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ABSTRACT 

Early spacecraft missions to Mars, including the Marnier and Viking 

orbiters and landers revealed a morphologically and compositionally diverse 

landscape that reshaped widely held views of Mars. More recent spacecraft 

including Mars Global Surveyor, Mars Odyssey, Mars Express, Mars 

Reconnaissance Orbiter, and the Mars Exploration Rovers have further refined, 

enhanced, and diversified our understanding of Mars.  In this dissertation, I take a 

multiple-path approach to planetary and Mars science including data analysis and 

instrument development.   

First, I present several tools necessary to effectively use new, complex 

datasets by highlighting unique and innovative data processing techniques that 

allow for the regional to global scale comparison of multiple datasets.  

Second, I present three studies that characterize several processes on early 

Mars, where I identify a regional, compositionally distinct, in situ, 

stratigraphically significant layer in Ganges and Eos Chasmata that formed early 

in martian history.  This layer represents a unique period in martian history where 

primitive mantle materials were emplaced over large sections of the martian 

surface.  While I originally characterized this layer as an effusive lava flow, based 

on the newly identified regional or global extent of this layer, I find the only 

likely scenario for its emplacement is the ejecta deposit of the Borealis Basin 

forming impact event. I also re-examine high thermal inertia, flat-floored craters 

identified in Viking data and conclude they are typically more mafic than the 

surrounding plains and were likely infilled by primitive volcanic materials during, 
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or shortly after the Late Heavy Bombardment.  Furthermore, the only plausible 

source for these magmas is directly related to the impact process, where mantle 

decompression melting occurs as result of the removal of overlying material by 

the impactor.   

Finally, I developed a new laboratory microscopic emission and 

reflectance spectrometer designed to help improve the interpretation of current 

remote sensing or in situ data from planetary bodies.  I present the design, 

implementation, calibration, system performance, and preliminary results of this 

instrument.  This instrument is a strong candidate for the next generation in situ 

rover instruments designed to definitively assess sample mineralogy and 

petrology while preserving geologic context. 
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CHAPTER 1                                                                                 

INTRODUCTION 

Early planetary missions to Mars made fundamental observations of the 

planet’s surface morphology, composition, and physical properties that re-

characterized Mars from widely held views formed in the early telescopic era [e.g. 

Lowell, 1896]. Early spacecraft included the Mariner 6, 7 and 9 [e.g. Chase et al., 

1970; Neugebauer et al., 1971; Sagan et al., 1973], and Viking orbiters [Klaasen 

et al., 1977], and landers which carried a wide range of instruments including the 

Visual Imaging subsystem [Klaasen et al., 1977] and the Infrared Thermal 

Mapper (IRTM) [Kieffer et al., 1977].   

Beginning with Mars Global Surveyor carrying the Mars Orbiter Camera 

(MOC) [Malin et al., 1998] wide angle and narrow angle instruments, the 

Thermal Emission Spectrometer (TES) [Christensen et al., 2001], and the Mars 

Orbiter Laser Altimeter (MOLA) [Smith et al., 2001] instruments, new views of 

the planet’s surface revolutionized the manner and detail in which Mars was 

studied.  Detailed topographic models [Smith et al., 2001], mineralogy maps [e.g. 

Bandfield, 2002], and high resolution fine-scale morphology played an important 

role in again re-characterizing Mars as a geologically interesting and diverse 

world.  

Spacecraft including the 2001 Mars Odyssey, Mars Express, and the Mars 

Reconnaissance Orbiter have sent an unprecedented suite of instruments into orbit 

around Mars.  A sampling of these instruments includes the Thermal Emission 

Imaging Systems (THEMIS) [Christensen et al., 2003b; Christensen et al., 2004a] 
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visual and infrared imagers, the High-Resolution Stereo Camera (HRSC) 

[Neukum et al., 2004; Jaumann et al., 2007] visible imager,  Observatoire pour la 

Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA) [Bibring et al., 2005],  

High Resolution Imaging Science Experiment (HiRISE) [McEwen et al., 2007], 

Context Imager (CTX) [Malin et al., 2007], and the Compact Reconnaissance 

Imaging Spectrometer for Mars (CRISM) [Murchie et al., 2007] and the Gamma 

Ray Spectrometer (GRS) instrument suite [Boynton et al., 2002; Feldman et al., 

2002; Mitrofanov et al., 2002; Boynton et al., 2007] which have all provided new 

and unique views of the planet.   

Landed spacecraft, including the Viking landers, the Mars Exploration 

Rovers, and the Phoenix Lander have all provided additional views of several 

regions of the martian surface, including near polar regions [e.g. Smith et al., 

2009] and environments that were clearly formed or modified by water related 

processes (e.g. Gusev Crater, Meridiani Planum, etc. [e.g. Squyres et al., 2004b; 

Squyres et al., 2004a; McLennan et al., 2005; Squyres and Knoll, 2005; Squyres et 

al., 2006]).  The instruments available on these landed spacecraft are extensive 

and include a variety of in situ and remote sensing techniques, such as the Alpha-

Particle X-ray Spectrometer (APXS) [Gellert et al., 2006], Mössbauer [Morris et 

al., 2004], Microscopic Imager (MI) [Herkenhoff et al., 2003], Mini-Thermal 

Emission Spectrometer (Mini-TES) [Christensen et al., 2003a], and Panoramic 

Camera (PanCam) [Bell et al., 2006].  The combination of in situ (e.g. MI, APXS, 

Mössbauer) and remote sensing (e.g. PanCam, Mini-TES) instruments have 

proved to be especially successful in both identifying potential targets at a 
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distance and characterizing those targets in detail [Gellert et al., 2004; 

Klingelhöfer et al., 2004; McLennan et al., 2005; Golombek et al., 2006; Ruff et 

al., 2006; Squyres et al., 2007; Lewis et al., 2008; Rogers and Aharonson, 2008; 

Squyres et al., 2008; Ruff et al., 2011].   

In the coming months, the Mars Science Laboratory (MSL) will further 

the in situ investigations of the martian surface with the most sophisticated and 

complicated suite of instruments sent to the martian surface to date.  These 

instruments include the Mast Camera (MastCam), a Laser Induced Breakdown 

Spectrometer (LIBS) for remote elemental composition (ChemCam), a 

microscopic imager (MAHLI), an Alpha-particle X-ray spectrometer (APXS), 

chemistry and mineralogy by powder X-ray diffraction and X-ray fluorescence 

(CheMin), as well as a quadrupole mass spectrometer, a gas chromatograph, and a 

tunable laser spectrometer (SAM).  While martian landers characterize specific 

small sections of the surface in great detail, no landed spacecraft will likely 

explore vast areas of martian surface in the coming decades, due to the high cost 

of landed spacecraft and significant diversity of landscapes present on the martian 

surface. Complementary techniques from orbit and at lander scales are paramount 

for the extrapolation of the findings from landers to the rest of the planetary 

surface due to the extremely detailed, but overall limited scope of data that 

landers provide. 

Spectroscopic observations of the martian surface provide fundamental 

understandings of surface mineralogy and composition and are completed from 

orbit and landed spacecraft.  These data have significantly evolved our 
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understanding of the martian surface in the past decade from a global view [e.g. 

Mustard and Sunshine, 1995; Bandfield et al., 2000a; Christensen et al., 2000a; 

Bandfield, 2002; Ruff and Christensen, 2002; Bibring et al., 2005; Mustard et al., 

2005; Poulet et al., 2005; Rogers et al., 2007; Rogers and Christensen, 2007; 

Koeppen and Hamilton, 2008; Osterloo et al., 2008; Ehlmann et al., 2011a] to 

regional and local studies [e.g. Hoefen et al., 2003; Hamilton and Christensen, 

2005; Rogers et al., 2005; Mustard et al., 2007; Edwards et al., 2008; Ehlmann et 

al., 2008; Tornabene et al., 2008; Ehlmann et al., 2009; Mustard et al., 2009; 

Rogers et al., 2009; Rogers and Fergason, 2011; Wray et al., 2011] to outcrop 

scale observations where landed spacecraft have been sent [e.g. Gellert et al., 

2004; Klingelhöfer et al., 2004; McLennan et al., 2005; Golombek et al., 2006; 

Ruff et al., 2006; Squyres et al., 2007; Lewis et al., 2008; Rogers and Aharonson, 

2008; Squyres et al., 2008; Ruff et al., 2011].   

A large body of work regarding the aqueous alteration of the martian 

surface exists using spectroscopic methods, primarily derived from visible and 

near-infrared spectrometers (CRISM and OMEGA).  While Mars shows 

significant mineralogical variably associated with aqueous alteration, it 

commonly occurs at a small scale and covers a minor area of the surface [Poulet 

et al., 2005; Ehlmann et al., 2008; Squyres et al., 2008].  Mars is primarily a 

volcanic planet that is dominated basaltic lava flows [McEwen et al., 1999; 

Christensen et al., 2000a] and volcaniclastic deposits [Robbins et al., 2011] which 

is the focus of this dissertation.  
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A primary challenge of constraining the geologic history of Mars from 

remotely sensed data is the ability to discriminate between in situ materials and 

those that have been transported, altered, and/or weathered.  While spectroscopic 

data can help constrain the alteration history of geologic materials, constraining 

the particle size of the material in question is largely completed using orbital 

thermal inertia data [e.g. Presley and Christensen, 1997b; c; Mellon et al., 2000; 

Putzig et al., 2005; Fergason et al., 2006a; Edwards et al., 2009; Piqueux and 

Christensen, 2009; Piqueux and Christensen, 2011] where microscopic imager 

data is not available [e.g. Herkenhoff et al., 2003].   

The rockiest areas on Mars are likely in-place, geologically significant 

materials.  The most common agents of erosion on Mars are aeolian and impact 

related processes along with volcanism, tectonism and fluvial activity occurring 

primarily earlier in Mars history [Edwards et al., 2009]. Aeolian action is 

generally not capable of moving or eroding bedrock and large boulders [Greeley 

et al., 1980; Greeley et al., 1992] and impact events would generally distribute 

these materials in an observable pattern.  Therefore, if I find materials that are 

consistent with in-place bedrock I can be confident that they have not been 

transported significant distances or significantly disturbed by impact or other 

erosional processes on Mars. 

The primary goal of this dissertation is to constrain several aspects of the 

early history of Mars using ancient in situ rocky materials [Edwards et al., 2009]. 

Significant fractions of martian landscape are ancient, including the heavily 

cratered terrain of the southern highlands from the late heavy bombardment 
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(LHB) and the relatively smooth northern lowlands modified subsequent to the 

LHB.  Fast crustal recycling, abundant water, widespread volcanism, and 

gradational processes associated with plate tectonics have largely erased the most 

ancient materials from the geologic record on Earth. While many of the same 

processes occur on Mars, a large proportion of the surface is ancient (Noachian or 

early Hesperian) and represents a portion of geologic time that has been largely 

erased from Earth's geologic record. 

In Chapter 2 of this dissertation I provide an investigation and description 

of some of the advanced techniques developed for the processing and mosaicking 

of THEMIS infrared multispectral data [Edwards et al., 2011b].  With the 

abundance of data returned from Mars, it is necessary to develop advanced 

techniques for mosaicking the data together, as well as processing data to remove 

systematic instrument artifacts or noise.  Furthermore, significant data processing 

challenges emerge as multiple datasets are required and utilized to solve geologic 

problems.  While the techniques discussed for THEMIS are somewhat specific, 

the mosaicking and stretching algorithms presented are novel and have enabled 

the creation of both quantitative and qualitative global data products of Mars.  

These mosaicking techniques are generic enough and can be applied to other 

planetary and Earth based datasets.  

In the following chapters I present several detailed studies of the martian 

surface using multiple datasets from orbit (Chapter 3 through Chapter 5), and 

the development of a new microscopic emission spectrometer (Chapter 6) for in 

situ lander based measurements of the martian surface. 
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In Chapter 3, I present work that identified an in situ, olivine-enriched 

stratigraphic layer near the bottom of Valles Marineris in Ganges and Eos 

Chasmata, which extends laterally over a distance of >1,100 km and has a 

minimum volume of ~9.9x104 km3 [Edwards et al., 2008].  This layer was 

characterized and identified utilizing TES spectral data and THEMIS multi-

spectral images, along with THEMIS nighttime temperature data to determine the 

thermophysical properties of the outcrops. Furthermore the strike and dip of this 

layer was characterized using MOLA elevation data and was found to be 

essentially flat-lying.    

Building on this work, in Chapter 4, I examined the surrounding locations 

to Ganges and Eos Chasmata and found that this layer extends significantly 

further (>4000 km laterally) and has a significantly larger volume (1.5x106 km3 to 

>5x106 km3) than previously estimated.  A detailed survey of all related locations 

was conducted and I propose this layer is at least regional and possibly global in 

extent.  After the characterization of this layer, I present several hypotheses for 

the formation of this ancient and extensive geologically significant unit on Mars. 

Chapter 5 examines another unique and likely widespread process on 

early Mars, where the removal of crustal material by impact events in the LHB 

caused widespread magmatism as a result of decompression melting of the 

martian mantle.  In order to assess this process, I examine the distribution, 

thermophysical, and compositional characteristics of high thermal inertia flat 

floored craters on Mars which were originally identified by Arvidson [1974] and 

Christensen [1983] and were further characterized as containing bedrock outcrops 
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by Edwards et al. [2009].  These craters have a degraded morphology, flat floors, 

no central peak and the highest thermal inertia materials are associated with the 

crater floor and not the crater walls.  The detailed compositional and 

thermophysical investigation of these craters, combined with age dates for >100 

crater floors, allows us to definitively constrain the formation mechanism for a 

significant majority of crater fill material on Mars 

While the analysis of currently available martian data is a critical part of 

understanding martian history, rigorous laboratory investigations are required for 

instrument calibration and refinement of data interpretation. In Chapter 6, I 

present the instrument description, calibration, and design of a laboratory 

microscopic emission and reflectance spectrometer designed to improve the 

interpretation of current remote sensing or in situ data from planetary bodies.  

This instrument is able to examine analog materials in detail and is also a strong 

candidate for the next generation of in situ instruments designed to definitively 

assess sample mineralogy and petrology while preserving geologic context.  In 

this chapter, I discuss the instrument capabilities, signal and noise, and overall 

system performance.  Furthermore, I evaluate the ability of this instrument to 

quantitatively discriminate and determine sample mineralogy, including bulk 

mineral abundances, and make the case for this instrument as a candidate for the 

next generation of in situ instruments that should be sent to the martian surface. 

Chapter 7 summarizes the main results and findings presented throughout 

this dissertation. 
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CHAPTER 2                                                                                         

MOSAICKING OF GLOBAL PLANETARY IMAGE DATASETS: 

TECHNIQUES AND DATA PROCESSING FOR THEMIS MULTI-

SPECTRAL DATA 

 

Edwards, C. S., K. J. Nowicki, P. R. Christensen, J. Hill, N. Gorelick, and K. 

Murray (2011), Mosaicking of global planetary image datasets: 1. 

Techniques and data processing for Thermal Emission Imaging System 

(THEMIS) multi-spectral data, J. Geophys. Res., 116(E10), E10008, 

doi:10010.11029/12010JE003755. 

 

The mosaicking of global planetary datasets allows for the examination of 

local, regional, and global scale processes on all planetary bodies.  Processing 

techniques that allow us and other users to crate mosaics of tens of thousands of 

images are documented along with the associated errors introduced by each 

image-processing algorithm.  These techniques (e.g. non-uniformity correction, 

running contrast stretches, line and row correlated noise removal, and random 

noise removal) were originally developed for the 2001 Mars Odyssey Thermal 

Emission Imaging System (THEMIS) infrared multispectral imager data but can 

be adapted and applied to other datasets by the alteration of input parameters.  

The techniques for mosaicking planetary image datasets (e.g. image registration, 

blending, and normalization) are also presented along with the generation of 

qualitative and quantitative products.  These techniques are then applied to 
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generate THEMIS daytime and nighttime infrared, Viking, Context Imager 

(CTX), and Mars Orbiter Camera (MOC) visible mosaics using a variety of input 

and output types at a variety of scales.  By creating mosaics of the same area 

using different datasets such as those that illustrate compositional diversity, 

thermophysical properties, or small-scale morphology, it is possible to view the 

surface of the planet and geologic problems through many different perspectives.  

In addition to the techniques used to create large-scale seamless mosaics, I also 

present the THEMIS daytime and nighttime relative temperature global mosaics, 

which are the highest resolution (100 m/pixel) global scale datasets available for 

Mars to date. 

2.1 Introduction 

Images of other planetary bodies in our solar system are some of the most 

widely utilized data products available to the planetary science community.  Mars 

has a wealth of these data, which have been acquired from the beginning of 

NASA’s exploration of the solar system to the present day.  Imaging cameras and 

spectrometers such as the Viking Orbiter Visual Imaging Subsystems (VIS) 

[Klaasen et al., 1977], the Mars Orbiter Camera (MOC) [Malin et al., 1998] wide 

angle and narrow angle instruments, the Thermal Emission Imaging Systems 

(THEMIS) [Christensen et al., 2003b; Christensen et al., 2004a] visual and 

infrared imagers, the High-Resolution Stereo Camera (HRSC) [Neukum et al., 

2004; Jaumann et al., 2007] visible imager, and the Mars Reconnaissance 

Orbiter’s High Resolution Imaging Science Experiment (HiRISE) [McEwen et al., 

2007], Context Imager (CTX) [Malin et al., 2007], and the Compact 
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Reconnaissance Imaging Spectrometer for Mars (CRISM) [Murchie et al., 2007] 

have all provided new and unique views of the planet that have revolutionized the 

manner and detail in which Mars is studied.  While many of these instruments do 

not provide global scale coverage in a single image (in fact many instruments 

only provide meter to kilometer scale snapshots of the surface), the combination 

of hundreds to tens of thousands of these individual observations provides a 

remarkably powerful tool for scientific investigations.  

The construction and use of global datasets has vastly increased the 

present understanding of many aspects of Mars, including its crustal and regolith 

composition, thermophysical character, magnetic field anomalies, active 

processes, climate, and geologic history.  Here I will document the processes that 

are used to create large-scale regional and global mosaics of thousands of 

individual Thermal Emission Imaging System (THEMIS) images and demonstrate 

the versatility of these tools by applying them to other planetary image datasets 

including Viking VIS, MOC, and CTX.  The companion paper to this publication, 

Edwards et al. [2011a], Mosaicking of Global Planetary Image Datasets, Part 2: 

Application to Wind Streaks Observed in THEMIS Daytime and Nighttime 

Infrared Data, hereinafter referred to as Paper 2, uses the THEMIS daytime and 

nighttime infrared mosaics as reconnaissance tools and presents unique scientific 

results made possible by the creation of the mosaic. 

THEMIS provides excellent means to address many local and regional 

scale geologic problems, with its high spatial sampling and its ability to 

discriminate between geologic materials of different compositions.  These 
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compositional data have allowed for the investigation of a variety of areas in 

detail, including the Nili Fossae [Hamilton and Christensen, 2005], Ganges and 

Eos Chasmata [Edwards et al., 2008], Ares Vallis [Rogers et al., 2005], Mare 

Serpentis [Rogers et al., 2009], and a variety of other locations.  The majority of 

these studies utilized THEMIS data in conjunction with Thermal Emission 

Spectrometer (TES) [Christensen et al., 2000a; Christensen et al., 2001], CRISM 

[Murchie et al., 2007; Pelkey et al., 2007] and Observatoire pour la Minéralogie, 

l'Eau, les Glaces, et l'Activité (OMEGA) [Bibring et al., 2005; Mustard et al., 

2005] data to better constrain the compositions highlighted by THEMIS data.  

These compositional data have also been used in conjunction with THEMIS 

thermophysical data [Fergason et al., 2006a; Bandfield, 2008; Bandfield and 

Rogers, 2008; Edwards et al., 2008] to constrain the nature of the material (e.g. 

unconsolidated sand or dust).  Additionally, these data have allowed for the 

investigation of in situ bedrock or rocky materials [Edwards et al., 2009] and 

primarily aeolian deposits in Arabia Terra [Fergason and Christensen, 2008], 

where likely the most primitive unmodified crustal and the most homogenized 

materials, respectively, are observed on the planet. 

In this paper, I present the highest resolution global datasets of Mars to 

date with a spatial sampling of 100 m/pixel or ~592 pixels per degree (ppd) at the 

equator.  Both nighttime temperature and daytime temperature qualitative global 

datasets have been produced at this scale. While these data do not provide 

quantitative thermophysical or compositional information about the surface, they 

are extremely useful as reconnaissance tools.  This is especially true for areas with 
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materials that exhibit a range of thermophysical characteristics, which can be 

readily identified.  In addition, the daytime data can be used for morphologic 

studies, crater counting, and as indicators of thermophysical properties or 

compositional variations.  The construction of qualitative data products is the 

initial step required for subsequent work to construct global thermal inertia, multi-

band decorrelation stretch, 10-band emissivity, and surface kinetic temperature 

mosaics at the same 100 m/pixel scale.   

2.2 Data Processing Tools 

The construction of these datasets necessitates the use of advanced image 

processing techniques that were originally developed for use with THEMIS image 

data products but can be adapted to a variety of other datasets through the 

alteration of input parameters. These techniques are used to create well-calibrated 

high quality quantitative data from which additional products can be derived, as 

well as large-scale qualitative image products, which are equally useful and 

provide regional morphologic and relative thermophysical context.  Often, the 

size of the region of interest will require the concatenation of many hundreds to 

thousands of images (or tens of thousands as is the case for the THEMIS daytime 

and nighttime global mosaics).  

Here I present the generic techniques and tools which can be used to 

create mosaics from any images projected by the Integrated Software for Imagers 

and Spectrometers (ISIS; http://isis.astrogeology.usgs.gov/) package provided by 

the United States Geological Survey (USGS) [e.g. Torson and Becker, 1997; 

Anderson et al., 2004].  ISIS provides many useful processing tools (projection 
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and other geometric processing of images with high precision, based on rigorous 

camera models, precise radiometric calibration for many instruments, and a large 

but certainly not complete set of other cartographic and image processing 

functions such as map transformations and spatial filtering), but is not provided to 

the end user as a development platform for new algorithms.  It supports 

predetermined processing steps used to manipulate data in a standard and 

established manner.  

Other than map projecting data to a planet’s surface, all data processing 

and mosaicking was completed using an open source software package entitled 

DaVinci, which is maintained by the Mars Space Flight Facility at Arizona State 

University (http://davinci.asu.edu) in partnership with other institutions.  DaVinci 

is a generic array-processing tool that allows for symbolic and mathematical 

manipulation of hyper-spectral planetary image data and provides support for 

importing and exporting current ISIS data formats.  DaVinci allows the end user 

to develop image-processing algorithms with an interactive scripting interface.  Its 

plotting and image display capabilities let the user visualize the effect of data 

processing in real-time. Processing algorithms developed in DaVinci can be easily 

integrated with ISIS to provide a flexible compliment to the established ISIS 

routines. 

ISIS currently supports Linux and MacOS X installations and requires up 

to 70 Gigabytes of storage for the application and mission data.  DaVinci supports 

Linux, MacOS X, and Windows installations and only requires 100 Megabytes of 

storage for the entire application.  Both applications have detailed documentation, 
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tutorials, and additional information that can be found at their respective 

websites.  

A combination of ISIS and DaVinci was used to create mosaics for several 

different datasets including the Viking VIS [e.g. Klaasen et al., 1977], MOC 

wide-angle camera [e.g. Malin et al., 1998], CTX [e.g. Malin et al., 2007] and 

THEMIS infrared and visible imagers [Christensen et al., 2003b; Christensen et 

al., 2004a].  In addition, I demonstrate the efficacy of the aforementioned 

techniques and software to create regional multi-band mosaics using decorrelation 

stretch [Gillespie et al., 1986] THEMIS images that vividly illustrate the 

compositional diversity of the Martian crust. 

2.3 THEMIS Specific Data Processing 

2.3.1 Dataset/Instrument Description 

The THEMIS instrument includes two separate cameras: a thermal 

infrared pushbroom line scanner consisting of a 9 spectral channel, 320 by 240 

element uncooled microbolometer array that covers a wavelength range of 6.7 to 

14.8 µm and a visible 1024 by 1024 framelet imager split into 5 spectral channels 

in ~50nm bands centered from 0.42 to 0.86 µm [Christensen et al., 2004a].   The 

infrared imager has 100 m/pixel spatial sampling and the visible imager has 

~18m/pixel spatial sampling from the ~420 km altitude orbit of the 2001 Mars 

Odyssey spacecraft.  The infrared imager acquires extremely long (typically > 

6000 lines, covering > 600 km), narrow (320 samples, covering only 32 km) 

images.  Several issues commonly exist with line scanner instruments like 
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THEMIS including: 1) variations in detector readout voltage that can cause 

enhanced line-to-line noise, 2) the delay between the acquisition of each band that 

necessitates the use of map projection software to align each band to the surface 

before the multispectral data are utilized, and 3) calibration errors as these 

instruments will often acquire data for long periods of time covering large 

distances on the surface. 

Candidate images are first selected using parameters in a database 

(available through a DaVinci Simple Query Language (SQL) interface or 

http://viewer.mars.asu.edu) and are chosen according to the desired use of the 

mosaic.  For example, it is possible to select images based on surface temperature, 

atmospheric opacities, thermal inertia, TES albedo, incidence angle, solar 

longitude, and a variety of other acquisition and observational parameters [e.g. 

Christensen et al., 2007].   Additional quality control constraints are useful to 

eliminate noisy, poorly calibrated data.  Data with the following parameters are 

preferred: 1) the time difference between the end of the image and the acquisition 

of the calibration image should be limited to <150 seconds to minimize the 

potential changes in instrumental conditions, 2) images with a small number of 

saturated or under-saturated pixels, 3) images with low percentages of data 

dropouts, and 4) images that do not have enhanced line-to-line noise.  

Prior to mosaicking, visual examination of every image is often included 

as an additional step.  Data that are often excluded include images containing 

elevated line-to-line or white noise and excessive repeated dropouts, which render 

the blending of several images difficult, and images collected during periods of 
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high atmospheric dust where the overall contrast of the image is reduced.   The 

highest quality images correspond to data with the warmest surfaces and lowest 

atmospheric opacity, although for qualitative, single-band mosaics, data with 

lower surface kinetic or brightness temperatures are often acceptable.  Other 

instruments (both line scanner and frame imagers) have a similar set of numeric 

and visual selection criteria that will be applied to arrive at a high-quality image 

set for mosaicking. 

2.3.2 THEMIS Global Mosaic Data Selection 

Perhaps the most important aspect of the entire mosaicking process is the 

selection of high quality, well-calibrated data.  During the THEMIS mapping 

mission, images were both systematically and priority targeted, potentially 

covering the same area on the planet many times over.  Data were initially 

selected following the guidelines in section 2.3.1; however, when an area was 

imaged multiple times, the data with the highest visual quality were selected and 

other lower quality data were removed, reducing the probability of blending 

poorly registered data. 

Equatorial and mid-latitude data from -60˚ N to 60˚ N were limited by a 

solar incidence angle < 85˚ for daytime and >95˚ for nighttime, ensuring that the 

sun was at least 5˚ above or below the horizon respectively.  Additionally, only 

full-resolution (unsummed) data were used.  Images where the time between the 

end of image acquisition and the collection of calibration data exceeds 150 

seconds were omitted as a quality control measure, helping to ensure the usage of 

well-calibrated data.  Longer times between the data collection and calibration 
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image acquisition translate into larger uncertainties due to focal plane temperature 

drift.  Images with any oversaturated or undersaturated pixels identified in the 

initial image calibration (these pixels have DN values at the minimum or 

maximum of the 12-bit THEMIS instrument and are logged as the fraction of 

saturated pixels to the total number of pixels in the image) were also rejected as 

these pixels can introduce undesirable image artifacts, negatively influencing the 

overall image quality and visual appearance in the final mosaic product. 

Only the daytime mosaic was constructed for latitudes poleward of 60˚ as 

nighttime surface temperatures are exceedingly low (e.g. <160 K) and instrument 

signal-to-noise is low at these temperatures.  As the THEMIS global mosaics are 

designed to maximize coverage and not minimize seasonal effects, no restriction 

on season was placed on daytime images poleward of 60˚ latitude.  Seasonal 

effects in daytime data could cause significant temperature variations between 

images; however, these variations are most obvious in nighttime temperatures.  

Constructing a daytime mosaic that incorporates all seasons is a reasonable task 

for the mid- to upper-latitudes [e.g. Bandfield, 2007; Bandfield and Feldman, 

2008].  Near the Martian poles, the presence or absence of seasonal ice and clouds 

is another issue that must be addressed [e.g. Kieffer et al., 2000; Kieffer and Titus, 

2001; Piqueux et al., 2003; Piqueux et al., 2008].  Polar features are highly 

variable and can change on a daily basis.  No attempt, other than removing images 

with large areas of seasonal CO2 ice, has been made to eliminate seasonal 

variations; therefore polar regions (as with the rest of the global mosaics) are a 

combination of data from a variety of seasons and conditions. Without the use of 
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the image processing techniques discussed in this paper, I would be unable to 

create seamless global-scale mosaics composed of tens of thousands of images, 

which are acquired at different seasons and times of day.  

2.3.3 Standard THEMIS Processing  

THEMIS data are provided as Reduced Data Records (RDR) through the 

Planetary Data System (PDS, http://pds.nasa.gov), which are radiometrically 

calibrated radiance data derived from the THEMIS Experimental Data Record 

(EDR) [Christensen, 2002, THEMIS calibration report, available at http://themis-

data.mars.asu.edu/pds/calib/calib.pdf; Christensen et al., 2004a].  Through the 

completion of the mosaicking process, images remain consistent to the PDS RDR 

calibrated radiance form, retaining all spectral bands, processing history, and data 

precision, as it provides the most flexibility to convert the data to other products 

(e.g. emissivity, stretched single- and multi-band images, surface temperature 

etc.) and quantitative data retained until the very last step where the mosaic is 

scaled for viewing.  Some processes require pixel-to-pixel registration (e.g. band-

dependent line- and row-correlated noise removal and random noise removal) 

provided by the THEMIS camera model using the ISIS software and all data 

products after an ISIS processing step are consistent with the ISIS format, again 

retaining all spectral bands, processing history, and data precision. 

In order to display the data for viewing, several different methods must be 

taken to scale the data and maximize the desired features.  These techniques range 

from single band histogram and linear stretches to multiple band principal 

component analysis and decorrelation stretches [e.g. Gillespie et al., 1986].  
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Decorrelation stretches are the predominant technique that is utilized in this paper.  

In THEMIS data, decorrelation stretches maximize the compositional/spectral 

variation (which is related to the second and third principal components), while 

retaining much of the morphologic/temperature context (which is captured 

primarily in the first principal component).  This type of stretch was chosen 

because it is extremely good at highlighting second and third order spectral 

variations, which is the main focus of the THEMIS data processing presented in 

this paper.  Additionally, decorrelation stretches are used throughout this paper to 

provide a consistent means of viewing the effects of the different algorithms.   

A flow chart illustrating the order, input, output, and changes to the data 

are shown in Figure 2.1.  This figure also includes corresponding section numbers 

and information about the mosaicking procedure described below, as well as 

specific function names for both DaVinci and ISIS.  Unless otherwise stated, all 

of the following algorithms and processes have been completed using the DaVinci 

software package. 

The RDR data are first corrected for time-dependent focal plane 

temperature variations in the detector array which causes a ±1DN offset at scales 

of ~50-200 line in the image [Bandfield et al., 2004b].  Additionally, the image is 

corrected for lower frequency temperature drift (±10 DN on the dayside and ±5 

DN on the night side), which is related to the constantly changing position of the 

instrument relative to the Sun and the temperature of the observed target.  These 

offsets are determined using the THEMIS atmospheric channel (band 10), with 
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the assumption that the atmosphere does not have high frequency temperature 

variations [Bandfield et al., 2004b].
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Figure 2.1. This set of flow charts details the processing steps that are taken to 

process both THEMIS data and qualitative/quantitative mosaics.   
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Figure 2.1. continued For each processing step a reference to the corresponding 

section in the text is provided on the arrow, as well as a short description of the 

step, the software package used (DaVinci or ISIS) and the function name that  

completes the task adjacent to the image set.   A) THEMIS standard processing  
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Figure 2.1. continued 

flow chart illustrating the typical steps used to process THEMIS data into the  

form commonly used to mosaic these data.  THEMIS data are ingested at the 

RDR state from the Planetary Data System (PDS) archive and then follow the 

arrows in the diagram through the various processing stages.  Each of these stages 

(except for the map projection) is optional and may be excluded depending on the 

final processing state required.  Three images are shown where the leftmost is the 

input image, the center is the output data from the algorithm, and the rightmost 

image is the difference between the two.  Each set of three images has been 

stretched using a decorrelation stretch with the same statistics so a direct 

comparison can be made between the image set.  B) The standard mosaic 

processing flow chart illustrates the two-path (qualitative and quantitative) nature 

of the software.  If the desired end result is qualitative then processing steps that 

disrupt the calibration of the data are taken to provide a visually appealing 

mosaic. However, if the desired end result is quantitative, then no normalization 

steps are taken, preserving the nature of the input data.  Three sample data types 

(Thermal Inertia, Emissivity, and Surface Temperature) are shown along with the 

associated papers [Christensen et al., 2003b; Bandfield et al., 2004b; Fergason et 

al., 2006a] that describe the techniques required to process the input data to these 

stages.  Any number of additional data types may be created here and will follow 

the same path as the quantitative products. 
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Figure 2.2. These images are decorrelation stretches of the same THEMIS image 

(I26686040, bands 9, 6, and 4) A) The original THEMIS image before the tilt 

removal algorithm has been applied. Tilt is manifested as a red to blue to green 

shift (from left to right) in this case.  B) The same image that has undergone the 

tilt removal process, which has removed the left to right color variation. C) The 

difference of the radiance between the images from Figure 2.2a, b where the data 

have been decorrelation stretched using the same stretch as the image in Figure 

2.2b.  This illustrates what has been removed from the uncorrected data to 

produce the corrected data. 
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2.3.4 Advanced THEMIS Data Processing 

2.3.4.1 Temperature Variation Across the Calibration Flag Correction 

Following the removal of time-dependent focal plane temperature 

variations and the low frequency temperature drift, a temperature variation across 

the calibration flag is removed.  This effect creates an apparent cross-track slope 

in the temperature image. The amplitude of slope is typically small (<1 K), but 

can cause difficulty in making seamless mosaics; the temperature gradient across 

the image results in artificially bright regions in one image being abutted to 

artificially dark regions in its neighbor.  As is nearly always the case, the 

temperature variation across the calibration flag is consistent in its slope (e.g. 

always negative, or left to right in an image).  A calibration flag is the primary 

means by which THEMIS data are converted from raw data numbers to calibrated 

radiance.  The calibration flag is a known temperature that is imaged by the 

microbolometer array after every image acquisition and provides a single point to 

relate back to the THEMIS instrument response function lookup table.  The 

temperature variation across the calibration flag is variable, but not independent 

for each band, as the bands are not acquired simultaneously while observing the 

same position on the planet (or in this case calibration flag). The variation is also 

visible in decorrelation stretch images where it shows up as a color variation (e.g. 

red to blue tones, green to blue tones) from the left side of the image to the right 

side of the image (Figure 2.2a, 2.2c) depending on the selection of bands.  Figure 

2.3 illustrates the absolute temperature difference for two bands before and after 
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the calibration flag temperature variation removal algorithm is applied.  The 

observed difference in slope between bands 4 and 9 is the cause of the color 

variation observed in the decorrelation stretch images in Figure 2.2. 

In addition to varying across the image, the temperature variation is not 

constant throughout the duration of the image, implying that some residual time-

dependent parameter is not being completely removed and may be related to 

another instrument component.  In order to correct for these variations, I average 

all the columns of the image in 4000 line segments and convolve this average 

with a filter comparable to the width of the image (e.g. 320 samples), which is 

then subtracted with the overall average value of the section added back.  I allow 

for 2000 lines of overlap between sections to ensure that the time-dependent 

parameter is removed and then perform a linear ramp over the overlapping region 

to ensure that a smooth transition from section to section is achieved.  This 

processes is called a “running” or windowed process, as it operates upon 

independent but multiply redundant sections of the image simultaneously and 

linearly combines overlapping pieces with fractions of the data ranging from 0 to 

1 (depending on their position) and relative contributions to create the final 

output. In this case, the algorithm is only applied in one direction (along track), 

but for other processes the running algorithm may be applied in two or three 

dimensions with differing amounts of overlap. 
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Figure 2.3. Row averaged temperature plotted for a relatively long THEMIS 

image (I26686040, >10000 lines) illustrates the effect of tilt.  The solid lines are 

the original data and the dashed lines have had the tilt removal algorithm applied.  

At most the temperature difference between the solid and dashed lines is ~±1 K 

and the tilt is interpreted to be the slope from left to right (in this specific 

instance).  The dashed line has been normalized for this slope, while retaining the 

spatial information.  The offset between bands 4 and 9 is artificial, for clarity; 

however, the difference in slopes between the bands is real.
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2.3.4.2 Band-Independent and Band-Dependent Row and Line Correlated 

Noise Removal 

The corrected data are then map projected using the ISIS software, which 

utilizes a camera model to accurately describe the mapping of detector pixels to 

the surface of Mars.  Once the bands are spatially registered, a form of row- and 

column-correlated band-independent noise, also known as “plaid”, is apparent in 

decorrelation stretch and single band nighttime images.  This form of row- and 

column-correlated noise is primarily a spectral contribution (e.g. varying for each 

band) and is identified by abnormally high or low row- or column-average values 

in one spectral band but not any of the other spectral bands.  This effect was first 

noted by Bandfield et al. [2004b] and the correction algorithm and cause of the 

plaid is described in detail by Nowicki and Christensen [in prep].  The row-

correlated component of plaid is residual electronic noise that is mapped into the 

RDR during the read-out of the array and consequent transfer to the spacecraft 

memory buffer.  The column-correlated component of the plaid is caused by 

variations across the detector that are not adequately removed by the instrument 

response function. These artifacts are typically at the level of ± 1 DN and are only 

evident in decorrelation stretch images or other extreme processing approaches 

such as image ratioing or principal components analysis that emphasize small 

differences between spectral bands.  However similar artifacts may become 

increasingly evident with lower signal to noise (SNR) data, as is the case with a 

significant portion of nighttime infrared images and in instruments with a lower 

SNR than THEMIS. 
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2.3.4.3 Random Noise Removal 

In decorrelation stretch images, pixel-to-pixel white noise can be 

significant, obfuscating surface features and the interpretation of false color 

images.  Spectral differences between adjacent pixels are maximized by the 

decorrelation stretch and can often account for a large fraction of the spectral 

variability in a scene (Figure 2.4a and 2.4c).  I use a white noise removal 

algorithm to reduce the random pixel-to-pixel noise and accentuate the underlying 

surface spectral variation in the component images of mosaics (Figure 2.4b and 

2.4d). 

In this algorithm, each band of THEMIS radiance is converted into a 

percentage of the total signal.  The total signal is the integral of all of the 

radiances in all of the surface sensitive bands.  To convert each band into a 

percentage of the total signal, I divide the radiance of each band by the total 

signal, yielding a fractional contribution image with values ranging from 0 to 1.  

Each band of the fractional contribution image is then typically convolved with a 

7x7 pixel boxcar filter and then multiplied by the total signal image to regain 

original radiance units. The assumption behind the algorithm is that no two 

adjacent pixels in any band should contribute a significantly large difference in 

the percentage of the total signal. This assumption breaks down at bright and dark 

(or hot and cold) boundaries where artificially high or low radiance values are 

imparted in the data by the convolution.  The difference between the original 

radiance and the newly filtered radiance is largely composed of random noise, 

plus the artificially elevated or lowered boundary data.  The difference image is 
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then converted to a principle component image, of which the first principle 

component is the correlated boundary data.  The first principle component is 

removed and the image is converted back into radiance units, resulting in an 

image with only randomly distributed noise.  The randomly distributed noise is 

subtracted from the original radiance image to obtain the noise-free radiance data.  

To obtain high correlation values in the principle component image, this entire 

operation is calculated for every 1001 by 1001 pixel segment of an image in the 

same manner as the running stretches described in section 2.4.1.  

