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ABSTRACT 

There is a growing interest for improved high-accuracy camera calibration 

methods due to the increasing demand for 3D visual media in commercial markets. 

Camera calibration is used widely in the fields of computer vision, robotics and 

3D reconstruction. Camera calibration is the first step for extracting 3D data from 

a 2D image. It plays a crucial role in computer vision and 3D reconstruction due 

to the fact that the accuracy of the reconstruction and 3D coordinate determination 

relies on the accuracy of the camera calibration to a great extent.  

This thesis presents a novel camera calibration method using a circular 

calibration pattern. The disadvantages and issues with existing state-of-the-art 

methods are discussed and are overcome in this work. The implemented system 

consists of techniques of local adaptive segmentation, ellipse fitting, projection 

and optimization. Simulation results are presented to illustrate the performance of 

the proposed scheme. These results show that the proposed method reduces the 

error as compared to the state-of-the-art for high-resolution images, and that the 

proposed scheme is more robust to blur in the imaged calibration pattern.   
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1. INTRODUCTION 

This chapter presents the motivations behind the work in this thesis and 

summarizes the contributions and organization of this thesis.  

1.1 Motivation 

In recent decades, with significant progress in image and video processing 

algorithms, there has been an increasing demand for 3D content in the form of 

computer graphics, virtual reality and 3D reconstruction. These interests are 

employed for the purposes of entertainment, computer vision, 3D simulations and 

communication. 

Camera calibration plays a significant role in all these applications. It is the 

process in which the optical parameters of the camera (intrinsic) and/or the 

position of the camera (extrinsic), either absolute or with respect to the object of 

interest are extracted. 3D information is extracted by multiple images of the 

object of interest from different views using the parameters of the camera and the 

rotation and translation parameters between multiple cameras. All these 

parameters can be calculated using camera calibration. Hence, the extracted 3D 

information depends on camera calibration to a great extent. 

Camera calibration determines the intrinsic and/or extrinsic parameters of a 

camera. The intrinsic parameters of a camera consist of the focal length in the x 

and y directions, principal point, skews parameters and lens distortion parameters. 

The extrinsic parameters of a camera include the rotation and translation of the 

object in world coordinate with respect to camera coordinates. The translation 
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parameters consist of the displacement of the world coordinate center from the 

camera coordinate center. The rotation parameters consist of three parameters that 

define the rotation of the world coordinate system with respect to the camera 

coordinate system with the camera center as the origin. Camera calibration can be 

performed by localizing the control points on the calibration pattern in its 

image(s).  

Camera calibration using a calibration pattern is an algorithm which is 

employed initially once the setup has been installed. It is not run in a repetitive 

manner. Hence, speed is not of much concern. Accuracy of the camera calibration 

is verified by calculating the reprojection error of the control points. The known 

or the manufacturer-specified coordinates of certain feature points in the 

calibration object (actual coordinates) and the coordinates of the corresponding 

automatically detected feature points of the calibration object (estimated 

coordinates) in the image are individually projected to 2D pixel coordinates in the 

camera image plane using the estimated camera parameters. Then, the error, also 

known as reprojection error, between the 2D coordinates of the projected 

estimated coordinates and the 2D coordinates of the projected actual coordinates, 

is calculated. The smaller the reprojection error, the higher will be the accuracy of 

camera calibration. There are several existing camera calibration techniques [1] [2] 

[3] that produce fairly accurate results in terms of accuracy. Nevertheless, there is 
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a need for higher accuracies in camera calibration in the age of high resolution 

cameras especially for applications that require high precision. 

1.2 Contributions 

In this thesis, a novel camera calibration scheme consisting of an iterative 

refinement of camera parameters with an improved localization of control points 

based on local adaptive segmentation and ellipse fitting is presented. In the 

proposed method, the camera calibration parameters are refined in an iterative 

fashion starting from initial parameters that are estimated using the existing 

camera calibration methods. The captured images of the circular pattern 

henceforth known as original images and their planes of orientation referred to as 

camera planes are undistorted and projected onto a fronto parallel plane. The 

control points are localized in this fronto parallel plane using a novel approach for 

more accurately localizing the control points in the images based on adaptive 

segmentation and ellipse fitting. The coordinates of the boundary of the circles in 

the imaged calibration pattern are extracted using adaptive segmentation followed 

by edge detection. The adaptive segmentation is a histogram-based approach and 

produces improved segmentation under conditions of low contrast and in the 

presence of blur in the imaged calibration pattern due to defocusing. These 

coordinates are then input to an optimized ellipse fitting algorithm. The calculated 

centers of the fitted ellipses serve as control points. The proposed ellipse fitting 

algorithm combines two state-of-the-art algorithms and picks the ellipse with the 
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least error in terms of algebraic distance. The localized control points are then 

projected to their corresponding camera image planes using estimated camera 

parameters that are refined by minimizing the reprojection error. 

1.3 Thesis Organization 

This thesis is organized as follows: Chapter 2 provides the background required 

for camera calibration. Chapter 3 describes the previous work that is related to 

this thesis. Chapter 4 describes the proposed camera calibration method. Chapter 

5 presents experimental results using images captured under different conditions 

of varying blur and pattern sizes. Comparisons with an existing state-of-the-art 

technique are also provided in this chapter. Chapter 6 summarizes the 

contributions of this thesis and proposes future directions of research.
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2. BACKGROUND 

This chapter gives some background knowledge in relation to the techniques and 

equations required for camera calibration. Section 2.1 illustrates the basic pinhole 

camera model. The different types of initialization of intrinsic parameters of the 

camera are described in Section 2.2. Section 2.3 explains the nonlinear lens 

distortions in a practical camera. Section 2.4 describes nonlinear optimization 

techniques for camera calibration.  

2.1 Pinhole model of a camera 

Fig. 1. illustrates the pinhole camera model. Using homogeneous coordinates, let 

a 2D point in an image plane be denoted by x=[x y 1]
 T

 and the corresponding 3D 

point be denoted by X=[X Y Z 1]
 T

. Using the pinhole camera model, the two are 

related as follows: 

    [  ]               [
     

     

   

]                (1) 

where s is an arbitrary scaling factor, R, t are extrinsic parameters and A is called 

the camera intrinsic matrix. A is a 3×3 matrix containing the intrinsic parameters 

namely the focal lengths along the x and y axes of the image (fx, fy), skew between 

the two image axes (γ), and the principal point (u0,v0). Modern day cameras are 

well manufactured such that skew can be assumed to be zero. t is a 3×1 

translation matrix containing the displacement in the x, y and z directions, 

respectively. R is a 3×3 rotation matrix which is defined by three angles ω, φ and 

ψ along the x, y, and z axes respectively using Rodrigues transform [4]. 
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Fig. 1 Pinhole camera model. 

The rotation matrix can also be stored as a vector of size 3×1 using Rodrigues’ 

transform [4] [5] in order to save storage space. Rodrigues’ transform transforms 

a 3×3 rotation matrix into a 3×1 vector and vice versa. The three angles, ω, φ 

and ψ are the angles of rotation around the x, y and z axes, respectively, in a 

specific predefined manner. The rotations are performed as follows: first, the 

coordinate system is rotated around the x axis. This rotated system is then rotated 

around the y axis and, finally, the system that had been rotated twice previously is 

rotated around the z axis. The parameters of R can be defined as [1]: 

  [

                                                         
                                                         
                       

]  (2) 
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If a 2D planar pattern is used for camera calibration, it can be assumed that the 

pattern lies in the plane Z=0 without loss of generality. Hence, by convention, 

each camera plane is assumed to be in Z=0 plane with the origin at the control 

point on the left top. The 3D coordinates of other control points can be 

determined accordingly as the distance of separation of the control points on the 

calibration pattern is known. Thus, if R is represented as [r1 r2 r3], where r1, r2, 

and r3 are each column vectors, then (1) can be rewritten as: 

 [
 
 
 
]   [       ] [

 
 
 
 

]   [     ] [
 
 
 
]   [

 
 
 
]     (3) 

where H = [h1 h2 h3] is called the homography matrix. As it can be seen, H can be 

defined up to a scale factor. Given a set of 3D coordinates and their corresponding 

2D pixel coordinates, the homography matrix can be determined by using a 

technique of maximum likelihood criterion [2].  

