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ABSTRACT

Camera calibration has applications in the fields of robotic motion, geo-

graphic mapping, semiconductor defect characterization, and many more. This the-

sis considers camera calibration for the purpose of high accuracy three-dimensional

reconstruction when characterizing ball grid arrays within the semiconductor indus-

try. Bouguet’s calibration method is used following a set of criteria with the purpose

of studying the method’s performance according to newly proposed standards.

The performance of the camera calibration method is currently measured

using standards such as pixel error and computational time. This thesis proposes

the use of standard deviation of the intrinsic parameter estimation within a Monte

Carlo simulation as a new standard of performance measure. It specifically shows

that the standard deviation decreases based on the increased number of images in-

put into the calibration routine. It is also shown that the default thresholds of the

non-linear maximum likelihood estimation problem of the calibration method re-

quire change in order to improve computational time performance; however, the

accuracy lost is negligable even for high accuracy requirements such as ball grid

array characterization.
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Chapter 1

INTRODUCTION

Three-dimensional (3D) image reconstruction is the process of capturing the shape

and position of real objects or points represented in three dimensions in the physical

world or a simulated space [1]. 3D reconstruction methods can usually be divided

among active and passive methods. Active methods can interfere with the object

in some physical sense, either by moving light over the object or by using a time

of flight laser. Passive methods use only imaging sensors such as those found in a

single camera or in multiple cameras for stereo and multi-view reconstruction.

Camera calibration for 3D reconstruction is the process of acquiring the pa-

rameters of a camera and lens assembly. In particular, the process describes how an

object is captured and projected onto the camera’s internal sensor and provides the

position of the camera in space when compared to a fixed reference point. In more

explicit terms, a camera model is defined to have intrinsic and extrinsic parameters.

Intrinsic parameters model how light passes through the camera lens and is pro-

jected onto the camera sensor using parameters such as the focal length of the lens

and any distortions of the lens that may appear due to its construction. Extrinsic

parameters describe the position and direction of the camera system in space.

Both the intrinsic and extrinsic parameters are extremely important depend-

ing on the type of application, including 3D reconstruction using passive stereo

or active ranging, robot navigation, and any photogrammetric approach for find-

ing metric information from two-dimensional (2D) images. Due to the problems

expected with perspective projections, all objects in the world with shape, when

imaged, appear to have a different shape on the image due to the orientation of the

camera with respect to the world object. An example of a ladder before and after

perspective projection is shown in Fig 1.1.
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Figure 1.1: Illustration of the perspective problem using the image of a ladder. The
left image shows the ladder as typically seen by a viewer perpendicular to the object.
On the right is the expected image if the top of the ladder is tilted backwards away
from the viewer. Some parallel lines do not stay parallel and begin to converge
towards the top of the ladder.

The only exception is when the camera is positioned coplanar to another pla-

nar surface, in which case only the object size is changed. In the typical perspective

projection problem, all light rays pass through the lens center. This, however, is not

entirely complete in a real world model with a lens that actually has size and shape.

Because of this, non-linear lens distortions are introduced to the image.

3D image reconstruction is typically accomplished in a three forked ap-

proach: camera calibration, feature point selection, and point triangulation. Al-

though other approaches exist that that do not require explicit camera calibration

and gain pseudo calibration terms within the triangulation phase, such as with

structured lighting [2], this work concentrates on camera calibration. The 3D re-

construction requires both the intrinsic and extrinsic parameters gained from the

camera calibration process specifically, when attempting 3D triangulation of two

or more cameras, the position and direction of each camera are required in order

to take the corresponding points in multiple cameras and compute their individual
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depth. Also, without knowing the extrinsic parameters of the cameras, depth can

only be expressed in terms of pixels and not real world metrics.