Figure 2.5 illustrates the absolute radiance difference between the 

corrected and uncorrected data for several THEMIS bands.  The maximum 

correction in this case corresponds to ~1x10-5 W cm-2 µm-1 sr-1 with an average 

correction of -1.6x10-12 ±1.4x10-6 W cm-2 µm-1 sr-1.  Outside the case of 

decorrelation stretches, the alterations to the data from this algorithm are 

undetectable and functionally insignificant. For a more detailed discussion of this 

algorithm and the errors associated with its use, see Nowicki et al. [in prep]. 
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Figure 2.4. A) The original THEMIS data (I25647004) decorrelation stretched 

with THEMIS bands 8, 7, and 5 illustrates the white noise that is the focus of this 

example.  The white noise in this data is characterized by multicolored speckles 

distributed randomly throughout the image.  B) The same image data with the 

white noise removal algorithm applied exhibits much less of the speckled texture 

that was observed in the companion image.  Additionally, features that are not 

visible in the original data are easily observed in this new image, as the amount of 

random or white noise has been significantly reduced. C) A subsection of the 

image in a) illustrating the level of the white noise D) A subsection of the image 

in b) illustrating the effect of the noise removal algorithm. 
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Figure 2.5. THEMIS image (I25647004) band 2 (blue), 5 (green), and 9 (red) 

uncorrected radiance plotted versus the difference between white noise corrected 

and uncorrected radiance for the corresponding bands.   In this case, every pixel in 

a THEMIS image with the white noise removal algorithm applied is subtracted 

from the corresponding pixel in the original data.  This allows for a direct 

comparison of the effectiveness and scale of the correction.  If no correction was 

applied, the data would follow the horizontal axis. The spread in the data is 

roughly the same for each band with the maximum correction corresponding to ~ 

±1x10-5 W cm-2 µm-1 sr-1 and an average correction of -1.6x10-12 ±1.4x10-6 W cm-

2 µm-1 sr-1.
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2.4 Mosaicking Algorithms and Procedure 

The DaVinci software package provides the ability to load ISIS data cubes 

(among a variety of other file formats) into a manageable format and extract the 

required information for mosaicking, including mapping parameters such as the 

coordinate system, the line and sample projection offset, resolution/map scale, 

image width and height, etc. as well as quantitative spectral and temperature data.  

If a single band mosaic is desired, then a single band is extracted from the ISIS 

data cube. At the wavelengths covered by THEMIS band 9, surface emissivity is 

high (~0.90), atmospheric opacity is low, and the surface-atmosphere temperature 

contrast is high, making this the most common THEMIS band utilized in the 

mosaicking process as it has the highest signal to noise ratio for both daytime and 

nighttime data. 

 Once the data are ingested and the bounds for the mosaic have been set, 

either by the maximum extent of the images used or a user defined 

latitude/longitude range, the appropriate line projection offset and sample 

projection offset are used to place the data into the context of the mosaic region 

for the given projection.  Figure 2.1b illustrates the typical order and results of the 

mosaicking algorithms described below.  Two paths are shown, where one is the 

path taken for a qualitative product while the other path is taken for a quantitative 

end result.  The algorithms used to create the quantitative data products are not 

discussed here in detail as they vary significantly between the data being derived 

and the science objectives [e.g. Christensen et al., 2003b; Bandfield et al., 2004b; 

Fergason et al., 2006a].  
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2.4.1 Running Stretches 

After the initial image position in the mosaic region has been determined, 

several additional processing steps occur to ensure that the final mosaic is 

seamless. As THEMIS infrared images are commonly 10 to 20 times longer than 

they are wide and the 2001 Mars Odyssey is in polar orbit, images cover large 

ranges of latitude (often > 15˚), where surface temperatures may vary 

significantly.  Several processes are performed on the data to normalize for the 

temperature difference.  

First, a large (often > 1001 by 1001 pixels) high pass filter can be applied 

to the data to remove the low frequency change in surface temperature, caused by 

the differences in acquisition latitude.  Additionally, similar to the temperature 

variation across the calibration flag correction algorithm, a running histogram or 

decorrelation stretch can also be preformed to maximize the local variation in the 

scene.  For THEMIS, these stretches are typically done on ~1000 by 1000 line 

sections in two dimensions with 50% overlap of each section as this provides the 

best image-to-image normalization for long images.  An example of the small-

scale detail that is enhanced with this method is shown in Figure 2.6 where 

running histogram stretch was applied to the data.  In cases where the final 

product is not intended to preserve a physical quantity such as temperature, the 

data are stretched prior to being inserted into the final mosaic region, yielding 

better contrast-matched mosaics. 
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Figure 2.6. Two different stretches of the same THEMIS image (106568023, 

band 9 radiance) presented side by side, illustrating the advantage of a running 

histogram stretch.  An image of Valles Marineris was chosen to highlight the 

strengths of the running histogram stretch.  Similar advantages are observed with 

running decorrelation stretches.  B) A standard histogram stretch of a THEMIS 

image, where some saturated and undersaturated locations are present in the  
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Figure 2.6. continued 

canyon and craters walls.  Additionally, the plains have low contrast, as the  

statistics for the entire scene are being dominated by warm and cold locations in 

the canyon walls. B) A running histogram stretch of the same image.  In this case, 

the canyon walls are less saturated than in the standard case.  However, the most 

significant differences are observed in the plains, where details that were not 

visible previously are now easily observed.  However, the data values associated 

with this stretch are relative to one another over the window size of the algorithm, 

whereas in the standard histogram stretch case all the values in the entire image 

are relative to each other.  For example, the stretched values of pixels containing 

the same calibrated radiance values may not be mapped to the same stretched 

value, or pixels with significantly different radiance values may end up with 

similar stretched values. 
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2.4.2 Automated Image Registration 

An automated image registration algorithm can applied to correct for 

potential location inaccuracies due to uncertainties in the timing of the start of the 

image or spacecraft pointing.  In THEMIS data this uncertainty results in a ±2 

pixel (200 m) error in absolute position on the surface of Mars in the along track 

direction.  There may also be absolute errors in cross-track position, which for 

THEMIS are typically <1 pixel (100 m) that is related to the inaccuracies in the 

derived spacecraft position and pointing.  In the case of THEMIS data, only one 

offset is stored for each image and individual bands of an image are not shifted 

independently, as the THEMIS camera model in ISIS aligns the individual bands 

to <0.1 pixel. 

Spacecraft pointing errors are typically small for THEMIS infrared and 

visible data; however, for older datasets where the position and pointing of the 

spacecraft was not as well known, (e.g. Viking), the offsets due to pointing errors 

can be significant, often greater than several kilometers (e.g. 100s of pixels).  For 

this algorithm to be applied, a reference image or image location must be chosen, 

from which to base all subsequent positioning of images.  For consistency, the 

images are typically sorted from west to east, but may also be sorted by maximum 

overlap.  The auto-registration algorithm is a two-dimensional difference 

minimization technique, where a random sampling of pixels in the original 

overlapping image pairs are taken and a search radius of R number of pixels are 

compared to the sum of the difference of the values of the two images. The 

process is repeated until the algorithm arrives at the local minimum value of the 
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solution space.  Implementation of a random sampling technique and the auto 

registration algorithm is applied twice to ensure that the minimum reached 

ensuring that the first solution is in fact the true minimum and not a local 

minimum.  It is possible to perform an exhaustive search of the overlapping 

region, where every pixel is compared to every other pixel in the search radius, 

but these operations are computationally costly, especially when this process must 

be completed for each overlapping image (up to several thousand times).  

Experience has shown that the random technique produces a comparable result to 

an exhaustive search. 

2.4.3 Image to Image Blending 

As a final step the data are blended using a two dimensional linear 

combination ramp of the overlapping regions to insert the new image into the 

mosaic and is stretched as the last step just prior to insertion into the final region.  

This blending algorithm does not blend all images at once; rather each subsequent 

image is blended into the final output image and the resultant image can be the 

average of many images.  However, this algorithm will favor the most recently 

added image, as the overlapping sections are only a weighted average of what 

exists in the destination image (which could be many previously averaged 

images) and the newly inserted image.  In summary, for qualitative data products, 

the best results are typically achieved when a large high pass filter is applied to 

remove the low frequency change in surface temperature, followed by the 

stretching of individual images (either by a running or standard stretch type), and 
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then a multi-directional blend of adjacent images, which are inserted into the final 

mosaic scene. 

2.4.4 Quantitative Mosaics 

Data normalization steps such as non-linear stretches and running 

stretches (Section 2.4.1), high-pass filters (Section 2.4.1), and random noise 

removal (Section 2.3.4.3) remove the quantitative aspect of data and should be 

excluded in the creation of quantitative mosaics (Figure 2.1b).  However, other 

empirical data corrections such as the removal of the temperature variation across 

the calibration flag (Section 2.3.4.1) and the removal of band-dependent and 

band-independent line- and row-correlated noise (Section 2.3.4.2) result in data 

that have values that more closely represent actual conditions and are less effected 

by instrumental artifacts, making them desirable corrections to produce accurate 

and well calibrated data.  When creating a quantitative mosaic, the use of 

additional algorithms to compute the desired value (e.g. thermal inertia [Fergason 

et al., 2006a] or emissivity [Christensen et al., 2003b]) commonly have the effect 

of normalizing data in a quantitative manner. When these types of processes can 

be applied, they are preferred over the less well-characterized data normalization 

algorithms presented in this work.  Figure 2.1b illustrates the two-path approach 

(qualitative on the left and quantitative on the right) that is taken by the mosaic 

software where three sample data types (emissivity [Christensen et al., 2003b], 

surface temperature [Bandfield et al., 2004b], and thermal inertia [Fergason et al., 

2006a]) are shown.  While these three data examples are specific to THEMIS, it is 

possible to derive any desired data products such as mineral maps or albedo by 
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following the same procedures, creating a high quality quantitative regional or 

global data product.  

2.5 Effects of Image Manipulation Algorithms 

Documenting the effects of image manipulation algorithms on quantitative 

data (i.e. THEMIS radiance data) is an important aspect of algorithm 

development.  In order to assess the validity of the techniques described above, 

the potential error and corrections they introduce into the final data must be 

addressed.  In this manuscript, I do not attempt to provide an exhaustive error 

analysis for each of the techniques described previously, but rather I attempt to 

incorporate reasonable errors and contributions for each technique and view them 

through the perspective of the mosaic process.  Additionally, for nearly all the 

algorithms discussed in this manuscript a detailed error analysis has been reported 

in other technical publications that document the algorithms and their effects in 

detail [e.g. Bandfield et al., 2004b; Christensen et al., 2004a; Nowicki and 

Christensen, in prep; Nowicki et al., in prep]. 

2.5.1 Temperature Variation across the Calibration Flag Correction 

As the temperature variation across the calibration flag correction is purely 

empirical and the subtraction from the image is related solely to image derived 

parameters that have no corresponding physical measurements, this process 

should typically only be performed on data where the end product will not be used 

for spectral analysis.  However, this technique further reduces instrument noise, 

making qualitative spectral variation in decorrelation stretch images significantly 
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more apparent. The temperature differences removed by this technique (e.g. 1-2 

K, Figure 2.3) are small enough that it can be safely used if the goal is only 

derived brightness temperature and not emissivity. The temperature differences 

are within the predicted temperature error associated with THEMIS images 

[Christensen et al., 2004a].  Subsequently, the atmospheric correction [Bandfield 

et al., 2004b] applies a similar technique (e.g. removing a temperature difference 

based on image derived parameters); however, this atmospheric correction is 

rooted in the assumption that THEMIS atmospheric band (~14.88 µm) is not 

correlated with the surface and the temperature differences calculated from that 

band are then applied to every other band of the image.  This is not the case with 

the temperature variation across the calibration flag correction algorithm, which is 

why an extremely large filter (4000 lines) is used to correct the data for each 

band.  If a semi-linear feature is present running parallel to the direction of image 

acquisition (e.g. a large scarp), it is possible that this technique could induce 

artifacts (in the form of brightness smearing) into the original data.  The 

likelihood of this is extremely small and occurs infrequently (<<0.1% of all 

images); the potential for artifacts to occur is largely outweighed by the benefits 

associated with the algorithm.   

2.5.2 Random Noise Removal  

The details of the white noise removal algorithm have been documented by 

Nowicki et al. [in prep] and show that the effect of this algorithm on the order of < 

±1 DN for an individual pixel, though this varies from image to image.  

Additionally the difference in radiance between any one pixel in the original data 
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and data that have had the white noise removal algorithm applied is typically << 

5x10-6 W cm-2 µm-1 sr-1 (Figure 2.5) though in the most extreme cases can be as 

much as 1x10-5 W cm-2 µm-1 sr-1.  In this maximum case, this radiance 

corresponds to a temperature uncertainty of ~1.1 K at typical daytime 

temperatures of 275K.  For the former case, the temperature uncertainty is much 

less, corresponding to ~0.01K at 275 K. The largest of these value differences are 

always associated with pixels constituting strong thermal boundaries and are 

easily located and ignored in qualitative and quantitative analyses. From a 

perspective of a global or regional mosaic product, the final contributions of this 

algorithm are minimal, as mosaics are typically made from a single band and are 

displayed as grayscale and not as multi-band decorrelation stretch mosaics, where 

white noise is most evident.  Additionally, if overlap between images is present, 

white noise is further reduced as data are averaged (often several times) in the 

overlapping regions. 

2.5.3 Image Registration and Image Geometry 

Image registration is the process that locates images from one dataset to 

other images from the same dataset and to additional datasets.  Several methods 

exist for generating well-controlled mosaics and are referred to as controlled 

(externally referenced mosaics, e.g. through bundle adjustment) and semi-

controlled (internally referenced mosaics, e.g. through pixel shifting one image to 

match another).  Completely uncontrolled mosaics result from only a priori 

information about the camera and spacecraft position, pointing, and camera 

model. 
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The absolute accuracy of the camera pointing for THEMIS data is 

sufficient (less than ±2 pixels or 200 m) to allow for the creation of high quality 

uncontrolled products.  There are two main sources of image registration error 

associated with THEMIS: 1) the uncertainty in the timing of the detector readout 

as compared to the spacecraft clock count that is recorded for each image, and 2) 

inaccuracies in the spacecraft pointing/orbital position.  Errors related to the 

timing of the detector readout occur only in the along-track direction and are 

responsible for approximately ±2 pixels of error. The error is assumed to be 

Gaussian, meaning that most errors will occur at the sub-pixel to one pixel level, 

and will thus be un-recognizable in the final mosaic. Errors related to the 

inaccuracy in the spacecraft pointing/orbital position occur in both the along-track 

and cross-track directions and are responsible for approximately ±1 pixel error.  

Since these errors are at the one pixel level, most misregistered images are 

difficult to identify.  

The automatic registration algorithm described above is based off of a 

single reference image and is characterized as a semi-controlled method; its use 

can result in systematic offsets, causing the mosaic to be either larger or smaller 

than predicted.  This method is considered semi-controlled because it results in 

images that are well registered to each other but no attempt has been made to 

register the data to another dataset; in a worst case, a ~1000 km THEMIS mosaic 

may be >4 km (0.4%) larger or smaller than the unregistered mosaic.  This size 

difference results from small inaccuracies in the model that describes the 

instrument or camera and how images are mapped to the planet. These products 
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are generally well registered to themselves but not necessarily to the surface of 

the planet.  The probability of a single image being misregistered to a large 

(>1000 images) scene is small (~1-2%) and in this case nearly all misregistrations 

are at the 1 to 2 pixel level, though it is often difficult to determine registration at 

a single pixel level by eye. 

Controlled mosaics have the highest level of absolute pixel accuracy on 

the planet’s surface that can be achieved.  The procedure for generating a 

controlled mosaic is difficult and I make no attempt to generate these types of 

data products using DaVinci; however, ISIS has some methods by which these 

types of data products can be generated.  An established technique and one that 

ISIS supports is called bundle adjustment [Triggs et al., 2000; Kirk et al., 2006].  

In this type of process, images are tied via reference points to both each other and 

other datasets such as Mars Orbiter Laser Altimeter (MOLA) [Smith et al., 2001].  

This process requires the generation of control tie points that represent the same 

physical place on the planet in both the unreferenced image and the reference 

dataset such as MOLA.  Once these locations are established through careful hand 

examination, the bundle adjustment is performed to generate new camera and 

spacecraft pointing and positional information.  This updated information is used 

in the map projection step to accurately locate the image to the planet’s surface, 

requiring no further image adjustment or warping after the initial projection. 

2.5.4 THEMIS Global Mosaic Registration 

For the construction of the THEMIS daytime and nighttime global 

mosaics, I have elected to forego the use of any image registration algorithm and 
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the mosaics should be considered geographically uncontrolled products.  The only 

information used to project the images on the planet comes from the spacecraft 

and planet position during image acquisition and the THEMIS camera model.  For 

this study, the data have been dead reckoned, meaning that no offset or warping 

has been applied to the data other than what is predicted by the initial map 

projection.  By choosing to dead reckon these data, I have foregone the difficult 

task of tie pointing, relating mosaics to reference locations on the surface, and a 

bundle adjustment of all images.  This task is difficult with THEMIS data for 

several reasons including: 1) the narrow width and large length of the images, 2) 

difficulty in automatically identifying suitable tie pointing features, and 3) the 

number of images required to construct the mosaics (> 20,000 individual images 

for the daytime mosaic, and 18,000 individual images for the nighttime mosaic).   

These mosaics are not cartographically controlled but are likely accurate 

to less than ±2 100 m THEMIS pixels on the surface of Mars.  This error results 

from the uncertainty in the timing of the detector readout as compared to the 

spacecraft clock and inaccuracies in the spacecraft pointing/orbital position.   No 

attempt to correct for these errors has been made and the only information placing 

the image at the surface location is derived from the spacecraft pointing relative to 

the planet and the THEMIS camera model.  However, poorly registered data or 

data that reduced the overall quality of the mosaic were removed to produce a 

high quality product.  In practice, very few images (< 200 in each global mosaic) 

were removed due to the above mentioned errors, indicating that these types of 

errors occur infrequently at levels >1 pixel.  Images were removed by visual 
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inspection only when they affected the overall quality of the mosaic, with an end 

result of high quality mosaics with few and minor registration errors.   

2.5.5 Running Stretches  

Classifying the observable effects of running stretches qualitatively is 

straightforward and functionally results in increased local contrast and detail as 

compared to standard stretches.  Figure 2.6 illustrates differences associated with 

a running histogram stretch and a standard histogram stretch.  The overall contrast 

of the image in Figure 2.6 is no longer controlled by the large bright and dark 

areas in the scene associated with the valley walls.  The difference associated with 

a running stretch in low contrast areas are often times >15% different from the 

original stretched values.  However, the stretch applied is now not only scene 

dependent but also dependent on the scale of the features in the scene as related to 

the box size associated with the running stretch.  It is most evident in Figure 2.6 

where ~500 pixels from the edge of the canyon the contrast of the plains is still 

relatively low as compared to a scene with just the plains observed. This is a 

result of the bright and dark areas of the canyon walls dominating the stretch until 

they are not present in the scene being stretched.  This artifact is important to note 

as it could possibly lead to the misinterpretation of geologic features in a given 

scene.  As running stretches serve to normalize the scene locally, they also prove 

to be useful in creating large-scale mosaics.  If the scene is not locally stretched 

and long images are included, features just outside of one image, but not another 

may result in badly mismatched stretches, making mosaicking and blending more 

difficult. 
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2.6 Results 

2.6.1 Large Scale Seamless Mosaics 

One of the main goals of the advanced THEMIS data processing is the 

ability to create large-scale (i.e. global) mosaics where no seams or individual 

images are visible. Processing tens of thousands of infrared images acquired at 

different local times, seasons, and years proves to be a difficult challenge as each 

of these parameters changes the characteristics of the acquired data.  The 

algorithms described in the previous section, including such techniques as tilt and 

plaid removal, in addition to the use of running stretches allows the effect of these 

parameters to be minimized and provide the ability for contrast matching without 

intensive post-processing and contrast adjustment of the images subsequent to 

stretching.  

In addition to creating large-scale seamless mosaics, this software 

provides the ability to selectively mosaic images of specified interests.  An 

example of this has been illustrated by Piqueux et al. [2008], where a quantitative 

temperature mosaic of the south polar cap was constructed to map the 

composition of exposed ices (e.g. CO2 and H2O).  In this case, images were 

limited by season and surface temperature in order to avoid times when the 

seasonal CO2 cap was present. 

2.6.2 Mosaicking Processes on Global-Scale THEMIS Data 

The THEMIS daytime and nighttime infrared 100 m/pixel global mosaics 

(Figures 2.7a and 2.7b) are publicly available through the THEMIS website 
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(http://themis.asu.edu), as well as the Java Mission-planning and Analysis for 

Remote Sensing (JMARS) software package (http://jmars.asu.edu), and will be 

released to the Planetary Data System (PDS) as a value added product from the 

2001 Mars Odyssey mission. 

The mosaicking procedure described in this paper was also employed to 

create the THEMIS global mosaics, where the same algorithms were utilized 

following the same steps to process the THEMIS data into a visually appealing, 

qualitative mosaic.  The main differences between the mosaicking of THEMIS 

global data and the generic procedure is the set of criteria that were used to create 

the THEMIS daytime and nighttime 100m/pixel global mosaics (Section 3.2).  

Additionally, every image was hand examined to ensure that it was artifact-free 

and that the location on the planet was relatively accurate (Section 2.5.4).  This 

procedure, while eliminating potentially valid data, resulted in a mosaic with 

significantly higher overall quality than if poorly registered images or low quality 

data were left in the final product. 
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Figure 2.7. The THEMIS global A) daytime and B) nighttime mosaics shown in 

this figure are the combination of the high-frequency information (small-scale) 

and low-frequency information (large-scale) for viewing at this low-resolution in  

a simple cylindrical projection.  Each box in this figure represents a tile that was 

individually processed for the construction of the THEMIS daytime and nighttime 

global mosaic.  The equatorial tiles (60˚ N-60˚ S) are 30˚ latitude by 60˚ longitude  
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Figure 2.7. continued  

with a 2˚ padding around each tile for blending purposes.  The near-polar tiles 

(60˚ N-75˚ N and 60˚ S-75˚ S), which were only constructed for daytime data are 

15˚ latitude by 60˚ longitude with a 2˚ padding as well.  The two polar regions 

(poleward of 75˚), which were also only constructed for the daytime mosaics are 

15˚ latitude by 360˚ longitude with 2˚ padding on the anti-poleward edge.  These 

regions were constructed in a polar stereographic projection and have been re-

projected to a simple cylindrical projection for this figure. 
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While registration errors may cause blurriness and reduce the overall 

visual appeal of the final product, they are not the only causes of blurriness.  

Seasonal variations at high latitudes (e.g. poleward of 60˚) must also be 

considered.  Several studies [e.g. Bandfield, 2007; Bandfield and Feldman, 2008; 

Kreslavsky et al., 2008; Smith et al., 2009] indicate that high latitudes likely have 

large amounts of near surface water ice, which may cause both visual and 

thermophysical changes in the observed landscape.  For instance, Bandfield 

[2007] illustrates through the use of two THEMIS images obtained at different 

solar longitudes, it is possible to measure and model temperature differences that 

are a direct result of sub-surface water ice.  Dataset observation restrictions, 

image processing, and mosaicking techniques described in this paper help to 

minimize this temperature difference; however, temperature variations may occur 

at different rates throughout the scene depending on the proximity of the ice to the 

surface [e.g. Bandfield, 2007; Bandfield and Feldman, 2008] resulting in images 

that have differing physical properties being abutted directly next to one another. 

Polar processes may also responsible for large observed changes.  Many 

studies have focused on observed changes associated with the polar regions of 

Mars, both seasonally [e.g. Leighton and Murray, 1966; Kieffer et al., 2000; 

Kieffer and Titus, 2001; Bibring et al., 2005] and perennially [e.g. Malin et al., 

2001; Byrne and Ingersoll, 2003; Thomas et al., 2005].  In these studies, seasonal 

changes where the polar cap extends and recedes throughout the year are clearly 

observed in the temperature data.  In this dataset, I have minimized these effects 

through visual inspection to obtain high quality data of the surface and minimize 
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the amount of seasonal CO2 ice present in the mosaic. Changes in the perennial 

cap have been interpreted through the observations of recession and growth of the 

various pitted terrain present (e.g. Swiss cheese terrain) [e.g. Malin et al., 2001; 

Byrne and Ingersoll, 2003].  However, other examples where the polar cap has 

apparently grown over tens of years are given from differences observed in 

Mariner 9 to Viking data [James et al., 1979] and in THEMIS data [Piqueux and 

Christensen, 2008].  These changes are typically small (often < 1 pixel) or occur 

over longer periods of time and are thus insignificant in the final mosaicked 

product. 

Another consideration of these mosaicking techniques is the possibility 

that non-polar surface features may change.  In general, two scales of change are 

typically observed from orbit, fine scale (meters to 10s of meters) where new 

deposits, new craters, and modified dunes are typically observed, [e.g. Malin et 

al., 2006; Bourke et al., 2008] and global scale changes (10s to 100s of 

kilometers), [e.g. Christensen, 1988; Smith, 2004; Fenton et al., 2007] which are 

commonly observed as differences in albedo and thermal inertia.  However, 

changes on the scale of hundreds of meters to kilometers are have not yet been 

observed.  The daytime and nighttime THEMIS global mosaics provide excellent 

means to investigate the possibility of these changes.  While this is not the 

specific goal of these data products, change may be observed as a blurry feature in 

the mosaics, where there is a difference in the surface observed in two 

overlapping images that were taken at different times.   In many cases, 

overlapping areas may be separated by several (e.g. > 2) Mars years.  A key to 
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recognizing this type of change is to distinguish it from poorly registered data. If 

an image is simply poorly registered, the entire overlapping area should be blurry 

as a result of the blending algorithm, but if surface features have changed over 

time, only a small region of the overlapping areas should be blurry.  While change 

effects in mosaics are generally considered artifacts, the techniques described in 

this paper to normalize and register overlapping images of different times may be 

used to compare images prior to mosaicking and could be powerful way to search 

for surface feature changes.  

A good application of detecting change would be to search for wind streak 

changes, where there might be growth or change in direction of the deposit or 

removal area.  At this time I have not yet conclusively identified areas where 

change has been observed; this remains as a future research opportunity. 

2.6.3 Mosaics from Other Instruments and Additional Datasets  

This software has the ability to ingest and mosaic additional datasets 

including MOC Wide Angle, CTX, and Viking visible imager data, taking 

advantage of the advanced data processing techniques originally intended for 

THEMIS data.  Additionally these techniques can be applied to other planetary 

datasets including the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) [e.g. Yamaguchi et al., 1998]. 
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Figure 2.8. Before and after images illustrating the effects of algorithms and 

processing detailed in this paper.  A) THEMIS decorrelation stretch mosaic of 

bands 8, 7, and 5 (centered at 53.25˚ E, 21.6˚ S) illustrating the compositional 

variation as viewed by THEMIS (15 images, 100 m/pixel, 1186 x 1482 pixels, ~1  

minute execution time excluding image map projection). This band combination  
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Figure 2.8. continued 

was chosen to highlight the presence of olivine, as there is an olivine absorption 

in THEMIS band 7.  In this case, olivine-bearing materials are concentrated in the 

floor of the crater. B) THEMIS unprocessed nighttime temperature mosaic of the 

same area. C) THEMIS decorrelation stretch mosaic of the same area.  The 

images in this mosaic have had many of the processes described in this paper 

applied.  D) THEMIS nighttime temperature mosaic where the images have had 

many of the processes described in this paper applied.  The combination of these 

two figures illustrates not only the compositional diversity of the area but also the 

nature of that material.  For example, in this case the most olivine enriched 

materials correlate with the highest thermal inertia values (or warmest nighttime 

temperatures).
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The area chosen is representative of a high thermal inertia crater floor 

[Edwards et al., 2009], where material with a thermal inertia of >1200 J m-2 K-2 s-

1/2 was identified and has been interpreted as in-place bedrock.  Additionally, the 

decorrelation stretch mosaic of this area demonstrates that this material exhibits 

the characteristic absorptions associated with olivine-bearing basalts.  The use of 

these two datasets in combination provides the ability to not only establish the 

composition of the material in question, but also the physical characteristics of the 

material (e.g. sand sized particles or in situ rock).  The use of these two types of 

data in combination can help reconstruct the geologic history of a region.  For 

example, Rogers et al. [2005; 2009] have utilized this method to characterize the 

geologic history of several regions on Mars including Ares Vallis [Rogers et al., 

2005] and Mare Serpentis [Rogers et al., 2009].  In these instances, compositional 

as well as thermophysical THEMIS data have been utilized extensively, and 

indicate that materials with the highest thermal inertia typically correspond to 

olivine enriched materials.  Additional authors have also identified this trend [e.g. 

Hamilton and Christensen, 2005; Bandfield and Rogers, 2008; Tornabene et al., 

2008] observed not only in THEMIS but CRISM and OMEGA data as well. 

2.6.3.1 THEMIS Decorrelation Stretch Mosaics  

Here I demonstrate the use of this mosaic and processing software on 

several different datasets.  In order to best demonstrate the techniques described 

for processing THEMIS data, two mosaics using a running decorrelation stretch 

radiance mosaic (Figures 2.8a and 2.8c) and a single band nighttime temperature 

mosaic (Figures 2.8b and 2.8d) were created.  These two mosaics utilize every 
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algorithm described in the methods section.  In addition to the fully processed 

data (Figures 2.8c and 2.8d), Figures 2.8a and 2.8b are mosaics of the same area 

and same data, where none of the algorithms described in this paper were applied. 

2.6.3.2 MOC Wide Angle Global Data 

MOC acquired a complete image of the planet nearly every Mars day (12 

Mars Global Surveyor orbits).  This data record extends for nearly 5 Mars years.  

Additionally, Mars Color Imager (MARCI) [Malin et al., 2008] can be mosaicked 

in a similar manner, providing long term near continuous coverage of the entire 

surface of Mars.  These data provide a unique view of the surface of Mars and can 

be used to examine active processes on Mars, such as cloud distributions, (e.g. 

orographic clouds surrounding volcanoes, low lying clouds filling Hellas basin 

and Valles Marineris and their respective timings), dust storm activity (e.g. views 

of the initiation location of dust storms), and additional parameters such as albedo 

changes related to the re-distribution of dust on the surface.  This data 

complements other global data sets such as Thermal Emission Spectrometer 

(TES) [Christensen et al., 1998; Christensen et al., 2001] global albedo [e.g. 

Smith et al., 2002; Fenton and Mellon, 2006] and thermal inertia maps [Mellon et 

al., 2000; Putzig et al., 2005; Putzig and Mellon, 2007]. Figure 2.9 is an example 

of a global MOC wide-angle map processed with the mosaic software.  An 

empirical correction for the opposition photometric surge has been applied, 

though residual effects can still be observed as light toned streaks following the 

orbit track of Mars Global Surveyor.  The photometric opposition surge described 

above has been observed in Viking data [e.g. Thorpe, 1978; Thorpe, 1979] and 
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has been modeled with physical parameters [e.g. Hapke, 1986; Helfenstein and 

Shepard, 1999; Hapke, 2002], though these models are complex and the 

application of these models to imagery often does not completely remove the 

effect [e.g. Helfenstein et al., 1997; Hapke et al., 1998].  This effect is often most 

easily corrected by an empirical flat field approach for non-quantitative products. 
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Figure 2.9. By using all the images from a 12 orbit time period (34 images, 6 

km/pixel, 3556 x 1779 pixels, ~30 execution time excluding image map 

projection) a MOC Wide Angle color image of nearly the entire Martian surface 

can be created.  This mosaic was constructed from orbits 3012 to 3024 of the 

Mars Global Surveyor spacecraft.   These data have been empirically corrected 

for the opposition phase inversion.   
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2.6.3.3 Viking Visible Data 

Several mosaics of the summit of Apollinaris Patera utilizing a variety of 

datasets including Viking (Figure 2.10), THEMIS daytime and nighttime infrared 

(Figure 2.11), and CTX (Figure 2.12) were created to illustrate the versatility of 

the mosaicking techniques presented.  These mosaics were created in the same 

projection but at different scales to illustrate the ability of these algorithms to 

process, register, and mosaic a wide range of datasets.  

The Viking visible imager mosaic was created using seven of the highest 

resolution data available of the Apollinaris Patera region.  These data were 

projected to 200m/pixel at the latitude of scale (in this case latitude 0˚ N).  The 

pre-processing steps for these data were performed using the ISIS software 

package, including image calibration.   Once these images are ingested into the 

mosaic software, contrast matching, blending, and advanced stretching algorithms 

were applied to create a seamless normalized mosaic.  The spacecraft pointing 

data for these images is quite poor, resulting in image warping and absolute 

position errors of >100 pixels.  This makes auto-registration relatively difficult, 

though by manually adjusting these data to relatively close locations (e.g. <50 

pixels) the auto-registration software was able to find a best match, which 

corresponded to the best-aligned data.  Subsequently, individual images were 

stretched with a histogram stretch to highlight the regional variations in 

reflectivity observable in the data, rather than the small-scale variations that 

would be highlighted with a running histogram stretch.  
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Figure 2.10. An automated mosaic of Viking visual images (7 images, 200 

m/pixel, 2665x2393 pixels, ~30 minute execution time excluding image map 

projection) centered on Apollinaris Patera (174˚ E, 8˚ S).  This example data 

begins to illustrate the usefulness of combining many different datasets to 

characterize an area.  The white box highlights the location of Figure 2.11 to 

provide context. 
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2.6.3.4 THEMIS Daytime and Nighttime Infrared Data  

Colorizing nighttime temperature data and superposing it on daytime 

temperature data provides insight into the morphologic features from the daytime 

data associated with thermophysical properties contributed by the nighttime data.  

Figure 2.11 is an illustration of this type of data, where nearly 200 images each 

were used to create the daytime and nighttime mosaics. As this region is relatively 

small and close to the landing site of the Mars Exploration Rover Spirit [e.g. 

Squyres et al., 2004a], the coverage of this area with THEMIS data is high and 

thus many images have been averaged to create these mosaics. In this case (Figure 

2.11), as is the case with most examples of this combination, the material with the 

warmest nighttime temperatures, and thus highest thermal inertia values, are 

concentrated where the steepest slopes are observed (e.g. cliffs, walls of craters).  

However, in this case warmer material is also observed on the flanks of 

Apollinaris Patera.  This may indicate that more rocky material is exposed lower 

on the slopes of the large volcano.  Additionally, relatively rocky material is also 

visible in the caldera of the volcano.  These higher thermal inertia surfaces 

correspond to fractured and layered regions exposed in the caldera.  It is possible 

that these may be linked to past lava flows which are rockier than the surrounding 

material. 
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Figure 2.11. Colorized THEMIS nighttime temperature data (301 images, 100 

m/pixel, 5336 x 4743 pixels, ~12 minute execution time excluding image map) 

overlain on a THEMIS daytime temperature mosaic (259 images, 100 m/pixel, 

5336 x 4743 pixels, ~10 minute execution time excluding image map projection)  
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Figure 2.11. continued 

centered on Apollinaris Patera (174˚ E, 8˚ S).  Blue tones correspond to dustier 

material while red tones correspond to rockier material.  This technique of 

overlaying a colorized nighttime temperature map on a daytime temperature 

mosaic provides the morphologic context for the thermophysical (nighttime 

infrared) data.  The white box highlights the location of Figure 2.12 to provide 

context for the higher-resolution data in Figure 2.12. 
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2.6.3.5 CTX Visible Data 

CTX data of the same area provides high-resolution (~6 m/pixel) imagery 

that illustrates the small-scale morphology associated with the Apollinaris Patera 

caldera.  Figure 2.12 is a mosaic of four CTX images processed through the 

standard mosaicking techniques described above.  Figure 2.12a shows the 

overview of the region where the four CTX images were mosaicked together.  

Figures 2.12b and c are subsequently closer views of this mosaic.  In these closer 

views, more detail regarding the nature of the material is observed.  For instance, 

areas with the highest thermal inertia values (red and yellow tones in Figure 2.11) 

correspond to the roughest appearance material in Figure 2.12.  These surfaces 

have a knobby and bumpy appearance.  Small craters are abundant and likely 

contribute to the elevated thermal inertia values, as the walls of these craters are 

expected to be composed of less mantled, rockier materials. 

The use of these three datasets to provide the overall context, large-scale 

morphology, thermophysical properties, and small-scale morphology, enables a 

more complete investigation of the area in question linking large-scale trends with 

small-scale observations. While the three coincident datasets shown in this 

example were all qualitative products, the possibility for creating quantitative 

products exists and may be used to further classify (e.g. linking quantitative 

compositional THEMIS deconvolution results [e.g. Bandfield, 2008] to 

quantitative thermal inertia values [e.g. Fergason et al., 2006a; Edwards et al., 

2008]). 
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Figure 2.12. An automated mosaic of CTX high-resolution (4 images, 6 m/pixel, 

20576 x 59705 pixels, ~2 hour execution time excluding image projection) visible 

images was also created centered on Apollinaris Patera (174˚ E, 8˚ S). A) This is 

the overview of the mosaic region. Even at this scale, additional details not 

observed in Figures 2.10 and 2.11 can be observed.  For example, small radial 

channels originating at the rim of Apollinaris patera encircle nearly the entire 

caldera. B) This illustrates the nature of the layered terrain as discussed in 

reference to Figure 2.11.  This material typically has an elevated thermal inertia 

and a fractured appearance. C) Additionally, other unique features such as the  

crater with well-defined ejecta is easily observed at the full resolution of CTX  
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Figure 2.12. continued 

data but not in either of the previous datasets.  Of additional interest are the small- 

scale textures associated with the surfaces that have elevated thermal inertia 

values.  These surfaces are typically pitted, have abundant small craters and often 

have a knobby texture.  
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2.7 Conclusions 

I have shown the utility of several advanced image processing techniques 

as applied to THEMIS and other datasets.  However, the possibility of applying 

these techniques, such as the temperature variation across the THEMIS 

calibration flag correction, random noise removal, and running stretches, is not 

limited to the datasets presented in this work and may be applied to past, current, 

and future data.  Though the use of these techniques must be carefully validated 

for each dataset to quantify the effects that may be introduced to the data.  

The construction of the mosaics presented and others like them using the 

techniques described in this paper, provide the ability to view the surface of Mars 

and geologic problems through many different perspectives.  For example, one 

can obtain high-resolution visible imagery of an area, which may help illuminate 

compositional and thermophysical data, providing a more complete view of 

geologic processes on Mars.  The mosaicking techniques presented in this work 

are not limited to the datasets presented here, but may be applied to any dataset 

which can be projected using the USGS ISIS tools.   

Additionally, this allows the mosaicking of global planetary data from 

Mars and other planetary bodies such as new data from the Moon and other outer 

planets missions.  This mosaicking ability provides an unprecedented amount of 

flexibility to the end user to produce both quantitative and qualitative large-scale 

seamless products.  These products can be constructed relatively easily and 

scientific investigations are not limited to the extent of a single image; rather, they 
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can be combinations of tens to several thousands of images as is the case with the 

THEMIS global mosaics. 

The data selection, mosaicking procedure, quality control measures, and 

the registration considerations for the THEMIS daytime and nighttime relative 

temperature global mosaics are presented here.  These mosaics are the highest 

resolution (100m/pixel) global scale datasets available for Mars to date. 

2.8 Future Work 

Several additional steps may be taken to further improve the THEMIS 

global mosaic datasets presented here.  One major step is to align every THEMIS 

image on the planet using tie points and a bundle adjustment to Mars Orbiter 

Laser Altimeter (MOLA) data [Smith et al., 2001].  By using common 

geographical features (e.g. impact craters) in both THEMIS mosaics and MOLA 

georeferenced data it is possible to force the THEMIS data to match MOLA 

through a bundle adjustment, creating a cartographically controlled product that is 

as geographically accurate as the lower resolution MOLA data allows.  

Quantitative THEMIS data products could also be created, as the software 

described does not discriminate between qualitative and quantitative products.   

The software has the ability to work with numerically meaningful data as well as 

stretched image values.  Possible data products include thermal inertia and 10-

band emissivity data mosaics. The difficulty in creating these data products does 

not lie in the mosaic software but in the initial image processing and calibration.  

As data processing and calibration techniques improve, more sophisticated 

THEMIS data products will likely emerge. 
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CHAPTER 3                                                                                                 

EVIDENCE FOR EXTENSIVE OLIVINE-RICH BASALT BEDROCK 

OUTCROPS IN GANGES AND EOS CHASMAS, MARS 

 

Edwards, C. S., P. R. Christensen, and V. E. Hamilton (2008), Evidence 

for extensive olivine-rich basalt bedrock outcrops in Ganges and Eos chasmas, 

Mars, J. Geophys. Res, 113(E11003), doi:10.1029/2008JE003091. 

