning7 7 70 73 319
OliveOil 4 30 30 570
OSULeaf 6 200 242 427
SwedishLeaf 15 500 625 128
Syntheticcontrol 6 300 300 60
Trace 4 100 100 275
TwoPatterns 4 1,000 4,000 128
Wafer 2 1,000 6,164 152
Yoga 2 300 3000 426

TABLE 3. Characteristics of the time series: number of classes, number of training in-
stances, number of testing instances, and lengths of time series. The performance analysis
of the algorithms on this diverse set of data provides a wide-ranging comparison.

Our algorithm does not require the setting of many parameters and it is robust to the

settings. A RF is insensitive to both the number of trees and the number of candidate

attributes scored to potential split a node [57]. For example, Figure 18 illustrates how the

OOB error rate changes as the number of trees increases forRFsub andRFts. Error

rates provided are the average OOB error rate based only on the training data over all 20

datasets. This error rate is a good estimate of generalization error [57]. This parameter is

not determined using the accuracy on the test data. As the number of trees increases, the

47

error rates improve, but the marginal gain is comparably small after 400 trees. Therefore,

the number of trees is set to 500 for both forests. Although weset the level as 500 trees for

all datasets, this parameter may be adjusted for each dataset based on the OOB error rate of

RF. If fewer trees are enough for certain datasets, this can reduce the computation time.

The number of features evaluated at each node of the tree is set to the default which

equals the approximate square root of the number of features. Therefore, the number of

features generated forRFsub is K = 3 features per interval plus four features for the

subsequence (= 3 × d + 4). ForRFts the number of features is(C − 1) × b features for

class probability estimates plus(C−1) features for class frequencies (= (C−1)×(b+1)).

The codebook is determined from three parameters. We simplyset the minimum in-

terval lengthwmin as five time units in order to have meaningful features (such as slopes).

This setting can be adjusted based on the dataset characteristics in favor of our algorithm

(as discussed in Section 6), but we did not modify it because the random subsequence gen-

eration scheme allows for larger interval lengths to occur.The number of binsb is set to

10 in our experiments. This parameter is expected to have a small effect on performance,

if it is set large enough, because of the embedded features selection in RFs. We illustrate

some effects of this parameter in Section 6. We tested our algorithm for different mini-

mum subsequence length settingsz and compare the differences in the results. We replicate

TSBF 10 times with different seeds. Classification accuracyand solution characteristics are

discussed in the following sections.

5.1. Classification accuracy

TSBF with the given settings is compared to nearest neighbors (NN) classifiers with

DTW. Two versions of DTW are considered: NNDTWBestWin (alsoreferred to as NNBest-

48

Parameter Levels
number of trees 500
number of features in each split

√
numberoffeatures

z {0.1, 0.25, 0.5, 0.75}
wmin 5
b 10

TABLE 4. Parameter settings of TSBF

DTW) [17] searches for the best warping window, based on the training data, then uses the

learned window on the test data, while NNDTWNoWin has no warping window. Note that

DTW is a strong solution for time series problems in a varietyof domains [58], although it

is limited in real-time applications because of computational requirements [23]. The results

for NN classifiers are obtained from [76]. Table 5 summarizesthe average, maximum and

minimum error rates from 10 replications of our algorithm onthe test data. Features gener-

ated for the test data are based on the same subsequence locations generated for training.

We also compare our results with Logical-Shapelets [23] which significantly outper-

forms the original shapelet representation proposed by [61]. Because this comparison is

not based on all datasets due to the computational requirements of Logical-Shapelets, we

compare TSBF to Logical-Shapelets in Section 6.2.

We use the same approach proposed by [21] to compare results.Scatter plots are used

to conduct pairwise comparisons of error rates. Each axis represents the approach under

consideration and each dot represents the error rate for a particular dataset. The linex = y

is drawn to represent the region where both methods perform about the same. A dot above

the line indicates that approach on theX axis has better accuracy than the one onY axis.

If a dot is further from the line, the margin of accuracy improvement is greater. A method

can be regarded as superior to other if there are more dots on one side of the line.

49

Class prob. estimate, Class 0

Time series #1 from class 0

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4 Class 0

Class prob. estimate, Class 0

Time series #1 from class 1

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0
0

1
2

3
4

5 Class 1

(a) Example with the number of peaks. The two classes can
be separated based on the subsequence distributions.

(b) Example with peak location. The two classes
can be separated with the addition of location fea-
tures.

Figure 16. Distributions of the subsequences in the feature spaces of interval means for
two examples.

50

Figure 17. One time series from each class is shown. A peak in the first or second half of
the time series defines class zero or one, respectively.

Figure 18. The average OOB error rates on the training data of RFts (left) and RFsub
(right) over all datasets. The plots indicate that the results are insensitive to the number of
tree when the number is sufficiently large (500 in our case).

51

TSBF (z = 0.1) TSBF (z = 0.25) TSBF (z = 0.5) TSBF (z = 0.75) NNDTW
average max min average max min average max min average max min BestWin NoWin

50Words 0.200 0.213 0.185 0.191 0.204 0.180 0.199 0.215 0.182 0.202 0.215 0.185 0.242 0.310
Adiac 0.416 0.448 0.394 0.286 0.304 0.271 0.237 0.258 0.215 0.233 0.251 0.217 0.391 0.396
Beef 0.333 0.433 0.233 0.350 0.433 0.267 0.307 0.367 0.200 0.223 0.300 0.133 0.467 0.500
CBF 0.001 0.003 0.000 0.005 0.008 0.002 0.008 0.011 0.006 0.016 0.023 0.010 0.004 0.003

Coffee 0.054 0.071 0.036 0.004 0.036 0.000 0.000 0.000 0.0000.004 0.036 0.000 0.179 0.179
ECG 0.183 0.230 0.140 0.138 0.160 0.120 0.155 0.190 0.130 0.145 0.190 0.120 0.120 0.230

Face (all) 0.282 0.300 0.265 0.217 0.241 0.199 0.234 0.249 0.205 0.246 0.256 0.229 0.192 0.192
Face (four) 0.045 0.068 0.034 0.038 0.045 0.034 0.035 0.045 0.023 0.026 0.045 0.011 0.114 0.170

Fish 0.095 0.114 0.080 0.071 0.091 0.034 0.076 0.114 0.063 0.073 0.086 0.046 0.160 0.167
Gun-Point 0.017 0.033 0.013 0.011 0.027 0.000 0.011 0.020 0.000 0.007 0.013 0.000 0.087 0.093
Lighting-2 0.256 0.279 0.230 0.249 0.279 0.213 0.225 0.230 0.213 0.218 0.230 0.197 0.131 0.131
Lighting-7 0.262 0.288 0.219 0.307 0.329 0.260 0.290 0.301 0.274 0.271 0.301 0.219 0.288 0.274

OliveOil 0.120 0.167 0.100 0.113 0.167 0.067 0.130 0.167 0.100 0.137 0.167 0.100 0.167 0.133
OSU Leaf 0.261 0.277 0.231 0.233 0.256 0.202 0.279 0.314 0.244 0.330 0.360 0.298 0.384 0.409

Swedish Leaf 0.173 0.195 0.152 0.089 0.101 0.080 0.067 0.0740.062 0.075 0.088 0.053 0.157 0.210
Synthetic Control 0.064 0.100 0.037 0.019 0.037 0.007 0.0080.013 0.003 0.011 0.020 0.007 0.017 0.007

Trace 0.013 0.020 0.000 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.030 0.010 0.010 0.000
Two Patterns 0.003 0.007 0.001 0.001 0.003 0.000 0.001 0.0030.000 0.007 0.013 0.003 0.002 0.000

Wafer 0.008 0.010 0.007 0.004 0.005 0.004 0.004 0.006 0.002 0.004 0.006 0.003 0.005 0.020
Yoga 0.162 0.187 0.151 0.160 0.172 0.150 0.163 0.180 0.147 0.146 0.157 0.135 0.155 0.164

TABLE 5. Error rates of TSBF for four different settings ofz based on average, maximum and minimum of 10 replications, nearest-
neighbor classifiers with dynamic time warping distance, where NNDTWBestWin searches the best warping window based on the
training data, NNDTWNoWin has no warping window.

52

Figure 19 summarizes the performance of TSBF against NNDTWNoWin for different

levels ofz. It can be observed that TSBF performs better than NNDTWNoWin on most of

the datasets for allz levels.

Figure 19. TSBF outperforms NNDTWNoWin for most of the datasets in allz levels

Performance of NNDTWBestWin against TSBF with differentz settings is illustrated

in Figure 20. The performance of TSBF is still better than DTWwith the best window

setting. The error rates of TSBF on OSU Leaf dataset is much smaller. The explanation

relies on the connection of the time series classification tothe image classification problem

introduced in Section 2. Content- based image retrieval algorithms [31–33] are based the

BoF idea to handle the invariances in terms of rotation and location. Consequently, TSBF

can handle the rotational invariance for this particular dataset.

53

We also illustrated the performance of TSBF (z = 0.5) over the replications to illustrate

the random behavior of the algorithm in Figure 21. The rangesof error rates are reason-

able for most of the datasets. However certain datasets suchas Beef and ECG have larger

ranges compared to others. This is mainly due to the few number of test instances for these

datasets (30 and 100, respectively). Thus, a single misclassification increases the error rate

substantially and this results in higher variability.

Figure 20. TSBF outperforms NNDTWBestWin for most of the datasets in all z levels

54

Figure 21. Boxplot of the replication results for TSBF (z = 0.5). Datasets are sorted based on their average error rate. Beef and ECG
have larger error rate ranges compared to others. This is mainly due to the number of test instances for these datasets which are 30 and
100 respectively.

55

5.2. Computational complexity

TSBF is implemented in both C and R Software and our experiments use a Windows 7

system with 8 GB RAM, dual core CPU (i7-3620M 2.7 GHz). We use Ronly for building

the RFs and implemented the algorithms for subsequence and codebook generation in C,

because R is computationally inefficient in execution of theloops. Moreover, although the

CPU can handle four threads in parallel, only a single threadis used.

The overall computational complexity of our algorithm is mainly due toRFsub. The

time complexity of building a single tree inRFsub isO(
√
νη log η) whereν = K× d+L

is the number of features extracted from each subsequence and η is the number of training

instances forRFsub. The size of the training data forRFsub depends on the total number

of time series for training and the number of subsequences generated for each time series

|Sn|. We generater − d subsequences for each time series (whered =
⌊

z×T
wmin

⌋

). The

smallerz, the more subsequences are generated, but with fewer features for each.

Computation times for training TSBF are provided in Table 6 and illustrated in Figure

22 for all z settings to show how training time changes with different parameter settings.

The difference in computation times is due to the number of subsequences and features

generated in each setting as provided in the complexity analysis. TSBF (z=0.25) and TSBF

(z=0.5) take longer compared to other settings.

We also provide the testing time which is the time required for classifying one object

(feature generation and classification through RFs) and it is not affected significantly by

different parameter settings as illustrated. Our approachtakes less than a second to classify

single time series after the models are built. It is very fastand convenient for real time

classification of time series data.

56

TSBF (z=0.1) TSBF (z=0.25) TSBF (z=0.5) TSBF (z=0.75)
Train T. (s) Test T. (s) Train T. (s) Test T. (s) Train T. (s) Test T. (s) Train T. (s) Test T. (s)

50Words 48.36 0.0083 69.91 0.0077 71.42 0.0062 42.62 0.0037
Adiac 22.68 0.0046 28.09 0.0043 27.95 0.0037 15.13 0.0025
Beef 3.90 0.0129 6.53 0.0143 7.34 0.0120 4.41 0.0092
CBF 0.25 0.0011 0.37 0.0011 0.36 0.0011 0.23 0.0006

Coffee 1.07 0.0045 1.79 0.0051 1.74 0.0065 1.17 0.0038
ECG 0.87 0.0012 0.96 0.0008 0.94 0.0007 0.52 0.0008

Face (all) 12.64 0.0022 17.15 0.0019 17.68 0.0016 11.57 0.0010
Face (four) 1.50 0.0068 2.44 0.0072 2.61 0.0069 1.65 0.0044

Fish 34.25 0.0141 59.79 0.0153 65.46 0.0147 36.24 0.0116
Gun-Point 0.74 0.0015 0.83 0.0016 0.79 0.0022 0.47 0.0010
Lighting-2 12.04 0.0181 20.70 0.0223 25.25 0.0250 15.46 0.0138
Lighting-7 4.34 0.0067 6.74 0.0056 7.37 0.0062 4.56 0.0038

OliveOil 7.19 0.0214 10.76 0.0196 11.43 0.0177 6.71 0.0121
OSU Leaf 32.12 0.0125 59.86 0.0135 71.65 0.0128 38.66 0.0087

Swedish Leaf 11.00 0.0026 14.23 0.0020 14.41 0.0015 9.04 0.0009
Synthetic Control 1.53 0.0006 1.63 0.0006 1.42 0.0004 0.77 0.0002

Trace 4.19 0.0047 7.12 0.0046 7.04 0.0042 3.63 0.0042
Two Patterns 16.93 0.0022 26.90 0.0019 31.75 0.0016 20.03 0.0009

Wafer 23.90 0.0020 36.67 0.0020 42.22 0.0017 24.35 0.0010
Yoga 49.55 0.0116 94.31 0.0128 120.18 0.0122 62.83 0.0080

TABLE 6. Computation times of TSBF for different parameter settings. The differences in computation times are due to the number of
subsequences and features generated in each setting. The time required to test a single time series is also given (and this includes the
time required for feature generation).

57

Figure 22. Computation time of TSBF over all datasets for allz settings

58

6. Discussion

6.1. What OOB error rates provide

Although our parameters are constant over all datasets, onecould use OOB error to tune

the parameters for each dataset. This could potentially improve the classification results

further.

For example, withz = 0.1 TSBF performs reasonably well, but the accuracy is slightly

worse compared to otherz settings, especially for some datasets (i.e., Adiac, Swedish Leaf).

With wmin fixed, a smaller value forz reducesd (becaused =
⌊

z×T
wmin

⌋

) and subsequences

are represented by fewer features. Because we generate random length subsequences (ls ∈

[z × T, T]), longer subsequences are characterized by longer intervals where the level of

detail provided by the features is reduced. This can affect the performance for certain

datasets for which the level of detail is important.

On the other hand, an upper bound on the random subsequence length can help to

improve the accuracy (i.e., generate subsequences of length ls ∈ [z × T, u × T] whereu

is the bounding factor). Becaused is fixed (based onwmin andz), a shorter subsequence

produces shorter intervals. The performance is provided for u = 0.25 in Table 7 on the

datasets for which TSBF (z = 0.1) performs worse than the others. We generate the same

number of subsequences as in original case. We again report the average error rate over 10

replications. Both OOB error rates on the training data and error rates on the test data are

shown in the table. The results are improved when an upper bound of0.25×T is introduced

on the maximum subsequence length.

The OOB error rates are based on the training data only. Consequently, after an analysis

of OOB error rates forRFts for certain settings, the setting providing the best error rate can

59

be determined. This idea is similar to searching for best window of DTW on the training

data. Table 7 illustrates that OOB error rates are consistent with the error rates on the test

data (which is consistent with our claims). For the results reported in Table 5 we did not

search for best level of any parameters. Better accuracy canpotentially be achieved through

analysis of OOB error rates with respect to different parameter settings (z, wmin, etc.), and

this can be conducted for each dataset.

u = 0.25 u = 1 (original)
Test error OOB error Test error OOB error

Adiac 0.358 0.378 0.416 0.423
Swedish Leaf 0.136 0.126 0.173 0.180

TABLE 7. Test and OOB error rates for different settings of maximum subsequence length.
Originally we do not have an upper bound on the subsequence length. An upper bound of
u × T is introduced. The test and OOB error rates improve whenu = 0.25 (in a similar
manner) for the datasets here.

The number of binsb is set to10 in our experiments. This parameter is expected to have

a small effect on performance, if it is set large enough, because of the embedded features

selection in RFs. For example, we again illustrate the use ofOOB error estimates to find an

appropriate level for this parameter. More bins provides more detailed information about

the class probability estimates and results in a larger codebook. Figure 23 provides OOB

error rates of TSBF (z = 0.5) with b = 10 and withb = 50. The results withb = 10 are

slightly better than withb = 50. We do not provide the OOB error rates for otherz settings,

but the behavior is similar to TSBF (z = 0.5) for different settings ofb.

6.2. Shapelets and TSBF

Shapelets are defined as the time series subsequences which are highly likely to repre-

sent a class [61]. Also, [23] extended the approach to multiple shapelets with certain rules

60

Figure 23. OOB error rates of TSBF (z = 0.5) with b = 10 and withb = 50. The results
with b = 10 are slightly better than withb = 50.

to represent classes. Although shapelet methods are distance-based methods and ours is a

feature-based one, both exploit local patterns related to the classes. Logical-Shapelets tries

to find subsequences that express class relations based on caching and reuse of computa-

tions, and pruning of the search space [23]. Our algorithm generates subsequences from the

time series and evaluates them based on the information gainusing a supervised classifier

on the features. Instead of trying to find rules fromRFsub, we make use of the summa-

rized version of this information which is the class assignments of the subsequences. The

prediction results are used to determine efficient representations for the time series through

the BoF idea.

We compare the performance of TSBF to Logical-Shapelets forcertain datasets. In

order to be fair in terms of comparison, we set the parametersof the logical shapelet al-

gorithm so that it searches for all possible shapelets. However, because of the computa-

tional requirements of this algorithm, we could not achievethis for certain datasets. There-

61

fore, we perform this comparison based on a subset of the datasets: Beef, CBF, Coffee,

ECG and Trace. Moreover, we tested our algorithm on three additional datasets discussed

in [23]. These datasets are Cricket, Sony AIBO Robot and Passgraphs. Three parameters of

Logical-Shapelets are the maximum and minimum length of theshapelet and the step size.

We set the maximum to the series length, the minimum as two,and the step size to one.

Furthermore, we do not tune the parameters of TSBF for the newdatasets; we use the same

settings as previously. We also do not compare the algorithms in terms of computation time

because the comparison depends to a large extent on parameter settings. The results are

provided in Table 8.

TSBF NNDTW
z = 0.1 z = 0.25 z = 0.5 z = 0.75 Logical-Shapelets BestWin NoWin

Beef 0.333 0.350 0.307 0.223 0.600 0.467 0.500
CBF 0.001 0.005 0.008 0.016 0.336 0.004 0.003

Coffee 0.054 0.003 0.000 0.004 0.071 0.179 0.179
ECG 0.183 0.138 0.155 0.145 0.140 0.120 0.230
Trace 0.013 0.020 0.020 0.02 0.530 0.010 0.000

Sony A.R. 0.250 0.178 0.135 0.175 0.041 0.305 0.275
Cricket 0.020 0.026 0.041 0.040 0.010 0.051 0.010

Passgraphs 0.301 0.322 0.293 0.253 0.298 0.260 0.282

TABLE 8. Error rates of Logical-Shapelets and TSBF on 8 datasets. TSBF has better or
comparable performance on the datasets except for Sony AIBORobot.

TSBF has better or comparable performance on the datasets except for Sony AIBO

Robot (and TSBF is still better than NNDTWBestWin and NNDTWNoWin on this dataset).

Recall that the parameters of Logical-Shapelets are set so that it searches over the entire

space which increases the computational time significantly. Potentially equivalent accuracy

can be obtained with alternative settings on the parameters, but our objective here is to

assess the accuracy. Also, we do not provide the time for testing because both algorithms are

very fast in classification. Shapelets facilitate some interpretability. Still, the information

62

provided by RFs such as variable importance, proximity, etc., can be used to improve the

interpretability of TSBF [57].

7. Conclusions

A framework is presented to learn a bag of features representation for time series clas-

sification. Subsequences extracted from random locations and of random lengths provides

a method to handle the time warping of patterns in a feature-based approach. Furthermore,

the partition into intervals allows one to detect patterns represented by a series of mea-

surements over shorter time segments. The supervised codebook allows one to integrate

additional information (such as subsequence locations) through a fast, efficient learner that

handles mixed data types, different units, etc. TSBF provides a comprehensive representa-

tion that handles both global and local features. The flexible bag of features representation

allows for the use of any supervised learner for classification. Our experimental results

shows that TSBF gives better results than competitive methods on the benchmark datasets

from UCR time series database [76]. Although our focus in this study is on the classifica-

tion of the time series, the bag of features approach can be adjusted to other applications

such as similarity analysis, clustering, and so forth.

63

CHAPTER 4

SUPERVISED TIME SERIES PATTERN DISCOVERY THROUGH LOCAL

IMPORTANCE

1. Abstract

Similarity search and classification on time series databases has received great interest

over the past decade. Nearest neighbor (NN) classifiers withan appropriate distance mea-

sure are widely used to solve this problem. Dynamic Time Warping (DTW) distance pro-

vides accurate results but its performance degrades with long time series, relatively short

features of interest, and moderate noise. The space and computational requirements are

problems of NN classifiers for the applications in which the resources are limited. In many

time series classification problems, the question is basically about the reason why a time

series is assigned to a certain class. NN classifiers lack theaspect of interpretability since

they are based on the similarity of the whole time series although temporal relations within

the time series are important.

In this work, we present an exploratory approach that finds the regions of the time se-

ries that have potentially representative patterns to be used for classification based on a lo-

cal importance measure. We address the limitations of nearest neighbor classifiers through

sampling the patterns from these regions. The distances of time series segments to the se-

lected patterns from the interesting regions are used as features to a random forest classifier.

We compare our classifier to well-known nearest-neighbor classifiers, with dynamic time

warping distance measures. Experimental results show thatour algorithm provides compa-

rable and interpretable results than competitive methods on the benchmark data sets from

the UCR time series database.

Key words: supervised learning, time series, classification

64

2. Introduction

Time series data mining is an important task with many challenging applications includ-

ing finance, science, medicine and multimedia. Effective and efficient data mining methods

are required for the knowledge extraction from time series databases since analysis and

modeling of time series data can be time consuming due to its high dimension. Classifica-

tion is the primary goal in many of the applications. For example, a cardiologist might be

interested in analysis of ECG signals from different patients in order to see whether a par-

ticular type of patients has a different temporal pattern intheir heart signals than a control

group [6]. Seismologist aim at discriminating the nature ofthe seismic waves to classify

events such as earthquakes, mining explosions or nuclear explosions [7].

