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ABSTRACT

While developing autonomous intelligent robots has been the goal of many re-

search programs, a more practical application involving intelligent robots is the formation

of teams consisting of both humans and robots. An example of such an application

is search and rescue operations where robots commanded by humans are sent to

environments too dangerous for humans. For such human-robot interaction, natural

language is considered a good communication medium as it allows humans with less

training about the robot’s internal language to be able to command and interact with

the robot. However, any natural language communication from the human needs to

be translated to a formal language that the robot can understand. Similarly, before the

robot can communicate (in natural language) with the human, it needs to formulate its

communique in some formal language which then gets translated into natural language.

In this paper, I develop a high level language for communication between humans and

robots and demonstrate various aspects through a robotics simulation. These language

constructs borrow some ideas from action execution languages and are grounded with

respect to simulated human-robot interaction transcripts.
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Chapter 1

INTRODUCTION AND MOTIVATION

Within the field of human-robot teamwork, there are highly varied implementations. On

one end of the spectrum, the use of teleoperation allows robots to be used as tools

in which a human operator has direct control over a robot’s actions. Such systems

are highly dependent on the operator’s skill and are extremely hindered by situations

with limited bandwidth. The other extreme contains highly autonomous robots that are

simply given a high-level goal from a human supervisor who does not directly interfere

in the robot’s operation. This gives the operator the ability to handle many systems

simultaneously but does not provide any flexibility in the event of unexpected events.

A more practical application would be an intelligent robot team in which humans

and robots work together much in the same way a team of humans would. Each

individual, human or robot, would be able to actively seek assistance from others when

needed. For example, in an urban search and rescue scenario, it may be that the

environment is too dangerous for humans, so a group of robots would be sent instead.

These robots would be given tasks to autonomously complete, but since the environment

is most likely unpredictable and possibly still changing, the robots would need to seek

guidance throughout the operation. Another example is in face-to-face teamwork such

as a construction project in which humans and robots are working together to raise the

framework of a building. It is highly unlikely that each member of the team would be able

to complete their work alone, rather they would need to ask one another for help affixing

a new segment or seek guidance on which area should be completed next.

For such human-robot interaction, natural language is considered to be a good

communication medium as it allows humans with little training on the robot’s internal

language to be able to command and interact with the robot. Apart from requiring

less training, utilizing natural language would allow for a faster dialogue as the human

would not need to translate their thoughts into a structured format that the robot would

understand. However, robots still require commands to be given in a structured format in
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order to be processed. As such, the natural language communication must be translated

into a formal language which the robot can understand. Additionally, when the robot is

forming a communique back to the human, it must first formulate the message in this

formal language which is then converted into natural language the human can easily

understand.

1.1 Related Work

Current work in the field of teamwork based human-robot interaction includes:

The Human-Robot Interaction Operating System (HRI/OS) from the Peer-to-Peer

Human-Robot Interaction project provides a focus on allowing agents to submit requests

for help which will be processed once the resources necessary become available, such

as other agents (Scholtz 2002; Fong et al. 2005; 2006). Another key aspect of the

HRI/OS software is that it is designed to utilize spatial reasoning and perspective-taking

to enable dialogue using relative locations.

The Jidowanki and Biron robots utilize a task negotiation dialogue in which the

robots will prompt the user with queries until a clear goal is assigned based on the

current known environment (Clodic et al. 2007). Additionally, this system allows for a

robot to submit a request for a plan modification in the event that it determines another,

potentially better, plan is now available due to changes in the environment. The user is

able to accept or reject this new plan, or even initiate their own plan modification.

A robotic wheelchair was recently used to study the effect of interactive dialogue

on how a user interacts with the system (Fischer 2011). The first study showed that an

interactive dialogue allowed the user to better understand the capabilities of the system

and become much more proficient in its use. The second study showed that slight

changes in the wording used by the robot had a significant effect on users’ engagement

in human-robot interactions.

The Generalized Grounding Graphs is a framework to find and execute plans

generated from natural language commands (Tellex et al. 2011). This work involves au-

tomatically generating a probabilistic graphical model from natural language commands.

Using an annotated corpus of natural language commands paired with their correspond-
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ing actions, the system automatically learns the meanings of manipulation verbs. This is

a limitation of the system since the supervised learning requires a significant annotated

training set. Additionally, the system is limited by the size of their search space since

increasingly complex tasks require deeper searches and more sophisticated algorithms.

An interesting note is that this framework returns not only the plan for execution, but

also groundings for everything in the command with corresponding confidence scores.

Such groundings can be used to identify portions of the command that need further

clarification.

A system for learning navigational commands is presented by David Chen and

Raymond Mooney (Chen and Mooney 2011). This system learns navigation instructions

by observing communication and corresponding actions without needing either linguistic

knowledge or direct supervision. The lack of supervision is a key aspect of this system

as it means the expense of generating an annotated corpus is avoided. The system

was also designed to use landmarks in the environment to assist with error recovery on

long and complex instructions. Due to the length of the commands, without landmarks,

a small error at the beginning could ruin the entire process. Additionally, their system

refines the generated plans by using a learned semantic lexicon to remove extraneous

information to provide better plan generation.

There has also been similar work in describing temporal logic for motion planning

(Fainekos et al. 2009, Kress-Gazit et al. 2009). These systems enable a robot to react to

the environment and not simply follow a predetermined behavior. They utilize temporal

logic based motion planning through the representation of a variety of tasks using Linear

Temporal Logic (Pnueli 1977). This approach has a downside in that the LTL formulas,

especially the LTL variant used by this system, are not always intuitive and may require

some experience for writing.

The distributed, integrated, affective, reflective, cognitive (DIARC) architecture

(Scheutz et al. 2007; 2011) includes natural language processing capabilities combined

with backchannel feedback, such as nodding. This system contains algorithms for

processing natural language instructions into logical forms that allow the system to

3



compute a course of actions to complete the goals. DIARC uses the Agent Development

Environment to provide the infrastructure support for a variety of hosts and services. A

note of interest is that the DIARC architecture also utilizes affect to modify its natural

language interactions with other agents (Scheutz et al. 2005; 2006).

1.2 Motivation
The CReST Corpus

This work is based on data from the multi-modal CReST corpus which consists of human-

human dialogues in an “instruction-following” task (Eberhard et al. 2010). This corpus

is unique in that it involves remote collaborations between two interlocutors who each

have to perform tasks that require the other’s assistance. In addition, one interlocutor’s

tasks require physical movement through an indoor environment as well as interactions

with physical objects within the environment. Thus, the dialogue is particularly useful for

developing human-robot interaction systems where robots have to perform physical tasks

based on instructions given by a human supervisor (e.g., search and rescue missions in

disaster areas). The following are sample dialogue excerpts taken from the corpus:

Director: um you should i- [pause] straight in front of you should be: a: door

Director: go through the door

Searcher: okay

...

Director: um there will be a room on your right don’t go in that room

Director: continue all the way to the end [pause] turn right

Searcher: okay

...

Director: okay [pause] and then you should [pause] there should have been two blue

boxes one on the chair one behind the [pause] door

Searcher: um there’s just one behind the door

...

Director: straight in front of you there should be a chair

Searcher: yes
4



Director: at a table there’s a blue box there

Searcher: yes

Director: okay [pause] get that

Director: and then [pause] um keep - if you keep going straight from that chair there

should be a pink box on a table or something

Searcher: oh yeah okay

Director: okay

Searcher: there’s a pink box and a green box number five on that shelf

Director: okay

...

Director: okay um and we’re still looking for green [pause] boxes number six and one

Searcher: okay

Searcher: so should I head back to the other room then?

Director: um sure head back to the other rooms

Searcher: okay

Director: maybe look around see: [pause] if - if you can find any green - green boxes

Motivating Example

The following dialogue is a hypothetical conversation between a human director and a

robotic searcher to simulate the types of communication that would be expected within

human-robot interactions. This example was created based on simplified versions of

dialogues found in the CReST corpus. For this example, the director can only see a

map and communicate verbally with the searcher which is physically in the mapped

environment.

In this scenario, the robot, carrying a yellow block, is situated in a long east

to west hallway with a room to the north as seen in Figure 1.1. Inside the room is a

green box with the number 7 on the side. On the north end of the room is another

hallway stretching east to west with a pink box on either end. Within this environment,

the following is a possible conversation between the human director and the robot in
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order to find the green box and its number, then place a yellow block within one of the

pink boxes.

Figure 1.1: Motivating Example Environment

Director: While going down the hallway, find the door on your right and go through it.

Searcher: Done.

Director: Is there a green box in the room?

Searcher: Yes.

Director: Go to the box.

Searcher: Done.

Director: What is the number on the box?

Searcher: 7.

Director: Report the location of this box.

Searcher: Go down hallway. Enter first door on the right. Box is ahead on the left.

Director: Go through the door.

Searcher: North door or south door?

Director: North.

Searcher: Done.

Director: Either go left or go right.

Searcher: Choosing left. done.

Director: Go to the end of the hall. You should see a pink box.
6



Searcher: Done. There is a pink box.

Director: Place a yellow block in the pink box.

Searcher: Done.

1.3 Approach

The goal is to develop methodologies for natural language communication between a

robot and its human controller in the context of the human controller directing the robot

to perform certain tasks. This communication involves two parts:

1. The human communicating with the robot and the robot receiving that input and

processing it: The human to robot communication is mainly of four types. (a) The

human may direct the robot to do a certain task. (b) The human may provide

knowledge for the robot to learn in the form of facts or new actions. (c) The human

may ask a question to the robot. (d) The human may respond to a query by the

robot.

2. The robot communicating with the human: The robot to human communication

involves the following types. (a) It answers the human’s questions, often involving

what it senses. (b) It reports what it has done and could not do. (c) It asks a

question to the human regarding what it should do. This could be about stating

multiple actions that it could do and asking which one the human would prefer.

This could be about remembering some previously assigned goal and sensing

an opportunity to achieve that goal, even though the human director has moved

on with respect to the goals. This could be about making sure that the plan it

has made is acceptable to the human. In that case, the robot can state what it is

planning to do and ask for confirmation from the human.

To be able to achieve the above communication, several formal languages need

to be developed and linked with natural language. In particular, a Robot Input Language

(RIL) and a Robot Output Language (ROL) are needed along with the ability to translate
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statements uttered by humans in a natural language (say English) to the RIL and then

translate statements in ROL to a natural language to be communicated to the human.

1.4 Main Contributions

In this research, I introduce two main types of robot interface languages. The Robot Input

Language provides a means for the human to provide input to the robot. This language is

divided into four distinct sections with each defined in terms relevant to their usage such

as an extension of Golog with temporal logic or a database query language. These four

sections cover the essential dialogue types of directives, knowledge for the robot, queries

over the robot’s knowledge, and answers to questions posed by the robot. The Robot

Output Language allows the robot to communicate back with the human director. It is

divided into three sections defined using a combination of simple statements, predefined

predicates, and the database query language used within RIL. These three sections are

reports to respond to prior directives, answers to respond to queries, and questions to

resolve problems or choices encountered by the robot.

The main contribution of this work is that it provides the languages to form a

bridge between natural language and robot architectures. This bridge will greatly simplify

the process of converting natural language dialogue to a wide variety of platforms since

language translators will only need to be designed to work with this middle language.

Rather than training a new language translator for each type of robot, the robots will only

need to implement a translation system for RIL and ROL.

To demonstrate the use of the RIL and ROL languages, I create a simulation

of an urban search and rescue environment using Answer Set Programming logic to

handle significant portions of the RIL-D language and the java based Agent Development

Environment to handle the robot simulation and necessary ROL features. Finally, I

describe a separate work that demonstrates a potential approach to translating natural

language into RIL syntax.
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1.5 Thesis Outline

The rest of this work is organized as follows: chapter 2 presents the syntax and semantics

of the languages developed to serve as the interface between natural language and

robot architectures. Chapter 3 describes the partial implementation of the languages

using Answer Set Programming and the ADE robotics simulator as well as a method

of translating natural language into RIL. Finally Chapter 4 finishes this work with a

conclusion and discussion of potential future work.
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Chapter 2

The Robot Interface Languages

As previously mentioned, RIL has four parts: Directives, Learning, Queries, and Answers.

I propose an extension of Golog (Levesque et al. 1997) with temporal logic and “goal”

statements as the language for Directives (RIL-D) and a database query language as

the language for Queries (RIL-Q). The language for Learning (RIL-L) is composed of a

logical syntax for learning about the world as well as language constructs for learning

actions and goals for other agents. The syntax for the RIL Answer to a question (RIL-A)

is determined by the specific question asked. ROL has three parts: Reports, Answers,

Questions. The Reports language (ROL-R) consists of simple statements to respond

to an RIL-D command. The Answers section (ROL-A) also contains simple statements

of fact as well as the requested values from RIL-Q. Finally, the language for Questions

(ROL-Q) consists of various predicates to enable questions on action plans and goal

statements as well as the database query language as in RIL-Q. The following sections

elaborate on each of these languages beginning with a background information.

2.1 Background
Propositional Formula

For the purpose of this work, a formula is defined syntactically as follows where proposi-

tional variables can either hold the value true or false

< prop_formula > ::= < prop_variable > | ¬ < prop_formula > |

(< prop_formula > ∧ < prop_formula >) |

(< prop_formula > ∨ < prop_formula >)

A formula is satisfied by an interpretation if it makes the formula true according to Table

2.1

Linear Temporal Logic

For the purpose of this work, a temporal formula is defined using Linear Temporal Logic

(Pnueli 1977) as follows

10



F1 F2 ¬F1 (F1 ∧ F2) (F1 ∨ F2)

T T F T T
T F F F T
F T T F T
F F T F F

Table 2.1: Formula Interpretations

< LTL_formula > ::= < prop_formula > | ¬ < LTL_formula > |

< LTL_formula > ∧ < LTL_formula > |

< LTL_formula > ∨ < LTL_formula > |

© < LTL_formula > | 2 < LTL_formula > |

3 < LTL_formula > |

< LTL_formula > U < LTL_formula >

The truth of an LTL formula is defined with respect to a trajectory and an initial

state. In the following, p denotes a propositional formula, si’s are states, σ is the

trajectory s0, s1, . . ., and fi’s denote LTL formulas as defined above.

• (sj , σ) |= p iff p is true in sj .

• (sj , σ) |= ¬f iff (sj , σ) 6|= f.

• (sj , σ) |= f1 ∧ f2 iff (sj , σ) |= f1 and (sj , σ) |= f2.

• (sj , σ) |= f1 ∨ f2 iff (sj , σ) |= f1 or (sj , σ) |= f2.

• (sj , σ) |=©f iff (sj+1, σ) |= f.

• (sj , σ) |= 2f iff (sk, σ) |= f , for all k ≥ j.

• (sj , σ) |= 3f iff (sk, σ) |= f , for some k ≥ j.

• (sj , σ) |=f1 U f2 iff there exists k ≥ j such that (sk, σ) |= f2 and for all i,

j ≤ i < k, (si, σ) |= f1.

11



A variation of Linear Temporal Logic used in this work is Past Time Linear

Temporal Logic1 which is defined with the following syntax

< PTLTL_formula > ::= < prop_formula > |¬ < PTLTL_formula > |

< PTLTL_formula > ∧ < PTLTL_formula > |

< PTLTL_formula > ∨ < PTLTL_formula > |

[∗] < PTLTL_formula > |

< ∗ >< PTLTL_formula > |

(∗) < PTLTL_formula > |

< PTLTL_formula > Ss < PTLTL_formula > |

< PTLTL_formula > Sw < PTLTL_formula > |

[< PTLTL_formula >,< PTLTL_formula >)s |

[< PTLTL_formula >,< PTLTL_formula >)w |

start(< PTLTL_formula >) |

end(< PTLTL_formula >)

The truth of a PTLTL formula is defined with respect to a trajectory and a current

state. In the following, p denotes a propositional formula, si’s are states, σ is the

trajectory s0, s−1, . . ., and fi’s denote PTLTL formulas as defined above.