 

Several localized outcrops of olivine-enriched bedrock have been 

previously identified in the Ganges and Eos Chasmata area on the eastern end of 

Valles Marineris with the Thermal Emission Imaging System multi-spectral 

images.  These outcrops form a layer in the walls of Ganges Chasma, and appear 

to be the remnants of a once-continuous unit, which was mapped over ~100 km.  

In this study I further characterize the composition (~Fo68), olivine abundance (10 

to >15%), thermal inertia (>600 J K-1 m-2 s-1/2, consistent with in-place rocky 

material), vertical dimension (~60 m to ~220 m), extent (>1,100 km laterally), 

volume (~9.9x104 km3), dip (~0.013˚ NE), and continuity of this layer utilizing 

Thermal Emission Spectrometer hyper-spectral, Thermal Emission Imaging 

System multi-spectral, and Mars Orbiter Laser Altimeter elevation data. 

Morphologic data from high-resolution imagery display a relatively unmantled, 

rough and pitted surface associated with the olivine-enriched material, consistent 

with thermal inertia data. Four possibilities for the origin of the olivine-enriched 

unit are 1) volcanism associated with tectonic rifting of the Valles Marineris 
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system, 2) a volcaniclastic flow deposit, 3) an intrusive mafic sill, or 4) a discrete 

episode in martian history during which flood lavas were erupted onto the surface. 

The most likely origin is an eruptive event consisting of compositionally uniform 

flood lavas originating from a primitive mantle source region, possibly associated 

with the initiation of Tharsis volcanism. This unit is one of the largest continuous 

compositional units found on Mars and is strikingly similar to other olivine-

enriched deposits identified in previous studies where compositional, 

morphologic, and thermophysical similarities are observed.   These similarities 

may indicate that there was a period in early martian history, where 

compositionally uniform and extensive olivine-enriched flood basalts were 

erupted on the martian surface. 

3.1 Introduction 

Mars is a planet whose surface is dominated by basalt in the southern 

highlands, and basaltic-andesite or weathered basalt in the northern lowlands [e.g. 

Bandfield et al., 2000a; Wyatt and McSween, 2002], which have been further 

characterized into four primary sub-components [Rogers and Christensen, 2007].  

However on a the local scale, the martian surface displays a wide range of 

volcanic compositions including olivine-enriched basalt [Christensen et al., 

2003b; Hamilton et al., 2003; Hoefen et al., 2003; Hamilton and Christensen, 

2005; Mustard et al., 2005; Rogers et al., 2005; McSween et al., 2006; Tornabene 

et al., 2008] and more felsic materials such as dacite observed in the Syrtis Major 

caldera [Christensen et al., 2005].  Although many areas have been characterized 

by their compositional data and physical nature, the detailed distribution of 
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differing volcanic rock units discovered to date, has not been fully investigated.  

Of particular interest is the occurrence and distribution of olivine-enriched basalts 

in space and time.  Olivine-enriched units have been identified globally and in situ 

[Mustard et al., 2005; McSween et al., 2006; Rogers and Christensen, 2007; 

Koeppen and Hamilton, 2008; Tornabene et al., 2008] but their spatial and 

temporal relationships remain uncertain. 

Several localized outcrops of olivine-enriched bedrock have been 

previously identified in the Ganges and Eos Chasmata area on the eastern end of 

Valles Marineris with the Thermal Emission Imaging System (THEMIS) onboard 

the 2001 Mars Odyssey Spacecraft [Christensen et al., 2003b; Hamilton et al., 

2003; Hamilton and Christensen, 2004].  These outcrops form a ~50 m thick layer 

exposed in the walls of Ganges Chasma, and appear to be the remnants of a once-

continuous unit that was mapped over a ~100 km distance using THEMIS multi-

spectral images [Christensen et al., 2003b].   Thermal Emission Spectrometer 

(TES) spectra show this unit to be an olivine-enriched basalt with 10-15% olivine 

abundance with a composition of Fo68 [Christensen et al., 2003b].  

Several questions have arisen since the initial identification of these 

olivine-enriched basalt outcrops.  Has olivine rich material formed continuously 

throughout martian history, was it an episodic event, or was it emplaced in a 

limited time range or locality?  Also, is the Ganges unit continuous and if so, what 

is its extent?  How does this unit relate to other olivine-enriched locations on 

Mars?  THEMIS infrared multi-spectral data provide excellent means to address 

several of these issues due to the high spatial resolution, the nearly global 
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coverage, and their strong ability to discriminate olivine-bearing materials. When 

THEMIS data are used in conjunction with other datasets (e.g. TES and Mars 

Orbiter laser Altimeter (MOLA) data), constraints on the lateral extent, the 

stratigraphic distribution, olivine abundance, and composition can be made. 

However, the full extent of this unit may be unmappable with this technique in 

areas of high dust cover (as dust easily obscures the underlying bedrock 

composition at thermal infrared wavelengths [Ruff and Christensen, 2002]) to the 

north and west of Ganges Chasma where exposures are lacking. 

3.2 Method 

In order to assess the spatial distribution of the Ganges and Eos Chasmata 

olivine-enriched deposits, I created a false-color mosaic of THEMIS multi-

spectral daytime infrared data at 100 meter per pixel spatial sampling, using bands 

8, 7, and 5 (11.79, 11.04 and 9.35 µm respectively).  I chose these bands to 

emphasize the strong absorption in band 7 due to olivine [e.g. Christensen et al., 

2003b] that is lacking in the surrounding basalt units.  A decorrelation stretch 

[Gillespie et al., 1986] was performed on the multi-band mosaic to emphasize 

spectral differences; using the 8, 7, and 5 band combination, the olivine-enriched 

unit appears purple.  I extended the mosaic in all directions until the olivine-

bearing unit could no longer be identified, with the mosaic eventually covering an 

area of approximately 1.2 x 106 km2 (Figure 3.1).   
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Figure 3.1. A) THEMIS daytime infrared temperature mosaic (background) of 

the study area (2.5˚ N-12.5˚ S and 313˚ E-331.5˚ E) constructed from a large-scale 

decorrelation stretch mosaic.  Red features are the identified olivine-enriched 

basalt outcrops. The locations of the example TES spectral ratios (Figure 3.4) are 

identified by white arrows for both this study and the Christensen et al. [2003b] 

study. B) An example decorrelation stretch radiance mosaic of THEMIS bands 8, 

7, and 5.  Purple tones indicate the presence of olivine.  This example was chosen 

to illustrate the bench forming nature of the outcrops, as the outcrop in question is 

the largest observed outcrop in the canyon with an area of ~800 km2. C) Another 

example of a decorrelation stretch radiance mosaic of THEMIS bands 8, 7, and 5, 

where purple tones again indicate the presence of olivine.  The outline of MOC  
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Figure 3.1. continued 

image R0802721 (Figure 3.5) can be seen crossing the contact between the 

olivine-enriched unit and the surrounding canyon floor. 
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THEMIS data up to Mars Odyssey orbit ~25,000 were used in this study, 

as there were no significant dust storm events up to this time during the Mars 

Odyssey mission and atmospheric dust content remained low and relatively 

uniform.  The variations in atmospheric dust content in the data used for this 

study are small enough that they can be ignored and no atmospheric correction 

needs to be performed on the THEMIS data.  Also, because this olivine-enriched 

unit typically occurs within ~200 m of the relatively flat canyon floor, the 

atmospheric path lengths of this unit and the surrounding floor material vary by 

less than ~10%.  This is important for determining the composition of the 

outcrops, as I assume that the only difference between the olivine-bearing unit 

and the surrounding material is the presence or absence of olivine.  This 

assumption can only hold true if the atmospheric path lengths are similar; as the 

path length increases more atmospheric signal is included in the spectrum making 

direct comparisons difficult.  In this study, comparisons have only been made 

where path lengths are relatively similar (typically <200 m difference), precluding 

comparisons between the floor of Valles Marineris and the surrounding plateau.   

Nighttime temperature is a good proxy for thermal inertia where warm 

(e.g. 200 K) material corresponding to high thermal inertia material (e.g. >600 J 

K-1 m-2 s-1/2) is more consolidated and/or rockier than colder material (e.g. 185 K, 

200 J K-1 m-2 s-1/2), such as dust or sand deposits [e.g. Palluconi and Kieffer, 

1981]. I calculated thermal inertia for individual THEMIS images following the 

method described by Fergason et al. [2006a], which uses the KRC thermal model 

[Kieffer, submitted],  for several of the outcrops under investigation.  I created a 
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100 meter per pixel nighttime temperature mosaic (Figure 3.2), which allowed for 

another method to help identify rockier locations commonly associated with 

olivine-enriched outcrops.  These rockier outcrops are likely indicative of in situ, 

stratigraphically significant materials, which are the focus of this study.  Although 

these large-scale mosaics were useful for identifying potential outcrop locations, I 

manually validated the location of outcrops using both individual daytime and 

nighttime THEMIS images.  This was necessary as these mosaics are composed 

of individually stretched images and not the actual radiance and thermal inertia 

data respectively.  Additionally, this hand validation allowed for the calibration 

(e.g. low time duration between the shutter closing calibration image and data 

acquisition, low atmospheric dust opacities) and data quality (e.g. high signal to 

noise, warm images) to be assessed.  
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Figure 3.2. THEMIS linearly colorized nighttime temperature mosaic overlain on 

a THEMIS daytime temperature mosaic (2.5˚ N-12.5˚ S and 313˚ E-331.5˚ E) 

illustrating the elevated nighttime temperature (and thus thermal inertia) 

associated with the olivine-enriched outcrops.  In this image blue tones are colder 

nighttime temperatures (lower thermal inertia) while red tones are hotter 

nighttime temperatures (higher thermal inertia).  The highest thermal inertias 

(>600 J K-1 m-2 s-1/2, with extremes of >1200 J K-1 m-2 s-1/2) in this region are 

associated with the olivine-enriched outcrops, indicating that they are rockier, in 

place material.  Two close up views of the same outcrops illustrated in Figures 

3.1b and 1c also show elevated thermal inertia values associated with the olivine-

enriched outcrops. 
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I am able to identify the olivine-enriched unit locally based on its thermal 

inertia, with a typical range of ~400 to ~600 J K-1 m-2 s-1/2 and greater.  Many of 

the unit’s outcrops have much higher thermal inertia than the surrounding floor 

material and can also have an extremely high thermal inertia (>1200 J K-1 m-2 s-

1/2).  Several of these outcrops have been classified as a high inertia surface by 

Edwards et al. [2005], indicating that this material is consistent with in place 

rock.  Materials with high thermal inertia have more significant implications for 

the geologic history of the area than if the thermal inertia were that of 

unconsolidated mobile sediments.  However, all high thermal inertia materials 

may not be comprised of olivine-enriched basalt, requiring the consideration of 

multi- and hyper-spectral data to accurately identify the composition of these 

outcrops.  I mapped out the locations of olivine-bearing outcrops on a background 

daytime infrared mosaic after they were identified on the original multi-spectral 

mosaic, nighttime temperature mosaic and subsequently confirmed through the 

analysis of individual images.  Two examples of smaller decorrelation stretch 

mosaics are shown in Figures 3.1b-c.  

The composition of the olivine in some of these units was constrained by 

Christensen et al. [2003b] and Hamilton et al. [2003] using two different 

approaches.  Christensen et al. [2003b] ratioed a TES spectrum from a prominent 

olivine-enriched outcrop to a spectrum of the nearby canyon floor and showed 

that the resulting spectral shape is a good match to Fo68 olivine.  They concluded 

that this unit is an olivine-enriched basalt with 10-15% olivine.  Hamilton et al. 

[2003] used martian meteorite spectra and TES-derived martian surface spectra to 
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model TES spectra of Mars and identified these areas as basaltic with components 

(concentrations up to 20%) that are matched by the martian meteorites Chassigny 

and ALH 77005, both of which contain large amounts of Fo68 olivine.  In this 

paper, I took an approach similar to that of Christensen et al. [2003b] and have 

examined several outcrops (5 locations with the best data coverage, where TES 

footprints covered a large fraction (>60%) of the location in question and highest 

data quality, where the warmest (250-300 K), lowest atmospheric opacity (both 

dust and ice), nadir looking spectra were used to study the composition of this 

unit over its full extent.  

After I identified and mapped all of the outcrops, I registered Mars Orbiter 

Laser Altimeter (MOLA) elevation data for both gridded and ground-track(s) 

elevation data [Smith et al., 2001] to the compositional data.  I determined the 

average elevation of approximately 60 of the largest most prominent outcrops 

from the gridded elevation data based on locations identified in Figure 3.1.  I also 

examined single point elevation data to ensure that the gridded values were 

representative of the actual outcrop elevations.   Additionally, estimates for the 

thicknesses of these outcrops have been made through the use of both gridded 

MOLA elevation data and ground-track data where available.  The outcrop 

thicknesses are estimated from the minimum and maximum elevations of each 

outcrop and the standard deviation of the elevation for all of the individual 

gridded outcrop elevations.  However, these thicknesses should be considered 

minimum thicknesses, as it is not possible to determine the extent to which these 

units extend downward or the extent to which they have been eroded.   
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I created several topographic cross sections (Figure 3.3) to determine if 

exposures were laterally continuous (indicating that they are all part of the same 

unit) and if so, to determine the orientation of that unit.  However, because most 

of average elevation data for individual outcrops did not lie directly along each 

topographic profile, a different approach was required.  The average outcrop 

elevation for each of these locations was extracted (a maximum of up to ~50-

80km away from the topographic profile line) and then projected orthogonally to 

the defined topographic cross section line.  This method allows for a generalized 

depiction of outcrop elevation in relation to general topography. If the 

topographic line crosses a high or a low point in the canyon, such as a hill or 

crater, and outcrops are in the canyon walls, the relationship between the outcrop 

elevation and the topographic profile line may not be well represented.  For 

example, in the aforementioned case, the outcrop elevations would appear below 

and above the topographic profile line, respectively.  However, it is the overall 

trend of the points that is the most significant and useful data and not necessarily 

their exact relationship to the topographic profile. 
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Figure 3.3. Three cross sections (A-A''', B-B', and C-C') illustrate the relief 

between outcrops.  A) A-A''' illustrates the relationship between the canyon floor  
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Figure 3.3. continued 

and the outcrops, showing that olivine-enriched outcrops are always elevated 

above the canyon floor. B) B-B' illustrates that these outcrops persist through  
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Figure 3.3. continued 

topographically high areas and appear in predictable locations.  This cross section 

also illustrates the north-dipping trend of the outcrops. C) C-C' also illustrates the 

north-dipping trend of the outcrops and shows that these outcrops persist through 

topographically high areas. D) MOLA topographic elevation data at 128 ppd for 

the entire study region (2.5˚ N-12.5˚ S and 313˚ E-331.5˚ E).  The locations of 

outcrops are plotted as white circles, while the locations for cross sections and 

topographic profiles are plotted as solid white lines.  Dashed white lines illustrate 

the maximum lateral distance from the topographic profile line from which 

outcrop elevation points were collected. 
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3.3 Results 

The olivine-enriched outcrops identified in this study extend over ~1,100 

km near the eastern end of Valles Marineris in Ganges and Eos Chasmata.  They 

are exposed up to 200 m above the canyon floor and typically ~3.5-4 km below 

the rim of the canyon, often forming linear arrangements parallel to the canyon 

walls in addition to large (often >200 km2) flat-lying benches.  Most outcrops 

have elevated thermal inertia compared to the surrounding canyon floor indicating 

they are composed of more consolidated, rocky material than mobile aeolian 

sediment.  Through the use of MOLA elevation data and THEMIS and TES 

compositional data, I obtained three-dimensional information on the spatial 

distribution of these outcrops. The regional THEMIS mosaic (Figure 3.1a) shows 

the full extent of the olivine-enriched basalt unit.  To the southwest of the study 

area (~100 km) additional olivine-enriched material has been identified associated 

with impact crater ejecta.  These materials were not included in this study as they 

are not in place material and their relationship to the primary outcrops identified 

is uncertain.  However, this excavated material may indicate that the primary 

olivine-enriched unit identified in this study is more extensive than mapped.  As 

dust cover increases to the north and west of Ganges and Eos Chasmata, the full 

extent of this unit may be unmappable as the homogenous dust easily obscures the 

underlying bedrock composition in the thermal infrared wavelengths [e.g. Ruff 

and Christensen, 2002] and the overlying plateau provides few windows to the 

depth of these outcrops.  Therefore these units may continue further than mapped 

in this study. 



 

87 

The composition of five outcrops was verified using TES spectral ratios 

following the method described by Christensen et al. [2003b].  An example of our 

TES analysis is shown in Figure 3.4, where an outcrop centered at 0.2˚ S, 321.8˚ 

E (identified by the northernmost arrow in Figure 3.1), approximately 450 km 

from the outcrop initially studied by Christensen et al. [2003b] (identified by the 

southernmost arrow in Figure 3.1) is compared to the spectral ratio from 

Christensen et al. [2003b] and a laboratory spectrum of olivine with a 

composition Fo68.  The outcrop analyzed with TES data by Christensen et al. 

[2003b] occurs in central Ganges Chasma whereas the outcrop chosen for this 

study occurs outside the main canyon, (Figure 3.1) near Ravi Vallis, allowing for 

constraints on changes in the olivine composition and abundance of these 

outcrops to be made. 
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Figure 3.4. One example TES spectral ratio from this is plotted with the original 

Christensen et al. [2003b] TES spectral ratio and an example laboratory spectrum 

of olivine with a composition of Fo68.  Both TES spectral ratios have been 

processed with 3x1 boxcar filter to emphasize the broad absorption features 

associated with olivine.  Both ratios have olivine compositions consistent with the 

laboratory spectrum, indicating a relatively constant composition over long 

distances, as these spectra are separated by ~450 km.  A small shift in short 

wavelength absorption features is observed in both TES spectral ratios and 

indicates that this Fo# is not a perfect match and actual forsterite content may be 

higher or lower than Fo68.
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Although ~80 instances of olivine-enriched material have been identified, 

the elevations of the ~60 most prominent outcrops have been determined using 

the combination of MOLA elevation data and THEMIS compositional data. The 

remaining ~20 instances were not mapped due to several limiting factors 

including: the limited areal extent of a particular outcrop, thermal inertia values 

indicative of a surface dominated by unconsolidated material, an association with 

a landform not likely a natural outcropping of bedrock (e.g. mass wasted material) 

and poor data quality (e.g. low surface temperature, poor image calibration due to 

factors such as long duration between image acquisition and shutter closing 

calibration images, etc). Typically, olivine-enriched outcrops are exposed in small 

hills or slightly raised areas that occur near the sides of the canyons, as well as in 

the walls of the canyon.  They commonly occur in a linear arrangement with 

small (generally <5-10 km in length), repeated, and elongated outcrops occurring 

parallel to the direction of the canyon walls. Groupings of these small outcrops 

generally range from several km up to 50 km and more in length.  However, the 

unit does not always crop out in a linear fashion, as seen in Figures 3.1b and 3.1c 

where the unit forms large flat benches. This unit also crops out in a side canyon 

in the north of Figure 3.1 as a larger bench.  These benches range in size from ~50 

km2 to ~800 km2 and have elevated thermal inertias (>600 JK-1m-2s-1/2), indicating 

that they are in place outcrops of olivine-enriched material and not the result of 

some mobilization mechanism (e.g. aeolian, mass wasting).  There are no 

examples of the unit cropping out further up in the canyon walls, but there are 

several possibilities for why other layers are not seen elsewhere, including limited 
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spatial resolution available on the slopes of cliffs, where they may be present but 

not visible or they may not be present at all.  

High-resolution imagery from the Mars Orbiter Camera (MOC) [Malin et 

al., 1998] and the High Resolution Imaging Science Experiment (HiRISE) 

[McEwen et al., 2007] help illustrate small-scale morphologies and albedo 

differences associated with these outcrops;  however, Figures 3.1b and 3.1c are 

some of the only areas covered with high-resolution data (~1.5 m/pixel and ~0.5 

m/pixel, respectively) at this time, making it difficult to ascertain the small-scale 

morphologies and associated features for many of the outcrop locations.  The 

available images (Figure 3.5, 3.6a) show that the olivine-enriched outcrops have a 

higher albedo than the smoother surrounding canyon floor and filled depressions 

(Figure 3.5).  TES albedo values for Ganges and Eos Chasmata are typically 

~0.13, indicating little dust cover throughout the region [Christensen et al., 2001].  

MOC and HiRISE visible imagery (Figure 3.5, 3.6a) show that the olivine-

enriched material has a fairly rough and pitted surface while the olivine-poor 

material has a mantled and smoother appearance.  These morphologic 

characteristics are similar to those reported for other olivine-enriched terrains, 

including those found in Ares Vallis [Rogers et al., 2005], Gusev Crater [Ruff et 

al., 2007], Isidis Planitia [Tornabene et al., 2008], and Nili Fossae [Hamilton and 

Christensen, 2005; Mustard et al., 2007], (Figures 3.6b-e, respectively).  In 

addition to this morphologic difference, the olivine-enriched material in Ganges 

and Eos Chasmata is elevated above the surrounding floor material, which have a 

thermal inertia and morphology (dune forms are observed throughout the area in 
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high resolution imagery) consistent with aeolian materials.  However, there are 

areas in the olivine-enriched outcrops that have been infilled with some amount of 

aeolian material, identified by small-scale dunes in many small pits and hollows.  
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Figure 3.5. MOC Image R0802721 (centered near 325.5˚E, 3˚S) covers the 

contact between the olivine-enriched outcrops and the canyon floor (see Figure1).  

The olivine-enriched material has an albedo of ~0.13, rough pitted appearance, 

and is largely unmantled with lower albedo aeolian materials infilling small pits 

and craters (see arrow), while the olivine-poor material has a smooth appearance 

and seems to be dominated by aeolian material, as evidenced by dune forms.
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Additionally, I have characterized the physical nature of the outcrops 

using thermal inertia. Christensen et al. [2003b] note that olivine-enriched 

outcrops have a high nighttime temperature when compared to the surrounding 

canyon floor (~10 K higher).  The thermal inertia of the primary outcrop 

investigated by Christensen et al. [2003b] was determined to be ~700 J K-1 m-2 s-

1/2 [Christensen et al., 2003b], which is a thermal inertia value near that of rock 

and is significantly higher than for unconsolidated material. While this thermal 

inertia is not consistent with completely unmantled bedrock, this value is likely 

lowered due to sub-pixel mixing with lower inertia aeolian materials (~250-300 J 

K-1 m-2 s-1/2, [e.g. Putzig et al., 2005; Fergason et al., 2006a]) present in hollows 

and pits observed on the outcrops (Figure 3.5).  In this study, thermal inertia was 

calculated for individual THEMIS nighttime temperature images (to assess image 

quality and calibration) [Fergason et al., 2006a] that covered several of the 

outcrops under investigation, including Figures 3.1b and 3.1c.  Many of the 

outcrops in question have a much higher thermal inertia than the surrounding 

floor material, typically ranging from ~400 to ~600 J K-1 m-2 s-1/2, with several 

outcrops having thermal inertia values of greater than ~600 J K-1 m-2 s-1/2, 

sometimes reaching thermal model limits of 1400 J K-1 m-2 s-1/2. 
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Figure 3.6. HiRISE imagery of a variety olivine-enriched units identified on Mars 

[e.g. Hamilton and Christensen, 2005; Rogers et al., 2005; Mustard et al., 2007; 

Ruff et al., 2007; Tornabene et al., 2008].  All images are displayed at the same 

scale (~56 cm/px) for easy morphologic comparison between areas.  Olivine-

enriched material in: A) Eos Chasma (HiRISE image: PSP_001798_1685, 

centered near 322˚ E, 10˚ S), B) Ares Vallis (HiRISE Image: PSP_004118_1865, 

centered near 341˚ E, 6.5˚ N), C) Gusev Crater (HiRISE Image: 

PSP_002133_1650, centered near 175.5˚ E, 14.5˚ S), D) Isidis Basin (HiRISE 

Image: PSP_002756_1830, centered near 85˚ E, 3˚ N), and E) Nili Fossae 

(HiRISE Image: PSP_001754_2020, centered near 78˚ E, 22˚ N).  All localities 

exhibit the rough, pitted texture observed in Ganges and Eos Chasma (a), but the 

scale of these textures is variable, where Ares Vallis (b) and Nili Fossae (e) 

exhibits smaller scale features and Gusev Crater (c) and Isidis Basin (d) exhibits 

larger scale features than the Ganges and Eos Chasma unit. 
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Although the olivine-enriched outcrops in this study have a variety of 

thermal inertia values that are high (often times >600 J K-1 m-2 s-1/2), they are not 

necessarily consistent with a thermal inertia of unmantled bedrock (>1200 J K-1 

m-2 s-1/2) as defined by Edwards et al. [2005].  However, upon examination of 

these occurrences with high-resolution imagery, which display a rough, pitted 

surface, I conclude that these outcrops are in place, exposed rock.  The 

explanation for this discrepancy between the morphologic observations and the 

calculated thermal inertias, comes from the aforementioned aeolian materials 

(identified by dune forms) that infill some of the depressions in the exposed rock.  

These lower inertia materials would have the effect of lowering the overall 

thermal inertia as the thermal inertia data from a single THEMIS pixel is 

integrated over 10,000 m2 [e.g. Fergason et al., 2006a].  This relatively high 

thermal inertia, along with the rocky and unmantled morphologies observed in 

high-resolution imagery, indicate that this is an in place unit, which has been 

modified (e.g. aeolian processes, impact cratering, mass wasting) but is not a 

mobile aeolian material. 

Through the use of MOLA single point elevation data and gridded data, 

the minimum outcrop thicknesses are estimated to range from ~60 m to ~220 m, 

with an average value of ~150 m.  Additionally, by plotting the average outcrop 

elevation data and spatial data together, it is possible to determine the continuity, 

orientation, dip, and extent of the olivine-basalt outcrops (Figure 3.2).  The 

uppermost surfaces of individual outcrops typically occur within ~200 m of the 

canyon floor, often forming small hills or benches in the canyon.  Cross section 
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A-A''', which was constructed along the main canyon system floor (Figure 3.3a), 

illustrates that the topographic profile of the canyon floor, depicted as a solid line, 

is nearly always lower than the points of average elevation for each of the 

outcrops. Other cross sections (B-B' and C-C', Figures 3.3b and 3.3c) display a 

similar trend, where the olivine-enriched unit persists between topographically 

high areas and appears only at a restricted range of elevations in or near the walls 

of the canyon.  

MOLA elevation and THEMIS multi-spectral data indicate that these 

olivine-enriched outcrops are not just located at similar elevations near the bottom 

of Ganges and Eos Chasmata, but they form a contiguous, rocky layer that is 

visible between topographically high areas and outcrops at consistent locations in 

the canyon system.  In addition, this layer is relatively thin (typically <~200 m) 

when compared to the ~4.5 km of overlying materials. 

If these outcrops are, in fact, representative of a large contiguous layer, 

calculating the layer’s dip angle and dip azimuth could help constrain both the 

emplacement mechanism and the amount of crustal deformation the area has 

undergone. For example, elevation variations may be explained by volcanic 

fallout [e.g. Wilson and Head, 1994; Wilson and Head, 2007] if the layer appears 

to drape pre-existing topography or the unit may be offset due to faulting as a 

result of the regional tectonic environment [e.g. Phillips et al., 2001].  Cross 

sections B-B' and C-C' (Figures 3.3b and 3.3c) were specifically chosen to 

illustrate the dip angle and azimuth of this layer, in addition to the continuity and 

extent of the unit. Through the analysis of these cross sections, I find that the 
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layer dips slightly to the northeast. By using the best linear fit to the A-A''' (Figure 

3.3a) data, the dip angle was measured at ~0.013±0.004˚ (95% confidence 

interval) to the northeast, which is essentially flat-lying when compared to the 

large extent of this unit.  The topographic profile line A-A''' (Figure 3.3a) 

indicates that the canyon floor was measured to dip to the northeast, with a dip 

angle of ~0.045±0.001˚ and an azimuth consistent with the outcrops. These 

measured dips also correspond with the large scale MOLA topography where the 

highest location in this scene occurs in the southwest corner and the lowest occurs 

in the northeast section.  However, the plateau was measured to dip at a 

noticeably higher angle (~0.293±0.005˚) but in a similar azimuth to the canyon 

floor and the olivine-enriched outcrops.  The differential dip between the plateau 

surface and the olivine layer suggests that several regional tectonic events have 

affected the stratigraphic column or deposition of the olivine-rich layer may have 

occurred on an inclined surface. 

In addition to the regional tilt of this layer, there are small-scale variations 

(±200 m) in the data but these variations are small when compared to the overall 

extent of the layer (>1,100 km) thus, this layer is relatively flat-lying over large 

distances.  These relatively small variations indicate that any vertical offset of this 

layer was minimal. The linear arrangement of many outcrops helps affirm that the 

unit is a continuous layer within the canyon walls.  The outcrops that occur 

outside of the main canyon system (e.g. the outcrop near Ravi Vallis, used as the 

example location for the TES spectral analysis discussed earlier and the small 

craters with olivine-enriched ejecta to the southwest of the study area) suggest a 
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more extensive, continuous layer that persists underneath topographically high 

areas such as the overlying plateau between Ganges Chasma and Ravi Vallis and 

only outcrops at specific predictable elevations (e.g. Figures 3.3b and 3.3c).  For 

instance, the lowest elevation in southernmost area of Shalbatana Vallis (1˚ N, 

315˚ E) is higher than the expected outcrop elevation and is consistent with the 

lack of an olivine-enriched unit in this canyon.  However, it is not possible to 

determine if this location is a western limit on the extent of the unit because the 

unit may be present in the subsurface. 

Although most olivine-enriched outcrops occur near the walls of the 

canyon and have morphologies and thermal inertias consistent with in place, 

rocky materials, I have observed some evidence of transport as well. Olivine-

enriched material has been carried as debris into the canyon floor by mass 

wasting, which can be seen in two locations in Figure 3.1a near the western edge 

of Ganges Chasma (318.7˚ E, 8.2˚ S; 315.5˚ E, 8.4˚ S, Figure 3.7).  Although 

aeolian materials are observed in high-resolution imagery, they do not have a 

spectral signature consistent with a relative enrichment in olivine.  It is not likely 

that aeolian materials are the primary source for this unit, rather aeolian processes 

only aid in eroding the outcrop and allow for transportation of these eroded 

materials over small distances. 
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Figure 3.7. A decorrelation stretch radiance mosaic of THEMIS bands 8, 7, and 5 

centered on 315.5˚ E, 8.4˚ S, where purple tones indicate the presence of olivine.  

Olivine-enriched material has been carried to the center of the canyon floor by a 

mass-wasting event, indicated by the white arrow.   
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3.4 Discussion 

The identification and mapping of this regionally extensive unit poses 

some interesting questions as to the volume of material it represents, relationship 

to other olivine-enriched basalts in the area and globally, and its geologic origin. 

3.4.1 Volume 

Assuming that the maximum extent of the unit corresponds to the 

maximum extent of the observed outcrops, an estimate of the minimum volume of 

olivine-enriched material can be calculated by fitting an ellipse to a region 

enclosing all of the identified outcrops.  The area of the ellipse of maximum 

extent is ~6.6x105 km2.  Using the average thickness of 150m, a volume of 

~9.9x104 km3 has been estimated.  In addition to the uncertainty in the thickness 

estimated for this layer, the calculated volume is considered a minimum estimate 

since the layer may continue further under the plateau where it cannot be 

observed.  Additionally, small craters in the floor of Eos Chasma, to the southwest 

of the study area, appear to excavate olivine-enriched material from below the 

surface and indicate that this layer likely continues further than the mapped 

outcrops.  The full extent of this unit is also likely unknown due to increasing dust 

cover to the north and west of Ganges and Eos Chasmata, obscuring the 

underlying bedrock composition, further emphasizing that the volume estimate 

stated above is a minimum value. 

Large igneous provinces on Earth, for example the Siberian Traps or the 

Deccan Traps, have total magma emplacement volumes of 1x106 km3 [Officer et 
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al., 1987] to 4x106 km3 [Courtillot et al., 1999] and 2x106 km3 [Widdowson et al., 

1997] to 4x106 km3 [Courtillot et al., 1999], respectively.  All of these volumes 

are more than an order of magnitude larger than the estimated volume of the 

Ganges and Eos Chasmata unit.  These terrestrial cases represent the total volume 

of magma erupted, which consist of many different units erupted over long time 

periods (e.g. ~0.9±0.8 Ma for the Siberian Traps [Campbell et al., 1992]). The 

Ganges and Eos Chasmata case is a single unit likely composed of several 

different eruptive events within what has been interpreted as a massive sequence 

of lava flows exposed in the canyon walls [McEwen et al., 1999].  This 

comparison to large igneous provinces on Earth illustrates that the size of this 

martian unit is not unique for other planetary bodies in the solar system. 

Additionally, if the Ganges and Eos Chasmata olivine-enriched basalts are only a 

single unit, corresponding to a distinct period in martian history, the volume 

estimates for this unit are consistent with what may be expected for a single unit 

in large igneous provinces on Earth. 

3.4.2 Comparison to Other Olivine Basalts 

By comparing an example TES spectral ratio from this work and the ratio 

performed by Christensen et al. [2003b] to several laboratory-measured olivine 

spectra [Salisbury et al., 1992; Christensen et al., 2000b; Koeppen and Hamilton, 

2008], both spectral ratios are a good match to the three main absorption features 

of olivine (Figure 3.4).  However, an important property of olivine is that higher 

wavelength spectral features systematically shift to either shorter or longer 

wavelengths as a function of Mg and Fe content of the olivine [Salisbury et al., 
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1992; Hamilton et al., 1997; Koeppen and Hamilton, 2008].  This is typically 

represented by forsterite content (Fo#, the Mg-rich endmember of the solid 

solution series) defined as (Mg/(Mg+Fe)). This systematic shift makes it possible 

to estimate the forsterite content of this specific olivine unit.  A forsterite content 

of ~0.68 (Fo68) proved to be the best match of all the laboratory olivine spectra 

examined (with major at absorptions at ~10.6, ~19.0, and ~23.5 µm) for both the 

ratio performed in this work and the ratio performed by Christensen et al. 

[2003b].  However, there is a small shift in some of the shorter wavelength 

absorption features for both TES spectral ratios, indicating that this Fo# is not a 

perfect match and may be slightly higher or lower than Fo68.  Not only is this unit 

olivine-enriched but the composition of the olivine remains relatively constant 

over large distances, as the ratio in this study and the Christensen et al. [2003b] 

ratio match each other well despite being separated by over ~450 km.  Koeppen 

and Hamilton [2008] have created global maps utilizing TES spectral data 

illustrating the distribution of olivine for a variety of Fo# compositions.  Koeppen 

and Hamilton [2008] found that the best match for Ganges and Eos Chasmata is 

the olivine index that corresponds to Fo58-74.  These data further strengthen the 

argument that this is a single, extensive compositionally uniform unit and is not 

composed of several smaller olivine-enriched members of differing composition, 

as no layering is observed in high-resolution MOC or HiRISE imagery.  However, 

distinguishing detailed compositional information is limited to the scale of a 

single TES pixel (3 by ~6 km), as sub-pixel mixing of material with different 



 

103 

forsterite content may be present but not resolvable by TES or distinguishable by 

the lower spectral resolution data available from THEMIS. 

McSween et al. [2006] have identified picritic olivine basalts in Gusev in 

individual samples examined by instruments on the Mars Exploration Rovers, 

including Panoramic Camera (PanCam) [Bell et al., 2006], Mini-Thermal 

Emission Spectrometer (mini-TES) [Christensen et al., 2004b], Mössbauer 

Spectrometer [Morris et al., 2004] and Alpha Particle X-ray Spectrometer 

[Gellert et al., 2004].  It is likely that these basalts are derived from more 

primitive, less fractionated magmas.  The proportion of the olivine described by 

McSween et al. [2006] and Koeppen and Hamilton [2008] on Mars ranges from 

0% abundance for large sections of the planet to an extreme of 20-30% 

abundance, indicating that the olivine basalts identified in this study (with an 

abundance of ~10 to >15%) have higher than typical olivine content on Mars 

when viewed from orbit.  Although the rocks at Gusev crater do not occur in the 

primary region where olivine is found on Mars, Eos and Ganges Chasmata are 

located in one of the areas where higher olivine concentrations are commonly 

found [Koeppen and Hamilton, 2008].  In addition, Koeppen and Hamilton [2008] 

have found that the forsterite composition of olivine on Mars can vary 

dramatically with olivine of Fo91 occurring in small occurrences near Argyre and 

Hellas basins and widespread occurrences of a more intermediate forsterite 

content (e.g. Fo70-40), consistent with what is observed in Ganges and Eos 

Chasmata.  However, no confident occurrences of olivine with <<Fo30 were 
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identified, due to large inaccuracies in the spectral index used caused primarily by 

atmospheric contributions [Koeppen and Hamilton, 2008]. 

Abundant olivine rich rocks are also found near the Columbia Hilis in 

Gusev Crater.  Ruff et al. [2007] identified an olivine-enriched terrain utilizing the 

mini-TES, which has been described as “Rubble Terrain” due to the appearance in 

PanCam and HiRISE images.  Large rounded boulders and knobs of rubbly, 

layered, olivine-enriched materials have led Ruff et al. [2007] to hypothesize that 

this may be a volcaniclastic deposit.  However, an alternate possibility is that 

these materials are impact-derived deposits similar to those suggested for the Nili 

Fossae region originating from the Isidis Basin impact event [Mustard et al., 

2007; Tornabene et al., 2008]. The terrain identified also has an elevated 

nighttime temperature [Ruff et al., 2007] implying a rockier material.  When 

viewed using high-resolution imagery, there are significant morphological 

similarities between the Gusev crater “Rubble Terrain” and the unit under 

investigation in this study.  Figure 3.6a illustrates this similarity as the olivine-

enriched terrain has a rough and pitted texture similar to that described by Ruff et 

al. [2007] (Figure 3.6c).  

Another example location where an olivine (Fo60) basalt has been 

identified utilizing TES and THEMIS data is Ares Valles [Rogers et al., 2005].  

The outcrop of olivine in this location has a relatively high thermal inertia (575-

840 J K-1 m-2 s-1/2) and appears to occur in two primary layers.  Rogers et al. 

[2005] conclude that the emplacement mechanism for this olivine-bearing unit 

(with an olivine abundance of >15%) could be explained by an intrusive and/or 
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extrusive event.  There are several similarities with the olivine basalts identified 

in this study including the relatively high thermal inertia, morphologic evidence, 

olivine forsterite content and the olivine abundance of >15% which all agree well 

with the olivine basalt identified in this study.  In addition to these similarities, 

both deposits are relatively close to each other, separated by ~600km and occur at 

roughly similar elevations, giving rise to the possibility that the emplacement of 

these two units may be related.  

The region around the Nili Fossae is another location where olivine-

enriched material has been identified [Hamilton and Christensen, 2005; Mustard 

et al., 2005; Mustard et al., 2007] utilizing THEMIS, TES, and Observatoire pour 

la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA) spectral data.  This 

deposit is to the northeast of the Syrtis Major volcanic shield, and contains a 

~30,000 km2 contiguous olivine-enriched outcrop.  This deposit is associated with 

concentric fractures that may be related to the Isidis basin impact event.  This 

olivine-enriched locality has similar characteristics to those identified in this study 

where outcrops of this unit have a rough and pitted appearance and appear to be 

largely free of aeolian material.   However, sand dunes are prevalent in this area 

and appear to overly a hard substrate of olivine-enriched material.  Hamilton and 

Christensen [2005] have determined that the composition the olivine in this 

location is ~Fo68-75 and often has elevated thermal inertias (~455 J K-1 m-2 s-1/2) 

when compared to the olivine-poor materials.  Additionally, this olivine-enriched 

unit displays similar characteristics to what is observed in southwest Isidis basin 
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[2008], where an olivine-enriched unit has been mapped and characterized using 

compositional, thermophysical and morphologic data. 

Morphologies associated with the olivine-enriched materials found in Nili 

Fossae generally agree with those in Ganges and Eos Chasmata, with the 

exception of the curved lineaments identified by Hamilton and Christensen 

[2005].  These lineaments are associated with flat-lying layering in Nili Fossae, 

which has not been observed in the Ganges and Eos Chasmata unit.  However, 

when this area was characterized using OMEGA and HiRISE [Mustard et al., 

2007], these lineaments appear to be related to the underlying phyllosilicate 

material in the region which pre-dates the overlying olivine-enriched unit.  

