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ABSTRACT

The goal of this theoretical study of infrared spectra was to ascertain to

what degree molecules may be identified from their IR spectra and which

spectral regions are best suited for this purpose. The frequencies considered

range from the lowest frequency molecular vibrations in the far-IR, terahertz

region (below ∼ 3 THz or 100 cm−1) up to the highest frequency vibrations

(. 120 THz or 4000 cm−1). An emphasis was placed on the IR spectra of

chemical and biological threat molecules in the interest of detection and pre-

vention. To calculate IR spectra, the technique of normal mode analysis was

applied to organic molecules ranging in size from 8 to 11 352 atoms. The IR in-

tensities of the vibrational modes were calculated in terms of the derivative of

the molecular dipole moment with respect to each normal coordinate. Three

sets of molecules were studied: the organophosphorus G- and V-type nerve

agents and chemically related simulants (15 molecules ranging in size from 11

to 40 atoms); 21 other small molecules ranging in size from 8 to 24 atoms;

and 13 proteins ranging in size from 304 to 11 352 atoms. Spectra for the

first two sets of molecules were calculated using quantum chemistry software,

the last two sets using force fields. The “middle” set used both methods, al-

lowing for comparison between them and with experimental spectra from the

NIST/EPA Gas-Phase Infrared Library. The calculated spectra of proteins,

for which only force field calculations are practical, reproduced the experi-

mentally observed amide I and II bands, but they were shifted by ≈ +40 cm−1

relative to experiment. Considering the entire spectrum of protein vibrations,

the most promising frequency range for differentiating between proteins was

∼ 600–1300 cm−1 where water has low absorption and the proteins show some

differences.
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Chapter 1

INTRODUCTION

Due to the potential threat of terrorist attacks using chemical or biological

weapons, there is considerable interest in reliable detection and identification

of chemical and biological threat agents in order to prevent their production,

distribution, and use. One important analytical tool that may be of use for

these purposes is infrared (IR) spectroscopy. Since IR spectroscopy is sensitive

to molecular vibrations, and a molecule’s set of vibrational frequencies and

associated IR intensities are unique to that molecule, a molecule’s IR spectrum

provides a “signature” or “fingerprint” that can aid identification.

The purpose of this dissertation is to evaluate to what extent IR spec-

tra may be used to uniquely identify chemical and biological threat molecules

varying in size from small molecules, such as the highly toxic organophospho-

rus nerve agents (18 to 42 atoms), up to large molecules, such as anthrax

toxin protein (∼ 104 atoms). This is a theoretical work in that all original

results (IR spectra) presented here were calculated based on various computa-

tional techniques. Wherever possible, I have attempted to make reference to

experimental IR spectra in the published literature.

A molecule’s emission or absorption of radiation in the IR region of the

electromagnetic spectrum is primarily due to molecular vibrations, not over-

all rotations of the molecule or transitions between electronic states. As the

atomic nuclei are displaced from their equilibrium positions by vibration of

the molecule, the distribution of electric charge in the molecule changes ac-

cordingly. In classical electromagnetic theory, charges undergoing oscillations
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in position will emit radiation at the same frequency as the oscillation.

The main method for predicting molecular vibrations is normal mode anal-

ysis. This method considers vibrations involving small displacements of the

atomic nuclei away from their equilibrium positions. In order to do normal

mode analysis, one must have a way to calculate the total potential energy of

the molecule as a function of the atomic displacements. More specifically, it is

necessary to know all the mixed second (partial) derivatives of the potential

energy with respect to the atomic displacements before one can proceed with

this analysis.

For small molecules (. 50 atoms) it is possible to directly calculate the

total potential energy of the molecule (and hence also its derivatives) based on

quantum theory using quantum chemistry software. Examples of software to

perform these ab initio calculations include Gaussian 03 (Frisch et al., 2003)

and GAMESS (Schmidt et al., 1993; Gordon and Schmidt, 2005). Both of

these programs allow the user to calculate the total energy of a given molecule

in a given geometric configuration and to optimize the geometric configuration

to minimize the total energy for the purpose of determining the equilibrium

positions of the atomic nuclei. Once these equilibrium positions are known,

the software can calculate the second derivatives of the energy with respect to

the atoms’ displacements from their equilibrium positions. The molecule’s

normal modes of vibration are then found by diagonalizing the matrix of

mass-weighted second derivatives. Finally, the IR intensity associated with

a given normal mode of vibration may be calculated based on the change in

the molecule’s electric dipole moment when the atomic nuclei are displaced

according to that normal mode.

For larger molecules such as proteins (e.g., 6000 atoms), ab initio calcu-
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lations are not practically possible with present-day computers because they

would require too much time. In this case, it is necessary to switch to using

approximate potential functions (“force fields”) that have been developed for

the purpose of performing molecular dynamics simulations. In this disserta-

tion I have made use of the molecular dynamics software CHARMM (Brooks

et al., 2009) for its force field that is specific to proteins, and for its ability

to calculate the needed second derivatives of the potential with respect to the

atomic displacements.

Regardless of the method used to calculate the potential energy—ab initio

or force field—once the normal mode frequencies and associated IR intensities

are known, the IR spectrum may be simulated by giving the IR lines finite

width through convolution with a Lorentzian peak profile (or any other chosen

peak function).

A few words should be said on the units of frequency commonly used in IR

spectroscopy. Since the frequency ν and wavelength λ of light in vacuum are

related by λν = c, where c = 2.997 924 58× 1010 cm/s is the speed of light in

vacuum, this can be rearranged as ν/c = 1/λ. The “wave number” is defined

as the inverse of the wavelength in cm, and often frequencies are reported in

wave numbers (cm−1) rather than Hz:

ν[cm−1] ≡ 1

λ[cm]
=

ν[Hz]

2.997 924 58× 1010 . (1.1)

Since 1 THz = 1012 Hz, the previous equation may be rearranged to give a

convenient conversion factor between frequencies in terahertz and cm−1,

ν[cm−1] =
100

2.997 924 58
× ν[THz]

≈ 33.356× ν[THz] ,

(1.2)

so 1 THz ≈ 33 cm−1. Table 1.1 lists some frequencies and corresponding wave-
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lengths relevant for IR and THz (far-infrared) spectroscopy. Terahertz spec-

troscopy usually considers frequencies in the range 0.03–3 THz (1–100 cm−1).

The highest frequency molecular vibrations, which involve displacements of

hydrogen atoms, occur at frequencies of ∼ 4000 cm−1 (∼ 120 THz).

Table 1.1: Conversions between frequencies in THz and cm−1 and corre-
sponding wavelengths of light in vacuum in cm and µm in the range that is of
interest for infrared and far-infrared spectroscopy.

ν[THz] ν[cm−1] λ[cm] λ[µm]

0.03 1 1 104

1 33 0.030 300

2 67 0.015 150

3 100 0.010 100

30 1000 0.001 10

60 2000 5× 10−4 5

90 3000 3.3× 10−4 3.3

120 4000 2.5× 10−4 2.5

The structure of this dissertation will be as follows: In Chapter 2, I will

review the theory of small oscillations and normal mode analysis. In Chapter

3, I will apply normal mode analysis to the organophosphorus nerve agents

and similar small molecules using quantum chemistry software to calculate IR

spectra. In Chapter 4, I will attempt to bridge the gap between ab initio calcu-

lations and force field based calculations by comparing some small molecules’

IR spectra derived from both methods to experimental spectra. In Chapter

5, I will use force fields as a basis for performing normal mode analysis and

calculating IR spectra for a set of proteins.
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Chapter 2

THEORY

Molecular vibrations are primarily responsible for the emission and absorp-

tion of radiation in the terahertz and infrared regions of the electromagnetic

spectrum. Hence, the most straightforward approach to predicting the THz/IR

spectrum of a molecule involves the calculation of the molecule’s normal modes

of vibration. The classical theory of small vibrations is described by Goldstein

et al. (2002, chap. 6) and Wilson et al. (1955, chap. 2). Also, Krimm and

Bandekar (1986) and Bahar et al. (2010) give excellent overviews in matrix

form. In the classical view, a molecule of N atoms is treated as a collection of

point masses. The kinetic energy of the molecule is then

T =
1

2

N∑
i=1

mi

[(
d∆xi
dt

)2

+

(
d∆yi
dt

)2

+

(
d∆zi
dt

)2
]
, (2.1)

where mi is the mass of the ith atom and ∆xi, ∆yi, and ∆zi are the atomic

displacements away from their equilibrium positions in Cartesian coordinates.

The notation becomes simpler with the use of the mass-weighted displace-

ments:

q1 =
√
m1 ∆x1,

q2 =
√
m1 ∆y1,

q3 =
√
m1 ∆z1,

q4 =
√
m2 ∆x2,

(2.2)

and so on. Then the kinetic energy can be rewritten as

T =
1

2

3N∑
i=1

q̇2i . (2.3)
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Expand the potential energy as a power series up to second order in the mass-

weighted displacements:

V = V0 +
3N∑
i=1

(
∂V

∂qi

)
0

qi +
1

2

3N∑
i=1

3N∑
j=1

(
∂2V

∂qi ∂qj

)
0

qi qj + . . . (2.4)

Here the “0” subscripts mean that the derivatives are to be evaluated with

the molecule in its equilibrium configuration. This theory considers only small

vibrations. By “small” vibrations it is meant that the atoms’ displacements

from their equilibrium positions are small enough that the potential energy

may be adequately approximated to be a quadratic function of the atomic

displacements. The higher order (“anharmonic”) terms in the expansion of

the potential are assumed to be vanishingly small and are therefore ignored.

Since the dynamics of the molecule are determined from the interatomic

forces and these forces are calculated from the derivatives of the potential

with respect to the atomic displacements, any constant value may be added

to the potential energy without affecting the dynamics. Thus it is accept-

able to set V0 = 0. Furthermore, the equilibrium geometry of the molecule

is its minimum-energy configuration; ideally, this is the molecular geometry

for which the molecule’s potential energy is at its global minimum. For the

purposes of this discussion, it is only necessary that the potential energy is at

a local minimum. At any local minimum of the potential energy, it must be

true that ∂V/∂qi = 0 for i = 1, 2, . . . , 3N .

2.1 Hessian matrix

With these considerations, eq. 2.4 may be simplified to

V =
1

2

3N∑
i,j=1

Hij qi qj , (2.5)

6



where

Hij =

(
∂2V

∂qi ∂qj

)
0

. (2.6)

In mathematics, a matrix of all possible combinations of second partial deriva-

tives of a multivariable function is called the Hessian matrix (or simply the

Hessian) of that function. In this dissertation, the function with which the

Hessian is associated will always be a molecule’s potential energy function.

The Hessian is a square matrix, and it is symmetric (Hji = Hij) since the

order in which one takes partial derivatives does not matter.

The matrix defined by eq. 2.6 has dimensions 3N × 3N because there are

3N mass-weighted Cartesian displacement coordinates qi. Common descrip-

tors of this matrix include the mass-weighted Hessian matrix, mass-weighted

second derivative matrix, and the mass-weighted force constant matrix. This

is to specify that the derivatives that form the matrix elements are with respect

to the mass-weighted Cartesian displacement coordinates. Some authors are

even more specific by saying “root-mass-weighted” since the displacements in

eq. 2.2 are weighted by the square roots of the atoms’ masses. The specificity

is to avoid confusion with the non-mass-weighted second derivative matrix,

(∂2V/∂∆i,k ∂∆j,l)0, in which the derivatives are with respect to the original

3N Cartesian displacement coordinates ∆x1, ∆y1, ∆z1, ∆x2, etc. Here the

subscripts i, j index the atoms from 1 to N while k, l refer to the Cartesian

directions with 1 = x, 2 = y, and 3 = z. This can be converted to the mass-

weighted Hessian of eq. 2.6 by dividing by the square roots of the atomic

masses:

HI,J =
1

√
mi mj

(
∂2V

∂∆i,k ∂∆j,l

)
0

, (2.7)
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where

I = 3(i− 1) + k ,

J = 3(j − 1) + l .

(2.8)

These matrix indices I, J assume that the 3N atomic displacements are or-

dered as ∆x1,∆y1,∆z1, ∆x2,∆y2,∆z2, . . . , ∆xN ,∆yN ,∆zN (the same order

as in eq. 2.2).

2.2 Coupled equations of motion

Using eqs. 2.3 and 2.5 for the kinetic and potential energies of the molecule,

one can write down the equations of motion using the Lagrangian formulation

of mechanics. For this, one needs to compute the generalized forces (−∂V/∂qi).

It’s worth noting that there is a bit of subtlety involved in computing these

derivatives because the sum in eq. 2.5 involves terms that are either explicitly

linear (Hij qi qj) or quadratic (Hij q
2
i ) in a given generalized coordinate qi, and

the cases need to be handled separately. The sum in eq. 2.5 may be rewritten

as two sums—one for terms involving off-diagonal elements of H, and another

for terms involving diagonal elements:

V =
1

2

[∑
i 6=j

Hij qi qj +
∑
i=j

Hij q
2
i

]
. (2.9)

The Lagrangian is

L = T − V =
1

2

3N∑
i=1

q̇2i −
1

2

[∑
i 6=j

Hij qi qj +
∑
i=j

Hij q
2
i

]
. (2.10)

The Lagrangian equation of motion for a given coordinate qk is

∂L

∂qk
=

d

dt

(
∂L

∂q̇k

)
. (2.11)
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Inputting the expression for the Lagrangian and simplifying results in

−
3N∑
j=1

Hkj qj = q̈k (2.12)

as the equation of motion associated with coordinate qk. There are 3N such

equations of motion (coupled second order linear differential equations) that

must be solved simultaneously to find the trajectories qk(t). For a normal

mode of vibration, all 3N coordinates simultaneously undergo harmonic oscil-

lations at the mode frequency ν (angular frequency ω = 2πν), so one expects

a solution of the form

qk = ak e
−iωt, (2.13)

where it is understood that qk is the real part of the complex number. The

complex coefficients ak determine both the amplitudes and phases of the os-

cillations. Substituting this expression back into eq. 2.12 gives

3N∑
j=1

Hkj aj = ω2ak . (2.14)

There are 3N such equations, one for each coefficient ak. Together, they

comprise a matrix equation

H a = ω2 a , (2.15)

in which a is the column vector of coefficients a1, a2, . . . , a3N . For a square ma-

trix M, λ is said to be an eigenvalue and v an eigenvector of the matrix if they

satisfy the equation Mv = λ v. Hence, the square of the angular frequency,

ω2, in eq. 2.15 is an eigenvalue of the mass-weighted Hessian matrix, and

the vector of coefficients, a, is the corresponding eigenvector. The eigenvector

specifies each atom’s amplitude and direction of oscillation when the molecule

is vibrating in that specific normal mode at that normal mode’s frequency.

The angular frequency of the normal mode is easily obtained from the square

9



root of its eigenvalue, ω =
√
ω2, from which the frequency of vibration in Hz

is ν = ω/2π.

The matrix H will have a total of 3N eigenvalues ω2 and corresponding

eigenvectors a, but not all of these solutions will correspond to vibrational

modes. Even among the set of eigenvalues and eigenvectors corresponding to

vibrational modes, some of the mode frequencies may not be unique.

2.3 Zero eigenvalues

In general, this approach will yield several eigenvectors corresponding to an

eigenvalue of ω2 = 0. These eigenvectors do not describe vibrational modes;

rather, they describe constant velocity (zero frequency) translations or con-

stant angular velocity rotations of the molecule as a whole. The molecule’s

center of mass may move at constant velocity in three independent directions

(for example, in the x, y, or z directions), and the molecule may rotate around

three different axes (for example, its three principal axes of rotation). The

exception is a linear molecule such as CO2 for which it doesn’t make sense to

speak of a rotation about the axis running through the collinear atoms; there

are only two independent rotations in this case. Thus a non-linear molecule

will have six zero-frequency modes (three translations and three rotations),

whereas a linear molecule will have five (three translations and two rotations).

Therefore, a non-linear molecule of N atoms will have 3N − 6 normal modes

of vibration; a linear molecule will have 3N−5. That is not to say that the vi-

brational frequencies of these modes will all necessarily be unique. Depending

on the symmetry of the molecule there may be repeated (“degenerate”) values

of ω2 that satisfy eq. 2.15, in which case there will be multiple eigenvectors

(modes of vibration) associated with a single vibrational frequency.
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Alternatively, it is possible to formulate the problem in such a way that the

zero-frequency translation and rotation solutions do not arise. Since there are

really only 3N − 6 vibrational degrees of freedom (for a non-linear molecule),

the set of 3N Cartesian coordinates contains six extra degrees of freedom be-

yond what is necessary for the vibration-only problem. The extra degrees

of freedom may be eliminated by using “internal” coordinates in place of

Cartesians, in which case the atoms are located relative to other atoms in

the molecule by bond lengths, bond angles, and dihedral angles. In computa-

tional chemistry, the data file that describes the locations of all the atoms in

a molecule in this way is called a Z-matrix. For example, the configuration of

a water molecule can be specified using only three internal coordinates: the

lengths of the two oxygen-hydrogen bonds and the angle between those bonds.