Since each 2D image point location is defined using an x and y coordinate, it 

can be seen that N images each with K control points provide us with 2KN 

equations or constraints. If the skew, γ, is assumed to be zero, then we have 4 

intrinsic parameters and 6 extrinsic parameters (3×1 rotation vector and 3×1 

translation vector) summing up to a total of 10 unknowns. The 6 extrinsic 

parameters vary for each view whereas the 4 intrinsic parameters remain constant 

in all views Therefore, solving for these equations imposes the condition that the 

total number of constraints should satisfy: 



 

 

8 

 

                               2KN≥6N+4                                (4) 

Hence, from (4), it might seem that, for a calibration object having 5 or more 

control points, only one image would suffice to calculate all the parameters of 

camera calibration. However, each plane is only four control points’ worth of 

information as four points are sufficient to define a plane in space [5]. A larger 

number of control points is used to obtain an over-sampled system in order to get 

more accurate results. Hence, by substituting a maximum value of 4 for K in (4), 

one arrives at the condition N>1. Therefore, at least two images of a calibration 

target are needed with a minimum of four control points to determine the camera 

parameters. However, in order to obtain a higher accuracy, an excess number of 

constraints are typically used so as to find the solution with minimum error. 

Therefore, a larger number of images with a number of control points that is 

greater than four is typically used to solve for camera parameters. 

2.2 Solution to linear parameters of a camera using Zhang’s method [2] 

It can be shown that [2]: 

  
                       

            
                  (5)

 where A is a 3×3 matrix containing the camera intrinsic parameters as defined in 

(1), and h1 and h2 are the first two column vectors of the homography matrix H as 

defined in (3). 

Let B = A
-T

A
-1

. Then, 
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]
 
 
 
 
 

    (6)

 

It can be noticed that B is a symmetric matrix. Hence, it can be perfectly 

evaluated by the determination of a 6D vector given by b = [B11 B12 B22 B13 B23 

B33]
T
. If the ith column vector of the homography matrix H is split into hi = [hi1 hi2 

hi3], one obtains: 

  
        

                                                   (7) 

where 

     [                                                         ]  

Therefore, from (5) and (7), it follows that: 

[
   
 

         
 ]                             (8) 

If there are N images corresponding to N different views of the calibration 

pattern, this results in 2N equations and we need to solve for 6 intrinsic 

parameters of b. Therefore, there is a need for N≥3 images to find the intrinsic 

parameters using the set of closed-form equations given by (8). If only two 

images are present, one can impose a skewless constraint on the image [2], i.e., 

the two axes of the image need to be perpendicular. However, to get more 

accurate results a larger number (N≥3) of images are used to determine the 

intrinsic parameters of the camera. 
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Once the system of equations (8) is solved for b, then the intrinsic parameters 

can be calculated as [2]: 

                  (          
 )⁄  

      [   
                   ]    ⁄                                                         

   √    ⁄  

   √    (          
 )⁄  

        
    ⁄  

               
  ⁄⁄                                    (9) 

The rotation and translation vectors can be obtained as follows [2]: 

          

          

         

                                       (10) 

However, due to errors, the rotation matrix R, obtained henceforth would not 

be orthogonal which is typically required for a rotation matrix, that is RR
T
=I. 

Hence, to obtain an orthogonal matrix, the singular value decomposition (SVD) of 

R is computed. SVD is a process of factoring a matrix into two orthogonal 

matrices U and V, and a diagonal matrix D. In the ideal case, D would be an 

identity matrix I. Therefore, after SVD, the rotation matrix R is calculated as R = 

UIV
T
. 
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2.3 Non linear parameters of lens distortion 

The methods described above would obtain all the linear parameters of the camera. 

However, the practical camera is not an ideal pinhole camera; there are a few 

more intrinsic parameters due to practical issues that arise from the optical lens 

employed in a camera. These parameters are called lens distortion parameters and 

can be classified into radial and tangential distortion parameters.  

The radial distortion is 0 at the camera optical center and increases 

symmetrically on either direction as one moves outwards. Rays farther from the 

center are bent more than the ones that are closer to the center. Hence, radial 

distortion is more observable towards the edges of the image. Straight lines near 

the edges of the image appear to be bent due to radial distortion. This bulging 

phenomenon is termed as barrel or fish eye effect. Radial distortion can be 

expressed in the form of Taylor series and the first two terms of the series are 

typically used to approximate the radial distortion phenomenon [5]. For highly 

distorted cameras, the third term is also considered [5]. The pixels’ coordinates of 

the image (x, y) will be distorted according to: 

          
     

     
   

          
     

     
                        (11) 

The second type of lens distortion is called the tangential distortion. During 

the manufacturing of the camera, the lens might not be placed exactly parallel to 
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the imager. Hence, this manufacturing defect usually causes a tangential lens 

distortion. The coordinates of the pixels are distorted according to [6]: 

               
        

          
                                 (12) 

The lens distortion parameters are not linear and cannot be estimated in the 

form of a closed form solution. Solving for distortion parameters is performed 

using iterative algorithms. But, if the intrinsic parameters are not properly 

initialized, there is a danger of the optimization technique sticking to a local 

minimum. Therefore, to solve this problem, in [1], the intrinsic parameters are 

solved for using closed form equations assuming that there are no distortion 

parameters present in the model. These values will act as initial values for the 

intrinsic parameters. The values of the intrinsic parameters are then optimized 

using a nonlinear optimization technique such as the Levenberg-Marquardt 

algorithm [1] [2] to minimize the reprojection error. 

2.4 Non linear optimization of camera parameters 

Once the camera parameters are initialized assuming that there are no distortion 

parameters present in the model, all the parameters including the distortion 

parameters can be optimized simultaneously using an iterative nonlinear 

optimization [1] [2].  

Let     [          ]. If there are a total of N images with K 

control points in each image then the error function, 
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              ∑ ∑ ‖       
 ‖

  
   

 
                       (13) 

is minimized in an iterative fashion using a nonlinear optimization technique such 

as the Levenberg-Marquardt algorithm. In (13),     are the pixel coordinates in 

the camera plane of the estimated control points, and    
   (              ) 

are the coordinates that are obtained from the projection of the known (based on 

manufacturer’s specification of the spacing between the center of the patterns) 3D 

coordinates     [             ]  of the control points using the camera 

parameters that are obtained from the previous iterations.  
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3. RELATED WORK 

This chapter summarizes the existing work that is related to camera calibration 

techniques. Section 3.1 describes several popular methods that are used in auto 

calibration. Section 3.2 summarizes popular methods that are employed in classic 

camera calibration using calibration patterns. 

Auto-calibration is a process of determining the intrinsic parameters of a 

camera directly from the multiple uncalibrated images taken from different views 

from the same camera. Such a calibration does not require images of any special 

calibrated objects in the image. The scene required for 3D reconstruction is 

captured from different views and the camera parameters are determined also 

from the same images. 

