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ABSTRACT  

   

Single cell analysis has become increasingly important in understanding 

disease onset, progression, treatment and prognosis, especially when applied to 

cancer where cellular responses are highly heterogeneous. Through the advent of 

single cell computerized tomography (Cell-CT), researchers and clinicians now 

have the ability to obtain high resolution three-dimensional (3D) reconstructions 

of single cells. Yet to date, no live-cell compatible version of the technology 

exists. In this thesis, a microfluidic chip with the ability to rotate live single cells 

in hydrodynamic microvortices about an axis parallel to the optical focal plane 

has been demonstrated. The chip utilizes a novel 3D microchamber design 

arranged beneath a main channel creating flow detachment into the chamber, 

producing recirculating flow conditions. Single cells are flowed through the main 

channel, held in the center of the microvortex by an optical trap, and rotated by 

the forces induced by the recirculating fluid flow. Computational fluid dynamics 

(CFD) was employed to optimize the geometry of the microchamber. Two 

methods for the fabrication of the 3D microchamber were devised: anisotropic 

etching of silicon and backside diffuser photolithography (BDPL). First, the 

optimization of the silicon etching conditions was demonstrated through design of 

experiment (DOE). In addition, a non-conventional method of soft-lithography 

was demonstrated which incorporates the use of two positive molds, one of the 

main channel and the other of the microchambers, compressed together during 

replication to produce a single ultra-thin (<200 µm) negative used for device 
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assembly. Second, methods for using thick negative photoresists such as SU-8 

with BDPL have been developed which include a new simple and effective 

method for promoting the adhesion of SU-8 to glass. An assembly method that 

bonds two individual ultra-thin (<100 µm) replications of the channel and the 

microfeatures has also been demonstrated. Finally, a pressure driven pumping 

system with nanoliter per minute flow rate regulation, sub-second response times, 

and < 3% flow variability has been designed and characterized. The fabrication 

and assembly of this device is inexpensive and utilizes simple variants of 

conventional microfluidic fabrication techniques, making it easily accessible to 

the single cell analysis community. 
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Chapter 1: Introduction 

1.1 Single cell analysis  

Single cell analysis methods are finding increasing use for studying disease 

progression, development, treatment, and prognosis because conventional 

population based measurement techniques often mask important heterogeneous 

responses inherent to the disease state. Single cellomics has become increasingly 

important, especially when investigating highly heterogeneous disease conditions 

such as cancer; however, these experiments are often difficult and are not 

compatible with current analyses (Souza, 2011).  Conventional techniques for 

investigating cellular responses lack single cell specificity because the most 

prominent methods in genomic and proteomic profiling are not sufficiently 

sensitive to measure single cells. However, genetically homogeneous cell 

populations exhibit varying degrees of phenotypic heterogeneity that are often the 

product of microenvironmental cues (Avery, 2006). This phenotypic 

heterogeneity plays a central role in cell differentiation, proliferation, stimulus 

response, and carcinogenesis (Zeng et al., 2011). In fact, the responses of 

individual cells to certain environmental stimuli such as chemotherapeutic drugs 

varies markedly within a population of cancer cells (Cohen et al., 2008). Studies 

that probe intercellular variability are therefore critical in understanding how 

differences in cell phenotype often result in a selective advantage of some cells 

over others within the same population (Losick & Desplan, 2008). Single cell 
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studies may also reveal the details behind the decision pathway of the cancer cell 

phenotype and its ability to evade programmed cell death, or death resulting from 

an external stimulus such as radiation or drug therapies. 

1.1.1 Single cell imaging 

Optical imaging modalities allow certain disease phenotypes to be characterized, 

and provide a simpler, higher throughput platform when compared to 

conventional molecular biology techniques such as RT-qPCR, gel electrophoresis, 

or mass spectrometry (Reyzer et al., 2004; Zeng et al., 2011). For instance, 

microscopic evaluation using hematoxylin and eosin stained sections is the most 

common method for determining the degree of preneoplastic progression in 

suspicious lesions (Scheme, 1996). In fact, tissue sections imaged by conventional 

brightfield microscopy and processed by nuclear morphometry classification 

algorithms have been demonstrated to correlate with the progression (Pienta & 

Coffey, 1991) and prognosis (Chapman et al., 2007) of breast cancer. Flow 

cytometry (FC) has also been used when investigating phenotypical 

characteristics of human neoplastic disease. For instance, FC was used for 

characterizing tumorigenicity in various human colorectal cancer stem cell 

subpopulations (Dalerba et al., 2007). Laser-scanning cytometry offers many of 

the same features as flow cytometry, but also allows measurements to made over 

time for studying kinetics and other time resolved processes (Darzynkiewicz, 

Bedner, Li, Gorczyca, & Melamed, 1999). 
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A key limitation in current cytometry methods is the loss of information that 

results from representing 3D objects as 2D slices or projections. Single 

perspective 2D imaging renders 3D objects incompletely, thus reducing the 

accuracy of many feature classification protocols. 3D cell imaging is most 

commonly achieved by confocal laser scanning microscopy (CLSM) in either 

one-photon (Conchello & Lichtman, 2005) or two-photon (Helmchen & Denk, 

2005) configurations. Thin optical sections (focal planes) are acquired from a 

thick specimen by removing out-of-focus light in each imaging plane, and then 

reconstructed by computer software into a 3D representation from the stack of 

images. However, in each case the resolution of the image is non-isotropic (lateral 

vs. axial resolution are unequal) as defined by the system point spread function 

(PSF). Two-photon assemblies offer an advance in isotropy over conventional 

one-photon systems, 1:1.5 vs. 1:3 lateral to axial resolution ratio, however this 

comes with an increase in hardware costs and practical limitations with most 

florescent probes. Super-resolution methods have also been developed that exceed 

the diffraction imposed resolution limit of approximately 200 nm and 600 nm in 

the lateral and axial directions respectively (Shao, Kner, Rego, & Gustafsson, 

2011). However, the use of super-resolution methods is expensive, often requires 

optimized probes, provides limited temporal resolution, and may not be live cell 

compatible (Schermelleh, Heintzmann, & Leonhardt, 2010). 

A particular method of 3D cell imaging that provides isotropic spatial resolution 

of 350 nm and the ability to rapidly image isolated individual cells by optical 
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tomography has been demonstrated (Meyer et al., 2009; Nandakumar, 

Kelbauskas, Johnson, & Meldrum, 2011). The Cell-CT microscope enables the 

reconstruction of a set of optical projection images taken at a plurality of 

perspectives about the cell. In one realization the cell is suspended in a refractive-

index matching gel, and rotated in a microcapillary while a piezoelectric-driven, 

high magnification objective lens scans through the entire cell volume at each of 

many rotation angles (Fauver et al., 2005). This method has demonstrated the 

ability to elucidate quantitative differences in cell morphology between 

esophageal cell lines containing various degrees of dysplasia (Nandakumar et al., 

2011), quantify over expressed proteins found in early stages of lung cancer 

(Miao, Reeves, Patten, & Seibel, 2012), and high sensitivity discrimination of 

normal vs. metastatic breast cancer cell phenotypes (Nandakumar et al., 2012). 

However, to date there is no live cell-compatible version of the Cell-CT: The 

index-matching transport gel the cells are suspended in is not biocompatible. The 

ability to make this technology live-cell compatible would open up opportunities 

to study intercellular dynamics. In order to produce a live cell optical projection 

tomograph, alternative techniques for rotating single cells “free” in an aqueous 

medium must be investigated. 
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1.2 Methods for single cell manipulation 

Manipulation of single cells in an aqueous growth medium has been studied 

extensively. The ability to translate single cells has been described by 

hydrodynamic (Lieu, House, & Schwartz, 2012), optical (Gosse & Croquette, 

2002; H. Zhang & Liu, 2008), dielectrophoretic (Cummings & Singh, 2003; 

Pethig, 2010), magnetic (Gosse & Croquette, 2002), and acoustic methods 

(Evander et al., 2007). While each of these methods offers the ability to produce a 

translational force on a cell, only a subset of these methods provide both trapping 

forces, where the net velocity on the cell is equal to zero, and torsional forces, 

where forces tangential to the cell boundary produce rotation about an axis 

through the cell. 

1.2.1 Existing techniques for rotating single cells 

Rotation of single cells about an axis perpendicular to the imaging plane parallel 

to the optical axis, denoted as 2D rotation, has been demonstrated by optical 

(Nieminen, Heckenberg, & Rubinsztein-dunlop, 2001; O’Neil & Padgett, 2002; 

Paterson et al., 2001), magnetic (Gosse & Croquette, 2002), dielectrophoretic 

(Voldman, 2006), and hydrodynamic (Shelby & Chiu, 2004; Shelby, Mutch, & 

Chiu, 2004) methods. These methods have demonstrated the ability to control cell 

rotation in the medium native to the cell being manipulated. However only, a 
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limited subset of these techniques has been applied for rotation about an axis 

parallel to the imaging plane and perpendicular to the optical axis, termed 3D 

rotation, which is necessary for presenting multiple perspectives of the cell for 

tomographic cell imaging. The rotation of non-adherent single cells for live cell 

tomographic imaging has been demonstrated by use of a  dielectrophoretic 

octapole cage (Le Saux et al., 2009). Other freely suspended, single cell 3D 

rotation methods proposed for applications in single cell tomography (Kreysing et 

al., 2008), have yet to be demonstrated. 

We envisioned an extension of the demonstration by Shelby et al. of a 2D 

microvortical cell rotation device to produce a system for 3D rotation of live 

single cells. To produce cell rotation about an axis parallel to the imaging plane, 

the microchamber responsible for producing the recirculating flow profiles must 

be arranged beneath the main flow channel, as opposed to the previous side-

channel configuration (see Chapter 2). As for the 2D cell rotation device, an 

optical trap is required to hold the cell at the center of the vortex. 

1.2.2 Optical tweezers for vortex stabilization 

Single beam force radiation-pressure trapping of dielectric particles has been used 

in many applications involving the micromanipulation single cells (Molloy & 

Padgett, 2002; Omori, Kobayashi, & Suzuki, 1997; Wright, Sonek, Tadir, & 

Berns, 1990). The radiation pressure forces that dominate the microscale 

environment (<1μm), also known as trapping in the Mie regime, have been 
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predicted through ray tracing and momentum calculations (Nieminen et al., 2001; 

H. Zhang & Liu, 2008). The trapping capability of single beam optical tweezers 

can be described by the scattering force and the gradient force. The scattering 

force is the result of reflection of the incident photons on a dielectric surface as 

from the mismatch in refractive indices between the particle and the media 

surrounding it. The scattering force is exerted along the direction of the laser 

beam, and is maximal when the incident angle of the beam is near normal to the 

surface of the particle as described by Equation 1.The gradient force counteracts 

the axial component of the scattering force when the particle becomes displaced 

beyond the point of focus. This is the result of refraction, or the angular change in 

the light path as it passes through a microparticle with different index of 

refraction with that of the surrounding media. This change in light path causes a 

momentum transfer to the microparticle, which experiences a net force towards 

the direction of the highest electromagnetic gradient as described by Equation 2.  
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I0 is the intensity of the incident beam, λ is the wavelength of light, m is the index 

of refraction mismatch, nm is the refractive index of the surrounding media, r is 

the radius of the dielectric sphere, E is the electric field, and c the speed of light in 

a vacuum. 
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Hence, focused optical beams with a Gaussian profile along the transverse axis, 

and a parabolic intensity profile along the optical axis, result in the highest 

electromagnetic gradient at the focal spot. The trapping forces exerted on the 

microparticle at the focal spot range from 100-2000 pN, which exceeds the forces 

produced using other microparticle trapping techniques by means of 

dielectrophoresis, hydrodynamics, magnetics and acoustics (Nilsson, Evander, 

Hammarström, & Laurell, 2009). 

