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ABSTRACT

In recent years, we have observed the prevalence of stream applica-

tions in many embedded domains. Stream programs distinguish themselves

from traditional sequential programming languages through well de�ned in-

dependent actors, explicit data communication, and stable code/data access

patterns. In order to achieve high performance and low power, scratch pad

memory (SPM) has been introduced in today's embedded multicore proces-

sors. Current design frameworks for developing stream applications on SPM

enhanced embedded architectures typically do not include a compiler that

can perform automatic partitioning, mapping and scheduling under limited

on-chip SPM capacities and memory access delays. Consequently, many de-

signs are implemented manually, which leads to lengthy tasks and inferior

designs. In this work, optimization techniques that automatically compile

stream programs onto embedded multi-core architectures are proposed. As

an initial case study, we implemented an automatic target recognition (ATR)

algorithm on the IBM Cell Broadband Engine (BE) [17]. Then integer lin-

ear programming (ILP) [19] and heuristic [18] approaches were proposed to

schedule stream programs on a single core embedded processor that has an

SPM with code overlay. Later, ILP and heuristic approaches for Compiling

Stream programs on SPM enhanced Multicore Processors (CSMP) [20] were

studied. The proposed CSMP ILP and heuristic approaches do not optimize

for cycles in stream applications. Further, the number of software pipeline

stages in the implementation is dependent on actor to processing engine (PE)

mapping and is uncontrollable. We next presented a Retiming technique for

Throughput optimization on Embedded Multi-core processors (RTEM) [14].
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RTEM approach inherently handles cycles and can accept an upper bound on

the number of software pipeline stages to be generated. We further enhanced

RTEM by incorporating unrolling (URSTEM) [16] that preserves all the ben-

e�cial properties of RTEM heuristic and also scales with the number of PEs

through unrolling.
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Chapter 1

INTRODUCTION

Recent years have witnessed the recognition of stream computing as an im-

portant model of computation in many embedded system domains, such as

signal processing, multimedia, and network processing. Stream applications

share common characteristics such as well de�ned independent actors, explicit

exposed data communication, and stable code/data access patterns. Due to

these characteristics, several languages have been developed in the past few

years to model stream applications (formally referenced as stream languages).

Example stream languages include StreamIt [71], CAL [29], CUDA [60], Brook

[13]. Many of these languages model the compute intensive units of a program

as actors and expose the data communication among distinct actors as FIFOs.

Many stream languages in fact implement the synchronous data �ow (SDF)

model of computation.

Processor designers have responded to the high performance require-

ments of stream applications by developing domain speci�c multi-core pro-

cessors. Examples of commercial processors that are aimed at streaming

applications include IBM Cell Broadband Engine (BE) [22] [64], Tilera64

[72], Intel Larrabee [68], Nvidia GeForce series [43], Ageia's PhysX [76], TI

TMS320C6472 [73] and many DSPs. In many of these embedded architec-

tures, SPM has replaced traditional caches for faster access time, smaller chip

area, and lower power/energy consumption. In an SPM enhanced design, the

workload of dynamic management of the limited on-chip SPM is shifted from



the hardware side to a programmer or compiler. Data and code transfers

among various memory elements are realized through direct memory access

(DMA) engines and are completely software managed.

Current design frameworks for developing stream applications on SPM

enhanced embedded architectures typically do not include a compiler that

can automatically address the limited on-chip SPM and memory access delays

and e�ciently perform partitioning, mapping and scheduling under various

design trade-o�s. Consequently, many designs are implemented manually. In

a manual design, the programmer has to manage the code and data transfers

among various memory elements during the entire program life time. Due

to the limited on-chip SPM capacity, code overlay and data overlay schemes

have to be implemented for sharing the same physical memory with di�er-

ent code/data segments. To amortize memory access delays, double bu�ering

(DB) for overlapping data communication with computation has to be evalu-

ated. The introduction of double bu�ering scheme requires storing an extra

copy of data, which could result in additional code and data overlay overhead.

Given the challenges and various design trade-o�s discussed above, manual

development of stream programs on SPM enhanced architectures often leads

to lengthy design time and inferior quality designs.

In this dissertation, we propose optimization techniques that automat-

ically compile stream programs onto embedded multicore architectures. As an

initial case study, we implement an automatic target recognition (ATR) algo-

rithm on the IBM Cell BE [17]. Then integer linear programming (ILP) and

heuristic approaches are proposed to schedule stream programs on a single core

embedded processor that has an SPM with code overlay [19] [18]. Later, ILP

2



and heuristic approaches for Compiling Stream programs on SPM equipped

Multicore Processors are studied (named as CSMP ILP and CSMP heuristic

respectively) [20]. The CSMP ILP and heuristic approaches cannot optimize

feedback cycles in stream programs and also could result in very deep software

pipeline stages. We next present a Retiming algorithm for Throughput opti-

mization on Embedded Multicore processors (named as RTEM) [14]. RTEM

heuristic inherently optimizes feedback cycles and allows a user to specify the

number of software pipeline stages to be generated. RTEM heuristic relies

on the existing parallelism in an application therefore may not scale with

the number of PEs of an embedded multicore processor. Finally, we provide

Unrolling and Retiming of Stream programs on Embedded Multicore proces-

sors (URSEM) that preserves all the bene�cial properties of RTEM and also

scales with the number of PEs.

Since StreamIt language and IBM Cell BE are used throughout our

experiments as the software and hardware speci�cations, we begin with a

discussion that introduces both of them.

1.1 StreamIt Language

We adopted StreamIt language from MIT [71] as the input speci�cation to our

experiments. StreamIt programs implement the synchronous data �ow (SDF)

model of computation [49]. Four basic structures, namely �lter, pipeline, split-

join, and feedback-loop are provided by StreamIt to construct a stream pro-

gram. The actors/�lters1 in an SDF represent small compute intensive units

in a stream application. The edges in an SDF stand for data communica-

1Filter is the formal name for an actor in a StreamIt program. We use actor and �lter
interchangeably in this chapter.
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FileReader 
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roundrobin(2,1) 

duplicate(1,1) 
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FileWriter 
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S1 

J1 

S2 

J2 

Figure 1.1: StreamIt program example.

tion/FIFOs among actors. At each iteration, an actor consumes a constant

amount of data from its incoming edges and produces a constant amount of

data to its outgoing edges. We require the SDF to be consistent [49] in our

technique. In fact, all legal StreamIt programs are consistent by default. In

other words, there exists a steady-state execution state for a valid stream pro-

gram. In Figure 1.1 we provide an example of a simple stream program. In the

�gure, FileReader and FileWriter handle the I/O operations of the program.

FileReader pushes one token (denoted by push 1) to its outgoing edge in each

execution and thus serves as a token source. FileWriter consumes one token

from its incoming edge in each execution and serves as a token sink. There

are two split-join structures in the program, one consists of two roundrobin

�lters (S1 and J1) and the other is constructed with a pair of duplicate and

roundrobin (S2 and J2). roundrobin and duplicate �lters are built in data �ow
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Table 1.1: Benchmark Speci�cations

Benchmark Names Number of Actors Number of Edges

Beamformer 56 58
Bitonicsort 40 46
Channelvocoder 55 70
DCT 40 69
DES 53 60
FFT 17 16
Filterbank 85 99
Fmradio 43 53
MPEG2-Subset 23 26
Serpentfull 120 128
TDE 29 28
Vocoder 116 150

Average 56 67

∗The size of Bitonicsort is 8 points. The size of DCT is 8 by 8, and the size of
FFT is 256 single precision complex points.

�lters in the StreamIt language. The weight array attached to each roundrobin

or duplicate denotes the data tokens it pops (J1, J2) from its incoming edges

or pushes (S1, S2) to its outgoing edges in each execution. The di�erence

between a roundrobin �lter and a duplicate �lter is that a roundrobin only

collects or splits data tokens according to its weight array while a duplicate

�rst replicates each token according to its weight array and then splits them

to its outgoing edges.

Twelve benchmarks that are delivered with StreamIt compiler version

2.1.1 will be used extensively to in our experiments. Table 1.1 details the char-

acteristics of each benchmark. The �rst column provide us with the benchmark

names. The second and third columns provides us with the number of actors

and edges in each benchmark. The last row calculates the average for each

column.
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Figure 1.2: IBM Cell BE architecture overview.

1.2 IBM Cell BE

IBM Cell BE was used as the target architecture to evaluate the e�ciency of

our techniques. IBM Cell BE is a heterogeneous multicore processor collab-

oratively developed by IBM, Sony and Toshiba [64]. Figure 1.2 provides an

architecture overview of this architecture. There are nine processing elements

with one PowerPC Engine (PPE) and eight Synergistic Processing Engines

(SPEs) [33]. PPE in the Cell BE is a 64-bit dual issue, dual threaded, in-

order processor. It works as a control plane that launches tasks on SPEs.

Eight SPEs run as high performance data processing planes. Each SPE has a

128×128 bit register �le and supports single instruction multiple data (SIMD)

operations. Each SPE also hosts an SPM of 256 KB that is formally referred

as the SPE local store. A four-ring structured element interconnect bus (EIB)

[44] connects the PPE, eight SPEs, and the memory controllers, providing a

cumulative bandwidth of over 204.8 GBps. Direct memory access or DMA
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(which can be launched by either the PPE or an SPE) is the primary mech-

anism for communicating between the local store of two SPEs or between an

SPE local store and the o�-chip PPE main memory2. The non-blocking na-

ture of a DMA engine permits the amortization of communication overhead

by concurrent computation. In the IBM Cell BE architecture, up to sixteen

independent DMAs can be launched simultaneously by each initiating core.

As the software controlled memory management is one of the key fea-

tures of Cell BE, we characterize the performance of the DMA engine in Figure

2The CELL BE also supports signals and mail boxes for inter-SPE and PPE-SPE com-
munication. However, these are primarily useful for synchronization for very small data
items. As we are more concerned about large data items we focus on DMA.
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1.3. The plot consists of two types of curves. The DMA list curves (4 in num-

ber) and the sequential DMA curve. DMA list as the name suggests denotes

that a list of DMA requests was transferred with one command to the DMA

engine. The DMA list curve of 8 bytes denotes that each DMA in the list was

for 8 bytes. Similarly, the DMA list curve of 16, 32 and 64 denotes the size of

each entry in the DMA list. The x-axis represents the total size of the DMA

list request. The number of entries in a DMA list curve can be determined

by dividing the x-axis index by the DMA list size of the curve. Finally, the

sequential DMA curve denotes that a single DMA was initiated. Notice that

both the x-axis and y-axis are on logarithmic scale with bases of 2 and 10,

respectively.

1.3 Contributions

The contributions of this dissertation are summarized below:

• We design and implement an ATR algorithm [17] on the IBM Cell BE

(Chapter 2). Eight optimizations that exploit both the speci�c algo-

rithm constructs of the ATR algorithm and the architectural features of

the Cell processor were implemented. The latency of the �nal Cell BE

implementation is more than 25 times faster than the fully optimized

PPE implementation and almost 20 times faster than our best e�orts

on a Pentium4 CPU. This initial manual design validates the computing

power of the Cell BE. It also reveals the overheads and bottle-necks that

are involved in developing stream applications for embedded architec-

tures with SPMs.
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• We propose ILP [19] and heuristic [18] approaches that schedule stream

programs on a single core embedded processor that has an SPM with

code overlay (Chapter 3). The three-stage ILP approach extensively

explores the design alternatives with di�erent schedules, code/data par-

titions, and actor to region/segment assignments. Experimental results

demonstrate that our ILP approach is able to e�ciently explore vari-

ous design trade-o�s and generate high quality solutions. Although the

ILP approach generates high quality solutions, it could take a very long

time to run due to the problem size. A fast heuristic algorithm that

e�ciently balances between a minimum bu�er schedule and a minimum

actor switching schedule, and solves the same problem with comparable

results in a matter of seconds is also discussed.

• We present ILP and heuristic approaches for automatic compilation of

stream programs onto embedded multicore processors that incorporate

SPMs [20] (Chapter 4). In the ILP approach (CSMP ILP), fusion and �s-

sion operators are implemented by assigning actors to batches and then

batches to PEs. The ILP formulation models both the code overlay and

communication overheads under the constraint of limited on-chip SPM

capacities and memory access delays. Experimental results show that

CSMP ILP approach is able to e�ectively balance the computation and

communication overheads when mapping stream programs onto multi-

core architectures. To overcome the long algorithm run time of CSMP

ILP approach, we also provide a fast heuristic approach (CSMP heuris-

tic) that solves the same problem with comparable results in a matter

of seconds.
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• CSMP ILP and heuristic approaches assume absence of feedback cycles

in the program. The number of software pipelines stages being gener-

ated in the �nal schedule is uncontrollable. In Chapter 5, we propose a

fast heuristic (RTEM) that schedules stream programs onto SPM based

multicore processors through retiming [14]. Trade-o�s between double

bu�ering and code overlay are explored intensively in this approach.

More importantly, the retiming approach inherently handles feedback

cycles and it can accept a user speci�ed upper bound on the number of

software pipeline stages.

• When the number of PEs is very large and the existing parallelism in a

stream program is comparably limited, RTEM heuristic fails to generate

high quality solutions. In Chapter 6, we present unrolling and retim-

ing of stream formats onto embedded multicore processors (URSEM) as

our last optimization. URSEM preserves all the bene�cial properties of

RTEM heuristic and scales with the number of PEs. Apart from code

overlays for addressing limited on-chip SPM capacities, code pre-fetching

and data overlays are also introduced to address the increased code and

data requirement caused due to unrolling.
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Chapter 2

DESIGN OF AN ATR ALGORITHM ON IBM CELL BROADBAND

ENGINE

This chapter presents the design and optimization of an ATR algorithm on the

IBM Cell BE. The ATR algorithm and the Cell BE are good representatives

of stream applications and domain speci�c multicore processors. ATR belongs

to the important class of signal processing algorithms that are widely utilized

in Radar and electronic surveillance systems. The Cell BE is aimed at stream-

ing applications that exhibit limited run time or dynamic variation during

execution. Stream applications permit aggressive static or design time opti-

mizations for maximizing their performance. The Cell BE designers recognized

this fact and incorporated a 256KB local store or scratch pad for each SPE

instead of caches. The local store is shared for both code and data, that are

fetched under software control through DMAs. Thus the well know problems

of functional partitioning, load balancing, communication versus computation

trade-o�s that are encountered during parallelization of an application must

now be addressed in the context of a software controlled memory hierarchy.

It is this additional complexity that makes designing applications on the Cell

BE a daunting task. This chapter presents eight optimizations that are also

applicable to other applications and processors that demonstrate similar char-

acteristics. The contributions of the chapter include:

• Design of an ATR algorithm on the Cell BE.

• A detailed discussion of four basic categories of optimizations and their

e�ects.



• An optimized scheme for Frequency Domain Filtering (FDF) with sym-

metric kernels.

• A generic design �ow for porting streaming applications onto domain

speci�c multicore architectures.

We begin with an introduction to the ATR algorithm in 2.1. We discuss previ-

ous work on optimizing applications on the Cell BE in Section 2.2. In Section

2.3 we discuss the design and optimization of a reference implementation of the

ATR algorithm on an Intel Pentium4 based PC platform along with detailed

pro�le analysis. The design �ow of porting the ATR algorithm to the Cell BE

along with various optimizations are presented in Section 2.4. We analyze the

experimental results in Section 2.5 and summarizes in Section 2.6.

2.1 Automatic Target Recognition

Automatic target recognition (ATR) algorithms belong to the class of high per-

formance computation intensive image processing algorithms that are widely

used in applications such as target detection, radar processing, and pattern

recognition. In this chapter, we present an optimized implementation of the

detection algorithm proposed by David Casasent and Anqi Ye [17]. Their ATR

algorithm is a fusion of several detection algorithms. A high-level �ow of the

algorithm is given in Figure 2.1 and the short descriptions for each stage are

provided in Table 2.1. In Figure 2.1, the morphological �lter detects both

the objects and the edges from an input image. The wavelet transform �lter

that can execute in parallel with the morphological �lter extracts the edges.

A weighted subtraction therefore gives us only the detected objects. The
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Figure 2.1: ATR algorithm overview.

following threshold operator removes the background noises and the dilation

operator recovers the shape of the objects. A third branch in the algorithm,

namely the Gabor basis functions based detection �lter utilizes a pre-trained

kernel to do a frequency domain �ltering (FDF) and outputs the detected ob-

jects. A grayscale fusion of the two branches reduces the false alarm rate PFM

while trying to maintain the object detection rate PD. In the �nal stage, the

peak sorting operator further erases potential false detections.

2.2 Previous Work

ATR [9][10] are high performance signal processing applications that perform

automatic target acquisition, identi�cation, and tracking. Due to their high

performance requirements, ATR algorithms have been traditionally imple-

mented on recon�gurable logic based systems [67][23]. Researchers have also

explored specialized support vector machine implementations for ATR [78].

The recent advent of commercially available specialized multi-core processor

architectures o�er exciting new platforms for implementation of ATR. However
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Table 2.1: Stages in the ATR allgorithm.

Dilation Di = MAXi−K≤j≤i+KAj

Erosion Ei = MINi−K≤j≤i+KAj

Closing Dilation - Erosion
Opening Erosion - Dilation
HCMO Horizontal Closing - Opening
VCMO Vertical Closing - Opening
Gray Scale Fusion Gi = MIN(Ai, Bi)

Gaussian Smoothing
GS(A) = IFFT (B)
B = FFT (A) ∗ FFT (K)
K is a Gaussian Kernel

Di�erence Di = Ai −Bi

Threshold
Ti = 0, if Ai < T

Ai, if Ai > T

Gabor Wavelet
Gi =

∑S
j=−S Ai+j ∗Ki+j

K is a Gabor Kernel

Magnitude
Mi = Ai, if |Ai| > T

0, otherwise

Clip High Values
Ci = 0, if Ai > T

Ai, if Ai < T
Squaring Si = A2

i

2-D Dilation Horizontal dilation followed by vertical dilation

Gabor Basis Functions

GB(A) = IFFT (B)
B = FFT (A) ∗XK

XK =
∑
αi ∗ FFT (Ki)

Ki is a Gabor Basis Kernel (GBK)
αi is weight of GBK

Peak Sorting

Iteratively do:
1 detect object
2 delete object
3 delete its neighborhood

to the best of our knowledge, we are not aware of any existing implementation

of ATR on such processor architectures.

In recent past, researchers have designed several optimized implemen-

tations of stream applications on the Cell BE. In the following we discuss a few

representative implementations. Kato et al. [42] implemented a real time dig-
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ital media application on the Cell BE. Petrini et al. [63] ported the Sweep3D

application on the Cell BE. More recently, Baker et al. [4] designed a scalable

implementation of the H.264 decoder on the Cell BE. The design experience

and optimizations utilized by existing research are relevant for developing any

application on the Cell BE. This chapter proposes optimizations that are par-

ticularly aimed at exploiting the unique algorithmic characteristics of the ATR

application.

Researchers have begun to recognize the daunting challenge of develop-

ing applications on the specialized multi-core processor architectures such as

the Cell BE. Eichenberger et al. [27] [28] proposed compiler techniques such as

memory alignment, branch prediction, SIMDization, thread level parallelism,

and data management for alleviating the task of programming the Cell BE.

Maeda et al. [53] proposed a multi-layered programming model and a real time

resource scheduler. Fatahalian et al. [30] presented a programming language,

Sequoia, to facilitate the management of memory hierarchy when developing

program with multi-level parallelism. Despite all the e�orts that are involved,

automated techniques for obtaining optimized parallel implementations on the

Cell BE are still in their infancy and not close to commercial deployment.

2.3 Reference Implementation on Pentium4 PC

We �rst implemented the ATR algorithm on our host PC with a 3.2GHz Intel

Pentium4 CPU. The original implementation demonstrated a latency of 3.26

s for a 512 × 512 pixel image with 6 distinct objects (varying from 2 × 4 to

10 × 4 pixel size) that were detected. Column 2 of Table 2.2 gives a break

down of the run time for various stages of the algorithm. As we can see
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from the table, the three frequency domain �ltering (FDF) modules namely

CMO Gaussian, Wavelet Gaussian and Gabor Basis Functions dominate the

run time as each of them takes approximately 900 ms to complete. FDF

modules contain one 2-dimensional Fast Fourier Transform (FFT), one point-

wise matrix multiplication, one 2-dimensional inverse FFT (IFFT), and some

miscellaneous functions for type casting and image normalization. Hence, we

optimized the code for FFT and IFFT �rst. In particular, we applied two

optimizations. The original FFT implementation accepted complex inputs.

However, the image data only has real coe�cients with imaginary parts as zero.

Further, the FFT calculation has a symmetric kernel for real and imaginary

parts of the data. Thus, we can pack two data points into one complex data,

and reduce the number of calculations by a factor of 2. Additional data re-

organization are required to recover the correct result. The improvements

due to this optimization are depicted in Column 3 with gray shaded cells.

We applied similar optimizations for IFFT. As our second optimization, we

pre-computed the FFT and IFFT twiddle factors and accessed them by table

look-up. The improvement due to this optimization over the previous step is

depicted in Column 4 with gray cells. Figure 2.2 depicts the overall approach.

After the application of these two optimizations the run time of the ATR

algorithm reduced to 1.33 s.

2.4 Design of ATR on the IBM Cell BE

We utilized the Sony Playstation3 (PS3) with Fedora 7 as the target platform.

The Cell BE has 8 SPEs. However, in PS3 only 6 of them are available to

the programmer. In this section we discuss the various optimizations that
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Table 2.2: Pro�le Analysis of ATR on host PC and PPE.

Functions
Run Time (ms)

PC PPE
Original FDF FDF Original VMX FDF FDF

Real Coe�. Real Coe�.

Read Image 1.38 1.38 1.38 1.06 0.86 0.86 0.86
HCMO 207.52 207.52 207.52 106.71 106.71 106.71 106.71
VCMO 144.27 144.27 144.27 132.65 132.65 132.65 132.65
CMO Fusion 3.97 3.97 3.97 3.82 1.90 1.90 1.90
CMO Gau. 907.9 517.24 267.9 3964.30 1992.68 1072.45 412.54
Gabor Wavelet 105.05 105.5 105.5 185.66 161.51 161.51 161.51
Detect& Clip 1.13 1.13 1.13 1.80 1.80 1.80 1.80
Wavelet Gau. 904.47 514.16 264.47 3962.79 2000.84 1070.81 410.67
Squaring 2.58 2.58 2.58 10.56 5.78 5.78 5.78
Di�erence 16.8 16.8 16.8 16.59 6.45 6.45 6.45
Threshold 1.04 1.04 1.04 3.91 3.91 3.91 3.91
Dilation 41.37 41.37 41.37 27.69 27.69 27.69 27.69
GBF 906.80 506.65 256.87 4052.68 1997.55 1087.74 407.23
Fusion 2.17 2.17 2.17 1.90 1.90 1.90 1.90
Peak Sorting 13.01 13.01 13.01 6.25 6.25 6.25 6.25
Write Image 0.55 0.55 0.55 3.68 2.41 2.41 2.41

Total Run Time 3260.01 2079.70 1330.01 12482.05 6450.89 3690.82 1690.26

∗The cell with gray background indicates that the function run time is reduced
by the current optimization.

were applied to achieve a high performance implementation of the ATR on

the Cell BE. There are a total of eight optimizations that are categorized into

4 basic classes: data parallelism (application mapping), computation accelera-

tion (FFT, SIMD), communication acceleration (matrix transpose, pre-touch

memory, mailbox), and communication overhead amortization (double bu�er-

ing, small function relocation). The various optimizations exploit both the

algorithmic characteristics of the ATR application and speci�c architectural

features of the Cell BE. As a �rst step toward porting ATR onto the Cell BE,

we obtained an implementation solely on the PPE (denoted by PPE-Ori).

2.4.1 Porting ATR to PPE

Column 5 of Table 2.2 gives the performance of the original implementation

on the PPE which was 12.48 s. This latency is much higher than the original
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PC implementation as the PPE has a relatively simpler architecture that does

not support out of order execution. We next compiled the program such that

the Vector Multimedia Extensions (VMX) on the PPE were utilized (Column

6 of Table 2.2). Finally, FDF speci�c optimizations were applied (Columns 7

and 8 of Table 2.2). The �nal run time of the implementation was 1.69 s.

2.4.2 Parallelized implementation of ATR

In the following subsections we discuss the 8 optimizations that were applied

for obtaining a parallelized implementation of ATR on the Cell BE. In the fol-

lowing the various optimizations are discussed in the order in which they were

applied in the case study. Table 2.3 depicts the performance improvements

that were obtained by application of each optimization.

2.4.3 Application parallelization on 6 SPEs

We exploited the inherent data parallelism in the ATR algorithm for mapping

it to 6 SPEs. The 512 × 512 input image was divided into 128 block each of

size 4× 512 for the morphological operations. Figure 2.3 illustrates this data

partition scheme. Similarly for the FDF, the input image was divided into 512

blocks with the size of 1× 512 for each block. Note that in both the partition

schemes, either 4 × 512 (type of unsigned char) or 1 × 512 (type of �oat),

the size of each data piece is 2KB. This data size was selected in favor of the

DMA/DMAList performance as discussed in Section 1.2. The latency of the

�rst parallel implementation was 0.797 s (Column 2 of Table 2.3). Column 2

of Table 2.4 gives break-up of the communication and computation overheads

for a few critical functions.
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2.4.4 Double bu�ering

Double bu�ering as the name suggests doubles the amount of memory utilized

for communication between PPE and SPE. Essentially, while the SPE may be

operating upon data in bu�er 0, a DMA operation may be loading new data

in bu�er 1 from PPE. Similarly while the SPE may be writing to bu�er 0, a

DMA may be transferring data from bu�er 1 to PPE. Double bu�ering enables

amortization of communication overheads by overlapping it with computation.

Double bu�ering is a well known mechanism for data memory management in

software controlled memory systems. Double bu�ering can also be considered

as pipelining of data reading, computation and data writing stages. Similar

to pipelining, it also has a "warm up" and "drain out" time which should be

ideally as small as possible. However, we also need to take the DMA/DMAList

performance into account (Section 1.2). Consequently, a granularity of 2KB

was selected to implement our double bu�ering scheme.

Column 3 in Table 2.3 gives the improvement achieved due to double

bu�ering. As the results indicate double bu�ering only gave us incremental

improvement to 0.769 s. Column 3 of Table 2.4 shows the same trend. This

poor improvement was later diagnosed to high translation look aside bu�er

(TLB) and page table entry (PTE) misses overhead. Once these misses were

eliminated the overall performance showed a signi�cant improvement. Further

details that addresses pre-touching of memory are discussed in Section 2.4.9.
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2.4.5 2-D FFT

We utilized the 1-D FFT kernel �t_1d_r2 from the IBM SDK 3.0 to compute

the 2-D FFT on the SPE. Figure 2.4 plots the performance of the �t_1d_r2

kernel. As it is written in assembly, it demonstrates a performance of 5.62

µs for a 1024 point FFT. However, it also posed several di�culties when it

was utilized to implement a 2-D FFT. First, To compute 2-D FFT on the

whole image, two sequential executions of the �t_1d_r2 kernel and 2 matrix

transposes are required. Figure 2.5, Algorithm 1 line 1 ∼ line 4 illustrates this

basic scheme. Second, �t_1d_r2 only takes complex input with each element

represented by a pair of < real, imag >, indicating that additional data re-

formulation is required. In our implementation, we utilized the spu_shu�e

intrinsic to e�ciently re-format the data. We also managed to remove two

matrix transposes from the FDF by modifying the �ow as illustrated in Figure

2.5, Algorithm 2. The optimizations reduced the run time of each FDF module

by almost half. The pro�le analysis is shown in Column 4 of Table 2.3. Column

3 of Table 2.4 gives the corresponding computation time and communication

time. Since the FDF modules only work on half the data compared to the

previous step, the data communication time also showed a large reduction.

Consequently, we achieved an overall 34% performance improvement at this

step.

2.4.6 Matrix transpose

There are two matrix-transpose operations in each FDF module. We �rst

utilized DMAList to fetch 128 bit data for each column, that is 512x4 floats,

and then transpose them back as 2 rows. Figure 2.6 (A) gives an overview
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of this scheme. The shape change is due to the representation of a complex

data point. However, this simple scheme has a very big problem: for each

single DMA inside the DMAList, the data size is only 128 bit, and 7 out of

8 of them are not 128 Bytes aligned. Both these aspects greatly impacted

the performance [45]. The resulting matrix-transposes were so expensive that

they took more than 40% of the total run time. Observing that the bottle-

neck comes from the DMAList operations, our second implementation gathers

32x32 �oats from the PPE main memory, transposes them, and puts them

back as 16x64 �oats, as illustrated in Figure 2.6 (B). In the new approach, the

data communication for the FDF module dropped down by more than half as

shown in Column 5 of Table 2.4. The overall performance was improved by

35% as reported on Column 5 of Table 2.3.

2.4.7 Small function relocation

In this step we analyzed the computation granularity of non-performance in-

tensive functions. Speci�cally, functions whose execution on the PPE could be

hidden by other functions executing in parallel on SPE were assigned to PPE.

Further, if the data transfer time for some functions executing on SPE was

greater than their run time on the PPE, they were also assigned to the PPE.

Figure 2.7 shows the �nal parallel schedule for execution of the application on

the Cell BE. A module that is labeled as SPE in the �gure executes in parallel

across the 6 SPEs. A module that is not labeled executes on the PPE. Further,

the "syn" module denotes barrier synchronization. Figure 2.8 gives the sched-

ule for execution of high level modules (namely CMO Gaussian smoothing,

Wavelet Gaussian smoothing, Gabor basis function detection). Column 6 of

Table 2.3 illustrates the impact of this optimization. The cells marked with '-'
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denote that after small function relocation, these functions were either hidden

by the execution of other functions, or they were combined to the end of the

FDF modules.

2.4.8 SIMD & loop unrolling

There are two approaches that can be applied for code vectorization on the

Cell BE, namely, manual vectorization or the IBM xlc compiler. The xlc com-

piler reduces the e�ort required for vectorization. However, in our experience

the compiler was not found to be very e�ective as manual optimizations out

performed the compiler generated code. Consequently, functions that were

computationally intensive were vertorized/unrolled manually. On the other

hand, less computationally intensive functions were optimized by the xlc com-

piler in our implementation. Column 7 of Table 2.3 and Column 6 of Table

2.4 detail the e�ects of this optimization.

2.4.9 Pretouch memory

There are two basic categories of memory hierarchy misses occurring in our

code, namely TLB (Translation Lookaside Bu�er) misses, and the PTE (Page

Table Entry) misses. The TLB misses always take place when the SPEs �rst

get started. We reference this delay by TLB warm-up time. As soon as

the TLB table gets �lled up, this delay disappears. The TLB warm-up time

is predictable, and more or less stable. This delay in our implementation is

hidden by the computation of "HCMO" and "Gabor Wavelet" through double

bu�ering.

Besides TLB warm-up time, normal TLB misses also occur in the pro-

gram. Normal TLB misses are unpredictable and thus hard to eliminate. Pre-
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touching the memory can substantially reduce the overhead. Pre-touching

implies that the memory is accessed but not operated upon. Pre-touching by

the PPE ensures that the required page is in the main memory. Pre-touching

by SPE ensure that the TLB entry is upto date. Pre-touching is scheduled to

occur earlier than the execution of the DMA/DMAList transfers that actually

access the page.

PTE misses are handed over to the operating system as an interrupt.

Therefore, the processing time for PTE misses are much higher than TLB

misses. This overhead could be thousands of micro-seconds compared to sev-

eral micro-seconds for TLB misses. We discovered that PTE misses happen

when a certain memory location is referenced by the SPEs for the �rst time

before any PPE functions touch the same memory. Therefore, we managed

to eliminate PTE misses by pre-touching the memory with PPE. Those op-

erations were able to bring the run time down to 0.087 seconds. Examining

the computation and communication time of each function in Table 2.4, we

obverse that after this step, the communication time became smaller than the

computation time for most of the functions mapped to the SPEs. The full

impact of double bu�ering was realized after this optimization.

2.4.10 Mailbox communication

Mailbox communication is utilized to implement all synchronizations in our

design. Experiments on the Cell processor showed that the classic mailbox

implementation could take thousands of micro-seconds in the worst case. This

unpredictable behavior resulted in degraded performance of our code. We ex-

amined several alternative implementation strategies including signaling, prob-

lem state area mapped mailbox, and DMA. The problem state area mapped
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mailbox implementation turned out to be the best solution with more than

5×105 rounds of synchronization per second between the PPE and 6 SPEs. A

detailed pro�le of problem state area mapped mailbox performance is shown

in Table 2.5. After the application of this �nal optimization, the run time of

our program dropped down to less than 70 milliseconds as detailed in Column

9 of Table 2.3.

2.5 Experimental Results

In our �nal implementation, the code and data adds up to 131.625 KB for each

SPE, which indicates that we have more than 120 KB of local store memory

left for the stack and heap. Figure 2.9 summarizes the performance impacts

of various optimizations on Pentium4 based PC, on PPE only, and on Cell

processor across one PPE and 6 SPEs. The �nal run time coupled with the

computation/communication time for each process is shown in Figure 2.10.

As we can see from the �gure, HCMO, VCMO and 2-D Dilation take up to

40% of the total run time in the �nal implementation. There are two reasons.

First, the Dilation and Erosion operators that serve as the basic modules for

the CMO and 2-D Dilation processes are sequential operations. Consequently,

SIMDization has limited impact. Second, the Dilation and Erosion consist of

conditional branches, which cannot be handled e�ciently on SPEs that are

primarily aimed at stream applications.
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2.6 Summary

We presented a detailed case study of designing an ATR algorithm on the

Cell BE in this chapter. Various optimizations that exploited both the unique

features of the application as well as the target architecture were presented.