Notice that such a coordinate system is oblivious to overall translation or ro-

tation of the molecule. In general, any minimal set of internal coordinates

that locates every atom in the molecule relative to another atom will involve

3N − 6 coordinates. When using such a coordinate system, there will be no

zero-frequency solutions to the eigenvalue problem that correspond to overall

translations or rotations of the molecule. However, in this case the expression

for the molecule’s kinetic energy will not only have diagonal terms (containing

q̇2i ) as in eq. 2.3, but also off-diagonal terms (containing q̇i q̇j). This results

in an eigenvalue equation that is somewhat different from that shown in eq.

2.15. Goldstein et al. (2002, chap. 6) give a more general treatment of the

problem of vibrations in any set of coordinates.
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2.4 Negative eigenvalues

When one uses a computer program to determine the minimum-energy

equilibrium geometry of a molecule, the mass-weighted Hessian matrix in terms

of Cartesian atomic displacements from equilibrium, and the eigenvalues and

eigenvectors of this matrix, the resulting six lowest eigenvalues will likely be

close to but not exactly zero. This is due to the computer’s finite precision.

But if the six lowest frequency eigenvalues differ significantly from zero, this

is an indication that the geometry of the molecule needs to be further opti-

mized in order to obtain a minimum-energy, equilibrium configuration prior

to calculating the Hessian matrix. Often if the molecular geometry has not

been properly optimized, the first six eigenvalues will come out as large neg-

ative numbers. Remember that the eigenvalues are the squares of angular

frequencies, so negative eigenvalues are nonsensical. This theory breaks down

if the molecule is not in a minimum-energy geometry because in that case

∂V/∂qi 6= 0 in eq. 2.4 and thus eq. 2.5 will not accurately describe the poten-

tial energy. Furthermore, the small oscillations of the atoms’ positions should

be centered on their equilibrium, minimum potential energy positions, so it

doesn’t make sense to perform this normal mode analysis with the molecule

in any other configuration besides its equilibrium one.

2.5 Properties of the eigenvalues and eigenvectors

It can be shown that the eigenvalues of any real, symmetric matrix (like H)

must be real numbers. Furthermore, as a result of the fact that the potential

energy as defined in eq. 2.5 will always be greater than or equal to zero, it can

be shown that the eigenvalues of H must be greater than or equal to zero.
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The elements of any given eigenvector ai will all have the same complex

phase, meaning that all the atoms in the molecule will pass through their

equilibrium positions at the same time, pass through their maximum displace-

ments at the same time, and so on. Since the elements of an eigenvector have

the same complex phase, that arbitrary phase can be chosen such that all the

elements are real numbers. Hence all the eigenvectors can be chosen to be

real. A complicated motion of the molecule involving more than one simulta-

neous normal mode vibration may be described as a linear combination of real

eigenvectors with the appropriately chosen complex amplitudes to allow for

the possibility that the different normal modes have different relative phases.

Furthermore, since eq. 2.15 can be multiplied on either side by any constant

value, it is seen that there is an overall indeterminacy in the normalization of

an eigenvector ai. That is, if ai is a valid eigenvector, then so are 2ai, −5ai, and

so on. To remedy this indeterminacy, the eigenvectors are usually normalized

to have aTi ai = 1. Even then there is an indeterminacy by overall sign, since

the vector −ai will satisfy the normalization condition just as well as ai; to

get around the sign indeterminacy, one may choose the first element of each

eigenvector to have positive sign.

Also, the eigenvectors have the important property that they are mutually

orthogonal. That is, for two different eigenvectors ai and aj, it is always

true that aTi aj = 0. In the case that an eigenvalue is degenerate (having

more than one eigenvector associated with it), orthogonal eigenvectors may be

constructed through a Gramm-Schmidt orthogonalization process.

If one forms a matrix A whose columns are the normalized eigenvectors,

then ATA = I, the identity matrix (i.e., AT = A−1). The orthonormal matrix

A is said to diagonalize the matrix H. That is, when one forms the matrix
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product ATHA, the resulting matrix has nonzero elements only along its

diagonal, and those diagonal elements are the eigenvalues of H. Furthermore,

the normal mode eigenvectors may be used to define a new set of coordinates

called the normal coordinates, Q1, Q2, . . . , Q3N . In terms of the original set of

coordinates q1, q2, . . . , q3N from eq. 2.2, the normal coordinates are obtained

from

Q = ATq , (2.16)

where Q and q are column vectors containing the 3N coordinates from each

of the two coordinate sets. The reverse transformation (to convert from the

Qi’s to the qi’s) is

q = AQ . (2.17)

2.6 Absorption of Electromagnetic Radiation

Imagine an electromagnetic (EM) wave passing through a molecule. An

individual photon of the EM radiation can either be completely absorbed by

the molecule or scattered off of it. In the scattering case, if the photons scat-

ter inelastically off the molecule (Raman scattering), the resulting frequency

distribution of the scattered photons is called a Raman spectrum. A scattered

photon can have either lower or higher energy than the incident photon de-

pending on whether the molecule jumped to a higher or lower energy state

than it started in.

This is in contrast to the absorption case. When a photon is absorbed by

the molecule, the molecule jumps to a higher energy state. Hence the EM wave

will lose energy as it travels through a collection of molecules because some

of its energy will be transferred to the molecules. The change in quantum

state of the molecules could be a jump to a higher energy electronic state.
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Or it could be to a higher energy state of translation, rotation, or vibration.

For EM radiation in the IR and THz range, the absorption of photons is

mainly due to exciting the vibrational states of the molecules. Predicting

the frequency dependence of the absorption—that is, the IR/THz spectrum—

requires knowledge of the vibrational motions of the molecules (either from

normal mode analysis or from molecular dynamics trajectories) as well as the

distribution of charge within the molecules. The charge distribution is crucial

because it is through the charges that the oscillating electric field of the EM

wave exerts forces on parts of the molecule, driving the molecule to oscillate

at the same frequency as the EM radiation.

The vibrational response of a molecule to EM radiation is best illustrated

by a classical treatment of a single bound charge. This is described by Griffiths

(1999, section 9.4.3) and Jackson (1999, section 7.5). A point particle having

charge e and mass m is driven to oscillate by a plane EM wave having frequency

ω/2π. At the location of the particle, the electric field of the EM wave is

given by the real part of E(t) = x̂ E0 e
−iωt. The particle is bound to the

origin (x = 0) by a harmonic potential, V (x) = 1
2
mω0x

2, so that its natural

frequency of vibration is ω0. The particle’s motion is damped by a force that

is proportional to its velocity, Fdamping = −mγẋ, with damping constant γ.

The motion of the particle in this driven, damped harmonic oscillator system

is given by the real part of x(t) = x0 e
−iωt with the complex factor

x0 =
1

ω2
0 − ω2 − iγω

eE0

m
(2.18)

specifying both the amplitude and the phase of the particle’s oscillation. The

oscillating charge results in an oscillating electric dipole moment that is the
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real part of p(t) = e x(t) x̂. Comparing this to

p(t) = ε0γpE(t) (2.19)

defines an expression for the complex polarizability γp (which ends up having

dimensions of volume and is not to be confused with the damping constant

γ). If instead of a single point charge bound harmonically to a site, there

are many such oscillators distributed throughout a volume, then the complex

polarization vector P (the real part of which is the net dipole moment per unit

volume) for this medium is the sum of all the individual dipoles p(t) divided

by the volume. This expression will look like

P = ε0χeE , (2.20)

which defines an expression for the complex electric susceptibility χe. Then

the complex dielectric constant is

ε/ε0 = 1 + χe . (2.21)

Griffiths uses this in a wave equation for the electric field in this medium,

∇2E = εµ0
∂2E

∂t2
, (2.22)

with a trial solution

E(z, t) = x̂ E0 exp [i (kz − ωt)] (2.23)

to derive a complex wave number

k =
√
εµ0 ω =

ω

c

√
1 + χe . (2.24)

The real part of k (call it kr) leads to the usual traveling wave, but the imag-

inary part (ki) results in an exponential attenuation of the amplitude:

E(z, t) = x̂ E0 e
−kizei(krz−ωt) . (2.25)
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The power per unit area carried by the EM wave as it propagates in the +z di-

rection is given by the magnitude of the Poynting vector, which is proportional

to E2. After traveling a distance z, the wave’s intensity has been attenuated

by the factor e−2kiz due to transfer of energy to the oscillating charges. Com-

paring this to the Beer–Lambert law,

I(z) = I0 e
−αz , (2.26)

the absorption coefficient α, which is a function of the frequency ω of the EM

radiation, is identified as being

α(ω) = 2ki(ω) . (2.27)

For the oscillators spread throughout a volume V and having possibly different

charges ei, masses mi, natural frequencies ωi (different spring constants), and

damping constants γi, the absorption coefficient is equal to

α(ω) ≈ ω2

V ε0c

∑
i

e2i γi

mi

[
(ω2

i − ω2)
2

+ γ2i ω
2
] . (2.28)

The approximation used by Griffiths to derive this expression is

√
ε/ε0 =

√
1 + χe ≈ 1 +

1

2
χe for |χe| � 1 (2.29)

in eq. 2.24, which is to say that the molecule is considered to be in the

gas phase so that the dielectric constant ε/ε0 is close to 1, its value in a

vacuum. Alternatively, an exact relationship between the real and imaginary

parts of ε/ε0 and k can be derived from writing k = kr + iki, squaring to get

k2 = k2r − k2i + 2ikrki, and comparing this with eq. 2.24, which says that

k2 = µ0εω
2 = (ω2/c2)(ε/ε0). This results in two equations in two unknowns
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that allow one to solve for kr and ki in terms of Re ε/ε0 and Im ε/ε0:

k2r − k2i =
ω2

c2
Re ε/ε0

2krki =
ω2

c2
Im ε/ε0

(2.30)

Once ki has been solved for, the absorption coefficient α(ω) can be calculated

using 2.27.

Extending this analysis from isolated point charges to a distribution of

charges in a molecule, it will no longer be generally true that the induced

oscillating dipole moment is aligned with the direction of the electric field

oscillation that is causing it. In this case eqs. 2.19 and 2.20 become matrix

equations with the complex polarizability γp and susceptibility χe now being

3× 3 matrices: 
p1

p2

p3

 =


γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33




E1

E2

E3

 (2.31)


P1

P2

P3

 =


χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33




E1

E2

E3

 (2.32)

The subscripts refer to the Cartesian directions with 1 = x, 2 = y, and

3 = z. E1, E2, and E3 are the x, y, and z components of the amplitude E0

in E(t) = E0 e
−iωt. The difference between the dipole moment p and the

polarization P is that p is a microscopic quantity (the induced dipole of a

single molecule) whereas P is a macroscopic quantity (the net dipole moment

per unit volume of a material). In a region of volume V , the two are related

by

P =
1

V

Nmol∑
i=1

pi =
Nmol

V
〈p〉 . (2.33)
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where Nmol is the number of molecules in the volume and 〈p〉 is the average

dipole moment of a single molecule. For simplicity, consider the volume to be

that of a single molecule (for a large biological macromolecule like a protein,

it’s not so ridiculous to speak of the volume of a single molecule). In that case,

P = p/V . The effect of different orientations of the molecule will be handled

later.

The elements of the susceptibility tensor in eq. 2.32 may be written in

terms of the molecule’s normal modes of vibration:

χk,l =
1

V ε0

3N∑
n=7

1

ω2
n − ω2 − iγnω

N∑
i=1

N∑
j=1

ei AI,n AJ,n ej

m
1/2
i m

1/2
j

. (2.34)

The subscripts i, j, k, l, I, J have the same meanings as in eq. 2.8: i, j index

the atoms from 1 to N ; k, l specify one of the three Cartesian directions; and

I, J combine the atom number and direction into a single index. The subscript

n indexes the 3N − 6 normal modes of vibration from 7 to 3N in the order of

increasing frequency, omitting the first six modes because they are assumed to

be zero-frequency modes corresponding to overall translations or rotations of

the molecule. The mass of atom i is mi, and ei is its effective partial charge. A

is the matrix introduced in the previous section whose columns are the normal

mode eigenvectors. AI,n is the element of the nth normal mode eigenvector

corresponding to atom i and direction k.

A single susceptibility value χe that is an average over the possible orien-

tations of the molecule may be calculated from the trace of the susceptibility

tensor:

χe =
1

3

3∑
k=l=1

χk,l =
1

3
(χ11 + χ22 + χ33) . (2.35)

Using this χe with the approximation of eq. 2.29 in eq. 2.24 to calculate the

complex wavenumber k, taking its imaginary part, and multiplying by two

19



(eq. 2.27) gives the absorption coefficient

α(ω) ≈ 1

3V ε0c

3N∑
n=7

γnω
2

(ω2
n − ω2)2 + γ2nω

2

3∑
k=l=1

N∑
i=1

N∑
j=1

ei AI,n AJ,n ej

m
1/2
i m

1/2
j

. (2.36)

Whenever I report a calculated IR/THz spectrum in this dissertation, I am

really referring to the frequency-dependent absorption coefficient. Ignoring

constant pre-factors, this expression can be summarized as

α(ω) ∝
3N∑
n=7

Sn(ω)× In (2.37)

where the line strength In gives the intensity (maximum depth) of the absorp-

tion line due to normal mode n:

In =
3∑

k=l=1

N∑
i=1

N∑
j=1

ei AI,n AJ,n ej

m
1/2
i m

1/2
j

. (2.38)

It will be shown later (eq. 2.52) that there is an equivalent but computationally

more efficient way of calculating this quantity.

The line-shape function Sn(ω) only depends on the frequency ω of the EM

wave, the frequency ωn of the nth normal mode, and the damping constant γn

associated with that mode:

Sn(ω) =
γnω

2

(ω2
n − ω2)2 + γ2nω

2
. (2.39)

This function describes the frequency dependence of the resonant absorption

of EM radiation at frequencies near one of the natural resonant frequencies

(normal modes) of the molecule. The resonant absorption is strongest when

the frequency ω of the radiation matches one of the normal mode frequencies

ωn of the molecule. Thus the line-shape function is peaked at ω = ωn, with

the height of the peak being Sn(ωn) = 1/γn. Note that the line-shape function

has the desirable property that the height of the peak does not depend on
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the frequency. Thus the same line shape can be used for peaks at various

frequencies, with their heights being set by multiplication by the In in eq.

2.37. The width of the peak—that is, the range of radiation frequencies that

can be absorbed by mode n—is proportional to the damping constant γn. The

peak’s area is independent of γn since its width is proportional to γn while its

height is 1/γn.

2.6.1 Lorentzian line shape

It can be shown that the absorption line shape of eq. 2.39 is approximately

a Lorentzian function. The denominator is equal to

ω4
n − 2ω2

nω
2 + ω4 + γ2nω

2 . (2.40)

If the ω2 in the numerator is then written as ω−2 in the denominator, then the

denominator becomes

ω4
nω
−2 − 2ω2

n + ω2 + γ2n . (2.41)

Let ω = ωn + δ = ωn(1 + δ/ωn). Then ω2 = ω2
n + 2ωnδ + δ2. Using a Taylor

expansion up to second order in δ/ωn,

ω−2 = ω−2n

(
1 +

δ

ωn

)−2
≈ ω−2n

[
1− 2

δ

ωn
+ 3

(
δ

ωn

)2
]
. (2.42)

Substituting these expressions for ω2 and ω−2, the denominator becomes

ω2
n

[
1− 2

δ

ωn
+ 3

(
δ

ωn

)2
]
− 2ω2

n +
(
ω2
n + 2ωnδ + δ2

)
+ γ2n , (2.43)

which simplifies to 4δ2 +γ2n. Recalling that δ = ω−ωn, the line-shape function

becomes

Sn(ω) ≈ γn

4 (ω − ωn)2 + γ2n
=

1

2

1
2
γn

(ω − ωn)2 +
(
1
2
γn
)2 . (2.44)
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Up to a normalization factor, this is identical to the Lorentzian function

Ln(ω) =
1

π

1
2
Γ

(ω − ωn)2 +
(
1
2
Γ
)2 , (2.45)

which has been normalized so that its integral over all frequencies is 1. As can

be seen from setting ω − ωn = ±1
2
Γ, the full width of the Lorentzian function

at half its maximum value (FWHM) is Γ. Since Sn(ω) is approximately a

Lorentzian function, the damping constant γn ≈ Γ, the FWHM of the peak.

This proves the earlier statement that the width of the peak is proportional

to γn.

Fig. 2.1 compares the line shape Sn(ω) to a Lorentzian function Ln(ω).

