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ABSTRACT  

   

Rapid advance in sensor and information technology has resulted in both 

spatially and temporally data-rich environment, which creates a pressing need for us to 

develop novel statistical methods and the associated computational tools to extract 

intelligent knowledge and informative patterns from these massive datasets. The 

statistical challenges for addressing these massive datasets lay in their complex structures, 

such as high-dimensionality, hierarchy, multi-modality, heterogeneity and data 

uncertainty. Besides the statistical challenges, the associated computational approaches 

are also considered essential in achieving efficiency, effectiveness, as well as the 

numerical stability in practice. On the other hand, some recent developments in statistics 

and machine learning, such as sparse learning, transfer learning, and some traditional 

methodologies which still hold potential, such as multi-level models, all shed lights on 

addressing these complex datasets in a statistically powerful and computationally 

efficient way. In this dissertation, we identify four kinds of general complex datasets, 

including “high-dimensional datasets”, “hierarchically-structured datasets”, “multi-

modality datasets” and “data uncertainties”, which are ubiquitous in many domains, such 

as biology, medicine, neuroscience, health care delivery, manufacturing, etc. We depict 

the development of novel statistical models to analyze complex datasets which fall under 

these four categories, and we show how these models can be applied to some real-world 

applications, such as Alzheimer’s disease research, nursing care process, and 

manufacturing. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation 

Recent rapid developments of sensor and information technologies have resulted in a 

spatially and temporally data-rich environment. With massive datasets readily available, 

there is a pressing need to extract intelligent knowledge and informative patterns in order 

to accomplish various decision-making goals. The statistical challenges for analyzing 

these massive datasets lay in their complex structures, such as high-dimensionality, 

hierarchy, multi-modality, heterogeneity, and uncertainty. In addition to the statistical 

challenges, there are computational challenges in achieving efficiency, effectiveness, as 

well as numerical stability in practice. In what follows, some real-world examples are 

shown to illustrate the aforementioned complex data structures and the challenges in 

modeling and analyzing the data. 

1.1.1 High-dimensional datasets 

High-dimensional datasets are ubiquitous in many applications, such as the output of the 

second-generation sequencing machines in genomics, and images in fields ranging from 

physics to neuroscience to medicine. A consequence is a big challenge for statisticians to 

extract informative patterns and intelligent knowledge from them, e.g., to identify a few 

genes or proteins out of a huge list, which may be active in a particular metabolic or 

disease process.  

1.1.2 Hierarchically-structured datasets 

Hierarchically-structured datasets are reflections of the hierarchical nature of many 

complex systems and organizations. For example, to investigate the nursing care process 

in a hospital setting, information can be collected on multiple levels, including the 

individual nurse level, unit level, and hospital level. How to link these multi-level 
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information sources and fuse them for understanding and improve the nursing care 

process is a challenge.   

1.1.3 Data uncertainty 

The “data uncertainty” that is focused here does not refer to the inherent randomness of 

a process or system or sampling uncertainty of statistical models. Rather, the data 

uncertainty refers to the uncertainty introduced into the data collection mechanisms, for 

reasons such as poor calibration on sensors, sensor malfunction, and human errors. For 

example, distributed sensor networks (DSN) have been widely equipped in many 

manufacturing processes, automatically collecting data on various process variables and 

quality attributes. Due to the large scale and mixed types of these sensors, as well as the 

real-time uninterruptable data collection mechanism, effective calibration and timely 

maintenance is commonly unavailable. Thus, sensor errors and noises are inevitable, 

which result in corrupted measurements on the process. How to effectively utilize these 

corrupted sensor data for process monitoring, fault detection, and root cause diagnosis is 

not well addressed in the statistical process control literature.    

1.1.4 Multi-modality 

Technological platforms have been advanced to such a stage where multiple aspects of 

the same process or system can be measured collectively. For example, both MRI and 

PET can be used to measure the brain structure and activity, respectively. These “multi-

modality” datasets need to be analyzed in an integrated way, e.g., an integration of MRI 

and PET imaging data may achieve higher statistical power in detecting subtle disease-

related patterns in early stages of many progressive diseases, which is an essential task 

for achieving effective evidence-based medical diagnosis and prevention.  
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1.2 State of the art 

This dissertation focuses on following complex data structures, including high-

dimensionality, hierarchy, multi-modality, and uncertainty. Correspondingly, I will 

review several existing research areas that handle such data structures. 

1.2.1 Sparse learning 

The essential idea of sparse learning is to encourage parsimony in statistical modeling, 

which can actually be traced back to some ancient scientific principles, such as “Occam’s 

razor”. The parsimony of statistical models implies a preference over the models with a 

smaller number of free parameters, among all the models that can sufficiently capture the 

complexity and uncertainty of the datasets. Some direct benefits of such a parsimonious 

statistical model include enhanced interpretability and stability of the models. A classic 

example is the ridge regression, which employs a L2-norm regularized least square 

formulation to encourage sparsity of the regression parameters, as shown below: 

 ̂        {‖    ‖ 
   ‖ ‖ 

 }, 

where   is a     vector, which records the responses of   samples;   is a     design 

matrix, with   being the number of predictors;   is the regression parameter vector with 

length  ; the square of the L2-norm of any vector  , ‖ ‖ 
 , is a sum of the squares of the 

elements in  .   is the penalty parameter, which controls the shrinkage effect, i.e., larger 

 , more penalty is imposed on the magnitudes of  ̂. 

Ridge regression is commonly known as being capable to effectively shrink many 

unreliable or redundant regression parameters in  ̂ toward zero, thus achieving more 

stability than ordinary least-square regression models. However, since the objective 

function of ridge regression is a smooth function without any singularity in the parameter 

space for any     , there is actually no parameter in  ̂ that will be exactly zero. This 

implies that ridge regression is not a truly sparse model, since all the variables are always 
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kept in the regression model, no matter how large the penalty parameter   is used. On the 

other hand, in many applications, such as cancer research, there is a hypothesis that only 

a few genes or proteins are correlated with the disease processes, although we can obtain 

the gene expressions of thousands of genes simultaneously. Therefore, ridge regression is 

less effective in these applications, and statistical models that can achieve exact sparsity 

in  ̂ are required. 

LASSO is such an approach which can effectively achieve exact sparsity in  ̂ . The 

formulation of LASSO is similar to ridge, except the L1-norm is used to replace the L2-

norm: 

 ̂        {‖    ‖ 
   ‖ ‖ }, 

where ‖ ‖  is a sum of the absolute values of the elements in  . As the L1-norm 

introduces singularity into the objective function for any     , LASSO can set many 

unreliable or redundant parameters to be exactly zero, thus achieving model selection. 

The extra cost of LASSO is an efficient computational algorithm, since LASSO has no 

closed-form solution. By drawing on recent developments on optimization theories 

especially on convex optimization, a number of efficient algorithms have been developed 

to solve LASSO. Following this line, a number of novel norms have been developed to 

address various kinds of complex datasets, with the goals of making use of some 

“structural information” about the structure of these complex datasets, such as group 

LASSO and fused LASSO. The idea of LASSO has also been extended to other statistical 

models, such as sparse PCA, graphical models and mixed effect models. It has been 

found in statistics and machine learning communities that sparse learning is an effective 

and promising technique to address high-dimensional datasets. In this dissertation, 

several new high-dimensional statistical models anchored with sparse learning will be 

presented in Chapters 2 and 3. 
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1.2.2 Transfer learning 

Transfer learning is a generalization of the traditional statistical learning paradigm, which 

is capable to address multiple related datasets jointly. The “multiple related datasets” 

refer to specific kinds of hierarchically-structured datasets. For instance, considering the 

brain activity measurements on different stages of a brain disease, each stage has a 

dataset and a corresponding brain connectivity network model which produces this 

dataset. Not like the traditional statistical estimation paradigm, which estimates the brain 

connectivity network for each stage in isolation, transfer learning aims to infer these 

multiple brain connectivity networks from those datasets jointly, enabling the knowledge 

learning from one dataset to be transferred to another, by exploring the similarity between 

the brain connectivity networks. This transferability is particularly advantageous when 

the sample size is small for all the stages, since it enables the use of the dataset for other 

stages to help the learning task of each individual stage. In this dissertation, a specific 

transfer learning methodology is developed in chapter 4 which can learn multiple 

Gaussian graphical models jointly.    

1.2.3 Multi-level models 

Multi-level models, also known as hierarchical linear models, mixed models, and random 

coefficient models, are statistical models which can decompose the variation of an 

outcome of interest into different levels. This can be illustrated by the “radon example”, 

which is a risk factor for causing lung cancer in high concentration. The distribution of 

radon levels in U.S. homes varies greatly. In order to identify the regions with high risks, 

the environmental protection agency collected radon measurements in a random sample 

of over 80,000 homes from 3000 countries. As the data is structured hierarchically as 

homes within countries, a multi-level model for this radon data analysis is: 

     (          
 ),  for           ;          . 
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    (          
 ), for          . 

where     is the logarithm of the radon measurement in house   within country  ,     is an 

indicator for whether the measurement was taken in a basement, and    is the log 

uranium level in country  . In this way,   
  captures the “within-country” variations, and 

  
  captures variations between countries. 

As multi-level models are advantageous to decompose the variation of the outcome of 

interest into different levels and identify significant correlations within the same level and 

across different levels, they have been widely adopted in many disciplines, such as social 

science, education and biology, and has recently been borrowed by the machine learning 

community to build more powerful machine learning algorithms. In this dissertation, a 

novel multi-level model is developed to address a complex dataset collected from a 

health care delivery problem, i.e., the nursing care coordination process. 

1.3 Research objectives 

The objectives of this research are: 

1) Develop novel statistical models and their associated computational algorithms 

for analyzing complex datasets, such as high-dimensional datasets, 

hierarchically-structured datasets, multi-modality datasets, and datasets with data 

uncertainty, by drawing on recent theoretical developments in statistics and 

machine learning, such as sparse learning, transfer learning, and multi-level 

models. 

2) Apply these novel statistical models for knowledge discovery and decision 

making from real-world datasets, including biomedical, healthcare and 

manufacturing applications. 
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1.4 Organization of the dissertation 

This dissertation is presented in a multiple manuscript format. Each of the chapters, 2 to 7, 

is written as an individual research paper, including an abstract, a main body, and 

references. The relationships among these chapters are depicted in Figure 1-1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-1: Relationships among the chapters in this dissertation 

Chapter 2 [Huang, et al., 2009, 2010] presents a novel high-dimensional statistical model, 

called sparse inverse covariance estimation (SICE), which is useful for analyzing the 

interactions between a large number of variables from measurement data, i.e., inferring 

the brain connectivity networks of tens or hundreds of brain regions, or inferring gene 

regulatory networks of hundreds or thousands of genes. A monotone property of SICE is 

also proved which provides a way for estimating the strength of interactions within the 

networks. The SICE, along with the strength estimation, has been applied to analyze a 
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PET scan data, downloaded from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) website, based on which novel knowledge and new insights into the Alzheimer’s 

disease has been discovered. 

Chapter 3 [Huang, et al., 2011] presents s new high-dimensional statistical method, called 

sparse Bayesian network (SBN), which is capable to learn the structure of a large 

Bayesian network from a high-dimensional dataset. SBN employs a novel formulation 

involving one L1-norm penalty term to impose sparsity and another penalty term to 

ensure that the learned BN is a directed acyclic graph – a required property of BN. Both 

theoretical analysis and extensive experiments are presented, which demonstrated that 

SBN is superior over the competing algorithms on a wide spectrum of benchmark BN 

structures under various sample sizes. An application of SBN on the Alzheimer’s disease 

research is also investigated. 

Chapter 4 [Huang, et al., in press] depicts the development of a transfer learning 

approach for estimating multiple Gaussian graphical models (GGM) jointly, from 

multiple related datasets. Anchored by the Bayesian hierarchical methodology, the 

relatedness between multiple GGMs are represented by a common Wishart distribution, 

and an EM algorithm is derived to estimate these GGMs with the presence of unknown 

hyper parameters of this Wishart distribution. Sparse learning is also employed to ensure 

its applicability on high-dimensional datasets. The developed transfer learning method is 

applied to a real-world dataset, a fMRI imaging datasets for two groups of people, which 

shows the transfer learning method is superior over the traditional statistical learning 

paradigm. 

Chapter 5 [Huang, et al., in press] depicts the development of a multi-level statistical 

model for analyzing hierarchically-structured datasets. This model development is 

motivated by a health care delivery problem, i.e., the modeling and analysis of nursing 
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care process, where information is collected on multiple levels, e.g., on individual nurse 

level, unit level, hospital level, etc. Not like traditional hierarchically-structured data, 

which can be well addressed by existing multi-level models, whose response variables 

are measured on individual level (the lowest level of the dataset), here, limited by the 

inherent difficulty to measure individuals’ contributions on an unit’s overall quality, the 

response variables are measured only on unit-level. With the goals of fusing all the levels’ 

information for modeling and improving the nursing care process, a multi-level latent 

response linear regression model is developed and applied on a real dataset collected 

from 38 units within 4 hospitals, which helps discovery of some informative relationships 

between some nursing activities, unit infrastructure and patient falls. 

Chapter 6 presents a statistical method, called, sparse composite linear discriminant 

analysis (SCLDA), to identify a few variables (out of a huge list) which are predictive for 

classification, by fusing multi-modality data. SCLDA employs a novel parameterization 

that decomposes each LDA parameter into a product of a common parameter shared by 

all the modalities and a parameter specific to each modality, which enables joint analysis 

of all the modalities and borrowing strength from one another. By employing some 

optimization reformulation and the DC algorithm, we derived an efficient and easily 

interpretable algorithm to estimate the free parameters of SCLDA. An application of 

SCLDA on a dataset with two modalities, the Magnetic Resonance Imaging (MRI) and 

Positron Emission Tomography of 116 subjects, is also presented. 

Chapter 7 depicts the development of a regression-based process monitoring method with 

consideration of measurement errors. As most existing process monitoring methods are 

based on a common assumption that the measured values of variables are the true values, 

with limited consideration of various types of measurement errors embedded in the data, 

those methods are less effective when applied in real-world applications, where 
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measurement errors are inevitable. On the other hand, research on measurement errors 

has been conducted from a pure theoretical statistics point of view, without any linking of 

the modeling and analysis of measurement errors with monitoring and fault detection. 

Motivated by such a lack of methodology, a method for multivariate process monitoring 

and fault detection considering four types of major measurement errors, including sensor 

bias, sensitivity, noise and dependency of the relationship between a variable and its 

measured value on some other variables, has been developed. This method is applicable 

to processes where the natural ordering of the variables is known, and processes where 

the causal relationships among variables are known and can be described by a Bayesian 

network. This method is demonstrated in two industrial processes. 
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Chapter 2  

LEARNING BRAIN CONNECTIVITY OF ALZHEIMER’S DISEASE FROM 

NEUROIMAGING DATA 

Abstract 

Recent advances in neuroimaging techniques provide great potentials for effective 

diagnosis of Alzheimer’s disease (AD), the most common form of dementia. 

Previous studies have shown that AD is closely related to alternation in the 

functional brain network, i.e., the functional connectivity among different brain 

regions. In this paper, we consider the problem of learning functional brain 

connectivity from neuroimaging, which holds great promise for identifying image-

based markers used to distinguish Normal Controls (NC), patients with Mild 

Cognitive Impairment (MCI), and patients with AD.  More specifically, we study 

sparse inverse covariance estimation (SICE), also known as exploratory Gaussian 

graphical models, for brain connectivity modeling. We prove a monotone property of 

the SICE algorithm, which is a very important property for helping identify the 

difference between AD, MCI, and NC. We apply the proposed algorithm to the 

neuroimaging PET data of 42 AD, 116 MCI, and 67 NC subjects. The experimental 

results reveal several interesting connectivity patterns consistent with literature 

findings. 

2.1 Introduction 

Alzheimer’s disease (AD) is a fatal, neurodegenerative disorder characterized by 

progressive impairment of memory and other cognitive functions. It is the most 

common form of dementia and currently affects over five million Americans; this 

number will grow to as many as 14 million by year 2050. The current knowledge 

about the cause of AD is very limited; clinical diagnosis is imprecise with definite 
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diagnosis only possible by autopsy; also, there is currently no cure for AD, while 

most drugs only alleviate the symptoms.  

To tackle these challenging issues, the rapidly advancing neuroimaging techniques 

provide great potentials. These techniques, such as MRI, PET, and fMRI, produce 

data (images) of brain structure and function, making it possible to identify the 

difference between AD and normal brains. Recent studies have demonstrated that 

neuroimaging data provide more sensitive and consistent measures of AD onset and 

progression than conventional clinical assessment and neuropsychological tests [1].  

Recent studies have found that AD is closely related to alternation in the functional 

brain network, i.e., the functional connectivity among different brain regions [2]-[3]. 

Specifically, it has been shown that functional connectivity substantially decreases 

between the hippocampus and other regions of AD brains [3]-[4]. Also, some studies 

have found increased connectivity between the regions in the frontal lobe [6]-[7].  

Learning functional brain connectivity from neuroimaging data holds great promise 

for identifying image-based markers used to distinguish between AD, MCI (Mild 

Cognitive Impairment), and normal aging. Note that MCI is a transition stage from 

normal aging to AD. Understanding and precise diagnosis of MCI have significant 

clinical value since it can serve as an early warning sign of AD. Despite all these, 

existing research in functional brain connectivity modeling suffers from limitations:   

A large body of functional connectivity modeling has been based on correlation 

analysis [2]-[3], [5]. However, correlation only captures pairwise information and 

fails to provide a complete account for the interaction of many (more than two) brain 

regions. Other multivariate statistical methods have also been used, such as Principle 

Component Analysis (PCA) [8], PCA-based Scaled Subprofile Model [9], 

Independent Component Analysis [10]-[11], and Partial Least Squares [12]-[13], 
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which group brain regions into latent components. The brain regions within each 

component are believed to have strong connectivity, while the connectivity between 

components is weak. One major drawback of these methods is that the latent 

components may not correspond to any biological entities, causing difficulty in 

interpretation.  

In addition, graphical models have been used to study brain connectivity, such as 

structural equation models [14]-[15], dynamic causal models [16], and Granger 

causality. However, most of these approaches are confirmative, rather than 

exploratory, in the sense that they require a prior model of brain connectivity to 

begin with. Also, these approaches are usually applied to a small number of pre-

selected brain regions (less than 20 in most cases). These limitations make them 

inadequate for studying AD brain connectivity, because there is little prior 

knowledge about which regions should be involved and how they are connected. 

This makes exploratory models highly desirable. 

In this paper, we study sparse inverse covariance estimation (SICE), also known as 

exploratory Gaussian graphical models, for brain connectivity modeling. Inverse 

covariance matrix has a clear interpretation that the off-diagonal elements 

correspond to partial correlations, i.e., the correlation between each pair of brain 

regions given all other regions. This provides a much better model for brain 

connectivity than simple correlation analysis which models each pair of regions 

without considering other regions. Also, imposing sparsity on the inverse covariance 

estimation ensures a reliable brain connectivity to be modeled with limited sample 

size, which is usually the case in AD studies since clinical samples are difficult to 

obtain. From a domain perspective, imposing sparsity is also valid because 

neurological findings have demonstrated that a brain region usually only directly 
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interacts with a few other brain regions in neurological processes [2]-[3]. Various 

algorithms for achieving SICE have been developed in recent year [17]-[22]. In 

addition, SICE has been used in various applications, including evaluating patterns 

of association among variables [23], exploration of genetic networks [21], senator 

voting records analysis [17], hyperspectral image classification [24], and speech 

recognition [25]. However, SICE has been barely used in brain connectivity 

modeling, especially for AD studies.  

In this paper, we prove a monotone property of the proposed SICE algorithm, which 

is a very important property for helping identify the difference between AD, MCI, 

and NC. We apply SICE to the neuroimaging PET data of 42 AD, 116 MCI, and 67 

NC subjects enrolled in the ANDI (Alzheimer’s Disease Neuroimaging Initiative) 

project. The experimental results reveal several interesting connectivity patterns 

consistent with literature findings, and also some new patterns that can help the 

knowledge discovery of AD. 

2.2 The SICE algorithm and monotone property 

An inverse covariance matrix can be represented graphically. If used to represent 

brain connectivity, the nodes are activated brain regions; existence of an arc between 

two nodes means that the two brain regions are closely related in the brain's 

functional process.  

Let {       } be all the brain regions under study.  {       } follows a multivariate 

Gaussian distribution with mean   and covariance matrix  . Let       be the inverse 

covariance matrix. Suppose we have   samples (e.g.,   subjects with AD) for these 

brain regions. Note that we will only illustrate here the SICE for AD, whereas the 

SICE for MCI and NC can be achieved in a similar way.  

We can formulate the SICE into an optimization problem, i.e.,  
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                         ̂                        (   ( ))    (  )   ‖   ( )‖            (1) 

where   is the sample covariance matrix;    ( ) ,   ( ) , and ‖   ( )‖   denote the 

determinant, trace, and sum of the absolute values of all elements of a matrix, 

respectively. The part “   (   ( ))    (  )” in (1) is the log-likelihood, whereas 

the part “‖   ( )‖  ” represents the “sparsity” of the inverse covariance matrix  . 

(1) aims to achieve a tradeoff between the likelihood fit of the inverse covariance 

estimate and the sparsity. The tradeoff is controlled by  , called the regularization 

parameter; larger   will result in more sparse estimate for  . The formulation in (1) 

follows the same line of the   -norm regularization [26]-[27], which has been introduced 

into the least squares formulation to achieve model sparsity and the resulting model is 

called Lasso [27]. Next, we show that with   going from small to large, the resulting 

brain connectivity models have a monotone property. Before introducing the monotone 

property, the following definitions are needed.  

Definition: In the graphical representation of the inverse covariance, if node    is 

connected to    by an arc, then    is called a “neighbor” of   . If    is connected to 

   though some chain of arcs, then    is called a “connectivity component” of   .  

Intuitively, being neighbors means that two nodes (i.e., brain regions) are directly 

connected, whereas being connectivity components means that two brain regions are 

indirectly connected, i.e., the connection is mediated through other regions. In other 

words, not being connectivity components (i.e., two nodes completely separated in 

the graph) means that the two corresponding brain regions are completely 

independent of each other. Connectivity components have the following monotone 

property: 
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Monotone property of the SICE: Let   (  )  and   (  )  be the sets of all the 

connectivity components of    with      and     , respectively. If      , then 

  (  )    (  ).  

Proof of the monotone property can be found in the appendix. This monotone 

property can be used to identify how strongly connected each node (brain region)    

to its connectivity components. For example, assuming that   (  )  {     }  and 

  (  )  {  }, this means that    is more strongly connected to    than   . Thus, by 

changing   from small to large, we can obtain an order for the strength of connection 

between pairs of brain regions. As will be shown in Section 2-3, this order is 

different between AD, MCI, and NC. 

2.3 Application in brain connectivity modeling of AD 

2.3.1 Data acquisi t ion and preprocess ing  

We apply SICE on FDG-PET images for 49 AD, 116 MCI, and 67 NC subjects 

downloaded from the ADNI website. We apply Automated Anatomical Labeling (AAL) 

[28] to extract data from each of the 116 anatomical volumes of interest (AVOI), and 

derived average of each AVOI for every subject. The AVOI represent different regions of 

the whole brain.  

2.3.2 Brain connect ivi ty  model ing by SICE  

42 AVOI are selected for brain connectivity modeling, as they are considered to be 

potentially related to AD. These regions distribute in the frontal, parietal, Occipital, and 

temporal lobes. Pease see Table 2-1 for names of the AVOI and which lobe each of them 

belongs to. The number before each AVOI is used to index the node in the connectivity 

models.  

Using the algorithm proposed in Section 2-2, one connectivity model can be learned for 

AD, one for MCI, and one for NC, for a given  . With different  ’s, the resulting 
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connectivity models hold a monotone property, which can help obtain an order for the 

strength of connection between brain regions. To show the order clearly, we develop a 

tree-like plot in Fig. 2-1, which is for the AD group. To generate this plot, we start   at a 

very small value (i.e., the right-most of the horizontal axis), which results in a fully-

connected connectivity model. A fully-connected connectivity model is one that contains 

no region disconnected with the rest of the brain. Then, we decrease   by small steps and 

record the order of the regions disconnected with the rest of the brain regions.  

Table 2-1: Names of the AVOI for connectivity modeling (“L” means that the brain 

region is located at the left hemisphere; “R” means right hemisphere.) 

 

For example, in Fig. 2-1, as   decreases below     (but still above   ), region 

“Tempora_Sup_L” is the first one becoming disconnected from the rest of the brain. As   

decreases below     (but still above   ), the rest of the brain further divides into three 

disconnected clusters, including the cluster of “Cingulum_Post_R” and 

“Cingulum_Post_L”, the cluster of “Fusiform_R” up to “Hippocampus_L”, and the 

cluster of the other regions. As   continuously decreases, each current cluster will split 

into smaller clusters; eventually, when   reaches a very large value, there will be no arc 

in the IC model, i.e., each region is now a cluster of itself and the split will stop. The 

1 Frontal_Sup_L 13 Parietal_Sup_L 21 Occipital_Sup_L 27 Temporal_Sup_L 

2 Frontal_Sup_R 14 Parietal_Sup_R 22 Occipital_Sup_R 28 Temporal_Sup_R 

3 Frontal_Mid_L 15 Parietal_Inf_L 23 Occipital_Mid_L 29 Temporal_Pole_Sup_L 

4 Frontal_Mid_R 16 Parietal_Inf_R 24 Occipital_Mid_R 30 Temporal_Pole_Sup_R 

5 Frontal_Sup_Medial_L 17 Precuneus_L 25 Occipital_Inf_L 31 Temporal_Mid_L

6 Frontal_Sup_Medial_R 18 Precuneus_R 26 Occipital_Inf_R 32 Temporal_Mid_R 

7 Frontal_Mid_Orb_L 19 Cingulum_Post_L 33 Temporal_Pole_Mid_L 

8 Frontal_Mid_Orb_R 20 Cingulum_Post_R 34 Temporal_Pole_Mid_R

9 Rectus_L 35 Temporal_Inf_L 8301

10 Rectus_R 36 Temporal_Inf_R 8302

11 Cingulum_Ant_L 37 Fusiform_L 

12 Cingulum_Ant_R 38 Fusiform_R 

39 Hippocampus_L 

40 Hippocampus_R 

41 ParaHippocampal_L 

42 ParaHippocampal_R 

Temporal lobeFrontal lobe Parietal lobe Occipital lobe
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sequence of the splitting gives an order for the strength of connection between brain 

regions. Specifically, the earlier (i.e., smaller  ) a region or a cluster of regions becomes 

disconnected from the rest of the brain, the weaker it is connected with the rest of the 

brain. For example, in Fig. 2-1, it can be known that “Tempora_Sup_L” may be the 

weakest region in the brain network of AD; the second weakest ones are the cluster of 

“Cingulum_Post_R” and “Cingulum_Post_L”, and the cluster of “Fusiform_R” up to 

“Hippocampus_L”. It is very interesting to see that the weakest and second weakest brain 

regions in the brain network include “Cingulum_Post_R” and “Cingulum_Post_L” as 

well as regions all in the temporal lobe, all of which have been found to be affected by 

AD early and severely [3]-[5].  

Next, to facilitate the comparison between AD and NC, a tree-like plot is also constructed 

for NC, as shown in Fig. 2-2. By comparing the plots for AD and NC, we can observe the 

following two distinct phenomena: First, in AD, between-lobe connectivity tends to be 

weaker than within-lobe connectivity. This can be seen from Fig. 2-1 which shows a clear 

pattern that the lobes become disconnected with each other before the regions within each 

lobe become disconnected with each other, as   goes from small to large.  This pattern 

does not show in Fig. 2-2 for NC. Second, the same brain regions in the left and right 

hemisphere are connected much weaker in AD than in NC. This can be seen from Fig. 2-

2 for NC, in which the same brain regions in the left and right hemisphere are still 

connected even at a very large   for NC. However, this pattern does not show in Fig. 2-1 

for AD.  

Furthermore, a tree-like plot is also constructed for MCI (Fig. 2-3), and compared with 

the plots for AD and NC. In terms of the two phenomena discussed previously, MCI 

shows similar patterns to AD, but these patterns are not as distinct from NC as AD. 

Specifically, in terms of the first phenomenon, MCI also shows weaker between-lobe 
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connectivity than within-lobe connectivity, which is similar to AD. However, the degree 

of weakerness is not as distinctive as AD. For example, a few regions in the temporal 

lobe of MCI, including “Temporal_Mid_R” and “Temporal_Sup_R”, appear to be more 

strongly connected with the occipital lobe than with other regions in the temporal lobe. In 

terms of the second phenomenon, MCI also shows weaker between-hemisphere 

connectivity in the same brain region than NC. However, the degree of weakerness is not 

as distinctive as AD. For example, several left-right pairs of the same brain regions are 

still connected even at a very large  , such as “Rectus_R” and “Rectus_L”, 

“Frontal_Mid_Orb_R” and “Frontal_Mid_Orb _L”, “Parietal_Sup_R” and 

“Parietal_Sup_L”, as well as “Precuneus_R” and “Precuneus_L”. All above findings are 

consistent with the knowledge that MCI is a transition stage between normal aging and 

AD. 

 

Fig 2-1:  Order for the strength of connection between brain regions of AD 

Small λLarge λ λ3 λ2 λ1
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Fig 2-2: Order for the strength of connection between brain regions of NC 

 

Fig 2-3: Order for the strength of connection between brain regions of MCI 

Furthermore, we would like to compare how within-lobe and between-lobe connectivity 

is different across AD, MCI, and NC. To achieve this, we first learn one connectivity 

model for AD, one for MCI, and one for NC. We adjust the   in the learning of each 

Small λLarge λ

Small λLarge λ
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model such that the three models, corresponding to AD, MCI, and NC, respectively, will 

have the same total number of arcs. This is to “normalize” the models, so that the 

comparison will be more focused on how the arcs distribute differently across different 

models. By selecting different values for the total number of arcs, we can obtain models 

representing the brain connectivity at different levels of strength. Specifically, given a 

small value for the total number of arcs, only strong arcs will show up in the resulting 

connectivity model, so the model is a model of strong brain connectivity; when 

increasing the total number of arcs, mild arcs will also show up in the resulting 

connectivity model, so the model is a model of mild and strong brain connectivity.  

For example, Fig. 2-4 shows the connectivity models for AD, MCI, and NC with the total 

number of arcs equal to 50 (Fig. 2-4(a)), 120 (Fig. 2-4(b)), and 180 (Fig. 2-4(c)). In this 

paper, we use a “matrix” representation for the SICE of a connectivity model. In the 

matrix, each row represents one node and each column also represents one node. Please 

see Table 2-1 for the correspondence between the numbering of the nodes and the brain 

region each number represents. The matrix contains black and white cells: a black cell at 

the  -th row,  -th column of the matrix represents existence of an arc between nodes    

and    in the SICE-based connectivity model, whereas a white cell represents absence of 

an arc. According to this definition, the total number of black cells in the matrix is equal 

to twice the total number of arcs in the SICE-based connectivity model. Moreover, on 

each matrix, four red cubes are used to highlight the brain regions in each of the four 

lobes; that is, from top-left to bottom-right, the red cubes highlight the frontal, parietal, 

occipital, and temporal lobes, respectively. The black cells inside each red cube reflect 

within-lobe connectivity, whereas the black cells outside the cubes reflect between-lobe 

connectivity.  
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While the connectivity models in Fig. 2-4 clearly show some connectivity difference 

between AD, MCI, and NC, it is highly desirable to test if the observed difference is 

statistically significant. Therefore, we further perform a hypothesis testing and the results 

are summarized in Table 2-2. Specifically, a P-value is recorded in the sub-table if it is 

smaller than 0.1, such a P-value is further highlighted if it is even smaller than 0.05; a “---” 

indicates that the corresponding test is not significant (P-value>0.1). Inspection of the 

results in Fig. 2-4 and Table 2-2 reveals the following interesting observations:  

Within-lobe connectivity: The temporal lobe of AD has significantly less connectivity 

than NC. This is true across different strength levels (e.g., strong, mild, and weak) of the 

connectivity; in other words, even the connectivity between some strongly-connected 

brain regions in the temporal lobe may be disrupted by AD. In particular, it is clearly 

from Fig. 2-4(b) that the regions “Hippocampus” and “ParaHippocampal” (numbered by 

39-42, located at the right-bottom corner of Fig. 2-4(b)) are much more separated from 

other regions in AD than in NC. The decrease in connectivity in the temporal lobe of AD, 

especially between the Hippocampus and other regions, has been extensively reported in 

the literature [3]-[5]. Furthermore, the temporal lobe of MCI does not show a significant 

decrease in connectivity, compared with NC. This may be because MCI does not disrupt 

the temporal lobe as badly as AD.  

 

AD                                  MCI                                      NC 

Fig 2-4(a): SICE-based brain connectivity models (total number of arcs equal to 50) 
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AD                                  MCI                                      NC 

Fig 2-4(b): SICE-based brain connectivity models (total number of arcs equal to 120) 

 

AD                                  MCI                                      NC 

Fig 2-4(c): SICE-based brain connectivity models (total number of arcs equal to 180) 

The frontal lobe of AD has significantly more connectivity than NC, which is true across 

different strength levels of the connectivity. This has been interpreted as compensatory 

reallocation or recruitment of cognitive resources [6]-[7]. Because the regions in the 

frontal lobe are typically affected later in the course of AD (our data are early AD), the 

increased connectivity in the frontal lobe may help preserve some cognitive functions in 

AD patients. Furthermore, the frontal lobe of MCI does not show a significant increase in 

connectivity, compared with NC. This indicates that the compensatory effect in MCI 

brain may not be as strong as that in AD brains. 
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Table 2-2: P-values from the statistical significance test of connectivity difference 

between AD, MCI, and NC 

(a) Total number of arcs = 50 (b) Total number of arcs = 120 (c) Total number of arcs = 180 

 

There is no significant difference between AD, MCI, and NC in terms of the connectivity 

within the parietal lobe and within the occipital lobe. Another interesting finding is that 

all the P-values in the third sub-table of Table 2-2(a) are insignificant. This implies that 

distribution of the strong connectivity within and between lobes for MCI is very similar 

to NC; in other words, MCI has not been able to disrupt the strong connectivity among 

brain regions (it disrupts some mild and weak connectivity though).  

Between-lobe connectivity: In general, human brains tend to have less between-lobe 

connectivity than within-lobe connectivity. A majority of the strong connectivity occurs 

within lobes, but rarely between lobes. These can be clearly seen from Fig 2-4 (especially 

Fig. 2-4(a)) in which there are much more black cells along the diagonal direction than 

the off-diagonal direction, regardless of AD, MCI, and NC.  

The connectivity between the parietal and occipital lobes of AD is significantly more 

than NC which is true especially for mild and weak connectivity. The increased 

connectivity between the parietal and occipital lobes of AD has been previously reported 

in [3]. It is also interpreted as a compensatory effect in [6]-[7]. Furthermore, MCI also 

shows increased connectivity between the parietal and occipital lobes, compared with NC, 

but the increase is not as significant as AD.  
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While the connectivity between the frontal and occipital lobes shows little difference 

between AD and NC, such connectivity for MCI shows a significant decrease especially 

for mild and weak connectivity. Also, AD may have less temporal-occipital connectivity, 

less frontal-parietal connectivity, but more parietal-temporal connectivity than NC.   