• (sj , σ) |= p iff p is true in sj .

• (sj , σ) |= ¬f iff (sj , σ) 6|= f.

• (sj , σ) |= f1 ∧ f2 iff (sj , σ) |= f1 and (sj , σ) |= f2.

• (sj , σ) |= f1 ∨ f2 iff (sj , σ) |= f1 or (sj , σ) |= f2.

• (sj , σ) |= (∗)f iff (sj−1, σ) |= f.

• (sj , σ) |= [∗]f iff (sk, σ) |= f , for all k ≤ j.

• (sj , σ) |=< ∗ > f iff (sk, σ) |= f , for some k ≤ j.
1http://fsl.cs.uiuc.edu/index.php/Past_Time_Linear_Temporal_Logic
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• (sj , σ) |=f1Ssf2 iff there exists k ≤ j such that (sk, σ) |= f2 and for all i,

k < i ≤ j, (si, σ) |= f1.

• (sj , σ) |= f1Swf2 iff (sj , σ) |= [∗]f1 or (sj , σ) |= f1Ssf2.

• (sj , σ) |= start(f) iff (sj−1, σ) |= ¬f and (sj , σ) |= f.

• (sj , σ) |= end(f) iff (sj−1, σ) |= f and (sj , σ) |= ¬f.

• (sj , σ) |=[f1, f2)s iff there exists k ≤ j such that (sk, σ) |= f1 and for all i,

k ≤ i ≤ j, (si, σ) |= ¬f2.

• (sj , σ) |= [f1, f2)w iff (sj , σ) |= [∗]¬f1 or (sj , σ) |= [f1, f2)s.

2.2 RIL-D

The RIL-D language is for the human to specify a directive to the robot, and since

they are in an interactive setting, the human expects not only the robot to act on that

directive, but also to give a verbal response to the human. The directive given to the

robot may specify exact actions that need to be executed, may have a sequence of steps

to be taken, may have iterative statements, may have conditional actions, may specify

non-deterministic choices, may specify certain goals that needs to be achieved, and may

include observational commands.

The responses expected from the robot include:

1. confirmation that a directed action was executed or a goal was achieved;

2. refusal that an action could not be executed or a goal could not be achieved;

3. a result of an observational command;

4. a question back to the human, when the human interrupts with a contradictory or

confusing request while the robot is executing a previous directive; and

5. a question to the human, when the robot faces multiple choices and cannot decide

which one to take.
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To illustrate these responses, consider the following examples:

1. a) Given the scenario in which the robot is at the start of a hallway, the directive

“Continue all the way to the end and then turn right” will result in the robot

returning the confirmation “done” after reaching the end of the hallway and

completing the action to turn to the right.

b) If there is a reachable door in the vicinity of the robot, the achievement

command “When you get to the door let me know” will result in a confirmation

response “done” once the door is reached.

2. a) Given a variant of the scenario above in which the robot is at the start of an

impassable hallway, possibly filled with debris, the directive “Continue all the

way to the end and then turn right” will result in the robot returning the refusal

“failed” since it cannot complete the directive.

b) If there is not a reachable door in the vicinity of the robot, the achievement

command “When you get to the door let me know” will result in the refusal

“failed” since the robot cannot achieve being at a door without a door being

present.

3. a) For the situation in which the robot has just entered a room with a blue box

to the right of the entrance in a corner, an observational command such as

“Is there a blue box in the corner to your right?” will result in the confirmation

“yes” once the robot has successfully observed the positioning of the blue

box.

b) If there is a green box numbered with a 7, the observational command “What

is the number on the green box?” will return the value “7” after the robot has

observed the number on the box.

4. a) Given that the robot knows that there only exist pink boxes and yellow blocks,

a directive to “Pick up the pink block” does not make sense and would result
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in the robot responding with the request “clarify” to indicate the unintelligible

directive.

b) If the robot is given contradictory commands such as the goal “Go to the door

ahead” followed by “Never go near a door” the robot would recognize that

the second command prevents the completion of the first and would request

the human to “clarify” and provide feedback on what commands to obey.

5. a) For the situation with the robot in a hallway in which the path ahead of it forks

to the left and right, the directive “Continue down the hallway” would result in

the robot returning the question “left or right” then awaiting the human’s reply.

b) In this situation, the robot has already visited several hallways, previously

observed several blue boxes, and is currently in the middle of another hallway

that continues forward into an area that has not yet been explored. If the

robot is given the command “Pick up all of the blue boxes” it will respond by

asking “forward or backward” to determine whether to go back and pick up

the known boxes first versus moving forward to find new blue boxes in the

unexplored areas before returning to the original hallways.

The Syntax of RIL-D

The syntax of RIL-D is specified in Table 2.2 along with brief descriptions.

Syntactically, RIL-D takes Golog, removes test actions and adds temporal formu-

las and goal(self, φ) constructs. In Golog a test action forces one to chose the trajectory

corresponding to the program before the test action in such a way that the test action

holds true. This language does not allow such planning via test actions. Planning is

directly specified via goal(self, φ). However, the language does have observational

commands which are similar to test action but the purpose is that the human director

may command the robot to make an observation which is then returned as the value

observed or a failure to make the requested observation. The value to be returned by

the observation is not known until the observation action is actually performed.
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Syntax Intuitive Meaning

1 Simple Action: An action a is an RIL-D
program.

Execute action a, such as turn_right

2 Parameterized Action: If f(X1 . . . Xn)
is a formula and a(X1 . . . Xn) is an ac-
tion, a(X1 . . . Xn) : f(X1 . . . Xn) is an
RIL-D program.

Execute action a(X1 . . . Xn) where
X1 . . . Xn satisfy the formula
f(X1 . . . Xn)

3 Parallel Action: If a and b are actions
(simple, parameterized, or parallel),
then a||b is an RIL-D program.

Execute actions a and b in parallel.

4 Sensing: If X1 . . . Xn are variables
of sorts s1 . . . sn and f(X1 . . . Xn) is
a formula, then sense(X1 . . . Xn) :
f(X1 . . . Xn) is an RIL-D program.

Sense the values of X1 . . . Xn

where X1 . . . Xn satisfy the formula
f(X1 . . . Xn).

5 Observational Command: If ψ is a for-
mula, then sense() : ψ is an RIL-D
program.

Sense whether or not the suggested
observation ψ holds true in the current
state of the world.

6 Self Goal: If self is the robot
agent, φ(X1 . . . Xn) is a temporal
formula, and f(X1 . . . Xn) is a for-
mula, then goal(self, φ(X1 . . . Xn)) :
f(X1 . . . Xn) is an RIL-D program.

Create and execute a plan for self to
satisfy φ(X1 . . . Xn) where X1 . . . Xn

satisfy the formula f(X1 . . . Xn).

7 Sequence: If a and b are RIL-D pro-
grams, then a; b is an RIL-D program.

Execute the RIL-D program a immedi-
ately followed by the second program.
b

8 Choice: If a and b are RIL-D programs,
then a | b is an RIL-D program.

Execute either RIL-D program a or b
but not both.

9 Parametric Choice: If X1 is a vari-
able of sort s, p(X1 . . . Xn) is a
program, and f(X1 . . . Xn) is a for-
mula, then pick(X1, p(X1 . . . Xn)) :
f(X1 . . . Xn) is an RIL-D program.

Choose one object X1 match-
ing the conditions specified in
f(X1 . . . Xn) and then execute pro-
gram p(X1 . . . Xn) given the chosen
object.

10 Condition: If a and b are RIL-D pro-
grams and φ is a temporal formula,
then if φ then a else b is an RIL-D
program.

If the conditions specified in φ hold true,
execute program a, otherwise execute
program b.

11 While: If a is an RIL-D program and
φ is a past time linear temporal logic
formula, then while φ do a is an RIL-D
program.

Check if the conditions specified in φ
hold true, and if so, execute program a
then repeat the process.

Table 2.2: The Syntax of RIL-D
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Syntax Examples

I now illustrate each of these constructs through the following examples and translations,

with the example numbers corresponding to Table 2.2:

1. a) “Turn 90 degrees to the right”:

turn_right.

b) “Move forward a single step”:

go_straight_one_step.

2. a) “Proceed through the doorway”:

go_through(X) : is(X, door).

b) “Pick up a blue box”:

pick_up(X) : is(X, box) ∧ has(X, color, blue).

3. a) “Raise your right arm while turning 90 degrees to the right”:

raise_right_arm||turn_right.

b) “Push the door while turning to the left”:

push(X) : is(X, door)||turn_left.

4. a) “What is the number on the green box”:

sense(X) : has(Y, number_on,X) ∧ has(Y, color, green) ∧ is(Y, box).

b) “Look for a green box”:

sense(X) : is(Y, box) ∧ has(Y, location,X) ∧ has(Y color, green).

5. a) “Is there a chair in front of you”:

sense() : is(X, chair) ∧ has(X, location, front).

b) “Is there a blue box on the table”:

sense() : has(X, on, Y ) ∧ has(X, color, blue) ∧ is(X, box) ∧ is(Y, table).

6. a) “When you get to the door, let me know”:

goal(self,3has(self, at,X)) : is(X, door).
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b) “Go out of the room”:

goal(self,3¬has(self, at,X)) : has(self, at,X) ∧ is(X, room).

7. a) “Go through the door and then turn right”:

go_through(X) : is(X, door); turn_right.

b) “After you get to the door, push forward”:

goal(self,3has(self, at,X)) : is(X, door); push.

8. a) “Either go to the door or go to the blue box”:

(goal(self,3has(self, at,X)) : is(X, door))|

(goal(self,3has(self, at, Y )) : is(Y, box) ∧ has(Y, color, blue)).

b) “You can either turn right and pick up the blue box or turn left and pick up the

pink box”:

(turn_right; (pick_up(X) : has(X, color, blue) ∧ is(X, box))) |

(turn_left; (pick_up(Y ) : has(Y, color, pink) ∧ is(Y, box))).

9. a) “Select one yellow block and place it in a box”:

pick(Y, (put_in(Y,X) : is(X, box))) : is(Y, block) ∧ has(Y, color, yellow).

b) “Select a hallway, excluding the hallway you are in, and go to it”:

pick(X, goal(self,3has(self, at,X))) : is(X,hall) ∧ ¬has(self, at,X).

10. a) “If there is a door on your right, go through it, otherwise turn around”:

if sense() : has(X, location, right) ∧ is(X, door)

then go_through(X).

else turn_around.

b) “If the box is not in front of you, find the direction of the box, otherwise pick

up the box”:

if ¬sense() : has(X, location, front) ∧ is(X, box)

then sense(Y ) : has(X, location, Y ).

else pick_up(X).
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11. a) “Continue all the way to the end of the hallway”:

while ¬has(self, at_end,X) ∧ is(X,hall)

do go_straight_one_step.

b) “Step forward until the next command is given”:

while ¬(∗)has(self, new_instruction,X) ∧ is(X, instruction)

do go_straight_one_step.

Returning to the more complex example from the motivation, a close translation

of the Director’s commands can be written as:

1. while ¬sense() : has(X, location, right) ∧ is(X, door)

do go_straight_one_step.

2. go_through(X) : is(X, door) ∧ has(X, location, right).

3. sense() : has(self, at, Y ) ∧ is(Y, room) ∧ is(X, box) ∧ has(X, color, green)

∧ has(X, at, Y ).

4. goal(self,3has(self, at,X)) : is(X, box) ∧ has(X, color, green).

5. sense(X) : has(Y, number_on,X) ∧ has(Y, color, green) ∧ is(Y, box).

6. go_through(X) : is(X, door) ∧ has(X, location, right).

7. turn_left | turn_right.

8. while ¬has(self, at_end,X) ∧ is(X,hall)

do go_straight_one_step.

9. sense() : is(X, box) ∧ has(X, color, pink) ∧ has(X, location, front).

10. pick(Y, (put_in(Y,X) : is(X, box) ∧ has(X, color, pink))) : is(Y, block) ∧

has(Y, color, yellow).
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The Semantics of RIL-D

The semantics of an RIL-D program in essence say what are the valid ways in which

the world will progress. It provides the information about the action execution and the

responses given by the robot. The semantics would consider an initial state s02 and

generate a set of possible trajectories for a given RIL-D program, each consisting of

t1, . . . tn, where ti is an action or a response-set.

For example, suppose that in s0 the fluents is(h1, hall), has(self, at_end, h1),

has(self, at, h1), is(d1, door) hold true, however has(d1, location, right) has not yet

been sensed and the following RIL-D program is given:

if sense() : has(X, location, right) ∧ is(X, door)

then go_through(X).

else turn_around.

The two possible trajectories for t1, . . . , tn, both with n = 2 and ROL-R response R(X),

are: t1 = go_through(X), t2 = R(done) OR t1 = turn_around, t2 = R(done).

Within the set of possible trajectories, each trajectory t1, . . . tn, denoted by α,

is a trace of a program p and is defined as follows with formula ψ, temporal formula φ,

ROL-R response R(X):

1. for p = a where a is an action, if the executability conditions for a are satisfied in

s0, then n = 2, t1 = a, and t2 = R(done), otherwise n = 1 and t1 = R(failed).

2. for p = a(X1 . . . Xm) : f(X1 . . . Xm) where a(X1 . . . Xm) is an action, if both

f(X1 . . . Xm) and the executability conditions for a(X1 . . . Xm) are satisfied in s0,

then n = 2, t1 = a, and t2 = R(done), otherwise n = 1 and t1 = R(failed).

3. for p = a||b where a and b are actions of the types a, a(X1 . . . Xm), or a||b, if the

executability conditions for a and b are satisfied in s0, then n = 2, t1 = {a, b}, and

t2 = R(done), otherwise n = 1 and t1 = R(failed).

2This can be generalized to a history of states and actions of the form s0, a1, s1, a2, . . . , sm, if future
commands may need to look back to history.
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4. for p = sense(X1 . . . Xm) : f(X1 . . . Xm), n = 1 and if there exists values

v1 . . . vm of the sorts X1 . . . Xm such that f(v1 . . . vm) holds in s0, then t1 =

R(v1 . . . vm), otherwise t1 = R(failed).

5. for p = sense() : ψ, n = 1 and if ψ holds in s0, then t1 = R(yes), otherwise

t1 = R(no).

6. for p = goal(self, φ(X1 . . . Xm)) : f(X1 . . . Xm), α is a trace of p such that

f(X1 . . . Xm) holds in s0, α satisfies φ(X1 . . . Xm), t1 = R(acknowledged), and

tn = R(done). If no α exists that satisfies φ then t1 = R(failed).

7. for p = p1; p2, if there exists an i such that s0, t1, . . . , ti is a trace of p1, and

ti, . . . , tn−1 is a trace of p2, then tn = R(done), otherwise t1 = R(failed).

8. for p = p1 | p2, if α is a trace of p1 or if α is a trace of p2 then tn = R(done),

otherwise t1 = R(failed).

9. for p = pick(X1, q(X1 . . . Xm)) : f(X1 . . . Xm), if there exists values v1 . . . vm of

the sorts X1 . . . Xm such that f(v1 . . . vm) holds in s0 and t1, . . . , tn−1 is a trace of

q(v1 . . . vm), then tn = R(done), otherwise if there does not exist such v1 . . . vm,

then n = 1 and t1 = R(failed).

10. for p = if φ then p1 else p2, either α is a trace of p1 with tn = R(done) if φ is

satisfied by the history s0, a1, . . . , sm or α is a trace of p2 with tn = R(done) if φ

is not satisfied by the history s0, a1, . . . , sm.