The algorithms proposed for time series classification can be divided into instance-

based and feature-based methods. Instance-based classifiers predict a test instance based on

its similarity to the training instances. For time series, one-nearest-neighbor (NN) classifiers

with Euclidean (NNEuclidean) or a dynamic time warping distance (NNDTW) have been

widely, and successfully used [15–19]. DTW [20] is a method that allows a measure of

the similarity independent of certain non-linear variations in the time dimension, and is

considered as a strong solution for time series problems [58].

Feature-based approaches work on the feature vectors extracted from a set of instances.

[64] used knots from a piecewise linear approximation of thetime series to detect patterns

and classify the time series. [65] proposed an automated approach for feature extraction

using a genetic algorithm, then the extracted features weretaken as inputs to a support

vector machine (SVM) [66]. [68] used intervals of time series to extract features on which

a SVM was trained. [80] proposes an efficient multivariate decision tree approach which

65

selects the interval features by fitting Fused-Lasso logistic regression models [81] at each

tree node.

NN classifiers with appropriate distance measures are knownto be accurate and robust

methods [21,22] although their space and time requirementsmay be problem depending on

the application. NN classifiers are easy to understand and donot require setting of many

parameters, but they typically do not provide insight into time series features important to

the classifer. On the other hand, feature-based approachesare interpretable and generally

faster than instance-based classifiers depending on the feature extraction method and clas-

sification algorithm. Two types of features are generated inthese approaches, global and

local features. Global features are a compact representation of the instances (such as the

mean value) and not sufficiently expressive for classification. Therefore, local features are

extracted from segments of the time series to obtain a detailed representation. However, the

set of local features may vary in cardinality and lack a meaningful ordering. These are basic

problems for many classification algorithms requiring feature vectors of fixed dimension.

Methods based on features of intervals (segments) (such as [69,70]) assume that patterns

exist in the same time interval over the instances, but a pattern that defines a certain class

may exist anywhere in time. We illustrate this problem on a synthetic dataset illustrated in

Figure 24. There are time series from two classes in this dataset and the location of the peak

determines the class label. Class 0 has the peak in at a randomlocation between time 0 and

100 where class 1 has the peak between 100-200. An interval-feature based classifier can

determine the peaks and classify well in the training data, but it may fail for a test instance

which has a peak at a different location (i.e. a location where training time series has no

66

peaks) when a feature vector of fixed dimension is used. They cannot handle the invariance

in terms of location.

Figure 24. Two sample time series from different classes. If the peak isin the first half of
the time series, the series is labeled as class zero and it is labeled as class one otherwise.

Although DTW attempts to compensate for possible time translations and dilations be-

tween features, the capability for DTW is degraded with longtime series, relatively short

features of interest, and moderate noise. Moreover understanding what exactly relates to the

class is not trivial task. On the other hand, feature based approaches can be interpretable

but they have certain problems with location invariance. Consequently, an important re-

search task is to identify the regions (segments) of time series useful to the classifier that

can occur at different times in different time series instance and make classification based

on these segments. [82] proposes a bag-of-features approach (TSBF) to handle the possible

time translations and dilations between the features. Although the classification perfor-

mance of TSBF is good, further analysis of the prediction models are required to identify

the important features (regions) for classification.

Our work is based on finding the segments of the time series that have potential to

describe a class. These segments are referred as the region of interest. We make use of the

67

structure of a supervised feature-based learner to identify the region of interest in our study.

Region of interests are very important to understand the temporal relations. Moreover they

help to reduce the effort in searching for the time segments related to the classification

task. [23] also discusses the necessity of pruning the spaceof the potential segments and

proposes a distance based method. Feature-based approaches allow for some desirable

properties such as handling the interactions and fast computation. Interaction between the

features in this context is the relationship of the patternsover multiple intervals that may

define a class as discussed by [23].

Considering the strength of the feature based approaches, we train a classification al-

gorithm on an interval feature representation to find the regions of the time series that are

informative. We segment the time series using overlapping intervals to reduce the probabil-

ity of missing a pattern and generate features on the intervals. We build a classifier on the

interval representation and compute a local importance measure for each interval of each

time series. Local importance [57] is a measure which is related to the effect of a feature

for predicting an outcome of interest. In time series context, local importance of a certain

interval feature for a particular time series provides information about the relevance of the

pattern observed on the corresponding interval to the classification task. Once the local

importances are identified, the similarity between the timeseries can be sought over the

important patterns instead of the whole time series. Since only relevant segments of the

time series are considered for the classification, the result will be less affected by the noise

and the computation and storage requirements can be reducedsignificantly with the shorter

representation. More significantly, this type of representation will handle the translations

and dilations inherent in the time series.

68

Local importance computation is the key step in our approach. This information is ob-

tained from a fast feature-based learner which allows for finding regions of the time series

relevant to classification. The patterns in the intervals with features having high local im-

portance values constitute the region of interest. After finding the region of interests for

each time series, we generate sequences from these regions.These sequences are referred

as patterns in our study. We generate multiple patterns fromthe time series and find the best

matching subsequences of the time series to these patterns based on a distance measure. A

new feature set based on the distances of the patterns to the best matching subsequences of

the time series is used to build another classifier for final classification. A feature selection

algorithm on the new feature set allows for finding the patterns that are critical in classifica-

tion. In addition to their interpretability, patterns are compact compared to the whole time

series which reduces the time and space required for classification [23].

Focusing on the smaller segments of the time series for classification is an active re-

search area. Recently, many of the work has focused on the extraction of interpretable

patterns for classification of large time series databases [23,61,83,84]. Criticizing the disad-

vantages of NN classifiers in terms of computational requirements and interpretability, [60]

proposed a method that searchs for the best subsequence in anexhaustive way for decision-

tree induction. However, at each split they computed and used the DTW distance of the

entire time series to the subsequences instead of computingthe distance of the subsequence

to the related region of the time series. [61] also proposed an approach to find subsequences

of the time series which are thought to be maximally representative of a class and compared

the subsequences to the relevant regions of the time series unlike [60]. These subsequences

are called shapelets and algorithms based on the shapelets facilitate interpretability. Since

69

the information provided by time series shapelets is limited to their presence or absence

and computation time required for generating them is significant, [23] proposes a more ex-

pressive shapelet representation by combining multiple shapelets in logic expressions such

that complex concepts can be described. It is faster compared to shapelets and has better

accuracy since it can combine multiple shapelets for classification of the time series. [84]

proposes a similar approach for early classification of timeseries. The goal is to find the

time segments that achieves a certain level of classification accuracy as early as possible.

These approaches search for the predictive regions of the time series through efficient rep-

resentations and search techniques.

The closest works in terms of overall approach are [23, 60, 61]. These studies aim at

finding the representative subsequences of the time series to be used in decision trees. How-

ever [60] exhaustively search for the subsequences, [23,61] proposes pruning techniques for

finding the shapelets where we propose an efficient feature-based method to discover the

region of interest. After finding the subsequences, [60] compute the distances to the whole

time series using DTW but we find the distances based on the best matching subsequences

from the time series as in [23,61]. Our shapelet representation scheme allows for handling

the interaction that might be important to classification. [23] also discusses the necessity of

accounting for the interaction and an approach that combines the shapelets through logic

expressions are proposed in their study. Our approach uses arandom forest classifier in

which interpretability is achieved through the generationof an importance measure using

the structure of the classifier.

In this paper, we propose a supervised Time Series Pattern Discovery algorithm (TS-

PD). A large number of local features are extracted from intervals. Subsequently, a local

70

importance measure is generated for each interval of the time series using a random forest

classifier. After regions of interests are identified for each time series using the local im-

portance values, potential shapelets are generated. Each time series is then represented by

their distances to the potential shapelets and a new featurematrix of distances is used for

classification. We demonstrate TS-PD is efficient, accurateand interpretable on a full set of

benchmark data sets [85].

The remainder of this paper is organized as follows. Section3 provides background.

We summarize the problem and describe the TS-PD framework inSection 4. Section 5

demonstrates the effectiveness and efficiency of TS-PD by testing on a full set of benchmark

datasets from UCR time series database [85]. We discuss TS-PD’s behaviour for certain

datasets, explain how TS-PD works on an example in Section 6.Conclusions are drawn in

Section 7.

3. Background

3.1. Random Forest

A random forest (RF) classifier [57] is used here to both generate the regions of interest

and classify time series. A RF is an ensemble ofJ decision trees,{gj , j = 1, 2, . . . , J}.

Each tree is constructed using a different bootstrap samplefrom the original data. About

one-third of the cases are left out of the bootstrap sample and not used in the construction

of the single tree. These are called out-of-bag (OOB) samples.

The prediction for instancex from treegj is ŷj(x) = argmaxc p
c
j(x), wherepcj(x)

is the estimated proportion of classc in the corresponding leaf of thej-th tree, forc =

0, 1, . . . , C − 1. Let G(x) denote the set of all trees in the RF where instancex is OOB.

71

The OOB class probability estimate ofx is

pc(x) =
1

|G(x)|
∑

gj∈G(x)

I(ŷj(x) = c)

whereI(·) is an indicator function that equals one if its argument is true and zero otherwise.

The predicted class iŝy(x) = argmaxc p
c(x).

To summarize, an instance is labeled through a majority voting approach using the

tree results for which it is OOB. The estimates computed fromOOB predictions are easily

obtained and have been shown to be good estimates of generalization error [57].

In the tree growing steps of RF, the best split are determinedbased on only a random

sample of features. In this study, features are also referred as variables and both terms are

used interchangeably. Often, the sample size is
√
ν, whereν is the number of features. The

random selection reduces the variance of the classifier, andalso reduces the computational

complexity of a single tree fromO(νη log η) to O(
√
νη log η) (assuming the depth of tree

is O(log η) whereη is the number of instances). Therefore, for a large number offeatures

a RF can be as computationally efficient as a single decision tree.

The Gini measure of impurity is used to determine the variable selected to make the

nodal split in the tree construction process. This allows for a variable importance measure

called Gini Variable Importance(GV I) which is the sum of the Gini impurity decrease for

a particular variable over all trees. LetNρ
j be the number of observations at nodeρ of the

jth tree, andNρ
j (L) andNρ

j (R) be the number of observations of the left and right child

nodes after splitting, and letdρj (k) be the decrease in impurity produced by variablek at the

ρth node of thejth tree.

72

The decrease in impurity isdρj (k) = Gρ
j − (

N
ρ

j
(L)

N
ρ

j

Gρ
j (L)+

N
ρ

j
(R)

N
ρ

j

Gρ
j (R)) whereGρ

j (L)

andGρ
j (R) are the Gini indices of the left and right node respectively and Gρ

j is the Gini

index of the parent node. The Gini Variable importance of variablek is defined as

GV I(k) =
1

J

J
∑

j=1

(
∑

ρ∈Sj

dρj (k)I
ρ
j (k))

whereIρj (k) is an indicator variable for whether variablek was used to split nodeρ of tree

j andSj is the set of split nodes of the treej.

Variable importance is important to find out the features relevant to the classification

task. We use a RF classifier for time series classification in our study. Our time series

representation scheme allows for finding the important patterns efficiently using the variable

importance. Moreover, RF has several advantages when compared to other classifiers. High

dimensional feature spaces, multiple classes, and missingvalues are handled. Nonlinear

models and interactions between features are allowed. It isscale invariant and robust to

outliers, and computations are reasonable even for large datasets.

3.2. Local importance measure from random forests

A random forest classifier is not directly interpretable since it is a combination of mul-

tiple unpruned trees build on the random subspaces of the features. However there are

important measures that can be derived from the forest structure such as feature importance

discussed in Section 3.1. Other than the Gini variable importance, an accuracy based feature

importance is also discussed by [57]. To compute this feature importance, local importance

of a feature is computed for each instance based on the changes in accuracy of the classifier

73

when the features are perturbed. This information is then aggregated to obtain the accuracy

based feature importance in [57].

RF local importance for featurek of instancen, LIk(n), is defined as follows. For

each treegj of the forest, consider the associated OOB sample represented byOOB(gj)

(instances not included in the bootstrap sample used to train gj) and let the proportion of

votes for the correct class bevn for instancen based on the trees in which instancen is

OOB. Now, randomly permute the values of the featurek in OOB(gj) to get a perturbed

sample denoted by ˜OOBk(gj) and prediction based on the perturbed sample provides a

new proportion of votes̃vkn for instancen. Local importance for featurek of instancen is

then equal toLIk(n) = vn − ṽkn.

If the number of votes for the correct class decreases with the perturbed OOB data for

particular feature of an instance, we can say that feature plays an important role in the

classification of the instance in consideration. Conversely, if the number of votes does not

change or increases, the feature is not found to be informative.

A global feature importance is computed by aggregating the local importances over

all instances by [57]. However, local importance is a betterdescription of the patterns of

the time series that can be related to the classification. A global feature importance is not

descriptive enough because of the translations and dilations in the time series. Features

generated over different regions of the time series may be important to classification for

different time series and a global feature importance losesthe detailed information about the

translations and dilations. Although the local importanceinformation is provided by [86] as

a visualization tool, their focus is on generating a global feature importance by aggregating

the local importance information. On the other hand, analysis of the local importance is

74

required for the time series classification problems because of the temporal ordering of the

features.

3.3. Tree models with interval features

In tree-based models developed for time series such as [70],features (such as mean,

deviation, etc.) are extracted for the intervals segmentedfrom the time series. The intervals

and features are selected in a way that the splitting criterion is maximized when the collec-

tion of time series is partitioned into child nodes. A typical example of a rule for interval

split in a node for a time series isvariance(I [t1, t2]) ≤ threshold, where the notation

indicates that a series for which the variance over the interval [t1, t2] is less than or equal to

a threshold is assigned to the left child, and assigned to theright child otherwise.

Segmentation of the time series and feature extraction requires sampling representative

set of intervals from the time series. The focus should be on the segments and features

that are the most informative for classification. Piecewiselinear approximation is the most

commonly used preprocessing step for the discretization ofthe data in mining time series

databases [78]. Time series approximation is an active research topic and a comprehensive

literature review of time series segmentation approaches is provided by [8, 78]. How seg-

mentation affects the performance of the tree-based modelsis discussed in the following

paragraph on a simple example.

We illustrate the approach for building a tree-based model on CBF dataset from [85]

given in Figure 25 to discuss the strengths and weaknesses oftree based models built on

interval features. We segment the time series using a fixed size intervals and generate the

mean, variance and slope features for each interval. Here, slope is computed by fitting

75

a regression line using the data points of the interval. Although fixed-length interval for

segmentation is prone to omit certain patterns [8], it is easy to understand.

Figure 25. 30 training instances from CBF dataset. Cylinder, Bell and Funnel are labeled
as ’c1,c2 and c3’ and represented by ’black, red and green’ lines respectively.

The length of the CBF dataset is 128 and we start the analysis with intervals of size 5

time units. This makes
⌊

128
5

⌋

= 25 intervals plus the last interval with three observations

(128 − 125). Thus,26 × 3 = 108 features are extracted for each time series. We also

generate second set of features by setting the interval sizeto 10 time units in order to

illustrate the effect of the choice of interval length parameter. Two decision trees built using

C4.5 [4] are illustrated in Figure 26. Each node in the tree represents a specific feature and

interval. For example, the first node of (a),interval(8) [36, 40] mean, is the mean of the

data points between 36 and 40 where 8 represents the intervalid.

As discussed earlier, comprehensibility of a classifier is highly important in this domain.

Trees provide set of rules that leads to a classification as given in Figure 26. The important

76

Figure 26. Decision trees built using C4.5 [4] on the interval features. Left (a) is
the tree built on the intervals of 5 time units. Right (b) is the tree built on the inter-
vals of length 10. Each node represents a specific feature andinterval. For example,
interval(8)[36, 40] mean is the mean of the data points between 36 and 40 where 8 rep-
resents the interval id.

time intervals found to be important are not the same for bothtrees if the splits are consid-

ered. This simple example illustrates that there might exist multiple regions that are related

to classification and there is a possibility of missing certain regions because of the feature

generation scheme. Moreover as discussed by [84], extracted features do not stay in the

same data space of the input data therefore it may not be easy to understand the information

provided by the features. In other words, the information provided by the raw data points

is lost by the transformation to the feature space. This is one of the motivations of the

time series classification studies based on the distances instead of features [23, 60, 61]. A

similarity based approach based on the raw values of subsequences are claimed to be more

intuitive since there is no transformation of the data in feature extraction.

Another problem discussed in Section 2 is the location invariance. Trees built on inter-

val features generate the rules based on fixed locations of the training data however patterns

defining a class may shift on a test instance. A test instance from the cyclinder class may

77

have longer tails and have a small mean on the intervals between 31 and 40, this instance

will be classified as bell (c2) by both trees. Although trees on interval features provide inter-

pretable results, they may fail in classification because ofthe location invariance inherited

in the time series. Please note that the example tries to illustrate potential problems of the

feature based approaches in terms of comprehensibility andit does not consider different

sampling strategies or alternative feature definitions.

3.4. Shapelets

Shapelets are defined as the time series subsequences which are highly likely to repre-

sent a class. Instance based approaches require comparisonto the entire dataset which is

a problem in terms of space and computational requirements in resource limited systems

such as sensor nodes, cell phones, mobile robots, smart toys, etc [23]. Shapelets are shorter

and finding the distance to the shapelet is faster compared tocomputing the distance to the

whole time series. Classification algorithms based on shapelets are also interpretable.

The main idea is that there exist local patterns related to the classes in a time series

classification problem. Extracting the relevant part of thetime series is important since NN

neighbor classifiers account for the entire time series and they are prone to misclassification

because of the curse of dimensionality. An example from [61]from Gun-Point dataset is

provided in Figure 27. The aim is to classify a motion as ”Gun”or ”NoGun” through time

series generated by mapping the motions as in Figure 27. The shapelet found for ”NoGun”

class is represented by red line which desribes a certain phenomenon called overshoot [61].

78

Figure 27. Illustration of the classes for Gun-Point dataset. A ”dip” is observed for NoGun
class since the actor put her hand down by her side, and inertia carries her hand a little
too far and then she tries to correct for it (a phenomenon known as overshoot). On the
other hand, actor returns her hand to her side carefully whenshe has the gun and no dip is
seen [61]. Shapelet discovered for ”NoGun” class is given byred line.

4. Supervised Time Series Pattern Discovery through Local Importance

We propose a method to discover the regions of the time seriesthat has potential to

have information about the classes. This discovery relies on the results of a random forest

classifier built on interval features. A local importance measure is computed for the inter-

val features of each time series. Consequently, potential patterns from the time series are

sampled based on the local importance of the intervals. We then find the best matching sub-

sequences of each time series to each pattern using a distance measure and generate a new

feature set based on the distances between best matching subsequences and the patterns. A

RF classifier is built on the new feature set to find the labels of the time series. Then RF is

used to find the patterns that are important for classification.

4.1. Region of Interest Selection based on Local Importance

We represent each time series with feature vectors derived from intervals to capture

patterns along the time series. A fixed-length interval for segmentation has the potential to

omit patterns because they may appear with different lengths and be split across the time

79

points [8]. We slide the windows to extract overlapping subsequences from the time series

to reduce the opportunity to miss patterns. Before going into details of the algorithm, we

define notations used in the paper.

Definition 1. A univariate time series, xn = (xn1 , x
n
2 , . . . , x

n
T) is an ordered set of

T values. We assume time series are measured at equally-spaced time points indexed by

t. Each time series is associated with a class labelyn, for n = 1, 2, . . . , N and yn ∈

{0, 1, 2, ..., C − 1}.

Definition 2. An interval of the time seriesxn, Ip(xn), is a sampling of lengthw < T

of contiguous positions fromxn starting at positionp. Thus,Ip(xn) = (xnp , . . . , x
n
p+w−1)

for 1 ≤ p ≤ T − w + 1

Definition 3. A sliding step of size d < w is used to segment overlapping inter-

vals from xn. Let Ip(xn) be the interval of lengthw which starts at positionp. A

representative set of intervals of lengthw can be extracted by slidingd < w positions

from p acrossxn. The set of the representative intervals of lengthw acrossxn is then

{I1(xn), I1+d(x
n), . . . , I1+T−w(x

n)}. Settingd = 1 generates all possible intervals of

lengthw. We aim at generating overlapping intervals to avoid missing a pattern, therefore

d < w is preferred.

Given the time seriesxn of lengthT and an interval lengthw, intervals are segmented

using a sliding step ofd acrossT . This segmentation is illustrated in Figure 28 for one of

the instances in CBF dataset (M = 128, w = 20, d = 10). Linear regression models are fit

on the intervals to extract features. The following features are extracted for each interval:

slope of the fitted regression line, mean of the values, variance of the values. More features

80

can be extracted to include detailed information about the intervals but three features which

gives information about the level and shape of the interval is used in this study.

Figure 28. Illustration of feature generation on the intervals of one time series from CBF
dataset. The parameters are set asw = 20, d = 10. 12 intervals and their means are given.

A random forest classifier,RFint, is trained on the interval feature representation and

local importance of each interval is computed during the training ofRFint as described in

Section 3.2. The algorithm for computing the local importance of each interval is provided

in Algorithm 3. Since each interval may be described by multiple features (i.e. slope,

mean, etc.), we set the interval importance as the maximum ofthe local importances of

the features. Intuitively, if there is at least one relatively important feature observed for the

interval, the importance of the interval is set based on the most important interval feature.

In order to visualize the local importance, we normalize thelocal importance values so

that importance of the intervals of a time series sums up to one. The intervals with high

importance values have potential to contain the patterns related to class.

Local importance values are computed for all instances and instead of starting the search

for the patterns from an arbitrary time point as in other shapelet studies [23, 60, 61, 84],

81

Algorithm 3 Local importance computation

for all time seriesxn do
Standardize the time series
Generate the interval features

end for
Build a random forest on the interval feature set(RFint)
for all time seriesxn do

for all interval i do
Let local importance of intervali be max

f∈F (i)
(LIf (x

n)) whereF (i) is the set of fea-

tures of intervali
end for
Normalize local importance over all intervalsi of time seriesxn

end for

we use the region of the time series that are found to be important. Unlike the existing

work which finds the important regions based on the similarity, we generate features on

the intervals and use a supervised learner to find out those regions. Approximating the

information by feature extraction from intervals and usinga supervised learner that allows

for the interactions provides fast discovery of the important regions of the time series.