The optimizations are applicable to other algorithms and architectures that

have similar features as ATR and the Cell BE. The �nal implementation shows

a latency of 0.07 s on a PS3 platform with 6 SPEs. The optimized performance

was almost 20 times faster than our best e�orts on a Pentium4 CPU. The

achieved performance validates both the impact of our optimizations and the

processing capabilities of the Cell BE.
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Algorithm: 2 Dimensional Real FFT

Row FFT
/*ROWij denotes the ith row, jth element in the image, R and I are one
dimensional arrays that store the real and imag inputs of IDFFT*/
1 for i from 0 to 256
2 for j from 0 to 511
3 Rj = ROW2i,j, Ij = ROW2i+1,j

4 endfor
/*R and I are input arrays of 1DFFT, tempR and tempI are output arrays*/
5 1DFFT(R, I, 512, tmpR, tmpI)
6 R512 = R0, I512 = I0
/*R′ and I ′, 2 dimensional arrays that store the results of 1DFFTs*/
7 for j from 0 to 511
8 R′2i,j = tmpRj + tmpR512−j, R′2i+1,j = tmpIj + tmpI512−j

9 I ′2i,j = tmpIj − tmpI512−j, I ′2i+1,j = tmpR512−j − tmpRj

10 endfor
11 endfor
12 Matrix Transpose
Col FFT
13 for i from 0 to 256
14 for j from 0 to 511
15 Rj = R′i,j, Ij = I ′i,j
16 endfor
17 1DFFT(R, I, 512, tempR, tempI)
18 for j from 0 to 511
19 R′i,j = tempRj, I ′i,j = −tempIj
20 if i 6= 0 and i 6= 256 /*recover the other half of the image*/
21 R′512−i,512−(j+1) = tempRj

22 I ′512−i,512−(j+1) = −tempIj
23 endif
24 endfor
25 endfor

Figure 2.2: 2-Dimensional real FFT.
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Figure 2.3: Data partition for the morphological �lter

Table 2.3: Pro�le Analysis of ATR on PPE and SPEs.

Functions

Run Time (ms)
SPE SPE SPE SPE SPE SPE S/PPE S/PPE
Orig. Double Real & Matrix Small Simd PreTouch Mailbox

Bu�ering Coef. Trans. Func. Memory

Read Image 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
HCMO 44.72 36.65 36.65 36.65 32.26 32.26 17.75 13.72
VCMO 29.49 22.37 22.37 22.37 21.52 21.52 14.18 13.20
CMO Fusion 1.90 1.90 1.90 1.90 1.90 1.90 0.61 0.61
CMO Gau. 219.65 214.23 133.25 68.35 65.72 62.87 7.28 4.23
Gabor Wavelet 8.29 8.29 8.29 8.29 4.15 4.15 4.15 3.75
Detect & Clip 1.80 1.80 1.80 1.80 - - - -
Wavelet Gau. 227.21 221.10 124.73 63.21 57.38 57.24 7.26 3.99
Squaring 5.78 5.78 5.78 5.78 - - - -
Di�erence 6.45 6.45 6.45 6.45 - - - -
Threshold 3.91 3.91 3.91 3.91 - - - -
Dilation 45.32 31.43 31.43 31.43 31.43 31.43 18.49 17.03
GBF 190.82 204.22 121.65 72.16 49.84 46.99 7.91 3.78
Fusion 1.90 1.90 1.90 1.90 - - - -
Peak Sorting 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25
Write Image 2.41 2.41 2.41 2.41 2.41 2.41 2.41 2.41

Total Time 796.76 768.55 509.63 333.72 279.80 267.88 87.15 69.83

∗The cells colored with gray indicate that the function is a�ected by the current
optimization. The cells marked with '-' indicates the function execution is
hidden by the execution of other functions, or padded to the end of the FDF
modules.
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Table 2.4: Computation/Communication Latency Comparison.

Functions

Computation/Communication Time (ms)
SPE SPE SPE SPE SPE S/PPE
Original Double Real & Matrix SIMD Pretouch

Bu�ering Coef. Small Func Mailbox

HCMO 12.77/20.14 12.77/17.23 12.77/17.23 12.77/17.23 12.77/17.23 12.77/0.24
VCMO 11.84/8.90 11.84/6.60 11.84/6.60 11.84/6.60 11.84/6.60 11.84/0.16
CMO Gau. 18.31/165.05 18.31/161.05 5.12/117.50 5.74/54.72 3.12/54.72 3.12/1.75
Wavelet Gau. 18.20/161.75 18.20/176.3 4.46/101.3 4.79/49.57 3.04/49.57 3.04/1.69
Dilation 16.52/18.30 16.52/12.13 16.52/12.13 16.52/12.13 16.52/12.13 16.52/0.33
GBF 18.46/149.54 18.46/154.49 5.25/97.70 5.41/36.54 3.18/36.54 3.18/1.62

∗The cells colored with gray indicates that either the run time or the commu-
nication time of the function were e�ected by the current optimization.
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Figure 2.4: �t_1d_r2 pro�le on one SPE.
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FDF Algorithm 1 FDF Algorithm 2
1 Row 1DFFTs 1 Row 1DFFTs
2 Image Transpose 2 Image Transpose
3 Column 1DFFTs 3 Column 1DFFTs
4 Image Transpose 4 Multiply Transposed Kernel
5 Multiply Kernel 5 Column 1DIFFTs
6 Row 1DIFFTs 6 Image Transpose
7 Image Transpose 7 Row 1D IFFTs
8 Column 1DIFFTs
9 Image Transpose

Figure 2.5: Unoptimized and Optimized FDF.
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Figure 2.6: Data partition in matrix transpose module.
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Table 2.5: Problem State Area Mapped Mailbox Performance.

Num. Of SPEs
Avg. Roundtrip Roundtrips

Time (us) Per Second
1 0.54 18.52x105

2 0.77 12.99x105

3 1.04 9.62x105

4 1.46 6.85x105

5 1.74 5.75x105

6 1.87 5.35x105
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Chapter 3

SCHEDULING OF STREAM PROGRAMS ON ONE EMBEDDED CORE

WITH CODE OVERLAY

In a typical SPM enhanced processor, an on-chip SPM is usually very small

(in a matter of KBytes) and is used to host both actor code and data bu�er.

Scheduling of stream programs on such an architecture involves division of the

limited on-chip SPM between actor code and data bu�er, and execution of

actors in such a manner that the physical SPM is time shared among di�er-

ent actor codes (formally referenced as code overlay). A traditional minimum

bu�er schedule could result in a very high code overlay overhead and therefore

may not be optimal. To derive an e�cient schedule with low code overlay over-

head, it's necessary to partition the available code memory into regions such

that actors mapped to the same region will also share the same physical mem-

ory. Further, code and data transfers between an on-chip SPM and its remote

main memory is realized through DMA engine. To amortize the DMA com-

munication overhead, actor codes need to be grouped into segments to reduce

the actual number of DMA transfers. In this chapter we propose a three-

stage ILP formulation and a fast heuristic for scheduling stream programs on

SPM enhanced processors with the objective of overall latency minimization.

We incorporated code pre-fetching into our ILP and heuristic approaches to

improve on performance. Further, deep pre-fetching and data overlay opti-

mizations were also investigated in our heuristic approach. The e�ciency of

our approaches was evaluated by compiling ten stream applications onto one

SPE of an IBM Cell BE. Comparison between our approaches and a minimum

bu�er scheduling approach is discussed in the experimental results section.



The contributions of this chapter include:

• A 3-stage ILP formulation that extensively explores design alternatives

with di�erent schedules, code and data partitions, actor to region and

segment assignments with the objective of latency minimization.

• Extension to our 3-stage ILP that incorporates a basic pre-fetching op-

timization to further reduce the code overlay overhead.

• An e�cient heuristic approach for the same problem that is able to

achieve comparable results as the 3-stage ILP approach with much faster

algorithm run time.

• Extension to our heuristic approach that incorporates basic pre-fetching,

deep pre-fetching, and data overlay.

In the next section we motivate our problem by discussing various design

trade-o�s. Section 3.3 of this chapter formulates the problem. Section 3.4

investigates related work. Section 3.5 presents our 3-stage ILP approach. An

extension to the 3-stage ILP approach is presented in Section 3.6. Section

3.7 discusses the implementation of our heuristic approach. Extensions with

basic pre-fetching, deep pre-fetching, and data overlay are provided in Section

3.8. Finally, Section 3.9 presents our experimental results and Section 3.10

summarizes this chapter.

3.1 Preliminaries

We �rst introduce some basic concepts that will be used throughout this chap-

ter, including code overlay, basic pre-fetching, deep pre-fetching, and data
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Figure 3.1: Segment-region code overlay overview.

overlay.

3.1.1 Code overlay

We utilize the region-segment code overlay scheme that is supported by spu-

gcc version 4.1.1 for executing StreamIt code on an SPE. In the region-segment

scheme, as illustrated in Figure 3.1, The following three stages were performed

to schedule a stream program/an SDF1 onto an SPM,

• PASS generation - A Periodical Admissible Sequential Schedule (PASS)

is de�ned on an SDF graph as a �nite sequence of actor �rings that brings

bu�ers back to their initial state. In our problem instances, a PASS is

also a valid steady-state schedule of the stream program. In the PASS

generation stage, a PASS for the given stream program is generated and

then its bu�er usage is calculated. The available code memory thus is

given by the di�erence of the SPM size and the bu�er usage2.

1A stream program can be described by an SDF as discussed in Section 1.1.
2We assume that the memory of library functions, global data, stack and heap has

already been subtracted from the SPM.
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• Actor to region assignments - In this stage, we assign actors to regions

such that each actor is mapped to one and only one region and the sum

of all region sizes is no more than the available code memory. The size

of each region is given by the largest actor size assigned to it. During

the program execution, actors assigned to the same region are overlayed

with each other in the same physical location.

• Segmentation - A segment is a group of actors that are moved to the

SPM altogether. In the segmentation stage, we selectively group actors

in the same region into segments to amortize DMA base cost. Each

segment size is given by the sum of all actor code sizes mapped to it.

After segmentation, a segment will be the smallest granularity for any

code transfer. To respect the memory constraint, each segment size must

be no more than its region size.

In region-segment overlay scheme, an instance of the actor is assigned to ex-

actly one segment and each segment is assigned to one region3. At any time

period, there can be only one segment present in any region. The regions es-

sentially represent the memory partition for code. A code overlay overhead is

encountered when an actor to be executed is not present in the on-chip SPM.

Under such a scenario, the overlay manager will have to fetch the segment

from the main memory and a code overlay overhead is introduced.

3.1.2 Basic pre-fetching and deep pre-fetching

Since the DMA engine works independently from the execution unit of an

embedded core, we overlap DMA transfers with actor executions. Figure 3.2

3An actor can have multiple instances in a PASS.
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introduces the behavior of a basic pre-fetching scheme and a deep pre-fetching

scheme. In the example, we have an actor execution sequence of A, B, C, A,

D, E. Actor A is mapped to region 1, actor B and D are mapped to region

2, and actor C and E are mapped to region 3. Suppose actor C just �nishes

execution, the current memory state of the SPM is A in region 1, B in region

2, and C in region 3 as described in Figure 3.2. Without code pre-fetching, we

will execute A, overlay D, execute D, overlay E and execute E.
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Let us focus on the code overlay of actor E. Without code pre-fetching,

actor executions of A and D and code overlay of E are totally sequential.

The code overlay overhead equals the DMA cost of actor E. In the basic

pre-fetching scheme, if the current actor execution introduces additional code

overlay overhead, we try to overlap it with the previous actor's execution. In

the basic pre-fetching scheme, if the previous actor resides in a di�erent region

from the current actor, we issue pre-fetching. Otherwise, a basic pre-fetching

cannot be issued because of memory con�ict. In Figure 3.2, we will initiate

the DMA transfer of E before execution of D with a basic pre-fetching.

The deep pre-fetching scheme extends the basic pre-fetching scheme

by searching backward along the PASS and issuing a pre-fetching as early as

possible. That is, immediately after the last execution of an actor from the

same region. In Fig 3.2, we start from D, continue with A, and we stop at C

since both C and E resides in region 3. Therefore with deep pre-fetching, we

can start the pre-fetching of actor E right after actor C's execution.

The extension from the basic pre-fetching scheme to deep pre-fetching

scheme seems reasonable and straight forward. However, there is another

constraint that we need to consider. That is, we only have one DMA engine for

each processing engine. In the basic pre-fetching scheme, this is not a problem

since the DMA engine is guaranteed to be idle when we initiate the DMA pre-

fetching of the next actor. This is because when we start the execution of the

current actor, the previous pre-fetching has completed (one of the prerequisite

that an actor can be executed) as introduced in Figure 3.3. However, this

is not necessary true for deep pre-fetching. For example in Figure 3.4, we

can initiate the code pre-fetching of E immediately after actor C' execution.
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Figure 3.4: DMA engine status with deep pre-fetching.

However, at this time the DMA engine is still busy with pre-fetching of actor

D's code. In this case, we utilize the largest DMA engine idle period available.

In the example, actor D's execution period is utilized to overlap DMA transfer

of actor E's code.

3.1.3 Data overlay

In order to reduce the bu�er usage of a given schedule, we can also introduce

data overlay. The basic idea is that we do not have to keep a data token for

its entire life time in the local SPM. A data token can be transferred to the

o�-chip main memory as soon as it is produced and we get it back before it

is being consumed. Figure 3.5 introduces this data overlay scheme. Blindly

incorporating data overlay to every data token will introduce additional data

overlay overhead as we have to circle every data token through the o�-chip

main memory. Further, data overlay also uses the same DMA engine that is

used by code pre-fetching. Unnecessarily introducing data overlay will also
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Figure 3.5: Data overlay overview.

impact code pre-fetching optimization. Finally, as the time to execute each

actor is fairly constant and all internal data are stored locally during the entire

program execution in our problem instances, the problem of minimizing the

latency of executing a stream program on an SPM based architecture reduces

to minimizing the code overlay and data overlay overheads introduced by the

on-chip SPM's limited capacity.

3.2 Design Trade-o�s

In this section we discuss the design trade-o�s in each stage of scheduling a

stream application on an SPM enhanced processor, including PASS generation,

actor to region assignments, segmentation, and data overlay.

3.2.1 PASS generation

Two properties of a PASS are particular important in terms of scheduling SDF

models onto an limited size SPM,

• Bu�er usage - bu�er usage of a PASS is the total memory required

for storing the internal data bu�er during its entire execution. The
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Figure 3.6: Stream program with one producer and one consumer. The code,
token sizes are in bytes.

same bu�er can be re-used at di�erent time intervals as long as the

correct program behaviour is maintained. In our problem, a given SPM

is partitioned into bu�er usage and code memory. The smaller the bu�er

usage, the more memory we can devote to program code.

• Actor switches - actor switches of a PASS is captured by the number

of actor executions diverging from one actor to another in the PASS.

A larger number of actor switches typically indicates that an actor is

likely to be evicted out of the on-chip SPM after its execution and thus

a higher code overlay overhead.

Assume we have a program that consists of only one producer and one

consumer, as described in Figure 3.6. Per execution, A pushes three tokens

to edge A→B and B pops two tokens from the edge. In a PASS or a steady-

state execution, A will have two executions and B will have three executions.

A Minimum Bu�er Schedule (MBS) that achieves the smallest bu�er usage

is given by PASS={A, B, A, B, B}. The bu�er usage of this MBS is four

tokens (or 400 bytes) and the number of actor switches is four, as illustrated

in Table 3.1. Note that one of the actor switches is introduced between the

last execution of B and the �rst execution of A. A Minimum Switch Schedule

(MSS) is given by PASS={A, A, B, B, B}. The bu�er usage of the MSS is six

tokens (or 600 bytes) and the number of actor switches is two.
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Table 3.1: Design trade-o�s with PASS generation. Bu�er Usage and Available
Code Memory in the table are represented in bytes.

Minimum Bu�er Schedule Minimum Switch Schedule
A, B, A, B, B A, A, B, B, B

Bu�er Usage 400 Bu�er Usage 600
actor Switches 4 actor Switches 2

SPM Size = 800
Avail. Code memory 400 Avail. Code memory 200

Overlay Cost ABAB Overlay Cost +∞
SPM Size = 1000

Avail. Code Memory 600 Avail. Code Memory 400
Overlay Cost ABAB Overlay Cost AB

In Table 3.1 row 5-7, we examine the code overlay cost of MBS and MSS

under an SPM size of 800 bytes. In this con�guration, the memory available

for code in MBS is 400 bytes. Since the code size of A and B are also 400 bytes

as given in Figure 3.6, the code memory is able to accommodate one and only

one actor at any time interval. The code overlay overhead for MBS is equal

to the cost of transferring actors A and B each twice from the remote memory

to the on-chip SPM. Under the same con�guration, the memory available for

code in MSS is 200 bytes. In this case, the total code memory is less than the

largest actor code size (400 bytes), therefore the program cannot execute and

we set the overlay cost to be +∞.

In another con�guration, we set the SPM size to be 1000 bytes as

illustrated in Table 3.1 row 8-10. The memory available for code in MBS is

600 bytes and in MSS, 400 bytes. In both cases, the total code memory can

only accommodate one and only one actor. From Table 3.1, MBS will have

four actor switches (two A⇒ B and two B⇒ A) and MSS will have two actor

switches (one A ⇒ B and one B ⇒ A). The code overlay overhead of MSS is

half of the overlay overhead of MBS in this case.
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Figure 3.7: Stream program with four actors. The code sizes are in bytes.

From the above discussion, we can see that neither MBS nor MSS is

always optimal for our latency minimization problem. A schedule that achieves

the minimum latency should balance the bu�er usage and the number of actor

switches rather than concentrate on optimizing one of them.

3.2.2 Actor to region assignments

At this stage, we assume that we already have a PASS and the available

code memory is calculated correspondingly. Under the scenario that not all

code can �t into the available code memory, a programmer or compiler has

to partition the code memory into regions and assign actors to regions. For a

stream program described in Figure 3.7, the total code size is 1000 bytes. Table

3.2 provides two feasible actor to region assignments under a code memory of

700 bytes. One is given by {A, B} {C} {D} and the other given by {A} {B,

C, D}. Actors within one pair of braces are assigned to the same region. In

both solutions, the sum of all region sizes is 700 bytes, indicating that the

code memory constraint is satis�ed. In the �rst solution, actors A and B

are overlayed with each other and in the second solution, actors B, C, and

D are overlayed with each other. Depending on the DMA behavior and the

PASS from the previous stage, either of the two solutions in Table 3.2 could

be superior than the other.

43



Table 3.2: Design trade-o�s with actor to region assignments. Available Code
Memory and Region Sizes in the table are represented in bytes.

Avail. Code Memory=700
1st Region Assignments 2nd Region Assignments

{A, B} {C} {D} {A} {B, C, D}
RAB=400 RC=200 RD=100 RA=400 RBCD=300

Overlayed Actors: A,B Overlayed Actors: B,C,D

3.2.3 Segmentation

The communication cost of transferring code or data between the on-chip SPM

and the remote memory can be modeled as

Tc(x) = Tbase + Tslope ∗ x (3.1)

In Equation (3.1), Tbase captures the base cost that is encountered for every

DMA transfer. Tslope ∗ x calculates the addition overhead for every byte of

code or data being transferred. In the segmentation stage, we exploit the

opportunities of grouping actors in the same region into segments to amortize

the DMA base cost. The resulted segment size is equal to the sum of all actor

code sizes assigned to it. The largest segment of each region determines the

region size. For the same example given in Figure 3.7, assume the code memory

available is 700 bytes and we adopt the second solution of actor to region

assignments as presented in Table 3.2. For region {B, C, D}, we can group

actors C and D together without violating the region size. However, grouping

actor C and D into one segment doesn't always promise us a performance

improvement. Consider two feasible PASS of the stream program described

in Figure 3.7. The �rst PASS is given by A, B, B, B, C, D, C, D, C, D. In

this case, actors C and D are always executed together. Grouping C and D

into one segment will de�nitely result in code overlay overhead reduction. A
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second PASS for the same stream program could be A, B, C, B, C, B, C, D, D,

D. Now if we group actors C and D into one segment, it's likely that the code

overlay overhead will increase, considering that for the �rst two executions

of actor C, we bring in C and D together (C, D are grouped into the same

segment). However, only actor C is executed before the execution of actor B

evicts both C and D out of the on-chip SPM.

3.2.4 Data overlay

Data overlay optimization reduces the data bu�er usage by circling data tokens

around the o�-chip main memory and reduces the total time that they are

present in the local SPM. Extra DMA transfers that are used to implement

data overlay could result in extra latency overhead. For the example given in

Figure 3.8 with PASS={A, B, C, D}. Without data overlay, when we execute

actor B, there are 9 tokens alive, 1 on edge A→B, 4 on edge B→C, and 4 on

edge A→D. This is also the time interval with the largest bu�er usage, which

is 900 Bytes. With data overlay, we can transfer the 4 tokens on edge A→D

to the o�-chip main memory after A �nishes execution and then retrieve the

data tokens before the execution of D. In this case the bu�er usage is 500

bytes. The minimum memory requirement without data overlay thus is 900

(bu�er usage)+100 (overlay region) = 1000 bytes. With data overlay, the

minimum memory requirement is 500 (bu�er usage) + 100 (overlay region) =

600 bytes. Data overlay optimization reduces the bu�er usage at the expense of

potential increase of data overlay overhead. Another side e�ect of data overlay

optimization is the occupancy of DMA engine, which could potentially block

the code pre-fetching discussed in the previous paragraph.
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Figure 3.8: Design trade-o�s with data overlay.

3.3 Problem Formulation

In this section, we formulate the problem that was discussed in the previous

sections. The input to our problem is given by an SDF speci�cation and an

architecture description. More speci�cally, the SDF speci�cation is given by

graph G < V,E > where each node j ∈ V represents an actor and each

edge e ∈ E represents a data transfer between two actors. A node j is again

given by the following parameters < Cj, τj, Nj > and an edge e is given by

< Pej, Cej > as described in Table 3.3. The architecture description is speci�ed

by its on-chip SPM size and DMA behavior as illustrated in Table 4.1, P <

Cp, τbase, τslope >.

Further, in our problem instances, we assume that the memory for stor-

ing library functions, global data, stack and heap4 has already been reserved.

Consequently the on-chip SPM memory Cp is only partitioned for program

code and internal bu�er. Given an SDF speci�cation and architecture de-

scription, the objective of our techniques is to derive a PASS with actor to

region assignments < V,R > and actor to segment assignments < V, S > such

that the code overlay overhead is minimized. The calculation of the code over-

4Since in a stream application we typically have no recursive calls and dynamic alloca-
tions of memories, we can assume that the stack and heap size is bounded by a constant.
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Table 3.3: Architecture and SDF Description

Constant Description

SDF (G) V Cj Code size of actor j
τj Run time of actor j
Nj executions of actor j in a PASS

E Pej Tokens produced to edge e by actor j.
Cej Tokens consumed from edge e by actor j.

Arch. (P ) SPM Cp Scratch pad memory size

DMA τbase Base latency for any DMA transfer

τslope Additional latency increasing rate with data size

lay cost is fairly complicated and will be discussed in our 3-stage ILP approach

as the objective function and in our heuristic approach as a subroutine.

3.4 Related Work

Many previous work have been conducted over the years to statically assign

program code and data to SPM based architectures. Steinke et al. [69] pre-

sented an algorithm that selectively chooses program code and data to place

in SPM. Angiolini et al. [1] [2] developed a post compiler technique that maps

certain segments of external memory to physically partitioned banks of an

on-chip SPM. Avissar et al. [3] presented a compiler strategy that partitions

global and stack data among di�erent memory units. Nguyen et al. [59] pre-

sented a memory allocation scheme for embedded systems where the SPM size

is unknown at compile time. In contrast to these approaches, our work focuses

on dynamic management of an SPM where code segments are overlayed with

each other during run time.

There have been several previous work that address the problem of dy-

namic management of SPM with code overlay. Verma et al. [75] [74] discussed
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the dynamic management of SPM as an extension to the Global Register Al-

location problem and proposed an allocation technique that copies program

code and data into SPM at runtime. Egger et al. [26] provided an integer lin-

ear programming (ILP) approach that loads required program code into the

SPM on demand at runtime. Janapsatya et al. [37] developed an optimization

that utilizes concomitance metrics to determine appropriate code segments to

be loaded into an SPM. Pabalkar et al. [62] presented an ILP and a heuris-

tic that overlay code based on static analysis of the global call control �ow

graph (GCCFG) of a program. While the above work focus on minimization

of power or energy consumption, our work studies the dynamic management

of SPM with the objective of overlay minimization.

Most recently Baker et al. [5] addressed instruction mapping on an

SPM by partitioning it into regions and loading functions to regions. Func-

tions assigned to the same region are overlayed with each other during program

execution. Jung et al. [41] also utilized the same function to region assign-

ment scheme and presented two heuristics for generating function to region

mappings. Our work distinguishes from the above two approaches in that we

focus on stream applications rather than traditional C++ programs. In our

problem, a steady-state schedule of the stream program has to be generated

together with code, data memory partition. Apart from actor to region assign-

ments, we also introduce segmentation to amortize DMA base cost. Further,

we also extend our heuristic approach with code pre-fetching and data overlay

techniques to overlap DMA transfers with actor executions.

In the literature of scheduling SDF models on SPM enhanced embedded

processors, Bandyopadhyay et al. [6] [7] present an SPM allocation scheme
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that makes optimal use of SPM by analyzing the structure and semantics of

a heterogeneous data �ow model. However, their work is focused on static

allocation of code and data, whereas in our approach we optimize for dynamic

code and data overlay. This chapter presents a 3-stage ILP and fast heuristic

approaches that are able to perform SDF scheduling, region assignment and

segmentation. Further, in addition to the basic code pre-fetching approach, the

proposed heuristic also incorporates deep code pre-fetching and data overlay

optimizations. The deep pre-fetching optimization tries to issue a pre-fetching

of code at a much earlier time than a basic pre-fetching and data overlay

optimization tries to reduce the data bu�er usage of a schedule by transferring

data to the o�-chip memory after it is produced, and retrieve it before it is

consumed.

3.5 3-stage ILP Without Pre-fetching

Given the problem described above, we propose a 3-stage ILP to calculate a

steady-state schedule as well as actor to region, and actor to segment assign-

ments that minimize the overlay overhead under tight SPM constraints. Our

�rst stage ILP calculates the schedule of actor executions with the objective

of granting su�cient memory for code with moderate actor switches. In our

second stage ILP, we partition the code memory into regions and investigate

actor to region assignments to further reduce the code overlay overhead. In

the last stage, we utilize segmentation to group small actors into segments

to amortize the base DMA cost. The output of our approach is a steady-

state schedule coupled with code and data memory partition as well as actor

to segment and actor to region assignments. Since the variables that model
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the stream characteristics and architecture features are the same for all three

stages, we provide them globally in Table 3.3.

3.5.1 Stage 1 ILP: Scheduling

In this stage, we calculate the sequence of actor executions in the steady-state

schedule based on the assumption that each actor occupies a separate segment

and there is only one region for code. The code overlay overhead is estimated

by the number of actor switches in the steady-state execution and the memory

available for code.

3.5.1.1 Decision variables

• aimjn, {0, 1}, indicates whether the mth copy of actor i executes before

the nth copy of actor j in the steady-state schedule.

• nj, integer, indicates actor j has executed nj times before entering the

steady-state execution.

• Cdata, integer, indicates the memory allocated for data.

• Ccode, integer, indicates the memory allocated for code.

3.5.1.2 Derived variables

• bjn, integer, indicates the number of actor executions except for actor j

itself before its nth copy.

∀j ∈ V,∀n ∈ Nj : bjn :=
∑

i∈V \j

∑
m∈Ni


aimjn, i < j

1− ajnim, i > j

50



• sjn, {0, 1}, indicates whether the nth copy of actor j is adjacent to its

(n+ 1)th copy in the steady-state schedule.

∀j ∈ V,∀n ∈ [1, |Nj | − 1] : (1− sjn) ∗Mj ≥ bjn+1 − bjn

∀j ∈ V : (1− sj|Nj |) ∗Mj ≥ bj|Nj | − bj1

where Mj :=
∑

i∈V \j

|Ni|.

3.5.1.3 Constraints

1. Execution Order:

i) In a legal sequence, the mth copy of actor i executes either before or

after the nth copy of actor j.

∀i ∈ [1, |V | − 1],∀m ∈ Ni,∀j ∈ [i+ 1, |V |],∀n ∈ Nj :

aimjn + ajnim = 1

ii) If the execution sequence is the mth copy of i followed by the nth copy

of j followed by the lth copy of k, then the mth copy of i must execute

before the lth copy of k.

∀i ∈ V, ∀m ∈ Ni,∀j ∈ [i, |V |], ∀n ∈ Nj,∀k ∈ [j, |V |],∀l ∈

Nk : aimkl ≥ aimjn + ajnkl − 1, aimkl ≤ aimjn + ajnkl

iii) The mth copy of actor i always executes before its (m+ 1)th copy.

∀i ∈ V,m ∈ [1, |Ni| − 1], n ∈ [m+ 1, |Ni|] : aimin = 1

2. Initial Bu�er Condition: The initial bu�er distribution on each edge,

denoted by C0
e , must be non-negative.

∀e ∈ E : C0
e :=

∑
j∈V

nj ∗ (Pej − Cej), C
0
e ≥ 0
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3. Data Dependency: After each actor execution, there is no edge with

negative tokens. The following constraint, Ce
jn indicates the accumulated

bu�er usage immediately after executing the nth copy of actor j. C0
e

provides the initial bu�er condition, n ∗ (Pej − Cej) computes the data

stored to each edge by n executions of actor j. The last summation

computes the tokens produced/consumed by actors (i ∈ V \ j) executed

before the nth copy of j.

∀j ∈ V, ∀n ∈ Nj,∀e ∈ E : Cjne := C0
e + n ∗ (Pej − Cej)

+
∑

i∈V \j

∑
m∈Ni

(Pei − Cei) ∗


aimjn, i < j

1− ajnim, i > j

, Cjne ≥ 0

4. Data Memory: For each execution of actor j, we calculate the sum of

memory usage at all edges. The memory allocated for data should be

greater or equal to the maximum of them.

∀j ∈ V, n ∈ Nj : Cdata ≥
∑
e∈E

Cjne

5. Code Memory: The memory allocated for code must be at least as large

as any actor.

∀j ∈ V : Ccode ≥ Cj

6. Processor Memory: The memory allocated for code and data should be

no more than the size of the scratchpad memory.

Cp ≥ Cdata + Ccode
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7. Overlay Code Size Lower Bound: The lower bound of code size is given

by the portion of the code size that exceeds the code memory.

Clow ≥
∑
j∈V

Cj − Ccode, Clow ≥ 0

3.5.1.4 Objective function

• We utilize the number of actor switches in the steady-state schedule and

the memory allocated for code to estimate the overlay overhead,

Minimize τoverlay := λ ∗
∑
j∈V

∑
n∈Nj

(1− sjn) + 2µ ∗ Clow

In the objective function,
∑

j∈V

∑
n∈Nj

(1 − sjn) calculates the number

of actor switches in the steady-state schedule and Clow implies the lower

bound of code size to be overlayed. λ and µ indicate the weights as-

signed to actor switches and lower bound of code size to be overlayed,

respectively. If λ = 0 then a minimum bu�er schedule is derived; if

µ = 0 then a minimum actor switching schedule is derived. In our ob-

jective function, we set λ =
∑

j∈V

1

|Nj|
and u =

∑
j∈V

1

Cj

. The weight

assignment can be interpreted as saving a memory equal to average ac-

tor code size is equivalent to reducing n actor switches, where n is the

average number of actor copies in the steady-state execution. Since Clow

is a lower bound, and in the steady-state schedule not only can an ac-

tor have multiple copies, but also di�erent actors can be mapped to the

same memory location, we add a factor of 2 to increase the weight of

memory.
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3.5.2 Stage 2 ILP: Region Assignment

In this stage we already have the actor execution sequence from the previous

stage and we calculate the number of regions, the size of each region, and actor

to region assignments. The objective is to minimize code overlay estimated

by the sum of actor switches of all the regions.

3.5.2.1 Variables derived from Stage 1

• ajn, integer, indicates the nth copy of actor j is assigned to slot ajn in

the steady-state schedule.

• Ccode,integer, indicates the memory allocated for code.

3.5.2.2 Decision variables

• bjr, {0, 1}, indicates actor j is assigned to region r.

3.5.2.3 Derived variables

• cir, {0, 1}, indicates the ith slot is assigned to region r.

∀j ∈ V, n ∈ Nj, r ∈ R : cir = bjr, where i = ajn

• sjn,{0, 1}, if |Vj| ≥ 2 indicates in region r, whether the (n + 1)th copy

of actor j executes immediately after the nth copy of j, or the �rst copy

of actor j in the next steady-state execution executes immediately after

the last copy of j in the current execution; else, sj1 indicates for a single

appearance actor j, whether there are other actors assigned to the same

region. If yes, sj1 = 0 indicates there is an actor switch for j; else sj1 = 1
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implies that actor j is always present in the memory.

∀j ∈ V, ∀r ∈ R :



if |Nj| ≥ 2,

∀n ∈ [1, |Nj| − 1],∀i ∈ [ajn + 1, ajn+1 − 1] :

sjn ≤ 2− bjr − cir,

∀i ∈ [1, aj1 − 1] ∪ [aj|Nj | + 1, N ] :

sj|Nj | ≤ 2− bjr − cir,

else

∀i ∈ V \ j : sj1 ≤ 2− bjr − bir

where N =
∑
j∈V

|Nj|.