1.1 Application Space

Improving performance measures in camera calibration for image reconstruction

has many applications. One application of interest in this work is the 3D charac-

terization of semiconductor packages that have a ball grid array (BGA) pattern via

optical stereo imaging [3]. As these BGAs are used for communication between the

package and the motherboard processor socket that it sits in, problems occur when

the BGAs have incorrect ball height or experience package level warpage [4]. Both

of these problems can independently cause shortages and/or open circuits when

placed into the processor socket causing mother board failures. The current process

tool to inspect the packages does not inspect each individual solder ball and does

not output package warpage. In order to individually find the height of each solder

ball and output package warpage, a stereo method with high-resolution cameras is

chosen to experiment with. The hundreds of solder balls, that constitute a full BGA,

range from 60-300 microns in height and require high precision accuracy due to the

low tolerances accepted.

This application can be placed onto a manufacturing floor where thousands

upon thousands of individual semiconductor units can pass through for inspection

every day. It is absolutely critical that the solution implementation be quick just

as it is accurate. Thus, there is a need for both quick and extremely precise stereo

camera calibration.

1.2 Thesis Contributions

Pixel error has been a long standing measure of camera calibration accuracy. How-

ever, it has a disadvantage that it does not correctly characterize the expected results

when under a basis of many input images. It has seperately been shown that adding

more images or information to the calibration routine should increase the calibra-
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tion accuracy. However, only slightly, pixel error trends upwards over increasing

number of images well beyond the minimum required. By the use of Monte Carlo

simulations, we show that the standard deviation of an estimated camera model

parameter can be used as an alternative form of camera calibration accuracy.

Following the requirements of our application space, we also show the de-

fault baseline case of the camera calibration method developed by Bouguet [5]. Us-

ing Monte Carlo simulations and an analysis of the default case, we show that the

default thresholds of the maximum likelihood estimator has room for improvement

in our application. For example, the thresholds governing how long the optimizer

can run should be reduced in order to not waste computational time. In tandem, the

thresholds can be modified to provide insignificant accuracy loss as well.

1.3 Thesis Organization

The rest of this thesis is organized as follows. A concise background into camera

calibration is discussed in Chapter 2. All of the coordinate systems and individual

models are introduced in order to build up to the final perspective camera model.

Chapter 3 discusses the core camera calibration method used for the duration of

this thesis. Such details include the image and algorithm setup and the individual

methods employeed in order to receive the final camera model parameters that can

describe the world to image projection. Chapter 4 details the proposed work in this

thesis. The Monte Carlo method is introduced as well as our individual setup and

calibration object. We show a new accuracy metric in the form of the variation of

an estimated intrinsic camera model parameter. We also make a small improvement

to the settings of the camera calibration method in order to reduce computational

run time significantly while experiencing an insignificant amount of accuracy lost.
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Chapter 2

BACKGROUND IN CAMERA CALIBRATION

2.1 Introduction to Camera Calibration

Camera calibration is an important area of research as it is usually required for

3D image reconstruction. The calibrated parameters expelled from the calibration

procedure for a single camera are formed into a full bodied camera model that

describes the relationship between a point on an object and its corresponding point

in the image. In order to fully capture all needed parameters for stereo and multi-

view 3D image reconstruction, camera calibration must be ran for each camera.

2.2 Coordinate Systems and Camera Model

To understand the geometry of the relationship between a point on an object and its

corresponding point in the image requires an understanding of the many coordinate

systems and the camera model that governs the projection of the object via the

lens. This can be described by building the coordinate systems from the object to

the image or the image to the object. The procedure involves starting from world

coordinates and building the systems to the image coordinates.