Mustard et al. [2007] propose that this olivine-enriched material represents an 

impact melt deposit related to the Isidis Basin formation event. As no lineaments 

have been observed in or near the Ganges and Eos Chasmata olivine-enriched 

unit, this indicates that there are no correlated layered phyllosilicate materials 

present in this location, unlike those found in Nili Fossae [Mustard et al., 2007].  

Alternatively, Tornabene et al. [Tornabene et al., 2008] have proposed that the 

underlying phyllosilicate-rich terrain identified in Nili Fossae is more likely 

representative of ejecta associated with the Isidis Basin impact event. If this 

interpretation is correct, it is also consistent with the lack of these features in 

Ganges and Eos Chasmata, as there are no clear large impact basins within 1000’s 

of km of these localities. Additionally this result is supported directly by OMEGA 

data, which did not identify phyllosilicate materials in Ganges and Eos Chasmata 

[Bibring et al., 2006]. 
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The Ares Vallis olivine-enriched bedrock [Rogers et al., 2005] displays 

the most similarities to the Ganges and Eos Chasmata unit where olivine 

abundances, composition, morphology and thermal inertia correlate best.  In 

addition, this site is relatively close (~600 km) to the Ganges and Eos Chasmata 

unit and crops out at a similar elevation, which may indicate even more 

widespread olivine-enriched basaltic volcanism than hypothesized in this study.  

However, of specific note are the striking similarities (e.g. olivine abundance, 

forsterite content, thermal inertia data, morphologies) between all of the 

previously discussed olivine-enriched units, which are spread out over large 

distances on the surface [e.g. Hamilton and Christensen, 2005; Rogers et al., 

2005; Mustard et al., 2007; Ruff et al., 2007; Tornabene et al., 2008] and the 

Ganges and Eos Chasmata layer.  Figure 3.6 highlights the morphologic 

similarities (especially rough, pitted textures) of these units, with HiRISE imagery 

shown for several sites where olivine-enriched units have been identified.  

However, the scale of the identified textures is variable, with Ares Vallis (6b) and 

Nili Fossae (6e) exhibiting smaller scale features and Gusev Crater (6c) and Isidis 

Basin (6d) exhibiting larger scale features than the Ganges and Eos Chasmata unit 

(6a).  This variability may be due to different weathering conditions or differences 

in regional histories.  Additionally, Nili Fossae shows significantly more aeolian 

dune forms than other areas, indicating that this area may be subject to more 

gradational processes or is composed of more friable material than other areas. 

Most in place olivine-enriched units have olivine abundances which are 

typically >15% and have intermediate forsterite content (~0.68).  Additionally, 
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these units typically have elevated thermal inertia (>500 J K-1 m-2 s-1/2), which are 

not necessarily consistent with unaltered bedrock, but are likely lowered due to 

finer-grained aeolian materials commonly observed in hollows on these surfaces 

or the presence of an olivine lag eroded from a cap unit [Christensen et al., 2005; 

Mustard et al., 2007; Tornabene et al., 2008].  In addition to these localized 

regional examples, Koeppen and Hamilton [2008] indicate that olivine with a 

forsterite content of ~0.68 are most common in the southern highlands, which is 

consistent with the findings in this study.  Several martian meteorite samples (e.g. 

Chassagny and ALH 77005) which are olivine-rich also have the best spectral 

matches with Fo68 [Hamilton et al., 2003] further strengthening the argument that 

olivine bearing materials with this forsterite content are common on Mars.  

Compositions and olivine abundance are similar for many examples of in situ 

olivine on Mars, and when considering unit age, most olivine-enriched units 

(including the Ganges and Eos Chasmata layer) were likely emplaced during the 

Noachian [e.g. Rogers et al., 2005; Mustard et al., 2007; Tornabene et al., 2008], 

early in martian history.  Additionally, it is likely that when martian meteorites 

(e.g. the Nahklites and Chassignites, with crystallization ages of ~1.3 Gyrs 

[Nyquist et al., 2001]) were ejected from the surface, they sampled lower 

stratigraphy (where olivine-enriched units with this forsterite content appear to be 

more common), which is also consistent with what is observed in Ganges and Eos 

Chasmata.  
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3.4.3 Geologic Origin of the Unit 

There are several geologic processes that could produce a layer such as 

that observed in this study, including: 1) an intrusive mafic sill, 2) volcanism 

associated with tectonic rifting of the Valles Marineris system, 3) a volcaniclastic 

flow deposit, or 4) a discrete episode in martian history during which flood lavas 

were erupted onto the surface.  Emplacement as a sill can explain the contrasting 

composition of the unit relative to regional material.  The source for the sill may 

have been derived from more primitive magmas than the igneous units that are 

presumed to comprise the regional material, which show no olivine-enrichment 

indicative of primitive magmas.  However, I do not favor this explanation, 

primarily due to the large lateral extent of the unit.  On Earth some of the largest 

sills extend for thousands of square kilometers [e.g. Francis, 1982; Kavanagh et 

al., 2006], significantly smaller than the Ganges and Eos Chasmata unit, which 

has an areal extent of ~6.6x105 km2. Additionally, on Earth, large sills are 

commonly associated with crustal thinning and continental breakup [e.g. Francis, 

1982]. Evidence that further strengthen this argument is the lack of any feeder 

dike structures in high-resolution imagery and the absence of any thermally 

metamorphosed materials commonly associated with intrusive events (e.g. clays 

from hydrothermal alteration) [Bibring et al., 2005].  Rifting and crustal thinning 

associated with the formation of Valles Marineris provide another possibility for 

the formation of this unit.  Extension associated volcanism (usually basic) 

typically occurs in the final stages of rifting where the canyon is already opened 

allowing lavas to spread onto the pre-existing canyon floor.  If the unit was 
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emplaced via this mechanism, olivine-enriched basalts would occur primarily on 

the floor of the canyon and not in the walls, as observed.  An extensive episode of 

flood lava eruptions or volcaniclastic flows deposited on the surface in a relatively 

short time period could explain the distribution of outcrops observed in the 

canyon system, the estimated volume of material erupted, and composition.  In 

this case, these flows have likely been buried under a large sequence of other 

flows [McEwen et al., 1999].  This hypothesis can effectively explain the small 

variations in outcrop elevations and the seemingly single layered nature of the 

unit.   

Variations in elevation of this unit (seen in Figure 3.3b-d) are relatively 

small when compared to the lateral extent of this unit; however, this layer does 

not appear to lie on a perfect plane requiring some other explanation for the 

observed variations. If a series of flood lavas or a volcaniclastic deposit were the 

source of this unit, variations in the average elevation data can be explained by 

flows filling or draping pre-existing features such as canyons, grabens, or craters.  

If the unit was emplaced by an intrusive mechanism, the observed irregularities 

can be attributed to magma preferentially following weaknesses in the country 

rock.  Tectonic activity [Phillips et al., 2001], such as faulting observed in the 

Valles Marineris region by previous studies [e.g. Peulvast et al., 2001] may have 

also occurred, providing another possible explanation for the observed elevation 

variations; however, no direct evidence for faults has been observed in this study.  

Characterizing the magma evolution of a relatively thin olivine-enriched 

lava flow or volcaniclastic deposit depends largely on the nature of the olivine in 
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the material.  Olivine included as phenocrysts versus xenocrysts (foreign crystals 

incorporated into the magma) or magma chamber cumulate materials likely have 

different parent magmas, describe different crystallization sequences, and have 

different petrogenic histories [McSween et al., 2006].  Magma with olivine 

included as cumulates or xenocrysts may have undergone more fractional 

crystallization than magma with primary olivine phenocrysts.  High-pressure 

experiments [Bertka and Holloway, 1994] have placed constraints on the stable 

mineral phases at depth, indicating that the martian mantle is likely composed of 

olivine, orthopyroxene, and spinel at ~75 km below the surface.  If I consider an 

eruption direct from the martian mantle, then to retain much of this primary phase 

assemblage, little fractional crystallization, little to no assimilation of evolved 

materials and low degrees of partial melting (all lowering the overall olivine 

fraction of the magma) must have occurred to form the olivine-enriched basalts 

found in Ganges and Eos Chasmata.  Although other minerals associated with this 

assemblage (orthopyroxene and spinel) are not directly detected in this work, 

evidence for orthopyroxene in this area has been noted by several earlier studies 

[e.g. Bandfield, 2002; Hamilton et al., 2003; Bibring et al., 2005; Rogers and 

Christensen, 2007].   If the olivine is included as primary phenocrysts, then it is 

likely that these are primitive magmas that were erupted on the surface as picritic 

basalts, providing additional evidence that the martian mantle is likely undepleted 

with respect to iron content [e.g. McSween, 1994].  This is assuming that the 

formation of the olivine is a primary process and the magma was not significantly 

modified to include olivine cumulate materials or xenocrysts.  However, the most 
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likely scenario is that these basalts represent primitive magmas, as suggested for 

the Gusev Crater olivine basalts [McSween et al., 2006]. Unfortunately, it is 

difficult to distinguish the inclusion style of olivine utilizing ground-based 

measurements onboard the Mars Exploration Rovers [McSween et al., 2006], 

making them even less distinguishable from the orbital data available in this 

study.  

If these are lava flows, then potential eruptive centers must be considered.  

However, there are no evident sources for these flows, but on Earth and the Moon 

the source vents for flows are typically buried and the small areas exposed in the 

martian unit make the detection of source vents unlikely. One possibility is that 

these flows may be related to the initiation of Tharsis volcanism, yet not 

necessarily associated with any of the landforms observed today.  If this were the 

case, these flows would likely be some of the first lavas erupted which were 

subsequently buried by more evolved and fractionated, olivine-depleted lavas, 

that obscured the source vent or caldera.  A similar hypothesis has been formed 

for Syrtis Major and the Isidis Basin region, where Noachian to Hesperian picritic 

lavas were erupted in the early stages of volcanism at Syrtis major [Tornabene et 

al., 2008].  Tornabene et al. [2008] do not identify stratigraphically higher flows 

indicating that the formation of picritic lavas did not occur again in the history of 

Syrtis Major.  The observed terrain may then be interpreted as heavily impacted 

ancient terrain, which has been more recently exposed.  Additionally, this is a 

plausible scenario for the Ganges and Eos Chasmata picritic flows, which likely 

occurred during a discrete time early in martian history (early to middle 
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Noachian), as flows are not observed higher in the stratigraphic section, most 

outcrops occur near the same elevation (low in the canyon stratigraphy) and all 

outcrops are relatively thin when compared to the overlying stratigraphy 

[McEwen et al., 1999].   

The exact timing of this event cannot be determined as observations of a 

nadir-pointing THEMIS instrument are limited on the steep slopes of the canyon 

walls. There may be more events of a similar composition emplaced throughout 

martian history captured in the walls of the canyon but they may not be able to be 

imaged by nadir-pointing THEMIS observation.  If more events occurred 

throughout martian history in this location, bench-forming morphologies similar 

to those observed for the identified unit would be expected to occur at a variety of 

locations in the canyon walls; however, this is not observed supporting the 

conclusion that the layer identified in this study is the largest occurrence of 

olivine-enrichment noted to date.   

3.5 Conclusions 

• I have identified an in situ, olivine-enriched stratigraphic layer, which 

extends laterally over a distance of >1,100 km and has a minimum 

volume of ~9.9x104 km3.  Additionally, olivine-enriched material 

outside the primary study area has been observed as ejecta from small 

craters in the canyon floor, giving rise to the possibility that this layer 

is even larger than estimates given here.  This layer was characterized 

and identified utilizing TES spectral data and THEMIS multi-spectral 

images, along with THEMIS nighttime temperature data to determine 
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the thermophysical properties of the outcrops.  Most outcrops have 

elevated thermal inertia values (often >~600 J K-1 m-2 s-1/2, with 

extremes of >1200 J K-1 m-2 s-1/2), which indicates that this unit is not a 

mobile sediment and is an in place rocky unit.  These observations 

agree well with morphologic evidence from high-resolution imagery, 

which display a relatively unmantled, rough and pitted surface 

associated with the olivine-enriched material, with some aeolian 

bedforms infilling the hollows and pits of the surface observed by 

HiRISE and MOC imagery (Figure 3.5). 

• In addition to infrared data, I also used MOLA elevation data to 

constrain the vertical dimension of this layer, allowing for the 

continuity, extent, dip and orientation to be constrained. This layer is 

continuous over >1,100km and the olivine-enriched outcrops seem to 

define a layer that is essentially flat-lying.  This unit persists 

underneath topographically high areas appearing only in expected, 

elevation-dependent locations, and is one of the largest continuous 

compositional units found on Mars to date with an estimated volume 

of ~9.9x104 km3. 

• Four possibilities for the geologic origin of the olivine-enriched unit 

include: 1) volcanism associated with tectonic rifting of the Valles 

Marineris system, 2) a volcaniclastic flow deposit, 3) an intrusive 

mafic sill, or 4) a discrete episode in martian history during which 

flood lavas were erupted onto the surface.  The most likely explanation 
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for the geologic origin of this layer is an eruptive event consisting of 

compositionally uniform olivine-enriched flood lavas originating from 

a primitive mantle source region.  

• When the Ganges and Eos Chasmata unit is compared to other olivine-

enriched units on Mars, namely those identified in Ares Vallis [Rogers 

et al., 2005], Gusev Crater [Ruff et al., 2007], Isidis Planitia [Mustard 

et al., 2007; Tornabene et al., 2008], and Nili Fossae [Hamilton and 

Christensen, 2005], striking compositional (>15% olivine abundance 

and ~Fo68), morphologic (commonly rough, pitted textures) and 

thermophysical (typically >500 J K-1 m-2 s-1/2) similarities are observed.  

Additionally many of these units are hypothesized to have been 

emplaced early in martian history.  These similarities in age and 

characteristics lead to the possibility that there was a discrete period of 

time early in Mars history, when compositionally uniform and 

extensive olivine-enriched basalts were erupted onto the surface.
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CHAPTER 4                                                                                                

GLOBAL EVIDENCE FOR A WIDESPREAD OLIVINE-ENRICHED 

BEDROCK LAYER ON MARS: IDENTIFICATION OF THE BOREALIS 

BASIN FORMING IMPACT EJECTA DEPOSIT? 

 

The identification and mapping of an ancient, thin, and extensive olivine-

enriched basalt layer indicates an early widespread process on Mars that has gone 

previously undocumented. The formation of this layer is likely related to early 

voluminous volcanism, a magma ocean, or the Borealis basin forming impact 

event. While we favor the impact hypothesis, the identification of this unit 

provides clues into the early stages of Mars' evolution, where the responsible 

process could have altered the martian climate through the release of volatiles and 

formed the enigmatic global dichotomy. 

4.1 Introduction 

Exposures of ancient materials on planetary surfaces are rare and difficult 

to positively identify without in situ measurements. Planetary processes that bury, 

obscure, and alter these materials further complicate the identification of these 

materials from orbit. However, a detailed characterization of these materials, their 

distribution, and geologic history can provide fundamental constraints on a poorly 

understood period of planetary evolution through the identification processes, 

providing constraints on their duration, and quantifying the lasting effects these 

processes have in shaping the Mars we view today.  
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On Mars, a significant fraction of the landscape is dominated by heavily 

cratered terrain from the late heavy bombardment (LHB) or the relatively smooth 

northern lowlands that were modified subsequent to the LHB. On Earth, fast 

crustal recycling, abundant water, widespread volcanism, and gradational 

processes associated with plate tectonics have largely erased the most ancient 

materials from the geologic record. Many of the same processes occur on Mars, 

where volcanism (e.g. Tharsis, Elysium, plains units), tectonics (e.g. Valles 

Marineris), and outflow channels (e.g. Ares Vallis) have buried or eroded much of 

the ancient crust. Nonetheless, a significant fraction of the surface is ancient 

(Noachian or early Hesperian) and represents a portion of geologic time largely 

erased from Earth's surface. 

Mars is a largely volcanic planet dominated basaltic lava flows [McEwen et 

al., 1999; Christensen et al., 2000a] and volcaniclastic deposits [Robbins et al., 

2011], with important but minor variations in the basaltic composition at the 

global scale [Rogers and Christensen, 2007]. The majority of Mars’ mineralogical 

variability occurs at a small scale, covers a minor area of the surface, and is 

commonly associated with aqueous alteration [Poulet et al., 2005; Ehlmann et al., 

2008; Squyres et al., 2008]. 

4.2 Olivine On Mars 

Against the backdrop of volcanic uniformity and localized aqueous 

alteration, a series of unique olivine-enriched deposits have been identified and 

mapped globally [Koeppen and Hamilton, 2008] and regionally [Hamilton and 

Christensen, 2005; Rogers et al., 2005; Mustard et al., 2007; Edwards et al., 
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2008] using Thermal Emission Spectrometer (TES), Thermal Emission Imaging 

System (THEMIS) and Compact Reconnaissance Imaging Spectrometer for Mars 

(CRISM) data. Materials with elevated olivine content (>15% areal abundance) 

such as those found in Nili Fossae [Hamilton and Christensen, 2005; Mustard et 

al., 2007], Ares Valles [Rogers et al., 2005], Ganges and Eos Chasmata [Edwards 

et al., 2008], Mare Serpentis [Rogers et al., 2009], and Isisdis Basin [Tornabene 

et al., 2008] are found in small outcrops and have the highest thermal inertia (TI) 

values on the planet (>500 J K-1 m-2 s-1/2) [Bandfield et al., 2011].  

A thin (~60-200 m) and extensive (~1,100 km) olivine-enriched layer 

identified in the walls of Ganges and Eos Chasmata beneath >6 km of overlying 

material represents ancient material exposed on Mars [Edwards et al., 2008]. 

Outcrops of this unit are characterized by high olivine content >15% of 

composition Fo68 (Figure 4.1a and 4.1b), elevated thermal inertia (>600-800 J K-1 

m-2 s-1/2), and a rough and pitted morphology [Edwards et al., 2008]. Expanding 

on the original study region, I have found this olivine-enriched unit with similar 

thermophysical (Figure 4.2), compositional (Figure 4.3) and morphologic 

properties (Figure 4.4) can be mapped globally (Figure 4.1). 
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Figure 4.1. A) A MOLA shaded relief map where locations with TES Lambert 

albedo >0.25 are grayed out and a blue shape highlights elevations from -3900 m 

to -3600 m. Green shapes are olivine-enriched outcrops identified using THEMIS 

and TES (restricted to -5000 m to -2000 m due to the large number of 

observations), red shapes are olivine-enriched outcrops identified using CRISM 

over the entire planet, not associated with a morphologic feature (e.g. crater floor, 

ejecta, etc.) and orange shapes are TES pixels with a Fo58-Fo74 index value 

[Koeppen and Hamilton, 2008] >1.01 (not restricted by elevation), B) THEMIS 

decorrelation stretch mosaic of bands 8, 7, and 5 (where olivine-enriched 

materials are purple) of an outcrop in Ganges and Eos Chasmata (-11.25˚ N, 322˚ 

E), and C) a location 2,000 km to the northeast of Figure B (21.75˚ N, 323.75˚ E), 

where two fresh impact craters have excavated below the olivine-enriched layer 

exposing olivine-poor material in the ejecta blanket. A small crater to the 

southeast has excavated olivine rich material, indicating the layer persists in the 

subsurface. High TI materials at the edges of the outcrop where the unit erodes 

back also show the strongest olivine signature. 
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All of this unit’s remotely sensed properties can be used to determine the 

characteristics of the layer and constrain its emplacement, petrology, and 

modification history. Additional olivine-enriched bedrock locations that I 

consider to be related include identifications in Ares Valles [Rogers et al., 2005], 

Isidis Basin [Tornabene et al., 2008], and Ganges and Eos Chasmata [Edwards et 

al., 2008]. This layer has compositions consistent with typical plagioclase and 

pyroxene abundances of martian basaltic material with an enrichment in olivine as 

the primary compositional distinction. This mineralogy indicates the source 

material that generated the unit underwent little fractional crystallization and 

assimilated few evolved materials [Bertka and Holloway, 1994]. The high TI 

olivine-enriched outcrops (>500 to 1400 J K-1 m-2 s-1/2) compared to the lower TI 

olivine-poor regolith (Figure 4.2) indicates that the olivine-enriched materials are 

in situ exposures of bedrock and have not been significantly transported or 

altered.  This is further supported by the fine-scale morphology, where olivine-

enriched materials occur as fractured bedrock or blocky surfaces (Figure 4.4) and 

mobile olivine-poor materials infill local depressions.  

The type examples of olivine-enriched bedrock occur in Ganges and Eos 

Chasmata and the outflow channels around Chryse Planitia (Figures 1b,c), with 

numerous additional occurrences along the dichotomy boundary. The thickness of 

the olivine-enriched layer (~200-300 m) is determined where lower TI, olivine-

poor materials can be observed both above and below the high-TI, olivine-

enriched material (Figure 4.1c, Figure 4.2).  Previous work has shown that this 

unit is continuous over great distances (~1,100 km) and it is only observed where 
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it has been exposed by erosion that has removed the overlying igneous and 

sedimentary material.  Global mapping has revealed that this unit, where exposed, 

occurs consistently at ~3,800 ± 500 m below datum over its >4,000 km extent. 

Olivine-enriched materials, located at similar elevations in the walls of Hellas 

Basin, may also be related; however, the extensive alteration, impact and 

glaciation history in Hellas makes the correlation of olivine-enriched outcrops 

difficult. 

4.3 Instrument Description and Methods 

Olivine-enrichment is straightforward to identify in a variety of spectral 

data acquired of Mars including those from THEMIS, TES and CRISM.  The 

THEMIS thermal infrared imager is a 9 spectral channel, 320 by 240 element 

uncooled, micro-bolometer array that covers a wavelength range of 6.7-14.8 µm. 

It has 100 m/pixel spatial sampling from the 420 km altitude orbit of the 2001 

Mars Odyssey spacecraft [Christensen et al., 2004a].  The TES instrument 

onboard the 1997 Mars Global Surveyor spacecraft consists of several instruments 

including a broadband thermal bolometer (covering 5.1-150 µm), visible/near-

infrared (0.3-2.9µm) radiometers and a Michelson interferometric spectrometer 

(5.8-50µm with 5 or 10cm-1 spectral sampling) with a six-element array of 

uncooled deuterated triglycine sulfate (DTGS) pyroelectric detectors [Christensen 

et al., 2001] and has a ~3x6 km footprint on the surface per detector. The CRISM 

visible/near-infrared instrument onboard the Mars Reconnaissance Orbiter 

spacecraft is a grating imaging spectrometer, with two detectors (a silicon 

photodiode and a cooled HgCeTd 640x480 element array) that sample from 0.4-1 
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µm and 1.0-4.0 µm at 6.55 nm spectral sampling with full resolution images 

reaching ~15-38 m/pixel spatial sampling [Murchie et al., 2007]. 

THEMIS multi-spectral data are the primary means used here to identify 

outcrops of the olivine-rich layer because of their nearly global coverage, high 

spatial resolution, and ability to easily discriminate olivine-bearing materials from 

typical basaltic compositions (Figure 4.1a) observed on Mars [e.g. Hamilton and 

Christensen, 2005; Rogers et al., 2005; Edwards et al., 2008].  THEMIS 

nighttime infrared data, converted to thermal inertia [Fergason et al., 2006a] were 

used to facilitate the identification of bedrock units, and provided a very effective 

means to identify these materials (Figure 4.2).  A TES spectral index [Koeppen 

and Hamilton, 2008] designed highlight olivine of various forsterite compositions 

(Figure 4.3, Fo58-74) was used where the outcrop was large enough and high 

quality TES data were available. CRISM FRT/HRL/HRS targeted data were used 

where available and provide high spatial resolution observations for many of the 

smaller outcrop locations.  Where High Resolution Image Science Experiment 

(HiRISE) data or Mars Orbiter Camera (MOC) data were available, the 

morphology of the olivine-rich outcrops was assessed using the highest resolution 

images available allowing for the determination of fine scale (0.5-3m) 

morphologies.  
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Figure 4.2. A colorized THEMIS TI [Fergason et al., 2006a] mosaic over 

daytime temperature illustrates high TI values (>600 J K-1 m-2 s-1/2, red tones with 

a maximum of ~800 J K-1 m-2 s-1/2) are associated with the edges of the unit and 

the highest olivine content.  The lowest TI values (~200 J K-1 m-2 s-1/2, blue tones) 

are associated with ejecta, pits, and the lower surrounding plains. Flat sections of 

the olivine-enriched unit are likely mantled by aeolian materials and exhibit a 

similar spectral and thermophysical character to the surrounding olivine poor 

plains. 



 

124 

 

Figure 4.3. A colorized spectral index of TES data highlights olivine with 

forsterite compositions ranging from ~58 to ~74 [Koeppen and Hamilton, 2008] 

overlain on a THEMIS daytime infrared mosaic of the same location as Figure 1c. 

In this case the highest index values (>1.02, red tones) correspond with the 

strongest identification of olivine with a composition of Fo58-74, while the lowest 

index values (<1.00, blue and purple tones) indicate a weak or non-existent 

olivine identification. Figure 1c and this figure have good agreement regarding 

the locations with the strongest identification of olivine.  
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Figure 4.4. HiRISE showing the range of fine-scale morphologies observed for 

various outcrops, where darker material infills topographic lows and have a 

weaker olivine signature than the lighter toned, blocky and pitted olivine-enriched 

materials. A) Chryse Planitia (ESP_017278_2020), B) Eos Chasma 

(PSP_001798_1685), C) Ravi Vallis (PSP_008628_1800), and D) Ares Vallis 

(PSP_007889_1865). Textural variability may be from different weathering 

environments, as these images sample a range of latitudes and contexts (e.g. 

channel floors vs. flat plains). 
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4.4 Key Observations 

4.4.1 Composition 

Using a variety of spectral data, I have constrained the composition of an 

olivine-rich, rocky unit with typical outcrops having >10% areal abundance of 

olivine. Olivine-rich deposits on Mars have been discussed in detail in the 

literature and many of these locations coincide with outcrop identifications made 

in this study [Hamilton and Christensen, 2005; Rogers et al., 2005; McSween et 

al., 2006; McDowell and Hamilton, 2007; Mustard et al., 2007; Edwards et al., 

2008; Koeppen and Hamilton, 2008; Tornabene et al., 2008; Rogers et al., 2009; 

Edwards et al., 2010; Rogers and Fergason, 2011].  In general, these olivine-rich 

outcrops have plagioclase and pyroxene compositions within the range of typical 

basaltic materials on Mars [e.g. Rogers and Christensen, 2007] and differ 

primarily in higher olivine (Fo58-74) abundances  (>10% to 20%) then are found in 

regional basaltic lava units abundances.   

The magma that generated the olivine-rich materials must be derived 

almost directly from the martian mantle and have undergone little fractional 

crystallization and little to no assimilation of more evolved materials.  If more 

evolved materials were included in the melt, the olivine content of the materials 

would be significantly lower than what is observed [Bertka and Holloway, 1994].  

While the context and crystal size of the olivine in the rock is not well 

constrained, the olivine must have sufficiently large crystals and be pervasive 

through the rock to exhibit characteristic vibrational modes in the thermal infrared 
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at the 100 m/px scale.  This indicates that the melt must have cooled at a rate slow 

enough to crystallize olivine-rich basalt and not a quenched basaltic glass. 

4.4.2 Physical Nature 

Assessing the competence and physical characteristics of material that 

composes the olivine-rich outcrops helps constrain the mobility of the outcrop 

material.  In general olivine-rich outcrops identified in this study have thermal 

inertia values >500 to 1400 J K-1 m-2 s-1/2 and always have a higher thermal inertia 

than the surrounding olivine-poor martian materials (Figure 4.2).  The elevated 

thermal inertia associated with the olivine-rich outcrops indicates that the material 

is relatively immobile and the derived thermal inertia values are consistent with 

some of the rockiest materials on the planet [Edwards et al., 2009].   

The relationship between the high thermal inertia olivine-rich outcrops 

and the typically lower thermal inertia olivine-poor martian may be related to 

weathering and alteration processes in some cases [Bandfield and Rogers, 2008; 

Bandfield et al., 2011].  However, in the cases I present here, there is no visible 

transition (either physically or mineralogically/chemically) from olivine-rich, high 

thermal inertia to olivine-poor, low thermal inertia materials.  Therefore I 

conclude that based on these observations, the olivine-rich materials identified are 

likely in-place and have not been significantly displaced from their original 

locations. 
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4.4.3 Morphology 

The morphology associated with olivine-rich outcrops (Figure 4.4) exhibit 

a variety of different textures and fine scale morphologies.  Olivine-rich outcrops 

are commonly lighter toned than the surrounding olivine poor material and 

typically exhibit a rough and pitted texture with olivine-poor aeolian material 

infilling local depressions.  This range of morphologies is common to other high 

thermal inertia materials [Edwards et al., 2009], as well as other olivine rich 

materials [Edwards et al., 2008].   In some cases, the outcrops exhibit fractured 

and blocky textures (Figures 4c and d) though the range of these textures may be 

related to the range of latitudes and planetary settings in which the identified 

olivine-rich outcrops are found.  

4.4.4 Thicknesses 

The only method by which the thicknesses of the identified outcrops can 

be constrained is through the positive identification of olivine-poor, low thermal 

inertia material both above and below the outcrops.  In Ganges and Eos Chasmata 

the olivine-rich materials were characterized where possible through these means 

and typical outcrop thicknesses were found to be ~200 m [Edwards et al., 2008].  

In Figure 4.1c, two impacts that occurred in the olivine-rich material have 

exposed olivine-poor material from the subsurface that was incorporated as ejecta.  

In a location to the southeast in Figure 4.1c, a small impact crater exhibits a 

prominent olivine signature indicating that the olivine rich material at 

approximately the same elevation as the high thermal inertia olivine bench to the 

northwest is present below the olivine poor surface. These types of observations 
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help constrain the vertical extent of this layer, indicate that it is relatively thin, and 

is likely present but masked in many instances.   

4.4.5 Additional Observations of Olivine 

While many processes on Mars result in olivine enrichment, (e.g. 

volcanism [Hamilton and Christensen, 2005], post-impact volcanism, and impact 

ejecta [Mustard et al., 2007]) for all of the cases identified in this study I have not 

been able to associate a geologic process likely responsible the emplacement of 

the olivine-rich material.  Several locations of previously identified materials that 

I consider related are: Ares Valles [Rogers et al., 2005], Isidis Basin [Tornabene 

et al., 2008], and Ganges and Eos Chasmata [Edwards et al., 2008], as well as 

other anomalous basaltic regions that occur in Surface Type 2 regions [Rogers 

and Christensen, 2003].  The locations identified in all of these cases, have 

striking similarities to those outcrops originally identified in Ganges and Eos 

Chasmata, where they have ~Fo68 olivine with >10% areal abundance, elevated 

thermal inertia values (>800 J K-1 m-2 s-1/2 in Ares Valles) and have a rough and 

pitted fine scale morphology that is often fractured at the 10s of meters scale.  In 

addition to positive identifications of olivine, many of the anomalous basaltic 

locations originally identified using TES data only [Rogers and Christensen, 

2003], are co-located and highly correlated with positive identifications of 

olivine-rich materials in this study.  In other cases, olivine-rich materials that 

occur near volcanic centers [Hamilton and Christensen, 2005] or as proposed 

impact ejecta deposits [Mustard et al., 2007], are not considered related and often 
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have different fine-scale morphologies and can be readily associated with 

geologic features. 

4.4.6 The Distribution of Olivine-rich Outcrops 

The olivine-rich outcrops identified in this study are widespread and occur 

over a wide range of locations on the martian surface.  However, the most 

common location for these materials to crop out is the dichotomy boundary, 

where the ancient crustal materials are well exposed.  These outcrops occur at 

remarkably similar elevations (approximately 3,800 ± 500 m below the martian 

datum) over the ~4,000 km or more extent of this unit.   

Olivine-rich materials are also observed in walls of Hellas Basin.  While 

the elevation of olivine-rich materials in Hellas is within ~1000 m of those in 

other locations, the elevations of outcrops are more variable.  However, this 

variability could result from the complex history of impact, alteration, and 

glaciation that has occurred in Hellas.  It is difficult to discern materials that were 

present before the Hellas Basin impact event and those materials that have been 

emplaced after its formation.  These exposures do not appear to be related to any 

distinguishable geologic feature and are commonly exposed as small hills with 

elevated thermal inertia on the rim of Hellas Basin.  

The observations of olivine-rich outcrops are not complete on all areas of 

the planet primarily due to increased dust cover that precludes orbital 

compositional studies in places like Arabia Planitia and the Tharsis Montes.  In 

addition, other geologic processes can make positive identifications difficult 

including mass wasting, erosional, or impact processes that can either bury or 
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erode through the layer or other depositional processes such as volcanism.  

However, the location of these olivine-rich outcrops is not necessarily coincident 

with the major volcanic provinces on Mars and more often outcrops occur 

hundreds to thousands of kilometers away.   

As it has been mapped, this layer records a unique, large-scale geologic 

process that has not previously been noted and is unlike any other geologic layer 

identified to date on Mars. Because a large majority of outcrops occur at similar 

elevations over large distances, are relatively thin and occur at depth within the 

crust, I conclude that this unit is a discrete, major geologic layer emplaced over a 

relatively short period of time early in martian history.  

4.5 Formation Models 

Any model for the formation of this large-scale, olivine-enriched layer 

must satisfactorily explain its: 1) unique composition  (>10%-25% ~Fo68), 2) 

ancient age (>6 km of heavily cratered overlying material), 3) large-scale (1.5x106 

km3 to >5x106 km3) and observed continuity (>4,000 km laterally), and 4) rocky 

nature (elevated TI and fine-scale morphology). I present three scenarios and the 

supporting and opposing evidence under which a layer with these characteristics 

could form. 

4.5.1 Magma Ocean 

First, the formation of an olivine-enriched layer may be related to an early 

magma ocean with significant density stratification. A magma ocean could be 

responsible for producing the earliest martian crust within ~30-50 Myr after 
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accretion [Elkins-Tanton et al., 2005].  In this scenario, several crustal 

compositions, consistent with what is observed from orbit, would be produced, 

including olivine and pyroxene rich materials [Elkins-Tanton et al., 2005]. This 

model explains the observed surface compositions and constrains the formation to 

early Mars history. Furthermore, if two different melt source regions were 

present, a magma ocean might also explain the origin of the enigmatic dichotomy 

and the widespread distribution of the olivine-enriched materials [Zhong and 

Zuber, 2001; Elkins-Tanton et al., 2005]. 

Although a magma ocean may have played a significant role in martian 

history, this model fails to satisfactorily explain an olivine-enriched layer with the 

observed thickness. A cumulate overturn/magma ocean model predicts a massive 

compositionally uniform layer hundreds of kilometers thick [Elkins-Tanton et al., 

2005] where olivine-enriched materials would make up the lower portion of the 

crust, and not the observed continuous thin layer.  While model parameters such 

as mantle composition, solid and melt fractions [Elkins-Tanton et al., 2003], and 

timing are difficult to constrain, this process may be responsible for the genesis of 

the more typical martian crust over millions to tens of million of years [Elkins-

Tanton et al., 2003; Elkins-Tanton et al., 2005] and the observed olivine-enriched 

layer may be related to a later event that was short lived by comparison. 

4.5.2 Compositionally Distinct Volcanism 

Second, I propose a period of intense and widespread volcanism or near-

surface intrusions that may have occurred shortly after crustal formation, possibly 

as a result of enhanced surface heat flux associated with core formation (~3.5-4 
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Ga) [Solomon, 1979].  However, Hf-W isotope anomalies in SNC martian 

meteorites [Lee and Halliday, 1997; Kleine et al., 2002] suggest the martian core 

and crust formed contemporaneously within ~30 Myr of solar system formation, 

shortly after accretion and not later in martian history, moving the time of peak 

heat flux earlier.   

The distribution and thickness of the layer necessitates that volcanism with 

a unique composition occurred once and briefly over much of the martian surface, 

with peak heat flux as the driving mechanism to partially melt the mantle. 

However, reconciling the timing of peak heat flux, crustal differentiation, and 

solidification and the necessity for a differentiated and solid crust by the time of 

the olivine-enriched layer’s emplacement is difficult. While this and the magma 

ocean model may predict a massive deposit rather than a thin layer, basal sections 

may be thinner olivine-enriched cumulates consistent with observations. The 

improbability of a discrete period in early martian history of widespread, 

compositionally distinct volcanism over much of the planet’s surface is the major 

argument against this hypothesis, though early planetary processes are not well 

understood and these events may be commonplace 

4.5.3 Mega-Impact Ejecta 

As the final scenario, an impact that formed the Borealis basin may have 

produced the regional to global olivine-enriched layer. A high-energy impact 

would excavate the crust and upper mantle and distribute these materials over the 

planet’s surface, with distribution and volume as a function of impact energy and 

angle [Marinova et al., 2008].  Head-on impacts generate large volumes of melt 
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(up to ~80km global equivalent layer depth) and would likely erase all evidence 

of impact features [Marinova et al., 2008]. However for conditions in the early 

solar system with bodies >1,000 km in diameter traveling in roughly parallel 

orbital planes at similar velocities [Wilhelms and Squyres, 1984], a glancing 

impact is more likely [Marinova et al., 2008]. If the borealis basin was formed by 

an impact [Marinova et al., 2008], its very existence argues for a glancing impact 

of an object ~2,000 km diameter [Marinova et al., 2008] that would produce 6-20 

km global equivalent depth of melt [Marinova et al., 2008]. Total melt volume 

decreases with impact angle and except for the most energetic impacts, 50-70% of 

the melt would be concentrated in the excavation area and 10-30% ejected from 

the planet altogether [Marinova et al., 2008]. The remaining 20-30% mantle rich 

melt material would be deposited on the planet in a layer ~1.2 to ~6 km thick, 

with all or part of this material comprising the olivine-enriched layer.  

This model explains many aspects of the olivine-enriched layer. The 

Borealis basin likely formed shortly after accretion and crust formation explaining 

the ancient age [Solomon et al., 2005]. Impact melt that includes martian mantle is 

consistent with an olivine-enriched composition [Marinova et al., 2008] and the 

large impact can account for the layer’s widespread distribution. Additionally, the 

excavation boundary —a 10,600 km by 8,500 km ellipse centered at 67˚ N, 208˚ 

E [Andrews-Hanna et al., 2008]—is  coincident with many outcrops of this layer.  

Some olivine-enriched materials found northward of the excavation boundary do 

not form a distinguishable a layer, but they could be an exposed olivine unit that 

formed from melt within the impact structure. 
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The Borealis impact ejecta model also best explains the relatively thin 

nature of the layer. If the layer is continuous between outcrops, its extent and 

thickness imply a total volume >3x106 km3 and may be as large >2x107 km3 if 

outcrops observed in Hellas Basin are included. The melt volumes predicted by 

numerical impact models [Marinova et al., 2008] are ~1-1.5 orders of magnitude 

larger than what is calculated for the olivine-enriched layer, but this discrepancy 

may be insignificant as the layer may be olivine cumulate materials from a more 

voluminous ejecta deposit.  While the expected stratigraphy from the 

contemporaneous deposition of ejecta and crustal thickening has not been 

modeled, an olivine cumulate is consistent with what would likely form at the 

base of a thick, molten eject unit. Subsequent to the impact, basaltic crustal 

materials were emplaced superposed on the existing dichotomy, cratered during 

the LHB, and degraded with the subsequent deposition of materials derived and 

eroded from the southern highlands onto the northern lowlands [Solomon et al., 

2005]. This sequence of events and compositions, matches the observed geology 

well.  Given the testable and observable aspects of each model, I conclude that the 

mega-impact ejecta model is the most reasonable mechanism by which a thin, 

olivine-enriched layer from early in Mars history could form. 

4.7 Implications 

• Regardless the formation mechanism, this ancient, rocky, olivine-enriched 

layer on Mars has significant implications for the early history of the 

planet. While I favor the Borealis-impact model, the presence of an 

extensive layer of unique composition indicates a significant planet-wide 



 

136 

event.  In our view, this layer provides evidence for and constraints on the 

Borealis impactor. If the materials observed in the walls of Hellas are part 

of this unit, the layer must pre-date the Hellas impact event and the layer is 

likely a global deposit. The significance of the layer as a marker for early 

Mars history is unique among current observations.  