Both peaks are centered at ωn = 500 cm−1 and have the same peak width,

γn = Γ = 100 cm−1. The Lorentzian is a good approximation to Sn(ω) and

near ωn the two functions are practically indistinguishable, although noticeable

differences appear in the tails of the peaks. The Lorentzian function is exactly

symmetric about ω = ωn, as eq. 2.45 is insensitive to a change of sign of

the quantity ω − ωn. Also, the Lorentzian function doesn’t go to zero at zero

frequency. This is in contrast to Sn(ω), which is slightly asymmetric and goes

to zero in the limit of zero frequency. In practice, either of these two line

shapes can be used in eq. 2.37 without making much difference in the final

convolved spectrum α(ω).

An important question is what should the damping constants γn be for the

various normal modes? Currently, I don’t have a good way of predicting the

γn from theory. For the IR/THz spectra calculated in this dissertation, I have

set γn equal to the same constant line width (FWHM) Γ for all modes.
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Figure 2.1: Comparison of the line shape Sn(ω) with a Lorentzian function
Ln(ω). The peaks are centered at ωn = 500 cm−1 and their widths (FWHM)
are set by γn = Γ = 100 cm−1.

23



2.6.2 Equivalence to dipole-derivative method

In papers that calculate IR spectra of molecules from normal modes, it

is standard practice to calculate the IR intensity of normal mode n from the

square of the derivative of the molecule’s dipole moment with respect to normal

coordinate Qn,

In ∝
∣∣∣∣ ∂p∂Qn

∣∣∣∣2 =
3∑

k=1

(
∂pk
∂Qn

)2

, (2.46)

where subscript k specifies the Cartesian directions with 1 = x, 2 = y, and

3 = z. To show that eq. 2.46 is equivalent to eq. 2.38, use the chain rule to ex-

pand the derivative ∂pk/∂Qn in terms of the original mass-weighted Cartesian

displacement coordinates (the q’s of eq. 2.2),

∂pk
∂Qn

=
N∑
i=1

∂pk
∂qI

∂qI
∂Qn

, (2.47)

where subscript I combines the atom index i and direction k according to eq.

2.8. (Mathematically, this sum should have 3N terms to include all the qI ’s,

but clearly the k component of the dipole only depends on the displacements

of the N atoms in the k direction.) Formally, one may write each one of the

original coordinates, qI , in terms of the 3N normal coordinates as

qI =
∂qI
∂Q1

Q1 +
∂qI
∂Q2

Q2 + . . .+
∂qI
∂Q3N

Q3N . (2.48)

By comparing this with eq. 2.17, one sees that

∂qI
∂Qn

= AI,n . (2.49)

The contribution to the k component of the molecule’s dipole moment by

displacement qI of atom i (mass mi, charge ei) is given by ei× qI/
√
mi, where

dividing by the square root of the atom’s mass is necessary to convert the
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mass-weighted coordinate qI back into an ordinary Cartesian displacement

(reverse of eq. 2.2). Therefore,

∂pk
∂qI

=
ei√
mi

. (2.50)

Using eqs. 2.50 and 2.49 in 2.47 gives

∂pk
∂Qn

=
N∑
i=1

ei√
mi

AI,n . (2.51)

This quantity is then squared and summed over the three Cartesian directions

to get the IR intensity of eq. 2.46:

In ∝
3∑

k=1

(
N∑
i=1

ei AI,n√
mi

)2

. (2.52)

The squared quantity above can be rewritten as(
N∑
i=1

ei AI,n√
mi

)2

=

(
N∑
i=1

ei AI,n√
mi

)(
N∑
j=1

ej AJ,n√
mj

)

=
N∑
i=1

N∑
j=1

ei AI,n AJ,n ej√
mi
√
mj

,

(2.53)

with renamed indices j and J (with l = k in eq. 2.8) for the second sum,

which establishes the equivalence between calculating the IR intensities based

on the dipole derivatives (eqs. 2.46, 2.52) and eq. 2.38. However, note that

eq. 2.52 with its single sum over the atom index i (N terms) offers a much

more efficient algorithm for calculating the IR intensity than eq. 2.38’s double

sum over the atom indices i and j (N2 terms). Since the intensities will need

to be calculated for all 3N − 6 vibrational modes, the number of operations

or time required for this calculation scales as N2 if eq. 2.52 is used, or N3 if

eq. 2.38 is used. This difference in run time becomes ever more significant as

the number of atoms N in the molecule increases. Thus eq. 2.52 effectively
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replaces the mathematically equivalent but computationally less efficient eq.

2.38.

The theoretical basis for calculating IR intensities based on dipole deriva-

tives comes from using quantum mechanics to calculate the transition rate

of a harmonic oscillator going from one of its quantized energy states to the

next highest one. Derivations are given by Wilson et al. (1955); Zerbi (1982);

Galabov and Dudev (1996).

2.6.3 IR intensities from quantum chemistry calculations

In the case of ab initio quantum chemistry calculations, instead of repre-

senting the atoms as discrete effective partial charges, one considers the nuclei

to be fixed point charges surrounded by a continuous electron cloud. One can

no longer calculate the IR intensities using discrete charges as in eq. 2.38 or

2.52, but the dipole-derivative method of eq. 2.46 is still valid, provided that

one can find an appropriate means of calculating ∂p/∂Qn. An efficient way

to do this was described by Komornicki and Jaffe (1979). Since the energy

of a dipole in an electric field E is given by U = −p · E, the x component of

the dipole vector is given by px = −∂U/∂Ex, and similarly for the y and z

components. Taking the derivative of this with respect to one of the nuclear

displacement coordinates X,

∂px
∂X

= − ∂

∂X

∂U

∂Ex
= − ∂

∂Ex

∂U

∂X
, (2.54)

where in the last step the order of differentiation was reversed. The deriva-

tive ∂/∂Ex may be obtained from considering finite differences of the quantity

gX ≡ ∂U/∂X (which is the gradient of the molecule’s total energy with re-

spect to the nuclear displacements) subject to two different (small) external
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field strengths, Ex = ±δ. Thus all three components of the derivative of the

dipole with respect to nuclear displacements can be obtained from six energy-

gradient operations (Komornicki and Jaffe, 1979). Then these derivatives with

respect to nuclear displacements (∂px/∂X) can be transformed into derivatives

with respect to normal coordinates (∂px/∂Qn) in the same way as eq. 2.47,

from which point eq. 2.46 can be used to calculate the IR intensities of the nor-

mal modes. According to the support staff at Gaussian, Inc.—the makers of

the Gaussian quantum chemistry software package—this is how the Gaussian

program calculates IR intensities.
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Chapter 3

CALCULATED INFRARED SPECTRA OF NERVE AGENTS AND

SIMULANTS

The organophosphorus nerve agents are among the most toxic of the chem-

ical warfare agents. These nerve agents have been categorized as two families

of molecules: the G-series agents and the V-series agents. In order to study

their properties, such as dispersal, often closely related simulant molecules are

used in place of the more toxic nerve agents to reduce risks to human health

and the environment. There is considerable interest in rapid, reliable detection

and identification of chemical warfare agents in order to determine appropriate

countermeasures and decontamination procedures. One of the techniques that

is useful for identification of chemicals is infrared (IR) spectroscopy.

One approach to identifying an unknown chemical based on its IR spec-

trum is to record a library of experimental IR spectra for comparison. A

complimentary approach is to simulate the IR spectra using first principles

quantum chemistry calculations. These calculations allow us to identify the

specific atomic motions within a molecule that are responsible for the various

IR peaks that are seen in both the experimental and simulated spectra.

There are some published experimental IR spectra of G-series and V-series

nerve agents and their common simulants. Published in 1977, the first in

the series of “Blue Books” from the Finnish Institute for Verification of the

Chemical Weapons Convention (VERIFIN) contains measured IR spectra of

several organophosphorus molecules. A collection of interpreted IR spectra of

organophosphorus compounds was published by Shagidullin et al. (1990). IR
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Spectra were measured for VX by Creasy et al. (1997) and Sarin by Durst

et al. (1998). Söderström measured IR spectra of several V-series chemicals in

the condensed phase using cryodeposition gas chromatography Fourier trans-

form infrared spectroscopy (GC-FTIR) (Söderström, 1998). Matrix isolation

IR spectroscopy of the simulant dimethyl methylphosphonate (DMMP) and

its 1:1 hydrogen-bonded complex with water was performed by Ault et al.

(2004), who also showed a comparison with an ab initio calculation of the IR

spectrum. The 2005 book chapter by Söderström provides an excellent review

and many references on Fourier transform infrared spectroscopy (FTIR) of

chemical warfare agents (Söderström, 2005). An IR spectrum of DMMP in

the gas phase was measured by Bermudez (2007b) and comparison was made

with a calculated spectrum. Gurton et al. (2007) used FTIR and flow-through

photoacoustics in order to measure optical cross sections of aerosols of four

simulants over wavelengths from 3 to 13 µm (1/λ from 770 to 3300 cm−1).

Early Hartree–Fock calculations on the structure of O-methyl methylphos-

phonofluoridate, a homolog of Sarin and Soman, were performed by Ewig and

Van Wazer (1985). Ab initio calculations have also been used to determine

the structure and rotational constants of Sarin and DMMP for interpretation

of measured microwave spectra (Walker et al., 2001; Suenram et al., 2002).

Bermudez performed calculations of the adsorption of DMMP and Sarin onto

various surfaces to compare a simulant and a nerve agent (Bermudez, 2007a,b,

2010). There has been considerable recent interest in using molecular dynamics

simulations to study the transport of nerve agents and simulants in aqueous

solutions and their permeation through barriers (Vishnyakov and Neimark,

2004; Rivin et al., 2004; Vishnyakov et al., 2011). Ab initio calculations were

used to develop force fields specific to these molecules. Additionally, based
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on an experimental IR database, Flanigan (1997) used modeling and simula-

tion to study the limits of remote detection of hazardous clouds, including a

simulated cloud of Sarin.

For this chapter, the Gaussian 03 software package (Frisch et al., 2003) was

used to perform quantum chemistry calculations of IR spectra of five G-series

agents, five V-series agents, and five simulants.

Initial structures were obtained from the PubChem Compound Database

(Bolton et al., 2008). Although not commonly used as a simulant, dimethyl

fluorophosphate (DMFP) was included in this study due to its similarity with

the four simulants; Vishnyakov et al. (2011) have made use of DMFP in their

development of a force field for molecular dynamics simulations of aqueous

solutions of organophosphorus compounds.

Table 3.1 lists the G agents, V agents, and simulants. Hereafter, each

molecule will be referred to by its abbreviation (e.g., GB) given in the table.

For each of the 15 molecules, the table lists two numerical identifiers: the

Chemical Abstract Service (CAS) registry number and the PubChem Com-

pound ID (CID). The molecule’s name (e.g., Sarin) is listed if such a name

exists; in the case of the simulant molecules, the chemical names (e.g., dimethyl

methylphosphonate) are given. In all cases chemical formulae are provided.
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Table 3.1: G agents, V agents, and simulants.

Abbreviation Name CAS # CID # Formula

GA Tabun 77-81-6 6500 C5H11N2O2P

GB Sarin 107-44-8 7871 C4H10FO2P

GD Soman 96-64-0 7305 C7H16FO2P

GE 1189-87-3 65566 C5H12FO2P

GF Cyclosarin 329-99-7 64505 C7H14FO2P

VE 21738-25-0 65568 C10H24NO2PS

VG Amiton 78-53-5 6542 C10H24NO3PS

VM Edemo 21770-86-5 30800 C9H22NO2PS

VR Russian VX 159939-87-4 178033 C11H26NO2PS

VX 50782-69-9 39793 C11H26NO2PS

DEMP diethyl methylphosphonate 683-08-9 12685 C5H13O3P

DMFP dimethyl fluorophosphate 5954-50-7 80052 C2H6FO3P

DIFP diisopropyl fluorophosphate 55-91-4 5936 C6H14FO3P

DIMP diisopropyl methylphosphonate 1445-75-6 3073 C7H17O3P

DMMP dimethyl methylphosphonate 756-79-6 12958 C3H9O3P
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Each molecule is considered to be in the gas phase, treated as a single

isolated molecule. Starting from the molecular structures obtained from the

PubChem Compound Database (3D SDF files), the structures were optimized

to determine their minimum energy configuration using Gaussian 03 quantum

chemistry software (Frisch et al., 2003) with the 6-31+G(d,p) basis set and

density functional theory (B3LYP), respectively. After obtaining optimized

minimum-energy molecular structures, the vibrational modes of the molecule

along with the IR intensities associated with each vibrational mode were cal-

culated by Gaussian 03 based on the same basis set and level of theory as

was used in the energy-minimization step. The Gaussian program follows the

calculation method of Komornicki and Jaffe (1979) for the integrated IR in-

tensities associated with each vibrational mode. To investigate the effect of

the choice of basis set on the calculated spectra, separate calculations were

performed for two of the molecules, GB and VX, using the 6-311+G(d,p),

cc-pVDZ, and cc-pVTZ basis sets.

The final simulated IR spectrum is constructed from summing Lorentzian

spectral line profiles of a specified full width at half maximum (FWHM =

24 cm−1) centered at the frequency of each vibrational mode. This choice for

the FWHM was based on the observed peak widths in the NIST/EPA Gas

Phase Infrared Library (Stein, 1992), which is a collection of IR spectra mea-

sured for a large set of small molecules. This peak width is likely a combination

of the intrinsic width of an individual IR line and experimental broadening.

This choice for the peak width is therefore in agreement with what could be

expected from a measured high-resolution IR spectrum.

The simulated IR spectra of the G agents, V agents, and simulants are

shown in Figs. 3.1, 3.2, and 3.3 respectively. The most prominent IR lines fall
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into two regions: a low-frequency region ∼500–1600 cm−1 and a high-frequency

region ∼2800–3200 cm−1. In the intermediate region ∼1600–2800 cm−1, these

molecules have no IR lines—the exception being GA, which has a weak IR line

due to a C≡N stretching mode at 2315 cm−1.

The high-frequency lines are solely due to carbon-hydrogen bond-stretching

modes. Among these high-frequency lines, individual C−H stretches occur at

the lowest frequencies (2924–2974 cm−1), followed by symmetric C−H stretches

within methyl groups at higher frequencies (3023–3053 cm−1) and anti-symmetric

C−H stretches within methyl groups at the highest frequencies (3072–3140 cm−1).

In the low-frequency region (∼500–1500 cm−1, the strongest lines almost

always involve motions of a phosphorus atom relative to its neighbors since

the phosphorus atom tends to have the highest (negative) effective charge in

these molecules. Here the strongest IR line is often due to anti-symmetric

stretching modes of P−O−C segments of the molecules. The frequencies of

these lines are given in Table 3.2. In about half of the molecules (GA, GB,

GE, VE, VM, VR, VX), this line exists as a single strong peak; in other cases

(GD, GF, VG, DEMP, DIFP, DIMP, DMFP, DMMP) this line is split into

two peaks of nearly equal intensity. In those molecules where there are two

P−O−C combinations in slightly different environments, the antisymmetric

P−O−C stretch occurs at two slightly different frequencies. For example, VG

has two peaks of nearly equal intensity at frequencies of 1040 and 1063 cm−1,

corresponding to anti-symmetric stretches of two different P−O−C groups, as

shown in Fig. 3.4.

Another common strong line is due to P=O stretching, which occurs in all

the molecules in this study. Fig. 3.5 illustrates a P=O stretching mode of

Sarin (GB). The P=O stretching frequency varies considerably with different
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P-‐O-‐C	  

P=O	  

Figure 3.1: Calculated infrared spectra of G-series nerve agents. The spectra
have been normalized to have a maximum intensity of 1 and are vertically offset
from each other by that same value for clarity. Arrows mark the IR peaks due
to bond stretching in P−O−C and P=O.

34



P-‐O-‐C	  

P=O	  
P-‐S	  

Figure 3.2: Calculated infrared spectra of V-series nerve agents. Arrows
mark the IR peaks due to bond stretching in P−O−C, P=O, and P−S.
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P-‐O-‐C	  

P=O	  

Figure 3.3: Calculated infrared spectra of four simulants and DMFP. Arrows
mark the IR peaks due to bond stretching in P−O−C and P=O.
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Table 3.2: Anti-symmetric stretches of P−O−C group.

Molecule Frequency, cm−1

GA 1054

GB 1015

GD 987, 1025

GE 1009

GF 1026, 1048

VE 1065

VG 1040, 1063

VM 1066

VR 1053

VX 1067

DEMP 1051, 1074

DIFP 997, 1027

DIMP 977, 1005

DMFP 1070, 1087

DMMP 1057, 1078
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Figure 3.4: Two modes of VG involving anti-symmetric stretches of P−O−C
(the portion of the molecule connected to the sulfur atom has been omitted
from this diagram). Left image depicts mode with frequency 1040 cm−1; right
image depicts mode with frequency 1063 cm−1.

local environments of the phosphorus atom. Across the entire 15-molecule set,

the P=O stretching frequency varies from 1228 to 1325 cm−1, but when the

molecules are grouped according to the local environment of the phosphorus

atom, the P=O stretching frequencies vary less within each subset. For exam-

ple, the molecules GB, GD, GE, and GF all have their P atom surrounded by

O, O, C, and F atoms. Within this subset of four molecules, the P=O stretch-

ing frequencies are close together in the range 1304–1312 cm−1. Similar results

are found for VE, VM, VR, and VX, which all have P surrounded by O, O, C,

and S, with P=O stretching frequencies in the range 1228–1237 cm−1. Table

3.3 gives the frequencies of the P=O stretching modes in all 15 molecules, with

the molecules grouped according the local environment of the P atom.