11. for p = while φ do p1, either n = 1 with t1 = R(done) and φ is not satisfied

by the history trace s0, a1, . . . , sm or φ is satisfied by the trace of the history

s0, a1, . . . , sm and there exists some i <= n such that sm, t1, . . . , ti is a trace of

p1 and s0, a1, . . . , sm, seq_act_state(t1, . . . , ti) is a trace of the new history of p

and α is a trace of p with tn = R(done).

seq_act_state(t1, . . . , tn) results in a sequence of alternating actions and states

am+1, sm+1, . . . , si that corresponds to the trace, t1, . . . , tn such that after completing
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t1, . . . , tn, the history would be of the form s0, a1, . . . , sm, am+1, sm+1, . . . , si where si

is the present state. When computing seq_act_state(t1, . . . , tn) only the actions within

t1, . . . , tn are considered as the response-sets do not alter the state of the robot.

Semantic Examples

The following extend some of the syntax examples to demonstrate the progression of

the world in which R(X) is an ROL-R response:

1. a) Suppose that in s0 the fluents has(self, at, r1), is(r1, room) hold true and

the following RIL-D program is given:

turn_right.

The trajectory t1, . . . , tn will be t1 = turn_right, t2 = R(done) with n = 2.

b) Suppose that in s0 the fluents has(self, at, r1), is(r1, room), is(d1, door),

has(d1, location, front) hold true and the following RIL-D program is given:

go_through(X) : is(X, door).

The sequence t1, . . . , tn will be t1 = go_through(d1), t2 = R(done) with

n = 2.

c) Suppose that in s0 the fluents has(self, at_end, h1), has(self, at, h1),

is(h1, hall) hold true and the following RIL-D program is given:

go_straight_one_step.

The sequence t1, . . . , tn will be t1 = R(failed) with n = 1. The action was

not executed because the robot could not move forward when already at the

end of the hall.

2. a) Suppose that in s0 the fluents is(b1, box), has(b1, number_on, 7),

has(b1, color, green), has(self, at, r1), is(r1, room) hold true and the fol-

lowing RIL-D program is given:

sense(X) : has(Y, number_on,X) ∧ has(Y, color, green) ∧ is(Y, box).

The trajectory t1, . . . , tn will be t1 = R(7) with n = 1.

b) Suppose that in s0 the fluents has(self, at, r1), is(r1, room), is(b1, box),

has(b1, color, blue), has(b1, location, right) hold true and the following RIL-
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D program is given:

sense(X) : has(Y, location,X) ∧ has(Y, color, green) ∧ is(Y, box).

The sequence t1, . . . , tn will be t1 = R(failed) with n = 1. The sensing

failed because there is no green box for which to return a location.

3. a) Suppose that in s0 the fluents has(self, at, r1), is(r1, room), is(c1, chair),

has(c1, location, front) hold true and the following RIL-D program is given:

sense() : is(X, chair) ∧ has(X, location, front).

The sequence t1, . . . , tn will be t1 = R(yes) with n = 1.

b) Suppose that in s0 the fluents has(self, at, r1), is(r1, room), is(b1, box),

has(b1, color, blue) hold true and the following RIL-D program is given:

sense() : has(X, on, Y ) ∧ has(X, color, blue) ∧ is(X, box) ∧ is(Y, table).

The trajectory t1, . . . , tn will be t1 = R(no) with n = 1. The sensing returned

a negative since, while there is a blue box, there is no blue box on a table.

4. a) Suppose that in s0 the fluents has(self, at, r1), is(r1, room), is(d1, door),

has(d1, location, front) hold true and the following RIL-D program is given:

goal(self,3has(self, at,X)) : is(X, door).

A possible sequence t1, . . . , tn can be t1 = go_straight_one_step, . . .,

t8 = go_straight_one_step, t9 = R(done) with n = 9.

b) Suppose that in s0 the fluents has(self, at, r1), is(r1, room) hold true and

the following RIL-D program is given:

goal(self,3¬has(self, at,X)) : has(self, at,X) ∧ is(X, room).

The trajectory t1, . . . , tn will be t1 = R(failed) with n = 1. The achievement

action failed because there is no other room to enter.

5. a) Suppose that in s0 the fluents has(self, at, r1), is(r1, room), is(d1, door),

is(h1, hall) hold true and the following RIL-D program is given:

go_through(X) : is(X, door); turn_right.

The trajectory t1, . . . , tn will be t1 = go_through(d1), t2 = turn_right,

t3 = R(done) with n = 3.
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b) Suppose that in s0 the fluents has(self, at, r1), is(r1, room) hold true and

the following RIL-D program is given:

goal(self,3has(self, at,X)) : is(X, door); go_through(X).

The sequence t1, . . . , tn will be t1 = R(failed) with n = 1. The sequence

failed since there was no door to complete the first action.

6. a) Suppose that in s0 the fluents has(self, at, r1), is(r1, room), is(d1, door),

has(d1, location, front), is(b1, box), has(b1, location, right) hold true and

the following RIL-D program is given:

(goal(self,3has(self, at,X)) : is(X, door))|

(goal(self,3has(self, at, Y )) : is(Y, box)).

A possible sequence t1, . . . , tn can be t1 = turn_right, t2 =

go_straight_one_step, . . ., t6 = go_straight_one_step, t7 = R(done) with

n = 7.

b) Suppose that in s0 the fluents has(self, at, r1), is(r1, room), is(b1, box),

has(b1, location, right), has(b1, color, pink), is(b2, box),

has(b2, location, left), has(b2, color, green) hold true and the following

RIL-D program is given:

(turn_right; (pick_up(X) : has(X, color, blue) ∧ is(X, box)))

|(turn_left; (pick_up(Y ) : has(Y, color, pink) ∧ is(Y, box))).

The sequence t1, . . . , tn will be R(failed) with n = 1. The choice failed

since neither sequence was possible due to the wrong colored boxes.

c) Suppose that in s0 the fluents has(self, at, r1), is(r1, room), is(b1, box),

has(b1, location, right), has(b1, color, blue), is(b2, box),

has(b2, color, pink), has(b2, location, left)

hold true and the following RIL-D program is given:

(turn_right; (pick_up(X) : has(X, color, blue) ∧ is(X, box))) |

(turn_left; (pick_up(Y ) : has(Y, color, pink) ∧ is(Y, box))).

There are two possible trajectories for t1, . . . , tn both with n = 3: t1 =
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turn_right, t2 = pick_up(b1), t3 = R(done) OR t1 = turn_left, t2 =

pick_up(b2), t3 = R(done).

7. a) Suppose that in s0 the fluents has(self, at, r1), is(r1, room), is(b1, box),

is(bl1, block), has(bl1, color, yellow), is(bl2, block),

has(bl2, color, yellow), has(self, picked_up, bl1),

has(self, picked_up, bl2) hold true and the following RIL-D program is

given:

pick(Y, (put_in(Y,X) : is(X, box))) : (is(Y, block) ∧

has(Y, color, yellow)).

There are two possible trajectories for t1, . . . , tn both with n = 2: t1 =

put_in(bl1, b1), t2 = R(done) OR t1 = put_in(bl2, b1), t2 = R(done).

b) Suppose that in s0 the fluents has(self, at, h1), is(h1, hall), is(r1, room)

hold true and the following RIL-D program is given:

pick(X, goal(self,3has(self, at,X))) : (is(X,hall) ∧ ¬has(self, at,X)).

The sequence t1, . . . , tn will be t1 = R(failed) with n = 1. The parametric

choice failed since there is no hall matching the criteria of not including the

current hall.

8. a) Suppose that in s0 the fluents has(self, at, h1), is(h1, hall),

has(self, at_end, h1), is(d1, door) hold true, however

has(d1, location, right) is not known to be true or false and the following

RIL-D program is given:

if sense() : has(X, location, right) ∧ is(X, door)

then go_through(X).

else turn_around.

The two possible trajectories for t1, . . . , tn, both with n = 2, are: t1 =

go_through(d1), t2 = R(done) OR t1 = turn_around, t2 = R(done).

b) Suppose that in s0 the fluents has(self, at, r1), is(r1, room), is(b1, box),

has(b1, location, front) hold true and the following RIL-D program is given:
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if ¬sense() : has(X, location, front) ∧ is(X, box)

then sense(Y ) : has(X, location, Y ).

else pick_up(X).

The sequence t1, . . . , tn will be t1 = pick_up(X), t2 = R(done) with n = 2.

9. a) Suppose that in s0 the fluents has(self, at, h1), is(h1, hall),

¬has(self, at_end, h1) hold true and the following RIL-D program is given:

while ¬has(self, at_end,X) ∧ is(X,hall)

do go_straight_one_step.

A possible trajectory t1, . . . , tn can be t1 = go_straight_one_step, . . ., t6 =

go_straight_one_step, t7 = R(done) with n = 7. This sequence would be

given if, after moving forward the 6 steps (t1, . . . , t6), the robot has reached

the end of hall h1. Other possible trajectories vary based on how many steps

are required to reach the end of the hall.

b) Suppose that in s0 the fluents has(self, at, h1), is(h1, hall),

¬has(self, at_end, h1) hold true and the following RIL-D program is given:

while no_new_instruction

do go_straight_one_step.

A possible sequence t1, . . . , tn can be t1 = go_straight_one_step, . . .,

t6 = go_straight_one_step, t7 = R(done) with n = 7. This sequence

would be given if immediately after t6 (before t7) the robot receives a new

instruction from the director.

2.3 RIL-L

The RIL-L language is for the human to impart knowledge to the robot. The knowledge

given to the robot may be in the form of a description of the environment, new actions

the robot can perform, or the goals of other agents in the world.

The Syntax of RIL-L

The syntax of RIL-L is specified in Table 2.3 along with brief descriptions. It should be

noted that while the implementation of a belief model is not within the scope of this work,
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beliefs and confidence are important in communication especially when exchanging

knowledge between agents.

Syntax Intuitive Meaning

1 New Description: If
h(X1, . . . , Xn) is a predicate and
b(X1, . . . , Xn) is a formula then
h(X1, . . . , Xn): −b(X1, . . . , Xn) is an
RIL-L statement.

Update the knowledge-base
to include a rule such that if
b(X1, . . . , Xn) is satisfied, then
h(X1, . . . , Xn) holds true.

2 New Simple Action: If u is an unknown
action and a1, . . . , am is an ordered list
of existing actions (simple, or simple in
parallel) then u← a1, . . . , am is an RIL-
L statement.

Update the knowledge base to in-
clude an action u defined as the ac-
tions a1, . . . , am performed in order.

3 New Parameterized Action: If
u(X1, . . . , Xn) is an unknown ac-
tion, a1, . . . , am is an ordered list of
existing actions (simple, parameterized
from the variables X1, . . . , Xn, or par-
allel), and f(X1, . . . , Xn) is a formula
then u(X1, . . . , Xn) ← a1, . . . , am :
f(X1, . . . , Xn) is an RIL-L statement.

Update the knowledge base to
include an action u(X1, . . . , Xn)
defined as the actions a1, . . . , am
performed in order such that
X1, . . . , Xn are of the sorts to satisfy
f(X1, . . . , Xn).

4 Other’s Goal: If a is a non-self
agent, φ(X1, . . . , Xn) is a temporal
formula and f(X1, . . . , Xn) is a for-
mula, then goal(a, φ(X1, . . . , Xn)) :
f(X1, . . . , Xn) is an RIL-L statement.

Update the knowledge base such
that a is executing a plan to satisfy
φ(X1, . . . , Xn) where X1, . . . , Xn

satisfy the formula f(X1, . . . , Xn).

Table 2.3: The Syntax of RIL-L

Syntax Examples

The following examples illustrate these constructs:

1. “A medical kit is a white box with a red cross on it.”:

is(M,med_kit) : − not exception(M,med_kit) ∧ has(M, color, white)

∧is(M, box) ∧ has(M,feature, Z) ∧ has(Z, color, red)

∧is(Z, cross).

2. “To push, raise your arm then step forward.”:

push← raise_right_arm, go_straight_one_step.
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3. “To open a door, push it.”:

open(X)← push(X) : is(X, door).

4. Bob says “I am going to see John now.”:

goal(bob,3has(bob, at, john)).

The Semantics of RIL-L

In order to define the semantics of RIL-L, I need to precisely define a robot knowledge

base. A robot knowledge base at a particular time is a set of facts about a given set of

predicates (say, p1, . . . pn) describing the domain of the world and the robot’s mental

state. When adding a new fact to the knowledge base, if it is in conflict with a previous

fact, the new fact will take precedence starting at the current time. The knowledge base

follows the inertia rule such that unless a fact is known to have been changed from one

time step to the next, it is assumed that it stayed the same.

The knowledge base, KB, used in the following semantic definitions is defined

as written above. The semantics of RIL-L are defined as follows for RIL-L program p.

1. for p = h(X1, . . . , Xn): −b(X1, . . . , Xn) where h(X1, . . . , Xn) is a predicate and

b(X1, . . . , Xn) is a formula, KB = KB ∪ {h(X1, . . . , Xn): −b(X1, . . . , Xn)}.

2. for p = u ← a1, . . . , am where u is an unknown action and a1, . . . , am is an

ordered list of existing actions, KB = KB ∪ {u← a1, . . . , am}.

3. for p = u(X1, . . . , Xn)← a1, . . . , am : f(X1, . . . , Xn) where u(X1, . . . , Xn) is an

unknown action, a1, . . . , am is an ordered list of known actions and f(X1, . . . , Xn)

is a formula, KB = KB ∪ {u(X1, . . . , Xn)← a1, . . . , am : f(X1, . . . , Xn)}.

4. for p = goal(a, φ(X1, . . . , Xn)) : f(X1, . . . , Xn) where a is a non-self agent,

φ(X1, . . . , Xn) is a temporal formula and f(X1, . . . , Xn) is a formula, KB =

KB ∪ {goal(a, φ(X1, . . . , Xn)) : f(X1, . . . , Xn)}.
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2.4 RIL-Q

The RIL-Q language is for the human to request specific knowledge from the robot. This

knowledge comes from what the robot has already learned from previous observations

of the environment.

The Syntax of RIL-Q

The syntax of RIL-Q is specified in Table 2.4 along with brief descriptions.

Syntax Intuitive Meaning

1 Simple Query: If Φ is a first-order
logic formula without free variables, then
query(Φ) is an RIL-Q query.

Queries whether Φ holds true with
respect to the robot’s current knowl-
edge base.

2 Parameterized Query: If Φ(X1, . . . , Xn)
is a first-order logic formula with
free variables X1, . . . Xn, then
query(λX1. . . . λXn.Φ(X1, . . . , Xn)) is
an RIL-Q query.

Queries the values of (X1, . . . , Xn)
that would cause Φ(X1, . . . , Xn) to
hold with respect to the robot’s knowl-
edge base at the current state.

Table 2.4: The Syntax of RIL-Q

Syntax Examples

The following examples illustrate these constructs:

1. “Was there a blue box near the table?”:

query(is(X, box) ∧ has(X, color, blue) ∧ is(T, table) ∧ has(X,near, T )).

2. “In what room is box number 7?”:

query(λR.is(R, room) ∧ is(X, box) ∧ has(X,number_on, 7) ∧ has(X, at,R)).

The Semantics of RIL-Q

The knowledge base, KB, used in the following semantic definitions is defined as in

Section 2.3. The semantics of RIL-Q are defined as follows for RIL-Q program p.

1. for p = query(Φ) where Φ is a first-order logic formula without free variables, if

KB |= Φ the response is “yes”, if KB |= ¬Φ the response is “no”, and if KB 6|= Φ

and KB 6|= ¬Φ the response is “unknown”.
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2. for p = query(λX1. . . . λXn.Φ(X1, . . . , Xn)) where Φ(X1, . . . , Xn) is a first-order

logic formula with free variables X1, . . . Xn, returns the values of v1, . . . , vn such

that KB |= Φ(v1, . . . , vn). If there is no v1, . . . , vn such that KB |= Φ(v1, . . . , vn)

the response is “unknown”.

2.5 RIL-A

The RIL-A language is the formal representation of the answer given by the human to a

previous question from the robot in the language ROL-Q.