• In all the models considered, the formation of this layer would be 

associated with significant planetary heating and may have depleted the 

mantle of volatiles, affecting the global water cycle in later history. The 

layer's relatively uniform elevation indicates a nearly spherical early Mars 

with little topographic variability, indicating that today’s topographic 

variability is entirely due to subsequent volcanism, tectonism, and large 

impact events. 

• In addition to providing constraints on martian dichotomy formation 

models, this olivine-enriched layer likely represents some of the most 

ancient material present on the surface of Mars and has properties 

consistent with material derived from a primitive mantle source region. 

These materials could provide important constraints on the differentiation 

of Mars, mantle, and core chemistry, the source material of some SNC 

meteorites, and the timing of the Borealis basin forming event. Any site 

where olivine-enriched material has been identified by this work provides a 

unique sampling site for future sample return or rover missions. Analysis of 

these materials either by a lander or sample return mission could help 

illuminate early planetary processes that are poorly understood. 
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CHAPTER 5                                                                                                        

IMPACT RELATED DECOMPRESSION MELTING: THE FORMATION OF 

WIDESPREAD INFILLED CRATERS AND INTER-CRATER PLAINS ON 

MARS 

 

Infilled craters on Mars have been observed since the first spacecraft 

viewed the surface and early work characterized these craters as infilled by 

sedimentary materials.  Later work using THEMIS thermal inertia determined 

these craters contain some of the rockiest materials on the planet and not 

sedimentary materials.  Here I investigate the distribution, physical properties 

(morphology and thermal inertia), and composition of these craters over the entire 

planet.  The majority of the ~3,300 rocky crater floors identified are concentrated 

in the low albedo (0.1-0.17), cratered southern highlands.  These craters are 

associated with the highest thermal inertia values (> 500 to 2000 J m-2 K-1 s-1/2), 

some of the most mafic materials on the planet (enriched in olivine/pyroxene vs. 

high-Si phases/plagioclase, often with >10-15% olivine areal abundance), and 

formed ~3.5 billion years ago.  Several processes could be responsible for the 

formation of the crater floors, though the most likely scenario is volcanic infilling 

through fractures created in the impact event.  Furthermore, the generation of the 

primitive magma source directly results from decompression melting of the 

martian mantle by the removal of the crustal material excavated by the impactor.  

This process only occurred in early Martian history, during or shortly after the 

Late Heavy Bombardment when the crust was still relatively thin and heat flow 
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was high.  This process was widespread and responsible for the eruption of 

significant volumes of primitive material, both inside and outside of craters.  

Decompression melting accounts for the unusual infilling of martian crater sand is 

an important planetary process that has gone previously undocumented.  

5.1 Introduction 

Deeply infilled crater were first observed by Mariner 4 in 1965 and have 

remained an enigma ever since.  Various processes to fill martian craters have 

been proposed, including aeolian sedimentation [e.g. Arvidson, 1974; 

Christensen, 1983; McDowell and Hamilton, 2007], lacustrine sedimentation [e.g. 

Newsom et al., 1996; Cabrol and Grin, 1999; Fassett and Head, 2005; Pondrelli 

et al., 2005] and impact processes such as impact melt ponding [e.g. Schultz, 

1976; Smrekar and Pieters, 1985; Wilhelms et al., 1987]. However, these 

explanations are unsatisfying because nearby similar sized craters are often 

unfilled, the surrounding terrains are typically unmantled, and the process by 

which environmental conditions necessary to form widespread aeolian or fluvial 

deposition were created has not been adequately identified. 

In this paper, I investigate the physical and compositional properties of the 

crater-filling materials and conclude that a different process – impact induced 

decompression melting of the martian mantle – is responsible for the inter crater 

materials as well as extensive regions of the intra-crater plains.  
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5.2 Background 

High-thermal inertia surfaces (>1200 J K-1 m-2 s-1/2) interpreted as exposed 

bedrock have been characterized High-thermal inertia surfaces (>1200 J K-1 m-2 s-

1/2) interpreted as exposed bedrock have been characterized and mapped on Mars 

from 75˚ S to 75˚ N [Edwards et al., 2009] using Thermal Emission Imaging 

System (THEMIS) [Christensen et al., 2004a]  nighttime infrared data.  Edwards 

et al. [2009] have identified three distinct morphologies associated with outcrops 

of in-place rocky material, including: 1) valley and crater walls on steep slopes, 2) 

flat crater floor surfaces with higher-thermal inertia material present in the crater 

floor than the crater walls, and 3) plains surfaces not related to any major 

topographic feature, which commonly show wind scouring morphologies, such as 

rough and pitted textures. The distribution of these features suggests several 

factors that control the exposure, creation, and destruction of bedrock, including 

high-latitude periglacial processes and dust mantling [Edwards et al., 2009].  

However, there are many locations on the martian surface that meet conditions 

where bedrock is expected to occur yet it is not observed, leading to the 

possibility that large-scale crustal processing, reworking, and/or mantling has 

destroyed or masked a majority of the bedrock on Mars [Edwards et al., 2009].   

One of the three high-thermal inertia morphologies identified was flat 

crater floor materials [Edwards et al., 2009].  Some of these infilled craters were 

identified previously identified using Viking Infrared Thermal Mapper (IRTM) 

data [Christensen, 1983] and Mariner 9 visible imaging data [Arvidson, 1974]. 

The crater floors were characterized by their elevated thermal inertia, low albedo 
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splotches occurring on the downwind side of the crater, and their flat-floors and 

lack of central peaks [Arvidson, 1974; Christensen, 1983].  The characteristics of 

these craters include several fundamental and unique parameters not common to 

other martian impact craters, with: 1) a flat-floor with no discernable central peak 

and a rough, pitted fine-scale (meter scale) morphology and aeolian materials 

infilling topographic lows, 2) elevated thermal inertia in the crater floor as 

compared to the surrounding terrain and crater walls, and 3) extensive post-impact 

modification, with shallow sloped walls, little-to-no visible ejecta material, and 

occasional gullies and impact craters on both the walls and floor [Edwards et al., 

2009]. 

The original mechanism proposed for the infilling of these craters was 

largely considered to be aeolian [Arvidson, 1974; Christensen, 1983].  However, 

the high-thermal inertia values derived from THEMIS suggest that these deposits 

are instead in-place rocky material and not mobile sediment [Edwards et al., 

2009].  Edwards et al. [2009] proposed that these craters were filled with lithified 

sediment or with volcanic materials. In this work, I expand our study to include 

all infilled craters with elevated floor thermal inertia values and diameters >1 km 

that are visible using the 100 m/pixel THEMIS global mosaics [Edwards et al., 

2011b] (Figure 5.1). Similar infilled craters have been identified on the Moon 

[e.g. Schultz, 1976; Smrekar and Pieters, 1985; Wilhelms et al., 1987] and may 

have formed by the infilling of impact melt or through impact related volcanism.  

However, on Mars, no evidence for flow features commonly associated with 

impact melt has been identified in association with this crater type.   
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Approximately 3,300 craters have been identified (Figure 5.2) and several 

fundamental questions arise regarding high-thermal inertia, infilled craters: 1) 

What is the geologic origin of the high-thermal inertia crater floor material (e.g. 

sedimentary, volcanic, impact melt)? 2) What geologic process or processes are 

responsible for the emplacement of these materials? and 3) What does the spatial 

and temporal distribution of infilled craters indicate about the planetary evolution 

of Mars?  
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Figure 5.1. Colorized THEMIS nighttime temperature overlain on THEMIS 

relative daytime temperature from the THEMIS global mosaic [Edwards et al., 

2011b, and references therein] of a region of the southern highlands centered near 

83.5˚ E, 45˚ S.  In this view, blue tones indicate lower nighttime temperatures and 

relatively low-thermal inertia surfaces while, red tones indicate higher nighttime 

temperatures and relatively high-thermal inertia and rockier surfaces.  

Temperatures are normalized and are only relative.  Craters classified with 

elevated floor thermal inertia values are identified by a solid white circle while 

potential candidates which were not examined in detail are identified by a dashed 

white circle 
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Figure 5.2. The global distribution of craters with floors that have a relatively 

high-thermal inertia as compared the surrounding terrain on a TES Lambert 

albedo map.  The yellow circles are craters identified as having a relatively high-

thermal inertia from the THEMIS nighttime global mosaic.  The red dots are 

locations that were identified by Edwards et al. [2009] as crater floors that are 

consistent with bedrock exposures. 
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While representative portions of the southern cratered highlands 

containing many infilled craters such as Mare Serpentis [Rogers et al., 2009] and 

Tyrrhena and Iapygia Terrae [Rogers and Fergason, 2011] have been 

characterized in detail [Rogers et al., 2009; Rogers and Fergason, 2011], no study 

has specifically focused on the thermophysical and compositional properties of 

infilled craters.  

Detailed localized compositional studies of small regions from orbit [e.g. 

Hamilton and Christensen, 2005; Rogers et al., 2005; Mustard et al., 2007; 

Edwards et al., 2008; Tornabene et al., 2008; Ehlmann et al., 2009; Rogers et al., 

2009; Rogers and Fergason, 2011; Wray et al., 2011] provide important and 

fundamental understanding of geologic processes on Mars, but global-scale 

studies have the ability to fundamentally change the current understanding of and 

synthesize planetary evolution, as well as identify wide-scale processes on 

planetary surfaces.  In this study, I examine the composition of all infilled craters 

on Mars that have flat-floors, no central peak and elevated thermal inertia as 

compared to the surrounding terrain, following similar techniques as those used in 

other studies [e.g. Bandfield, 2002; Rogers et al., 2005; Rogers and Christensen, 

2007; Rogers et al., 2009; Rogers and Fergason, 2011] using Thermal Emission 

Spectrometer (TES, [Christensen, 1999]), Compact Reconnaissance Imaging 

Spectrometer for Mars (CRISM, [Murchie et al., 2007]), THEMIS spectral data in 

combination with THEMIS thermal inertia data [Fergason et al., 2006a] and 

crater age dates [Neukum and Wise, 1976; Neukum and Hiller, 1981; Hartmann 

and Neukum, 2001; Ivanov, 2001; Neukum et al., 2001], with the aim of 
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constraining the process or processes responsible for the formation of high-

thermal inertia infilled craters. 

5.2 Method 

5.2.1 Crater Selection Criteria 

The morphologic and thermophysical criteria used to identify infilled 

craters originally, were: 1) higher-thermal inertia inside the crater than the 

surrounding terrain and crater walls, 2) relatively flat-floors with no identifiable 

visible central peak, 3) degraded rims with highly eroded or non-existent ejecta 

deposits, and 4) no other identifiable source for the high-thermal inertia material 

(e.g. volcanic centers, and sedimentary mounds such as that observed in Gale 

Crater, etc.).   

In order to map the global distribution of craters with these characteristics, 

I used the THEMIS daytime and nighttime relative temperature mosaics [Edwards 

et al., 2011b] to first assess the morphology and qualitatively examine the thermal 

inertia differences between the crater floors and the surrounding terrain. While the 

THEMIS global mosaics only map the relative temperature, as they are 

normalized for season, atmospheric conditions, and local time, they are extremely 

valuable for determining relative differences in thermophysical properties 

[Edwards et al., 2011b]. I examined every location on the planet from 75˚S to 

75˚N for locations where crater floors show warmer nighttime temperatures than 

the surrounding wall materials.  In all I identified ~3,300 craters that met these 

criteria using the THEMIS global mosaics and were flagged for further 
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investigation.  I included all regions, including the typically dusty provinces of 

Elysium, Tharsis and Arabia, and did not include a crater size restriction other 

than the limit of the 100 m/pixel resolution of the THEMIS global mosaics 

[Edwards et al., 2011b]. Crater center location and diameter were recorded and 

mapped for craters that met the above criteria.   

5.2.2 Surface Property Datasets 

5.2.2.1 Compositional Data 

5.2.2.1.1 THEMIS 

THEMIS is an infrared and visible multispectral imager onboard the 2001 

Mars Odyssey spacecraft.  In this work I used THEMIS multi-spectral daytime 

infrared data at 100-meter per pixel spatial sampling to assess the compositional 

variability of the high-thermal inertia crater floors.  THEMIS bands 8, 7, and 5 

(11.79, 11.04 and 9.35 µm respectively) can be used to emphasize the strong 

absorptions due to olivine and other mafic minerals such as pyroxenes [e.g. 

Christensen et al., 2003b; Edwards et al., 2008; Rogers et al., 2009] that are 

lacking in the surrounding lower-thermal inertia inter-crater plains and crater 

walls.  A running-decorrelation stretch [Gillespie et al., 1986; Edwards et al., 

2011b] was performed on the multi-band THEMIS images to emphasize spectral 

differences; using the 8, 7, and 5 band combination, the olivine-enriched materials 

appears purple.  All THEMIS data were processed using a variety of advanced 

image processing techniques including, time-dependent focal plane temperature 

variation removal, temperature variation across the THEMIS calibration flag 
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removal, line- and row-correlated noise removal and uncorrelated random noise 

removal noise removal [Bandfield et al., 2004a; Edwards et al., 2011b].  For a 

more detailed discussion of advanced THEMIS data processing techniques see 

Edwards et al. [2011b]. 

5.2.2.1.2 TES 

The Mars Global Surveyor Thermal Emission Spectrometer consists of 

several different instruments including a broadband thermal bolometer (covering 

5.1-150 µm), visible/near-infrared (0.3-2.9 µm) bolometer and a Michelson 

interferometer (5.8-50 µm with 5 or 10 cm-1 spectral sampling) with a six-element 

array of uncooled deuterated triglycine sulfate (DTGS) pyroelectric detectors 

[Christensen et al., 2001], each yielding a ~3x8 km footprint on the surface. I 

primarily used the thermal infrared interferometer for compositional work, along 

with the visible/near-infrared bolometer to derive surface Lambert albedo. 

Two different approaches were taken with TES data: 1) a full removal of 

atmospheric components and derivation of mineral abundances [e.g. Ramsey and 

Christensen, 1998; Bandfield et al., 2000a; Smith et al., 2000; Rogers et al., 2007; 

Rogers and Aharonson, 2008] for several example sites, and 2) a spectral index 

for large-scale mapping and comparison with THEMIS thermal inertia data.  In 

the first case, a limited set of warm surface (>255 K), clear atmosphere (9 µm 

dust extinction <0.15 and 11 µm ice extinction <0.04), low albedo (<0.17) TES 

data were selected, with emission angles <5˚, no solar panel or image motion 

compensator mirror motion, and orbit counter keeper (OCK) values <7000. Once 

the data of interest were identified, I removed the atmospheric contribution by 
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fitting each TES spectrum with a library of mineral spectra (Table 5.1) and 

atmospheric components [Bandfield et al., 2000b] using the linear deconvolution 

surface-atmosphere separation routine documented by Smith et al. [2000]. 

I used the 507cm-1 spectral index developed by Rogers and Fergason 

[2011] to map global variability in mafic-ness as this index is directly affected by 

the abundances of olivine and/or pyroxene relative to the plagioclase and/or high-

silica phases present on  the surface [Rogers and Fergason, 2011].  While any 

spectral index will not explicitly determine the mineral abundances, the 507 cm-1 

is able to place constraints on the mafic-ness of a surface and measures the non-

atmospherically corrected emissivity slope between 423-434 cm-1 and 497–508 

cm-1 (TES bands 27–28 and 34–35) [Rogers and Fergason, 2011].  

When I performed spectral index mapping, the quality parameters listed 

above were relaxed (including data with higher dust and water-ice extinctions, 

higher albedo, and lower surface temperature values) to allow for greater surface 

coverage.  This is acceptable as the 507 cm-1 spectral index is not very sensitive to 

atmospheric variability and works well on lower surface temperature data [Rogers 

and Fergason, 2011]. This spectral index was applied widely over the planetary 

surface and was used to systematically compare high-thermal inertia crater floors 

to typical martian surfaces, without the need to derive TES surface emissivity 

spectra and introduce a more complicated metric for assessing the mafic-ness of 

the planet. 
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Table 5.1. Spectral Library used in quantitative mineral abundance 

determination from TES data after Rogers and Fergason [2011] 

aReference 

Number/Source 
Spectrum Identifier Assigned Mineral Group 

ASU Quartz BUR-4120 Quartz 

ASU Microcline BUR-3460 Alkali feldspar 

ASU Albite WAR-0235 Plagioclase 

ASU Oligoclase BUR-060D Plagioclase 

ASU Andesine WAR-0024 Plagioclase 

ASU Labradorite BUR-3080A Plagioclase 

ASU Bytownite WAR-1384 Plagioclase 

ASU Anorthite BUR-340 Plagioclase 

1 Shocked anorthosite Plagioclase 

 at 17 GPa Plagioclase 

 at 21 Gpa Plagioclase 

 at 25.5 Gpa Plagioclase 

 at 27 Gpa Plagioclase 

 at 38 Gpa Plagioclase 

 at 56.3 Gpa Plagioclase 

ASU Bronzite NMNH-93527 Orthopyroxene 

ASU Enstatite HS-9.4B Orthopyroxene 

ASU Hypersthene NMNH-B18247 Orthopyroxene 
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Table 5.1. continued 

2 Average Lindsley pigeonite Low-Ca clinopyroxene 

ASU Diopside WAR-6474 High-Ca clinopyroxene 

ASU Augite NMNH-9780 High-Ca clinopyroxene 

ASU Augite NMHN-122302 High-Ca clinopyroxene 

ASU 
Hedenbergite manganoan 

DSM-HED01 
High-Ca clinopyroxene 

ASU Forsterite BUR-3720A Olivine 

ASU Fayalite WAR-RGFAY01 Olivine 

3 KI 3362 Fo60 Olivine 

3 KI 3115 Fo68 Olivine 

3 KI 3373 Fo35 Olivine 

3 KI 3008 Fo10 Olivine 

4 
Illite Imt-1 < 0.2 mum 

(pellet) 
Phyllosilicates 

ASU 
Ca-montmorillonite solid 

STx-1 
Phyllosilicates 

5 
Saponite (Eb-1) < 0.2 mum 

(pellet) 
Phyllosilicates 

4 
Swy-1 < 0.2 microns 

(pellet) 
Phyllosilicates 

6 K-rich glass Glass 
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Table 5.1. continued 

6 SiO2 glass Glass 

 

7 Opal-A (01-011) Amorphous silica 

8 Al-Opal Amorphous silica 

9 

Average Meridiani and 

Aram Hematite 

(TT derived) 

Oxide 

ASU Anhydrite ML-S9 Sulfate 

ASU Gypsum ML-S6 Sulfate 

10 Kieserite Carbonate 

ASU Calcite C40 Carbonate 

ASU Dolomite C20 Zeolite 

11 Crystalline heulandite Zeolite 

11 Crystalline stilbite Zeolite 

aSpectral library after Rogers and Fergason [2011] where, individual mineral 

spectra are from the ASU spectral library available online at 

http://speclib.asu.edu [2000b], except as indicated as from alternate sources: 

(1) Johnson et al. [2002]; (2) Wyatt et al. [2001]; (3)  Koeppen and Hamilton 

[2008]; (4)  Michalski et al. [2006]; (5)  Michalski et al. [2005]; (6) Wyatt et 

al. [2001]; (7)  Michalski et al. [2003]; (8) provided by M.D. Kraft; (9) 

Glotch et al. [2004]; (10) Baldridge [2007]; (11) Ruff [2004] 
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5.2.2.1.3 CRISM 

CRISM, onboard the Mars Reconnaissance Orbiter spacecraft is a grating 

imaging spectrometer with two detector arrays and a maximum of 15 m/pixel 

spatial sampling from 0.4-4.0 µm at 6.55 nm spectral sampling. CRISM spectral 

data were utilized primarily to help provide compositional information at high 

spatial resolution to provide context for fine-scale morphology from High-

Resolution Imaging Science Experiment (HiRISE) [McEwen et al., 2007] and 

Mars Orbiter Camera (MOC) [Malin et al., 1998] images. The low-Ca pyroxene 

and high-Ca Pyroxene spectral indices (LCPINDEX and HCPINDEX) [Pelkey et 

al., 2007], as well as the modified olivine spectral index (OLINDEX2) [Salvatore 

et al., 2010] were the primary indices utilized in locations where craters had 

CRISM coverage. The limited spatial coverage of CRISM full resolution targeted 

data precluded a more systematic and detailed global study. 

5.2.2.2 Physical Properties 

5.2.2.2.1 THEMIS Thermal Inertia 

Thermal inertia is defined as I = (κρc) 1/2, where κ is the thermal 

conductivity, r is the bulk density of the material, and c is specific heat.  I used the 

KRC thermal model [Kieffer, submitted] to model surface temperatures and 

derive thermal inertia given a variety of observational and planetary conditions, 

including local time, solar longitude, atmospheric dust opacity, surface slopes, 

and broadband visible albedo following Fergason et al. [2006a] and Edwards et al. 

[2009].  
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Thermal inertia on Mars is strongly controlled by the thermal conductivity 

[Kieffer et al., 1973; Jakosky, 1986; Presley and Christensen, 1997a; c; b; 

Piqueux and Christensen, 2011].  Assuming the material in question is 

homogeneous and an unconsolidated particulate, thermal inertia derived from 

spacecraft data can be related to effective particle size using laboratory 

experiments and physical models [Kieffer et al., 1973; Piqueux and Christensen, 

2009; Piqueux and Christensen, 2011], and has been used quantitatively 

determine the physical properties of the upper several decimeters of surface 

material.  Under Martian environmental conditions, surfaces with lower-thermal 

inertia are interpreted as having smaller effective particle sizes.  

I used the approach described by Edwards et al. [2009], where minimum, 

maximum and average thermal inertia values were derived from each THEMIS 

image framelet (256 line segment of a THEMIS infrared image; approximately 32 

by 26 km at 100 m/pixel sampling) and stored in a database. This approach allows 

for global coverage while preserving some information about the small-scale 

variability by identifying the highest, minimum, and average value of each 

surface location. 

In order to ensure high quality and well-calibrated thermal inertia data 

were used in this study, I restricted nighttime surface temperatures to >160K, 

avoiding interfering effects from seasonal CO2 frost. Other constraints following 

the method used by Edwards et al. [2009] included limiting the study to nadir-

looking images with <10% data dropouts, nighttime data with a solar incidence 

angle of >95˚ (below the local horizon), and local solar times earlier than 0630. 
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No data poleward of 60˚ latitude were allowed as the thermophysical properties in 

these regions are often dominated by CO2 and H2O ices that complicate the 

interpretation of thermal inertia values [e.g. Bandfield and Feldman, 2008; 

Piqueux et al., 2008]. 

Additional steps to ensure well calibrated thermal inertia data include 

limiting the difference between TES average atmospheric radiance with a spatial 

sampling of 2 pixels per degree (convolved with the THEMIS band 10 spectral 

response function) and THEMIS band 10 average framelet radiance to less than 

±2x10-5 W m-2 sr-1 µm-1 [Edwards et al., 2009].  Differences between average 

THEMIS framelet thermal inertia and TES binned at 2 pixels per degree thermal 

inertia were limited to less than ±220 J m-2 K-1 s-1/2 because a difference of this 

magnitude may indicate a highly non-homogenous surface or the inaccuracy of 

either dataset [Edwards et al., 2009]. Framelets with an average or minimum 

thermal inertia values of zero J m-2 K-1 s-1/2 or 2000 J m-2 K-1 s-1/2 and framelets 

with maximum or average thermal inertia values of zero J m-2 K-1 s-1/2 were also 

discarded [Edwards et al., 2009]. 

For THEMIS thermal inertia mosaics that were created for individual 

crater sites, I used the method described by Fergason et al. [2006a] with the 

constraints described above to convert every individual pixel in a band 9 THEMIS 

nighttime infrared image from brightness temperature to thermal inertia.  I then 

mosaicked the ~20 resulting thermal inertia images together Edwards et al. 

[2011b]. Further details regarding the methods used and their associated 

uncertainties are available in Edwards et al. [2011b] and Fergason et al. [2006a]. 
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5.2.2.2.2 Fine-Scale Morphology 

HiRISE, Context Imager (CTX) [Malin et al., 2007], and MOC high-

resolution visible images (~0.3 m/px, ~5 m/px, and 1.5-6 m/px respectively) were 

used when available to assess the fine-scale morphology of identified craters.  I 

also related these fine-scale data to compositional data from CRISM and 

THEMIS to establish relationships between in-place and mobile aeolian materials. 

5.2.2.3 Comparison of TES Compositional and THEMIS Thermophysical 

Data 

In order to directly compare TES spectral index data to THEMIS thermal 

inertia data, they must be at the same spatial resolution.  In order to map THEMIS 

framelet thermal inertia data, I binned the maximum THEMIS thermal inertia 

value for each THEMIS framelet (32 by 26 km, ~2 ppd at the equator) to a 16ppd 

(~3.5k m) global map [e.g. Edwards et al., 2009]. A similar process was done for 

TES 507 cm-1 index data, where the maximum index value in each bin is used.  

This allows for the direct comparison of these two datasets either globally or for 

individual crater floors defined by an ellipse, despite the desperate native 

measurement spatial resolutions.   

5.2.3 Age Dating of Crater Floor Surfaces  

A selected subset of 154 crater floors were selected for age dating by crater 

counting in order to investigate possible variations in the composition, 

morphology, and thermophysical properties of the infilled craters with age. This 

selection included all the bedrock crater locations (54) originally identified 



 

156 

[Edwards et al., 2009] and a random sampling of craters >30 km in diameter with 

elevated thermal inertia values (100). All locations had sufficient coverage with 

CTX images to allow for robust cratering statistics. Only smaller craters >100 m 

in diameter on the flat-floor of the large crater under examination were counted. I 

specifically excluded craters that were present on the walls of the larger crater and 

did not include craters that were superposed on modification features such as 

landslides or bedforms. I excluded ~40 total crater floors from the final results 

(114 total craters remaining) for a variety of reasons including those with 

insufficient CTX coverage or floors that experienced modification processes (e.g. 

mass wasting, aeolian bedforms, etc.) over a significant fraction of the surface.  

Finally, only crater floors with similar thermophysical characteristics were 

chosen to ensure the surfaces would have similar crater retention properties.  In 

this work, I am not specifically interested in an absolute date for each crater, but 

are instead concerned with the relative timing of the formation of each cater floor 

and the subsequent modification of the primary crater floor surface. 

Following standard crater counting methods [Hartmann and Neukum, 

2001; Ivanov, 2001; Neukum et al., 2001; Michael and Neukum, 2010 and 

references therein], I plotted the cumulative crater frequency per square kilometer 

against the crater diameter in kilometers [Michael and Neukum, 2010] and fit 

surface ages using standard Mars cumulative cratering frequency isochrons and 

production curves [e.g. Hartmann and Neukum, 2001; Ivanov, 2001].  I applied a 

resurfacing correction [Michael and Neukum, 2010] for those craters above the 

characteristic resurfacing ‘kink’ where a good fit was not achievable and our 
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cumulative crater frequency plot had a lower slope than the typical production 

isochrons.   

5.3 Results 

5.3.1 Composition and Thermal Inertia of an Example Site 

In order to establish the validity of global trends using THEMIS thermal 

inertia and TES compositional data (Table 5.2), an example site that best typifies 

the characteristics in this study was examined. The site chosen had: 1) an elevated 

thermal inertia associated with the crater floor (Figure 5.3), 2) highly degraded 

morphology, and 3) was located in the low albedo, ancient cratered southern 

highlands at equatorial to moderate latitudes (<30˚).  Multiple techniques and 

datasets were used to assess the composition (Figures 5.4-5.7) and the 

thermophysical properties (Figure 5.3) of the example site. 

Spectral deconvolution results from TES (Figure 5.7, Table 5.2) provide 

the most quantitative determination of olivine and pyroxene abundance.  These 

results clearly show that the crater floor material is enriched in olivine (15% areal 

abundance) as compared to the lower-thermal inertia inter-crater plains (no 

modeled olivine).  Figure 5.6 shows 507 cm-1 spectral index values over the same 

region as the THEMIS thermal inertia values shown in Figure 5.3.  The TES 507 

cm-1 (Figure 5.6) has significantly higher values over the locations associated with 

higher olivine and pyroxene abundances as observed by quantitative TES 

deconvolution (Figure 5.7), THEMIS DCS (Figure 5.4), and CRISM OLINDEX2 

(Figure 5.5).
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Figure 5.3. THEMIS colorized thermal inertia mosaic overlain on a THEMIS 

daytime temperature mosaic centered near 41.0˚ E, 21.5˚ S.  The blue-purple 

tones in this data represent low-thermal inertia values (~100-250 J m-2 K-1 s-1/2) 

consistent with fine particulate martian regolith.  Red tones represent high-

thermal inertia values (>1000 J m-2 K-1 s-1/2) consistent with in-place rocky 

materials, which are concentrated in the crater floors of the region and rarely are 

present in the walls of craters or inter-crater plains. The center crater is the 

location of detailed analyses of THEMIS, CRISM and TES data. The location 

Figure 5.4 is shown as the white box. 
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Table 5.2. Modeled Mineral abundances and other properties 

Mineral Group Typical Plains (%) Crater Floor (%) 

Feldspar 29 (5) 35 (6) 

Pyroxene 33 (6) 21 (5) 

Olivine - 14 (4) 

High-Si 20 (8) 17 (7) 

aOther 17 (2) 11 (3) 

   

Additional Properties: 

bMafic Index 
Low 507cm-1 Index 

(<1.0004) 

High 507cm-1 Index 

(>1.006) 

cCRISM 

OLINDEX2 
Low OLINDEX2 High OLINDEX2 

THEMIS DCS (8, 

7, and 5) color 
pink, green magenta, purple 

dThermal Inertia 

(J m-2 K-1 s-1/2) 
~200 >800 

 

aOther includes: sulfate, carbonate, hematite, quartz 

bThe 507cm-1 is described in Rogers and Fergason [2011] 

cOLINDEX2 is described in Salvatore et al. [2010] 

dTHEMIS thermal inertia was calculated following Fergason et al. [2006a] 
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Figure 5.4. THEMIS bands 8-7-5 (projected as red, green, and blue respectively) 

decorrelation stretch of the image (I41931002) outline identified in Figure 5.3.  

Purple tones are consistent with olivine-enriched materials.  Locations with the 

largest band 7 (11.04 µm) absorptions (due to the presence of olivine) are highly 

correlated with the locations that exhibit the highest thermal inertia values shown 

in Figure 5.3.  Green/blue/pink tones are consistent with martian basaltic 

materials (Figure 5.7). The outline of a CRISM image (HRL00013311_07, Figure 

5.5) is shown for reference.  
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Figure 5.5. A) CRISM (HRL00013311_07) OLINDEX2 parameter colorized 

where blue tones have relatively low index values and red tones have relatively 

high index values.  This image shows the same trend as the THEMIS image 

shown in Figure 5.4, where the strongest olivine identifications are consistent 

with the locations that have the highest thermal inertia values.  B) A section of a 

HiRISE image (ESP_013504_1580) that shows the fine-scale surface 

morphologies associated with olivine-enriched (C) and olivine-poor (D) 

materials. C) A close up view of a typical olivine-enriched surface, where the 

fractured and lighter toned material is coincident with the strongest olivine 

absorptions in both CRISM and THEMIS data, and is likely in-place bedrock. D) 

A close up view of a typical olivine-poor surface, where the material is relatively 

dark, and appears somewhat rough, with little to no blocks or fractures visible on 

the surface. 
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Figure 5.6. TES 507 cm-1 spectral index [Rogers and Fergason, 2011] colorized 

and overlain on a THEMIS daytime temperature mosaic centered at 41.0˚ E, 21.5˚ 

S.  The blue tones in this data represent data with low index values (<1.002) and 

are consistent with material that have low pyroxene/olivine abundances.  Red 

tones are data values >1.015 and have high pyroxene/olivine abundances.  The 

areas with the highest index values are consistent with the areas associated with 

the highest thermal inertia values (Figure 5.3) and olivine absorptions present in 

both CRISM and THEMIS images. The trend in this example is present in many 

high-thermal inertia crater floors (Figure 5.9).   



 

163 

The darkest purple tones in the THEMIS DCS images indicate the 

presence of elevated olivine abundances (Figure 5.4) and correlate well with the 

highest thermal inertia units shown in Figure 5.8.  The highest CRISM 

OLINDEX2 [Salvatore et al., 2010] values (Figure 5.5a) are directly correlated 

with elevated olivine abundances in the THEMIS decorrelation stretch image. 

Similar trends have been noted in other detailed studies [McDowell and Hamilton, 

2007; Rogers et al., 2009; Rogers and Fergason, 2011] that included a 

compositional and thermophysical analysis of a selection of craters on Mars. The 

results from this sample site are consistent with previous work and the 

compositions derived from THEMIS (Figure 5.4), CRISM (Figure 5.5) and TES 

(Figure 5.6 and 5.7) agree well and all indicate that the highest thermal inertia 

materials (> 800 J m-2 K-1 s-1/2, Figure 5.8) correspond directly to the most mafic 

materials in the region.   
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Figure 5.7. Atmospherically corrected TES surface emissivities of crater floor 

materials and the surrounding plains.  I have modeled (dashed lines) the observed 

TES data (solid lines) using linear spectral deconvolution techniques [Ramsey and 

Christensen, 1998; Rogers and Aharonson, 2008].  I derive areal abundances that 

indicate the crater floor material is enriched in olivine (~14%) over the 

surrounding plains (with no modeled olivine).  The crater floor also has a 

complementary decrease in high-silica, other minor phases, and an increase in 

plagioclase when compared to the surrounding plains.  The locations from where 

the spectra were acquired are indicated in Figure 5.6. 
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Figure 5.8. A density plot with values ranging from 1 count (purple) to 43 counts 

(red) of THEMIS average framelet thermal inertia versus TES Lambert albedo 

over all locations that meet quality constraints documented in the Methods 

section.  The orange crosses are the maximum THEMIS framelet thermal inertia 

versus the average TES albedo under each crater identified (Figure 5.2) where 

both data are available.  The majority of martian surfaces group in moderate 

(~200-300 J m-2 K-1 s-1/2) thermal inertia values over a wide range of albedo 

values.  As the albedo increases, the average thermal inertia generally decreases.  

Of particular interest is that while the crater floors do not exhibit any significant 

albedo trends and have same groupings as the rest of planet, the thermal inertia 

values associated with the craters are significantly higher (typically >400 J m-2 K-1 

s-1/2) than typical martian surfaces. 
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5.3.2 Global Properties 

5.3.2.1 Distribution 

The majority of the infilled high-thermal inertia craters were identified (> 

~3,300) in the relatively low albedo (0.1-0.17) southern highlands (Figure 5.2).  

This pattern likely results from the thermal inertia constraint, as a thermal inertia 

difference between the crater floor and surrounding walls and plains must be 

observed for a positive identification to be made.  In dusty locations like Arabia, 

positive identifications are difficult due to the relatively homogenous regional 

thermal inertias and pervasive dust mantling.  However, a smaller fraction of 

craters occur in regions that have elevated albedo values (0.2-0.25) and bordering 

the major dust provinces of Arabia, Tharsis, and Elysium. The absolute THEMIS 

thermal inertia for individual craters is variable with maximum values within each 

crater ranging from ~300 to >2000 J m-2 K-1 s-1/2 (with the thermal inertia lookup 

table having limits of 20 to 2000 J m-2 K-1 s-1/2). 

In rare cases (<10), craters were identified in the major dust covered areas 

and are likely due to the initial identification method using only the relative 

temperature THEMIS global mosaics.  While crater floors in these high albedo 

areas exhibit a higher thermal inertia (~200 J m-2 K-1 s-1/2) than the surrounding 

plains (often <100 J m-2 K-1 s-1/2) they still have overall low-thermal inertia values 

when compared to other craters common to those found in the low albedo regions 

(often >800-1200 J m-2 K-1 s-1/2).  These thermal inertia values are inconsistent 
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with in place rocky material, although minor amounts of mantling materials 

would easily obscure any rocky material present.  

5.3.2.2 TES 507 cm-1 Index 

The majority of the planet occurs in a relatively low 507 cm-1 spectral 

index (~1.004) and a low-moderate thermal inertia cluster (Figure 5.9).  However, 

the infilled craters have a higher thermal inertia (~450 J m-2 K-1 s-1/2) and TES 507 

cm-1 index (~1.01) that indicates craters with flat-floors are typically more 

consolidated or rocky than the average martian surface and are also significantly 

more mafic than typical locations on the planet’s surface (Figure 5.9). 
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Figure 5.9. A density plot with values ranging from 1 count (purple) to 29 counts 

(red) of THEMIS average framelet thermal inertia versus TES 507 cm-1 mafic 

index [Rogers and Fergason, 2011] where both datasets overlap and meet quality 

control constraints established in the Methods section. The orange crosses are the 

maximum THEMIS framelet thermal inertia versus the maximum 507 cm-1 mafic 

index of crater identified (Figure 5.1) where both data are available.  The majority 

of martian surfaces when viewed through these data group as a cluster centered at 

~250 J m-2 K-1 s-1/2 and a value of ~1.004 in the mafic index. The crater floors 

cluster above these values in both datasets (~500 Jm-2K-1s-1/2 and ~1.01 mafic 

index).  This is similar to the trend I observe at local scales in Figures 5.3 and 5.6 

and is occurring over many of the ~3,300 craters identified by visual examination.  
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5.3.2.3 THEMIS Thermal Inertia 

In an assessment of the physical properties of the infilled craters in 

question, it is found that many craters do not have thermal inertia values 

consistent with bedrock (>1200 J m-2 K-1 s-1/2; Figure 5.10) and other locations on 

the planet can often have thermal inertia values associated with rockier materials.  

However, the absolute thermal inertia values are less important than the relative 

interior-exterior differences, given all the factors, such as dust and sediment 

mantles that can affect the absolute thermal inertia value.  It is therefore 

significant that infilled craters nearly always have higher thermal inertia floors 

than the surrounding terrain (Figures 5.10 and 5.11).  Infilled craters commonly 

have higher thermal inertia values than the majority of the martian surface from 

60˚S to 60˚N (Figure 5.10).  
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Figure 5.10. A) A histogram of the distribution of THEMIS framelet maximum 

thermal inertia (dark gray) for all data that meet the quality control constraints 

established in the Methods section.  The black outlined histogram is the binned 

average THEMIS maximum framelet thermal inertia of all the craters identified. 

B) A zoom in of Figure 5.10a, where the histogram of the crater floors is more 

easily seen.  While the craters are not the only features on the planet that exhibit 

high-thermal inertia [e.g. Edwards et al., 2009], on average, they have values 

above typical martian surfaces.  
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Figure 5.11. TES colorized thermal inertia map overlain on MOLA shaded relief 

for context.  Circles are colorized THEMIS maximum thermal inertia of crater 

floors using the same color scale as the TES map.  The comparison of the crater 

floors to their surrounding terrain indicates that the crater floors typically have 

higher-thermal inertia values than the surrounding plains.  Locations in Figures 

5.8 and 5.10, where the absolute value of thermal inertia is lower than the 

majority of the observations, may still be consistent as craters in the major low 

inertia regions (Tharsis, Arabia, and Elysium) are elevated above the typical 

surrounding terrain. This is most readily observed in the Arabia Terra region, 

where many green circles, with TI of ~200-300 J m-2 K-1 s-1/2 are surrounded by 

surfaces with thermal inertia values of ~100-200 J m-2 K-1 s-1/2. 
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5.3.2.4 Fine-Scale Morphology 

HiRISE images (Figures 5.5b-d and 5.12, Table 5.3) show that the more 

mafic and higher thermal inertia crater floors are often dominated by in-place rock 

or blocky material. These outcrops are generally lighter toned than the lower 

thermal inertia and less mafic terrain. They often have fractures that are spaced by 

10s to 100s of meters (Figures 5.12f-h), which is common to other rocky surfaces 

on the planet [e.g. Edwards et al., 2009]. Although typically fractured, these 

surfaces are not highly disrupted and megabreccia is not typically observed.  Pits 

and hollows in the high-thermal inertia surfaces are often infilled with other 

materials that commonly exhibit bedforms; these materials are likely mobile 

aeolian sediment.  A range of thermal inertia values associated with infilled crater 

floor morphologies are shown in Figure 5.12.  Based on the fine-scale 

morphology variations, the likely cause of the thermal inertia variations is due to 

changes in the amount of mantling materials, where lower thermal inertia surfaces 

have more sediment than higher thermal inertia surfaces.  Therefore, the measured 

THEMIS thermal inertia is the lower limit of the thermal inertia of the rocky 

crater floor material. 
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Figure 5.12. Nine examples of typical fine-scale morphologies commonly 

associated with crater floor material.  These images span the majority of the range 

of thermal inertia values, with the top left figure (A) having the lowest THEMIS 

thermal inertia and the bottom right (I) having the highest THEMIS thermal 

inertia. Table 5.3 lists the images, locations, and the associated THEMIS thermal 

inertia values.  While the range of textures observed is quite varied blocks and 

outcrops of fractured bedrock are often present.  However, in general, lower 

thermal inertia examples exhibit a smoother and more mantled morphology with 

prevalent aeolian bedforms, while the higher thermal inertia examples appear 

denuded with bare rock constituting a significant fraction of the surface material.  