3.5.2.4 Constraints

1. Actor to Region Assignment: Each actor is assigned to one and only one

region.

∀j ∈ V :
∑
r∈R

bjr = 1

2. Region Size: The size of each region is no less than the biggest actor

being assigned to it.

∀j ∈ V, ∀r ∈ R : Cr ≥ bjr ∗ Cj

3. Code Memory: The sum of the sizes of all the regions should be no more

than the memory allocated for code.

Ccode ≥
∑
r∈R

Cr
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3.5.2.5 Objective function

• The objective at this stage is to minimize the code overlay overhead,

which is estimated by the number of actor switches in all the regions.

Minimize Nswitch :=
∑
j∈V

∑
n∈Nj

(1− sjn)

3.5.3 Stage 3 ILP: Segmentation

In this stage we have the sequence of actor executions as well as the actor to

region assignment from the previous stages and we calculate actor to segment

assignment to amortize the the base cost of DMA operation. The objective is

to further minimize the code overlay with actor segmentation.

3.5.3.1 Results derived from Stage 1 and Stage 2

• ajn, integer, indicates the slot the nth copy of actor j is assigned to.

• Ccode, integer, memory available for code overlay.

• bjr, {0, 1}, indicates actor j is assigned to region r.

• gir, integer, indicates slot i in region r is corresponding to slot gir in the

steady-state schedule.

3.5.3.2 Decision variables

• djs, {0, 1}, indicates actor j is assigned to segment s.
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3.5.3.3 Derived variables

• Cs, integer, indicates the size of segment s, which is given by the sum

of code sizes of all the actors assigned to segment s.

∀s ∈ S : Cs :=
∑
j∈V

djs ∗ Cj

• eis, {0, 1}, indicates whether the actor resides in the ith slot in the steady-

state schedule is assigned to segment s.

∀j ∈ V, ∀n ∈ Nj,∀s ∈ S : exs := djs, where x = ajn

• xjk, {0, 1}, indicates whether actor j, k are assigned to the same segment.

∀j ∈ [1, |V | − 1],∀k ∈ [j + 1, |V |],∀s ∈ S :

xjk ≥ djs + dks − 1

• yjk, {0, 1}, indicates whether actor j, k are assigned to the same region.

∀j ∈ [1, |V | − 1],∀k ∈ [j + 1, |V |] : yjk :=
∑
r∈R

bjr ∗ bkr

• Nr, integer, indicates the number of slots in region r.

∀r ∈ R : Nr :=
∑
j∈V

bjr ∗ |Nj|

• sir, {0, 1}, indicates whether the consecutive slots i and i + 1 in region

r are assigned to di�erent segments.
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∀r ∈ R, ∀i ∈ [1, Nr],



if Nr ≥ 2 and

if i 6= Nr, ∀s ∈ S : sir ≥ exs − eys,

else, ∀s ∈ S : sir ≥ exs − ezs,

else, s1r = 0

where x = gir, y = gi+1r, z = g1r.

• τris, real, indicates the overhead of fetching segment s if there is a code

overlay between the ith slot and (i+ 1)th slot in region r. The overhead

is corresponding to fetching the segment which the (i+1)th slot in region

r is assigned to. There is an overlay overhead between the ith slot and

(i+ 1)th slot in region r if they are being assigned to di�erent segments.

The last slot and the �st slot in the same region are also treated as

consecutive slots and handled accordingly.

∀r ∈ R,



if (Nr ≥ 2)

∀i ∈ [1, Nr − 1], s ∈ S :

τris ≥ Tbase + Cs ∗ Tslope + (sir + exs − 2) ∗M

τris ≥ 0

∀r ∈ R, s ∈ S :

τrNrs ≥ Tbase + Cs ∗ Tslope + (sNrr + eys − 2) ∗M

τrNrs ≥ 0

where x = gi+1r, y = g1r,M = Tbase +
∑
j∈F

Cj ∗ Tslope.
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3.5.3.4 Constraints

1. Actor to Segment Assignment: Each actor j is assigned to one and only

one segment.

∀j ∈ V :
∑
s∈S

djs = 1

2. Segment to Region Assignment: If actor j, k are assigned to the same

segment, then they must be assigned to the same region.

∀j ∈ [1, |V | − 1],∀k ∈ [j + 1, |V |] : xjk ≤ yjk

3. Region Size: The region size is greater or equal to the largest segment

assigned to it.

∀r ∈ R, ∀s ∈ S : Cr ≥
∑
j∈V

bjr ∗ djs ∗ Cj

4. Code Memory: The code memory must be able to accommodate all the

regions.

Ccode ≥
∑
r∈R

Cr

3.5.3.5 Objective function

• The objective is to minimize overlay overhead for the given schedule and

actor to region assignments from the previous steps,

Minimize τoverlay :=
∑
r∈R

∑
i∈[1,Nr]

∑
s∈S

τris
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3.6 3-stage ILP With Pre-fetching

The DMA Engine in the SPE works independently from the execution unit,

which enables us to overlap code overlays with actor executions. In this section

we reformulate our 3-stage ILP to incorporate the code pre-fetching scheme, in

which we initiate pre-fetching of the next actor into the local memory while ex-

ecuting the current actor. Compared to the 3-stage ILP without pre-fetching,

the modi�cations are only made to the memory constraint and the cost func-

tions. Therefore, we only discuss the constraints that are modi�ed and the

objective functions which are updated in the remainder of this section.

3.6.1 Stage 1 ILP: Scheduling

At this stage we make the same assumption of actor to segment and region

assignments as discussed in the previous Stage 1 ILP. However, we utilize the

average actor run time to estimate the actor executions that can be over-

lapped with code overlay. One more derived variable is added to the original

formulation as described below.

3.6.1.1 Additional derived variables

• τjn, real, indicates the code overlay overheads for the nth copy of actor

j with code pre-fetching incorporated.

τjn ≥ ((τbase + τslope ∗ Cj)− τavg) ∗ (1− sjn)

τjn ≥ 0

where τavg :=
∑
j∈V

τj ∗ |Nj|/(
∑
j∈V

|Nj|).

60



3.6.1.2 Modi�ed constraints

• Code Memory: The memory allocated for code with pre-fetching must

be able to accommodate the largest actor plus a bu�er for storing the

pre-fetched code. The size of the bu�er for the pre-fetched code should

be at least as large as any actor. Therefore the modi�ed code memory

constraint is given by,

∀j ∈ V : Ccode ≥ 2 ∗ Cj

3.6.1.3 Updated objective function

• The objective is to minimize code overlay overhead with code pre-fetching.

In the following equation the numerator in the summation calculates the

overlay overheads based on the assumption that each actor occupies a

separate segment and all actors are being assigned to the same region.

We divided it by the base DMA cost to estimate the corresponding actor

switches. Therefore, we can leave the weight factors λ and µ and the

second element in the original objective function untouched.

Minimize τoverlay := (λ/τbase) ∗ (
∑
j∈V

∑
n∈Nj

τjn) + 2µ ∗ Clow

3.6.2 Stage 2 ILP: Region Assignment

In Stage 2, based on the sequence derived from the previous stage, we calculate

the overlay overhead of each actor execution and the available execution time

that can be utilized to overlap with the code overlay DMA. We de�ne the

available execution time for overlap (ETA) due to a particular actor in a slot

of the schedule as the sum of the execution time of the actor in that slot plus

any executions of the same actor in immediately previous slots. We denote
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ETA for nth copy of actor j assigned in slot i = ajn of the schedule as γi.

For example in schedule AABAB, γ1 = τA, γ2 = 2τA, γ3 = τB, γ4 = τA and

γ5 = τB. We treat the last actor execution in the schedule and the �rst

execution as consecutive actor executions too.

3.6.2.1 Additional variables derived from Stage 1

• γi, real, indicates ETA of slot i in the steady-state schedule.

3.6.2.2 Additional derived variables

• τjn, real, indicates the overlay overhead for the (n+ 1)th copy of actor j

after pre-fetching. Notice that the last slot in the previous execution is

also treated as immediately before the current �rst slot. Therefore,

∀j ∈ V, n ∈ Nj : τjn ≥ ((τbase + Cj ∗ τslope)− γx) ∗ s′jn

where s′jn = 1− sjn, x is the slot immediately before the (n+ 1)th copy

of j.

x =



∑
j∈V |Nj|, if n = |Nj| and aj1 = 1,

aj1−1, if n = |Nj| and aj1 6= 1,

aj(n+1)−1, else.

3.6.2.3 Updated constraints

• Code Memory: The size of the code memory must be greater than or

equal to the sum of all the region sizes plus the bu�er for pre-fetched

code.

Ccode ≥
∑
r∈R

Cr + Cfmax,where Cfmax is the largest code size.
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3.6.2.4 Updated objective function

• The objective at this stage is to minimize the overlay overhead with

pre-fetching optimization.

Minimize τoverlay :=
∑
j∈V

∑
n∈Nj

τjn

3.6.3 Stage 3 ILP: Segmentation

In this stage we group small actors into segments and pre-fetch a segment

instead of an actor with the objective of minimizing the code overlay overhead.

3.6.3.1 Additional derived variables

• Csmax, integer, indicates the maximum segment size.

∀s ∈ S : Csmax ≥ Cs

3.6.3.2 Updated derived variables

• τris, real, indicates the overhead of fetching segment s for the ith slot in

region r if any.

∀r ∈ R,



if Nr ≥ 2

∀i ∈ [1, Nr − 1], s ∈ S :

τris ≥ Tbase + Cs ∗ Tslope − γz + (sir + eys − 2) ∗M

τris ≥ 0

∀r ∈ R, s ∈ S :

τrNrs ≥ Tbase + Cs ∗ Tslope − γz + (sNrr + exs − 2) ∗M

τrNrs ≥ 0
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where x = g1r, y = gi+1r,M = Tbase +
∑

j∈F Cj ∗ Tslope, and z =
gir, if gir ≥ 2,

N, else.

3.6.3.3 Updated constraint

• Code Memory: The size of the code memory must be greater than or

equal to the sum of all the region sizes plus the bu�er for pre-fetched

segment.

Ccode ≥
∑
r∈R

Cr + Csmax

The objective function at this stage remains unchanged since we incor-

porate the e�ect of pre-fetching of segments into the calculation of τris.

3.7 SDF Scheduling Heuristic

Although our 3-stage ILP approach generates close to optimal solutions, it

su�ers from very long algorithm run time. In this section, we present a fast

heuristic approach that is able to achieve comparable performance results in

a matter of seconds. We �rst provide a base approach where a PASS for

the given SDF is generated simultaneously with actor to region and actor to

segment assignments. The objective is to minimize code overlay overhead.

3.7.1 Code overlay overhead calculation

Prior to discussion of our SDF scheduling heuristic, we provide the calculation

of code overlay overhead as a subroutine in Algorithm 1. In the algorithm

we �rst initialize code_overlay to be 0, Line 1. mem_state is an array that
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1: code_overlay ← 0
2: for r ∈ R do
3: /* slast is the last segment that is loaded to region r following PASS */
4: Initialize mem_state[r]← slast

5: end for
6: for i ∈ [0, |PASS| − 1] do
7: scur ← getSegment(< V, S >, i)
8: rcur ← getRegion(< V,R >, i)
9: if scur 6= mem_state[rcur] then
10: code_overlay ← code_overlay + Tc(Cscur)
11: mem_state[rcur]← scur

12: end if
13: end for
14: return code_overlay

Algorithm 1: calCodeOverlay(G,PASS,< V,R >,< V, S >)

keeps track of the segments that are present in each region. We assume the

SDF is being executed in an iterative manner, therefore the segment in each

region before the current execution is given by the last segment that is loaded

to each region in the previous execution, Line 2-4. For each actor execution

in the given PASS, the subroutine checks whether segment scur that contains

the actor is already loaded to its corresponding region rcur. If segment scur is

absent from rcur, we increase code_overlay by Tc(Cscur), Line 10. Tc(Cscur)

calculates the DMA cost for transferring segment scur from the o�-chip memory

to the local SPM. Tc is the DMA cost function that is discussed in Section

3.2.3. Cscur is given by Cscur =
∑

v∈scur
Cv, where Cv is the code size of actor

v5. Then mem_state[rcur] is updated with scur, indicating segment scur is

loaded into region rcur, Line 11. After iterating through the entire PASS,

code_overlay is returned.

5Cv is equivalent to Cj described in Table 3.3
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3.7.2 Overall description

A high level description of our heuristic approach is given in Algorithm 2.

In the algorithm we �rst initialize the overlay overhead min_overlay to be

in�nitely large. The initial PASS is set to be a minimum bu�er schedule

of the given SDF [38]. We deliberately evolve the PASS from a minimum

bu�er schedule to a minimum actor switch schedule in this algorithm. The

bu�er usage buf_mem and SPM memory available for code, code_mem, is

calculated based on the given PASS. Starting from Line 5, we enter an itera-

tive procedure where at each iteration, we perform actor to region assignments

(RegionAssignment) and actor to segment assignments (Segmentation). The

implementation details of the RegionAssignment and Segmentation are given

by Algorithm 3 and Algorithm 4 with the discussions provided in Sections 3.7.3

and 3.7.4, respectively. The total region size after RegionAssignment is cal-

culated by
∑

r∈R Cr, where Cr denotes the size of region r and is given by

maxv∈rCr. Line 8 in Algorithm 2 checks whether RegionAssignment is suc-

cessful. If RegionAssignment succeeds, further actor to segment mapping is

generated and cur_overlay is updated accordingly, Line 12. If cur_overlay is

less than min_overlay, we update min_overlay and store the current PASS,

actor to region/segment assignments to solution.

After current evaluation, we generate the next PASS to be evaluated by

collapsing two non-consecutive executions of the same actor in the PASS, Line

15. We implement this procedure by creating a copy of the current PASS

for every actor execution. In the temporary PASS we check whether there

is another execution vnext of the same actor in the PASS. If vnext's previous
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1: Initialize min_overlay ← +∞
2: Initialize PASS ←MinBufferScheduling(G)
3: Calculate current bu�er usage, buf_mem, of PASS
4: code_mem← Cp − buf_mem
5: repeat
6: /*Actor to region assignment*/
7: < V,R >← RegionAssignment(G,PASS, code_mem)
8: if

∑
r∈R Cr ≤ code_mem then

9: /*Actor to segment assignment*/
10: < V, S >← Segmentation(G,PASS,< V,R >)
11: /*Overlay overhead*/
12: cur_overlay ← calCodeOverlay(G,PASS,< V,R >,< V, S >)
13: if cur_overlay < min_overlay then
14: min_overlay ← overlay
15: solution← clone(G,PASS,< V,R >,< V, S >)
16: end if
17: end if
18: /*Evolve from Min. Buf to Min. Switch*/
19: until collapseTwoExecs(PASS) = false
20: return solution

Algorithm 2: MinOverlayScheduling(G,P )

actor execution is not the current actor, then vnext is found. We remove it

from the temporary PASS and inserted it right after vcur. We validate the

new PASS by checking the data tokens on each edge at every time interval.

If there is no negative token on any edge at any time interval, the new PASS

is legal. An illegal PASS is discarded. Among all legal PASSs, we select

the one that has the least bu�er usage increment to be the next PASS to be

evaluated. The procedure terminates when no two non-consecutive executions

of the same actor can be found. Upon termination, a solution that consists of

a PASS, actor to region, and actor to segment assignments is returned.
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3.7.3 Region assignments

For a given SDF, Algorithm 3 assigns actors to regions such that each actor

is mapped to one and only one region and all regions �t into the available

code memory. In this stage we assume that each actor occupies a separate

segment. Since the actors being assigned to the same region are overlayed

with each other over time, we would like them to interfere with each other

as little as possible. In the algorithm, we use the number of times that two

regions interfere with each other during the program execution to de�ne their

interaction factor (IF ). In Algorithm 3, we �rst initialize actor to region

assignments < V,R > such that each actor is assigned to a di�erent region.

We construct IF table for every pair of regions < ri, rj > by iterating through

the given PASS. If there is an execution switching from region ri to region rj

or vice versa, we increase IF of < ri, rj > by one. The current total region size

region_mem is calculated based on the actor to region mapping. We keep on

collapsing two regions with the smallest IF while the total region size is larger

than code_mem and the number of regions is more than one, Line 4. At each

iteration, we collapse a region pair with minimum IF by moving all actors from

rj to ri. If there are several region pairs that have the same minimum IF ,

we collapse the region pair that decreases region_mem the most. After each

collapsing of a region pair, we update actor to region assignments < V,R >,

IF table and recalculate region_mem. The algorithm terminates when the

�rst actor to region mapping < V,R > that �ts into code_mem is found or

|R| = 1. The complexity of IF table construction and the iterative procedure

are both O(n3), where n is the number of actor executions in the given PASS.

Therefore, the complexity of RegionAssignment algorithm is O(n3).
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1: Initialize actor to region assignments < V,R >, as each actor occupies a

separate region

2: Construct IF table entry for each region pair < (ri, rj), Integer >, where
ri, rj ∈ R, i < j

3: region_mem←
∑

r∈R Cr

4: while region_mem > code_mem and |R| > 1 do

5: Collapse a region pair with minimum IF
6: Update < V,R > and IF table

7: region_mem←
∑

r∈R Cr

8: end while

9: return < V,R >

Algorithm 3: RegionAssignment(G,PASS, code_mem)

3.7.4 Segmentation

The actor sizes assigned to each region could be very diverse and the DMA

base cost may be overwhelming if we have too many DMA transfers. In the

segmentation phase, we explore opportunities of combining actors into seg-

ments to amortize the DMA base cost. In Algorithm 4, we initialize the actor

to segment mapping < V, S >, as each actor occupies a di�erent segment.

The minimum overlay for the given PASS, min_overlay, is calculated based

on the current PASS, < V,R >, and < V, S > mappings. Then we start an

iterative procedure where for each region, we examine combining every pair

of segments si and sj for opportunities of code overlay reduction. Note that

even if two segments in the same region can be grouped together, it does not

necessarily promise a performance gain (refer to the discussion provided in

Section 3.2.3). In Algorithm 4, if collapsing the current segment pair does not

violate the region size constraint, then we try to update the actor to segment

mapping by moving all actors from sj to si. If the overlay overhead after

collapsing si and sj is less than min_overlay, we update min_overlay. In

the next iteration si is re-evaluated with every other segment. Otherwise, we
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1: Initialize actor to segment assignments < V, S >, as each actor occupies
a separate segment

2: min_overlay ← calOverlay(G,PASS,< V,R >,< V, S >)
3: for each region r ∈ R do
4: for each segment pair (si, sj), where si, sj ∈ R, i < j do
5: if collapsing si and sj does not violate region size then
6: Update < V, S >
7: overlay ← calOverlay(G,PASS,< V,R >,< V, S >)
8: if overlay < min_overlay then
9: min_overlay ← overlay
10: else
11: Restore < V, S > to the previous state where si and sj were not

collapsed
12: end if
13: end if
14: end for
15: end for
16: return < V, S >

Algorithm 4: Segmentation(G,PASS,< V,R >)

restore the actor to segment mapping to the previous state where si and sj are

recognized as separated segments. The exhaustive search in Algorithm 4 is less

expensive than enumerating every pair of segments in S and the complexity of

calCodeOverlay is O(n). Therefore, the complexity of Algorithm 4 is O(n3).

3.7.5 Overall algorithm complexity

Given that the procedures of actor to region assignment and segmentation are

both in O(n3) and they are nested in the loop of PASS generation, which is

O(n), the overall complexity of our heuristic is O(n4).
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3.8 Extensions to SDF Scheduling Heuristic

In the section we extend our SDF scheduling heuristic with three optimiza-

tions, namely basic pre-fetching, deep pre-fetching, and data overlay. We

discuss each of the optimization in the following.

3.8.1 Basic pre-fetching optimization

We �rst incorporate the basic pre-fetching optimization into our existing ap-

proach. Basic pre-fetching optimization tries to overlap DMA transfer of the

current segment with the previous actor's execution. We denote the current

actor being executed as vcur and the previous actor executed as vpre. The cor-

responding regions and segments for the current actor and the previous actor

are rcur, rpre, scur, and spre respectively. If scur is absent from the local SPM,

we try to overlap DMA transfer of scur with vpre's execution. That is, we try

to issue a pre-fetching of scur right before the execution of vpre. The overlay

overhead with this basic pre-fetching optimization is calculated based on the

following scenarios.

• If vcur resides in the same region with vpre, then code pre-fetching for

scur cannot be issued because of memory con�ict. In this case, DMA

transfer for scur is given by Tc(Cscur) (Tc(Cscur) is provided in Section

3.7.1).

• Else, scur does not reside in the same region with vpre. In this case,

a code pre-fetching for segment scur can be issued before vpre starts

execution. The DMA transfer for scur is overlapped with vpre's execu-

tion and the resulting code overlay overhead is given by Toverlap(scur) =

max(0, Tc(Cscur)− τvpre), where τvpre indicates the run time of actor vpre.
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1: Initialize code_overlay ← 0
2: for r ∈ R do
3: /* slast is the last segment that is loaded to region r following PASS */
4: Initialize mem_state[r]← slast

5: end for
6: for i ∈ [0, |PASS| − 1] do
7: scur ← getSegment(< V, S >, i)
8: rcur ← getRegion(< V,R >, i)
9: rpre ← getRegion(< V,R >, (i− 1 + |PASS|)%|PASS|)
10: if scur 6= mem_state[rcur] then
11: if rcur = rpre then
12: code_overlay ← code_overlay + Tc(scur)
13: else
14: code_overlay ← code_overlay + Toverlap(scur)
15: end if
16: mem_state[rcur]← scur

17: end if
18: end for
19: return code_overlay

Algorithm 5: calCodeOverlayBasicPre(G,PASS,< V,R >,< V, S >)

If DMA of scur is less than τpre, then 0 is returned. Otherwise, the DMA

cost that exceeds vpre's execution is returned.

We incorporate this basic pre-fetching in our original heuristic approach and

update the code overlay overhead calculation as shown in Algorithm 5. In

Algorithm 5, the initializations of code_overlay and mem_state are identical

to Algorithm 1. Then we calculate the code overlay overhead of each actor

execution with basic pre-fetching, Line 6-18. The mod operation in (i − 1 +

|PASS|)%|PASS|) wraps i to the end of a given PASS when i = 0. The total

code overlay overhead is returned after iterating through the entire PASS, Line

19.
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3.8.2 Deep pre-fetching optimization

The basic pre-fetching optimization only considers overlapping the DMA fetch

cost of scur with previous actor vpre's execution. However, the pre-fetching can

be issued at a much earlier time to grant longer execution time to overlap with

a DMA transfer. Essentially, we can trace back the given PASS and identify

the last actor execution vr
pre that resides in the same region with vcur. A pre-

fetching for scur can be issued as soon as vr
pre �nishes its execution. With this

deep pre-fetching optimization, we may over use the DMA engine, meaning

there could be several concurrent DMA transfers on the �y. To resolve this

problem, we introduce a DMA engine status for each actor execution.

Algorithm 6 details the procedure for �nding the maximum DMA en-

gine idle period to issue a pre-fetch of scur. The inputs to Algorithm 6

are the current PASS, the DMA engine status and locations of vr
pre and

vcur. In Algorithm 6, max_period, cur_period are �rst initialized to 0.

max_period_start and cur_period_start are initialized to vr
pre + 1. We

iterate the current position cur_pos from vr
pre + 1 to vcur − 1. The mod

operation in (cur_pos + 1)%|PASS| wraps the current position to the head

of PASS when (cur_pos + 1) ≥ |PASS|. The subroutine iteratively updates

max_period_start and max_period when a DMA engine idle period that is

larger than max_period is found. Upon termination, max_period_start and

max_period is returned.

With deep pre-fetching a DMA transfer for scur is issued at time in-

terval max_period_start and the corresponding code overlay overhead for

transferring scur is given by Algorithm 7. The inputs to Algorithm 7 are
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1: max_period_start← vr
pre + 1, max_period← 0

2: cur_period_start← vr
pre + 1, cur_period← 0

3: for cur_pos = vr
pre + 1; cur_pos 6= vcur;

cur_pos = (cur_pos+ 1)%|PASS| do
4: if STATUS[cur_pos] = idle then
5: cur_period← cur_period+ τcur_pos

6: else
7: if cur_period > max_period then
8: max_period← cur_period
9: max_period_start← cur_period_start
10: end if
11: cur_period← 0
12: cur_period_start← cur_pos+ 1
13: end if
14: end for
15: return < max_period_start,max_period >

Algorithm 6: findMaxPeriod(PASS, STATUS, vr
pre, vcur)

the current PASS, the DMA engine status, the DMA cost of scur, the deep

pre-fetching start location, and the current execution location. Starting from

cur_loc = max_period_start, we keep on deducting actor's run time at

cur_loc from dma_cost until dma_cost is less than or equal to 0, or we run

out of the DMA idle period. Note that when the DMA fetch cost of scur is

larger than max_period, part of the DMA fetch cost that is not overlapped

with successive actor's executions is returned. We change the DMA engine

status of cur_loc from idle to busy if it is utilized to implement deep pre-

fetching.

To adopt the deep pre-fetching optimization into our heuristic, we is-

sue a DMA transfer of scur at max_period_start for each segment that is

overlayed and update the calculation for code overlay overhead as described

in Algorithm 8. The di�erence from the basic pre-fetching algorithm is that

when vcur is absent from the local SPM, we �rst identify the range that a pre-
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1: cur_loc← max_period_start
2: while dma_cost > 0 and STATUS[cur_loc] = idle and cur_loc 6= vcur

do
3: STATUS[cur_loc]← busy
4: cost← cost− τcur_loc

5: cur_loc← (cur_loc+ 1)%|PASS|
6: end while
7: return max(0, dma_cost)

Algorithm 7: setDMABusy(PASS, STATUS, dma_cost,max_period_start,
vcur)

fetching call for scur can be inserted, Line 10-13. Then we issue pre-fetching

scur at the start of the longest DMA engine idle period, Line 14-16.

3.8.3 Data overlay optimization

To reduce the data bu�er usage of a given schedule, we further introduce

data overlay as discussed in Section 3.1.3. Now we have two ways of reducing

memory, namely by collapsing two regions or by data overlay. We update

Algorithm 3-RegionAssignment in our SDF scheduling approach with Algo-

rithm 9 to either perform data overlay or collapsing two regions when the data

bu�er usage and the total region size exceed the local SPM. The �rst three

lines in Algorithm 9 initialize < V,R >, IF , and region_mem, which are

identical to Algorithm 3. Then life time of each data segment is initialized

for implementing data overlay. A data segment is de�ned as the total number

of tokens produced on each of an actor's outgoing edge. For example, given

the SDF described in Figure 3.8, there are two data segments being produced

at actor A' execution, one consists of 4 tokens (on edge A → D) and one

consists of 1 token (on edge A → B). The life time of a data segment starts

from the actor execution where it is produced and ends when all its tokens

are consumed. LIFE[i][j][k] = 1 denotes that the data segment produced by
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1: Initialize code_overlay ←0
2: for r ∈ R do
3: /* slast is the last segment that is loaded to region r following PASS */
4: Initialize mem_state[r]← slast

5: end for
6: for j ∈ [0, |PASS| − 1] do
7: scur ← getSegment(< V, S >, j)
8: rcur ← getRegion(< V,R >, j)
9: if scur 6= mem_state[rcur] then
10: i← (j − 1 + |PASS|)%|PASS|
11: while getRegion(< V,R >, i) 6= rcur do
12: i← (i− 1 + |PASS|)%|PASS|
13: end while
14: < max_start,max_period >←

findMaxPeriod(PASS, STATUS, i, j)
15: cost← Tc(Cscur)
16: overhead← setDMABusy(PASS, STATUS, cost,max_start, j)
17: code_overlay ← code_overlay + overhead
18: mem_state[rcur]← scur

19: end if
20: end for
21: return code_overlay

Algorithm 8: calCodeOverlayDeepPre(G,PASS, STATUS,< V,R >,<
V, S >)

the ith actor execution in the given PASS on the actor's jth outgoing edge

is alive at time interval k. The current data bu�er usage buf_mem is cal-

culated by calBuf(PASS,LIFE). Function calBuf(PASS,LIFE) iterates

through a given PASS and calculates the bu�er usage of each time interval k

by summing up all data tokens that are alive at k. The maximum data bu�er

usage among all time intervals is returned as the data bu�er usage of the given

PASS.

Line 6 in Algorithm 9 initializes data overlay overhead to be 0. Starting

from Line 7, we enter a while loop where we keep on collapsing two regions or

applying data overlay until the total region size and data bu�er �ts into the
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1: Initialize actor to region assignments < V,R >, as each actor occupies a
separate region.

2: Construct IF table entry for each region pair < (ri, rj), Integer >, where
ri, rj ∈ R, i < j

3: region_mem←
∑

r∈R Cr

4: Initialize life time of all data segments LIFE
5: buf_mem← calBuf(PASS,LIFE)
6: data_overhead← 0
7: while region_mem+ buf_mem > Cp and !(|R| = 1 and
buf_mem = BUF_MIN) do

8: if buf_mem = BUF_MIN then
9: do_weight← +∞, co_weight← 0
10: else if |R| = 1 then
11: co_weight← +∞, do_weight← 0
12: else
13: do_weight← ∆t_do/∆m_do, co_weight← ∆t_co/∆m_co

14: end if
15: if do_weight < co_weight then
16: < buf_mem, overhead >← DataOverlay(PASS, STATUS, LIFE)
17: data_overhead← data_overhead+ overhead
18: else
19: Collapse region pair < ri, rj > with minimum IF . Update < V,R >,

and IF table.
20: region_mem←

∑
r∈R Cr

21: end if
22: end while
23: return << V,R >, data_overhead >

Algorithm 9: RegionAssignmentAndDataOverlay(G,PASS, STATUS)

local SPM, or both operations fail (|R| = 1 and buf_mem = BUF_MIN).

BUF_MIN is the minimum bu�er usage required even with data overlay

and it is given by the maximum bu�er usage of each actor, including input

bu�ers and output bu�ers. In each iteration of the while loop, we calcu-

late the data overlay weight factor do_weight and the code overlay weight

factor co_weight. The weight factors indicate the code or data overlay over-

head for each unit of memory requirement reduction. If buf_mem reaches

BUF_MIN , we set do_weight to be +∞ and co_weight to be 0, Line 9.
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Else if there is only one region left, we set co_weight to be +∞ and do_weight

to be 0, Line 11. Otherwise we calculate the data overlay overhead ∆t_do and

memory saving ∆m_do for applying data overlay. Correspondingly we also

calculate the code overlay overhead ∆t_co and memory saving ∆m_co for col-

lapsing two regions. ∆t_do is calculated by applying Algorithm 10 (discussed

in the following paragraph). We can calculate ∆m_do by simply taking the

di�erence of data bu�er usage before and after applying data overlay. Note

that since the DMA engine STATUS and data segment life time LIFE are

modi�ed by Algorithm 10, only their copies are passed in at this step (the

original copies of STATUS and LIFE are modi�ed when we realize data

overlay and code pre-fetching optimizations as discussed in Algorithm 9, Line

16 and Algorithm 11, Line 11 that is discussed later). For calculating ∆t_co

and ∆m_co, we collapse the region pair < ri, rj > with minimum IF and cal-

culate the code overlay overhead before and after. Again, < V,R >, IF , and

STATUS are modi�ed by this procedure. We pass in their copies instead

of references. Based on the calculated do_weight and co_weight, we either

perform data overlay (Algorithm 10) and update buf_mem, Line 16-17, or

collapse two regions and update region_mem, Line 19-20. Upon termination

of the while loop, We return the actor to region mapping < V,R > and the

total data overlay overhead data_overhead.

The algorithm for data overlay is provided in Algorithm 10. Given the

current PASS, DMA engine status, and the life time of each data segment,

Algorithm 10 iteratively introduces data overlay until a memory reduction is

achieved or BUF_MIN is reached. In the algorithm, the bu�er usage before

data overlay is stored to old_buf . cur_buf is initialized to old_buf and

overhead is initialized to 0. At each iteration of the while loop, we identify
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1: old_buf ← calBuf(PASS,LIFE)
2: cur_buf ← old_buf , overhead← 0
3: while old_buf 6= BUF_MIN and cur_buf = old_buf do
4: Find time interval k ∈ [0, |PASS| − 1] with the largest data bu�er

usage
5: < i, j >← findToken(PASS, STATUS, LIFE, k)
6: cost← Tc(getDataSegment(PASS, i, j))
7: overhead← overhead+ setDMABusy(PASS, STATUS, cost, i, k)
8: overhead← overhead+ setDMABusy(PASS, STATUS, cost, k, j)
9: Update LIFE for < i, j >
10: cur_buf ← calBuf(PASS,LIFE)
11: end while
12: return < cur_buf, overhead >

Algorithm 10: DataOverlay(PASS, STATUS, LIFE)

time interval k with the largest data bu�er usage, Line 4. Then for all data

segments that are alive at k, we �nd the data segment < i, j > (the data

segment that is produced on the jth outgoing edge of the ith actor execution

in the given PASS) that if overlayed will result in the smallest overhead, Line

5. The overhead of overlaying a data segment < i, j > at time interval k is

given by

overhead =max(0, cost− backward_period) +max(0, cost− forward_period)

where cost = Tc(getDataSegment(PASS, i, j)).