The Syntax of RIL-A

The response given in RIL-A will depend on the specific type of ROL-Q question. A

table of question / response pairs is shown in Table 2.5 using the following definition of

a goal conflict. A conflict between two goals, φ1 and φ2, occurs when each goal can

be individually achieved according to RIL-D but both goals cannot be achieved when

executed together as a single joint goal φ1 ∧ φ2. A conflict can be removed by any of

the following means: removal of at least one of the goals, modification to at least one

of the goals such that both goals can be achieved together according to RIL-D, or an

RIL-L modification to the knowledge base such that the two goals can subsequently be

achieved together according to RIL-D. A conflict on a single goal, φ, occurs when the

goal cannot be achieved according to RIL-D. Such a conflict can be removed through

similar methods as before: removal of the goal itself, modification to the goal such that

the goal can be achieved according to RIL-D, or an RIL-L modification to the knowledge

base such that the goal can subsequently be achieved according to RIL-D.

Syntax Examples

The following examples illustrate these constructs:

1. When given the choice between picking up a box on the right or a box on the left,

the robot may query:

ROL-Q: “select((turn_right; pick_up(b1)), (turn_left; pick_up(b2)))”

RIL-A: turn_right; pick_up(b1)
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Question Syntax

1 select((a11; . . . ; a1n1), . . . ,
(ak1; . . . ; aknk

)).
If (a1; . . . ; an) is one of
(a11; . . . ; a1n1), . . . , (ak1; . . . ; aknk

) or a
new plan of the same form, then (a1; . . . ; an)
is an RIL-A answer to this question.

2 should(a1; . . . ; an)
or should(a1; . . . ; an, φ).

Either yes or no are RIL-A answers to this
question.

3 clarify(φ) or clarify(φ2, φ1). Either an RIL-D program or an RIL-L state-
ment is an RIL-A answer to this question with
the intuitive understanding that the answer
removes the conflict.

4 λX1. . . . λXn.Φ(X1, . . . Xn). X1, . . . Xn is an RIL-A answer with the
intuitive understanding that the values in
X1, . . . Xn should satisfy the formula Φ.

Table 2.5: The Syntax of RIL-A

2. Following the previous example, the robot could also query:

ROL-Q: “should(turn_right; pick_up(b1), (pick_up(X) : is(X, box)

∧(has(X, location, right) ∨ has(X, location, left))))”

RIl-A: yes.

3. If the robot is given the goal of obtaining a medical kit but does not know how to

recognize a medical kit, it may query:

ROL-Q: “clarify(goal(self,3has(self, have,M)) : is(M,med_kit))”

RIL-A: is(M,med_kit) : − not exception(M,med_kit) ∧ has(M, color, white)

∧is(M, box) ∧ has(M,feature, Z)

∧has(Z, color, red) ∧ is(Z, cross).

4. If the robot is searching for the box numbered 7, it may request more information

such as the color as follows:

ROL-Q: “λY.is(X, box) ∧ has(X,number_on, 7) ∧ has(X, color, Y ).”

RIL-A: green.
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The Semantics of RIL-A

The knowledge base, KB, used in the following semantic definitions is defined as in

Section 2.3. The definition of a conflict used below can be found at the beginning of this

section. The semantics of RIL-A are defined as follows for RIL-A program p.

1. for p = (a1; . . . ; an) where the question is select((a11; . . . ; a1n1), . . . ,

(ak1; . . . ; aknk
)) and (a1; . . . ; an) is one of (a11; . . . ; a1n1), . . . , (ak1; . . . ; aknk

) or

a new plan of the same form, a1; . . . ; an is a new directive in the RIL-D language

and follows the semantics of the sequence statement.

2. for p = “yes′′ where the question is either should(a1; . . . ; an) or

should(a1; . . . ; an, φ), a1; . . . ; an is a new directive in the RIL-D language and

follows the semantics of the sequence statement.

3. for p = “no′′ where the question is either should(a1; . . . ; an) or

should(a1; . . . ; an, φ), the directive chosen to execute cannot be a1; . . . ; an.

4. for p = p1 where p1 is an RIL-D program, if the question is clarify(φ), then the

execution of p1 according to the semantics of RIL-D removes the conflict on the

goal φ. If the question is clarify(φ2, φ1), then the execution of p1 according to the

semantics of RIL-D removes the conflict between goals φ1 and φ2.

5. for p = p1 where p1 is an RIL-L program, if the question is clarify(φ), then the

execution of p1 according to the semantics of RIL-L removes the conflict on goal φ

due to the updated knowledge base of the robot. If the question is clarify(φ2, φ1),

then the execution of p1 according to the semantics of RIL-L removes the conflict

between goals φ1 and φ2 due to the updated knowledge.

6. for p = v1, . . . vn where the query λX1. . . . λXn.Φ(X1, . . . Xn) was given, KB =

KB ∪ {Φ(v1, . . . , vn)}.
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2.6 ROL-R

When the robot receives a command or a directive in the language RIL-D, it processes

that command and may respond to that directive. For example, it may say that the given

command is not doable or that it has executed that command.

The semantics of RIL-D only require a simple ROL-R syntax such as yes, no,

done, failed, acknowledged, or the value(s) v1, . . . , vn from a sensing action. These

replies are intended to be simplistic to provide the basic details on whether or not an

RIL-D program was received, satisfied, or failed. Using the context of the RIL-D program

combined with the ROL-R output, a language generation system could provide a more

varied and natural means of expressing the ROL-R report.

The Semantics of ROL-R

The knowledge base, KB, used in the following semantic definitions is defined as in

Section 2.3. The semantics of ROL-R are defined as follows for ROL-R program p.

1. for p = “yes” in reply to an RIL-D observational command sense() : φ, KB =

KB ∪ {φ}.

2. for p = “no” in reply to an RIL-D observational command sense() : φ, KB =

KB ∪ {¬φ}.

3. for p = “done” in reply to an RIL-D directive p2, the directive p2 was completed

according to the semantics of RIL-D.

4. for p = “failed” in reply to an RIL-D directive p2, the directive p2 was not able to

be completed according to the semantics of RIL-D.

5. for p = “acknowledged” in reply to an RIL-D goal φ, there is a trajectory that

satisfies φ.

6. for p = v1, . . . , vn in reply to an RIL-D sensing directive sense(X1, . . . , Xn) :

f(X1, . . . , Xn), KB = KB ∪ {f(v1, . . . , vn)}.
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2.7 ROL-A

When the robot receives a query in the language RIL-Q it may answer it by yes, no,

unknown, or when the RIL-Q question is λX1, . . . λXnΦ(X1, . . . , Xn), with n ≥ 1 then

it may give the value of X1, . . . , Xn. Similarly to ROL-R, the ROL-A could be combined

with the prompting RIL-Q query, or even the English used to form the query, to generate

a natural language answer to the query.

To continue the example from section RIL-Q: Given that the robot has pre-

viously seen the box with the number 7 inside of room r3, the result to the query

“query(λR.is(R, room) ∧ is(X, box) ∧ has(X,number_on, 7) ∧ has(X, at,R))” would

simply be r3.

The Semantics of ROL-A

The knowledge base, KB, used in the following semantic definitions is defined as in

Section 2.3. The semantics of ROL-A are defined as follows for ROL-A program p.

1. for p = “yes” in reply to an RIL-Q query query(Φ), KB |= Φ.

2. for p = “no” in reply to an RIL-Q query query(Φ), KB |= ¬Φ.

3. for p = “unknown” in reply to an RIL-Q query query(Φ), KB 6|= Φ and KB 6|=

¬Φ.

4. for p = “unknown” in reply to an RIL-Q query query(λX1. . . . λXn.

Φ(X1, . . . , Xn)), there is no v1, . . . , vn such that KB |= Φ(v1, . . . , vn).

5. for p = v1, . . . , vn in reply to an RIL-Q query query(λX1. . . . λXn.

Φ(X1, . . . , Xn)), KB |= Φ(v1, . . . , vn).

2.8 ROL-Q

The syntax of ROL-Q is as shown in Table 2.6 with examples found in section 2.5.
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Syntax Intuitive Meaning

1 Selection: If (a11; . . . ; a1n1), ..., (ak1; . . . ; aknk
)

are sequences of actions, then
select((a11; . . . ; a1n1), ..., (ak1; . . . ; aknk

))
is an ROL-Q question.

Prompts for which plan of ac-
tion should be followed.

2 Approval: If a1; . . . ; an is a sequence of actions,
then should(a1; . . . ; an) is an ROL-Q question.

Requests confirmation that
the robot should undertake
the stated actions a1; . . . ; an.

3 Goal Approval: If a1; . . . ; an is a sequence
of actions and φ is a current goal, then
should(a1; . . . ; an, φ) is an ROL-Q question.

Requests confirmation that
the robot should undertake
the stated actions a1; . . . ; an
towards completing goal φ.

4 Goal Clarification: If φ is a goal, then clarify(φ)
is an ROL-Q question.

Requests clarification for the
goal φ.

5 Conflict Clarification: If φ1 and φ2 are goals, then
clarify(φ2, φ1) is an ROL-Q question.

Requests clarification in that
goal φ2 is in conflict with the
prior goal φ1.

6 Knowledge Query: If Φ(X1, . . . , Xn) is a
first-order logic formula with free variables
X1, . . . Xn, then λX1. . . . λXn.Φ(X1, . . . , Xn)
is an ROL-Q question.

Requests specific knowledge
in the same format as an RIL-
Q query.

Table 2.6: The Syntax of ROL-Q

The Semantics of ROL-Q

The knowledge base, KB, used in the following semantic definitions is defined as in

Section 2.3. The definition of a conflict used below can be found in Section 2.5. The

semantics of ROL-Q are defined as follows for ROL-Q program p.

1. for p = select((a11; . . . ; a1n1), ..., (ak1; . . . ; aknk
)) where (a11; . . . ; a1n1), ...,

(ak1; . . . ; aknk
) are executable sequences of actions according to RIL-D, given a

response p2 = (a1; . . . ; an), p2 will be executed as an RIL-D program.

2. for p = should(a1; . . . ; an) where a1; . . . ; an is an executable sequence of actions

according to RIL-D, given the response “yes”, the sequence a1; . . . ; an will be

executed as an RIL-D program. Given the response “no”, the sequence a1; . . . ; an

will not be executed.
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3. for p = should(a1; . . . ; an, φ) where a1; . . . ; an is an executable sequence of

actions according to RIL-D and φ is a current goal, given the response “yes”, the

sequence a1; . . . ; an will be executed as an RIL-D program. Given the response

“no”, the sequence a1; . . . ; an will not be executed.

4. for p = clarify(φ) where there is a conflict on goal φ, given the execution of an

RIL-A response, the conflict on goal φ will be removed.

5. for p = clarify(φ2, φ1) where φ1 and φ2 are conflicting goals, given the execution

of an RIL-A response, the conflict between φ1 and φ2 will be removed.

6. for p = λX1, . . . λXn.Φ(X1, . . . , Xn) where Φ(X1, . . . , Xn) is a first-order logic

formula with free variables X1, . . . Xn, given the RIL-A response containing values

v1, . . . , vn, KB = KB ∪ {Φ(v1, . . . vn)}.
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Chapter 3

An Implementation

This chapter details how the robot languages could be implemented beginning first with

a scenario demonstrating the potential use of the languages. The chapter then proceeds

with an implementation of a significant portion of the RIL-D language using Answer Set

Programming. These ASP rules are then used by a robot simulator to demonstrate that

a system utilizing these language constructs can navigate through an environment and

complete assigned tasks. Following the simulator is a description of a proof-of-concept

system developed to translate natural language into a subset of RIL-D.

3.1 Urban Search and Rescue Example

As briefly discussed in the introduction, an important use of human robot interaction is in

situations such as urban search and rescue. This is a prime example due to the nature

of the environment requiring communication in both directions. When an environment is

considered too dangerous for a human rescue team, robots can be guided into the area

remotely. Due to the unknown nature of the area, a constant data connection between

the human and robot cannot be guaranteed, making a teleoperation approach difficult.

Instead, a human director can provide instructions to the robot to guide its progress,

though the robot would be fully autonomous to complete these commands. The many

unknowns also necessitate the ability to provide feedback to request new instructions

or clarification when the environment does not match expectations. Environmental

variables can include damage to the building’s infrastructure, flooding, fire, and many

other dynamic and fixed obstacles.

The dialogue shown in Table 3.1 is an example of a USAR scenario in which

the environmental danger is represented by hostile forces. In this scenario shown in

Figure 3.1, Cindy is the robot which will interact with Commanders X, Y, and Z. Initially,

Commander X and Cindy are together, Commander Y is in the hallway, and Commander

Z is with an injured civilian. Commander X wants Cindy to find a medical kit and bring

it to Commander Z, but while doing this, Cindy must avoid being seen by the enemy.
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Upon entering the hallway, Commander Y will order Cindy to follow him. Cindy will

recognize the conflict and request clarification on which goal to follow. She will then

find the medical kit and bring it to Commander Z, but will be detected and damaged on

the way. After requesting help from Commander Z, her goal to remain undetected is

overridden so that she can return to Commanders X and Y.

Figure 3.1: USAR Environment

3.2 An ASP Based Implementation

In this section, I demonstrate an implementation of RIL-D using Answer Set Programming.

I then integrate the ASP rules with the ADE robot simulator. The ASP implementation

handles the majority of RIL-D, namely the following syntactic constructs: Simple Action,

Parameterized Action, Self Goal, Sequence, Choice, Parametric Choice, Condition, and

While. Sensing was not included in the ASP rules since it depends on a live view of

the world to obtain results from the robot’s sensor. Sensing is simulated through the

ASP by requiring the robot to be at the same location as the object it is attempting to

sense, however this is not a true representation of how sensing would occur. Sensing

was not implemented through the ADE architecture due to the limited nature of the

particular ADE interface being used. Additionally, parallel actions are not presently

implemented to simplify the rules by only allowing a single action to occur at any given

time. Parallel actions can potentially be implemented by creating rules to limit which

actions are actually able to run simultaneously and then removing the rule that restricts

actions to one at a time.

The following is a subset of the logic programming rules that can be used to
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Dialogue Translation

X Cindy, CmdrZ really
needs a medical kit.

goal(cmdrZ,3has(cmdrZ, have,M)) :
is(M,med_kit)

X There should be one in
the first room in the
hallway down to the left

is(m,med_kit) ∧ has(m, at, r1) ∧ is(r1, room) ∧
is(z, room) ∧ has(z, past, r1) ∧ is(h, hallway) ∧
has(r1, connected, h) ∧ has(z, connected, h)

C OK. acknowledged

C Should I get it for CmdrZ? goal(self,3has(cmdrZ, have,m))

X Yes. goal(self,3has(cmdrZ, have,m))

X He is in the room with the
green door.

has(cmdrZ, at, r2) ∧ is(r2, room) ∧ is(d, door) ∧
has(d, doorconnected, r2) ∧ has(d, color, green)

C OK. acknowledged

X But remain undetected. goal(self,2(has(self, state, undetected)))

C OK. acknowledged

C What is a medical kit? query(λX.has(med_kit, appearance,X))

X It’s a white box with a red
cross.

has(m, color, white) ∧ is(m, box) ∧
has(m, visual_feature, z) ∧ has(z, color, red) ∧
is(z, cross)

C Alright, I’m on my way. acknowledged

Y Cindy, follow me. goal(self,2has(self, follow, cmdrY ))

C I really need to deliver the
medical kit to CmdrZ.

clarify(goal(self,2has(self, follow, cmdrY )),
goal(self,3has(cmdrZ, have,M)) :
is(M,med_kit))

Y OK. acknowledged

Y I’m going to see X now. goal(cmdrY,3has(cmdrY, at, cmdrX))

C OK. acknowledged

Y Meet me when you are
done.

goal(self,3(has(self, state, available) ∧
3has(self, at, cmdrY )))

C OK. acknowledged

C CmdrX, the door is
closed, what shall I do?

clarify(goal(self,3has(cmdrZ, have,M)) :
is(M,med_kit) ∧ is(d, door) ∧
has(d, state, closed))

X Use your hand to push it. goal(self,3push_with(d, selfs_hand))

C Got it. done

C CmdrZ, take the medical
kit, my arm motors are not
working.