Classic camera calibration is the process of determining the parameters of the 

camera with the help of a known special calibrated object in the image. Such 

calibration object can be either a rigid 3D or a 2D object of known geometric 

specifications. Most 3D calibration objects involve a cube or a cuboid with 

specific geometric patterns separated by known distances [1] [7]. 2D calibration 

objects contain geometric patterns on a plane surface. 2D calibration objects are 

more popular and widely used because of their simplicity [2] [3]. 

Few of the common patterns used for calibration objects are alternate blocks 

of black and white squares (popularly known as checkerboard), circles and rings 

as shown in Fig. 2. Ring patterns consist of concentric circles [3]. Certain features 

on these patterns are employed for determining the parameters of the camera.  
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Fig. 2. Various 2D calibration patterns: Checkerboard (Left), Circle (Center), and 

Ring (Right). 

These feature points are also known as control points. Some examples of 

control points are corners of squares in the checkerboard, centers of circles and 

centers of ring patterns. If the displacements between the control points on the 

calibration object are known with respect to a reference coordinate system and 

these control points are localized accurately in the camera image plane, this 

information can be used to determine the parameters of the camera. 

3.1 Auto-calibration 

Faugeras, Luong and Maybank [8] introduced auto-calibration to camera 

calibration. It is historically known as the first auto-calibration method and 

employs Kruppa equations [9] to solve for camera parameters. Seo and Heyden 

[10] presented an iterative algorithm using only linear equations and bundle 

adjustment by introducing an additional orthogonality constraint. Further, Seo, 

Heyden and Cipolla also presented a robust algorithm [11] where the algorithm is 

a hybrid between of a nonlinear optimization and initial linear computation. The 

most significant property of the algorithm of [11] is the fact that this algorithm is 
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general in the sense that any type of constraint can be imposed on the initial 

parameters of the camera. 

Sengupta and Das [12] presented a modified algorithm for auto-calibration. If 

the dual of the image of the absolute conic is not positive definite, metric 

reconstruction is not possible. Hence, the authors modify the computation of the 

dual of the image of the absolute conic by approximating its covariance square 

root guaranteeing its positive definiteness. The results were found to be quite 

satisfactory in terms of non-ambiguous reconstruction [12]. There have been 

attempts to use some specific features in the scene for auto-calibration. 

Pflugfelder and Bischof [13] proposed an auto-calibration method for a stationary 

camera. The method uses a sequence of images captured from the camera and 

estimates certain points called vanishing points using the line segments in the 

image. Kuo, Nebel and Makris [14] used the biomechanical constraints of the 

human body. The algorithm analyses certain key points on the human body during 

a sequence and detects frames where the body adopts a specific posture which 

allows for accurate camera calibration. 

However, when the camera is static and is used in an environment where a 

calibration object can be used such as in factories, laboratories, and indoor 

environment, it is favorable to use camera calibration with the aid of a specific 

calibration object as it is more accurate and provides more accurate reconstruction 

results. 
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3.2 Camera calibration with a calibration object 

Sobel [15] introduced a method for solving for the camera parameters using a 

complex system of nonlinear equations. Both intrinsic and extrinsic parameters of 

the camera were solved for in his method. However, he assumed a pinhole model 

of a camera and hence did not model lens distortions. Further, the method 

required the user to provide the algorithm with initial values of the parameters for 

the optimization. 

Tsai [16] improved on the approach and modeled the lens distortions for the 

system. His algorithm also provided a method for estimating initial parameters. 

His method first converts 3D world coordinates into 3D camera coordinates using 

the rotation and translation matrices that are obtained by introducing 

inhomogeneity in the system of equations and assuming the magnitude of each 

vector in the rotation matrix to be unity. The algorithm then calculates the 2D 

image coordinates using the estimated intrinsic parameters. The model of lens 

distortion assumes that the distortions are radially symmetric. Gremban, Thorpe 

and Kanade [17] implemented an algorithm to perform camera calibration using a 

system consisting only of linear equations and without explicitly calculating lens 

distortions.  

Wei, He and Ma [18] presented a camera calibration method where calibration 

was performed with or without modeling for lens distortions. The initial 

parameters were solved for using a linear system of equations. Radial distortions 
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were considered through refinements made by the invariance properties of cross 

ratio and collinearity of perspectivity. The algorithm would then use linear 

methods again to solve for extrinsic parameters. Chatterjee and Roychowdury [19] 

presented a robust algorithm for camera calibration and proved analytically that if 

all the camera parameters are solved for using the method of least squares, there 

would be no error in the computation of the image or world coordinates if there is 

an error in the image center displacement or the scaling factor, s.  

In [1], Heikkilä and Silvén proposed that, for a circular calibration pattern, the 

center of the detected ellipse in the image may not be the actual center due to 

rotation and translation and they introduced a correction for asymmetric 

projection. Later, in [20], Heikkilä proposed an improved procedure for camera 

calibration including procedures for calibrating both the forward and reverse 

camera models. The forward camera model computes the parameters by 

minimizing the error between the current 2D pixel coordinates and the projected 

2D pixel coordinates that are obtained from the projection of the 3D coordinates 

onto the camera image plane using the estimated calibration parameters. The 

reverse camera model computes the parameters by minimizing the error between 

known 3D coordinates and the 3D coordinates that are obtained from the back 

projection of the 2D pixel coordinates onto the 3D coordinates using the estimated 

calibration parameters.  
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Fig. 3. Drawback of the method of [3]. (Left) Blur in the camera plane 

(highlighted by the ellipse). (Right) Blur propagated in the fronto parallel plane 

(highlighted by the ellipse). 

Several camera calibration methods were also developed using design of 

experiments to get more accurate results [21] [22]. However, these algorithms 

involve complex hardware and experimental set up.   

One popular camera calibration method is provided by the OpenCV Camera 

Calibration Toolbox [5] based on Zhang’s method [2]. A major improvement over 

this method was achieved using a scheme proposed by Datta et al. [3], which 

produced 50% better results in terms of a smaller reprojection error than that of 

the OpenCV method [5] [2]. Datta et al. observed that calibration results improve 

significantly when control points are localized in the fronto parallel view with 

respect to the camera coordinate system. The scheme of [3] performs camera 

calibration in a number of iterations. In the first iteration, the camera parameters 

are calculated as in [2] [5]. The control points in the image of the calibration 

pattern are localized using curve fitting only initially, in the first iteration [23]. In 
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the following iteration, each view in the image is undistorted and then unprojected 

onto a canonical fronto parallel plane view using boundary detection of the area 

containing the calibration pattern and interpolation. The control points in these 

fronto parallel views are localized using template matching with a blurred circular 

template followed by quadratic fitting in the neighborhood pixel in order to obtain 

sub-pixel accuracy. These control points are then projected onto their camera 

plane using camera parameters from the previous iteration. This is then followed 

by the refinement of the camera calibration parameters using the Levenberg-

Marquardt algorithm to minimize the reprojection error. 

However, when each view is unprojected onto the fronto parallel plane using 

approximate camera parameters from the previous iterations, it is assumed in [3] 

that each view is converted to a perfect fronto parallel plane and, hence, the 

control points can be localized by template matching using a blurred circular 

template. But, in practice, the conversion is approximately fronto parallel as the 

camera parameters are approximate. Hence, each circle will actually be an ellipse 

due to a slight angular projection. Therefore, matching an ellipse with a circular 

template does not provide optimum results.    