Between-hemisphere connectivity: Recall that we have observed from the tree-like plots 

in Figs. 2-3 and 2-4 that the same brain regions in the left and right hemisphere are 

connected much weaker in AD than in NC. It is desirable to test if this observed 

difference is statistically significant. To achieve this, we test the statistical significance of 

the difference between AD, MCI, and NC, in term of the number of connected same-

region left-right pairs. Results show that when the total number of arcs in the connectivity 

models is equal to 120 or 90, none of the tests is significant. However, when the total 

number of arcs is equal to 50, the P-values of the tests for “AD vs. NC”, “AD vs. MCI”, 

and “MCI vs. NC” are 0.009, 0.004, and 0.315, respectively. We further perform tests for 

the total number of arcs equal to 30 and find the P-values to be 0. 0055, 0.053, and 0.158, 

respectively. These results indicate that AD disrupts the strong connectivity between the 

same regions of the left and right hemispheres, whereas this disruption is not significant 

in MCI.   

2.4 Conclusion 

In the paper, we applied SICE to model functional brain connectivity of AD, MCI, and 

NC based on PET neuroimaging data. Our findings were consistent with the previous 

literature and also showed some new aspects that may suggest further investigation in 

brain connectivity research in AD.  

Appendix I: The proposed SICE algorithm 

This section details our approach for estimating sparse inverse covariance matrix from 

data, which can be achieved through solving for the optimization problem in (1). Our 
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approach is based on the block coordinate descent (BCD) algorithm, but with an extended 

capacity of allowing for prior domain knowledge to be incorporated into the problem 

solving process.  

The basic idea of the BCD algorithm is to update each column (or row) of   iteratively 

while fixing all other columns (or rows), until convergence. Because the BCD algorithm 

works by iterations, we will only illustrate the steps in one iteration and other iterations 

work in a similar way. At a certain iteration, we first need to partition the current   as 

follows. Let       be the matrix produced by removing row   and column   from  ,     

be the element at row   and column   of  , and    be the column   of   with     removed. 

Then,   can be partitioned as   [
       

  
    

] , and correspondingly   can be 

partitioned as   [
       

  
    

]. Next, we want to update    and     while holding other 

elements in   constant. To do this, let   represent the objective function in (1), i.e., 

     | |    (  )   ‖ ‖  ; take the partial derivatives of   with respect to    and 

   , respectively; and then make the partial derivatives to be zero, i.e.,  

                               
  

   
  

 

      
      

    
     

             (  )   ,          (A-1) 

                                                         
  

    
 

 

      
      

    
        ,               (A-2) 

where    (  ) denotes the partial derivative of ‖ ‖  with respect to   . It is difficult to 

solve for    and     from (A-1) and (A-2) directly. Therefore, we adopt the following 

strategies.   

Letting    
  

      
      

    
, then (A-1) and (A-2) become 

                                                                     
            ( )                    (A-3) 

                                                                              (     )  .                       (A-4) 
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It is clear that (A-3) is also the result of making the partial derivative of   with respect to 

  to be zero in the following optimization problem: 

                                                                   
      

    ‖ ‖ ,                      (A-5) 

which is equivalent to the following min-max problem:  

                                                 ( 
 

 
            )    

    ‖ ‖ .   (A-6) 

This min-max problem can be solved by the prox method. 

After   and   are obtained, (A-4) can be used to find   , i.e.,     
 

     
. Furthermore, 

based on (A-2),     can be obtained, i.e.,     
(      )

     
.    

Furthermore, suppose that some prior domain knowledge is available, e.g., nodes    and 

   are disconnected in the IC model, which means that       in  . Then, we can forces 

the corresponding entry in   to be zero in each iteration. As a result, we can re-formulate 

(A-5) as follows: 

                                                              
      

    ‖ ‖   

                                                                                               

 where   is the set of indices (based on prior domain knowledge) corresponding to zero 

entries in  . Note that this problem is also strictly convex and can be solved efficiently. □ 

Appendix II: Proof of the monotone property of the SICE algorithm 

A sufficient and necessary condition of the monotone property is as follow:  

Theorem 1: Let {  
        

  }  and {  
        

  }  denote the clusters of nodes in the 

SICE-based graphical models, with   equal to    and    (     ), respectively. Then, 

for any   
  ,   {        }, there must exist a    

  ,   {        } such that   
   

  
  . 

This section proves the monotone property by proving that Theorem 1 is true.  
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(1) can be equivalently written as  

                  ̂                     ( )    (    )   ‖   ‖  .                                 (B-1) 

It is known from [17] that the solution,  ̂, is unique with a fixed positive  , and  ̂ must 

satisfy the equations in (B-2):  

( )   ( )     ,     for  (   )
  

  ; 

( )   ( )    ,     for (   )
  

  ;                                                           (B-2) 

|( )   ( )  |   ,     for  (   )
  

  ; 

where ( )   denotes the element at the  -th row,  -th column of a matrix.  

When      , denote the solution to (B-1) by  ̂  . Furthermore, we can rearrange the 

rows and columns of  ̂  , such that  ̂   becomes a block diagonal matrix and each sub-

matrix along the main diagonal of the rearranged  ̂   correspond to a cluster of nodes in 

the SICE-based graphical model. Denote the sub-matrices by  ̂
  

  

  ,         . Recall 

that   
  is the  -th cluster of nodes in the graphical model. As a result,  ̂   can be written 

as:  

 ̂   

[
 
 
 
 
 
  ̂  

  

     

  ̂
  

  

    

    

    ̂
   

  

  

]
 
 
 
 
 
 

.                                                                     (B-3) 

A sufficient condition for Theorem 1 being true is that the solution to (B-1) when     , 

denoted by  ̂  , must share the same structure as (B-3), i.e.,  ̂   can be written as:   

 ̂   

[
 
 
 
 
 
  ̂  

  

     

  ̂
  

  

    

    

    ̂
   

  

  

]
 
 
 
 
 
 

.                                                                     (B-4) 
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To prove this sufficient condition, our strategy will include two steps: step one aims to 

find a matrix having the same structure as  ̂  ; step two aims to prove that this matrix is a 

solution to (B-2) with     .  

Step One:  

The rows and columns of the sample covariance matrix,  , can be rearranged in the same 

way as  ̂  , i.e.,  

  

[
 
 
 
 
 

  
     

  
  

    

    
    

   

  ]
 
 
 
 

.                                                                          (B-5) 

Next, one optimization problem can be formulated corresponding to one sub-matrix  
  

  , 

        , i.e.,  

     ̂
  

  

                      ( 
  

  

  )    ( 
  

  ( 
  

  

  )

  

)    ‖( 
  

  

  )

  

‖

  

,    (B-6)                         

Furthermore, the solutions to (B-6), i.e.,  ̂
  

  

  ,         , can be put together and form 

a big matrix  ̂  , i.e.,  

 ̂   

[
 
 
 
 
 
  ̂  

  

     

  ̂
  

  

    

    

    ̂
   

  

  

]
 
 
 
 
 
 

.                                                                     (B-7) 

It is obvious that  ̂   has the same structure as  ̂  .  

Step Two: 
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This step aims to prove that the  ̂   in (B-7) satisfies (B-2) with     . To prove this, 

we need to prove that (i) the elements in  ̂
  

  

  ,         , satisfy (B-2), and that (ii) the 

elements not in  ̂
  

  

  , all of which are equal to zero, also satisfy  (B-2).   

(i) Suppose that ( ̂  )
  

 is an element in  ̂
  

  

  ,   {      }; more specifically, suppose 

that ( ̂  )
  

 is the element at the  -th row,  -th column of  ̂
  

  

  , i.e., 

 ( ̂
  

  

  )
  

 ( ̂  )
  

 .                                                                                     (B-8) 

Because  ̂
  

  

   is the solution to the optimization in (B-6), it must satisfy (B-9):  

( 
  

  )
  

 ( 
  

  

  )
  

    ,     for  (( 
  

  

  )

  

)

  

  ; 

( 
  

  )
  

 ( 
  

  

  )
  

   ,     for (( 
  

  

  )

  

)

  

  ;                                 (B-9) 

|( 
  

  )
  

 ( 
  

  

  )
  

|    ,     for  (( 
  

  

  )

  

)

  

  ; 

It is easy to know that ( 
  

  )
  

 is in fact the element at the  -th row,  -th column of  , 

i.e., 

( 
  

  )
  

 ( )  ;                                                                                          (B-10) 

and (( 
  

  

  )

  

)

  

is the element at the  -th row,  -th column of ( ̂  )
  

, i.e.,  

(( 
  

  

  )

  

)

  

 (( ̂  )
  

)
  

.                                                                    (B-11) 

Inserting (B-8), (B-10), and (B-11) into (B-9) results in (B-2) with     .  
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 (ii) Suppose that ( ̂  )
  

 is an element not in  ̂
  

  

  ,         , i.e., ( ̂  )
  

  . 

Furthermore, it can be known that (( ̂  )
  

)
  

  , because  ̂   is a block diagonal 

matrix.  Since (( ̂  )
  

)
  

  , to prove that ( ̂  )
  

 satisfies (B-2) with      is to 

prove that |( )   ( ̂  )
  

|    . It can be derive that |( )   ( ̂  )
  

|  |( )  |  

|( )   ( ̂  )
  

|    , where the second equality holds because ( ̂  )
  

  , and the 

“ ” holds due to the last equation in (B-1) with     . Also, it has been known that 

     . Therefore, |( )   ( ̂  )
  

|       .                 □ 
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Chapter 3  

A SPARSE STRUCTURE LEARNING ALGORITHM FOR GAUSSIAN 

BAYESIAN NETWORK IDENTIFICATION FROM HIGH-DIMENSIONAL 

DATA 

Abstract 

Structure learning of Bayesian networks (BNs) is an important topic in machine learning. 

Driven by modern applications in genetics and brain sciences, accurate and efficient 

learning of large-scale BN structures from high-dimensional data becomes a challenging 

problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) 

structure learning algorithm that employs a novel formulation involving one L1-norm 

penalty term to impose sparsity and another penalty term to ensure that the learned BN is 

a directed acyclic graph—a required property of BNs. Through both theoretical analysis 

and extensive experiments on eleven moderate and large benchmark networks with 

various sample sizes, we show that SBN leads to improved learning accuracy, scalability, 

and efficiency as compared with ten existing popular BN learning algorithms. We apply 

SBN to a real-world application of brain connectivity modeling for Alzheimer’s disease 

(AD) and reveal findings that could lead to advancements in AD research. 

3.1 Introduction 

A Bayesian network (BN) is a graphical model for representing the probabilistic 

relationships among variables. BNs have been widely used in the fields of genetics [1], 

[2], ecology [3], [4], social sciences [5], medical sciences [6], brain sciences [7], [8], and 

manufacturing [9]. A BN consists of two components: the structure, which is a Directed 

Acyclic Graph (DAG) for representing the dependency and independency among 

variables, and a set of parameters for representing the quantitative information of the 



  35 

dependency. Accordingly, learning a BN from data includes structure learning and 

parameter learning. This paper focuses on structure learning.   

One type of structure learning method is constraint-based. Constraint-based methods 

[10], [11], [12], [13], [14] use conditional independence tests to identify the dependent 

and independent relationships among variables. A major weakness of these methods is 

that too many tests may have to be performed with each test being built upon the results 

of another, leading to escalated errors in the BN structure identification.  

Another type of structure learning method is score-based, in which a “score” is defined 

for each possible BN structure and then a search algorithm is used to find the structure 

with the highest score. Various score functions have been proposed, including those 

based on the Bayesian method [15], [16], [17], [18], [19], minimum description length 

[20], [21], [22], [23], and entropy [10], [24]. Furthermore, once a score function is 

specified, a search method is needed to find the structure with the highest score. Because 

the number of possible structures grows exponentially with respect to the number of 

variables, an exhaustive search over all possible structures may be computationally too 

expensive or unfeasible. Therefore, various inexact search methods have been proposed, 

such as heuristic search techniques [15], [24], [25], [26], genetic algorithms [28], [29], 

simulated annealing [30]. ]. Sampling methods such as Markov Chain Monte Carlo 

(MCMC) [18], [24] have also been utilized to travel through the DAG space. These 

methods usually find a BN structure that is a local optimum, and have been less effective 

in high-dimensional DAG spaces. In addition, some work has been done to combine 

score-based methods with constraint-based methods [31]. Then there is the recently 

developed novel additive noise model [32], which differs from both constraint-based and 

score-based methods and has the advantage of learning nonlinear interactions for non-

gaussian BNs.   
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Driven by modern applications in brain sciences and genetics, there has been a great 

need of algorithms capable of learning large BN structures with high accuracy and 

efficiency from limited samples. For example, BNs provide an effective tool for 

identifying how different brain regions interact with each other in task performance, skill 

learning, and disease processes from neuroimaging data [7], [8]. A typical neuroimaging 

dataset includes hundreds of variables (brain regions) while the sample size (number of 

experimental subjects) is usually in tens. Also, BNs are very useful for modeling the 

interacting patterns between genes from microarray gene expression data, which 

measures thousands of genes with sample size being no more than a few hundred [1], [2].  

For the purpose of learning a large BN with small sample sizes, a useful strategy is to 

impose a “sparsity” constraint of some kind. Many real-world networks are indeed sparse, 

such as the gene association networks [1], [33] and brain connectivity networks [34]. 

When learning the structure of these networks, a sparsity constraint helps prevent 

overfitting and improves computational efficiency. For example, the Sparse Candidate 

(SC) algorithm [35], one of the first large-scale BN structure learning algorithms, 

achieves sparsity by assuming that the maximum number of parents for each node is 

limited to a small constant. One major problem with SC is that the user has to guess the 

maximum number of parents. Also, it is usually unrealistic to assume that all the nodes 

have the same maximum number of parents. The L1MB-DAG algorithm [36] does not 

require a prior specification on the maximum number of parents. Instead, it uses LASSO 

to select a small set of potential parents for each variable. LASSO is known for sparse 

variable selection [37].  

In addition to the sparsity consideration, recently developed BN structure learning 

methods ususally consist of two stages: Stage 1 is to identify the potential parents of each 

variable; Stage 2 applies some search methods to identify the parents out of the potential 
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parent set. The advantage of the two-stage approach is improved efficiency, as Stage 2 is 

a local search over a possibly small set of potential parents for each variable identified by 

Stage 1, rather than a global search over all the variables. The two-stage approach has 

been popularly adopted by many existing algorithms, including the SC and the L1MB-

DAG algorithms, mentioned previously, as well as the Hill-Climbing (MMHC) [38], the 

Grow-Shrink [39], the TC and the TC-bw [40] algorithms. The difference between these 

algorithms primarily lies in how they identify the potential parent set in Stage 1. For 

example, L1MB-DAG uses LASSO, MMHC uses the G2 statistic, and TC and TC-bw 

use a t-test. An apparent weakness of the two-stage approach is that if a true parent is 

missed in Stage 1, it will never be recovered in Stage 2. Another weakness of the existing 

algorithms is that the computational efficiency is still too low for learning large BNs. For 

example, it may take hours or days to learn a BN with 500 nodes.  

In this paper, we propose a new sparse Gaussian BN structure learning algorithm, 

called SBN. It is a one-stage approach that identifies the parents of all variables directly, 

thus having a low risk of missing parents (i.e., a high accuracy in BN structure 

identification) compared with many existing algorithms that employ the two-stage 

approach. Specifically, in development of the SBN, we propose a novel formulation with 

one L1-norm penalty term to impose sparsity and another penalty term to ensure that the 

learned BN is a Directed Acyclic Graph (DAG)—a required property of BN. The 

theoretical property about how to select the regularization parameter associated with the 

second penalty term is discussed. Under this formulation, we propose to use the Block 

Coordinate Descent (BCD) and shooting algorithms to estimate the BN structure. Further, 

our theoretical analysis indicates that the computational complexity of SBN is linear in 

the sample size and quadratic in the number of variables. This characteristic makes SBN 
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more scalable and efficient than most existing algorithms, and thus well suited for large-

scale BN structure learning from high-dimensional datasets.   

In addition, we perform theoretical analysis to show why the two-stage approach 

popularly adopted in the existing literature has a high risk of misidentifying the true 

parents and how the proposed SBN overcomes this deficiency. Also, extensive 

experiments on synthetic data are performed to compare SBN and the existing algorithms 

in terms of the learning accuracy, scalability, and efficiency. Finally, we apply SBN to a 

real-world application of brain connectivity modeling for Alzheimer’s disease (AD). In 

particular, SBN is applied to the neuroimaging PDG-PET data of 42 AD patients and 67 

matching normal control (NC) subjects in order to identify the brain connectivity model 

for each of the two study groups. A connectivity model represented by a BN reveals the 

directional effects of one brain region over another—called the effective connectivity. 

Effective connectivity has been much less studied in the AD literature, as most existing 

work focuses on functional connectivity, i.e., the correlations among brain regions. In this 

sense, the application of SBN to AD has the advantage over undirected graphical models 

of providing new insights into the mechanisms/pathways that distinct brain regions 

communicate with each other. In this application, the effective connectivity model of AD 

identified by SBN is compared in many different ways with that of NC, including the 

connectivity at the global scale, intra-/inter-lobe and inter-hemisphere connectivity 

distribution, and the connectivity associated with specific brain regions. The findings are 

consistent with known pathology and the clinical progression in AD.  

The rest of the paper is organized as follows: Section 3-2 introduces the key definitions 

and concepts of BN. Section 3-3 presents the development of SBN. Section 3-4 performs 

a theoretical analysis on the competitive advantage of SBN over the existing algorithms 

that employ the two-stage approach. Section 3-5 presents the results of the experiments 
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on synthetic data. Section 3-6 presents the application of SBN to brain connectivity 

modeling of AD. Section 3-7 is the conclusion. 

3.2 Bayesian network: key definitions and concepts 

In this section, we give a brief introduction to the key definitions and concepts of BNs 

that are relevant to this paper: 

 

A BN is composed by a structure and a set of parameters. The structure (Fig. 3-1) is a 

DAG that consists of   nodes [       ] and directed arcs between some nodes; no 

cycle is allowed in a DAG. Each node represents a random variable. In this paper, we 

will use nodes and variables interchangeably. The directed arcs encode the dependent and 

independent relationships among the variables. If there is a directed arc from    to   ,    

is called a parent of    and    is called a child of   . Two nodes are called spouses of 

each other if they share a common child. If there is a directed path from    to   , i.e., 

       ,    is called an ancestor of   . A directed arc is also a directed path and a 

parent is also an ancestor according to this definition. The Markov Blanket (MB) of    is 

a set of variables and given this set of variables,    will be independent of all other 

variables. The MB consists of the parents, children, and spouses of   .  

In this paper, we will adopt the following notations with respect to a BN structure: we 

denote the structure by a     matrix  , with entry       representing a directed arc 

from    to    and       otherwise. The set of parents of a node    is denoted by 

 

Fig. 3-1. A Bayesian  Network structure (DAG). 
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  (  ). In addition, we define a     matrix,  , which records all the directed paths in 

the structure, i.e., if there is a directed path from    to   , entry      ; otherwise, 

     . 

In addition to the structure, another important component of a BN is the parameters. The 

parameters are the conditional probability distribution of each node given its parents. 

Specifically, when the nodes follow a multivariate normal distribution, a regression-type 

parameterization can be adopted, i.e.,      
   (  )     with     (    

 )  and    

being a vector of regression coefficients. Without loss of generality, we assume in this 

paper that the nodes are standardized, i.e., each with a zero mean and unit variance. Then, 

the parameters of a BN are   [       ]. 

3.3 The proposed sparse BN structure learning algorithm – SBN 

One of the challenging issues in BN structure learning is to ensure that the learned structure 

must be a DAG, i.e., no cycle is present. To achieve this, we first identify a sufficient and 

necessary condition for a DAG: 

Lemma 1. A sufficient and necessary condition for a DAG is           for every pair 

of nodes    and   . 

Proof. To prove the necessary condition, suppose that a BN structure,  , is a DAG. Let’s 

assume that           for a pair of nodes    and   . Then, there exists a directed path 

from    to    and a directed path from    to   , i.e., there is a cycle in  , which is a 

contradiction to our presumption that   is a DAG. To prove the sufficient condition, 

suppose that           for every pair of nodes    and   . If   is not a DAG, i.e., there 

is a cycle, it means that there exist two variables,    and   , with a directed arc from    to 

   (     ) and a directed path from    to    (     ). This is a contradiction to our 

presumption that           for every pair of nodes    and   .       ☐  
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Based on Lemma 1, we further present our formulation for sparse BN structure learning. It 

is an optimization problem with the objective function and constraints given by: 

                            ̂      ∑ {
(     

   (  )) (     
   (  ))

 

   ‖  ‖ 

}
 
                           (1)                                                                                      

                                 . 

According to the definition of  ,    is a function of  . So the constraints in (1) are 

functions of B. The notations in (1) are explained as follows:                denote the 

sample vector for   , where   is the sample size.   (  ) denotes the sample matrix for 

variables in   (  ). The first term in the objective function, ∑ {(     
   (  ))(   

 
   

  
   (  ))

 
}, is a profile likelihood to measure the model fit. In the second term, ‖  ‖  is 

the sum of the absolute values of the elements in    and thus is the so-called L1-norm penalty 

[37]. The regularization parameter,   , controls the  number of non-zero elements in the 

solution to   ,  ̂ ; the larger the   , the fewer nonzero elements in  ̂ . Because fewer nonzero 

elements in  ̂  correspond to fewer arcs in the learned BN structure, a larger    results in a 

sparser structure. In addition, the constraints are to assure that the learned BN is a DAG (see 

Lemma 1 and Theorem 1 below).  

Solving the constrained optimization in (1) is difficult. Therefore, the penalty method [42] 

is employed to transform it into an unconstrained optimization problem, through adding an 

extra L1-norm penalty into the objective function, i.e., 

 ̂       ∑   (  )
 
        ∑ {

(     
   (  )) (     

   (  ))
 

   ‖  ‖      ∑ |       |    (  )

}
 
   ,        (2)         

where     (  )  denotes that the variable indexed by  , i.e.,     is a parent of   . 

Here,    ∑ |       |    (  )
 is to push         to become zero. Under some mild 
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conditions [42], there exists a   
   such that for all      

 ,  ̂   is also a minimizer for (1). 

Theorem 1 gives a practical estimation for   
 .  

Theorem 1. Any    (   )    ⁄     will guarantee  ̂   to be a DAG. 

Proof. To prove this, we first need to prove that, with a certain value of    and any value of 

  ,  ̂a  is bounded, i.e.,    ‖ ̂ ‖ 
 (    ̂ 

 
  (  )) (    ̂ 

 
  (  ))

 
 

  ‖ ̂ ‖ 
   ∑ | ̂      |    (  )

     
     , for each  ̂ . The second inequality 

holds because     
  is the value of the left-hand side of the inequality when     , 

which is obviously larger than that when     ̂   The last equality holds because we have 

standardized all the variables. Thus, we know that        (  )| ̂  |  (   )   ⁄ . 

Now, we use proof-by-contradiction to show that, with any    (   )    ⁄    , we 

will get a DAG. Suppose that such a    doesn’t guarantee a DAG. Then, there must be at 

least a pair of variables    and    with          , which is       and      . 

Based on the first order optimality condition,       i.f.f. |(    ̂   
     (  ))  

 |  

(     |   |)   . Here,  ̂   
 denotes the elements in  ̂ without  ̂   and     (  )  is 

defined similiarly. However, 

|(    ̂   
     (  ))  

 |  |    
 |  ∑ | ̂      

 |      (  )
 

(   )         (  )  ̂   (   )    ⁄ , resulting in |(    ̂   
     (  ))  

 |  

(     |   |)   .                                                                                                          ☐ 

Theorem 1 implies that if we specify any    (   )    ⁄    , we will get a 

minimizer of (1) through solving (2). However, in practice, directly solving (2) by specifying 

a large    may converge slowly. This is because the unconstrained problem in (2) may be ill-

conditioned with a too large value for    [42]. To avoid this situation, the “warm start” 

method [42] can be used, which works in the following way: first, it specifies a series of 
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values for   , i.e.,   
    

    
      

 , with a small   
  and   

  (   )    ⁄  

  ; next, it optimizes (2) with      
   to get a minimizer  ̂  

 , using an arbitrary initial 

value; then, it optimizes (2) with      
 , using  ̂  

  as an initial value; this process iterates, 

until it optimizes (2) with      
 . With the last minimizer as the initial value for the next 

optimization problem, this method can be quite efficient. 

Given    and   , the BCD algorithm [43] can be employed to solve (2). The BCD 

algorithm updates each    iteratively, assuming that all other parameters are fixed. In our 

situation, this is equivalent to optimizing   (  ) in (2) iteratively and the algorithm will 

terminate when some convergence conditions are satisfied. We remark that   (  ), after some 

transformation, is similar to LASSO [37], i.e., 

  (  )  (     
   (  )) (     

   (  ))
 

 ∑ (     |   |)|   |    (  )
.   (3)                                     

As a result, the shooting algorithm [44] for LASSO may be used to optimize   (  ) in 

each iteration. Note that at each iteration for optimizing   (  ), we also need to calculate     

for     (  ). This can be done by a Breadth-first search on   with    being the root node 

[45]. A more detailed description of the BCD algorithm and the shooting algorithm used to 

solve (2) is given in Figs. 3-2 and 3-3, respectively.  

Finally, we want to mention that the L2-norm penalty,    ∑ (       )
 

    (  )
, might 

also be used in (2). The advantage is that it is a differentiable function of    . Also, as shown 

in [42],           when     . However, the weakness of the L2-norm penalty, 

compared with L1-norm penalty, is that there is no guarantee that a finite    exists to assure 

          for all pairs of    and   . 

Time complexity analysis: Each iteration of the BCD algorithm consists of two 

operations: a shooting algorithm and a Breadth-first search on  . These two operations 

cost   (  )  [46] and   (  | |) , respectively. Here | |  is the number of nonzero 
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elements in  . If   is sparse, i.e., | |      with a small constant  , then  (  | |)  

 ( ). Thus, the computational cost at each iteration is only  (  ). Furthermore, each 

sweep through all columns of   costs  (   ). Our simulation study shows that it usually 

takes no more than 5 sweeps to converge.  

3.4 Some theoretical analysis on the competitive advantage of the proposed SBN 

algorithm 

Simulation studies in Section 3-5 will show that SBN is more accurate than various 

existing algorithms that employ a two-stage approach. This section aims to provide some 

theoretical insights about why the existing algorithms are less accurate. Please note that 

although a comprehensive analysis of this kind on all types of BNs and all two-stage 

algorithms is the most desirable, it is also very challenging, if not impossible, and beyond 

the scope of this paper. Therefore, in this section, we focus on some specific types of 

BNs and one popular two-stage algorithm, so as to provide some supporting evidences 

for the proposed SBN in addition to the results of the simulation studies in Section 3-5.   
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Fig. 3-2. The BCD algorithm used for solving (2) 

 

 

 

 

 

 

 

 

 

 

 

 

Input: sample matrix, 𝐗; number of 

variable, 𝑝; regularization parameters, 

{𝜆𝑖}𝑖    ; initial 𝐁⬚
 ; stopping criterion, 

𝜖. 

Initialize:    

Let 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑓𝑎𝑙𝑠𝑒; 

Let 𝑡   ; 

Repeat  

For 𝑖        𝑝 

        A Breadth-first search on 𝐆 with 𝑋𝑖 
being  

               the root node to calculate 𝐏𝑖𝑗 for   

                𝑗      𝑝. 

  Use the shooting algorithm in Fig. 

3-3 to  

  Optimize 𝑓𝑖(𝛃𝑖) and get 𝛃𝑖
𝑡  ; 

      End for 

If ‖𝐁⬚
𝑡   𝐁⬚

𝑡 ‖
 

 𝜖 then 

    𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑡𝑟𝑢𝑒; 

Else 

    𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑓𝑎𝑙𝑠𝑒; 

End if 

𝑡  𝑡   
𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑡𝑟𝑢𝑒
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Fig. 3-3. The shooting algorithm used for solving (3) 

Recall that Stage 1 of the two-stage approach is to identify the potential parents of 

each   . The existing algorithms achieve this goal by identifying the MB of   . A typical 

method is variable selection based on regressions, i.e., to build a regression of    on all 

other variables and consider the variables selected to be the MB. One difference between 

various algorithms is the type of regression used and the method used for variable 

selection. For example, the TC algorithm [40] uses ordinary regression and a t-test for 

variable selection; the L1MB-DAG algorithm [36] uses LASSO. 

However, in the regression of   , not only will the coefficients for the variables not in 

the MB be small (theoretically zero due to the definition of MB), the coefficients for the 

parents may also be very small due to the correlation between the parents and the 

children. As a result, some parents may not be selected in the variable selection, i.e., they 

will be missed in Stage 1 of the two-stage approach, leading to greater BN learning errors. 

Input: sample vector 𝒙𝑖; sample matrix 

𝐏𝐀(𝒙𝑖); regularization parameters, 

{𝜆𝑖}𝑖    ; initial 𝛃𝑖
 ; stopping criterion, 

𝜖. 

Initialize:    

Let co ve  e  f lse; 

Let 𝑡   ; 

Repeat  

For 𝑗        𝑝 

𝛽𝑗𝑖
𝑡   (|

(𝒙𝑖 𝛃𝑖 𝑗
𝑡 𝑇

𝐏𝐀 𝑗(𝒙𝑖))𝒙𝑗
𝑇

𝒙𝑖𝒙𝑖
𝑇 |  

               
(𝜆  𝜆 |𝐏𝑖𝑗|)

𝒙𝑖𝒙𝑖
𝑇 )

 

𝑠𝑖𝑔𝑛 (
(𝒙𝑖 𝛃𝑖 𝑗

𝑡 𝑇
𝐏𝐀 𝑗(𝒙𝑖))𝒙𝑗

𝑇

𝒙𝑖𝒙𝑖
𝑇 )

; 

      End for 

If ‖𝛃𝑖
𝑡   𝛃𝑖

𝑡‖
 

 𝜖 then 

    𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑡𝑟𝑢𝑒; 

Else 

    𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑓𝑎𝑙𝑠𝑒; 

𝑡  𝑡   
𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑡𝑟𝑢𝑒
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In contrast, SBN may not suffer from this problem, because it is a one-stage approach 

that identifies the parents directly.  

 

Fig. 3-4. A general tree           Fig. 3-5. A general inverse tree 

To further illustrate this point, we analyze one two-stage algorithm, the TC algorithm. 

TC does variable selection using a t-test. To determine whether a variable should be 

selected, a t-test uses the statistic  ̂   ( ̂)⁄ , where  ̂ is the least-square estimate for the 

regression coefficient of this variable and   ( ̂) is the standard error. The larger the 

value of  ̂   ( ̂)⁄ , the higher the chance that the variable will be selected. Theorems 2 

and 3 below show that even though the value of  ̂   ( ̂)⁄  corresponding to a parent of    

is large in the true BN, its value may decrease drastically in the regression of     on all 

other variables. Theorem 2 focuses on a specific type of BN, a general tree, in which all 

variables have one common ancestor and there is at most one directed path between two 

variables; Theorem 3 focuses on a general inverse tree, which becomes a general tree if 

reversing all the arcs. Proof of Theorem 2 can be found in Appendix A; proof of Theorem 

3 can be found in the Supplemental Material.   

Theorem 2. Consider a general tree with   variables, whose structure and parameters 

are given by      ,             ,             ,     4     (Fig. 3-4). 

All the variables have unit variance. Let  ̂   denote the least-square estimate for     in 

regression            . Let  ̂  
 𝐵  denote the least-square estimate for    

 𝐵  in 

regression       
 𝐵      

 𝐵       𝑚
 𝐵 𝑚    

 𝐵  (i.e., a regression that 

regresses    on all other variables in the general tree).Then, the following relations 

  𝑋𝑚 𝑋  

𝑋  

𝑋  𝑋𝑙 𝑚   𝑋𝑙   

𝑋𝑙   

𝑋𝑙   

𝑋𝑙   𝑋  
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hold: 

| ̂  
 𝐵|  | ̂  |  |

∏ (   ̂  
 ) 

   

∏ (   ̂  
 ) ∑ [ ̂  

 (   ̂  
 )∏ (   ̂  

 ) 
       ] 

   
 
   

|  | ̂  |, 

|
 ̂  

 𝐵

  ( ̂  
 𝐵)

|  |
 ̂  

  ( ̂  )
|  √

∏ (   ̂  
 )𝑚

   

∏ (   ̂  
 )  ∑ [ ̂  

 ∏ (   ̂  
 )𝑚

       ]𝑚
   

𝑚
   

 

                  |
 ̂  

  ( ̂  )
|  

where  ̂   denotes the least-square estimate for a regression coefficient     and   ( ̂  ) 

denotes the standard error for  ̂  . 

Theorem 3. Consider a general inverse tree with       variables, whose structure and 

parameters are given by      , 

                         ∑         
 
        ,                   

∑             
𝑚
         (Fig. 3-5). All the variables have unit variance. Let  ̂      

denote the least-square estimate for        in regression      ∑         
 
        , 

           Let  ̂     
 𝐵  denote the least-square estimate for       

 𝐵  in regression 

     ∑       
 𝐵   

 
            

 𝐵      ∑         
 𝐵     

𝑚
        

 𝐵 (i.e., a regression that 

regresses      on all other variables in the general inverse tree). Then, the following 

relations hold: 

| ̂     
 𝐵 |  | ̂     |  |

  ∑  ̂         
  

     ̂       
 

  ∑  ̂         
  

     ̂       
 ∑  ̂     

  
   

|  | ̂     |, 

|
 ̂     

  

  ( ̂     
  )

|  |
 ̂     

  ( ̂     )
|  |

  ∑  ̂         
  

     ̂       
 

  ∑  ̂         
  

     ̂       
 ∑  ̂     

  
   

|, 

 √
(  ∑  ̂     

  
   )(  ∑  ̂         

  
     ̂       

 ∑  ̂     
  

   )

(  ∑  ̂         
  

     ̂       
 ∑  ̂     

  
       )

, 

 √
  ∑  ̂     

 (  ∑  ̂         
  

     ̂       
 ) 

   

  ∑  ̂     
 (  ∑  ̂         

  
     ̂       

 ) 
       

 |
 ̂     

  ( ̂     )
|. 
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Here we use two examples to illustrate the Theorems. Consider a general tree with m=8 

(see Fig. 3-4 to recall the definition for  ) and least-square estimates for the parameters being 

 ̂       and  ̂      ,        . Then, using the formula for  ̂  
 𝐵 in Theorem 2, we 

can get  | ̂  
 𝐵|  | ̂  |        | ̂  |. Using the formula for  ̂  

 𝐵   ( ̂  
 𝐵)⁄ , we can get 

| ̂  
 𝐵   ( ̂  

 𝐵)⁄ |   | ̂    ( ̂  )⁄ |       | ̂    ( ̂  )⁄ | . Consider a general inverse 

tree with     and     (see Fig. 3-5 to recall definitions for   and  ) and least-square 

estimates for the parameters being [ ̂      ̂  ]      4                 4        and 

 ̂       . Then, using the formula for  ̂     
 𝐵  (i.e.,  ̂   

 𝐵,        ) in Theorem 3, we 

can get  | ̂  
 𝐵|  | ̂  |       | ̂  |, | ̂  

 𝐵|  | ̂  |        | ̂  |, | ̂  
 𝐵|  | ̂  |  

  4  | ̂  | , | ̂  
 𝐵|  | ̂  |     4  | ̂  | , and | ̂  

 𝐵|  | ̂  |     4  | ̂  | .  

Using the formula for  ̂     
 𝐵   ( ̂     

 𝐵 )⁄ , we can verify | ̂     
 𝐵   ( ̂     

 𝐵 )⁄ |  

| ̂       ( ̂     )⁄ |. 

Note that the theoretical study in this section focuses on Stage 1 of the two-stage approach. It 

would also be interesting to analyze Stage 2, e.g., to find out the relative significance of the 

coefficients for variables in the MB and identify under what conditions the true parents may 

be missed. We plan to conduct such analysis in the future.    