¬(functional(self_arm_motors))→
take(CmdrZ, x) ∧ is(x,med_kit)

Z Thank you Cindy. done

C I need to meet CmdrY, but
there are enemies.

clarify(goal(self,3has(self, at, cmdrY )) ∧
has(E, at, h1) ∧ is(E, enemy) ∧ is(h1, hallway))

Z Go back to Y right away. goal(self,3has(self, at, cmdrY ))

C OK, I’ll do my best. acknowledged

Table 3.1: Urban Search and Rescue Dialogue
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express the RIL-D semantics. Based on the work in (Son et al. 2001), I define a predicate

trans(p, t1, tn) which holds in a stable model S iff s(t1), at1 , . . . , s(tn) is a trace of p

where s(i) = {holds(f, i) ∈ S | f is a fluent} and ai is either an action or response-set

such that occ(ai, i) ∈ S indicates that action ai occurs at time interval i. The other

predicates used in the ASP rules are defined in Table 3.2

Predicate Intuitive Meaning

1 time(X). X represents a single point in time.
2 action(X). X represents a valid action.
3 leq(X1, X2). X1 and X2 are two time points in which X1 is

smaller than X2.
4 goal(X1, X2). X1 is a program that is satisfied in time X2.
5 htf(X1, X2). The temporal formula X1 holds in time X2.
6 proc(X). X is a procedure consisting of a head and a tail.
7 head(X1, X2). X1 is a procedure with the head: program X2.
8 tail(X1, X2). X1 is a procedure with the tail: program X2.
9 choiceAction(X). X is a choice action consisting of possible programs

represented by the in(X1, X2) predicate.
10 in(X1, X2). X1 is a program within the list of possible programs

X2.
11 choiceArgs(X1, X2, X3). X1 is a program in which formula X2 holds at the

current time and program X3 is executed.
12 hf(X1, X2). Formula X1 holds at time X2.
13 if(X1, X2, X3, X4). X1 is a program in which either program X3 is exe-

cuted if formula X2 holds at the current time other-
wise program X4 is executed.

14 while(X1, X2, X3). X1 is a program in which so long as formula X2

holds, program X3 will be executed.

Table 3.2: The ASP Predicates

trans(null, T, T ) ← time(T ).

trans(A, T, T + 1)← time(T ), action(A), A 6= null,

occ(A, T ).

trans(A, T1, T2) ← time(T1), time(T2), leq(T1, T2),

goal(A, TF ), htf(TF, T2).

trans(A, T, T ) ← time(T ), goal(A, TF ), htf(TF, T ).

trans(P, T1, T2) ← time(T1), time(T2), leq(T1, T2),
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time(T3), leq(T1, T3),

leq(T3, T2), proc(P ),

head(P, P1), tail(P, P2),

trans(P1, T1, T3),

trans(P2, T3, T2).

trans(N,T1, T2) ← time(T1), time(T2), leq(T1, T2),

choiceAction(N), in(P1, N),

trans(P1, T1, T2).

trans(S, T1, T2) ← time(T1), time(T2), leq(T1, T2),

choiceArgs(S, F, P ), hf(F, T1),

trans(P, T1, T2).

trans(I, T1, T2) ← time(T1), time(T2), leq(T1, T2),

if(I, F, P1, P2), hf(F, T1),

trans(P1, T1, T2).

trans(I, T1, T2) ← time(T1), time(T2), leq(T1, T2),

if(I, F, P1, P2), not hf(F, T1),

trans(P2, T1, T2).

trans(W,T1, T2) ← time(T1), time(T2), leq(T1, T2),

while(W,F, P ), hf(F, T1),

time(T3), leq(T1, T3),

leq(T3, T2), trans(P, T1, T3),

trans(W,T3, T2).

trans(W,T, T ) ← time(T ), while(W,F, P ),

not hf(F, T ).

Below are the rules used to define the satisfiability of a propositional or tem-

poral formula N at a time T (hf(N,T ) and htf(N,T )) and between times T and T1

(hd(N,T, T1)).

hf(N,T ) ← literal(N), time(T ), holds(N,T ).
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hf(N,T ) ← time(T ), formula(N), formula(N1), isneg(N,N1),

not hf(N1, T ).

not_hc(N,T ) ← time(T ), conj(N), in(N1, N), not htf(N1, T ).

hf(N,T ) ← time(T ), conj(N), not not_hc(N,T ).

hf(N,T ) ← time(T ), disj(N), in(N1, N), htf(N1, T ).

hf(N,T ) ← tformula(N), tf(N,N1), htf(N1, T ).

htf(N,T ) ← formula(N), hf(N,T ).

htf(N,T ) ← tformula(N), tf(N, until(N1, N2)), hd(N1, T, T1),

htf(N2, T1).

htf(N,T ) ← tformula(N), tf(N, always(N1)), hd(N1, T, length+ 1).

htf(N,T ) ← tformula(N), tf(N, eventually(N1)), htf(N1, T1), T <= T1,

time(T ).

htf(N,T ) ← tformula(N), tf(N,next(N1)), htf(N1, T + 1), time(T ).

not_hd(N,T, T1)← tformula(N), not htf(N,T2), T <= T2, T2 < T1, time(T ),

time(T1), time(T2).

hd(N,T, T1) ← tformula(N), htf(N,T ), not not_hd(N,T, T1), time(T1).

The full set of logic programming rules needed for this implementation of RIL-D

within a simple planning system can be found in Appendix A. This planning system

was used in conjunction with the Agent Development Environment (ADE)1 developed

by Matthias Scheutz, James Kramer, and Paul Schermerhorn. The two systems are

connected in the following manner, the ADE simulator generates the initial appearance

of the world and waits for a command from the user to be sent to ASP system for

plan generation. Once the ASP implementation of RIL-D returns a plan, the simulator

executes the plan with the corresponding ROL output. Following execution, the ADE

system continues waiting for further commands from the user to repeat the process

starting from the current state of the simulated world.

The ADE ArchImpl.java implementation can be seen in its initial running state

in Figure 3.2 and is included in Appendix B. The java portion of this system includes a
1http://ade.sourceforge.net/
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basic demonstration of the ROL languages, namely that it can output ROL-R reports

such as “acknowledged” and “done” as well as values from the simulated sensing action.

In addition to some ROL-R responses, the java system is also capable of asking the

RIL-Q Goal Clarification question when it is either unable to complete an action due to

an unforseen obstacle, or if it is instructed to perform an action that the java system does

not know.

Figure 3.2: ADE Simulator Initial State

In order for the ASP logic rules to handle RIL-D statements, the statements must

first be translated into the logic programming format. A sample “dialogue” manually

translated to ASP is included in Appendices C, D, and E. The logic rules in each

of these three appendices can be separated into four meaningful sections. The first

section contains the current state of the world with the primary differences between each

translation being the present location of the robot. The following set of statements simply

sets up the rules that chain together the goals in the proper order along with references

to those goals. The third section contains the high level definitions of the goals that

were chained together, namely each goal is represented as a chain of heads and tails of

procedures to represent the given goal. The final section contains the definitions of each

procedure and is most closely related to the RIL-D language. It should be noted that an

implementation of RIL-L New Descriptions and New Actions (either parameterized or

simple) is trivial in that any additional knowledge of these forms can be provided as ASP

rules such as those in the first section of each dialogue declaring the state of the world.
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Implementing the RIL-L construct Other’s Goal involves multi-agent planning which was

not included in this program.

Beginning from the state seen in Figure 3.2, the robot is given the following

commands based on the USAR dialogue from Table 3.1:

%Go through door d1 ahead on your right

while ¬has(d1, location, right)

do go_straight_one_step.

goal(self,3(has(self, at, d1) ∧©(has(self, prev_action, go_straight_one_step)))).

%Go to Commander X

goal(self,3has(self, at, cmdrX)).

These RIL-D commands are translated into ASP as follows:

%while¬has(d1, location, right)

%do go_straight_one_step.

while(find_door1_right, neg(has(d1, location, right)), go_straight_one_step).

%goal(self,3(has(self, at, d1)

% ∧©(has(self, prev_action, go_straight_one_step)))).

achieve(go_through_d1, achieve_through_d1).

tf(achieve_through_d1, eventually(go_through_d1_steps)).

conj(go_through_d1_steps).

in(has(self, at, d1), go_through_d1_steps).

in(next_go_straight, go_through_d1_steps).

tf(next_go_straight, next(has(self, prev_action, go_straight_one_step))).

tformula(achieve_through_d1).

tformula(next_go_straight).

%goal(self,3has(self, at, cmdrX)).

achieve(go_to_cmdrX, achieve_cmdrX).

tf(achieve_cmdrX, eventually(has(self, at, cmdrX))).
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tformula(achieve_cmdrX).

These rules are then linked with the previously defined ASP code from Section

3.2 to run RIL-D commands through the following rules to define the order of the

operations:

goal(s1, T ) : −time(T ), trans(s1, 0, T ).

goal(s2, T2) : −time(T1), time(T2), trans(s2, T1, T2), goal(s1, T1), T1 <= T2.

goal(T ) : −time(T ), goal(s2, T ).

goal(T + 1) : −time(T ), T < length, goal(s2, T ).

: −notgoal(length).

proc(s1).

head(s1, find_door1_right).

tail(s1, s1b).

proc(s1b).

head(s1b, go_through_d1).

tail(s1b, null).

proc(s2).

head(s2, go_to_cmdrX).

tail(s2, null).

The full ASP translation can be found in Appendix C, this translation includes rules

containing the current state of the world needed to run these commands in conjunction

with the planner from Appendix A.

When running these ASP programs together through an answer set solver, such

as the clingo solver used by the simulator, the following model is generated:

plan(0, go_straight_one_step, 5, 0, west) plan(1, go_straight_one_step, 4, 0, west)

plan(2, go_straight_one_step, 3, 0, west) plan(3, go_straight_one_step, 2, 0, west)

plan(4, turn_right, 2, 0, north) plan(5, go_straight_one_step, 2, 1, north)

plan(6, go_straight_one_step, 2, 2, north)

The plan predicate is defined syntactically as plan(T,A,X, Y,O) where T is the time-

step used to order the predicates, A is the action which occurs at a given time, X and
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Y are the desired spatial coordinates of the robot following the action, and O is the

robot’s desired orientation following A. Upon generating this plan, the java ADE system

will order the result according to the time-step and store each plan predicate in distinct

objects.

Once the plan has been read, the robot responds with “Acknowledged” and

the ordered list of plan objects is then used by the ADE runArchitecture algorithm,

presented in Algorithm 1, to handle the execution of the commands on the robot within

the simulator.

Once the robot completes the specified plan by reaching the blue box which is

intended to represent CmdrX as seen in Figure 3.3 the robot outputs “Done.”

Figure 3.3: ADE Simulator Following Dialogue #1

After reaching CmdrX, the following RIL-D commands are given:

%Go to the medical supplies

goal(self,3has(self, at,ms)).

%Pick them up

pick_up(ms))

The first RIL-D command is translated into ASP as follows:

%goal(self,3has(self, at,ms)).

achieve(go_to_ms, achieve_ms).

tf(achieve_ms, eventually(has(self, at,ms))).

tformula(achieve_ms).
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Algorithm 1 Algorithm for runArchitecture
GETSENSORS()
if state is “turn_right” or “turn_left” then

goalOrient⇐ plan.GET (step).orient
goalAngle⇐ compute change in angle to goalOrient
rotV el⇐ compute rotational velocity
if goalAngle <= 1 then

rotV el⇐ 0; step⇐ step+ 1 ; state⇐ plan.GET (step).action
end if

else if state is “go_straight_one_step” then
goalDist⇐ GETDIST (x, y)
if obstacle in front and goalDist <= 0.1 then

transV el⇐ 0 ; rotV el⇐ 0
step⇐ step+ 1 ; state⇐ plan.GET (step).action

else if obstacle in front and closer than goalDist then
DISPLAY (“clarify(go_straight_one_step)′′)
transV el⇐ 0 ; rotV el⇐ 0 ; state⇐ “stop”

else
transV el⇐ 0.7
if goalDist < 1 then

transV el⇐ goalDist/3
end if

end if
if goalDist < 0.05 then

transV el⇐ 0 ; rotV el⇐ 0
step⇐ step+ 1 ; state⇐ plan.GET (step).action

end if
else if state contains “pick_up” then

transV el⇐ 0 ; rotV el⇐ 0
object⇐ GETOBJECT (state);PICKUP (object)
step⇐ step+ 1 ; state⇐ plan.GET (step).action

else if state contains “put_down” then
transV el⇐ 0 ; rotV el⇐ 0
object⇐ GETOBJECT (state);PUTDOWN(object)
step⇐ step+ 1 ; state⇐ plan.GET (step).action

else if state contains “sense” then
transV el⇐ 0 ; rotV el⇐ 0; sensed⇐ GETSENSED()
for all value in sensed do

DISPLAY (value)
end for
step⇐ step+ 1 ; state⇐ plan.GET (step).action

else if state is “stop” then
transV el⇐ 0 ; rotV el⇐ 0

end if
SETV ELS(transV el, rotV el)
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The second RIL-D command to pick up the supplies does not require this extra

translation step as it is already a simple action that can be represented within the head

predicate as seen below when linking the ASP translation with the code from Section

3.2:

goal(s1, T ) : −time(T ), trans(s1, 0, T ).

goal(s2, T2) : −time(T1), time(T2), trans(s2, T1, T2), goal(s1, T1), T1 <= T2.

goal(T ) : −time(T ), goal(s2, T ).

goal(T + 1) : −time(T ), T < length, goal(s2, T ).

: −notgoal(length).

proc(s1).

head(s1, go_to_ms).

tail(s1, null).

proc(s2).

head(s2, pick_up(ms)).%Note, thisisanaction

tail(s2, null).

The full translation for these commands, with rules representing the environment, can

be found in Appendix D.

Running this program with the ASP code from Appendix A through the answer

set solver generates following model:

plan(0, turn_left, 2, 2, west) plan(1, turn_left, 2, 2, south)

plan(2, go_straight_one_step, 2, 1, south)

plan(3, go_straight_one_step, 2, 0, south)

plan(4, turn_left, 2, 0, east) plan(5, go_straight_one_step, 3, 0, east)

plan(6, go_straight_one_step, 4, 0, east) plan(7, turn_left, 4, 0, north)

plan(8, go_straight_one_step, 4, 1, north)

plan(9, go_straight_one_step, 4, 2, north)

plan(10, pick_up(ms), 4, 2, north)

As before, the simulator parses each predicate into an ordered list of objects

based on the time-step, then the robot responds with “Acknowledged” before beginning
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the execution of the ordered plan within runArchitecture. Then the robot reaches

the position of the yellow box in Figure 3.4 which is intended to represent the medical

supplies. The yellow box is removed from the simulation as the robot has completed

the command to pick it up. As before, the robot announces “Done” upon completing the

given commands.

Figure 3.4: ADE Simulator Following Dialogue #2

After picking up the supplies, the following RIL-D commands are given:

%Meet Commander Z

goal(self,3has(self, at, cmdrZ)).

%Check on Commander Z

sense(status(cmdrZ)).

%If Commander Z is hurt but awake, give him the medical supplies

if has(cmdrZ, status, injured) ∧ has(cmdrZ, status, conscious)

then pick(M,put_down(M)) : has(self, carrying,M) ∧ is(M,medical_supplies).