A unique feature of the V agents that differentiates them from the G agents

and simulants is the line at ∼ 500 cm−1 due to P−S stretching. This is because

the V agents possess a sulfur atom whereas the G agents and simulants do
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Figure 3.5: P=O stretching mode of Sarin (GB) at 1308 cm−1.

Table 3.3: P=O stretching frequencies. Molecules have been grouped accord-
ing to the local environment of the phosphorus atom.

Atoms Surrounding P Molecule Frequency, cm−1

O,O,C,N GA 1267

O,O,C,F GB 1308

GD 1304

GE 1312

GF 1308

O,O,C,S VE 1228

VM 1237

VR 1234

VX 1232

O,O,O,S VG 1259

O,O,O,C DEMP 1265

DIMP 1242

DMMP 1271

O,O,O,F DIFP 1313

DMFP 1325

39



not. Like the P=O stretching frequency, the P−S stretching frequency varies

considerably with different local environments of the phosphorus atom. Table

3.4 lists each V agent’s P−S stretching frequency. Four of the five V agents

have P surrounded by O, O, C, and S, with the exception being VG, which

has P surrounded by three oxygens and a sulfur atom. Not surprisingly, VG’s

P−S stretching frequency is an outlier compared to the other V agents. The

P−S stretching frequency of VM, VR, and VX is in the range 490–506 cm−1,

but VE’s is at 554 cm−1 even though VE shares the same local environment

for its phosphorus atom as VM, VR, and VX. This may be due to VE having

C2H5 connected to its P atom, whereas VM, VR, and VX have a methyl group

in that position.

Table 3.4: P−S stretching frequencies.

Molecule Frequency, cm−1

VE 554

VG 590

VM 491

VR 506

VX 490

After repeating the calculations for GB and VX with three other basis sets,

the overall shape of the spectra remained largely unchanged. The exception

was the cc-pVDZ basis set, which resulted in noticeable differences in the

P=O region of the VX spectrum. That basis set has the fewest basis functions

of the basis sets tested and is therefore expected to give the least accurate

results. The other basis sets that were tested, 6-311+G(d,p) and cc-pVTZ,
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gave frequency shifts of up to ±20 cm−1 for the dominant P−O−C and P=O

lines. The intensity of the P−O−C line changed by up to 10%; the intensity

of the P=O line changed by as much as 30%. This is in agreement with the

findings of Sosa and Schlegel (1987), who showed that calculated IR intensities

are more sensitive to the choice of basis set than are the vibrational frequencies.

In the calculated IR spectra (Figs. 1–3), the frequencies of the high-

frequency lines (∼2800–3200 cm−1) are higher than the experimental frequen-

cies. For example, in Sarin’s IR spectrum measured by Durst et al. (1998), the

highest frequency line is at 2989.2 cm−1, whereas in my calculated spectrum

this line is at 3128 cm−1 and is identified with three unresolved C−H stretching

modes at nearby frequencies. In contrast with the high-frequency lines, the

low-frequency lines (∼500–1600 cm−1) in the calculated Sarin spectrum have

frequencies that are in much closer agreement with experiment. Durst et al.

measured prominent lines at 1015.17 and 1308.89 cm−1, while my calculations

place these lines at 1015.40 cm−1 (P−O−C vibration) and 1307.64 cm−1 (P=O

vibration).

The overestimation of vibrational frequencies is a well-known feature of ab

initio calculations. A major cause of this overestimation is that standard nor-

mal mode analysis treats the potential as being purely quadratic (“harmonic”)

in the displacements of nuclei from their equilibrium positions, whereas higher

order (“anharmonic”) terms may exist in the real potential, causing the cal-

culated harmonic vibrational frequencies to be higher than the true observed

fundamental vibrational frequencies. Other causes of too-high calculated fre-

quencies include incomplete treatment of electron correlation and finite basis

sets (Rauhut and Pulay, 1995; Scott and Radom, 1996; Halls et al., 2001;

Merrick et al., 2007).
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Various schemes have been proposed to correct the calculated vibrational

frequencies for better agreement with experiment. These include rescaling all

of the calculated normal mode frequencies with a single scale factor (Scott

and Radom, 1996; Halls et al., 2001; Merrick et al., 2007; Alecu et al., 2010),

rescaling the high and low frequencies separately with different scale factors

(Halls et al., 2001), and rescaling the relevant force constants in the Hessian

matrix (Rauhut and Pulay, 1995). Although they improve agreement in the

high frequency region, they lead to larger differences between calculation and

experiment at the more significant lower frequencies. For this reason it was

decided to report the uncorrected harmonic frequencies from the ab initio

calculations.

In conclusion, quantum chemistry methods were used to calculate IR spec-

tra for the nerve agents and related simulant molecules. The dominant peaks

arise from P−O−C and P=O vibrations, and their frequencies and relative in-

tensities are in good agreement with experiment. The V agents have a strong

line due to P−S stretching that distinguishes them from the G agents and sim-

ulants. Although it should be possible to distinguish whether a given agent

belongs to the G or V family, it is unlikely that IR spectroscopy could be used

to identify a particular agent. These conclusions are not affected by the choice

of basis set used for the calculations.
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Chapter 4

IR SPECTRA FROM QUANTUM CHEMISTRY AND FORCE FIELDS

COMPARED TO EXPERIMENT

This chapter is an attempt to bridge the gap between two methods of

calculating IR spectra: quantum chemistry versus force field. In both cases,

the approach used is normal mode analysis. The difference is how the potential

energy of the molecule is calculated. For large molecules such as proteins,

which contain thousands of atoms, calculating the potential energy using a

force field is the only feasible option since the computational cost of quantum

chemistry calculations increases rapidly with the size of the molecule.

To test the validity of the force field approach, it is necessary to use

small molecules (∼ 10 atoms) so that both quantum chemistry and force field

calculations can be done. Furthermore, both calculation methods need to

be compared to experiment. The NIST/EPA Gas-Phase Infrared Database

(“NIST database” hereafter) (Stein, 1992) is useful for this purpose. The 5228

molecules in the database range in size from 2 to 74 atoms. This database

contains experimental IR spectra covering the frequency range from ≈ 500 to

≈ 3900 cm−1 in steps of 4 cm−1. The documentation for the database stipu-

lates that these spectra should not be used for quantitative purposes because

they do not provide molar absorbances. Since the spectra show the relative

absorbance at different frequencies, they are useful for compound identifica-

tion.

There are many programs available for molecular simulation using force

fields. Of these, CHARMM (Chemistry at HARvard Molecular Mechanics)
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(Brooks et al., 2009, 1983) is particularly useful for calculation of normal

modes because of its built-in utility for vibrational analysis called VIBRAN.

CHARMM requires the user to specify which force field to use as its potential

energy function. But which force field should be used with molecules from the

NIST database? Before answering this, it’s useful to first review the form of

the force fields used by CHARMM.

4.1 Functional form of the CHARMM force field

The potential energy of a single or many molecules is a sum of the inter-

actions between all the atoms of the system. The CHARMM potential energy

function (“force field”) treats the atoms as points of mass and charge. The

approximate effect of the electrons is included in the effective partial charges

of the atoms for calculating electrostatic interactions, as well as in the bond

lengths, bond angles, and van der Waals forces between atoms.

The CHARMM force field includes both bonded and non-bonded interac-

tions. The total potential energy is the sum of both kinds: V = Vbonded +

Vnon-bonded. Bonded interactions are those between atoms connected by one,

two, or three sequential bonds. These interactions include the potential en-

ergy due to bond stretching (two atoms, one bond), bond angle bending (three

atoms, two bonds), dihedral (torsion) angle rotation (four atoms, three bonds),

improper dihedral angles (four atoms, three bonds), and Urey–Bradley terms

(three atoms, two bonds):

Vbonded =
∑
bonds

Kb (b− b0)2 +
∑
angles

Kθ (θ − θ0)2 +
∑

dihedrals

Kϕ [1 + cos (nϕ− δ)]

+
∑

impropers

Kω (ω − ω0)
2

∑
Urey–Bradley

KUB (S − S0)
2 . (4.1)

While the terms for bonds, angles, and dihedrals are fairly easy to under-
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stand, the improper dihedral and Urey–Bradley terms are less obvious. Brooks

et al. explain: “For three bonded atoms A−B−C, the Urey–Bradley term is a

quadratic function of the distance, S, between atoms A and C. The improper

dihedral angle term is used at branchpoints; that is, for atoms A, B, and D

bonded to a central atom, C, the term is a quadratic function of the (pseudo)-

dihedral angle defined by A−B−C−D. Both the Urey–Bradley and improper

dihedral terms are used to optimize the fit to vibrational spectra and out-of-

plane motions . . . Although the improper dihedral term is used very generally

in the CHARMM force fields, the Urey–Bradley term tends to be used only in

special cases” (Brooks et al., 2009).

To describe interactions between atoms separated by more than three se-

quential bonds in the molecule, or between atoms from two separate molecules,

non-bonded interactions are included in the potential. These are the electro-

static Coulomb interaction between charged atoms and the Lennard–Jones

interaction:

Vnon-bonded =
∑

non-bonded

{
qiqj

4πε0ε rij
+ εmin

ij

[(
Rmin
ij

rij

)12

− 2

(
Rmin
ij

rij

)6
]}

. (4.2)

The Lennard–Jones potential models the van der Waals interaction using a

strong (∼ r−12) short-range repulsion of atoms so that atoms may not overlap,

and a weak (∼ r−6) long-range attraction between atoms.

By specifying the force field used by CHARMM, the user is selecting the

set of constants in eqs. 4.1 and 4.2: all the force constants Kb and equilibrium

bond lengths b0; the Kθ and θ0 for bond angles; the Kϕ, n, and δ for dihedrals;

the Kω and ω0 for impropers; the KUB and S0 for Urey–Bradley terms; the

effective partial charges qi for Coulomb forces; and the εmin
ij and Rmin

ij for

Lennard–Jones interactions. All of these parameters are specific to the atoms
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in question and the atoms’ context within the molecule—that is, what kinds of

atoms are involved in each interaction (carbons, nitrogens, oxygens, hydrogens,

etc.) and how they are bonded to each other.

4.2 CHARMM General Force Field

Returning to the question of which force field to use with molecules from

the NIST experimental IR database, since the CHARMM22 force field (MacK-

erell et al., 1998, 2004) was constructed specifically for proteins, it is not

possible to use it with other molecules whose connectivity is not part of the

range of possibilities built into the force field. Therefore, I decided to use the

CHARMM General Force Field (“CGenFF”— Vanommeslaeghe et al., 2010)

with molecules from the NIST database. This force field was created specifi-

cally for use with drug-like molecules and serves as an extension to previous

CHARMM all-atom force fields for proteins, nucleic acids, lipids, and carbo-

hydrates. The CGenFF is an ongoing project and a new version of the force

field is published online about twice per year. At the time of writing, the most

recent version is 2b7, which is the version used here.

4.3 Method

Twenty-one molecules were selected for study because they had already

been parameterized in the CGenFF and also had an experimental IR spec-

trum available in the NIST database. Table 4.1 lists their names, chemical

formulae, and two numerical identifiers: the Chemical Abstract Service (CAS)

registry number and the PubChem Compound ID (CID). Additionally, the

column labeled “RESI” gives each molecule’s residue code (e.g., NMA for N -

methylacetamide) that is used by CHARMM to identify the molecule in the
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topology file for the force field. In the table, the molecules are divided into

seven groups based on similarities in structure.

As was done previously for the nerve agents and simulants of Chapter

3, initial structures were obtained from the PubChem Compound Database

(Bolton et al., 2008). The calculation of normal modes and IR intensities was

done in two ways: first, ab initio using Gaussian 03; second, with CHARMM

using force fields. The quantum chemistry calculations were performed follow-

ing the same procedure as in Chapter 3, again using density functional theory

with the B3LYP hybrid functional and the 6-31+G(d,p) basis set. In the force

field calculation, the atomic coordinates were optimized to obtain a minimum-

energy structure through 1000 steps of steepest descent minimization followed

by 1000 steps of conjugate-gradient minimization. After minimization, the

normal modes were calculated using CHARMM’s vibrational analysis utility

(VIBRAN). The IR intensity associated with each normal mode was calculated

from the normal mode vectors and partial charges according to eq. 2.52.

After obtaining the normal mode frequencies and associated IR intensities

for both calculation methods, the IR spectra were simulated by giving the

IR lines finite width through convolution with a Lorentzian peak profile. By

inspection of several experimental spectra from the NIST database, it was

found that the narrowest peaks typically had a full width at half maximum

(FWHM) of ≈ 24 cm−1. Therefore, a Lorentzian (eq. 2.45) with this value for

the FWHM was used as the line shape for the IR peaks associated with the

normal modes.
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Table 4.1: Twenty-one molecules that have experimental IR spectra in
the NIST/EPA Gas-Phase Infrared Database and have parameters in the
CHARMM General Force Field. They are divided into seven groups based
on similar structure.

Name Formula RESI CAS # CID #

N -methylacetamide C3H7NO NMA 79-16-3 6582

2-pyrrolidinone C4H7NO 2PDO 616-45-5 12025

nicotinamide C6H6N2O 3NAP 98-92-0 936

toluene C7H8 TOLU 108-88-3 1140

p-xylene C8H10 PXYL 106-42-3 7809

3-methylpyridine C6H7N 3MEP 108-99-6 7970

cyclohexene C6H10 CHXE 110-83-8 8079

thiane C5H10S THPS 1613-51-0 15367

2,3-dihydrofuran C4H6O 2DHF 1191-99-7 70934

thiazole C3H3NS THAZ 288-47-1 9256

azulene C10H8 AZUL 275-51-4 9231

benzimidazole C7H6N2 ZIMI 51-17-2 5798

benzothiazole C7H5NS ZTHZ 95-16-9 7222

quinoline C9H7N QINL 91-22-5 7047

isoquinoline C9H7N IQIN 119-65-3 8405

anthracene C14H10 ANTR 120-12-7 8418

acridine C13H9N ACRD 260-94-6 9215

phenazine C12H8N2 FENZ 92-82-0 4757

phenoxazine C12H9NO FEOZ 135-67-1 67278

phenothiazine C12H9NS FETZ 92-84-2 7108

carbazole C12H9N CRBZ 86-74-8 6854
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4.4 Amides: a connection to proteins

The first group in Table 4.1 consists ofN -methylacetamide, 2-pyrrolidinone,

and nicotinamide. These molecules are classified as amides because they con-

tain O=C−N−H (usually written as CONH) as part of their structures. This

same amide subunit occurs along the backbone of proteins; it is the peptide

bond that links one amino acid residue to the next in the polypeptide chain

(see Fig. 5.1). As will be discussed in Chapter 5, the peptide bonds of a pro-

tein result in an IR signature that is characteristic of the protein’s secondary-

structure content—the fraction of the protein sequence that is in α-helices

or β-sheets. In particular, the small, 12-atom molecule N -methylacetamide

has been used as a model compound to study the molecular vibrations of the

amide groups of the protein backbone (Miyazawa et al., 1958; Miyazawa, 1960;

Gaigeot and Sprik, 2003; Gaigeot et al., 2005; Schultheis et al., 2008; Schropp

et al., 2010; Kaminský et al., 2011). Keeping in mind the end goal of calcu-

lating the IR spectra of proteins using force fields, it is worth paying special

attention to these three amide molecules, whose structures are shown in Fig.

4.1. Of the three, N -methylacetamide is the most protein-like because it is

a chain molecule with the amide subunit CONH located between two carbon

atoms (methyl groups) that are analogous to the Cα atoms of the protein

backbone.

Figs. 4.2, 4.3, and 4.4 show that the ab initio calculations closely re-

semble the experimental spectra of N -methylacetamide, 2-pyrrolidinone, and

nicotinamide. From observing the overall shape—the frequencies and relative

heights of peaks—it’s easy to see the one-to-one correspondence between all

major experimental peaks and their ab initio counterparts. Unsurprisingly, as
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Figure 4.1: Structures of three amides: N -methylacetamide, 2-pyrrolidinone,
and nicotinamide.
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Figure 4.2: IR spectrum of N -methylacetamide: two calculated spectra com-
pared to experimental spectrum.
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Figure 4.3: IR spectrum of 2-pyrrolidinone: two calculated spectra compared
to experimental spectrum.
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Figure 4.4: IR spectrum of nicotinamide: two calculated spectra compared
to experimental spectrum.

with the nerve agents and simulants of Chapter 3, the ab intio calculations

place the high frequency carbon-hydrogen and nitrogen-hydrogen stretches

at too high frequencies. In contrast, for peaks with frequencies less than

∼ 2000 cm−1, the agreement of the ab initio frequency with experiment is

much better.