1.3 Fabrication of trapezoidal microfeatures 

Fabrication techniques that produce anisotropic microfeatures for 

microelectromechanical systems have been dominated by wet etching methods 

(Wu, 1997). However, recent advances in the fabrication of 3D structures have 

utilized differential exposure of photopolymers to produce various 3D structures. 

For instance, direct writing of  a polymerizable resin by two-photon absorption 

has been used to create structures with high degrees of anisotropy (Miwa, 

Juodkazis, Kawakami, Matsuo, & Misawa, 2001). Other demonstrations of 

anisotropic photopolymer fabrication are the use of gray scale microfabrication 

(C.M. Waits, Morgan, Kastantin, & Ghodssi, 2005; Christopher M Waits, 

Modafe, & Ghodssi, 2003) and inclined photolithography (Baek & Song, 2011). 

However, these fabrication techniques do not offer the ability to produce 

anisotropic features with an undercut edge, or with an inverse trapezoidal cross-

section which prove to be beneficial in producing recirculating flow microvortical 
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microchambers. However, a particular technique, described as backside diffuser 

lithography, offered the ability to create undercut 3D features in photoresist (J.-H. 

Lee, Choi, Lee, & Yoon, 2008). In this thesis, techniques involving anisotropic 

wet etching of crystalline silicon along its crystallographic planes, and use of 

backside diffuser lithography were investigated for producing microchambers 

capable of 3D rotation of single cells. 

1.4 Summary of contributions 

This thesis research demonstrates the ability to use hydrodynamic microvortices 

for controlled rotation of single cells about an axis parallel to the imaging plane 

and perpendicular the optical axis. In Chapter 2, the use of computational fluid 

dynamics (CFD) is described as a means to investigate important geometric 

characteristics, such as sidewall angle, microchamber height and microchamber 

width, and their influences on recirculating flow profiles. In Chapter 3, two 

methods of fabrication and assembly for producing a 3D microvortical cell 

rotation are demonstrated. A novel photolithography method was implemented to 

produce high aspect ratio 3D microstructures in negative photoresist, and new 

techniques were devised for 3D microfluidic assembly by soft lithography. In 

addition, a novel, high precision, pulse-free air pressure driven pump, 

demonstrating nanoliter per minute resolution was designed and developed for 

cell delivery and controlled rotation of a single cell optically trapped in a 



10 

 

microvortex. The controlled rotation of both 15μm polystyrene beads and single 

leukemia cells in the 3D microvortex was demonstrated.  

Two fabrication and assembly techniques were developed to produce a 3D 

microvortex chip. The first utilized the anisotropic etching of silicon to produce 

positive mesa structures which were then compressed against a positive glass 

channel counterpart to form a mold. The mold was replicated to create a polymer 

negative, and the device was sealed by bonding a 170 μm microscope coverglass 

to each side. This approach was augmented with a second, superior method, 

which used backside diffuser photolithography (BDPL) to produce undercut 

inverse trapezoids in photoresist on glass to serve as the mold. The process was 

optimized for SU-8 2035, a thick negative photoresist, and required the 

development of an adhesion promotion protocol to ensure the microstructures 

remained intact during processing. The positive SU-8 mold was then used to 

create ultra-thin (<100μm) trapezoid replications with a coverglass backing, and a 

main flow channel with a coverglass backing was formed by replicating a laser 

cut poly(ethylene terephthalate) mold. Finally, the two replicated halves were 

bonded together to form the 3D microvortex chip. 

Lastly, a novel air pressure regulated pump was designed and characterized. The 

pump allowed for bidirectional flow manipulation at flow rates ranging from 100-

1500 nL/min. The absolute time average of variation in the flow rate was 2.6% 

over two minutes, and the system exhibited an average step response time of 363 
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ms. The ability to produce constant low particle velocities, and the ability to bring 

the particle to zero linear velocity in less than a second was demonstrated. 

These contributions lay the groundwork for a live cell rotation imaging chamber 

taking the form of a microscope stage-mounted chip. Together with the precision 

pump, this chip provides for cell introduction and delivery through a main flow 

channel, having below it, disposed towards a high-magnification objective lens of 

the cell imaging system, an optically-addressable trapezoidal microchamber. 

Individual cells are maneuvered from the main flow channel, through the inlet 

neck, into the trapezoidal chamber, in which a microvortex is formed by the 

peeling off of flow streamlines from the bottom surface of the main flow channel. 

Low, rotational, tangential, fluidic shear forces cause the cell to rotate, its axis 

stabilized by the optical trap, for multiperspective absorption or fluorescence 

imaging.   
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Chapter 2: Design of the optimal microvortex geometry 

2.1 Initial 2D microvortex studies 

Flow detachment and recirculating flow profiles can be produced by a variety of 

different microchannel designs; however, a configuration with a microchamber 

adjacent to a straight flow channel allows for greater versatility when optimizing 

vertical flow profiles. Lim et al. first demonstrated the ability of such a 

microfluidic configuration to produce microvortical flow in diamond shaped 

microchambers (Lim, Shelby, Kuo, & Chiu, 2003). The technique was later 

extended for controlled single cell rotation (Shelby & Chiu, 2004; Shelby et al., 

2004). To the author’s knowledge, the only three microchamber geometries 

capable of producing stable recirculating flow in the side chamber configuration 

at Reynolds numbers less than 10 are the diamond, a derivative of the diamond, 

termed “fluidic gears”, and the rectangle/square (Shen & Floryan, 1985). In an 

effort to understand which microchamber characteristics created stable 

recirculating flow for cell rotation, a series of microchamber geometries arranged 

on the side of a 100-µm-wide channel were designed and fabricated by 

conventional photolithography and soft lithography methods. Example geometries 

can be seen in Figure 1. It should be noted that while the geometries are to scale, 

the spacing between features is much greater in the actual mold design. 
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Figure 1: Examples of microchamber geometries created in a preliminary 

test chip 

To produce the mold, a mask was designed in AutoCAD (Autodesk Inc.) with 

various microfeature geometries arranged along the side of a flow channel. A 5” 

chrome-on-quartz mask (Photo sciences Inc.) was used to selectively expose a 60 

μm layer of KMPR (Microchem Corp.) on a silicon wafer. The wafer was then 

developed in MF-26A (Microchem Corp.) and baked at 120 °C to produce a 

positive hard mold of the feature studded flow channel. To act as a mold release 

agent, an anti-adhesion silane (tridecafluoro-1,1,2,2-tetrahydrooctyl 

trichlorosilane; Gelest Inc.), was deposited onto the wafer using vapor deposition. 

A 10:1 ratio mixture of poly(dimethyl siloxane) (PDMS)(Dow Corning Sylgard 

184, K.R. Anderson, Inc.) monomer and cross-linker was then poured over the 

mold and cured at 60 °C for a minimum of 3 hours before removing the PDMS 

replica from the mold. Inlet and outlet ports were punched out using a 22-gauge 

blunt stainless steel needle. Microscope cover glass (25 mm x 25 mm) and the 
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cast PDMS component were treated with air plasma for 45 seconds at 500 mTorr 

(PDC-32G, Harrick Plasma) to activate the surfaces prior to direct bonding. The 

sealed microfluidic device was then placed back into the 60 °C oven for 15 

minutes to increase the glass-PDMS bond strength. 18-gauge blunt stainless steel 

needles were inserted into the inlet and outlet ports to interface with the 

microchannel. A 1 mL syringe was connected to the inlet port for cell delivery, 

and for controlling the fluid flow rate during cell rotation. 

The full description of the optical trapping setup will be discussed detail in 

Chapter 4, but briefly a 1064 nm laser is focused through a high numerical 

aperture objective lens using a custom built non-inverted microscope. Using the 

optical tweezers, cells are then moved one at a time into a microchamber and 

stabilized within the microvortex while flow is applied, applying rotation torque 

to the cell. 

For live cell rotation studies cells from an immortalized dysplastic human 

esophageal epithelial cell line (CP-A) cultured at 37°C and 5% CO2 atmosphere 

in Keratinocyte serum-free cell growth medium (Invitrogen, Carlsbad, CA) were 

trypsinized and loaded into a syringe. Cells were then flowed into and along the 

microchannel by applying pressure to the input syringe. When a cell of interest 

approached a microfeature, flow was ceased and the cell trapped using optical 

tweezers. The cell was then brought into the microfeature and positioned at the 
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center of the microvortex. Pressure was then applied to the input syringe to create 

flow in the microchannel, initiating a microvortex and inducing cell rotation. 

2.2 Preliminary results obtained from 2D microvortex setup 

The microvortex chip described above was used to identify microchamber 

characteristics that supported recirculating flow profiles suitable for rotating 

single cells. The cells were trapped using optical tweezers and held in a 

microchamber while flow was produced in the main channel with a syringe. The 

first observation made was that microchambers with an incident angle of 90° or 

greater with respect to the channel were unable to induce cell rotation. In such 

microfeatures cells were swept away when flow was created in the microchannel, 

because the lateral forces induced by the flow were greater than the trapping force 

exerted by the optical tweezers. The circular microchambers on the other hand 

created smooth and stable rotations proportional to the velocity of fluid in the 

main channel. Because the circular microchamber designs had the smallest angle 

of incidence, approximately 30°, it was hypothesized that the incident angle 

and/or the feature circularity were critical to flow recirculation. Supporting this, 

stable rotation of a cell was seen in a heptagon shaped microchamber that nearly 

approximated a circle. Stable rotation was also demonstrated in a trapezoidal 

shaped microchamber with a back (long) edge parallel to the flow channel. The 

feature had an incident angle of approximately 56° with respect to the channel. 
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A critical requirement of the cell rotation device is that it provides interference-

free imaging on a plane parallel to the axis of rotation. In this sense, rotation in 

the trapezoidal microchamber was optimal as it is the only geometry with a flat 

back surface that can provide high-magnification optical access for such imaging. 

The other microchamber geometries that enabled stable rotation did not have back 

edges parallel to the inlet channel, thereby prohibiting interference-free cell 

imaging. Yet even with a flat back edge, the recirculating flow profile was 

arranged about an axis perpendicular to the imaging plane, causing the cell to 

rotate within the imaging plane. For multiple perspective imaging, the cell must 

rotate through the imaging plane to produce optical sections that are non-

redundant. As such, a new design was required to create a recirculating flow 

about an axis parallel to the focal plane. The use of hydrodynamic vortices for 

rotating a microparticle or a live cell through the imaging plane was not 

demonstrated in these preliminary experiments. 

2.3 3D microvortex design features 

As suggested by the 2D cell rotation study, certain geometrical characteristics 

were critical for stable rotation of single cells in a microvortex. The 2D 

microvortex method provided a method for cell rotation in the imaging plane, 

which served as an effective proof of concept, but was useless for tomography 

because the long edge of the trapezoid was not accessible by a high-magnification 

microscope objective. A 3D microvortex was designed to produce recirculating 
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flows that go through the imaging plane. The critical microfeature parameters that 

were explored when designing the 3D microvortex chip were the feature inlet 

width (Wi), feature height (Hf), and incident angle (φ) as seen in Figure 2. 