The first RIL-D command is translated into ASP as follows:

%goal(self,3has(self, at, cmdrZ)).

achieve(go_to_cmdrZ, achieve_cmdrZ).

tf(achieve_cmdrZ, eventually(has(self, at, cmdrZ))).

tformula(achieve_cmdrZ).

As with the previous set of commands, the second RIL-D command does not

require any extra translation as simple sensing can also be represented within the head
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predicate. The third RIL-D command does need to be translated and can be seen in

ASP below:

%if has(cmdrZ, status, injured) ∧ has(cmdrZ, status, conscious)

%then pick(M,put_down(M)) : has(self, carrying,M) ∧ is(M,medical_supplies).

if(if1, awake_injured, place_meds, null).

conj(awake_injured).

in(has(self, sensed, status(cmdrZ, injured)), awake_injured).

in(has(self, sensed, status(cmdrZ, conscious)), awake_injured).

choiceArgs(place_meds, has(self, carrying,M), put_down(M)) : −

is(M,medical_supplies).

These rules are linked with the other ASP code through the following rules,

noting that there are three commands given in this dialogue as opposed to the previous

two distinct commands:

goal(s1, T ) : −time(T ), trans(s1, 0, T ).

goal(s2, T2) : −time(T1), time(T2), trans(s2, T1, T2), goal(s1, T1), T1 <= T2.

goal(s3, T2) : −time(T1), time(T2), trans(s3, T1, T2), goal(s2, T1), T1 <= T2.

goal(T ) : −time(T ), goal(s3, T ).

goal(T + 1) : −time(T ), T < length, goal(s3, T ).

: −notgoal(length).

proc(s1).

head(s1, go_to_cmdrZ).

tail(s1, null).

%sense(Y ) : status(cmdrZ, Y ), person(cmdrZ).

proc(s2).

head(s2, sense(status(cmdrZ))).

tail(s2, null).

proc(s3).

head(s3, if1).
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tail(s3, null).

The full translation for this dialogue can be found in Appendix E with the corre-

sponding state of the world. This dialogue is then run through the answer set solver

along with Appendix A to generate the following model:

plan(0, turn_left, 4, 2, west) plan(1, turn_left, 4, 2, south)

plan(2, go_straight_one_step, 4, 1, south)

plan(3, go_straight_one_step, 4, 0, south)

plan(4, turn_left, 4, 0, east) plan(5, go_straight_one_step, 5, 0, east)

plan(6, go_straight_one_step, 6, 0, east) plan(7, turn_left, 6, 0, north)

plan(8, go_straight_one_step, 6, 1, north)

plan(9, go_straight_one_step, 6, 2, north)

plan(10, sense(status(cmdrZ)), 6, 2, north)

plan(10, sensed, cmdrZ, injured) plan(10, sensed, cmdrZ, conscious)

plan(11, put_down(ms), 6, 2, north)

As with the previous dialogues, the plan(T,A,X, Y,O) predicate is used to

generate a temporally ordered list of plan steps. However, in this output there is a new

predicate visible of the form plan(T, sensed, P, S) where P is a person and S is their

status that would be reported by the sensing action. It should be noted that this is in

effect retrieving the person’s status from the planner rather than the robot’s sensors.

This was implemented in this way due to the limited nature of the chosen version of the

ADE architecture being unable to sense the status of a person. Given a working robot

that is truly able to sense the status of an individual, this new predicate would not be

needed. The values from the new plan predicate are saved into their own objects to be

recalled when the sensing action is performed.

After reading in the current plan, the robot replies with “Acknowledged” and

begins executing the runArchitecture on the action plan. Once the robot reaches the

green box in Figure 3.5 intended to represent CmdrZ, the robot outputs “conscious” and

“injured” as the status of CmdrZ before finishing with the statement, “Done.”
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Figure 3.5: ADE Simulator Following Dialogue #3

3.3 Automated Translation of English

A demonstration of translating English into RIL-D was performed as part of a class project

by Barry Lumpkin and Jenny Hastings (Hastings and Lumpkin 2012) with the assistance

of Juraj Dzifcak. This project utilizes a machine learning approach to natural language

translation with the assistance of an inverse lambda algorithm (Gonzalez 2010) to help

the system learn the semantic definitions of more words than are actually provided in the

initial dictionary. In this project, an initial dictionary of 68 semantic definitions was created

as well as a training corpus of 30 sentences and a testing corpus of 10 sentences. While

this is a very limited dataset, it was only intended to be a proof-of-concept demonstration

of the ability to translate goal and sensing statements. Using Juraj’s PCCG system (Baral

et al. 2011) the initial dictionary was expanded to 172 definitions with each definition

given a weighting determined by machine learning on the training corpus. The PCCG

system was shown to be able to learn new words that were not initially given semantic

meanings through inverse lambda and thus provided accurate translations to sentences

that either contained only words that were initially given, or that contained new words that

were provided in the training data but not semantically defined in the original dictionary.

Of the training and testing set, the only sentence that was not translatable was from

the testing set due to one word never having been included in the dictionary or training

corpus. The course paper (Hastings and Lumpkin 2012) contains the details on this

project as it is beyond the scope of this work.
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Chapter 4

Conclusion and Future Work

In a human-robot interaction scenario one of the important modes of communication is

via natural language. To facilitate this communication, in this paper, I proposed a formal

high level language with multiple components. The proposed language has two main

parts: RIL and ROL which refer to the Robot Input Language and the Robot Output

Language.

The RIL has four sections RIL-D, RIL-L, RIL-Q and RIL-A, which express direc-

tives, learning, queries and answers, respectively. The ROL has three parts ROL-R,

ROL-A and ROL-Q, which express reports, answers (to queries) and questions, re-

spectively. The syntax and semantics of each of these sub-languages are based on

their needs, and for some of them I borrow constructs from the literature and make

appropriate modifications. For example, the RIL-D language borrows several constructs

from GOLOG, but at the same time avoids features from GOLOG that were considered

to be inappropriate from an HRI viewpoint. These GOLOG constructs are then extended

with temporal logic and “goal” statements.

I demonstrate various sections of the RIL and ROL languages through a simu-

lated robot by combining the Agent Development Environment architecture with a set

of Answer Set Programming rules. The ASP rules are able to handle the majority of

the RIL-D syntax to generate a plan which is then provided to the ADE simulator for

execution. The simulator environment then generates the corresponding ROL output as

needed.

Finally, to complete the link from natural language to a robot architecture, I

described a proof-of-concept system that is able to perform translations from English into

either RIL-D goal or sensing statements. This system demonstrates the ability to create

a translator for English to RIL. The ASP rules show the ability to translate RIL-D into a

working plan which can then be interpreted by a robot architecture as demonstrated via

the ADE simulation which also provides the ROL output.
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While this work provides languages to handle various human-robot dialogues,

there are several areas that would be desired extensions for this research:

1. When imparting knowledge through natural language, statements are often quali-

fied with various phrases such as “should”, “may”, or “I believe”. These phrases

are intended to express a level of uncertainty in the knowledge such that the

receiving party would know not to believe the statement with 100% confidence. An

extension would be to provide a measure of the level of uncertainty in the dialogue

so that the robot would be able to decide when to trust versus when to validate the

knowledge.

2. Along the lines of providing confidence, the language does not currently provide

much in the way of semantics towards the generation of a belief model. A useful

extension is that the robot should be able to model its own knowledge and beliefs

as well as those of the director.

3. The current language does not provide a construct for goal revision. One possible

approach would be to implement a language such as ER-LTL, a non-monotonic

temporal logic that is designed for the revision of goals (Zhao 2010). This would be

a desirable approach as ER-LTL does not require the previous goal to be retracted

in order to provide the revision, thus saving the costs of providing an entirely new

goal.

4. Due to the particular domains being considered in this work, the language is

designed for a human director and a robot agent such that the robot is able to

receive commands, but not to command the human in return. An interesting area to

move forward would be enabling the robot to take on the role of director, effectively

interchanging the use of RIL and ROL.

5. Taking the architecture further into a multi-agent domain is also an exciting focus

of research. This could include enabling multiple robots to work together or

54



modifications to how commands are received from multiple directors. In the USAR

example, the robot Cindy took instructions from three different commanders and

when a conflict arose, she simply asked the nearest commander to clarify what

she should do. If the directors actually have different ranks within a command

hierarchy, then the robot should instead base its decisions with the priority given

to highest ranking directors.

6. For the RIL-Q language, the query definition Φ(X1, . . . , Xn) should to be extended

to handle temporal constructs.

7. For the ROL-A language, it would be useful for the robot to indicate possible

reasons for why a command may have failed or whether something unexpected

occurs in the environment.
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APPENDIX A

DEMOPLANNER.LP - AN ASP IMPLEMENTATION
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%—————————————————————————————-
% Robot Interaction Language
% Barry Lumpkin
%—————————————————————————————-

time(0..length).

fluent(has(O,at,P)) :- is(O,object), is(P,place).
fluent(pos(self,X,Y)) :- position(X,Y).
fluent(pos(O,X,Y)) :- is(O,object), position(X,Y).
fluent(has(self,orient,D)) :- is(D,cardinal).
fluent(has(O,location,D)) :- is(O,object), is(D,direction).
fluent(has(self,carrying,O)) :- is(O,object).
fluent(has(self,at_end)).
fluent(has(self,at_end,H)) :- is(H,hallway).
fluent(has(self,at,O)) :- is(O,object).
fluent(has(self,sensed,P)) :- is(P,property).
fluent(has(O,status,S)) :- is(O,object), is(S,status).
fluent(has(self,prev_action,A)) :- action(A).

is(location(O,D),property) :- fluent(has(O,location,D)).
is(status(O,S),property) :- fluent(has(O,status,S)).

%—————————————————————————————-
% RIL-D Translation
%—————————————————————————————-

formula(L) :- literal(L).
formula(S) :- conj(S).
formula(S) :- disj(S).
formula(N) :- isneg(N).

hf(L,T) :- literal(L), time(T), holds(L,T).
hf(N,T) :- time(T), formula(N), formula(N1), isneg(N, N1), not hf(N1,T).

% Conjunctions
not_hc(S,T) :- time(T), conj(S), in(N,S), not htf(N,T).
hf(S,T) :- time(T), conj(S), not not_hc(S,T).

% Disjunction
hf(S,T) :- time(T), disj(S), in(N,S), htf(N,T).

% Temporal rules
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hf(N,T) :- tformula(N), tf(N,N1), htf(N1,T).

tformula(N) :- formula(N).

htf(N,T) :- formula(N), hf(N,T).
htf(N,T) :- tformula(N), tf(N,until(N1,N2)), hd(N1,T,T1), htf(N2,T1).
htf(N,T) :- tformula(N), tf(N,always(N1)), hd(N1,T,length+1).
htf(N,T) :- tformula(N), tf(N,eventually(N1)), htf(N1,T1), T<=T1, time(T).
htf(N,T) :- tformula(N), tf(N,next(N1)), htf(N1,T+1), time(T).
not_hd(N,T,T1) :- tformula(N), not htf(N,T2), T<=T2, T2<T1, time(T), time(T1), time(T2).
hd(N,T,T1) :- tformula(N), htf(N,T), not not_hd(N,T,T1), time(T1).

% No action
trans(null,T,T) :- time(T).

% Action A
trans(A,T,T+1) :- time(T), action(A), A!=null, occ(A,T).
%%response(done,A,T+1) :- time(T), action(A), A!=null, occ(A,T).

% Formula testing (change to sensing)
trans(F,T,T) :- time(T), formula(F), hf(F,T).

% Achieve
trans(A,T1,T2) :- time(T1), time(T2), leq(T1,T2), achieve(A,TF), htf(TF,T2).
trans(A,T,T) :- time(T), achieve(A,TF), htf(TF,T).

% Sequence p1;p2
trans(P,T1,T2) :- time(T1), time(T2), leq(T1,T2), time(T3), leq(T1, T3), leq(T3,T2),

proc(P), head(P,P1), trans(P1,T1,T3), tail(P,P2), trans(P2,T3,T2).

% Choice p1|p2
trans(N,T1,T2) :- time(T1), time(T2), leq(T1,T2), choiceAction(N), in(P1,N),

trans(P1,T1,T2).

% pick(X,F(X),P(X))
trans(S,T1,T2) :- time(T1), time(T2), leq(T1,T2), choiceArgs(S,F,P), hf(F, T1),

trans(P, T1, T2).

% If formula then p1 else p2
trans(I,T1,T2) :- time(T1), time(T2), leq(T1,T2), if(I,F,P1,P2), hf(F,T1), trans(P1,T1,T2).
trans(I,T1,T2) :- time(T1), time(T2), leq(T1,T2), if(I,F,P1,P2), not hf(F,T1),

trans(P2,T1,T2).

% While formula do P
trans(W,T1,T2) :- time(T1), time(T2), leq(T1,T2), while(W,F,P), hf(F,T1), time(T3),

leq(T1, T3), leq(T3,T2), trans(P,T1,T3), trans(W,T3,T2).
trans(W,T,T) :- time(T), while(W,F,P), not hf(F,T).

60



%—————————————————————————————-
% Ramifications (static causal laws)
%—————————————————————————————-

% Currently detects relative location through walls. Consider adding a rule that all
positions must be consecutive.

location(front,X,Y2,T) :- time(T), holds(pos(self,X,Y1),T),
holds(has(self,orient,north),T),position(X,Y2), Y2>Y1.

location(front,X,Y2,T) :- time(T), holds(pos(self,X,Y1),T),
holds(has(self,orient,south),T),position(X,Y2), Y2<Y1.

location(front,X2,Y,T) :- time(T), holds(pos(self,X1,Y),T),
holds(has(self,orient,east),T),position(X2,Y), X2>X1.

location(front,X2,Y,T) :- time(T), holds(pos(self,X1,Y),T),
holds(has(self,orient,west),T),position(X2,Y), X2<X1.

location(back,X,Y2,T) :- time(T), holds(pos(self,X,Y1),T),
holds(has(self,orient,south),T),position(X,Y2), Y2>Y1.

location(back,X,Y2,T) :- time(T), holds(pos(self,X,Y1),T),
holds(has(self,orient,north),T),position(X,Y2), Y2<Y1.

location(back,X2,Y,T) :- time(T), holds(pos(self,X1,Y),T),
holds(has(self,orient,west),T),position(X2,Y), X2>X1.

location(back,X2,Y,T) :- time(T), holds(pos(self,X1,Y),T),
holds(has(self,orient,east),T),position(X2,Y), X2<X1.

location(left,X,Y2,T) :- time(T), holds(pos(self,X,Y1),T),
holds(has(self,orient,east),T),position(X,Y2), Y2>Y1.

location(left,X,Y2,T) :- time(T), holds(pos(self,X,Y1),T),
holds(has(self,orient,west),T),position(X,Y2), Y2<Y1.

location(left,X2,Y,T) :- time(T), holds(pos(self,X1,Y),T),
holds(has(self,orient,south),T),position(X2,Y), X2>X1.

location(left,X2,Y,T) :- time(T), holds(pos(self,X1,Y),T),
holds(has(self,orient,north),T),position(X2,Y), X2<X1.

location(right,X,Y2,T) :- time(T), holds(pos(self,X,Y1),T),
holds(has(self,orient,west),T),position(X,Y2), Y2>Y1.

location(right,X,Y2,T) :- time(T), holds(pos(self,X,Y1),T),
holds(has(self,orient,east),T),position(X,Y2), Y2<Y1.

location(right,X2,Y,T) :- time(T), holds(pos(self,X1,Y),T),
holds(has(self,orient,north),T),position(X2,Y), X2>X1.

location(right,X2,Y,T) :- time(T), holds(pos(self,X1,Y),T),
holds(has(self,orient,south),T),position(X2,Y), X2<X1.

holds(has(O,location,D),T) :- time(T), location(D,X,Y,T), holds(pos(O,X,Y),T),
is(D,direction),is(O,object).

holds(neg(has(O,location,D)),T) :- time(T), not location(D,X,Y,T), holds(pos(O,X,Y),T),
is(D,direction), is(O,object).
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holds(has(self,at_end),T) :- time(T), not possible(go_straight_one_step,T).
holds(neg(has(self,at_end)),T) :- time(T), possible(go_straight_one_step,T).

holds(has(self,at_end,H),T) :- time(T), holds(has(self,at,P),T), end(H,P), is(P,hall),
is(H,hallway), has(H,hall_segment,P).

holds(neg(has(self,at_end,H)),T) :- time(T), holds(has(self,at,P),T), not end(H,P),
is(H,hallway).

holds(has(self,at,O),T) :- time(T), holds(pos(self,X,Y),T), holds(pos(O,X,Y),T).
holds(neg(has(self,at,O)),T) :- time(T), holds(pos(self,X,Y),T), not holds(pos(O,X,Y),T),

is(O,object).