(3.2)

In the above equation, the backward_period and forward_period denote

the consecutive DMA engine idle periods that can be used for pushing data

segment backward to the o�-chip memory and bringing it forward to the local

SPM. They are calculated using Algorithm 6. getDataSegment returns the

data segment size that is produced on the jth edge of the ith actor execution in

the given PASS. Tc(getDataSegment (PASS, i, j)) calculates the DMA cost

for transferring data segment < i, j > between the local SPM and the o�-chip
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1: Initialize min_overlay ← +∞
2: Initialize PASS ←MinBufferScheduling(G)
3: repeat
4: Initialize STATUS to be idle for every time interval
5: /* Perform actor to region assignment and data overlay */
6: << V,R >, do_overhead >←

RegionAssignmentAndDataOverlay(G,PASS, STATUS)
7: if

∑
r∈R Cr ≤ code_mem then

8: /* Perform actor to segment assignment */
9: < V, S >← Segmentation(G,PASS, STATUS,< V,R >)
10: /* Calculate current code overlay overhead */
11: cur_overlay ← calCodeOverlayDeepPre(G,PASS, STATUS,<

V,R >,< V, S >)
12: cur_overlay ← cur_overlay + do_overlay
13: if cur_overlay < min_overlay then
14: min_overlay ← cur_overlay
15: solution← clone(G,PASS,< V,R >,< V, S >)
16: end if
17: end if
18: until collapseTwoExecs(PASS) = false
19: return solution

Algorithm 11: MinOverlaySchedulingOptimized(G,P )

main memory. Then we overlay token < i, j >, Line 6-8, update its life time

Line 9, and calculate the bu�er usage after overlaying < i, j >, Line 10.

The overall minimum overlay scheduling algorithm after incorporating

deep pre-fetching and data overlay is given in Algorithm 11. Compared to

Algorithm 2, we added the initialization of DMA engine status in Line 4. The

originalRegionAssignment is replaced withRegionAssignmentAndDataOverlay

and the cur_overlay is the sum of code overlay overhead with deep pre-

fetching6 and data overlay overhead, Line 12. After incorporating data overlay

operation, the complexity of RegionAssignment AndDataOverlay becomes

6In Algorithm 11, every call to calCodeOverlay is replaced with
calCodeOverlayDeepPre, including the Segmentation subroutine. It is why STATUS is
also passed in as a parameter to Segmentation in Algorithm 11.
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Table 3.4: Benchmark Speci�cations

Benchmarks Total Code Size (Bytes) Minimum Bu�er (Bytes)

Beamformer 12356 2272
Bitonicsort 576 256
Channelvocoder 22996 6800
DCT 2673 1024
DES 2256 1024
FFT 2318 2048
Filterbank 41879 416
Fmradio 34285 204
Serpentfull 10056 3584
TDE 3226 6144

Average 13262 2377

O(n4). The complexity of Segmentation is O(n3). They are both nested inside

the loop of SDF scheduling, which is O(n). Therefore the overall algorithm

complexity becomes O(n5).

3.9 Experimental Results

3.9.1 Experimental setup

We evaluated the e�ciency of our heuristic by compiling ten benchmarks from

the StreamIt compiler 2.1.1 [57] onto one SPE of the IBM Cell BE. The source

code of each benchmark is delivered with the StreamIt compiler and a brief

discussion can be found in [56]. Table 3.4 �rst column provides the benchmark

names. The second and third columns provide the code size and minimum

bu�er usage of each benchmark. The last row of the table computes the average

values for each column. We implemented our techniques as an optimization

pass in the StreamIt compiler that operates on the intermediate representation

(IR) of a stream application. Each benchmark is cross-compiled on our PC

for executing on one SPE.
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3.9.2 Comparison of 3-stage ILP and heuristic with minimum bu�er schedul-

ing

Figure 6.3 compares the overlay overhead of our 3-stage ILP and heuristic

with a minimum bu�er scheduling approach. The SPM size is set to be 8K in

the experimental set up. The 8K SPM is selected such that for most of the

benchmarks it is enough to hold the minimum bu�er usage but still not so

large that all code and data �t into it. The performance results of minimum

bu�er scheduling, 3-stage ILP with/without code pre-fetching, and heuristic

with/without code pre-fetching, deep pre-fetching, and data overlay are pro-

vided in Figure 3.9. The x-axis gives us the benchmark names and the y-axis

provides the overlay overhead for each benchmark normalized to the mini-

mum bu�er scheduling results. BP, DP, and DO are short forms for basic

pre-fetching, deep pre-fetching, and data overlay respectively.

For benchmarks Bitonicsort, DCT , DES and FFT , there is no over-

lay overhead in all techniques. The reason is that for these four benchmarks,

the bu�er usage and total code size all �t into the 8K SPM with a minimum

bu�er schedule. For the remaining six benchmarks, our heuristic approach

without code pre-fetching achieves an overlay overhead reduction of 50% com-

pared with the minimum bu�er scheduling. The performance is within 5%

compared with 3-stage ILP approach which takes exponential time to run.

With basic pre-fetching our heuristic generates no overlay overhead for most

of the benchmarks. This is due to the fact that with basic pre-fetching, most of

the DMA transfers are hidden by actor executions. Compared with minimum

bu�er scheduling, the average overlay overhead reduction is around 97% with
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Figure 3.9: Our 3-stage ILP and heuristic approaches compared with minimum
bu�er scheduling.

basic pre-fetching. For these benchmarks that still impose overlay overhead

after basic pre-fetching, deep pre-fetching optimization of our heuristic results

in an average overlay overhead reduction of 23% compared with results of ba-

sic pre-fetching. Further introducing of data overlay gives us a performance

improvement of 19% compared with results without data overlay. The average

algorithm run time of our heuristic is 84 seconds and the average algorithm run

time of the 3-stage ILP is 25926 seconds. In other words, compared with the

previous 3-stage ILP approach, our heuristic runs more than 300 times faster.

With optimizations of deep pre-fetching and data overlay, we also achieved

better performance than the ILP approach. The 3-stage ILP approach serves

as a baseline optimization that provides reference performance results. The

improved performance is resulted from the fact that with prefetching, a PASS

not only a�ects the code memory and number of actor switches, but also the
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Figure 3.10: Impact of each optimization in our heuristic approach.

actor execution that can be utilized to overlap with DMA transfers. Our

heuristic is able to e�ciently perform this trade-o� by evolving its PASS from

a minimum bu�er schedule to a minimum actor switching schedule.

3.9.3 Impact of each optimization

We evaluate the impact of each optimization in our heuristic in this section.

Since our heuristic algorithm is much faster than the previous 3-stage ILP

approach, we were able to run our experiments through a series of di�erent

SPM sizes. The SPM sizes are determined in the following way. We �rst

calculated memMIN and memMAX for each benchmark such that there

is no feasible solution for any SPM smaller than memMIN (without data

overlay) and there is no overlay overhead for any SPM larger than memMAX.

We iterate the SPM size from memMIN to memMAX with a step size of

(memMAX−memMIN)/STEPS (STEPS is set to 10 in our experiments).
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Figure 3.11: Memory usage comparison.

The calculation of memMIN and memMAX is given by,

memMIN = getMem(MBS) +maxv∈VCv

memMAX = getMem(MBS) +
∑
v∈V

Cv

In the above equation, getMem(MBS) calculates the bu�er usage of

a minimum bu�er schedule and maxv∈VCv calculates the largest code size

among all actors. Figure 3.10 shows the average overlay overhead after each

optimization. The overlay overhead is normalized to the result at the SDF

scheduling stage. Observed from Figure 3.10, the region assignment delivers

the most signi�cant performance improvement at an average of 48%. This

is due to the fact that without region assignment, all actors are assigned

to the same region. The local SPM is not fully utilized and all actors are

overlayed with each other. Pre-fetching gives us the next most signi�cant

performance improvement at around 28%. With pre-fetching, most of the
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DMA transfers are hidden by actor executions. In our heuristic, segmentation

explores opportunities to combine actors in the same region to reduce the

actual number of DMA transfers. It delivers an average performance gain of

17%. Finally, deep pre-fetching and data overlay each give us an additional

overlay reduction of 1%.

The performance improvements of deep pre-fetching and data over-

lay are not as signi�cant as other optimizations because the following reasons.

Code overlay overhead has been almost optimized away with basic pre-fetching.

Also when the SPM size is very small compared with the total code and data

size, we only have a limited number of regions and the opportunities for im-

plementing deep pre-fetching is highly restricted. For example if there are

only two regions, pre-fetching and deep pre-fetching in fact behave identical

to each other. Data overlay optimization has a potential to reduce the data

bu�er usage of a schedule. However, it occupies DMA engine for transferring

data, thus could potentially impact the code pre-fetching optimization. In our

heuristic, data overlay optimization is more signi�cant in terms of improving

the feasibility. In Figure 3.11, we provide the minimum memory requirement

for a program to be executable on an SPM. The x-axis provides us with the

benchmark names and the y-axis shows the memory required for a feasible

solution to exist. We experimented under three con�gurations, heuristic with-

out code overlay, heuristic with code overlay, and heuristic with code and data

overlay. The average memory required for the twelve benchmarks without

code and data overlay is 15640 bytes. With code overlay, the average memory

required drops down to 3588 bytes. Adding data overlay further reduces the

average memory requirement to 2774 bytes, a more than 20% improvement

compared with solutions without data overlay.
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3.9.4 Impact of SPM size

In this section, we show the code overlay overhead of each benchmark un-

der various SPM sizes. Ten di�erent SPM con�gurations were taken for each

benchmark as discussed in Section 3.9.3. Figure 3.12 and Figure 3.13 present

the performance results from the �rst �ve and second �ve benchmarks, respec-

tively. The x-axis in each �gure provides the SPM steps and the y-axis provides

the normalized overlay overhead of our heuristic with deep pre-fetching and

data overlay. The performance results at each SPM step is normalized to the

overlay overhead at step 0. As we iterate from memMIN to memMAX, the

overlay overhead went down dramatically for all the benchmarks we exper-

imented with. There are three benchmarks, BeamFormer, ChannelVocoder,

and SerpentFull that impose no overlay overhead even before the SPM size

reaches memMAX. This is due to data overlay optimization. Note that for

benchmark DES step 1, 2, 4, 9 and benchmark Tde step 5, although the SPM

size was increased, our heuristic generates almost the same overlay overhead

as the previous step. This is due to the fact that we terminate the process of

region assignment and data overlay in our heuristic as soon as a feasible solu-

tion is found. However, there could be scenarios where by further collapsing

two regions and thus resulting in more actors in certain regions, segmentation

could bene�t so much that a better solution is generated. Our heuristic can be

improved at this point at the cost of increasing the algorithm complexity from

O(n5) to O(n8). For the interest of algorithm run time, we left segmentation

out of region assignment and data overlay optimization in our SDF scheduling

heuristic.
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Figure 3.12: SPM size variation (1st set).

3.9.5 Code overlay evolution

In this section, we demonstrate the evolution of code overlay overhead with

SDF scheduling. The SPM size is again set to be 8K and we plot the code over-

lay overhead as the PASS gradually evolves from a minimum bu�er schedule

to minimum actor switch schedule. Figure 3.14 shows the performance results

normalized to the overlay overhead from the initial stage where a minimum

bu�er schedule was adopted. For benchmarks BitonicSort, DCT, DES, and

FFT, there is no overlay overhead and our heuristic terminates immediately.

Figure 3.14 plots the overlay overhead evolution for the remaining six bench-

marks. We calculate the code overlay overhead cur_overlay for each schedule

being generated. If it is smaller than the recorded code overlay overhead,

then we update min_overlay with cur_overlay. min_overlay maintains the
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Figure 3.13: SPM size variation (2nd set).

best solution obtained so far. As observed from Figure 3.14, the code overlay

overhead gradually reduces as the schedule evolves. It reaches a steady-point

after a certain number of steps where a best solution is recorded. Benchmark

SerpentFull achieved a very low overlay overhead with its minimum bu�er

schedule. Therefore its overlay overhead was not updated until an improved

schedule is achieved much later.

3.9.6 Impact of scaling DMA cost

In this section, we examine the impact of scaling DMA transfer cost to simulate

the scenarios where there are multiple stream applications running on SPM

based multi-core architecture. With a �xed on-chip bandwidth multi-core

architecture, as we add more and more cores the DMA transfer cost becomes

larger and larger. In this experiment, we scaled the DMA cost by 2, 4, 8, and
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Figure 3.14: Overlay cost evolution with SDF scheduling.

16. The SPM is set to be 8K. In Figure 3.15, the x-axis shows the six out of

ten benchmarks that generate overlay overhead. The y-axis shows the overlay

overhead normalized to overlay overhead without scaling. For benchmarks

BeamFormer, FMRadio, and SerpentFull, there is no overlay overhead at scale

factor of 1 with deep pre-fetching and data overlay implemented. Therefore

their overlay overhead is normalized to the performance at scale factor 2. As

observed from Figure 3.15, the overlay overhead increases much faster than

the DMA overhead. This because both deep pre-fetching and data overlay

optimizations rely on using actor executions to overlap with DMA transfers.

When the DMA cost scales up, not only the costs for transferring code and

data scales up, it also greatly impacts the deep pre-fetching and data overlay

optimization.
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Figure 3.15: Impacts of scaling DMA overhead.

3.9.7 Impact of scaling code size and run time

In this section, we simulate scheduling larger applications by scaling the code

size and run time of each actor in the original benchmark. The SPM size is

set to be 8K. In Figure 3.16, the x-axis provides the benchmarks and the y-

axis provides the normalized overlay overhead with deep pre-fetching and data

overlay. The overlay overhead is normalized to the overlay overhead without

scaling. When there is no feasible solution, the overlay overhead is in�nite

and we only show it up until 32. We examine scale factors of 2, 4, 8, and

16. Observed from Figure 3.16, several benchmarks become infeasible after

a few scaling steps, for example ChannelVocoder and SerpentFull at scaling

factor 2, FilterBank and FMRadio at scaling factor 4, and Tde at scaling

factor 16. The behavior is resulting from the fact that for these benchmarks,

the data bu�er usage is close to the SPM size and their actor code sizes are
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Figure 3.16: Impacts of scaling code size and run time.

comparably large. After scaling, the largest actor code size cannot �t into the

available code memory. For BeamFormer, BitonicSort, DCT, DES, and Tde

(the �rst several scaling steps), the overlay overhead increase is less than the

scaling factor. This is because when the run time of an actor is scaled, we

have a better chance to utilize actor executions to overlap with code and data

overlay. The fact that the DMA base cost does not change after the code size

is scaled also contributes to this behavior.

3.10 Summary

We presented both a 3-stage ILP formulation and a fast heuristic for schedul-

ing SDF speci�cations onto SPM based architectures with the objective of

latency minimization. We also presented extensions to our basic approaches

with a code pre-fetching optimization. Deep pre-fetching and data overlay
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were also investigated in our heuristic approach. The experimental results

demonstrate that our ILP approaches are able to e�ciently explore various

design trade-o�s and generate high quality solutions. Our ILP approaches

su�ers from long algorithm run time for large inputs. Our heuristic is able to

achieve comparable results with our 3-stage ILP approach within a matter of

seconds. We evaluated the e�ciency of our heuristic approach with di�erent

SPM con�gurations, schedules and optimizations. The �nal results show that

our heuristic approach is e�cient and fast in all cases.
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Chapter 4

SCHEDULING OF STREAM PROGRAMS ON SPM BASED

MULTICORE PROCESSORS THROUGH FUSION AND FISSION

The stream processing characteristics of many embedded system applications

in multimedia and networking domains have led to the advent of stream based

programming formats. Several multicore processors aimed at embedded do-

mains incorporate scratchpad memories (SPM) due to their superior power

consumption characteristics. This chapter addresses the problem of compil-

ing stream programs onto multi-core processors that incorporate SPM. Per-

formance optimization on SPM based processors requires e�ective schemes for

software based management of code and/or data overlay. In the context of our

problem instance the code overlay scheme impacts both the stream element

to core mapping and memory available for inter-processor communication.

The chapter presents an optimal integer linear programming (ILP) formula-

tion and heuristic approach that e�ectively exploit the SPM to maximize the

throughput of stream programs when mapped to multicore processors. The ex-

perimental results demonstrate the e�ectiveness of the proposed techniques by

compiling StreamIt based benchmark applications on the IBM Cell processor

and comparing the performance with an existing approach.

4.1 Motivation

Increasing performance requirements of many embedded system applications

has led to the advent of multicore processor architectures. The Intel IXP

series [40], Sun Niagara [47], IBM Cell Broadband Engine (CE) [64], Nvidia



GEForce series [43], Intel Larrabee [68], Tilera Tile64 [72] are all instances

of multicore processors aimed at embedded domains. In addition to multiple

homogeneous cores, these processors also incorporate specialized architectural

features to achieve high performance in a reasonable power envelop. In terms

of the memory constructs scratchpad memory (SPM) has been incorporated

in several processors due to its lower power consumption requirements in com-

parison to traditional caches.

The architectural innovations have brought forth the challenge of pro-

gramming these novel embedded processors. At present a typical design �ow

does not include a compiler that can e�ectively parallelize the application and

achieve maximal performance. In the absence of such a framework, the de-

signer is required to manually split the application into multiple threads which

she assigns to individual cores. Additionally, the designer is also required to in-

clude code segments for inter-core communication. The processor vendor does

supply traditional compiler tool chains that can take the threads assigned to

individual cores and generate assembly. Thus, performance optimization on

multicore embedded processors is a lengthy manual task which leads to inferior

implementations.

In recent years we have seen the emergence of stream programming

languages that capture the inherent streaming characteristics of many embed-

ded system applications in the multimedia, network processing and gaming

domains. Brook [13], CUDA [60], Baker [21], Sh [54] and StreamIt [71] are

some of the stream based programming languages that have been proposed.

Stream based formats e�ectively capture the spatial and temporal parallelism

in an application, and therefore are particularly suited for programming on
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multicore processors. However, the challenges associated with compiling tra-

ditional multi-threaded programs on multicore processors (as described above)

also hold true for stream languages.

This chapter addresses the problem of compiling and optimizing stream

programs on embedded multicore processors that incorporate SPM. In partic-

ular we consider the compilation of StreamIt programs on the IBM Cell BE1.

4.2 Previous Work

Previous research has addressed mapping of synchronous data�ow (SDF) spec-

i�cations on heterogeneous multicore processors [65]. More recently Chen et

al. [21] and Ostler et al. [61] proposed techniques for mapping stream pro-

gram based speci�cations on network processors. Liao et al. [77] proposed

parallelization schemes for the Brook language on general purpose multicore

processors. In contrast to these approaches our research is focussed on em-

bedded multicore processors that have SPMs. There has been recent research

that have proposed a dynamic scheduler [12] and compiler optimizations for

single threaded code [46] for Cell BE. In contrast our research is focussed on

static code optimizations and compiling stream programs on Cell BE. Gor-

don et al. [32] proposed an approach that utilized fusion/�ssion operators

for maximizing the performance of StreamIt programs when compiled for the

RAW architecture. In addition to utilizing similar operators, we are also con-

cerned with addressing the trade-o� between computation time, code overlay

and communication overheads imposed by the SPMs.

The work that comes closest to ours is by Kudlur et al. [48] that

1The discussion of StreamIt and IBM Cell BE are provided globally in Chapter 1
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also considered the compilation of StreamIt programs on the Cell BE. They

proposed an integer linear programming (ILP) formulation for the problem.

However, their ILP formulation did not consider memory constraints of the

SPM and consequently the code overlay costs associated with a mapping.

Further, they also did not model inter-core communication (direct memory

access or DMA) overheads in the ILP and assumed that all such overheads

could be hidden by computation. However, in several practical instances the

SPM code overlay overhead is signi�cant. Further, in many instances the

communication overheads cannot be hidden by computation time. Ignoring

these overheads leads to inferior designs. Our work overcomes these limitations

and makes the following contributions:

1. An optimal ILP formulation for Compiling Stream programs on SPM

equipped Multicore Processors (named as CSMPilp) that models both

the code overlay and communication overheads.

2. A fast polynomial time heuristic (named as CSMPheu) for the same prob-

lem that is able to achieve comparable results as the ILP formulation in

a matter of seconds.

We establish the e�ectiveness of the proposed techniques by compiling StreamIt

benchmark programs for Cell BE, and comparing the performance with an ex-

isting approach [48].

4.2.1 Problem description

The inputs to the problem consist of the architectural description of the target

multicore processor and SDF based intermediate format that captures the
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Table 4.1: Architecture and SDF Description

Constant Description

Arch. Cp Local memory size of the processor
Lp 1 (true) if overlay overhead exists for the local mem.
Tinit Lowest DMA transfer overhead
Dinit Largest DMA size that can be transferred with Tinit

Tslope Rate of increase of DMA overhead beyond Dinit

SDF Cf Size of code and local data for �lter f
Sf 1 (true) if f is non-�ssable (stateful)
τf Running time of �lter f
fpe Producer of FIFO e
fce Consumer of FIFO e
Ce Data produced to/consumed from e

stream program. The cores in the architecture are described by a set P where

each p ∈ P is given by a tuple p〈Cp, Lp, Tinit, Dinit, Tslope〉 as described in

Table 4.1. During the characterization of the Cell BE it was found that the

DMA overhead is constant at 2.1µs (= Tinit) below a block size of 1KB (=

Dinit). Beyond 1KB the DMA transfer overhead was found to increase at

0.075µs/KB (= Tslope).

The stream program is described by a SDF G〈F,E〉 where F is the set

of �lters, and E is the set of FIFOs between �lters. Each f ∈ F is given by

a tuple f〈Cf , Sf , τf〉 as described in Table 4.1. Each FIFO e ∈ E is given by

〈fpe, fce, Ce〉 also described in Table 4.1. In the SDF description we assume

that each �lter executes only once. Consequently, each FIFO has only one

data size (Ce) associated with it. It is quite straight forward to transform

from the traditional SDF description [49] to our intermediate format.

The objective is to seek a mapping of the SDF on the multicore ar-

chitecture such that the throughput of the design is maximized subject to
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the memory constraints. The problem is quite complex as it involves several

design trade-o�s.

The throughput of a SDF on multicore processor can be optimized

by utilizing fusion and �ssion operators [61][48]. For example, consider a

linear SDF G′ with three �lters A, B, and C with execution times 50ms,

50ms and 200ms, respectively. If G′ is to executed on a processor with 3

cores, then fusing (or merging) A and B and executing them sequentially

on core 1, and a �ssion (or replication) of C on cores 2 and 3 maximizes the

throughput. However, for large SDFs fusion cannot be applied indiscriminately

as cores have a memory restriction beyond which an additional code overlay

overhead adversely impacts performance. Thus, there is a trade-o� between

the bene�t of fusion (as it frees up cores for slower �lters) and the resulting

overlay overhead. Further, �ssion cannot be applied in the case of a stateful

�lter.

In the discussion thus far we have ignored the communication overhead

for a FIFO whose producer and consumer �lters are mapped to di�erent cores.

As the DMAs can be launched in a non-blocking manner, it is possible to

amortize the communication overhead with �lter execution. However, this

scheme (also known as double bu�ering) requires more memory space. The

FIFO is assigned two locations on the producer and consumer core's memory,

respectively. While the producer and consumer read data from one location

in their respective FIFO bu�ers, a DMA operation transfers data between the

other two FIFO bu�ers. As the FIFO is assigned on the same memory as

the code, there is a trade-o� between the memory usage of the two, and the

resulting performance.
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Finally, in the above discussion we assumed that the communication

overhead can be e�ectively hidden by double bu�ering. However, it may not

be the case if the communication overhead itself is too large. In addition to

considering overlay overheads, the fusion/�ssion operators and mappings must

also take into account the resulting communication overheads.

In the following sections we describe an ILP formulation and heuristic

approach that are both able to e�ectively address the various design trade-o�s

and generate high quality solutions.

4.3 Integer Linear Programming Approach

We describe an ILP approach (called CSMPilp) for compiling stream programs

on multicore processors incorporated with SPMs. In our ILP the �ssion and

fusion operators are implemented by �rst assigning the �lters to batches, and

then the batches to processors. In the mapping, each �lter must be assigned

to exactly one batch and each processor must be assigned one batch to exe-

cute. Figure 4.1.A provides an example of the mapping with 6 �lters and 3

processors and Figure 4.1.B sketches the steady-state execution. Ostler el al.

[61] proved that such a batching strategy can generate optimum solutions for

stream programs. The base and derived variables of the ILP are described in

Table 4.2.

4.3.1 Constraints

The constraints of our ILP are described below. Some of the constraints are

identical to the ILP by Ostler et al. [61], however for the integrity of this

dissertation we provide each constraint in detail.
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e

Steady-state Execution
P1 P2 P3

Figure 4.1: (A) �lter-batch, and batch-processor mapping; (B) steady-state

• File read and write: The source and sink �lters are assumed to be �le read

and write operations, respectively that can only execute on the PPE.

Therefore, we map them to the �rst batch which is set to nonfissable,

and map the batch to the PPE (proc 1).

a11 = 1, a|F |1 = 1, b11 = 1, S1 = 1, n11 = 1

• Filter to batch assignment: Each �lter is mapped to one and only one

batch.

∀f ∈ F :
∑
b∈B

afb = 1

• Batch to processor assignment: If batch b has n copies, then exactly n

processors must be assigned to execute b.

∀b ∈ B :
∑
p∈P

bbp =

|P |∑
n=1

nbn ∗ n

• Processor utilization: Each processor must be assigned exactly one batch

to execute.

∀p ∈ P :
∑
b∈B

bbp = 1
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Table 4.2: Base and Derived Variables

Var Type Description

Base afb 0/1 �lter f belongs batch b
Var. bbp 0/1 batch b is assigned to processor p

nbn 0/1 number of replicated copies of batch b
ifn 0/1 iteration number of �lter f
pf 0/1 1 if �lter f always in SPM

Derived C ′f real amount by which Cf exceeds 1KB
Var. C ′e real amount by which Ce exceeds 1KB

Peb 0/1 fpe of e belongs to b
Ceb 0/1 fce of e belongs to b
Meb 0/1 Peb AND Ceb

P ′eb 0/1 Peb −Meb

C ′eb 0/1 Ceb −Meb

Ke 0/1 fpe and fce belong to di�erent batches
Ie int. iteration di�erence of e's fpe and fce

IMeb int. Ie AND Meb

IC ′eb int. Ie AND C ′eb
Xfb 0/1 afb AND pf

Yfb 0/1 f mapped to b, and b has multiple copies

Cp(max)
real 1. code size of largest �lter f mapped to p

2. f not present in SPM of p

• Batch utilization: A batch needs to be mapped to some processor to

execute only when there is at least one �lter being assigned to it.

∀b ∈ B :
∑
p∈P

bbp ∗MAX_V AL ≥
∑
f∈F

afb

∑
p∈P

bbp ≤
∑
f∈F

afb ∗MAX_V AL
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• Stateful �lter: If a batch consists of a non-�ssable �lter then it has only

one copy.

∀b ∈ B :

|P |∑
n=1

nbn ≤ 1

Sb ∗MAX_V AL ≥
∑
f∈F

afb ∗ Sf

Sb ≤
∑
f∈F

afb ∗ Sf

nb1 ≥ Sb / ∗ nofissable batch has 1 copy ∗ /

MAX_V AL is some large value and Sb indicates whether batch b is

non�ssable.

• Iteration assignment: Each �lter runs at some iteration number. If

the producer and consumer of an edge e are being assigned to di�er-

ent batches, then the producer runs at least 2 iteration numbers higher

than the consumer.

∀f ∈ F :
∑
n∈N

ifn = 1,∀e ∈ E : Ie ≥ 2 ∗Ke

• Bu�er Usage: The bu�er usage of batch b is calculated by its incoming

(Ie ∗ Ce), outgoing (2 ∗ Ce) and internal (Ie + 1) ∗ Ce edges.

Cb(buf) :=
∑
e∈E

IC ′eb ∗ Ce +
∑
e∈E

2 ∗ P ′eb ∗ Ce +
∑
e∈E

(IMeb +Meb) ∗ Ce

• Code overlay: The code overlay overhead is given by the fetch time for

all the �lters that are not present in the SPM.

∀b ∈ B : τb(overlay) :=
∑
f∈F

(afb −Xfb) ∗ (Tinit + Tslope ∗ C ′f )
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• Processor Memory: The sum of the bu�er usage and the region for code

overlay must be less than the processor local memory size.

∀b ∈ B, p ∈ P :Cbp ≤ bbp ∗MAX_V AL

Cbp ≥ Cb(buf) + Cbp(code) + (bbp − 1) ∗MAX_V AL

Cbp ≥ 0

Cp ≥
∑
b∈B

Cbp +
∑
f∈F

Cf ∗ (1− Lp)

where Cbp (code) is given by

Cbp(code) :=
∑
f∈F

(Cf ∗Xfb + Cp(max)) ∗ Lp

4.3.2 Objective function

The execution time of a batch is given by the maximum of its computation

(which includes code overlay overheads) and communication time. The e�ec-

tive execution time of a batch equals the execution time of that batch divided

by the number of its copies. If a batch has multiple copies, we also introduce

a �ssion overhead for additional split/join nodes and potentially more peek

operations (captured by ε).

4.3.2.1 Computation cost

The computation cost of batch b is given by the sum of the computation cost

of all the �lters being assigned to it plus its overlay overhead.

∀b ∈ B : τ ′b :=
∑
f∈F

afb ∗ τf + τb(overlay)
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4.3.2.2 Communication cost

The communication cost of batch b is given by the time to fetch all its input

data to the local memory in the steady-state execution.

∀b ∈ B : τ ′′b :=
∑
e∈E

C ′eb ∗ (Tinit + Tslope ∗ C ′e)

4.3.2.3 Execution cost

The execution cost of a batch is the maximum of its computation and com-

munication times.

∀b ∈ B : τb ≥ τ ′b, τb ≥ τ ′′b

4.3.2.4 E�ective execution cost

The e�ective execution cost is given by

∀b ∈ B : Γb :=

|P |∑
n=1

1

n
∗ τbn +

∑
f∈F

Yfb ∗ (ε+ split_join_work)

where, τbn is given by

∀b ∈ B, n ∈ [1, |P |] :τbn ≤ nbn ∗MAX_V AL

τbn ≥ τb + (nbn − 1) ∗MAX_V AL

τbn ≥ 0

4.3.2.5 Overall cost function

The objective function is to minimize e�ective execution time over all batches

and thus, maximize the throughput.

∀b ∈ B : Γ ≥ Γb, Minimize(Γ)
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1: B = initialize(G), B = Bf ∪Bnf

2: initialize_iteration(B)
3: K = C(Bnf , B, P )
4: B = Bf ∪ fuse_number(Bnf , K)
5: B = fuse_number(B, |P |)
6: C = cost(B,G, P )
7: for i = |Bf | − 1 down to 1 do
8: B′ = B ∪ fuse_number(Bf , i)
9: B′′ = fission_number(B′, |P |), C ′ = cost(B′′, G, P )
10: if C ′ < C then
11: C = C ′, Bs = B′′

12: end if
13: end for
14: return Bs

Algorithm 12: CSMPheu(P,G)

4.4 Heuristic Approach

In this section, we present a heuristic approach (called CSMPheu) that can be

utilized for compiling stream programs on SPM enhanced multicore proces-

sors. The heuristic involves iterative application of fusion/�ssion operators,

and estimation of the performance of the resulting SDF. The performance

estimation considers both overlay costs and communication costs. The over-

lay costs take into account the trade-o� between the bu�er requirement for

communication and code memory. Although the application of fusion/�ssion

operators is similar to Ostler et al. [61], our approach can address the design

complexity introduced by the SPM.

The main routine of our approach is shown in Algorithm 12. The

function initialize() assigns each �lter f ∈ G to a distinct batch b ∈ B.

The non-�ssable batches that include a non-�ssable �lter are denoted by Bnf

(Bf = B/Bnf ). initialize_iteration() assigns the iteration number of every

�lter. As each batch is assigned to a di�erent processor the di�erence between
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the iteration numbers of producer and consumer �lters is set as 2. As ex-

plained earlier this enables overlapping of DMA transfers with computation.

We next calculate K = C(Bnf , B, P ) (given below) which denotes the number

of batches that non-�ssable �lters should be fused into. K is given by the

product of number of cores and the ratio of the summation of run time of the

non-�ssable batches over the summation of the run time of all batches.

K :=

⌈∑
f∈Bnf

τf∑
f∈B τf

× |P |

⌉
The function fuse_number(Bnf ,K) fuses the input set of batches (Bnf ) into

K distinct batches. The fusion operation considers all pairs of batches and

fuses the pair which has the lowest total cost after the merge. Next we fuse

the batches using function fuse_number(B, |P |). Thus, the total number of

batches are now equal to the number of cores. Let C denote the e�ective

execution time of this design.

We next iteratively (within the for loop) explore di�erent design al-

ternatives that can improve upon the initial solution. In each iteration we

�rst generate a solution by fusing �ssionable batches. For example in the �rst

iteration we fuse and reduce the number of �ssionable batches by one. We

then apply the �ssion operator that iterative replicates the slowest batches

until the total number of batches are the same as the number of cores. We

save the solution (Bs) that gives the lowest cost. At the end of the for loop

we return the best solution.

The computational complexity is determined by the for loop. The

computational complexity of the fuse operation is O(n2) as it considers all pairs

of batches. The complexity of fuse_number() is O(n3), and consequently the

complexity of the overall routine is O(n4). In the following we elaborate upon
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the overlay scheme and cost function calculations utilized by our approach.