3.5 Simulation study on synthetic data 

We perform five simulations. The first two show that, on a general tree and a general 

inverse tree, the existing algorithms based on the two-stage approach may miss some true 

parents with a high probability, while SBN performs well. The third simulation is to 

compare the structure learning accuracy of SBN with other competing algorithms using 

some benchmark networks. The fourth and fifth simulations are to investigate the 

scalability and efficiency of SBN and compare it with other competing algorithms. The 

code is available at http://www.public.asu.edu/~shuang31/codes/SBN.rar.  

http://www.public.asu.edu/~shuang31/codes/SBN.rar
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                    (a)                                                                        (b)        

Fig. 3-6. (a) General tree used in the simulation study in Section 5.1; (b) General inverse 

tree used in the simulation study in Section 3-5-2  (regression coefficients of arcs 

generated from         (     )) 

 

  
                       (a)                                           (b)                                         (c) 

Fig. 3-7. (a) Frequency of    being identified as a parent of   ,        ; (b) ratio of 

number of correctly identified arcs in learned BN to number of arcs in true BN; (c) ratio 

of total learning error in learned BN (false positives plus false negatives) to number of 

arcs in true BN 

 

   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

q
u

e
n

c
y
 o

f 
X

1
 b

e
in

g
 i
d

e
n

ti
fi

e
d

a
s
 a

 p
a
re

n
t 

o
f 

X
i, 

i=
2
,.
..
,7

  
  

HITON

IAMB1

IAMB2

IAMB3

GS

IAMB

 TC

TC-bw

L1MB SC

SBN

General Tree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
a
ti

o
 o

f 
n

u
m

b
e
r 

o
f 

c
o

rr
e
c
tl

y
 i
d

e
n

ti
fi

e
d

 a
rc

s
 

in
 l
e
a
rn

e
d

 B
N

 t
o

 n
u

m
b

e
r 

o
f 

a
rc

s
 i
n

 t
ru

e
 B

N
  
 

HITON

IAMB1
IAMB2

IAMB3
GS

IAMB

 TC

TC-bw

L1MB
SC

SBN

General Tree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
a
ti

o
 o

f 
to

ta
l 
le

a
rn

in
g

 e
rr

o
r 

in
 l
e
a
rn

e
d

 
B

N
 t

o
 n

u
m

b
e
r 

o
f 

a
rc

s
 i
n

 t
ru

e
 B

N
  
  
  
  
  

HITON

IAMB1

IAMB2

IAMB3

GS
IAMB

 TC

TC-bw

L1MBSC
SBN

General Tree

HITON

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

q
u

e
n

c
y
 o

f 
X

1
 b

e
in

g
 i
d

e
n

ti
fi

e
d

 a
s
 p

a
re

n
ts

 o
f 

th
e
ir

 r
e
s
p

e
c
ti

v
e
 c

h
il
d

 i
n

 t
ru

e
 B

N
, 
i=

1
,.
..
,3

0

HITON

IAMB1

IAMB2

IAMB3

GS IAMB

 TC
TC-bw

L1MB
SC

SBN

General Inverse Tree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
a
ti

o
 o

f 
n

u
m

b
e
r 

o
f 

c
o

rr
e
c
tl

y
 i
d

e
n

ti
fi

e
d

 a
rc

s
 i
n

 l
e
a
rn

e
d

 B
N

 t
o

 n
u

m
b

e
r 

o
f 

a
rc

s
 i
n

 t
ru

e
 B

N
 

HITON

IAMB1

IAMB2
IAMB3

GS IAMB
 TC-bwTC

L1MB
SC

SBN

General Inverse Tree

0

0.1

0.2

0.3

0.4

0.5

0.6

R
a
ti

o
 o

f 
to

ta
l 
le

a
rn

in
g

 e
rr

o
r 

in
 l
e
a
rn

e
d

 
B

N
 t

o
 n

u
m

b
e
r 

o
f 

a
rc

s
 i
n

 t
ru

e
 B

N
  
  
  
  

HITON

IAMB1

IAMB2

IAMB3

GS
IAMB

 TC

TC-bw

L1MB
SC

SBN

General Inverse Tree



  51 

                     (a)                                        (b)                                          (c) 

Fig. 3-8. (a) Frequency of    being identified as parents of their respective child in true 

BN,         ; (b) ratio of number of correctly identified arcs in learned BN to number 

of arcs in true BN; (c) ratio of total learning error in learned BN (false positives plus false 

negatives) to number of arcs in true BN 

3.5.1 Learning accuracy for general tree 

We select 10 existing algorithms in our study: HITON-PC [47], IAMB and three of its 

variants [48], GS [39], SC [35], TC and its advanced version TC-bw [40], and L1MB-

DAG [36]. We focus on the general tree shown in Fig. 3-6 (a), in which the regression 

coefficient of each arc is randomly generated from         (     ). We simulate data 

from this general tree with a sample size of 200.  

We apply the selected existing algorithms on the simulated data; the parameters of 

each algorithm are selected in the way that has been suggested in the respective paper. 

Specifically, HITON-PC is applied with a significance level of 5% used in the G
2
 test of 

statistical independence and degrees of freedom set according to reference 14 cited in the 

paper of HITON-PC [47]. IAMB and its variants are applied with the significant level set 

to be 5%. GS is applied using the default value of 0.05 in its algorithm. SC is applied 

using the Bayesian scoring heuristic and the maximum number of parents chosen for the 

SC algorithm to be 5 and 10 (the one with better performance is kept and its 

corresponding result is presented). TC and TC-bw are applied by setting parameter 

    ( (   )) as suggested and adopted in the paper [40]. There is no free parameter 

in L1MB-DAG. 

In applying the proposed SBN,    is selected by BIC (i.e., a step search is employed to 

find the    that produces the minimum BIC value). Following Theorem 1,    is set to be  

   (   )    ⁄      which empirically guarantees a DAG to be learned. The initial 
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value of SBN is the output of L1MB which uses LASSO in Stage 1 to identify the MB 

for each variable. We treat the identified MB by LIMB as parents and use the resulting 

BN as the initial value for SBN.  

The results averaged over 100 repetitions are shown in Figs. 3-7 (a)–(c). The X-axis 

records the 10 selected algorithms and the proposed SBN (the last one). The Y-axis of 

each figure in (a)–(c) is a different performance measure, i.e., the frequency for    being 

identified as a parent of   ,        , in (a), the ratio of the number of correctly 

identified arcs in the learned BN to the number of arcs in the true BN in (b), and the ratio 

of the total learning error in the learned BN (false positives plus false negatives) to the 

number or arcs in the true BN in (c). Note that Fig. 3-7(a) focuses on the arcs between    

and   ,        , in order to demonstrate Theorem 2 (i.e., because the MB of    

includes not only parent    but also six children, the coefficient of the arc between parent 

   and    may be underestimated so that    may not be included in the MB identified in 

Stage 1 of the competing algorithms). The observation from Fig. 3-7(a) is consistent with 

this theoretical explanation, which shows that the competing algorithms do not perform 

as well as SBN. Figs. 3-7(b) and (c) are performance measures defined on all arcs. They 

also show SBN’s better performance. 

     

                                               (a)                                                                                  (b)  
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                                                  (c)                                                                                       (d)  

Fig. 3-9: (a) Ratio of total learning error in the learned BN (false positives plus false 

negatives) to the number of arcs in the true BN, for the 10 competing algorithms and 

SBN, on 11 benchmark networks; (b) ratio of the correctly identified arcs in the learned 

BN to the number of arcs in the true BN; (c) ratio of the false positive in the learned BN 

to the number of arcs in the true BN. (d) ratio of the total learning error in the learned 

PDAG to the number of arcs in the true PDAG. The learned BN and PDAG in (a) – (d) 

are based on a simulation dataset of sample size 1000. Error bars represent three standard 

derivations. 
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                                             (c)                                                                                     (d)  

Fig. 3-10: (a) Ratio of total learning error in the learned BN (false positives plus false 

negatives) to the number of arcs in the true BN, for the 10 competing algorithms and 

SBN, on 11 benchmark networks; (b) ratio of the correctly identified arcs in the learned 

BN to the number of arcs in the true BN; (c) ratio of the false positive in the learned BN 

to the number of arcs in the true BN. (d) ratio of the total learning error in the learned 

PDAG to the number of arcs in the true PDAG. The learned BN and PDAG in (a) – (d) 

are based on a simulation dataset of sample size 100. Error bars represent three standard 

derivations. 

3.5.2 Learning accuracy for general inverse tree 

We focus on the general inverse tree in Fig. 3-6 (b), in which the regression coefficient of 

each arc is randomly generated from         (     ). We simulate data from this 

general tree with a sample size of 200. 

We apply the 10 selected existing algorithms and SBN on the simulated data in the same 

way as that in Section 3-5-1. The results of 100 repetitions are shown in Figs. 3-8 (a)–(c), 

which can be read in a similar way to Fig. 3-7. Note that Fig. 3-8(a) focuses on the arcs 

between   ,         , and their respective children, in order to demonstrate Theorem 

3. Figs. 3-8(a)–(c) show that SBN performs better. 
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3.5.3 Learning accuracy for benchmark networks 

We select 7 moderately large networks from the Bayesian Network Repository (BNR) 

[49]. These networks are selected based on the consideration that they provide a range of 

small-to-moderately-large networks with the number of nodes ranging from 7 to 61, they 

are sparse, and they were also used in [36], which is a competing algorithm of ours. We 

also use the tiling technique [50] to produce two large BNs, Alarm2 and Hailfinder2. 

Two other networks with specific structures, Factor and Chain [51], are also considered. 

The numbers of nodes and arcs in each of the 11 networks are shown in Table 3-1.  

TABLE 3-1 
BENCHMARK NETWORKS 

  Networks 

Number  

of nodes 

Number  

of arcs 

1 Factor 27 68 

2 Alarm (BNR) 37 46 

3 Barley (BNR) 48 84 

4 Carpo (BNR) 61 74 

5 Chain 7 6 

6 Hailfinder (BNR) 56 66 

7 Insurance (BNR) 27 52 

8 Mildew (BNR) 35 46 

9 Water (BNR) 32 66 

10 Alarm 2 296 410 

11 Haifinder 2 280 390 

     

To specify the parameters of a network, i.e., to specify the regression coefficients of each 

variable on its parents, we randomly sample from         (     )   Then, we simulate 

data for each network with a sample size 1000, and apply the 10 competing algorithms 

and SBN to learn the BN structure. The results over 100 repetitions are shown in Fig. 3-

9(a), in which the X-axis records the 11 networks and the Y-axis records the ratio of the 

total learning error in the learned BN (false positives plus false negatives) to the number 

of arcs in the true BN. This figure deserves more explanation: we found it hard to show 
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all 10 competing algorithms, i.e., they become indistinguishable. Thus, for each 

benchmark network (i.e., a tick on the X axis), we only show the three competing 

algorithms with the best performance. For example, for network “Carpo” (4
th
 tick on the 

X axis) in Fig. 3-9(a), the top three competing algorithms shown are GS, TC, and SC. 

Figs. 3-9 (b)-(d) are comparison plots in terms of other criteria. Specifically, Fig. 3-9 (b) 

plots the ratio of the correctly identified arcs in the learned BN to the number of arcs in 

the true BN. Fig. 3-9 (c) plots the ratio of the falsely identified arcs in the learned BN to 

the number of arcs in the true BN. Fig. 3-9 (d) is similar to (a) but for PDAG (partially 

directed acyclic graph). Given a BN (a learned one or true one), the corresponding PDAG 

can be obtained by the method proposed in [13]. A PDAG is a collection of statistically 

equivalent BN structures, i.e., these structures all represent the same set of dependent and 

independent relationships so they are statistically indistinguishable. The PDAG of a BN 

can be constructed by replacing a directed arc between    and    in the BN with an 

undirected one, if some statistically equivalent BN structures have       and others 

have      . A PDAG is very useful when making a causal interpretation, i.e., we may 

interpret the directed arcs in the PDAG as representing the direction of direct causal 

influence. Figs. 3-9 (a)–(d) show that SBN performs much better than all the competing 

algorithms in BN- and PDAG-identification.  

Furthermore, we would like to compare SBN with the competing algorithms under 

small sample sizes. We decrease the sample size to 100 and repeat the above procedure. 

The results are shown in Figs. 3-10 (a)–(d). It can be seen that SBN still performs much 

better than all the competing algorithms in BN- and PDAG-identification even for small 

sample sizes. 
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                                                            (a)                                                                           (b) 

Fig. 3-11. Scalability of SBN with respect to (a) the number of variables,  ; (b) the 

sample size,  . 

 
Fig. 3-12. Comparison of SBN with competing algorithms on CPU time in structure 

learning. Y-axis is the CPU time for each sweep through all the columns of  , on a 

computer with Intel Core 2, 2.2 G Hz, 4G memory. X-axis is the first nine networks in 

Table 3-1. 

TABLE 3-2 
COMPARISON OF SBN WITH COMPETING ALGORITHMS ON THE CPU TIME IN STRUCTURE LEARNING 

OF TWO LARGE NETWORKS (STANDARD DERIVATION IS SHOWN IN THE BRACKET) 

Algorithms Alarm 2 Haifinder 2 

SBN 67.1 (13.4) 78.8 (19.5) 

SC 958 (73.6) 987 (83.2) 

L1MB-DAG 11715 (1034.8) 13521 (2543.3) 

GS 1071 (142.4) 1204 (98.5) 

TC-bw 35981 (2578.3) 41214 (5435.3) 

TC 445 (89.3) 496 (67.9) 

HITON 10324 (3390.7) 13913 (2482.1) 

IAMB 6423 (894.1) 8060 (1427.4) 

IAMB1 6416 (987.6) 8148 (1075.6) 

IAMB2 6411 (1293.2) 7994 (919.1) 
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IAMB3 6415 (1508) 7998 (1793.7) 

 

3.5.4 Scalability 

We study two aspects of scalability for SBN: the scalability with respect to the number of 

variables in a BN,  , and the scalability with respect to the sample size,  . We use the 

CPU time for each sweep through all the columns of   as the parameter for measurement. 

Specifically, we fix   =1000, and vary   by using the 11 benchmark networks.. Also, we 

fix  =37 (the Alarm network). The results over 100 repetitions are shown in Fig. 3-11 (a) 

and (b), respectively. It can be seen that the times are linear in   and quadratic in  , 

which confirms our theoretical time complexity analysis in Section 3-3.   

3.5.5 Efficiency 

We further compare the complete CPU time of SBN with other competing algorithms, in 

structure learning of the 11 benchmark networks. The results of 100 repetitions are shown 

in Table 3-2 (the two large networks, Alarm 2 and Haifinder 2) and Fig. 3-12 (the other 

networks). It can be seen that SBN is the fastest algorithm in structure learning of all the 

benchmark networks. This is expected since the fastest algorithms among the 10 

competing algorithms, i.e., GS and TC, have a time complexity  (   ), while SBN only 

costs  (   ) (i.e., each sweep of SBN costs  (   ) and our simulation study shows that 

SBN usually takes no more than 5 sweeps to converge). Note that in many applications, 

there is no prior knowledge which can be used to identify a good initial value for B, in 

which cases SBN usually need a good initialization learnt from other algorithms, such as 

L1MB or SC. Thus, in these applications, it is reasonable to consider the computational 

complexity of SBN as a sum of the computational complexity of both SBN and L1MB. 

3.6 Brain connectivity modeling by SBN 
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FDG-PET images of 49 AD and 67 matching normal control (NC) subjects are 

downloaded from the Alzheimer’s Disease Neuroimaing Initiative website 

((www.loni.ucla.edu/ADNI). Demographic information and MMSE scores of the subjects 

are given in Table 3-3.  

We apply Automated Anatomical Labeling [52] to segment each image into 116 

anatomical volumes of interest (AVOIs) and then select 42 AVOIs that are considered to 

be potentially relevant to AD based on the literature. Each AVOI becomes a 

region/variable/node in SBN. Please see Table 3-4 for the name of each AVOI brain 

region. These regions distributed in the four lobes of the brain, i.e., the frontal, parietal, 

occipital, and temporal lobes. The measurement data of each region, according to the 

mechanism of FDG-PET, is the regional average FDG binding counts, representing the 

degree of glucose metabolism. 

We apply SBN to learn a BN for AD and another one for NC, to represent their 

respective brain connectivity models. Note that because BNs are directed graphical 

models, a connectivity model learned by SBN reveals the directional effects of one brain 

region over another—called the effective connectivity of the brain [59]. Effective 

connectivity has been much less studied in the AD literature, while most existing work 

focuses on the functional connectivity, i.e., the correlations among brain regions. Studies 

on effective connectivity can greatly complement the existing functional connectivity 

studies by providing insight into how the correlations are mediated, which may further 

lead to an understanding of the mechanism underlying the communication among distinct 

brain regions. In this sense, SBN has the advantage over undirected graphical models of 

discovering new knowledge about AD.  

http://www.loni.ucla.edu/ADNI
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TABLE 3-3 

 Demographic Information and MMSE 

 

TABLE 3-4 

NAMES OF THE AVOI FOR BRAIN CONNECTIVITY MODELING (L = LEFT HEMISPHERE, 

R=RIGHT HEMISPHERE) 

 

In the learning of an AD (or NC) effective connectivity model, the value for    needs 

to be selected. In this paper, we adopt two criteria in selecting   : one is to minimize the 

prediction error of the model and the other is to minimize the BIC. Both criteria have 

been popularly adopted in sparse learning [20], [21], [22], [37]. The two criteria lead to 

similar findings from the effective connectivity models, so only the results based on the 

minimum prediction error are shown in this section and the results based on BIC are 

included in Supplemental Material. For a given    value, the prediction error of the 

corresponding BN is computed as follows: First, a regression is fit for each node using 

the parents as predictors, and the regression coefficients are estimated by MLE. Then, the 

mean square error between the true and predicted values of each node is computed based 

on leave-one-out cross validation. Finally, the mean square errors of all the nodes are 

1 Frontal_Sup_L 13 Parietal_Sup_L 21 Occipital_Sup_L 27 Temporal_Sup_L 

2 Frontal_Sup_R 14 Parietal_Sup_R 22 Occipital_Sup_R 28 Temporal_Sup_R 

3 Frontal_Mid_L 15 Parietal_Inf_L 23 Occipital_Mid_L 29 Temporal_Pole_Sup_L 

4 Frontal_Mid_R 16 Parietal_Inf_R 24 Occipital_Mid_R 30 Temporal_Pole_Sup_R 

5 Frontal_Sup_Medial_L 17 Precuneus_L 25 Occipital_Inf_L 31 Temporal_Mid_L

6 Frontal_Sup_Medial_R 18 Precuneus_R 26 Occipital_Inf_R 32 Temporal_Mid_R 

7 Frontal_Mid_Orb_L 19 Cingulum_Post_L 33 Temporal_Pole_Mid_L 

8 Frontal_Mid_Orb_R 20 Cingulum_Post_R 34 Temporal_Pole_Mid_R

9 Rectus_L 35 Temporal_Inf_L 8301

10 Rectus_R 36 Temporal_Inf_R 8302

11 Cingulum_Ant_L 37 Fusiform_L 

12 Cingulum_Ant_R 38 Fusiform_R 

39 Hippocampus_L 

40 Hippocampus_R 

41 ParaHippocampal_L 

42 ParaHippocampal_R 

Temporal lobeFrontal lobe Parietal lobe Occipital lobe
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summed to represent the prediction error of the BN. The    value that leads to the 

minimum prediction error is selected; with this   , SBN is applied to learn a BN brain 

connectivity model. Fig. 3-13 shows the connectivity models for AD and NC. Each 

model is represented by a "matrix." Each row/column is one AVOI,   . A black cell at 

the  -th row and  -th column of the matrix represents that    is a parent of   . On each 

matrix, four red cubes are used to highlight the four lobes, i.e., the frontal, parietal, 

occipital, and temporal lobes, from top-left to bottom-right. The black cells inside each 

red cube reflect intra-lobe effective connectivity, whereas the black cells outside the 

cubes reflect inter-lobe effective connectivity.  

  

     (a)                                     (b) 

Fig. 3-13. Brain effective connectivity models by SBN. (a) AD; (b) NC. 

The following interesting observations can be drawn from the connectivity models: 

Global-scale effective connectivity:  

The total number of arcs in a BN connectivity model— equal to the number of black 

cells in a matrix plot in Fig. 3-13—represents the amount of effective connectivity (i.e., 

the amount of directional information flow) in the whole brain. This number is 285 and 

329 for AD and NC, respectively. In other words, AD has 13.4% less amount of effective 

connectivity than NC. Loss of connectivity in AD has been widely reported in the 

literature [60], [68], [69], [70].  

Intra-/inter-lobe effective connectivity distribution:  
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Aside from having different amounts of effective connectivity at the global scale, AD 

may also have a different distribution pattern of connectivity across the brain from NC. 

Therefore, we count the number of arcs in each of the four lobes and between each pair of 

lobes in the AD and NC effective connectivity models. The results are summarized in 

Table 3-5. It can be seen that the temporal lobe of AD has 22.9% less amount of effective 

connectivity than NC. The decrease in connectivity in the temporal lobe of AD has been 

extensively reported in the literature [53], [54], [55]. The interpretation may be that AD is 

featured by dramatic cognitive decline and the temporal lobe is responsible for delivering 

memory and other cognitive functions. As a result, the temporal lobe is affected early and 

severely by AD, and the connectivity network in this lobe is severely disrupted. On the 

other hand, the frontal lobe of AD has 27.6% more amount of connectivity than NC. This 

observation has been interpreted as compensatory reallocation or recruitment of cognitive 

resources [56], [53], [57]. Because the regions in the frontal lobe are typically affected 

later in the course of AD (our data uses mild to moderate AD), the increased connectivity 

in the frontal lobe may help preserve some cognitive functions in AD patients. In addition, 

AD shows a decrease in the amount of connectivity in the parietal lobe, which has also 

been reported to be affected by AD. There is no significant difference between AD and 

NC in the occipital lobe. This observation is reasonable because the occipital lobe is 

primarily involved in the brain’s visual function, which is not affected by AD.  

TABLE 3-5 

INTRA – AND INTER- LOBE EFFECTIVE CONNECTIVITY AMOUNTS 

(A) AD                                                     (B) NC 
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In addition to generating the connectivity models of AD and NC based on the 

minimum prediction error and minimum BIC criteria, we also generate the connectivity 

models by making the total numbers of arcs the same for AD and NC. We choose to do 

this to factor out the connectivity difference between AD and NC that is due to the 

difference at the global scale so that the remaining difference will reflect their difference 

in connectivity distribution. Specifically, the connectivity models with the total number 

of arcs equal to 120, 80, and 60 are generated (see Supplemental Material), which show 

similar intra- and inter-lobe effective connectivity distribution patterns to those discussed 

previously.  

Direction of local effective connectivity:  

As mentioned previously, one advantage of BNs over undirected graphical models in 

brain connectivity modeling is that the directed arcs in a BN reflect the directional effect 

of one region over another, i.e., the effective connectivity. Specifically, if there is a 

directed arc from brain regions    to   , it indicates that    takes a dominant role in the 

communication with   . The connectivity modes in Fig. 3-13 reveal a number of 

interesting findings in this regard:  

(i) There are substantially fewer black cells in the area defined by rows 27–42 and 

columns 1–26 in AD than NC. Recall that rows 27–42 correspond to regions in the 

temporal lobe. Thus, this pattern indicates a substantial reduction in arcs pointing from 

temporal regions to the other regions in the AD brain, i.e., temporal regions lose their 

dominating roles in communicating information with the other regions as a result of AD.  

The loss is the most severe in the communication from temporal to frontal regions.  

(ii) Rows 31 and 35, corresponding to brain regions “Temporal_Mid_L” and 

“Temporal_Inf_L”, respectively, are among the rows with the largest number black cells 

in NC, i.e., these two regions take a significantly dominant role in communicating with 
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other regions in normal brains. However, the dominancy of the two regions is 

substantially reduced by 34.8% and 36.8%, respectively, in AD. A possible interpretation 

is that these are neocortical regions associated with amyloid deposition and early FDG 

hypometabolism in AD [60], [61], [62], [63], [64], [65].       

(iii) Columns 39 and 40 correspond to regions “Hippocampus_L” and 

“Hippocampus_R,” respectively. There are a total of 33 black cells in these two columns 

in NC, i.e., 33 other regions dominantly communicate information with the hippocampus. 

However, this number reduces to 22 (33.3% reduction) in AD. The reduction is more 

severe in Hippocampus_L—actually a 50% reduction. The hippocampus is well known to 

play a prominent role in making new memories and recalling. It has been widely reported 

that the hippocampus is affected early in the course of AD, leading to memory loss—the 

most common symptom of AD.  

 (iv) There are a total of 93 arcs pointing from the left to the right hemispheres of the 

brain in NC; this number reduces to 71 (23.7% reduction) in AD. The number of arcs 

from the right to the left hemispheres in AD is close to that in NC. This provides 

evidence that AD may be associated with inter-hemispheric disconnection and the 

disconnection is mostly unilateral, which has also been reported by some other papers 

[66], [67].  

  Note that all the above findings also hold for the PDAGs that are derived from the 

DAGs in Fig. 3-13. Please see Supplemental Material for the PDAGs. 

3.7 Conclusion 

In this paper, we proposed a BN structure learning algorithm, SBN, for learning large-

scale BN structures from high-dimensional data. SBN adopted a novel formulation that 

involves one L1-norm penalty term to impose sparsity on the learning and another 

penalty to ensure the learned BN to be a DAG. We studied the theoretical property of the 
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formulation and identified a finite value for the regularization parameter of the second 

penalty; this value ensures that the learned BN is a DAG. Under this formulation, we 

further proposed use of the BCD and shooting algorithms to estimate the BN structure.  

Our theoretical analysis on the time complexity of SBN showed that it is linear in the 

sample size and quadratic in the number of variables. This makes SBN more scalable and 

efficient than most existing algorithms, and thus makes it well suited for large-scale BN 

structure learning from high-dimensional datasets. In addition, we performed theoretical 

analysis on the competitive advantage of SBN over the existing algorithms in terms of 

learning accuracy. Our analysis showed that the existing algorithms employ a two-stage 

approach in BN structure identification, and thus having a high risk of misidentifying 

parents of each variable, whereas SBN does not suffer from this problem.   

Our experiments on 11 moderate to large benchmark networks showed that SBN 

outperforms 10 competing algorithms in all metrics defined for measuring the learning 

accuracy and under various sample sizes. Also, SBN outperforms the 10 competing 

algorithms in scalability and efficiency.  

We applied SBN to identify the effective brain connectivity model of AD from 

neuroimaging PDG-PET data. Compared with a brain connectivity model of NC, we 

found that AD had significantly reduced amounts of effective connectivity in key 

pathological regions. This is consistent with known pathology and the clinical 

progression in AD. Clinically, our findings may be useful for monitoring disease progress, 

evaluating treatment effects (both symptomatic and disease modifying), and enabling 

early detection of network disconnection in prodromal AD.  

In future work, we will investigate how to measure statistical significance of the DAG 

identified by our algorithm. Potential methods include bootstrap [71], permutation tests 

[72], and stability selection [73]. This study is also important from the medical point of 
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view as it will help verify the significance of the identified brain connectivity loss based 

on the DAG.  Also, although this paper focuses on structure learning of Gaussian BNs, 

the same formulation may be adopted for discrete BNs, which will be interesting to 

explore. In addition, we will investigate the behavior of SBN on Markov equivalent class.  

Our empirical observation has shown that the objective function of SBN is not Markov 

equivalent, i.e., SBN attributes different scores to BNs that are Markov equivalent. More 

in-depth theoretical analysis will be performed in future research. 

Appendix 

Based on Wright’s second decomposition rule [58], the sample covariance matrix of all 

the variables, denoted by  𝑚 , can be represented as a function of the least-square 

estimates for the parameters of the BN,  ̂    ̂    ̂      ̂ 𝑚, i.e.,    
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                             (A-1) 

Now, consider the regression of    on all other variables, i.e.,       
 𝐵   

   
 𝐵       𝑚

 𝐵 𝑚    
 𝐵 . According to the least square criterion, the regression 

coefficients,  

                                           [ ̂  
 𝐵  ̂  

 𝐵    ̂ 𝑚
 𝐵]

 
  𝑚  

  [ ̂    ̂      ̂ 𝑚]
 
,         (A-2) 

where 𝑚   is a sub-matrix of  𝑚  by deleting the 1st column and 1st row from  𝑚 . 

Denote  𝑚  
   by  𝑚   (   ). Then,  

                                              ̂  
 𝐵      ̂       ̂       𝑚   ̂ 𝑚.                  (A-3) 
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Our final objective is to express  ̂  
 𝐵  by the parameters of the BN. This can be 

achieved if we can express              𝑚   by the parameters of the BN, which is the 

goal of the following derivation.      

It is known that  

                                                         (  )      (       )

   (    )
,                               (A-4) 

where    𝑚   is a matrix by deleting the 1
st
 row and the j

th 
column from  𝑚  . So, the 

problem becomes calculation of  e ( 𝑚  ) and  e (    𝑚  ).  

(i) Calculation of  e ( 𝑚  ): 

We first show the result: 

 e ( 𝑚  )  ∏ (   ̂  
 )  ∑ ((   ̂  

 ) ̂  
 ∏ (   ̂  

 )𝑚
       )𝑚

   
𝑚
     (A-5)                     

Note that ∏ (   ̂  
 )𝑚

          while     and    . 

Next, we will use the induction method in 1)-2) below to prove (A-5):  

1) When    , it is easy to see that (A-5) holds. 

2) Assume that (A-5) holds for    , i.e.,  

 e ( 𝑚  )      ∏ (   ̂  
 )  ∑ ((   ̂  

 ) ̂  
 ∏ (   ̂  

 )𝑚  
       )𝑚  

   
𝑚  
   .  

Then we need prove that (A-5) holds for    . Based on the definition of 

determinant, 

                                     e ( 𝑚  )  ∑ (  )      
𝑚  
    e (    𝑚  ),                    (A-6) 

Where     is the entry at the 1
st
 row and j

th
 column of  𝑚  . Now we need to derive 

 e (    𝑚  )(only results are shown below due to page limits):  

When    ,  e (    𝑚  )  ∏ (   ̂  
 )  ∑ ( ̂  

 ∏ (   ̂  
 )𝑚

       )𝑚
   

𝑚
   .          (A-7) 

When    ,  e (    𝑚  )  (  )      ̂   ̂    ∏ (   ̂  
 )𝑚

       .                     (A-8)           

Then, insert (A-7), (A-8), and      ,      ̂   ̂  , …,  𝑚    ̂   ̂ 𝑚 into (A-6):  
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This completes the proof for (A-5).  

(ii) Calculation of  e (    𝑚  ):  e (    𝑚  ) has been obtained by (A-7) and (A-8).  

Inserting (A-5), (A-7), and (A-8) into (A-4), we get:  
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, 

Furthermore,        ̂   ̂       ̂   ̂       𝑚   ̂   ̂ 𝑚   . Inserting this into 

(A-3), we get ̂  
 𝐵     (  (   ̂  

 ))   ̂  . Plugging in the     above, we can get: 
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,             (A-9) 

Obviously, the faction at the right-hand side is between 0 and 1. Therefore,| ̂  
 𝐵|  | ̂  |. 

Next we derive the formula for  ̂  
 𝐵   ( ̂  

 𝐵) . It is known that    ( ̂  
 𝐵)  

     (   )( 𝑚
  )   . Since ( 𝑚
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   ]and  e ( 𝑚  ) is given in (A-5), we can get:  
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Also,    ( ̂  )  (   ̂  
 ) (   ). Putting this together with (A-9) and (A-10), we 

can get: 
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It is obvious that the part under the root is less than one. Therefore, | ̂  
 𝐵   ( ̂  

 𝐵)|  

| ̂     ( ̂  )|.                        
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Chapter 4  

A TRANSFER LEARNING APPROACH FOR NETWORK MODELING 

Abstract 

Networks models have been widely used in many domains to characterize the interacting 

relationship between physical entities. A typical problem faced is to identify the networks 

of multiple related tasks that share some similarities. In this case, a transfer learning 

approach that can leverage the knowledge gained during the modeling of one task to help 

better model another task is highly desirable. In this paper, we propose a transfer learning 

approach, which adopts a Bayesian hierarchical model framework to characterize task 

relatedness and additionally uses the   -regularization to ensure robust learning of the 

networks with limited sample sizes. A method based on the Expectation-Maximization 

(EM) algorithm is further developed to learn the networks from data. Simulation studies 

are performed, which demonstrate the superiority of the proposed transfer learning 

approach over single task learning that learns the network of each task in isolation. The 

proposed approach is also applied to identification of brain connectivity networks of 

Alzheimer’s disease (AD) from functional magnetic resonance image (fMRI) data. The 

findings are consistent with the AD literature. 

4.1 Introduction 

Network models have been extensively used in many domains to characterize the 

interacting relationship between physical entities. For example, they have been used to 

model how different genes interact in a biological process and the resulting networks are 

called gene association networks (Friedman et al., 2000). They have been used to model 

how different brain regions interact to jointly deliver a brain function such as cognition 

and emotion, and the resulting networks are called brain connectivity networks (Huang et 

al., 2010). They have also been used to model the relationship between process and 
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product quality variables for quality control of manufacturing processes (Li and Shi, 

2007). With the advancement of sensing technologies, network models can be learned 

from the rich amounts of sensing data, such as gene micro-arrays, brain images, and 

production data for the aforementioned networks, respectively. Note that the network 

models focused on in this paper are also called graphical models. Learning graphical 

models from data has been a popular research area in statistics and machine learning. 

Existing research in graphical models focuses on learning a network/graphical 

model for a single task. However, many real-world problems involve learning of network 

models for multiple related tasks (i.e., one model for each task). For example, there may 

be a group of Alzheimer’s disease (AD) patients for each of whom we want to learn a 

brain connectivity network based on his/her functional magnetic resonance image (fMRI) 

data. The purpose of such a study may be to identify brain connectivity patterns common 

to AD patients, which have the potential for being used as AD biomarkers to help clinical 

diagnosis. Here, each patient is a task; these tasks/patients are related in the sense that 

they have the same disease and thus their respective brain connectivity networks may 

share some similarities. Because of the similarities, the networks of the AD patients 

should be learned jointly, rather than independently, to leverage the knowledge gained in 

the network modeling of one patient to help better model another patient. This kind of 

joint learning is called “transfer learning” in this paper. Transfer learning is especially 

useful when the data of each task has a low sample size, such as the fMRI data of each 

AD patient. In this case, transfer learning allows for use of data of other related tasks, in 

an appropriate way, to compensate for the sample shortage in each task.  

Transfer learning is useful not only in the aforementioned multi-subject studies, 

but also in multi-time longitudinal studies. For example, it may be of interest to learn 

brain connectivity networks for several longitudinal time points of an AD patient to track 
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the disease progression. Despite difference, these networks should share some similarities 

because they all correspond to the same patient and disease progression is a continuous 

process. As a result, transfer learning can be used to learn these networks jointly to 

enable knowledge transfer between them.  

In addition to brain connectivity networks, transfer learning may be useful in 

other applications. For example, it may be used for modeling gene association networks 

of patients with the same type of cancer or gene association networks at longitudinal time 

points of a cancer patient. As another example, transfer learning may be used for 

modeling process-quality interactions of several products belonging to the same product 

family or process-quality interactions of different generations of a product.  