%—————————————————————————————-
% Actions (dynamic causal laws)
%—————————————————————————————-

action(turn_right).
action(turn_left).
action(go_straight_one_step).
action(put_down(O)) :- is(O,object).
action(pick_up(O)) :- is(O,object).
action(sense(status(P))) :- is(P,person).

% Turn Right
holds(has(self,orient,north),T+1) :- occ(turn_right,T), holds(has(self,orient,west),T).
holds(has(self,orient,east),T+1) :- occ(turn_right,T), holds(has(self,orient,north),T).
holds(has(self,orient,south),T+1) :- occ(turn_right,T), holds(has(self,orient,east),T).
holds(has(self,orient,west),T+1) :- occ(turn_right,T), holds(has(self,orient,south),T).

% Turn Left
holds(has(self,orient,north),T+1) :- occ(turn_left,T), holds(has(self,orient,east),T).
holds(has(self,orient,east),T+1) :- occ(turn_left,T), holds(has(self,orient,south),T).
holds(has(self,orient,south),T+1) :- occ(turn_left,T), holds(has(self,orient,west),T).
holds(has(self,orient,west),T+1) :- occ(turn_left,T), holds(has(self,orient,north),T).

% Go Straight One Step
holds(pos(self,X+1,Y),T+1) :- occ(go_straight_one_step,T), holds(pos(self,X,Y),T),

holds(has(self,orient,east),T).
holds(pos(self,X-1,Y),T+1) :- occ(go_straight_one_step,T), holds(pos(self,X,Y),T),

holds(has(self,orient,west),T).
holds(pos(self,X,Y+1),T+1) :- occ(go_straight_one_step,T), holds(pos(self,X,Y),T),

holds(has(self,orient,north),T).
holds(pos(self,X,Y-1),T+1) :- occ(go_straight_one_step,T), holds(pos(self,X,Y),T),

holds(has(self,orient,south),T).

% Put Down Object
holds(pos(O,X,Y),T+1) :- occ(put_down(O),T), is(O,object), holds(pos(self,X,Y),T).
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holds(neg(has(self,carrying,O)),T+1) :- occ(put_down(O),T), is(O,object),
holds(pos(self,X,Y),T).

% Pick Up Object
holds(has(self,carrying,O),T+1) :- occ(pick_up(O),T), is(O,object).
found_contrary(pos(O,X,Y),T+1) :- occ(pick_up(O),T), holds(pos(O,X,Y),T).

% Sense status
holds(has(self,sensed,status(P,S)),T+1) :- occ(sense(status(P)),T),

holds(has(P,status,S),T).

possible(turn_right,T) :- time(T).
possible(turn_left,T) :- time(T).
possible(A,T) :- action(A), time(T), executable(A,S), hf(S,T).
possible(go_straight_one_step,T) :- time(T), holds(pos(self,X,Y),T),

holds(has(self,orient,east),T), position(X+1,Y), pos(P1,X,Y), pos(P2,X+1,Y),
is(P1,place), is(P2,place), connected(P1,P2,east).

possible(go_straight_one_step,T) :- time(T), holds(pos(self,X,Y),T),
holds(has(self,orient,west),T), position(X-1,Y), pos(P1,X,Y), pos(P2,X-1,Y),
is(P1,place), is(P2,place), connected(P2,P1,east).

possible(go_straight_one_step,T) :- time(T), holds(pos(self,X,Y),T),
holds(has(self,orient,north),T), position(X,Y+1), pos(P1,X,Y), pos(P2,X,Y+1),
is(P1,place), is(P2,place), connected(P1,P2,north).

possible(go_straight_one_step,T) :- time(T), holds(pos(self,X,Y),T),
holds(has(self,orient,south),T), position(X,Y-1), pos(P1,X,Y), pos(P2,X,Y-1),
is(P1,place), is(P2,place), connected(P2,P1,north).

possible(put_down(O),T) :- time(T), is(O,object), holds(has(self,carrying,O),T).
possible(pick_up(O),T) :- time(T), is(O,object), holds(pos(self,X,Y),T),

holds(pos(O,X,Y),T).
possible(sense(status(P)),T) :- time(T), holds(has(P,status,S),T),

holds(pos(self,X,Y),T),holds(pos(P,X,Y),T).

nocc(A,T) :- action(A), action(B), time(T), A!=B, occ(B,T), T<length.
occ(A,T) :- action(A), time(T), T<length, possible(A,T), not nocc(A,T).

holds(has(self,prev_action,A),T+1) :- occ(A,T).

:- time(T), occ(null,T).
:- time(T), fluent(F), holds(F, T), contrary(F,G), holds(G, T).

action(null).
possible(null, T):- time(T).

%—————————————————————————————-
% Inertia
%—————————————————————————————-
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% Check for any instance of a contrary
found_contrary(L,T+1) :- contrary(L,G), holds(L,T), holds(G,T+1), time(T), T<length.
holds(L,T+1) :- holds(L,T), not found_contrary(L,T+1), time(T), T<length.

%—————————————————————————————-
% auxiliary axioms
%—————————————————————————————-

literal(G) :- fluent(G).
literal(neg(G)) :- fluent(G).

contrary(F, neg(F)) :- fluent(F).
contrary(neg(F), F) :- fluent(F).

contrary(has(self,orient,D1), has(self,orient,D2)) :- is(D1,cardinal), is(D2,cardinal),
D1!=D2.

contrary(pos(self,X1,Y1), pos(self,X2,Y2)) :- X1!=X2, position(X1,Y1), position(X2,Y2).
contrary(pos(self,X1,Y1), pos(self,X2,Y2)) :- Y1!=Y2, position(X1,Y1), position(X2,Y2).
contrary(has(O,location,D1), has(O,location,D2)) :- is(O,object), is(D1,direction),

is(D2,direction), D1!=D2.
contrary(has(self,prev_action,A1), has(self,prev_action,A2)) :- action(A1), action(A2),

A1!=A2.

leq(T,T) :- time(T).
leq(T1,T2) :- time(T1), time(T2), T1 < T2.

holds(L,0) :- literal(L), initially(L).

%—————————————————————————————-
% Modeling Environment
%—————————————————————————————-

is(north,cardinal).
is(east,cardinal).
is(south,cardinal).
is(west,cardinal).

is(right,direction).
is(left,direction).
is(front,direction).
is(back,direction).

is(healthy,status).
is(injured,status).
is(dead,status).
is(conscious,status).
is(unconscious,status).
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is(X,object) :- is(X,person).
is(X,object) :- is(X,door).
is(X,object) :- is(X,medical_supplies).
is(X,object) :- is(X,hazmat_sensor).

is(P,place) :- is(P,hall).
is(P,place) :- is(P,room).
is(P,place) :- is(P,door).

is(hs,hazmat_sensor).
is(ms,medical_supplies).
is(cmdrX,person).
is(cmdrZ,person).

is(d1,door).
is(d2,door).
is(d3,door).
is(d4,door).
is(d5,door).
is(d6,door).
is(d7,door).
is(d8,door).

is(h1,hall).
is(h2,hall).
is(h3,hall).
is(h4,hall).
is(h5,hall).
is(h6,hall).
is(h7,hall).
is(h8,hall).
is(h9,hall).
is(h10,hall).
is(h11,hall).

is(r5,room).
is(r7,room).
is(r8,room).
is(r9,room).
is(r10,room).
is(r11,room).
is(r12,room).
is(r13,room).

is(hall1,hallway).

has(hall1,hall_segment,h1).
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has(hall1,hall_segment,h2).
has(hall1,hall_segment,h3).
has(hall1,hall_segment,h4).
has(hall1,hall_segment,h5).
has(hall1,hall_segment,h6).
has(hall1,hall_segment,h7).
has(hall1,hall_segment,h8).
has(hall1,hall_segment,h9).
has(hall1,hall_segment,h10).
has(hall1,hall_segment,h11).
end(hall1, h1).
end(hall1, h11).

connected(h1, h2, east).
connected(h2, h3, east).
connected(h3, h4, east).
connected(h4, h5, east).
connected(h5, h6, east).
connected(h6, h7, east).
connected(h7, h8, east).
connected(h8, h9, east).
connected(h9, h10, east).
connected(h10, h11, east).
connected(h3, d1, north).
connected(h5, d2, north).
connected(h6, d3, north).
connected(h7, d4, north).
connected(h8, d5, north).
connected(h9, d6, north).
connected(h10, d7, north).
connected(h11, d8, north).
connected(d1, r5, north).
connected(d2, r7, north).
connected(d3, r8, north).
connected(d4, r9, north).
connected(d5, r10, north).
connected(d6, r11, north).
connected(d7, r12, north).
connected(d8, r13, north).

position(0,0).
position(1,0).
position(2,0).
position(3,0).
position(4,0).
position(5,0).
position(6,0).
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position(7,0).
position(8,0).
position(9,0).
position(10,0).
position(2,1).
position(4,1).
position(5,1).
position(6,1).
position(7,1).
position(8,1).
position(9,1).
position(10,1).
position(2,2).
position(4,2).
position(5,2).
position(6,2).
position(7,2).
position(8,2).
position(9,2).
position(10,2).

pos(h1,0,0).
pos(h2,1,0).
pos(h3,2,0).
pos(h4,3,0).
pos(h5,4,0).
pos(h6,5,0).
pos(h7,6,0).
pos(h8,7,0).
pos(h9,8,0).
pos(h10,9,0).
pos(h11,10,0).
pos(r5,2,2).
pos(r7,4,2).
pos(r8,5,2).
pos(r9,6,2).
pos(r10,7,2).
pos(r11,8,2).
pos(r12,9,2).
pos(r13,10,2).

pos(d1,2,1).
pos(d2,4,1).
pos(d3,5,1).
pos(d4,6,1).
pos(d5,7,1).
pos(d6,8,1).
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pos(d7,9,1).
pos(d8,10,1).

holds(pos(O,X,Y),T) :- pos(O,X,Y), time(T), is(O,object).

%—————————————————————————————-
% Output
%—————————————————————————————-

plan(T,A,X,Y,D) :- occ(A,T), holds(pos(self,X,Y),T+1), holds(has(self,orient,D),T+1),
action(A).

plan(T,sensed,P,S) :- occ(A,T), action(A), A=sense(status(P)), is(P,person),
holds(has(self,sensed,status(P,S)),T+1).

%—————————————————————————————-
% Hiding/Showing Answerset
%—————————————————————————————-
#hide.
#show plan/5.
#show plan/4.
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APPENDIX B

ARCHIMPL.JAVA - AN IMPLEMENTATION OF ADE
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// Robot Interaction Demo
// Template (c) Matthias Scheutz
// Barry Lumpkin

import com.action.ActionServerImpl;
import ade.exceptions.ADECallException;
import java.rmi.*;
import java.util.HashMap;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStreamReader;
import java.io.Writer;
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.lang.Math;
import java.util.ArrayList;
import javax.swing.JTextField;
import javax.swing.JTextArea;
import javax.swing.JScrollPane;
import javax.swing.JDialog;
import javax.swing.JOptionPane;
import javax.swing.JFrame;
import java.beans.*;
import java.awt.*;
import java.awt.event.*;

public class ArchImpl extends ActionServerImpl implements Arch {
private static final long serialVersionUID = 1L;

final double UNIT = 1.37175; // This is the distance of one “hallway UNIT”

int step = 0;
HashMap<Integer,PlanStep> plan;
HashMap<Integer,SenseStep> sensing;
HashMap<Integer,Double> mapX;
HashMap<Integer,Double> mapY;

String state = “”;
double rotVel = 0;
double transVel = 0;
double goalAngle = 0;
double orientDirection = 0;
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double goalDist = -1;
boolean verbose = false;
boolean doneOrienting = false;
boolean initialized = false;

JFrame frame;
CustomDialog dialog;

/**
* <code>runArchitecture</code> is called periodically to perform
* whatever sensing and acting is required by the architecture.
*/
public void runArchitecture()
{
if(!initialized)
{
frame = new JFrame(“Dialog Handler”);
dialog = new CustomDialog(frame, this);
frame.setSize(800, 400);
frame.setVisible(false);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
dialog.setVisible(true);
dialog.setSize(800, 800);

readMap();
state = “stop”;
initialized = true;
}

// Obstacles
// blocking front 0.4 @ 90 deg
boolean obstacleFront = false;

// get perceptions
double[] laser = getLaserReadings();
double orient = getOrientation();
double[] position = getPos();

if(laser[90] < 0.4)
obstacleFront = true;

if(state.equals(“”)) // DEBUG State
{
if(verbose)
System.out.println(laser[90]);
}
else if(state.equals(“turn_right”) || state.equals(“turn_left”))
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{
// Turn to orient to given angle
// Use angle specified in next step

orientDirection = plan.get(step).orient;
goalAngle = Math.min(Math.abs(orientDirection - orient), 360 -

Math.abs(orientDirection - orient));
rotVel = ((Math.sin(goalAngle / 180.0 * Math.PI/2)) * 2);

if(goalAngle != 0 && rotVel < 0.02)
rotVel = 0.02;

if(goalAngle == Math.abs(orientDirection - orient))
rotVel *= Math.signum(orientDirection - orient); // negative = Turning right
else
rotVel *= -1 * Math.signum(orientDirection - orient); // negative = Turning right

if(goalAngle <= 1)
{
if(doneOrienting)
{
rotVel = 0;
step++; // Done Orienting, next step
if(step < plan.size())
state = plan.get(step).action;
else
{
dialog.displayResponse(“Done.”);
state = “stop”;
}
}
// Satisfy goalAngle <= 1 two consecutive times to prevent match from overshooting
doneOrienting = true;
if(verbose)
System.out.println(“*Orienting*”);
}
else
doneOrienting = false;
}
else if(state.equals(“go_straight_one_step”))
{
// Move forward to given destination
// Use goal location specified in plan
// Obstacle = stop and ask for assistance

// If going in a straight line, find the endpoint and go there. Don’t stop at each “point” on
the path
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while(step+1 < plan.size() && plan.get(step+1).action.equals(“go_straight_one_step”))
step++;

double goalX = plan.get(step).posX;
double goalY = plan.get(step).posY;
goalDist = Math.sqrt( Math.pow((goalX-position[0]),2) +

Math.pow((goalY-position[1]),2));

if(obstacleFront && goalDist <= 0.1) // Close enough. Don’t hit the obstacle
{
transVel = 0;
rotVel = 0;
step++;
if(step < plan.size())
state = plan.get(step).action;
else
{
dialog.displayResponse(“Done.”);
state = “stop”;
}
}
else if(obstacleFront && laser[90] - goalDist > 0.1) // Obstacle & not close enough to goal
{
transVel = 0;
rotVel = 0;
state = “stop”;
//NOTE: This is displaying clarify(A) where A is an action, not clarify(phi) where phi is a
goal.
dialog.displayResponse(“clarify(go_straight_one_step).”);
}
else
{
transVel = .7; // Default speed
if(goalDist < UNIT/2) // Slow down when approaching walls/obstacles
transVel = goalDist/3; // Start at .165 then slow down linearly w.r.t. wall distance
}