4.4.1 Overlay Scheme

We utilized a greedy overlay scheme in the interest of e�ciency. We �rst

calculate the bu�er usage of the batch b, and derive the memory available

for code (= Ccode). If Ccode is able to accommodate all the �lters in batch b

then code overlay is not required. Otherwise, we need to determine an overlay

scheme and estimate the resulting overhead. We �rst assign as many �lters as

possible into Ccode in decreasing order of their code size. Then we remove the

last �lter that was assigned to Ccode and utilize the available memory (Coverlay)

to overlay the remaining �lters. We sort the remaining �lters of b in decreasing

order of their iteration number and assign them to segments (Si) as long as

the segment size does not exceed the Coverlay. The overlay overhead is given

by:

τoverlay(b) =
∑
Si∈b

τ(Si)

τ(Si) =


Tinit if |Si| ≤ Dinit

Tinit + (|Si| −Dinit) ∗ Tslope, Otherwise

4.4.2 Cost functions

In the following paragraphs we detail the calculation of bu�er usage, the com-

putation cost, and the communication cost.
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4.4.2.1 Bu�er usage

The bu�er usage of a batch b is given by the memory required for storing all

the incoming, outgoing and internal data of b. Therefore, it is given by:

buf(b) =
∑
∀e∈b

buf(e)

buf(e) =


(Ie + 1)× Ce if fpe, fce ∈ b

2× Ce if fpe ∈ b, fce /∈ b

Ie × Ce if fpe /∈ b, fce ∈ b

4.4.2.2 Computation cost

The computation cost of batch b is given by the sum of the computation time

of all the �lters being assigned to it plus its overlay overhead.

τcomp(b) := τoverlay(b) +
∑
f∈b

τf

4.4.2.3 Communication cost

The communication cost of batch b is given by the time for b to fetch all its

data in the steady-state execution.
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Figure 4.2: Computation and communication costs for SGMS

τcomm(b) =
∑

∀e:fpe /∈b,fce

τcomm(e)

τcomm(e) =


Tinit if Ce ≤ Dinit

Tinit + (Ce −Dinit)× Tslope otherwise

4.4.2.4 Overall cost of solution

The cost of a batch is given by τ(b) = max(τcomm, τcomp). The e�ective cost

of a batch is given by τeff (b) = N/τ(b) where N is the number of copies of

b. Finally, the overall cost of the application is given by the largest e�ective

execution time over all batches.
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Figure 4.3: Computation and communication costs for CSMPilp and CSMPheu

4.5 Experimental Results

In this section we present experimental results that evaluate CSMPilp and

CSMPheu, and compare them with the SGMS approach [48]. We utilized

StreamIt benchmarks that are delivered with the 2.1.1 version of the com-

piler. We compiled the benchmark applications on Sony PS3 platform that

includes the Cell BE. Due to hardware constraints of the platform only 6

SPEs and the PPE are available to the application developer. We utilized the

StreamIt compiler to generate C implementations which were then passed to

the respective gcc compilers to obtain implementations on the SPE and PPE.
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Table 4.3: Maximum SPE Bu�er usage of SGMS, CSPMilp & CSPMheu

(BYTES).

SGMS CSPMilp CSPMheu

beamformer 1004 1176 1036
bitonicsort 400 236 564
channelvocoder 10216 6492 12412
dct 196608 16384 172032
des 8320 10116 7116
�t 24576 34816 40960
�lterbank 2588 2672 1924
fm 204 368 196
mpeg2 24742 31028 39856
serpentfull 10204 38504 93696
tde 122880 120514 145920
vocoder 2636 2304 4476

4.5.1 Comparisons with 256KB SPE memory

We �rst ran the three techniques with 256KB SPM which is the size of the SPE

local store. Figure 4.2 presents the computation and communication costs of

the SGMS solutions. The y-axis in the �gure stands for the steady-state execu-

tion time of each benchmark normalized to its lower bound. The lower bound

is calculated by the total execution time of all the �lters in that benchmark

over the number of processors. As is illustrated in Figure 4.2, for 4 bench-

marks the SGMS solutions have their communication costs overwhelming the

the computation costs. In the extreme case, for the bitonicsort benchmark,

the communication cost is more than 10x over the computation cost. Figure

4.3 presents the computation and communication costs of our CSMPilp and

CSMPheu algorithms. In our ILP solutions, there is only one benchmark with

its communication cost larger than the computation cost. The ratio, however,
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Table 4.4: Run time of SGMS, CSPMilp & CSPMheu (SECONDS).

SGMS CSPMilp CSPMheu

beamformer 12 4172 0.67
bitonicsort 80 4124 0.46
channelvocoder 59 26319 1.38
dct 1541 91764 0.51
des 165 33083 1.19
�t 29 3328 0.08
�lterbank 236 42297 10.86
fm 59 38541 0.51
mpeg2 101 16364 0.11
serpentfull 56 23853 55.83
tde 116 34412 0.15
vocoder 60 22387 5.62

SGMS and CSMPilp ran on server with Quad-Core Intel(R) Xeon(TM) CPU
at 2.8GHz and CSMPheu ran on PC with Intel(R) Core(TM)2 Quad CPU at
2.4GHz.

is only 1.1x, a much smaller number comparing to 10x as in the SGMS so-

lutions. In the solutions generated by CSMPheu the communication costs are

hidden by the computation costs for all benchmarks. Figure 4.4, compares the

overall performance of the SGMS, CSMPilp and CSMPheu. As is observed from

the �gure, CSMPilp always performs better than the SGMS. CSMPheu also out

performs the SGMS on average. The above results show that our techniques

are able to e�ectively trade-o� the computation and communication costs to

balance the overall performance.

In Table 4.3, we present a comparison of the bu�er usage of the SGMS,

our ILP and heuristic. As we can see, the bu�er usage of the three approaches

are more or less comparable to each other. This is because the memory usage

of all the benchmarks are fairly small comparing to the scratchpad memories.

Therefore, the memroy constraint hasn't been apposed yet. In the next section,
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Figure 4.4: SGMS, CSMPilp and CSMPheu with 256KB SPM.

we arti�cially shrink the scratchpad memories to 16KB and demonstrate how

it a�ects the mapping of the SGMS, our ILP and the heuristic algorithm.

In Table 4.4 we compare the run time of the SGMS, CSMPilp and

CSMPheu. On average, the SGMS took 209.5 seconds to �nish and CSMPilp

took 28387 seconds. The numbers indicate the SGMS is over 100 times faster

than CSMPilp. The primary reason is that, SGMS tries to do load balancing

solely based on the steady-state execution time of each �lter. CSMPilp takes

the whole graph as input and does load balancing based on the �lter execu-

tion time, the data communication, the current schedule, the bu�er usage,

and more importantly, the overlay scheme. On the other hand, CSMPheu is
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Figure 4.5: SGMS, CSMPilp and CSMPheu with 16KB SPM.

very fast even though it considers all the design trade-o�s. 7 out of the 12

benchmarks terminate within 1 second. The serpentfull benchmark requires

the longest run time as it has 120 �lters and 128 edges. In summary our heuris-

tic approach is able to generate high quality solutions (27.8% slower than our

ILP on average, 44.5% faster than SGMS on average) in very short times run

times.

4.5.2 Comparisons with 16KB SPE memory

The solutions for the previous experiment did not require code overlays due to

the large size of the SPM. We conducted a second set of experiments with SPM

size constrained to 16KB. We timed out CSPMilp after 9 hours and utilized

the solution if it was feasible. CSPMilp was unable to generate solutions for
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Figure 4.6: Performance of CSMPilp and CSMPheu with 256KB and 16KB
SPM

4 benchmarks (namely mpeg2, serpentfull, tde and vocoder). Table 4.5 lists

the maximum communication bu�er usage for SGMS, CSPMilp and CSPMheu.

SGMS was unable to �nd solutions in four instances (shown in bold) as the

communication bu�er requirement violated the SPM memory constraint. The

overall performance of the SGMS, CSPMilp and CSPMheu are presented in

Figure 4.5. Some of the CSPMilp data points are missing as it timed out. In the

case of SGMS the data points that are missing (dct, �t, mpeg2, tde) indicate

infeasible solutions. CSPMheu was able to generate feasible solutions for all

benchmarks. Except for two benchmarks (channel vocoder and serpentful) our

heuristic is able to out perform SGMS.
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Figure 4.6 presents the performance of CSPMilp and CSPMheu solutions

with 256KB and 16 KB SPM capacities, respectively. Reducing the SPM size

leads to lower performance in all cases. Figure 4.7 shows the executions times

on the PPE and SPE for dct with 256KB and 16 KB SPM. As can be seen from

the �gure reduction in the SPM size leads to more computation migrating to

the PPE.

4.6 Summary

The chapter addressed the problem of compiling stream programs on em-

bedded multicore processors that incorporate SPMs. We proposed an ILP

formulation and heuristic approach that are able to e�ectively consider all
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Table 4.5: Maximum communication bu�er usage of SGMS, CSMPilp &
CSMPheu.

SGMS (Bytes) CSMPilp (Bytes) CSMPheu (Bytes)
beamformer 1004 1156 1036
bitonicsort 400 288 564
channelvocoder 10216 11212 12400
dct 196608 10240 8192
des 8320 15708 12604
�t 24576 14336 14436
�lterbank 2588 3472 1920
fm 204 328 248
mpeg2 24742 NA 1126
serpentfull 10204 NA 5836
tde 122880 NA 0
vocoder 2636 NA 5756

∗ The bold faced values indicate that they exceeded SPM capacity.

the design trade-o�s. We evaluated the approaches by compiling StreamIt

programs on the Cell BE processor, and comparing with an existing tech-

nique, namely SGMS. The experimental results showed that our approaches

are able to e�ectively balance the computation and communication overheads

when mapping stream programs on multicore processors. Further, our heuris-

tic approach is able to generate high quality solutions even under tighter SPM

capacity constraints while SGMS produces infeasible solutions. Future work

will address dynamic scheduling of stream programs.
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Chapter 5

SCHEDULING OF STREAM PROGRAMS ON SPM BASED

MULTICORE PROCESSORS THROUGH RETIMING

The prevalence of stream computing in signal processing, multi-media, and

network processing domains has resulted in a new trend of programming and

architecture design. Stream applications distinguish themselves from tradi-

tional sequential programing languages through well de�ned independent ac-

tors, explicit data communication, and stable code and data access patterns,

all of which come together to enable a compiler to automatically schedule them

on multicore processors. For fast and e�cient execution of stream applications,

scratch pad memory (SPM) has been introduced into today's embedded mul-

ticore processors. Performance optimization on SPM based multicore archi-

tectures requires a programmer, or compiler to e�ciently manage the limited

on-chip memories and bandwidth. In this chapter, we address the problem of

automatic compilation of stream programs onto SPM based multicore archi-

tectures through a retiming technique. An integer linear programming (ILP)

approach is �rst provided. Although the ILP grants us with high quality so-

lutions, it su�ers from very long algorithm run time. In the second part of

this chapter, we introduce a heuristic technique that solves the same problem

with comparable results and runs in a matter of seconds. Trade-o�s between

double bu�ering for hiding data communication with computation and code

overlay for sharing the limited on-chip memory among di�erent code segments

are explored intensively in our techniques. The e�ciency of our techniques was

evaluated by compiling several stream applications for the IBM Cell Broad-

band Engine (BE) and compared their results with existing approaches.
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Figure 5.1: Retiming example.

5.1 Retiming

Classic retiming technique is primarily used in the domain of circuit design.

The input to the retiming algorithm is a synchronous circuit given by G <

V,E, d(v), w(e) >. V represents function units in the circuit and E represents

data dependencies among distinct function units. d(v) indicates the function

delay of unit v and w(e) indicates the initial register count on each edge e.

A retiming of G is a vertex to integer mapping r : V → Z [50]. The graph

after retiming is denoted by Gr < V,E, d(v), wr(e) >, where for an edge

e : u→ v, wr(e) in the retimed graph is given by wr(e) = w(e) + r(v)− r(u).

The retiming technique can be viewed as a transformation that alters the clock

period of a circuit by inserting and deleting registers while keeping the circuit's

functionality unchanged. Traditionally, the retiming technique is adopted for

clock period minimization of synchronous circuit [50].

In Figure 5.1 we provide a simple retiming example. The stream pro-
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gram is composed with four actors. The number inside each actor denotes its

run time, d(v). Before retiming, the retiming delay r of each actor is set to

0 as show in the example. The initial register count on feedback loop edge

is 3. For the rest of edges, the initial register count is 0. Then we perform

retiming algorithm that is discussed in [50] and get the retimed graph. After

retiming, the actor with rum time 3 has retiming delay r = 0, the actor with

run time 4 has retiming delay r = 1, and the two actors with run time 2 has

retiming delay r = 2. By applying wr(e) = w(e) + r(v)− r(u), we can calcu-

late the number of registers on each edge after retiming and they are shown in

the retimed graph. After removing edges with we(e) > 0, the longest critical

path in all connected subgraphs determines the initiation interval, which in

our example is 2 + 2 = 4.

5.2 Motivation

The retiming technique is intriguing for compiling SDF speci�cations onto

multicore architectures because of the following reasons. i), throughput maxi-

mization of scheduling an SDF can be achieved through minimizing its steady-

state execution time; ii), the steady-state execution time of a single appearance

SDF is equivalent to the clock period of the corresponding synchronous circuit.

Further, the retiming technique also inherently handles cyclic dependencies in

a data �ow graph. By appropriately adopting the retiming technique, an upper

bound on the resulting number of pipeline stages could be imposed.

Although retiming technique is intriguing in several ways to solve our

problem, traditional clock minimization approaches [50] with retiming are not

directly applicable to our problem instances. Traditional approaches assume
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that there are in�nite resources. The solution given by retiming was inter-

preted as each node occupies a separate specialized hardware, data communi-

cations among di�erent function units are immediate (without any overhead),

and there is no code to be stored for a function unit (hardware implemented).

As a result, the critical path in the graph after retiming is de�ned as the clock

period of the retimed graph. In our problem instances, we have a �xed num-

ber of PEs, data communications among di�erent PEs take time, and each

PE has a limited on-chip SPM for storing program code and data. Because

of the limited number of PEs, actor to PE mapping needs to be generated

with the retiming process. For each PE, if not all the program code and

internal data bu�er can �t into the SPM, then code overlay needs to be imple-

mented. The steady-state execution time instead of clock period de�nes the

performance metric and is calculated by the largest execution time among all

pipeline stages. To amortize data communication overhead, double bu�ering

(DB) scheme needs to be exploited. Double bu�ering scheme requires a dedi-

cated pipeline stage and additional memory for storing an extra copy of data.

A user speci�ed allowable pipeline stages could a�ect whether double bu�ering

scheme could be implemented. Arbitrarily introducing double bu�ering also

increases bu�er usage, therefore could lead to additional code overlay over-

head. A smart double bu�ering scheme that trades o� data communication

overhead with code overlay needs to be implemented to this e�ect. Given the

above design trade-o�s, we propose an ILP and a fast heuristic algorithm that

automatically schedule an SDF G onto an embedded multicore architecture P

through retiming such that i) the throughput is maximized; ii) the memory

constraint of each on-chip SPM is respected; and iii) the number of software

pipeline stages is no more than a user speci�ed value. The contributions of
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Table 5.1: SDF and architecture speci�cation

Constant Description

SDF d(v) Delay/runtime of actor v
C(v) Code size of actor v
w(e) Number of registers on edge e
C(e) Data going through edge e

Architecture |P | Number of PEs
C(p) Local SPM size of PE p
Tinit Base cost for any DMA transfer
Tslope Rate of increase of DMA transfer
Dinit Largest data/code size with Tinit

Pipeline constraint Nuser User-speci�ed pipeline stages

this chapter include:

1. An ILP formulation that performs retiming and actor to PE mapping

with double bu�ering and code overlay for throughput maximization -

RTEM ILP.

2. A fast heuristic approach that is able to solve the same problem with

comparable performance results in a matter of seconds - RTEM heuristic.

In the next section we formally de�ne our problem. Section 5.4 discusses re-

lated work. Section 5.5 describes our strategies for properly handling of cycles

that might be present in a stream program. Section 5.7 describes our ILP for-

mulation. In Section 5.8, we discuss the limitations of our ILP approach and

provides a retiming heuristic. Finally Section 5.9 presents our experimental

results and Section 5.10 concludes this chapter.
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5.3 Problem Description

The input to our problem consists of a software speci�cation and a hard-

ware architecture description. The software speci�cation is represented by a

synchronous data �ow (SDF) graph G < V,E > that is extracted from the in-

termediate representation of a stream application. We require the input SDF

to our technique to be consistent. An SDF is de�ned as consistent if a �nite

input sequence that avoids both bu�er under-�ow and over-�ow on each edge

can be constructed [49]. Before entering our technique, we convert a classical

SDF (typically a multiple appearance SDF where each �lter in the steady-

state execution has multiple executions) to a single appearance SDF1. In the

single appearance SDF G < V,E >, V represents the actors and E represents

the edges. Each actor v ∈ V is again given by a tuple < d(v), C(v) > as

illustrated in Table 5.1. d(v) and C(v) implies the run time and code size of

an actor that is estimated instruction by instruction2. Each e ∈ E is given

by < w(e), C(e) >. w(e) indicates the user speci�ed initial register distribu-

tion on each edge, which is in fact determined by the initial function of each

actor. C(e) indicates the data size being transferred through edge e in the

single appearance SDF. The target embedded multicore architecture is repre-

sented by P , where each p ∈ P is given by a tuple < C(p), Tinit, Tslope, Dinit >.

C(p) indicates the size of the on-chip processor memory. We model the Direct

Memory Access (DMA) behavior in the IBM Cell BE by three parameters Tinit,

Tslope and Dinit. Tinit denotes the base cost for any DMA transfer operation.

When the data or code size being transferred is smaller than Dinit(=1KB),

1In the case when cycles exist in the SDF, the transformation from a multiple appearance
SDF to a single appearance SDF is not trivial and the discussion is provided in Section 5.5.

2In the case when the number of loop iterations is data dependent, then a constant �ve
is assumed for optimization purpose.
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there is only a base cost of Tinit(=0.21us). Otherwise, an increasing rate of

Tslope(=0.075us/KB) is encountered for every extra byte of data or code. Fi-

nally there is a constant Nr that denotes the user speci�ed allowable number

of software pipeline stages in the resulting solution.

The output of our technique is an actor to PE mapping, memory parti-

tion of each on-chip SPM, a software pipeline schedule of the stream program

across PEs, and data and code transfers among di�erent memory elements

with double bu�ering and code overlay that maximize the overall throughput.

5.4 Related Work

Several previous approaches have addressed the problem of implementing stream-

ing workload on embedded multicore processors. A hierarchical framework for

scheduling SDF onto multicore processors was discussed by Pino et al. [66].

The objective of this work is to reduce the number of actors in an SDF and

at the same time still preserve enough parallelism. More recently Chen et

al. [21] and Ostler et al. [61] proposed techniques for mapping stream based

applications onto network processors. Chen et al. proposed a Shangri-La com-

piler framework that maps a C-like packet program onto a network processor.

Ostler et al. investigated fusion and �ssion operations and provides an integer

linear programming (ILP) and a heuristic approach to map stream like ap-

plications onto network processors. Liao et al. [52] investigated parallelizing

Brook language onto general purpose multicore processors through data and

computation transformations. Gordon et al. [31] [32] explored trade-o�s be-

tween data and task level parallelisms and developed a heuristic algorithm to

generate multi-threaded code for the RAW architecture. Stratton et al. [70]
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developed a framework of MCUDA that executes CUDA language on a shared

memory multicore processor. The framework contains both a set of source-

level compiler transformations and a run time system for parallel execution

and demonstrates that CUDA can be an e�ective data-parallel programming

model for shared memory multicore architecture. In contrast to the above

approaches, our technique focuses on embedded multicore processors that in-

corporate SPMs. In addition to actor to PE mapping for load balancing,

double bu�ering for computation and communication overlap, we also face the

challenge of e�ciently managing the limited on-chip SPMs for program code

and data bu�ers. An e�cient code overlay scheme that shares the on-chip

SPM over di�erent code segments is critical when the SPM is smaller than the

total size of the program code and data bu�ers.

There have been approaches that concentrate on automatic compila-

tion of stream applications onto SPM based architectures. Hormati et al. [35]

proposed a Sponge compiler framework for mapping stream languages onto

GPUs. The primary focus of this work is the abstraction of hardware archi-

tectures and provide portability across di�erent generations of GPUs. Kudlur

et al. [48] came up with an ILP that unfolds and partitions a stream ap-

plication onto SPM based multicore processors. In his ILP formulation, the

communication overhead was assumed to be zero and the on-chip SPMs are

assumed to be su�cient large to accommodate all program code and data. An

improved version of the same work was later presented by Choi et al. [24]. In

this work, again all the DMA transfers for data communication are assumed

to be hidden and have zero cost. A memory constraint is added to the original

ILP formulation to capture the limited size of the on-chip SPM. However, no

code overlay is implemented. When the program code and data size is big-
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ger than the on-chip SPMs, the technique fails to generate a valid solution.

Our approach is distinguished from the above approaches in that we explore

the trade-o�s between double bu�ering and code overlay under a limited local

SPM and e�ciently address the SPM constraint through smart double bu�er-

ing and code overlay. In our problem instances, the actor to PE mapping not

only impacts the load balancing, computation communication overlap, but also

the data, code partition of the on-chip SPMs, which essentially determines the

code overlay overhead.

The previous work that comes closest to us are the CSMP ILP and

heuristic approaches proposed by Che et al. [20]. Both approaches in this

work utilize fusion and �ssion operations to schedule stream formats onto SPM

based multicore processors. The existing techniques make no guarantee on the

number of software pipeline stages being generated, thus may result in high

latency. The CSMP and heuristic approaches also treat any loop structure as

a single actor thus overlook the opportunities to optimize cycles. Our retiming

ILP and heuristic approaches maximize the throughput with a user-speci�ed

number of pipeline stages and inherently handles cycles that may be present

in the stream applications.

5.5 Resolving Cycles

Cycles in a stream program impose several barriers on software synthesis and

code generation, therefore greatly in�uence the optimizations that can be ap-

plied. The presence of cycles in a program essentially indicates cyclic data de-

pendencies that if not properly taken care of can result in deadlock in schedul-

ing. In our ILP and heuristic approaches, we require a single appearance SDF.
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Figure 5.2: Single appearance SDF construction from a multiple appearance
stream program without cycles.

Given a data �ow model without cycles, we can simply treat all executions

of each actor in the steady-state execution as one and thus derive a single

appearance SDF. An example for transforming the stream program given by

Figure 1.1 to a single appearance SDF is provided in Figure 5.2. The stream

program on the left hand side is the original multiple appearance SDF and

on the right hand side is the resulting single appearance representation. The

right hand side actor with an underlined name typically indicates that one

execution of the current actor corresponds several executions of the original

actor on the left hand side. In the case when cycles are present in a stream pro-

gram, the transformation is non-trivial. Bhattacharyyan et al. [8] [11] proved

that if throughout a single schedule period (or a steady-state execution) of

a data �ow model, the actors can be partitioned into two subsets such that

one subset is precedence-independent of the other subset, then a single ap-

pearance schedule exists3. Precedence-independent of two subsets is formally

referenced as subindependence and de�ned as S1 is subindependent of S2 if

3The existence of a single appearance schedule of an SDF and the existence of a single
appearance SDF is equivalent in the sense that given a single appearance SDF (consistent),
we can easily construct its single appearance schedule by following a data �ow order.
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for each edge e directed from an actor of S2 to an actor of S1, the number of

delays on e is at least equal to the number of tokens consumed from e in the

steady-state execution. Bhattacharyyan et al. [11] further provides process

for transforming a multiple appearance SDF to a single appearance SDF by

removing loosely dependent edges and breaking cycles. In the case when there

is no single appearance SDF for the stream program, a clustering technique

is employed to transform cycles that can not be broken (a tight cycle) into a

single actor. Then, a single appearance SDF can be constructed for the new

graph.

In this chapter, instead of breaking cycles of an SDF by removing

loosely dependent feedback edges, we derive a single appearance SDF by pre-

serving all its edges and trying to process an actor as many times as the delays

on its feedback edge permit. Figure 5.3 and Figure 5.4 illustrates how our tech-

nique handles a multiple appearance SDF with a tight dependent cycle and

a loose dependent cycle respectively. The number N on the left hand side of

each actor in the original stream program denotes the number of executions

of that actor in the steady-state execution. The number on the feedback edge

(5d in Figure 5.3 and 20d in Figure 5.4) indicates the delays that presents

on that edge. A shaded circle denotes that the actor is stateful. In Figure

5.3 roundrobin actor has N=10 executions in the steady-state. In order to

execute roundrobin actor 10 times consecutively, 10 delays (tokens) must be

present in its feedback edge. As described in Figure 5.3 (A), there are only 5

delays (5d) present, indicating that a single appearance SDF is not possible

for the original graph. In this case, we treat the entire cycle as a single actor

and derive the single appearance SDF as shown in Figure 5.3 (B). After trans-

formation, the feedback loop becomes a cycle inside the combined high level
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Figure 5.3: Single appearance SDF construction from a multiple appearance
stream program with a tight cycle dependence.

actor. We shade it to denote that the combined high level actor is stateful.

The value stored on the feedback edge becomes a state variable. In Figure 5.4

(A), for the same input stream program, if the delays on the feedback edge is

20 (20d), we can consecutively execute roundrobin actor 10 times in a group

for two iterations. Therefore, a delay of 2 (2D) is put on the feedback edge

of the resulting single appearance SDF as shown Figure 5.4 (B). With a loose

dependent cycle, we can still collapse it into a single actor and Figure 5.4

(C) presents the corresponding single appearance SDF. Both solution (B) and

solution (C) in Figure 5.4 have their own advantages and limitations. Solu-

tion (B) has a better granularity and does not introduce extra stateful actors

while solution (C) doesn't have any cycle thus can adopt a broader range of

optimizations. In our techniques, solution (B) will serve as the input since our

optimizations already inherently handle cycles.
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Figure 5.4: Single appearance SDF construction from a multiple appearance
stream program with a loose cycle dependence.

5.6 Pre-processing

Prior to entering our RTEM ILP and heuristic approaches, we carry out the

following pre-processing steps to legalize the inputs.

• If the FileReader is not present in the SDF, we add a dummy source

actor sdummy with zero code size and run time and introduce edges with

Ce = 0 directing from sdummy to every actor that has no incoming edge.

• If FileWriter is not present, we add a dummy sink actor tdummy with

zero code size and run time and introduce edges with Ce = 0 directing

from every actor without any outgoing edge to tdummy.

• Update SDF speci�cation G < V,E, d, w > with a feedback edge from

sink to source.

• Traverse each v ∈ V from source to sink following a breadth �rst search

(BFS) manner. For each v being visited, push as many registers as

possible from its incoming edges to its outgoing edges. Upon completion
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of the above process, the number of registers on the feedback edge from

sink to source de�nes the inherent pipeline stages that exist in the graph.

We denote it by NG.

• Add Nuser−NG
4 registers to the feedback edge from sink to source. Nuser

is a user speci�ed number of pipeline stages. We require that Nuser to

be no less than NG.

After the above pre-processing steps, we have an SDF speci�cation of a stream

program that has one feedback edge from its sink actor to its source actor.

The delays on the feedback loop edge denotes the maximum pipeline stages

after retiming.

5.7 Integer Linear Programming Approach

In this section, we formulate the problem described in Section 5.3 through an

ILP approach. In the ILP approach, retiming delay to actor mapping and actor

to PE mapping are performed. Simultaneously, smart double bu�ering is selec-

tively introduced between a pair of producer and consumer that are assigned

to di�erent PEs. A code overlay scheme is also generated based on the current

data bu�er usage and code memory. Constraints such as valid retiming, valid

mapping, unique scheduling order, and limited number of pipeline stages are

imposed as discussed in the remainder of this section. Finally, the completion

time of each actor due to processor work load, inter-pipeline and intra-pipeline

data communications are calculated. The objective is to minimize the largest

4In the scenario where the program has to start with FileReader as the �rst actor to
be executed, one extra pipeline stage might be introduced. This scenario can be simply
handled by reducing the user speci�ed number of software pipeline stages by one.
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completion time among all actors, which is also the steady-state execution

time of the entire stream program.

In Figure 5.5 we provide a simple example of mapping the stream pro-

gram given by Figure 5.2 (B) to 3 PEs and 4 software pipeline stages. Figure

5.5 graph (A) provides the input to our ILP formulation and graph (B) pro-

vides the graph after retiming. In the retimed graph (B) of Figure 5.5, r

denotes the retiming delay of each actor, p denotes the actor to PE map-

ping, and S denotes each connected subgraphs after retiming. In the retimed

graph (B), actor roundrobin(2, 1) and Actor1 are separated by one pipeline

stage and they are mapped to two di�erent PEs. Therefore in a pipelined

execution manner, roundrobin(2, 1) and Actor1 will execute simultaneously.

However, an inter-pipeline communication cost is encountered in this case

because double bu�ering cannot be implemented. Correspondingly, Actor1

and roundrobin(2, 2) are separated by 2 pipeline stages. In this case, a dou-

ble bu�ering can be either introduced or not depending on the memory con-

straint and code overlay overhead. In another case, actor roundrobin(2, 2) and

FileWriter belong to the same subgraph after retiming 5. FileWriter cannot

execute until roundrobin(2, 2) �nishes its execution and transfers its data to

FileWriter. From the above discussion, to determine the completion time

of an actor, inter-pipeline and intra-pipeline data communication, processor

work load, double bu�ering and code overlay, they all need to be captured in

the ILP formulation. In the remainder of the section, the details of our ILP

formulation that captures the program behavior as discussed above will be

discussed thoroughly.

5Actors belong to the same subgraph also belong to the same software pipeline stage.
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roundrobin(2,1) 
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Actor 2 
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roundrobin(1,1) 

roundrobin(2,2) 

FileWriter 
pop 4, push 0 

Actor 3 
pop 1, push 1 

(A) 

FileReader 
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roundrobin(2,1) 
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Actor 1 
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roundrobin(1,1) 
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FileWriter 
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pop 1, push 1 

(B) 

r=1, p=1 

r=1, p=1 

r=2, p=2 r=2, p=2 

r=2, p=2 

r=4, p=3 

r=4, p=3 

r=4, p=3 

r=4, p=1 

S1 

S2 

S3 

S4 

r : retiming delay 
p : processor 
S : subgraph 

Figure 5.5: A simple example of retiming a stream program with 3 PEs and 4
software pipeline stages.

5.7.1 Decision variables

• arv, 0/1. If 1, indicates that a retiming delay r is assigned to actor v.

• bvp, 0/1. If 1, indicates that actor v is assigned to PE p.

• duv, 0/1. If 1, indicates that double bu�ering is enabled between actor

u and actor v.

• pv, 0/1. If 1, indicates that actor v is assigned to the on-chip SPM.

Otherwise, actor v is assigned to the o�-chip main memory and is brought

into the overlay region of an on-chip SPM at run time.

5.7.2 Derived variables

• wr
uv, integer, number of delays on edge e : u→ v after retiming. In the

following equation,
∑

r∈R arv ∗ r and
∑

r∈R aru ∗ r calculate the integer

retiming delay of actor v and actor u and wuv indicates the initial delays
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on edge u→ v (wuv := w(e)|e : u→ v).

∀u, v ∈ V |∃e : u→ v : wr
uv := wuv +

∑
r∈R

arv ∗ r −
∑
r∈R

aru ∗ r

• xuv, 0/1. If 1, indicates that there is at least one delay on an edge

e : u→ v in the retimed graph.

∀u, v ∈ V |∃e : u→ v : xuv ∗Nr ≥ wr
uv

xuv ≤ wr
uv

• yuv, 0/1, is a derived variable that is de�ned on yuvp. In the following

constraint, the �rst inequality ensures that if actor u and v are both

assigned to some PE p then the corresponding yuvp being set to 1. Oth-

erwise, the second and third inequalities make sure that yuvp equals 0.

yuv = 1 indicates that actor u and v are assigned to the same PE.

∀u, v ∈ V |u 6= v, p ∈ P : yuvp ≥ bup + bvp − 1

yuvp ≤ bup

yuvp ≤ bvp

∀u, v ∈ V |u 6= v : yuv :=
∑
p∈P

yuvp

• zvp, 0/1. If 1, indicates that actor v is always present in the on-chip

SPM of p. Otherwise, there is a potential code overlay for executing

v on p. Similar to the way that we constructed yuv, in the following

constraint the �rst inequality ensures that if both the conditions of actor

v is mapped to p and actor v is always present in the on-chip SPM, then

the corresponding zvp is set to 1, otherwise zvp is set to 0.

∀v ∈ v, p ∈ P : zvp ≥ bvp + pv − 1

zvp ≤ bvp

zvp ≤ pv
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• suv, 0/1. If 1, indicates that actor u is scheduled before actor v for exe-

cution. In the following constraint, the �rst equation ensures that actor

u is either scheduled before or after actor v. The next two inequalities

make sure that if there is a schedule sequence of u, v, w, then suw is set

to 1 and vice versa.

∀u, v ∈ V |u 6= v : suv + svu = 1

∀u, v, w ∈ V |u 6= v 6= w : suw ≥ suv + svw − 1

suw ≤ suv + svw

• γv, integer, the code overlay overhead of actor v. γv equals 0, if actor

v is always present in the on-chip SPM. Otherwise, the code overlay

overhead is given by the DMA latency of transferring actor code of v

from the o�-chip main memory.

∀v ∈ V : γv := Tv ∗ (1− pv)

where Tv is a pre-calculated value that is given by,

Tv =


Tinit, if C(v) ≤ Dinit

Tinit + Tslope ∗ (C(v)−Dinit), otherwise
(5.1)

5.7.3 Constraints

• Retiming Delay to Actor Assignments: Each actor is allocated one and

only one retiming delay.