Transfer learning is a natural skill of human beings. For example, we may find 

that learning to recognize apples may help recognize pears; learning to play an electronic 

organ may help learn a piano. Transfer learning in statistics and machine learning has 

focused on predictive models such as regressions and neural networks (Bakker and 

Heskes, 2003; Baxter, 2000; Caruana, 1997; Lawrence and Platt, 2004; Zhang et al., 

2006). One major difference of these existing works is that they characterize the 

relatedness of the tasks in different ways. Thrun and O’Sullivan (1996) proposed use of a 

distance metric to evaluate the relatedness between tasks. In the setting of neural 

networks, task relatedness was reflected by shared hidden nodes between tasks (Caruana, 

1997). The recent work by Zhang et al. (2006) assumed that task parameters are 

generated from independent sources which account for the relatedness of the tasks. 

Several studies have adopted the Bayesian hierarchical modeling framework and taken 

the relatedness into account by placing a common prior on model parameters of the tasks 

(Lawrence and Platt, 2004; Yu et al. 2005; Xue et al., 2007). Despite the popularity of 
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transfer learning in predictive models, limited work has been done on transfer learning of 

graphical/network models. This paper intends to bridge this gap. 

In this paper, we propose a transfer learning approach for network modeling of 

multiple related tasks. We focus on one particular type of network model called Gaussian 

Graphical Model (GGM). A GGM consists of nodes that are random variables following 

a multivariate normal distribution and undirected arcs that indicate non-zero partial 

correlations between variables. Various methods have been developed for learning a 

GGM from data, which are also known as methods for inverse covariance (IC) estimation, 

because the undirected arcs in a GGM correspond to nonzero entries in the IC matrix of 

the data. These methods are reviewed as follows. Note that transfer learning is not 

considered in these existing methods.  

One class of methods for GGM learning is based on regression. For example, a 

variable-by-variable approach for neighborhood selection via the lasso regression was 

developed by Meinshausen and Buhlmann (2006). A joint sparse regression model, 

which simultaneously performs neighborhood selection for all variables, was developed 

by Schafer and Strimmer (2005). A sparse regression technique called SPACE, which is 

particularly useful in identifying hubs in gene association networks, was developed by 

Peng et al. (2009). Another class of methods employs the maximum likelihood 

framework. A penalized maximum likelihood approach that performs model selection 

and estimation simultaneously was proposed by Yuan and Lin (2007). Further, efficient 

algorithms were proposed by Friedman et al. (2007) and Levina et al. (2008) to 

implement the penalized maximum likelihood approach by Yuan and Lin (2007), which 

are applicable to high-dimensional problems. Some other methods were proposed, such 

as a method based on threshold gradient descent regularization developed by Li and Gui 

(2006) and a method for overcoming the ill-conditioned problem of the sample 
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covariance matrix by Schafer and Strimmer (2005). In addition, there are methods 

dealing with the situations when variables have a natural ordering (Bickel and Levina, 

2008; Levina et al, 2008).  

Different from these existing methods, the approach we propose enables transfer learning 

in learning of GGMs for multiple related tasks. Specifically, we adopt the Bayesian 

hierarchical modeling (BHM) framework in our problem formulation to characterize the 

relatedness of tasks. We further add   -regularization to our problem formulation.   -

regularization has been well-known to be able to discourage truly zero parameters or 

small-valued parameters from showing up in the learned model. This is especially 

advantageous when the model is high-dimensional and the sample size is limited, in 

which case conventional statistical estimation methods without regularization, such as the 

Maximum Likelihood Estimation (MLE), may generate unreliable estimates.   -

regularization has been adopted in regressions (Tibshirani, 1996) and graphical models 

without transfer learning (Friedman et al., 2007), and have demonstrated effectiveness. 

Under the proposed problem formulation, we further develop a method based on the 

Expectation-Maximization (EM) algorithm (Dellaert, 2002) to solve the problem, i.e., to 

jointly learn GGMs for multiple related tasks with transfer learning enabled. Furthermore, 

we conduct simulation studies to compare performance of the proposed transfer learning 

approach with single task learning that learns GGMs for each task in isolation. Finally, 

we apply the proposed approach to a real-world application of brain connectivity network 

modeling for AD based on fMRI data. 15 AD patients are considered as related tasks and 

the purpose is to identify common patterns shared by their brain connectivity networks, in 

contrast with the normal brain connectivity networks of 16 matched normal controls 

(NCs). 
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4.2 Introduction to GGM 

A GGM consists of nodes,   {       }, and undirected arcs. The nodes are random 

variables following a multivariate normal distribution, i.e.,     (   ). Let   be the 

inverse covariance (IC) matrix of the distribution, i.e.,      . There is an arc between 

nodes    and    if and only if the entry at the  -th row and  -th column of   is nonzero. 

Please see Fig. 4-1 for an example of a GGM and the corresponding IC matrix.  

 

Fig. 4-1 A GGM and the corresponding IC matrix (     ; only entries at the upper 

triangle are shown because the matrix is symmetric and the diagonal entries are not used 

in the GGM) 

Given data on the nodes, the GGM can be learned by estimating the IC matrix. It 

is straightforward to derive the log-likelihood of  , which is    | |    (  ), where | | 

and    ( ) denote the determinant and trace of a matrix, respectively, and   is the sample 

covariance matrix. By maximizing this log-likelihood, we can obtain the MLE for  , 

which is  ̂       . However, for large-scale GGMs with limited sample sizes, the 

MLE may be quite unreliable in the sense that many zero entries in   may be nonzero in 

 ̂   , leading to a densely connected GGM that is hard to interpret. In the extreme case 

when the sample size is less than the number of nodes,   is not invertible. To tackle this 

deficiency of the MLE, a well-known strategy is to maximize the   -regularized log-

likelihood function, i.e.,  
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where ‖ ‖   is the so-called   -norm of  , i.e., the sum of the absolute values of the 

entries in  .   is the regularization parameter; the larger the  , the more zero entries the 

 ̂ will have, i.e., the  ̂ will be sparser.   can be specified by the user or cross-validation. 

(1) is best known as the method of graphical LASSO (Friedman et al., 2007), which can 

be efficiently solved by the Block Coordinate Descent (BCD)  algorithm (Sun et al., 

2009).   

4.3 Problem formulation and transfer learning in GGM 

Assume that there are   related tasks. To estimate the IC matrix for each task,   , the 

graphical LASSO in (1) may be used, i.e., 

            ̂                         |  |    (    )    ‖  ‖  ,                       (2) 

where    is the sample covariance matrix for task  ,        . This method treats the 

tasks as independent and does not exploit their relatedness. Alternatively, we propose to 

consider the relatedness by assuming that the   ’s are “samples” drawn from the same 

probability distribution, i.e., we adopt the BHM framework to characterize the task 

relatedness (Fig. 4-2). This same probability distribution is chosen to be a Wishart 

distribution, i.e.,            ( 
 ) , where    is a     positive definite matrix 

(called the scale matrix) and       (called the degrees of freedom). This choice is 

based on the following considerations: (i) The   ’s are symmetric, positive-definite 

matrices and the Wishart distribution is developed for matrices of such characteristics. (ii) 

In Bayesian inference, the Wishart distribution has been commonly used as the prior 

distribution of the IC matrix of a multivariate normal distribution. (iii) The degrees of 

freedom,  , of the Wishart distribution is nicely interpretable in our problem, as will be 

shown in Section 4-4-3. (iv) The scale matrix,   , of the Wishart distribution depicts 

how the tasks are related. Specifically, because  

                                                     E(  )=    ,                                                   (3) 
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the tasks are related in the sense that their respective IC matrices share the same prior 

mean.   

 

Fig. 4-2 A BHM framework for characterizing task relatedness  

To enable transfer learning, the   ’s should be estimated by utilizing not only the 

data, i.e., the   ’s, but also the parameters of the common Wishart distribution,    and  . 

The challenge here is that    and   are unknown.   may be specified by the user or 

identified from data by cross-validation. This strategy, however, does not work for    

because    is a high-dimensional matrix. Therefore, we propose to integrate out    

during the estimation of the   ’s, i.e., we aim to find an estimate,   ̂ , for each   , that 

maximizes the logarithm of the posterior probability of   ’s  given the data, 

marginalizing over   . This can be written as:  

   { ̂ }        𝑚
      {  }         

∫ lo  ({  }        𝑚   |{  }        𝑚)    
            (4) 

Equivalently, we can maximize the logarithm of the joint probability which is 

proportional to the posterior probability in (4), i.e.,  

{ ̂ }        𝑚
       {  }         

∫ lo  ({  }        𝑚    {  }        𝑚)    
         (5) 

In (5), the  ({  }        𝑚    {  }        𝑚) can be written as 

 ({  }        𝑚    {  }        𝑚)  

 ({  }        𝑚|{  }        𝑚   ) ({  }        𝑚|  ) (  ). According to the structure 

in Fig. 4-2, the   ’s  are conditionally independent given  
 , so  ({  }        𝑚|  )  

( )hwishart Θ

mΘ

mS

Task m

… …
iΘ

iS

Task i

1Θ

1S

Task 1
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∏  (  | 
 )𝑚

   . Each    is independent of    given   , so 

 ({  }        𝑚|{  }        𝑚   )  ∏  (  |  )
𝑚
   . Therefore, (5) can be further written 

as:  

{ ̂ }        𝑚
       

{  }         

∫    ( (  )∏ (  | 
 )

𝑚

   

∏ (  |  )

𝑚

   

)
  

                ( ) 

where  (  | 
 )  |  |

   ⁄
|  |

(     )  ⁄     
   (    

  )  ⁄
 and  (  |  )  

|  |
   ⁄          (    )  ⁄ . Then, (6) becomes: 

{ ̂ }        𝑚
 

      {  }         
∫ ∑ {

        

 
   |  |  

 

 
  (    

  )  
  

 
  (    )}

𝑚
           (7) 

Moreover, due to the same consideration as graphical LASSO, we add   -regularization 

to (7), which gives the final objective function, i.e., 

{ ̂ }        𝑚
       {  }         

∫ ∑ {
        

 
   |  |  

 

 
  (    

  )  𝑚
     

  

 
  (    )    ‖  ‖  }                                                                                      (8) 

4.4 Problem solving by an EM algorithm 

It is difficult to solve (8) directly, since it involves an integral over a high-dimensional 

matrix   . We propose a method based on the EM algorithm. Adopting the EM 

algorithm is a natural choice because we want to integrate out    in (8), i.e., treat    as 

latent, and the EM algorithm is a well-known approach for model estimation with latent 

variables. In this section, we first introduce the general EM algorithm, and then describe 

the proposed method. 

4.4.1 Introduction to general EM algorithm 

Consider a probabilistic model that depends on some observed variables,  , and some 

unobserved latent variables,  . Let   denote the parameters of the model that need to be 
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estimated. One way of estimation is to find estimates for   that maximize the posterior 

probability of   given   and  . However, as   is latent, the estimation cannot be done 

directly, but through an iterative algorithm that alternates between an E (expectation) step 

and an M (maximization) step. Specifically, the E step is to calculate the expectation of 

the logarithm of the joint distribution of  ,   , and   (which is proportional to the 

posterior probability of   given   and  ), with respect to the conditional distribution of   

given   under the current (i.e., the  -th iteration) estimates for the parameters   . Denote 

this expectation by  ( |  ), i.e.,  

          ( |  )    |    { (     )}  ∫  (     ) ( |    )
 

   

where,  (     )      (     ) . Then, the M step is to find the parameters that 

maximize  ( |  ), i.e.,  

                    
 

 ( |  ) 

These parameters      are then used for the next E step. Such iterations have been 

proven to converge (Wu, 1983).   

4.4.2 Solving the transfer learning formulation under EM framework 

To fit the transfer learning formulation in (8) into the EM framework, we consider 

{  }        𝑚,   , and {  }        𝑚 to be the parameters to be estimated, the latent and 

the observed variables (i.e.,  ,   , and  ), respectively. Then, the E step is to calculate 

∫  ({  }        𝑚    {  }        𝑚) (  |{  }        𝑚 {  
 }

        𝑚
)

     . According 

to Fig. 4-2,    is independent of {  }        𝑚  given {  
 }

        𝑚
, i.e., 

 (  |{  }        𝑚 {  
 }

        𝑚
)   (  |{  

 }
        𝑚

). Also, according to (8),  
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 ({  }        𝑚    {  }        𝑚)  ∑ {
        

 
   |  |  

 

 
  (    

  )  𝑚
   

  

 
  (    )    ‖  ‖  }.                                                                                                   (9)                                                                                                              

Then, the E and M steps are:  

                 ({  }        𝑚|{  
 }

        𝑚
)  

                       ∫  ({  }        𝑚    {  }        𝑚) (  |{  
 }

        𝑚
)

                   (10) 

where  ( ) is given in (9).  

               {  
   }

        𝑚
       

{  }         

 ({  }        𝑚|{  
 }

        𝑚
) 

To conduct the E and M steps, we further decompose them into sub-steps: 

Conducting the E step: 

We decompose the E step into two sub-steps: finding the parametric form of the 

distribution  (  |{  
 }

        𝑚
) , and then transforming the 

 ({  }        𝑚|{  
 }

        𝑚
) into a form that facilitates the maximization in the M step. 

Results of these two sub-steps are summarized in Propositions 1 and 2, respectively 

(proofs are given in the Appendix). 

Proposition 1: The probability distribution of   |{  
 }

        𝑚
 is an Inverse-Wishart 

distribution with scale matrix ∑   
  

    and degrees of freedom       .  

Proposition 2: The  ({  }        𝑚|{  
 }

        𝑚
) can be decomposed into a sum of   

terms, with the     term involving only    not    (    ), i.e., 

({  }        𝑚|{  
 }

        𝑚
)  ∑ {

        

 
   |  |  

  

 
  (    )    ‖  ‖   

𝑚
   

 

 
  ((      )(∑   

 𝑚
   )

  
  )} .                        

Conducting the M step: 
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We also decompose the M step into two sub-steps. First, as a result of 

Proposition 2, the maximization in the M step can be carried out by solving   smaller-

scale maximization problems, i.e., 

Corollary 2.1: To find the {  
   }

        𝑚
 can be achieved by solving   optimization 

problems, i.e.,  

  
          

  

{
        

 
   |  |  

  

 
  (    )    ‖  ‖   

 

 
  ((     

 )(∑   
 𝑚

   )
  

  )},                                                                                                       (11) 

Next, we need to develop an efficient algorithm to solve each optimization in 

(11). Through some algebra, it can be found that solving (11) is equivalent to solving (12),  

                        
          

  

{   |  |    (  
   )     ‖  ‖  },                   (12) 

where     
 

        
  , and  

                                                 
  

     (𝑚     )(∑   
  

   )
  

        
.                                        (13) 

(12) has a similar form to the graphical LASSO in (2). The difference is that the graphical 

LASSO has    instead of   
 , so it does not enable transfer learning. To solve (12), we 

adopt the efficient BCD algorithm (Sun et al., 2009), which was originally developed for 

graphical LASSO, to our problem and prove the convergence (see Appendix).  

To conclude this section, we give the practical steps for solving the transfer 

learning formulation in GGM learning in Fig. 4-3.   
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Fig. 4-3 Steps for solving the transfer learning formulation in GGM learning 

4.4.3 Analysis of transfer learning 

Here, we would like to discuss some intuition and rationale behind the proposed transfer 

learning approach. Because of (3), i.e., E (  )=     , the ∑   
 𝑚

    in (13) can be 

considered as the estimate for      obtained at iteration   of the EM algorithm, i.e.,  

                                                               ∑   
 𝑚

                                                     (14) 

Inserting (14) into (13),  

                                                    
  

     
      

  
(    )

  

        
.                                          (15) 

(15) indicates that   
  is a combination of two information sources:   , which is specific to 

task  , and     , which is common to all the tasks. According to (14),      

∑   
 𝑚

     ⁄ , i.e.,      utilizes the information in all the tasks. Therefore,   
  embraces 

Input: sample covariance matrixes, {𝐒𝑖}𝑖       𝑚; sample size for each task, 

𝑛𝑖; number of variable, 𝑝; number of tasks, 𝑚; regularization parameters, 
{𝜆𝑖}𝑖       𝑚 ; degrees of freedom in the common prior Wishart 

distribution, 𝑣; initial {𝚯𝑖
   }

𝑖       𝑚
; stopping criterion, 𝜖. 

Initialize:    

Compute {𝐒𝑖
 }

𝑖       𝑚
 by (13); 

Let 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑓𝑎𝑙𝑠𝑒; 

Let 𝑡   ; 

Repeat  

Use the BCD algorithm to solve (12) and get {𝚯𝑖
𝑡  }

𝑖       𝑚
; 

Compute {𝐒𝑖
𝑡  }

𝑖       𝑚
 by (13); 

If ∑ ‖𝚯𝑖
𝑡   𝚯𝑖

𝑡‖
 

𝑚
𝑖   𝜖 then 

    𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑡𝑟𝑢𝑒; 

Else 

    𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑓𝑎𝑙𝑠𝑒; 

End if 

Let 𝑡  𝑡   ; 

Until  𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑡𝑟𝑢𝑒 

Output: {𝚯𝑖
𝑡  }

𝑖       𝑚
 as the estimated IC matrix (i.e., GGM) for each 

task. 
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not only the information specific to task  , but also information in other tasks through 

    . Because   
  is used in (12) for learning the IC matrix of task  , the learning makes 

use of the information in all the task; or in other words, the information in other tasks is 

“transferred” into the learning of task  . This is the fundamental difference between the 

proposed approach and the graphical LASSO, in which learning of the IC matrix of task   

only utilizes   .  

An interesting observation on (15) is that, for a given dataset (i.e.,       and   

are fixed),   determines the relative weights of the two information sources. The larger 

the  , the more the      will be utilized in obtaining   
  and further in learning the IC 

matrix of task  . In other words, by specifying a larger  , we want more information in 

other tasks to be transferred to the learning of task  . However, the value of   can be 

hardly known as a priori in practical data analysis. We propose the use of cross-

validation for selecting an appropriate  , which will be discussed in the next section.  

Also, (15) reveals how transfer learning is affected by       and  . Specifically, with 

other parameters fixed, more information in task   will be utilized when task   has more 

samples, i.e., smaller   . Furthermore, when more tasks are learned together (bigger  ), 

     will be weighted heavier relative to   . This makes sense because more tasks will 

help obtain a more reliable estimate for     . In addition, when the dimensionality of 

each task is higher (bigger  ),      will be weighted less. This also makes sense because 

     ∑   
 𝑚

     ⁄  and   
 ’s are learned from data; in general, statistical learning 

suffers more as the dimensionality of problems  increases. By weighting      less, the 

proposed transfer learning approach provides a robust mechanism to tackle high 

dimensionality. 
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4.4.4 Selection of parameters   and    

To apply the proposed algorithm in Fig. 4-3 to solve (8),   and    (       ) need to 

be specified. This can be accomplished by cross-validation. For example, if a  -fold 

cross-validation is used, the following steps can be performed. First, the dataset of each 

task is partitioned into   subsamples.     subsamples are used for learning an IC 

matrix for each task by applying the proposed algorithm at a given   and  . Here, we 

assume the same   for all the tasks for simplicity; making the   ’s different is just a 

straightforward extension. Next, based on the learned IC matrix of each task, the 

likelihood of the data in the remaining one subsample in this task is computed. The 

likelihood values corresponding to all the tasks are summed together and we obtain an 

“overall” likelihood for the given   and  . This process is repeated   times for the same 

  and  , and each time a different subsample is used for computing the overall likelihood. 

Then, the average overall likelihood is computed over the   repetitions. This whole 

procedure is performed on different combinations of values for   and   (i.e., a grid search 

on   and  ). The final   and   selected are the ones maximizing the average overall 

likelihood. Note that this proposed cross-validation procedure is similar to the likelihood-

based cross-validation, which has been commonly used in probability density function 

estimation.  

4.5 Simulation study 

The simulation study consists of the following steps: 

(i) Construct the common prior mean matrix,  . Because E(  )=    , we first 

need to construct   . Specifically, the initial value for   ,  ̃ , is generated by  

 ̃  
  {

    
        

        ( )        
}, 
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where  ̃  
  denotes the entry at the  -th row and  -th column of  ̃ ;     means that 

there is an arc between nodes   and  , and     means otherwise;             

       .  ̃  is then rescaled to ensure the positive definiteness. The rescaling includes 

first summing the absolute values of the off-diagonal entries for each row, then dividing 

each off-diagonal entry by 1.5 fold of the sum, and finally averaging the resulting matrix 

with its transpose to ensure the symmetry.  This rescaling process was suggested by Peng 

et al. (2009). The rescaled matrix is   . Furthermore, let        .  

(ii) Construct the true IC matrices of     related tasks,  ,        . To 

generate a   , the following substeps are performed: (ii.1) Randomly modify (    

 )  of the nonzero entries in    to be zero. (ii.2) Randomly modify the same number of 

zero entries in    to be nonzero. This is to ensure that each    has the same sparsity as 

  .  Each of these nonzero entries is sampled from        ( ) . (ii.3) For the 

remaining unmodified nonzero entries in   , resample their values from        ( ) 

and add the resulting value of each nonzero entry with the entry in    at the same row 

and column. This is to ensure E(  )=    . An example for this step is given in Fig. 4-4.  

 
Fig. 4-4 Substeps for constructing the IC matrix of each task,   , from 

  (s%=50%). 

It can be seen that    reflects how much the IC matrix of each task,   , is 

related to   . The higher the   , the more the relatedness. Considering the extreme case 

when        , the    constructed following substeps (ii.1)-(ii.3) will have the same 

cc

13 14

23

35

45 46

0 0 0

0 0 0

0 0

0

h

 





 

 
 
 
 

  
 
 
 
 

Θ

13

23

45

0 0 0 0

0 0 0

0 0 0

0

0







 
 
 
 
 
 
 
 
 

13 16

23 25

34

45

0 0 0

0 0

0 0

0

0

u

u

u







 
 
 
 
 
 
 
 
 

c

13 13 16

23 23 25

34

45 45

0 0 0

0 0

0 0

0

0

i

u u

u u

u

u







 
 


 
 
 

 
 
 
 

Θ

Randomly modify 3 (6x50%) 
nonzero entries in Өh to zero

Randomly modify 3 zero entries in 
Өh to nonzero μi j ~ Uniform(D)

Re-sample remaining nonzero entries in Өh

from Uniform(D) and add to the 
i j

(ii.1) (ii.2) (ii.3)



  90 

positions of nonzero entries as   , so the GGM corresponding to    will look the same 

as that corresponding to   . When     , the    will have completely different 

positions of  nonzero entries from   , so their GGMs will not share even a single arc. 

Through relating to   , the IC matrices of all the tasks are related, so    may be 

considered as an indirect measure of task relatedness. It makes sense to specify the 

relatedness of    to   , rather than specifying the relatedness between the   ’s directly, 

because transfer learning between tasks is through   , the common prior shared by all 

the tasks.  

(iii) Generate simulation data for each task. A dataset consisting of   

independently and identically distributed (IID) observations is generated from a 

multivariate normal distribution with mean zero and IC matrix    for task  ,         .  

(iv) Estimate the IC matrix of each task. We apply the transfer learning approach 

to the data and estimate the IC matrix of each task.  

(v) Measure the performance. In order to apply the transfer learning approach, 

we need to choose values for   and  . To assess the overall performance of transfer 

learning across different choices for   and  , ROC curves are employed. An ROC curve 

plots the numbers of true positives vs. false positives over all possible choices for λ and  . 

Here, we count one true positive if a nonzero entry in the true IC matrix is also nonzero 

in the estimated IC matrix; we count one false positive if a zero entry in the true IC 

matrix is nonzero in the estimated IC matrix. Thus, the number of true positives (Y axis 

of the ROC curve) and the number of false positives (X axis of the ROC curve) reflects 

the power of algorithm in detecting non-zero entries and the false alarm error, 

respectively.  
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Note that execution of steps (iii)-(iv) once will generate one ROC curve for each 

task. To reduce sampling variation, the two steps can be repeated for   times and a mean 

ROC curve can be generated.  

In this section, we compare the performance of the proposed transfer learning 

approach with the single task learning approach based on graphical LASSO, i.e., (2). 

Following a similar procedure to steps (i)-(v), a mean ROC curve can be obtained for 

each task for single task learning. Based on the definition of ROC curves, a learning 

approach is better if its ROC curve is closer to the upper left corner of the plot.  

Figs. 4-5 to 4-7 compare transfer learning and single task learning based on the 

mean ROC curves for the first task (other tasks show similar patterns and are not shown 

here due to space limits). The comparison is across various parameter settings, including 

the number of variables (            ), the number of related tasks (        ), 

and task relatedness (             ). Small sample sizes are assumed for each 

task, so the sample size   is set to be equal to  . Also, the number of non-zero entries in 

   is set to be equal to  , such that the GGM in each task is sparse.  

The following observations can be obtained:  

 The advantage of transfer learning over single task learning is more 

significant when the tasks are more related. When the tasks are little related 

(e.g., Fig. 4-7), the necessity of using transfer learning is not obvious.  

 The advantage of transfer learning over single task learning is more 

significant when there are more related tasks.  

 The performances of both transfer learning and single task learning degrade as 

the network becomes larger (i.e., larger  ). However, the performance of 

transfer learning may be improved by having more related tasks to 

compensate for sample shortage, whereas more related tasks do not help 
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single task learning.  

Computational efficiency: The proposed transfer learning algorithm is very fast. This is 

because the efficient BCD algorithm is used in the M step of the proposed EM algorithm. 

Also, the proposed EM algorithm usually takes only 3~6 iterations to converge. Table 4-1 

shows the CPU time of MTL of the simulation studies.  

Table 4-1:  CPU time (in seconds) of the simulation studies of MTL 

 p=50 p=100 p=200 

m=2 6.34 25.13 102.35 

m=5 15.98 65.57 225.85 

m=10 36.12 140.76 562.74 

 

For a comparison, Table 4-2 shows the corresponding CPU time of STL of the simulation 

studies. 

Table 4-2:  CPU time (in seconds) of the simulation studies of STL 

 p=50 p=100 p=200 

m=2 2.87 9.34 24.98 

m=5 5.21 29.88 73.47 

m=10 11.35 52.19 101.53 

  

 

Fig. 4-5 Mean ROC curves for transfer learning (red solid curve) and single task learning 

(blue dash curve) with task relatedness         
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Fig. 4-6 Mean ROC curves for transfer learning (red solid curve) and single task learning 

(blue dash curve) with task relatedness         

 

Fig. 4-7 Mean ROC curves for transfer learning (red solid curve) and single task learning 

(blue dash curve) with task relatedness        
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4.6 Application in brain connectivity network modeling of AD 

The simulation study in Section 4-5 has demonstrated effectiveness of the proposed 

transfer learning approach. In this section we explore the application to brain connectivity 

modeling of AD. AD is a fatal, neurodegenerative disorder currently affecting over five 

million Americans. The existing knowledge about AD is very limited and clinical 

diagnosis is imprecise. Recent studies have found that AD is closely related to alteration 

in the brain connectivity network (Stam et al., 2007; Supekar et al., 2008). Identification 

of brain connectivity patterns common to AD patients provides the potential for 

identifying AD biomarkers to help clinical diagnosis. To explore this goal, we apply the 

proposed transfer learning approach to the fMRI data of 15 AD patients, which are 

considered as 15 related tasks, and learn a brain connectivity network for each patient. To 

provide a contrast for the AD connectivity networks, the networks of 16 NCs, who are 

considered as another set of related tasks, are also learned by the proposed transfer 

learning approach.  

The selection criteria for the 15 AD patients and 16 NCs are as follows. The AD 

patients are aged between 53~79, right-handed, free of other diseases such as stroke and 

focal pathology, and with MMSE scores between 0-20. MMSE is a clinical instrument 

for cognitive assessment; the lower the score the more severe the dementia. The NCs are 

selected to purposely match the AD patients in terms of other selection criteria except 

MMSE scores, i.e., they are in the same age cohort as the AD patients, right-handed, free 

of other diseases, but with MMSE scores between 27-30 (i.e., they do not have dementia).   

The fMRI data of each of the 31 subjects at his/her resting state was obtained 

using the 3-Tesla Siemens whole-body MRI system at Tiantan Hospital in Beijing, China. 

We apply the following preprocessing steps to the data. First, we apply the Automated 

Anatomical Labeling (AAL) technique (Tzourio-Mazoyer, 2002) to segment the whole 
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brain of each subject into 116 regions. 42 regions, whose names are given in Table 4-2, 

are selected as they have been considered to be potentially related to AD in the literature. 

These regions distribute in the four major neocortical lobes of the brain, i.e., the frontal, 

parietal, occipital, and temporal lobes. Next, within each selected region, the voxel-wise 

fMRI time courses are averaged into one regional average time course. Then, the first 

five data points for each regional average time course are discarded. Finally, each 

regional average time course is detrended. After the preprocessing, the dataset of each 

subject takes the form of a  4  4  matrix (245 sampling points in each regional 

average fMRI time course and 42 selected brain regions).  

Table 4-2: Names of the brain regions selected for brain connectivity network 

modeling (“L” means that the brain region is located at the left hemisphere; “R” means 

right hemisphere.) 

 

The datasets obtained through the aforementioned steps can be reasonably 

considered to follow normal distributions, because each brain region includes at least 

several hundreds of voxels and the measurement data for each region is a regional 

average over the belonging voxels and thus the Central Limit Theorem applies. Also, the 

1 Frontal_Sup_L 13 Parietal_Sup_L 21 Occipital_Sup_L 27 Temporal_Sup_L 

2 Frontal_Sup_R 14 Parietal_Sup_R 22 Occipital_Sup_R 28 Temporal_Sup_R 

3 Frontal_Mid_L 15 Parietal_Inf_L 23 Occipital_Mid_L 29 Temporal_Pole_Sup_L 

4 Frontal_Mid_R 16 Parietal_Inf_R 24 Occipital_Mid_R 30 Temporal_Pole_Sup_R 

5 Frontal_Sup_Medial_L 17 Precuneus_L 25 Occipital_Inf_L 31 Temporal_Mid_L

6 Frontal_Sup_Medial_R 18 Precuneus_R 26 Occipital_Inf_R 32 Temporal_Mid_R 

7 Frontal_Mid_Orb_L 19 Cingulum_Post_L 33 Temporal_Pole_Mid_L 

8 Frontal_Mid_Orb_R 20 Cingulum_Post_R 34 Temporal_Pole_Mid_R

9 Rectus_L 35 Temporal_Inf_L 8301

10 Rectus_R 36 Temporal_Inf_R 8302

11 Cingulum_Ant_L 37 Fusiform_L 

12 Cingulum_Ant_R 38 Fusiform_R 

39 Hippocampus_L 

40 Hippocampus_R 

41 ParaHippocampal_L 

42 ParaHippocampal_R 

Temporal lobePrefrontal lobe Parietal lobe Occipital lobe
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normality assumption is common for fMRI studies (Valdes-Sosa et al., 2005 and Worsley, 

et al., 1997). We apply the transfer learning approach to the datasets of the 15 AD 

patients, which produces 15 GGMs. Similarly, GGMs are learned for the 16 NCs. Note 

that in applying the transfer learning approach, the values for the regularization 

parameters,   ’s, need to be selected. In this paper, we focus on comparing AD and NCs 

in terms of the distribution/organization of the connectivity in the brain, which has been 

less studied in the literature, but not in terms of the global scale of the connectivity, 

which has been studied substantially. To achieve this, we must factor out the connectivity 

difference between AD and NCs that is due to their difference at the global scale, so that 

the remaining difference will reflect their difference in the connectivity 

distribution/organization. A common strategy is to control the total number of arcs in the 

AD and NCs connectivity networks to be the same, which has been adopted by a number 

of other studies (Supekar et al., 2008; Stam et al., 2007). We also adopt this strategy; 

specifically, we adjust the   ’s in estimating the 15 AD connectivity networks and those 

in estimating the 16 NCs connectivity networks, such that all these networks have the 

same total number of arcs. Also, by selecting different values for the total number of arcs, 

we can obtain connectivity networks at different strength levels. Specifically, given a 

small value for the total number of arcs, only strong arcs will show up in the resulting 

connectivity networks; when increasing the total number of arcs, mild (or even weak) 

arcs will also show up in the resulting connectivity networks.  

Comparison of AD and NCs in terms of connectivity distribution/organization 

can be achieved by comparing them in terms of the numbers of arcs within each lobe as 

well as between each pair of lobes. To be able to assess the statistical significance of the 

comparison, the 15 (16) GGMs are treated as “samples” of the AD (NCs) brain 

connectivity network. Based on these samples, we generate boxplots for the numbers of 
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arcs within and between lobes for AD and NCs in Fig. 4-8. Furthermore, statistical 

significance of the observed difference between AD and NCs in the boxplots is assessed 

by hypothesis testing. The P-values of the hypothesis testing are given in Table 4-3.  

 
 (a) Total num. of arcs=180      (b) Total num. of arcs=120         (c) Total num. of arcs=90 

Fig. 4-8 Boxplots for numbers of arcs within and between lobes in learned connectivity 

networks by transfer learning (F: frontal, P: parietal, O: occipital, T: temporal; yellow: 

AD, green: NCs) 

Table 4-3 P-values for hypothesis testing on AD vs. NCs comparison based on learned 

connectivity networks by transfer learning 

(a) Total num. of arcs=180      (b) Total num. of arcs=120         (c) Total num. of arcs=90 

 

The following interesting findings are obtained:  

 The parietal lobe of AD has significantly less connectivity than NCs. Loss of 

connectivity in the parietal lobe of AD has been reported by a number of other 

studies in the literature (Langbaum, et al., 2009; Chen, et al., 2010). 

 The regions well-known to be attacked by AD the first and severely are 

“Hippocampus_L&R” in the temporal lobe, which play an important role in 

memory. We perform hypothesis testing on the difference between AD and 

NCs in terms of the number of arcs between “Hippocampus_L&R” and other 
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regions in the temporal lobe, and find the P-values to be 0.0526, 0.0111, and 

0.0089 for total numbers of arcs equal to 180, 120, and 90, respectively. This 

indicates significant loss of connectivity between “Hippocampus_L&R” and 

other regions in AD, which is consistent with quite a few other studies in the 

literature (Supekar et al., 2008; Wang et al., 2007).  

 The frontal lobe of AD has significantly more connectivity than NCs. This is 

consistent with the previous literature and has been interpreted as 

compensatory reallocation or recruitment of cognitive resources (Gould et al., 

2006; Stern, 2006). Because regions in the frontal lobe are typically less 

affected by AD, increase of connectivity in the frontal lobe may help preserve 

some cognitive functions in AD patients. Same explanation may be applied to 

the increase of connectivity between the frontal and temporal lobes in AD.  

 All the above findings are consistent across different total numbers of arcs in 

the connectivity networks.  

For comparison purposes, we also apply graphical LASSO to the same datasets. Please 

note that graphical LASSO is a single task learning approach which learns each task 

independently. Boxplots and P-value tables similar to those in Fig. 4-8 and Table 4-3 are 

generated, as shown in Fig. 4-9 and Table 4-4. It can be seen that the single task learning 

fails to identify any significant difference between AD and NCs. The reason, as revealed 

by the boxplots, is that there is large variability in the 15 (16) brain connectivity networks 

of AD (NCs). This is because the single task learning is not able to make use of task 

relatedness to compensate for sample size shortage. As a result, the learned connectivity 

networks may not be reliable.  
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  (a) Total num. of arcs=180      (b) Total num. of arcs=120       (c) Total num. of arcs=90 

Fig. 4-9 Boxplots for numbers of arcs within and between lobes in learned connectivity 

networks by single task learning (F: frontal, P: parietal, O: occipital, T: temporal; yellow: 

AD, green: NCs) 

Table 4-4 P-values for hypothesis testing on AD vs. NCs comparison based on learned 

connectivity networks by single task learning 

(a) Total num. of arcs=180   (b) Total num. of arcs=120  (c) Total num. of arcs=90 

 
 

4.7 Conclusion 

This paper proposed a transfer learning approach for jointly learning GGMs of multiple 

related tasks. The proposed approach adopted the BHM framework in the problem 

formulation and considered IC matrices of the tasks to be samples drawn from the same 

Wishart distribution. An   -regularization was further added to the problem formulation 

to impose sparsity on the GGMs estimation. Under this problem formulation, a method 

based on the EM algorithm was further developed to learn GGMs from data. Simulation 

studies showed that the transfer learning approach performs better than single task 

learning. This advantage is more substantial when there are more related tasks or when 

the tasks are more related to each other. Also, the proposed transfer learning approach 

was applied to the fMRI data of 15 AD patients and 16 NCs for brain connectivity 
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network identification. Comparison between the connectivity networks of AD and NCs 

revealed that AD is associated with decreased connectivity in the parietal lobe and 

between hippocampus and other regions in the temporal lobe, and increased connectivity 

in the frontal lobe and between the frontal and temporal lobes. All these findings are 

consistent with AD pathology and existing findings in the literature.  