 

Figure 2: Critical features parameters investigated through modeling 

Fluid profiles within side chamber microfeatures were modeled with CFD, to 

probe the relationship between recirculating flow and microchamber parameters. 

Models were created using COMSOL Multiphysics v4.2a (COMSOL Inc.), a 

Finite Element Modeling (FEM) software capable of solving fluid and mass 

transfer conservation equations. 

2.3.1 Recirculating flow profiles in various geometries 

Fluid flow in microfluidics is usually in the laminar flow regime due to the 

magnitude of the effective hydraulic diameter. This often results in cases where 

inertial effects are negligible compared to the viscous effects (Re<<1), especially 
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in cases where fluid velocities are low. Under these conditions, the momentum 

conservation equation (Equation 3) for Newtonian fluids of constant density and 

viscosity can be simplified to the Stokes equation (Equation 4) (White, 2006). 
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t




     
              

Equation 3 

 p u  
                       

Equation 4 

To solve for the velocity field in the microchannel, the flow was assumed to be 

steady state, incompressible, and laminar. The models made use of the 

conservation equations for mass and momentum with a defined set of boundary 

conditions to solve for the velocity field and the pressure across the computational 

domain. The characteristic geometry included a 100 μm tall channel and various 

sub-channel microfeature designs defined by the parameters defined in Figure 2. 

The average inlet velocity was defined as 20 μm/s with a parabolic profile and a 

maximum velocity of 30 μm /s. The outlet condition was defined as having zero 

pressure and no viscous stresses. The channel top and bottom, along with the 

boundaries created by the microfeatures, were defined as no-slip walls. Initially, 

the inlet width and feature height were set to 50 µm and the incident angle was 

varied from 30°-90°. The results are illustrated as a 2D surface plot of fluid 

velocity magnitude and an arrow plot of the normalized velocity field (an 

indication of flow direction) in Figure 3. The amount of flow detached from the 

main channel was directly related to the indent angle of the microchamber 
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(“sidewall angle”). As the angle of incidence increased, the amount of flow 

contributing to the microvortex decreased. Furthermore, apparent differences in 

flow circularity were seen across the three geometries.  The location of the 

microvortex center, measured with respect to its displacement from the 

microchamber inlet, and plotted against various geometric configurations, is 

shown in Figure 4. The incident angles investigated were 30°, 60° and 90° while 

the microfeature inlet width (WI) and feature height (Hf) varied from 50 μm to 

100 μm. In the graph, the ratio between the WI and Hf is used to represent the 

geometric information more effectively. 

 

Figure 3: Fluid velocity magnitude and velocity field within microchambers 

with side wall characteristics. (a-c) 30°, 60°, and 90° incident angles: color 

scale range 0.0-1.5 μm/s 
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Figure 4: Displacement of the microvortex center from the microchamber 

inlet 

2.3.2 Steady state analysis of a sphere in a microvortex  

The initial models demonstrated the ability to create recirculating flows profiles in 

various microchamber geometries. However, incorporation of a cell-sized circular 

boundary centered on the microvortex provides a better approximation of the 

actual flow conditions produced when a cell is rotating in a microvortex. The new 

boundary produces modified fluid streamlines governed by the boundary 

condition equations. A no-slip boundary condition is typically used to model non-

deformable, immobilized structural interfaces. In this assumption, the fluid 

velocity at the boundary is assumed to be zero and the boundary shear stress is 

proportional to the velocity gradient. A generalized model of a rotating outer 

boundary, similar to that of bulk fluid recirculation which produces rotating 
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velocity fields on the inner concentric boundary, is depicted in Figure 5. This 

model was used to represent a cell rotating due to forces exerted by rotating 

velocity fields. The initial conditions state that an outer boundary, r2 will be set 

into motion at a constant rotational frequency ω0 while the velocity field 

elsewhere is zero. Thereafter, the rotation of the outer boundary causes fluidic 

shear at r2, initiating the rotation of the fluid between r1 and r2. Because the 

Reynolds number is so low, the inertial components can be neglected. The viscous 

shear forces set up a velocity gradient along the r-direction. The solid body 

surface interacts with the rotating fluid at the boundary of r1 resulting in a 

tangential viscous force that initiates the rotation of the solid body. At steady state 

the rotational frequency, ω1, of the solid body at r1 approaches the rotational 

frequency ω0 (=ω2). 
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Figure 5: Description of a model of a rotating velocity field inducing rotation 

of a solid body. The model demonstrates that the steady state angular 

frequency of the rotating fluid is equal to that of the rotating solid body. 

The flow profile within the annulus of two cylinders with radii r1 and r2 at 

constant rotational velocities of ω1 and ω2 can be solved for using the cylindrical 

version of the Navier-Stokes equation (Munson, 1971). Assuming there is no fluid 

velocity in both r and z and that flow is symmetric about the rotation axis, the 

resulting continuity equation can be seen in Equation 5 and its solution after 

applying the boundary conditions in Equation 6. 
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Equation 6 

When examining this solution, the difference between ω1 and ω2 is seen to be 

proportional to the fluid velocity gradient along r. When the rotational velocities 

are equal, such as in the steady state condition, the rotational field becomes a 

linear function of the angular velocity and the r-position. This example can be 

applied to the case of a rotating microparticle at the center of a recirculating flow 

profile by assuming the steady state rotational velocity of the cell and the flow 

surrounding it are equal. However, this case was true only for circular 

microvortices where velocity gradient is radially symmetric, whereas the 

microchambers investigated formed oblique-shaped (non-circular) microvortices.  

The analytical calculation for an arbitrary flow profile required the use of CFD. 

We utilized a slip boundary wherein the viscous stresses tangential to the 

boundary are zero, and the velocity normal to the boundary is zero (no flow 

across the boundary), to first calculate the tangential velocity imposed on a cell in 

a microvortex. This essentially prevented fluid from entering the boundary of the 

cell, but did not prohibit a tangential velocity component on the surface. The 

tangential velocity magnitude was integrated into a moving wall boundary 

condition, and then resolved. It was seen that no distinct difference in velocity 
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field existed between the conditions, indicating that the use of the slip condition 

approximates the characteristics of a moving spherical boundary in a recirculating 

flow. While the slip boundary is not a prediction of the physical conditions 

present in the fluidic system, it can be used to predict the tangential velocity 

component on a surface, which can then be incorporated into a model that uses 

conditions, such as rotating walls, to better approximate the actual physical 

conditions. 

Using COMSOL, models of a sphere with a radius of 7.5 μm with a slip boundary 

condition were placed at the vortex center. All other model conditions remained 

identical to those in previous studies. The results demonstrating the slip velocity 

condition for a microchamber with a 60° incident angle can be seen in Figure 6. 

The average velocity about the boundary of the sphere was 2.65 x 10
-7

 m/s. 
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Figure 6: Velocity profile around a 7.5 um sphere arranged at the center of 

the vortex 

To verify the validity of the slip boundary assumption, a moving wall boundary 

condition with a prescribed tangential velocity equal to the average velocity 

(22.65 x 10
-8

 m/s) found using the slip condition was then imposed on a 

subsequent model. The resulting flow profile was nearly identical to the model 

that used the slip boundary condition. This demonstrated that the recirculating 

tangential flow velocity around the boundary of the sphere was approximately the 

same as the rotational velocity of the sphere as suggested by the model proposed 

(Figure 5).  
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2.3.3 Effect of microchamber characteristics on rotational velocity and 

maximum shear rate 

The effects of sidewall angle of incidence on the rotational velocity and the 

maximum shear rate of the sphere were investigated using the conditions 

described in the previous model. The rotational velocity of the sphere was 

calculated simply by taking the sphere’s average tangential velocity and dividing 

it by the radius of the sphere. The shear rate is the gradient of the velocity vector 

and is calculated according to Equation 7. The shear rate over the cell surface 

was then plotted and the maximum value recorded. The maximum shear rate 

gives an indication of the stability of the microvortex, as a high velocity gradient 

near the microparticle would destabilize it, causing motion away from the vortex 

center. If the microparticle moves slightly away from the vortex center, the 

sudden increase in velocity may eject it from the recirculating flow. This 

instability was noted in previous demonstrations  of microvortical particle rotation  

(Shelby et al., 2004) and was also seen in our 2D vortex studies (Chapter 2.2). 
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Equation 7 

The results as seen in Figure 7 indicate a strong relationship between the aspect 

ratio of the microchamber (represented by Λ) and the rotation rate of the sphere. 

Also notable is that at Λ =1.5, the rotation rate is almost the same, regardless of 

the incident angle. In addition, there seems to be a strong relationship between the 
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aspect ratio and the shear rate, where the highest shear rates occur when Λ=1. 

Changes in the incident angle cause very little change in the shear rate when Λ=1. 

With Λ=2, however, the difference in incident angle changes the shear rate 

substantially.

 

Figure 7: Rotational velocity and maximum shear rate for microchambers 

with various incident angles and aspect ratios 
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2.3.4 Discussion of modeling results 

COMSOL Multiphysics was used to perform computational fluid dynamics to 

determine the critical dimensions for producing stable recirculating flow profiles. 

The initial models analyzed the steady state flow profiles in various trapezoidal 

shaped microfeatures. It was seen that the features with lower incident angles 

peeled off a greater portion of flow from the main channel, creating stronger 

microvortices. Greater displacement of the vortex center with respect to the 

channel inlet is favorable, as the cell is less susceptible to the high velocity 

streams near the channel inlet. Additionally, in a 3D vortex system, the distance 

between the cell and the imaging objective would be reduced at smaller sidewall 

angles, which is optimal when using objective lenses with limited working 

distances. Having a cell closer to the long side of the trapezoid also prevents 

clipping of high angle light rays of the optical tweezers by the back corners of the 

microchamber at the channel inlet. Conversely, if a bottom facing objective were 

used for optical trapping, beam clipping problems would occur if the vortex 

center were too deep in the microchamber (discussed in Chapter 4). However, the 

position of the vortex center when Λ=2 is highly controlled by the incident angle, 

which could be utilized to tune its position if an optical limitation arises.  

To study flow characteristics at the boundary of the sphere, a steady state 

approximation of fluid interactions with a spherical boundary was used. Once 

again, the results of modeling with Λ=2 shows that the incident angle controls the 
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shear rate. The farther the vortex is from the main flow in the channel, the lower 

the shear rate exerted on the cell. In any case, the rotational rate at Λ=2 is nearly 

identical for all incident angles. In conclusion, the microchamber geometry that 

produced the lowest shear rate with a high rotation rate is that with a feature 

height of 100 µm, an inlet width of 50 µm and a sidewall angle of 30° incident to 

the flow channel. 
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Chapter 3: Fabrication and assembly 

The results from the 2D microvortex experiments and the CFD modeling show 

that trapezoidal features are appealing for 3D microvortical cell rotation. 