We illustrate the idea of local importance using time seriesof each class from CBF in

Figure 29 (M = 128, w = 10, d = 10). We do not use overlapping intervals (i.e.d = w)

in this particular example in order to simplify the representation. In a random forest, 500

trees are built and selected number of features at each splitis square root of the number of

features unless otherwise stated for the illustrations. Three intervals with the highest local

importance values are represented on the right for each timeseries. The local importance

information matches with class definitions and these local regions can separate these time

series which supports our idea of focusing on the local regions.

Interval length setting is a smoothing parameter in our algorithm because of the features

considered for each interval. The level of detail decreasesas the interval length increases

82

Figure 29. Three time series from CBF dataset and corresponding local importance plot.
The intervals are labeled asI(interval id). For each interval, there are three measures repre-
senting the local importance of slope, mean and variance features in the order from left to
right. Three intervals with the highest local importance values are represented on the right.

(i.e. slope becomes meaningless) therefore smaller interval lengths should be preferred for

an application where features of interest are short. Assuming that there is no information

provided about the application, this parameter is set basedon the analysis of OOB error rates

from RFint. The interval lengths providing smaller OOB error rates should be preferred

for the analysis. If the interval length is set too small for the case where feature of interest

is long, multiple short intervals will be found to be important.

83

The normalized importance values against the intervals is illustrated in Figure 30 for

each class on CBF dataset (w = 10, d = 5). The regions with high importance values

have potential to contain the patterns related to class. Thetime frame between 20 and 80

where the mean differences are found to be important for mostof the training instances.

The regions in the beginning and end are also found to be important for certain instances of

class cylinder which matches with the class definitions.

Figure 30. Normalized local importance information on CBF dataset (left) and time series
of each class (right). The regions with high importance are informative when time series are
compared and the class definitions are considered. The parameters are set asw = 10, d = 5.

4.2. Pattern Discovery and Classification

After finding the regions of interest, important intervals are used to search for similarity

between the time series. Intervals are used as reference patterns and distance between the

time series and reference patterns are computed. The distance between each pattern and the

84

time series is later used as a feature in the learning algorithm. Before going into details of

the pattern discovery approach, we provide the definition ofthe terms used in this section.

Definition 4. A pattern of time seriesxn, Ψl(xn), is obtained by combining the mostl

important intervals ofxn. A pattern setS(xn) consists of the patterns from the time series

xn.

Patterns are generated starting from the interval that has the largest local importance

(Ψ1(xn)). These patterns are referred aslevel 1 patterns. For each time series, we add

these patterns to our pattern setS(xn). In the second pass, first two important inter-

vals constitutes the pattern which is included in setS(xn) as level 2 patterns. Follow-

ing the same manner, we generate all patterns up to levelL and add them to the pattern

setS(xn). Thus,S(xn) = {Ψ1(xn),Ψ
2(xn), . . . ,Ψ

l(xn)} whereΨ1(xn) = {I1(xn)},

Ψ2(xn) = {I1(xn), I2(xn)}, . . . ,Ψl(xn) = {I1(xn), I2(xn), . . . , I l(xn)} whereI l(xn)

is thelth important interval of time seriesxn, the interval notation is changed here to rep-

resent the importance of an interval. We keep the temporal relation between the intervals

while generating the patterns. In other words, pattern may contain discontiguous intervals

as illustrated in Figure 31 if the most important intervals of the time series are not contigu-

ous. This way, we keep the information provided by the temporal relations between the

intervals which might be important to classification.

Pattern setS(xn) contains the patterns generated by combining certain number of

intervals up tol. Let S be the set of all possible patterns from all time series, (i.e.

S =

N
⋃

n=1

S(xn)) and suppose we enumarate the patterns in setS asΨi where i is the

pattern index.

85

Definition 5. Best Matching Subsequence (BMS)of time seriesxn, is the subse-

quence that has the minimum distance to the patternΨi. The minimum distance is referred

to asBest Matching Distance (BMD)given byD(xn,Ψi). D(xn,Ψi) is the minimum of

the distances computed by slidingΨi over the time seriesxn as schematized in Figure 31.

The subsequence providing the minimum distance is called BMS ofxn toΨi. The distance

measure considered in this study is the Euclidean distance although other distance measures

(i.e. Manhattan) can be used. If a pattern contains discontiguous intervals, we only consider

the relevant matching sections of the subsequences for distance computation as illustrated

in Figure 31

Figure 31. Illustration of distance computation over the time series for a generated patterns
(represented by blue). This pattern includes two separatedintervals. Dashed lines stand for
the regions that are not included in the pattern. The distance is computed by sliding the
pattern over the time series.

After constructing the pattern setS, we computeD(xn,Ψi) for all time series and

pattern pairs. A feature vector forxn is then obtained by combining the BMD ofxn to

all patterns in setS. A new feature matrix is created using BMD of the time series to

the patterns and build a random forest,RFpattern, on the new feature set. Our pattern

discovery and classification algorithm is summarized in Algorithm 4.

The discontinguous intervals in the patterns allow for handling the interaction between

the patterns of the time series. [23] similarly combines shapelets through logical expres-

86

Algorithm 4 Supervised Time Series Pattern Discovery through Local Importance (TS-PD)

Compute local importance using Algorithm 3 for all time seriesxn, setS = ∅
for all time seriesxn do

Generate pattern set,S(xn), for all levels up toL, setS = S ∪ S(xn)
end for
Generate a new feature set using the BMD (D(xn,Ψi)) of the time seriesxn to each
patternΨi ∈ S and build a random forest (RFpattern) on this representation to obtain
final classification.

sions. Although our pattern generation scheme and similarity computation is different com-

pared to [23], the idea of multiple segments’ being informative is similar.

One can claim that there is a redundancy in the pattern set of atime series since the same

intervals are shared by the patterns (i.e. the most important interval is seen for patterns

of all levels). However BMS may be different and higher levelpatterns may be better

in terms of descriptiveness. Although this will increase the computation time required

for distance computation, the increase is not significant since higher level patterns already

has the intervals of the lower level patterns and distance computation can be done in an

incremental manner. In other words, once the distances for the highest level patterns are

computed, we also obtain the distances for the lower level patterns.

Similar or same patterns may be generated by our pattern generation scheme since we

do not consider the similarity of the patterns in setS. This may result in highly correlated

features but RF is robust to correlated features. Although more features add computational

complexity toRFpattern, the search for the similarities between the patterns is eliminated

with the random feature sampling mechanism in RFs. An efficient pruning algorithm to

reduce the number of patterns in the setS may improve TS-PD but our algorithm is not

severely affected by the correlated features in terms of accuracy since a RF classifier has

the embedded feature selection [57].

87

4.3. Feature selection and summary using TS-PD

TS-PD is based on the trees built on the random subspaces of the distances to the pat-

terns. It does not provide a result that is directly interpretable since there are multiple trees

and structure of trees are based on the distances to multiplepatterns. However, we can use

Gini importance fromRFpattern to sort the patterns in terms of predictive power. This

allows for finding the important patterns for each class which brings the interpretability.

However since a large number of patterns could be generated,and some of them might be

redundant or ignorable, a further feature selection procedure may be useful.

Feature subset selection methods such as CFS [87], FCBF [88], ACE [89] can be used

to select the relevant patterns in our study, and a discussion about these methods is provided

in [90]. However, this will add complexity to the algorithm.Therefore we use the variable

importance measure ofRFpattern for finding the informative patterns. This measure is

computed online and the only drawback is that it does not generate a compact set of patterns.

We order the patterns based on their information value whichmay include some redundant

patterns. One can select the ones that are thought to be relevant and use the distance values

to generate rules on the patterns.

The variable importance computed forRFpattern on CBF dataset is illustrated in Fig-

ure 32. The average of the decreases in Gini impurity is provided for the first 20 important

distance features. Variable importance can be used to find out the patterns that are important

to classification. A compact representation may not be possible since some of the patterns

share the same information as discussed. The patterns foundto be important for classifica-

tion is schematized in Figure 33. First 12 important patterns are represented based on their

importance values. The first two important pattern from bellclass represents the increasing

88

Figure 32. Variable importance ofRFpattern based on Gini measure on CBF dataset(w =
10, d = 5, L = 3). The plot does not illustrate the importance of all features, only first 20
important features are provided. y axis represents the id ofthe patterns.

time segment. In this particular example the most importantpattern is found to be oflevel 3

patternand it consists of separated intervals. Third pattern (level 3) represents the decreas-

ing behavior of the funnel class.11th pattern (level 2) is from the cylinder class capturing

the straight segments of the cylinder shape.

The interpretability of TS-PD is achieved through the importance values as given in

Figure 33. We provide an ordered list of patterns based on their importance instead of

generating a set of patterns used for classification unlike the existing work [23, 60, 61, 84].

All patterns are associated with an importance value which can be interpreted as how well

they describe a certain concept.

89

Figure 33. First 12 important patterns of TS-PD for CBF dataset (w = 10, d = 5, L = 3)
represented by blue dots, the order, id of the pattern and thecorresponding time series is
provided in the titles of the plots.

4.4. Parameters of TS-PD

Although we propose TS-PD as a time series classifier, our algorithm is more of an

exploratory tool for time series classification. The parameters should be set based on the

preliminary analysis of the time series. We summarize the parameters of our algorithm in

90

Table 9 categorized with respect to their type and discuss how the parameters should be set

in this section.

Random forest Feature generation Pattern
Number of trees Interval lengthw Maximum levelL

Number of features in each split Sliding stepd

TABLE 9. Parameters of TS-PD

The number of features evaluated at each split and the numberof trees are the pa-

rameters of both RF. The number of features evaluated at eachnode of the tree is set to

default [57] which is equal to the square root of the number offeatures. As stated by [57],

RF is insensitive to the number of features selected to spliteach node. The number of trees

is determined based on the OOB error rates over trees. Figure34 illustrates how the OOB

error rate changes as the number of trees increases forRFint andRFpattern on CBF

dataset with the following settings (w = 10, d = 5, L = 3). The plots indicate that the

results are insensitive for number of trees greater than 400trees.

Interval and sliding step length are feature generation parameters ofRFint. Setting

sliding step too small will result in correlated features. On the other hand, the probability of

missing a pattern increases as sliding step increases. Thus, we fix the sliding step as the half

of the interval length. Assuming that the model with the bestaccuracy provides better local

importance results, OOB error rate ofRFint is used to setw. This parameter should be

large enough so that features like slope and variance are meaningful. Experimentation with

different interval lengths will lead to a reasonable setting of this parameter. The change of

OOB and test error rates ofRFint for CBF dataset with different interval length settings

is provided in Table 10 to illustrate howw is set. Settingw = 16 provides the minimum

OOB error rate thus it is a good choice for interval length. Wealso provide the test error

91

Figure 34. The OOB error rates ofRFint (left) andRFpattern (right) of CBF dataset
(w = 10, d = 5, L = 3). OOB error rate for each class and average of them are provided.
The plots indicate that the results are insensitive to the number of trees when it is sufficiently
large (500 in this case).

rate forRFint to illustrate that OOB errors are good estimator of the generalization error.

On the other hand, the difference of OOB error rates are not significant. If OOB error rates

are around the same level forRFint as in the example, settingw smaller is suggested since

we are interested in finding shorter patterns so that time required for distance computation

will be smaller.

The maximum pattern level setting,L, works as an upper bound on the number of

intervals to be included in the pattern. This does not affectthe performance of our algorithm

if set large enough. However largerL levels result in more patterns to be generated which

is not computationally efficient. Although the pattern level is the same for all time series

in our approach, it can be set for each class using the corresponding local importance plot.

Detailed analysis of the local importance plots may help reducing the testing time. The

number of peaks in the local importance plots is a good estimator of the pattern level.

Figure 30 illustrates the local importance of each series ofdifferent classes for CBF dataset

92

w OOB Error Rate Test Error Rate
6 0.167 0.066
8 0.100 0.044
10 0.067 0.032
12 0.067 0.024
14 0.067 0.027
16 0.018 0.000
18 0.067 0.023
20 0.033 0.028

TABLE 10. The OOB and test error rates ofRFint on CBF dataset for different interval
settings. There are 30 training instances for this dataset therefore single misclassification
increases error rate significantly. Interval length of 16 time units provides the minimum
OOB error rate. On the other hand, the differences of OOB error rates are small therefore
settingw smaller is suggested since we are interested in finding shorter patterns so that com-
putation time required for distance computation is decreased. Test error rate is consistent
with the OOB error rate.

(w = 10, d = 5). SettingL = 4 or L = 5 is reasonable when the number of peaks in the

local importance plot are considered for time series of eachclass .

After understanding the structure of the time series, the OOB error rates ofRFpattern

for different L settings are analyzed. LargerL is expected to lead to better results up

to certain level since more expressive patterns are generated by including more intervals.

However the distance may become meaningless because of the curse of dimensionality

if the length of the pattern gets too large. Although runningRFpattern for different L

settings introduces complexity, computation time for testing and required space for storing

the patterns can be reduced with the compact set of patterns obtained by smallerL level.

Figure 35 illustrates the progress of the error rates on CBF dataset for the settingw =

6, d = 3 and allL levels up to 15. OOB error rates becomes stable afterL = 8 which is

consistent with the test error rates. Test error rates are provided to illustrate the effectiveness

of OOB error rates in terms of generalizability. SettingL larger may result in overfitting

93

since the distances of the patterns to the training data are more precise and dependent on the

training data as longer patterns are generated. Overfittingproblem is also discussed by [23]

and the number of patterns to be generated is fixed to certain number (4 in their case) to

overcome this problem. The same phenomenon is observed on the OOB error rates when

L is larger than 10. Test error rates also show the same behavior. However the effect of

overfitting is not severe because of the random selection of features at each split.

Figure 35. Progress of OOB error rates and test error rates overL settings. OOB error
rates becomes stable afterL = 8 which is consistent with the test error rates. SettingL
larger may result in overfitting since the distances of the patterns to the training data are
more precise and dependent on the training data. WhenL is larger than 10, slight increase
on OOB error rates which is an indication of overfitting is observed.

5. Experiments

We test TS-PD on 43 time series data from [85]. The dataset characteristics are given

in Table 11. This is a good testbed with diverse characteristics such as length of the series,

number of classes etc. which enables a comprehensive evaluation.

In order to show the effectiveness of TS-PD in terms of accuracy, we test our algorithm

with fixedw andL settings. Fixed parameters are considered to illustrate the robustness of

TS-PD although the settings can be adjusted based on the dataset characteristics in favor of

our algorithm (as discussed in Section 6.1). Thus, we setw = 6 in order to have meaningful

94

Number of classes Training cases Testing cases Time series length
50words 50 450 455 270
Adiac 37 390 391 176
Beef 5 30 30 470
CBF 3 30 900 128
Coffee 2 28 28 286
ECG200 2 100 100 96
FaceAll 14 560 1,690 131
FaceFour 4 24 88 350
Fish 7 175 175 463
GunPoint 2 50 150 150
Lightning2 2 60 61 637
Lightning7 7 70 73 319
OliveOil 4 30 30 570
OSULeaf 6 200 242 427
SwedishLeaf 15 500 625 128
Syntheticcontrol 6 300 300 60
Trace 4 100 100 275
TwoPatterns 4 1,000 4,000 128
Wafer 2 1,000 6,164 152
Yoga 2 300 3000 426
ChlorineConcentration 3 467 3,840 166
CinC ECG torso 4 40 1,380 1,639
Cricket X 12 390 390 300
Cricket Y 12 390 390 300
Cricket Z 12 390 390 300
DiatomSizeReduction 4 16 306 345
ECGFiveDays 2 23 861 136
FacesUCR 14 200 2,050 131
Haptics 5 155 308 1,092
InlineSkate 7 100 550 1,882
ItalyPowerDemand 2 67 1,029 24
MALLAT 8 55 2,345 1,024
MedicalImages 10 381 760 99
MoteStrain 2 20 1,252 84
SonyAIBORobot Surface 2 20 601 70
SonyAIBORobot SurfaceII 2 27 953 65
StarLightCurves 3 1,000 8,236 1,024
Symbols 6 25 995 398
TwoLeadECG 2 23 1,139 82
uWaveGestureLibraryX 8 896 3,582 315
uWaveGestureLibraryY 8 896 3,582 315
uWaveGestureLibraryZ 8 896 3,582 315
WordsSynonyms 25 267 638 270

TABLE 11. Characteristics of the datasets: number of classes, numberof training cases,
number of testing cases, and lengths of time series. The performance analysis of the algo-
rithms on this diverse set of data provides a wide-ranging comparison.

features (such as slopes). Maximum pattern level setting isset asL ∈ {2, 4, 6, 8, 10} to

illustrate the progress of RFpattern’s OOB and test error rates over differentL settings.

Although, patterns generated withL = 10 may be insufficient to describe certain features

95

for long time series, the same levels are considered on all datasets for illustration purposes.

The number of trees for both forest is set to 2000.

5.1. Computational accuracy

TS-PD with the given settings is compared to nearest neighbors (NN) classifiers with

DTW. Two versions of DTW are considered: NNDTWBestWin (alsoreferred to as NNBest-

DTW) [17] searches for the best warping window, based on the training data, then uses

the learned window on the test data, while NNDTWNoWin does not search for any con-

straints on the warping path. Note that DTW is a strong solution known for time series

problems in a variety of domains [58] although it may not be suitable for certain applica-

tions because of computational and space requirements [23]. The results for NN classifiers

are obtained from [85]. Tables 12 and 13 summarizes the OOB and test error rates for

RFpattern for all L settings. For certainL settings, TS-PD is not run (represented as ’-’)

since the pattern is potentially longer than the time series. We also compare our results with

Logical-Shapelets [23] which significantly outperforms the original shapelet representation

proposed by [61]. Since this comparison is not based on all datasets because of the com-

putational requirements of Logical-Shapelets, we compareTS-PD to Logical-Shapelets in

Section 6.4.

96

RFpattern NNDTW
OOB error rate Test error rate BestWin NoWin

L = 2 L = 4 L = 6 L = 8 L = 10 L = 2 L = 4 L = 6 L = 8 L = 10

50Words 0.404 0.336 0.329 0.331 0.329 0.354 0.295 0.273 0.266 0.257 0.242 0.310
Adiac 0.287 0.285 0.282 0.287 0.295 0.243 0.246 0.240 0.248 0.246 0.391 0.396
Beef 0.500 0.467 0.533 0.400 0.467 0.367 0.333 0.233 0.233 0.267 0.467 0.500
CBF 0.100 0.067 0.033 0.033 0.033 0.113 0.078 0.033 0.027 0.038 0.004 0.003

Coffee 0.000 0.000 0.000 0.000 0.000 0.000 0.036 0.036 0.036 0.036 0.179 0.179
ECG 0.150 0.170 0.160 0.120 0.130 0.220 0.220 0.200 0.180 0.190 0.120 0.230

Face (all) 0.086 0.068 0.054 0.046 0.045 0.234 0.234 0.254 0.263 0.258 0.192 0.192
Face (four) 0.167 0.083 0.042 0.042 0.000 0.295 0.091 0.114 0.102 0.045 0.114 0.170

Fish 0.200 0.194 0.206 0.200 0.206 0.154 0.189 0.166 0.166 0.166 0.160 0.167
Gun-Point 0.080 0.100 0.060 0.060 0.060 0.067 0.047 0.060 0.040 0.060 0.087 0.093
Lighting-2 0.150 0.117 0.117 0.117 0.133 0.311 0.246 0.262 0.279 0.279 0.131 0.131
Lighting-7 0.314 0.229 0.257 0.243 0.243 0.384 0.329 0.329 0.301 0.288 0.288 0.274

OliveOil 0.100 0.067 0.033 0.100 0.067 0.267 0.200 0.200 0.200 0.200 0.167 0.133
OSU Leaf 0.315 0.245 0.250 0.250 0.235 0.380 0.310 0.314 0.318 0.302 0.384 0.409

Swedish Leaf 0.098 0.096 0.098 0.092 0.098 0.096 0.086 0.090 0.098 0.101 0.157 0.210
Synthetic Control 0.030 0.017 0.020 0.023 0.023 0.033 0.023 0.017 0.010 0.017 0.017 0.007

Trace 0.000 0.000 0.000 0.040 0.020 0.010 0.000 0.000 0.020 0.020 0.010 0.000
Two Patterns 0.005 0.000 0.000 0.000 0.001 0.004 0.001 0.000 0.000 0.001 0.002 0.000

Wafer 0.020 0.011 0.005 0.006 0.006 0.020 0.010 0.006 0.005 0.005 0.005 0.020
Yoga 0.217 0.187 0.187 0.187 0.187 0.181 0.174 0.149 0.156 0.145 0.155 0.164

ChlorineConcentration 0.298 0.315 0.315 0.315 0.313 0.319 0.312 0.317 0.335 0.344 0.350 0.352
CinC ECG torso 0.425 0.400 0.350 0.475 0.375 0.459 0.476 0.491 0.452 0.452 0.070 0.349

TABLE 12. Error rates of TS-PD (w = 6, 2000 trees) for different settings ofL, nearest-neighbor classifiers with dynamic time
warping distance, where NNDTWBestWin searches the best warping window based on the training data, NNDTWNoWin has no warping
window.