The camera 3D coordinate system (x,y,z) is a viewer centric system centered

at the projection center of the lens. This coordinate system is arbitrarily positioned

relative to the world coordinate system (X,Y,Z) and referred to as the extrinsic prop-

erties of the camera. The coordinate systems do not change size or shape; however,

they can change orientation and position. In particular, the camera coordinate vec-

tor [x y z]T and the world coordinate vector [X Y Z]T are related by
x

y

z

= R


X

Y

Z

+ τ (2.1)

where R is a 3× 3 rotation matrix, τ is a 3× 1 translation matrix, and T denotes

vector transpose.
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The intrinsic camera parameters describe how the image is projected from

the camera system through the projection center and onto the image plane [I J]T

centered at the principle point [I0 J0]T. Other intrinsic parameters include the effec-

tive focal length f and the scale factor s. This projection of the object via the lens

has routinely been expressed by the pin-hole camera model [6]:I

J

=
f
z

x

y

 (2.2)

The [I J]T plane is assumed to be coplanar to the [x y]T plane as they are

represented by a linear relationship only defined by f and z. The (I,J), (x,y,z), and

(X,Y,Z) coordinate systems are depicted in Fig 2.1.

The characterization of an image involves demonstrating the coordinate sys-

tem of the image array using either a charge-coupled device (CCD) or a comple-

mentary metal-oxide semiconductor (CMOS) sensor showing how the sensor is

being illuminated by light through the lens [7–9]. This shall be called the pixel

coordinate system (I′,J′). With today’s matured technology, the image sensor is

almost always in a square grid format which means the skew factor s equals one.

The grid is expressed in rows and columns with the origin typically at the upper-left

most corner pixel due to a common image processing ritual. The rows and columns

express that the pixel coordinates are in integer format. However, this pixel coor-

dinate system has no real-world length value. Thus, the pixel coordinate system

is projected onto the camera sensor and can thus be expressed by the image plane

coordinates (I,J).

The image plane is ideally expressed by the image coordinate system using

the spacing between adjacent columns and rows on the sensor as well as the princi-

pal axis of the lens. The principal axis of the lens dictates the center of the image

plane. Although, in order to be ideal, the lens must be manufactured and installed
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Figure 2.1: Demonstration of the 3D coordinate system of the intrinsic pin-hole
camera model arbitrarily placed according to the world coordinate system as the
extrinsic model.

to the camera body well. In this case, the principal axis is very close to the cen-

ter of the camera sensor, which corresponds to the center of the image coordinate

system. The spacing between adjacent columns and rows on the sensor is almost

always the same, implying a square grid format. This spacing is what dictates the

integer spacing between pixels on the image coordinate system and is referred to

as ”pixel size” in camera specifications (SI , SJ). The pixel coordinate system and

image plane coordinate system are coplanar to each other; therefore, they can be

distinguished by a constant factor for each axis. The skew factor s dictates the ratio

multiplier for rectangular grids. However, almost all cameras manufactured today

contain grid patterns so s can be idealized to 1. This system is the principle method

7



Figure 2.2: Image plane projected through the projection point onto the CCD pro-
ducing the pixel plane.

to relating pixels on the image coordinate system and real world location on the

image plane according to I′

J′

=

SI s ID

SJ JD

+
I0

J0

 (2.3)

The final camera model is used for high accuracy calibration. It uses a much

more complete and condensed homogeneous matrix form

λ


ID

JD

1

=


s f 0 I0 0

0 f J0 0

0 0 1 0


R τ

0 1




X

Y

Z

1


= F



X

Y

Z

1


(2.4)

where λ is a scale factor, 0 is a 1×3 row vector of zeros, and F is the fundamental

matrix that describes the complete projection [6]. This camera model is only an

approximation of the real camera projection model. It is a simple, linear model.

However, it is an ideal model that does not account for systematic distortions re-

quired for high accuracy calibration as first noted by D.C. Brown [10]. Distortion

terms were added to the camera model [6] according to

8



ID

JD

=

I

J

+
 IR + IT

JR + JT

 (2.5)

where IR, JR are radial distortion axis components, IT , JT are tangential distortion

axis components, and (ID,JD) are the distorted image coordinates.

The first important distortion considered is for radial lens distortion that

radially displaces pixels outward or inward. The radial distortion can be approxi-

mated by a relation to the image plane coordinates [ID JD]T given byIR

JR

=

ID(k1r2 + k2r4 + k3r6 + ...)

JD(k1r2 + k2r4 + k3r6 + ...)