Trapezoidal features provide a sharp inlet corner that effectively peels off fluidic 

streamlines from the main flow channel into the microfeature, inducing 

recirculating flow profiles. In addition, trapezoids provide an optically flat edge 

for distortion-free optical access for high magnification imaging. However, 

directly microfabricating undercut features is uncommon and typically avoided 

when using conventional microfabrication techniques. As an example, advances 

in high-resolution fabrication methods common to the semiconductor industry 

often focus on creating high aspect ratio features with 90° sidewalls. 

3.1 Microfeature and channel mask design 

The results from the preliminary experiments indicated that cell rotation can be 

produced with a variety of microchamber geometries. To use the microfabrication 

methods described in the following sections, a new mask design that allowed for 

the fabrication of various geometries, including undercut geometries, was 

required. Since 3D microfeatures, features not confined to the x-y plane, were 

now being fabricated, the mask features dictated the inlet width and the length of 

the microchamber. The length was set to 2.54 mm in the main design and the 

feature inlet size ranged from 20 μm to 150 μm. A set of alignment marks were 

included to aid in device assembly. In a second design, the features were designed 



31 

 

to incorporate optical fibers for trapping, and required larger dimensions. In this 

design the feature length was 32 mm and the widths varied from 50 μm to 260 

μm. Finally, a mask was designed for the main flow channel. The footprint was 

designed to fit a standard 25 mm x 75 mm microscope slide format; therefore the 

length of the channel was set to 70 mm. The main flow channel also incorporated 

two different expansions. The first is the observation portion of the channel 

(width of 3 mm), which places the microfeatures within the channel when 

properly aligned. The second expansion was incorporated for cell extraction 

following rotation. The mask designs for the microfeatures and for the main flow 

channel can be seen in Figure 8. 

 

Figure 8: Mask designs (left) main microfeature mask (middle) microfeature 

mask for optical fiber integration (right) main flow channel mask 

3.2 Anisotropic etching of silicon 

Production of anisotropic structures is most commonly achieved by wet etching of 

crystalline silicon in an alkaline solution. When conditions are properly 
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controlled, this fabrication technique can reliably produce structures with 

trapezoidal cross sections. The angles are formed because the etching process 

terminates at the crystallographic planes (<110>, <100>, etc. planes) of crystalline 

silicon, producing angles equivalent to the various plane orientations. The features 

produced directly by this method are obtuse with respect to the substrate plane 

(Figure 9, steps 8 and 9). The etching process requires temperature, concentration, 

and agitation to be optimized in order to minimize processing time and maximize 

device functionality (feature perfection). All of the following fabrication steps 

were conducted in a class-100 cleanroom at the ASU Center for Solid State 

Electronics Research (CSSER). Figure 9 depicts the overall fabrication process 

for the fabrication of silicon anisotropic mesas that was utilized in this research 

(acronyms are explained in the following paragraph).  
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Figure 9: Process flow for anisotropic etching of silicon  

Four-inch positive (p)-type silicon wafers with a <100> crystal orientation were 

cleaned with the standard three-step RCA cleaning protocol common in 

semiconductor manufacturing. First, organic contaminants were removed by 

immersing the silicon wafers in a solution of de-ionized (DI) water, ammonium 

hydroxide, and hydrogen peroxide at a 5:1:1 ratio heated to 75°C for 15 minutes, 

and then rinsed in a DI water bath. Next, the oxide layer formed in the previous 

step was removed by immersing the wafers in a 20:1 solution of water and 

hydrofluoric acid at room temperature for one minute, followed by washing in a 

DI water bath. The wafers were then immersed into a 75°C solution of DI water, 

hydrochloric acid, and hydrogen peroxide at a ratio of 6:1:1 for 15 minutes to 

remove metallic contaminants. Finally, the wafers were soaked in a DI water bath 
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2. RCA cleaning 

3. 2000 Å silicon nitride deposited 

4. 1 μm of AZ3312 positive PR 

5. Masked UV exposure & development 

6. Exposed silicon nitride RIE etch 
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8. KOH wet etching 

9. RIE etch of remaining silicon nitride 
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for five minutes, dried with N2 gas, and baked at 100°C for 30 minutes. To act as 

a mask for the wet etching procedure, a 2000 Å silicon nitride (Si3N4) layer was 

deposited using plasma-enhanced chemical vapor deposition (Oxford Plasma Lab 

100 PECVD). Following that, 1 µm coating of AZ 3312 positive photoresist 

(“PR” in Figure 9; AZ Electronic Materials USA Corp.) was spun onto the wafers 

with a precision spin coater (Specialty Coating Systems, P-6708) at 3500 RPM 

for 30 seconds. The photoresist was then soft-baked at 90 °C for 60 seconds. The 

wafers were then exposed to 45-50 mJ/cm
2
 (6-8 seconds, OAI 808 Aligner) 

through a transparency mask (Figure 8) (Fine Line Imaging), developed in AZ 

300MIF (AZ Electronic Materials USA Corp.) for 3 minutes, and hard baked at 

110 °C for 60 seconds. Subsequently, the exposed nitride mask was removed by 

Reactive Ion Etching (RIE) (Plasmalab M80 Plus RIE) in an environment of 

CHF3 and O2 gases (using the parameters shown in Table 1). 

Table 1 : Silicon Nitride RIE recipe 

Process Characteristic Values 

Pressure 50 [mTorr] 

Power 150 [Watts] 

CHF3 gas flow rate 50 [sccm] 

O2 gas flow rate 5 [sccm] 

Time 17 [minutes] 

The remaining photoresist was stripped by immersing the wafers in a 100 °C 

solution of Microstrip 2001 (FujiFilm USA) for 5 minutes, and then rinsed 
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thoroughly with DI water and dried with N2 gas. The wafers that were used in the 

design of experiment procedures described in the following section were diced 

into 20 individual 13 mm x 20 mm test chips using a diamond saw (Micro 

Automation M-1006A). The masked silicon wafer was then etched with 

potassium hydroxide (KOH), as described in the following sections.  

3.2.1 Design of experiment response variables, factors, and levels 

The chemical etching of the masked silicon was the most critical processing step, 

as large defects such as pocketing and chipping can occur with incorrect etching 

conditions. Also, the etch time can vary from several minutes to several hours for 

a process that has not been optimized. To improve this chemical etching process a 

three factor full factorial design of experiment (DOE) was conducted. In order to 

quantify the optimum etch conditions, two response variables were investigated: 

surface roughness and etch rate. The surface roughness should be minimized to 

avoid unwanted defects in the microfeatures, and to create a smooth surface that 

will later be used as a mold. Etch rate, on the other hand, should be maximized to 

reduce processing and fabrication times. The factors controlled in the experiment 

were KOH concentration, etchant temperature, and agitation method, where the 

concentration and temperature are quantitative factors and the agitation method is 

a qualitative factor. There are numerous reports that demonstrate the effects of 

KOH concentration and temperature on etch rate and surface quality (Palik, 

Glembocki, Heard, Burno, & Tenerz, 1991; Sat et al., 1998; Shikida, Sato, 



36 

 

Tokoro, & Uchikawa, 2000), while only a few have reported on how agitation 

affects these characteristics (Park et al., 2008; Yang, Chen, Chiou, & Lee, 2005). 

To optimize the etching conditions, a completely randomized, full-factorial design 

was used to extract maximal information from the experiment. The levels chosen 

for KOH concentration were 20, 30, and 40% by weight (in water). These values 

were selected for two main reasons. First, the stock concentration of the KOH was 

49% by weight, limiting the use of higher concentrations;  and second, lower 

concentrations were not selected because low etch rates would have been difficult 

to quantify with a contact profilometry instrument, as the measurement resolution 

decreases drastically when features approach sub-micron geometries. The 

temperature levels chosen were 25, 45, and 65 °C. A temperature above 65 °C 

was not desirable since etching conditions become more hazardous as 

temperatures approach the boiling point of the KOH solution. Temperatures 

below room temperature were not appropriate for this experiment, as the etch rate 

is too slow to be practical. Ultrasonic agitation and magnetic stirring were 

investigated as agitation methods.  

Other factors held constant in the experiment include crystalline orientation and 

type of the silicon wafers (<100>, 4” p-type), pre-processing materials and 

processes (batch of photoresist, recipes for photolithography and RIE), 60-minute 

etch time, and the instruments used for processing and measuring. In addition, 

center points were included in the experimental design to verify if a curve-linear 

relationship between the chosen factors is present, and to distinguish run-to-run 
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variations. The factors, levels, and center points are presented in the 3D graph of 

Figure 10. 

 

Figure 10: Design of experiment space for silicon etch process 

3.2.2 KOH etching experimental setup 

Two different experimental setups for conducting the KOH etching experiments 

were used: The first utilized a hotplate with a magnetic stirrer, while the second 

employed a heated ultrasonic bath as shown in Figure 11. The hotplate 

configuration used a water bath to raise the temperature of a small beaker filled 

with KOH solution and containing a magnetic stir bar. The etching solution was 

heated for 20 minutes prior to adding the silicon chip in order to ensure the 

etchant solution was at the same temperature as the water bath, as measured by a 

thermometer. After preheating, a small Teflon chip holder containing the silicon 
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chip was placed in the beaker. For optimal mixing, the holder was arranged with 

the silicon chips suspended above the magnetic stir bar. All chips were exposed to 

the etchant for 60 minutes. Immediately after etching, the Teflon holder and 

silicon chips were placed in a bath of 70% isopropanol and stirred for 5 minutes 

to terminate the etching reaction, then washed with DI water. 

 

Figure 11: KOH etching experimental setup. Left panel: Hotplate, with 

magnetic stirring. Right panel: Heated ultrasonic bath. 

The ultrasonic bath configuration was nearly identical to the hot plate setup, but 

the bath had a built-in heater and temperature probe to control the temperature. In 

addition, the Teflon holder was not necessary, as the ultrasound agitation is nearly 

isotropic, so the chips were placed mask side up in the bottom of a small beaker 

containing the preheated etchant.  
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3.2.3 KOH etching response measurement 

Etch rate and surface roughness were measured by a Dektak 150 Stylus Profiler 

(Veeco Instruments Inc.). Prior to etching, samples from each wafer were profiled 

to get baseline values. A 2D profile of a 100-µm-wide silicon nitride feature was 

measured to get the initial mask height, for use in the calculation of etch rate. This 

profiling process was then repeated at the same location on each of the etched 

samples. An example profile can be seen in Figure 12 where the x- and y-axis are 

in units of micrometers. The profile seen is a profile of the silicon nitride mask 

prior to the etching process. 

 

Figure 12: Example stylus profilometry measurement results (x- and y-axis 

in units of micrometers) 
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The depth of the feature was obtained by measuring the difference between the 

baseline mask height, and the peak height of the microfeature after etching. The 

etch rate calculation is given by Equation 8 

t

zz

dt

dz 0max 
            Equation 8 

where zmax is the peak of the microfeature, z0 is the initial mask height 

measurement, and t is time of the etch (60 minutes). The surface roughness 

measurement was obtained by measuring the fluctuation in the surface height 

across the surface adjacent to the microfeature edge. The surface roughness is 

calculated by the instrument and is the arithmetic average deviation from the 

mean line within the assessment length. The expression for surface roughness is 

defined by the American National Standards Institute’s B46.1 specification 

according to Equation 9 
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            Equation 9 

where L is the assessment length, z is the difference in height deviation from the 

mean line, and x is the position along the length of the profile. Etch rate 

determination and surface roughness calculations were compared among 

processes at various points in the DOE space to determine the optimal processing 

characteristics. 
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3.3 Silicon sandwich assembly 

In order to create a trapezoidal side chamber, a negative polymer casting method 

was investigated. Because of the intrinsic limitations of this anisotropic etching 

process, the angle formed between the trapezoid and the substrate of the wafer is 

inherently obtuse. As a result, as shown in Figure 13, conventional direct 

replication techniques cannot be used, as the microfeature requires an acute edge 

with respect to the flow channel to produce a stable recirculating flow within the 

microfeature. To resolve this limitation, a modified replication and assembly 

procedure, dubbed the “silicon sandwich assembly,” was developed so that an 

acute (undercut) microfeature edge could be formed.  