97

RFpattern NNDTW
OOB error rate Test error rate BestWin NoWin

L = 2 L = 4 L = 6 L = 8 L = 10 L = 2 L = 4 L = 6 L = 8 L = 10

Cricket X 0.295 0.269 0.244 0.236 0.241 0.318 0.297 0.274 0.256 0.272 0.236 0.223
Cricket Y 0.369 0.331 0.313 0.305 0.274 0.385 0.338 0.315 0.287 0.251 0.197 0.208
Cricket Z 0.338 0.308 0.279 0.256 0.269 0.321 0.262 0.233 0.244 0.218 0.180 0.208

DiatomSizeReduction 0.063 0.063 0.063 0.063 0.063 0.108 0.131 0.075 0.127 0.124 0.065 0.033
ECGFiveDays 0.217 0.174 0.130 0.130 0.087 0.233 0.224 0.256 0.289 0.252 0.203 0.232

FacesUCR 0.150 0.150 0.125 0.100 0.100 0.224 0.186 0.150 0.105 0.094 0.088 0.095
Haptics 0.458 0.432 0.387 0.394 0.394 0.532 0.558 0.513 0.516 0.519 0.588 0.623

InlineSkate 0.640 0.700 0.680 0.670 0.690 0.660 0.631 0.604 0.611 0.611 0.613 0.616
ItalyPowerDemand 0.030 0.075 - - - 0.048 0.049 - - - 0.045 0.050

MALLAT 0.036 0.036 0.018 0.018 0.036 0.065 0.043 0.038 0.030 0.026 0.086 0.066
MedicalImages 0.262 0.252 0.255 0.249 0.262 0.289 0.283 0.278 0.284 0.271 0.253 0.263

MoteStrain 0.300 0.200 0.250 0.150 0.100 0.154 0.105 0.114 0.121 0.121 0.134 0.165
SonyAIBORobot Surface 0.050 0.150 0.150 0.150 0.150 0.153 0.123 0.143 0.098 0.065 0.305 0.275

SonyAIBORobot SurfaceII 0.222 0.259 0.148 0.148 0.148 0.256 0.248 0.196 0.187 0.199 0.141 0.169
StarLightCurves 0.037 0.033 0.036 0.038 0.042 0.039 0.037 0.037 0.037 0.038 0.095 0.093

Symbols 0.240 0.120 0.040 0.040 0.040 0.169 0.150 0.134 0.067 0.104 0.062 0.050
TwoLeadECG 0.043 0.087 0.130 0.087 0.087 0.143 0.163 0.147 0.105 0.139 0.132 0.096

uWaveGestureLibraryX 0.232 0.227 0.224 0.209 0.203 0.250 0.228 0.210 0.206 0.203 0.227 0.273
uWaveGestureLibraryY 0.280 0.267 0.276 0.267 0.265 0.303 0.291 0.299 0.298 0.296 0.301 0.366
uWaveGestureLibraryZ 0.288 0.263 0.270 0.259 0.267 0.284 0.266 0.269 0.264 0.266 0.322 0.342

WordsSynonyms 0.502 0.427 0.408 0.386 0.401 0.469 0.406 0.409 0.378 0.368 0.252 0.351

TABLE 13. Error rates of TS-PD (w = 6, 2000 trees) for different settings ofL (continued), nearest-neighbor classifiers with dynamic
time warping distance, where NNDTWBestWin searches the best warping window based on the training data, NNDTWNoWin has no
warping window. For certainw andL combination, TS-PD is not run (represented as ’-’) since thepattern is potentially longer than the
time series.

98

We use the same idea proposed by [21] for comparison of TS-PD to other algorithms.

Pairwise comparison of error rates is done using scatter plots in which each axis represents

the approach under consideration and each dot represents the error rate for a particular

dataset. The linex = y is drawn to represent the region where both methods perform about

the same. A point above the line indicates that approach on theX axis has better accuracy

than the one onY axis. If a point is further from the line, the margin of accuracy improve-

ment is greater. A method can be regarded as superior to otherif there are more points on

one side of the line. Figure 36 illustrates the comparison ofTS-PD with NNDTWNoWin

and NNDTWBestWin. The error rates ofL = 10 are used for comparison since we expect

TS-PD to provide stable results after certainL setting based on our discussion. We use the

result of the largest possibleL setting for the cases that pattern length is larger than the time

series length (i.e. error rate of TS-PDL = 4 is used for ItalyPowerDemand dataset).

Figure 36. Scatter plot of error rates of TS-PD vs NNDTWNoWin and NNDTWBest-
Win. TS-PD with the given settings provides comparable results to NNDTWNoWin and
NNDTWBestWin

TS-PD with the given parameters provides comparable results to NNDTWNoWin and

NNDTWBestWin. For certain instances such as CinCECG torso, DTW based classifiers

have significantly better error rates. This is related to theproblem structure and the param-

99

eter settings. Note that the maximum possible pattern length with the given settings is 60

time units which may create problems for certain datasets inwhich features of interest are

long (length of the series is 1639 for CinCECG torso dataset). For example, setting the

parameters asw = 50, L = 10 for CinC ECG torso dataset reduces to OOB and test error

rates from 0.375 and 0.452 to 0.35 and 0.343, respectively, with the same number of trees.

This again confirms our discussion about setting the parameters after the analysis of the

OOB error rates ofRFint and local importance plots.

5.2. Computational complexity

TS-PD is implemented in R Software and our experiments use a Windows 7 system

with 8 GB RAM, dual core CPU (i7-3620M 2.7 GHz). We use R only for building the

RFs and implemented the algorithms for feature generation and distance computation in

C, because R is computationally inefficient in execution of the loops. Moreover, although

the CPU can handle four threads in parallel, only a single thread is used. The computation

times of TS-PD (w = 6, 2000 trees) for different settings ofL are provided in Tables 14

and 15.

100

Training time (secs) Test time (secs)
L = 2 L = 4 L = 6 L = 8 L = 10 L = 2 L = 4 L = 6 L = 8 L = 10

50Words 74.63 95.35 123.26 150.63 181.480.0097 0.0112 0.0131 0.0151 0.0162
Adiac 49.85 73.64 98.43 112.65 137.310.0052 0.0067 0.0082 0.0102 0.0099
Beef 1.24 1.35 1.42 1.56 1.76 0.0090 0.0093 0.0093 0.0093 0.0070
CBF 0.59 0.64 0.78 0.74 0.86 0.0003 0.0003 0.0002 0.0004 0.0004

Coffee 0.59 0.71 0.61 0.67 0.80 0.0068 0.0036 0.0068 0.0071 0.0050
ECG 1.93 2.51 2.68 2.85 3.03 0.0022 0.0018 0.0026 0.0029 0.0023

Face (all) 73.85 95.23 117.86 135.41 158.170.0048 0.0066 0.0078 0.0085 0.0097
Face (four) 0.71 0.72 0.87 0.87 0.89 0.0023 0.0027 0.0022 0.0027 0.0028

Fish 13.86 18.35 22.79 28.51 34.61 0.0105 0.0120 0.0139 0.0151 0.0169
Gun-Point 0.78 0.81 0.96 1.05 1.30 0.0009 0.0015 0.0014 0.0013 0.0009
Lighting-2 2.85 3.32 3.78 4.54 5.52 0.0144 0.0133 0.0141 0.0144 0.0134
Lighting-7 2.73 3.22 3.71 4.11 4.66 0.0067 0.0078 0.0071 0.0085 0.0086

OliveOil 1.25 1.30 1.54 1.60 1.58 0.0113 0.0123 0.0090 0.0097 0.0143
OSU Leaf 16.84 22.03 27.87 36.51 45.51 0.0095 0.0098 0.0107 0.0119 0.0128

Swedish Leaf 58.45 86.26 104.45 123.53 191.520.0053 0.0069 0.0077 0.0088 0.0096
Synthetic Control 10.27 12.07 14.78 16.72 18.92 0.0018 0.0024 0.0026 0.0023 0.0028

Trace 3.13 3.34 4.39 5.41 6.26 0.0059 0.0086 0.0070 0.0064 0.0075
Two Patterns 165.13 217.21 294.93 358.69 483.360.0092 0.0115 0.0142 0.0163 0.0179

Wafer 420.35 608.73 786.82 928.63 1151.340.0128 0.0141 0.0189 0.0222 0.0256
Yoga 32.18 45.77 60.05 82.29 104.670.0077 0.0097 0.0114 0.0155 0.0172

ChlorineConcentration 71.32 121.89 157.26 206.80 300.020.0057 0.0076 0.0091 0.0103 0.0114
CinC ECG torso 6.02 5.58 6.33 6.91 8.18 0.0044 0.0062 0.0083 0.0087 0.0112

TABLE 14. Computation times of TS-PD (w = 6, 2000 trees) for different settings ofL. Testing time is the computation time of
classifying single time series. For certaind andL combination, TS-PD is not run (represented as ’-’) since thepattern is longer than the
time series.

101

Training time (secs) Test time (secs)
L = 2 L = 4 L = 6 L = 8 L = 10 L = 2 L = 4 L = 6 L = 8 L = 10

Cricket X 55.44 75.86 93.59 116.22 130.300.0114 0.0145 0.0171 0.0184 0.0196
Cricket Y 53.78 63.62 77.53 89.56 113.500.0109 0.0143 0.0162 0.0177 0.0192
Cricket Z 58.75 74.32 83.71 106.47 112.140.0119 0.0134 0.0148 0.0191 0.0180

DiatomSizeReduction 0.55 0.50 0.57 0.64 0.64 0.0009 0.0008 0.0009 0.0009 0.0012
ECGFiveDays 0.42 0.42 0.53 0.42 0.60 0.0002 0.0003 0.0003 0.0004 0.0004

FacesUCR 11.36 13.11 16.68 17.40 21.30 0.0018 0.0020 0.0026 0.0028 0.0030
Haptics 25.45 32.03 37.95 49.47 63.99 0.0188 0.0230 0.0248 0.0283 0.0311

InlineSkate 25.12 28.54 33.14 38.79 48.57 0.0192 0.0220 0.0229 0.0242 0.0289
ItalyPowerDemand 0.83 0.85 - - - 0.0001 0.0001 - - -

MALLAT 7.10 6.84 7.87 8.47 10.13 0.0044 0.0055 0.0065 0.0067 0.0078
MedicalImages 29.48 47.00 54.93 61.12 68.92 0.0031 0.0037 0.0044 0.0052 0.0049

MoteStrain 0.36 0.38 0.46 0.43 0.53 0.0001 0.0002 0.0002 0.0002 0.0002
SonyAIBORobot Surface 0.24 0.28 0.24 0.36 0.38 0.0001 0.0001 0.0002 0.0001 0.0001

SonyAIBORobot SurfaceII 0.35 0.42 0.49 0.42 0.56 0.0001 0.0002 0.0001 0.0002 0.0001
StarLightCurves 450.63 652.21 992.21 1496.34 2068.240.0577 0.0807 0.1030 0.1292 0.1529

Symbols 1.37 1.44 1.61 1.44 1.63 0.0009 0.0010 0.0010 0.0012 0.0015
TwoLeadECG 0.49 0.47 0.58 0.63 0.59 0.0001 0.0001 0.0002 0.0001 0.0002

uWaveGestureLibraryX 278.50 408.43 484.23 642.23 762.760.0224 0.0284 0.0341 0.0382 0.0408
uWaveGestureLibraryY 283.78 439.94 508.32 786.38 917.280.0206 0.0259 0.0299 0.0347 0.0370
uWaveGestureLibraryZ 290.61 412.75 527.15 670.36 757.880.0223 0.0292 0.0354 0.0394 0.0422

WordsSynonyms 31.10 35.95 44.88 55.28 64.39 0.0074 0.0081 0.0086 0.0099 0.0092

TABLE 15. Computation times of TS-PD (w = 6, 2000 trees) for different settings ofL (continued). Testing time is the computation
time of classifying single time series. For certaind andL combination, TS-PD is not run (represented as ’-’) since thepattern is longer
than the time series.

102

There are three components of TS-PD, local importance generation, pattern discovery

and distance computation, classification. We will discuss the complexity of each compo-

nent instead of providing an overall computational complexity since our approach is an

exploratory tool where user should find out certain settingsthrough the analysis of OOB

errors and visual tools presented.

Computational complexity of the local importance generation is mainly due toRFint.

Time complexity of building single tree ofRFint is O(
√
νN logN) whereν is the num-

ber of features extracted from each time series andN is the number of training instances.

Smaller interval and sliding step lengths result in larger number of features forRFint how-

ever the increase in the complexity is comparably small since only subset of features are

considered at each split. However, one may want to generate more trees when number

of features is large since the probability of selecting eachfeature decreases. The num-

ber of trees is decided by the analysis of the OOB error rates.Same discussion holds for

RFpattern, the classification component of TS-PD, since it is also an RFclassifier.

Pattern discovery and distance computation requires sampling of the important inter-

vals and finding the distances of these samples to each time series. The time to compute the

distance of a pattern to the time series isO(zM) wherez is the length of the pattern and

M is the length of the time series. The length of the pattern is determined by the interval

lengthw and maximum level settingL in our algorithm. Although we generateL patterns

from each time series, the complexity of distance computation does not change since the

distances can be computed for all patterns in the same loop. Thus, the complexity of com-

puting all pattern distances isO(zM) wherez is now the length of the levelL pattern which

is z = Lw in the worst case. The length of the pattern can be less thanz = Lw because of

103

the overlapping intervals generated. The minimum possiblelength isz = (L− 1)× d+w

when all intervals overlap (i.e. all firstL important intervals are contiguous).

The computation times of TS-PD with increasing training dataset size,N , are illustrated

in Figure 37 on Two Patterns dataset (w = 6, L = 5, 1000 trees). This increase is mainly

due to the complexity ofRFpattern which isO(
√

‖S‖N logN). The number of patterns

in the setS increases as the number of training time series increases. This is the main reason

of the practically quadratic complexity on the number of thetraining time series illustrated

in Figure 37. The training time increases asN becomes larger due to the combined effect of

the increase in the number of features and the training data.On the other hand, the increase

in the time for classifying an instance is practically linear because of the increase in the

number of patterns. On the other hand, there are several waysto reduce the complexity such

as pruning the pattern set or downsampling the training dataas discussed in Section 5.3.

Figure 37. Training (left) and testing (right) times of TS-PD on Two Patterns dataset for
increasing dataset sizes (w = 6, L = 5, 1000 trees).

We illustrate the behavior of the computation times with differentL andw settings in

Figure 38 for FacesUCR dataset. The increase in the number ofpatterns with largerL

setting is the main reason of the increase in training time. The complexity added by intro-

ducing largerL is mainly because of the increase in the number of features for RFpattern.

The computation time required for computation of the distances also increases but it is not

104

significant since the distance computation is done in a single pass for all possible patterns.

Considering the training times, the practical complexity of TS-PD is approximately linear

onL setting when other parameters are fixed.

Larger interval setting results in longer patterns that requires larger computation time

however the training times are slightly smaller or about thesame level whenL is larger as

in Figure 38. This is mainly due to the less number of featuresconsidered forRFint since

the number of features is less for largerw settings which will reduce the training time of

RFint significantly. Moreover, the number of features stays the same forRFpattern for

respectiveL settings.

To classify a time series, distances to each pattern is computed over the time series.

The time required for testing is mainly due to this distance computation. After the distance

computation, the object is classified by traversing the trees ofRFpatternwhich is very fast.

Time for distance computation increases asL increases however this increase is not large

because of the efficient distance computation for the different pattern levels as described

earlier. Therefore time to classify an instances does not increase significantly as illustrated

in in Figure 38. Computation time is almost linear to the pattern level setting.

We also consider the computation times of TS-PD for time series of different length.

These datasets are ItalyPowerDemand, Synthetic Control, ECG, CBF, Trace, OliveOil,

MALLAT and InlineSkate (the lengths of the time series are 24, 60, 96, 128, 275, 570, 1024

and 1882 respectively). We randomly selected 30 training instances from each dataset. The

computation times are illustrated in Figure 39 (w = 6, L = 3, 1000 trees). Similar discus-

sion in terms of the number of features holds for longer time series. The number of features

increases forRFint for longer series and the training time increases. Similarly time for

105

Figure 38. Training (left) and testing (right) times of TS-PD for FacesUCR dataset for
differentw andL settings. Emprically, the training and test times is linearwith the pattern
level setting.

distance computation is larger for longer time series. The computation time changes in a

linear fashion with the change in the length of the time series when other parameters are

fixed.

5.3. Complexity reduction

The complexity of TS-PD can be reduced in several ways. Similar or same patterns

are not pruned in this study, thus pruning similar patterns improves the overall computation

time. Moreover, a subset of instances can be selected for pattern generation based on certain

Figure 39. Training (left) and testing (right) times for series of different length (w = 6, L =
3, 1000 trees). There are 30 training instances for each time series.

106

N Error rates Comp. Time (secs)
OOB Test Train Test

50 0.060 0.065 3.99 0.0041
100 0.060 0.063 8.35 0.0081
200 0.050 0.049 23.37 0.0157
400 0.050 0.048 74.59 0.0320
750 0.041 0.040 262.96 0.0610
1000 0.037 0.037 515.11 0.0814

TABLE 16. Error rates and computation times of TS-PD (w = 6, L = 4, 1000 trees)
for different training data sizes. The training time is significantly smaller when TS-PD
is trained on less number of instances. However, the change in the test error rate is not
substantial. If there are certain constraints on the computation time or space availability,
training on smaller datasets may be preferred.

criterion to reduce the computation time. For instance, a simple similarity computation

between the training instances (i.e. finding similar instances based on Euclidean distance)

and discarding the similar train instances may help to reduce the computational effort.

StarLightCurves dataset is used to illustrate how the computation time and accuracy are

affected when the training data is downsampled. It is the oneof the largest datasets with

1000 training and 8236 test instances of 1024 time units long. We randomly sample 50,

100, 200, 400, 750 instances while keeping the class distributions same as the original data

and report the computation times and error rates of TS-PD (w = 6, L = 4, 1000 trees) in

Table 16. The training time is significantly smaller when TS-PD is trained on less number

of instances. However, the change in the test error rate is not substantial. If there is certain

constraints on the computation time and space availability, training on smaller datasets may

be preferred.

107

6. Discussion

6.1. Illustrative example

TS-PD is proposed as an exploratory tool for the analysis of the time series for classi-

fication purposes and parameters should be set after a detailed analysis of the certain mea-

sures such as local importance and OOB error rates ofRFint andRFpattern. Although

TS-PD is robust to these parameters if they are set within a boundary as shown in Sec-

tion 5.1 over all datasets, we will illustrate the steps of the analysis on FacesUCR dataset in

this section. FacesUCR data consists of face images of graduate students transformed into

time series. An example of this conversion is provided in Figure 40. There are 14 students

and 2250 pictures are taken under different conditions suchas glass/no glass or expressions.

The length of the series is 131 time units and the training data consists of 200 time series

where the rest is used for testing.

Figure 40. Illustration of the transformation of a face image to the time series.

First step in TS-PD is the local importance generation through interval feature gener-

ation and classification byRFint. The parameters to be set are the number of trees and

interval length (assuming that the sliding window is fixed ashalf of the interval length).

108

We start with the smallest interval length that will generate meaningful patterns which is

6 and increment it by 2 up to 40 to see how the OOB error rates change. Initially we set

the number of trees as 1000. OOB error rate forw = 6 over trees and OOB error rates of

RFint for differentw settings are given in Figure 41. The progress of the OOB errorrates

shows that 1000 trees are more than enough forw = 6. We use the same level for otherw

settings assuming that the number of trees will be sufficientfor a dataset with less number

of features. Interval lengths between 14 and 24 can be used asthe interval length setting as

they provide lower error rates.

Figure 41. OOB error rates ofRFint over trees forw = 6 (left), OOB error rates of
RFint (number of trees=1000) for different settings of interval length (right).

Local importance plots and time series are provided for eachclass in Figure 42 after

settingw = 20 considering the OOB error rates in Figure 41. The next step inTS-PD is

to set the pattern level. In this particular example, setting L as 3 or 4 seems reasonable by

looking at each local importance plot.

Local importance plot does not only provide insight about the pattern level, it also

illustrates the difficulty of the classification problem. Consider the time series from ’class

2’, most of the time series of this class does not overlap because of certain variations in

the time series. Similar observation can be done considering the local importance plot.

Variation of the patterns within the class can be observed from these plots.

109

Last step is the training ofRFpattern on the distance features. Number of trees is

again set based on the OOB error rate over the trees. The plot of OOB error rates over

trees forRFpattern (L = 4) is given in Figure 43 for 1000 trees. OOB error rate of

RFpattern is 0.095 and the test error rate over 2050 time series is 0.090. The error rates

of NNDTWBestWin and NNDTWNoWin are 0.088 and 0.095 respectively.

6.2. Interpretability

Section 4.3 discusses how interpretability is achieved by TS-PD. We will illustrate the

comprehensibility of our classifier on certain examples. These examples include Gun-Point,

Sony AIBO Robot and Coffee datasets.

6.2.1. Gun-Point. Gun-Point dataset is one of the most studied time series classifica-

tion problem [21]. The aim is to classify a motion as ’Gun’ or ’NoGun’ through time series

generated by mapping the motion of two actors. For the Gun class, the actors ”have their

hands by their sides, draw a gun from a hip-mounted holster, point it at a targer for approxi-

mately one second, and then return the gun to the holster and their hands to their sides” [61].

In the NoGun class, actors do the same movements as in the Gun class without a gun. In-

stead they use their index finger to point to a target. Therefore in NoGun class, the step of

drawing the gun from holster and returning it back is skipped. The dataset characteristics

are the same as provided in Table 11.

The interval length is set asw = 20 after the analysis of the OOB errors ofRFint

with 1000 trees for interval lengths between 4 and 40. We setL = 3 considering the

local importance plots. The test error rate ofRFpattern is 0.06 where the error rates of

NNDTWBestWin and NNDTWNoWin are 0.087 and 0.093 respectively. In addition to

better accuracy, TS-PD is very fast in classification when compared to nearest neighbor

110

classifiers. It only requires the distance computation of the patterns to the time series and

tree traversal overRFpattern.

The first five important patterns fromRFpattern are schematized in Figure 44. All

patterns are generated from the time series of Gun class. Theregions refer to the actions,

”draw a gun from a hip-mounted holster” and ”return the gun tothe holster and their hands

to their sides”. The first two patterns are from the same time series and both of them are

found to be important. This illustrates the redundancy issue discussed in Section 4.3. A

feature selection algorithm can be used to find the compact set of patterns in that case.

6.2.2. Sony AIBO Robot.This dataset is created by [91] and the task is to classify

the surface types using the measurements of the tri-axial accelerometer from Sony AIBO

Robot [23]. Only the X-axis readings of the accelerometer isprovided in [85]. Two types

of surfaces, carpet and cement, are considered in this dataset. Cement floors are harder

resulting in sharper changes in the accelaration [23]. The dataset characteristics are the

same as provided in Table 11.

The algorithm parametersw = 20, d = 10, L = 2 lead to a test error rate of

0.036. Logical-shapelets [23] also achieve the same error rate where the error rates of

NNDTWBestWin and NNDTWNoWin are 0.305 and 0.275 respectively. The improvement

in error rate is substantial compared to NN classifiers. The important patterns provided in

Figure 45 are similar to the shapelets by [23] and they refer to different shifts-of-weight in

the walk cycle on the carpet floor.