Figure 5.12d appears to show subtle layering in some of the topographic highs.  
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Table 5.3. HiRISE image identification and thermophysical properties for 

Figure 5.12 

Figure # HiRISE Image ID 
Longitude 

(˚E) 

Latitude 

(˚N) 

aTHEMIS 

Thermal 

Inertia 

(JK-1m-2s-1/2) 

A PSP_009732_1960 55.56 15.83 ~410 

B ESP_013946_1415 215.9 -38.215 ~630 

C PSP_006789_1560 140.83 -23.81 ~710 

D PSP_006962_1520 97.52 -27.91 ~810 

E PSP_004192_1550 46.05 -24.66 ~1130 

F ESP_017300_1565 87.0 -23.59 ~1260 

G PSP_009735_1490 140.83 -23.81 ~1630 

H ESP_022619_1495 313.25 -30.42 > ~2000 

I ESP_024855_1785 102.05 -1.68 > ~2000 

aTHEMIS thermal inertia values are derived from the maximum of the 

crater floor.  All HiRISE images were taken from approximately the same 

locations as the THEMIS thermal inertia data. 
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5.3.2.5 Crater Floor Formation and Modification Ages 

The majority of high-thermal inertia infilled craters on Mars occur in the 

cratered southern highlands, suggesting an old age for the process that filled the 

craters.  In addition, these craters are large, with an average size of 42.1±22.6 km 

in diameter with the smallest crater having a diameter of ~8 km and the largest 

having a diameter of ~180 km (Table 5.4).  While the crater infilling could be 

much younger than the crater itself, the fact that the infilling primarily occurs in 

old, larger craters suggests that the infilling processes is also old.  Numerous 

examples exist of young fresh-looking craters that are not infilled.  Figure 5.13 

illustrates the contrast between young and old craters, where the more highly 

degraded crater with no ejecta blanket or central peak is significantly infilled with 

rocky material, while the fresh-looking crater still has a clearly visible central 

peak and ejecta blanket indicating it has not been significantly modified or infilled 

since it formed (Figure 5.13). 
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Figure 5.13. THEMIS daytime global mosaic (A) and THEMIS colorize 

nighttime temperature global mosaic overlain on the THEMIS daytime global  
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Figure 5.13. continued 

mosaic (B) centered at 312.5˚ E, 21.8˚ S that shows both a fresh-looking and 

highly modified infilled crater floor.  The highly degraded crater has no visible 

ejecta blanket, central peak or rim, and has been significantly infilled with high-

thermal inertia materials. In contrast, the fresh crater has a clearly visible ejecta 

blanket, central peak, well-defined rim, and has not been significantly modified or 

infilled.  This is typical of what is observed, where fresh-looking craters, despite 

being of similar size, are not typically infilled with high-thermal inertia materials, 

indicating that the process responsible for infilling occurred in early martian 

history.   

.  
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An independent estimate of the age of the infilling process can be 

determined using crater abundances on the crater floor materials.  Figure 5.14 

shows the distribution of both the primary and secondary crater floor surface ages 

measured in this work and all ages with error bars, as well as geographic location, 

crater diameter and area counted are show in Table 5.4.  Two distinct peaks in 

primary surface age are observed in the histogram (Figure 5.14), with the majority 

of the crater floors being formed early in martian history at ~3.5 Ga. 

Approximately 75% of all craters counted in this study have primary surface ages 

between 3.2 Ga and 4.0 Ga, with another 15% having primary surface ages 

between 2.0 Ga and 3.0 Ga.  Most craters in the 3.2-4.0 Ga age range have error 

bars <100-200 Ma and typically have good model age fits to the observed data, 

the craters in the 2.0-3.0 Ga age range commonly have larger error bars (upwards 

of 500 Ma), indicating that the number of craters counted for the given area may 

be insufficient or significant resurfacing has occurred (Figure 5.14). Figure 5.15 

shows the distribution of both the crater floor ages over the planet’s surface, 

where no geographic correlation with crater floor age is identified. 

Four example isochrones, including the resurfacing correction, are shown 

in Figure 5.16.  In most cases, two distinct isochrons can be clearly distinguished, 

where a characteristic resurfacing event is observed as a ‘kink’ in the cumulative 

crater frequency plot (Figure 5.16a and b). However, in some cases, only minor 

‘kinks’ are observed and the slope of the cumulative crater frequency plot is lower 

than that of the isochrons, indicating that the surfaces counted are retaining more 
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craters than what is predicted by the typical martian crater production function 

[e.g. Hartmann and Neukum, 2001; Ivanov, 2001; Michael and Neukum, 2010].  

Based on the crater counting results (Figures 5.14-5.16) and the typical 

morphologic differences between fresh-looking and highly degraded craters 

(Figure 5.13), the majority of craters in this study occurring over much of the 

planet’s surface were infilled in early martian history (~3.5 Ga).  Furthermore, the 

process responsible for infilling the craters appears to have only operated in early 

martian history, during or shortly after the LHB and has not operated over large 

regions of the planet’s surface since.  
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Figure 5.14. The majority of primary crater surface ages occur at ~3.7 Ga, though 

another minor peak occurs at ~2.25 Ga and occurrences as young as ~0.75 Ga are 

present. It is likely that most of these craters formed during the Late Heavy 

Bombardment and were subsequently resurfaced shortly thereafter.  The 

secondary surface age is more widely distributed with the majority of the 

resurfacing occurring from ~100 Ma to 1.25 Ma. 
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Figure 5.15. A map of all the craters dated in this study where the base map is 

TES Lambert Albedo, the size of the circle corresponds to the secondary surface 

age, and the color of the circle corresponds to the primary surface age.  There is 

no clear geographic correlation between secondary surface age and primary 

surface age. Craters with a variety of primary surface ages occur in the same 

geographic regions (see the circum-Hellas area).  Craters that experienced 

resurfacing at a variety of times are also present in the same geographic areas (to 

the east of Hellas). 
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Figure 5.16. Four example cumulative distribution crater frequency plots 

illustrating the range of variability in crater distribution.  All early ages were fit 

using the resurfacing correction described by Michael and Neukum [2010]. 
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 Figure 5.16. continued 

A) The younger resurfacing age has a shallower slope than the production 

function isochrons above the resurfacing ‘kink’, indicating some fraction of 

existing craters were removed. Several points are not well fit below the 

characteristic resurfacing ‘kink’ likely indicating the surface had a complex early 

history.  B) The resurfacing correction in this example is relatively minor as 

compared to Figure 5.16a and the older age is well modeled.   The resurfacing 

‘kink’ in this example is easily recognized and allowed for the easy separation of 

the two ages. C) Again a large resurfacing correction is applied in this case to the 

points which lie above the very minor ‘kink’ at ~800Ma.  Separating the early 

from ancient ages is difficult in some cases, as the slope of the cumulative crater 

frequency may be significantly lower than that of the production function 

isochrons, indicating that smaller craters were not easily destroyed in many cases 

and are present at levels above the predicted resurfacing.  D) In instances where 

error bars are large for the older date, I can generally attribute this to a having 

only a few large craters or having a small area that was counted. 
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Table 5.4. Table of all craters counted in this study with, including our unique 

identifier, planetary coordinates, crater diameter, and the area of the region 

counted.  The primary and secondary (resurfacing) surface ages are reported 

including their error bars. 

ID 
Lon 

(˚E) 

Lat 

(˚N) 

Diam 

(km) 

Area 

(km2) 

Secondary Surface 

Age (Ga -/+) 

Primary Surface 

Age (Ga -/+) 

E02 341.44 20.81 60 953.8 1.760 (-0.070 / 0.070) 3.64 (-0.160 / 0.080) 

E04 41.07 -21.37 50 917.6 0.296 (-0.028 / 0.028) 3.46 (-0.360 / 0.100) 

E05 44.75 -16.73 36 549.8 0.116 (-0.023 / 0.023) 3.97 (-0.200 / 0.080) 

E06 46.20 -19.57 32 338.3 0.286 (-0.062 / 0.062) 3.81 (-0.110 / 0.060) 

E07 50.53 -18.54 74 2587.6 0.290 (-0.020 / 0.020) 3.64 (-0.070 / 0.040) 

E09 51.31 -21.30 29 411.9 0.641 (-0.068 / 0.068) 3.77 (-0.280 / 0.090) 

E10 53.25 -21.69 67 1225.8 1.180 (-0.050 / 0.050) 3.76 (-0.060 / 0.040) 

E11 60.69 -22.97 62 1584.3 0.720 (-0.036 / 0.036) 3.70 (-0.090 / 0.050) 

E12 59.80 -22.17 66 2165.7 0.598 (-0.029 / 0.029) 3.72 (-0.090 / 0.060) 

E14 46.91 -25.55 51 714.9 0.574 (-0.047 / 0.047) 3.54 (-0.740 / 0.110) 

E15 46.12 -24.88 67 1520.0 0.341 (-0.010 / 0.010) 3.71 (-0.080 / 0.050) 

E16 39.47 -27.53 36 464.1 1.810 (-0.100 / 0.100) 3.90 (-0.070 / 0.050) 

E17 40.27 -28.23 84 844.0 0.590 (-0.042 / 0.041) 3.71 (-0.090 / 0.050) 

E21 22.89 -27.58 81 2325.9 0.282 (-0.017 / 0.017) 2.65 (-0.470 / 0.390) 

E22 8.04 -27.41 106 4960.6 0.534 (-0.018 / 0.018) 3.78 (-0.110 / 0.060) 

E23 10.48 -30.09 35 376.5 1.040 (-0.080 / 0.080) 3.39 (-0.400 / 0.110) 
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Table 5.4. continued 

E24 1.34 -29.45 69 889.5 0.360 (-0.051 / 0.051) 0.83 (-0.060 / 0.040) 

E26 311.39 -33.82 72 1974.3 0.399 (-0.023 / 0.023) 3.47 (-0.280 / 0.100) 

E27 309.38 -37.12 61 630.3 0.275 (-0.033 / 0.033) 3.70 (-0.140 / 0.070) 

E28 311.31 -36.59 94 2120.2 0.327 (-0.210 / 0.210) 3.46 (-0.370 / 0.110) 

E29 309.38 -32.20 77 2567.5 0.925 (-0.031 / 0.031) 3.79 (-0.100 / 0.060) 

E33 290.33 -27.53 57 822.8 0.158 (-0.015 / 0.015) 1.03 (-0.200 / 0.200) 

E34 306.07 -32.80 23 87.2 2.740 (-0.270 / 0.240) 4.03 (-0.080 / 0.050) 

E35 209.95 -39.00 45 859.4 0.816 (-0.054 / 0.054) 1.90 (-0.440 / 0.440) 

E36 154.16 -38.20 42 685.1 0.517 (-0.045 / 0.045) 3.53 (-0.470 / 0.110) 

E37 152.66 -31.60 51 752.8 1.080 (-0.060 / 0.060) 3.70 (-0.070 / 0.050) 

E38 145.26 -30.84 65 1506.1 0.412 (-0.019 / 0.019) 2.62 (-0.240 / 0.230) 

E45 154.51 -26.70 35 581.1 1.990 (-0.100 / 0.100) 2.99 (-0.220 / 0.150) 

E48 147.64 -18.31 46 275.5 1.220 (-0.120 / 0.120) 3.96 (-0.200 / 0.080) 

E49 181.35 -23.38 56 983.1 1.140 (-0.060 / 0.060) 3.65 (-0.120 / 0.070) 

E50 139.69 -21.74 45 936.8 0.885 (-0.052 / 0.052) 3.83 (-0.160 / 0.070) 

E51 93.02 -16.35 45 375.2 0.805 (-0.084 / 0.084) 3.76 (-0.300 / 0.090) 

E53 80.91 -24.55 94 3700.3 0.527 (-0.021 / 0.021) 3.77 (-0.060 / 0.040) 

E54 92.01 -13.95 39 623.5 0.515 (-0.050 / 0.050) 3.66 (-0.160 / 0.070) 

E55 120.48 -11.42 79 1975.2 0.271 (-0.013 / 0.013) 2.49 (-0.350 / 0.330) 

E59 337.20 -19.23 57 1021.0 0.210 (-0.230 / 0.230) 3.70 (-0.100 / 0.080) 

E60 335.84 -18.30 50 503.6 1.100 (-0.090 / 0.090) 3.78 (-0.270 / 0.090) 
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Table 5.4. continued 

E61 331.69 -19.79 56 1573.1 0.538 (-0.030 / 0.030) 3.72 (-0.160 / 0.070) 

E63 305.95 -16.95 45 614.2 0.551 (-0.047 / 0.047) 3.73 (-0.110 / 0.060) 

E64 296.41 -17.66 50 934.9 0.041 (-0.004 / 0.004) 1.75 (-0.480 / 0.480) 

E65 317.85 -4.52 60 703.0 1.740 (-0.080 / 0.080) 3.42 (-0.220 / 0.090) 

E66 314.66 -4.62 38 563.6 1.100 (-0.070 / 0.070) 3.78 (-0.090 / 0.060) 

E67 306.38 -6.49 34 452.3 0.650 (-0.064 / 0.064) 3.73 (-0.150 / 0.070) 

E68 90.78 -2.86 61 1407.9 0.466 (-0.033 / 0.033) 3.53 (-0.170 / 0.080) 

E73 34.48 -40.67 87 999.1 0.204 (-0.021 / 0.021) 1.21 (-0.310 / 0.310) 

E75 6.71 -21.59 30 204.4 0.462 (-0.075 / 0.075) 3.59 (-0.210 / 0.090) 

A03 182.65 -26.03 56 1137.5 1.120 (-0.050 / 0.050) 3.71 (-0.070 / 0.050) 

A04 120.01 -31.05 36 495.4 1.000 (-0.070 / 0.070) 3.70 (-0.220 / 0.080) 

A06 305.34 33.27 36 625.2 1.240 (-0.070 / 0.070) 3.24 (-0.660 / 0.170) 

A07 74.11 -12.22 36 434.4 0.342 (-0.039 / 0.039) 3.52 (-0.230 / 0.090) 

A08 18.02 -35.66 39 473.0 0.193 (-0.016 / 0.015) 1.39 (-0.400 / 0.400) 

A11 300.21 -46.85 56 158.0 0.254 (-0.055 / 0.055) 3.64 (-0.170 / 0.080) 

A12 103.98 2.84 37 502.4 0.273 (-0.016 / 0.016) 3.43 (-0.110 / 0.060) 

A13 335.63 14.30 36 494.1 0.460 (-0.026 / 0.026) 3.47 (-0.190 / 0.080) 

A14 282.66 -34.20 48 1090.6 0.484 (-0.038 / 0.038) 3.27 (-0.570 / 0.150) 

A15 52.04 -19.44 50 1187.3 0.324 (-0.026 / 0.026) 3.47 (-0.110 / 0.060) 

A18 40.02 -18.98 48 735.5 0.330 (-0.018 / 0.018) 2.28 (-0.580 / 0.560) 

A19 102.52 1.56 43 824.8 2.210 (-0.080 / 0.080) 3.49 (-0.060 / 0.040) 
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Table 5.4. continued 

A22 80.15 -27.16 37 396.4 1.050 (-0.120 / 0.120) 3.87 (-0.090 / 0.050) 

A23 37.54 -41.13 44 553.7 0.114 (-0.012 / 0.012) 2.04 (-0.560 / 0.560) 

A24 291.81 -42.07 41 325.7 0.130 (-0.021 / 0.021) 1.40 (-0.490 / 0.490) 

A25 306.37 -10.02 41 429.7 1.030 (-0.040 / 0.040) 3.74 (-0.090 / 0.330) 

A26 20.75 -35.87 34 435.3 0.748 (-0.063 / 0.063) 2.17 (-0.760 / 0.730) 

A27 343.31 -10.34 30 398.2 0.402 (-0.036 / 0.036) 2.40 (-0.590 / 0.550) 

A28 325.77 -14.78 30 298.1 1.510 (-0.120 / 0.120) 3.77 (-0.290 / 0.090) 

A29 46.57 -28.88 38 625.4 0.298 (-0.029 / 0.029) 2.37 (-0.570 / 0.530) 

A30 149.91 -34.73 35 467.0 0.531 (-0.056 / 0.056) 3.51 (-0.160 / 0.080) 

A31 344.12 -25.75 58 1055.6 1.050 (-0.050 / 0.050) 3.49 (-0.080 / 0.050) 

A33 66.91 -15.88 37 481.6 0.502 (-0.063 / 0.063) 3.62 (-0.090 / 0.060) 

A34 98.10 -0.55 42 788.9 1.100 (-0.030 / 0.030) 3.66 (-0.120 / 0.060) 

A35 296.68 -42.42 50 858.4 0.335 (-0.033 / 0.033) 3.42 (-0.800 / 0.130) 

A37 114.45 -15.30 41 631.7 0.505 (-0.031 / 0.031) 3.58 (-0.040 / 0.030) 

A39 315.50 -26.74 44 879.4 0.971 (-0.058 / 0.058) 3.52 (-0.180 / 0.080) 

A40 273.70 -35.27 44 487.5 0.243 (-0.033 / 0.030) 1.47 (-0.650 / 0.650) 

A41 94.56 -5.52 32 147.8 0.409 (-0.036 / 0.036) 2.79 (-0.380 / 0.290) 

A42 34.27 -33.92 60 1272.2 0.540 (-0.059 / 0.059) 3.55 (-0.220 / 0.090) 

A43 9.51 -20.62 54 1265.5 0.428 (-0.022 / 0.022) 3.56 (-0.130 / 0.070) 

A44 311.96 -34.96 54 996.3 0.318 (-0.035 / 0.035) 3.31 (-0.420 / 0.130) 

A45 33.63 36.20 46 889.8 0.943 (-0.054 / 0.054) 3.64 (-0.200 / 0.080) 
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Table 5.4. continued 

A46 305.55 -37.73 46 581.0 0.194 (-0.028 / 0.028) 3.32 (-0.950 / 0.170) 

A48 333.23 15.21 56 829.2 1.440 (-0.070 / 0.070) 3.45 (-0.490 / 0.110) 

A49 65.49 -27.56 27 174.7 0.109 (-0.017 / 0.017) 2.42 (-1.200 / 0.820) 

A50 61.23 -26.13 38 415.5 0.084 (-0.019 / 0.019) 3.24 (-0.120 / 0.120) 

A51 139.02 -29.00 38 701.1 0.417 (-0.028 / 0.028) 3.58 (-0.100 / 0.060) 

A52 133.95 1.21 41 609.7 0.146 (-0.012 / 0.012) 0.84 (-0.200 / 0.200) 

A53 88.63 -0.73 42 627.0 1.530 (-0.090 / 0.090) 3.52 (-0.500 / 0.110) 

A54 42.16 -45.10 47 508.9 0.036 (-0.008 / 0.008) 1.11 (-0.420 / 0.420) 

A55 184.96 -22.64 30 329.3 1.900 (-0.120 / 0.120) 3.49 (-0.280 / 0.100) 

A57 64.89 -26.37 32 350.0 0.862 (-0.061 / 0.061) 3.70 (-0.090 / 0.060) 

A58 359.45 -35.41 39 554.2 0.199 (-0.012 / 0.012) 1.57 (-0.220 / 0.220) 

A59 69.84 -14.38 39 526.3 0.790 (-0.110 / 0.110) 3.86 (-0.090 / 0.050) 

A60 139.83 -38.05 48 782.2 0.155 (-0.017 / 0.017) 3.44 (-0.200 / 0.090) 

A62 47.04 -23.53 37 495.8 0.217 (-0.030 / 0.030) 2.28 (-1.300 / 0.950) 

A63 46.19 -22.45 48 910.1 0.827 (-0.050 / 0.050) 3.64 (-0.110 / 0.060) 

A65 136.41 -27.23 40 822.1 0.948 (-0.062 / 0.062) 3.71 (-0.060 / 0.040) 

A66 157.98 -38.42 43 709.3 0.679 (-0.051 / 0.051) 3.69 (-0.120 / 0.070) 

A67 119.16 -15.26 57 1883.4 0.241 (-0.018 / 0.018) 3.71 (-0.050 / 0.040) 

A68 30.27 -43.27 65 1040.7 0.165 (-0.010 / 0.010) 0.90 (-0.270 / 0.270) 

A69 90.16 -17.16 43 564.2 0.771 (-0.059 / 0.059) 3.52 (-0.230 / 0.090) 

A71 155.70 -35.52 34 453.9 1.420 (-0.090 / 0.090) 3.50 (-0.200 / 0.080) 
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Table 5.4. continued 

A72 97.91 -21.65 34 471.4 0.368 (-0.029 / 0.029) 2.41 (-0.510 / 0.480) 

A75 313.34 -30.42 40 339.3 0.188 (-0.015 / 0.015) 1.47 (-0.730 / 0.730) 

A76 93.45 -20.52 39 443.8 0.555 (-0.024 / 0.024) 2.59 (-0.440 / 0.390) 

A77 158.30 -39.59 35 425.4 0.295 (-0.039 / 0.039) 3.75 (-0.080 / 0.050) 

A78 36.50 -52.22 55 442.0 0.066 (-0.011 / 0.011) 3.39 (-0.320 / 0.110) 

A79 200.47 -33.84 34 460.3 1.250 (-0.060 / 0.060) 3.64 (-0.170 / 0.080) 

A80 157.12 -33.43 38 593.3 0.402 (-0.018 / 0.018) 3.20 (-0.210 / 0.110) 

A81 48.77 -14.48 37 481.2 0.836 (-0.046 / 0.046) 3.34 (-0.780 / 0.150) 

A82 152.95 -36.71 49 695.6 2.430 (-0.017 / 0.017) 3.82 (-0.600 / 0.540) 

A84 44.39 -30.13 47 961.4 0.294 (-0.027 / 0.027) 3.54 (-0.130 / 0.070) 

A90 154.63 -36.24 50 874.0 0.184 (-0.009 / 0.009) 2.53 (-0.310 / 0.290) 

A91 20.80 -51.06 52 787.6 0.480 (-0.065 / 0.065) 2.25 (-0.840 / 0.760) 

A92 24.85 -26.16 59 1116.1 0.518 (-0.034 / 0.034) 3.57 (-0.110 / 0.060) 

A93 127.52 -41.93 38 409.1 0.296 (-0.020 / 0.020) 1.74 (-0.500 / 0.500) 

Craters with the prefix “E” are a subset of instances of high thermal inertia 

crater floors identified in [Edwards et al., 2009].  Craters with the prefix “A” are 

instances of craters floors identified in this work as encompassing a 

representative range of craters. All craters selected were >30 km in diameter and 

had CTX coverage over a majority of the crater floor to ensure a large enough 

area was covered for statistically significant crater count results. 
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5.4 Discussion 

Any model for the formation of infilled high-thermal inertia craters on 

Mars must adequately explain: 1) the elevated thermal inertia and rockiness of the 

crater floor as compared to the surrounding terrain, 2) the enrichment in mafic 

minerals associated with the rocky material, 3) the typical morphology, including 

the lack of a central peak, relatively flat-floor, and blocky/fractured fine-scale 

morphology, 4) the global distribution of craters with similar characteristics, and 

5) the typical primary formation ages for the crater floor materials of ~3.2-4.0 Ga. 

I present three different potential formation mechanisms for the geologic 

origin of martian infilled, high-thermal inertia craters including: 1) the 

lithification/induration of sediments, 2) the ponding of crustal melt material 

generated by heating during the impact process, and 3) infilling by volcanic 

materials.  The similarities in the compositional, morphological, and 

thermophysical data strongly suggest that a similar set of processes are 

responsible for the creation of the majority of infilled craters on Mars. 

5.4.1 Geologic Formation 

The processes responsible for the formation of infilled craters primarily 

occurred early in martian history (between 3.2 and 4.0 Ga) near the end of the 

Late Heavy Bombardment. This process/processes is responsible for the creation 

of rocky and mafic (pyroxene and olivine enriched) material relative to the 

surrounding cratered southern highlands that typically have moderate thermal 

inertia and are basaltic in composition.  This process often creates the rockiest 



 

191 

material on the planet with thermal inertia values in excess of 1000 J m-2 K-1 s-1/2 

and is responsible for some of the most mafic material observed on Mars with 

olivine areal abundances >15%. 

Crater age date observations indicate that the mechanism by which many 

of the infilled craters formed occurred at the end of the Late Heavy Bombardment 

(~3-4 Ga) and did not occur over widespread areas of the planet again in martian 

history. It is possible that the ~10-25% of crater floors that formed within the last 

1-3 Ga respectively may have different formation mechanisms such as infilling 

and induration of sediments, or they may have been significantly modified and the 

primary surface age has been completely obscured. I specifically discuss the 

timing of events and the observational constraints as directly related to specific 

formation mechanisms in the following sections.  

5.4.1.1 Lithification/Induration of Sediments 

The lithification/induration of sedimentary material derived from either 

inside or outside of the crater has been suggested previously [McDowell and 

Hamilton, 2007] for the formation of infilled craters in southwestern region 

Margaritifer Terra.  Indurated and lithified sedimentary materials have been 

observed at both Meridiani Planum and Gusev Crater by the Mars Exploration 

Rovers [e.g. Squyres et al., 2004b; Squyres et al., 2004a; McLennan et al., 2005; 

Squyres and Knoll, 2005; Squyres et al., 2006]. Water (either ground or surface) 

could infiltrate the loose sediments, cementing them with dissolved mineral salts, 

such as sulfates, as is likely the case in Meridiani Planum [McLennan et al., 2005; 

Squyres and Knoll, 2005; McDowell and Hamilton, 2007]. 
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Although McDowell and Hamilton [2007] favor an induration hypothesis, 

I find several lines of evidence that argue against it. First, it is likely that the 

majority of infilling the sediments would be derived from either inside or nearby 

the crater.  The surrounding materials (Figures 5.4, 5.6, and 5.7) are commonly 

less mafic than the high-thermal inertia crater floor material.  It is unlikely that 

less mafic sediments can be lithified into more mafic bedrock, unless a transport 

process existed to concentrate mafic materials in the derived sediments.  Such a 

concentrating process is unlikely especially given the high instability of olivine 

and the lack of direct evidence for water at these sites.  In addition, layering is not 

commonly observed in the high-thermal inertia crater floor material, although 

visible layering is not required for a deposit to be sedimentary. However, layers 

are observed in the interior layered deposits of Valles Marineris [Fergason et al., 

2006a] and typical crater mounds, such as those found in Arabia Terra [Fergason 

and Christensen, 2008], and the lack of significant layering at HiRISE scales in 

the crater infill argues against a sedimentary origin of these materials. 

The thermal inertia on Mars observed in situ at the Mars Exploration 

Rover (MER) Spirit landing site in Gusev Crater indicates that dense Adirondack 

class basaltic rocks have thermal inertia values of  > ~1200 J m-2 K-1 s-1/2 and 

typical Columbia Hills volcaniclastic or lithified sedimentary rocks have much 

lower thermal inertia values (~600 J m-2 K-1 s-1/2) as observed by the Mini-

Thermal Emission Spectrometer (Mini-TES) [Christensen et al., 2003a; Fergason 

et al., 2006b]. The thermal inertia for the Adirondack class basalts was derived 

from a single rock (Bonneville Beacon) and does not take into account the 
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surrounding lower thermal inertia regolith (~200-300 J m-2 K-1 s-1/2).  However, 

when viewed by THEMIS, significant sub-pixel mixing of rock and regolith or 

aeolian material is likely to occur.  Therefore, when high-thermal inertia values 

(>600 J m-2 K-1 s-1/2) are observed at THEMIS scales (100 m/px), it is likely a 

combination of regolith and rocky material (clearly observed in HiRISE images), 

indicating that the rockiest crater floor materials are not consistent with lithified 

sediments but are instead more likely to be composed of dense crystalline, 

volcanic rocks [Edwards et al., 2009]. 

Sedimentary infilling cannot adequately explain the enhanced mafic 

composition and the very high thermal inertia values. The blocky and fractured 

textures commonly observed are also inconsistent with other known sedimentary 

or layered deposits, such as those present in Gale crater, Meridiani Planum, and 

Valles Marineris interior layered deposits.   Based on the morphologic, 

thermophysical and compositional evidence, I conclude that this formation 

mechanism is not likely to be responsible for the overall infilling and 

emplacement of the more mafic, high thermal inertia crater floor materials.   

5.4.1.2 Impact Melt 

There is potential for impact melt to create high-thermal inertia crater 

floors.  In all large (10s of km scale) impact craters, the amount of impact melt 

should be significant [e.g. Schultz and Mustard, 2004; Osinski, 2006] and with 

increasing crater size, the volume of melt remaining inside the crater walls 

increases significantly primarily due to the non linear increase in melt production 

with crater diameter [Cintala and Grieve, 1998; Osinski et al., 2008].  
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Additionally, massive melt sheets should partially infill the crater [Cintala and 

Grieve, 1998; Osinski et al., 2008] with the remainder ejected from the crater 

[Schultz and Mustard, 2004].  

If I consider the amount of impact melt generated in an impact event [e.g. 

Cintala and Grieve, 1998], the volumes would not be sufficient to completely fill 

these craters to their current depths. Most craters in the diameter ranges identified 

(e.g. >10 km) should have central peaks and the volumes of melt required to 

completely overtop and cover the central peaks would not be generated [e.g. 

Cintala and Grieve, 1998]. Furthermore, impact melts are rarely restricted to 

crater floors and are typically present on crater walls, rims and on surfaces outside 

the crater.  

If the melt sheet were significant enough, it is possible that a glassy melt 

would not remain, but rather the melt could cool slowly enough to form material 

that is sufficiently crystalline to be recognized by spectroscopic methods as 

mineralogically distinct.  This material would likely have a thermal inertia 

consistent with in-place bedrock (> 1200 J m-2 K-1 s-1/2) [Edwards et al., 2009].  

Because the majority of these impact craters likely formed during the Late Heavy 

Bombardment at ~3.9 Ga, the surface ages I measure are roughly in agreement 

with the formation of the crater floors at the time of the crater formation itself. 

This impact melt emplacement mechanism adequately explains several of 

our observations, including the blocky fractured textures, the extremely high-

thermal inertia values, the crater floor age dates, and their global distribution. 

However, it does not explain the compositional difference between the crater floor 
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and the surrounding less mafic basaltic inter-crater plains. The impact event 

would have melted the typical cratered southern highlands basaltic material and 

re-crystallized a material with a nearly identical bulk composition and 

mineralogy.  This melting and re-crystallization would not result in an increase in 

the olivine/pyroxene abundances as observed by TES, especially if the regolith is 

already altered as this would increase the amount of silica available in the melt, 

resulting in a lower 507 cm-1 index.  In addition, I do not observe any obvious 

flow features on the crater walls or crater floors consistent with impact melt, 

though evidence of flow features may have likely been long since eroded, 

especially when considering the ancient age and highly eroded nature of most of 

the craters under examination. Based on the distribution, morphology, volume of 

material, and compositional evidence, I conclude that while impact melt was 

likely generated and may have filled portions of the crater floor, but it is not 

responsible for the filling of craters with of the more mafic, high-thermal inertia 

materials.  

5.4.1.3 Volcanic Infilling 

Volcanic infilling is another scenario for the formation of the more mafic, 

high-thermal inertia crater floors.  In this formation mechanism, surface flows or 

material injected through sub-surface fractures [e.g. Schultz, 1976; Schultz, 1978; 

Schultz and Orphal, 1978] would have infilled the crater floor.  In this model, the 

impact event is responsible for fracturing the crust and subsurface and likely 

created the pathways for magma to reach the surface [Schultz, 1976; Schultz, 

1978; Schultz and Orphal, 1978]. Depending on the volume of magma released, 
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the erupted material could have overtopped the central peak and potentially 

flowed over the crater rim.   

If the melt source regions were sufficiently primitive and largely 

unfractionated (e.g. derived from the martian mantle), it is possible that material 

more mafic (enriched in olivine and pyroxene) than the typical inter-crater 

highlands would be erupted onto the crater floor surface.  These effusive volcanic 

products would be thermophysically consistent with Adirondack class basalts 

from Gusev, with thermal inertia values (e.g. > 1200 J m-2 K-1 s-1/2) consistent with 

in-place bedrock. Volcanic infilling would likely produce materials consistent 

with the blocky morphologies of the mafic materials found on the floors of older 

craters.  The high-thermal inertia and fractured morphology is consistent with 

effusive volcanic products and the isolation of the crater fill material in 

topographic lows is typical of ponding lavas. While similar processes have been 

suggested previously (e.g. Mare Serpentis [Rogers et al., 2009], Tyrrhena and 

Iapagia Terra [Rogers and Fergason, 2011]), the source of the volcanic infilling 

material has remained largely unclear.  

Both the sedimentary infilling and impact melt arguments cannot 

adequately explain the significantly different compositions, high-thermal inertia 

values, and fine-scale morphology.  Based on the lack of evidence for either the 

sedimentary infilling and the impact melt hypotheses, only the volcanic infilling 

hypothesis is considered further. All observations and predictions, including the 

elevated thermal inertia values and morphology are in agreement with the 

volcanic infilling hypothesis.  
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5.4.2 Implications for Ancient Mars 

Volcanic infilling associated with cratering is a unique and widespread 

process that effects large impact craters (> ~10 km) that formed early in martian 

history (> 3 Ga), across large areas of the southern highlands. This process likely 

occurred planet-wide, but I am only able to view locations where significant 

modification (e.g. the resurfacing of the northern lowlands, magmatism associated 

with Tharsis and Elysium, polar and periglacial processes, and the deposition of 

dust over regions such as Arabia Terra) has not occurred later in martian history. 

5.4.2.1 Magma Source for Volcanic Infilling 

The volcanic materials filling the craters could have come from outside or 

within the crater.  There is typically no evidence for surface flows that overtopped 

the crater rim, and while it is possible that significant erosion could have removed 

the evidence of these rim-topping flows in some cases, it is highly unlikely to 

have removed it in all of the thousands of craters examined.  Given the lack of 

evidence for this type of event, I do not address it further. 

Impact related decompression melting of the martian mantle is a likely 

source to generate widespread magmatism on early Mars, where the impact event 

removes several kilometers of crustal material and magma is generated from 

decompression melting of the mantle. The majority of the crater floors were 

infilled early in martian history when higher crustal heat flow and a relatively thin 

crust on top of the Fe/Mg-rich martian mantle were present [Zuber, 2001, and 

references therein].  When these conditions are combined with the removal of 

several kilometers of crustal material by the impactor [e.g. Boyce and Garbeil, 
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2007], decompression melting of the martian mantle could occur.  Figure 5.17 is 

an illustration of the pressure/temperature path decompression melting may take 

compared to a range of possible conditions for the early and present day base of 

the martian crust [e.g. Spohn, 1991; Zuber, 2001; Morschhauser et al., 2011].  

The main differences between the early and present day martian crustal properties 

is that the current crust is significantly thicker and cooler than earlier conditions 

[e.g. Morschhauser et al., 2011].  A thicker crust or lithosphere (consistent with 

present day conditions) makes it more difficult to generate and mobilize melt to 

the surface by the removal of several km of surface material, while a thinner crust 

and higher geothermal gradient (ancient conditions) makes it easier to generate 

and mobilize melt.   

While phase transitions (Figure 5.17b) are somewhat important as erupted 

materials (e.g. Adirondack class basalts) [Monders et al., 2007] can be directly 

derived form the olivine, orthopyroxene, and melt field, the most important factor 

is the amount of melt generated.  The fraction of melt increases regardless of 

phase transitions and is related to the distance from the solidus (Figure 5.17a). 

Once the removal of surface material by the impactor occurs, all points along the 

crustal column at all depths experience a corresponding drop in pressure and 

additional melt is likely generated along the full column of material.  If the melt 

fraction at any point along this column is high enough to mobilize the melt, then 

an eruption at the surface is likely.  This impact generated mantle melt would be 

primitive and crystallize high amounts of olivine and pyroxene, though the exact 
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composition is dependent on the depth of the mantle source [Bertka and 

Holloway, 1994; McSween et al., 2006]. 

With this magma source as a reasonable possibility, it is unnecessary to 

involve large- or regional-scale magma bodies, as the development of the melt is 

directly related to the impact process.  The generation of this magma would likely 

cease later in martian history as the martian crust thickened and geothermal 

gradient decreased to present day values [e.g. Zuber et al., 2000; Zuber, 2001; 

Andrews-Hanna et al., 2008].  This prediction is consistent with the observation 

of infilled craters only having degraded and highly eroded morphologies, 

indicating their ancient age, which is further constrained by crater age dates in this 

work of 3-4 Ga.  Additionally, craters with well-preserved rims and ejecta 

blankets, such as that displayed in Figure 5.13, are not typically infilled by these 

materials.  The infilled craters and their mafic blocky interiors are a direct 

consequence of impacts into a relatively thin martian crust with high heat flow in 

early martian history, likely during or just after the Late Heavy Bombardment. 



 

200 

 

Figure 5.17. A set of pressure/temperature diagrams after Bertka and Holloway 

[1994] with a martian mantle composition of  Dreibus and Wanke [1985], 
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Figure 5.17. continued  

that illustrate both composition and increasing melt fraction. The solid lines are 

determined by Bertka and Holloway [1994] using high pressure/temperature 

experiments.  Dashed lines are extrapolations of the solid lines where experiments 

were not conducted to constrain actual compositions. These phase diagrams are 

used to illustrate a range of conditions and potential options for the generation of 

a magma from impact related decompression melting. A) The two sets of colored 

arrows represent estimates of typical early (red) and possible present day (blue) 

martian crustal conditions [e.g. Spohn, 1991; Zuber, 2001; Morschhauser et al., 

2011]. Temperature and pressure ranges are estimates based on crustal evolution 

models [Morschhauser et al., 2011] and may not represent actual values. Green 

arrow #1 represents an example path that the removal of crustal material would 

take. The pressure would be lowered and it is possible to cross phase transitions 

shown in B) (e.g. into the field from which picritic olivine-rich Adirondack 

basalts [McSween et al., 2006] were likely generated [Monders et al., 2007]). 

Regardless of phase transitions, the further the arrow travels away from the 

solidus, the more melt is generated.  Once a critical point is reached where a 

sufficient fraction of melt is present, the melt can be mobilized and then follows a 

path similar to arrow #2 where the pressure continues to decrease and the 

temperature decreases as the magma migrates towards the surface.  B) Minerals 

stable in each field are labeled and are from Bertka and Holloway [1994]. The 

star represents the potential source composition for olivine-rich Adirondack class 

basalts determined experimentally [Monders et al., 2007].   
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5.4.2.2 Magma Composition and Relative Rockiness 

The discrepancy between the surrounding bulk crustal compositions and 

that of the rockier, more mafic crater floor materials also has implications for the 

martian crust as a whole. This observation is especially important if I consider 

that the bulk of the martian crust may not be significantly altered and where 

alteration occurs, it typically occurs in isolated locations (e.g. Nili Fossae, crater 

central peaks, massively layered terrain, etc.). Typical martian magmas that 

formed the moderate thermal inertia southern highlands are generally depleted in 

olivine and pyroxene and enriched in plagioclase/high-Si phases [e.g. Rogers and 

Fergason, 2011] as compared to the higher thermal inertia crater floors and high-

thermal inertia inter crater plains.  This may indicate a variety of magma source 

regions and different levels of melt fractionation or partial melting were 

commonplace in early Mars, possibly based on crater size.  This fractionation, 

while somewhat limited, was capable of producing largely mafic and ultra-mafic 

rocks that dominate the majority of the martian surface.  The less rocky martian 

regolith may be derived from ash and pyroclastic deposits resulting from 

explosive volcanism and may be derived from a less mafic, more fractionated 

magma source. 

5.4.2.3 Missing Infilled Craters 

Volcanic infilling of crater floors by decompression melting of the mantle 

was likely occurring over much of the surface in early martian history.  This 

process occurred anywhere when the impactor was sufficiently large to remove 
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several kilometers of material and the crust was relatively thin (e.g. Figure 5.17). 