Also, another issue with the scheme of [3] is that it is not resilient to blur in 

the imaged circular pattern. Blur can occur, for example, in applications requiring 

high calibration precision. For such applications, relatively small circles need to 

be used as calibration patterns, say to tune for a precision in the fraction of 
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millimeters, and the images are typically captured from a close distance in order 

to capture the small circular patterns. This can result in blurred circles in the 

captured images due to focusing problems as shown in Fig. 3. Even if the images 

are not blurred by the acquisition process, reprojection of the captured images 

onto fronto parallel planes involves interpolation which causes a blurred effect. In 

the case of an initial blur in the image, the problem is aggravated. In these cases, 

different circles in the same image are blurred to different extents and using the 

same circular template for all the circles might produce erroneous results. Our 

proposed algorithm overcomes these drawbacks and results in more accurate 

estimates of the camera calibration parameters, especially for high-precision 

visual applications requiring calibration patterns consisting of small-size patterns 

(in the millimeter and nanometer range) in order to limit the reconstruction errors 

to the desired small ranges. 
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4. PROPOSED CAMERA CALIBRATION ALGORITHM 

This chapter describes the proposed camera calibration method. Section 4.1 

presents an overview of the proposed camera calibration method. Details about 

the main components of the proposed camera calibration method are described in 

Sections 4.2 to 4.6. Section 4.7 describes the calculations of the reprojection error 

and uncertainty. 

4.1 Overview of the proposed camera calibration method 

Fig. 4 shows the block diagram of the proposed camera calibration method. There 

are five main steps in the calibration algorithm: localization of control points in 

the images, initialization of intrinsic parameters, nonlinear optimization of all 

camera parameters, undistortion and unprojection of images, and projection of 3D 

points on the camera image plane. The major contribution of this thesis lies in the 

localization of control points which is highlighted in Fig. 4(a). A block diagram 

for the proposed localization of control points is given in Fig. 4 (b). 

The proposed camera calibration algorithm requires, as input, images 

corresponding each to a different view of a 2D circular pattern. All the input 

images of the calibration pattern at different views are read into the memory. For 

each image, the user is asked to select a bounding box that encapsulates the region 

of the image containing the calibration pattern in a quadrilateral in that image. For 

this purpose, the user is asked to select four points on the image starting from the 

top left of the image in the clockwise direction. This procedure is performed on 

all the calibration images. 
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(a) 

 

(b) 

Fig.4. Flowchart of the proposed algorithm. (a) Block diagram of the proposed 

camera calibration algorithm. (b) Block diagram of the proposed procedure for 

localizing control points. 

The next step of the algorithm is based on the iteration under execution. In the 

first iteration, the selection of the bounding box is followed by the automatic 

localization of control points. In the subsequent iterations, the calibration images 

are first undistorted and unprojected onto a canonical fronto parallel plane and 

this is followed by the localization of control points. 

In the first iteration, the localized control points in all images are used to 

initialize the intrinsic parameters of the camera by the method of planar vanishing 

points [24]. All parameters including the nonlinear lens distortion parameters are 
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then refined and estimated by nonlinear optimization using the Levenberg-

Marquardt (LM) algorithm [1] [2]. 

 At each iteration, the estimated camera parameters are used to project the 

actual (known, manufacturer-specified) and estimated (localized) coordinates of 

the control points using the camera intrinsic parameters and the extrinsic 

parameters corresponding to each view. The accuracy is determined by computing 

the differences between the projected coordinates of the localized control points 

and those of the actual control points in both the x and y directions in all images, 

and their mean squared error is calculated as in (13).  The procedure stops in the 

second iteration if the desired accuracy is reached after optimization using the LM 

algorithm or if the maximum allowed number of LM iterations is reached. 

4.2 Localizing control points 

The proposed algorithm localizes control points in the calibration images during 

the first iteration as in [3] by calculating, for each circle in the imaged circular 

pattern, the mean of all points contained in a considered circle. This mean is taken 

to be an initial estimate of the center of that circle. Though it is not an accurate 

localization, it serves well as an initial guess. 

In order to locate the circles in the calibration pattern at the first iteration, the 

bounding box of each image is divided such that each segment consists of a 

circular pattern. Each segment is thresholded into a binary image with a threshold 

of 0.5 times the mean intensity in the segment as in the implementation of the 



 

 

25 

 

code obtained from the authors of [3]. The mean of the locations of all the black 

pixels in the binary image is taken to be the control point for that circle. 

In the subsequent iteration, the calibration images are first undistorted and 

unprojected onto a canonical fronto parallel plane using the values of the camera 

parameters from the previous iteration. The undistorted and unprojected fronto 

parallel plane images are represented using a discrete grid of points consisting of 

40 samples per d in each of the x and y direction, where d is the spacing between 

the centers of the circular patterns. Consequently, each circular pattern is 

represented using a region of 40 40 pixels. In other words, after the camera plane 

has been converted to a fronto parallel plane, each 40 40 pixel area in the 

unprojected image encapsulates a single circle and hence a single control point. 

This eases our control point localization task by narrowing the search area. The 

control points are then localized by converting each unprojected image of the 

fronto parallel plane into a binary image using adaptive thresholding followed by 

ellipse fitting. 

The proposed adaptive thresholding of the image brings an advantage of 

removing outlier pixels that are introduced due to blur and focusing problems 

which lead to incorrect calculations of the control points. The boundary of each 

segmented circle is extracted using the Canny edge detector, and ellipse fitting is 

performed on these extracted boundaries to localize the control points in the 

fronto parallel plane. The control points are then projected onto the camera plane 
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using the calibration parameters from the previous iteration. More details about 

the adaptive thresholding and ellipse fitting components of the proposed scheme 

are presented below. 

4.2.1 Adaptive thresholding 

Various algorithms exist for the selection of an adaptive threshold for a grayscale 

image. However, most existing algorithms typically select an adaptive threshold 

for the entire image and, since the considered image consists of significant bright 

regions (background) and dark regions (circles), the selected threshold would 

separate the background from the foreground but not blur in the image. One of the 

efficient methods for segmentation in the presence of low contrast is the local 

adaptive segmentation scheme of [25]. But, this latter algorithm yields best results 

when a local region of interest in the image, which has low contrast, is chosen. 

The algorithm also involves a manual scaling of the threshold which is a 

drawback for automated calculations. This algorithm is modified in this work to 

provide a segmentation threshold that best segments the pixels that belong to the 

circle. 

The proposed algorithm can be summarized as follows [26]:  

Step 1: Calculate the average intensity μ of the considered image and round it 

off to the nearest integer.  

Step 2: Determine the histogram of the entire image using M bins for an 

image with M gray levels (M=256 in our case). 
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Fig. 5. Fronto parallel plane image in Fig. 3 converted into a binary image using 

adaptive thresholding. 

Step 3: Extract the first μ bins and discard the remainder of the histogram. 

This modified histogram with only μ bins is used in the subsequent steps.  

Step 4: Calculate the average intensity μ’ of all the pixel intensities in the 

modified histogram. This serves as the initial threshold T. 

Step 5: Calculate the means μ1 and μ2 of the pixels below and above the 

threshold T, respectively.  

Step 7: The threshold T is updated to be the mean of μ1 and μ2.  
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Step 8: Repeat from Step 5 until the value of the threshold T is no longer 

changing as compared to its value from the previous iteration.  

This procedure is performed on an interpolated image by a factor 4 so as to 

obtain sub-pixel accuracy. Fig. 5 shows the resulting binary image of the 

unprojected fronto parallel plane image of Fig. 3. 

4.2.2 Ellipse fitting 

Ellipse fitting takes in a set of input points, typically along a boundary or closed 

curve, and determines all the parameters of an ellipse that best fits the input set of 

points.  