 (2.6)

where the infinite series real coefficients ki, i = 1,2, . . . are radial distortion param-

eters, and r =
√

I2
D + J2

D. As it was noted that the model was sufficiently accurate

using two radial distortion parameters [6] the radial distortion model becomesIR

JR

=

ID(k1r2 + k2r4)

JD(k1r2 + k2r4)

 (2.7)

Another common distortion often considered is tangential or decentering

distortion [11, 12]. This type of distortion is often produced by the decentering of

curvatures of lens surfaces with respect to each other and the principle axis, and

it can arise from non-ideal manufacturing and design of lens and lens assemblies.

The resulting tangential distortion vector is given byIT

JT

=

 2p1IDJD + p2(r2 +2I2
D)

p1(r2 +2J2
D)+2p2IDJD)

 (2.8)

where p1 and p2 are real tangential distortion coefficients [6].

The intrinsic parameter section of the whole camera model is based on the

popular pin-hole model [6], and it uses focal length as a parameter. However, the

9



true focal length of a lens is very different from the focal length parameter used in

the pin-hole model. The pin-hole model assumes the lens is essentially a tiny slit

where all rays of light pass through. Its effective focal length is the distance from

the slit to where the image is formed on the sensor matrix. This is the case also for

a slit camera. In reality, a physical lens is a 3D object with a certain height for rays

of light to pass through, not an infinitesimally small slit. The true focal length is

the distance from the lens center where all rays of light passing through the entire

lens converge into a single point. All things being equal, the longer the true focal

length of the lens, the better the model is at saying that the effective focal length of

the pin-hole model equals the true focal length of the lens.

2.3 Prior Work in Camera Calibration

One of the first introductions of the need to calibrate cameras was by D.C. Brown

[10]. He noticed that straight, parallel lines in the world do not transform to straight,

parallel lines in the image when the camera is not at an orthogonal angle to the

surface. He introduced the distortion extension of the standard camera model of the

day.

However, truly whole, accurate camera calibration techniques that are still

in use today did not gain traction until the last two decades of the 20th century.

Tsai [13] introducted two main approaches: a procedure using a coplanar set of

points (coplanar with the optical axis of the camera) and one using a noncoplanar

set of points. Tsai’s methodology was catered towards speed, efficiency, and low-

cost applications. As camera calibration is often a nonlinear process of solving for a

large number of unknown parameters, it is typically very difficult and time consum-

ing. Because of his requirement of speed, Tsai used the previously implemented

direct linear transformation (DLT) developed by Abdel-Aziz and Karara [14]. The

DLT avoids the large-scale nonlinear search by using a set of linear equations, ig-

noring the parameter dependency.
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Zhang implemented a true non-linear optimization technique [1] using the

traditional pin-hole camera model with only radial distortion and planar homo-

graphies of at least two images to solve for initial parameters (no distortion was

included in the initial parameter search). The parameter solution was iteratively

solved to minimize projection error in the least-squares sense using maximum like-

lihood estimation solved with the Levenberg-Marquardt algorithm to improve accu-

racy. This method used a coplanar target as previous methods had suggested. Note

that this method is the basis for the Caltech Camera Calibration Toolbox as seen in

the next chapter [5].

Seamingly parallel with Zhang, Heikkila implemented a similiar approach

but instead of finding corners, he introduced a method of finding centroids based

on the old coplanar method on a 3D target containing two coplanar planes [6,

15]. His camera model was extended to use both radial and tangential distortions.

Heikkila also used the DLT to initialize the Lavenberg-Marguardt non-linear search.

Heikkila provides an excellent experiment basis to understand the systematic biases

present in a camera calibration scheme such as centroid detection, reverse camera

model inaccuracies, illumination changes, and the calibration target and its manu-

facturing tolerances. The latter is a good observation of how the camera calibration

requirements have changed - the inherent inaccuracies of the calibration target are

now playing a larger role in system inaccuracies as computational power has risen

and methods can use extremely powerful optimization techniques.