 

Figure 13: Unsuitability of direct replication for silicon trapezoidal 

microfeatures 

The silicon sandwich assembly method requires two microfabricated wafers to be 

compressed together forming a two-part mold. One half of the mold is a silicon 

wafer containing anisotropically etched microfeatures with oblique sidewalls, 

while the other half is a 500-µm-thick borosilicate glass wafer (Borofloat 33) 

containing a positive feature in the shape of a channel. The positive microchannel 
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is created by cutting the main flow geometry seen in Figure 8 (right panel) out of 

a piece of high tack semiconductor dicing tape (Semiconductor Equipment) with a 

CO2 laser system (Universal Laser Systems XL-9200) and adhering it to the 

silicon dioxide wafer. The dicing tape acts as a mask for a wet etch process, in 

which the entire wafer aside from the channel mask will be etched away. The 

wafer is isotropically etched in a 49% hydrofluoric acid solution for 10 minutes, 

yielding a channel thickness of approximately 100 μm.  

The two halves of the mold are then coated with a monolayer of PDMS by a 

surface modification protocol described previously (M. J. Lee et al., 2006). 

Through this anti-adhesion protocol, unconventional materials can be used for the 

soft lithographic replication. Specifically, photocurable adhesives can be used to 

efficiently create durable prototypes, advantageous due to their increased 

mechanical strength and shorter cure times. The surface passivation protocol and 

chemistry are shown in Figure 14. First, the silicon mold is dehydrated at 160 °C 

for 30 minutes to remove any moisture on the wafer surface. The silicon surface is 

then oxidized under air plasma at 500 mTorr for 45 seconds and then immersed 

for 30 minutes in a 60 °C bath of amine-terminated silane (3-(aminopropyl 

triethoxysilane) (APTES) (Gelest Inc.) at 0.5% by weight in methanol. The 

concentration of 0.5% APTES was selected because the maximum concentration 

that allows monolayer coverage without physisorption is 0.4% in an anhydrous 

solution (Uvdal, Erlandsson, & Elwing, 1991); however the solvent used in this 

method was not dehydrated prior to use for reasons of practicality. Therefore the 
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marginal concentration increase was chosen in order to compensate for the 

condensation reactions that could occur between the APTES and the residual 

water in the methanol solution. The concentration adjustment was an 

approximation and its effects were not characterized experimentally. Following 

APTES deposition, the silicon mold is baked at 160 °C for 20 minutes to promote 

siloxane polymerization (Kim, Seidler, Wan, & Fill, 2009). The aminosilane-

grafted mold is then reacted with a monoglycidyl ether terminated PDMS (MET-

PDMS) (Gelest Inc.) for 4 hours at 80°C, causing an epoxy-amine conjugation. 

Following conjugation, the wafer is washed in isopropyl alcohol (IPA) three times 

and dried with N2 gas to remove any unbound silane. 

 

Figure 14: Mold release surface modification process 
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After the mold components have been modified to prevent the adhesion of the 

photocurable polymer, the two surface-modified mold components are roughly 

aligned and held together with fold over clips to create a space 150 μm thick 

where the two surfaces of the positive molds are not in contact as shown in 

Figure 15. 

 

 

Figure 15: Fabrication and assembly process flow for the “silicon sandwich” 

method 

A urethane-based UV-curable polymer (Norlands Adhesive 81), generally used as 

an optical adhesive, was used as a soft lithography material. The adhesive was 

wicked between the two mold halves by capillary action and exposed to UV light 
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for 1 minute. The silicon mold was then carefully removed to expose the surface 

containing the back face of the trapezoid. A 50 mm x 75 mm x 0.170 mm 

microscope cover glass (Ted Pella Inc.) that had been oxidized in air plasma (500 

mTorr, 45 seconds) was then bonded to the polymer surface by means of direct 

bonding. The bond strength was increased by placing the mold assembly into a 60 

°C oven for 5 minutes. Following this, the silicon dioxide mold was carefully 

removed from the polymer-glass assembly, exposing the top surface of the 

microchannel. A 0.5 mm thick borosilicate glass wafer was diced to 50 mm x 75 

mm x 0.5 mm with a diamond bit saw. Two 350 μm diameter circles were then 

cut out with a high-powered 355 nm laser (Coherent AVIA). Finally, the 

machined glass was oxidized in air plasma (500 mTorr, 45 seconds), aligned over 

the extent of the microchannel, and bonded to the polymer surface by direct 

bonding. A schematic of the assembly process is shown in Figure 15. Again, the 

entire assembly was placed into a 60 °C oven for 30 minutes to ensure proper 

bonding. Fluidic connections (Upchurch Scientific, N333 Nanoport) were adhered 

over the inlet and outlet ports to allow for cell delivery. 

3.4 Backside diffuser photolithography 

An innovative alternative method to fabricate trapezoidal microfeatures is 

backside diffuser photolithography (BDPL). BDPL incorporates traditional 

backside photolithography with a novel integration of an optical diffuser. This 

method allows various polymeric 3D microfeatures to be created with trapezoidal 
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and elliptical cross sectional geometries (J.-H. Lee et al., 2008). Feature 

characteristics such as sidewall angle are controllable, unlike in anisotropic 

etching of silicon, in which case angles are constrained to the crystal lattice plane 

orientations in the material. With backside exposure, undercut features can be 

easily made, permitting the use of direct replication techniques. 

To fabricate the backside mask, the BDPL process began by vapor depositing 100 

nm of chromium onto a RCA cleaned (process described in 3.1) 4” borosilicate 

glass wafer (CHA E-beam Evaporator). A 1 μm thick layer of AZ 3312 positive 

photoresist (AZ Electronic Materials USA Corp.) was spun onto the wafer at 3500 

rpm for 30 seconds using a precision spin coater. The wafer was then soft baked 

on a hot plate for 1 minute at 100 °C and exposed to 45-50 mJ/cm
2
 (6-8 sec) 

through a transparency mask (Figure 8). The patterned photoresist layer was then 

developed in AZ 300MIF developer and baked at 110 °C for 1 minute to 

evaporate off residual solvent. The patterned photoresist wafer was then 

immersed for 60 seconds in a chrome etchant solution (Transcene Inc.) containing 

a mixture of 6% nitric acid and 16% ceric ammonium nitrate in water. The wafer 

was then immersed in a bath of DI water for 5 minutes and dried with nitrogen 

gas. By this process, the chrome that was not masked by photoresist was removed, 

resulting in a glass mask having an embedded chrome pattern required for 

backside photolithography. Finally, the AZ 3312 photoresist was removed by 

immersing the wafer in a 100 °C solution of Microstrip 2001 for 5 minutes. 
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After the embedded chrome mask was patterned onto the wafer, an adhesion 

promoting silanization procedure was performed. First, the wafer was dehydrated 

at 160 °C for 30 minutes to remove any moisture on the wafer surface. The wafer 

surface was then oxidized in air plasma, and immersed for 30 minutes in a 60 °C 

bath containing  3-(aminopropyl triethoxysilane) (APTES) at 1 percent by weight 

in methanol. The wafer was cured for 20 minutes at 160 °C. A 5 μm layer of SU-8 

2005 was then spun onto the wafer using a precision spin coater at 6000 RPM. 

Following spin coating, the wafer was baked for 1 minute at 65°C and 2 minutes 

at 95°C on a hotplate, and then exposed to 135 mJ/cm
2
 (14 seconds). The wafer 

was then hard baked at 95°C for 30 minutes.  Thereafter, a 50 μm layer of SU-8 

2035 (Microchem Corp.) was spun at onto the wafer using a precision spin coater 

at 2000 RPM. The wafer then was soft baked according to the recipe described in 

Table 2.  

Table 2: SU-8 soft bake recipe 

Thermal Cycling 

Stage 
Temperature (°C) Time (minutes) 

1 Ramp from 20 °C to 65 

°C 
Approximately 5 min 

2 Hold at 65 °C 30 min 

3 Ramp from 65 °C to 95 

°C 
Approximately 5 min 

4 Hold at 95 °C 3 minutes 

5 
Cool at 20 °C (remove 

from hotplate) 
5 minutes 
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After the wafer cooled to room temperature, it was positioned photoresist side 

down on top of a plain glass wafer. The assembly was then placed onto the wafer 

chuck of the exposure tool so that the backside of the chrome patterned wafer 

faced towards the UV lamp as seen in Figure 16. Approximately 250 µL of water 

was then deposited on the backside of the wafer as an index matching liquid 

(IML; green in Figure 16) to optically couple the wafer to the diffuser. The wafer 

and a 5” square opal diffuser (NT02-149, Edmund Optics Co) were brought into 

contact, spreading the water across the entire wafer. Finally, an i-line long pass 

filter was placed on top of the diffuser to provide optimal photoresist exposure 

(PL-360LP, Omega Optical). 

 

Figure 16: Backside diffuser photolithography exposure assembly 

The wafer is exposed to 575 mJ/cm
2
 (60 seconds), removed from the assembly, 

and post- exposure baked according to the recipe described in Table 3. The longer 

dosage at 65 °C helps to reduce stresses introduced by evaporating off the solvent 
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at higher temperatures. The longer dose at both high and low temperature stages 

also serve to reduce the total solvent content, helping to crosslink the exposed 

photoresist to the substrate. Following the baking process, the photoresist is 

developed for 15 minutes in SU-8 developer (1-Methoxy-2-propanol acetate, 

Microchem Corp), washed with isopropanol, and dried with N2 gas. Finally, the 

wafer is hard baked at 160 °C to remove any residual solvent from the photoresist. 

Table 3: SU-8 post exposure bake recipe 

Thermal Cycling 

Stage 
Temperature (°C) Time (minutes) 

1 Ramp from 20 °C to 65 

°C 
Approximately 5 min 

2 Hold at 65 °C 60 min 

3 Ramp from 65 °C to 95 

°C 
Approximately 5 min 

4 Hold at 95 °C 6 minutes 

5 
Hold at 20 °C (remove 

from hotplate) 
5 minutes 

3.5 Stacked multi-layer assembly 

The product of BDPL is an array of positive SU-8 microfeatures that can directly 

act as a mold for a soft lithography process. To ease mold delamination, the 

surface was treated with an anti-adhesion silane. The mold surface was first 

oxidized in air plasma for 45 seconds at 500 mTorr. After surface oxidation, 

tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane was deposited onto the wafer 
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surface by vapor deposition. Then a 10:1 ratio of PDMS-to-crosslinker mixture 

was poured over the mold and placed into a desiccation chamber under vacuum 

for 30 minutes to release any bubbles cavitated in the trapezoid microfeatures. A 

75 mm x 50 mm piece of 170 µm-thick microscope cover glass (Ted Pella Inc.) 

was oxidized in air plasma (500 mTorr, 45 seconds) and placed on top of the 

PDMS. A 500 g weight was then set on top of the glass to displace any excess 

PDMS from beneath the glass. After the excess was extruded, the total thickness 

of the PDMS layer was reduced to match the thickness of the mold. The PDMS-

glass assembly was then cured at 60 °C for a minimum of 3 hours before 

removing the polymer replica from the mold. 