∀v ∈ V :
∑
r∈R

arv = 1

• Valid Retiming: After retiming, there is no edge with negative delays.

∀u, v ∈ V |∃e : u→ v : wr
uv ≥ 0
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• Actor to PE Assignments: Each actor is assigned to one and only one

PE to execute.

∀v ∈ V :
∑
p∈P

bvp = 1

• Scheduling Order: For actors u, v that are mapped to the same PE

(yuv = 1) and there is an edge connecting actor u and v without any

delay, actor u must be scheduled before actor v to respect the data

dependencies.

∀u, v ∈ V |∃e : u→ v : suv ≥ yuv − wr
uv

• Double Bu�ering: Double bu�ering can be introduced between a pro-

ducer and a consumer only when they are separated by at least 2 pipeline

stages 6.

∀u, v ∈ V |∃e : u→ v : 2 ∗ duv ≤ wr
uv

• FileReader, FileWriter: This constraint is speci�c to the heterogeneous

architecture of the IBM Cell BE. In the IBM Cell BE architecture, only

the PPE hosts a �le system and therefore the FileReader and FileWriter

can only be processed on the PPE. For architectures that don't have

such limitations, the constraint can be simply removed.

b11 = 1, b|V |1 = 1, s1|V | = 1 (5.2)

• Processor Memory: The processor memory should be able to hold all

actor code, data bu�ers and a code overlay region. In the following

constraint Cintra
uvp , Cin

uvp, C
out
uvp captures the number of bu�ers allocated for

each edge e on PE p when e is an intra-processor edge, an incoming edge,

6For actors mapped to the same PE, there is no di�erence between an execution with
and without double bu�ering.
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or an outgoing edge respectively.
∑

v∈V zvp ∗C(v) calculates the memory

allocated for code that always presents in the on-chip SPM of PE p and

Covleray
p captures memory usage of the code overlay region.

∀p ∈ P : C(p) ≥
∑

u,v∈V |∃e:u→v

(Cintra
uvp + Cin

uvp + Cout
uvp) ∗ C(e)+

∑
v∈V

zvp ∗ C(v) + Coverlay
p

In the following inequality, both bup and bvp equals 1 indicates that actor

u and v are mapped to the same PE. In this case, Cintra
uvp is greater than

or equal to wr
uv + 1.

∀u, v ∈ V |∃e : u→ v,∀p ∈ P : Cintra
uvp ≥ wr

uv + 1 + (bup + bvp − 2) ∗Nr

Cintra
uvp ≥ 0

Correspondingly, bvp equals 1 and bup equals 0 indicates that only the

consumer is mapped to PE p, In this case, Cin
uvp is greater than or equal

to wr
uv. In the case when wr

uv = 0, the second inequality ensures that at

least one bu�er is allocated on the consumer side to implement DMA.

∀u, v ∈ V |∃e : u→ v,∀p ∈ P : Cin
uvp ≥ wr

uv + (bvp − bup − 1) ∗Nr

Cin
uvp ≥ bvp − bup

On the producer side, we allocate 2 bu�ers if double bu�ering is enabled.

Otherwise only 1 bu�er is allocated. In the following inequality bup equals

1 and bvp equals 0 indicates only the producer is mapped to PE p and

duv indicates whether double bu�ering is enabled.

∀u, v ∈ V |∃e : u→ v,∀p ∈ P : Cout
uvp ≥ bup − bvp + duv

Cout
uvp ≥ 0

Finally the code overlay region should be no less than any actor code

size that is mapped to p and not always present in the on-chip SPM.

∀v ∈ V : Coverlay
p ≥ (bvp − zvp) ∗ C(v)
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5.7.4 Cost functions

• The completion time of scheduling actor v due to computation cost and

code overlay overhead is given by

∀u, v ∈ V |u 6= v : ∆v ≥ ∆u + d(v) + γv + (suv + yuv − 2) ∗MAX_V AL

∆v ≥ d(v) + γv

whereMAX_V AL is a large constant and is given by
∑

v∈V (d(v)+Tv).

In the above inequalities, suv and yuv equal 1 captures each actor u that

is assigned to the same PE as actor v and is scheduled before v. The

earliest start time of actor v due to processor workload is ∆u. Therefore

the completion time of v is given by its earliest start time plus its run

time and code overlay overhead (if any), which is given by ∆u+d(v)+γv.

• The completion time of scheduling actor v due to inter-pipeline commu-

nication costs is given by

∀u, v ∈ V |∃e : u→ v : ∆v ≥ d(v) + (xuv − yuv − duv) ∗ Te

In the above inequality, xuv equals 1 and yuv equals 0 captures the sce-

nario when actor u and v are assigned to two separate pipeline stages

and two di�erent PEs. In this case, if duv equals 0 (no double bu�er-

ing), then a communication cost of Te between actor u and actor v is

encountered. Te is given by

Te =


Tinit, if C(e) ≤ Dinit

Tinit + Tslope ∗ (C(e)−Dinit), otherwise
(5.3)
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• The completion time of scheduling actor v due to intra-pipeline commu-

nication costs is given by

∀u, v ∈ V |∃e : u→ v : ∆v ≥ ∆u +Te + d(v)− (wr
uv + yuv) ∗MAX_V AL

In the above inequality, wr
uv and yuv both equal 0 captures the scenario

when there is an edge e directing from actor u to actor v with no delay

and actor u, v are assigned to di�erent PEs. In this case, actor v cannot

execute until actor v has completed its execution and transferred its data

to u.

5.7.5 Objective function

Finally the objective function is given by Minimize ∆, where ∆ is given by

∀v ∈ V : ∆ ≥ ∆v

5.8 RTEM Heuristic Approach

Although the ILP approach provides us high quality solutions, it su�ers from

very long algorithm run time for large input sets. In this section, we intro-

duce a retiming heuristic approach (RTEM heuristic) that is able to generate

comparable results with RTEM ILP in a matter of seconds. The main routine

of our heuristic approach has three components, namely AlgorithmII, Algo-

rithmFEAS, and AlgorithmRTEM. AlgorithmII schedules actors in a retimed

graph Gr onto P with the objective of minimizing its initiation interval (II).

II de�nes the smallest time distance that any two consecutive instances of an

iterative program can be scheduled. In our problem scenarios, II is equivalent

to the steady-state execution time. AlgorithmFEAS tests whether a given II
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1: Initialize the workload of each PE ∆(p) to be zero.
2: Let G0 be a subgraph of Gr with all actors in Gr and all these edges

where wr(e) = 0.
3: Perform a topological sort on all actors in G0 and store the sorted result

in Vs.
4: for all actor v ∈ Vs do
5: for all p ∈ P (v) do
6: Calculate ∆(p), assuming that actor v is scheduled on p.
7: end for
8: Identify pmin that results in the smallest Maxp∈P ∆(p). Schedule actor

v on p. Update its data memory Cdata(p), code memory Ccode(p) and
work load ∆(p). Set the completion time of v, ∆(v), to be the updated
workload of p.

9: end for
10: return Maxp∈P ∆(p)

Algorithm 13: AlgorithmII(Gr, P )

is achievable by iteratively calling AlgorithmII and adjusting the retiming at

each iteration. AlgorithmRTEM resides at the highest level and calculates

the smallest II achievable through a binary search. In the remainder of this

section, we discuss our RTEM technique following a bottom-up manner.

5.8.1 AlgorithmII

The input to AlgorithmII is a retimed graph Gr < V,E, d, wr >
7 and

an architecture con�guration P . AlgorithmII iteratively schedules each actor

in Gr onto P with the objective of minimizing the maximum workload among

all PEs in P (equivalent to minimizing the �nal II). In algorithm AlgorithmII,

we �rst initialize the workload of each PE, ∆(p), to be zero. Then a subgraph

G0 of Gr is constructed by including all actors in Gr and exactly these edges

with wr(e) = 0 (line 1-2). After that a topological sort is performed to obtain

7wr(e) discussed in this section is equivalent to wr
uv|e : u → v in the previous ILP

formulation section. We change to the current denotation to achieve consistency with the
existing literature on retiming.
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a sequence of totally ordered actors in G0. In the total order, if there is an

edge from actor u to v, then u must precede v. If the sequence of u and v

is immaterial, then we enforce that the actor with a larger workload precedes

the actor with a smaller workload. The total order is obtained to respect the

data dependencies (line 3). For each actor in the total order, we calculate the

resulting workload of scheduling v on p for each p ∈ P (v). P (v) is the set

of PEs that v could be scheduled on (line 5-7). The PE that results in the

smallest workload among all PEs in P is selected to schedule v. The code

memory, data memory and workload of that PE is then updated accordingly.

Then the completion time of actor v is set to the current updated workload

(line 8). The calculation of the updated workload for scheduling v on p is

given by

∆(p)′ ← d(v) +Max{τc(v),∆(p) + τo(v)}

In the above equation, d(v) is the delay/run time of actor v. τc(v) models the

earliest start time of v due to data dependencies. ∆(p) indicates the workload

of p before scheduling v on it and τo(v) indicates the code overlay overhead of

scheduling v on p. ∆(p)+ τo(v) models the earliest start time due to processor

workload. The calculation τc(v) and τo(v) is given in the following,

5.8.1.1 Calculation of τc(v)

The earliest start time of actor v due to data dependencies is given by τc(v) =

Max∀e:u→v{τinter(v),∆(u) + τintra(v)}. u is any producer of v and ∆(u) is

the completion time of u. By the time we try to schedule v on p, u has

already been scheduled, therefore ∆(u) is known to us. For inter-pipeline data

dependencies, the producer and consumer that are scheduled on two di�erent

PEs can execute simultaneously. For intra-pipeline data dependencies, since
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there is no retiming delay between the producer and consumer, the consumer

cannot start execution until its producer �nishes. Therefore, in this case ∆(u)

is added to the cost function. Equation (5.4) and (5.5) in the following details

the calculation of τinter(v) and τintra(v)

τinter(v) = max
∀e:u→v,wr(e)≥1,p(v)6=p(u)

{Te} (5.4)

τintra(v) = max
∀e:u→v,wr(e)=0,p(v) 6=p(u)

{Te} (5.5)

In the above equations, u is any producer of v, wr(e) indicates the retiming

delay on edge e, p indicates the PE an actor is scheduled on and Te indicates

the cost of transferring a data size of Ce through DMA. Te is given by Equation

(5.3).

5.8.1.2 Calculation of τo(v)

In our memory partition of a processor, we conservatively allocate an overlay

region of Cfmax. Cfmax is the largest code size among all actors. As long as

the SPM can accommodate the temporary data and the code overlay region,

any actor can be scheduled on that PE. We update the code and data memory

of p after scheduling v on it by,

Ccode(p)
′ ← Ccode(p) + C(v) (5.6)

Cdata(p)′ ← Cdata(p) + Cintra(v) + Cinter(v) (5.7)

Cintra(v) and Cinter(v) in equation (5.7) is given by,

Cintra(v) =
∑

e:u→v,p(v)=p(u)

(wr(e) + 1) ∗ C(e) (5.8)

Cinter(v) =
∑

e:u→v,p(v) 6=p(u)

(wr(e) + δ) ∗ C(e) +
∑

e:v→w,p(v)6=p(u)

C(e) (5.9)
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where δ is set to 1 if wr(e) = 0, δ is set to 0 otherwise.

In Equation (5.8), Cintra(v) captures the bu�er allocated for intra-processor

edges whose consumer is v. In this case, the number of bu�ers to be allocated

equals wr(e) + 1, where wr(e) denotes the number of delays on edge e : u →

v. Cinter(v) in Equation (5.9) captures the bu�er usage of inter-processor

incoming and outgoing edges. For each incoming edge of v, we allocate wr(e)+

δ bu�ers of size C(e). δ is introduced such that at least one bu�er is allocated

on the consumer side. For an outgoing edge we allocate a bu�er of size Ce.

We assume no double bu�ering at this step. Later when double bu�ering

is considered, additional bu�ers will be added to the producer and consumer

whenever necessary. If there are extra retiming delays we can utilize, the smart

double bu�ering procedure in our algorithm will handle them properly in the

second iteration (refer to Section 5.8.3.).

If after scheduling actor v on PE p, Ccode(p)
′ +Cdata(p)′ +Cfmax < Cp,

then all program code and internal data bu�ers can �t into the on-chip SPM.

In this case, no code overlay overhead is introduced (τo(v) = 0). Otherwise, if

Cdata(p)′ +Cfmax > Cp, then the SPM cannot accommodate the data and the

overlay region, v must be scheduled on some other PE rather than p (τo(v) =

+∞). Alternatively, if Ccode(p)
′ + Cdata(p)′ + Cfmax > Cp and Cdata(p)′ +

Cfmax ≤ Cp then a code overlay overhead of Tv is introduced for scheduling

actor v on PE p, where Tv is given by Equation (5.1).

5.8.2 AlgorithmFEAS

AlgorithmFEAS in our retiming heuristic determines whether a given initiation

interval II is achievable. In AlgorithmFEAS, the retiming r of each actor v is

�rst being initialized to be zero (line 1). Then we run the procedure described
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1: For each actor v, initialize its retiming r(v)← 0.
2: Initialize count← 0
3: while count < |V | − 1 do
4: Construct Gr based on the retiming r of each actor.
5: Apply AlgorithmII(Gr, P ) to calculate ∆(v).
6: Iterate over each v ∈ V following BFS manner.

If ∆(v) > II, set r(v)← r(v) + 1.
7: count+ +
8: end while
9: MinII ← AlgorithmII(Gr, P )
10: If MinII ≤ II return MinII; else return −1.

Algorithm 14: AlgorithmFEAS(G,P, II)

in line 4-6 for |V | − 1 iterations. At each iteration, we construct the retimed

graph Gr based on the current retiming by setting wr(e) = w(e) + r(v) −

r(u) for each edge. Upon termination, we apply AlgorithmII to calculate the

completion time ∆(v) of each actor v. For actor v such that ∆(v) > II, we

move it to the next pipeline stage by increasing its retiming r by one (line 6).

After |V | − 1 iterations we record the smallest II found so far as MinII. We

return MinII if it is smaller than the given II. Otherwise, −1 is returned to

denote that the operation failed.

5.8.3 AlgorithmRTEM

AlgorithmRTEM in our approach utilizes a binary search to �nd the smallest

achievable II. The lower bound L and upper bound U of the binary search are

given by

L = max{
∑
v∈V

d(v)

|P |
,max

v∈V
d(v)}, U =

∑
v∈V

d(v) (5.10)

In Equation (5.10),
∑

v∈V d(v)/|P | is the lower bound imposed by limited

number of PEs and Maxv∈V d(v) is the maximum delay of any actor. U

is the workload of p when all actors are assigned to it. In the algorithm,
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we �rst copy the original value of Nuser to Nuser_ori and update Nuser with

min{Nuser_ori, |P |} such that we can assign one retiming group8 to one PE

after scheduling. Then a binary search is carried out to calculate the small-

est II achievable under a constraint of no more than Nuser retiming groups.

We examine whether a given II is achievable by applying AlgorithmFEAS.

At this step we assume that each retiming group is allocated with one PE. If

Nuser_ori = |P |, then the algorithm directly returns the MinII being found

(line 11). Alternatively, if Nuser_ori < |P |, we �rst �nd the retiming group

with delay k that has the maximum parallelism (maximum width in a BFS)

from the results of the previous step. We allocate |P |−Nuser +1 PEs to retim-

ing group k and one PE for each other retiming group. Then we apply binary

search again to �nd the smallest achievable II under the updated allocation.

Finally, if Nuser_ori > |P |, we explore the trade-o�s between inter-pipeline

communication costs and code overlay by introducing smart double bu�ering

scheme between di�erent pipeline stages.

5.8.3.1 Implementation of smart double bu�ering scheme

We implement the smart double bu�ering scheme by �rst calculating the num-

ber of retiming delays that are available for double bu�ering, which is given by

ExtraReg = Nuser_ori − |P | (in our approach we apply smart double bu�er-

ing only when Nuser_ori > |P |). We don't need more than |P | extra retiming

delays as they are su�cient for introducing double bu�ering for every pipeline

stage9. We calculate the cost saving of each PE through double bu�ering by

8A retiming group is a group of actors that have the same retiming delay in the retimed
graph.

9Double bu�ering is only considered for retiming groups that are disconnected from each
other in the retimed graph. If double bu�ering is introduced to a retiming group, then all
the inter-pipeline communication for its outgoing edges are double bu�ered.
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1: Store Nuser_ori ← Nuser and update Nuser = min{Nuser_ori, |P |}.
2: /* For a given II, test whether it is feasible by AlgorithmFEAS(G,P, II)

*/
MinII ← BinarySearch of II from L to U .

3: if Nuser_ori < |P | then
4: Find pipeline stage k with maximum parallelism
5: Allocate (|P | −Nuser + 1) PEs to k, one PE to each pipeline stage

k′ 6= k
6: MinII ← BinarySearch of II from L to U .
7: end if
8: if Nuser_ori > |P | then
9: Apply smart double bu�ering scheme to further reduce inter-pipeline

data communication overhead
10: end if
11: return MinII

Algorithm 15: AlgorithmRTEM(G,P,Nuser)

τsaving = ∆′(p)−∆(p), where ∆′(p) is the workload of p after double bu�ering

and ∆(p) is the original workload. ∆′(p) is derived by calling AlgorithmII

with the new settings where τinter(v) is set to zero and Cinter(v) is adjusted

with

Cinter(v)′ ← Cinter(v) +
∑

e:u→v,wr(e)=1

Ce +
∑

e:v→w

Ce (5.11)

In Equation (5.11), u→ v and v → w are the edges that are double bu�ered.

For every incoming edge of v that has only one bu�er allocated, we add one

bu�er for implementation of double bu�ering. For every outgoing edge of

v we allocate one extra bu�er. We sort the retiming groups by decreasing

savings and introduce double bu�ering to each retiming group iteratively. We

terminate this procedure when there is no extra register to be allocated, or

τsaving becomes negative.
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5.8.4 Complexity

The complexity of our AlgorithmII is O(|E|) for a sparse SDF. Therefore

AlgorithmFEAS and AlgorithmRTEM run in O(|V ||E|) and O(|V ||E|log2U)

respectively.

5.9 Experimental Results

5.9.1 Experimental setup

In this section we evaluate the e�ciency of our ILP and RTEM heuristic

approaches by implementing a compiler framework and compared the per-

formance results against existing approaches. Speci�cally, we consider twelve

applications from the StreamIt compiler version 2.1.1 [57]. The StreamIt com-

piler takes a stream application and compiles it into multi-threaded C++ code.

We instrumented the compiler such that it outputs an SDF representation of

the application with the information described in Table 5.1. The details of

each benchmark is given in Table 1.1. We employed a PlayStation 3 system

that hosts an IBM Cell BE as the target hardware platform. In the PlaySta-

tion 3 system there are 6 SPEs available to the programmers. Therefore we

have 7 programmable PEs in total with one PPE and 6 SPEs.

5.9.2 Overall performance comparison

We �rst utilized all 7 PEs available in the IBM Cell BE and compared our

RTEM ILP and heuristic performance against the results from our previous

CSMP ILP and heuristic approaches presented in [20]. The user speci�ed num-

ber of pipeline stages is set to 14 in this experimental setup. The CSMP ILP
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Figure 5.6: RTEM ILP and heuristic against CSMP ILP and heuristic ap-
proaches.

and heuristic employed fusion and �ssion operations for mapping and schedul-

ing a stream program onto a multicore architecture. The resulting software

pipeline stages for CSMP ILP and heuristic approaches can not be pre-speci�ed

and is determined by the solution. In the CSMP ILP and heuristic approaches,

each actor is assigned to a separate batch in the initialization. Then an iter-

ative fusion operation is performed to reduce the number of batches to |P |.

They keep on merging two batches with the smallest workload10 and replicates

the stateless batch with the largest workload. Stateful �lters were paid extra

attention for their limitation on the optimizations that can be applied (no

�ssion is allowed). Figure 5.6 shows the experimental results from CSMP ILP

and heuristic, and RTEM ILP and heuristic approaches. The x-axis in the �g-

ure provides the twelve benchmarks we experimented with. The y-axis gives

10The workload here is the e�ective execution time considering computation costs, com-
munication costs and code overlay overhead.
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us the performance results for each technique normalized to its lower bound

L. The calculation of lower bound L is given by Equation(5.10) in Section

5.8.3. In the �gure, RTEM ILP has two sets of results, RTEM ILP complete

and reduced. RTEM ILP complete models the complete ILP formulation we

proposed in Section 5.7. Because this ILP is very complicated and takes a long

time to run, we reduced it by removing the calculation of processor memory

and code overlay. The reduction is reasonable under the current experimen-

tal set up since each SPE in the IBM Cell BE hosts a 256K SPM, which is

su�ciently large compared to the benchmark code and data memory usage

we experimented with. Later, we conducted a series of tighter SPM sizes to

examine the impact of on-chip memory constraint and they are discussed in

the next subsection.

As observed from Figure 5.6, our RTEM ILP reduced formulation

achieves comparable results with the CSMP ILP approach and they both

approach the lower bound. Our RTEM ILP reduced formulation has a lit-

tle performance degradation compared to the CSMP ILP approach due to the

constraint on the resulting number of software pipeline stages and the fact

that no unrolling is introduced. The CSMP ILP approach on the other hand,

implements implicit unrolling which results larger program and deeper soft-

ware pipeline stages. In this case, the average number of pipeline stages for the

CSMP ILP approach is 25, which is almost two times higher than our RTEM

ILP. The CSMP ILP results are illegal under the constraint of no more than

14 pipeline stages. For our RTEM complete formulation, we terminated the

ILP solver11 after 48 hours and output the best integer solution generated so

far. There are three benchmarks, Channelvocoder, Serpentfull and Vocoder,

11The ILP solver we adopted is the optimizer from FICOXMXpress Optimization Suite.
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that did not generate any integer solution upon termination of the ILP solver

and we leave them blank in the �gure.

Our RTEM heuristic deviates from our RTEM ILP reduced formulation

by less than 10% for all 12 benchmarks we experimented with. Further, our

RTEM heuristic approach always outperforms the CSMP heuristic approach

except for the Filterbank benchmark. The reason for our RTEM outperform-

ing the CSMP heuristic is that our RTEM works at the granularity of a single

actor while the CSMP heuristic tries to combine �lters into a limited amount

of batches. As the CSMP heuristic evolves, the granularity that the algorithm

operates on becomes larger and larger, which makes it harder and harder

to balance the workload. On average, our RTEM heuristic outperforms the

CSMP heuristic by more than 15%. More importantly, our RTEM heuristic

approach imposes that the generated schedule contains no more than a user

speci�ed number of pipeline stages. In this experimental setup, the schedules

derived from our heuristic approach is guaranteed to have no more then 14

software pipeline stages. The CSMP heuristic approaches has no such guar-

antees. The average number of pipeline stages for the CSMP heuristic is 23,

which is a violation of the user speci�ed constraint. The average algorithm run

time of our RTEM heuristic approach is 2 seconds, which is at the same level

as CSMP heuristic approach (6 seconds), and much faster than the CSMP ILP

approach (2837 seconds).

5.9.3 Comparison with di�erent SPM sizes

The previous results were conducted under the SPM size of 256KB that didn't

introduce any code overlay overhead. Next we constructed another set of

experiments that evaluate our technique under tight SPM constraints. We

151



0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

N
o

rm
al

iz
e

d
 s

te
ad

y-
st

at
e

 e
xe

cu
ti

o
n

 t
im

e
 SPM=8K SPM=16K SPM=32K

Figure 5.7: Performance comparison with di�erent size of SPMs.

shrunk our SPM size to 32KB, 16KB and 8KB respectively and applied our

RTEM heuristic technique under the new con�gurations. The resulting per-

formances are presented in Figure 5.7. We only provide the results from our

RTEM heuristic because the RTEM ILP complete formulation run time is

very long and prohibits us from collecting su�cient data within a reasonable

time. There are four benchmarks, Bitonicsort, DCT, DES, and Vocoder that

introduce zero overlay overhead even under 8KB memory, which indicates that

the total memory usage of their program code and internal data bu�ers is less

than 8KB. The rest of the benchmarks encountered code overlay overhead at

a certain SPM size and quickly converged to the solution that all the actors

must be scheduled on PPE only. The results indicate that when the code

overlay is encountered, the SPM becomes very precious. Under such situa-
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Figure 5.8: Smart double bu�ering against blind double bu�ering and no
double bu�ering.

tion, arbitrarily introducing double bu�ering may in fact degrade the quality

of the results.

5.9.4 Comparison with di�erent double bu�ering schemes

In this section we provide the comparison of our RTEM heuristic performance

results under di�erent double bu�ering schemes. Figure 5.8 validates the e�-

ciency of our smart double bu�ering scheme by comparing its results against

no double bu�ering and blind double bu�ering schemes. In this experimental

set up we speci�ed Nuser to be 9. In no double bu�ering scheme, we simply

change the number of retiming groups from 9 to 7. In the blind double bu�er-

ing scheme, we utilized Nblind = bNuser/2c to substitute the original number of

admissible pipelines stages and enabled double bu�ering for all inter-pipeline
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data communications. Figure 5.8 demonstrates the results from these three

schemes. We observe that blind double bu�ering scheme generates the worst

results most of the time. This is because we are sacri�cing the number of

admissible pipeline stages in order to amortize the inter-pipeline communica-

tion costs. When the number of pipeline stages is smaller than the number

of PEs, we have to schedule a particular retiming group across several PEs.

The performance is heavily dependent on the parallelism that inherently ex-

ists in the original program. There are two special benchmarks, Beamformer

and Channelvocoder, that achieved their best performance under the blind

double bu�ering scheme. The counter-intuitive results are due to the fact

that there are large split-join and/or duplicate-join structures that exist in

the two benchmarks and they provide su�cient parallelism. A more detailed

discussion on this counter-intuitive behavior can be found in Section 5.9.5.

Our RTEM outperforms no double bu�ering scheme in that no double bu�er-

ing scheme ignores the extra retiming delays available, therefore overlooks the

opportunities to further reduce the inter-pipeline communication costs. As a

result, our smart double bu�ering scheme outperforms blind double bu�ering

scheme by more than 20% and no double bu�ering scheme by 5%.

5.9.5 Comparison with di�erent number of pipeline stages and PEs

In this section, we demonstrate how our RTEM heuristic performs under dif-

ferent number of admissible pipeline stages and PEs. We �rst utilized 7 PEs

and varied the number of feedback registers from 3 to 11 and the results are

shown in Figure 5.9. In Figure 5.9 the x-axis provides the benchmark that we

experimented with. The y-axis presents the steady-state execution time nor-

malized to the lower bound L. From Figure 5.9, we observe a trend of reduced
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Figure 5.9: Performance comparison with di�erent pipeline stages.

normalized execution time for most of the benchmarks when we increase the

number of admissible pipeline stages. The average performance for 11 admis-

sible pipeline stages is 7% better than 7 pipeline stages and is 34% better

than 3 pipeline stages. There are two special benchmarks, Beamformer and

Channelvocoder that achieved their best performance under 3 pipeline stages.

This is because both these benchmarks contain large split-join structures that

provide su�cient embarrassing parallelism. No intra-pipeline dependency is

introduced for these benchmarks, even we were scheduling one retiming group

across several PEs. In another experimental setup, we �xed the number of

pipeline stages to 7 and varied the number of PEs and show the performance

results in Figure 5.10. Note that the performance results for PE = 3 are

normalized to the lower bound L, and for PE = 7 and PE = 11, they are
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Figure 5.10: Performance comparison with di�erent number of PEs.

normalized to PE = 3. This experimental setup examines how our RTEM

heuristic scales with the number of PEs in a multicore architecture. We saw

a trend of reduced normalized execution time when we increased the number

of PEs from 3 to 11. To be more speci�c, we achieved an performance gain

of more than 50% by increasing the number of PEs from 3 to 7. Further in-

creasing the number of PEs to 11 gave us another performance improvement

of around 30%. The results demonstrated that our heuristic scales with the

number of PEs and the trend only slows down when the existing parallelism

of the program becomes the limiting factor.

5.10 Summary

We proposed RTEM ILP and heuristic approaches for compilation of stream

programs onto SPM based multicore processors in this chapter. The ILP per-

156



forms retiming and actor to PE mapping that schedule a stream program

onto a multicore architecture. The ILP formulation e�ectively evaluates load

balancing, computation communication overlap, smart double bu�ering and

code overlay, thus provides us high quality solutions. Although the ILP ap-

proach is able achieve very high quality solutions, the algorithm run time

could be very long for large input sets. In the second part of this chapter,

we proposed a RTEM heuristic that solves the same problem in a matter of

seconds and achieves comparable results. Our RTEM ILP and heuristic ap-

proaches inherently handles cycles in the stream applications and maximizes

the throughput under a user speci�ed number of pipeline stages. Experimental

results show that our RTEM ILP approach achieves comparable results with

the CSP ILP approach even with the constraints on the resulting number of

software pipeline stages. Further, our RTEM heuristic approach outperforms

the existing CSMP heuristic approach by 15% on average. Our future work

will address unrolling stream programs with loop structures and data overlay

between on-chip SPMs and the o�-chip main memory.
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Chapter 6

UNROLLING AND RETIMING OF STREAM PROGRAMS ON SPM

BASED MULTICORE PROCESSORS

The previous discussed CSMP ILP/heuristic [20] and RETM heuristic [14] ap-

proaches solve the problem of compilation of stream programs onto SPM based

embedded multicore processors with the objective throughput optimization.

Both approaches exploit load balancing with computation/communication over-

lap, double bu�ering and code overlay. The CSMP approaches utilize fusion

and �ssion operations to map a stream program onto embedded multicore pro-

cessors. In CSMP approaches, a loop structure is treated as a high-level actor

and the resulting software pipeline stages of the schedule is uncontrollable.

Also, as the fusion operation proceeds, the granularity that the algorithm can

operate on becomes larger and larger, which makes it harder and harder to

achieve load balancing. RTEM heuristic adopts the retiming technique that

is traditionally seen in circuit design. It can impose an upper bound on the

resulting number of software pipeline stages. Further, RTEM heuristic al-

ways works on the granularity of a single actor, thus has a better potential to

achieve load balancing. It also naturally handles loop structures in a stream

program, which is a property inherited from traditional retiming techniques.

However, RTEM heuristic does not scale with the number of PEs. When the

number of PEs is very large and the existing parallelism in a stream program

is comparably limited, RTEM fails to generate high quality solutions.

In this chapter, we propose optimization technique that retime and un-

roll stream programs onto SPM based embedded multicore architectures. The

proposed approach inherits all the bene�cial properties from RTEM heuristic,



namely it e�ciently addresses the limited on-chip SPM capacities and mem-

ory access delays. When the code and data size is larger than the given SPM

capacity, it balances double bu�ering and code overlay in such a way that the

overall performance is optimized. Further, it also inherently handle cycles that

may present in a stream program. Finally, It can also accept an upper bound

on the number software pipeline stages to be generated.

Given the above discussed requirements, we propose to perform un-

rolling and retiming simultaneously for scheduling stream programs onto SPM

based embedded multicore architectures. The proposed algorithm performs

unrolling and retiming iteratively. It terminates when no further performance

improvement can be achieved. At each iteration, the proposed approach will

�rst unroll the stream program by the given factor. Currently, the unrolling

algorithm discussed by Chao et al. [51] is considered. To ensure that two

executions of a stateful actor never overlap, a feedback edge with one delay

will be introduced to each statefull actor before unrolling. Then the mini-

mum steady-state execution time achieved at each unroll factor is calculated

through a binary search. The actual number of retiming groups generated by

the retiming procedure determines whether a list scheduling or smart double

bu�ering is to be implemented. List scheduling schedules one retiming group

onto several processors to fully utilize the hardware resources. Since all actors

belong to the same retiming group are in fact within the same software pipeline

stage, an intra-pipeline communication overhead could be encountered for a

pair of producer and consumer that is scheduled on di�erent PEs. When dou-

ble bu�ering is introduced, we need to allocate extra data bu�ers. The data

memory increase could result in higher code overlay overhead and occasionally

even infeasible solution.
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In order to e�ciently cope with the increased code and data size in

an unrolled graph, we propose to extend our RTEM heuristic with code pre-

fetching and data overlay. Code pre-fetching dramatically reduces the code

overlay overhead by overlap the DMA transfers of code with actor computa-

tion. Data overlay reduces the data bu�er usage when the SPM is extremely

limited. We discuss the code pre-fetching scheme and data overlay scheme

in the following. In our basic code overlay scheme, only one overlay bu�er is

allocated for all actors that are (i) scheduled on the current processor p and

(ii) mapped to the o�-chip main memory. Figure 6.1 (A) depicts the program

behavior of this code overlay scheme. In the example, ActorM is scheduled

to execute next and ActorN is currently present in the overlay bu�er. At

Time 1, the DMA engine brings ActorM from the o�-chip memory and evicts

ActorN. As soon as the DMA transfer completes, we invoke the execution of

ActorM (at Time 2). Since the DMA engine and the execution unit in each

PE operate independently, we can pre-fetch ActorM while executing ActorN,

as shown in Figure 6.1 (B). Code pre-fetching improves performance at the

expense of one extra bu�er allocation. When the SPM capacity is extremely

limited, data overlay will be introduced to stream data back to the o�-chip

main memory. In our data overlay scheme (if triggered), we only allocate one

bu�er for each edge that belongs to processor p and push the rest of bu�ers

back to the o�-chip main memory. Figure 6.1 (C) depicts the data memory

without data overlay and Figure 6.1 (D), with data overlay. Data overlay re-

duces the data memory usage at the expense of circling through the o�-chip

memory for every data produced/consumed.