Compared to the ab initio spectra, the force field calculation more accu-

rately predicts the frequencies of the high-frequency C−H and N−H stretch-

ing modes, but exaggerates their intensities. This may be due to the force

field assigning to the hydrogen atoms effective partial charges that are too

high. Below 2000 cm−1, the force field spectra differ significantly from the

experimental spectra. Of the three molecules, 2-pyrrolidinone had the best

experimental agreement of its force field based spectrum, with the calculated
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peaks at 1377, 1553, and 1764 cm−1 corresponding to the experimental peaks

at 1254, 1422, and 1758 cm−1. For the other two molecules, it is difficult to

make the correspondence between the peaks predicted by the force field and

those in the experimental spectra. Keep in mind that in the force field cal-

culation, the positions (frequencies) of the IR peaks are determined by the

force field parameters, whereas the intensities are primarily determined by the

partial charges.

One spectral feature that is observed in the experimental spectra and pre-

dicted by both calculation methods is the strong absorption line due to the

C=O bond-stretching vibration, whose frequencies are given in Table 4.2. This

line is among the strongest observed in the IR spectra of proteins. In the stan-

dard nomenclature for the various IR lines associated with vibrations of the

amide group (Susi, 1972), this is called the amide I line. Simultaneous to the

C=O stretch, the amide I mode involves C−C−N angle bending and N−H

bending. The fact that the frequency of the amide I line is sensitive to the

local environment of the H−N−C=O group involved in the vibration is a ma-

jor reason why IR spectroscopy of the amide I band can provide quantitative

information about a protein’s secondary-structure content.

Table 4.2: Experimental and calculated frequencies of the C=O stretching
mode (the amide I line).

Molecule Frequency, cm−1

ab initio force field experiment

N -methylacetamide 1753 1683 1721

2-pyrrolidinone 1793 1764 1758

nicotinamide 1756 1699 1730
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Another IR line that is common between all three molecules is the amide

A line, which is due to N−H stretching. The calculated and experimental

amide A frequencies are given in Table 4.3. While N -methylacetamide and

Table 4.3: Experimental and calculated frequencies of the N−H stretching
mode (the amide A line).

Molecule Frequency, cm−1

ab initio force field experiment

N -methylacetamide 3655 3326 3482

2-pyrrolidinone 3641 3444 3474

nicotinamide 3592, 3725 3413, 3538 3434, 3550

2-pyrrolidinone each have a single amide A line corresponding to their single

N−H bond, this line gets split into two in the case of nicotinamide, which has

an NH2 group. The two N−H bonds may either stretch in phase or out of

phase, resulting in nicotinamide’s two N−H stretching modes with different

frequencies (Table 4.3).

Two other lines that are observed in the experimental and calculated spec-

tra of N -methylacetamide are amide II and III (frequencies in Table 4.4). The

amide II mode is a combination of N−H in-plane bending with C−N bond

stretching and lesser contributions from C=O bending and C−C stretching

(Barth and Zscherp, 2002). The amide III mode is a similar motion to amide

II, except with the N−H bending motion having the opposite phase. These

lines are also observed in IR spectra of proteins. It is difficult to identify

pure amide II and III lines for 2-pyrrolidinone and nicotinamide because the

normal modes that involve motions of the relevant atoms are complicated by

simultaneous ring distortions.
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Table 4.4: Experimental and calculated frequencies of the amide II and III
lines of N -methylacetamide. The force field calculation gave two modes with
atomic motions consistent with the amide II mode.

Molecule Frequency, cm−1

ab initio force field experiment

amide II 1550 1481, 1588 1490

amide III 1283 1268 1246

Since the force field necessarily only gives an approximation to the true en-

ergy of the molecule in a given conformation, the normal modes resulting from

a force field calculation will not be identical, either in frequency or detailed

atomic motions, to those obtained from a more precise quantum mechanics

based calculation. Of course, not even a quantum ab initio calculation is exact

since there are approximations inherent to whichever computational framework

is used (e.g., Hartree–Fock or density functional theory), and to whichever fi-

nite basis set is used, that are necessary to make the many-particle quantum

problem computationally tractable. Thus it is a nontrivial task to unambigu-

ously match up the normal modes obtained from the force field calculation

to those obtained from the ab initio calculation. This was acknowledged by

Vanommeslaeghe et al. (2010): “the assignment of a selected QM [quantum

mechanics, ab initio] normal mode to an MM [molecular mechanics, force field]

normal mode is often qualitative in nature, requiring an empirical decision by

the user.” For a few modes, as in the case of the amide I and amide A modes

of the three molecules previously mentioned, the correspondence between the

force field and ab initio mode will be obvious enough to allow for a unique

match. In other cases, there may be no clear match either because no similar
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mode is found in the other set, or because there is more than one suitable

match. Such is the case with the amide II mode of N -methylacetamide, for

which two modes were found from the force field calculation that reasonably

matched the amide II atomic motions seen in the ab initio calculation (Table

4.4).

4.4.1 How accurate are force fields for calculating IR?

There are two major approximations involved in using a force field to

calculate an IR spectrum. First, the force field approach approximates the

molecule’s energy for a given geometry using an analytic function that parame-

terizes the potential energy in terms of bond lengths, bond angles, electrostatic

interactions between effective atomic point charges, and van der Waals inter-

actions. Typically the force field parameters (e.g., equilibrium bond lengths,

bond “spring” constants Kb) are chosen to agree with experimentally known

bond lengths, bond angles, and vibration frequencies. The force field parame-

ters are also informed by ab initio calculations of molecular subunits (e.g., to

calculate the energy of a small molecule over a full rotation of a dihedral angle

so that these data can be fit to a simple analytic function that approximates

the dependence of the energy on the rotation of that dihedral angle). As dis-

cussed in Chapter 2, the normal modes of vibration are derived from the second

derivatives of the potential energy with respect to the atoms’ displacements

from their equilibrium positions. Thus approximating the molecule’s potential

energy using a force field results in normal mode frequencies and eigenvectors

(detailed atomic motions) that are different from those resulting from the more

accurate ab initio methods. The extent to which the normal modes derived

from a force field agree with those derived from quantum mechanics based
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calculations is a measure of how accurately the force field approximates the

potential energy of the molecule as a function of the atoms’ positions.

The second approximation is in the calculation of the IR intensities of the

normal modes. In the force field approach, one makes the approximation of

calculating the molecule’s electric dipole moment using effective partial charges

of the atoms instead of a continuous distribution of electron charge. (These

partial charges were also part of the first approximation—using a force field

to approximate the potential energy.) Recall from eq. 2.46 that the IR inten-

sity of a normal mode Qi is proportional to |∂p/∂Qi|2, where p is the electric

dipole moment of the molecule and ∂p/∂Qi is its derivative with respect to

displacements of the atomic nuclei from their equilibrium positions along nor-

mal coordinate Qi. An ab initio calculation gives the electrons’ distribution

(probability density) in terms of molecular orbitals. This enables a direct cal-

culation of the dipole (and hence also the dipole derivative) using the charge

density

ρ(r) = ρe(r) +
N∑
i=1

Zie δ
3(r− ri) , (4.3)

where ρe(r) is the charge distribution of the electrons only, and the nucleus of

atom i has position ri, atomic number Zi and nuclear charge +Zie, considered

to be a point charge. Then the dipole moment is

p =

∫
d3r ρ(r) r =

N∑
i=1

Zie ri +

∫
d3r ρe(r) r . (4.4)

That is,
∑

i Zie ri is the contribution of the nuclei to the dipole moment,

and
∫
d3r ρe(r) r is the contribution of the electrons. In principle, using the

molecular orbitals the dipole derivative ∂p/∂Qi can be calculated numerically

through finite difference by first calculating p in the equilibrium geometry

and then recalculating p with the new electron charge distribution after small
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displacements of all nuclei along normal coordinate Qi, although there are

more efficient ways of performing this calculation (see eq. 2.54).

The use of partial charges reduces the calculation of the dipole to only

include the nuclei, with the charge of the nucleus +Zie replaced by an effective

partial charge qi such that
∑

i qi = 0 for a neutral molecule. That is, the charge

of the electrons is lumped in with the nuclei. There are many schemes for

assigning effective partial charges to the atoms; examples include the Mulliken

charges (Mulliken, 1955) and APT charges (Cioslowski, 1989). King (1982)

described how effective atomic charges could be derived from experimental IR

spectra. Assigning a fixed partial charge to each atom assumes that the charge

due to nearby electrons is a point charge located at the atomic nucleus. This

neglects the extended, continuous nature of the electrons’ charge distribution

within the molecule. It also neglects that the electron charge distribution

rapidly adjusts in response to displacements of the atomic nuclei. That is,

rather than being a fixed value for each atom, the effective atomic charge

should adjust dynamically in response to changes in molecular geometry (bond

lengths and bond angles).

That the approximation of fixed partial charges results in inaccurately

calculated IR intensities of vibrational modes was recognized by Torii and

Tasumi (1993). Those authors demonstrated the effect of dynamic charges,

which they called “charge flux”, in terms of the difference in dipole derivative

(∂p/∂S)MO−(∂p/∂S)FPC, where S is some internal coordinate (a bond length

or bond angle). Here the subscripts refer to the two calculation methods:

“MO” uses ab initio molecular orbitals and “FPC” uses fixed partial charges.

Torii and Tasumi studied a small α-helical polypeptide to find out whether or

not the fixed partial charges that are used to calculate electrostatic interactions
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in molecular dynamics simulations of proteins are suitable for calculations of

the IR intensities of vibrations of the peptide group. They concluded that

the fixed partial charges were insufficient for this purpose and that charge

flux (dynamic charge) needs to be included if one is to obtain accurate IR

intensities. Kubelka et al. (2009, section 4.2) provides some references on the

use of partial charges and comments: “These methods are not very accurate

since electron charge responds virtually instantaneously to nuclear motion, the

basis of the BO [Born–Oppenheimer] approximation. However, they may be

still useful in simplified QM/MM [quantum mechanics/molecular mechanics]

models to obtain a first approximation of the spectral intensities”.

The use of fixed partial charges gives only a rough approximation of IR

intensities. For greater accuracy, ab initio methods are necessary. One way of

including the effect of dynamic charge is the equilibrium charge/charge flux

(ECCF) model used by Torii and Tasumi (1993). But this is just another

way of saying that ab initio calculations are necessary, as Torii and Tasumi

derived the charge fluxes for their α-helical polypeptide from ab initio calcu-

lations of a smaller molecule (N -methylacetamide) that was used as a model

for the peptide bond. For larger molecules such as proteins, for which ab initio

calculations are computationally impractical, refinement of the partial charges

may be necessary if one is to obtain calculated IR spectra that are in better

agreement with experiment. That is, the effective partial charges that are

appropriate for calculating electrostatic forces in molecular dynamics simula-

tions may be different from the charges that are appropriate for calculating

the changes in the dipole moment with nuclear displacements.
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4.4.2 Effect of using different partial charges

One check that can be done is to use different sets of partial charges with the

same set of normal mode eigenvectors to calculate IR intensities of the modes.

That way, one can be sure that differences in the calculated spectra are due

solely to the partial charges since in each case the normal mode frequencies

and atomic motions are identical. It has already been seen (Figs. 4.2–4.4) that

the ab initio IR spectra are in excellent agreement with experimental spectra.

Thus the ab initio normal modes are a good choice for testing different sets

of partial charges. This allows one to compare IR intensities calculated using

partial charges to IR intensities that were calculated using molecular orbitals.

Figure 4.5: Key to numbering of atoms of N -methylacetamide in Table 4.5.

Three sets of partial charges for N -methylacetamide are shown in Table

4.5 with the atoms numbered as in Fig. 4.5. These are the Mulliken charges

(Mulliken, 1955), the APT charges that are defined for each atom as 1/3 of the

trace of its atomic polarizability tensor (Cioslowski, 1989), and the charges

assigned by the CHARMM General Force Field (CGenFF). These three sets

of partial charges were used with the same set of ab initio normal modes to
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Table 4.5: Three sets of partial charges (in units of e) for N -methylacetamide:
Mulliken charges, charges derived from the atomic polar tensor (APT), and
charges from the CHARMM General Force Field (CGenFF). For each set,
the net charge is zero as expected for this neutral molecule. Key to atom
numbering is in Fig. 4.5.

Index Atom Mulliken APT CGenFF

1 C −0.562 −0.070 −0.27

2 H 0.188 0.028 0.09

3 H 0.167 0.004 0.09

4 H 0.167 0.004 0.09

5 C 0.489 1.066 0.51

6 O −0.536 −0.780 −0.51

7 N −0.386 −0.734 −0.47

8 H 0.299 0.173 0.31

9 C −0.296 0.355 −0.11

10 H 0.168 −0.019 0.09

11 H 0.133 −0.008 0.09

12 H 0.168 −0.019 0.09

Sum: 0.000 0.000 0.00
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Figure 4.6: IR spectra of N -methylacetamide calculated using the ab initio
normal modes with three different sets of partial charges: Mulliken, APT, and
CGenFF. Each is shown in comparison to the same reference spectrum (thin
black curve) in which the intensities of the modes were calculated using the
ab initio molecular orbitals.
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calculate IR intensities. The resulting spectra are shown in Fig. 4.6. They

are each compared to the ab initio spectrum from Fig. 4.2, which was derived

from the same set of normal modes but with the mode intensities calculated

more accurately using molecular orbitals instead of partial charges.

Of the three sets of charges, the Mulliken charges gave the worst agreement

with the ab initio IR intensities. Aside from the gross exaggeration of the high-

frequency peaks due to C−H and N−H stretching modes, many erroneously

high peaks appear in the 1000–1200 cm−1 range that are not evident in the ab

initio spectrum. The APT charges result in a higher quality spectrum than the

Mullikens. In particular the heights of the X−H peaks are in good proportion

to the dominant C=O peak; this is due to the lowering of the hydrogen charges

(see Table 4.5). However, the amide III line at 1283 cm−1 has been exaggerated

in strength by a factor of ≈ 3 and the amide II line at 1550 cm−1 has been

diminished by about the same factor. Of the three sets, the CGenFF charges

give the best results in the low-frequency region below 2000 cm−1, although

the 1000–1200 cm−1 region was exaggerated as in the case of the Mullikens,

but not as badly. All three sets of charges exaggerated the intensity of the

peak at 628 cm−1, which is due to an in-plane bending motion of the entire

molecule, combined with a C−C stretch. Note that even though the Mulliken

and APT charges were both derived from population analysis of the ab initio

molecular orbitals, the IR intensities obtained from these charges were actually

worse than the CGenFF charges in replicating the ab initio IR intensities. This

demonstrates that the use of partial charges introduces significant errors in the

calculation of IR intensities, even if those partial charges were derived from the

same molecular orbitals that were used to calculate the ab initio intensities.

Information has been lost in substituting an effective atomic charge in place
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of the 3×3 atomic polar tensor (the derivatives of the x, y, and z components

of the molecule’s dipole moment with respect to an atom’s displacement in

the x, y, and z directions), which contains all the information necessary to

accurately calculate the dipole derivative dp/dQi for a normal mode Qi.

In comparing the middle spectrum in Fig. 4.2 with the bottom spectrum

in Fig. 4.6, one sees the different results obtained from using the same set

of partial charges (CGenFF) with two different sets of normal modes—those

calculated using the force field and those calculated ab initio. Together these

figures show that, at least in the case of N -methylacetamide, the poor exper-

imental agreement of the force field based spectrum (Fig. 4.2) is less due to

the CGenFF partial charges than it is due to the normal modes that were

calculated from the force field. When the CGenFF charges were used with the

ab initio normal modes to calculate the IR spectrum (Fig. 4.6, bottom), the

relative heights of the major peaks (amide I, II, and III) agreed reasonably

well with experiment. But when these same charges were used with the force

field based normal modes (Fig. 4.2, middle), the relative heights of the major

peaks were completely wrong.

4.5 Reducing hydrogen charges in intensity calculation

From inspecting many normal modes, one observes that typically the hy-

drogen atoms have the largest displacements in most molecular vibrations.

This means that the calculated spectrum is particularly sensitive to the partial

charges of the hydrogen atoms since the atomic displacements are multiplied

by the partial charges to calculate the IR line strength (intensity) of each mode

(eq. 2.52). If the hydrogen charges are too high, then the intensities of many

normal modes will be exaggerated. This explains why in Fig. 4.6 the spectrum
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calculated using the Mulliken charges has many peaks with intensities that are

much higher than those of the experimental peaks: Table 4.5 shows that the

Mulliken charges of hydrogen atoms are typically much larger than the APT

or CGenFF charges.