6.2.3. Coffee. The task is to classify the coffee species in instant coffeesin this dataset.

A chemical analysis, called Diffuse Reflectance Infrared Fourier Transform (DRIFT), is

111

used to discriminate between two species of coffees as Arabica and Robusta [92]. The

characteristics of the dataset is provided in Table 11.

The parameters are set asw = 6, d = 3, L = 3 after the analysis of the dataset char-

acteristics. All test instances are classified correctly byTS-PD where the error rates of

NNDTWBestWin and NNDTWNoWin are 0.179. The first five important patterns and the

training time series are schematized in Figure 46. [92] states that certain spectral regions

represent the caffeine bands. These regions correspond to the time frame between 187.7

and 247.3 as discussed by [61]. Some of the important patterns are between these regions

as illustrated in Figure 46.

6.3. Gesture recognition: an application of TS-PD to multivariate time series classifica-

tion

We illustrate the effectiveness of TS-PD only on univariatetime series in Section 5.

TS-PD can be extended to the multivariate time series classification (MTSC) by changing

the representation. We will discuss how TS-PD can be extended to multivariate case on a

gesture recognition problem proposed by [5].

A single three-axis accelerometer is used to collect data from eight users to characterize

eight gesture patterns. The library, uWaveGestureLibrary, consists over 4000 samples each

of which has the accelerometer readings in three dimensions(i.e. x, y and z) [5]. Individual

axes are considered in Section 5 for the univariate case (thedatasets are uWaveGestureLi-

brary X, uWaveGestureLibraryY, uWaveGestureLibraryZ). However handling this prob-

lem as a MTSC problem may provide better results by taking theinteraction between the

individual axes into account.

112

We transform the multiple time series representation to a univariate one by concatenat-

ing each axis as illustrated in Figure 47. This transformation provides desirable properties

for our approach. The interaction between the time series and their correlation are two im-

portant aspects for MTSC. Our tree based local importance generation scheme handles both

in efficient way. Interaction is naturally handled by RFs where correlation is not a problem

as RF works on the random subsets of the features. On the otherhand, the length of the

concatenated series can get larger as the number of time series increases but RFs can handle

large number of features with the random sampling of the features.

Local importance generation is the core component of TS-PD for classification of mul-

tivariate time series. TS-PD is modified slightly to handle multivariate case in our study.

Interval features are generated for each time series and concatenated, then regions of inter-

est for each axis are discovered. The rest of the algorithm isthe same as what is done for the

univariate time series with one difference. We consider thepatterns within the boundary of

each time series. Suppose a pattern that has one interval from each time series is generated

using the importance values, first interval in the pattern have to stay in the first time series

in the distance computation stage. Computing the distance of a pattern from one series to

different time series does not make sense.

This dataset has 896 training and 3582 test time series. Combining the three axes results

in a time series of length 945 time units. OOB and test error rates of TS-PD (w = 20, L =

5, 1000 trees) are 0.066 and 0.069 respectively. Considering the error rates provided in

Tables 12 and 13, the error rate reduces significantly if the task is taken as a multivariate

time series classification. Figure 48 provides the gesture vocabulary from [5] (bottom)

and important patterns from two classes. Two series from class 7 and 8 represents the

113

circular movement in opposite directions. Patterns extracted for these instances represent

the segments related to change in the direction during the circular movement. The change

is opposite in the sign for different classes which refers the circular movement in opposite

directions.

6.4. Logical-Shapelets and TS-PD

We compare the performance of TS-PD to Logical-Shapelets for certain datasets. In

order to be fair in terms of comparison, we set the parametersof logical shapelet algorithm

so that it will search for all possible shapelets. However wecould not achieve this because of

the computational requirements of the algorithm for certain datasets. Therefore we perform

this comparison based on a subset of the datasets. These datasets are Beef, CBF, Coffee,

ECG and Trace. Three parameters of Logical-Shapelets are the maximum and minimum

length of the shapelet and the step size. We set the maximum length as the time series

length, minumum as two and we take step size as one. This does not necessarily mean

that the best accuracy is obtained on the test set with this settings since the shapelets are

evaluated based on the training set. Moreover, we tested ouralgorithm on two additional

datasets discussed in [23]. These datasets are Cricket and Passgraphs. The explanations of

these datasets can be found in the original paper [23]. We do not tune the parameters of

our algorithm for the new datasets, we set (w = 6, L = 10, 2000 trees). We also do not

compare the algorithms in terms of computation time becausethe comparison depends to a

large extent on parameter settings. The results are provided in Table 17.

TS-PD has better or comparable performance on the datasets except for ECG dataset

(and TS-PD is still better than NNDTWNoWin on this data set).Recall that the parame-

ters of Logical-Shapelets are set so that it searches over the entire space which increases

114

TS-PD (OOB) TS-PD (Test) Logical-Shapelets NNDTWBestWin NNDTWNoWin
Beef 0.467 0.267 0.600 0.467 0.500
CBF 0.033 0.038 0.336 0.004 0.003

Coffee 0.000 0.036 0.071 0.179 0.179
ECG 0.130 0.190 0.140 0.120 0.230
Trace 0.023 0.017 0.530 0.010 0.000

Sony A.R. 0.150 0.065 0.036 0.305 0.275
Cricket 0.000 0.000 0.041 0.051 0.010

Passgraphs 0.261 0.260 0.298 0.260 0.282

TABLE 17. Error rates of Logical-Shapelets and TS-PD on 8 datasets. TS-PD has better or
comparable performance on the datasets except ECG.

the computational time significantly. Potentially equivalent accuracy can be obtained with

alternative settings on the parameters, but our objective here is to assess the accuracy. Also,

we do not provide the time for testing because both algorithms are very fast in classification.

7. Conclusion

A framework is presented to analysis of time series for classification. To find the inter-

esting regions of the time series for classification, a supervised learner is trained on the local

features to generate a local importance measure. Regions ofinterests are important to under-

stand the underlying relations in the time series. Once the regions of interests are identified

for each time series using the local importance values, potential patterns are generated from

these regions. This allows for pruning the search space without losing information about

the time series in an efficient way. Each time series is then represented by their distances to

the potential patterns and a new feature matrix of distancesis used for classification. TS-

PD is comprehensible and our experimental results show thatit gives comparable results

to competitive methods on the benchmark data sets from UCR time series database [85].

Although our focus in this study is on the classification of the time series, TS-PD can be

easily adjusted to other applications such as similarity analysis, clustering, and so forth.

115

Figure 42. Normalized local importance information on FacesUCR (left) and time series
of each class (right). The parameters are set asw = 20, d = 10.

116

Figure 43. The OOB error rates ofRFpattern over trees forw = 20, L = 4

117

Figure 44. First five important patterns of TS-PD (w = 20, d = 10, L = 3) represented
by blue dots (Gun-Point dataset), the order of the importance, id of the pattern and the
corresponding time series is provided in the titles of the plots, the last is the plot of the
training time series.

118

Figure 45. First five important patterns of TS-PD (w = 20, d = 10, L = 2) represented
by blue dots (Sony AIBO Robot), the order of the importance, id of the pattern and the
corresponding time series is provided in the titles of the plots, the last is the plot of the
training time series.

119

Figure 46. First five important patterns of TS-PD (w = 6, d = 3, L = 3) represented by
blue dots (Coffee), the order of the importance, id of the pattern and the corresponding time
series is provided in the titles of the plots, the last is the plot of the training time series.

Figure 47. Univariate representation of the accelerometer data.

120

Figure 48. Gesture vocabulary from [5] (bottom). Important patterns are illustrated for two
series of class 7 and 8 (top). The segments related to change in the direction during the
circular movement are discovered.

121

CHAPTER 5

MULTIVARIATE TIME SERIES CLASSIFICATION WITH LEARNED

DISCRETIZATION

1. Abstract

Multivariate time series (MTS) classification has receivedgreat interest over the past

decade with the increase in the number of temporal datasets in different fields, such as

medicine, finance and multimedia. Similarity based approaches such as nearest neighbor

classifiers with Dynamic Time Warping (DTW) are which are successfully used for clas-

sification of univariate time series however the similaritycomputation is unclear for mul-

tivariate data since MTS are not only described by the variables but their relation. These

approaches lose the relation among the variables of the series by breaking them into mul-

tiple univariate time series. Another strategy is to obtaina rectangular representation of

MTS by transforming the set of multivariate input sequencesto a fixed number of columns

using different rectangularization approaches such as principal component analysis. Most

of these approaches assume that the variables are numericalhowever certain variables of

the series can be nominal or missing.

In this paper, we follow a different approach and propose a symbolic representation

of MTS for classification. MTS observations are first discretized to obtain the symbolic

representation. Then, the distribution of the symbols overeach time series is computed

and used for classification. The relation of the individual variables is taken into account

with the proposed representation. Moreover, MTS with nominal and missing values are

handled efficiently with tree-based learners. An ensemble learner that scales well with

large number of variables and long time series is used. Our approach does not break MTS

into multiple univariate series which makes it computationally efficient when compared to

122

other approaches. Our experiments demonstrate the effectiveness of the proposed approach

in terms of accuracy and computation times in both univariate time series and MTS datasets.

Key words: supervised learning, multivariate time series,classification

2. Introduction

Similarity search and classification on time series databases has received great interest

over the past decade. Multivariate time series (MTS) classification is a supervised learning

problem in which the input consists of a set of training examples and associated class labels,

where each example is formed by one or more time series (variables). MTS data is common

in different fields, such as in medicine, finance and multimedia. Consider a patient’s medi-

cal record, there are information in the medical record frommultiple sources such as the test

values, observations, actions and related responses. Thisdata provides a complex character-

ization of the patient’s status and certain relations inherent in the records may be important.

Another example from multimedia applications is the motioncapture studies in which po-

sition of a set of joints from humans performing a series of task is tracked by markers [93].

Learning scientists are interested in electroencephalography (EEG), which is the record-

ing of electrical activity along the scalp to understand theperceived difficulty for a puzzle

solving task in a learning environment. Moreover, in the domain of relational marketing,

the behavior of customers is observed through time, and their interactions and responses

are represented as MTS. An application illustrated by [25] is about a telecommunication

company analyzing the customer’s loyalty using the information about the transactions of

each customer recorded along the time periods, described byduration, economic value and

number of calls of different type (i.e. cell to cell, cell to landline etc.).

123

There are several approaches proposed to classify MTS. As mentioned by [24], this

problem have been studied in different fields such as statistics, signal processing and con-

trol theory. We refer reader to [24] for an extensive review of these studies. The most

common approach is to obtain a rectangular representation of MTS by transforming the set

of multivariate input sequences to a fixed number of columns using different rectangulariza-

tion approaches [25]. For example, singular value decomposition (SVD) is used by [26–28].

Principal component analysis (PCA) is used for both featureselection and transformation

by [29]. Any supervised learner can be trained on the transformed data for classification.

Most of these approaches assume that the variables are numerical however certain variables

of the series can be nominal or missing.

Another strategy is to modify the similarity based approaches which are successfully

used for univariate time series. For example, [5, 94] focus on gesture recognition based

on dynamic time warping (DTW) distance. DTW [20] allows a measure of the similarity

independent of certain non-linear variations in the time dimension, and is considered as

a strong solution for time series problems [58]. Another approach that makes use of the

similarity of the series is to use kernel-based classifiers.These approaches find a kernel

function determined by pairwise similarities between the variables of MTS. [95] makes

use of kernels based on the dynamic time warping for brain activity classification. [25]

also proposes a temporal discrete SVM for MTS classification. Overall similarity between

the time series are taken into consideration through the objective function with a term that

depends on the warping distances [25].

The similarity based approaches are successful for univariate time series. However

MTS are not only described by the variables but their relation [30]. Therefore the relation

124

among the variables are lost if only the similarity between the individual variables are taken

into consideration [28]. Moreover as in telecommunicationapplication [25], observations

can be nominal (i.e. call type) for which similarity computation is not well-defined.

High dimensionality introduced by multiple variables and longer series is another im-

portant challenge for MTS classification. The number of computations required can in-

crease substantially with the increasing number of variables for similarity based approaches.

Also, approaches should scale well with the length of the time series, since the number of

observations can be large depending on the application.

High-level time series representations are proposed for different data mining tasks to

deal with high dimensionality introduced by longer time series [12]. These include Fourier

transforms, wavelets, piecewise polynomial models, etc and [96] provides a good summary

of these approaches. These representations are proposed for numerical time series. The

Symbolic Aggregate approXimation (SAX) [12] and more recently indexable SAX [97] is a

commonly used symbolic time series representation becauseof its simplicity and effective-

ness in univariate time series [98]. SAX divides the time series into same length segments

and each segment is represented by a symbol based on the mean value of the observa-

tions. The number of segments is called ”word size” [12]. This representation is similar

to Piecewise Aggregate Approximation (PAA) [99]. However,the symbols are assigned to

each segment assuming that the observed values are coming from a Gaussian distribution in

SAX. Based on the alphabet size (i.e. number of possible symbols), equiprobable intervals

are obtained using the Gaussian distribution assumption and the segments are represented

by the symbols. Figure 49 illustrates the idea of symbolic representation on univariate time

series data for which word size is 8 and alphabet size is 3.

125

Figure 49. SAX representation with a word size of 8 and alphabet size of 3

There are many time series classifiers based on symbolic representation. [98] proposes

a Bag-of-Patterns approach that makes use of SAX representation for univariate time series.

For each time series, words are generated by combining symbols using a sliding window

approach to capture the patterns over time. Each time seriesis then represented by the fre-

quency of the words and nearest neighbor classifiers are usedto classify test series. For

MTS data, two alternative representations illustrated in Figure 50 are commonly consid-

ered. MTS withM variables andT observations can discretized to obtain 1D representation

using vector quantization approaches similar to the representation obtained for univariate

series [100]. Alternatively, each variable of MTS can be discretized and combined to ob-

tain 2D representation of MTS. [101] presents two MTS representations based on SAX to

classify physiological data. They generate multivariate words by combining the symbols of

each variable at particular time and uses Bag-of-Patterns approach to classify MTS. This

representation is called multivariate Bag-of-Patterns and it may capture the relationship be-

tween the time series by combining individual representations. However, the length of the

words obtained by concatenating the symbols of the variables for each segment may in-

crease substantially as the number of variables increase. This potentially affects the quality

126

of the information since longer words will carry less information (i.e. curse of dimension-

ality). Also, the represantation is not sensitive to dilations and translations of the patterns

since words are combined at particular time. They also propose stacked Bags-of-Patterns

that concatenates the representation of multiple univariate series into a single one. However,

this representation does not take the relationship betweenthe variables into account.

Figure 50. Alternative representations for MTS. MTS withM variables andT observations
are mapped to 1D representation by the functiong1D (left) or 2D representation in which
each variable of MTS mapped to 1D representation byg2D (right). Although the length
of the symbolic representation is provided to be the same asT , it can be smaller based on
the mapping strategy. Similarly, 2D representation may also have fewer columns thanM
depending on the mapping.

[93] is another study working on finding predictive patternsfor MTS based on SAX

representation. This approach considers each variable of MTS separately and generates a

2D representation. Salient variables of MTS are identified first by using certain statistical

performance measures efficiently computed using intelligent data structures such as the trie

described in [102]. Then predictive patterns are identifiedfor each variable. Rules for clas-

sification based on predictive patterns are then searched onthe combined set of patterns

from individual variables. Identification of patterns on each individual variable without

taking other variables into consideration makes this approach greedy since the relation be-

127

tween the variables may carry the real description of a complex system [30]. Although

the patterns are combined later to account for the relationships with this approach, there

is a potential to miss a certain pattern that may appear unimportant when time series are

considered separately in the first step.

In this paper, we propose an approach to obtain a one-dimensional symbolic representa-

tion of MTS (S-MTS) for classification. As opposed to SAX, S-MTS labels each observa-

tion instead of the segments of the time series. Observations are discretized in a supervised

manner using tree learners to obtain the symbolic representation. To achieve this, each ob-

servation is considered to be an instance and the label is assumed to be the same as its time

series. Observed value for each variable of MTS and the time index are the features for

each instance. In other words, there is no feature extraction, the observed value is used as

the feature and we fuse the local information by introducingobservation time as a feature of

the instance. This way, we form a matrix of these features where rows represent the obser-

vation and columns are the observed values and the time of theobservation. Tree learners

are then trained on this representation to partition the observation space. The terminal node

of the trained tree is considered to be a symbol in S-MTS. Figure 52 illustrates the idea of

discretization on three univariate time series provided inFigure 51. Partitioning obtained

from each tree is used as the symbols. This representation allows S-MTS to consider all

variables of MTS simultaneously. Consequently, the distribution of the symbols over each

time series is computed and used for classification. The symbols are locality sensitive since

the observation times are used as features as schematized inFigure 52(a).

[24] also discusses necessity of alternative representations for MTS classification. A

concept called metafeature is introduced and used to represent MTS series by [24]. How-

128

ever metafeatures must be defined by users in this approach. One of the metafeatures dis-

cussed in the paper is based on partitioning of the feature space using Voronoi tiling. Each

region of the Voronoi diagram is used as a metafeature. The partitioning is not supervised

in this approach and also designing a good metafeature is notan easy task as mentioned

by [24].

[103] proposes a similar approach for multidimensional curve classification. They

discretize the observations space of each variable separately as in the existing MTS classifi-

cation methods based on the symbolic representations. Eachvariable of MTS is partitioned

into the rectangular regions of equal dimensions. Then the classification rules are discov-

ered based on the common regions through which only curves ofone class pass. Their

proposed approach has similarities to [93] in terms of the discretization and rule genera-

tion. Since the discretization does not consider the variables simultaneously and rules are

discovered based on each individual variable, there is a potential to miss the interaction

of the variables. Also both approaches require modifications to handle the categorical and

missing data.

There are some similarities of our approach with [56] in terms of the discretization

process. [56] proposed Extremely Randomized Clustering Forests (ERC-Forests) for image

classification problems. Trees are trained on the features extracted from image patches in

a supervised manner and the terminal nodes are considered tobe individual clusters. An

image is represented as the histogram of the cluster id of thepatches segmented from the

images (visual codebook) and any supervised learner can be trained on the visual codebook.

Unlike [56], we do not generate features. We train the trees to discretize each observation.

Although [56] works on images and locality may be important,they do not consider the

129

location information as a feature during the tree learning.Instead, they proposed saliency

maps for identifying important locations of the images.

S-MTS generates a symbolic representation for MTS classification using supervised

learning. The interactions between the variables of MTS arehandled efficiently with a tree

based discretization approach. Moreover, MTS with nominaland missing values are han-

dled efficiently with tree learners. An ensemble learner that scales well with large number

of variables and long time series is used. Although the proposed symbolic representation is

of the same length as the time series, it does not generate multiple representations for each

variable of MTS. Therefore S-MTS scales well with the numberof variables of MTS which

makes it computationally efficient when compared to other approaches. Our approach can

handle MTS examples with different length and it does not require a special rectangu-

larization mechanism since the representation is simply obtained by the frequency of the

symbols over the time series. Any learner can be trained on the features representing the

frequency of each symbol over each time series in our framework. Moreover, this symbolic

representation can be used by any document classification approach as used by [98]. Our

experiments demonstrate the effectiveness of the proposedapproach in terms of accuracy

and computation times in both univariate time series and MTSdatasets.

The remainder of this paper is organized as follows. Section3 provides background and

related work. We summarize the problem and describe the framework in Section 4. Section

5 demonstrates the effectiveness and efficiency of our proposed approach by testing on a

full set of benchmark univariate time series datasets from UCR time series database [76]

and MTS datasets from [104,105]. Conclusions are drawn in Section 7.

130

3. Background

Decision tree learners are comprehensible models with satisfactory accuracy and are

successfully used in many applications. Univariate trees such as CART [106] and C4.5 [4]

split data based on only one variable at each node, and thus are limited to splits that are

orthogonal to the variable’s axis [107].

Tree ensembles are proposed to avoid from the greedy nature of univariate trees. A

random forest (RF) classifier [57] is used here to partition the feature space. A RF is an en-

semble ofJ decision trees,{gj , j = 1, 2, . . . , J}. Each tree is constructed from a different

bootstrap sample of the original data. The instances left out of a bootstrap sample and not

used in the construction of a single tree are called out-of-bag (OOB) instances.

At each node of each tree, a RF considers the best split based on only a random sample

of features. Often, the sample size is
√
ν, whereν is the number of features. The random

selection reduces the variance of the classifier, and also reduces the computational com-

plexity of a single tree fromO(νη log η) to O(
√
νη log η) (assuming the depth of tree is

O(log η) whereη is the number of training (in-bag) instances). Therefore, for a large num-

ber of features and instances, a RF can be as computationallyefficient as a single decision

tree.

The prediction for instancex from treegj is ŷj(x) = argmaxc p
c
j(x), wherepcj(x) is

the proportion of classc in the corresponding leaf of thej-th tree, forc = 0, 1, . . . , C − 1.

Let G(x) denote the set of all trees in the RF where instancex is OOB. The OOB class

probability estimate ofx is

pc(x) =
1

|G(x)|
∑

gj∈G(x)

I(ŷj(x) = c)

131

whereI(·) is an indicator function that equals one if its argument is true and zero other-

wise. The predicted class iŝy(x) = argmaxc p
c(x). The estimates computed from OOB

predictions are easily obtained and have been shown to be good estimates of generalization

error [57].

RF provides a number of desirable properties for the time series problem. High-

dimensional feature spaces, nominal features, multiple classes, and missing values are han-

dled. Nonlinear models and interactions between features are allowed. It is scale invariant

and robust to outliers, and computations are reasonable even for large data sets.

4. Approach

A multivariate time series,Xn, is anM -variable time series each of which hasT obser-

vations wherexnm is themth variable andxnm(t) denotes the observation at timet. Formally,

MTS exampleXn is represented byT ×M matrix as:

Xn = [xn1 , x
n
2 , . . . , x

n
m, . . . , xnM]

where

xnm = [xnm(1), xnm(2), . . . , xnm(T)]
′

There areN training MTS, each of which is associated with a class labelyn, for n =

1, 2, . . . , N andyn ∈ {0, 1, 2, ..., C − 1}. Given a set of unlabeled MTS, the task is to map

each MTS to one of the predefined classes. Univariate time series is a special case of MTS

whereM is equal to one. In the following sections, the definitions assume that all variables

of MTS are numerical unless stated otherwise.