In this chapter, we propose a heuristic approach that automatically

compiles a stream application onto embedded multicore processors with the
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Figure 6.1: Code overlay and data overlay.

objective of throughput optimization. Our heuristic approach is able to:

• Unroll and Retime Stream formats onto Embedded Multicore processors

(URSEM) with the objective of throughput maximization.

• Exploit trade-o�s among code overlay, data overlay and double bu�ering,

thus e�ciently address the limited on-chip SPMs and DMA delay.

• Schedule stream applications with loop structures and also accept an

upper bound on the resulting software pipeline stages.

6.1 Problem Description

The input to our problem is composed of an SDF representation of the stream

application and a hardware description of the target architecture. The SDF

speci�cation is given by G < V,E > where V in G represents actors/�lters

and E represents edges. Prior to invoking our optimization technique, we

transform the given SDF into a single appearance SDF (discussed in Section
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5.5). The resulting SDF and the target architecture is described in Table 5.1.

DMA latency is approximated by Tc(x) = Tinit, if x ≤ Dinit and Tc(x) =

Tinit +(x−Dinit)∗Tslope, otherwise. In the equation, Tc(x) denotes the latency

of transferring x bytes of code/data. The output of our technique is an actor to

PE mapping and a software pipelined schedule together with double bu�ering,

and code/data overlays that maximize the throughput.

The classical retiming techniques [50] [25] alters delays among various

function units of a circuit and retains its original logic. The retiming ap-

proaches are intriguing to our problem in that they handles loop structures

inherently. By properly constraining the retiming delays, an upper bound

on the resulting number of software pipeline stages can be imposed. Unfor-

tunately, the existing approaches that employ retiming for throughput opti-

mization are not directly applicable to our problem due to memory access

delays, double bu�ering, limited on-chip SPMs, and code/data overlays. In

our problem instances, code/data overlays reduce memory usage by sharing

the same physical memory with di�erent code segments and data sets over

time. In our basic code overlay scheme, we allocate one overlay bu�er for all

actors that are (i) scheduled on processor p and (ii) mapped to the o�-chip

main memory. Figure 6.1 (A) depicts the program behavior of this code over-

lay scheme. In the example, ActorM is scheduled to execute next and ActorN

is currently present in the overlay bu�er. At Time 1, the DMA engine brings

ActorM from the o�-chip memory and evicts ActorN. As soon as the DMA

transfer is completed, we invoke the execution of ActorM (at Time 2). Since

the DMA engine and the execution unit in each PE operate independently,

we can pre-fetch ActorM while executing ActorN, as shown in Figure 6.1 (B).

Code pre-fetching improves performance at the expense of one extra bu�er
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allocation. In our data overlay scheme (if triggered), we allocate one bu�er for

each edge that belongs to processor p and push the rest of bu�ers back to the

o�-chip main memory. Figure 6.1 (C) depicts the data memory without data

overlay and Figure 6.1 (D), with data overlay. Data overlay reduces the data

memory usage at the expense of circling data through the o�-chip memory.

In the rest of this chapter, Section 6.2 discusses related work. Section

6.3 presents our URSEM approach. Section 6.4 provides experimental results

and Section 6.5 concludes the paper.

6.2 Related Work

Several previous approaches have addressed the problem of implementing stream

workload on embedded multicore processors. A hierarchical framework for

scheduling SDF onto multicore processors was discussed by Pino et al. [66].

More recently Ostler et al. [61] proposed techniques for mapping stream

based applications onto network processing processors. Liao et al. [52] in-

vestigated parallelizing Brook language onto general purpose multicore pro-

cessors through data and code transformations. Stratton et al. [70] developed

a framework MCUDA that executes CUDA language on shared memory multi-

core processors. In contrast to the above approaches, our technique focuses on

embedded multicore processors that incorporate SPMs. In addition to actor

to PE mapping and double bu�ering, we also face the challenge of dynamic

management of the limited on-chip SPM for program code and data.

There have been approaches that concentrate on automatic compilation

of stream applications onto multicore processors. Gordon et al. [31] explored

the trade-o�s between data and task level parallelisms and developed a heuris-
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tic to generate multi-threaded code for the RAW architecture. Hormati et al.

[34] [35] proposed compiler frameworks for mapping stream languages onto

GPUs and heterogeneous architectures. Kudlur et al. [48] came up with an

ILP that unfolds and partitions a stream application onto multicore proces-

sors. An improved version of this work that addresses memory constraint was

later presented by Choi et al. [24]. Our approach is distinguished from the

above approaches in that we explore the trade-o�s between double bu�ering,

code overlay and data overlay, thus e�ciently address the SPM constraint.

The previous work that comes closest to us is the CSMP [20] and

RETM [15] approaches proposed by Che et al.. The CSMP approach utilizes

batch fusion and �ssion operations to map an SDF model onto embedded

multicore processors. In this work, a cycle is treated as a high-level actor and

the resulting software pipeline stages of the schedule is uncontrollable. Our

URSEM approach on the contrary handles cycles inherently and can accept an

upper bound on the resulting software pipeline stages. The proposed RTEM

approach compiles a stream program onto SPM based multicore processors

through retiming. Compared with this work, our URSEM performs unrolling

and retiming simultaneously. As a result, we can achieve better performance

and scalability. Further, we implemented our code overlay with pre-fetching,

which reduces the overall overhead. In the case when the SPM capacity is

extremely restricted, we also introduce data overlay.

6.3 URSEM Heuristic Approach

Prior to entering our URSEM heuristic approach, we �rst discuss the pre-

processing steps that are performed to construct a single appearance SDF.
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6.3.1 Pre-processing

In our URSEM heuristic, we require a single appearance SDF. Given a regular

SDF without loop structures, we can simply combine all executions of the

same actor in a PASS into a high-level execution to derive a single appearance

SDF. In the case when loop structures are present, we block process an actor

as many times as permitted by the delays on its feedback loop edge. The

resulting delay in the single appearance SDF is given by bw(e)/Nvc, where

w(e) denotes the delays/tokens on feedback loop edge e and Nv denotes the

tokens consumed by actor v (consumer of edge e) in the steady-state execution.

If w(e) < Nv the entire loop is treated as a one high-level actor. The resulting

actor is stateful and the delays on e becomes a state variable. For all stateful

actors in the program, we add a self-loop with one delay to ensure that two

executions of a stateful actor never overlap. Section 5.5 discusses how we

resolves cycles that might be present in a stream program.

6.3.2 URSEM heuristic algorithm

In this section, we discuss the high level routine of our algorithm as illustrated

in AlgorithmURSEM. It iteratively performs unrolling and retiming to sched-

ule a stream format G onto an embedded multicore processor P . It terminates

when no further performance improvement can be achieved or the unroll factor

exceeds |P |, Line 19. IIf in the condition indicates the minimum II achieved

by scheduling G with an unroll factor f . We divide IIf by f to derive the cor-

responding II of the original program G. At each iteration, we �rst unroll the

stream program by the given factor and store the unrolled graph in Gf . We

utilize the graph unrolling algorithm by Chao et al. [51]. Then the minimum II
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1 IIf ← +∞, f ← 0;
2 repeat
3 IIf−1 ← IIf , f ← f + 1, Gf ← Unroll(G, f);
4 /* retime with min{|P |, Nuser} pipeline stages */
5 l← 0, db← 0, N ← min{|P |, Nuser} ;
6 IIf ← BinarySearch(Gf , P,N, l, db);
7 |RGs| ← rmax(v)− rmin(v) + 1;
8 if |RGs| < |P | then
9 /* retime with list scheduling */
10 l← 1, db← 0, N ← |RGs| ;
11 IIf ← BinarySearch(Gf , P,N, l, db);
12 else
13 /* retime with double bu�ering */
14 l← 0, db← 1, N ← Nuser, stages← 0;
15 while stages < min{|P |, Nuser − |P |} do
16 Identify RG (r) that results in min IIf by calling

IIf ← BinarySearch(Gf , P,N, l, db);
17 Update IIf and set_db(r, 1);
18 stages← stages+ 1;

19 until IIf/f ≥ IIf−1/(f − 1) or f > |P |;
20 return IIf−1/(f − 1);

Algorithm 16: AlgorithmURSEM(G,P )

achieved at unroll factor f (IIf ) is calculated through a binary search. Binary

search is conducted within the range of {
∑

v∈Vf
C(v)/|P |,

∑
v∈Vf

C(v)}, and

AlgorithmRDL is invoked to check whether a given II is achievable. The pa-

rameters Gf , P , N , l, and db passed to the binary search capture the unrolled

graph, the multicore architecture, the maximum number of retiming groups

(RGs) to be generated, and whether list scheduling and double bu�ering are

enabled, respectively. RG is de�ned as a group of actors that have the same

retiming delay (r(v)). In the remainder of this paragraph, we focus on the

high-level overview of our URSEM heuristic1. The actual number of RGs gen-

erated by the retiming procedure is given by |RGs| ← rmax(v)− rmin(v) + 1,

1The discussion of AlgorithmRDL is provided in Section 6.3.3.
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where rmax(v) and rmin(v) are the maximum and the minimum retiming de-

lays. |RGs| could be less than P due to inter-iteration dependencies or user

speci�ed limitation on software pipeline stages. In AlgorithmURSEM, a list

scheduling is implemented to improve on the initial solution if |RGs| < |P |,

Line 11. Otherwise if |RGs| = |P |, a smart double bu�ering scheme is im-

plemented, Line 13-18. We greedily introduce double bu�ering to each RG.

The RG that provides us with the most signi�cant performance improvement

is selected at each iteration. The process terminates when all RGs are double

bu�ered or there is no extra pipeline stage left, Line 15.

6.3.3 AlgorithmRDL

AlgorithmRDL determines whether a given II is achievable for scheduling

graph G on P through retiming. The retiming delay of each actor is set to zero

in the initialization. Then the algorithm enters an iterative procedure where

we construct G0 by preserving all actors from Gr and exactly those edges with

wr(e) = 0, Line 3. A scheduling order is generated from G0 such that if there

is an edge directing from actor u to v in G0, then u must be scheduled before

v. When the scheduling sequence of u and v is immaterial, we schedule them

based on their priorities. The priority of an actor is given by the maximum

priority among all its children plus its own computation delay (d(v)). There is

no cycle in G0, thus a �xed priority can be generated for each actor following

a bottom-up manner. We calculate the completion time of each actor ∆(v) by

applying AlgorithmDeltaCD. AlgorithmDeltaCD schedules a retimed graph

Gr onto a multicore processor P with code and data overlays. We discuss it in

Section 6.3.4. Starting from the 5th line of AlgorithmRDL, we compare the

completion time of each actor with a given II. If its completion time is larger
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than II, we increase the retiming delay of v. In the algorithm, get_db(r(v))

returns one if r(v) is double bu�ered (zero otherwise). If double bu�ering is

enabled for r(v) then r(v) ← r(v) + 2, indicating that one addition delay is

allocated for DMA transfers. Otherwise, we increase r(v) by 1, Line 8. We

only alter the retiming delay of an actor when there are enough delays left to

be scheduled, Line 7. If an actor's completion time is larger than II and its

retiming delay cannot be altered due to lack of pipeline stages (captured by

r(v) − rmin(v) ≥ Nuser, where rmin(v) ← minv∈V r(v)) then we immediately

return -1 (failure), Line 10. At each iteration, after the retiming process, we

compute the new retimed graph Gr by setting wr(e)← w(e) + r(v)− r(u) for

each edge e in the unrolled graph. For the purpose of double bu�ering, we

occasionally increase the retiming delay of an actor by two instead of one. In

this case, the validity of the retiming needs to be veri�ed. If an invalid retiming

is found, we return -1, indicating that double bu�ering cannot be introduced.

This scenario could happen when we have loop structures with limited delays

on their feedback edges. Upon termination of the iterative retiming procedure,

we apply AlgorithmDeltaCD to calculate the resulting II and store it to IImin.

Finally, we return IImin if IImin ≤ II and return -1 (failure), otherwise.

6.3.4 AlgorithmDeltaCD

In this section we discuss AlgorithmDeltaCD which schedules a retimed graph

onto embedded multicore processor with code pre-fetching and data overlay.

6.3.4.1 Construction of RG to PE mapping

In AlgorithmDeltaCD, P (r(v)) denotes the set of processors that an actor with

retiming r(v) could be scheduled on. If l = 0, then |P (r(v))| = 1. In this case,
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1 ∀v ∈ Vf set r(v)← 0;
2 for i = 0 to |Vf | − 1 do
3 Construct G0 and a scheduling order S;
4 ∀v ∈ Vf , apply AlgorithmDeltaCD to calculate ∆(v);
5 forall the v ∈ S do
6 if ∆(v) > II then
7 if r(v)− rmin(v) < Nuser − (get_db(r(v)) + 1) then
8 r(v)← r(v) + (get_db(r(v)) + 1);
9 else
10 return −1;

11 Compute Gr based on the retiming r of each actor v;
12 ∀e ∈ Ef , if wr(e) < 0 then return −1;

13 IImin ← AlgorithmDeltaCD(Gr, P );
14 if IImin ≤ II then return IImin else return −1;

Algorithm 17: AlgorithmRDL(Gf , P, II,N, l, db)

1 ∀v ∈ V , set ∆(v)← d(v);
2 Calculate RG to PE mapping (P (r(v)));
3 forall the v ∈ S do
4 Schedule v on p ∈ P (r(v)) (list scheduling if l = 1);
5 Update code/data memory, memory state of p;
6 Calculate ∆(v) and set ∆(p)← ∆(v);

7 return Maxv∈V ∆(v);

Algorithm 18: AlgorithmDeltaCD(Gr, P, S, l, db)

each RG is mapped to exactly one processor. Otherwise (l = 1), the RG with

the maximum parallelism2 is scheduled on |P (r(v))| = |P | − |RGs| − 1 pro-

cessors with list scheduling [55] and the remaining RGs are scheduled on one

processor each. We schedule each actor v following S and update the comple-

tion time of actor v (∆(v)) and the workload of processor p (∆(p)) accordingly.

The calculations of ∆(v) and ∆(p) requires the knowledge of code/data mem-

ory usage and the memory state of processor p. Their calculations are provided

below.
2RG that has the maximum width following a BFS search.
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6.3.4.2 Calculation of code, data memory usage

The calculation of code memory of processor p after scheduling v is given by,

Ccode(p)← Ccode(p) + C(v)

The processor data memory after scheduling v on p is given as follows. For

every edge e that has v as a consumer

if get_state(p) 6= DATA_OVERLAY

Cdata(p)← Cdata(p) + wr(e) ∗ C(e)

else Cdata(p)← Cdata(p) + C(e)|e : u→ v, u /∈ p, v ∈ p

(6.1)

For every edge e that has v as a producer

Cdata(p)← Cdata(p) + (1 + get_db(r(v))) ∗ C(e) (6.2)

In Equation (6.1), get_state(p) returns the memory stage of processor p. The

memory state of a processor p could be SF (su�cient), CO (code overlay), DO

(data overlay), and IF (infeasible). The transitions of memory states and their

conditions are illustrated in Figure 6.2. The memory state of each processor

is �rst initialized to be SF. Then as we keep on scheduling actors on p, the

processor memory state changes to CO when the code and data size becomes

larger than C(p). In memory state CO, τo(v) is recalculated for every v that

has been scheduled since an actor that has been mapped to the on-chip SPM

may be relocated to the o�-chip memory when we try to schedule another

actor on p. If the SPM is only able to accommodate the program internal

data and two overlay bu�ers (2 ∗Cmax(v)), the memory state changes to DO.

Cmax(v) denotes the largest actor code size. We conservatively allocate the

overlay bu�er size to be Cmax(v) such that every actor can be placed in it.
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The data memory and τo(v) for each actor being scheduled is recalculated in

this case with data overlay enabled. Finally when the data memory (with data

overlay, denoted as data_min) plus an overlay bu�er is larger than the SPM,

the memory enters IF state, indicating that this actor cannot be scheduled on

the p.

6.3.4.3 Calculation of processor workload

The calculation of the workload after scheduling actor v on p is given by

∆(p)← d(v) +Max{τc(v),∆(p) + τo(v)} (6.3)

In Equation(6.3), d(v) is the computation delay of actor v. τc(v) models the

earliest start time of v due to data dependencies. ∆(p) indicates the workload

of p before scheduling v on it. τo(v) indicates the code overlay overhead of

scheduling v on p. ∆(p) + τo(v) models the earliest start time of v due to

limited PEs and code overlay. The calculation of τc(v) and τo(v) are discussed

in the following,

6.3.4.4 Calculation of τc(v)

There could be two categories of data dependencies, namely intra-pipeline

dependencies and inter-pipeline dependencies in our schedule. For an intra-

pipeline dependency, the edge that connects the producer and the consumer

has no delay on it. Therefore the consumer can only start after its producer

�nishes execution and transfers its data to the consumer side. For an inter-

pipeline dependency, the producer and consumer have at least one delay be-

tween them. The consumer can execute with the producer simultaneously in

a pipelined manner. Given the above discussion, the calculation of τintra(v) is
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Figure 6.2: Processor memory state transitions.

given by,

τintra(v)← max
e:u→v,v∈p,u/∈p,wr(e)=0

∆(u) + Tc(C(e)) (6.4)

In Equation (6.4), v ∈ p, u /∈ p, and wr(e) = 0 indicate the condition for edge e

to have an intra-pipeline communication. ∆(u) indicates the completion time

of producer u. Since we schedule actors following the scheduling order S, by

the time we schedule v on p, ∆(u) is known to us. Tc(C(e)) computes the cost

of transferring data from the producer to the consumer. Function Tc(x) is a

hardware feature and is de�ned in Section 6.1. The calculation of τinter(v) is

given by,

τinter(v)←


Tc(C(e)), if get_db(r(v)) = 0,

max{0, Tc(C(e))− d(u)}, otherwise.
(6.5)

where e : u→ v, v ∈ p, u /∈ p, wr(e) ≥ 1.

In Equation (6.5), the condition for an edge to have inter-pipeline commu-

nication overhead is given by v ∈ p, u /∈ p, and wr(e) ≥ 1. When double

bu�ering is disabled, the communication overhead equals the DMA transfer

cost. Otherwise, DMA transfer is overlapped with actor computation and the

e�ective cost is given by max{0, Tc(C(e))− d(u)}.
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6.3.4.5 Calculation of τo(v)

When the on-chip SPM of p is not able to accommodate all its code and data,

code overlay overhead is encountered. The calculation of τo(v) is given by,

τo(v)←



0, if get_state(p) =SF,

max{0, Tc(C(v))− d(u)}, if get_state(p) =CO,

Tc(C(v)), if get_state(p) =DO,

+∞, if get_state(p) =IF.

(6.6)

In Equation (6.6), Tc(C(v)) captures the code overlay overhead without code

pre-fetching and max{0, d(u)− Tc(C(v))} captures the code overlay overhead

with code pre-fetching, where u is the actor scheduled immediately before v

on the same PE.

6.3.5 Algorithm Complexity

Without unrolling, AlgorithmDeltaCD runs in O(|E| + |V |). AlgorithmFDL

wraps AlgorithmDeltaCD within a loop of |V |. Therefore AlgorithmFDL runs

in O(|V |(|E|+ |V |)). The binary search adds another complexity of O(log2U)

(U =
∑

v∈V d(v)). As a result, URSEM without unrolling runs in O(|V |(|E|+

|V |)log2U). Since the unroll factor is bounded by |P | in our technique, the

overall algorithm complexity is given by O(|V ||P |2(|E|+|V |)(log2U+log2|P |)).

6.4 Experimental Results

We adopted StreamIt language as our input speci�cation. URSEM was imple-

mented as an optimization pass in the StreamIt compiler 2.1.1. The hardware
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platform we experimented with is a PlayStation3 system running Fedora 9 at

3.2 GHz. In this platform, 1 PPE and 6 SPEs are available to the programmer.

Table 1.1 presents the benchmark details.

6.4.0.1 Overall performance comparison

We �rst compared the performance of our URSEM with two existing ap-

proaches, namely CSMP [20] and RTEM [15]. CSMP has no control over

the number of software pipelines being generated. For a fair comparison, we

set Nuser to be in�nity for RTEM and URSEM. Figure 6.3 presents their

performance results. The x-axis and y-axis provide the benchmark names

and their steady-state execution time normalized to the lower bound. The

lower bound is given by L = max{maxv∈Vs d(v)/f,
∑

v∈V d(v)/|p|}, where Vs

is the set of stateful actors. Our URSEM outperforms RTEM due to the fact

that we perform unrolling and retiming simultaneously. A better load bal-

ancing is expected as the unroll factor increases. Compared with RTEM, we

also implemented code prefetching and data overlay that further improves the

overall performance. Our URSEM also performs better than CSMP in most

cases. This is due to the fact that in CSMP, as the fusion operation proceeds,

the granularity that the algorithm can operate on becomes larger and larger.

Whereas, our URSEM always works on the granularity of a single actor. Over-

all our URSEM outperforms CSMP by 21% and RTEM by 6%. The algorithm

run time of our URSEM, based on the benchmark size, is hundreds of seconds.

Whereas CSMP and RTEM �nishes in less than ten seconds. The increased

algorithm run time is due to the Unrolling operation. Nevertheless, a user can

provide an upper bound on the unroll factor for a shorter algorithm run time,

or terminate the unrolling as soon as an acceptable solution is achieved.
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Figure 6.3: Overall performance comparison.

6.4.0.2 Impact of optimizations

We examine the impact of each optimization in URSEM in Figure 6.4. Nuser,

|P | and SPM size are set to in�nity, 28, and 4K respectively. We applied

Retiming, Unrolling, Double Bu�ering, Code Overlay, Code Pre-fetching, and

Data Overlay incrementally. We didn't show the results for FilterBank, FM-

Radio, and Serpentfull because they reduce to the mapping of scheduling every

actor on PPE. As observed from Figure 6.4, Unrolling delivers the most sig-

ni�cant performance gain due to improved parallelism in an unrolled graph.

Double bu�ering is another optimization that has a signi�cant impact. It

takes e�ect when the code and data memory is still tolerable compared to the
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Figure 6.4: Impact of optimizations.

SPM size. Code Overlay, Code Prefetching, and Data Overlay further reduce

the steady-state execution time whenever they can be applied. Overall, the

performance improvement by applying all six optimizations is over 47%.

6.4.0.3 Performance scaling with PEs

In this section, we examine the scalability of URSEM with di�erent number

of PEs. Nuser and SPM are set to in�nity and 256K respectively so that they

do not become the limiting factors. The number of processors are set to 7,

14, 21, and 28 respectively. The experimental results are shown in Figure 6.5.

The y axis in the �gure presents the normalized steady-state execution time

scaled to 7 PEs. Overall our approach scales with the number of processors as
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Figure 6.5: Performance scaling with PEs.

observed from Figure 6.5. This property results from the fact that we perform

iterative unrolling in our algorithm. When the number of processors increases,

the algorithm will search for a larger unroll factor. As a result, the unrolled

graph that is to be scheduled with retiming actually scales with the number of

PEs. Overall the performance improvement is around 70% when we increased

the number of PEs from 7 to 28. The results validate the scalability of our

approach.

6.4.1 Performance scaling with Delays

Figure 6.6 examines the scalability of our URSEM approach with various user

speci�ed software pipeline stages. Nuser are set to be 7, 14, 21, and 28 in
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this setup. The y-axis in the �gure shows the steady-state execution time of

each benchmark normalized to its performance achieved with Nuser = 7. For

most of the benchmarks, we observe a signi�cant performance improvement as

we increase the pipeline stages from 7 to 28. This is because with 7 pipeline

stages, there is no double bu�ering due to the lack of delays. Further, when we

unroll a graph, the retiming groups that can be generated could decrease due

to inter-iteration data dependencies. As observed from Figure 6.6, we achieved

a performance gain of 6% on average as we increased Nuser from 7 to 28. For

benchmarks BeamFormer, BitonicSort, and DES we observe a huge latency

reduction from 7 to 14 pipeline stages. The major contributing factor for the

performance gain of BitonicSort is double bu�ering that could be introduced

when we have more delays. For BeamFormer and DES, the reduction results

from the reduction of intra-pipeline communication.

6.4.1.1 Performance scaling with SPMs

In this experimental setup, we examine the performance of our URSEM al-

gorithm under tight SPM constraints. The size of each SPM is set to be

2K, 4K, 16K, and 256K respectively. Nuser and |P | are set to in�nity and 7

respectively. Figure 6.7 provides the experimental results under this setup.

As observed from Figure 6.7, our URSEM always generates a valid solution.

When the SPM size is extremely limited, many solutions reduce to mapping

all actors to PPE. From Figure 6.7, when the SPM size is set to 2K, 6 out

of 12 benchmarks map everything to PPE. When the memory increases from

2K to 16K, the steady-state execution time of each benchmark drops down

dramatically. This behavior suggests that the on-chip SPM is very precious

when the code and data memory are comparatively large. The results validate

178



0.85

0.88

0.90

0.93

0.95

0.98

1.00

N
o

rm
al

iz
e

d
 S

te
ad

y-
st

at
e

 E
xe

cu
ti

o
n

 T
im

e 

Delay=14 Delay=21 Delay=28

Figure 6.6: Performance scaling with Delays.

the rationale for introducing code overlay and data overlay in our technique.

6.5 Summary

In this paper, we propose an unrolling and retiming approach for scheduling

stream applications onto embedded multicore processors. In our technique, a

user speci�ed number of software pipeline stages can be imposed. Compared to

the existing approaches, our URSEM algorithm e�ciently unrolls and sched-

ules a stream application with loop structures. Our URSEM scales well over

a wide range of PEs, delays, and SPMs. Further, our heuristic performs code

pre-fetching and data overlay under tight SPM constraints, thus is able to

handle extreme cases with tolerable performance results. Our future work will
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Figure 6.7: Performance scaling with SPMs.

address stream applications with dynamic behavior and execution time.
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Chapter 7

CONCLUSION AND FUTURE WORK

In this dissertation, we present optimization techniques that automatically

compile stream programs onto SPM enhanced architectures. As an initial ef-

fort, we manually implement an ATR algorithm on the IBM Cell BE. Eight

optimizations that exploit both the speci�c algorithm constructs of the ATR

algorithm and the architectural features of the Cell BE are implemented. The

manual implementation provides us with both the design trade-o�s of pro-

gramming on embedded multicore processors and the optimizations that are

applicable when programming stream applications on embedded multicore.

Then we provide a three-stage ILP and a heuristic for scheduling stream pro-

grams on an SPM based embedded core with code overlay. The three-stage ILP

approach extensively explores the design alternatives with di�erent schedules,

code/data partitions, and actor to region/segment assignments. Although the

ILP approach is able to explore various design trade-o�s and generate high

quality solutions, it takes a very long time to run for large inputs. For a faster

algorithm time, a heuristic algorithm is later provided. The heuristic delib-

erately evolves the schedule from a minimum bu�er schedule to a minimum

actor switching schedule. It generates a minimum code overlay schedule that

balances the data bu�er usage and actor switches.

In the next phase of our work, we propose CSMP ILP and heuristic op-

timizations that schedule stream programs on SPM based embedded multicore

processors. CSMP ILP utilizes fusion and �ssion operators to combine actors

into batches, and then batches to PEs. Communication overheads and code

overlays are modeled under the given SPM capacity and DMA transfer de-



lays. Experimental results show that CSMP ILP is able to e�ciently trade-o�

between computation and communication and provide close to optimal solu-

tions. To amortize the algorithm run time of CSMP ILP, CSMP heuristic is

provided. CSMP heuristic is able to generate solutions comparable to CSMP

ILP in a matter of seconds. CSMP ILP and heuristic approaches do not op-

timize for cycles. Neither do they have control over the number of software

pipeline stages being generated. We next present RTEM heuristic that sched-

ules stream programs onto SPM based multicore processors through retiming.

Trade-o�s between double bu�ering and code overlay are explored intensively

in this approach. More importantly, the retiming approach inherently han-

dles cycles and also can accept an upper bound on the resulting number of

software pipeline stages. Although RTEM heuristic generates high quality so-

lutions for the Cell processor with 8 SPEs, it has the limitation of relying on

the existing parallelism in a stream program for parallelization. Consequently,

it may not scale with a large number of processing engines. As our last op-

timization, we extend RTEM heuristic with unrolling and propose URSEM

technique. URSEM performs unrolling and retiming simultaneously, thus is

able to achieve much better scalability compared with RTEM heuristic. To

address the increased code and data size due to unrolling, we also incorporate

code pre-fetching and data overlay. Experimental results show that URSEM

approach is able to generate high quality solutions over a wide range of PEs,

pipeline stages, and SPMs.

The dissertation can be extended from two directions, namely support

of industry oriented, open royalty-free standard general purpose parallel pro-

gramming languages, such as Open Computing Language (OpenCL) [58] and

support of cache/SPM mixed embedded multicore architectures such as TI
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TMSC320C6472 [73]. In the remainder of this chapter, we adopt OpenCL

and TMSC320C6472 as representatives to discuss the challenges that must be

addressed.

7.1 Future Work on OpenCL

OpenCL is a framework for writing programs that execute across heteroge-

neous platforms. The target platform typically consists of central processing

units (CPUs), graphics processing units (GPUs), and several other DSPs. An

OpenCL program is constructed with kernels that execute on OpenCL de-

vices and application programming interfaces (APIs) that de�ne the control

and code/data transfers. There have been some initial e�orts that investi-

gate automatic compilation of OpenCL programs onto FPGAs [39]. To apply

our optimizations, we can treat a kernel in an OpenCL program as an ac-

tor. Consequently, data communications among di�erent kernels correspond

to edges. The challenges of incorporating OpenCL in our optimizations lie in

the implicit data communications/dependencies, the vastly di�erent comput-

ing devices, and the many levels of memory hierarchies that OpenCL supports.

In stream programs, data communications are explicitly speci�ed with pop,

peek, and pop operators. In an OpenCL program, input and output of a kernel

are passed in/out through kernel arguments (pointers). Data dependencies are

implicitly speci�ed. Further, since there are many di�erent computing devices

supported, a kernel will have di�erent run time/code size for each device. Our

optimizations can be adjusted to take these variations into account for actor

to processing engine mapping. Compared to SPM based multicore processors

where we have on-chip SPMs and o�-chip main memory, the memory hier-
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archies of the heterogeneous platforms that OpenCL supports are also more

complicated. Our optimizations can be extended to handle these platforms

by appropriately adjusting costs of code and data placements/transfers, and

memory access delays.

7.2 Future Work on TI Multicore

TI TMSC320C6472 is a representative embedded multicore architecture from

TI with heterogeneous cache/SPM mixed memory hierarchy. TMSC320C6472

has six processing engines/DSP subsystems that are based on C64x DSPs.

Each processing engine has 32 KB L1 instruction memory, 32 KB L1 data

memory, and 608 KB L2 memory that can be con�gured as either SPM or

cache1. There is also a 768 KB RAM that is shared by all six processing

engines. To simplify the extension of our optimizations to cache/SPM mixed

architecture, we �rst impose a few restrictions on the architecture itself. First,

let us assume instructions that mapped to an SPM operates on data that also

resides in the same SPM. Second, an actor is the smallest granularity that

our optimizations operate on, meaning all instructions within one actor are

either all mapped to an SPM or they are all mapped to instruction cache.

Third, instructions mapped to an instruction cache or SPM can fetch data

from the same processing engine either from its data cache, or from the local

SPM. Last, caches are assumed to be coherent across all processing engines.

We can extend our optimizations to support cache/SPM mixed architectures

by addressing the following challenges. First, separate actors mapped to an

SPM from actors mapped to instruction caches. Intuitively, an SPM should

1When con�gured as caches, L1 instruction memory is directed mapped, L1 data mem-
ory is 2-way set associative, and L2 memory is 4-way set associative.
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be used for actors that exhibit stable and predictable data access patterns.

Since the on-chip SPMs are typically very small, they should be used very

cautiously. Then separate data mapped to an SPM from data mapped to

data cache. Data mapped to data cache are subject to cache misses and data

mapped to an SPM may require explicit DMA transfers. Since code and data

mapped to an SPM shares the same physical memory, over utilization of an

SPM could result in high code/data overheads. The calculation of computa-

tion/communication costs in our optimizations can be modi�ed to adjust to

various actor to cache/SPM mappings, including i) actor code and data both

reside in an SPM, ii) actor code and data both mapped to caches, iii) actor

code resides in an SPM with data mapped to data cache, and iv) actor code

mapped to instruction cache with actor data resides in an SPM. Our optimiza-

tions can be enhanced to accept cache/SPM mixed architectures following the

guideline of extracting code and data from caches to SPMs to improve perfor-

mance.
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APPENDIX A

A Compiler Backend for the IBM Cell Broadband Engine



In this appendix, we provide a compiler framework that automatically

generates multi-threaded IBM Cell Broadband Engine (BE) code. The com-

piler framework takes StreamIt [71] programs as input and automatically gen-

erate executables that runs concurrently on the IBM Cell BE. In the following,

the �le structure of our code base, the execution pattern of the generated code,

the environment setup, the available commands, and interpretation of results

are discussed in details.

File Structure

The compiler framework is built upon the StreamIt compiler [57] that is de-

veloped by MIT. The MIT StreamIt project can be found in the homepage at

http://groups.csail.mit.edu/cag/streamit/. The StreamIt compiler can

take StreamIt program as input and generate simple C code. We instrument

the existing StreamIt compiler in three places to enable automatic generation

of multi-threaded IBM Cell BE Code.