A similar replication procedure was applied to mold a microchannel that 

constitutes the top half of the microfluidic device. In contrast to the trapezoidal 

microchambers, the characteristic features of the microchannel do not depend on 

specific sidewall angles or sharp feature edges. Since micron-scale resolution is 

not required, the microchannel mold can be fabricated by simpler techniques. A 

method similar to that described by Luo et al. was used to fabricate flexible 

channel molds with 75 µm resolution and turnaround times of just a few hours 

(Luo et al., 2007). First, a positive mold was fabricated by laser cutting 100-µm-

thick pieces of an adhesive film (2 mil Melinex with adhesive on 2 sides, Fralock 

Materials) into the shape of the microchannel. These pieces were adhered to a 

250-µm-thick polyester film (10 mil Melinex, Fralock Materials). A 10:1 ratio of 

PDMS to crosslinker mixture was then poured over the positive feature. Again, a 
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75 mm x 50 mm piece of 170-µm-thick microscope cover glass treated in air 

plasma was placed on top of the PDMS and loaded with a 500 g weight prior to 

curing at 60°C. After removing the PDMS-glass component from the mold, inlet 

and outlet ports were laser cut (Coherent AVIA) at the ends of the channel by the 

process described in Chapter 3.2. 

After forming the two device halves —the trapezoidal PDMS replication and the 

PDMS-cover glass channel— the device was assembled by direct bonding. Both 

PDMS surfaces were oxidized in air plasma (500 mTorr, 45 seconds) forming 

siloxy groups on the surface. These siloxy groups react readily with each other 

when close contact is achieved, forming a strong bond between the two 

components. While still separate, the two halves are aligned so that the lateral 

channel covers the extent of the microfeatures, and then they are brought into 

contact. Immediately following adhesion, the device is annealed at 60°C for 20 

minutes. Finally fluidic ports are attached at the channel inlet and outlet. The 

multilayer assembly process is depicted in Figure 17. 
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Figure 17: Stacked multilayer assembly process 

3.6 Discussion 

The fabrication of anisotropic trapezoidal microfeatures with various geometries 

was demonstrated using two methods: anisotropic etching of silicon and backside 

diffuser photolithography. The conditions for producing positive silicon mesa 

structures with minimal surface roughness and etching times were optimized by 

means of a three factor full factorial design of experiment. A method for creating 

an embedded chrome mask on a glass wafer was developed for the purpose of 

producing positive inverse-trapezoidal microfeatures out of a thick negative 

photoresist using backside diffuser photolithography. A simple and effective 

procedure for promoting the adhesion of the photoresist to the glass substrate was 

developed to increase the process yield. Lastly, the ability to control critical 
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dimensions and angles of the microfeatures produced by these two methods has 

been shown. 

The two methods for microfeature fabrication were applied to develop two 

respective device assembly techniques. Each method utilized a different soft 

lithography technique. For each technique, protocols for facilitating mold 

detachment when using various replication polymers were developed, and the 

ability to integrate ultra-thin (<100 µm) replications with a 170 µm borosilicate 

glass backing—the fragile cover glass required for optical access—was 

demonstrated. 

3.6.1 KOH etching design of experiment analysis 

The data acquired from the full factorial experiment described in Chapter 3.1 was 

compiled and analyzed using the statistical analysis software, JMP (SAS Institute 

Corp). An analysis of variance (ANOVA) over the etch rate response variable was 

performed. The results indicated that the regression model of significant factors 

accounted for 93% of the total variability of etch rate. The F-statistic, which 

tested for the significance of the effects of the controlled factors and their 

interactions, was 31.94, indicating that these effects were significant with a p-

value less than 0.001. The ANOVA for the second response variable, surface 

roughness, indicated that the regression model of significant factors accounted for 

70% of the total variability of etch rate. The F-statistic was 5.169, which showed 

that the effects were statistically significant at a p-value less than 0.01. The 
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correlation between the controlled factors and the surface roughness response was 

not as representative as was the etch rate response. This can likely be attributed to 

the measurement error associated with measuring surface roughness values 

nearing the detection limit of the stylus profilometer. If higher resolution 

measurements were necessary, this experiment could be followed up utilizing 

instruments, like atomic force or scanning electron microscopes, capable of 

measuring nanoscale surface asperities.  

The relationship between the factors indicated a strong correlation between etch 

rate and KOH concentration. As seen in the contour plot shown in Figure 18, the 

etch rate without sonication was 27.83 µm/hour at a KOH concentration of 35% 

by weight in 65 °C etchant solution. With sonication, however, the same 

concentration and temperature yielded an etch rate of 37.42 µm/hour. The 

combination of ultrasonic agitation, 30% KOH concentration, and 65 °C 

temperature was found to produce the fastest etch rate. Figure 18 also shows that 

the surface roughness without sonication was elevated in the range of 20% to 35% 

KOH concentration at temperatures above 50 °C, peaking at 0.524 µm. With 

sonication, however, the surface roughness was significantly lower, with the 

lowest value being 0.0068 µm, obtained at a 40% KOH concentration and 

temperature of 65 °C. Therefore, the optimal conditions for low surface roughness 

are ultrasonic agitation, 40% KOH concentration, and an etching temperature of 

65 °C. 
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Figure 18: Contour plots for etch rate and surface roughness over the 

controlled factor space 

Finally, a regression model was fit to the two response variables. The center 

points added to the design showed that there was a significant interaction between 

concentration and etchant temperature across the etch rate response variable, 

resulting in a model containing 2
nd

 order approximations. The general form of the 

equation is given by Equation 10. 
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estimates obtained from the JMP regression analysis, the resulting regression 

model equation: 
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    Equation 11  

Conversely, the surface roughness response indicated no significant interactions 

between variables as no variable response curvature was seen. Therefore, the 

three main effects were the only factors included in the final regression model, 

and the coefficient estimates resulted in the model equation: 

321 00742.0000346.0000327.00160.0 xxxy        Equation 12 

In summary, to optimize the anisotropic etching of silicon with potassium 

hydroxide, a full factorial design with two center points was conducted to test 

three factors: KOH concentration, temperature and agitation method. Optimal 

specifications for this process included a high etch rate, to reduce processing and 

fabrication times, and low surface roughness, to yield superior device 

functionality. The collected data show that the optimal etch rate conditions 

included 30% KOH concentration and 65 °C with ultrasonic agitation; and the 

minimum surface roughness conditions were above 40% KOH concentration and 

65 °C with ultrasonic agitation. 
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3.6.2 Silicon sandwich assembly results 

The cast polymer “sandwich” approach to fabrication, which included use of 

anisotropically etched silicon molds, offered several advantages including fast 

development time, simple fabrication technique, inexpensive material cost and 

minimal optimization. By developing an optimized silicon etching protocol, 

silicon trapezoidal structures with reproducible geometries were created and used 

for polymer replication as shown in Figure 19. The dimensional verification of 

the silicon trapezoidal geometry and the features replicated from it can also be 

seen in the figure. These images demonstrate that microfeatures with the undercut 

necessary to produce microvortical cell rotation can produce clean, replicated 

trapezoidal structures. These silicon structures can be bonded to a glass coverslip 

appropriate for imaging through the long back plane of the trapezoid. 
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Figure 19 : Verification of the silicon microfeature geometry with subsequent 

replication and bonding. (a) Oblique view of silicon mesa; (b) Cross sectional 

view of silicon mesa; (c) Cross sectional view of a polymer replica; (d): Cross 

sectional view of a polymer replica bound to a glass substrate 

However, the fragile nature of the silicon and borosilicate glass molds, combined 

with the delicate nature of ultra-thin polymer films, proved detrimental to device 

yield. When prying the two molds apart, the substrates frequently fractured or the 

polymer replicate tore. Substrate fracture was likely due to the high stress 

gradients introduced at the interface between the detached and attached portions 

of the wafer. In cases where the molds did not break, other failures experienced 

were thin-film tearing, unequal detachment and folding of the polymer-film back 
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on itself. The deficits of this protocol are attributable to the tenacity and fragility 

of ultra-thin polymeric replications over large surface areas. Because the total 

thickness of the replication polymer was only 100-150 microns, the effective 

surface area of the two, stacked molds dominated, and surface forces prohibited 

separation of substrates without tearing the polymer or breaking the substrate. 

Even after modifying the surface of the molds with anti-adhesion organosilanes 

that reduced the surface energy at the mold-polymer interface, the device yield 

was only 3% with a single device being fully assembled out of 29 assembly 

attempts. 

 

In an attempt to overcome some of these challenges, a PDMS mold was created 

through a set of PDMS replication procedures to replace the silicon mold with a 

flexible replica. Briefly, an anti-adhesion silane (tridecafluoro-1,1,2,2-

tetrahydrooctyl trichlorosilane; Gelest Inc.) was applied to the original silicon or 

glass mold to prevent PDMS adhesion. PDMS was poured over the mold and 

cured, and a PDMS negative several millimeters in thickness was obtained after 

thermal curing. The same silanization procedure was applied to the negative 

PDMS mold, resulting in a PDMS positive master with features identical to the 

original silicon mold. A PDMS mold offers the advantage of flexibility compared 

to a crystalline silicon mold, eliminating mold breakages. Because the mold is 

made of PDMS, there is no need to create the superficial PDMS monolayer 

required when using photocurable polymers for soft lithography. Lastly, because 
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PDMS has high oxygen permeability, an interesting effect is observed when the 

optical adhesive NOA 81 is used as the replication agent: After UV curing the 

polymer over the mold, a superficial layer of uncured polymer remains at the 

mold surface. As a result, the polymer can be directly bonded to a glass substrate 

after delaminating from the mold. It is hypothesized that because PDMS has high 

oxygen permeability, molecular oxygen inhibits the free radical polymerization in 

the UV adhesive, precluding crosslinking at the UV adhesive/PDMS interface 

(Bartolo, Degré, Nghe, & Studer, 2008). Unfortunately, the superficial layer of 

uncrosslinked material posed challenges. The trapezoidal features became 

rounded upon bonding the polymer replica to a glass substrate due to reflow of the 

uncrosslinked photopolymer at the glass-polymer interface. This reduction in 

feature sharpness is undesirable, especially when the corners at the trapezoidal 

feature inlet are compromised. The deformation of the inlet hinders the ability of 

the microfeature to peel off flow from the main channel and establish the 

recirculating flow profile necessary for cell rotation. In addition, the flexibility of 

the PDMS mold created challenges when compressing the two mold halves 

together. Often, the replication process produced a thin polymer membrane 

between the flow channel and the trapezoid inlet. This was likely the result of the 

fold over clips deforming the flexible mold, rather than properly distributing the 

compressive forces necessary to bring the surfaces of the two molds into uniform 

contact. In contrast, silicon and glass molds exhibit negligible deformation from 

the fold over clips, distributing compressive forces evenly across the mold. 
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3.6.3 Backside diffuser photolithography results 

Backside diffuser photolithography (BDPL) offers distinct advantages over other 

anisotropic microfeature fabrication methods. Most importantly, the creation of 

positive undercut trapezoidal structures facilitates conventional molding 

techniques for producing an undercut negative polymer replica. The ability to 

directly produce a positive undercut microstructure with BDPL poses a distinct 

advantage over other trapezoidal fabrication techniques, such as the anisotropic 

etching of silicon, which require more complex replication procedures in order to 

produce the same geometry. 