132

4.1. Time Series Discretization using Tree-Based Classifiers

We propose a method to discretize MTS using an ensemble of tree learners. Instead of

extracting features from each time series, each observation is considered to be an instance

in our approach. This is achieved by creating a matrix of instancesDNT×M where

DNT×M =

x11 x
1
2 . . . x1M

x21 x
2
2 . . . x2M

.

.

xN1 xN2 . . . xNM

which is the concatenation of training MTS as illustrated inTable 18. We assume that

the label of each instance is the same as the time series and use a supervised approach to

discretize the feature space. The features are obtained by mappingDNT×M to the feature

spaceΦNT×(2M+1). In other words, the rowi of DNT×M is a set of observations at certain

time pointti. Letdij be theijth entry of the matrixDNT×M which is basically the observed

variablej for instancei. Then the rowi of ΦNT×(2M+1) is:

[

ti, di1, di1 − d(i−1)1, di2, di2 − d(i−1)2, . . . , diM , diM − d(i−1)M

]

The first feature is the time index. Then for each variable, wegenerate two features

and concatenate them over the variables. The first one is the observation itself where the

difference between consecutive time points is the second feature. Figure 52(a) illustrates

the time and observation feature on a 2D plot for the three univariate time series in Figure

51. The difference between consecutive time points captures the information about the

133

trend in the time series which might be important to classification. Suppose a time series

constantly increases after certain time point which will result in positive differences. A tree

learner can capture this information if the increase is related with the class. This difference

is not available for the first observation of MTS which is assumed to be missing in our

representation.

Series Time Index Pressure Temperature EnergyClass
1 1 2.70 80.50 4.50 1
1 2 3.20 78.40 6.70 1
1 3 4.20 67.90 3.40 1
1 4 8.20 89.50 7.20 1
1 5 8.90 85.70 5.70 1
2 1 10.01 88.00 5.05 0
2 2 11.28 89.94 5.04 0
2 3 12.54 91.19 5.04 0
2 4 13.81 93.25 5.01 0
3 1 16.34 97.54 5.02 1
3 2 17.61 99.66 5.01 1
3 3 18.87 101.60 4.90 1
3 4 20.14 103.54 4.95 1
3 5 22.67 107.43 4.95 1
3 6 21.15 106.50 4.97 1

TABLE 18. Sample database with 3 MTS from 2 classes (1,0 and 1 respectively). There
are three observed variables (M = 3): pressure, temperature and energy. The series are of
length 5,4 and 6 respectively.

If observations are nominal, only the time point of the observation and the observation

itself are considered to be features. For both numerical andnominal values, there may exist

missing values. Missing values are handled by the tree learners in our approach. Also, the

number of observations may differ across different MTS.

After obtaining the features, tree learners are trained onΦNT×(2M+1) assuming that

each instance has the same class label as its time series. This way, each instance of

ΦNT×(2M+1) is mapped to a terminal node of the treegj . This RF is referred asRFins

(RandomForest trained on theinstances). Although the trees of RF without any modi-

134

fication are unpruned, we restrict the number of terminal nodes of each tree toR which

determines the alphabet size in our approach. Second parameter is the number of trees of

RFins given byJins. Each tree ofRFins provides a symbolic representation for the time

series.

4.2. Classification

A Bag-of-Words approach is used to classify the time series based on the symbolic

representations described by each tree ofRFins. However there is no word generation

process in the proposed approach. Each symbol is simply considered to be a word and the

frequency of the symbols are used to classify the time series. The frequency vector is de-

fined by the number of symbol occurences in the representation. This vector is normalized

by the number of observations.

Formally, letHj(X
n) be theR × 1 frequency vector of the terminal nodes from the

representation defined by treegj for MTSXn. We concatenate the frequency vectors from

each of theJins trees ofRFins (i.e. Hj(X
n)) to obtain the final representation of each

time series. This representation is of lengthR×Jins assuming that each treegj providesR

symbols. Figure 53 illustrates the representation of time series based on symbol frequencies

R = 4. Since each tree ofRFins is trained on a random subsample of features and

instances, the final representation includes different views of the same time series.

A classifier is then trained on the symbol frequencies computed for each time series.

The frequency representation can be large based on the setting ofR andJins. Therefore, a

scalable classifier that can handle interactions and correlations such as RF is preferred for

this task. This RF is referred asRFts (RandomForest trained on thetimeseries) for which

we trainJts trees.

135

To classify a test series, the frequency representation is obtained after generating the

features and traversing the trees ofRFins. Then traversing the trees ofRFts based on the

frequency representation provides the classification result.

5. Experiments and Results

We test our approach on both univariate and MTS datasets. Ouralgorithm does not

require the setting of many parameters and it is robust to thesettings. The number of trees

trained to obtain the symbolic representation (Jins) and the alphabet size (R) are two im-

portant parameters of the algorithm. The levels consideredfor each parameter are provided

in Table 19 for each time series type. Larger levels are introduced for MTS classification in

order not to lose potential information with larger number of variables of MTS.

Time Series
Parameter Univariate Multivariate
Jins {25, 50, 100} {50, 100}
R {5, 10, 25, 50} {50, 100, 200}

TABLE 19. Parameter settings of TSBF

RF is insensitive to both the number of trees and the number ofcandidate attributes

scored to potential split a node [57].Jts can be determined based on the progress of OOB

error rates over trees. The number of features evaluated at each node of the tree is set to

the default which equals the approximate square root of the number of features. There are

2 × M + 1 features forRFobs assuming that all variables are numerical. The number of

features areR× Jins for RFts.

To set the parameters of S-MTS for each dataset, the algorithm is run 10 times with dif-

ferent seeds for eachJins andR combinations. Once the final representation fromRFins

obtained,Jts is set based on the progress of the OOB error rates fromRFts. The mean

136

and the standard deviation of OOB error rates from 10 replications are used to determine

Jts. In our experiments, the error rates at discreteJts levels which are multiples of 50 trees

are considered. We add more trees toRFts if the mean OOB error rate improves at least

one standard deviation from the mean OOB error rate from previous level. Figure 54 (left

column) illustrates how the OOB error rate for Non-InvasiveFetal ECG Thorax1 dataset

changes asJts increases. The marginal gain becomes insignificant after certain Jts for all

Jins andR combinations. The aim of using such a criterion is to obtain the least complex

model.

After settingJts, R andJins are chosen based on the size of the representation which

is R× Jins. Starting from the smallestR× Jins, we search for the smallest representation

providing the best OOB error rate based on the same decision criterion used for settingJts

(i.e. one deviation difference). DifferentR andJins settings may provide the sameR×Jins.

We basically selectR andJins combination providing the minimum mean OOB error rate

in such cases. The aim is to obtain a compact representation of the time series. The model

with selected parameters is used for the classification of the test time series.

5.1. Univariate Time Series

45 univariate time series from [76] are used to illustrate the effectiveness of our ap-

proach for univariate time series classification. The dataset characteristics are given in

Table 20. This is a good testbed with diverse characteristics such as length of the series,

number of classes etc. which enables a comprehensive evaluation.

We compare the error rates on the test data to nearest neighbors (NN) classifiers with

DTW. Two versions of DTW are considered: NNDTWBestWin [17] searches for the best

warping window, based on the training data, then uses the learned window on the test data,

137

while NNDTWNoWin has no warping window. Note that DTW is a strong solution for

time series problems in a variety of domains [58]. The error rates for nearest neighbor

classifiers are obtained from [76]. We also compare our approach to NN classifier based

on Bag-of-Patterns representation by [98]. This comparison is done on a subset of datasets

since [98] reports results on 20 of the datasets. Tables 21 and 22 summarizes the results of

each algorithm. Last row compares our classifier based on thenumber of wins/losses/ties

for the algorithm on the column. Our algorithm performs better than NNDTWBestWin and

NNDTWNoWin for 32 and 31 of the datasets where it has lower error rates for 12 out of 20

datasets when compared to NN classifier based on Bag-of-Patterns representation by [98].

Moreover, selected model parameters are provided in Tables21 and 22.

138

of Dataset Size
classes Train Test Length

50Words 50 450 455 270
Adiac 37 390 391 176
Beef 5 30 30 470
CBF 3 30 900 128

Coffee 2 28 28 286
ECG 2 100 100 96

Face (all) 14 560 1,690 131
Face (four) 4 24 88 350

Fish 7 175 175 463
Gun-Point 2 50 150 150
Lighting-2 2 60 61 637
Lighting-7 7 70 73 319

OliveOil 4 30 30 570
OSU Leaf 6 200 242 427

Swedish Leaf 15 500 625 128
Synthetic Control 6 300 300 60

Trace 4 100 100 275
Two Patterns 4 1,000 4,000 128

Wafer 2 1,000 6,174 152
Yoga 2 300 3000 426

ChlorineConcentration 3 467 3,840 166
CinC ECG torso 4 40 1,380 1,639

Cricket X 12 390 390 300
Cricket Y 12 390 390 300
Cricket Z 12 390 390 300

DiatomSizeReduction 4 16 306 345
ECGFiveDays 2 23 861 136

FacesUCR 14 200 2,050 131
Haptics 5 155 308 1,092

InlineSkate 7 100 550 1,882
ItalyPowerDemand 2 67 1,029 24

MALLAT 8 55 2,345 1,024
MedicalImages 10 381 760 99

MoteStrain 2 20 1,252 84
SonyAIBORobot Surface 2 20 601 70

SonyAIBORobot SurfaceII 2 27 953 65
StarLightCurves 3 1,000 8,236 1,024

Symbols 6 25 995 398
TwoLeadECG 2 23 1,139 82

uWaveGestureLibraryX 8 896 3,582 315
uWaveGestureLibraryY 8 896 3,582 315
uWaveGestureLibraryZ 8 896 3,582 315

WordsSynonyms 25 267 638 270
Non-Invasive Fetal ECG Thorax1 42 1,800 1,965 750
Non-Invasive Fetal ECG Thorax2 42 1,800 1,965 750

TABLE 20. Characteristics of the univariate time series: number of classes, number of
training instances, number of testing instances, and length of time series.

139

0 20 40 60 80 100 120

−
2

−
1

0
1

2
3

(a) Cylinder

0 20 40 60 80 100 120
−

2
−

1
0

1
2

3

(b) Bell

0 20 40 60 80 100 120

−
2

−
1

0
1

2
3

(c) Funnel

Figure 51. One time series of each class from CBF dataset.

140

(a) Feature Space

(b) Decision Tree

Figure 52. The feature space and the partitions (symbols) from the decision tree

141

Figure 53. A visual example of the representation based on symbol frequencies. Each col-
umn denotes a symbol from a tree ofRFins (R = 4), and each row denotes a multivariate
time series.

142

OOB Test Nearest Neighbor (NN)DTW
Jins R Jts Mean Mean Min Max BestWin NoWin BOP

50Words 100 50 400 0.315 0.286 0.270 0.299 0.242 0.310 0.466
Adiac 100 50 300 0.260 0.241 0.228 0.266 0.391 0.396 0.432
Beef 50 25 200 0.227 0.270 0.200 0.333 0.467 0.500 0.433
CBF 25 50 50 0.030 0.031 0.019 0.048 0.004 0.003 0.013

Coffee 25 10 50 0.021 0.014 0.000 0.036 0.179 0.179 0.036
ECG 25 5 400 0.120 0.168 0.140 0.200 0.120 0.230 0.150

Face (all) 100 10 400 0.124 0.185 0.165 0.198 0.192 0.192 0.219
Face (four) 100 50 200 0.142 0.130 0.114 0.182 0.114 0.170 0.023

Fish 50 50 350 0.141 0.153 0.126 0.177 0.160 0.167 0.074
Gun-Point 25 10 50 0.018 0.027 0.020 0.047 0.087 0.093 0.027
Lighting-2 25 50 50 0.153 0.267 0.213 0.295 0.131 0.131 0.164
Lighting-7 25 10 150 0.247 0.281 0.247 0.315 0.288 0.274 0.466

OliveOil 25 25 50 0.190 0.187 0.133 0.300 0.167 0.133 0.133
OSU Leaf 25 25 400 0.285 0.382 0.355 0.409 0.384 0.409 0.256

Swedish Leaf 25 50 300 0.101 0.086 0.078 0.093 0.157 0.210 0.198
Synthetic Control 100 50 500 0.016 0.022 0.007 0.040 0.017 0.007 0.037

Trace 25 10 50 0.003 0.000 0.000 0.000 0.010 0.000 0.000
Two Patterns 100 5 200 0.000 0.001 0.001 0.002 0.002 0.000 0.129

Wafer 25 5 50 0.000 0.000 0.000 0.000 0.005 0.020 0.003
Yoga 100 50 200 0.063 0.085 0.066 0.109 0.155 0.164 0.170

win/lose/tie over first 20 datasets 13/7/0 13/6/1 12/7/1

TABLE 21. Selected parameters based on OOB error rates. OOB error and test error rates. Error rates for nearest-neighbor classifiers
with dynamic time warping distance and Bag-of-Patterns representation with the Euclidean distance

143

OOB Test Nearest Neighbor (NN)DTW
Jins R Jts Mean Mean Min Max BestWin NoWin

ChlorineConcentration 50 25 450 0.278 0.326 0.316 0.335 0.350 0.352
CinC ECG torso 25 50 200 0.038 0.110 0.096 0.129 0.070 0.349

Cricket X 50 50 400 0.225 0.289 0.272 0.297 0.236 0.223
Cricket Y 25 50 400 0.258 0.289 0.274 0.300 0.197 0.208
Cricket Z 50 50 500 0.254 0.253 0.238 0.267 0.180 0.208

DiatomSizeReduction 50 10 50 0.088 0.055 0.026 0.095 0.065 0.033
ECGFiveDays 100 10 250 0.087 0.182 0.143 0.214 0.203 0.232

FacesUCR 100 50 150 0.107 0.155 0.146 0.163 0.088 0.095
Haptics 25 25 150 0.405 0.501 0.481 0.523 0.588 0.623

InlineSkate 25 25 250 0.493 0.543 0.500 0.571 0.613 0.616
ItalyPowerDemand 50 50 50 0.037 0.037 0.028 0.052 0.045 0.050

MALLAT 100 50 450 0.038 0.052 0.045 0.059 0.086 0.066
MedicalImages 50 25 300 0.230 0.250 0.238 0.263 0.253 0.263

MoteStrain 25 10 250 0.005 0.055 0.044 0.068 0.134 0.165
SonyAIBORobot Surface 25 5 50 0.035 0.187 0.146 0.240 0.305 0.275

SonyAIBORobot SurfaceII 25 5 50 0.081 0.138 0.100 0.189 0.141 0.169
StarLightCurves 25 50 200 0.025 0.023 0.021 0.025 0.095 0.093

Symbols 25 25 50 0.100 0.056 0.030 0.101 0.062 0.050
TwoLeadECG 100 50 250 0.000 0.022 0.017 0.029 0.132 0.096

uWaveGestureLibraryX 50 50 200 0.182 0.175 0.166 0.183 0.227 0.273
uWaveGestureLibraryY 50 50 150 0.225 0.252 0.246 0.257 0.301 0.366
uWaveGestureLibraryZ 25 50 100 0.238 0.246 0.238 0.256 0.322 0.342

WordsSynonyms 25 25 200 0.369 0.407 0.390 0.426 0.252 0.351
Non-Invasive Fetal ECG Thorax1 25 50 300 0.117 0.107 0.099 0.112 0.185 0.209
Non-Invasive Fetal ECG Thorax2 50 50 200 0.084 0.077 0.074 0.083 0.129 0.135

win/lose/tie over all 45 datasets 32/13/0 31/13/1

TABLE 22. Selected parameters based on OOB error rates (continued). OOB error and test error rates. Error rates for nearest-neighbor
classifiers with dynamic time warping distance.

144

5.2. Multivariate Time Series

We test our proposed approach on datasets from different applications such as speech

recognition, activity recognition, medicine and etc. 15 MTS from [76, 104, 108, 109] are

used to illustrate the performance of our approach. The dataset characteristics are given in

Table 23. We randomly selected train and test samples if there is no default train/test split

provided for the datasets. Datasets are described in Section 6 and available in [110].

These datasets are commonly used to evaluate MTS classifiers. However, due to the

high number of classes, some studies downsample certain datasets to fewer classes or in-

stances (i.e. [28] uses instances from 25 classes of AUSLAN). Moreover, some algorithms

preprocess the data for different purposes such as smoothing or obtaining an appropriate

representation (i.e. [28, 30] truncates some datasets to obtain time series of same length).

We compare S-MTS to the approaches using whole dataset without any preprocessing.

of # of Dataset Size
classes variables Length Train Test CV Source

AUSLAN 95 22 45-136 1140 1425
10-fold [104]Pendigits 10 2 8 300 10692

Japanese Vowels 9 12 7-29 270 370
Robot Failure

LP1 4 6 15 38 50

5-fold [104]
LP2 5 6 15 17 30
LP3 4 6 15 17 30
LP4 3 6 15 42 75
LP5 5 6 15 64 100

ECG 2 2 39-152 100 100
10-fold [109]

Wafer 2 6 104-198 298 896
CMU MOCAP S16 2 62 127-580 29 29 10-fold [108]

ArabicDigits 10 13 4-93 6600 2200 ×
[104]CharacterTrajectories 20 3 109-205 300 2558 ×

LIBRAS 15 2 45 180 180 ×
uWaveGestureLibrary 8 3 315 200 4278 × [76]

TABLE 23. Characteristics of MTS: number of classes, number of variables, length of
time series, number of training instances and number of testing instances. Column ”CV”
provides if comparison is also done based on the cross-validation. The source of the datasets
are in the last column. Test performance is also reported forall datasets.

145

Most of the studies working on MTS classification follow a different strategy for exper-

imentation which makes the comparison of the approaches difficult. For instance, [25,111]

evaluates the performance using cross-validation. To havea fair comparison with the com-

petitor algorithms, we also follow their experimentation strategy and discuss the perfor-

mance of the approaches. The datasets for which CV is performed are given in Table 23.

Before doing the cross validation, we combine the training and test data to obtain a single

dataset. Our cross validation scheme is similar to the one recommended by [112]. We first

divide the dataset intok subsets wherek changes based on the number of instances. To

set the parameters for each fold, each parameter combination is run on the training fold

five times and the parameters are set based on the OOB error rates using the same decision

criterion discussed in Section 5. Once the parameters are tuned through this process, the

classification of the test instances of the fold are performed. We also run the main cross

validation five times to obtain a reasonable estimate of the performance of our algorithm.

NN classifiers (k ∈ {1, 3, 5}) with DTW distance are considered for comparisons with

S-MTS on the test data. Each time series is standardized to have a mean of zero and a

standard deviation of one before distance computation. Suppose DTW distance between

univariate seriesx1m andx2m is defined byDTW (x1m, x2m) then the DTW distance between

two MTS,X1 andX2, dist(X1,X2) is computed as:

dist(X1,X2) =
M
∑

m=1

DTW (x1m, x
2
m)

Table 24 summarizes the results from our cross-validation experiments and reported

error rates from other papers. S-MTS performs better when compared to the classification

approaches considered by [25]. [111] reports the error rates for nearest neighbor classifiers

146

with DTW distance. S-MTS outperforms the similarity based approaches for two of the

datasets. The best error rate for AUSLAN reported by [24] is from an ensemble of 11

different classifiers trained on the extracted metafeatures. S-MTS performs equally well for

this particular dataset. S-MTS and predictive motif discovery approach from [93] provide

perfect accuracy for the motion capture dataset.

[25] NNDTW (k=3) [111] Tclass [24] [93]
S-MTS TDVM SVMDTW 1NNWD NoWin BestWin Voting Motif

Japanese Vowels 0.029 0.034 0.054 0.077
Pendigits 0.013 0.037 0.066 0.055
Robot Failure

LP1 0.095 0.148 0.182 0.182
LP2 0.355 0.362 0.362 0.404
LP3 0.223 0.319 0.342 0.383
LP4 0.056 0.145 0.128 0.137
LP5 0.263 0.329 0.379 0.348

ECG 0.147 0.189 0.172
Wafer 0.011 0.091 0.066
AUSLAN 0.025 0.021
CMU MOCAP S16 0.000 0.000

TABLE 24. Cross-validation error rates for S-MTS (10 replications).Best cross-validation
error rates reported by other MTS classification papers.

The error rates on the test data for S-MTS and nearest neighbor classifier with DTW

distance are given in Table 25. The datasets are sorted basedon the number of variables to

illustrate the effectiveness of S-MTS. S-MTS provides better results for the datasets with

larger number of variables where the performance is comparable for the remaining datasets.

S-MTS performs equally well ArabicDigits and Japanese Vowels dataset when compared

the other studies in the literature.

6. Description of MTS datasets

The description of each dataset is provided to illustrate the range of the application areas

for which S-MTS can be employed.

147

OOB S-MTS NNDTW-NoWin
Jins R Jts mean mean min max k=1 k=3 k=5 Other

CMU MOCAP S16 50 50 50 0.000 0.003 0.000 0.034 0.069 0.138 0.172
AUSLAN 50 200 200 0.022 0.047 0.034 0.060 0.238 0.246 0.222
ArabicDigits 100 50 500 0.030 0.064 0.062 0.068 0.092 0.075 0.075 0.069 by [113]
Japanese Vowels 50 100 300 0.018 0.026 0.016 0.032 0.351 0.357 0.351 0.032 by [64,114]

0.059 by [103]
Robot Failure

LP1 50 50 50 0.084 0.160 0.120 0.220 0.280 0.240 0.400
LP2 100 100 300 0.094 0.227 0.167 0.267 0.467 0.567 0.567
LP3 50 50 100 0.271 0.243 0.167 0.333 0.500 0.533 0.567
LP4 50 50 50 0.062 0.113 0.067 0.133 0.187 0.160 0.187
LP5 50 100 450 0.156 0.350 0.310 0.390 0.480 0.530 0.570

Wafer 100 200 400 0.019 0.024 0.018 0.031 0.023 0.034 0.040
CharacterTrajectories 100 50 250 0.032 0.040 0.037 0.044 0.040 0.054 0.061
uWaveGestureLibrary 50 100 450 0.044 0.084 0.081 0.086 0.071 0.083 0.087
LIBRAS 50 200 200 0.101 0.114 0.100 0.133 0.200 0.217 0.289
ECG 100 50 200 0.086 0.204 0.190 0.220 0.150 0.190 0.190
Pendigits 50 50 150 0.050 0.084 0.078 0.088 0.088 0.111 0.125

TABLE 25. Test error rates for S-MTS (10 replications), nearest-neighbor classifiers with
dynamic time warping distance. Best error rates reported byother MTS classification pa-
pers.