Transfer learning of other types of network models is also of great interest, such as 

directed models (also known as Bayesian networks) and models of non-Gaussian 

variables. For example, Bayesian networks have been used to characterize the directional 

effect of one brain region on another. In addition, from practical data analysis point of 

view, it is of interest to examine if the identified patterns will still be present given small 

perturbation to the data. Specifically, we may create some perturbed datasets out of the 

original dataset by resampling or adding noisy to the original data measurement, and then 

apply the proposed approach to the perturbed datasets and look for patterns that 

consistently occur across these datasets. This is also a way of providing assurance for the 

robustness of the results against sampling variability. We will investigate these 

methodological and practical issues in future work.  

Appendix  

I. Proof of Proposition 1:  

Using the Bayes’ rule,  
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So, the first step is to derive  ({  
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        𝑚
) . To do this, we condition 
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Inserting (A-3) into (A-2), 
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Note that the function inside the integral in (A-4) happens to be proportional to the 

density function of an inverse-Wishart distribution with degrees of freedom (     

 ) and scale matrix ∑   
 𝑚

   . So, the integral in (A-4) is actually a constant. Then, (A-4) 

can be simplified into 

                                     ({  
 }

        𝑚
)  

∏ |  
 |

     
  

   

|∑   
  

   |

(      )
 

                                         (A-5) 

Inserting (A-5) and (A-3) into (A-1),  
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which happens to be proportional to the density function of an inverse-Wishart 

distribution with degrees of freedom (      )  and scale matrix ∑   
 𝑚

   .                                   
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II. Proof of Proposition 2:  

Inserting (9) into (10), 
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     . Now we need to derive  . Specifically, 

according to Proposition 1, 
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which happens to be the mean of a Wishart distribution for     
 with degrees of 

freedom equal to        and scale matrix (∑   
 𝑚
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, i.e.,  
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Furthermore, inserting (A-10) into (A-8) and then into (A-7),  
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III. BCD algorithm for solving the optimization in (12) and proof of its convergence 

The basic idea of the BCD algorithm is to update each column (or row) of    

iteratively while fixing all other columns (or rows), until convergence. For notation 

simplicity, we change the notations of (12) in the following way: We drop the subscript 

“ ” which is the index for the tasks, since we will apply the BCD algorithm to all the 

tasks in the same way. Also, we drop the superscripts “ ” and “   ” which represent the 

 -th iteration of the EM algorithm, because we will apply the BCD algorithm in every 

iteration of the EM algorithm. Therefore, (12) becomes  

                               
 

{   | |    (  )    ‖ ‖  },                      (A-11) 

where    denotes the optimal solution to  . In what follows, we will show how to apply 

the BCD algorithm to solve for (A-11).  

Specifically, because the BCD algorithm works by iterations, we will only 

illustrate the steps in one iteration and other iterations work in a similar way. At a certain 

iteration, we first need to partition the current   as follows. Let       be the matrix 

produced by removing row   and column   from  ,     be the element at row   and 

column   of  , and    be the column   of   with     removed. Then,   can be partitioned 

as   [
       

  
    

], and correspondingly   can be partitioned as   [
       

  
    

]. Next, 

we want to update    and     while holding other elements in   constant. To do this, let 

  represent the objective function in (A-7), i.e.,      | |    (  )    ‖ ‖  ; take 
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the partial derivatives of   with respect to    and    , respectively; and then make the 

partial derivatives to be zero, i.e.,  
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where    (  ) denotes the partial derivative of ‖ ‖  with respect to   . It is difficult to 

solve for    and     from (A-12) and (A-13) directly. Therefore, we adopt the following 

strategies.   

Letting    
  

      
      

    
, then (A-12) and (A-13) become 
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It is clear that (A-14) is also the result of making the partial derivative of   with respect 

to   to be zero in the following optimization problem: 
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which is equivalent to the following min-max problem:  

                                               ( 
 

 
            )    

     ‖ ‖ .       (A-17) 

This min-max problem can be solved by the prox method proposed by (Nemirovski, 

2005). 

After   and   are obtained, (A-15) can be used to find   , i.e.,     
 

      
. 

Furthermore, based on (A-13),     can be obtained, i.e.,     
(      )

      
.    

Proof of convergence: According to (Tseng, 2001), the BCD algorithm converges if and 

only if (A-16) has a unique solution of   at each iteration. The unique solution is 

guaranteed if the optimization problem in (A-16) is strictly convex. The strict convexity 

is true if       is positive definite, denoted by        .         if    . Therefore, 

the key to prove the convergence of the BCD algorithm is to prove    . Recall that the 

BCD algorithm works by iterations and (A-16) needs to be solved at each iteration. As a 
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result, we need to prove     at each iteration. To achieve this, we use mathematical 

induction, which includes a basis step and an inductive step:  

Let  
 

 be the   obtained at the  -th iteration of the BCD algorithm.  

Basis step: Because    can be chosen by the user,    is guaranteed to satisfy 

    .  

Inductive step: Assuming    
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Chapter 5  

MULTI-DATA FUSION FOR ENTERPRISE QUALITY IMPROVEMENT BY A 

MULTILEVEL LATENT RESPONSE MODEL 

Abstract 

Quality improvement of an enterprise needs a model to link multiple data sources, 

including the independent and interdependent activities of individuals in the enterprise, 

enterprise infrastructure, climate, and administration strategies, as well as the quality 

outcomes of the enterprise. This is a challenging problem because the data are at two 

levels, i.e., the individual and enterprise levels, and each individual’s contribution to the 

enterprise quality outcome is usually not explicitly known. These challenges make 

general regression analysis and conventional multilevel models fall short. We propose a 

new multilevel model that treats individuals’ contributions to the enterprise quality 

outcomes as latent variables. Under this new formulation, an algorithm is further 

developed to estimate the model parameters, which integrates the Fisher-scoring 

algorithm and generalized least squares estimation. Extensive simulation studies are 

performed, which demonstrate the superiority of the proposed model over the competing 

approach in terms of the statistical properties in parameter estimation. The proposed 

model is applied to a real-world application of nursing quality improvement, and helps 

identify key nursing activities and unit (a hospital unit is an enterprise in this context) 

quality-improving measures that help reduce patient falls.  

5.1 Introduction 

An enterprise consists of individuals. Examples of an enterprise include a 

company or a company division, such as the technology division and marketing division, 

consisting of belonging employees; a military team consisting of soldiers on a specific 

mission; and a hospital or a hospital unit, such as the emergency unit and surgical unit, 
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consisting of performing medical professionals. Quality improvement for an enterprise is 

different from quality improvement for an individual in terms of the following aspects:  

1) Quality of an enterprise is affected by the independent and interdependent 

activities of the belonging individuals.  

2) Quality of an enterprise is also affected by factors at the enterprise level 

such as the infrastructure, climate, and administration strategies. 

3) Each individual contributes a certain portion to the quality of the enterprise; 

however, this individual contribution is usually immeasurable.  

For example, consider a hospital unit as an enterprise. While the quality of a 

hospital unit has many dimensions, here we focus on one dimension – the quality of 

nursing in patient care, which can be measured by the numbers of falls and medication 

errors in the unit during a certain time period as well as patient satisfaction regarding the 

care provided by the unit. Because our focus is the quality of nursing, we consider the 

belonging individuals of the unit to be nurses, although a hospital unit also includes other 

medical professionals. It is not difficult to see that the aforementioned three aspects in the 

quality improvement of an enterprise fit perfectly in the context of nursing: 1) The quality 

of nursing in a unit is affected by the independent nursing activities of individual nurses 

as well as their interdependent activities in coordinating the patient care [1]. 2) The 

quality of nursing in a unit is also affected by unit infrastructure, climate, and 

administration strategies. 3) Each nurse contributes a certain portion to the nursing 

quality of the unit. However, this contribution is immeasurable because delivery of 

patient care requires team work and it is difficult to explicitly attribute the quality 

outcome of the unit to each individual nurse.   

For quality improvement of an enterprise, three data sources may be utilized and 

they are at two levels. Specifically, at the enterprise level, there are two data sources on 
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quality outcomes and quality-affecting factors, such as enterprise infrastructure, climate, 

and administration strategies, respectively. At the individual level, there is one data 

source on individual independent and interdependent activities. To accomplish the goal of 

quality improvement of an enterprise, a statistical model is needed to link these multiple 

data sources together. The model should be able to address the questions of how 

individual activities affect the quality of the enterprise, how factors at the enterprise level 

affect the quality, and how individuals’ activities/performance interact with the 

enterprise-level factors so as to jointly affect the enterprise quality. Answers to these 

questions are keys to formulating action plans for quality improvement of the enterprise.   

To address the above questions, regression models provide a potential tool. 

Compared with many “black-box” methods which focus primarily on best prediction of 

the outcome variable, regression models are a “white-box” method offering better 

interpretability by explicitly revealing what variables lead to the best prediction for the 

outcome. This is especially important when the final objective is to formulate an action 

plan. Furthermore, parametric regression models allow for statistical inference in variable 

or model selection, which offers a rigorous way for generalizing the model estimated 

from a specific dataset to the population. Third, multilevel regression, as a specific type 

of regression models, was developed to handle multi-level data sources.   

In the “language” of regression, the quality outcomes are called responses; the 

enterprise-level quality-affecting factors and the individual-level activities variables can 

both be called predictors. In general regression analysis, all the responses and predictors 

should be at the same level. Therefore, to be able to apply general regression analysis to 

our data, an intuitive approach is to transform the data sources to a single level. 

Specifically, since out of the three data sources, only the predictors of individual 

activities are at the individual level, we might consider aggregating these predictors to the 
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enterprise level by using some pre-defined summary statistics, such as the sample mean 

and variance of the data of all the individuals in each enterprise. Then, general regression 

analysis can be applied at the enterprise level. One drawback of this approach is loss of 

information, since the pre-defined summary statistics may not be able to capture the full 

spectrum of behaviors of the individuals in each enterprise. Another more severe 

drawback is aggregation bias [3,4], i.e., a predictor at different levels may have different 

effects on the response. For example, in the nursing context, there is an important 

predictor called “exchanging”, which is originally defined for each individual nurse (i.e., 

an individual-level predictor) to characterize activities of exchanging information with 

others regarding patient care.  If “exchanging” were aggregated to the unit-level, then the 

resulting variable, i.e., the average level of information exchange of a unit, is a proxy 

measure of the unit’s normative environment/facility in promoting information exchange 

and thus may have an effect on the nursing quality of the unit different from the effect of 

individual nurses’ activities in exchanging information.  

When predictors are at different levels, multilevel regression provides a more 

appropriate tool than general regression analysis. Multilevel regression has been 

discussed in diverse literatures under a variety of titles. For example, they are referred to 

as multilevel regression or multilevel linear models in sociological research [5,6], as 

mixed-effects models in biometric research [7-9], as random efficient models in 

econometrics [10,11], and as covariance components models in statistics [12]. A 

multilevel regression model allows the inclusion of predictors at two (e.g., individual and 

enterprise levels) or more levels. The basic idea is to build a separate regression model 

for each enterprise by linking the individual-level predictors with the response, and then 

model the variation among enterprises by considering the regression coefficients as 

multivariate responses explained by enterprise-level predictors. However, existing 
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multilevel models are not directly applicable to our problem because they require that the 

response variable be at the individual-level.  

To the best of our knowledge, there has been a lack of an effective model to link 

enterprise-level quality responses with enterprise- and individual- level predictors for 

quality improvement of the enterprise. This research aims to bridge this gap by proposing 

a new multilevel regression model with enterprise-level responses, which treats 

individuals’ contributions to the responses as latent variables. Furthermore, the proposed 

model is applied to a real-world application of nursing quality improvement. Most 

existing research in nursing quality is either qualitative, or quantitative but only utilizing 

the unit-level information [13-21], because the activities of individual nurses have long 

been considered to be non-quantifiable [1]. This application analyzes the data collected 

by two co-authors (Lamb and Schmitt) in a Robert Wood Johnson Foundation (RWJF) 

sponsored project, in which the research team designed the first instrument to measure 

nurses’ independent activities and interdependent activities in coordinating patient care 

using a comprehensive collection of variables. The data also include measurements of 

unit-level quality-affecting factors and quality outcomes. By linking these multiple data 

sources together, the findings may have a profound impact on nursing quality 

improvement.   

The remainder of the paper is organized as follows: Section 5-2 presents the new 

multilevel model development; Section 5-3 performs simulation studies to assess the 

model performance; Section 5-4 presents the findings in applying the proposed model to 

nursing quality improvement; Section 5-5 concludes the paper.     
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5.2 Proposed model – multilevel regression with enterprise-level response  

5.2.1 Model formulation 

Let   be the index for enterprises and   be the total number of enterprises, i.e., 

       . Let   be the index for individuals and    be the total number of individuals 

in enterprise  , i.e.,         . Let    denote the response (quality outcome) of 

enterprise  . Let  ̃   denote the contribution of individual   to    and  ̃   is latent. In this 

paper, we focus on the situation when the contributions of individuals to the enterprise-

level response are additive, i.e., i.e.,    ∑  ̃  
  
   . Please note that although model 

formulation (this section) and estimation and inference (next section) are discussed for 

this simple additive relationship between  ̃  ,         , and   , they can be readily 

extended to address two other situations: one situation is that    is a weighted sum of the 

 ̃  ,         , with known weights; the other situation is that    is a general function 

of  ̃  ,         , i.e.,     ( ̃             ), with the function form,  , known 

and can be reasonably approximated by a linear function through the Taylor expansion. 

In this paper, we focus on    ∑  ̃  
  
    for better presentation and clarity and also 

considering that this relationship is appropriate for the real-world application in Section 

5-4.  

Also, we focus on a single response; a multi-response model is just a 

straightforward extension to the single-response model we propose. Furthermore, assume 

that there are a total of   individual-level predictors and   enterprise-level predictors. Let 

     denote the measurement on the  -th individual-level predictor for individual   in 

enterprise  . Let     be the measurement on the  -th enterprise-level predictor for 

enterprise  . 
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The model formulation consists of two stages: At Stage-1, each individual’s 

latent response is linked to a set of individual-level predictors. At Stage-2, the regression 

coefficients in the Stage-1 model for each enterprise are response variables that are 

hypothesized to be explained by enterprise-level predictors. Specifically,  

The Stage-1 model is to regress the latent response on the individual-level 

predictors, i.e., 

                       ̃                            ,                                     (1) 

where      (    ). This is to assume that the residual errors,    ,        ,   

      , are normal and IID (independent and identically distributed) across different 

individuals and enterprises. Note that the model in (1) keeps   (index for enterprises) in 

the subscript for the model coefficients,          . This is to acknowledge the 

uniqueness of each enterprise, i.e., we consider that the effect of individual-level 

predictors on the quality response may vary across enterprises.  

The Stage-2 model is to regress the regression coefficients in (1) on the 

enterprise-level predictors: 

                                       ,           ,                       (2) 

where      (     )  and    (        )       for     . Note that the distribution 

parameters,     and     , do not have enterprise index “ ” in their subscripts. This is to 

assume that the random effects of different enterprises, i.e.,    ,        , are IID 

across the enterprises. This model aims to characterize how enterprise-level predictors 

may modify the effect that the individual-level predictors have on the response.  

By inserting (2) into (1), a combined model can be obtained:  

 ̃       ∑        

 

   
 ∑       

 

   
 

                           ∑ ∑       
 
   

 
            ∑        

 
       .                           (3) 
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    is the grand mean;     is the fixed main effect from an individual-level predictor;     

is the fixed main effect from an enterprise-level predictor;     is the fixed interaction 

effect between an individual-level predictor and an enterprise-level predictor;     and     

are random effects;     is the residual error. The two-stage model formulation can be 

more clearly depicted by Fig. 5-1.  

 

Fig. 5-1 Proposed multilevel model with enterprise-level response 

5.2.2 Model estimation 

To make the discussion in this section easier, we adopt an equivalent but more 

succinct representation for the combined model in (3), i.e.,   

                                         ̃     
        

        ,                                     (4) 

where     is a vector of measurements on the   individual-level predictors for individual 

  in enterprise  , i.e.,                    
 ;    is a vector of the random effects, i.e., 

                  
 ;    is a vector of measurements on the   enterprise-level 

predictors for enterprise  , i.e.,                 
 ;   is a (   )  (   ) matrix of 

the fixed effects, i.e.,  

  [

   

   

 
   

   

   

   

 
   

  

 
 
 
 

   

   

   

 
   

]. 

Furthermore, let   denote the covariance matrix of   .  

According to the model in (4), the parameters to be estimated are   {      }. 

The MLE (maximum likelihood estimation) method can be employed. Specifically, it can 

be derived from (4) that  ̃   follows a normal distribution, i.e.,  ̃    (  
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  ). Furthermore, based on the relationship    ∑  ̃  
  
   , the distribution of    can be 

derived, i.e.,                   

                            (∑   
     

  
    (∑    

   
   )  (∑    

  
   )     

 ).            (5) 

Because the   ,        , are observable, the log-likelihood function of   can be built 

upon the   ’s, i.e.,  

  ( )  ∑ { 
 

 
lo ((∑    

   
   )  (∑    

  
   )     

 )  
 

 

(   ∑   
     

  
   

)
 

(∑    
   

   
) (∑    

  
   

)    
 
}𝑚

   , (6) 

It is difficult to find close-form expression for the maximizer of the log-

likelihood in (6). Therefore, some iterative algorithm needs to be adopted. We adopt the 

Fisher-scoring (FS) algorithm [22]. The FS algorithm begins with user-specified initial 

values for the parameters, i.e.,  ( )  { ( )  ( )   ( )
}  in our case; and then 

continuously updates the parameters by  (   )   ( )   (   )   until some 

convergence condition is met, e.g., ‖ (   )   ( )‖
 

  , where        is a 

common choice. Clearly, the key in adapting the FS algorithm to our problem setting is to 

obtain    and  (   ) , called the step direction and step size, respectively. In what 

follows, we will first discuss how to obtain    and then discuss how to select  (   ).  

The step direction,   , can be expressed as         , where   is the gradient 

  ( )

  
 evaluated at  ( )  and   is the expectation of the matrix 

  ( ) 

    
,   (

  ( ) 

    
) , 

evaluated at  ( ). The derivation of 
  ( )

  
 and  (

  ( ) 

    
) can be found in Appendix. One 

potential limitation in use of          for computing    is that we need to calculate 

the inverse of matrix  , which maybe computationally inefficient if the dimension of   

is large. To overcome this limitation, we propose the following strategy: Note that 

 (
  ( ) 

     )    and  (
  ( ) 

    
)   , i.e., the update of   is independent of   and    in 
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each iteration of the FS algorithm. This inspires us another way to update  . Specifically, 

we can rewrite (5) as  

                                               (  
  ∑    

  
   )    ( )    ,                           (7) 

where     (  (∑    
   

   )  (∑    
  
   )     

 ) , and    ( )  is an operator that 

converts a matrix into a row vector by concatenating the columns of the matrix. 

Furthermore, Let   be an     diagonal matrix with diagonal entry     

(∑    
   

   )  (∑    
  
   )     

 . Let   be an   (   )(   )  matrix with the  -th 

row being    (  
  ∑    

  
   ) . Let          𝑚  . Then, we can use the 

generalized least squares method to estimate the    ( )  in (7), i.e.,  

                                                        ( ̂)
 

 (    )      .                                      (8)  

Incorporating this new strategy into the proposed FS algorithm results in the following 

new algorithm: At the  -the iteration, the FS algorithm is used to obtain estimates for   

and   , i.e.,  ( ) and  ( ), which are used to compute  ( ); then, the generalized least 

squares method is used to obtain an estimate for    ( ) , i.e.,    ( ( ))
 

 

(   ( ) )
  

   ( ) .  A complete description of this new algorithm is given in Fig. 5-2. 

Next, we discuss how to select the step size,  (   ). The selection of  (   ) is a 

classic but challenging problem in optimization. In our case, the approach introduced in 

[10] is recommended. Specifically, the FS algorithm can start with  (   )   . If 

 ( (   ))   ( ( )), then accept  (   )   ; otherwise, make  (   )  
 

 
, 
 

 
, 
 

 
, …, until 

 ( (   ))   ( ( )) . This approach works empirically well. However, a potential 

drawback is that sometimes it may be impossible to find a positive  (   ) that makes 

 ( (   ))   ( ( )) , so the algorithm will break down. A major reason is that the 
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iterations in the FS algorithm may be far away from the optimal solution. To avoid this, 

the initial values,  ( )  { ( )  ( )   ( )
}, should be well chosen.  

 

Fig. 5-2: The proposed algorithm for estimating the model parameters,   

{      }, of the proposed multilevel model with enterprise-level response 

To select good initial values, we adapt the method developed in [24] for 

conventional multilevel regression with individual-level responses, to our problem that 

considers the individual-level responses to be latent. Specifically, our method includes 

two steps. The first step is to select  ( )  and   ( )
. For this purpose, we ignore the 

Input: data for individual- and enterprise-level predictors and enterprise-level 

response, i.e., 𝐱𝑖𝑗, 𝐬𝑖, and 𝑦𝑖; initial values for the parameters,  𝚿( ); stopping 

criterion, 𝜖. Denote 𝚿 𝚼
⬚  {𝚪 𝜎 }. 

 

Initialize:    

Let 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑓𝑎𝑙𝑠𝑒; 

Let 𝑘   ; 

Repeat  

Calculate 𝐅  = 
𝜕𝑙(𝚿 𝚼

⬚)

𝜕𝚿 𝚼
⬚  and 𝐇  =  𝐸 (

𝜕𝑙(𝚿 𝚼
⬚)

 

𝜕𝚿 𝚼
⬚𝜕𝚿 𝚼

⬚)  by (A-1) and (A-2), 

respectively, both evaluated at 𝚿 𝚼
(𝑘)

;  

Let 𝐩𝑘   𝐇  𝐅 and calculate 𝚿 𝚼
(𝑘  )

 𝚿 𝚼
(𝑘)

 𝛼(𝑘  )𝐩𝑘;  

Calculate 𝚼(𝑘  ) by (8). 

 

If ‖𝚿⬚
𝑘  

 𝚿⬚
𝑘

‖
 

 𝜖 then 

    𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑡𝑟𝑢𝑒; 

Else 

    𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑓𝑎𝑙𝑠𝑒; 

End if 

 

Let 𝑘  𝑘   ; 

 

Until  𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒  𝑡𝑟𝑢𝑒 

Output: 𝚿⬚
𝑘   {𝚿 𝚼

(𝑘  )
 𝚼(𝑘  )

}.  
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random effects, so (5) becomes     (∑   
     

  
       

 ). Estimates for   and    can 

be easily obtained by MLE; these estimates are used as  ( ) and   ( )
, respectively.  

The second step is to select  ( ). Specifically, let       ∑   
  ( )   

  
   . 

Then, according to (4), we can make  

                                             (∑    
   

   )      ,                                          (9) 

where    ∑    
  
   . Based on (11), the least squares estimate for    can be obtained, i.e.,  

                                               ̂  [(∑    
  
   ) (∑    

   
   )]

  
(∑    

  
   )   .             (10) 

Inserting (9) into (10),  ̂     [(∑    
  
   ) (∑    

   
   )]

  
(∑    

  
   )   . This further 

leads to  ∑  ̂  ̂ 
 𝑚

    ∑     
 𝑚

      
 ∑ [(∑    

  
   ) (∑    

   
   )]

  
𝑚
     

∑ [(∑    
  
   ) (∑    

   
   )]

  
(∑    

  
   )     

 𝑚
    

∑     (∑    
   

   ) [(∑    
  
   ) (∑    

   
   )]

  
𝑚
    . Because    is independent of any 

element in   , the last two terms are negligible. Therefore, 

 

𝑚
∑     

 𝑚
    

 

𝑚
{∑  ̂  ̂ 

 𝑚
      

 ∑ [(∑    
  
   ) (∑    

   
   )]

  
𝑚
   }  

 

𝑚
{∑  ̂  ̂ 

 𝑚
    

   
( ) ∑ [(∑    

  
   ) (∑    

   
   )]

  
𝑚
   } . 

 

𝑚
∑     

 𝑚
    is used as  ( ).  

5.2.3 Model inference 

After model parameters have been estimated, the next step may be to perform 

hypothesis testing to check the statistical significance of the parameters. Three types of 

hypotheses usually need to be tested in our case: tests for fixed effects, tests for random 

effects, and tests for model comparison.  

Specifically, to test a fixed effect,    , i.e.,            vs.          , the test 

statistic,    ̂   √   ( ̂  ), can be used,          ,          .  ̂   is an MLE 
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estimate for     and     ( ̂  ) can be asymptotically approximated by the corresponding 

element in matrix    .  Recall that both  ̂   and   have been obtained from the model 

estimation method proposed in Section 5-2-2. This test statistic is asymptotically 

standard-normal; this property can be used to calculate the P-value of the test. 

Furthermore, to test the random effects is to test the covariance matrix of the random 

effects,  , i.e.,           vs.         . For example, to test if a random effect     

exists,          , we can set    to be a reduced form of    by making the  -th row 

and column of    to be null. Denote the maximum log-likelihood values under    and    

by    and   . Then, the test statistic is   (     ) , which has an approximate    

distribution with   degrees of freedom, where   is the difference between the number of 

unique parameters in    and that in   . This is a typical likelihood-ratio test (LRT), which 

can also be used to simultaneously test multiple fixed and random effects, i.e., LRT can 

be used in model comparison.  

5.3 Simulation studies 

An intuitive, competing approach to the proposed model is to aggregate the 

individual-level predictors to the enterprise level by using some summary statistics and 

then perform general regression analysis at the enterprise level. Limitations of this 

aggregate model have been conceptually discussed in Section 5-1. In this section, we will 

use simulation data to compare the performance of the aggregate model and the proposed 

model in terms of the statistical properties in fixed and random effect estimation.  

To generate the simulation data, the following true model is used. Consider that 

an individual-level response,    , is linked to one individual-level predictor,    , by a 

regression              ; and    is linked to one enterprise-level predictor,   , by a 

regression          .  These two regressions can be combined into one, i.e.,      

                . The parameters of the true model include the fixed effect,  , 
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variance of the random effect,      (  ), and variance of the residual error,    

   (   ).  ,  , and    are all assumed to be one. Furthermore, data are generated from 

the true model for each unit. Specifically, for unit  , the following steps are performed: (i) 

draw two sample from  (   ) and make them the values for    and   , respectively, and 

compute   ; (ii) draw    samples from  (   ) for           
 and another    samples 

from  (   ) for           
, and compute           

; (iii) compute    ∑    
  
   .  

 Based on the data,   ,    , and   ,         ,        , the proposed model 

can be applied to estimate the true model parameters  ,  , and   . Alternatively, the 

aggregate model can also be applied, which builds an ordinary regression of     on 

predictors   ,    ∑    
  
   , and     . In this aggregate model,   is estimated by the 

coefficient of predictor     . The aggregate model is not able to separate between- and 

within-enterprise variations by providing separate estimates for  , and   . Instead, it 

estimates the overall variation by the residual variance. In addition, as data on the 

individual-level response,    , is available in simulation, conventional multilevel 

regression is also applied to estimate  ,  , and   . These estimates can be used as the 

“gold standard” to assess the impact of treating the individual-level response as latent by 

the proposed model. The results of comparison between the three models are presented as 

follows:  

Fixed effect estimation: 

For each model, the average estimate for   over 100 repetitions of the simulation 

is obtained. Further, the deviation of the average estimate from the true     is 

computed to assess the bias in the estimation. The deviations for the gold-standard, 

proposed, and aggregate models are 0.028, 0.021, 0.023, respectively, when      

(number of enterprises) and         (enterprise sample size). The deviations are 
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small, which is also true for other   and   values. This implies that the proposed model 

gives unbiased estimators for fixed effects. In fact, this property of the proposed model 

can be theoretically proved. Specifically, according to (10), the estimates for the fixed 

effect are    ( ̂)
 

 (    )      . Then,  (   ( ̂)
 
)  {(    )     } ( )  

{(    )     }    ( )     ( ) , where the second “=” follows from (8). The 

gold-standard model also gives unbiased estimators for fixed effects, which is a well-

known property for conventional multilevel regression. In the aggregate model, the data 

on the response variable, i.e., the   ’s, are independent but non-identically distributed, 

because    (  )    
      . Even though the data are not IID, OLS (Ordinary Least 

Squares) estimation can still give unbiased estimators for the regression coefficients [23], 

so the estimates for fixed effects by the aggregate model are also unbiased.  

 

                                              (a)                                                                 (b) 

Fig. 5-3(a) Standard error of the estimate for the fixed effect,  , vs. number of enterprises, 

 ; (b) Standard error of the estimate for the random effect variance,  , vs. number of 

enterprises,  . In both figures, enterprise sample size is fixed to be     .  

Furthermore, we compare the three models in terms of the standard error of the 

fixed effect estimate. Fig. 5-3(a) shows the standard error averaged over 100 repetitions 

of the simulation by each model (y-axis), with respect to the number of enterprises,   (x-

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

 

 

gold standard

proposed

aggregate

Number of enterprises, m

St
d

. e
rr

. 
o

f 
fi

xe
d

 e
ff

e
ct

 e
st

im
a

te

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

 

 

gold standard

proposed

Number of enterprises, m

St
d

. e
rr

. 
o

f 
ra

n
d

o
m

 e
ff

e
ct

 v
a

r. 
e

st
.



  124 

axis). The enterprise sample size,  , is fixed to be 50. It can be seen that the standard 

error by the proposed model is very close to that by the gold-standard model, whereas 

that by the aggregate model is much larger. A large standard error leads to the risk of 

miss-detecting significant fixed effects. Also, Fig. 5-3(a) shows that increasing the 

number of enterprise,  , can significantly reduce the standard errors for all three models. 

Furthermore, we vary the enterprise sample size by generating the sample size of each 

enterprise,   , from a uniform distribution on interval [1,10]. The simulation is repeated 

and the results are shown in Fig. 5-4. Comparing Fig. 5-4 with Fig. 5-3, it can be seen 

that smaller and unbalanced enterprise sample sizes increase the standard errors but only 

slightly. In other words, the enterprise sample size influences the standard errors much 

less than the number of enterprises. This observation is consistent with existing 

knowledge about multi-level regression [2, 23]. 

 

                                          (a)                                                                 (b) 

Fig. 5-4(a) Standard error of the estimate for the fixed effect,  , vs. number of enterprises, 

 ; (b) Standard error of the estimate for the random effect variance,  , vs. number of 

enterprises,  . In both figures, the sample size of each enterprise is sampled from 

             .  

Random effect estimation: 
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The aggregate model does not include the random effect. Therefore, the 

comparison is between the proposed and gold-standard models. For each model, the 

deviation of the average estimate for   from the true     is computed to assess the bias 

in the estimation. The deviations for the gold-standard and proposed models are -0.015 

and -0.024, respectively, when     0 and     . The magnitudes of these deviations 

become smaller when   increases. This empirically implies that both models might give 

unbiased estimators for  . Furthermore, we compare the two models in terms of the 

standard error of the estimate for  . The result is given in Fig. 5-3(b). Fig. 5-3(b) shows 

that the standard error by the proposed model is very close to that by the gold-standard 

model. Increasing the number of enterprise,  , can significantly reduce the standard 

errors for both models, whereas increasing   does not have this effect (results not shown 

here).    

Residual error estimation: 

For each model, the deviation of the average estimate for   from the true     

is computed to assess the bias in the estimation. The deviations for the gold-standard, 

proposed, and aggregate models are -0.003, -0.177, 13.394, respectively, when     0 

and     . The magnitudes of these deviations have little change when   and   

increase. This implies that the proposed model may be biased in estimating the residual 

error  ; fortunately, the magnitude of the bias is small. In contrast, the aggregate model 

over-estimates   with a large bias. The large bias is due to the fact that the aggregate 

model cannot separate within- and between-enterprise variation, so that the estimate for 

the residual error is a combination of the two variation sources. Furthermore, we compare 

the three models in terms of the standard error of the estimate for  . Same 

phenomena/trends are observed as the standard error of the fixed effect estimate.  
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Furthermore, we perform simulation studies with more individual- and 

enterprise-level predictors. Specifically, in the first set of simulations, we include   

individual-level predictors (    ), while keeping the number of enterprise-level 

predictors to be one. Therefore, the true model used to generate the simulation data is 

    ∑         
 
    ∑        

 
       , where     ,        (   )   , and 

      (   )=1.    and      are sampled from the  (   ) distribution. Based on the 

simulation data, the proposed, aggregate, and gold-standard models are applied to 

estimate the   fixed effects, and variances of the   random effects (the aggregate model 

cannot estimate these), and the residual variance. Because all three models have been 

theoretically proven to give an unbiased estimator for each fixed effect, the simulation 

result for assessing the bias of each model in fixed effect estimation is not shown here. 

The models are compared in terms of the standard errors of the fixed effects estimates, 

the biases and standard errors of the random effect variance estimates, and the bias and 

standard error of the residual variance estimate. Considering the space limits, instead of 

showing the standard error of each fixed effect estimate, we show the average over the 

standard errors of the estimates for the   fixed effects. Similar consideration applies to 

the random effects, i.e., we show the average over the biases/standard errors of the 

estimates for the   random effects’ variances. The results for     are shown in the 

“       ” column of each sub-table in Table 5-1.  

In the second set of simulations, we include   enterprise-level predictors (   ), 

while keeping the number of individual-level predictors to be one. Therefore, the true 

model used to generate the simulation data is     ∑         
 
             , where 

    ,      (  )   , and       (   ) =1.     and     are sampled from the 

 (   ) distribution. Based on the simulation data, the three models are applied. The 
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results for     shown in the “       ” column of each sub-table in Table 5-1. 

Note that because there are eight fixed effects, the average over the standard errors of the 

estimates for these fixed effects is shown in Table 5-1(a) considering the space limits. In 

addition, the results for one individual-level predictor and one enterprise-level predictor, 

which have been discussed previously, are copied here for purpose of comparison.  

Table 5-1: Comparison between proposed, gold standard, and aggregate models 

in terms of the statistical properties in model estimation (          ) 

                                       (a) Std. err. of fixed effect estimate 

 

(b) Std. err. of random effect variance estimate      (c) Bias of random effect variance 

estimate       

          

(d) Std. err. of residual std. deviation ( ) estimate   (e) Bias of residual std. deviation ( ) 

estimate      

                

The following observations can be drawn from all the simulations performed:   

 The proposed model is consistently better than the aggregate model in terms 

of all the statistical properties chosen for comparison and regardless of the 

number of predictors.  