// Keep aligned towards goal
orientDirection = Math.toDegrees(Math.atan2((goalY-position[1]),(goalX-position[0])));
if(orientDirection<0)
orientDirection = 360+orientDirection;

if(verbose)
System.out.println(“X: ” + goalX + “ Y: ” + goalY + “ orient: ” + orientDirection);

goalAngle = Math.min(Math.abs(orientDirection - orient), 360 -
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Math.abs(orientDirection - orient));
rotVel = ((Math.sin(goalAngle / 180.0 * Math.PI/2)) * 2);

if(goalAngle != 0 && rotVel < 0.01)
rotVel = 0.01;

if(goalAngle == Math.abs(orientDirection - orient))
rotVel *= Math.signum(orientDirection - orient); // negative = Turning right
else
rotVel *= -1 * Math.signum(orientDirection - orient); // negative = Turning right

if(verbose)
System.out.println(“Dist to stop: ” + goalDist);

if(goalDist < 0.05) // Close enough to goal
{
transVel = 0;
rotVel = 0;
goalDist = -1;
step++;
if(step < plan.size())
state = plan.get(step).action;
else
{
dialog.displayResponse(“Done.”);
state = “stop”;
}
}
}
else if(state.contains(“pick_up”))
{
//NOTE: Doesn’t pick anything up. The robot architecture does not support picking up
blocks
transVel = 0;
rotVel = 0;
step++;
if(step < plan.size())
state = plan.get(step).action;
else
{
dialog.displayResponse(“Done.”);
state = “stop”;
}
}
else if(state.contains(“put_down”))
{
//NOTE: Doesn’t put anything down. The robot architecture does not support placing
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blocks
transVel = 0;
rotVel = 0;
step++;
if(step < plan.size())
state = plan.get(step).action;
else
{
dialog.displayResponse(“Done.”);
state = “stop”;
}
}
else if(state.contains(“sense”))
{
//NOTE: The robot itself does not actually sense. The robot architecture does not support
this.
//Values obtained from the planner.
transVel = 0;
rotVel = 0;

SenseStep sensed = sensing.get(step);
if(sensed == null)
{
dialog.displayResponse(“SENSING ERROR.”);
}
else
{
for(String str : sensed.status)
dialog.displayResponse(str);
}

step++;
if(step < plan.size())
state = plan.get(step).action;
else
{
dialog.displayResponse(“Done.”);
state = “stop”;
}
}
else if(state.equals(“stop”))
{
transVel = 0;
rotVel = 0;
}
else
{
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dialog.displayResponse(“clarify(” + state + “).”);
}

setVels(transVel,rotVel);
return;
}

// Read output from clingo and translate into a sequence of action steps
public void readPlan()
{
try
{
String str;
state = “stop”;
plan = new HashMap<Integer,PlanStep>();
sensing = new HashMap<Integer,SenseStep>();

Runtime rt = Runtime.getRuntime();
Process pr = rt.exec(“clingo tempInitState.lp demoPlanner.lp 1”);
BufferedReader br = new BufferedReader(new

InputStreamReader(pr.getInputStream()));

while((str = br.readLine()) != null) {
if(str.contains(“plan(”))
{
String plans[] = str.split(“
) plan
(”);
for(int i=0; i<plans.length; i++)
{
plans[i]=plans[i].replace(“ ”, “”);
plans[i]=plans[i].replace(“plan(”, “”);
plans[i]=plans[i].replace(“)”, “”);

//0,go_straight_one_step,5,0,west
String[] planInfo = plans[i].split(“,”);
//0
//go_straight_one_step
//5
//0
//west
if(planInfo[1].equals(“sensed”))
{
SenseStep ss = sensing.get(Integer.parseInt(planInfo[0]));
if(ss == null)
{
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ss = new SenseStep();
ss.timestep = Integer.parseInt(planInfo[0]);
ss.object = planInfo[2];
ss.status = new ArrayList<String>();
}
ss.status.add(planInfo[3]);

sensing.put(ss.timestep, ss);
}
else
{
PlanStep planStep = new PlanStep();
planStep.timestep = Integer.parseInt(planInfo[0]);
planStep.action = planInfo[1];
planStep.posX = mapX.get(Integer.parseInt(planInfo[2]));
planStep.posY = mapY.get(Integer.parseInt(planInfo[3]));
planStep.orient = convertOrient(planInfo[4]);

plan.put(planStep.timestep, planStep);
}
}
}
}

if(plan.size() > 0)
{
step = 0;
state = plan.get(step).action;
dialog.displayResponse(“Acknowledged.”);
}
else
{
step = -1;
state = “stop”;
dialog.displayResponse(“Failed. No plan could be generated”);
}
br.close();
}catch (Exception e){
System.err.println(“Error: ” + e.getMessage());
}
}

// Read from map.txt and translate the ASP output into a sequence of action steps
void readMap()
{
try
{
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BufferedReader br = new BufferedReader(new FileReader(“demoMap.txt”));

String str;
mapX = new HashMap<Integer,Double>();
mapY = new HashMap<Integer,Double>();

while((str = br.readLine()) != null) {
if(str.contains(“:”))
{
//X:0=-14.6
String coordInfo[] = str.split(“:”);

//X
//0=-14.6
String coords[] = coordInfo[1].split(“=”);

if(coordInfo[0].equals(“X”))
mapX.put(Integer.parseInt(coords[0]), Double.parseDouble(coords[1]));
else
mapY.put(Integer.parseInt(coords[0]), Double.parseDouble(coords[1]));
}
}
br.close();
}catch (Exception e){
System.err.println(“Error: ” + e.getMessage());
}
}

/**
* Get the absolute position of the agent.
* @return the global x, y, t position
*/
public double[] getPos()// throws RemoteException
{
double[] position = null;

if (!checkMethod(“getPoseGlobal”)) {
return null;
}
try {
position = (double[])callMethod(“getPoseGlobal”, new Object[0]);
current_x = position[0];
current_y = position[1];
current_t = position[2];
} catch (ADECallException ace) {
System.out.println(“getPoseGlobal: error checking position”);
}
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return position;
}

public void newCommand(String str)
{
dialog.displayResponse(“Processing”);
if(verbose)
System.out.println(“New Command: ” + str);

try {
Writer output = new BufferedWriter(new FileWriter(“tempInitState.lp”));
output.write(str);
output.close();
}
catch(IOException e) {
e.printStackTrace();
}

readPlan();
}

public int convertOrient(String str)
{
int orient = 0;

if(str.equals(“east”))
orient = 0;
if(str.equals(“north”))
orient = 90;
if(str.equals(“west”))
orient = 180;
if(str.equals(“south”))
orient = 270;

return orient;
}

/**
* Constructs the architecture
*/
public ArchImpl() throws RemoteException {
super();
}

//——————————————————————————————————
// Plan Storage
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//——————————————————————————————————

private class PlanStep
{
public int timestep; //6
public String action; //go_straight_one_step
public double posX, posY; //1, 2
public int orient; //90
}

private class SenseStep
{
public int timestep; //6
public String object; //cmdrX
public ArrayList<String> status; //injured
}

//——————————————————————————————————
// Dialogue Window
//——————————————————————————————————
private class CustomDialog extends JDialog
implements ActionListener,
PropertyChangeListener {
private String typedText = null;
private JTextArea textField;
private JTextArea responseField;

private JScrollPane textPane;
private JScrollPane responsePane;

private JOptionPane optionPane;

private String btnString1 = “Enter”;

private ArchImpl archImpl;

/**
* Returns null if the typed string was invalid;
* otherwise, returns the string as the user entered it.
*/
public String getValidatedText() {
return typedText;
}

/** Creates the reusable dialog. */
public CustomDialog(Frame aFrame, ArchImpl arch) {
super(aFrame, true);
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setModal(false);
archImpl = arch;

setTitle(“Dialog Window”);

//Create textArea to enter commands
textField = new JTextArea(10, 60);
textPane = new JScrollPane(textField);
textField.setEditable(true);

//Create textArea to display responses
responseField = new JTextArea(10, 60);
responsePane = new JScrollPane(responseField);
responseField.setEditable(false);
Color color=new Color(220,220,220);
responseField.setBackground(color);

//Create an array of the text and components to be displayed.
String msgString1 = “Please Enter a Command”;
Object[] array = {msgString1, textPane, responsePane};

//Create an array specifying the number of dialog buttons
//and their text.
Object[] options = {btnString1};

//Create the JOptionPane.
optionPane = new JOptionPane(array,
JOptionPane.QUESTION_MESSAGE,
JOptionPane.YES_NO_OPTION,
null,
options,
options[0]);

//Make this dialog display it.
setContentPane(optionPane);

//Handle window closing correctly.
setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent we) {
/*
* Instead of directly closing the window,
* we’re going to change the JOptionPane’s
* value property.
*/
optionPane.setValue(new Integer(
JOptionPane.CLOSED_OPTION));
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}
});

//Ensure the text field always gets the first focus.
addComponentListener(new ComponentAdapter() {
public void componentShown(ComponentEvent ce) {
textField.requestFocusInWindow();
}
});

//Register an event handler that puts the text into the option pane.
// textField.addActionListener(this);

//Register an event handler that reacts to option pane state changes.
optionPane.addPropertyChangeListener(this);
}

/** This method handles events for the text field. */
public void actionPerformed(ActionEvent e) {
optionPane.setValue(btnString1);
}

/** This method reacts to state changes in the option pane. */
public void propertyChange(PropertyChangeEvent e) {
String prop = e.getPropertyName();

if (isVisible()
&& (e.getSource() == optionPane)
&& (JOptionPane.VALUE_PROPERTY.equals(prop) ||
JOptionPane.INPUT_VALUE_PROPERTY.equals(prop))) {
Object value = optionPane.getValue();

if (value == JOptionPane.UNINITIALIZED_VALUE) {
//ignore reset
return;
}

//Reset the JOptionPane’s value.
//If you don’t do this, then if the user
//presses the same button next time, no
//property change event will be fired.
optionPane.setValue(
JOptionPane.UNINITIALIZED_VALUE);

if (btnString1.equals(value)) {
typedText = textField.getText();
String ucText = typedText.toUpperCase();
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if (ucText.equals(“QUIT”)) {
//we’re done; clear and dismiss the dialog
clearAndHide();
} else {
archImpl.newCommand(typedText);
}
} else { //user closed dialog or clicked cancel
typedText = null;
clearAndHide();
}
}
}

public void displayResponse(String str)
{
responseField.setText(responseField.getText() + str + “
n”);
}

/** This method clears the dialog and hides it. */
public void clearAndHide() {
textField.setText(null);
setVisible(false);
}
}
}
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APPENDIX C

SAMPLE DIALOG IN ASP - PART 1
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#const length=7.

% Initial state
initially(pos(self,6,0)).
initially(has(self,orient,west)).
initially(has(self,carrying,hs)).
initially(pos(cmdrX,2,2)).
initially(has(cmdrX,status,healthy)).
initially(has(cmdrX,status,conscious)).
initially(pos(ms,4,2)).
initially(pos(cmdrZ,6,2)).
initially(has(cmdrZ,status,injured)).
initially(has(cmdrZ,status,conscious)).

goal(s1,T):- time(T), trans(s1, 0, T).
goal(s2,T2):- time(T1), time(T2), trans(s2, T1, T2), goal(s1,T1), T1<=T2.
goal(T):- time(T), goal(s2,T).
goal(T+1):- time(T), T < length, goal(s2,T).
:- not goal(length).

proc(s1).
head(s1, find_door1_right).
tail(s1, s1b).

proc(s1b).
head(s1b, go_through_d1).
tail(s1b, null).

proc(s2).
head(s2, go_to_cmdrX).
tail(s2, null).

% while -has(d1,location,right)
% do go_straight_one_step.
while(find_door1_right,neg(has(d1,location,right)),go_straight_one_step).

% goal(self,<>(has(self,at,d1) ∧ ()(has(self,prev_action,go_straight_one_step)))).
achieve(go_through_d1,achieve_through_d1).
tf(achieve_through_d1,eventually(go_through_d1_steps)).
conj(go_through_d1_steps).
in(has(self,at,d1), go_through_d1_steps).
in(next_go_straight, go_through_d1_steps).
tf(next_go_straight,next(has(self,prev_action,go_straight_one_step))).
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tformula(achieve_through_d1).
tformula(next_go_straight).

% goal(self,<>has(self,at,cmdrX)).
achieve(go_to_cmdrX,achieve_cmdrX).
tf(achieve_cmdrX,eventually(has(self,at,cmdrX))).
tformula(achieve_cmdrX).
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APPENDIX D

SAMPLE DIALOG IN ASP - PART 2
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#const length=11.

% Initial state
initially(pos(self,2,2)).
initially(has(self,orient,north)).
initially(has(self,carrying,hs)).
initially(pos(cmdrX,2,2)).
initially(has(cmdrX,status,healthy)).
initially(has(cmdrX,status,conscious)).
initially(pos(ms,4,2)).
initially(pos(cmdrZ,6,2)).
initially(has(cmdrZ,status,injured)).
initially(has(cmdrZ,status,conscious)).

goal(s1,T):- time(T), trans(s1, 0, T).
goal(s2,T2):- time(T1), time(T2), trans(s2, T1, T2), goal(s1,T1), T1<=T2.
goal(T):- time(T), goal(s2,T).
goal(T+1):- time(T), T < length, goal(s2,T).
:- not goal(length).

proc(s1).
head(s1, go_to_ms).
tail(s1, null).

proc(s2).
head(s2, pick_up(ms)). % Note, this is an action
tail(s2, null).

% goal(self,<>has(self,at,ms)).
achieve(go_to_ms,achieve_ms).
tf(achieve_ms,eventually(has(self,at,ms))).
tformula(achieve_ms).
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APPENDIX E

SAMPLE DIALOG IN ASP - PART 3
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#const length=12.

% Initial state
initially(pos(self,4,2)).
initially(has(self,orient,north)).
initially(has(self,carrying,hs)).
initially(has(self,carrying,ms)).
initially(pos(cmdrX,2,2)).
initially(has(cmdrX,status,healthy)).
initially(has(cmdrX,status,conscious)).
initially(pos(cmdrZ,6,2)).
initially(has(cmdrZ,status,injured)).
initially(has(cmdrZ,status,conscious)).

goal(s1,T):- time(T), trans(s1, 0, T).
goal(s2,T2):- time(T1), time(T2), trans(s2, T1, T2), goal(s1,T1), T1<=T2.
goal(s3,T2):- time(T1), time(T2), trans(s3, T1, T2), goal(s2,T1), T1<=T2.
goal(T):- time(T), goal(s3,T).
goal(T+1):- time(T), T < length, goal(s3,T).
:- not goal(length).

proc(s1).
head(s1, go_to_cmdrZ).
tail(s1, null).

% sense(Y): status(cmdrZ,Y), person(cmdrZ).
proc(s2).
head(s2, sense(status(cmdrZ))).
tail(s2, null).

proc(s3).
head(s3, if1).
tail(s3, null).

% goal(self,<>has(self,at,cmdrZ)).
achieve(go_to_cmdrZ,achieve_cmdrZ).
tf(achieve_cmdrZ,eventually(has(self,at,cmdrZ))).
tformula(achieve_cmdrZ).

% If the person is awake but injured, give them medical supplies
% if has(cmdrZ,status,injured) ∧ has(cmdrZ,status,conscious)
% then pick(M, put_down(M)) : has(self,carrying,M) ∧ is(M,medical_supplies).
if(if1,awake_injured,place_meds,null).
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conj(awake_injured).
in(has(self,sensed,status(cmdrZ,injured)), awake_injured).
in(has(self,sensed,status(cmdrZ,conscious)), awake_injured).

% pick medical_supplies to put down
% (see if statement above for RIL-D translation)
choiceArgs(place_meds,has(self,carrying,M),put_down(M)) :- is(M,medical_supplies).
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