I 

I 

A 

A 

II 

II 

II 

III 

III 

III 
C-H 

C-H 

I 

Figure 4.7: Repeat of Fig. 4.2 showing the effect on the force field based
spectrum of reducing the partial charges of hydrogen atoms by a factor of 9
when calculating the IR intensities of the normal modes. For comparison, the
dotted curve is the force field based spectrum from Fig. 4.2 using the original
CGenFF charges (Table 4.5).

As shown in Table 4.5, the force field (CGenFF) assigns a charge of +0.09e

to the hydrogen atoms in N -methylacetamide’s two CH3 groups. To test the

effect of reducing hydrogen charges, I reduced the methyl H charges by a

factor of 9 to +0.01e (with the H connected to N also reduced in charge by

this same factor). This new set of charges was then used with the force field

based normal modes to recalculate the IR intensities of the modes. To clarify,

normal modes were not recalculated using the reduced H charges for Coulomb

forces between atoms; the same set of normal modes obtained using the original
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CGenFF charges was used with the new set of charges for the calculation of

the IR intensities of the modes. The resulting IR spectrum obtained from the

force field based normal modes and the reduced hydrogen charges is shown

in Fig. 4.7. In switching from the original CGenFF charges (dotted curve)

to reduced H charges (solid curve), the intensities of several peaks have been

reduced in the force field based spectrum, resulting in better agreement with

experiment and with the ab initio calculation. Note that the peaks that have

been decreased in intensity are not just the high frequency C−H and N−H

peaks; the peaks at 1481 cm−1 and 581 cm−1 have also been attenuated.

4.6 Other molecules

The remaining 18 molecules in Table 4.1 include planar six-membered

rings (toluene, p-xylene, 3-methylpyridine); non-planar six-membered rings

(cyclohexene, thiane); five-membered rings (2,3-dihydrofuran, thiazole); five-

membered rings joined to seven- or six-membered rings (azulene, benzimida-

zole, benzothiazole); two six-membered rings joined together (quinoline, iso-

quinoline); and three rings joined together (anthracene, acridine, phenazine,

phenoxazine, phenothiazine, carbazole). Five of these molecules contain non-

planar rings (cyclohexene, thiane, 2,3-dihydrofuran, phenoxazine, phenoth-

iazine), whereas the other 13 molecules contain only planar rings.

For the sake of brevity, rather than discussing all 18 of these molecules

in detail, I will make some general comments and give a couple of exam-

ples. There was considerable variation among these molecules in how well the

force field calculation could reproduce the experimental spectra. For exam-

ple, toluene’s force field based spectrum agreed quite well with experiment,

whereas for 2,3-dihydrofuran the agreement was poor. Force field calculations
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of molecules containing planar rings tended to yield better agreement with

experiment than those containing non-planar rings.

4.6.1 2,3-dihydrofuran

For example, 2,3-dihydrofuran is a non-planar five-membered ring molecule

(Fig. 4.8). Its experimental and calculated (ab initio and force field) IR spectra

are shown in Fig. 4.9.

Figure 4.8: Structure of 2,3-dihydrofuran.

At first glance the force field spectrum in Fig. 4.9 does not match the ab

initio spectrum (or experiment) either in terms of the frequencies of the peaks

or their relative intensities. However, upon closer inspection of the normal

modes, I was able to find correspondences between the spectra. From viewing

animations of the normal modes obtained from the two calculation methods,

I was able to match several of the force field based normal modes (IR peaks)

to their counterparts in the ab initio spectrum; these matches are marked

by dotted lines. The frequencies in cm−1 of the most prominent peaks are

annotated in Fig. 4.9. Peaks marked “RD” are due to normal modes that cause

ring deformations (always coupled with movements of the hydrogen atoms).

The strong peak annotated with “C=C” is due to a ring deformation that is

dominated by C=C stretching. The high-frequency peaks marked “CH2” are
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Figure 4.9: IR spectrum of 2,3-dihydrofuran: two calculated spectra com-
pared to experimental spectrum.

due to symmetric and antisymmetric stretching of C−H bonds in the two CH2

groups; the peaks marked “CH” are due to C−H stretching in the two CH

groups.

4.6.2 Toluene

Toluene is an example of a simple molecule that contains a planar ring

(Fig. 4.10). Its experimental and calculated (ab initio and force field) IR

spectra are shown in Fig. 4.11. Among the molecules in Table 4.1, toluene

had the best agreement between the force field based spectrum, the ab initio

spectrum, and experiment.

The simplicity of toluene’s structure is likely responsible for the success of

the force field in this case. In Fig. 4.11, matches between IR peaks in the
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Figure 4.10: Structure of toluene.
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Figure 4.11: IR spectrum of toluene: two calculated spectra compared to
experimental spectrum.
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two calculated spectra are marked with dotted lines, with the frequencies in

cm−1 also labeled. As with 2,3-dihydrofuran, these matches were made after

comparing animations of the normal modes. The IR peak annotated with

“OP” is due to an out-of-plane ring deformation; the peaks marked with “IP”

are due to in-plane ring deformations. The ring-deformation modes always

involve rocking or deformation of the CH3 group as well as displacements of

the hydrogens in the ring. The high-frequency peaks are due to C−H bond

stretching in the CH3 group and in the CH groups in the ring. The results for

toluene and 2,3-dihydrofuran demonstrate that the experimental agreement

of the force field based spectra can differ significantly from one molecule to

another.

4.7 Future directions

For a given molecule, it should be possible to optimize the partial charges

to obtain the best agreement between the IR spectrum calculated from partial

charges and a reference spectrum. The reference or target spectrum could

be either from experiment or from a quantum chemistry calculation. The

root-mean-square (RMS) difference σ between the calculated and reference

spectrum is

σ2 ≡ 1

ν2 − ν1

∫ ν2

ν1

[IFPC(ν)− IREF(ν)]2 dν , (4.5)

where IFPC(ν) is the IR spectrum calculated using fixed partial charges, IREF(ν)

is the reference spectrum, and the frequency range of both spectra is from ν1

to ν2. Alternatively, the discrete set of normal mode intensities (eq. 2.52)

could be compared:

σ2 ≡ 1

3N − 6

3N∑
n=7

[IFPC,n − IREF,n]2 , (4.6)
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where N is the number of atoms in the molecule, and the 3N − 6 vibrational

modes are indexed from 7 to 3N . Either way, starting from guess values for

the partial charges, these charges could be optimized to minimize the RMS

difference σ between the calculated and reference spectra. It would be inter-

esting to see how much the force field based IR spectra could be improved

by optimizing the partial charges in this systematic manner. Since the mode

frequencies are determined from the force field, this charge-fitting procedure

obviously could not improve the experimental agreement of the positions of

the calculated IR peaks, but it could improve the experimental agreement of

the calculated intensities. To improve the experimental agreement of the fre-

quencies that are calculated from the force field would require fine tuning of

the force field parameters for each molecule.
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Chapter 5

IR SPECTRA OF PROTEINS FROM ALL-ATOM NORMAL MODE

ANALYSIS

While there has been considerable past experimental and theoretical work

done on the terahertz and infrared spectra of proteins, often researchers have

focused their efforts solely on certain spectral regions. In contrast, the focus of

this chapter will be on the complete spectrum of protein vibrations obtained

through normal mode analysis. An attempt will be made to ascertain the

spectral region where proteins’ signatures differ the most from one another,

allowing for the possibility of identifying unknown proteins based on compar-

isons to reference spectra. Before proceeding, it is useful to briefly review some

of the extensive literature on the response of proteins to THz and IR radiation.

In the last decade, there has been considerable interest in the THz (far-

infrared) spectra of proteins due to the development of experimental techniques

that have made such measurements possible. The review by Markelz (2008)

defines this frequency range to be from 1 to 100 cm−1 (from 0.03 to 3 THz),

although another review by Plusquellic et al. (2007) extends the range up to

10 THz (333 cm−1). Protein motions at these low frequencies tend to be global

in nature rather than being localized to certain atoms or groups, as is the case

with higher frequency vibrations. As such, THz spectroscopy provides a probe

into the large-scale, collective dynamics of proteins, which may be important

for conformational changes and function. Theoretical interpretation of the

experimental spectra has been aided by normal mode analysis and molecular

dynamics simulations.
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At higher than THz frequencies, IR spectroscopy has been used exten-

sively as an approximate measure of protein structure. For the large number

of proteins whose detailed three dimensional structures have not yet been

determined from X-ray crystallography, either because these proteins do not

readily form crystals or because their structures are intrinsically disordered,

IR spectroscopy is one of the analytical methods that can detect the pres-

ence of secondary structures such as α-helices and β-sheets and even pro-

vide quantitative estimates of the abundance of these structures within the

protein. This line of research has benefited greatly from the development

of Fourier transform infrared (FTIR) spectrometers and accompanying data-

analysis techniques (Arrondo et al., 1993). As introduced in Chapter 4 and

shown in Fig. 5.1, the protein backbone consists of a repeating structural unit;

the rest of a protein’s structure is determined from its sequence of amino acid

residues (the R’s in the figure) bonded to the Cα atoms. The peptide bond

(the amide CONH grouping) links one segment of the chain to the next and is

thus a ubiquitous feature along the backbone. In IR spectroscopy, the peptide

bond is associated with nine characteristic absorption bands called the amide

bands. Susi (1972) gives a table of the generally accepted names for these

bands along with their frequencies and the types of molecular motions that

give rise to them. Similar tables are given by Bandekar (1992); Arrondo et al.

(1993); Tamm and Tatulian (1997); Kong and Yu (2007).

Among these amide bands, the amide I band in the range 1600–1700 cm−1

has received by far the most attention for its sensitivity to proteins’ secondary

structure. Since water also has strong absorption in the amide I frequency

range, often IR spectra are measured with the protein in a solution of deu-

terium oxide (written as D2O or 2H2O) instead of 1H2O, in which case the
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Figure 5.1: Schematic diagram of the backbone of a protein. The peptide
bond (CONH group) is enclosed in a box. (This public-domain graphic was
obtained from Wikipedia.)

modified IR bands of the deuterated protein are denoted by amide I′, II′, and

so on. As discussed in Chapter 4, the amide I absorption band is due to C=O

stretching vibrations in the peptide bonds of the protein backbone. Rather

than occurring at a single frequency, the various C=O vibrations have a distri-

bution of frequencies that is characteristic of the protein’s geometry. Thus the

amide I absorption band is broad and smooth, consisting of many overlapping,

unresolved absorption lines. Nevertheless, the shape of this band contains in-

formation about the secondary structures present in the protein. Despite the

difficulties posed by the amide I band’s lack of fine structure, there has been

considerable success in interpreting this band to derive quantitative estimates

of the fraction of a protein’s structure that is in α-helices and β-sheets. As re-

viewed by Hering and Haris (2009) and Barth and Zscherp (2002), there have

been two main approaches to estimating secondary-structure content based on

the amide I band: curve fitting and pattern recognition.
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The first approach is best illustrated in the classic paper by Byler and

Susi (1986). They demonstrated that after Fourier self-deconvolution (Kaup-

pinen et al., 1981), the amide I′ band could be decomposed into six to nine

Gaussian components at 11 well-defined frequencies. Informed by empirical

and theoretical knowledge of the amide I frequencies associated with different

secondary structures, the Gaussian components were assigned to β-strands, α-

helices, unordered segments, or “turns and bends”. The main result was that

the “β-content” of the protein—the fraction of the protein’s sequence that is

folded into β-strands—could be estimated with surprising accuracy based on

the fraction of the total integrated amide I′ band area comprised by the Gaus-

sian components that were associated with β-strands. The α-helix content of

the protein was estimated in the same way, and these estimates were found

to be accurate to within 4% of the actual β-strand or α-helix fractions for 11

proteins whose structures were already known from X-ray crystallography.

The second approach to determine fractions of secondary structure from IR

spectra is pattern recognition: a category that includes both multivariate data

analysis and artificial neural network methods (Hering and Haris, 2009). The

basic idea is that by using a calibration set or “training set” of IR spectra of

proteins whose structures are known, the α-helix and β-sheet fractions can be

related to the spectra in a systematic way, which then can be used to predict

the secondary-structure content for a protein outside of the calibration set. For

example, Dousseau and Pezolet (1990) applied two multivariate data analysis

methods, classical least-squares and partial least-squares, to a calibration set

of 13 proteins in H2O solution, making use of both the amide I and II regions

of the spectra and correcting for water absorption. This resulted in structure

fraction predictions of comparable accuracy to those obtained by Byler and
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Susi (1986) using curve fitting. The pattern-recognition approach involves less

subjectivity than the curve-fitting approach: in the former case, the spectra

do not require deconvolution or second derivatives prior to analysis, and no

band assignments need to be made by the researcher (Hering and Haris, 2009).

In addition to the previously mentioned reviews by Hering and Haris (2009)

and Barth and Zscherp (2002), there are several other excellent reviews with

an experimental emphasis (Kong and Yu, 2007; Jackson and Mantsch, 1995;

Tamm and Tatulian, 1997; Bandekar, 1992; Arrondo et al., 1993). In con-

trast, the reviews by Schweitzer-Stenner (2006), Barth and Zscherp (2002),

and Krimm and Bandekar (1986) focus more on the theoretical aspects of pre-

dicting the IR spectra, particularly the amide I band. The theoretical overview

by Barth and Zscherp is an excellent starting point. The theory that has been

most often used to explain the amide band shapes is transition dipole coupling:

“It is a resonance interaction between the oscillating dipoles of neighbouring

amide groups and the coupling depends upon the relative orientations of, and

the distance between, the dipoles” (Barth and Zscherp, 2002). Early efforts to

apply transition dipole coupling to the amide vibrations of proteins considered

idealized, infinite β-sheets or α-helices, taking advantage of symmetry to cal-

culate the frequency shifts of the amide I and II vibrations of these structures

relative to the frequencies of isolated oscillators (Miyazawa, 1960). While these

calculations helped characterize the amide I bands due to different secondary

structures, more realistic calculations were carried out by Torii and Tasumi

(1992, 1996), who used the known crystal structures of eight proteins to locate

and orient the “transition dipole” oscillator representing each peptide group

in a protein and treated the interaction between the oscillators using tran-

sition dipole coupling. Their approach was quite successful in reproducing
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the observed amide I band for proteins, and many subsequent studies have

made use of their method. In recent years more sophisticated approaches have

been developed that make use of quantum chemistry calculations of molecular

subunits to derive force fields appropriate for the amide vibrations along the

protein backbone (Kubelka and Keiderling, 2001; Choi et al., 2007; Choi and

Cho, 2009; Kubelka et al., 2009; Grahnen et al., 2010).

While these theoretical methods have been shown to deliver high-quality

predictions of the amide bands, especially amide I, the goal of this chapter

is the prediction of a protein’s complete vibrational spectrum—not just the

vibrations of the peptide bonds of the protein backbone that give rise to the

amide bands. As in previous chapters, the approach used here is normal mode

analysis, although molecular dynamics can also be used to predict IR spectra.

Since proteins have a large number of atoms it is only practical to calculate

the Hessian matrix from force fields. The first detailed normal mode analysis

of a protein was done by Brooks and Karplus (1983) using the CHARMM

force field. The protein studied was bovine pancreatic trypsin inhibitor, and

all heavy atoms and polar hydrogens (580 atoms in total) were considered in

the model (other hydrogens were considered to be part of the heavy atom to

which they were bonded). The software developed for normal mode analysis

was later incorporated into the CHARMM package (Brooks et al., 2009) as

the VIBRAN set of commands. For this reason CHARMM is an ideal program

for performing normal mode analysis of proteins.

5.1 Method

I used CHARMM (version c35b1r1) to perform normal mode analysis for

the 13 proteins in Table 5.1. All calculations were performed using the Saguaro
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computer cluster at Arizona State University, a Linux-based cluster of over

5000 Intel Xeon processors. For the steps of minimization and calculation

of IR intensities, I was able to speed up the calculations by doing them in

parallel on several processors. However, I was not successful in finding a

way to diagonalize the Hessian matrix using the parallel capabilities of the

computer cluster and was restricted to always using a single processor for this

step.