Locations where mafic high-thermal inertia crater floors are not observed are 

locations where significant surface morphology alteration has occurred.  For 

example, I observe a significantly lower fraction (Figure 5.2) of high-thermal 

inertia crater floors next to volcanic centers (e.g. Tharsis and Elysium), areas with 

enhanced glaciation (e.g. Hellas Basin [e.g. Holt et al., 2008], Deuteronilus 

Mensae [e.g. Head et al., 2006]), high latitude regions where periglacial processes 

are be prevalent [e.g. Kreslavsky et al., 2008], areas with large numbers of 

channels, areas that have been resurfaced including the northern lowlands, and 

high albedo dusty regions where indurated materials [Christensen, 1982] likely 

bury and mask the high-thermal inertia values.  Widespread aeolian and mantling 

material is likely responsible for lowering the average thermal inertia of many 

crater floor surfaces and is a significant driving factor that serves to create the 

variability in thermal inertia and compositions I observe through the various 

crater floors. 

The overall population of high-thermal inertia materials decreases at 

latitudes poleward of ~50˚ are reached [Edwards et al., 2009].  This is likely due 

to enhanced regolith formation associated with an active layer [Kreslavsky et al., 

2008], subsurface ice [Bandfield, 2007; Bandfield and Feldman, 2008; Smith et 

al., 2009] and other polar processes [e.g. Edwards et al., 2009]. These 

observations are consistent with the distribution of bedrock surfaces [Edwards et 

al., 2009] and though there are infilled craters present at higher latitudes  (e.g. 
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poleward of 60˚), I do not observe any craters with higher thermal inertia material 

associated with crater floors. 

5.4.2.4 Large Scale Fracturing of the Crust and the Formation of Inter-Crater 

Plains 

Crater fractures would likely extend to the first 10s of km of the upper 

crust and could provide pathways for dikes and sills to erupt onto the surface 

outside of the crater. The eruption of these materials may be responsible for a 

significant fraction of the basaltic lavas and pyroclastics thought to constitute the 

majority of the southern highlands [e.g. McEwen et al., 1999].  Much of the 

southern highlands cannot be traced back to volcanic centers and this may be a 

viable way for the emplacement of significant volumes of material.  It is common 

to find high-thermal inertia and more mafic locations in the inter-crater plains in 

conjunction with the craters identified here [e.g. Rogers et al., 2009; Rogers and 

Fergason, 2011].  The fractures from the impact events may also be responsible 

for the emplacement of this material, which typically have no clear source. 

Along with providing conduits for magma to erupt onto the surface, the 

highly fractured crust may provide pathways for groundwater to circulate in the 

deep crust.  Local hydrothermal systems could be setup directly after the impact 

[e.g. Abramov and Kring, 2005; Schwenzer and Kring, 2009], but later 

hydrothermal systems derived from alternate heat sources including adjacent 

magma bodies and other impact events, may utilize these pervasive fractures to 

alter the martian crust at depth [e.g. Michalski and Niles, 2010; Ehlmann et al., 
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2011b].  This alteration would likely occur early in martian history as significant 

heat from various impact events, higher than present geothermal gradients [Zuber, 

2001], and abundant water that carved channels [Carr and Clow, 1981] were 

present during this period of martian history [e.g. Bibring et al., 2006; Ehlmann et 

al., 2011b]. 

5.5  Conclusions 

In this study, I have shown that: 

• Highly eroded craters with flat-floors composed of material with 

elevated thermal inertia values (e.g. > 500 to 2000 J m-2 K-1 s-1/2) 

are prevalent in the ancient low albedo cratered southern 

highlands.  The thermal inertia of the crater floors does not 

necessarily need to be consistent with bedrock (with thermal 

inertia values > 1200 J m-2 K-1 s-1/2) [e.g. Edwards et al., 2009], but 

are instead elevated as compared to the surrounding inter-crater 

plains.  The high-thermal inertia crater floors material has 

experienced similar weathering and alteration events as the inter-

crater plains that are typically composed of less competent 

materials. These craters contain some of the rockiest materials on 

the planet and likely represent a unique widespread process that 

occurred early in martian history. 

• The fine-scale morphologies associated with the high-thermal 

inertia crater floors commonly show a rough and pitted texture, 
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with boulders and in-place fractured rock exposed on the surface.  

Mobile aeolian materials commonly infill local depressions in the 

exposed rocky surfaces, reducing the observed thermal inertia.  

Where thermal inertia values are not consistent with in-place 

bedrock, I find it is most directly related to the fraction of fines 

versus bedrock and not the physical nature of the bedrock. 

• Crater floor age dates derived from crater counting statistics yield 

modeled surface ages of ~3-4 Ga for the more than 110 crater 

floors measured in this study.  Crater floors also have a resurfacing 

age of less than ~1 Ga indicating that they likely formed early in 

martian history and were subsequently altered/resurfaced in the 

more recent past.   

• I also observe the rocky material in the crater floors is significantly 

more mafic (globally constrained using the TES 507cm-1 spectral 

index [Rogers and Fergason, 2011]) and enriched in 

olivine/pyroxene versus plagioclase/high Si-phases when 

compared to the surrounding typical inter-crater plains. 

• Based on the surface properties described here, three mechanisms 

are considered for the formation of infilled, high-thermal inertia 

crater floors on Mars including: 1) the lithification/induration of 

sediments, 2) the ponding of crustal melt material related to the 

heat generated during the impact process, and 3) infilling by 
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volcanic materials. Of these three possibilities, only volcanic 

infilling can produce features with the observed morphological, 

thermophysical, and compositional characteristics, along with the 

widespread occurrence and ancient ages. In this scenario, crustal 

material below the crater is heavily fractured providing a pathway 

for magma to reach the surface.  This magma would be directly 

sourced from the decompression melting of the martian mantle due 

to the removal of several kilometers of overlying crustal material 

by the impactor.  As the ancient martian crust was likely thin [e.g. 

Zuber, 2001] and the geothermal gradients were significantly 

higher than present day, the decompression melting of the mantle 

would be more likely to occur than under present day conditions. 

This is borne out by the ancient ages (~3-4 Ga) of the crater floors 

that indicates their formation early in martian history and not after 

the crustal thickening of the southern highlands and reduction of 

the geothermal gradient.  

The fractures in the upper crust created by these large impact events may 

provide pathways for the lavas that form the Hesperian ridged plains or rocky 

mafic exposures visible throughout the southern highlands [e.g. Edwards et al., 

2009; Rogers et al., 2009; Rogers and Fergason, 2011].  Many of these flows 

have no easily observable volcanic edifices and could be fed directly from dikes 

that utilized the highly fractured crust as pathways for magma to breach the 
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surface.  Furthermore, groundwater and hydrothermal systems could also use 

these fractures as pathways to circulate through and alter the martian crust. 
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CHAPTER 6                                                                                        

MICROSCOPIC EMISSION AND REFLECTANCE THERMAL INFRARED 

SPECTROSCOPY: INSTRUMENTATION FOR QUANTITATIVE IN SITU 

MINERALOGY OF COMPLEX PLANETARY SURFACES 

 

The diversity of investigations of planetary surfaces, especially Mars, 

using in situ instrumentation over the last decade is unprecedented in the 

exploration history of our solar system. The style of instrumentation able to be 

supported by landed spacecraft is dependent on several parameters, including 

weight and power consumption, instrument complexity and cost, and desired 

measurement outcome (e.g. chemistry, mineralogy, petrology, morphology, etc.), 

all of which must be evaluated when deciding an appropriate spacecraft payload.  

I present a laboratory microscopic emission and reflectance spectrometer for the 

analysis of martian analog materials as a strong candidate for the next generation 

of in situ instruments designed to definitively assess sample mineralogy and 

petrology while preserving geologic context.  I discuss the instrument capabilities, 

signal and noise, and overall system performance.  Furthermore, I evaluate the 

ability of this instrument to quantitatively discriminate and determine sample 

mineralogy including bulk mineral abundances. This capability is greatly 

enhanced from existing emission spectrometers, as the number of mineral 

components observed at any microscopic measurement spot is low (typically <3). 

Since this style of instrument is based on a long heritage of thermal infrared 

emission spectrometers sent to orbit (the Thermal Emission Spectrometer), sent to 
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planetary surfaces (the Mini-Thermal Emission Spectrometers), and evaluated in 

laboratory environments, direct comparisons to existing data are uniquely possible 

with this style of instrument.  Furthermore, the ability to obtain bulk mineralogy 

and atmospheric data, much in the same manner as the Mini-Thermal Emission 

Spectrometers, is of significant additional value and provides the ability to 

maintain the long history of atmospheric monitoring for Mars.  Miniaturization of 

this instrument has also been demonstrated as the same microscope objective has 

been mounted to a flight-spare Mini-Thermal Emission Spectrometer.  Further 

miniaturization of this instrument is straightforward with modern electronics and 

the development of this instrument as an arm-mounted device is the end goal. 

6.1 Introduction 

Over the last several decades the range and volume data returned from 

planetary exploration missions has increased exponentially.  The orbital missions 

responsible for the bulk of this data have traveled throughout our solar system to 

nearly every planetary scale body, including most recently MESSENGER, Venus 

Express, Lunar Reconnaissance Orbiter, Hyabusa, Chandrayaan-1, Mars Global 

Surveyor, 2001 Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter, and 

Cassini-Huygens.  These orbiters have carried a wide range of specialized 

instruments ranging from high-resolution imaging visible cameras, radar, laser 

altimeters, magnetometers, and a wide range of spectrometers, including gamma 

ray and neutron spectrometers, thermal emission spectrometers, and visible/near-

infrared reflectance spectrometers.  While fundamental observations have been 

made from these orbital instruments, the next generation of instruments to be 
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deployed throughout the solar system will build on the remotely sensed 

characterization of planetary surfaces to perform in situ characterization of 

planetary material. 

6.1.1 In Situ and Remote Sensing Observations of Mars from Lander Data 

The trajectory towards in situ instrumentation is largely underway in the 

case of the martian surface. A concerted effort has been made over the last decade 

to characterize the surface in situ and in unprecedented detail. Beginning with the 

Mars Pathfinder as a lander technology demonstration and continuing with the 

Mars Exploration Rovers (MER) [Squyres et al., 2003], the Phoenix lander, and 

the Mars Science Laboratory (MSL), the martian surface has been characterized 

using a variety of in situ and landed remote sensing techniques.  For example 

onboard the Mars Exploration Rovers, a broad suite of instruments including the 

Alpha-Particle X-ray Spectrometer (APXS) [Gellert et al., 2006], Mössbauer 

[Morris et al., 2004], Microscopic Imager (MI) [Herkenhoff et al., 2003], the 

Mini-Thermal Emission Spectrometer (Mini-TES) [Christensen et al., 2003a], 

and the Panoramic Camera (PanCam) [Bell et al., 2006] have characterized in 

detail both Meridiani Planum and a section of the floor of Gusev Crater.  The 

combination of in situ (e.g. MI, APXS, Mössbauer) and remote sensing (e.g. 

PanCam, Mini-TES) instruments have proved to be especially successful in both 

identifying potential targets at a distance and characterizing those targets in detail 

[Gellert et al., 2004; Klingelhöfer et al., 2004; McLennan et al., 2005; Golombek 

et al., 2006; Ruff et al., 2006; Squyres et al., 2007; Lewis et al., 2008; Rogers and 

Aharonson, 2008; Squyres et al., 2008; Ruff et al., 2011].  Many of these 
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observations have fundamentally changed our understanding of Mars and Mars 

surface processes. 

Following the relatively modest MER instrument suite, the MSL 

instruments suite includes a host of largely in situ instruments designed to assess 

the habitability of past and present Mars.  These instruments include the Mast 

Camera (Mastcam), a Laser Induced Breakdown Spectrometer (LIBS) for remote 

elemental composition (ChemCam), a microscopic imager (MAHLI), an Alpha-

particle X-ray spectrometer (APXS), chemistry and mineralogy by powder X-ray 

diffraction and X-ray fluorescence (CheMin), as well as a quadrupole mass 

spectrometer, a gas chromatograph and a tunable laser spectrometer (SAM).  This 

suite of instruments onboard MSL will characterize the martian surface in 

unprecedented detail, rivaling what can be done in the laboratory on Earth.  

However, the time to make many of the measurements is exceedingly long, 

including sample preparation of several hours and integration times for the 

ChemMin instrument of many of hours for a single measurement.  Additionally 

the power requirements for highly complex instruments and long measurement 

times is prohibitively costly and requires the use of a radioisotope thermoelectric 

generator (RTG), which dramatically increases the cost of planetary missions due 

to the increased mass and system complexity over solar panels.  

While these instruments will characterize a small fraction of the martian 

surface in great detail, the majority of the martian surface will never be explored 

and examined at the scales possible from lander and rover data.  Complementary 

techniques from orbit and at lander scales can allow for the extrapolation of the 
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findings from landers to the rest of the planetary surface.  To date, only one set of 

complementary instruments (spectral sampling and wavelength range) has been 

sent to orbit and the surface (the Thermal Emission Spectrometer (TES) 

[Christensen et al., 1998] and Mini-TES, respectively).  However the scales of 

these measurements are quite disparate, where Mini-TES samples outcrop scale 

variability (centimeter to meter spot sizes) and TES samples regional scale 

variability (~3x8 km spots when the instrument is nadir looking).  

6.1.2 Vibrational Spectroscopy  

Vibrational spectroscopy (e.g. Mini-TES, TES, Thermal Emission 

Imaging System (THEMIS) [Christensen et al., 2004a], Compact Reconnaissance 

Imaging Spectrometer for Mars (CRISM) [Murchie et al., 2007] and Observatoire 

pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA) [Bibring et al., 

2005]) is commonly utilized to quantitatively determine mineralogical properties 

of observed materials on planetary bodies. Vibrational spectroscopy is based on 

the principle that energy is emitted/reflected at specific frequencies related to the 

vibrational motions of the material’s crystal lattice, which in turn are directly 

related to the crystal structure and elemental composition of the material in 

question [e.g. Wilson et al., 1955; Farmer, 1974]. Several methods of vibrational 

spectroscopy are commonly utilized in remote sensing, including infrared 

emission and reflectance, near-infrared reflectance, Raman, and attenuated total 

reflectance spectroscopy.  For most geologic materials, fundamental vibrational 

frequencies typically occur in the thermal infrared (~2-100 µm) range of the 

electromagnetic spectrum, making the use of thermal infrared emission 
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spectroscopy highly applicable to the examination of planetary surfaces, due to its 

low power constraints and relatively simple measurement technique 

(interferometry). These techniques have been used extensively [Farmer, 1974; 

Hunt and Salisbury, 1976; Mustard and Hays, 1997; Bandfield et al., 2000a; 

Hamilton and Christensen, 2000; Glotch et al., 2004; Ruff, 2004] to investigate 

the properties of rock forming minerals in the laboratory and properties of 

planetary surfaces from orbit and landed spacecraft. 

Thermal Emission spectroscopy is typically a bulk analysis method, as 

most rocks and surfaces are not homogenous at the spot size that typical 

instruments are capable of measuring (typically ~0.5-1 cm diameter spot for 

laboratories). However, the measurement of materials in a laboratory is not 

currently the primary case where emission spectroscopy is used.  In general, 

emission spectroscopy is used in remote sensing applications on planetary bodies 

and Earth with typical instruments (e.g. THEMIS, TES, Advanced Spaceborne 

Thermal Emission and Reflection Radiometer [Yamaguchi et al., 1998]) having 

spot sizes or spatial sampling of hundreds of meters to kilometers [e.g. Bandfield 

et al., 2000a; Christensen et al., 2003b; Christensen et al., 2005; Glotch and 

Christensen, 2005; Rogers et al., 2005].  At this scale there is no a 

compositionally/mineralogically uniform surface; rather, endmembers in the 

thermal infrared spectral range (e.g. 6-100 µm), to first order, add linearly with 

aerial abundance [Ramsey and Christensen, 1998].  It is possible to use a linear 

unmixing model for thermal infrared emission spectroscopy, where an 

endmember library of pure minerals [e.g. Salisbury et al., 1992; Christensen et 
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al., 2000b] is used as a reference to determine quantitative mineral abundances 

based on their respective contributions (using a linear least squares method) to the 

measured spectrum.  This method has been used extensively in the laboratory to 

determine the bulk compositions of unknown samples [e.g. Ruff et al., 1997] and 

on spacecraft data to characterize the composition of Earth and other planetary 

bodies, including Mars [e.g. Bandfield et al., 2000a; Christensen et al., 2005; 

Hamilton and Christensen, 2005; Koeppen and Hamilton, 2008; Bandfield et al., 

2011]. 

However, this method is not without problems, as it is dependent on the 

mineral phases available in the endmember library spectra, meaning if the 

endmember is not in the library it cannot be included in the modeled spectrum.  

This leads to difficulties in the interpretation of mineralogically complex surfaces 

as the primary silicate absorption features related to the stretching of Si and O 

occur from ~8 to 14µm.  Furthermore, not every possible mineral has an easily 

accessible pure component that can bet measured in the laboratory to make up a 

diverse and comprehensive endmember library.  Further complicating matters, 

spectral features vary as solid solution series minerals vary in composition, so 

often times a range of compositions are needed for individual minerals like 

olivine, where the major spectral absorptions move to either higher or lower 

wavelength as a function of forsterite number [e.g. Koeppen and Hamilton, 2008; 

Lane et al., 2011]. 

A large body of work has been completed to interpret and quantitatively 

analyze thermal emission spectra, from unmixing spectral endmembers for 
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quantitative mineral abundance determination to studying the effects of particle 

size and porosity on spectra [e.g. Salisbury and Eastes, 1985; Moersch and 

Christensen, 1995; Mustard and Hays, 1997; Ramsey and Christensen, 1998].  

This measurement technique is highly valuable and spacecraft missions that 

carried emission spectrometers have yielded a wealth of quantitative 

mineralogical data of the surface of Mars [e.g. Bandfield et al., 2000a; Hamilton 

et al., 2003; Ruff, 2004; Hamilton and Christensen, 2005; Ruff et al., 2006].  

However, this work often lacks direct petrographic context for samples in 

question, which can significantly aid in determining the geologic mode of origin 

and type of alteration the samples have undergone.  Instead, inferences about the 

nature of materials must be made from other instruments and techniques including 

such optical microscopy [Herkenhoff et al., 2003], high-resolution morphology 

and grain size information determined from thermal inertia data [e.g. Presley and 

Christensen, 1997b]. 

6.1.3 Microscopic Emission Spectroscopy 

In this work, I present the design and implementation of a laboratory 

microscopic emission and reflectance spectrometer with the aim to bridge the gap 

between remote sensing and in situ techniques. Furthermore, the laboratory 

instrument has been mated with an existing Mini-TES flight-spare instrument 

using the same microscopic fore optic and performs comparably to the laboratory 

setup with the commercially available spectrometer.  
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The microscopic laboratory instrument presented here has a spot size of 

~85 µm, a factor of 100x better than currently available instruments and operates 

roughly at the scale of individual mineral phases in a medium grained volcanic 

sample.  This small scale spot size allows for not only the reduction of spectral 

mixing in samples, reducing the need to perform linear deconvolution with large 

numbers of endmembers, but also will allow for in situ measurements of 

individual grains and their properties while retaining geological and spatial 

context of the sample under examination. 

This technique can also help scale some of the other measurements that 

are typically made in the laboratory, on a lander, and from orbit.  For example, it 

will be possible to better quantify how individual spectra observed in a single 

scene combine together to form a bulk rock spectrum and subsequently how bulk 

rock spectra relate to bulk planetary surface spectra from orbit.  Currently the 

spectral behavior individual mineral grains as related to bulk rock and planetary 

surface spectra is not well constrained.  This new instrument allows for the further 

characterization and quantification of bulk emission spectroscopy measurements.  

One of the most significant advantages of this type of instrumentation is 

the extremely limited sample preparation required.  This instrument is a non-

contact measurement, requires no sample grinding or powdering, and can directly 

measure natural surfaces in place.  When paired with a tool to remove the 

outermost rock rind, such as the rock abrasion tool (RAT) on the MER rovers, this 

instrument could characterize the primary mineralogy of the sample.  When the 

minimal sample preparation is combined with the relatively quick acquisition 
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times (~5-10 minutes per spot) this instrument has significant advantages over 

techniques that take hours to days to measure a single sample. These advantages 

make this instrumentation a good candidate for in situ mineralogical studies on 

planetary surfaces, where it would be based on lander and/or rover style of 

spacecraft. It should be possible to reduce the form factor of this instrument 

sufficiently to allow for the mounting of this instrument on a rover arm, much like 

the APXS and Mössbauer instruments of MER. 

6.2 Instrumentation and Experiment Apparatus 

I present the instrument design and implementation that allows for the 

automated acquisition of thousands of emission spectra with an instrument 

resolution of ~85 µm over a specified sampling area. In this section I present all 

the components necessary to make the measurements at this scale. A labeled 

three-dimensional model that precisely describes the locations of every 

component is presented as Figure 6.1. Additionally, the details for each additional 

component are available in Table 6.1. 
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Figure 6.1. Three rendered views of the instrument solid model where major 

components are labeled in Figure 1a.  A) A perspective view where the 

microscope objective is shown in blue and the ray trace of the extreme rays is 

shown in yellow. The top and side enclosing walls of the environmental chamber 

have been removed from this drawing. B) Side view of the instrument where 

additional components, including the relay optics that direct the beam into the 

spectrometer can be observed. C) Top down view of the instrument optical path 

where the beam entering the spectrometer leaves towards the top of the image. 
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6.2.1 System Components 

6.2.1.1 Spectrometer 

A commercially available interferometric spectrometer supplied by 

ThermoFisher/Nicolet is used as the base for this instrument (Figure 6.1 and 

Table 6.1).  The spectrometer is originally indented to be used as a transmission 

spectrometer, though with the removal of a cover port and an internal mirror, the 

instrument can collect light from outside its environmental housing.  The 

spectrometer purchased is equipped with a Cesium Iodide (CsI) beamsplitter with 

an operating range of 6400-200 cm-1 (Table 6.1) and operates as Michelson 

Interferometer where the beamsplitter directs and recombines light from both a 

fixed and precisely controlled moving mirror where signals are recombined to 

create a constructive and deconstructive interference pattern. After the light is 

modulated it is directed to either a pyroelectric or quantum detector.  The 

modulated energy in the form of an interferogram with intensity related to moving 

mirror position (Figure 6.2a) is converted to an uncalibrated power spectrum 

(Figure 6.2b) by a discrete Fourier Transform.  
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Figure 6.2. A) The raw interferogram generated from a ~85µm spot is shown 

along with B) the raw uncalibrated power spectrum of quartz.  The data in each 

plot are related to one another by a discrete Fast Fourier Transform. The power 

spectrum of two known blackbody targets are then used to calibrate the data from 

this instrument in a full aperture calibration to radiance with units of W cm-2 sr-1 

(section 6.2.2).  
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6.2.1.2 Infrared Detectors  

In this setup I utilize two separate detectors depending on the type of 

measurement the user wishes to make. I have implemented both a Mercury 

Cadmium Telluride (MCT) quantum detector and Deuterated L-alanine doped 

Triglycene Sulfate (DLaTGS) pyroelectric detector in this system.  While the 

pyroelectric detector is comparable to what is currently utilized on many 

spacecraft interferometers (e.g. TES, mini-TES), it has a sensitivity of ~5-10x 

lower than the cryogenically cooled MCT quantum detector.  However, adding a 

cryogenically cooled detector to spacecraft instruments adds significant 

complexity and increases the potential for detector failure if the cooler ceases to 

operate.  Furthermore the spectral range covered by the MCT detectors is often 

limited to ~600cm-1, though they can measure to lower wavenumbers using 

special coatings but with reduced signal to noise (SNR). These longer 

wavelengths (>20µm) often provide valuable and diagnostic absorption features 

for primary mafic and secondary alteration mineralogy [e.g. Ruff et al., 2007; 

Koeppen and Hamilton, 2008; Lane et al., 2011] and are important for 

mineralogical studies of planetary surfaces.   

In this instrumental setup I utilize the MCT detector as a quick 

reconnaissance tool to evaluate the mineralogical diversity of the sample in a 

laboratory setting and then utilize the pyroelectric DLaTGS detector to collect the 

full spectral range allowable by the beamsplitter and optics combination. 

Furthermore the pyroelectric detector is a better match for the capabilities of the 
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performance that can be expected for this style of instrument on a planetary 

surface. 

6.2.1.3 Optical Design 

The optical design of the system is straightforward, utilizing a collimated 

beam throughout the system (Figure 6.3).  The microscope is a diamond turned 

Schwarzchild objective with an F-number of ~0.4 and a focal length of 9.81mm 

(Figure 6.4, Table 6.1).  This objective minimizes spherical aberration, coma and 

astigmatism as the primary and secondary surfaces are matched spherical 

components.  Depending on the position of the secondary mirror, it is possible to 

manipulate the nature of the light exiting the optic.  For example in the version 

mounted to the flight spare mini-TES instrument, a back F-number of 12 is used 

as it matches the original design of the mini-TES Cassegrain telescope 

[Christensen et al., 2003a]. 
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Table 6.1. Microscopic emission instrument characteristics and supporting 

components, including translational stages, context imager, sample and 

calibration targets. 

Spectrometer 

Spectrometer Manufacturer ThermoFisher/Nicolet 

Interferometer Type Michelson 

Beamsplitter Material Cesium Iodide (CsI) 

Typical Spectral Range 4000 – 200 cm-1 (1.56 – 50 µm) 

Spectral Sampling 1-16 cm-1 

Samples/Interferogram 8192 

Interferometer Beam Size ~2.5 cm (through beamsplitter) 

  

Detectors 

DLaTGS Detector  

Temperature Control Thermo-Electric Temperature 

Stabilized 

Detector Size 0.5 mm diameter 

Detector D* > 2.4x108 cm•Hz1/2•Watt-1 (20 Hz) 

Interferometer Mirror Velocity 0.1581 cm/sec 

Spectral Range 6400-200 cm-1 
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Table 6.1. continued  

MCT-B  

Temperature Control Cryogenic Liquid Nitrogen Cooled 

Detector Size 1 mm by 1 mm square 

Detector D* > 8.0x109 cm•Hz1/2•Watt-1 (20 Hz) 

Interferometer Mirror Velocity 1.8988 cm/sec 

Spectral Range 11,700-400 cm-1 

  

Fore-Optics 

Microscope Objective Design Schwarzschild objective 

Spot Size  ~85 µm (approaching diffraction limit) 

Numerical Aperture/f-number 0.8/~0.4 

Microscope Field of View 120° 

Working Distance ~9.81 mm 

Depth of Field ~20 µm 

  

Sample/Calibration Specifics  

Maximum Sample Size 2 x 2 cm 

Sample Temperature Heated to 100˚C > background 

Calibration Blackbody Targets (1) “hot” 130˚C , (1) “warm” 110˚C, 5 

mm spherical Blackbody cavity w/0.5 

mm diameter entrance  
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Table 6.1. continued  

DLaTGS SNR (5 min acq., @380K, 

10µm) 

~80 

MCT-B SNR (5 min acq., @380K, 

10µm) 

~120 

Silicon Nitride Infrared Source >1200˚K for reflectance mode 

 

Supporting Systems 

X Stage Translation 10 cm 

Y Stage Translation 10 cm 

Z Stage Translation 1.25 cm 

Coarse Z Stage Translation 5.5 cm 

X-Y-Z Stage Micro-step Size < 2 µm (including hysteresis/backlash) 

Laser Displacement Sensor 

Resolution (Z) 

1-3 µm (at the center of measurement) 

Context Camera (1.5 Megapixels) Color CCD (<4x6 µm resolution) 
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Figure 6.3. A schematic layout of the optical system for the microscopic emission 

and reflectance spectrometer represents all the major components of this optical 

system.  The blue lines represent the extreme light rays of the spectrometer optical 

system, where the relative size of the rays represent the true scaling and path of 

the light in the system. The black shapes represent different optical or system 

components in the system and are labeled accordingly.  The red lines represent the 

emitted energy of the infrared source when the system is used in reflectance 

mode. 
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However, for the laboratory setup, the position of the secondary mirror 

was adjusted so the microscope objective (Figure 6.4) outputs a collimated beam 

~1 cm in diameter which is upsized by beam expanding optics to ~2 cm inches in 

diameter to better match the desired input of the Nicolet spectrometer.  The 

relay/beam expanding optics are a pair of matched spherical mirrors with focal 

lengths of 75 cm and 150 cm also designed to minimize spherical aberration, 

coma, and astigmatism to ensure the image formed on the detector is crisp and 

accurately represents a small circular spot measured on the sample. Several other 

flat fold mirrors are utilized to direct the beam from the high measurement 

location to the level of the spectrometer. All mirrors in the system are gold coated 

and flat to ¼ wavelength in the visible wavelengths, making them excellent 

reflectors in the infrared, with reflectivity > 0.995 over nearly the entire spectral 

range [e.g. Bennett and Ashley, 1965].  Furthermore, in principle the optical 

design of this system is quite similar, with the exception of the microscope 

objective and the relay optics required to achieve the ~85 µm measurement spot 

size, to that of a suite of existing emission spectrometers used extensively by the 

planetary science community to evaluate and characterize data returned from 

spacecraft missions [e.g. Ruff et al., 1997; Feely and Christensen, 1999; Bandfield 

et al., 2000a; Christensen et al., 2000b; Rogers et al., 2005; Rogers and 

Christensen, 2007; Edwards et al., 2008; Koeppen and Hamilton, 2008]. 
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Figure 6.4.  An expanded view of the solid model of the Schwarzschild objective 

is shown in this figure.  The blue components represent diamond turned optics, 

while the silver components are the supporting spider and compression ring used 

to physically locate and hold the secondary mirror (small convex surface).  The 

objective is mounted onto a specialized mounting bracket using a three-point 

mount directly to the primary mirror (large concave surface).  Additionally, a 

baffle (black) designed to minimize stray light is mounted at the exit of the 

primary mirror and extends into the primary mirror cavity with a maximum light 

allowance diameter matched to the secondary mirror.  
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Once the collimated energy is directed into the Nicolet spectrometer by 

the last fold mirror, the energy passes through a CsI beamsplitter oriented at 45˚ 

(Figure 6.3) which separates the equally light into two directions with different 

path lengths, one fixed and one variable. The specifics of Michelson 

interferometry are described in Section 2.1.1.  However, this signal measured by 

the detector is not purely derived from the sample. I use a full aperture calibration 

(described below) that accounts for the instrument response function as well as 

radiance contributed by the instrument itself [e.g. Ruff et al., 1997].  Furthermore 

the environment is also emitting and a portion of that energy is reflected off of the 

sample and captured by the optical system, also known as downwelling radiance 

[e.g. Ruff et al., 1997]. The specifics of instrument calibration are discussed in 

Section 2.2. 

6.2.1.4 Supporting Systems 

A variety of support systems are required for the acquisition and 

calibration of spectral data at the sub-100µm scale (Figure 6.1, Figure 6.5, Table 

6.1).  In order to accurately measure a spectrum, I must control the X, Y, and Z 

position of the sample to within ~1-2 µm with little or no physical movement of 

the sample.  To do this I use translational stages capable of high precision 

movement.  
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Figure 6.5. A side view of the XYZ position system, microscope objective and 

supporting systems, including the laser displacement sensor and the context 

camera.  For reference, the relay mirrors are 2 inches in diameter.
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Due to the extremely fast (small depth of field) Schwarzschild objective, it 

is necessary to position the sample within ~20 µm of the best focus in the Z-axis. 

To accomplish this I use a laser displacement sensor capable of accurately and 

precisely measuring distances to within several microns.  The desired sample spot 

is moved under this sensor and the Z stage is moved until the best focus is 

established, generally within 3-5 µm (Figure 6.6a and 7a).  This system works 

well for both solid and particulate samples.  Where a best focus cannot be found 

(due to low reflectivity, oriented crystal faces that prevent the return of a laser 

signal to the sensor detector, etc.), the location is recorded and the previous best 

focus is used.   This assumption is generally reasonable where the sample is not a 

particulate and the surface is generally smooth over the data spacing.  When this 

is not the case, a spectrum of a defocused (and enlarged spot) is acquired. 

A visible imaging context camera with ~7 µm/pixel resolution is also used 

to identify desired measurement locations (Figure 6.6b and 7b) and control the 

acquisition grid.  This grid can be constructed as any combination of X by Y 

samples and calibration targets may be acquired at any interval, though generally 

at the end of a column of measurements.   
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Figure 6.6. A) Example of a micro-topography map of a solid sample used to find 

the microscope focal point within ~5 µm.  Black locations indicate the absence of 

good laser returns.  In these cases I use an interpolated value for best focus. B) 

Co-aligned visible context image with a microscope sampling pattern overlain 

(red circles).  The circles are to scale with the spot size of the instrument and are 

the exact locations where thermal emission data are acquired. 
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Figure 6.7. A) Example of a micro-topography map of a particulate sample used 

to find the microscope focal point within ~5 µm.  Black locations indicate the 

absence of good laser returns.  In these cases I use an interpolated value for best 

focus. B) Co-aligned visible context image with a microscope sampling pattern 

overlain (red circles).  The circles are to scale with the spot size of the instrument 

and are the exact locations where thermal emission data are acquired. 
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These X, Y, and Z translation stages were physically referenced to each 

test location (context image, focus, and microscope) by a thin wire (~35 µm in 

diameter) cross hair that can be heated to ~600˚ K to reference the spectrometer 

with a high level of signal at the detector. Once each test position has been 

established in relational space, it is possible to accurately move to each test 

position with a sample and measure the identical spot to within ~5 µm in absolute 

position, which is less than the individual pixel size of the context imager. 

The sample in the emission setup is heated above room temperature to 

enhance signal to noise for individual measurements [e.g. Ruff et al., 1997].  

While this process can result in the dehydration of some clays and sulfates, in 

general most rock forming minerals do not significantly change their crystal 

structure with a moderate (100˚ K) increase in temperature.  Furthermore it is not 

uncommon for geologic materials, especially on airless bodies to experience 

temperatures above 350˚ K [e.g. Vasavada et al., 2012]. While it is not explicitly 

necessary to heat the sample to ~390˚ C, it aids in reducing measurement time and 

significantly increases the signal to noise as emitted radiance is proportional to 

temperature to the fourth power.  However as an alternative to heating samples, I 

have developed a thermal infrared reflectance mode for this instrument (Section 

6.2.1.5).   
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Figure 6.8.  A model of the sample holder (orange) and blackbody calibration 

targets (gray) (A) with the individual components expanded for clarity.  The 

sample holder is constructed of copper because of its extremely high thermal 

conductivity, while the blackbodies are constructed of aluminum because 

aluminum has a high reflectivity over the thermal infrared wavelength region and 

any unpainted surfaces will reflect the majority of the incident energy.  B) The 

final completed sample holder and blackbody calibration targets with a quartz 

standard used to compare the instruments calibration to existing laboratory 

equipment. 
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Two blackbody cavities (5 mm spheres with a 0.5 mm entrance) are used 

as targets for the instruments full aperture calibration (Figure 6.8).  These 

blackbodies are controlled to ~0.1˚ K precision and accuracy at 400˚ K and 380˚ 

K bracketing the typical temperature (~390˚ K) of a sample in this instrument.  

These calibration targets are mounted directly next to the sample holder, which 

allows for multiple calibration points throughout the measurement to capture any 

instrument drift or changes in the environment.  The calibration targets are 

instrumented with two platinum resistance thermistors (PRT) each (one above and 

below the spheres) and allow the precise determination of the temperature of the 

sphere. These differentially mounted PRTs typically show a measured 

temperature difference of 0.05˚ K, which is significantly below the accuracy and 

precision of the PRTs.  The PRTs have an absolute calibration accuracy of ~0.1˚ 

K from 90˚ K to 780˚ K. 

Furthermore an instrumented environmental chamber (Figure 6.1), where 

water vapor and CO2 have been scrubbed from the atmosphere, encompasses the 

entire instrument.  The interior of this chamber is painted with Krylon Ultra Flat 

Black 1602 paint that has an emissivity >0.95 over the entire thermal infrared 

wavelength region [Stierwalt et al., 1963]. I monitor relative humidity, 

environmental air temperature, and the temperatures of various system 

components.  Any dramatic changes in these parameters are logged throughout 

the acquisition of sample data and can be used to identify data that may be poorly 

calibrated. 
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6.2.1.5 Reflectance Mode 

As an alternative to directly heating the sample to >100˚ K above ambient 

temperature, I have developed a micro-reflectance attachment for this instrument 

(Figure 6.3, Table 6.1). In this case rather than the sample being heated from 

below, the sample is illuminated by an infrared source (a >1200˚ K silicon nitride 

emitter) with relatively uniform spectral response over 2000-200 cm-1. While this 

is not the primary mode of this instrument, as the goal is to make direct 

comparisons to existing laboratory and spacecraft data, it is a unique measurement 

that could easily be applied to a landed spacecraft thermal infrared micro-

spectrometer. 

Many commercial microscopic reflectance instruments are available, but 

they typically use cooled detectors and modulate (which occurs when light passes 

through the interferometer) the light prior to its interaction with the sample. The 

experimental setup I have developed here is significantly different in that 

unmodulated light is directed at the sample in a nearly perpendicular orientation. 

This light is then reflected off of the sample approximately into a hemisphere for 

Lambertian surfaces, which is expected as typical sample surfaces do not highly 

forward- or back-scatter.  This unmodulated reflected light is captured by the 

same optical system that captures the emitted energy when the sample is directly 

heated. The value of this method is that both an emission and reflectance 

measurement can be made of the identical spot.  If different fore-optics were 

utilized with this system (an off-axis parabola or Schwarzschild objective with a 

larger f-number), the reflectance mode can be used to quickly acquire high SNR 
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micro-spectra while a defocused spot can be utilized to make bulk emission 

measurements. The variety of measurements (point counting of individual mineral 

grains with primary geologic context and bulk mineralogy measurements at the 

outcrop scale) makes this style of instrumentation unique in its capabilities and a 

strong candidate for a rover or lander platform as a quantitative mineralogy 

instrument.  

6.2.2 Calibration and Data Acquisition 

6.2.2.1 Automated Acquisition  

The microscopic emission spectrometer allows the investigator to easily 

acquire large volumes of spectroscopic data with little input.  The investigator 

defines the acquisition parameters, including number of spots in the X and Y 

directions (Figures 6.6b and 6.7b), the spacing between these spots, the sample 

and blackbody calibration target temperatures, and the calibration interval.  Once 

the sample is loaded the system automatically acquires all the specified data and 

necessary ancillary measurements including the temperature of the environmental 

chamber, relative humidity, instrument temperature and sample temperature.  In 

order to ensure measurement stability, several parameters, including sample and 

blackbody temperatures, relative humidity, and microscope temperature are 

monitored until they reach the set points.  Furthermore, anytime the sample is 

moved a significant distance (e.g. to the calibration targets), the instrument pauses 

until stability conditions are met (typically 5 minutes).   
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6.2.2.2 Spectral Calibration 

By in large the calibration of raw data to emissivity have not been 

significantly modified from [Ruff et al., 1997] and the majority of the equations 

and measurements necessary to accurately account fro all the factors that effect 

thermal emission have been presented previously including the energy related to 

sample emission, reflection, and background sources [e.g. Kember et al., 1979; 

DeBlase and Compton, 1991; Rewick and Messerschmidt, 1991; Christensen and 

Harrison, 1993; Ruff et al., 1997].  The major difference between the method 

used by Ruff et al. [1997] and the method described here is the use of numerous 

blackbody calibration measurements over the span of the entire spectral 

acquisition.  Depending on the number of acquisition points the investigator 

specifics for the microscopic emission spectrometer (>200-1000), lengthy (>1 

day) measurements can arise necessitating the use of multiple blackbodies to 

account for changes in the instrument response and environmental parameters.  

Here I present the updated method for calibration of thermal emission data 

acquired form this instrument. 

After Christensen and Harrison [1993] and Ruff et al. [1997], I use the 

following equations to solve for the emissivity of the sample, accounting for a 

time varying term using a cubic spline interpolation for each spectral point with a 

sample at an unknown temperature (definitions for all variables used can be found 

in Table 6.2).  I do not show the cubic spline interpolation in the following 

equations but rather include the solutions for all equations at wavelengths λ, 

temperature T, and time tsamp, where the values at each time have been 
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interpolated with the cubic spline or a linear approximation if enough data points 

are not available for cubic interpolation.  Furthermore, this equation set derives a 

temperature independent emissivity using a time-interpolated calibration, though 

throughout it is useful to consider the idealized and temperature dependent 

spectral radiance (B) and emissivity (ε) as inseparable.  These variables are 

generally represented as ε(λ)B(λ,T,tsamp) and are typically manipulated as a group, 

until the final derivation of emissivity. 
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Table 6.2. Definition of variables used in the equations to derive calibrated 

emissivity 

λ Wavelength 

T Temperature 

tsamp Time at a given point between two calibration 

measurements when the sample was acquired.  The 

corresponding function value is calculated using a cubic 

spline. 