The BDPL technique normally utilizes negative photoresists with thicknesses no 

greater than 13 μm (J.-H. Lee et al., 2008) and has not been extended to thick (50 

to 200 μm) negative resists. Because the ability to rotate microparticles larger than 

10 μm requires a microchamber with a depth of at least 20 µm, thick negative 

photoresists were investigated. The most prominent negative photoresists for 

producing thick microfeatures are the SU-8 2000 series or the KMPR-1000 series 

which have the ability to produce resist thicknesses of up to 200 µm (Microchem 

Corp.). However there are no prior reports of using either photoresist line in 

frontside or backside diffuser lithography. 

Initially, KMPR 1025 was investigated because reports demonstrated its superior 

adhesion to glass substrates compared to SU-8 (Hou, Zhang, Smith, Yang, & 

Heikenfeld, 2010). The adhesion of the photoresist to the substrate is critical when 
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using thick photoresists because the thermal cycling in the post-exposure bake 

introduces large stresses at the material interface as a result of the shrinking of the 

resist during cross-linking. When using KMPR for BDPL, slight variations in the 

fabrication process described in Chapter 3.3 were required. Therefore a protocol 

for producing 40 µm KMPR microfeatures was adopted from Ray et al (Ray, Zhu, 

& Meldrum, 2010). The only variation in the process flow was the use of larger 

exposure doses, ranging from 2000 to 4500 mJ/cm
2 

to compensate for optical 

losses introduced by the diffuser. In addition, when using BDPL, large exposure 

doses are essential if it is desired to produce linearized sidewalls in the exposed 

portion of the resist because the maximum diffusing angle of the UV light through 

transparent portions of the embedded mask and the photoresist thickness are 

fixed. Underexposure can result in oblique 3D features that lack a sharp edge at 

the back edge of the trapezoid in addition to rounded sidewalls (J.-H. Lee et al., 

2008). 

Although the KMPR resist exhibited excellent adhesion to the glass substrate, the 

3D microstructure formed was not the expected inverse-trapezoidal cross section.  
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Figure 20: Cross sectional geometry of KMPR following backside diffuser 

photolithography and replicate molding 

The cross sectional feature geometry was documented by means of replication 

and cutting down the middle of the polymer microfeature with a sharp blade. The 

result is shown in Figure 20. To ensure the photoresist had not being 

underexposed, exposure doses over three times that reported in the literature were 

used, yet microfeatures nearly identical in form to the one illustrated in Figure 20 

were produced. Other modifications to the baking protocols failed to affect the 

geometry. Six wafers produced the same or similar cross sectional geometry 

despite only slight variations to the published protocol. Given that BDPL had 

never been applied to this photoresist and that the other publications applying 

BDPL never reported any similar complications, the use of the KMPR resist was 

abandoned, the results obtained remaining unexplainable.  
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Another thick negative photoresist, SU-8 2035 was then investigated for use in 

the BDPL process. As indicated earlier, poor adhesion between SU-8 and glass 

substrates had been identified by other researchers as problematic. Initial attempts 

to produce SU-8 trapezoidal microfeatures resulted in complete delamination of 

the resist from the glass substrate during development. To eliminate this common 

failure, an adhesion promotion protocol to increase the bond strength between the 

photoresist and the substrate was investigated. The most common solution 

prescribed a lengthy process to create a thin SU-8 that blanketed the entire wafer 

(J Carlier et al., 2004). Further modifications of this protocol incorporated 

additional surface modification steps (Julien Carlier et al., 2006). While these 

methods had been shown to increase the bond strength of the SU-8, a much 

simpler, less time consuming method was pursued. 

Since SU-8 (bisphenol A diglycidyl ether) is an epoxy resin containing reactive 

epoxide groups, conjugation between a functionalized glass surface and the resist 

was realized by a simple surface modification technique that utilized common 

laboratory reagents and was completed in less than 30 minutes. Epoxy resins that 

are catalytically crosslinked, rather than photoinitiated as in the case of SU-8, 

utilize primary or secondary amines as curing agents. Also, a coupling agent 

commonly found in research and laboratory settings is an amine terminated silane 

(APTES). Interestingly, there were no previous reports of using APTES to 

directly promote the adhesion of SU-8 to glass wafers for photolithography. Yet 

several reports had demonstrated the use of APTES to facilitate bonding PDMS 
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and other plastics to SU-8 (Vlachopoulou et al., 2009; Z. Zhang, Zhao, Xiao, 

Watts, & Xu, 2011) or for coupling silica beads to epoxy resins (Meador et al., 

2005). Conceptually, the requirements for conjugating PDMS or silica beads to 

epoxy resins are identical to those for coupling SU-8 to a glass substrate. 

Therefore, a simple method for rapidly modifying the surface of the glass wafers 

with APTES to promote the adhesion of the SU-8 was developed and utilized in 

the BDPL process. By incorporating this step, the SU-8 microfeatures did not 

detach when developing the resist, and were permanently bound to the glass 

substrate after hard baking. 

A unique feature of BDPL is the ability to modulate the sidewall angle (the angle 

formed by the side of the trapezoid with respect to the main flow channel) of the 

trapezoidal features by simply changing the index matching liquid (IML) used to 

couple the diffuser to the back of the chrome-patterned wafer. The ability to easily 

produce a desired sidewall angle may be unique to this method and is not feasible 

when using silicon etching methods. The sidewall angle is dictated by Snell’s 

Law, where the IML determines the angle of refraction and subsequently the 

maximum diffusing angle of the UV light as it enters the photoresist. As described 

in Chapter 2, the sidewall angle significantly influences the characteristics of a 

microvortex. The ability of BDPL to precisely control the angles of the trapezoids 

is a distinct advantage for producing optimal microvortical properties. The ability 

to specify the trapezoid is shown in Figure 21. When DI water (n=1.33) was used 
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as the IML, a trapezoidal feature with a sidewall angle of 56° was produced. 

When using mineral oil (n=1.47) as the IML, a trapezoid angle of 46° resulted. 

 

Figure 21: Changing the index matching liquid (IML) to create variable 

sidewall angles 

3.6.4 Stacked multilayer assembly results 

The stacked multi-layer assembly method avoided many of the issues encountered 

in the “silicon sandwich” assembly approach. Because replication of the channel 

mold and the mold containing the microfeatures are independent processes, any 

problems encountered with one did not affect the other (shown in Figure 22). The 

replication of the trapezoidal microfeatures in PDMS was successful in producing 
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microfeatures with inlet widths ranging from 40 -120 μm and heights of 40 – 80 

µm. The backside face of the trapezoid was smooth and parallel to the channel, 

making it amendable to imaging through the surface. 

 

Figure 22: PDMS replications of inverse trapezoid features with varying inlet 

widths 

However as seen in Figure 23 , the ability to fully displace the PDMS between 

the backside of the trapezoid and the surface of the cover glass was problematic, 

and often a 10 to 50 µm layer remained despite applying a weighted load to 

compress them. However in the case of the flow channel, no residual PDMS film 

could be seen after replication. This could be due to several factors such as the 

difference in the mold material, the difference in aspect ratio of the features, or 

the difference in the effective surface area. 
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Figure 23: Cross sectional images of replicated (top) flow channel and 

(bottom) trapezoidal microfeatures 

The channel replication yield was around 80%, after improvement, due to the use 

of the flexible, laser fabricated mold. The 20% failures, which usually occurred 

after demolding, were the result of trimming PDMS displaced from beneath the 

cover glass or when cleaning the surface before bonding. However, the 

microfeature replication yield was substantially lower, at around 25% when 

900 μm 

150 μm 
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forming the ultra-thin negatives on a cover glass substrate. The inflexibility of the 

glass substrate combined with the fragile cover glass made it difficult to detach 

the mold without chipping or cracking occurring in the cover glass. One solution 

is to produce a PDMS positive mold through the multiple-replication process 

described at the end of Chapter 3.6.2. 

The successful assembly of the device can be seen in Figure 24. 

 

Figure 24: Fully assembled device using the stacked multi-layer technique 
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Chapter 4: Systems Integration 

4.1 Custom pump design and development 

Microfluidic systems can perform a variety of fluid manipulations. Fundamental 

to their function is the ability to accurately control the transport of fluid from one 

location to another. Microscale transport has been demonstrated by a variety of 

mechanisms; however most pumping methods have been categorized into one of 

two main classifications: mechanical displacement or electro- and magneto-

kinetic (Iverson & Garimella, 2008). While some electro- and magneto-kinetic 

pumping options offered attractive features such as bi-directional flow capability, 

and non-pulsatile flow at low flow rates (sub nL/min), the underlying complexity 

in the working mechanism was limiting. For instance, electroosmotic flow 

regulators require a special surface treatment in the microchannel to work 

properly. In addition, electrokinetic devices require the use of special driving 

media, with various conductivities and pH values. When considering traditional 

mechanical displacement pumps, which included using diaphragms, rotary gears, 

and stepper motors, the flow stability was poor and often pulsatile. 

The stability and consistency of the recirculating flow in the microvortex is 

directly dependent on the flow characteristics delivered by the pump.  Exquisite 

control over the flow velocity in the main flow channel is imperative to produce 

stable and precise cell rotation by means of a fluidic vortex. A pressure driven 

pumping system provides the bi-directional, pulse-free characteristics offered by 
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electro- and magneto- kinetic pumps while avoiding the limitations associated 

with utilizing specific buffers or surface chemistries. We designed a pump that 

uses both positive and negative pressure regulators to produce flow of a driving 

fluid that is metered and then used to drive solutions of cell-containing media 

through the microfluidic device as seen in Figure 25. 

 

Figure 25: Pressure-driven pump schematic 

The pressure regulators (QPV-1, Proportion-Air Inc.) were electro-pneumatic 

precision pressure proportional control valves and were used to pressurize a 

custom built 50 mL test tube (pressure vessel). A three way valve 

(LHDA002000B, The Lee Company) was used to select between the positive and 
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the negative pressure lines. An in-line flow meter (SLG1430-025, Sensirion Inc.) 

with sub nanoliter resolution was used to measure the liquid flow rates produced. 

Another three-way valve was used to bypass the flow sensor when necessary, due 

to the large pressure drop across it. Finally, a 6-port, 2-way valve (MXP7900-000, 

IDEX Inc.) was used as a sample injection valve. This valve functions to 

introduce biological media only immediately upstream of the microvortex chip, 

avoiding any complications with the flow sensor, which required the use of water 

only as a driving fluid. 