The proteins’ crystal structures were obtained from the Protein Data Bank

(Berman et al., 2000) as PDB files and their unique four-character identifiers

are given in the table. I will often refer to these PDB IDs in place of the pro-

tein’s name, e.g., 1BTI for bovine pancreatic trypsin inhibitor. Since X-ray

crystallography cannot resolve the hydrogen atoms of proteins, the positions

of the hydrogen atoms are not given in the PDB files; these positions are as-

signed by CHARMM based on the known positions of the other atoms and

the parameter file for the force field. Several of the protein structures con-

tained more than one chain; in all but one case (1T6B) the sequence of amino

acids was identical from one chain to the next. These protein structures were

dimers (2TRX, 1YPY, 1UZG, and 1OAN); trimers (2EBO and 1K4R); and

one hexamer (2I39). For simplicity, when a protein had more than one chain,

I only considered a single chain in my calculation, the “A” chain in the PDB

file (or X chain in the case of 1T6B). The exception was 2EBO for which I did

the calculations in two ways: first with the A chain by itself, and then with

all three chains of the trimer. The number of atoms, including hydrogens, in

the protein chain(s) considered are listed in Table 5.1. In a few cases, the

tabulated number of residues in the chain may be less than the length of the

sequence because several residues were missing coordinates in the PDB files.
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However, this posed no problem for inputing these structures into CHARMM

because the residues with missing coordinates were either at the beginning or

end of the sequence. Thus there were no problematic, disconnected gaps in

the structure, and the normal mode analysis and spectrum calculation could

be done for the continuous portion of the sequence whose coordinates were

known.

The largest protein considered was protective antigen from anthrax toxin

(1T6B), and this was a special case. The two chains are very different with

the X chain being 735 residues in length and the Y chain being 189. Neither

one of the chains had its complete structure in the PDB file: 59 residues of

the X chain were missing coordinates, 19 residues of Y. Some of the missing

coordinates were in the middle of the sequence, causing a disconnected gap in

the structure. To obtain a more complete structure, I submitted the protein’s

FASTA sequence to the ModWeb comparative modeling web server (Pieper

et al., 2011; Eswar et al., 2003). This gave a structure with coordinates for

722 residues of the X chain (missing coordinates for only the first 13 residues),

which I then used for normal mode analysis and the spectrum calculation.

Since the structure obtained from this homology modeling may differ signif-

icantly from true structure, the spectrum calculated based on this structure

may not be accurate. The goal here was to test the spectrum calculation

method on a fairly large bio-threat-related molecule for which the computing

resources required—run time, memory, disk space—were substantial.

Two other important steps to get CHARMM to work with the protein

are the specification of the protonation state of the histidine residues and

the specification of disulfide bonds. First, all the histidine residues (residues

named HIS in the PDB file) must be renamed to one of the three types of
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histidine residues parametrized by the CHARMM force field. CHARMM uses

the residue names HSD, HSE, and HSP to differentiate between the three

protonation states. These are defined by which of the two nitrogen atoms in the

imidazole ring is bonded to a hydrogen atom: one, the other, or both. I chose

the HSD protonation state for all histidine residues. Second, disulfide bonds

in the protein must be specified in the CHARMM input script. These bonds

between the sulfur atoms of nearby cysteine residues are usually specified in

the PDB file itself in lines beginning with “SSBOND”. For example, residues

number 6 and 127 of lysozyme are cysteine residues that are close to each other

in the three-dimensional, folded structure and they are connected by a disulfide

bond. This bond is specified in the CHARMM input script with the command,

“patch disu A 6 A 127”. While the specification of the disulfide bonds and the

protonation state of the histidine residues can be done manually, these steps

are more easily accomplished automatically by using the CHARMM-GUI web-

based application to generate the necessary inputs (Jo et al., 2008).
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Table 5.1: Thirteen proteins whose IR spectra were calculated.

PDB ID Name Atoms Residues Chain Out of

1L2Y Trp-cage miniprotein construct TC5b 304 20 A 1 of 1 chain

1BTI Bovine pancreatic trypsin inhibitor 882 58 A 1 of 1 chain

2EBO Envelope glycoprotein GP2 from Ebola virus 1203 74 A 1 of 3 chains

1203× 3 74× 3 A, B, & C 3 of 3 chains

2TRX Thioredoxin from E. coli 1653 108 A 1 of 2 chains

2I39 N1L protein from vaccinia virus 1943 117 A 1 of 6 chains

6LYZ Hen egg-white lysozyme 1961 129 A 1 of 1 chain

1YMB Horse heart metmyoglobin 2411 153 A 1 of 1 chain

1YPY L1 protein from vaccinia virus 2698 182 A 1 of 2 chains

3KGQ Carboxypeptidase A 4729 303 A 1 of 1 chain

1K4R Envelope glycoprotein E from dengue virus 6012 395 A 1 of 3 chains

1UZG Envelope glycoprotein E from dengue virus type 3 6050 392 A 1 of 2 chains

1OAN Envelope glycoprotein E from dengue virus type 2 6129 394 A 1 of 2 chains

1T6B Protective antigen from anthrax toxin 11 352 722 X 1 of 2 chains
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The potential energy of the proteins was calculated using the CHARMM22

force field (MacKerell et al., 1998, 2004). Besides the terms in this potential

for bonded and non-bonded interactions shown in eqs. 4.1 and 4.2, there is an

additional set of terms for the energy-correction map (CMAP). These terms,

introduced by MacKerell et al. (2004), are a function of the dihedral angles

and their use “corrects certain small systematic errors in the description of

the protein backbone by the all-atom CHARMM force field” and “significantly

improves the structural and dynamic results obtained with MD simulations of

proteins in crystalline and solution environments” (Brooks et al., 2009).

5.1.1 Minimization

Prior to calculation of the Hessian matrix and normal modes, the struc-

ture needs to be optimized to minimize the potential energy, as described in

Chapter 2. In order to prevent too much distortion of the structure during min-

imization, harmonic constraints of the form Ki (xi − xi,orig)2 were temporarily

added to the potential energy for each atom i except hydrogens, which had

the effect of attracting each non-hydrogen atom to its original position. The

strengths of the harmonic constraints Ki were taken to be proportional to

each atom’s mass. At first, the minimization was done with stiff constraints,

Ki/mi = 104 kcal mol−1 �A−2 (with mi in atomic masses), which hardly al-

lowed for any movement of the atoms except for the hydrogens. In successive

iterations, the strength of the constraints was lowered by a factor of ten to

103, 102, . . . , 10−4 kcal mol−1 �A−2. For each of the powers of 10, minimization

was done with 2000 steps of the steepest descent method followed by 5000

steps of the adopted basis Newton-Raphson method. After this, the harmonic

restraints were completely removed, and an additional 5000 steepest descent
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steps and 10 000 adopted basis Newton-Raphson steps were taken to arrive at

the final minimized structure. This rigorous minimization procedure became

quite time consuming as the size of the protein increased. The minimization

can be sped up by running CHARMM in parallel on many processors (I used

up to 32 processors for the larger proteins). However, the vibrational analysis

commands of CHARMM have not been implemented to work in parallel (at

least not in the version of CHARMM I used), so there is no speedup from us-

ing more than one processor to diagonalize the mass-weighted Hessian matrix

using CHARMM.

5.1.2 Diagonalization

CHARMM has the ability to calculate the second derivatives in the Hessian

matrix (eq. 2.7) analytically, or numerically based on finite differences. I

always used the default option to calculate the second derivatives analytically.

The structure of the matrix is illustrated in Fig. 5.2. It is a sparse, symmetric

matrix with most of its nonzero elements located near the diagonal; these

values are mostly due to bonded interactions between atoms. The nonzero

elements that are far from the diagonal are due to non-bonded interactions:

electrostatic forces and van der Waals forces. The pattern of non-bonded

interactions away from the diagonal is a signature of the three-dimensional,

folded structure of the protein, which places residues close together in space

that are far apart in the sequence. The same pattern would likely emerge

if instead of plotting the Hessian matrix in Fig. 5.2, one plotted a “contact

map” with dark pixels indicating that the atom pair corresponding to that

row and column are separated by a distance less than a threshold of a few �A.

The extent of the non-bonded interactions depend on the cutoff distances. I
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used the default cutoffs specified in the parameter file for the CHARMM22

force field. These default cutoffs ignored any electrostatic or van der Waals

interactions between atoms separated by more than 12�A.

Figure 5.2: Illustration of the structure of a typical Hessian matrix, with
matrix elements above a certain threshold in absolute value represented as
black pixels. Row 1, column 1 of the matrix is in the upper-left corner of the
image, and the rows and columns are enumerated as in eq. 2.7.

I explored two options for diagonalizing the mass-weighted Hessian matrix

of eqs. 2.6 and 2.7: either the diagonalization was performed using the DIAG

command in CHARMM, or the matrix was saved to disk for diagonalization

using LAPACK (Anderson et al., 1999), which is available in Intel’s Math
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Kernel Library for use with Intel’s Fortran compiler. Care was taken to save

the Hessian to disk in binary format to retain machine precision rather rather

than saving the data to text files with reduced precision; the binary data files

also took up less disk space than text files. The LAPACK subroutine for

diagonalizing a symmetric matrix of double precision floating point values is

called DSYEV; for single precision, the subroutine to use is SSYEV.

I found that the time needed to diagonalize the Hessians of proteins smaller

than 6000 atoms was comparable for all three matrix-diagonalization methods

(CHARMM’s DIAG and LAPACK’s DSYEV and SSYEV), but for the pro-

teins larger than 6000 atoms CHARMM’s DIAG routine typically took twice

as long to finish the calculation compared to the time spent by either of the two

LAPACK routines, whose times were still comparable to each other. For exam-

ple, 1UZG’s 6050 atoms results in a Hessian matrix of size 18 150× 18 150; to

diagonalize this matrix, CHARMM’s DIAG spent 7.3 hours, whereas DSYEV

took 2.8 hours and SSYEV took 3.4 hours.

These times include disk access times, which can be significant. Running

the program to diagonalize the largest matrix, that of the X chain of 1T6B

with 11 352 atoms, using DSYEV took 21.2 hours, of which time 2.1 hours

was spent reading the Hessian from disk and 3.0 hours was spent saving the

resulting eigenvectors to disk. The 34 056× 34 056 double-precision values (8

bytes each) of the 34 056 eigenvectors require 9.3 Gbytes of memory. The full

Hessian matrix requires this same amount of memory, although in saving it to

disk one can halve the size by storing only half of the symmetric matrix; fur-

ther reductions in file size can be achieved by only storing the nonzero matrix

elements. For example, 89% of the Hessian matrix elements for bovine pan-

creatic trypsin inhibitor were exactly zero, and the distribution of the nonzero
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elements is shown in Fig. 5.3. The memory requirements can be halved again

if single-precision values (4 bytes each) are used instead of doubles (8 bytes

each). There was some noticeable loss of precision if the diagonalization was

done in single precision (SSYEV) instead of double (DSYEV): in the former

case the first six modes, which are expected to have zero frequency, strayed a

few cm−1 from zero. However, this didn’t make much difference in the final

calculated spectrum.
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Figure 5.3: Distribution of the magnitude of nonzero elements of the non-
mass-weighted Hessian matrix of bovine pancreatic trypsin inhibitor (1BTI).
Each matrix element’s magnitude is calculated as p = floor (log10 |Hi,j|) with

Hi,j in kcal �A−2. Then n(p) is the number of matrix elements having a given
value of p.

For the larger proteins, one could avoid some of the burdensome disk access

times by never saving the eigenvectors to disk, only working with them in

memory and saving only the final mode frequencies and IR intensities at the

end. To really speed things up, what is needed is a diagonalization routine

that can be run in parallel on many processors. ScaLAPACK (Choi et al.,
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1996) implements parallel versions of the DSYEV and SSYEV subroutines,

named PDSYEV and PSSYEV; however, the file input and output is made

much more complex by the need to distribute the matrix data across many

computers and then gather the results after diagonalization. To extend the IR

spectrum calculation using all-atom normal mode analysis to proteins larger

than those in Table 5.1, parallelization of the diagonalization step would be

required.

5.1.3 Spectrum Calculation

After diagonalization to obtain the normal mode eigenvalues and eigenvec-

tors, the IR intensity In associated with each normal mode n was calculated ac-

cording to eq. 2.52. The masses mi and effective partial charges qi of the atoms

were obtained from the PSF (protein structure file) produced by CHARMM.

As discussed in Chapter 2, the normal mode frequencies ωn are found from

the square roots of the eigenvalues, but conversion of units is required. The

eigenvalues have the same units as the elements of the mass-weighted Hessian

matrix (eq. 2.7), which are kcal g−1 �A−2. After converting to SI units (kcal

to J, g to kg, and �A to m), the eigenvalue is an angular frequency squared

in rad s−2. After taking its square root and dividing by 2π rad/cycle, it is a

frequency in Hz. Divide by 1012 to get it in THz, and use eq. 1.2 to get the

frequency in cm−1. From start to finish, if one simply takes the square root

of an eigenvalue of the mass-weighted Hessian matrix in its original units of

kcal g−1 �A−2, then by multiplying the answer by the conversion factor

103
√

4.184

2π(2.997 924 58)
(5.1)

one obtains that mode’s frequency in cm−1.
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The calculation of the IR intensities is easily parallelized, as each In in

eq. 2.52 is independent of the others. I used the OpenMP parallelization

scheme in my Fortran program to split the loop over mode number n among

eight processors on Saguaro sharing the same memory. That is, rather than a

single processor sequentially calculating the intensities of all 3N−6 vibrational

modes, each of the eight processors was assigned 1/8 of the modes to work on,

which sped up the calculation considerably. This leaves diagonalization as the

only step in my spectrum calculation process that I haven’t yet been able to

parallelize, and this limits the size of the protein that can be dealt with.

After calculating the normal mode frequencies ωn and IR intensities In,

the IR absorption spectrum was simulated by broadening with a line shape

function as described by eq. 2.37. For this purpose, I wrote a Fortran pro-

gram called CONVOLVE, which takes as its input the list of normal mode

frequencies and associated intensities, and gives as its output the convolution

described in eq. 2.37. The CONVOLVE program allows the user to select

from one of three line shapes: the Sn(ω) of eq. 2.39, the Lorentzian function

Ln(ω) of eq. 2.45, or a Gaussian function. To calculate the IR spectra shown

in this chapter, I used a Lorentzian function. The same peak width (FWHM)

of Γ = 10 cm−1 was used for all normal modes. As a final step, each spectrum

was normalized to have a maximum value of unity. Fig. 5.4 illustrates the

effect of using four different peak widths for the calculation of a protein’s IR

spectrum. With Γ = 20 cm−1, the peak just above 3300 cm−1 appears as a

single peak; with a narrow peak width (Γ = 5 cm−1) it is resolved into two

peaks.

88



Figure 5.4: Illustration of the broadening of absorption lines in the IR spec-
trum due to using different values for the FWHM of the assumed Lorentzian
line shape: Γ = 20, 15, 10, and 5 cm−1.
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5.1.4 Calculation Times

Comparisons of the computer run times required for the matrix diagonal-

izations of the 13 proteins of Table 5.1 are shown in Fig. 5.5. For these time

comparisons the diagonalization was done using the DSYEV routine on a sin-

gle processor of the Saguaro cluster. The times shown do not include the time

spent reading or writing data files. These times can be thought of as the time

required to calculate an IR spectrum from normal mode analysis since the

most time-consuming step in this process is the diagonalization of the mass-

weighted Hessian matrix to get the normal mode frequencies and eigenvectors.

As shown in Fig. 5.5, the time required to diagonalize the matrix scales as N3

(with N being the number of atoms), whereas in Chapter 2 it was discussed

that the time required for the calculation of the IR intensities scales as only

N2.

Figure 5.5: Computer run times needed to diagonalize the Hessian matrix
for the proteins in Table 5.1. The diagonalization used the DSYEV routine of
LAPACK. These times were measured on a single processor of ASU’s Saguaro
computer cluster; disk access times were excluded. The fitting function is
y = (3.37± 0.14)× 10−8 × x3.
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5.2 Results

Fig. 5.7 shows calculated IR spectra for three of the proteins of Table 5.1.

The entire frequency range of vibrational modes is plotted, from the terahertz

region (. 100 cm−1) to the highest frequency vibrations at ≈ 3700 cm−1. The

protein spectra show a gap from 1800 to 2800 cm−1 in which there are no

vibrational modes.

5.2.1 Low-frequency region including THz range

The lowest frequency modes are global in nature; i.e., rather than the

motions being localized in specific parts of the protein, these modes involve

the flexing of the complete structure and collective motions of entire secondary

structures relative to each other.

Figure 5.6: Low-frequency region (including THz frequencies . 100 cm−1) of
the calculated IR spectra of three proteins: bovine pancreatic trypsin inhibitor
(1BTI), lysozyme (6LYZ), and myoglobin (1YMB).
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Figure 5.7: Calculated IR absorption spectra of three of the proteins from Table 5.1 using Lorentzian line shapes with
FWHM = 10 cm−1. Also shown is an experimental spectrum of water from the NIST/EPA Gas-Phase Infrared Database
(Stein, 1992) to illustrate the spectral regions with strong absorption by water.
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Figure 5.8: Low-frequency region (including THz frequencies . 100 cm−1) of
the calculated IR spectra of proteins associated with Ebola (2EBO), dengue
(1K4R), and vaccinia (2I39) virus.

As shown in Figs. 5.6 and 5.8, the spectra of various proteins in the THz

region (. 100 cm−1) are very similar to one another, which makes it impossible

to identify proteins based on their THz spectra. Above 300 cm−1 the different

proteins’ spectra begin to differ from one another.