2.4 Camera Calibration Application Space

Needing to calibrate one or more cameras and/or other devices with cameras can be

placed under the large umbrella of ”machine vision”. The idea of camera calibration

has been around for over half a century. During the second World War, there grew

an increasingly large need for military aerial reconnaissance and mapping that was

the catalyst for developing the first camera calibration techniques [16]. Most of the

11



more modern camera calibration needs have come from the need for 3D reconstruc-

tion just as it did in the second World War. Some of these applications range from

traditional geopositioning from aerial video or street-view video [17,18], semicon-

ductor metrology and manufacturing [3, 19], and hand-eye motion tracking such

as the infrared and color cameras seen in the Microsoft Kinect for XBox 360. All

of these applications need some form of camera positioning in relation to another

reference point and intrinsic properties of the camera such as focal length.
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Chapter 3

BOUGUET’S CAMERA CALIBRATION APPROACH

3.1 Introduction to Bouguet’s Approach

Camera calibration has matured greatly in the last two decades. With the rise of

powerful personal computers, the complicated optimization, often non-linear and

computationally expensive calibration procedure approaches have become more of

an automated reality. J. Bouguet developed a user-friendly calibration approach

and implemented as a toolbox in MATLAB provided as freeware [5]. It was devel-

oped with Intel and the California Institute of Technology (Caltech) on a MATLAB

platform as a means to transfer over to a C implementation for Intel’s Open Source

Computer Vision library (OpenCV), freely available online as well. This toolbox

was created with a graphical user interface (GUI) that accesses most of the tool-

box’s assets. The aim was for the end user to be able to implement this toolbox

quickly for a variety of applications. We decided to use the Bouguet’s approach

and toolbox for our application because of its strong GUI, ease of MATLAB, many

available assets, and broad acceptance within the field of camera calibration as be-

ing reliable.

As previously stated, the main source of inspiration for this implementation

was based on the non-linear optimization technique first used for camera calibration

by Zhang [1]. In fact, all inspirations of this toolbox have previously been published

and this was an aggresive exercise in combining many techniques into a full user

package.

The full calibration engine consists of three main parts: initialization of

the intrinsic parameters, initialization of the extrinsic parameters, and maximum

likelihood estimation of the full camera model parameters. As the maximum likeli-

hood estimator, Zhang chose the Levenberg-Marquardt algorithm first implemented

computationally in 1978 [20]. It is a nonlinear algorithm designed to minimize the
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algebraic distance between two functions in a least squares sense. This algorithm

requires initialization of the intrinsic and extrinsic parameters.

3.2 Image and Algorithm Setup

The procedure for running the toolbox itself has been well documented by Bouguet.

However, the proper procedure for image acquisition has been sparsely documented.

Although the toolbox may have been created for everyday type applications, for

high accuracy applications such as the one considered in this thesis, the documen-

tation is not sufficient.

To start using the toolbox, there needs to be a proper calibration rig and a

proper calibration procedure. Typically, the calibration rig is a checkerboard or a

map of identically distributed circles either in a 2D plane or 3D cube. The toolbox

coded as is accepts only a checkerboard pattern, however we adopted the code with

minimal effort to use circles. The object is to have as many feature points on the

calibration rig as possible as each captured image with more feature points offers

more equations for the nonlinear parameter search. This creates an overdetermined

set of equations, which is desired and is explained in more detail in Section 3.5. In

a checkerboard, these feature points have traditionally been found as the corners of

the squares within the outside of the rig. If the calibration rig is a map of identically

distributed circles such as ours, the centroids of each circle are the captured feature

points; this is refered to as a ”centroid rig”. However, with both of these calibration

rigs, the spacing between points is remarkably important and can hinder the results

tremendously if not mapped correctly to their true spacing. If high-accuracy 3D

reconstruction is the user’s application, the calibration rig must be manufactured

under high tolerances. Generally, the lowest tolerance of the system dictates the

dependence of the overall accuracy of reconstruction.