 The proposed model performs close to the gold-standard model, especially 

when the number of individual-level predictors,  , is small. This is because   

Q=1, P=1 Q=8, P=1 Q=1, P=8

Gold standard 0.045 0.328 0.304

Proposed 0.054 0.554 0.613

Aggregate 0.113 1.012 0.719

Q=1, P=1 Q=8, P=1 Q=1, P=8

Gold standard 0.017 0.614 0.086

Proposed 0.027 1.245 0.257

Aggregate N/A N/A N/A

Q=1, P=1 Q=8, P=1 Q=1, P=8

Gold standard -0.015 0.044 0.064

Proposed -0.024 0.214 0.092

Aggregate N/A N/A N/A

Q=1, P=1 Q=8, P=1 Q=1, P=8

Gold standard 0.00001 0.005 0.002

Proposed 0.002 0.281 0.047

Aggregate 3 26.82 20.368

Q=1, P=1 Q=8, P=1 Q=1, P=8

Gold standard 0.003 0.308 0.144

Proposed 0.177 3.228 0.131

Aggregate 13.394 22.174 20.598
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represents the number of random effects; a large   increases the variation 

sources, introducing more uncertainty in the model estimation.  

 With a fixed number of enterprises, i.e.,       in Table 5-2, the less 

parameters to be estimated, the better the estimation. This is true for all three 

models. Furthermore, the enterprise sample size,  , influences on the model 

performance much less than the number of enterprises.  

5.4 Application in nursing quality improvement 

5.4.1 Data collection and selection of predictors and response variable 

The case study in this section uses the data collected by two co-authors in a 

RWJF-sponsored project. Data collection is mainly in the format of surveys handed out to 

614 nurses in 32 hospital units (human subject approval has been obtained). Using the 

“language” of this paper, nurses are the “individuals” and units are the “enterprises”.  

Selection of individual-level predictors:  

The survey includes 11 questions designed to measure independent nursing 

activities and interdependent activities in coordinating patient care. Examples of the 11 

questions include “I organize the supplies that I need to be able to keep the care of my 

patients on track”, “I initiate actions to get my nursing team members to do what is 

needed to keep my patients on their plan of care,” and “I communicate information to my 

interdisciplinary team members they need to know to carry out their patient care activities 

or to make changes in their plan of care”. Each question includes four aspects for 

capturing the nurses’ perception of (i) the amount of time spent on the activity in a usual 

shift, (ii) the priority placed on the activity for a usual shift, (iii) the amount of time spent 

on the activity in the last shift worked, and (iv) the amount of time spent on this activity 

compared to the perception of amount of time needed in the last shift worked. In the 

survey, the nurses were asked to respond to the four aspects for each question. The 
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response to each aspect is on a 1-5 numerical scale, where 1 to 5 represents the least 

amount of time spend (for aspects (i), (iii), and (iv))/the lowest priority (for aspects (ii)) 

to the most amount of time spend/the highest priority. In the data analysis described in 

this section, we take the average over the responses to the four aspects and consider the 

average as the response to each question. In this way, the response to each question is a 

combined measure for the amount of time spent and priority of the activity this question 

corresponds to.  

The 11 questions were designed to be indicators for six underlying constructs, 

including organizing one’s own activities and resources, checking patient progress and 

response, doing the work of others to keep care on track, assisting each other’s work, 

mobilizing people and resources, and exchanging information with team members. The 

six constructs are called “organizing”, “checking”, “backfilling”, “assisting”, 

“mobilizing”, and “exchanging”, or denoted by “o”, “c”, “b”, “a”, “m”, and “e” in short 

in this section. Note that constructs “o”, “c”, and “b” correspond to the independent 

nursing activities, whereas “a”, “m”, and “e” correspond to the interdependent nursing 

activities, i.e., activities that need coordination between nurses and with other health care 

professionals.  

To verify the designed/hypothetical correspondence between the 11 questions 

and the six constructs, we perform factor analysis with a rotation method called 

procrustes [25]. This method intends to identify factors underlying the questions, such 

that the correspondence between the factors and the questions maximally overlaps with 

the designed/hypothetical correspondence between the six constructs and the questions. 

Six factors are identified and their correspondence with the 11 questions is almost the 

same as the designed/hypothetical correspondence, except that “a” is identified to 

correspond to questions Q5 and Q6, while it is designed to correspond to only Q5. 
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Question Q6 is “I communicate information to my nursing team members that they need 

to know to carry out their patient care activities or to make changes in the plan of care”. It 

is reasonable to believe that this question is an indicator for both “e” and “a”. Therefore, 

we use the six factors identified as individual-level predictors in our model. 

Selection of unit-level predictors:  

The survey also includes 30 questions capturing the nurses’ perceptions about the 

infrastructure, climate, and administration strategies in their respective units. Examples of 

the 30 questions include “our information technology helps me to find the information I 

need quickly”, “physicians respond quickly when we call them for a change in an order 

or change in patient status”, and “the physical layout of the unit allows us to get the 

supplies we need easily”. The response to each question is on a 1-5 numerical scale, 

where 1 to 5 represents “strongly disagree” to “strongly agree”. Note that although these 

questions ask for individual nurses’ responses, it is more appropriate to include them as 

unit-level predictors rather than individual-level predictors. Therefore, we take the 

average over the responses from all the nurses in each unit for a question. Furthermore, 

we perform principal component analysis (PCA) [26] on the 30 unit-level predictors and 

keep the first principle component (PC) as the final unit-level predictor included in our 

model. This has two purposes: (i) reduce the number of unit-level predictors; (ii) the first 

PC is a linear combination of the 30 unit-level predictors, thus serving as an overall 

measure for the extent to which each unit has characteristics that facilitate nursing quality 

improvement, hypothetically.  

Selection of response variable/quality outcome: 

Unit-level data for measuring the quality of nursing in each unit were collected 

separately from the survey. We include one quality measure, the total number of falls per 
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1000 patient days, or “falls” in short, as the response variable in our model.  A summary 

of the predictors and response variable that have been selected is given in Table 5-2.  

Table 5-2: Description of the predictors and response variable included in the model 

 Description Notes 

Individual-

level 

predictors 

  

o 

A factor measuring the level of nursing 

activity in organizing one's own 

activities and resources.   

“o”, “c”, “b”, “a”, “m”, 

and “e” are all 

standardized variables. 

Each is standardized by the 

respective global (i.e., 

across all units) mean and 

global standard deviation. 

Larger values in a 

predictor indicate higher 

levels of activity this 

predictor describes. 

“Level” is a combined 

measure for the time spent 

in this activity and the 

priority of this activity.  

c 

A factor measuring the level of nursing 

activity in checking patient progress and 

response.   

b 

A factor measuring the level of nursing 

activity in doing the work of others to 

keep care on track.   

a 
A factor measuring the level of nursing 

activity in assisting each other’s work.   

m 

A factor measuring the level of nursing 

activity in mobilizing people and 

resources.   

e 

A factor measuring the level of nursing 

activity in exchanging information with 

team members.   

Unit-level 

predictors 

  

s 

A composite measure based on 30 

variables measuring unit infrastructure, 

climate, and administration strategies  

Larger values in “s” 

indicate that the unit has 

characteristics greater 

facilitate nursing quality 

improvement, 

hypothetically. 

Unit-level  

Response 

variable 

  

falls Number of falls per 1000 patient days   
Smaller values indicate 

better nursing quality. 

 

5.4.2 Modeling and results 

We generate a scatterplot for each predictor in Table 5-2 with respect to the 

response. For an individual-level predictor, we plot the unit average because the response 
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is at the unit-level. The scatterplots can be found in Supplementary Material, which show 

linear trends. This confirms the validity of using a regression model for this particular 

application. Furthermore, we apply the proposed multi-level model to the data. Stage-1 

model includes all six individual-level predictors, i.e.,  ̃          ( )      ( )   

   ( )      ( )      ( )      ( )      . Stage-2 model regresses each Stage-1 

model coefficient on the unit-level predictor, i.e.,                  ,           . 

The combined model is  

 ̃          ( )      ( )      ( )      ( )      ( )      ( )         

    (   )      (   )      (   )      (   )      (   )     (   )                  

       ( )      ( )      ( )      ( )      ( )      ( )      ,           (13) 

where (   )      ( )   and the coefficient     reflects the interaction effect between 

  and  .  ̃   is the latent contribution of nurse   in unit   to the total number of falls in this 

unit.    ∑  ̃  
  
    is the total number of falls in unit  , and is observable.  

By applying the model estimation method proposed in Section 5-2, we obtain 

estimates for the fixed effects denoted by the “ ” coefficients in (13), and an estimate for 

the covariance matrix   of the random effects denoted by the “ ” coefficients. Here, 

considering the sample size limitation, we assume that   is diagonal. Therefore, the 

proposed method actually gives an estimate for the variance/standard deviation of each 

random effect. In addition, the proposed method gives an estimate for    that is the 

variance of the residual    . These estimates are shown in Table 5-2.  
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Table 5-3: Estimated effects of individual-level and unit-level predictors on the number 

of falls 

Fixed effect Estimate        se   P_value 

Intercept,     3.436 0.187 0.000 

o,     -0.094 0.182 0.610 

c,     -0.079 0.181 0.670 

b,     0.162 0.222 0.475 

a,     -0.509 0.225 0.036 

m,     -0.218 0.269 0.427 

e,     -0.165 0.327 0.620 

s,     -0.262 0.146 0.088 

s_o,     0.181 0.154 0.255 

s_c,     0.127 0.140 0.377 

s_b,     0.031 0.144 0.835 

s_a,     -0.246 0.181 0.189 

s_m,     0.000 0.116 1.000 

s_e,     -0.079 0.303 0.798 

 Intercept, 

std dev of 

    

o, std 

dev of 

    

c, std 

dev of 

    

b, std 

dev of 

    

a, std 

dev of 

    

m, std 

dev of 

    

e, std 

dev of 

    

Random 

effect 
1.260e-6 

1.472e-

6 

6.247e-

7 
0.425 3.555e-6 1.338e-6 0.917 

   1.957e-05       

It can be seen that the model in Table 5-3 (called the full model hereafter) has 

many fixed effects with large P-values and random effects having small standard 

deviations. This implies that the model may be simplified. We perform model selection 

using the LRT suggested in Section 5-2-3. The selected model further goes through 

model adequacy checks and there is no apparent violation of the model assumptions 
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(please see Supplement Material for details). However, unit 26 is found to be an outlier. 

After removing unit 26, the final model is obtained, as shown in Table 5-4. The    value 

for this model is 0.94, showing a good fit.  

Table 5-4: Estimated effects of individual-level and unit-level predictors on the number 

of falls in the final model  

Fixed effect Estimate se P_value 

Intercept,     3.538 0.129 0.000 

a,     -0.402 0.185 0.038 

s,     -0.241 0.076 0.004 

s_a,     -0.395 0.081 0.000 

 Intercept, 

std dev of 

    

e, std 

dev of 

    

     

Random 

effect 
0.238 0.869      

   0.354       

 

To facilitate the interpretation of the final model, we write out the Stage-1 and 

Stage-2 models corresponding to the final model, i.e.,  ̃          ( )      ( )   

    (Stage-1);                  ,               ,         (Stage-2). Some 

interesting conclusions can be drawn: 

 In general, because the final model only includes the individual-level 

predictors, “a” and “e”, it indicates that other nursing activities, “o”, “c”, “b”, 

and “m”, do not have a significant impact on the number of falls. Note that “a” 

and “e” are both interdependent nursing activities in coordinating patient care. 

This indicates that the coordination between nurses and with other health care 

professionals may be more important for reducing “falls”, compared with 

independent nursing activities.  
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     is the mean number of falls in unit   when the levels of nursing activities 

“a” and “e” are equal to their respective global means.     is affected by “s” 

according to the Stage-2 model; also, the coefficient for “s”,    , is negative. 

This implies that a unit with a high level of “s” will have less mean number of 

falls than a unit with a low level of “s”, even though the nurses in the two 

units have the same levels of “assisting” and “exchanging” activities. Recall 

that “s” is a composite measure for the extent to which the unit has 

characteristics that facilitate nursing quality improvement, hypothetically. Our 

finding confirms this hypothesis. In addition,     consists of a random effect, 

   , whose variance is significant. This implies that hospital units vary in their 

mean number of falls even after controlling for “s”. Furthermore, we can 

estimate the average of the mean number of falls across the population of 

units with the same “s” by         . For example, if we focus on the 

population of units with           (this number is the average value of “s” 

over the 32 units in the data), then on average these units will have a mean 

number of falls equal to                   . 

     reflects the strength of association between a nurse’s “assisting” activity in 

unit   and the number of falls.     is affected by “s” according to the Stage-2 

model; also, the coefficient for “s”,    , is negative. This implies that in a unit 

with a high level of “s”, increasing the “assisting” activity of nurses will 

reduce the number of falls more than in a unit with a low level of “s”. In 

addition,     does not include a random effect. This implies that after 

controlling for “s”, hospital units behave similarly in terms of the strength of 

association between nurses’ “assisting” activities and the number of falls, i.e., 

little variability in the strength of association remains to be explained. 
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Furthermore,           can be used to estimate the average strength of 

association between nurses’ “assisting” activities and the number of falls 

across the population of units with the same “s”. Note that  because      , 

     , and    , the strength of association is always negative, implying 

that nurses’ “assisting” activities will reduce the number of falls regardless of 

which unit the nurses belong to.  

     reflects the strength of association between a nurse’s “exchanging” 

activity in unit   and the number of falls.     includes a random effect, 

implying that hospital units vary in terms of the strength of association 

between nurses’ “exchanging” activities and the number of falls. However, 

this variability cannot be accounted for by “s”. Furthermore, as     does not 

include any fixed effect, it implies that on average there is little association 

between nurses’ “exchanging” activities and the number of falls.  

5.5 Conclusion 

This paper proposed a multilevel model to link individual- and enterprise-level 

predictors with an enterprise-level quality outcome, for enterprise quality improvement. 

Unlike conventional multilevel regression which requires the outcome be at the 

individual level, the proposed model treats each individual’s contribution to the enterprise 

quality outcome as a latent variable. An algorithm was proposed to estimate the model 

parameters, which integrates the FS algorithm and generalized least squares estimation. 

Simulation studies were conducted to assess the performance of the proposed model, in 

comparison with the aggregate model which aggregates the individual-level predictors to 

the enterprise level and the gold-standard model which assumes that each individual’s 

contribution to the enterprise quality outcome is explicitly known. These studies showed 

that the proposed model performs close to the gold-standard model in terms of the biases 
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and standard errors of the estimates for the fixed effects, variances of the random effects, 

and residual variance. In contrast, the aggregate model leads to much larger standard 

errors of the estimates for the fixed effects, and much larger bias and standard error of the 

residual variance estimate; also, the aggregate model cannot separate the within- and 

between-enterprise variations by providing separate estimates for the random effects 

variances and residual variance.   

The proposed model was applied to a real-world application of nursing quality 

improvement. Our finding showed that the interdependent nursing activities in 

coordinating patient care, especially the “assisting” and “exchanging” activities, have 

significant impact on reducing patient falls. Also, our finding confirmed that the unit 

infrastructure, climate, and administration strategies that are hypothesized to improve 

nursing quality do help significantly reduce falls. In addition, the “assisting” activity of 

each nurse and the quality-improving infrastructure, climate, and administration 

strategies of the nurse’s unit promote each other in reducing falls.  

Finally, we point out several future research directions. Multiple quality 

outcomes, such as falls, medication errors, and patient satisfaction, may be considered 

altogether, leading to a multilevel model with multiple latent responses to be developed. 

Also, a generalized multilevel model may be more appropriate considering that the 

response variables may not all be strictly normal. Furthermore, robust model estimation 

with a large number of predictors and limited sample sizes may be studied. In addition to 

the methodological development, it would be of interest to investigate the difference 

between hospital units in terms of how the individual- and unit-level predictors affect 

nursing quality outcomes and formulate specific quality improvement plans for each unit. 

Also, instead of using a composite measure as the unit-level predictor, it may reveal more 
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insights to include each specific quality-assuring measure as a predictor in order to assess 

the effectiveness of each measure.  

Appendix: Derivation of 
  ( )

  
 and  (

  ( ) 

    
) in the FS algorithm 

Through some matrix algebra, we derive the first derivatives, 
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, as follows: 
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Based on the first derivatives, the second derivatives can be further obtained: 
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where   is the kronecker operator [23]. Next, we calculate  (
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) with respect to   , 
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Chapter 6  

SPARSE COMPOSITE LINEAR DISCRIMINATION ANALYSIS FOR MULTI-

MODALITY NEUROIMAGING DATA FUSION 

Abstract 

Various imaging modalities have been used for diagnosis of brain disorders such as the 

Alzheimer’s disease (AD). Because different modalities provide complementary 

measures for the same disease process, fusion of multi-modality data may increase the 

statistical power in identification of disease-related brain regions. We propose a sparse 

composite linear discriminant analysis (SCLDA) model for identification of disease-

related brain regions from multi-modality neuroimaging data. SCLDA uses a novel 

formulation that decomposes each LDA parameter into a product of a common parameter 

shared by all the modalities and a parameter specific to each modality, which enables 

joint modeling of all the modalities and borrowing of strength from one another. We 

prove that this formulation is equivalent to a penalized likelihood with non-convex 

regularization, which can be solved by the DC (difference of convex functions) 

programming. We perform extensive simulations to show that SCLDA performs better 

than existing competing algorithms on feature selection. We apply SCLDA to the 

Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) images 

of 49 early AD patients and 67 normal controls (NC). Our study identifies disease-related 

brain regions consistent with findings in the AD literature.  

6.1 Introduction 

With the rapid advancement of neuroimaging techniques, various imaging modalities 

have become available. Multi-modality imaging data are especially useful in clinical 

diagnosis of brain disorders, which provide unique and often complementary 

characterization of the underlying disease process. For example, in diagnosis of the 
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Alzheimer’s disease (AD), two commonly used imaging modalities are Magnetic 

Resonance Imaging (MRI) and Positron Emission Tomography (PET). MRI is a typical 

structural neuroimaging technique, which allows for visualization of brain anatomy. PET 

is a typical functional neuroimaging technique, which measures brain activities. The 

extensive use of MRI and PET in AD diagnosis is supported by the finding that AD is 

associated with both structural and functional alterations in the brain [2] [3] [4] [5] [6] 

[11] [12] [13] 14].  

An interesting observation obtained from past MRI and PET studies of AD is that 

there is overlap between the disease-related brain regions detected by MRI and those by 

PET, such as regions in the hippocampus area and the mesia temporal lobe [16] [17]. 

This is not surprising since MRI and PET are two complementary measures for the same 

disease process, i.e., it starts mainly in the hippocampus and entorhinal cortex, and 

subsequently spreads throughout the temporal and orbiogrontal cortex, poseterior 

cingulate, and association cortex generally [7]. However, most existing studies only 

exploited structural and functional alterations in separation, which ignore the potential 

interaction between them. The fusion of MRI and PET imaging modalities will increase 

the statistical power in identification of disease-related brain regions, especially at the 

early stage of disease development, when the disease-related regions are most likely to be 

weak-effect regions that are difficult to be detected from MRI or PET alone. Once a good 

set of disease-related brain regions is identified, they can be further used to build an 

effective classifier (i.e., a biomarker from the clinical perspective) to enable disease 

diagnose with high sensitivity and specificity. The ability for diagnosing a disease at the 

early developmental stage is of great clinical value in terms of maximizing the effect of 

treatment and improving patients’ quality of life. 
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The idea of multi-modality data fusion has been exploited before. For example, a 

number of models have been proposed to combine electroencephalography (EEG) and 

functional MRI (fMRI), including parallel EEG-fMRI independent component analysis 

[18] [19], EEG-informed fMRI analysis [18] [20], and variational Bayesian methods [18] 

[21]. The purpose of these studies is to combine EEG, which has high temporal resolution 

but low spatial resolution, and fMRI, which has low temporal resolution but high spatial 

resolution, so as to obtain an accurate picture for the whole brain with both high spatial 

and high temporal resolutions[18] [19] [20] [21]. This purpose is different from ours, 

which focuses on disease-related brain region identification and subsequent classification. 

On the other hand, there are some existing studies that include either MRI (or perfusion 

MRI) and PET data for classification [15] [22] [23] [24] [25]. However, these studies do 

not make use of the fact that MRI and PET measure the same underlying disease process 

from two complementary perspectives (i.e., structural and functional perspectives), so 

that the analysis of one imaging modality can borrow strength from the other.  

In this paper, we focus on the problem of identifying disease-related brain regions 

from multi-modality data. This is actually a variable selection problem. Because 

neuroimaging datasets are typically featured by a high dimensionality and a small sample 

size (i.e., large p, small n), regularization techniques are needed for effective variable 

selection, such as the L1-regularization technique [25] [26] [27] [28] [29] [30] and the 

L2/L1-regularization technique [31]. In particular, L2/L1-regularization has been used for 

variable selection jointly on multiple related datasets, also known as multitask feature 

selection [31], which has a similar nature to our problem. Note that both L1- and L2/L1-

regularizations are convex regularizations, which have gained them popularity in the 

literature. On the other hand, there is increasing evidence that these convex 

regularizations tend to produce too severely shrunken parameter estimates [33] [34] [35] 
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[39]. As a result, these convex regularizations may have a risk of not being able to 

identify the weak-effect disease-related brain regions, which unfortunately may make up 

a large portion of the disease-related brain regions at the early stage of disease 

development. Also, convex regularizations tend to select many irrelevant variables to 

compensate for the overly severe shrinkage in the parameters of the relevant variables 

[34]. Considering these limitations of convex regularizations, we study non-convex 

regularizations [33] [34] [35] [39], which have the advantage of producing mildly or 

slightly shrunken parameter estimates so as to be able to preserve weak-effect disease-

related brain regions and enjoy the advantage of avoiding selecting many disease-

irrelevant regions.  

Specifically in this paper, we propose a sparse composite linear discriminant analysis 

model, called SCLDA, for identification of disease-related brain regions from multi-

modality data. Please note that although we have been using MRI and PET to discuss the 

context of this study, the proposed SCLDA is general to any number of imaging 

modalities. Also, SCLDA can be used to for multi-class discrimination.  

The contributions of our paper include: 

 Formulation: We propose a novel formulation that decomposes each LDA 

parameter into a product of a common parameter shared by all the data sources and a 

parameter specific to each data source. This formulation enables joint modeling of all the 

data sources and borrowing of strength from one another. We further prove that this 

formulation is equivalent to a penalized likelihood with non-convex regularization.  

 Algorithm: We show that the proposed non-convex optimization can be solved 

by the DC (difference of convex functions) programming [39]. More importantly, we 

show that in using the DC programming, the property of the non-convex regularization in 

terms of preserving weak-effect features can be nicely revealed. 
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 Application: We apply the proposed SCLDA to the PET and MRI data of early 

AD patients and normal controls (NC). Our study identifies disease-related brain regions 

that are consistent with the findings in the AD literature. AD vs. NC classification based 

on SCLDA-identified regions achieves high accuracy, which makes the proposed method 

a potential tool to complement the existing tools in clinical diagnosis of early AD. In 

contrast, the convex-regularization-based multitask feature selection method [31] 

identifies more irrelevant brain regions and yields a lower classification accuracy.  

The rest of the paper is organized as follows: Section 6-2 reviews LDA and some of its 

variants. Section 6-3 presents the formulation of SCLDA, as well as the DC 

programming used to solve the optimization problem associated with the SCLDA. 

Section 6-4 presents the results of experiments on synthetic data. Section 6-5 presents an 

application of SCLDA for identifying disease-related brain regions by fusing PET and 

MRI. Section 6-6 is the conclusion. 

6.2 Review of LDA and its variants 

Denote   {          }
 
 as the variables and assume there are   classes. Denote    as 

the sample size of class   and   ∑   
 
    is the total sample size. Let 

  {          }  be the     sample matrix, where    is the     sample and  ( ) is 

its associated class index. Let  ̂  
 

  
∑   

 
     ( )   be the sample mean of class  , 

 ̂  
 

 
∑   

 
    be the overall sample mean,   

 

 
∑ (    ̂)(    ̂)  

    be the total 

normalized sum of squares and products (SSQP),     
 

  
∑ (    

     ( )  

 ̂ )(    ̂ )
 

 be the normalized class SSQP of class  , and   
 

 
∑     

 
    be the 

overall normalized class SSQP.  
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The objective of LDA is to seek for a     linear transformation matrix,   ,      , 

such that    
   retains the maximum amount of class discrimination information in  . To 

achieve this objective, one approach is to find the    that maximizes the between-class 

variance of   
  , which can be measured by   (  

    )    (  
    ) ,  while 

minimizing the within-class variance of   
  , which  can be measured by   (  

    ). 

Here tr() is the matrix trace operator. This is equivalent to solving the following 

optimization problem: 

                                                       ̂          

  (  
    )

  (  
    )

 .                                   (1) 

Note that  ̂  corresponds to the right eigenvector of     . 

Another approach used to find the    is to use maximum likelihood estimation for 

Gaussian populations that have different means and a common covariance matrix. 

Specifically in [36], this approach was developed by assuming that the class distributions 

are Gaussian with a common covariance matrix, and their mean differences lie in a  -

dimensional subspace of the  -dimensional original variable space. Hastie [37] further 

generalized this approach by assuming that each class distribution is a mixture of 

Gaussians, which has more flexibility than LDA. However, both approaches assume a 

common covariance matrix for all the classes, which is too strict in many practical 

applications, especially in high-dimensional problems where the covariance matrices of 

different classes tend to be different. Consequently, the linear transformation explored by 

LDA may not be effective.  

In [38], a heterogeneous LDA (HLDA) is developed to relax this assumption. The HLDA 

aims to find a     linear transformation matrix,  , in which only the first   columns 

(   ) contain discrimination information and the remaining     columns (     ) 

contain no discrimination information. For Gaussian models, assuming lack of 
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discrimination information is equivalent to assuming that the means and the covariance 

matrices of the class distributions are the same for all classes, in the     dimensional 

subspace. Following this, the log-likelihood function of   can be written as follows [38]: 

                  ( | )   
 

 
lo |    

      |  ∑
  

 
lo |  

     |
 
     lo | |,            (2) 

Here | | denotes the determinant of matrix  . There is no closed-form solution for  . As 

a result, numeric methods are needed to derive the maximum likelihood estimate for  .   

can be specified by users or some model selection criteria such as Akaike’s Information 

Criterion (AIC). It is worth mentioning that the LDA in the form of (1) is a special case 

of the HLDA [38].  

6.3 The proposed SCLDA 

6.3.1 The formulation of SCLDA 

For the same set of physical variables such as brain regions,   {          }
 

, there 

may be multiple data sources each capturing a different aspect of the set of physical 

variables. For example, MRI data contains volumetric information of each brain region 

and PET data measures regional activities. Let  (𝑚) denote the m-th data source for  , 

         .  (𝑚) is a     sample  matrix.   

For each data source,  (𝑚), there is a linear transformation matrix  (𝑚), which retains 

the maximum amount of class discrimination information. A naive way for estimating 

  { ( )  ( )    ( )} is to separately estimate each  (𝑚) based on  (𝑚). Apparently, 

this approach does not take advantage of the fact that all the data sources measure the 

same set of physical variables (e.g., the same set of brain regions), so they may consist of 

complementary information. Also, when the sample size of each data source is small, this 

approach may lead to unreliable estimates for the  (𝑚)’s.  
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To tackle these problems, we propose a composite parameterization following the line 

as [40]. Specifically, let     
(𝑚)

 be the element at the k-th row and l-th column of  (𝑚)   We 

treat {    
( )

     
( )

       
( )

}  as an interrelated group and parameterize each     
(𝑚)

 as 

    
(𝑚)

       
(𝑚)

, for      ,        and       . In order to assure 

identifiability, we restrict each     . Here,    represents the common information 

shared by all the data sources about variable  , while     
(𝑚)

 represents the specific 

information only captured by the     data source. For example, in “diseased” vs. 

“normal” discrimination, if     , it means that all the data sources indicate that 

variable/region   is not a disease-related brain region. Specifically, if there are two data 

sources, MRI and PET,      implies that the disease is irrelevant to structural or 

functional alteration in region  .      implies that region   may be a disease-related 

brain region and this assertion is supported by the     data source if      
(𝑚)

  . 

Specifically, if the     data source is MRI (or PET),     
(𝑚)

   implies that the disease is 

relevant to structural (or functional) alteration in region  . 

The log-likelihood function of   is: 

  ( |{ ( )  ( )    ( )})  

∑ { 
 ( )

 
lo |    

(𝑚)  
 (𝑚)    

(𝑚)
|  ∑

  
( )

 
lo |  

(𝑚)
  

(𝑚)
  

(𝑚)
|

 
     

𝑚  

 (𝑚) lo | (𝑚)|} , 

which follows the same line as (2). However, our formulation includes the following 

constraints on  :   

                                       
(𝑚)

       
(𝑚)

,     ,        ,      .                     (3) 
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Let   {    
(𝑚)

                  }  and   {        } . An 

intuitive choice for estimation of   and   is to maximize the 

  ( |{ ( )  ( )    ( )})  subject to the constraints in (3). However, it can be 

anticipated that no element in the estimated   and   will be exactly zero, resulting in a 

model which is not interpretable, i.e., poor identification of disease-related regions. Thus, 

we encourage the estimation of   and    to be sparse, by imposing the L1-penalty on   

and    . By doing so, we obtain the following optimization problem for the proposed 

SCLDA: 

 ̂           ( |{ ( )  ( )    ( )}), 

        {   ( |{ ( )  ( )    ( )})     ∑       ∑     
(𝑚)

    𝑚  }, 

subject to 

                                       
(𝑚)

       
(𝑚)

,     ,        ,      .              (4) 

Here,    and    control the degrees of sparsity of   and  , respectively. Tuning of two 

regularization parameters is difficult. Fortunately, we prove the following Theorem 

which indicates that formulation (4) is equivalent to a simpler optimization problem 

involving only one regularization parameter. 

Theorem 1. The optimization problem (4) is equivalent to the following optimization 

problem:  

 ̃           ( |{ ( )  ( )    ( )}), 

                                              {

   ( |{ ( )  ( )    ( )})

   ∑ √∑ ∑ |    
(𝑚)

| 
𝑚  

 
    

},                               (5) 

with    √    , i.e.,  ̂   
(𝑚)

  ̃   
(𝑚)

. 

The proof can be found in the Appendix. 
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6.3.2 Use DC programming to solve (5) 

The optimization problem (5) is a non-convex optimization problem that is difficult to 

solve. We address this problem by using an iterative two-stage procedure known as the 

Difference of Convex functions (DC) programming [39]. The basic idea behind the DC 

programming is that, at the first stage of every iteration, a surrogate convex objective 

function is proposed to bound the non-convex objective function at the current solution; 

then, at the second stage, a new solution is obtained by maximizing this surrogate convex 

objective function. This process iterates until a certain convergence rule is met. It is 

worth mentioning that the DC programming shares the same spirit as the Expectation-

Maximization (EM) algorithm or Minorization-Maximization (MM) algorithm that has 

been widely used in statistics and machine learning. 

We adopt the DC algorithm to solve (5) following [39], in which the DC programming 

is to solve a least-square problem with non-convex penalty terms. In our problem, the 

essential task is to find a decomposition of ∑ √∑ ∑ |    
(𝑚)

| 
𝑚  

 
     as a sum of two 

convex functions. As suggested in [39], the decomposition, √    
(𝑚)

 |    
(𝑚)

|  

(|    
(𝑚)

|  √    
(𝑚)

), can be used for the non-convex penalty term √    
(𝑚)

. This inspires us 

to use  

√∑ ∑ |    
(𝑚)

| 
𝑚  

 
    ∑ ∑ |    

(𝑚)
| 

𝑚  
 
    (∑ ∑ |    

(𝑚)
| 

𝑚  
 
    √∑ ∑ |    

(𝑚)
| 

𝑚  
 
   ), 

as a decomposition for √∑ ∑ |    
(𝑚)

| 
𝑚  

 
   . Based on the theory developed in [39], this 

decomposition results in the following objective function   

 ̃(   )           ( |{ ( )  ( )    ( )})    

                     {   ( |{ ( )  ( )    ( )})   ∑   
(   ) ∑ ∑ |    

(𝑚)
| 

𝑚  
 
    },    (6) 
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as the surrogate convex objective function, where  

  
(   )

     ( )|
  ∑ ∑ |    

( )( )
| 

   
 
   

,  ( )   (  √ ), 

 ̃(   )  is the solution at iteration     and     
(𝑚)( )

 is a corresponding element. It is 

shown that this decomposition produces a surrogate convex objective function with L1- 

penalty, which can be solved by many existing efficient algorithms developed for 

LASSO-type of problems. A complete procedure for the DC programming is depicted in 

Figure 6-1. 

 

 
Fig. 6-1.  The DC programming for solving (5) 

 

The optimization problem (6) is a standard L1-regularization type of problem, whose 

objective function is a sum of a smooth likelihood/lease-square error function and an L1- 

penalty on the parameters. This problem can be solved by many efficient numeric 

algorithms in the literature [25, 26]. In our case, the two-metric method is employed [25].   

It has been pointed out that the DC programming for solving many non-convex 

regularization problems can be closely linked to the adaptive LASSO formulation [39]. 

To illustrate this point in our case, we note that  

Initialize:   Let 𝑡   ; 

Repeat  

Calculate  

𝜆𝑘
(𝑡)

 𝜆    (𝑧)|
𝑧 ∑ ∑ |𝜃𝑘 𝑙

(𝑚)(𝑡)
|𝑀

𝑚  
𝑞
𝑙  

; 

for   𝑘 𝑙  𝑝,    𝑚  𝑀; 

Solve (6) and get �̃�(𝑡); 

       Let 𝑡  𝑡   ; 

Until converge 
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  ( )|
  ∑ ∑ |    

( )
| 

   
 
   

   
 

 (√∑ ∑ |    
(𝑚)

| 
𝑚  

 
     )

 

is in our DC programming, where   is a user-specified number for numerical stability 

consideration. This produces a new regularization parameter for iteration    ,  

  
(   )

 
 

 (√∑ ∑ |    
( )( )

| 
   

 
   

  )

, 

which is inversely proportional to the magnitude of  √∑ ∑ |    
(𝑚)( )

| 
𝑚  

 
   . 

This implies that, at each iteration, the DC programming essentially reweights the 

regularization parameters of each L1-regularization type of problem in (6). Specifically, 

at iteration    , the new regularization parameters associated with the zero     
(𝑚)
’s 

identified at the previous iteration will increase drastically, while the new regularization 

parameters associated with the non-zero     
(𝑚)
’s identified at the previous iteration will 

decrease proportionally to the sum of the absolute magnitudes of these     
(𝑚)
’s. which 

belong to the same variable. In this manner, the shrinkage effect imposed on the non-zero 

    
(𝑚)
’s  by the L1-regularization is effectively alleviated. This explains why the proposed 

SCLDA has the capability of preserving weak-effect features. 
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                                      (a)                                                                                   (b)                                                 

Fig. 6-2.  Average numbers of TPs vs. FPs for proposed SCLDA (green symbols “+”), 

SLDA (blue symbols “*”), and MSLDA (red symbols “o”) with  (a)             ; 

(b)             . 

 

6.3.3 Selection of   and   

Recall that   is the regularization parameter in (5);   is the number of columns in  ( ) 

that contains discrimination information. We first discuss the optimal selection of   and   

for the case when there is only one data source. This optimal selection can be obtained by 

maximizing Akaike’s Information Criteria (AIC) [46]: 

     (   )  
 

    
, 

where  (   ) is the cross validation classification accuracy associated with   and  ,    is 

the number of nonzero parameters in  ̃, and      is the average number of observations 

per class. For the general case where there are   data sources, the optimal selection of   

and   can be obtained by maximizing the average AIC, which is: 

        ∑     
 
    ⁄ . 

where      is the AIC value for the      data source. Both the simulation studies in 

section 6-4 and real application in section 6-5 reveal that this criterion can produce 

accurate and meaningful model selection results. 
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6.4 Simulation studies 

In this section, we conduct experiments to compare the performance of the proposed 

SCLDA with sparse LDA (SLDA) [42] and multitask feature selection [31]. Specifically, 

as we focus on LDA, we use the multitask feature selection method developed in [31] on 

LDA, denoted as MSLDA. Both SLDA and MSLDA adopt convex regularizations. 