5.2.2 Intermediate region—window of low absorption by water

Fig. 5.7 suggests that the spectral region from about 600 to 1300 cm−1

may be promising for discriminating between proteins in water solution since

in this window there is comparatively little absorption by water. Fig. 5.9

shows this spectral region for three of the proteins in Table 5.1—bovine pan-

creatic trypsin inhibitor, lysozyme, and myoglobin. These three proteins have

somewhat different spectral signatures in this region, so differentiating between
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them based on their spectra might be possible. This same spectral region is

shown in Fig. 5.10 for three proteins associated with viruses—Ebola (2EBO),

dengue (1K4R), and vaccinia (2I39).

Figure 5.9: Calculated IR spectra for three proteins—bovine pancreatic
trypsin inhibitor (1BTI), lysozyme (6LYZ), and myoglobin (1YMB)—in the
intermediate spectral region where IR absorption by water is expected to be
low.

IR spectra were calculated for three different versions of envelope glycopro-

tein E from dengue virus: PDB IDs 1K4R, 1UZG, and 1OAN. Not surprisingly,

these three very similar structures result in similar calculated IR spectra, as

shown in Fig. 5.11. However, the two proteins studied that were associated

with vaccinia virus—N1L protein (2I39) and L1 protein (1YPY)—were quite

different in size and structure; hence their calculated IR spectra are quite

different, as shown in Fig. 5.12.
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Figure 5.10: Calculated IR spectra for three proteins associated with
viruses—Ebola (2EBO), dengue (1K4R), and vaccinia (2I39)—in the inter-
mediate spectral region.

95



Figure 5.11: Calculated IR spectra for three versions of envelope glycoprotein
E from dengue virus in the intermediate spectral region.
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Figure 5.12: Calculated IR spectra for two proteins associated with vac-
cinia virus—N1L protein (2I39) and L1 protein (1YPY)—in the intermediate
spectral region.
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5.2.3 High-frequency region

The strong absorption bands on the high-frequency side of the gap are

due to bond-stretching vibrations of hydrogen atoms bonded to heavier atoms

(carbon, nitrogen, or oxygen). The high-frequency region (2800–3800 cm−1) of

the calculated IR spectrum of bovine pancreatic trypsin inhibitor is shown in

Fig. 5.13. This is compared to the density of vibrational modes: a histogram

of the normal mode frequencies in bins of width 10 cm−1. The type of atomic

displacements responsible for each IR peak is labeled in the figure. These

peak assignments were made after examining the few most IR-active normal

modes near the frequency of each peak. To examine the modes, individual

modes were animated by generating trajectories of the atomic positions over

one cycle of oscillation of a specific mode. I wrote a Fortran program that

allows the user to select a specific normal mode and generate a coordinate

trajectory in the DCD file format, which can then be viewed as a movie using

the program VMD (Humphrey et al., 1996). CHARMM already offers this

feature, but the advantage of my program is that it allows the user to select

the maximum atomic displacement (e.g., 1�A) in the mode animation, whereas

CHARMM uses a temperature argument to scale the atomic displacements.

As labeled in Fig. 5.13, the peaks in the high-frequency region are due to

bond stretching in various C−H bonds (2858–3056 cm−1), N−H bonds (3154–

3537 cm−1), and O−H bonds (3683 cm−1). In principle, there should also be a

peak due to stretching of the S−H bonds in cystine (Cys) residues (this protein

has six Cys residues), but these do not appear in the calculated spectrum

because each Cys residue is paired with another Cys residue by a disulfide

bond. When CHARMM patches two Cys residues together, it modifies the
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Figure 5.13: High-frequency region (2800–3800 cm−1) of the calculated IR
spectrum (blue curve) of bovine pancreatic trypsin inhibitor compared to the
density of vibrational modes (histogram) in bins of width 10 cm−1. The IR
peaks in this region are due to X−H stretching modes with X = C, N, or O.
The labels give the type of X−H stretching mode that is responsible for each
peak.
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Figure 5.14: High-frequency region (2800–3800 cm−1) of the calculated IR
spectra of the 13 different proteins in Table 5.1. Peak labels transferred from
the assignments made for bovine pancreatic trypsin inhibitor (1BTI) in Fig.
5.13. The protein with the lowest abundance of arginine residues (thioredoxin,
2TRX) is in blue, while the one with the highest Arg abundance (1BTI) is in
red.
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Figure 5.15: For each of the 13 proteins in Table 5.1, the average height
of the peak at ≈ 3440 cm−1 in the calculated IR spectrum (Fig. 5.14) is
based on the integrated area over 3390–3487 cm−1. This is plotted against the
proteins’ arginine abundance: the ratio of the number of Arg residues to the
total number of residues.
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model structure by adding an S−S bond between the two Cys residues and

eliminating the hydrogen atom that was originally bonded to each sulfur atom.

In Fig. 5.13 the peak with the largest number of normal modes is at

2908 cm−1 and is due to symmetric stretching of CH2 groups combined with

stretching of an adjacent C−H bond; these modes were localized in individual

lysine, arginine, and methionine residues. The peak with the strongest IR

intensity is at 3326 cm−1 and is due to N−H bond stretching in the peptide

bond of the protein backbone. As discussed in Chapter 4, this is called the

amide A band. At 3431–3444 cm−1, the next strongest peak (appearing as a

double peak for this particular protein) is due to atomic displacements localized

in arginine (Arg) residues: asymmetric stretching in arginine’s two NH2 groups

coupled with stretching of the adjacent N−H bond (not the backbone, amide

N−H). Typically the motion was localized in a single Arg residue for a given

mode, with different modes vibrating in different Arg residues (this protein

has six Arg residues). The various N−H stretches are more strongly weighted

than C−H stretches in the calculated spectrum because of the different partial

charges assigned to the hydrogen atoms. The hydrogen charge is +0.31e in

the backbone NH, +0.46e in NH2 groups, and +0.33e in NH3 groups, whereas

the hydrogen charge is only +0.09e in CH2 and CH3. This explains why the

N−H peak at 3326 cm−1 has much stronger intensity, even though it is a sum

of fewer normal modes, than the C−H peak at 2908 cm−1.

When the calculated IR spectra of all 13 proteins from Table 5.1 are com-

pared in the high-frequency region (Fig. 5.14), they are found to be quite

similar. The relative intensities of the various peaks are comparable from one

protein to the next, which is an indication that the relative numbers of the

different chemical groups (CH, CH2, CH3, NH, NH2, NH3, and OH) giving rise
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to these peaks are similar from one protein to the next. The exception to this

rule is the peak at ≈ 3430 cm−1 whose intensity varies drastically among the

proteins. As previously discussed, in bovine pancreatic trypsin inhibitor the

normal modes responsible for this IR peak were found to be localized to argi-

nine residues. Thus I expected the height of this peak to depend on the relative

abundance of Arg in the protein sequence. As demonstrated by Fig. 5.15, this

was indeed the case. The average intensity of the peak at ≈ 3430 cm−1 was

obtained from numerical integration (using Simpson’s rule) over over 3390–

3487 cm−1 to get the area of the peak. The protein with the highest Arg

abundance, bovine pancreatic trypsin inhibitor (6 out of 58 residues are Arg),

also had the highest average intensity of the peak at ≈ 3430 cm−1. The protein

with the lowest Arg abundance, thioredoxin (1 out of 108 residues are Arg),

had the lowest average peak intensity.

5.2.4 Spectrum of monomer compared to trimer

As discussed earlier, calculations were done in two ways for envelope glyco-

protein GP2 from Ebola virus: first, in its monomer form (chain A only, 1203

atoms), and then in its trimer form (chains A, B, and C; 3609 atoms). The

calculated IR spectra for the monomer and trimer are compared in Fig. 5.16.

There are some noticeable differences in the spectra below about 1200 cm−1,

although it seems unlikely that such differences could be measured experimen-

tally given that experimental spectra would likely be significantly smoother

(broader intrinsic line widths) than these calculated spectra.
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Figure 5.16: Comparison of the calculated IR spectrum of a single chain, the
A chain (1203 atoms), of envelope glycoprotein GP2 from Ebola virus to that
of the complete trimer consisting of chains A, B, and C (3609 atoms). Both
spectra were calculated using the same Lorentzian line shape with FWHM =
10 cm−1.
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5.2.5 Amide I and II bands—comparison with experiment

An experimental IR spectrum of hen egg-white lysozyme from 1200 to

2000 cm−1 was downloaded from the website of the Protein Infrared Database

(Dong and Caughey, 1994) and compared with my calculated spectrum in Fig.

5.17. The experimental spectrum shows both the amide I (1600–1700 cm−1)

and amide II (1500–1600 cm−1) bands; this spectrum was measured with the

protein in aqueous solution (not D2O) at a pH of 7.3. Lysozyme spectra

have also been measured in aqueous solution by Pérez and Griebenow (2000).

Spectra of dried lysozyme were measured by Liltorp and Maréchal (2005) and

Belton and Gil (1994). In Fig. 5.17, the calculated amide I and II bands

are shifted by ≈ 40 cm−1 to higher frequency compared to the experimentally

observed bands. The amide I peak was measured at 1655 cm−1, but the cal-

culation placed it at 1694 cm−1. Similarly, the amide II peak was measured at

1543 cm−1, but the calculation placed it at 1583 cm−1.

The curve-fitting method of Byler and Susi (1986) assumes that the amide

I (or I′) band can be decomposed as a sum of six to nine Gaussians whose cen-

ter frequencies are the characteristic vibration frequencies of the C=O modes

associated with different secondary structures. While this simple picture has

been successfully used for prediction of secondary-structure content, there are

far more than nine normal mode frequencies within the amide I band. The

distribution (histogram) of normal mode frequencies of lysozyme in bins of

width 10 cm−1 is shown in the bottom panel of Fig. 5.17. If one considers

the calculated amide I band to go from 1670 to 1740 cm−1 (approximately the

interval corresponding to the band’s full width at half maximum), then there

are 174 normal modes in this band. Similarly, if one counts modes in the

105



I 
II 

I 

II 

Figure 5.17: Top: Comparison of calculated IR spectrum of hen egg-white
lysozyme with experimental spectrum from 1200 to 2000 cm−1, showing the
amide I and II bands. Bottom: histogram of normal mode frequencies in bins
of width 10 cm−1.
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Figure 5.18: Repeat of Fig. 5.17 with recalculated IR spectrum using hy-
drogen charges that were reduced by a factor of 9.

amide II band in the range 1540–1630 cm−1, there are 171 normal modes.

Furthermore, when one views animations of the most IR-active normal

modes near the centers of the amide I and II bands, one observes that these

normal modes often involve vibrations of side chains in addition to the expected

amide I and II vibrations in the protein backbone. For example, the animation

of a mode near the center of the amide I band of lysozyme showed the expected

C=O stretching vibration in a leucine residue, but also included in this mode

was a vibration involving stretching and bending of several C−N bonds in an

arginine residue.

In Chapter 4 it was seen that hydrogen atoms, being the lightest atoms,

tend to have the largest displacements in molecular vibrations. These large

displacements, combined with the fixed partial charges assigned to the hydro-

107



gen atoms by the force field, exaggerate the contribution of hydrogens’ motions

to changes in the molecule’s dipole moment. For many normal modes this re-

sults in calculated IR intensities that are too high compared to experimental

spectra. The H atoms’ contribution to the calculated spectrum can be reduced

by simply reducing the effective charges of the H atoms when calculating the

IR intensities in eq. 2.52. The charges assigned to the H atoms of lysozyme

range from +0.05e to +0.46e, with the most common charge being +0.09e. In

reducing the H charges, it is preferable to scale them all down by the same

factor rather than assigning an equal charge to all H atoms since the latter

would ignore the different charges given to different H atoms based on their

location in the molecule. As a test of whether reducing H charges can improve

the agreement of the calculated spectrum with experiment, I recalculated the

IR intensities for lysozyme using H charges that were 1⁄9 times their original

values. The result is shown in Fig. 5.18. Notice that now the relative heights of

the amide I and II bands in the calculated spectrum are in much better agree-

ment with experiment, as is the portion of the spectrum below ≈ 1525 cm−1.

This demonstrates that reducing the effective charges of hydrogen atoms when

calculating the IR intensities of the normal modes can significantly improve

the agreement of the calculated spectrum with experiment.

In addition to reducing all the H charges by the same factor, I also tried

setting all H charges to +0.01e or even setting them all to zero. In each case

the calculated spectrum below 2000 cm−1 remained essentially unchanged from

the result obtained from dividing all the H charges by 9. Of course, reducing

H charges had the effect of attenuating the high-frequency X−H stretch region

(2800–3800 cm−1). When the H charges were divided by 9, the intensities of

the peaks in this region were uniformly attenuated by a factor of ≈ 9. When
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instead all H charges were set to 0.01e, there was a nonuniform attenuation

of the high-frequency peaks. With all H charges set to zero, these peaks were

attenuated even more, but were still present since even in X−H stretching

vibrations the heavy atoms undergo small displacements.

5.3 Summary

I have demonstrated that calculating IR spectra based on all-atom normal

mode analysis is practical for proteins having up to ∼ 11 000 atoms using the

current level of computing power available to users of the Saguaro computer

cluster at Arizona State University. As computer power improves, spectrum

calculations for ever larger proteins will become practical. The most time

consuming step is the diagonalization of the mass-weighted Hessian matrix to

obtain the normal modes. As of yet, I have not been able to run a matrix diag-

onalization routine in parallel, so I have not been able to take advantage of the

parallel processing capabilities of the computer cluster for the diagonalization

step. Parallel processing of the matrix diagonalization will be necessary if one

is to extend this method to larger proteins than presented here.

This study could be improved by including the effects of water in the normal

mode analysis. This could be done using either explicit or implicit solvation

methods. It would be interesting to see how solvation affects the resulting

spectra. Modeling the proteins in solution is desirable for comparisons with

experimental IR spectra.

Identifying proteins based solely on their IR spectra would be challenging

if not practically impossible. The calculated spectra shown here for isolated

proteins have narrower intrinsic line widths than are likely to be experimentally

observed. Even with these narrow line widths, the calculated spectra are
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generally quite similar, and to highlight the differences one needs to “zoom

in” on certain spectral regions. Certainly, proteins’ signatures in the THz

region (. 100 cm−1) are too generic to allow for much, if any, differentiation.

The same is true for the high-frequency region, 2800–3700 cm−1, which is due

to bond stretching vibrations of hydrogens bonded to heavier atoms. The

calculated spectra suggest that the intensity of one of the high-frequency peaks

is quite sensitive to the abundance of arginine in the protein; this prediction

needs to be tested experimentally. The intermediate spectral region from 600

to 1300 cm−1 is somewhat promising for differentiating between IR signatures

of proteins, as IR absorption by water is low in this window and the calculated

spectra show some differences here.

The prominent amide I band at 1600–1700 cm−1 is known to be sensitive to

secondary-structure content. Analysis of this band has been used to measure

the fraction of a protein that is folded in α-helices or β-sheets to within a few-

percent accuracy, but this at best will narrow the number of possible matches

between the spectrum of an unknown protein and a library of reference spectra,

not allow for unique identification.

In comparing the calculated IR spectrum of lysozyme to an experimental

spectrum in the region containing the amide I and II bands, it was seen that

the agreement with experiment was significantly improved when the effective

partial charges of hydrogen atoms were reduced in the calculation of the IR

intensities of the normal modes. This suggests that with an adequate choice

of partial charges, normal mode analysis of proteins can yield calculated IR

spectra that are in reasonable agreement with experimental spectra even for

the amide I and II bands.
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Chapter 6

CONCLUSIONS

As the number of atoms in a molecule increases, so too does the number of

vibrational modes; the infrared absorption lines of the various modes begin to

overlap, leading to bands of unresolved absorption lines. For small molecules

such as the organophosphorus nerve agents and simulants of Chapter 3, the

IR spectrum contains many discrete, non-overlapping lines, which makes IR

spectroscopy a good tool for identifying these molecules. However, for larger

molecules the IR spectrum will tend to contain fewer distinguishing features

as the lines blend together. This is especially true for proteins because they

contain many copies of the same structural units—the peptide bonds of the

protein backbone and the amino acid residues. Each structural unit has its

own characteristic modes of vibration, but its frequencies may be perturbed

due to effects of its local environment, such as its location in an α-helix or

β-sheet, or the amount of water present. The shape of the protein spectrum

reflects to some degree the protein’s secondary structure and population of

amino acids in the sequence, but my calculations suggest that overall, the IR

spectra of proteins are quite similar from one protein to another. Considering

that in a detection scenario, when one is presented not with a pure, isolated

substance but with a mixture of unknown substances—various chemical, viral,

or bacterial components—the prospect of identifying the substances from IR

spectroscopy becomes yet more difficult. Hence IR spectroscopy is likely to

remain an important tool for analyzing substances, but its utility for unique

identification of complex molecules is limited.
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