The user takes images of the calibration rig all with slightly different orien-

tations. This is so the optimization engine sees different perspectives of exactly the
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same calibration rig. Having the same pose institutes copies of the same parameters

giving the optimization no new projective information. Zhang’s optimization en-

gine used for this toolbox operates on more than two degrees of freedom (DOF) [1].

This is different from other optimization methods such as Tsai’s [13] that operate

on the principle of ”radial allignment constraint” or coplanarity between camera

frame and object frame. This means that the camera frame must be perpendicular

to the object frame - only translation and rotation in x and y are allowed. This is

a simplification of the optimization routine proving to be less accurate. Since this

toolbox operates on more than two DOF, rotation, tilt, and vertical displacement

are utilized in the calibration procedure from image orientation to the next. Vertical

displacement is an important distinction to make from method to method. However,

one may quickly experience that this must not be taken lightly. Depth of field of

a lens system limits just how far of a displacement is allowed as an image that is

not in focus gives very poor feature point detection results. All of these distinctions

help the optimization resolve the proper intrinsic and extrinsic parameters except

for lens distortions.

The four coefficients for radial and tangential lens distortion describe how

the entire image is changed from the ideal pin-hole camera model. In order to

properly gather as much accurate information about the lens distortions across the

entire lens, the object should provide as many feature points across the entire image

as possible. This means that the user, along with the previous procedures, should

integrate an operation that includes orienting the object away from the center of the

image. This can be accomplished by moving the object to different spots in the

image frame. An example of this object movement is shown in Fig. 3.1, where

information is missing for values of x between -8 and -4. This is a direct analogy

to when the calibration object is primarily imaged in the right side of the image

frame only. The distortion model parameters may be incorrectly estimated due to
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non-distributed feature points within the image frame. However, a more suitable

idea is to have a calibration rig that fills the image as much as possible with feature

points. One distinction to make is that the lens’ field of view cannot be changed to

accomodate this procedure. In fact, the lens and camera system cannot be changed

in any way from calibration to object imaging. Instead, the calibration rig must be

manufactured or setup with the lens’ field of view in mind. These procedures have

varying importance depending on how distorted the lens is. An extremely distorted

lens, such as a fish-eye or wide-angle lens, depends greatly on this procedure to

help the optimization find the correct estimate. However, an expensive lens with

distortion correction (called ”abberation correction” in industry) may actually not

need any distortion model estimation depending on the accuracy requirements. In

that situation, the distortion parameters could be set to zero and not be part of the

optimization routine.

Figure 3.1: An example of a poor polynomial fit due to lack of position data along
the x-axis. The example is analogous to missing data on the left side of the image
frame required for distortion camera model estimation.

An obvious, but important, distinction is that in a stereo setup using stereo

triangulation like in this application, the calibration routine must be ran for both
16



cameras. Thus, an image set must exist for each camera to accurately provide indi-

vidual camera parameters. It is important in both experimentation and final design

to have the cameras and object be set up to allow for a stable calibration rig and

procedure. The cameras must be rigid with respect to the object and each other

(the only exception is line-scan cameras, sometimes called ”pushbroom” or ”push-

frame”). Also, the calibration rig chosen needs to be stable for imaging purposes

yet removable to allow for proper object imaging. For each pose of the calibra-

tion rig, each camera must take an image at their respective perspective differences.

This enables the cameras to be synchronized to the same calibration procedure. In

more detail, the rigid body transformation between the left camera and the calibra-

tion rig can be mapped as well as the transformation between the calibration rig and

the right camera. It is only once the full extrinsic parameters of each camera are

estimated that the full rigid body motion transformation of one camera with respect

to another can be found. This information is required for 3D reconstruction using

stereo triangulation, among other things. It is also important to ensure that there

are no problems with the depth of field or occlusion due to highly oblique angles

of the camera with respect to the calibartion rig. Note that, occlusion handling of

correspondance points has received a lot of attention in the field of 3D reconstruc-

tion [21, 22].