Specifically, SLDA selects features from one single data source with L1-regularization; 

MSLDA selects features from multiple data sources with L2/L1 regularization. 

We evaluate the performances of these three methods across various parameters 

settings, including the number of variables,  , the number of features,  , the number of 

data sources,  , sample size,  , and the degree of overlapping of the features across 

different data sources,    (the larger the   , the more shared features among the 

datasets). Definition of    can be found in the following simulation procedure. For a 

given combination of values of these parameters, simulation data can be generated in the 

following way: First, we generate a     vector,  , with   elements being randomly 

selected to be 1 and the other elements being zero. Second, to generate a feature vector 

for dataset  ,   , we randomly change (     )  of the non-zero elements of   to be 

zero, and, at the same time, we randomly change the same number of zero elements to be 

1. The nonzero elements of    correspond to the features of dataset  . In this manner, the 

larger the   , the more overlapping of the features across the data sources. We further 

randomly pick up half of the nonzero elements of each    and modify them in such a way: 

its new value is sampled from either the uniform distribution  (     ) or the uniform 

distribution  (      ). This is to mimic the true situation in the real application in 

Section 6-5, where a large portion of weak-effect features are present. After that, we use 

the resulting    and     as the mean vectors of two classes of dataset   (for simplicity, 

we only investigate 2-class problems for the simulation). For each data set, the 
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covariance matrix is generated from a Wishart distribution with the degree of freedom 

being   and the scale matrix being an Identity matrix. Each covariance matrix is further 

diagonalized to make the diagonal elements being 0.2 (the corresponding signal-to-noise 

ratio is about 5). With these mean vectors and covariance matrices, we generate the 

dataset   by sampling one sub-dataset for each class from its corresponding multivariate 

Gaussian distribution, and then combining these two sub-datasets as dataset  . For each 

specification of the parameters settings,   datasets can be generated following the 

simulation procedure. We apply the proposed SCLDA to the   datasets, and identify one 

feature vector  ̂( )  for each dataset, with   and   chosen by the method described in 

Section 6-3-3. The result can be described by the number of true positives (TPs) and the 

number of false positives (FPs). Here, true positives are the non-zero elements in the 

learned feature vector  ̂( ) that are also non-zero in the   ; false positives are the non-

zero elements in  ̂( ) that are actually zero in   . As there are   pairs of TPs and FPs for 

  datasets, the average TP over the   datasets and the average FP over the   datasets 

are used as the performance measures. This procedure (i.e., from data simulation, to 

SCLDA, to TPs and FPs generation) can be repeated for 100 times, and 100 pairs of 

average TP and average FP are collected for SCLDA. In a similar way, we can obtain 100 

pairs of average TP and average FP for both SLDA and MSLDA. 

Fig. 6-2 (a) and (b) show comparison between SCLDA, SLDA and MSLDA by 

scattering the average TP against the average FP for each method. Each point 

corresponds to one of the 100 repetitions. The comparison is across various parameter 

settings, including the number of variables (             ), the number of data 

sources (        ), and the degree of overlapping of the features across different data 

sources (          ). Additionally,     is kept constant, i.e.,      . A general 

observation is that SCLDA is better than SLDA and MSLDA across all the parameter 
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settings. Some specific trends can be summarized as follows: (i) Both SCLDA and 

MSLDA outperform SLDA in terms of TPs; SCLDA further outperforms MSLDA in 

terms of FPs. (ii) In Fig. 6-2 (a), rows correspond to different numbers of data sources, 

i.e.,         , respectively. It is clear that the advantage of SCLDA over both SLDA 

and MSLDA is more significant when there are more data sources. Also, MSLDA 

performs consistently better than SLDA. Similar phenomena are shown in Fig. 6-2 (b). 

This demonstrates that in analyzing each data source, both SCLDA and MSLDA are able 

to make use of the information contained in other data sources. SCLDA can use this 

information more efficiently, as SCLDA can produce less shrunken parameter estimates 

than MSLDA and thus SCLDA is able to preserve weak-effect features. (iii) Comparing 

Fig. 6-2 (a) and (b), it can be seen that the advantage of SCLDA or MSLDA over SLDA 

is more significant as the data sources have higher degree of overlapping in their features. 

Finally, although not presented here, our simulation shows that the three methods 

perform similarly when    4   or less.  

Furthermore, we conduct an experiment to compare SCLDA, SLDA, and MSLDA 

under different sample sizes. As shown in Fig. 6-3, SCLDA performs significantly better 

when sample sizes are small, which confirms that SCLDA is statistically more efficient.  

 

Fig. 6-3.  Average numbers of TPs vs. FPs for proposed SCLDA (green symbols “+”), 

SLDA (blue symbols “*”). and MSLDA (red symbols “o”) with           . 
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6.5 Applications 

6.5.1 Data preprocessing 

Our study includes 49 early AD patients and 67 age-matched normal controls (NC), with 

each subject of AD or NC being scanned by both PDG-PET (a type of PET imaging) and 

MRI. The FDG-PET and MRI images can be downloaded from the database created by 

the Alzheimer’s Disease Neuroimaging Initiative (www.adni-info.org). In what follows, 

we outline the data preprocessing steps. 

Each image is spatially normalized to the Montreal Neurological Institute (MNI) 

template using the affine transformation and subsequent non-linear warpping algorithm 

[43] implemented in the SPM MATLAB toolbox. This is to ensure that each voxel is 

located in the same anatomical region for all subjects, so that spatial locations can be 

reported and interpreted in a consistent manner. Once all the images in the MNI template, 

we further apply the Automated Anatomical Labeling (AAL) technique [43] to segment 

the whole brain of each subject into 116 brain regions. The 90 regions that belong to the 

cerebral cortex are selected for the later analysis, as the other regions not included in the 

cerebral cortex are rarely considered related to AD in the literature. The measurement of 

each region in the PDG-PET data is regional metabolism of glucose; the measurement of 

each region in the MRI data is the structural volume of the region. 

6.5.2 Disease-related brain regions 

SCLDA is applied to the preprocessed PET and MRI data of AD and NC. 26 disease-

related brain regions are identified from PET and 21 from MRI (see Table 6-1 for their 

names). The maps of the disease-related brain regions identified from PET and MRI are 

highlighted in Fig. 6-4 (a) and (b), respectively, with different colors given to 

neighboring regions in order to distinguish them. Each figure is a set of horizontal cut 

http://www.adni-info.org/


  159 

away slices of the brain as seen from the top, which aims to provide a full view of 

locations of the regions.  

TABLE 6-1 

EXPLANATORY POWER OF FUNCTIONAL AND STRUCTURAL MEASUREMENTS FOR SEVERITY 

OF COGNITIVE IMPAIRMENT 

 

Brain regions 

PET MRI 

Brain regions 

PET MRI 

R2 
p-

value 
R2 

p-

value 
R2 p-

value 
R2 

p-

value 

Precentral_L 0.003 0.503 0.027 0.077 Amygdala_L 0.090 0.001 0.313 <10-4 

Precentral_R 0.044 0.022 ~ ~ Calcarine_L 0.038 0.034 0.028 0.070 

Frontal_Sup_L 0.051 0.013 0.047 0.018 Lingual_L 0.066 0.005 0.044 0.023 

Frontal_Sup_R 0.044 0.023 ~ ~ Postcentral_L 0.038 0.035 0.026 0.081 

Frontal_Mid_R 0.056 0.010 0.072 0.003 Parietal_Sup_R 0.001 0.677 ~ ~ 

Frontal_M_O_L 0.036 0.040 0.086 0.001 Angular_R 0.173 <10-4 0.063 0.006 

Frontal_M_O_R 0.019 0.138 0.126 0.000 Precuneus_R 0.063 0.006 0.025 0.084 

Insula_L 0.016 0.171 0.163 <10-4 Paracentr_Lobu_L 0.035 0.043 0.000 0.769 

Insula_R ~ ~ 0.125 0.000 Pallidum_L 0.082 0.001 ~ ~ 

Cingulum_A_R 0.004 0.497 0.082 0.001 Pallidum_R ~ ~ 0.020 0.122 

Cingulum_Mid_L 0.001 0.733 0.040 0.030 Heschl_L 0.001 0.640 ~ ~ 

Cingulum_Post_L 0.184 <10-4 ~ ~ Heschl_R 0.000 0.744 0.111 0.000 

Hippocampus_L 0.158 <10-4 ~ ~ Temporal_P_S_R 0.008 0.336 0.071 0.003 

Hippocampus_R ~ ~ 0.242 <10-4 Temporal_Inf_R 0.187 <10-4 0.147 <10-4 

ParaHippocamp_L 0.206 <10-4 ~ ~ All regions 0.702 <10-4 0.497 <10-4 

Notation “~” means this region is not identified from PET (or MRI) as a disease-related 

region by SCLDA 

 

One major observation is that the identified disease-related brain regions from MRI are 

in the hippocampus, parahippocampus, temporal lobe, frontal lobe, and precuneus, which 

is consistent with the existing literature that reports structural atrophy in these brain areas 

[3] [4] [5] [6] [12] [13] [14]. The identified disease-related brain regions from PET are in 

the temporal, frontal, and parietal lobes, which is consistent with many functional 

neuroimaging studies that report reduced  functional activities in these areas [8] [9] [10] 

[12] [13] [14]. Many of these identified disease-related regions can be explained in terms 

of the AD pathology. For example, hippocampus is a region affected by AD the earliest 
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and severely [6]. Also, because  regions in the temporal lobe are essential for memory,  

damage on these regions by AD can explain the memory loss which is a major clinical 

symptom of AD. The consistency of our findings with the AD literature supports 

effectiveness of the proposed SCLDA.  

                             

                              (a)                                                               (b)  

Fig. 6-4.  (a) Locations of disease-related brain regions identified from MRI; (b) locations 

of disease-related brain regions identified from FDG-PET. 

Another finding is that there is a large overlap between the identified disease-related 

regions from PET and those from MRI, which implies strong interaction between 

functional and structural alterations in these regions. Although well-accepted biological 

mechanisms underlying this interaction are still not very clear, there are several 

explanations existing in the literature [14] [45]. For example, one explanation is that both 

functional and structural alterations could be the consequence of dendritic arborizations, 

which results from intracellular accumulation of PHFtau and further leads to neuron 

death and grey matter loss. 

6.5.3 Classification accuracy 

While SCLDA is a method for variable selection, the selected variables can be input into 

a classifier for classification. Specifically, the selected disease-related brain regions from 
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PET and those from MRI can be input into a classifier for discrimination between AD 

and NC. The classification accuracy, in turn, can help evaluate the performance of 

SCLDA in identification of disease-related brain regions. For the purpose of comparison, 

MSLDA is also used to identify disease-related brain regions from PET and MRI, which 

are further input into the same classifier as that following SCLDA.  

More specifically, the data is randomly divided into a training set (with 90% of the 

entire data) and a test set (with 10% of the entire data). Each approach (MSLDA or 

SCLDA) is applied to the training set to identify disease-related brain regions. 

Afterwards, a linear SVM (Support Vector Machine) classifier is applied to the identified 

regions and the classification accuracy is computed on the test set. This procedure is 

repeated for 100 times. On average, SCLDA selects 26 and 21 disease-related brain 

regions from PET and MRI, respectively, whereas MSLDA selects 45 and 38 regions 

from PET and MRI, respectively. The classification accuracies of SVM corresponding to 

SCLDA and MSLDA are shown in Fig. 6-5. A two-sample t-test shows that SCLDA has 

a significantly higher accuracy than MSLDA with p-value < 0.05. This result also con 

firms that, compared with SCLDA, MSLDA identifies a much larger number of disease-

related brain regions which may contain some regions that are indeed disease-irrelevant, 

so that inclusion of them may deteriorate the classification accuracy. 

6.5.4 Relationship between PET and MRI measurements, and severity of 

cognitive impairment 

In addition to classification, it is also of interest to further verify relevance of the 

identified disease-related regions with AD in an alternative way. One approach is to 

investigate the degree to which these disease-related regions are relevant to cognitive 

impairment that can be measured by the Alzheimer’s disease assessment scale – cognitive 

subscale (ADAS-cog). ADAS measures severity of the most important symptoms of AD, 
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and its subscale, ADAS-cog, is the most popular cognitive testing instrument used in 

clinic trails. ADAS-cog consists of 11 items measuring disturbances of memory, 

language, praxis, attention, and other cognitive abilities that are often affected by AD. As 

the total score of these 11 items provides an overall assessment of cognitive impairment, 

we regress this ADAS-cog total score (the response) against the PET or MRI 

measurement of each identified brain region, using a simple regression. The regression 

results are listed in Table 6-1. 

It is not surprising to find that some regions in the hippocampus area and temporal 

lobes are among the best predictors, as these regions are extensively reported in the 

literature as the most severely affected by AD [3] [4] [5] [6]. Also, it is found that most of 

these brain regions are weak-effect predictors, as most of them can only explain a small 

portion of the variability in the ADAS-cog total score, i.e., many R
2
 values in Table 6-1 

are less than 10%. However, although the effects are weak, most of them are significant, 

i.e., most of the p-values in Table 6-1 are smaller than 0.05. Furthermore, it is worth 

noting that 70.22% variability in ADAS-cog can be explained by taking all the 26 brain 

regions identified from PET as predictors in a multiple regression model, and 49.72% 

variability can be explained by taking all the 21 brain regions from MRI as predictors in a 

multiple regression model. All this findings imply that the disease-related brain regions 

are indeed weak-effect features if considered individually, but jointly they can play a 

strong role for characterizing AD. This verifies the suitability of the proposed SCLDA for 

AD studies, as SCLDA can preserve weak-effect features.  
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Fig. 6-5.  Boxplots of classification accuracies for MSLDA and SCLDA (100 repetitions 

in cross-validation) 

6.6 Conclusion 

In the paper, we proposed a SCLDA model for fusing multi-modality neuroimaging data. 

In the proposed SCLDA formulation, each LDA parameter was decomposed into a 

common parameter shared by all the imaging modalities, multiplied by a parameter 

specific to each modality. We further demonstrated that this formulation is equivalent to a 

penalized likelihood with non-convex regularization, which can be solved by the DC 

programming. Simulation studies were performed, showing that SCLDA performs better 

than two completing methods, SLDA and MSLDA, both of which adopt convex 

regularizations. Finally, we applied SCLDA to the PET and MRI data of early AD 

patients and normal controls. Early AD is a stage at which the disease-related brain 

regions are most likely to be weak-effect regions that are difficult to be detected from 

MRI or PET alone. Our result showed that by exploiting the interaction between MRI and 

PET and borrowing strength from each other, SCLDA was able to identify disease-

related brain regions that are consistent with the AD literature. Classification based on the 

brain regions identified by SCLDA also shows higher accuracy than those identified by 

MSLDA. Potential future work includes investigation of statistical significance of the 

identified features. Some potential methods include bootstrap, permutation tests, and 
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stability selection. Also, we will investigate asymptotic properties of SCLDA, to see if 

SCLDA is asymptotically consistent and with what rate, the consistency can be achieved. 

Appendix 

The proof of Theorem 1 is shown here. 

Proof: Recall that   consists of   and  . Our basic idea in proving Theorem 1 is the 

following: we first prove that any local optima of   (   |{ ( )  ( )    ( )}) , denoted 

by  ̂ and  ̂, corresponds to a local optima of  
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which can be further written as 
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holds since  ̂ and  ̂ is a local optima of   . Similarly, we insert  ̂  ̂ into    and we can 

prove 



  165 

  ( ̂  ̂|{ ( )  ( )    ( )})    
 (

 ̂

  
    ̂|{ ( )  ( )    ( )})  

  
 ( ̃  ̃|{ ( )  ( )    ( )}), 

Therefore, we have 

  ( ̂  ̂|{ ( )  ( )    ( )})    
 (

 ̂

  
    ̂|{ ( )  ( )    ( )})  

  
 ( ̃  ̃|{ ( )  ( )    ( )}).  

This has an implication that {
 ̂

  
    ̂}  is also a local optimizer of 

  
 (   |{ ( )  ( )    ( )}) and  ̃  ̃   

(𝑚)
  ̂  ̂   

(𝑚)
,       . 

Now we demonstrate that any local optima of   
 (   |{ ( )  ( )    ( )}) corresponds 

to a local optima of   ( |{ ( )  ( )    ( )}),  ̂. Using the same idea above, we can 

obtain that 

  
 ( ̃  ̃|{ ( )  ( )    ( )}), 

 ∑ {
 ( )

 
lo | ̃   

(𝑚)  
 (𝑚) ̃   

(𝑚)
|  ∑

  

 
lo  ̃ 

(𝑚)
  

(𝑚)
 ̃ 

(𝑚) 
     (𝑚) lo | ̃(𝑚)|} 

𝑚   

  ∑ √  ̃ ∑ ∑ | ̃   
(𝑚)

| 
𝑚  

 
    , 

   ( ̃|{ ( )  ( )    ( )})    ( ̂|{ ( )  ( )    ( )}). 

On the other hand, let  ̂  { ̂  √ ∑ ∑ | ̂   
(𝑚)

| 
𝑚  

 
         }  and  ̂  

{ ̂   
(𝑚)

 
 ̂   

( )

 ̂ 
                  }, then we can obtain 

  ( ̂|{ ( )  ( )    ( )}), 

 ∑ {
 ( )

 
lo | ̂   

(𝑚)  
 (𝑚) ̂   

(𝑚)
|  ∑

  

 
lo  ̂ 

(𝑚)
  

(𝑚)
 ̂ 

(𝑚) 
     (𝑚) lo | ̂(𝑚)|} 

𝑚   

 ∑ √ ∑ ∑ | ̂   
(𝑚)

| 
𝑚  

 
     √ ∑ ∑ ∑

| ̂   
( )

|

√∑ ∑ | ̂   
( )

| 
   

 
   

 
𝑚  

 
    , 



  166 

 ∑ {
 ( )

 
lo | ̂   

(𝑚)  
 (𝑚) ̂   

(𝑚)
|  ∑

  

 
lo  ̂ 

(𝑚)
  

(𝑚)
 ̂ 

(𝑚) 
     (𝑚) lo | ̂(𝑚)|} 

𝑚   

 ∑  ̂    ∑ ∑ ∑  ̂   
(𝑚) 

𝑚  
 
    , 

   
 ( ̂|{ ( )  ( )    ( )})    

 ( ̃|{ ( )  ( )    ( )}). 

Thus, we have  

  ( ̂  ̂|{ ( )  ( )    ( )})    
 ( ̂  ̂|{ ( )  ( )    ( )})  

  
 ( ̃  ̃|{ ( )  ( )    ( )}), 

which implies that { ̂  ̂} is  also a local optimizer of    (   |{ ( )  ( )    ( )}),  

with    √   √     and  ̃  ̃   
(𝑚)

  ̂   
(𝑚)

. 

Reference 

[1]  L. deToledo-Morrell, T. R. Stoub, M. Bulgakova, “MRI-derived entorhinal volume 

is a good predictor of conversion from MCI to AD,” Neurobiol. Aging, vol. 25, pp. 

1197–1203, 2004. 

[2] J. H. Morra, Z. Tu, “Validation of automated hippocampal segmentation method,” 

NeuroImage, vol. 43, 59–68, 2008. 

[3] Morra, J.H., Tu, Z. 2009a. Automated 3D mapping of hippocampal atrophy. Hum. 

Brain Map. 30, 2766–2788. 

[4] Morra, J.H., Tu, Z. 2009b. Automated mapping of hippocampal atrophy in 1-year 

repeat MRI data. NeuroImage 45, 213-221. 

[5] Schroeter, M.L., Stein, T. 2009. Neural correlates of AD and MCI. NeuroImage 47, 

1196–1206. 

[6] Braak, H., Braak, E. 1991. Neuropathological stageing of Alzheimer-related changes. 

Acta Neuro. 82, 239–259. 

[7] Bradley, K.M., O'Sullivan. 2002. Cerebral perfusion SPET correlated with Braak 

pathological stage in AD. Brain 125, 1772–1781. 

[8] Keilp, J.G., Alexander, G.E. 1996. Inferior parietal perfusion, lateralization, and 

neuropsychological dysfunction in AD. Brain Cogn. 32, 365–383. 

[9] Schroeter, M.L., Stein, T. 2009. Neural correlates of AD and MCI. NeuroImage 47, 

1196–1206. 



  167 

[10] Asllani, I., Habeck, C. 2008. Multivariate and univariate analysis of continuous 

arterial spin labeling perfusion MRI in AD. J. Cereb. Blood Flow Metab. 28, 725–

736. 

[11] Du,A.T., Jahng, G.H. 2006. Hypoperfusion in frontotemporal dementia and AD. 

Neurology 67, 1215–1220. 

[12] Ishii, K., Kitagaki, H. 1996. Decreased medial temporal oxygen metabolism in AD. J. 

Nucl. Med. 37, 1159–1165. 

[13] Johnson, N.A., Jahng, G.H. 2005. Pattern of cerebral hypoperfusion in AD. 

Radiology 234, 851–859. 

[14] Wolf, H., Jelic, V. 2003. A critical discussion of the role of neuroimaging in MCI. 

Acta Neuroal: 107 (4), 52-76. 

[15] Tosun, D., Mojabi, P. 2010. Joint analysis of structural and perfusion MRI for 

cognitive assessment and classification of AD and normal aging. NeuroImage 52, 

186-197.   

[16] Alsop, D., Casement, M. 2008. Hippocampal hyperperfusion in Alzheimer's disease. 

NeuroImage 42, 1267–1274. 

[17] Mosconi, L., Tsui, W.-H. 2005. Reduced hippocampal metabolism in MCI and AD. 

Neurology 64, 1860–1867. 

[18] Mulert, C., Lemieux, L. 2010. EEG-fMRI: physiological basis, technique and 

applications. Springer. 

[19] Xu, L., Qiu, C., Xu, P. and Yao, D. 2010. A parallel framework for simultaneous 

EEG/fMRI analysis: methodology and simulation. NeuroImage, 52(3), 1123-1134. 

[20] Philiastides, M. and Sajda, P. 2007. EEG-informed fMRI reveals spatiotemporal 

characteristics of perceptual decision making. Journal of Neuroscience, 27(48), 

13082-13091. 

[21] Daunizeau, J., Grova, C. 2007. Symmetrical event-related EEG/fMRI information 

fusion. NeuroImage 36, 69-87. 

[22] Jagust, W. 2006. PET and MRI in the diagnosis and prediction of dementia. 

Alzheimer’s Dement 2, 36-42. 

[23] Kawachi, T., Ishii, K. and Sakamoto, S. 2006. Comparison of the diagnostic 

performance of FDG-PET and VBM. Eur.J.Nucl.Med.Mol.Imaging 33, 801-809. 

[24] Matsunari, I., Samuraki, M. 2007. Comparison of 18F-FDG PET and optimized 

voxel-based morphometry for detection of AD. J.Nucl.Med 48, 1961-1970. 

[25] Schmidt, M., Fung, G. and Rosales, R. 2007. Fast optimization methods for L1-

regularization: a comparative study and 2 new approaches. ECML 2007. 



  168 

[26] Liu, J., Ji, S. and Ye, J. 2009. SLEP: sparse learning with efficient projections, 

Arizona state university. 

[27] Tibshirani, R. 1996. Regression Shrinkage and Selection via the Lasso, JRSS, Series 

B, 58(1):267–288. 

[28] Friedman, J., Hastie, T. and Tibshirani, R. 2007. Sparse inverse covariance 

estimation with the graphical lasso. Biostatistics, 8(1):1–10. 

[29] Zou, H., Hastie, T. and Tibshirani, R. 2006. Sparse PCA, J. of Comp. and Graphical 

Statistics, 15(2), 262-286. 

[30] Qiao, Z., Zhou, L and Huang, J. 2006. Sparse LDA with applications to high 

dimensional low sample size data. IAENG applied mathematics, 39(1). 

[31] Argyriou, A., Evgeniou, T. and Pontil, M. 2008. Convex multi-task feature learning. 

Machine Learning 73(3):243– 272. 

[32] Huang, S., Li, J., et al. 2010. Learning Brain Connectivity of AD by Sparse Inverse 

Covariance Estimation, NeuroImage, 50, 935-949. 

[33] Candes, E., Wakin, M. and Boyd, S. 2008. Enhancing sparsity by reweighted L1 

minimization. Journal of Fourier analysis and applications, 14(5), 877-905. 

[34]  Mazumder, R.; Friedman, J. 2009. SparseNet: Coordinate Descent with Non-Convex 

Penalties.  Manuscript. 

[35] Zhang, T. 2008. Multi-stage Convex Relaxation for Learning with Sparse 

Regularization. NIPS 2008. 

[36] Campbell, N. 1984. Canonical variate analysis ageneral formulation. Australian Jour 

of Stat 26, 86–96. 

[37] Hastie, T. and Tibshirani, R. 1994. Discriminant analysis by gaussian mixtures. 

Technical report. AT&T Bell Lab. 

[38] Kumar, N. and Andreou, G. 1998. Heteroscedastic discriminant analysis and reduced 

rank HMMs for improved speech recognition. Speech Communication, 26 (4), 283-

297. 

[39] Gasso, G., Rakotomamonjy, A. and Canu, S. 2009. Recovering sparse signals with 

non-convex penalties and DC programming. IEEE Trans. Signal Processing 57( 12), 

4686-4698. 

[40] Guo, J., Levina, E., Michailidis, G. and Zhu, J. 2011. Joint estimation of multiple 

graphical models. Biometrika 98 (1), 1-15. 

[41] Bertsekas, D. 1982. Projected newton methods for optimization problems with simple 

constraints. SIAM J. Control Optim 20, 221-246.  



  169 

[42] Clemmensen, L., Hastie, T., Witten, D. and Ersboll, B. 2011. Sparse Discriminant 

Analysis. Technometrics (in press) 

[43] Friston, K.J., Ashburner, J. 1995. Spatial registration and normalization of images. 

HBM 2, 89–165. 

[44] Tzourio-Mazoyer, N., et al., 2002. Automated anatomical labelling of activations in 

SPM. NeuroImage 15, 273–289. 

[45] Bidzan, L. 2005. Vascular factors in dementia. Psychiatr. Pol. 39, 977-986. 

[46] Chiang, L., Russell, E.R. 2001. Fault detection and diagnosis in industrial systems. 

Springer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  170 

Chapter 7  

REGRESSION-BASED PROCESS MONITORING WITH CONSIDERATION OF 

MEASUREMENT ERRORS 

Abstract 

Multivariate process monitoring and fault detection is an important problem in quality 

improvement. Most existing methods are based on a common assumption that the 

measured values of variables are the true values, with limited consideration on various 

types of measurement errors embedded in data. On the other hand, research on 

measurement errors has been conducted from a pure theoretical statistics point of view, 

without linking the modeling and analysis of measurement errors with monitoring and 

fault detection objectives. This paper proposes a method for multivariate process 

monitoring and fault detection considering four types of major measurement errors, 

including sensor bias, sensitivity, noise, and dependency of the relationship between a 

variable and its measured value on some other variables. This method includes design of 

new control charts based on data with measurement errors, and identification of the 

maximum allowable measurement errors to fulfill certain fault detectability requirements. 

This method is applicable to processes where a nature order of the variables is known, 

such as the cascade or multistage processes, and processes where the causal relationships 

among variables are known and can be described by a Bayesian network. The method is 

demonstrated in two industrial processes.    

7.1 Introduction 

Rapid advances in sensors and distributed sensing technologies have resulted in 

data-rich environments, creating unprecedented opportunities for quality improvement in 

many domains [8]. To make full use of the data for quality improvement, various 

statistical and data mining methods have been developed for process monitoring and fault 
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detection. Most of these methods rely on a common assumption that the measured values 

of variables are the true values, with limited consideration of various types of 

measurement errors embedded in the data.  As a result, quite a few theoretically sound 

methods may be found less effective when applied to real-world applications, in which 

the data are far less perfect than they have been assumed to be.  

While measurement errors may hinder quality improvement objectives to be fully 

realized in many domains, very limited studies have been conducted on how to take the 

measurement errors into consideration in developing methods in process monitoring and 

fault detection. Research on measurement errors has been focused on estimating various 

types of measurement errors from data, and identifying variable relationships based on 

statistical modeling and inference [2, 3, 4, 6, 7, 9, 26, 31]. This type of research usually 

studies measurement errors from a pure theoretical statistics point of view, without 

linking the modeling and analysis of measurement errors with quality improvement 

objectives. On the other hand, research in quality engineering has resulted in abundant 

methods for process monitoring and fault detection [1, 10, 11, 14, 20, 23, 24, 27, 28, 29, 

32, 33]. However, few of these methods have been able to take measurement errors into 

consideration. Research has been conducted for quality improvement of automotive 

assembly processes, in which the impact of measurement errors on fixture failure 

diagnosis has been discussed [5]. However, this research only addresses specific 

processes, in which CMM (Coordinate Measuring Machine) or OCMM (Optical 

Coordinate Measuring Machine) are used to measure dimensional features of parts. As a 

result, only one type of measurement errors, i.e., sensor noise, is investigated, which 

limits its application to general processes and domains in which the types of 

measurement errors can be far more complex than just sensor noise.  
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In this paper, we adopt a general formulation to incorporate four major types of 

measurement errors. This formulation is described as follows: given a system of   

variables {       }, the relationship between a variable     and its measured value   ̃  

can be expressed by    

 ̃            
      .                                                 (1) 

(1) embraces four major types of measurement errors, namely, 

    is the measurement error caused by sensor setup/calibration bias, or drifting 

when sensors are used in harsh environments.  

    represents measurement sensitivity,      and      reflect the “scale-up” 

and “scale-down” errors commonly exiting in many types of sensors. 

    considers that the relationship between  ̃  and    also depends on other 

variables    (i.e., covariates), where    {       }  and       [4]. For 

example, when imaging sensors are used to detect product defects in hot 

rolling processes [17, 19], the measured defect features, i.e.,  ̃ , may be 

corrupted by measurement errors. And these measurement errors may have 

different distributions with respect to different textures of the product 

materials and different rolling temperatures, i.e.,   , because these two factors 

impact performance of the imaging sensors.   

      (     (  )) accounts for sensor noise; in other words, precision of the 

sensor is reflected by    (  ). 

In addition, we focus on studying the impact of measurement errors on 

regression-based methods in process monitoring and fault detection. Regression-based 

methods refer to those using regressions to build a model for quantitatively describing the 

interacting relationships among the variables in a process, called a “process model”; and 
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further conducting monitoring and fault detection based on the process model. For 

example, some researchers proposed to regress each variable in a process on all other 

variables [10, 23, 24], resulting in a process model that uses a number of regressions 

(equal to the number of variables) to reveal the correlation structure among variables. 

Some other researchers proposed to integrate regression analysis with various types of 

domain knowledge. For instance, when a natural order of variables is known, such as the 

variables in a cascade or multistage process, each variable can be regressed on its 

upstream variables, leading to a process model that facilitates more effective monitoring 

and fault detection [11, 28, 29, 32, 33]. Also, when the causal influences among variable 

are known and represented by a Bayesian network [13, 16, 18, 21], Li et al. [20] proposed 

to regress each variable on all its parent variables (i.e., the direct causes), leading to 

further improvement in diagnostic accuracy and reduction in computational complexity. 

However, despite the popularity of regression-based methods in process monitoring and 

fault detection, the impact of measurement errors on these methods has been little 

discussed.  

In this paper, we focus on the regression-based methods for processes where a 

natural order of variables is known (i.e., cascade or multistage processes) and processes 

that can be described by a Bayesian network. We adopt a unified representation for these 

two types of processes, based on which we further develop methods for monitoring and 

fault detection considering the four types of measurement errors defined in (1).   

The rest of the paper is organized as follows: Section 7-2 presents the unified 

representation for the two types of processes, and the monitoring and fault detection steps 

in general regression-based methods (i.e., methods when there are no measurement errors 

in the data); Section 7-3 proposes a new method for monitoring and fault detection 

considering the four types of measurement errors defined in (1); Section 7-4 studies how 
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to identify the maximum allowable measurement errors under given fault detectability 

requirements; Section 7-5 shows two examples in real industrial processes; Section 7-6 

gives the conclusion.  

Before going into these sections, some general notations are introduced here. A 

quantity with an overhead “~” implies that this quantify is measured with errors. For 

example, the true value and measured value of a variable in the system are denoted by    

and   ̃ , respectively. A quantify with an overhead “ – ” implies that this quantify is a 

sample average. A quantify with an overhead “^” implies that this quantify is an 

estimator. For example,  ̂(    ) is an estimator for  (    ). The overheads “~” and “^” 

may be used together. For example,  ̂̃ (    ) represents an estimator for  (    ) and is 

measured with errors. In addition, a letter may have a right subscript and left superscripts. 

The right subscript represents numbering and the left superscripts represent layers (the 

concept of “layer” will be introduced in Section 7-2). For example,     denotes the  -th 

variable on layer_ .  

7.2 Monitoring and fault detection in general regression-based methods under a 

unified process representation 

 In this section, we introduce the general framework of monitoring and fault detection 

when there is no measurement error in the data (i.e., what traditional regression-based 

methods assume). Then, in the next section (Section 7-3), we develop a new method to 

integrate measurement errors into this framework.  

This paper focuses on cascade or multistage processes, and processes that can be 

represented by a Bayesian network. These two types of processes are introduced as 

follows: In a cascade or multistage process, variables have a natural ordering in which if 

any variable undergoes a parameter shift (e.g., a mean shift), it may affect some or all the 

variables following it, but none of the variables preceding it in this ordering [11]. As a 
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result, each variable can be considered to belong to one and only one “layer”. Specifically, 

a variable belonging to layer_1 (or called a layer_1 variable, in short) is one that has no 

upstream variables; a layer_  variable is one that has layer_1 through layer_(     ) 

variables as its upstream variables. Under the concept of layer, each variable in the 

system,   ,   {     }, can also be denoted by     (i.e., the  -th variable belonging to 

layer_  ),   {      } ,   {     } , where    is the total number of variables 

belonging to layer_  and   is the total number of layers. For example, if a system has 

four variable, {           } ;    happens before    and   ;    and    happen 

simultaneously, and both happen before   . Then, there are three layers in the system, i.e., 

   .    is a layer_1 variable, so it can be denoted by   
 ;    and    are layer_2 

variables, so they can be denoted by   
  and   

 , respectively;    is a layer_3 variable, 

so it can be denoted by   
 .  

Furthermore, the regression-based process models in a cascade or multistage 

process, which regress each variable on its upstream variables, can be expresses as 

                                         ∑     
 
    

         ,                                         (2) 

Here,    {   
      

𝑚 
}
 

denotes the set of variables belonging to layer_ ;     
  

and     are regression coefficients and residual error, respectively. Also, without loss of 

generality, we assume in this paper that all variables have zero means.  

A process may be represented by a Bayesian network, if the causal relationships 

among variables are known. A Bayesian network has two components, structure and 

parameters [15]. The structure of a Bayesian network is a directed acyclic graph (DAG), 

i.e., a set of variables, pXX ,,1  , connected by directed arcs (see Fig. 7-7-1 for an 

example). A directed graph is acyclic if there is no directed path ji XX  such 

that ji XX  . If there is a directed arc from iX  to jX , i.e., ji XX  , then iX  is a 
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direct cause (called a parent) of jX , where “direct” means that the causal influence from 

iX to jX is not mediated through other variables.  The parameters of a Bayesian 

network, when all variables follow normal distributions, can be the regression 

coefficients by regressing each variable on its parents. The structure and parameters of a 

Bayesian network can be obtained by domain knowledge or by statistical learning 

algorithms [12, 18, 30]. 