The pressures required to produce flow rates spanning the detection range of the 

flow sensor (50-1500 nL/min) were determined prior to purchasing the pressure 

regulator to ensure the controlled pressures were adequate. This was 

accomplished by building the simple pressure monitoring circuit shown in Figure 

26. The pressure range to be controlled by the pressure regulator was determined 

by recording the local pressure at a location upstream from the pressure vessel, 

effectively replacing the positive pressure regulator seen in Figure 25, and the 

flow rate from the flow meter. The pressure vs. flow rate relationship was also 

found to be highly linear as shown in Figure 27. A pressure of around 23 psi was 

needed to reach the sensor’s maximum flow rate detection limit. 
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Figure 26: Pressure sensing circuit for pump regulator selection 
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Figure 27: Flow rate vs. pressure as determined by the pressure sensing 

circuit 

4.1.1 Custom pump characterization and results 

Pump metrics were determined by a set of two experiments. Software developed 

(Dean Smith, Center for Biosignatures Discovery Automation) in Labview 2010 

(National Instruments Inc.) was used to record the flow rate from the meter, 

control the valve positions, and control the pressure-regulating voltages, while 

saving the information into a spreadsheet allowing accurate measurements of 

component input and output values versus time. The first experiment was used to 

determine the response time of the pump to changes in pressure. Time constants 

associated with switching from zero flow to maximum positive flow, maximum 

flow to zero flow, zero flow to maximum negative flow, and maximum negative 
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flow to zero flow were quantified. An example graph of flow rate vs. time in 

response to step changes in driving pressure is shown in Figure 28. This same 

trace was replicated three additional times to determine the average response time 

of 363 ± 34 ms. 

 

Figure 28: Flow rate vs. time in response to step changes in pressure 

The second experiment was designed to determine the average variability in the 

flow rate over time. Three different pressures were set, resulting in three different 

flow rates that were measured over 2 minutes as seen in Figure 29. The standard 

deviation and the mean flow rate were determined, and the average variability 

(time average deviation from the mean) was found to be 2.6% over the period of 2 

minutes. 
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Figure 29: Flow rate variability measurement at three different flow rates 

4.2 Infrared optical trapping and imaging configuration 

Manipulation of the microparticles into the microvortex center was accomplished 

by an optical tweezing setup. The optical trapping system and the imaging 

components are shown in Figure 30. A 1064 nm diode laser (LDF-1064-BF-600, 

Innolume GmbH) was coupled to a beam expander to produce a 12 mm 

collimated beam, which was reflected off a 825 nm short pass dichroic mirror 

(Omega Optical Inc.) into a 40X, high numerical aperture objective lens 

(MRD77410, Nikon Instruments Inc.) that focused the beam onto the specimen 

from above. A Xenon lamp white light source was coupled to an inverted Nikon 

TI-S microscope and focused through a 40X air objective lens (not shown). The 
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light transmitted through the specimen was collected by a CMOS camera 

(DCC1545C, Thorlabs). 

 

Figure 30: Optical configuration for tweezing and imaging (top) light path 

schematic (bottom) experimental setup 
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4.2.1 Imaging and trapping considerations for cell rotation 

Focused beams of the top optical trapping objective and the bottom imaging 

objective were susceptible to interference given the inherent geometries of the 

trapezoid microvortex. A summary of potential interference configurations is 

shown in Figure 31. This was considered during the design of the microvortex 

chip, as losses in the high angle rays of the optical trap result in a decrease in 

intensity gradient along the axis of the beam, compromising the z-force of the 

optical trap. Additionally, clipping of the high angle imaging beam results in a 

significant reduction in resolution, and could result in aberrations when acquiring 

projections.  
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Figure 31: Optical obstruction of the optical tweezers or the imaging light 

based on microchamber geometry (a) no obstruction (b) top obstruction (c) 

bottom obstruction (d) both top and bottom obstruction  

4.3 Proof of concept demonstration 

As shown in Figure 32, the combined product of the microfabrication 

methodologies, the infrared optical trap, and the imaging capabilities provided the 

first demonstration of microparticle rotation by a microvortex about an axis 

parallel to the imaging plane. While it was difficult to perceive the rotation when 

viewing the smooth spherical surface of a 15 μm bead, this demonstration had a 

small artifact aligned with the rotation axis that made the rotation more visible. 

Similarly, a single K562 (immortalized human myelogenous leukemia) cell was 

rotated in the 3D microvortex as shown in Figure 33. 
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Figure 32: Demonstration of a 15 μm bead being rotated in a 3D microvortex 

 

Figure 33: Demonstration of a leukemia cell being rotated in a 3D 

microvortex 
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Chapter 5: Conclusion and future work 

5.1 Summary of work completed 

The work reported in this thesis has demonstrated the ability to use hydrodynamic 

microvortices for controlled rotation of microparticles about an axis parallel to the 

imaging plane. The microchamber geometries capable of producing stable 

recirculating flow profiles were determined experimentally, using a 2D side-

channel microvortex chip, and theoretically, with the aid of computational fluid 

dynamics (CFD) using COMSOL Multiphysics software. The CFD models gave 

insight regarding the effects of the sidewall angle and the aspect ratio of the 

microchamber on the location of the microvortex center, the rotation rate of a 

particle at the center, and the maximum shear rate on the particle surface.  

Two fabrication and assembly techniques were developed to produce a 3D 

microvortex chamber and chip. The first utilized anisotropic etching of silicon to 

produce positive mesa structures which were then compressed against a positive 

glass channel counterpart to form a mold. The mold was then replicated to create 

a polymer negative, and the device was sealed by bonding 170 μm microscope 

coverglass to both sides. This approach was replaced by the second method, 

which applied backside diffuser photolithography (BDPL) to produce undercut 

inverse trapezoids in photoresist on a glass surface to serve as the mold. The 

process was optimized for SU-8 2035, a thick negative photoresist, and required 

the development of an adhesion promotion protocol to ensure the microstructures 
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remained intact during processing. The positive SU-8 mold was then used to 

create ultra-thin (<100μm) trapezoid replications with a coverglass backing, and a 

main flow channel with a coverglass backing was formed in a similar fashion by 

replicating a laser cut PET mold. Finally, the two replicated halves were bonded 

together to form the 3D microvortex chip. 

Lastly, a novel air pressure-regulated pump was designed and characterized. The 

pump allowed for bidirectional flow manipulation at flow rates ranging from 100-

1500 nL/min. The time average variation in the flow was 2.6% over two minutes, 

and the average step response time was 363 ms. The ability to produce constant 

low particle velocities, and the ability to bring the particle to zero velocity in less 

than a second was demonstrated. 

5.2 Future characterization of cell rotation 

The most important work that has yet to be completed is the characterization of 

cell rotation rate versus the flow rate in the main channel. As an extension, this 

relationship should be characterized for microfeatures with various sidewall 

angles and aspect ratios. How cell size and shape impact the rotation rate should 

also be investigated. Furthermore, the incident power of the optical trap should be 

reduced to a minimum, to deliver just enough power to hold the cell at the vortex 

center so that it is not swept away. The minimum level will likely vary at different 

flow rates and in different geometries, requiring characterization. 
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5.3 Measurement of local heating in an optical trap 

Laser induced heating in optical traps has been modeled and measured in several 

different instances (Peterman, Gittes, & Schmidt, 2003),  and others have 

proposed methods to control the effects of the heating through active cooling 

elements (Mao, Arias-Gonzalez, Smith, Tinoco, & Bustamante, 2005). In general, 

the reported temperature increase due to heating by the trapping beam ranged 

from 1-4°C/100mW of incident laser power. However, these reports do not 

consider the convective heat transfer from the recirculating fluid flow in a 

microvortex, so the degree of temperature increase is not certain. Two methods 

for measuring the local heating have been proposed.  The first uses temperature 

sensitive fluorescent probes dissolved in the media to measure the temperature 

distribution within the optical trap (Ross, Gaitan, & Locascio, 2001). The other 

exploits phase transition temperatures to quantify the temperature change. Briefly, 

microemulsions of materials (paraffin or similar) containing various melting 

points ranging from 25-45°C are produced by heating the material past its melting 

point in an insoluble liquid (water) and shaking the solution vigorously. The 

material is then “flash” solidified by rapidly pouring in chilled (4°C) water. The 

result is 2 to 20 μm solid emulsions of paraffin in water. The emulsions are then 

filtered out, dried, and characterized by measurement with a differential scanning 

calorimeter. This can determine the required energy per mass to melt the material 

at a given temperature. Finally, the microemulsions are irradiated with the optical 

trap at different incident powers until a visible change from the crystalline texture 
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of the solid material to the clear smooth texture of the melted material can be 

seen. This method offers the possibility of incorporation into the use of a 

microvortex to better simulate the heat dissipation that results from the convective 

fluid flow. 

5.4 Future microfabrication development 

Backside diffuser photolithography (BDPL) is a new field with significant 

opportunity for innovation. One unique property of the technique is its ability to 

modulate sidewall angle, as demonstrated by this thesis; another feature that was 

not exploited is its ability to create rounded sidewalls, or features with elliptical 

cross-sections. In theory, rounded trapezoid corners can be produced by applying 

a lower exposure dose. This is due to the integration effect of the exposure of the 

photoresist, where the middle of the feature is being maximally exposed over 

time, while the maximally diffused rays into the photoresist receive the minimum 

dose per unit time. The diffusing angle and the thickness are fixed, and the 

exposure dose dictates the total cross-linking profile(J.-H. Lee et al., 2008). This 

could allow trapezoids to be fabricated with rounded corners, while still 

possessing the flat back surfaces necessary for cell imaging. These 

microchambers may provide superior vortex stability due to the increase in 

circularity of the recirculating flow.  
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5.5 Future integration of optical fiber tweezers 

The current microvortex design utilized a single-beam gradient-force optical trap. 

However, another possible optical trapping mechanism would utilize counter-

propagating dual beams delivered through opposing aligned optical fibers. The 

trap is created in a region where the beams are diverging, reducing the light 

intensity relative to a focused beam. This, in turn, reduces the likelihood of optical 

damage. Counter propagating optical fibers decouple the trapping mechanism 

from the microscope, reducing both cost and footprint of the platform. The optical 

arrangement for the dual optical fiber trapping setup is described as follows. In 

brief, a linearly polarized 1064 nm light source is passed through a ½ wave-plate 

to resolve two waves perpendicular to each other. The waves are then split by a 

polarizing splitter and coupled into two optical fibers. The fibers are then counter 

aligned and their separation controlled by a single axis micromanipulator. The 

distance between the fibers must be optimized for particles of different sizes due 

to the divergent profile of the beam exiting the fiber. The fibers could be self-

aligned by the angled edge of the trapezoid and can be fed through the trapezoidal 

feature into the microfluidic. This opens up the possibility of creating multiple 

channels with multiple optical fibers, allowing several cells to be rotated 

simultaneously in parallel channels. The imaging objective would scan between 

the channels to image when necessary. 
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5.6 Conclusion 

This thesis has demonstrated the groundwork for a live cell rotation imaging 

chamber taking the form of a microscope stage-mounted chip. Contributions in 

microfluidic fabrication, in conjunction with the development of a precision 

pump, have provided a chip-based-system for cell introduction and delivery 

through a main flow channel, having below it, disposed towards a high-

magnification objective lens of the cell imaging system, an optically-addressable 

trapezoidal microchamber. Individual cells can be maneuvered from the main 

flow channel, through the inlet neck, into the trapezoidal chamber, in which a 

microvortex is formed by the peeling off of flow streamlines from the bottom 

surface of the main flow channel. Multiperspective absorption or fluorescence 

imaging can be procured through low, rotational, tangential, fluidic shear forces 

induced on the cell, while stabilized in an optical trap.  
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