Bouguet has provided a means of feature point extraction for checkerboard

patterns. Although this has no baring on the calibration process, a poor feature

point extraction algorithm can lead to reconstruction inaccuracies. In order to im-

prove feature point extraction, a segmentation algorithm can be used to segment

the circles from its background and find the centroids. From here, each image has

a two point coordinate for each feature point that can be used in the subsequent

calibration algorithms.
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3.3 Intrinsic Parameter Initialization

Both Bouguet and Zhang chose to not explicitly solve for the distortion parame-

ters. Instead, they are set to zero to be initialized [1, 5]. Also, as it was shown that

the intrinsic principle point (I0,J0) in Equation 2.3 cannot be estimated in a direct

manner [13], it is set at the center of the image, following the ideal pin-hole model.

Since the skew factor is set to one, the only intrinsic parameter that needs to be ini-

tialized for estimation is the focal length f. In Bouguet’s implementation, the focal

length both in the x and in the y direction is estimated using a method based on the

orthogonality of vanishing points, as outlined in [23]. A set of homogeneous linear

equations are solved using singular value decomposition (SVD), and the solution is

associated with the smallest eigenvalue or the right singular vector of the decom-

posed vector space. This method is identical to the closed-form solution in [1].

Note that the two parameters differ from each other by the skew factor s, which is

initialized to one.

It is important to remember that just because some parameters are set to

zero, such as the distortion parameters, that does not mean that they are any less

important or unable to converge to a correct estimate. A nonlinear optimization

technique always needs an initial guess even if the initial guess is far from the

correct estimate. However, the estimator’s accuracy may be hindered depending on

the algorithm’s robustness to outliers as well as the initial guess.

3.4 Extrinsic Parameter Initialization

The rigid body transformation between the camera body point (x,y,z) (with z= 1 as

the image has no depth information) and the known world points (X ,Y,Z), together

with the relevant extrinsic parameters, is provided in Equation (2.1). Together with

the estimated values of the intrinsic focal length f , principle point (I0,J0) and skew

parameter s, these provide all the parameters needed in the pin-hole camera model
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to back-project any detected feature point into the camera model (x,y). As part of

the extrinsic parameter initialization phase, the rigid body transformation between

the back projected detected points and the known world points needs to be esti-

mated. This is achieved by finding the 3×3 homography matrix H between the 3D

world points and the expanded homogeneous 2D back-projected points given in
x

y

1

= H


X

Y

Z

 (3.1)

This is accomplished using the SVD method to solve a system of linear equations

in a least squares sense. From matrix H, the terms R and τ in Equation (2.1) can be

extracted as the initialized extrinsic parameters of each image.

3.5 Maximum Likelihood Estimation

With the initial guesses of every parameter in our camera model, the non-linear

optimization technique based on the maximum likelihood criterion can now be

used to obtain the parameter estimates. There are n detected feature point vectors

[ui j vi j] per calibration object with different poses within m images, i = 1, . . . ,m

and j = 1, . . . ,n. We can naturally assume that our system is not perfect due to the

noise within the camera, the physical limitations in the lens, and the manufactured

tolerances of the calibration object. Using the maximum likelihood estimation, the

functional p

p =
m

∑
i=1

n

∑
j=1

∥∥∥∥∥∥∥∥∥∥


ui j

vi j

1

− F̂


Xi j

Yi j

Zi j


∥∥∥∥∥∥∥∥∥∥

2

(3.2)

is minimized where ‖ · ‖2 is the L2 norm. Here, F̂ is the estimated fundamental

matrix (from Equation (2.4)) containing all of the estimated intrinsic and extrin-

sic parameters from their respective initialization phases. Solving this estimation

problem involves m×n equations with 14 unknowns: focal length f , principle point
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(I0,J0), skew factor s, Euler angles ω , ϕ , and κ defining the rotation matrix R, and

the translation vector [tx ty tz]T in Equation (2.1) and the distortion parameters k1,

k2, p1, and p2 from Equations (2.7-2.8). This makes for a highly overdetermined

system with many more equations than unknowns. Minimizing the functional p,

referred to as pixel error, results in estimating the parameters of the entire camera

model as described by F. Bouguet chose to implement this approach following the

method that Zhang used - the Levenberg Marquardt algorithm (LMA) for non-linear

maximum likelihood estimation [1]. The only minor difference is that Bouguet used

the camera model presented by Heikkil and Silven, including two extra distortion

coefficients corresponding to tangential distortion [15].
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Chapter 4