We �rst insert an optimization pass that operations on the intermediate

format of a StreamIt program and generates mapping and scheduling of the

given program on the IBM Cell BE. This code base can be found under the

directory of "STREAMIT_HOME/src/at/dms/kjc/cell/heuristic". The �les

under this directory include

• CellPPU.java: The CellPPU class stores the information of a PPU ar-

chitecture and its helper functions. The basic information includes the

memory size of PPU, the batch and �lters that are mapped to the PPU.

• CellSPU.java: The CellSPU class stores the information of a SPU ar-
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chitecture and its helper functions. The basic information includes the

index of the current SPU, its memory size, the batch and �lters that are

mapped to the current SPU. To facilitate code generation, there are also

some other information that are produced, for example the incoming

edges, outgoing edges, intra edges of the current SPU, and information

that helps implementation of split-join structure and batch �ssion.

• HeuFilter.java: The HeuFilter class stores the information of a �lter and

its helper functions. The basic information includes the �lter ID, the

number of peek tokens, the number of pop tokens, the number of push

tokens, the number of steady-state executions of the current �lter, work

estimate of the current �lter, code size estimate of the current �lter,

whether the current �lter is stateful. Some other information that are

stored include the parents and children of the current �lter, it incoming

and outgoing edges, and more information that helps implementation of

code generation.

• HeuEdge.java: The HeuEdge class stores the information of an edge be-

tween two �lters and its helper functions. The basic information includes

the edge ID, its producer and consumer, the edge weight and other in-

formation that helps implementation of code generation.

• HeuGraph.java: The HeuGraph class stores our intermediate format of

a StreamIt program. The structure is a graph as indicated by the class

name. A node in the graph represents a �lter in the StreamIt program.

Correspondingly, an edge represents data communications between two

�lters. The HeuGraph also implements helpr functions that operates on

it.
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• HeuMain.java: The HeuMain class is the main routine of our optimiza-

tion. It implements the algorithm that is published in [20].

Then we insert code base that generates the IBM Cell BE code, includ-

ing header �les, code for each �lter, the main thread code that runs on PPE,

and make�le that compiles and links everything together. The code base can

be found under the directory �STREAMIT_HOME/src/at/dms/kjc/cell�. We

describe this code base in more detail below.

• EmitCellCode.java: The EmitCellCode class takes our optimization out-

put and generate IBM Cell BE code accordingly. It implements helper

functoins that generates the make�le, ppu header, ppu code, spu header,

spu code.

• CellBackend.java: The CellBackend class implements the main routine

that calls our optimiation pass and code generation pass. It is invoked

when the target architecture is speci�ed as IBM Cell BE.

Finally, we also implement a static library that iteratives parses the

code generated by our optimization and backend, and generates output infor-

mation. This code base can be found under the directory of �STREAMIT_HOME/library/cell�.

The details of the code base are discussed in the following.

• include: This direcory de�nes all the header �les, common micro de�ni-

tions that is used through out the library.

• lib: This directory stores the compiled library as �spulib_spu.a�.

• src: This directory contains the code that implements the main routine

of the static library.

199



Execution Pattern

During the program execution, the PPU of the IBM Cell BE �rst initializes all

the control blocks, �lter constructs, and edge constructs. A control block stores

the infomation of the SPU index, the scaling factor of the current graph, the

number of total iterations to run, the number of �lers assgined to the current

SPU and several other variables that help the implementation of peek and

�ssion. A �lter struct stores all the information that is needed to execute

a �lter. An edge struct stores all the information that is required for data

commmunication.

After the initialization is completed, the PPU sends out mailbox mes-

sages to inform all SPUs that the data are ready. As soon as an SPU receives

the con�rmation message, it starts DMA and gets its control block from the

PPU. Upon completion of the DMA, each SPU starts its memory allocation

according to the content of the control block. The SPU local memory (lo-

cal store) is partitioned into global data, library funtion, code memory, data

memory, heap and statck.

Then upon completion of memory allocation, each SPU starts another

DMA to initialize all the �lter structs and edge structs. After initializaion,

the library checks whether the is initial schedule required for peek operations.

If initialization of peek bu�ers are needed, the library �res an initial schedule

that runs each �lter just enough to produce the correct amount of data.

Finally, the library implements an iterative routine that at each iter-

ation parses the �lter structs and edge structs and carry out the following

actions.
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• For each edge struct check whether a DMA command should be issued.

The edge struct constains the information of the iterations when the

DMA should start and stop, the source and destination of the DMA,

and the size of the DMA. The starting and ending iterations of an DMA

is assigned such that all data dependencies are respected and double

bu�ering is enabled. After the DMA, the source and destination address

of each edge is updated such that it is ready to start the next data

communication.

• For each �lter struct check whether it should be �red at the current

iteration. If it should be �red, then gather all the data it requires and

orginize the data into the correct format. Fire the �lter and then scatter

the data to each of its outgoing edges. After each �ring, the actor also

needs to update its incoming data address and outgoing address such

that it is ready for the next execution.

Environment Setup

Inorder to execute the IBM Cell Backend, there are several environmental

variables that needs to be set up. Since our IBM Cell Backend generates

extended multi-threaded C code and relies on the IBM SDK to compile the

generated code into executable binary, a working compilation tool chain for

the IBM Cell BE is required. The verion tested for our implementaion is IBM

SDK 3.0 which can be downloaded from the �IBM Cell Broadband Engine

resource center� [36]. We also need to set up the environmental variables for

executing the StreamIt compiler [57] and our IBM Cell backend. The variables

that should be added are listed in the following,
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• STREAMIT_HOME: The home directory of the StreamIt compiler and

our backend code.

• ANTLRJAR: The directory that contains antlr.jar

• CLASS_PATH: The CLASS_PATh should include ANTLRJAR, STREAMIT

_HOME/src, STREAMIT_HOME/3rdparty, STREAMIT_HOME/3rdparty

/JFlex/j�ex.jar.

• SPULIB_TOP_MYLIB: The directory that contains our static library

implementation.

Commands

To faciliate the execution and debug of our IBM Cell backend, we also imple-

ment a perl script that sets up the directories in the local PC, runs the backend

and generates IBM Cell BE code, compiles the code, connects to the remote

Play Station 3 via net-ssh, set up the directories in the remote Play Station

3, connects to the remote Play Station 3 vis net-sftp, upload the inputs and

executables into the corresponding directories, execute the program, download

the output from remote Play Station 3 to the local PC, disconnect net-ssh,

net-sftp, run the program in local PC, and compares the results produced by

Play Station 3 and local PC. The perl script takes several arguments as shown

below,

Usage: run input�le benchmark iterations [load_input] [disable_regenerate]

A sample command is given by �run BeamFormer1 beamformer 100

true false�. This command will compile the BeamFormer1.str under the direc-

tory �STREAMIT_

202



HOME/apps/benchmarks/asplos06/beamformer/streamit� for 100 iterations.

The �load_input� and �disable_regenerate� arguments are optional. If load_input

is speci�ed as true, then a new input is uploaded to the Play Station 3

before the program execution. Otherwise the old input is adopted. If dis-

able_regenerate is speci�ed as true, then all previous data are cleared. Oth-

erwise, the previous executable is used.

Outputs

There are several di�erent categories of outputs being produced by our IBM

Cell backend. The �rst category is our optimization outputs. The are pre-

sented as dot �les and can be viewed graphically. To be more speci�c

• HeuInputGraph.dot: This dot �le contains the graphical representation

of the input program and all the information that is needed by our

optimizatio.

• HeuOutputGraph.dot: This dot �le contains the graphical representa-

tion of the solution our optimization, including �lter to batch mapping,

batch to processing mapping, iteration number of each �lter etc..

• HeuFilterBatches.dot: This dot �le contains the graphical representation

of �lter to batch mapping, the work distributation of each batch, the

incoming edges, the outgoing edges, the intra dedges of each batch.

• HeuBufAllocation: This dot �le contains the memory layout of each

batch. The data memory is partitioned for each incoming edge, outgoing

edge and intra-edge.
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• HeuSPUs.dot: This dot �le contains the graphical representation of �lter

to batch and batch to processor mapping.

The second category of outputs contains the multi-threaded C code for

each �lter (heu_str_spuN.c, N is positive integer), the main thread PPU code

(heu_strppu.c), the header �les and make�le. These �les can be found in the

same directory of the program code (the .str �le). After compilation, there

will be a build directory created that contains the executables for the PPU,

all SPUs and a combined executable that links everything together (strppu).

The last category of outputs contains the output results from the Play

Station 3 and local PC. The output �le name for the results from remote

Play Station 3 is �PS3.out.txt� and the output �le name for the results from

local PC is given by �$benchmark.out.txt�. A comparison of the two �les can

validate the correctness of our multi-threaded IBM Cell BE executable.
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Control Block De�nitions

In this section we provide the code for various control block de�nitions that are

utilized to implement the Cell BE library, namely SPU control block, Filter

control block, edge control block.

SPU Control Block

The control block for an SPU is described in below.

typedef struct _control_block {

/* current spu id */

unsigned int spuId;

/* number of times to run the program in one iteration */

unsigned int scale;

/* total number of stages of the entire application,

including prolog, steady-state, epilog */

unsigned int NUM_TOTAL_STAGES;

/* number of filters of current batch */

unsigned int NUM_FILTERS;

/* address for macros of current batch */

unsigned int filters_addr;

/* buffer addr for file read */

unsigned int input_array_addr;

/* buffer addr for file writer */

unsigned int output_array_addr;

/* offset of split_join buffer */

unsigned int split_join_start;

/* size of split_join buffer */
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unsigned int split_join_size;

/* the least common multiple of all fission factors */

unsigned int fission_lcm;

/* fission factor of the current batch */

unsigned int fission_factor;

/* fission executions of the current batch */

unsigned int fission_exec;

/* the index of current copy */

unsigned int fission_index;

/* whether peek_buf needs to be initialized */

unsigned int init_peek_buf;

/* padding for DMA */

char pad[72];

} control_block;

Filter Control Block

The control block for a �lter is described in below.

typedef struct _filter_s

{

/* the id of a filter */

unsigned int filterId;

/* the execution start stage of a filter */

unsigned int exec_start_stage;

/* the execution end stage of a filter */

unsigned int exec_end_stage;

/* the base address of the input data */

unsigned int exec_in_start;
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/* the offset of the input data */

unsigned int exec_in_offset;

/* the base address of the output data */

unsigned int exec_out_start;

/* the offset of the output data */

unsigned int exec_out_offset;

/* the temporary buffer size required */

unsigned int input_buffer_sj_size;

/* the temporary buffer size required */

unsigned int output_buffer_sj_size;

/* the number of input data buffers */

unsigned int num_input_buffers;

/* the number of output data buffers */

unsigned int num_output_buffers;

/* the number of incoming edges of a filter */

unsigned int num_incoming_edges;

/* the number of outgoing edges of a filter */

unsigned int num_outgoing_edges;

/* the starting address of incoming edge pointer */

unsigned int incoming_edges_addr;

/* the starting address of outgoing edge pointer */

unsigned int outgoing_edges_addr;

/* the address of the init work function */

unsigned int work_func_init;

/* whether the output is a split */

unsigned int is_out_split;

/* whether the input is a joint */

unsigned int is_in_join;
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/* the address of the work function */

unsigned int work_func;

/* whether the init function for peek is completed */

unsigned int init_done;

/* the pointer to the incoming edges of the filter */

edge_s * incoming_edges_ptr;

/* the pointer to the outgoing edges of the filter */

edge_s * outgoing_edges_ptr;

/* the unroll factor of the entire graph due to fission */

unsigned int lcm_index;

/* the fission index of the current copy */

unsigned int exec_index;

/* incoming edges weight adjustor due to fission */

unsigned int in_weight_scale;

/* outgoing edges weight adjustor due to fission */

unsigned int out_weight_scale;

/* DMA padding */

unsigned char pad[24];

} filter_s;

Edge Control Block

The control block for an edge is described in below.

typedef struct _edge_s

{

/* the number of tokens popped from edge */

unsigned int pop;

/* the number of tokens pushed to edge */
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unsigned int push;

/* the number of tokens peeks from edge */

unsigned int peek;

/* the weight pushed to edge in steady-state */

unsigned int in_weight;

/* the weight popped from edge in steady-state */

unsigned int out_weight;

/* the DMA start stage for the edge */

unsigned int DMA_start_stage;

/* the DMA end stage for the edge */

unsigned int DMA_end_stage;

/* the base start address for input data */

unsigned int DMA_in_start;

/* the offset for input data */

unsigned int DMA_in_offset;

/* the DMA step size for input data */

unsigned int DMA_in_step_size;

/* the base start addrerss for output data */

unsigned int DMA_out_start;

/* the offset for output data */

unsigned int DMA_out_offset;

/* the DMA step size for output data */

unsigned int DMA_out_step_size;

/* the execution offset for input data */

unsigned int exec_in_offset;

/* the execution offset for output data */

unsigned int exec_out_offset;

/* the offset for input data if it is a join */
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unsigned int join_offset;

/* the step size for input data if it is a join */

unsigned int join_step_size;

/* the offset for output data if it is a split */

unsigned int split_offset;

/* the step size for output data if it is a split */

unsigned int split_step_size;

/* the DMA size */

unsigned int DMA_size;

/* the number of producer buffers */

unsigned int num_producer_buffers;

/* the number of consumer buffers */

unsigned int num_consumer_buffers;

/* the source index of the input data for a split */

unsigned int data_src_index;

/* the destination index of the output data for a join */

unsigned int data_dest_index;

/* type: 0 incoming to spu, 1 intra to spu,

2 outgoing from spu */

unsigned int type;

/* whether is reading or writing to PPU */

unsigned int is_read_write_ppu;

/* number of steady-state executions */

unsigned int steady_state_executions;

// used to implement data communication for fission

/* number of possible DNA_out_starts */

unsigned int num_in_targets;

/* the target DMA in start address */
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unsigned int DMA_in_targets[7];

/* number of possible DMA_out_starts */

unsigned int num_out_targets;

/* the target DMA out start address */

unsigned int DMA_out_targets[7];

/* the fission factor of the producer */

unsigned int producer_fission_factor;

/* the fission index of the producer */

unsigned int producer_fission_exec;

/* the fission factor of the consumer */

unsigned int consumer_fission_factor;

/* the fission index of the consumer */

unsigned int consumer_fission_exec;

/* the size of the peek buffer */

unsigned int peek_buf;

/* DMA padding */

unsigned char pad[64];

} edge_s;

Helper Functions

The helper functions for reformatting the input data for a join �lter and out-

put data for a split data are described. The helper functions for mailbox

communications are also provided.

/* SPU wait for incoming msg */

int spu_wait_mailbox()

{
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/* wait for ppe to inform spe to do the next step */

do{ ;}while(!spu_stat_in_mbox ());

return spu_read_in_mbox();

}

/* SPU write outgoing msg */

void spu_write_mailbox(unsigned int n)

{

/* inform ppe the job is done*/

do{ ;}while(!spu_stat_out_mbox());

spu_write_out_mbox(n);

}

/* Gather data from all incoming edges to

split_join in buffer in the correct format */

void gather(filter_s * filter_ptr, edge_s * incoming_edges_ptr,

int num_incoming_edges, int data_start)

{

int i, j, k;

int cur_ptr=cb.split_join_start;

edge_s * incoming_edge_ptr=incoming_edges_ptr;

/* Initiate all join_offsets to be zero */

for(i=0; i<num_incoming_edges; i++) {

incoming_edge_ptr->join_offset=0;

incoming_edge_ptr++;

}

/* Gathering data according to join rules */
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for(i=0; i<cb.scale*(filter_ptr->in_weight_scale

* cb.fission_exec); i++) {

incoming_edge_ptr=incoming_edges_ptr;

for(j=0; j<num_incoming_edges; j++) {

for(k=0; k<incoming_edge_ptr->in_weight; k++) {

*((int*)cur_ptr) = *(int*)(data_start+

incoming_edge_ptr->DMA_out_start+incoming_edge_ptr

->exec_in_offset+incoming_edge_ptr->peek_buf+

incoming_edge_ptr->join_offset);

cur_ptr += 4;

incoming_edge_ptr->join_offset += 4;

}

incoming_edge_ptr++;

}

}

}

/* Reorgnize data in split_join out buffer into the correct

format, scatter data to all outgoing edges */

void scatter(filter_s * filter_ptr, edge_s * outgoing_edges_ptr,

int num_outgoing_edges, int data_start)

{

int i, j, k;

edge_s * outgoing_edge_ptr = outgoing_edges_ptr;

/* Initiate all split_offsets to be zero */

for(i=0; i<num_outgoing_edges; i++) {

outgoing_edge_ptr->split_offset=0;
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outgoing_edge_ptr++;

}

int cur_ptr = cb.split_join_start+cb.split_join_size;

/* Scattering data according to split rules*/

for(i=0; i<cb.scale*(filter_ptr->out_weight_scale)

*cb.fission_exec; i++) {

outgoing_edge_ptr=outgoing_edges_ptr;

for(j=0; j<num_outgoing_edges; j++) {

for(k=0; k<outgoing_edge_ptr->out_weight; k++) {

*(int*)(data_start+outgoing_edge_ptr->

DMA_in_start+outgoing_edge_ptr->exec_out_offset

+outgoing_edge_ptr->peek_buf+outgoing_edge_ptr

->split_offset) = *((int*)cur_ptr);

cur_ptr += 4;

outgoing_edge_ptr->split_offset += 4;

}

outgoing_edge_ptr++;

}

}

}

IBM Cell BE Library Main Routine

/* -------------------------------------------------- */

/* Start of main loop

/* -------------------------------------------------- */

filter_ptr = filters;
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for(i=0; i<cb.NUM_FILTERS; i++){

/* DMA in incoming edges of filter i */

mfc_get(filter_ptr->incoming_edges_ptr, filter_ptr->

incoming_edges_addr, sizeof(edge_s)*(filter_ptr->

num_incoming_edges), tag_id, 0, 0);

mfc_write_tag_mask(1<<tag_id);

mfc_read_tag_status_all();

/* DMA in outgoing edges of filter i */

mfc_get(filter_ptr->outgoing_edges_ptr, filter_ptr->

outgoing_edges_addr, sizeof(edge_s)*(filter_ptr->

num_outgoing_edges), tag_id, 0, 0);

mfc_write_tag_mask(1<<tag_id);

mfc_read_tag_status_all();

/* Move pointer to the next filter */

filter_ptr ++;

}

/* Move filter pointer to the first filter */

filter_ptr=filters;

/* Fission factor/index of the batch */

int fission_lcm = cb.fission_lcm;

int fission_factor = cb.fission_factor;

216



int fission_exec = cb.fission_exec;

int fission_index = cb.fission_index;

/* For each filter we carry out the following operation */

if(cb.init_peek_buf == 0){

for(i=0; i<cb.NUM_FILTERS; i++){

/* Move incoming edge pointer to incoming edges */

edge_s * incoming_edge_ptr =

filter_ptr->incoming_edges_ptr;

/* Move outgoing edge pointer to outgoing edges */

edge_s * outgoing_edge_ptr =

filter_ptr->outgoing_edges_ptr;

/* ----------- Execution of a filter --------- */

/* Initiate input data pointer */

void * input_data_ptr = (void *)(data_start+

incoming_edge_ptr->DMA_out_start+

incoming_edge_ptr->exec_in_offset);

/* Initiate output data pointer */

void * output_data_ptr = (void *)(data_start+o

utgoing_edge_ptr->DMA_in_start+

outgoing_edge_ptr->exec_out_offset);

/* A pointer to input_data_ptr */

void ** input_data_dptr = &input_data_ptr;

/* A pointer to output_data_ptr */
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void ** output_data_dptr = &output_data_ptr;

/* execute init work function */

(*(work_func *)filter_ptr->work_func_init)

(input_data_dptr,output_data_dptr, cb.scale,

(void **)cb.split_join_start);

/* move pointer to the next filter */

filter_ptr ++;

}

}

/* Determine whether a certain operation should take place */

unsigned int cur_stage=0;

/* NUM_TOTAL_STAGES is basically the prolog executions

+ steady-state executions + epilog executions */

for(cur_stage=0; cur_stage<cb.NUM_TOTAL_STAGES; cur_stage++) {

/* Wait for mbox, it should read the filter address */

spu_wait_mailbox();

/* Move filter pointer to the first filter */

filter_ptr=filters;

/* For each filter we carry out the following operation */

for(i=0; i<cb.NUM_FILTERS; i++) {

/* Move incoming edge pointer to incoming edges pointer */
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edge_s * incoming_edge_ptr=filter_ptr->incoming_edges_ptr;

/* ------------- DMA input from PPU ------------------- */

/* For filter reads from PPU, we issue mfc_get to get the

* data from PPU. All other data communications are carried

* out by the producer issue mfc_put (examing outgoing

* edges). In this way, any DMA operation is done by some

* DMA engine of a SPU (most efficient). */

for(j=0; j<filter_ptr->num_incoming_edges; j++){

/* If edge reads from PPU */

if(incoming_edge_ptr->is_read_write_ppu==1){

if((cur_stage >= incoming_edge_ptr->DMA_start_stage)&&

(cur_stage <= incoming_edge_ptr->DMA_end_stage)){

unsigned int ls_addr = data_start+incoming_edge_ptr->

DMA_out_start+incoming_edge_ptr->DMA_out_offset+

incoming_edge_ptr->peek_buf;

unsigned int remote_addr = incoming_edge_ptr->

DMA_in_targets[0]+incoming_edge_ptr->DMA_in_start

+incoming_edge_ptr->DMA_in_offset;

int exec_idx = 0;

for(exec_idx = 0; exec_idx < incoming_edge_ptr->

consumer_fission_exec; exec_idx ++){

int global_index = fission_index * fission_exec +

exec_idx;

int target_offset_index = global_index %
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incoming_edge_ptr->producer_fission_exec;

int consumer_offset = exec_idx * incoming_edge_ptr

->DMA_size;

int producer_offset = target_offset_index *

incoming_edge_ptr->DMA_size;

mfc_get(ls_addr+consumer_offset,

remote_addr+producer_offset,

incoming_edge_ptr->DMA_size, tag_id, 0, 0);

}

/* Update DMA_in_offset */

incoming_edge_ptr->DMA_in_offset += incoming_edge_ptr->

DMA_in_step_size*incoming_edge_ptr->producer_fission_exec;

/* Update DMA_out_offset */

incoming_edge_ptr->DMA_out_offset += (incoming_edge_ptr->

DMA_out_step_size+incoming_edge_ptr->peek_buf)*

incoming_edge_ptr->consumer_fission_exec;

/* When DMA_in_offset exceeds the producer buffers */

if(incoming_edge_ptr->DMA_in_offset >= incoming_edge_ptr->

DMA_in_step_size * incoming_edge_ptr->num_producer_buffers

* incoming_edge_ptr->producer_fission_exec) {

incoming_edge_ptr->DMA_in_offset=0;

}

/* When DMA_out_offset exceeds the consumer buffers */
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if(incoming_edge_ptr->DMA_out_offset >= (incoming_edge_ptr

-> DMA_out_step_size+incoming_edge_ptr->peek_buf) *

incoming_edge_ptr->num_consumer_buffers *

incoming_edge_ptr->consumer_fission_exec) {

incoming_edge_ptr->DMA_out_offset=0;

}

}

}

/* Move pointer to next edge */

incoming_edge_ptr ++;

}

/* Move pointer to the next filter */

filter_ptr ++;

}

/* Move filter pointer to the first filter */

filter_ptr=filters;

/* For each filter we carry out the following operation */

for(i=0; i<cb.NUM_FILTERS; i++) {

/* Move outgoing edge pointer to outgoing edges of

the current filter */

edge_s * outgoing_edge_ptr=filter_ptr->outgoing_edges_ptr;

/* DMA out for each outgoing edge */

outgoing_edge_ptr=filter_ptr->outgoing_edges_ptr;
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for(j=0; j<filter_ptr->num_outgoing_edges; j++) {

/* If it is an outgoing edge from the current spu */

if(outgoing_edge_ptr->type==2) {

if((cur_stage >= outgoing_edge_ptr->DMA_start_stage)&&

(cur_stage <= outgoing_edge_ptr->DMA_end_stage)) {

unsigned int ls_addr = data_start+outgoing_edge_ptr->

DMA_in_start+outgoing_edge_ptr->DMA_in_offset+

outgoing_edge_ptr->peek_buf;

int exec_idx = 0;

for(exec_idx = 0; exec_idx < outgoing_edge_ptr->

producer_fission_exec; exec_idx ++) {

int global_index = fission_exec * fission_index +

exec_idx;

int target_index = global_index / outgoing_edge_ptr->

consumer_fission_exec;

int target_offset_index = global_index %

outgoing_edge_ptr->consumer_fission_exec;

int producer_offset = exec_idx * outgoing_edge_ptr

->DMA_size;

int consumer_offset = target_offset_index *

outgoing_edge_ptr->DMA_size;

unsigned int remote_addr = outgoing_edge_ptr->

DMA_out_targets[target_index]+outgoing_edge_ptr->

DMA_out_start+outgoing_edge_ptr->DMA_out_offset

+outgoing_edge_ptr->peek_buf;
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mfc_put(ls_addr+producer_offset, remote_addr+

consumer_offset, outgoing_edge_ptr->DMA_size,

tag_id, 0, 0);

}

/* Update pointer */

outgoing_edge_ptr->DMA_in_offset += (outgoing_edge_ptr->

DMA_in_step_size+outgoing_edge_ptr->peek_buf) *

outgoing_edge_ptr->producer_fission_exec;

outgoing_edge_ptr->DMA_out_offset += (outgoing_edge_ptr->

DMA_out_step_size+outgoing_edge_ptr->peek_buf) *

outgoing_edge_ptr->consumer_fission_exec;

if(outgoing_edge_ptr->DMA_in_offset >= (outgoing_edge_ptr

->DMA_in_step_size+outgoing_edge_ptr->peek_buf) *

outgoing_edge_ptr->num_producer_buffers *

outgoing_edge_ptr->producer_fission_exec){

outgoing_edge_ptr->DMA_in_offset = 0;

}

if(outgoing_edge_ptr->DMA_out_offset >= (outgoing_edge_ptr

->DMA_out_step_size+outgoing_edge_ptr->peek_buf) *

outgoing_edge_ptr->num_consumer_buffers *

outgoing_edge_ptr->consumer_fission_exec){

outgoing_edge_ptr->DMA_out_offset = 0;

}

}
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}

/* Move pointer to next edge */

outgoing_edge_ptr ++;

}

/* Move pointer to the next filter */

filter_ptr ++;

}

/* Move filter pointer to the first filter */

filter_ptr = filters;

/* For each filter we carry out the following operation */

for(i=0; i<cb.NUM_FILTERS; i++) {

/* Move incoming edge pointer to incoming edges pointer */

edge_s * incoming_edge_ptr=filter_ptr->incoming_edges_ptr;

/* Move outgoing edge pointer to outgoing edges pointer */

edge_s * outgoing_edge_ptr=filter_ptr->outgoing_edges_ptr;

/* --------- Execution of a filter ----------- */

if((cur_stage >= filter_ptr->exec_start_stage)&&(cur_stage

<= filter_ptr->exec_end_stage)) {

/* Initiate input data pointer */

void * input_data_ptr = (void *)(data_start+incoming_edge_ptr

->DMA_out_start+incoming_edge_ptr->exec_in_offset+

incoming_edge_ptr->peek_buf-4*(incoming_edge_ptr->

incoming_edge_ptr->pop));

224



/* Initiate output data pointer */

void * output_data_ptr = (void *)(data_start+outgoing_edge_ptr

->DMA_in_start+outgoing_edge_ptr->exec_out_offset

+outgoing_edge_ptr->peek_buf);

/* A pointer to input_data_ptr */

void ** input_data_dptr = &input_data_ptr;

/* A pointer to output_data_ptr */

void ** output_data_dptr = &output_data_ptr;

int exec_idx = 0;

/* Go to different branches depending on the input

(split?) and output (join?) */

if( filter_ptr->is_in_join || filter_ptr->is_out_split) {

/* Case: join input single output/duplicate output */

if(filter_ptr->is_in_join && !filter_ptr->is_out_split) {

input_data_ptr = (void *)(cb.split_join_start);

input_data_dptr = &input_data_ptr;

/* Gather input from all incoming edges */

gather(filter_ptr, incoming_edge_ptr, filter_ptr->

num_incoming_edges, data_start);

/* Start filter execution */

for(exec_idx = 0; exec_idx < fission_exec; exec_idx ++) {

(*(work_func *)filter_ptr->work_func)(
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input_data_dptr, output_data_dptr, cb.scale,

(void **)cb.split_join_start);

}

} else if(!filter_ptr->is_in_join && filter_ptr->

is_out_split) { /* Case: single input split output */

output_data_ptr = (void *)(cb.split_join_start+

cb.split_join_size);

output_data_dptr = &output_data_ptr;

/* Start filter execution */

for(exec_idx = 0; exec_idx < fission_exec; exec_idx ++) {

(*(work_func *)filter_ptr->work_func)(input_data_dptr,

output_data_dptr, cb.scale,

(void **)cb.split_join_start);

}

/* Scattering output from split_join_start+

split_join_size to all outgoing edges */

scatter(filter_ptr, outgoing_edge_ptr,

filter_ptr->num_outgoing_edges, data_start);

} else { /* Join input, split output */

input_data_ptr = (void *)(cb.split_join_start);

input_data_dptr = &input_data_ptr;

output_data_ptr = (void *)(cb.split_join_start+

cb.split_join_size);

output_data_dptr = &output_data_ptr;

/* Gather input from all incoming edges */
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gather(filter_ptr, incoming_edge_ptr,

filter_ptr->num_incoming_edges, data_start);

/* Start filter execution */

for(exec_idx = 0; exec_idx < fission_exec; exec_idx ++) {

(*(work_func *)filter_ptr->work_func)(input_data_dptr,

output_data_dptr, cb.scale,

(void **)cb.split_join_start);

}

/* Scattering output to all outgoing edges */

scatter(filter_ptr, outgoing_edge_ptr,

filter_ptr->num_outgoing_edges, data_start);

}

} else {

for(exec_idx = 0; exec_idx < fission_exec; exec_idx ++) {

(*(work_func *)filter_ptr->work_func)(input_data_dptr,

output_data_dptr, cb.scale, (void **)cb.split_join_start);

}

}

/* Keep tracking execution pointers of each incoming edge */

incoming_edge_ptr=filter_ptr->incoming_edges_ptr;

for(j=0; j<filter_ptr->num_incoming_edges; j++) {

incoming_edge_ptr->exec_in_offset += (incoming_edge_ptr->

DMA_size+incoming_edge_ptr->peek_buf)*incoming_edge_ptr->

consumer_fission_exec;

if(incoming_edge_ptr->exec_in_offset==(incoming_edge_ptr->

DMA_size+incoming_edge_ptr->peek_buf)*incoming_edge_ptr->
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num_consumer_buffers*incoming_edge_ptr->

consumer_fission_exec) {

incoming_edge_ptr->exec_in_offset=0;

}

if(incoming_edge_ptr->peek_buf != 0){

if(incoming_edge_ptr->exec_in_offset != 0){

unsigned int dest = data_start+incoming_edge_ptr->

DMA_out_start+incoming_edge_ptr->exec_in_offset+

incoming_edge_ptr->peek_buf-4*(incoming_edge_ptr->

peek-incoming_edge_ptr->pop);

unsigned int src = (unsigned int)(*input_data_dptr);

memcpy((void*)dest, (void*)src, 4*(incoming_edge_ptr

->peek-incoming_edge_ptr->pop));

} else {

unsigned int dest = data_start+incoming_edge_ptr->

DMA_out_start+incoming_edge_ptr->peek_buf-4*(

incoming_edge_ptr->peek-incoming_edge_ptr->pop);

unsigned int total_buf_size = (incoming_edge_ptr->

DMA_size+incoming_edge_ptr->peek_buf)*

incoming_edge_ptr->num_consumer_buffers;

unsigned int src = (unsigned int)(*input_data_dptr);

memcpy ((void*)dest, (void*)src, 4*(incoming_edge_ptr

->peek-incoming_edge_ptr->pop));
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}

}

incoming_edge_ptr ++;

}

/* Keep tracing execution pointers of each outgoing edge */

outgoing_edge_ptr=filter_ptr->outgoing_edges_ptr;

for(j=0; j<filter_ptr->num_outgoing_edges; j++)

{

outgoing_edge_ptr->exec_out_offset += (outgoing_edge_ptr

->DMA_size+outgoing_edge_ptr->peek_buf)*outgoing_edge_ptr

->producer_fission_exec;

if(outgoing_edge_ptr->num_producer_buffers==0 &&

outgoing_edge_ptr->exec_out_offset==(outgoing_edge_ptr->

DMA_size+outgoing_edge_ptr->peek_buf)*outgoing_edge_ptr->

num_consumer_buffers*outgoing_edge_ptr

->producer_fission_exec){

outgoing_edge_ptr->exec_out_offset=0;

} else if(outgoing_edge_ptr->exec_out_offset==

(outgoing_edge_ptr->DMA_size+outgoing_edge_ptr->peek_buf)

*outgoing_edge_ptr->num_producer_buffers*outgoing_edge_ptr

->producer_fission_exec){

outgoing_edge_ptr->exec_out_offset=0;

}

outgoing_edge_ptr ++;

}

}

/* Move pointer to the next filter */
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filter_ptr ++;

}

mfc_write_tag_mask(1<<tag_id);

mfc_read_tag_status_all();

/* Write mbox */

spu_write_mailbox(cb.spuId);
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