6.1. Arabic speech recognition

[113] introduces a learning method for a graphical probabilistic model for discrete

speech recognition. To evaluate their approach, a dataset of size 8800 time series of 13

Frequency Cepstral Coefficients (MFCCs) are created. The experiment involved 44 males

and 44 females Arabic native speakers between the ages 18 and40 to represent ten spoken

Arabic digit. Each person has 10 repetitions of each digit. In their experiments, the dataset

is divided into two parts: a training set with 75% of the samples and a test set with 25%

of the samples. The reported error rates on the test data are 0.0688 and 0.0690 for two

approaches proposed by [113].

6.2. Japanese Vowels

Utterances of two Japanese vowels by nine male speakers are collected for this dataset

[103]. For each utterance, 12-degree linear prediction analysis is applied to obtain a

discrete-time series with 12 linear predictive coding (LPC) cepstrum coefficients. This

148

forms a time series whose length is in the range 7-29 and each point of a time series is of

12 variables for each utterance.

6.3. Pen-Based recognition of handwritten digits

[115] create a digit database using a tablet that sendsx andy tablet coordinates and

pressure level values of the pen at a sampling rate of 100 miliseconds. Only (x, y) coordi-

nate information is used for digit recognition. A MTS of 8 time units with two variables is

then used to classify the digits.

6.4. ECG

The ECG database comprises a collection of time-series datasets where each file con-

tains the sequence of measurements recorded by one electrode during one heartbeat. Each

heartbeat has an assigned classification of normal or abnormal. All abnormal heartbeats are

representative of a cardiac pathology known as supraventricular premature beat.

6.5. Robot execution failures

This dataset contains force and torque measurements on a robot after failure detection

[116]. Each failure is characterized by 15 force/torque samples collected at regular time

intervals. Five datasets are introducted for different learning problems for these dataset:

• LP1: failures in approach to grasp position.

• LP2: the failures in transfer of a part.

• LP3: position of part after a transfer failure

• LP4: failures in approach to ungrasp position

149

• LP5: failures in motion with part

6.6. Wafer

The wafer database comprises a collection of time-series data sets where each file con-

tains the sequence of measurements recorded by one vacuum-chamber sensor during the

etch process applied to one silicon wafer during the manufacture of semiconductor micro-

electronics. Each wafer has an assigned classification of normal or abnormal. The abnormal

wafers are representative of a range of problems commonly encountered during semicon-

ductor manufacturing.

6.7. Australian sign language (AUSLAN)

Australian sign language (AUSLAN) is the language used by the Australian communi-

ties with hearing disabilities [24]. Two gloves with magnetic position trackers are used to

collect the data. Each hand generates 11 features which consist 3 measures of orientation

(roll, pitch, yaw), 3 measures of position (x,y,z) and 5 measures of finger bends. MTS is

obtained by combining the features of both hand updated at 100 frames per second. 27

samples of 95 signs results a dataset of size 2565 signs.

6.8. Brazilian sign language (LIBRAS)

[117] introduces a dataset to recognize the movement types in LIBRAS (official Brazil-

ian sign language). The hand movement is represented as a bidimensional curve performed

by the hand in a period of time. There are 15 movement types andthe centroid pixels of the

hand are found, which compose the discrete version of the curve with 45 points. This way,

a movement is described by a MTS of length 45 time units with 2 variables.

150

6.9. Character trajectories

The data consists of 2858 character samples. Each charactersample is a 3-dimensional

pen tip velocity trajectory. Multiple, labelled samples ofpen tip trajectories recorded whilst

writing individual characters. All samples are from the same writer, for the purposes of

primitive extraction. Only characters with a single pen-down segment were considered.

6.10. Motion recognition-CMU MOCAP S16

The CMU Motion Capture database [108] provides MTS datasetsthat provides the

position information of a sets of joints from humans performing certain tasks. We consider

the data from Subject 16 since it is one of the few datasets that has sufficient examples

for illustration. The task is to predict if subject is walking or running. The data has the

information from 62 different joint positions recorded fora varying amount of data [93].

6.11. Gesture recognition-uWaveGestureLibrary

A single three-axis accelerometer is used to collect data from eight users to characterize

eight gesture patterns. The library, uWaveGestureLibrary, consists over 4000 samples each

of which has the accelerometer readings in three dimensions(i.e. x, y and z) [5]. Individual

axes are considered in Section 5.1 for the univariate case (the datasets are uWaveGestureLi-

brary X, uWaveGestureLibraryY, uWaveGestureLibraryZ). However handling this prob-

lem as a MTS classification problem may provide better results by taking the interaction

between the individual axes into account.

151

6.12. Sensitivity Analysis

The univariate dataset Non-Invasive Fetal ECG Thorax1 dataset is used to discuss the

convergence properties of S-MTS. It provides reasonable number of training and test time

series. Moreover, it has large number of classes and longer series compared to the other

datasets. Although one dataset is used for the illustration, similar discussion in terms of

S-MTS behavior holds for other datasets. The boxplot of OOB and test error rates are

provided in Figure 54 to illustrate how S-MTS performs with each setting combination

over multiple trees (confidence intervals are for 95% significance level). We add the results

for R = 100 for the givenJins settings to further investigate the behavior of S-MTS.

The error rates become more stable when time series are represented by larger number

of trees and/or more symbols. The decrease in the error ratesare not significant after certain

number of trees forRFts for most of the settings (aroundJts = 300 for most of the

setting combinations). Similarly, increasing the symbol size does not improve the results

significantly afterR = 50. Similar discussion holds for the test error rates. As givenin

Table 22,Jins = 25, R = 50, Jts = 300 is used to classify test series based on OOB error

rates. The error rates improve slightly withR = 100 but the marginal gain is very small

where the size of representation increases significantly. This also supports our procedure

for parameter selection discussed in Section 5.1.

6.13. Computational Time Analysis

Here we empirically evaluate the runtime of S-MTS with different settings of problem

characteristics and algorithm parameters. S-MTS is implemented in both C and R Software

and our experiments use a Windows 7 system with 8 GB RAM, dual core CPU (i7-3620M

152

2.7 GHz). Although the CPU can handle four threads in parallel, only a single thread is

used.

The overall computational complexity of S-MTS is mainly dueto RFs trained to obtain

the symbolic representation (RFins) and classification (RFts). The time complexity of

building a single tree in RF isO(
√
νηβ). For RFins, ν = 2M + 1 is the number of

features,η = (N ×T) is the number of training instances andβ = R−1 is the depth of the

tree in the worst case assuming that the depth takes the largest possible value. This makes

O(
√
2M + 1(N × T)(R − 1)) in the worst case. ForRFts, η = N , ν = R × Jins and

β = logN (assuming the depth of tree isO(logN)) which isO(
√
R× JinsN(logN)).

StarLightCurves dataset from [76] is used to demonstrate the effect of the parameters

Jins, N , T andR on the computation times. For multivariate case, how S-MTS behaves

with changing number of variablesM , is illustrated on AUSLAN dataset from [104]. For

each data set, we randomly selectedδ ∈ {0.2, 0.4, 0.6, 0.8, 1} proportion of number of

instances (δN), number of observations (δT) and number of variables (δM). The levels

considered forR andJins areR ∈ {10, 20, 30, 40, 50}, Jins ∈ {20, 40, 60, 80, 100}. The

number of trees inRFts is fixed asJts = 500 since the change in the computation time

depends on the RF complexity which is linear with number of trees. Here 10 replications

are conducted for each setting combination.

We first illustrate the computational times with changingR andJins whereδ = 1 for

remaining parameters. Figure 55 schematizes the average train time and test time with these

parameters. Time for training increases linearly with the increase inR andJins which is

consistent with the complexities ofRFins andRFts. Furthermore, linear behavior of

the training time with the increase in the representation size (i.e. bothR andJins) is an

153

advantage of the proposed approach. This behavior is due to the selection of square root

of the features to evaluate at each split node. Time for testing increases with the increase

in the representation size but this increase is too small since S-MTS is very fast in terms

of classification. It only requires traversal of the trees fromRFins andRFts after feature

representation.

For fixed values ofR andJins, computation times with changingN andT are analyzed.

Figure 56 illustrates the mean computation times of S-MTS for R = 30 andJins = 60. The

runtime increase with the number of training instances or longer series is consistent with

O(N logN) from RFts andO(N × T) from RFins. Testing time is not affected by

the number of training series since the computation requires only the traversal of trees in

the forest which is independent of the number of training series. On the other hand, it

increases linearly as the length of the series increases since symbol assignment is done for

each observation of the test series.

S-MTS computation times with changing the number of variables are illustrated in Fig-

ure 57 when other parameters are fixed. The runtime increase with the number of variables

is consistent withO(
√
2M + 1) from RFins. Testing time is not affected significantly by

the number of variables.

7. Conclusion

A framework is presented to obtain a symbolic representation of MTS (S-MTS) for

classification. Observations are discretized in a supervised manner using tree learners to

generate the symbolic representation. Since an observation is a row of data where each

column is the observed value of each variable of MTS, our supervised approach consid-

ers all variables of MTS simultaneously during the discretization process which makes it

154

computationally efficient when compared to other approaches. This way, the relation be-

tween the individual variables is taken into account. Moreover, MTS with nominal and

missing values are handled efficiently with tree learners. Once the symbolic representation

is generated for MTS, the frequency of the symbols are used toclassify MTS. An ensemble

learner that scales well with large number of variables and long time series makes S-MTS

computationally efficient. Our experiments demonstrate the effectiveness of the proposed

approach in terms of accuracy and computation times in both univariate time series and

MTS datasets. Although we provide a simple classification approach where frequency of

each symbol is used as a feature, potentially better accuracy can be obtained by modifying

the bag-of-words approach or use of string similarity kernels on the proposed representa-

tion. Moreover, proposed representation can be used for similarity analysis, clustering, and

so forth.

155

0.1

0.15

0.2

0.25

5 10 25 50 10
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

Jins = 25
O

O
B

 e
rr

or
 r

at
e

Jts

R

0.1

0.15

0.2

0.25

5 10 25 50 10
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

Jins = 25

T
es

t e
rr

or
 r

at
e

Jts

R

0.1

0.15

0.2

0.25

5 10 25 50 10
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

Jins = 50

O
O

B
 e

rr
or

 r
at

e

Jts

R

0.1

0.15

0.2

0.25

5 10 25 50 10
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

Jins = 50

T
es

t e
rr

or
 r

at
e

Jts

R

0.1

0.15

0.2

0.25

5 10 25 50 10
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

Jins = 100

O
O

B
 e

rr
or

 r
at

e

Jts

R

0.1

0.15

0.2

0.25

5 10 25 50 10
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

10
0

20
0

30
0

40
0

50
0

Jins = 100

T
es

t e
rr

or
 r

at
e

Jts

R

Figure 54. Boxplot of OOB error rates (left column) and test error rates(right column) for
each combination setting over multiple trees for Non-Invasive Fetal ECG Thorax1 dataset
(10 replications, confidence intervals for 95% significancelevel). The error rates become
more stable when time series are represented by larger number of trees (largerJins) and/or
more symbols (largerR). The decrease in the error rates are not significant after certain
number of trees ofRFts for most of the settings (aroundJts = 300). Similarly, increasing
the symbol size does not improve the results significantly afterR = 50. Similar discussion
holds for the test error rates.

156

20 40 60 80 100
20

40

60

80

100

120

140

160

180

200

220

Jins

T
ra

in
 ti

m
e(

s)

R = 10

R = 20

R = 30

R = 40

R = 50

20 40 60 80 100
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

−3

Jins

T
es

t t
im

e(
s)

R = 10

R = 20

R = 30

R = 40

R = 50

Figure 55. The mean computation times with changingR andJins (Jts = 500 andδ =
1 for remaining parameters). Time for training increases linearly with the increase inR
andJins which is consistent with the complexities ofRFins andRFts. The train time
increases linearly when bothR andJins increase which is an advantage of the proposed
approach. Time for testing increases with the increase in the representation size but the
increase is too small since S-MTS is very fast in terms of classification.

0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

δN

T
ra

in
 ti

m
e(

s)

δT = 0.2

δT = 0.4

δT = 0.6

δT = 0.8

δT = 1

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
x 10

−3

δN

T
es

t t
im

e(
s)

δT = 0.2

δT = 0.4

δT = 0.6

δT = 0.8

δT = 1

Figure 56. The mean computation times with changing the number of training instances
and time series lengths (R = 30, Jins = 60 andJts = 500). The runtime increase with
the number of training instances or longer series is consistent withO(N logN) fromRFts
andO(N × T) from RFins. Testing time is not affected by the number of training series
but it increases linearly as the length of the series increases.

157

160

180

200

220

240

260

280

300

320

340

0.
2

0.
4

0.
6

0.
8

1

δM

T
ra

in
 ti

m
e(

s)

6.8

7

7.2

7.4

7.6

7.8

8

x 10
−4

0.
2

0.
4

0.
6

0.
8

1

δM

T
es

t t
im

e(
s)

Figure 57. The boxplot of the computation times of S-MTS with changing the number of
variables (R = 50, Jins = 50 andJts = 500). The training time increase with the number
of variables is consistent withO(

√
2M + 1) from RFins. Testing time is not affected

significantly by the number of variables.

158

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

1. Conclusions

This dissertation proposes time series representations and methods for supervised time

series analysis. The approaches combine new representations that handle translations and

dilations of patterns with bag-of-features strategies andtree-based ensemble learning. This

provides flexibility in handling time-warped patterns in a computationally efficient way.

The ensemble learners provide a classification framework that can handle high-dimensional

feature spaces, multiple classes, missing values and interaction between features. The pro-

posed representations are useful for classification and interpretation of the time series data

of varying complexity.

In our first study, a framework based on the bag-of-features (BoF) representation is pro-

posed to benefit from the speed and other advantages of feature-based methods to handle

the problems for which NN classifiers with DTW distance are challenged. We propose in-

terval selection and local feature extraction strategies to explore time series representation

that can handle translation and dilations based on the BoF idea. To capture local infor-

mation, random subsequences are extracted from each time series and further divided into

intervals. The subsequences vary randomly in length and location. The number of intervals

that partition a subsequence are fixed so that the interval length varies with the subsequence

length. Several features (such as the mean, standard deviation, etc.) are extracted from

each interval and these features comprise a row in a new data matrix X (one row for each

subsequence). Our local feature generation scheme allows for a novel representation that

captures information in a manner similar to DTW. We then label the subsequences and use

a supervised approach to summarize the local information. Our supervised approach pro-

vides desirable properties for time series classification.It provides fast and efficient time

159

series representation even with a collection of basic features such as slope, mean and vari-

ance from the subsequences. Global features (e.g., autocorrelation of the time series) can

also be extracted from the time series and combined with the codebook.

Our second study explores a time series representation thatallows for interpretability.

We consider a framework for finding important patterns of time series for classification.

We focus on finding the segments of the time series that have potential to distinguish the

classes. These segments are referred as the regions of interest. Regions of interests are very

important to understand the temporal relations. Moreover,they help to reduce the effort in

searching for the time segments useful to a classifier. Afterfinding the region of interests for

each time series, we generate sequences from these regions.These sequences are referred

as patterns. We generate multiple patterns from the time series and find the best matching

segments of the time series to these patterns. Then each timeseries is represented by the

distances of the patterns to the best matching segments of the time series. Another classifier

is then trained on this representation. A feature selectionalgorithm on the new feature set

allows for finding the patterns that are critical in classification.

Our third study presents a framework to learn a symbolic representation of MTS that

is then integrated to produce a new type of MTS classifier. Rather than select intervals

from the times series and extract features, the observations in the time series are recursively

partitioned into terminal nodes of trees. This leads to a newsymbolic representation that

is learned based on the class labels. Furthermore, all time series, along with their rela-

tionships, are considered simultaneously as the nodes are constructed. Ensembles repeat

the process to strengthen the algorithm. This unique representation is then summarized in

a high-dimensional codebook. However, another ensemble handles the high dimensional-

160

ity to generate an effective classifier. there is only one sequence of symbols regardless of

the number of variables in a MTS. Our approach can handle MTS examples with different

lengths and it does not require a special rectangularization mechanism because the final

representation is simply obtained from the frequency of thesymbols over the time series.

Applications such as speech recognition, medical diagnosis and gesture recognition are

used to illustrate the methods. Experimental results show that the time series representations

and methods provide better results than competitive methods on a comprehensive collection

of benchmark datasets. Although we present tools that are applicable to and effective for a

wide range of important problems, there is a potential to improve and extend the proposed

approaches which is further discussed in Section 2.

2. Future Work

2.1. Local feature extraction

Our approaches presented in Chapters 3 and 4 are feature-based and require features to

be defined. The extracted features are related to the shape ofthe time series segments (such

as the slope of the fitted regression line, the mean and variance over the segment). Pro-

posed approaches may be improved by considering features related to application specific

properties. For instance, extracting linear predictive coding (LPC) features from speech

signals [118] for a speech recognition task may help to have abetter classifier. Since RFs

can handle large number of features in a computationally efficient manner, potentially better

performance with reasonable computation times might be obtained when more features are

added. Furthermore, features can be learned in a manner related to the work in Chapter 5.

161

2.2. Absence of the label information

In many real-world time series classification scenarios, acquiring a large amount of

labeled training data is expensive and time-consuming. Semi-supervised learning (SSL) is

the machine learning paradigm concerned with utilizing unlabeled data to try to build better

classifiers [119]. In general, SSL makes use of both labeled and unlabeled data for training–

typically a small amount of labeled data with a large amount of unlabeled data. It falls

between unsupervised learning (without any labeled training data) and supervised learning

(with completely labeled training data). Therefore SSL canbe thought as an attempt to

reconcile classification and clustering, two contrasting modes of data analysis [120]. Our

proposed approaches are flexible to make use of the unlabeledinformation since RF enables

a proximity measure that can be used for clustering [57].

2.3. Beyond time series

Although we mainly focus on time series analysis, many ideaspresented in this disser-

tation can be extended to the spatial domain such as images, trajectories etc. TSBF uses

subsequences to classify the time series, as shown in Chapter 3. TSBF can be extended

to classification of images by sampling patches (sampling intwo dimensions) instead of

sampling subsequences. A supervised learner trained on theimage patches may provide

better representations for images when compared to unsupervised codebooks. The pattern

discovery approach presented in Chapter 4 can be used to find the interesting regions of

images for classification. Also the same idea can be investigated for object detection. The

time series discretization approach for MTS, described in Chapter 5, can be extended to

162

images and motion video analysis since both images and motion videos can be considered

to be special types of multivariate time series data.

2.4. Similarity kernels

The similarity of time series based on subsequences might beused to obtain kernel-

based classifiers [63]. Subsequences are generated and quantized into symbols. The simi-

larity of the time series is then computed using the string representation of the subsequences.

Such a similarity measure, based on the similarity of subsequences, is a distance-based ap-

proach. A support vector machine (SVM) [121] with the definedkernel is used to classify

the time series. How the similarity of subsequences can be useful for classification was

further discussed by [122].

Our proposed approaches can be extended to define kernels similar to the one in [63].

The similarity information fromRFsub in Chapter 3 andRFts from Chapters 4 and 5 pro-

vide a similarity measure between subsequences and time series, respectively. Such kernels

have been obtained from RF models previously [123], but not for time series problems.

163

REFERENCES

[1] “http://www.markcorbyn.com/work/dissertation/,” accessed: June 10, 2012.

[2] M. Mller, “Chapter 4: Dynamic time warping,” inInformation Retrieval for Music
and Motion. Springer Berlin Heidelberg, 2007, pp. 211–226.

[3] A. Bosch, X. Munoz, and R. Marti, “Which is the best way to organize/classify
images by content?”Image and Vision Computing, vol. 25, no. 6, pp. 778 – 791,
2007.

[4] J. R. Quinlan,C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[5] J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya, and V. Vasudevan, “uWave:
Accelerometer-based personalized gesture recognition and its applications,”Perva-
sive Computing and Communications, IEEE International Conference on, vol. 0, pp.
1–9, 2009.

[6] L. Khadra, A. Al-Fahoum, and S. Binajjaj, “A quantitative analysis approach for
cardiac arrhythmia classification using higher order spectral techniques,”Biomedical
Engineering, IEEE Transactions on, vol. 52, no. 11, pp. 1840 –1845, nov. 2005.

[7] Y. Kakizawa, R. H. Shumway, and M. Taniguchi, “Discrimination and clustering for
multivariate time series,”Journal of the American Statistical Association, vol. 93,
no. 441, pp. pp. 328–340, 1998.

[8] T.-c. Fu, “A review on time series data mining,”Engineering Applications of Artifi-
cial Intelligence, vol. 24, pp. 164–181, 2011.

[9] C. A. Ratanamahatana, J. Lin, D. Gunopulos, E. Keogh, M. Vlachos, and G. Das,
“Mining time series data,” inData Mining and Knowledge Discovery Handbook,
O. Maimon and L. Rokach, Eds. Springer US, 2010, pp. 1049–1077.

[10] K. V. R. Kanth, D. Agrawal, A. E. Abbadi, and A. K. Singh, “Dimensionality re-
duction for similarity searching in dynamic databases.”Computer Vision and Image
Understanding, pp. 59–72, 1999.

164

[11] B.-K. Yi and C. Faloutsos, “Fast time sequence indexingfor arbitrary lp norms,” in
Proceedings of the 26th International Conference on Very Large Data Bases, ser.
VLDB ’00. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000,
pp. 385–394.

[12] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: a novel symbolic
representation of time series,”Data Mining and Knowledge Discovery, vol. 15, pp.
107–144, 2007.

[13] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search in sequence
databases.” Springer Verlag, 1993, pp. 69–84.

[14] K.-P. Chan and A. W. chee Fu, “Efficient time series matching by wavelets,” inIn
ICDE, 1999, pp. 126–133.

[15] Y.-S. Jeong, M. K. Jeong, and O. A. Omitaomu, “Weighted dynamic time warping
for time series classification,”Pattern Recognition, vol. 44, no. 9, pp. 2231–2240,
2011.