Εinst  Emissivity of the instrument 

Binst Idealized radiance of the instrument 

F Instrument response 

εenv Emissivity of the environment 

Benv  Idealized radiance of the environment 

εsamp Emissivity of the sample 

Bsamp Idealized radiance of the sample 

Rsamp=1-εsamp Reflectivity of the sample is equivalent to 1-emissivity by 

Kirchhoff’s law 

Vsamp Measured sample voltage 

Bbb Idealized radiance of the blackbody calibration targets 

Vbb Measured blackbody voltage 

cf Christiansen feature wavelength 
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Table 6.2. continued 

σV  Standard deviation of detector voltage 

SNR Signal to Noise 

n Number of spectral co-additions 

h Planck’s constant 

c Speed of light 

k Boltzmann’s constant 
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First I take the initial equation from Christensen and Harrison [1993] that 

defines all the important parameters that contribute to the measured voltage of the 

Fourier transform spectrometer: 

(6.1)  

Vmeas λ,T, tsamp( ) =
εsamp λ( )Bsamp λ,T, tsamp( )
+Rsamp λ( )εenv λ( )Benv λ,T, tsamp( )
−εinst λ( )Binst λ,T, tsamp( )

"

#

$
$
$
$

%

&

'
'
'
'

F(λ, tsamp )

 

By using blackbodies at two known and temperatures and raw voltages 

measured by the detector for each calibration target, I can compute an instrument 

function [e.g. Hanel et al., 1972; Ruff et al., 1997] (Figure 6.9a).  Equation 6.2 

assumes that that the emissivity of the blackbodies is 1 at all wavelengths and 

there is no reflected component.  The time varying instrument response function 

is a critical component to the calibration procedure as it allows for the 

conversation of uncalibrated volts measured by the detector to calibrated spectral 

radiance (W cm-2 sr-1).  Additionally the time varying component allows for small 

changes in the instrument behavior to be captured during long data acquisition 

runs. 

(6.2)  F λ, tsamp( ) =
Vbb(λ,T1, tsamp )−Vbb(λ,T2, tsamp )
Bbb(λ,T1, tsamp )−Bbb(λ,T2, tsamp )
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Figure 6.9. Typical instrument calibration and response parameters are shown.  

A) 25 different instrument response functions over 10 days.  B) 25 different  
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Figure 6.9. continued 

instrument radiance curves over 10 days C) 25 different down welling radiance 

measurements over 10 days.  The variability in all cases is less than a few percent.  

To help capture the changing environment as many samples can be acquired 

between calibration measurements, I interpolate the instrument response function 

and instrument radiance using cubic-splines based on time for each individual 

sample.      
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Equation 6.3 is the derivation of the instrument radiance term (Figure 

6.9b).  Using Equation 6.2 and a single blackbody measurement it is possible to 

derive the instrument radiance. The instrument radiance is the energy that reaches 

the detector that did not originate at the sample [e.g. Ruff et al., 1997], including 

detector and background energy from the emitting components inside the 

spectrometer.  As a further simplification, the instrument emissivity (εinst(λ)) is 

commonly assumed to be 1 and the instrument radiance term is replaced by an 

ideal blackbody of the measured instrument temperature [Ruff et al., 1997]; 

however, in the case of this instrument I use the derived instrument radiance and 

not an ideal radiance, as the instrument radiance is a combination of blackbodies 

of several temperatures for this instrument.  

(6.3)  εinst λ( )Binst λ,T, tsamp( ) =
Binst λ,T1, tsamp( )−Vbb λ,T1, tsamp( )

F(λ, tsamp )
 

Calculating calibrated radiance for a sample is accomplished by 

rearranging Equation 6.1 to the form shown in Equation 6.4. In this case all of the 

radiance (both emitted and reflected) are moved to a single side of the equation.  

In order to simplify this equation and derive a temperature independent 

emissivity, it is necessary to determine the sample temperature from a non-contact 

method (as is typical for spacecraft missions) [e.g. Lyon, 1962]. In order to solve 

for temperature, I assume that over some portion of the spectrum the emissivity is 

1 and the reflectivity is zero, which is best met at the Christiansen frequencies in 

the spectrum.  This is the frequency where the index of refraction (n) for the 

sample is equal to the index of refraction for the surrounding medium [Henry, 



 

248 

1948]. This frequency is often coincident with low extinction coefficients (k) for 

geologic materials and produces an emissivity near 1.0 [Ruff et al., 1997].  In a 

complicated system such as the microscopic emission spectrometer where many 

environmental sources of a variety of temperatures are being reflected off of the 

sample, I use a diffuse gold reflector in place of a sample to accurately measure 

the typical downwelling/reflected spectral component (Figure 6.9c).  In this case I 

then apply a scaled version of this measured downwelling radiance as the mixed 

variable group εenv(λ)Benv(λ,T,tsamp).  This allows for spectral features present in 

the downwelling radiance as well as temperature variability to be accounted for 

robustly. 

(6.4)  

εsamp(λ)Bsamp(λ,T, tsamp )
+Rsamp(λ)εenv (λ)Benv (λ,T, tsamp )
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If I calculate a brightness temperature for all radiances (Equation 6.5, 

assuming there are no emissivity absorption features) for all wavelengths using 

the Planck equation in the form of Equation 6.6, the maximum temperature of the 

sample temperature is likely the best match for the position of the Christiansen 

frequency. Ruff et al. [1997] includes a detailed discussion of the effect of 

deriving the wrong Christiansen frequency on the absolute calibration of spectral 

data, though the effects are generally minimal in terms of absolute emissivity, 

they are not negligible. 

(6.5)  
Bsamp@cf (λ,T, tsamp ) =

Vsamp@cf λ,T, tsamp( )
F λ, tsamp( )

+εinst (λ)Binst@cf λ,T, tsamp( )
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(6.6)  

T = hc

ln 2hc2

λ 5Bsamp@cf
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The final step for calibration is the calculation of a temperature 

independent emissivity.  This is accomplished by again rearranging Equation 6.1 

using the time interpolated instrument response function, downwelling radiance, 

and instrument energy variables that were solved for in Equations 6.2-6.6.  

(6.7) 
εsamp(λ) =

Vsamp λ,T, tsamp( )
F λ, tsamp( )

−εenv (λ)Benv λ,T, tsamp( )+εinst (λ)Binst λ,T, tsamp( )

Bsamp λ,T, tsamp( )−εenv (λ)Benv λ,T, tsamp( )   

The validity of this method is well established and a detailed discussion 

and error analysis of many components of this calibration routine is performed by 

Ruff et al. [1997]. Furthermore, I utilize a full-aperture calibration, with the 

blackbody calibration targets placed at the same position as the sample.  With this 

setup, the same number of components (e.g. mirrors, baffles, optomechanical 

components) and instrument orientation (e.g. field of view, sample/calibration 

target position) are used and allow for all of the components to contribute in the 

same way to the raw measured spectrum.  These contributions are then 

incorporated into the instrument response function and instrument radiance, 

allowing them to be completely removed in the calibration routine with no 

assumptions about the reflectivity of various mirrors or contribution of other 

components required.  
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6.3 Instrument Results 

6.3.1 Signal to Noise 

The signal to nose ratio of this system is dependent on several factors 

including detector responsivity, the temperature of the target material, the number 

of spectra that are co-added together (scales as the square root of the number of 

samples), the spectral sampling, and the overall throughput of the optical system. 

In order to assess the SNR of a complicated optomechanical system such as that 

presented in this work, I measure many individual spectra with no co-adding of 

the same spot under the same conditions for each detector.  I measured a quartz 

standard and each blackbody calibration target (Figure 6.10).  In order to calculate 

the SNR of the system a moving window standard deviation of 20 spectra divided 

by the IRF and averaged together.  An ideal blackbody at the specified target 

temperature is then divided by the average windowed standard deviation 

(Equation 6.8).  The SNR is calculated in this manner as this removes any time 

dependent variations in the instrument that may be due to temperature controller 

instability or a changing environment and instrument temperature. 
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Figure 6.10. Signal to noise for each detector in the micro-emission and 

reflectance spectrometer instrument.  The SNR is shown for each of the 

blackbody calibration targets and a quartz sample. The SNR is directly correlated 

to sample temperature in all cases.  In each case I co-added 1000 individual 

spectra to make the plots.  However a reduction of 500 scans results in a reduction  
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Figure 6.10. continued 

in SNR by <10%. A) DLaTGS detector. B) MCT-B detector.  The slightly higher 

peak SNR for the MCT-B detector is largely attributed to the enhanced sensitivity 

as a result of the detector cooling.  However, the SNR increase is significantly 

less than order of magnitude expected by comparing detector D*.  This is likely 

due to the elevated background signal present from the environment as the MCT-

B detector is highly sensitive to any room temperature radiation.  A cold stop to 

remove any excess energy from the system would likely increase SNR 

significantly. 
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(6.8)  

SNR(λ,T ) =
Bsamp λ,T( )
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The derived instrument SNR at 900cm-1 for the DLaTGS detector is ~70-

90 for target temperatures ranging from 380-400˚ K.  The SNR at 900cm-1 for the 

MCT-B detector is slightly higher at ~100-120 for target temperatures ranging 

from 380-400˚ CK. The increase in signal for the MCT-B detector is not the 

predicted ~2-3 times improvement expected, though this is likely due to the lack 

of a cold field stop that would prevent stray light and extreme rays from entering 

the detector.  Since the noise of a DLaTGS is fixed with the area of the detector, it 

is not as affected by the stray light/extreme rays of the system as the MCT-B 

detector that has noise that scales with the number of photons that interact with 

the detector.  So a warm instrument and environment, coupled with extreme rays 

derived from room temperature materials, which do not greatly affect the 

DLaTGS SNR likely greatly affect the MCT-B detector as many more photons 

from locations other than the sample are measured, increasing the detector noise.  

6.3.2 Calibration Evaluation 

6.3.2.1 Comparison to Existing Laboratory Measurements 

By comparing the results of a standard target in existing laboratory [e.g. 

Ruff et al., 1997] equipment and the microscopic emission spectrometer, the level 

of absolute calibration can be assessed.  Figure 6.11 is the average of 100 micro-



 

254 

emission spectra compared to the bulk measured spectrum of the quartz standard 

(Figure 6.8b) of a ~1x1 cm square area. Several observations can be made when 

comparing these two data.  First, the overall contrast between instruments is well 

matched, indicating that the downwelling radiance is well accounted for.  

Furthermore the position and shape of the absorption features are also well 

matched. The only major variability in the spectrum shown occurs on the shorter 

wavelength side of major absorption features (e.g. ~1200 cm-1, Figure 6.11). This 

broadening of absorption features is similar to what is observed in a bi-directional 

reflectance setup, such as that used by Salisbury et al. [1992] to measure the 

reflectance of pure geologic materials.  
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Figure 6.11. A demonstration of the absolute calibration of the micro-emission 

instrument is made using a well known sample of vein quartz. One hundred 

individual micro-emission spectra (of 500 co-adds each) over a 1x1 cm grid are 

averaged together and compared to a bulk measurement made with existing 

laboratory equipment that has been used characterize a variety of rock forming 

minerals [e.g. Ruff et al., 1997; Christensen et al., 2000b] for the analysis of 

martian TES data [e.g. Bandfield et al., 2000a; Christensen et al., 2001; Ruff, 

2004; Hamilton and Christensen, 2005; Edwards et al., 2008; Koeppen and 

Hamilton, 2008].  The difference between the existing laboratory and average 

micro-emission data are most pronounced as the widening of spectral features 

(e.g. 1250 cm-1). However, the depth and shape of absorption features is matched 

extremely well.  
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At very high wavenumbers (>1750 cm-1, Figure 6.11) a significant 

divergence in the micro-emission and bulk measured spectra is observed.  This 

divergence generally occurs at wavelengths shorter than the Si-O stretching 

region and is introduced by an unaccounted for component in the calibration.  I 

have determined that this emissivity excess is likely due to the anodized support 

structure (high emissivity) spider for the secondary mirror of the Schwarzschild 

being reflected onto the sample.  If I include a small off axis mirror on the back of 

the spider to both prevent the emitted sample energy from being reflected back 

onto the sample, and the low emissivity of the mirror from reflecting on to the 

sample, this feature lessens in magnitude.  Further work is underway to better 

characterize the effect of this calibration artifact.   

6.3.2.2 Crystallographic Orientation Effects 

Since the majority of emission and reflectance measurements to date are 

bulk measurements of many randomly oriented crystals [e.g. Ruff et al., 1997] the 

measurement of single crystals in an unknown orientation will likely result in the 

observation of only one vibrational mode for the sample in question [e.g. Lane, 

1999]. Figure 6.12a is the measurement of a quartz crystal oriented down the c-

optical axis in the micro-emission spectrometer and the bulk emission 

spectrometer, compared to a bulk spectrum of randomly oriented quartz grains.  

While the micro-emission oriented quartz spectrum shows many orientation 

effects (including missing doublets), an additional feature at ~550 cm-1 is visible 

in the oriented micro-emission spectra and randomly oriented bulk measurement.  

This may be due to the high angle from which the photons are collected (emission 
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angle ~60˚).  Furthermore the emission microscope collects energy form 360˚ 

simultaneously at the high emission angle, making this measurement more akin to 

a hemispherical or bi-directional reflectance measurement than a typical emission 

measurement.  In an oriented quartz crystal (Figure 6.12a), I not only view the c-

optical axis but also observe emitted energy from the a-optical axis 

simultaneously due to the high angle. This is a significant difference from many 

bulk emission measurements as they typically observe energy from < 15˚ 

emission angle, enhancing the effect of optical axis orientation.  Figure 6.12b 

shows the variability of a quartz component from a natural sample.  Again the 

major changes occur at ~550 cm-1 and do not significantly affect the identification 

of these samples as quartz.  Furthermore while some variability, similar to what is 

shown in Figure 6.12b is expected for every measured spectrum, I predict that 

minerals with simple crystal structures (e.g. 2 optical axes) will show the 

strongest effect, as this instrument will not likely observe perfectly oriented 

crystals.  
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Figure 6.12. A) A bulk emission spectrum of randomly oriented quartz grains and 

a quartz crystal oriented down the c optical axis compared to the micro-emission 

spectrum of the same oriented quartz crystal.  In general, the oriented quartz  
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Figure 6.12. continued 

crystals are lacking some of the prominent quartz doublets at ~800 cm-1 and ~400 

cm-1.  However, in the oriented quartz microscopic emission spectrum, the 

doublet at ~550cm-1 appears although at a different position than in the randomly 

oriented quartz.  This doublet does not appear in the bulk measured oriented 

quartz and indicates that while some crystallographic orientation effects are 

preserved in the microscopic emission system, the effects are not as extreme as 

with other optical designs. B) Two quartz spectra extracted from the data shown 

in Figure 15 illustrate the typical variability of quartz orientation effects in a 

natural sample. By in large the effects are minimal and are most easily seen at the 

~550 cm-1 doublet. 
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A perfectly oriented crystal is the worst-case scenario for the micro-

emission spectrometer and any slight deviation in this perfect orientation in the 

crystal will result in additional optical axes being observed by the instrument and 

a reduction of the effect on the spectral data (Figure 6.12b).  While this allows the 

spectrometer to produce data that have many similarities to bulk emission 

measurements, the typical simplification of the Fresnel equations [e.g. Pollack et 

al., 1990; Lane, 1999] to ignore orientation effects, typically represented as Θ, are 

not possible with this setup and the full Fresnel equations accounting emission 

angle must be solved to derive the real and imaginary indices of refraction. 

6.3.2.3 Repeatability 

Overall when measuring a consistent and uniform sample, the microscopic 

emission spectrometer yields consistent results over long time periods, over 

various environmental conditions and instrument conditions. Furthermore, a 

spectrum from one sample, acquired from the same locality over the course of 

several days to weeks does not change significantly in spectral shape or contrast.   

The variability in a mostly uniform sample such as that shown in Figures 6.8b and 

6.13, which is 100 spots acquired over 4 days, is most likely due to small-scale 

variability of the sample rather than changes in downwelling radiance or 

instrument energy.  The standard deviation of these data is very small, typically 2-

8% of the depth of the major absorption features, where its effect is most 

significant. Furthermore, the average of these 100 spots, matches the bulk 

emission measurement of the same sample (Figure 6.11), lending to the idea that 

the small-scale variability is included, but not separable, in the bulk measurement.  
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Figure 6.13. The 100 individual micro-emission spectra (500 co-adds each) are 

compared to the same bulk measurement in Figure 11.  The variability in the data 

is likely due to small-scale (<1 mm) variability in the vein quartz sample.  The 

standard deviation of the data are also shown and is typically <<5% of the lab 

data.  
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6.3.2.4 Emission versus Reflectance Measurements  

When I compare the microscopic emission results to microscopic 

reflectance measurements (Figure 6.14), in general, I find good agreement with 

the spectral shape and position of major absorption features.  While there are 

significant mismatches in the Si-O stretching (700-1200 cm-1) and bending (150-

600 cm-1) regions, these are not directly correlated to spectral absorption features, 

but rather spectral slope and the width of the features.  These mismatches likely 

stem directly from the rudimentary calibration of the reflectance mode when 

compared to the calibration of the emission data.  However, even with the 

rudimentary reflectivity calibration, the quality of the spectral data is high making 

this technique a valuable addition to the instrument’s wide range of capabilities. 

In the future, refinement of the reflectivity calibration will yield data that agree 

even better with the emission data.  While I do not discuss this measurement style 

in detail as it is primarily a demonstration of a novel method to acquire 

reflectance data, this technique could prove to be especially powerful for 

situations where sample heating is not permissible due to power constraints (e.g. 

spacecraft applications) or sample constraints (e.g. loss of volatiles at low 

temperatures). 



 

263 

 

Figure 6.14. Microscopic-emission and reflectance data are shown as well as 

their differences.  The reflectance data where calibrated using a diffuse gold 

reflector and have been baseline corrected to remove any spectral slope.  The 

microscopic emission data were calibrated using the two spherical blackbody 

targets. In general the spectral shapes of these two different measurements match 

extremely well with all primary spectral features being well matched. While some 

difference exists with these two measurements, the reflectance data are considered 

preliminary and with a more robust calibration routine, the majority of the 

difference between these data should be eliminated based on Kirchoff’s Law 

which states E = 1 – R where E is emissivity and R is reflectivity. 
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6.3.3 Rock Sample 

The significant strength of this instrument is to performance petrographic 

analysis of the sample in question. This in situ quantitative non-destructive 

mineralogical analysis of an unknown sample is a powerful tool. This technique 

retains geologic context (Figure 6.15a), which is fairly unique to microscopic 

spectrometers.  In many cases, the sample must be cored, ground into a powder, 

and delivered to the instrument directly, removing all geologic context.  However, 

Figure 6.15 shows a fairly typical analysis of a quartz-monzonite, where I have 

identified 4 major components throughout the sample and one accessory 

component (Figure 6.15b).  Bulk emission measurements (Figure 6.16) did not 

detect, due to the low areal abundance of titanite (the accessory component) in the 

sample (likely < 1%).  While individual microscopic emission data spots are not 

necessarily composed of a single component, they are general simple mixtures of 

only a few components, which should be identical temperatures (removing aniso-

thermality induced slopes) and are easy to separate. 

The spectral discrimination of minerals in this sample is well 

demonstrated (Figure 6.15) and the identification of these components is 

straightforward.  A spectral index map, decorrelation stretch [e.g. Gillespie et al., 

1986], deconvolution [e.g Feely and Christensen, 1999; Ramsey et al., 1999; 

Rogers and Aharonson, 2008] of individual points, or spectral classification are 

powerful tools for mapping the variability and locations of individual components 

in the sample. While there is some variability in the individual measurements, by 
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in large, spectral features and shape along with the spectral contrast matches the 

bulk emission measurement extremely well (Figure 6.16) for a complicated 

natural geologic material.  This further illustrates that the individual spectral 

components (e.g. 400 micro-emission measurements averaged together) can 

adequately represent the bulk emission measurement. The individual spectral 

components in this case include orientation effects, roughness effects and the 

mineralogical variability. 

However, I find the maximum variability of the individual components in 

this sample is generally attributed to crystallographic orientation effects (e.g. 

Figure 6.12b) and mineralogical variability and not instrumentation effects, or 

sample roughness.  This allows for the quantitative identification of each 

component and their respective contributions to the bulk-measured spectrum to be 

well characterized. If I compare deconvolution results [e.g. Ramsey et al., 1999] 

of the bulk measured spectrum, using a simple endmember spectral library (Table 

6.3), to the spectral deconvolution point counting method of the microscopic 

emission spectrometer described below, I find excellent agreement between the 

two datasets (Figure 6.17).
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Figure 6.15. The locations (A) of microscopic-emission spectra (B) for a quartz-

monzonite thick section.  The red open circles are locations of individual  
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Figure 6.15. continued 

measurements.  In this sample, four major components are identified, plagioclase 

feldspar (white tones), potassium feldspar (pink tones), biotite (dark tones), and 

quartz (translucent).  Quartz is not easily discernable in the visible image as it is 

somewhat translucent and often appears as the color of the material surrounding 

or below it. A minor phase, titanite (orange-gold tones), is also identified and 

constitutes only ~3 pixels of the 400 measured.  Minor variations in individual 

spectra may be due to slight differences in optical axis orientation.  
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In order to perform spectral point counting, I use the same spectral library 

(Table 6.3) and unmix every individual spectrum.  After the unmixing of the 

spectral data, I then sum all the concentrations normalized for blackbody 

contributions together and normalize back to 100%, which results in the areal 

abundance of that individual spectral component.  In this case, I were not 

interested in the variability within individual mineral groups so all results are 

grouped according to Table 6.3.  To test the overall sensitivity of this method to 

components with low abundances, I exclude components with low abundances 

from individual spot unmixing results (Figure 6.17) and then normalize the sum 

of all spots to 100%.  In general I find that this exclusion, up to abundances <50% 

does not change the derived spectral deconvolution point counting abundances 

more than ~5-6% for any given mineral group.  While the absolute mineral 

abundances of this sample are not known, the individual determination of mineral 

abundances to within ~5% through the disparate methods of spectral point 

counting and bulk spectral deconvolution, lends to the precision of emission 

spectroscopy for the quantitative determination of the mineralogy of natural 

geologic materials. 
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Table 6.3. Spectral Library used in quantitative mineral abundance 

determination for the quartz-monzonite sample in Figures 6.14-6.16. 

aReference 

Number/Source 
Spectrum Identifier 

Assigned 

Mineral Group 

ASU Quartz BUR-4120 Quartz 

ASU Microcline BUR-3460 K-Feldspar 

ASU Orthoclase WAR-RGSAN01 K-Feldspar 

ASU Albite WAR-0235 Plagioclase 

ASU Oligoclase BUR-060D Plagioclase 

ASU Andesine WAR-0024 Plagioclase 

ASU Labradorite BUR-3080A Plagioclase 

ASU Anorthite BUR-340 Plagioclase 

ASU Biotite BUR-840 Mica 

ASU Chlorite WAR-1924 Mica 

ASU Muscovite WAR-5474 Mica 

ASU Phlogopite HS-23.3B Mica 

aSpectral library after Feely and Christensen [1999] where, individual 

mineral spectra are from the ASU spectral library available online at 

http://speclib.asu.edu [Christensen et al., 2000b].  
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Figure 6.16. Four hundred individual micro-emission spectra over a 1x1 cm grid 

are averaged together and compared to a bulk measurement made with existing 

laboratory equipment.  The difference between the existing laboratory and 

average micro-emission data are most pronounced as the widening of spectral 

features (e.g. 1225 cm-1). However, the depth and shape of absorption features is 

matched extremely well.  
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Figure 6.17.  A histogram of the bulk emission laboratory deconvolution mineral 

abundances and derived microscopic emission point count abundance.  I present 

several methods for deriving microscopic emission point counts, where I simply 

deconvolve each individual spot with a simple library (Table 3) covering the 

variability in the sample, and then sum the abundances and normalize back to 

100%.  In this case, I do not exclude minor components, as I am confident that 

individual pixels are generally well modeled as they are commonly a combination 

of one to three endmembers.  In subsequent methods I exclude deconvolution 

results that have abundances less than 10, 30, and 50%.  In each of these cases, 

the results do not change significantly varying by <5% derived mineral 

abundances.  Furthermore the comparison to laboratory unmixing results is quite 

good and provides a high level of confidence in bulk spectral deconvolution and 

the point counting methods used to determine sample mineralogy. 
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6.4 Conclusions 

I have presented a brief summary of various in situ instruments that have, 

to date, been used on planetary surfaces and detailed the development of a 

laboratory microscopic emission and reflectance spectrometer. While in its 

present form, the laboratory instrument is large and somewhat complicated, 

primarily due to commercial instrument constraints, a flight prototype has been 

constructed where an identical microscope objective has been mounted to a flight 

spare Mini-TES instrument, illustrating the straightforward instrument design and 

long heritage of thermal emission spectrometers. Further miniaturization of this 

instrument is straightforward with modern electronics and the development of this 

instrument as an arm-mounted device is the end goal. 

I find this style of instrumentation has several obvious advantages over 

other in situ instrumentation proposed for planetary surface investigations 

including, APXS, Mössbauer, microscopic imagers, X-rad diffraction and X-ray 

florescence spectrometers, and Raman spectrometers [e.g. Blacksberg et al., 

2010].  These advantages include a simple and tested instrument design, a long 

heritage of instruments sent to planetary surfaces and orbit, the ability to make 

direct comparisons to existing and past instruments, as well as the ability to 

quantitatively determine the bulk sample mineralogy while retaining the geologic 

and petrologic context.  Very few, if any, instruments mentioned above are 

capable doing in situ petrology. I find the capability of this instrument to do in 

situ petrology to be a major strength of this instrument. This style of instrument 

could also be used for the derivation of atmospheric opacities [e.g. Smith et al., 
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2004] to help maintain the long record of atmospheric conditions obtained from 

orbiting and landed spacecraft. Furthermore, with a different microscope 

objective (an off-axis parabola instead of the Schwarzschild objective) that results 

in only a marginally larger spot size (e.g. ~200-300 µm), it is possible to defocus 

the measurement spot to gain outcrop scale measurements comparable to existing 

Mini-TES spatial sampling.
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CHAPTER 7                                                                                    

CONCLUSIONS 

The work presented in this manuscript contributes to the state of 

knowledge of the early geologic history of Mars.  In the course of examining 

early Mars processes, I present algorithm development for the advanced 

processing of returned spacecraft data, novel techniques for the analysis of 

compositional data, the analysis of a variety of ancient rocky surfaces on Mars, 

and I include a discussion of the initial work for a next generation instrument 

designed for in situ mineralogical and petrological investigation of planetary 

surfaces.  

I have focused my attention on data processing, instrumentation and early 

planetary processes for several reasons: 

• By developing new and novel techniques for the processing and 

mosaicking of compositional and imaging datasets, more specifically 

THEMIS data, I have enhanced the ability to quantitatively assess the 

geology and geologic history of large areas of the martian surface. 

• Early planetary evolution and processes are poorly understood.  Using 

a variety of image and data processing techniques, such as those 

presented in Chapter 1, I have examined a variety of in situ, ancient 

rocky surfaces with the goal of constraining several early planetary 

evolutionary processes on Mars.  

• The development of new instrumentation for in situ investigations of 

planetary surfaces has the ability to greatly enhance our ability to 
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examine planetary surfaces from landed spacecraft.  Furthermore, the 

development of instruments that preserve petrologic context using 

similar remote sensing methods to existing orbital and landed 

instruments can help further the understanding of existing datasets and 

allow for the application of lessons learned at the few landed sites to 

the remainder of the planet. 

Chapter 2 represents a significant improvement in the algorithms and data 

processing techniques used to mosaic tens of thousands of THEMIS infrared 

images, as well as other imaging datasets from other planetary bodies, including 

the Moon and Earth. 

• I present algorithms for several common instrument effects, such as 

the temperature variation across the calibration flag correction, random 

noise removal, and running stretches designed specifically for 

THEMIS, though these algorithms and data processing techniques are 

not limited to THEMIS data and may be applied to past, current, and 

future data.  The use of these techniques must be carefully validated 

for each dataset to quantify the effects that may be introduced to the 

data.  

• The techniques for the creation of small-scale and large-scale mosaics 

presented in Chapter 2 provide the ability to view the surface of Mars 

and other planetary bodies, as well as geologic problems, through 

many different perspectives.  For example, one can obtain high-

resolution visible imagery of an area, which may help illuminate 



 

276 

compositional and thermophysical data, providing a more complete 

view of geologic processes on Mars.   

• The mosaicking ability and techniques presented in Chapter 2 provides 

an unprecedented amount of flexibility to the end user to produce both 

quantitative and qualitative large-scale seamless products of most 

map-projected datasets.  These products can be constructed relatively 

easily and scientific investigations are not limited to the extent of a 

single image; rather, they can be combinations of tens to several 

thousands of images as is the case with the THEMIS global mosaics. 

• I also address the data selection, mosaicking procedure, quality control 

measures, and the registration considerations for the THEMIS daytime 

and nighttime relative temperature global mosaics.  The THEMIS 

mosaics constructed of Mars are the highest resolution (100m/pixel) 

global scale datasets available to date. 

The algorithms and data processing and mosaicking techniques described 

in Chapter 2 were essential to the next several chapters as these techniques 

enabled the quantitative and qualitative assessment of large regions of the surface 

of Mars for compositional and thermophysical variability.  In Chapter 3, I 

present the findings from a regional study that aimed to characterize early 

compositionally distinct volcanism on Mars. 

• An in situ, olivine-enriched stratigraphic layer, which extends laterally 

over a distance of >1,100 km and has a minimum volume of ~9.9x104 

km3 was identified and characterized by its compositional and 
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thermophysical properties using TES and THEMIS data.  Initially I 

identified locations outside of the primary study region that may also 

be related to this in situ layer, making these size estimates a minimum.  

• Outcrops of these materials commonly have elevated thermal inertia 

values (often >~600 J K-1 m-2 s-1/2, with extremes of >1200 J K-1 m-2 s-

1/2), which indicates that this unit is not a mobile sediment and is an in-

place rocky unit.  

• The fine-scale morphologic observations agree well with 

thermophysical data that suggest these surfaces are relatively 

unmantled, rough and pitted surface associated with the olivine-

enriched material, with some aeolian bedforms infilling the hollows 

and pits of the surface observed by HiRISE and MOC imagery. 

• MOLA elevation data was also used to constrain the vertical 

dimension of this layer, allowing for the continuity, extent, dip and 

orientation to be constrained. I found this layer to be continuous over 

>1,100 km and essentially flat-lying.  This unit persists underneath 

topographically high areas appearing only in expected, elevation-

dependent locations, and is one of the largest continuous 

compositional units found on Mars. 

• If I considered only this region, four possibilities for the geologic 

origin of the olivine-enriched unit include: 1) volcanism associated 

with tectonic rifting of the Valles Marineris system, 2) a volcaniclastic 

flow deposit, 3) an intrusive mafic sill, or 4) a discrete episode in 
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martian history during which flood lavas were erupted onto the 

surface.   

Based on the evidence available at the time of the writing of Chapter 3, I 

concluded the most likely explanation for the geologic origin of this layer is an 

eruptive event consisting of compositionally uniform olivine-enriched flood lavas 

originating from a primitive mantle source region. However, when the Ganges 

and Eos Chasmata unit is compared to other olivine-enriched units on Mars, 

namely those identified in Ares Vallis [Rogers et al., 2005] and Isidis Planitia 

[Mustard et al., 2007; Tornabene et al., 2008] among other locations such as 

Chryse Planitia, striking compositional (>15% olivine abundance and ~Fo68), 

morphologic (commonly rough, pitted textures) and thermophysical (typically 

>500 J K-1 m-2 s-1/2) similarities are observed.  Additionally many of these units 

are hypothesized to have been emplaced early in martian history.  I suggest these 

similarities in age and characteristics are indicative of a discrete period of time 

early in Mars history, when compositionally uniform and extensive olivine-

enriched basalts were emplaced onto the surface.  

In Chapter 4, I further investigate this compositional layer and extended 

the study region in all directions.  I found that this layer was significantly larger 

and proposed that any model for the formation of this large-scale, olivine-

enriched layer must satisfactorily explain its: 1) unique composition  (>10%-25% 

~Fo68), 2) ancient age (>6 km of heavily cratered overlying material), 3) large-

scale (1.5x106 km3 to >5x106 km3) and observed continuity (>4,000 km laterally), 

and 4) rocky nature (elevated TI and fine-scale morphology).  
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The models I propose include:  

• An early magma ocean with significant density stratification capable 

of producing several crustal compositions consistent with what is 

observed from orbit, including olivine and pyroxene rich materials. 

• A period of intense and widespread volcanism or near-surface 

intrusions that may have occurred shortly after crustal formation, 

possibly as a result of enhanced surface heat flux associated with core 

formation. 

• An impact that formed the Borealis basin that excavated the crust and 

upper mantle and distribute these olivine-enriched materials over the 

planet’s surface into a regional or global layer.   

While I favor the Borealis-impact model, the presence of an extensive 

layer of unique composition indicates a significant planet-wide event that likely 

shaped the martian landscape.  This process could have depleted the mantle of 

volatiles affecting the martian atmosphere and later hydrologic cycle. The olivine-

rich materials identified in this study could provide important constraints on the 

differentiation of Mars, mantle, and core chemistry, the source material of some 

SNC meteorites, and the timing of the Borealis basin forming event. 

In Chapter 5, I examine another widespread and ancient process on Mars 

that has previously gone undocumented.  This chapter focuses on the analysis of 

ubiquitous and widespread flat-floored craters on Mars.  I propose that large 

impacts (causing >10 km diameter craters) on early Mars generated widespread 
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magmatism as a result of impact related decompression melting of the martian 

mantle.  I find that: 

• Highly eroded craters with flat-floors composed of material with 

elevated thermal inertia values (e.g. > 500 to 2000 J m-2 K-1 s-1/2) are 

prevalent in the ancient low albedo cratered southern highlands.  Some 

of the rockiest materials on Mars occur in the bottom of these craters 

and likely represent a unique widespread process that occurred early in 

martian history. 

• The fine-scale morphologies associated with the high thermal inertia 

crater floors commonly show a rough and pitted texture, with boulders 

and in-place fractured rock exposed on the surface.  Mobile aeolian 

materials commonly infill local depressions in the exposed rocky 

surfaces, reducing the observed thermal inertia.   

• The rocky crater floor material is significantly more mafic (globally 

constrained using the TES 507 cm-1 spectral index [Rogers and 

Fergason, 2011]) and enriched in olivine/pyroxene versus 

plagioclase/high Si-phases when compared to the surrounding typical 

inter-crater plains. 

• Crater counting model ages of the crater floor material for >110 craters 

have ages that range from 3 to 4 Ga (early Hesperian to late Noachian, 

approximately consistent with the LHB).  Crater floors also have a 

resurfacing age of less than ~1 Ga indicating that they likely formed 

early in martian history and were subsequently altered/resurfaced in 
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the more recent past.   

Based on the surface properties described here, I propose three possible 

mechanisms for the formation of flat-floored, high thermal inertia crater floors 

across the surface of Mars including: 1) the lithification/induration of sediments, 

2) the ponding of crustal melt material related to the heat generated during the 

impact process, and 3) infilling by volcanic materials. Of these three possibilities, 

I find only volcanic infilling can produce features with the observed 

morphological, thermophysical, and compositional characteristics, along with the 

widespread occurrence and ancient ages.  

• As a result of the impact event, crustal material below the crater is 

heavily fractured providing a pathway for magma to reach the surface.   

• The magma is directly sourced from the decompression melting of the 

martian mantle due to the removal of several kilometers of overlying 

crustal material by the impactor.  As the ancient martian crust was 

likely thin [e.g. Zuber, 2001] and the geothermal gradients were 

significantly higher than present day, the decompression melting of the 

mantle would be more likely to occur than under present day 

conditions.  

• This model is consistent with the ancient ages (~3-4 Ga) of the crater 

floors and indicates their formation occurred early in martian history 

and not after the crustal thickening of the southern highlands and 

reduction of the geothermal gradient.  

• The fractures in the upper crust created by these large impact events 
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may provide pathways for the lavas that form the Hesperian ridged 

plains or rocky mafic exposures visible throughout the southern 

highlands [e.g. Edwards et al., 2009; Rogers et al., 2009; Rogers and 

Fergason, 2011].   

• Many of the lava flows on the martian inter-crater plains have no 

easily observable volcanic edifices and could be fed directly from 

dikes that utilized the highly fractured crust as pathways for magma to 

breach the surface.  Furthermore, groundwater and hydrothermal 

systems could also use these fractures as pathways to circulate through 

and alter the martian crust. 

The view of early martian history as described through this work is one of 

an active planet with a variety of somewhat unique processes occurring in the first 

several hundred million years.  Large-scale impact processes were common 

throughout the early solar system and Mars preserves evidence of such events in 

its geologic record.  Furthermore, the generation of large volumes of magma 

through mantle decompression melting by the removal of crustal material during 

large impacts is a process that I propose did not just occur on Mars.  This process 

was likely widespread throughout the solar system, occurring on planets such as 

Mercury, Venus, Earth and possibly even Earth’s Moon. The materials erupted by 

these events likely represent significantly more primitive materials as they likely 

had little time to equilibrate or incorporate other martian crustal materials.  The 

ability to use Mars as a window into the ancient history of our solar system by 

advanced data processing and state of the art space borne instrumentation is a 
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venue of research that should be further explored.  The next generation of 

instruments should build on this strong legacy of exploration and remain 

complementary to data returned by current missions. 

In Chapter 6, I present the design, construction, performance and 

calibration of a microscopic (~85 µm sample size) thermal infrared emission and 

reflectance laboratory instrument. This instrument represents one possibility for a 

next generation landed instrument designed specifically to characterize the 

mineralogy of the surface by in situ measurements.  In its present form, the 

laboratory instrument is large and somewhat complicated, though miniaturization 

of this instrument is straightforward with modern electronics and the development 

of this instrument as an arm-mounted device is the end goal. 

This style of instrumentation has several advantages over other in situ 

instrumentation proposed for planetary surface investigations including, APXS, 

Mössbauer, microscopic imagers, X-rad diffraction and X-ray florescence 

spectrometers, and Raman spectrometers [e.g. Blacksberg et al., 2010].   

These advantages include: 

• A simple and tested instrument design, a long heritage of 

instruments sent to planetary surfaces and orbit, the ability to make 

direct comparisons to existing and past instruments, as well as the 

ability to quantitatively determine the bulk sample mineralogy 

while retaining the geologic and petrologic context.   

• Very few, if any, instruments mentioned above are capable of 

doing in situ petrology, which enables a more through examination 
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of the geologic history of a sample, as the mineral context is 

preserved.  

• This style of instrument could also be used for the derivation of 

atmospheric opacities [e.g. Smith et al., 2004] to help maintain the 

long record of atmospheric conditions obtained from orbiting and 

landed spacecraft.  

• Furthermore, with a different microscope objective (an off-axis 

parabola instead of the Schwarzschild objective) that results in 

only a marginally larger spot size (e.g. ~200-300µm), it is possible 

to defocus the measurement spot to gain outcrop scale 

measurements comparable to existing Mini-TES spatial sampling. 

Throughout this work, an effort was made to cover a wide range of topics 

and develop a diverse set of skills with the goals of obtaining a better 

understanding of the data returned from the martian surface, as well as how to use 

these data to characterize the early history of Mars.  The approaches used 

included the development of a proto-flight in situ mineralogy instrument, the 

detailed analysis of data from nearly all spacecraft orbiting Mars, including 

THEMIS, TES, MOC, CRISM, HiRISE, CTX, MOLA, GRS and HRSC, and the 

development of advanced image and processing algorithms for correcting 

instrument artifacts and mosaicking tens of thousands of images together.   

Future work will continue to build on this skill set, with the goal of using 

the laboratory instrument developed as a part of this work, earth analog materials, 
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and data analysis of current and future spacecraft data to better constrain the 

ancient history of Mars. 
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