An ellipse belongs to the class of conics. A conic is a curve that is obtained as 

the intersection of a cone with a plane. Let F(a,p) represent a two-dimensional 

second-order polynomial given by: 

                                       (14) 

where a = [a b c d e f] and p = [x
2
 xy y

2
 x y 1]

T
. A point (x,y) on the conic satisfies 

the equation F(a,p) = 0.  F(a,p) is known as the algebraic distance of the point 

(x,y) to the conic F(a,p)=0 [23]. To reinforce the conic to be an ellipse, the conic 

parameters, a, need to satisfy the constraint 4ac – b
2
 = 1 [27]. Let J be the number 

of points to be fitted into an ellipse. Ellipse fitting can thus be performed by 

finding the parameters of the conic, a, that minimize the following sum of 

algebraic distances [23]: 

  ∑        
 
   

                               (15) 
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subject to the constraint a
T
Ca= 1, where C is a constraint matrix given by 

  

[
 
 
 
 
 
      
       
      
      
      
      ]

 
 
 
 
 

                        (16) 

In [23], Fitsgibbon, Pilu and Fisher proposed an algorithm to determine the 

parameters of the ellipse for a set of data points, pj, j=1,…,J . A design matrix D 

is constructed as D = [p1 p2 p3 p4 ….. pJ]
T
 and its scatter matrix is obtained by S = 

D
T
D. The square matrices S and C are used to obtain a diagonal matrix geval 

whose diagonal elements represent generalized eigenvalues, and a full matrix 

gevec whose columns are the corresponding eigenvectors such that S(gevec) = 

C(gevec)(geval). The parameter vector a is given by the negative values of geval. 

Once the parameter vector, a, is obtained. The center of the ellipse is calculated 

from the parameters as follows: 

                     ⁄ ) 

                     ⁄                      (17) 

 Maini [28] showed that the scatter matrix can be ill conditioned in the case of 

high-resolution cameras with typical values in the range of mega pixels, which 

would prevent solving for the eigenvalues.. Hence, he modified the scatter matrix 

by scaling and recentering the input data points. The input data points are shifted 

and scaled so as to be transformed into an ellipse located at the origin with the 
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points at the maximum distance of 1 from the center according to the following 

normalizing equations: 

         
                        

       

         
            

      ⁄                     
            

      ⁄  

  
         ⁄               

         ⁄                            (18) 

Ellipse fitting is performed on the normalized data points (x
’
i,y

’
i) as described 

above and the obtained parameter vector a’ of the ellipse is denormalized to fit the 

original input data points according to [28]: 

         

         

      
  

         

      
  

        
                

    

      
                  

    

      
   

                 
   

        
      

          
   

     (19) 

The aforementioned methods [23, 28], however, suffer from numerical 

instability when the data points lie exactly on the ellipse [29]. Hence, in [29], a 

perturbing function, e.g., a sinusoidal function, is used to intentionally perturb the 

points. The input data points are first recentered and shifted using the 

normalization equations. The normalized coordinates (  
 ,   

 ) , are converted into 
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polar coordinates (  
 ,  

 ). The perturbing functions are applied to these polar 

coordinates according to: 

  
     

            
                         (20) 

where A and f are, respectively, the amplitude and frequency of the sinusoidal 

perturbation function  

These coordinates are remapped to Cartesian coordinates and the ellipse is 

fitted to the modified data points. The resulting ellipse parameters are 

denormalized according to (19) in order to obtain the final ellipse parameters. 

Table.1 Sum of algebraic distances for each method after ellipse fitting. 

Center/radius Only least 

squares [23] 

Least squares 

with rescaling 

[28] 

Least squares with 

rescaling and 

perturbation [29] 

[0,0]/1 3.1678e-030 1.9845e-030 1.9845e-030 

[0,25]/8 - 2.8843e-030 3.8341e-009 

[50,50]/85 4.0218e-027 - 3.1062e-006 

[40,40]/13 - - 9.1605e-010 

[40,40]/16 - 1.0231e-030 2.2280e-009 

[40,40]/17 - - 2.9042e-009 

[40,40]/18 - 1.1217e-030 3.7397e-009 

[40,40]/20 1.0724e-030 - 6.0135e-009 

[20,30]/5 - - 1.1328e-010 
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However, as part of this work, it was observed that the technique used in [28] 

produces less error when it converges to a solution as compared to that in [29], as 

the scheme in [29] employs a perturbing function to avoid instability. Table 1 

shows the accuracy of ellipse fitting for the three aforementioned methods [23, 28, 

29] for a given center and circle radius. A set of points on the circle of a given 

center and radius, spaced at 5 degrees apart from each other, were generated and 

the methods of [23], [28], and [29] were used to fit an ellipse to the data. From 

Table 1, it can be seen that, while both the methods of [28] and [29] result in a 

higher error as compared to [23], the method of [29] results in a higher error as 

compared to [28] but is the most stable among the three methods. 

The proposed algorithm uses a decision-based ellipse fitting which combines 

the advantages of the methods of [23] and [29]. Ellipse fitting is first performed 

using the technique in [28]. If the method of [28] fails to fit an ellipse to the curve, 

in which case the calculated parameters of the ellipse take the form of a null 

vector, or if there is numerical instability, the algorithm switches over to the 

technique of perturbing function [29]. The center of the ellipse is calculated using 

the obtained ellipse parameters as given by (17), followed by a scaling with a 

factor of 1/4 to compensate for the interpolation by 4 as discussed in Section 4.2.1. 

The obtained ellipse centers give the localized control points. The proposed 

ellipse fitting method ensures that the control points are localized in the image 

with a high accuracy. The localized control points are then used to initialize the 
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linear parameters of the camera after the first iteration as explained in Section 4.3, 

and later to estimate the camera calibration parameters in the subsequent iteration 

as described in Section 4.4. 

4.3 Initialization of linear parameters using planar vanishing points 

A vanishing point for a set of parallel lines is the point at which a set of parallel 

lines in world coordinates intersect on the image plane. A vanishing point for a set 

of parallel lines is shown in Fig. 6. As shown in Fig. 6, L1 and L2 are two parallel 

lines in plane π. When these lines are projected onto a camera image plane π’ 

with an optical center O, the resulting projections L1’
 
and L2’ of these two lines are 

not parallel to each other and seem to be converging at a point v. Hence, v is 

known as the vanishing point on π’ for lines L1 and L2. 

If M1 = [1 0 0] and M2 = [0 1 0] represent points at infinity in the x and y 

directions, respectively, then, from (3), h1 and h2 represent the vanishing points in 

the x and y directions, respectively. Two important properties of vanishing points 

are the fact that the line connecting the vanishing point and the optical center O 

has the same direction with the corresponding lines in the 3D space and the fact 

that the vanishing points are independent of the camera translation [24].  

Using these properties, it can be shown [24] that if v1 and v2 are the vectors 

after subtracting the principal point from h1 and h2, respectively, one obtains [24]: 

     
                       [

   ⁄   

    ⁄  

   

]          (21) 
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Fig. 6. Vanishing point of a pair of parallel lines. 

It can also be shown that v3 = v1 + v2 and v4 = v1 - v2 represent the vanishing 

points in the diagonal directions of the image. Let the principal point of the 

camera be initialized to the center of the image, and assume that the skew γ is 0 

and that the vanishing points in pixel coordinates are given by 

   [      ]                                    (22) 

where i = 1, 2, 3, 4, represent, respectively, the 4 directions along the x, y, and the 

two diagonal directions.  

From (21), it can be seen that 

     
           

        

     
           

                           (23) 

From (22) and (23), one gets [24] 

      
        

      ⁄⁄    

      
        

      ⁄⁄                       (24) 
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The disadvantage of this method is that the skew and principal point has to be 

assumed to be zero and at the center of the image, respectively. However, this 

method is chosen over Zhang’s method [2] for implementation as it was 

experimentally observed in [24] that this method requires less iterations as 

compared to [2] for the camera parameters to converge to their final values during 

optimization Also, the principal point converges to a value comparable to that 

obtained using Zhang’s method [2] after nonlinear optimization using the 

Levenberg Marquardt algorithm. Skew is assumed to be zero in the 

implementation. The extrinsic parameters are calculated according to (10). 