[16] E. Keogh and S. Kasetty, “On the Need for Time Series DataMining Benchmarks:
A Survey and Empirical Demonstration,”Data Mining and Knowledge Discovery,
vol. 7, no. 4, pp. 349–371, 2003.

[17] C. Ratanamahatana and E. Keogh, “Making time-series classification more accurate
using learned constraints,” inProceedings of SIAM International Conference on Data
Mining (SDM04), 2004, pp. 11–22.

[18] K. Ueno, X. Xi, E. Keogh, and D. Lee, “Anytime classification using the nearest
neighbor algorithm with applications to stream mining,” inIEEE International Con-
ference on Data Mining (ICDM06). IEEE, 2007, pp. 623–632.

[19] Z. Xing, J. Pei, and P. S. Yu, “Early prediction on time series: a nearest neighbor
approach,” inProceedings of International Joint Conference on ArtificalIntelligence
(IJCAI09). Morgan Kaufmann, 2009, pp. 1297–1302.

[20] H. Sakoe, “Dynamic programming algorithm optimization for spoken word recogni-
tion,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 26, pp.
43–49, 1978.

165

[21] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, “Querying and
mining of time series data: experimental comparison of representations and distance
measures,”Proc. VLDB Endow., vol. 1, pp. 1542–1552, August 2008.

[22] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. Ratanamahatana, “Fast time series clas-
sification using numerosity reduction,” inProceedings of International Conference
on Machine Learning (ICML06). ACM, 2006, pp. 1033–1040.

[23] A. Mueen, E. J. Keogh, and N. Young, “Logical-shapelets: an expressive primitive
for time series classification.” inKDD, C. Apt, J. Ghosh, and P. Smyth, Eds. ACM,
2011, pp. 1154–1162.

[24] M. W. Kadous and C. Sammut, “Classification of multivariate time series and struc-
tured data using constructive induction,”Machine Learning, vol. 58, pp. 179–216,
2005.

[25] C. Orsenigo and C. Vercellis, “Combining discrete svm and fixed cardinality warping
distances for multivariate time series classification,”Pattern Recognition, vol. 43,
no. 11, pp. 3787 – 3794, 2010.

[26] C. Li, L. Khan, and B. Prabhakaran, “Real-time classification of variable length
multi-attribute motions,”Knowledge and Information Systems, vol. 10, pp. 163–183,
2006.

[27] ——, “Feature selection for classification of variable length multiattribute motions,”
in Multimedia Data Mining and Knowledge Discovery. Springer London, 2007, pp.
116–137.

[28] X. Weng and J. Shen, “Classification of multivariate time series using locality pre-
serving projections,”Knowledge-Based Systems, vol. 21, no. 7, pp. 581 – 587, 2008.

[29] H. Yoon, K. Yang, and C. Shahabi, “Feature subset selection and feature ranking for
multivariate time series,”Knowledge and Data Engineering, IEEE Transactions on,
vol. 17, no. 9, pp. 1186 – 1198, sept. 2005.

[30] Z. Bankó and J. Abonyi, “Correlation based dynamic time warping of multivariate
time series,”Expert Systems with Applications, no. 0, pp. –, 2012.

[31] R. Rahmani and S. A. Goldman, “Missl: Multiple-instance semi-supervised learn-
ing,” in Proceedings of International Conference on Machine Learning (ICML06).
ACM Press, 2006, pp. 705–712.

166

[32] C. Zhang, X. Chen, M. Chen, S.-C. Chen, and M.-L. Shyu, “Amultiple instance
learning approach for content based image retrieval using one-class support vector
machine,” inIEEE International Conference on Multimedia and Expo (ICME05),
2005, pp. 1142–1145.

[33] Q. Zhang, S. A. Goldman, W. Yu, and J. E. Fritts, “Content-based image retrieval us-
ing multiple-instance learning,” inProceedings of International Conference on Ma-
chine Learning (ICML02). Morgan Kaufmann, 2002, pp. 682–689.

[34] O. Maron and A. L. Ratan, “Multiple-instance learning for natural scene classifica-
tion,” in Proceedings of International Conference on Machine Learning (ICML98).
Morgan Kaufmann, 1998, pp. 341–349.

[35] B. Babenko, M.-H. Yang, and S. Belongie, “Robust objecttracking with online mul-
tiple instance learning,”IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 33, no. 8, pp. 1619–1632, 2011.

[36] P. Dollár, B. Babenko, S. Belongie, P. Perona, and Z. Tu, “Multiple component learn-
ing for object detection,” inProceedings of European Conference on Computer Vi-
sion (ECCV08), ser. Lecture Notes in Computer Science, vol. 5303. Springer Berlin
/ Heidelberg, 2008, pp. 211–224.

[37] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by unsupervised
scale-invariant learning,” vol. 2. IEEE Computer Society,2003, p. 264.

[38] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based object detection in im-
ages by components,”IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 23, no. 4, pp. 349–361, 2001.

[39] V. C. Raykar, B. Krishnapuram, J. Bi, M. Dundar, and R. B.Rao, “Bayesian multiple
instance learning: automatic feature selection and inductive transfer,” inProceedings
of International Conference on Machine learning (ICML08). ACM, 2008, pp. 808–
815.

[40] E. Nowak, F. Jurie, and B. Triggs, “Sampling strategiesfor bag-of-features im-
age classification,” inProceedings of European Conference on Computer Vision
(ECCV06), ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2006, vol. 3954, pp. 490–503.

[41] D. Lewis, “Naive (bayes) at forty: The independence assumption in information
retrieval,” inProceedings of European Conference on Machine Learning (ECML98),

167

ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 1998, vol.
1398, pp. 4–15.

[42] Y. Chen, J. Bi, and J. Z. Wang, “Miles: Multiple-instance learning via embedded in-
stance selection,”IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 28, pp. 1931–1947, 2006.

[43] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Perez, “Solving the multiple instance
problem with axis-parallel rectangles,”Artificial Intelligence, vol. 89, no. 1-2, pp.
31–71, 1997.

[44] F. Briggs, R. Raich, and X. Z. Fern, “Audio classification of bird species: A statistical
manifold approach,” inProceedings of International Conference on Data Mining
(ICDM09). IEEE Computer Society, 2009, pp. 51–60.

[45] Z. Fu, G. Lu, K. M. Ting, and D. Zhang, “Music classification via the bag-of-features
approach,”Pattern Recognition Letters, vol. 32, no. 14, pp. 1768 – 1777, 2011.

[46] C. Harris and M. Stephens, “A combined corner and edge detector,” in The Fourth
Alvey Vision Conference, 1988, pp. 147–151.

[47] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual categorization
with bags of keypoints,” inProceedings of International Workshop on Statistical
Learning in Computer Vision (ECCV04), 2004, pp. 1–22.

[48] M. Weber, M. Welling, and P. Perona, “Unsupervised learning of models for recog-
nition,” in Proceedings of European Conference on Computer Vision (ECCV00), ser.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2000, vol. 1842,
pp. 18–32.

[49] J. Winn, A. Criminisi, and T. Minka, “Object categorization by learned universal
visual dictionary,” inProceedings of International Conference on Computer Vision
(ICCV05). IEEE Computer Society, 2005, pp. 1800–1807.

[50] S. Agarwal, A. Awan, and D. Roth, “Learning to detect objects in images via a sparse,
part-based representation,”IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 26, no. 11, pp. 1475–1490, 2004.

[51] B. Leibe and B. Schiele, “Interleaving object categorization and segmentation,” in
Cognitive Vision Systems, ser. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2006, vol. 3948, pp. 145–161.

168

[52] L. Sörensen, M. Loog, D. Tax, W.-J. Lee, M. de Bruijne, and R. Duin, “Dissimilarity-
based multiple instance learning,” inStructural, Syntactic, and Statistical Pattern
Recognition, ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2010, vol. 6218, pp. 129–138.

[53] Y. Chen and J. Z. Wang, “Image categorization by learning and reasoning with re-
gions,”Journal of Machine Learning Research, vol. 5, pp. 913–939, 2004.

[54] V. Lepetit, P. Lagger, and P. Fua, “Randomized trees forreal-time keypoint recogni-
tion,” in Proceedings of Computer Vision and Pattern Recognition (CVPR05). IEEE
Computer Society, 2005, pp. 775–781.

[55] R. Maree, P. Geurts, J. Piater, and L. Wehenkel, “Randomsubwindows for robust
image classification,” inProceedings of Computer Vision and Pattern Recognition
(CVPR05). IEEE Computer Society, 2005, pp. 34–40.

[56] F. Moosmann, E. Nowak, and F. Jurie, “Randomized clustering forests for image
classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, pp. 1632–1646, 2008.

[57] L. Breiman, “Random forests,”Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[58] C. Ratanamahatana and E. Keogh, “Three myths about dynamic time warping
data mining,” inProceedings of SIAM International Conference on Data Mining
(SDM05), vol. 21, 2005, pp. 506–510.

[59] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time warping,”
Knowl. Inf. Syst., vol. 7, pp. 358–386, March 2005.

[60] Y. Yamada, H. Yokoi, and K. Takabayashi, “Decision-tree induction from time-series
data based on standard-example split test,” inProceedings of International Confer-
ence on Machine Learning (ICML03). Morgan Kaufmann, 2003, pp. 840–847.

[61] L. Ye and E. Keogh, “Time series shapelets: a new primitive for data mining,” in
Proceedings of the 15th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, ser. KDD ’09, 2009, pp. 947–956.

[62] ——, “Time series shapelets: a novel technique that allows accurate, interpretable
and fast classification,”Data Mining and Knowledge Discovery, vol. 22, pp. 149–
182, 2011.

169

[63] P. Kuksa and V. Pavlovic, “Spatial representation for efficient sequence classifica-
tion,” in Pattern Recognition (ICPR), 2010 20th International Conference on, aug.
2010, pp. 3320 –3323.

[64] P. Geurts, “Pattern extraction for time series classification,” in Principles of
Data Mining and Knowledge Discovery, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2001, vol. 2168, pp. 115–127.

[65] D. Eads, K. Glocer, S. Perkins, and J. Theiler, “Grammar-guided feature extraction
for time series classification,” inProceedings of Conference on Neural Information
Processing Systems (NIPS05), 2005.

[66] M. Hearst, S. Dumais, E. Osman, J. Platt, and B. Scholkopf, “Support vector ma-
chines,”IEEE Intelligent Systems and Their Applications, vol. 13, no. 4, pp. 18–28,
1998.

[67] A. Nanopoulos, R. Alcock, and Y. Manolopoulos, “Feature-based classification of
time-series data,”International Journal of Computer Research, vol. 10, pp. 49–61,
2001.

[68] J. Rodrı́guez, C. Alonso, and J. Maestro, “Support vector machines of interval-based
features for time series classification,”Knowledge-Based Systems, vol. 18, no. 4-5,
pp. 171–178, 2005.

[69] J. Rodrı́guez, C. Alonso, and H. Boström, “Boosting interval based literals,”Intelli-
gent Data Analysis, vol. 5, no. 3, pp. 245–262, 2001.

[70] J. J. Rodrı́guez and C. J. Alonso, “Interval and dynamictime warping-based decision
trees,” inProceedings of ACM Symposium on Applied Computing (SAC04), 2004,
pp. 548–552.

[71] J.-J. Aucouturier, B. Defreville, and F. Pachet, “The bag-of-frames approach to audio
pattern recognition: A sufficient model for urban soundscapes but not for polyphonic
music,” The Journal of the Acoustical Society of America, vol. 122, no. 2, pp. 881–
891, 2007.

[72] R. F. Lyon, M. Rehn, S. Bengio, T. C. Walters, and G. Chechik, “Sound retrieval and
ranking using sparse auditory representations,”Neural Comput., vol. 22, pp. 2390–
2416, 2010.

170

[73] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet, “Semantic annotation and
retrieval of music and sound effects,”IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 16, no. 2, pp. 467 –476, 2008.

[74] J. Lin and Y. Li, “Finding structural similarity in timeseries data using bag-of-
patterns representation,” inProceedings of International Conference on Scientific
and Statistical Database Management (SSDBM09). Springer-Verlag, 2009, pp.
461–477.

[75] M. Casey, C. Rhodes, and M. Slaney, “Analysis of minimumdistances in high-
dimensional musical spaces,”IEEE Transactions on Audio, Speech, and Language
Processing, vol. 16, no. 5, pp. 1015–1028, 2008.

[76] E. Keogh, Q. Zhu, B. Hu, H. Y., X. Xi, L. Wei, and C. A.
Ratanamahatana, “The UCR time series classification/clustering. home-
page: www.cs.ucr.edu/˜eamonn/timeseriesdata/,” 2011. [Online]. Available:
www.cs.ucr.edu/∼eamonn/timeseriesdata/

[77] E. Keogh, L. Wei, X. Xi, S.-H. Lee, and M. Vlachos, “Lb-keogh supports exact
indexing of shapes under rotation invariance with arbitrary representations and dis-
tance measures,” inProceedings of the 32nd international conference on Very large
data bases, ser. VLDB. VLDB Endowment, 2006, pp. 882–893.

[78] M. Last, A. Kandel, and H. Bunke,Data Mining in Time Series Databases. World
Scientific, 2004.

[79] R. Caruana, N. Karampatziakis, and A. Yessenalina, “Anempirical evaluation of
supervised learning in high dimensions,” inProceedings of International Conference
on Machine Learning (ICML08). ACM, 2008, pp. 96–103.

[80] H. Deng, M. G. Baydogan, and G. C. Runger, “Sparse multivariate trees,”Technical
Report, 2011.

[81] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smooth-
ness via the fused lasso,”Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 67, no. 1, pp. 91–108, 2005.

[82] M. G. Baydogan, G. C. Runger, and E. Tuv, “A bag-of-features framework to classify
time series,”Technical Report, 2012.

171

[83] B. Hidasi and C. Gaspar-Papanek, “ShiftTree: An Interpretable Model-Based Ap-
proach for Time Series Classification,” inMachine Learning and Knowledge Dis-
covery in Databases, ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2011, vol. 6912, pp. 48–64.

[84] Z. Xing, J. Pei, P. S. Yu, and K. Wang, “Extracting interpretable features for early
classification on time series,” inSDM, 2011, pp. 247–258.

[85] E. Keogh, X. Xi, L. Wei, and C. Ratanamahatana, “The UCR time series
classification/clustering. homepage: www.cs.ucr.edu/˜eamonn/timeseriesdata/,”
2006. [Online]. Available: www.cs.ucr.edu/∼eamonn/timeseriesdata/

[86] L. Breiman and A. Cutler, “Random forests,” http://www.stat.berkeley.edu/users/
breiman/RandomForests/ccgraphics.htm, accessed: 3/14/2012.

[87] M. A. Hall, “Correlation-based Feature Selection for Discrete and Numeric Class
Machine Learning,” inICML ’00: Proceedings of the Seventeenth International Con-
ference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2000, pp. 359–366.

[88] L. Yu and H. Liu, “Feature selection for high-dimensional data : A fast correlation-
based filter solution,”Machine Learning, vol. 20, no. 2, p. 856, 2003.

[89] E. Tuv, A. Borisov, G. Runger, and K. Torkkola, “Featureselection with ensembles,
artificial variables, and redundancy elimination,”J. Mach. Learn. Res., vol. 10, pp.
1341–1366, December 2009.

[90] I. Guyon and A. Elisseeff, “An introduction to variableand feature selection,”J.
Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.

[91] D. Vail and M. Veloso, “Learning from accelerometer data on a legged robot,” inIn
Proceedings of the 5th IFAC/EURON Symposium on IntelligentAutonomous Vehi-
cles, 2004.

[92] R. Briandet, E. K. Kemsley, and R. H. Wilson, “Discrimination of arabica and ro-
busta in instant coffee by fourier transform infrared spectroscopy and chemometrics,”
Journal of Agricultural and Food Chemistry, vol. 44, no. 1, pp. 170–174, 1996.

[93] A. McGovern, D. Rosendahl, R. Brown, and K. Droegemeier, “Identifying predictive
multi-dimensional time series motifs: an application to severe weather prediction,”
Data Mining and Knowledge Discovery, vol. 22, pp. 232–258, 2011.

172

[94] A. Akl and S. Valaee, “Accelerometer-based gesture recognition via dynamic-time
warping, affinity propagation, compressive sensing,” inAcoustics Speech and Sig-
nal Processing (ICASSP), 2010 IEEE International Conference on, march 2010, pp.
2270–2273.

[95] W. Chaovalitwongse and P. Pardalos, “On the time seriessupport vector machine
using dynamic time warping kernel for brain activity classification,” Cybernetics and
Systems Analysis, vol. 44, pp. 125–138, 2008.

[96] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of time se-
ries, with implications for streaming algorithms,” inIn Proceedings of the 8th ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.
ACM Press, 2003, pp. 2–11.

[97] J. Shieh and E. Keogh, “isax: indexing and mining terabyte sized time series,” in
Proceedings of the 14th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, ser. KDD ’08. New York, NY, USA: ACM, 2008, pp.
623–631.

[98] J. Lin, R. Khade, and Y. Li, “Rotation-invariant similarity in time series using bag-of-
patterns representation,”Journal of Intelligent Information Systems, pp. 1–29, 2012.

[99] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani, “Locally adaptive dimen-
sionality reduction for indexing large time series databases,” ACM Trans. Database
Syst., vol. 27, no. 2, pp. 188–228, Jun. 2002.

[100] P. P. Kuksa, “2d similarity kernels for biological sequence classification,” inACM
SIGKDD Workshop on Data Mining in Bioinformatics, 2012.

[101] P. Ordonez, T. Armstrong, T. Oates, and J. Fackler, “Using modified multivariate
bag-of-words models to classify physiological data,” inProceedings of the 2011
IEEE 11th International Conference on Data Mining Workshops, ser. ICDMW ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 534–539.

[102] E. Keogh, J. Lin, and A. Fu, “Hot sax: Efficiently findingthe most unusual time
series subsequence,” inProceedings of the Fifth IEEE International Conference on
Data Mining, ser. ICDM ’05. Washington, DC, USA: IEEE Computer Society,
2005, pp. 226–233.

173

[103] M. Kudo, J. Toyama, and M. Shimbo, “Multidimensional curve classification using
passing-through regions,”Pattern Recognition Letters, vol. 20, no. 1113, pp. 1103 –
1111, 1999.

[104] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010. [Online].
Available: http://archive.ics.uci.edu/ml

[105] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster, P. Lukow-
icz, D. Bannach, G. Pirkl, A. Ferscha, J. Doppler, C. Holzmann, M. Kurz, G. Holl,
R. Chavarriaga, M. Creatura, and Del, “Collecting complex activity data sets in
highly rich networked sensor environments,” inProceedings of the Seventh Interna-
tional Conference on Networked Sensing Systems (INSS), Kassel, Germany. IEEE
Computer Society Press, Jun. 2010.

[106] L. Breiman, J. Friedman, R. Olshen, and C. Stone,Classification and Regression
Trees. Wadsworth, Belmont, MA, 1984.

[107] C. Brodley and P. Utgoff, “Multivariate decision trees,” Machine Learning, vol. 19,
no. 1, pp. 45–77, 1995.

[108] “CMU graphics lab motion capture database. homepage:mocap.cs.cmu.edu,” 2012.

[109] R. T. Olszewski, “http://www.cs.cmu.edu/˜bobski/,” accessed: June 10, 2012.

[110] M. G. Baydogan, “Multivariate time series classification. homepage:
www.mustafabaydogan.com/files/viewcategory/14-multivariate-time-series-
classification.html,” 2012.

[111] J. Lin, S. Williamson, K. Borne, and D. DeBarr,Pattern Recognition in Time Series,
ser. Chapman & Hall/Crc Data Mining and Knowledge Discovery. Taylor & Francis,
2012.

[112] S. Salzberg, “On comparing classifiers: Pitfalls to avoid and a recommended
approach,”Data Mining and Knowledge Discovery, vol. 1, pp. 317–328, 1997,
10.1023/A:1009752403260.

[113] N. Hammami and M. Bedda, “Improved tree model for arabic speech recognition,”
in Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE Interna-
tional Conference on, vol. 5, july 2010, pp. 521 –526.

174

[114] M. Bicego, E. Pekalska, D. M. J. Tax, and R. P. W. Duin, “Component-based dis-
criminative classification for hidden Markov models,”Pattern Recognition, vol. 42,
no. 11, pp. 2637–2648, 2009.

[115] F. Alimoglu and E. Alpaydin, “Combining multiple representations and classifiers
for pen-based handwritten digit recognitio,” in4th International Conference Doc-
ument Analysis and Recognition (ICDAR ’97), 2-Volume Set, August 18-20, 1997,
Ulm, Germany, Proceedings, 1997, pp. 637–640.

[116] L. M. Matos, L. S. Lopes, and J. Barata, “Integration and learning in supervision
of flexible assembly systems,,”IEEE Transactions on Robotics and Automation,
vol. 12, pp. 202–219, 1996.

[117] D. Dias, R. Madeo, T. Rocha, H. Biscaro, and S. Peres, “Hand movement recogni-
tion for brazilian sign language: A study using distance-based neural networks,” in
Neural Networks, 2009. IJCNN 2009. International Joint Conference on, june 2009,
pp. 697 –704.

[118] L. Deng and D. O’Shaughnessy,Speech Processing: A Dynamic and Optimization-
Oriented Approach, ser. Signal Processing and Communications. Taylor & Francis,
2003.

[119] O. Chapelle, B. Schölkopf, and A. Zien, Eds.,Semi-Supervised Learning.
Cambridge, MA: MIT Press, 2006. [Online]. Available: http://www.kyb.tuebingen.
mpg.de/ssl-book

[120] C. Iyigun and A. Ben-Israel, “Semi-supervised probabilistic distance clustering and
the uncertainty of classification.” inGfKl, ser. Studies in Classification, Data Analy-
sis, and Knowledge Organization. Springer, 2008, pp. 3–20.

[121] V. Vapnik,Statistical learning theory, ser. Adaptive and learning systems for signal
processing, communications, and control. Wiley, 1998.

[122] M. G. Baydogan, G. C. Runger, and E. Tuv, “Time series classification through sub-
sequence similarity,”Technical Report, 2012.

[123] K. Torkkola and E. Tuv, “Ensemble learning with supervised kernels,” inECML,
2005, pp. 400–411.

175