 

Fig. 7-1 An example of Bayesian network structure 

Note that because a variable’s parents must be its upstream variables, (2) can also 

be used to represent the regression-based process models in processes in which a 

Bayesian network is available, as long as the regression coefficients for    ’s non-

parents in    are set to be zero. Therefore, in this paper, we adopt (2) as a unified 

representation for the regression-based process models in cascade or multistage processes, 

as well as processes in which a Bayesian network is available.  

Furthermore, given the process model, a regression-based monitoring and fault 

detection method usually involves two steps: 

Step-one is performed based on a preliminary dataset containing data collected 

when the process runs under normal (i.e., no-fault) conditions. This dataset is used to 

estimate the regression coefficients     
  in (2), i.e.,  

           [

 ̂   
 

 

 ̂     
 

]     ̂  ([
  

 
    
]  [

  

 
    
])    ̂ ([

  

 
    
]     ), 

X1 X2

X3 X4

X5
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where   ̂ (   ) denotes the sample covariance matrix between two vectors, or a column 

vector of sample covariances between a vector and a scalar. Assuming that the sample 

size of the preliminary dataset is sufficiently large,   ̂ (   )  may be treated as its 

population counterpart    (   ), and consequently  ̂   
  may be treated as     

 .  

Step-two is performed to monitor and diagnose the process based on production 

data. Considering potential process faults to be mean shifts, a variable     is considered 

to have experienced a mean shift if  (    )       . In order to monitor  (    ), a 

control chart may be built on [11] 

                                  ̂(    )   
 

  ∑     
 
    

    
 

,                                        (3) 

where  
 

  and  
 

 are sample averages. It is known that  ̂(    ) is an unbiased estimator 

for  (    ) , i.e.,  ( ̂(    ))   (    ) , and     ( ̂(    ))  
 

 
(   (    )  

∑     
 
    

      (       )), where   is the sample size. 

For example, if Shewhart control charts [25] are used, the control limits are 

                        ⁄ √   ( ̂(    )),     , and         ⁄ √   ( ̂(    )), 

where    ⁄  is the upper-  ⁄  percentage point of the standard normal distribution. Finally 

in step-two, Average Run Lengths (i.e., the average number of points it takes the control 

chart to generate an out-of-control signal) must be computed in order to evaluate the 

control chart performance. Specifically, the average run length when process is in control 

is        ⁄ ; the average run length when there is a mean shift in    , i.e.,  (    )  

     ,  is  
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    (     )  

 (   (   ⁄     √   ( ̂(    ))⁄  )   (    ⁄     √   ( ̂(    ))⁄  ))⁄ ,    

(4)  

where  ( ) is the cumulative standard normal distribution. Let     be the magnitude of 

the mean shift    , i.e.,       . For a positive mean shift        , the second  ( ) 

in (4) will become very small. Thus, (4) becomes 

                        (   
  )   (   (   ⁄     √   ( ̂(    ))⁄  ))⁄ .                    (5) 

For a negative mean shift         , (4) becomes 

    (     )  

 (   (   ⁄     √   ( ̂(    ))⁄  )   (    ⁄     √   ( ̂(    ))⁄  ))⁄  

  (    ⁄     √   ( ̂(    ))⁄  )⁄   (   (   ⁄     √   ( ̂(    ))⁄  ))⁄ , 

which is the same as (5). In other words, (5) holds for both positive and negative mean 

shifts.  

Other types of control charts can be designed in a similar way. For example, to 

detect small mean shifts, EWMA control charts may be adopted [25]. In order to monitor 

 (    ), the EWMA control charts are built on   ̂   { ̂(    )}  (   ) ̂    , where 

{ ̂(    )}  is the  ̂(    ) in (3) at time   and  ̂   . The steady-state control limits for 

the EWMA charts are: 

            √
 

   
   ( ̂(    )),     , and       √

 

   
   ( ̂(    )), 
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where   and   are chosen to achieve some desired Average Run Lengths performance. 

The correspondence between Average Run Lengths and the values of   and   can be 

found in [22].  

7.3 Development of regression-based monitoring and fault detection method 

considering measurement errors 

In this section, we adopt the two-step procedure in Section 7-2, but consider that 

the variables are measured with errors. Under the concept of “layer” defined in Section 7-

2, an alternative representation for the relationship between a variable     and its 

measured value  ̃  , to the representation in (1), is 

                             ̃              ∑     
 
    

         .                                   (6) 

Note that the summation in (6) is taken over only the layers before layer_ , because the 

relationship between     and its measured value  ̃   cannot be affected by variables 

happening later than    . Also, some coefficients in     
  may be zero.  

In Step-one, we assume that a preliminary dataset is collected from carefully 

calibrated sensors whose measurement errors are negligible. As a result, the covariance 

matrix of variables, as well as     
 , can be obtained.  

Because the sensors used for collecting the preliminary dataset are free of 

measurement errors, purchasing, installing, calibrating, and maintaining the sensors 

usually incur significant costs. Thus, these sensors are not affordable to be used for 

monitoring and diagnosing continuous production in a long run. To monitor and diagnose 

continuous production, less costly sensors may be adopted, which, however, may 

generate data with substantial measurement errors.  

Therefore, in Step-two, we consider that data are collected from sensors with 

non-negligible measurement errors, i.e., data on  ̃  , are available but data on     are 
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not. As a result, instead of building control charts on the  ̂(    ) in (3), another unbiased 

estimator for  (    ) must be identified.  

Obviously, the  ̂̃ (    ) defined in (6) must be an unbiased estimator for  (    ): 

                                ̂̃ (    )   ̂̃(    )  ∑     
 
    

    ̂̃(   ),                            (7) 

where   ̂̃(    ) and  ̂̃(   ) are unbiased estimators for  (    ) and  (   ), respectively. 

In other words,  ̂̃ (    ) can be found as long as  ̂̃(    ),         ,         can 

be obtained. When there are measurement errors,  ̂̃(    ) must be defined based on the 

data for  ̃  . Specifically, we found that  ̂̃(    ) can be defined based on a recursive 

equation given in (8): 

                              ̂̃(    )  {
 ̃

 

 

 ̃
 

 
 ∑     

 
    

    ̂̃(   )

   
                 

  ,                (8) 

where  ̃
 

 
 (  ̃

 

     )    ⁄ , and  ̃
 

  is the sample average for  ̃ 
 ;   

    

  
      ⁄ . It is easy to prove that the  ̂̃(    ) in (8) is an unbiased estimator for  (    ), 

so the proof is skipped. By inserting (8) into (7), an unbiased estimator for  (    ), based 

on the data for  ̃  , can be obtained, i.e.,  

                            ̂̃(    )  {
 ̃

 

 

 ̃
 

 
 ∑ (   

       
    )   

    ̂̃(   )

   
                 

,     (9) 

Furthermore, it can be derived that the variance for the  ̂̃(    ) in (9) is (see 

Appendix I for proof): 

   ( ̂̃(    ))  
 

 
(   (    )  ∑     

 
    

      (       )     (    )   
  ⁄  

∑ ∑     
  
 𝑚 

      (   
 )   

  ⁄     
   ) ,                                                                               (10) 
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where     
   is the j-th element in vector     

 
 , 

    
 
      

 
      

 
  ∑ (     

 
      

 
 )         

      ;      {   
       𝑚 

   } , 

and     
 
 ,   {      }, is a recursive function defined as: 

                       
 
  {

    
 
 

    
 
  ∑     

 
                   

     

     
                   

 ,          (11) 

Finally, if Shewhart control charts are used, the control limits for  ̂̃(    ) are  

               ̃     ⁄ √   ( ̂̃(    )),   ̃   , and    ̃      ⁄ √   ( ̂̃(    )),     (12) 

and the average run lengths are    ̃    ⁄ , and  

                     ̃ (     )   (   (   ⁄     √   ( ̂̃(    ))⁄  ))⁄ .       (13)  

Here, to obtain the    ̃ (     ) in (12), we followed a procedure similar to that used to 

obtain the       (     ) in (5).  

Other types of control charts can be developed in a similar way. For example, to 

detect small mean shifts, EWMA control charts may be adopted. Specifically, the points 

on the EWMA control charts are   

                                        ̂̃   { ̂̃(    )}
 
 (   ) ̂̃    ,                             (14) 

where { ̂̃(    )}
 
 is the  ̂̃(    )  in (9) at time   and  ̂̃   . The steady-state control 

limits for the EWMA charts are: 

                   √
 

   
   ( ̂̃(    )) ,     , and 

      √
 

   
   ( ̂̃(    )),                                                                                      (15) 



  182 

where   and   are chosen to achieve some desired Average Run Lengths performance. 

The correspondence between Average Run Lengths and the values of   and   can be 

found in [22].  

7.4 Identification of maximum allowable measurement errors under given fault 

detectability requirements 

Because timely detection of mean shifts are always required, there should be an upper 

bound for    ̃ (     ) , denoted by    ̃  (     )  which is set according to specific 

domain standards. In other words, the mean shift     is considered to be detectable only 

if it can be detected within a required time period, i.e.,  

                                        ̃ (     )     ̃  (     ).                                       (16) 

According to (13), (16) holds if and only if 

 (   (   ⁄     √   ( ̂̃(    ))⁄  ))⁄     ̃  (   
  ), i.e., 

                                     ( ̂̃(    ))  (
  

 

   ⁄     (      ̃  (   
  )⁄ )

)

 

.                          (17) 

By inserting (10) into (17), (18) can be obtained: 

   (   
 )

  
   ∑ ∑     

  
 𝑚 

   

   (   
 )

  
      

               

            

 (
  

 

   ⁄     (      ̃  (   
  )⁄ )

)

 

 (   (    )  ∑     
 
    

      (       )) ,             (18)                             

where the left-hand side is a function of the measurement errors. In other words, the 

measurement errors must be confined by (18) in order for the mean shift in    , i.e.,    , 

to be detectable.     

Consider a special case in which only sensor noise exist, i.e.,       and 

    
    in (6). Then (18) becomes 
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   (    )  ∑ ∑     
  
 

𝑚 

   

   (   
 ) 

   

   

  

 (
  

 

   ⁄     (      ̃  (   
  )⁄ )

)

 

 (   (    )  ∑     
 
    

      (       )) ,             (19) 

where     
   is the j-th element in vector     

 
 . The right-hand side of (19) gives the 

maximum level of sensor noise allowed, in order for the mean shift in    , i.e.,    , to be 

detectable.  

7.5 Examples 

Two examples will be shown in this section: Example I aims to demonstrate the proposed 

method in monitoring and diagnosing a cotton spinning process – a cascade process; 

Example II aims to identify the maximum allowable measurement errors for a hot 

forming process – a process that can be represented by a Bayesian network.  

7.5.1 Example I: A cotton spinning process 

Description on the process, process models, and measurement errors 

This example targets a cotton spinning process, a cascade process [11] in which 

the variables consist of    (fiber fineness),    (fiber length),    (fiber strength), and    

(skein strength). This process has three layers:    and    belong to layer 1,    belongs to 

layer 2, and    and belongs to layer 3. Therefore,   ,   ,   , and    can also be denoted 

as   
 ,   

 ,   
 , and   

 , respectively.  

Furthermore, according to (2), the regression-based process models are  

                            

  
    

 

  
    

 

  
      

    
      

    
    

 

  
      

    
      

    
      

    
    

 

           (20) 
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where all variables follow the standard normal distribution and the regression coefficients 

are     
        ,     

    ,     
       4 ,     

        , and     
         

[11]. 

In this example, we assume the following measurement errors:  

      , i.e., the same setup/calibration bias for all sensors. 

      , i.e., the same measurement sensitivity for all sensors. 

    (    )    
 , i.e., the same precision for all sensors. 

     
       

       
       

       
    , i.e., the relationship between a 

variable and its measured value depends on all variables at preceding layers, 

and the same strength of the dependency is assumed across all variables. 

According to the measurement errors above, the relationship between a variable 

and its measured value becomes 

                                  

 ̃ 
       

    
 

 ̃ 
       

    
 

 ̃ 
       

     
     

    
 

 ̃ 
       

     
     

     
    

 

         (21) 

and    (   
 )     (   

 )     (   
 )     (   

 )    
 .  

Process monitoring and detection of large mean shifts  

To demonstrate the effectiveness of the proposed method in detecting large mean 

shifts,    ̃ (     )  may be computed using (13). It can be seen from (13) that the 

detectability (measured by    ̃ (     )) of a control chart is positively affected by 

   √   ( ̂̃(    ))⁄ , i.e., the larger the    √   ( ̂̃(    ))⁄ , the higher the 

detectability. To demonstrate the detectability of the proposed method, we introduce a 

mean shift of one standard deviation into each variable, and calculate the magnitude of 
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the induced mean shift in every    √   ( ̂̃(    ))⁄ . The results are shown in Table 7-

7-1, with    ,   ⁄   ,   ⁄   , and      ⁄ . It can be seen that the detectability of 

the proposed method for variables on earlier layers (e.g.,   
  and   

 ) is better than that 

for variables on later layers (e.g.,   
  and   

 ). This is because variables on later layers 

are not only subject to measurement errors associated with these variables themselves, 

but also subject to measurement errors associated with variables at earlier layers as these 

measurement errors will propagate downstream.  

Table 7-1 Mean shift induced in    √   ( ̂̃(    ))⁄  by shifting each variable  

   
 

√   ( ̂̃(   
 ))

  
  

 

√   ( ̂̃(   
 ))

  
  

 

√   ( ̂̃(   
 ))

  
  

 

√   ( ̂̃(   
 ))

  

  
     0.71 0 0 0 

  
     0 0.71 0 0 

  
     0 0 0.52 0 

  
     0 0 0 0.51 

 

For purpose of comparison, we develop a similar table to Table 7-1, i.e., Table 7-

2, by applying the traditional regression-based method on the data with measurement 

errors. This method ignores the measurement errors and uses the measured values of each 

variable as the true values. Therefore, the charting statistic in each control chart is 

 ̃ 
   ̃

 

 ,  ̃ 
   ̃

 

 ,   ̃ 
   ̃

 

  (     
   ̃

 

      
   ̃

 

 ) , and  ̃ 
   ̃

 

  

(     
   ̃

 

      
   ̃

 

      
   ̃

 

 ), respectively. The results are shown in Table 7-7-

2. Table 7-2 clearly shows that a shift in a variable may create shifts in variables other 

than itself. This implies that the traditional method may potentially generate too many 

false alarms, while the proposed method doe not suffer from this problem. 
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Table 7-2 Mean shift induced in  (  ̃  ) √   (  ̃  )⁄  by shifting each variable 

  (  ̃ 
 )

√   (  ̃ 
 )

  
 (  ̃ 

 )

√   (  ̃ 
 )

  
 (  ̃ 

 )

√   (  ̃ 
 )

  
 (  ̃ 

 )

√   (  ̃ 
 )

  

  
     0.71 0 0.5 0.26 

  
     0 0.71 0.5 0.34 

  
     0 0 0.5 0.53 

  
     0 0 0 0.53 

 

Furthermore, we compute the Average Run Lengths of the proposed method, 

under different potential fault scenarios that may occur in the cotton spinning process. 

Note that because the cotton spinning process has four variables, there are 15 potential 

fault scenarios, including four single-fault scenarios (i.e., only one variable has a mean 

shift) and 11 multiple-fault scenarios (i.e., more than one variable has mean shifts). The 

results of the Average Run Lengths computation are summarized in Table 7-3. In the 

table, each row corresponds to a potential fault scenario;   is used to denote the value of 

the mean shift magnitude. Column “   (     )” records the Average Run Length for the 

mean shift     to be detected by the corresponding control chart;    (     ) is indeed 

     if      , and is     (     )  otherwise. When compute the    (     ) , the 

Bonferroni method is used to set the Type-I error of each individual control chart to be 

    4⁄  in order to control the overall system-level Type-I error to be no more than 0.05. 

Moreover, for each fault scenario, all the    (     )  corresponding to       are 

averaged and recorded in column “        ”; all the    (     )  corresponding to 

      are averaged and recorded in column “        ” Columns          and 

         can be used to evaluate performance of the proposed method with respect to 

each fault scenario. Finally, the numbers in column          are averaged, so are the 

numbers in column         ; the results are recorded in the last row, which can be used 
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to evaluate the overall performance of the proposed method. Note that because this 

section focuses on applying the proposed method for large mean shifts detection and also 

due to space limit, only mean shifts with magnitude equal to 2 or 3 are shown in the table. 

Application of the proposed method for small mean shifts detection will be discussed in 

the next section.  

Table 7-3 Fault scenarios and Average Run Lengths performance of the proposed 

method 

 

For purpose of comparison, we develop a similar table to Table 7-3, i.e., Table 7-

4, by applying the traditional regression-based method which ignores the measurement 

errors and uses the measured values of each variable as the true values. It can be seen 

from Tables 7-3 and 7-4 that the      performance of the proposed method is better than 

the traditional methods for all the fault scenarios; the      performance of the two 

methods are close.  

 

 

 

 

1δ1
1δ2

2δ1
3δ1 ARL(

1
δ1) ARL(

1
δ2) ARL(

2
δ1) ARL(

3
δ1) Ave_ARL0 Ave_ARL1 ARL(

1
δ1) ARL(

1
δ2) ARL(

2
δ1) ARL(

3
δ1) Ave_ARL0 Ave_ARL1

s 0 0 0 7.2 160.0 160.0 160.0 160.0 7.2 2.8 160.0 160.0 160.0 160.0 2.8

0 s 0 0 160.0 7.2 160.0 160.0 160.0 7.2 160.0 2.8 160.0 160.0 160.0 2.8

0 0 s 0 160.0 160.0 13.7 160.0 160.0 13.7 160.0 160.0 5.7 160.0 160.0 5.7

0 0 0 s 160.0 160.0 160.0 13.9 160.0 13.9 160.0 160.0 160.0 5.8 160.0 5.8

s s 0 0 7.2 7.2 160.0 160.0 160.0 7.2 2.8 2.8 160.0 160.0 160.0 2.8

s 0 s 0 7.2 160.0 13.7 160.0 160.0 10.5 2.8 160.0 5.7 160.0 160.0 4.3

s 0 0 s 7.2 160.0 160.0 13.9 160.0 10.5 2.8 160.0 160.0 5.8 160.0 4.3

0 s s 0 160.0 7.2 13.7 160.0 160.0 10.5 160.0 2.8 5.7 160.0 160.0 4.3

0 s 0 s 160.0 7.2 160.0 13.9 160.0 10.5 160.0 2.8 160.0 5.8 160.0 4.3

0 0 s s 160.0 160.0 13.7 13.9 160.0 13.8 160.0 160.0 5.7 5.8 160.0 5.8

s s s 0 7.2 7.2 13.7 160.0 160.0 9.4 2.8 2.8 5.7 160.0 160.0 3.8

s s 0 s 7.2 7.2 160.0 13.9 160.0 9.4 2.8 2.8 160.0 5.8 160.0 3.8

s 0 s s 7.2 160.0 13.7 13.9 160.0 11.6 2.8 160.0 5.7 5.8 160.0 4.8

0 s s s 160.0 7.2 13.7 13.9 160.0 11.6 160.0 2.8 5.7 5.8 160.0 4.8

s s s s 7.2 7.2 13.7 13.9 ---- 10.5 2.8 2.8 5.7 5.8 ---- 4.3

160.0 10.5 160.0 4.3

Fault Scenarios Mean Shift Magnitude s=2 Mean Shift Magnitude s=3
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Table 7-4 Fault scenarios and Average Run Lengths performance of the 

traditional method 

 

Finally, to illustrate the practical charting of the proposed method, data for the 

cotton spinning process are simulated. The simulation consists of 15 fault scenarios and 

one no-fault (i.e., normal) scenario. Under each scenario, the mean shift magnitude is set 

to be three and data are simulated for 50 time periods after the shift(s). Then, a Shewhart 

control chart is built for each variable based on the proposed method. The control charts 

are shown in Fig. 7-2. It can be clearly seen that control charts for variables having mean 

shifts general out-of-control signals, while control charts for variables not having mean 

shifts stay within control limits. 

1δ1
1δ2

2δ1
3δ1 ARL(

1
δ1) ARL(

1
δ2) ARL(

2
δ1) ARL(

3
δ1) Ave_ARL0 Ave_ARL1 ARL(

1
δ1) ARL(

1
δ2) ARL(

2
δ1) ARL(

3
δ1) Ave_ARL0 Ave_ARL1

s 0 0 0 7.2 160.0 14.9 42.2 72.4 7.2 2.8 160.0 6.3 23.7 63.3 2.8

0 s 0 0 160.0 7.2 14.9 28.7 67.9 7.2 160.0 2.8 6.3 14.2 60.2 2.8

0 0 s 0 160.0 160.0 14.9 13.4 111.1 14.9 160.0 160.0 6.3 5.6 108.5 6.3

0 0 0 s 160.0 160.0 160.0 13.4 160.0 13.4 160.0 160.0 160.0 5.6 160.0 5.6

s s 0 0 7.2 7.2 3.2 10.3 6.8 7.2 2.8 2.8 1.4 4.1 2.8 2.8

s 0 s 0 7.2 160.0 3.2 5.7 82.8 5.2 2.8 160.0 1.4 2.3 81.1 2.1

s 0 0 s 7.2 160.0 14.9 5.7 87.5 6.4 2.8 160.0 6.3 2.3 83.1 2.5

0 s s 0 160.0 7.2 3.2 4.5 82.2 5.2 160.0 2.8 1.4 1.8 80.9 2.1

0 s 0 s 160.0 7.2 14.9 4.5 87.5 5.8 160.0 2.8 6.3 1.8 83.1 2.3

0 0 s s 160.0 160.0 14.9 2.9 160.0 8.9 160.0 160.0 6.3 1.3 160.0 3.8

s s s 0 7.2 7.2 1.4 2.5 2.5 5.3 2.8 2.8 1.0 1.2 1.2 2.2

s s 0 s 7.2 7.2 3.2 2.5 3.2 5.6 2.8 2.8 1.4 1.2 1.4 2.3

s 0 s s 7.2 160.0 3.2 1.8 160.0 4.1 2.8 160.0 1.4 1.1 160.0 1.8

0 s s s 160.0 7.2 3.2 1.6 160.0 4.0 160.0 2.8 1.4 1.0 160.0 1.8

s s s s 7.2 7.2 1.4 1.3 ---- 4.3 2.8 2.8 1.0 1.0 ---- 1.9

88.8 7.0 86.1 2.9

Fault Scenarios Mean Shift Magnitude s=2 Mean Shift Magnitude s=3
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Fig. 7-2 Shewhart Control charts for 15 fault scenarios and one no-fault scenario of the 

cotton spinning process based on the proposed method 
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Process monitoring and detection of small mean shifts  
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Fig. 7-3 EWMA Control charts for 15 fault scenarios and one no-fault scenario of the 

cotton spinning process based on the proposed method 

To detect small mean shifts, the proposed method can be used in conjunction 

with the EWMA control charts, which has been discussed at the end of Section 7-3. To 

demonstrate the procedure, data for the cotton spinning process are simulated. The 

simulation consists of 15 faulty scenarios and one no-fault scenario. Under each scenario, 

the mean shift magnitude is set to be 1 and the data are simulated for 50 time periods 

after the shift(s). Then, for each time period   {      }, (14) is used to compute the 
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points on the EWMA control charts, with      . The control limits for the EWMA 

charts are computed using (15), with      . The values for   and   are selected to 

satisfied certain requirements on the Average Run Lengths [22]. The control charts are 

shown in Fig. 7-3. It can be seen that control charts for variables having mean shifts 

generate out-of-control signals, while control charts for variables not having mean shifts 

stay within control limits. 

7.5.2 Example II: a hot forming process 

This example targets a hot forming process consisting of five variables:    (blank 

holding force, or BHF),    (temperature),    (tension in workpiece),    (material flow 

stress), and    (final dimension of workpiece). A 2-D physical illustration of this process 

is given in Fig. 7-7-4. A Bayesian network of this process has been identified by Li, et al. 

[20], as shown in Fig. 7-7-5 in which the variables   ,   ,   ,   , and    are denoted by 

  
 ,   

 ,   
 ,   

 , and   
 , respectively, according to the layers they belong to. The 

regression-based process models (i.e., regressing each variable on its parents) are:  

  
    

 ,  

  
    

 ,  

  
         

    4    
    

 ,  

  
          

    
   

  
      4   

         
    

 , 

and the variables follow the standard normal distribution.   
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Fig. 7-4 2-D illustration of the hot forming process         Fig. 7-5 Bayesian network of the 

hot forming process  

Sensor noise is a major type of measurement errors in this process. Based on 

Section 7-4, the maximum level of sensor noise allowed, under a certain fault 

detectability requirement, can be identified. Specifically, under the requirement that mean 

shifts of three standard deviations in each variable must be detected within five samples, 

i.e.,    ̃  (  )   , (19) can be used to obtain constraints on the variances of the sensor 

noise, i.e.,  

        

{
  
 

  
 

   (   
 )                                                                                   

   (   
 )                                                                                   

   (   
 )           (   

 )    4      (   
 )       

    (   
 )           (   

 )                                             

   (   
 )      4    (   

 )           (   
 )       

 ,            (22) 

where the sample size   is set to be 1, and Bonferroni method is used to ensure the 

system-level Type-I error to be no more than     . Furthermore, considering a special 

case of homogeneous sensor noise, i.e.,    (    )    
 , (22) reduces to   

      .  

To verify if   
       can satisfy the detectability requirement    ̃  (  )   , 

we make   
  to take values incrementally between   and     . Then, for each value of   

 , 

we apply (13) to compute the average run lengths in detecting mean shifts of three 

standard deviations, i.e.,    ̃ (   
    ) ,    ̃ (   

    ) ,    ̃ (   
    ) , 

   ̃ (   
    ) , and    ̃ (   

    )  for control charts on  ̂̃(   
 ) ,   ̂̃(   

 ) ,  

Punch
Die Die

BHF BHF

Workpiece

Binder Binder

1X1
1X2

2X1
2X2

3X1
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 ̂̃(   
 ),   ̂̃(   

 ),  and  ̂̃(   
 ),  respectively.  The results are shown in Fig. 7-6, which 

clearly indicate that    ̃ (   
    )   , i.e., the detectability requirement is satisfied.  

 

Fig. 7-6 Average run length in detecting mean shifts of three standard deviations 

with respect to different levels of sensor noise 

In addition to sensor noise, another type of measurement errors commonly 

existing in this hot forming process is that the measurement errors of the sensors for   
 , 

  
 , and   

  are all affected by temperature, i.e.,   
 . Therefore, the relationship 

between each variable and its measured value is:  

 ̃ 
    

    
 ,  

 ̃ 
    

    
 ,  

 ̃ 
    

      
    

    
 ,  

 ̃ 
    

      
    

    
 ,  

 ̃ 
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Furthermore, (18) can be applied to obtain the constrains on the measurement errors   
 , 

    
  ,     

  ,     
  , in order to achieve the detectability requirement    ̃  (  )   . 

The constraints are: 

{
 
 

 
 

  
                                                                                                    

   
 (      (     

     4  )
 
)                                             

  
 (  (     

        )
 
)                                                     

  
 (  44  (     

       4     
            

  )
 
)       

.     (23) 

To verify if the constraints in (23) can fulfill the detectability requirement, a 

similar graph to Fig. 7-6 can be constructed, with the x-axis being different combinations 

of values for   
 ,     

  ,     
  ,     

   that  satisfy the constraints. Due to page limit, the 

graph is not shown here, but it confirms that the detectability requirement is fulfilled.  

7.6 Conclusion 

This paper proposed a regression-based method for multivariate process 

monitoring and fault detection considering four types of major measurement errors in the 

data. On the one hand, given that values of measurement errors may be known a priori, 

we developed control charts for mean shift detection based on the measurement data. On 

the other hand, if measurement errors are not known, we developed procedures to 

identify the maximum allowable measurement errors in order to satisfy certain 

detectability requirements. The proposed method is applicable to cascade or multistage 

processes in which variables have a natural ordering, and processes in which the causal 

relationships among variables can be known and represented by a Bayesian network.  

The proposed method was applied to a cotton spinning cascade process, in which 

the method were compared with the traditional method that ignores the measurement 

errors and uses the measured values of each variable as the true values. The comparison 

showed that the proposed method significantly reduced false alarm rates in mean shift 
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detection. Also, the proposed method was applied to a hot forming process in which a 

Bayesian network is available. It successfully identified the maximum levels of 

measurement errors which allow the mean shifts to be detected within a given required 

time period. Future research may include developing methods for monitoring process 

variability considering measurement errors.  

Appendix I Proof of the variance for  ̂̃(    ) in (9) 

To prove (9), we first prove (A-1): 

                            ̂̃(    )   
 

   ̅ 
  ∑     

 
    

    
 

                                            (A-1) 

where  ̅ 
   ̅ 

    ⁄   ̅ 
  is the sample average for    ,  

 
 {  ̅ 

     ̅ 
𝑚 

}
 
;     

 
  

is a recursive function defined in (10), i.e., 

                   
 
  {

    
 
 

    
 
  ∑     

 
                   

     

     
                   

 ,                          

and      {   
       𝑚 

   }.  

 (A-1) can be proved by mathematical induction, as follows: 

Step 1(check if (A-1) holds for    ):  

According to (7), 

 ̂̃(   
 )   ̃
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 . 

Therefore, (A-1) holds for      

Step 2(Assuming that (A-1) holds for        , check if (A-1) holds for      ):  

According to (7),  

                                     ̂̃(     
 )   ̃

   

 
 ∑       

 
  

    ̂̃(   ).                     (A-2) 

Since we have assumed that (A-1) holds for        , (A-1) can be inserted into (A-2), 

i.e.,  
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Therefore, given that (A-1) holds for        , (A-1) holds for      . This 

completes the proof of (A-1).  

Next, insert (A-1) into (8), 
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where  
 

  is the sample average for    . Therefore, the variance of  ̂̃(    ) is 
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Chapter 8 

CONCLUSIONS AND FUTURE RESEARCH 

8.1 Summary and original contributions 

This dissertation contributes to generic methodology development for analyzing some 

general complex datasets that are ubiquitous in biomedical research, healthcare and 

manufacturing. It also contributes to domain knowledge discovery for Alzheimer’s 

disease research, nursing care process modeling and quality control in manufacturing.  

1) For high-dimensional datasets, new methods for high dimensional Gaussian 

graphical models (SICE, chapter 2) and Bayesian networks structure learning (SBN, 

chapter 3) are developed. These methods are built upon the sparse learning 

methodology, through development of novel penalty formulations, e.g., the one used 

in SBN to penalize the violation of the DAG assumption of a BN, and development 

of efficient computational algorithms. The SICE and SBN can be widely used in 

many applications, such as biology, medicine, finance, health care and manufacturing. 

By applying SICE and SBN on Neuroimaging datasets collected for Alzheimer’s 

disease research, novel knowledge of AD is revealed that may potentially lead to 

better early diagnosis and treatment effect evaluation. 

2) For hierarchically-structured datasets, two novel models are developed. One is the 

transfer learning approach for network modeling of multiple related datasets where 

there is a common group structure shared by these datasets. By drawing on Bayesian 

hierarchical methodology, this transfer learning approach can transfer the knowledge 

learned from one dataset to the network modeling for another dataset, by exploiting 

the shared group structure. Although this transfer learning approach is developed in a 

network modeling context, its principal formulation can be readily extended to some 

other kinds of statistical models, which can be considered as a generic contribution to 
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the methodology development for analyzing this kind of hierarchical-structured 

dataset. Another one is a multi-level latent response linear regression model, which is 

capable to analyze the datasets that has a multi-level data structure. For example, in a 

nursing care process research, data is collected on multiple levels, including the 

individual nurse level, unit level and hospital level. Not like the multi-level data 

structure commonly assumed in traditional multi-level models, where the response 

variables are measured on individual level, in many applications, the response 

variables can only be measured on the organization level. The developed model 

contributes to mitigate the challenge. In addition to the methodology development, 

this model is used to analyze a real-world dataset collected for a nursing care process, 

which sheds light on understanding the nursing care process, identifying the major 

determinants of the nursing care quality, and potentially leading to nursing care 

process improvement. 

3) For multi-modality data fusion: a novel model, called sparse composite linear 

discrimination analysis (SCLDA), is developed to identify those variables which are 

predictive to the outcome of interest, e.g., the disease onset of a person, from multi-

modality data sources. SCLDA is particularly useful for identifying those variables 

with weak-effect if considered in isolation, i.e., weak predictive power, but strong-

effect if considered jointly. This advantage is achieved by employing a composite 

parameterization, which decomposes any parameter of a LDA into a product of a 

shared parameter across all the modalities, and a private parameter for each modality. 

By this composite parameterization, the fragmented weak effects across different 

modalities are effectively unified, therefore the statistical power of SCLDA on 

identifying those weak-effect variables is increased.  
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4) For datasets corrupted with measurement errors, a regression-based process 

monitoring method with consideration of measurement errors is developed. As most 

existing process monitoring methods are based on a common assumption that the 

measured values of variables are the true values, with limited consideration of the 

various types of measurement errors embedded in the data, those methods are less 

effective when applied in real-world applications, where measurement errors are 

inevitable. On the other hand, research on measurement errors has been conducted 

from a pure theoretical statistics point of view, without any linking of the modeling 

and analysis of measurement errors with monitoring and fault detection. Thus, this 

novel method fills in this gap, which is capable to perform multivariate process 

monitoring and fault detection considering four types of major measurement errors, 

including sensor bias, sensitivity, noise and dependency of the relationship between a 

variable and its measured value on some other variables.  

8.2 Future research 

As mentioned in chapter 1, complex datasets are often context-dependent. To make full 

use of these datasets, the modeling and analysis of these complex datasets needs special 

statistical consideration that can effectively exploit the special structures of these datasets. 

In what follows I would like to present several challenging topics: 

1) Electronic medical records (EMRs): many healthcare organizations around the world 

are deploying EMRs. At the population level, EMRs can be used for public health 

surveillances, management of healthcare services. At the individual level, ERMs can 

be used for personalized medicine, early detection of disease onset, and prevention. 

EMRs can also be used for research, for instance, be used for identifying the linkage 

between genotypes with phenotypes. However, the current statistical methodology 

for effectively exploring EMRs is very limited and more advanced statistical models 
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are needed to make full use of EMRs, and link EMRs with other data modalities, 

such as public surveillance data, healthcare service provider’s records, etc. 

2) Biotechnologies: Biotechnologies have fueled a boom in molecular biology and 

medicine research. Nowadays it is not a difficulty to collect data from multiple 

biological entities on a genomic scale, e.g., genes, proteins, lipids and sugars, and on 

multiple levels, e.g., from molecular level to population level variables, yielding 

massive high-throughput “omic” data, such as genomic, epigenomic, proteomic and 

metabolomics data. With the goals of understanding the underlying biological 

mechanisms, novel statistical models and their associated computational tools are 

urgently needed. 

3) Integration of physical models: Physical models, often in the form of ordinary 

differential equations or partial differential equations, are another kind of powerful 

computational tools for complex systems modeling. There are at least two reasons to 

believe that an integration of physical models with pure data-driven statistical models 

will be advantageous in many applications: 1) pure data-driven statistical models 

maybe less effective when data is scarce relative to the complexity of the model, or 

when the model is expected for extrapolate the regions where no data has been 

collected; 2) physical models need a sufficient knowledge about the structure of the 

systems, i.e., the interactions between the system entities, and also needs to be well 

parameterized and calibrated. Thus, if we can integrate physical models with 

statistical models, it is reasonable to expect that this integration will borrow strengths 

from both sides to overcome the deficiencies for one another, and produce a more 

powerful model to analyze the complex datasets. 
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