4.4 Nonlinear optimization using Levenberg Marquardt (LM) algorithm 

The optimization of the camera parameters using the LM algorithm is performed 

in a way similar to [3]. The Levenberg-Marquardt (LM) algorithm, also known as 

the damped least squares method (DLS), provides a numerical solution to 

minimizing a nonlinear function over multiple parameters. If there are multiple 

local minima, it results in the minimum that is closest to the provided initial value. 

Hence, in this latter case, it is important to provide the algorithm with initial 

values that are relatively closer to the true global minimum. 

If there are a total of N images with K control points on each image then the 

error function in (13) is minimized in an iterative fashion using a nonlinear 

optimization technique such as the Levenberg-Marquardt algorithm where     

are pixel coordinates of the control points in the image of the calibration pattern 
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and    
   (              )            are the coordinates that are obtained 

from the projection of the 3D coordinates of the control points     

[             ] , using the camera parameters obtained from the previous 

iteration and   [       ]  is the vector containing all the camera 

parameters. In the remainder of this section, for simplicity of notation, without 

loss of generality,          will be simply denoted by     . If   is to be 

replaced by     then,        is approximated to 

                                    ⁄          (25) 

   is also known as the Jacobian of     . Let E      denote the error between 

    and    
 . E      can be expressed as [30]: 

       ‖           ‖
 
                  (26) 

To minimize (26), the derivative of the error is taken with respect to   and is 

set to zero resulting in 

       [        ]                         (27)  

 

Levenberg introduced an additional term λ to (27) in order to control the 

minimization of (26), as follows: 

          [        ]                     (28) 

where I is the identity matrix. The term   helps control the rate of change in the 

variables.   
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Solving (28) results in an estimate for   at each iteration. If the change in the 

mean square error is large, then   is reduced for the next iteration. If the change is 

small, then   is increased. 

As indicated before, the camera parameters are initialized according to the 

method of vanishing points [24] using (24) and (10). For optimizing the extrinsic 

parameters, the extrinsic parameters are computed alone in an iterative fashion to 

refine and correct only the extrinsic parameters. In the adopted implementation 

[3], the optimization is run either for a maximum of 20 iterations or until the 

change in the extrinsic parameters is less than 10
-10 

times the magnitude of their 

previous values.   is kept at a constant of 1 in all iterations. 

 After refining the extrinsic parameters, the optimization is performed for all 

the camera parameters. In our simulations, the optimization is performed either 

for a maximum of 50 iterations for minimization or until the change in the camera 

parameters is less than 10
-9 

times the magnitude of their previous values. As in [3], 

  is calculated for the i
th

 iteration as follows: 

                                         (29) 

The nonlinear optimization of all the parameters is followed by another run of 

optimization for only the extrinsic parameters either for a maximum of 20 

iterations or until the change in the extrinsic parameters is less than 10
-10 

times the 

magnitude of their previous values. λ is kept at a constant of 1 in all iterations. 
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4.5 Projection 

The estimated camera parameters are used to project the 3D coordinates of the 

control points onto the pixel coordinates of the image.  

The 3D coordinates (  ,   ,   ) are converted into camera coordinates (xc, 

  ,   ) as follows: 

[

  

  

  

]   [

  

  

  

]                              (30) 

where   is the rotation matrix and   is the translation matrix and     . 

As described in Section 2.3, the obtained 2D camera coordinates are distorted 

as follows [5]: 

           
     

     
              

     
       

           
     

     
        

     
            (31) 

Finally, the coordinates (  ,   ) are converted into pixel coordinates (  ,   ) 

as follows: 

           

                                       (32) 

The projection function is used to project the 3D planar control points on to 

pixels in the camera image plane during the calculation of the reprojection error in 

order to determine the accuracy of the camera calibration. This same projection 

function is also used to calculate the pixel coordinates during the construction of 

the fronto parallel plane images by projecting the 3D coordinates     
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                of the fronto parallel plane grid points onto the camera image 

plane in order to determine the image intensity at these points. The projection 

function is also used to project the determined ellipse centers (control points) in 

the fronto parallel plane onto the pixel coordinates of the image in the camera 

plane. 

4.6 Undistortion and unprojection 

The origin of the coordinates in the fronto parallel plane is assumed to be at the 

left top control point (center of the top left circle). Hence, a grid of points 

uniformly spaced located starting at – d and ending at k   d with a spacing of 

d/40 pixels is created in the x and y directions, where d is the spacing between 

two control points and k is the number of control points in each direction. This 

implies that each control point is encapsulated in a region consisting of 40 40 

points. Hence, when these grid points are projected to the 2D camera plane, each 

control point is bounded by a bounding box of 40 40 pixels.  

The pixel intensities at these fronto parallel plane coordinates in the 3D 

coordinate system are required to construct the image in the fronto parallel plane. 

These coordinates are converted into pixel coordinates (  ,  ) using projection as 

described in Section 4.5. The image coordinates obtained henceforth might not 

necessarily be an integer. Hence, the intensities at these non-integer coordinates in 

the image are calculated using bilinear interpolation. The intensities obtained 

from interpolation are assigned to the location corresponding to their respective 
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coordinate in the grid, hence constructing the images in the canonical fronto 

parallel plane. Fig. 7 depicts sample calibration pattern images (left) and their 

corresponding projections onto the fronto parallel plane (right).  

The undistorted, unprojected images in the canonical fronto parallel plane are 

calculated at each iteration (except for the first iteration) using the camera 

calibration parameters that are obtained from the previous iteration. The images in 

the canonical fronto parallel plane are converted into a binary image and an 

ellipse is fit for each pattern using the methods described in Section 4.2.1 and 

Section 4.2.2, respectively. The centers of the ellipses are calculated using (17). 

The coordinates of the centers of the ellipses are back-projected using the camera 

parameters onto the camera plane so that the obtained projected pixel coordinates 

represent the coordinates of the centers of the ellipses in the camera plane. These 

coordinates act as control points for further calculations in the Levenberg 

Marquardt algorithm and for calculating the reprojection error.  
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Fig. 7. Unprojection and undistortion. (Left) Calibration images. (Right) 

Undistorted, unprojected images in the canonical fronto parallel plane. 
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4.7 Calculation of the reprojection error 

Calculation of the reprojection error is performed at every iteration in order to 

verify the improvements due to conversion of the image to a canonical fronto 

parallel plane. The coordinates of the control points obtained after they are 

projected from the fronto parallel plane to the camera plane serve as the detected 

coordinates of control points    . The known 3D coordinates of the control 

points are projected onto the pixels coordinates as explained in Section 4.5. These 

coordinates serve as the determined coordinates of the image    
 .  

The reprojection error is calculated in both the x and y directions according to 

(13) as the standard deviation of the difference between the     and    
   in 

their respective directions. The average error is calculated as follows:    

                √∑ ∑ ‖       
 ‖

  
   

 
     ⁄              (33) 

where N is the number of acquired images for the considered calibration pattern 

and K is the number of control points in each image. 

The uncertainty of focal length determination in the x and y directions 

respectively, dx and dy are given by [31]:   

       √   
                                      

       √   
                                             (34) 

where    
  and    

  are the first and the second diagonal elements of the inverse of 

the Jacobian of     .
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5. EXPERIMENTAL RESULTS 

In this chapter, the experimental results of the proposed camera calibration 

algorithm are presented and analyzed. Section 5.1 introduces the image sets that 

are used to evaluate the performance of the proposed camera calibration method. 

Section 5.2 illustrates the proposed adaptive thresholding in the fronto parallel 

plane. Section 5.3 presents a performance analysis of the obtained camera 

calibration parameters in terms of the reprojection error. Section 5.4 presents the 

camera calibration parameters calculated for the different data sets and Section 

5.5 discusses the effect of control points on the reprojection error and uncertainty. 

5.1 Data set description 

Calibration results are obtained using 6 sets of calibration images.  Datasets 1 to 

5 were generated by taking images of select regions of the circular calibration 

pattern available from [32] using an 8-megapixel camera with an accuracy of 5.5 

microns per pixel, while dataset 6 consists of the images used in the calibration 

scheme of [3]. 

The number of images in datasets 1 to 6 are 20, 25, 25, 15, 15 and 5, 

respectively. Datasets 1 to 3 consist of a calibration pattern of 26 26 circles 

spaced apart from each other at a distance of 0.5 mm and were captured at 

different lighting conditions and different angles. Dataset 4 consists of a 

calibration pattern of 6 14 circles spaced apart from each other at a distance of 

1mm. Dataset 5 consists of a calibration pattern of 6 6 circles spaced apart from  
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Fig. 8. Example of images in Dataset 1. 

each other at a distance of 2 mm. Dataset 6 consists of a calibration pattern of 

9 6 circles 
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Fig. 9. Example of images in Dataset 2. 
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Fig. 10. Example of images in Dataset 3. Highlighted circles are considered. 
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Fig. 11. Example of images in Dataset 4. Highlighted circles are considered. 
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Fig. 12. Example of images in Dataset 5. Highlighted circles are considered. 
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Fig. 13. Example of images in Dataset 6. 
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5.2 Adaptive thresholding in fronto parallel plane 

The algorithm was run on each dataset using the proposed scheme. For 

comparison, results were also obtained using the scheme of [3] on these datasets. 

Skew was assumed to be 0. As indicated previously in Section 4.2, for both 

scheme of [3] and the proposed scheme, in the first iteration, the control points 

were localized in the camera plane by converting the image in the camera plane 

into a binary image with a threshold of 0.5 times the mean intensity of the image 

to form an initial estimate of the camera calibration parameters. The control 

points were localized, from the second iteration onwards, in the fronto parallel 

plane which was constructed from the camera calibration parameters obtained in 

the previous iteration. The images in the fronto parallel planes were sampled such 

that each circle in the calibration pattern occupies an area of 40 40 pixels. In the 

proposed algorithm, the images in the fronto parallel plane were subsequently 

interpolated by a factor of 4 and converted into a binary image using adaptive 

thresholding. Figs. 14 to 19 show, respectively, for the images in Figs. 8 to 13, the 

resulting images in the fronto parallel plane and their corresponding thresholded 

binary images. 

The boundary pixels of each circle in the resulting binary images were 

detected using the Canny edge detector and were used for fitting ellipses and 

localizing control points.  
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Fig. 14. Calibration images of Dataset 1 (Top). Images in fronto parallel plane 

(Middle). Corresponding binary images (Bottom). 
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Fig. 15. Calibration images of Dataset 2 (Top). Images in fronto parallel plane 

(Middle). Corresponding binary images (Bottom). 
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Fig. 16 Calibration images of Dataset 3 (Top). Images in fronto parallel plane 

(Middle). Corresponding binary images (Bottom). 
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Fig. 17. Calibration images of Dataset 4 (Top). Images in fronto parallel plane 

(Middle). Corresponding binary images (Bottom). 

 

 

 

 



 

 

55 

 

 

Fig. 18. Calibration images of Dataset 5 (Top). Images in fronto parallel plane 

(Middle). Corresponding binary images (Bottom). 
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Fig. 19. Calibration images of Dataset 6 (Top). Images in fronto parallel plane 

(Middle). Corresponding binary images (Bottom). 
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5.3 Error plots 

This section shows the error plots of all datasets for the initial and second 

iterations. The initial iteration is performed using the same method as mentioned 

in Section 4.2 for both the scheme of [3] and the proposed algorithm. In the 

second iteration and in the LM iterations that are included within this second 

iteration, the localization of control points is performed in the proposed algorithm 

using ellipse fitting, while in the scheme of [3] the localization of control points is 

performed using template matching with a circular template. Figs. 20 to 25 show, 

respectively for each dataset, the error plots in both the x and y directions for all 

the control points in the considered dataset. The error in the x and y direction was 

computed for each control point using (13) and the average error is calculated for 

each dataset using (33) as discussed in Section 4.7. Figs. 20 to 25 (Top) show the 

error plots resulting after the initial iteration. Figs. 20 to 25 (Bottom) show the 

error plots that are obtained using the proposed scheme at the end of the second 

iteration. For comparison, Figs. 20 to 25 (Middle) show the error plots that are 

obtained at the end of the second iteration using the scheme of [3]. Compared to 

the scheme of [3], it can be seen that the proposed algorithm results in more 

compact error plots and thus in a better performance in terms of average 

reprojection error for all the considered datasets, except for Dataset 6. This is 

because the images in Dataset 6 are low in resolution. The images are highly 

down sampled resulting in heavily distorted circular patterns. 
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Fig. 20. Error plots for Dataset 1. Error plot after the initial iteration (Top). Error 

plot after the second iteration using the scheme of [3] (Middle) and the proposed 

algorithm (Bottom). 
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Fig. 21. Error plots for Data set 2. Error plot after the initial iteration (Top). Error 

plot after the second iteration using the scheme of [3] (Middle) and the proposed 

algorithm (Bottom). 
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Fig. 22. Error plots for Dataset 3. Error plot after the initial iteration (Top). Error 

plot after the second iteration using scheme of [3] (Middle) and the proposed 

algorithm (Bottom) 
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Fig. 23. Error plots for Dataset 4. Error plot after the initial iteration (Top). Error 

plot after the second iteration using scheme of [3] (Middle) and the proposed 

algorithm (Bottom) 
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Fig. 24 Error plots for Dataset 5. Error plot after the initial iteration (Top). Error 

plot after the second iteration using scheme of [3] (Middle) and the proposed 

algorithm (Bottom) 
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Fig. 25. Error plots for Dataset 6. Error plot after the initial iteration (Top). Error 

plot after the second iteration using scheme of [3] (Middle) and the proposed 

algorithm (Bottom) 
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5.4 Camera calibration parameters and average errors 

Tables 2 to 7 show the obtained camera parameters using the proposed algorithm 

and the scheme of [3], including focal lengths fx and fy, deviations in focal lengths 

dx and dy, principal point u0 and v0, lens distortion parameters k1 and k2, and 

tangential parameters p1 and p2. The average reprojection errors are also shown in 

these tables.  

As it can be seen from Tables 2 to 7, the results obtained using the proposed 

scheme produce far less reprojection error as compared to the scheme of [3] for 

all the image datasets, except for Dataset 6.  It should be noted that while 

Datasets 1 to 5 were all obtained by the author of this thesis using a high-

resolution camera and the professional calibration pattern from [32], Dataset 6 

was downloaded online from the authors of [3]. It was observed that while 

Datasets 1 to 5 exhibit blur due to focusing problems that arise when high 

resolution cameras with micron pixel accuracy are employed to focus at a 

particular specific distance from the camera. The images in Dataset 6 exhibit 

distorted circular patterns due to down sampling resulting in noisy distorted 

circular patterns. 
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Table 2. Camera calibration parameters and average reprojection error for  

Dataset 1. 

Parameters Scheme of [3] Proposed scheme 

fx 22279.21346 22090.17777 

fy 22237.09931 22068.23944 

dx 86.35965 38.55928 

dy 87.98418 39.40207 

u0 1683.32276 1623.81378 

v0 1080.33609 1020.10617 

k1 -0.02655 0.01595 

k2 -0.93514 -7.60280 

p1 0.00427 -0.00009 

p2 0.00100 -0.00053 

e 0.046696 0.023234 

It should also be noted that the proposed scheme with a circular pattern 

performs better for Datasets 1 to 5 than the calibration scheme of [3] using a ring 

pattern which is shown in [3] to produce for Dataset 6 around a 13% reduced 

reprojection error as compared to a circular pattern. Also, for all the datasets 

except Dataset 6, the deviations dx and dy are significantly less than those 

produced using the scheme of [3]. This implies that the focal lengths were 

determined more accurately and with less uncertainty using the proposed scheme. 
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Table 3. Camera calibration parameters and average reprojection error for  

Dataset 2. 

Parameters Scheme of [3] Proposed scheme 

fx 22495.35230 21668.50730 

fy 22494.99051 21671.52162 

dx 62.00239 14.45032 

dy 61.88834 14.42153 

u0 1637.29917 1618.75375 

v0 1236.25990 1221.70857 

k1 -4.80223 0.01711 

k2 0.00134 -0.56403 

p1 -0.00022 -0.00013 

p2 0.00000 -0.00080 

e 0.077935 0.021350 
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Table 4. Camera calibration parameters and average reprojection error for  

Dataset 3. 

Parameters Scheme of [3] Proposed scheme 

fx 22498.36237 21835.59509 

fy 22495.07816 21836.32356 

dx 61.02624 18.74047 

dy 60.58802 18.59735 

u0 1690.18413 1675.56625 

v0 1274.28067 1230.10968 

k1 0.02846 0.01520 

k2 -5.45367 -0.46903 

p1 0.00247 -0.00013 

p2 0.00028 0.00000 

e 0.077054 0.028054 
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Table 5. Camera calibration parameters and average reprojection error for  

Dataset 4. 

Parameters Scheme of [3] Proposed scheme 

fx 22009.82137 22521.10968 

fy 21976.86463 22505.50304 

dx 373.93271 74.41609 

dy 374.01785 74.40108 

u0 1619.53946 1627.57246 

v0 1044.23160 1061.08447 

k1 -0.01001 0.00241 

k2 2.06366 0.97474 

p1 -0.00087 -0.00082 

p2 -0.00110 -0.00082 

e 0.110367 0.020158 
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Table 6. Camera calibration parameters and average reprojection error for  

Dataset 5. 

Parameters Scheme of [3] Proposed scheme 

fx 23047.78511 22121.17981 

fy 22952.18854 22101.71821 

dx 1069.38927 471.79760 

dy 1075.30680 479.96649 

u0 1747.25549 1755.78360 

v0 1027.08095 1019.73184 

k1 -0.26535 -0.09988 

k2 27.15547 12.80087 

p1 0.01182 -0.00219 

p2 0.00596 0.00180 

e 0.152554 0.063248 
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Table 7. Camera calibration parameters and average reprojection error for  

Dataset 6. 

Parameters Scheme of [3] Proposed scheme 

fx 287.56758 286.85250 

fy 285.61605 284.06077 

dx 0.88390 1.36138 

dy 0.85942 1.32455 

u0 155.97877 156.41917 

v0 120.44190 120.35511 

k1 0.08862 0.08743 

k2 -0.23298 -0.23179 

p1 0.00806 0.00731 

p2 -0.00266 -0.00247 

e 0.045308 0.069741 
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5.5 Effect of number of control points on reprojection error and uncertainty 

The number of control points was varied by selecting in each view a square region 

that consists of the first n control points in the x direction and the first n control 

points in the y direction where n was varied as shown by the values along the x 

axis in Figs. 26 to 29. 

Fig. 26. And Fig. 27 show the effect of the number of control points n on the 

reprojection error. These figures plot the number of control points n on the x axis 

and the average reprojection error on the y axis for Datasets 3 and 6 respectively, 

for illustration purposes as Dataset 1 was captured by the author of this thesis and 

Dataset 6 was downloaded online from the authors of the scheme of [3]. 

Fig. 28. and Fig. 29. show the effect of the number of control points on the 

mean uncertainty in determining the focal length. These figures plot the number 

of control points n along the x axis and the mean of the uncertainties dx and dy in 

determining the focal length, along the y axis for Datasets 3 and 6, respectively. 

The mean uncertainties were computed using (34) as discussed in Section 4.7. 

From Figs. 26 and 27, it can be observed that the reprojection error increases 

with an increase in the number of control points for both the proposed scheme and 

the scheme of [3]. On the other hand, from Figs. 28 and 29, it can be seen that, as 

expected, the uncertainty decreases as the number of control points increases for 

both the proposed scheme and the scheme of [3].  
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Fig. 26. Number of control points versus reprojection error for Dataset 3 using the 

proposed scheme (red solid line) and the scheme of [3] (blue dashed line). 

 

 

Fig. 27. Number of control points versus reprojection error for Dataset 6 using the 

proposed scheme (red solid line) and the scheme of [3] (blue dashed line). 
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Fig. 28. Number of control points versus uncertainty for Dataset 3 using the 

proposed scheme (red solid line) and the scheme of [3] (blue dashed line). 

 
 

Fig. 29. Number of control points versus uncertainty for Dataset 6 using the 

proposed scheme (red solid line) and the scheme of [3] (blue dashed line).
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6. CONCLUSION 

This thesis contributes to the field of image acquisition and processing in general 

and to the area of camera calibration in particular.  This chapter summarizes the 

contributions of this thesis and proposes several directions for future research. 

6.1 Contributions   

In this thesis, a novel camera calibration system that utilizes multiple views of a 

2D circular calibration pattern, is developed and implemented. The contributions 

of the thesis can be summarized as follows: 

 A novel adaptive thresholding procedure is developed to remove outlier 

pixels that are introduced due to blur and focusing problems. 

 A decision-based ellipse fitting is developed for fitting an ellipse with the 

minimum possible error in the least square sense.  

 This work develops a scheme for the improved localization of the calibration 

control points on circular calibration patterns by means of adaptive 

segmentation and decision-based ellipse fitting in the fronto parallel planes of 

calibration images. 

 The proposed camera calibration algorithm can achieve a reduction in the 

reprojection error as compared to the existing state-of the-art and is shown to 

be more resilient to blur.  

 The proposed method not only can produce a lower reprojection error than 

the state-of-the-art for high-resolution imaging devices, but can also 



 

 

75 

 

determine the camera calibration parameters more accurately, with less 

deviation and uncertainty.  

6.2 Future Research Directions 

Possible future directions of research include the following: 

 Incorporate calibration using ring pattern – The current work focuses on 

camera calibration using only circular calibration patterns. The work needs 

to be extended in the future to also include camera calibration using ring 

patterns. 

 Improve the algorithm to calibrate cameras with low resolution accurately- 

The current algorithm works better than the state-of-the-art method for 

high resolution cameras. The work could be extended to improve the 

calibration of lower resolution cameras as well. 

 Optimize the execution time – The current work uses the Levenberg-

Marquardt (LM) algorithm for non linear optimization of the camera 

calibration parameters. The LM algorithm can be replaced by faster 

algorithms like the dog leg algorithm for faster execution times [33]. 

 Application in 3D reconstruction – The camera calibration parameters 

obtained from the present work could be used for 3D reconstruction.   
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