ANALYSIS OF CAMERA CALIBRATION ALGORITHM PERFORMANCE

Pixel error has been a long standing measure of camera calibration accuracy in

the literature. However, it has the disadvantage that it does not always yield the

expected results when the number of images increases. It was seperately shown

that providing additional images or information to the calibration routine should

increase the calibration accuracy [1]. However, albiet slightly, pixel error trends

upwards over increasing number of images well beyond the minimum required.

In our work, we propose to use a measure of camera calibration accuracy based

on the variance (or equivalently, standard deviation) of estimated camera model

parameters when Monte Carlo simulations, in the form of multiple input images

taken with different perspective poses, are applied.

4.1 Monte Carlo Simulation Trials

In this thesis, we analyze the performance of the Caltech calibration software and its

system variables in ways that have not been considered in prior works. Specifically,

we consider a new approach to analyze camera model parameter estimation using

Monte Carlo simulations. For a single camera, we used 20 images and obtained a

calibration set of N images by varying the projection of the calibration object to the

camera sensor. The projection was varied by varying the three axis of rotation and

the three axis of translation of the calibration object while staying within the depth

of field and field of view inherent to the stationary camera setup. A Monte Carlo

simulation trial (MCST) consisted of randomly selecting a set of m < N projection

images (out of the N possible projections) to be used as calibration input images in

Bouguet’s calibration toolbox. We performed a total of T =100 MCSTs with each

m image subset being a new random permutation of the N image set. We refer to

the T trials as a Monte Carlo Simulation Set (MCSS).
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There is certainly a distinct chance that a m-image subset can be repeated

within T MCSTs. The probability that a m-image subset is perfectly repeated at

least once is given by

Pr(m;N,T ) = 1− M!
(M−T )!MT , M =

N!
m!(N−m)!

(4.1)

where ! is the factorial operator. It is important to note that the image order within

the m subset does not matter. The rest of this thesis will use values of m= 10,11, . . . ,19.

Using Equation (4.1) with N = 20 images and T = 100 MCSTs, the probability that

a m = 10 image subset repeats at least once is approximately 2.63%. The proba-

bility with m = 15 is approximately 27.4% and m = 19 is 100%. Note that using

repeated image sets simply provides identical information and does not affect the

calibration performance. In future work, N should be increased until the probability

is less than 1% for all values of m.

4.2 Hardware Setup and Calibration Object

All imaging experiments were performed within Intel Corporation as part of a 3D

reconstruction project using stereo triangulation. Note that the project itself guided

the decision of which camera and optics to use, not this body of work.

The hardware setup used in all subsequent studies is detailed below. The

experimental set up was originally for stereo 3D reconstruction applications, that

require multiple cameras. Here, two Adimec OPAL 8000 area cameras were con-

figured in a stereo setup. For the camera calibration performance analysis study,

we only used one of the cameras. The cameras have an active sensor size of

3296×2472 pixels (∼8 Megapixels) with a square pixel size of 5.5×5.5 µm. Both

of these cameras use a Schneider Optics purchased Macro-Symmar 5.6/80mm lens.

They have a very high modulation transfer function over the 400-700 nm visible

spectrum, which entails low aberrations in the specified wavelength range. That

should translate to low radial distortion parameters in our camera model. Extension
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tubes were needed to fully use the entire camera sensor. Note that Schneider Optics

provides the needed extension tubes that will work based upon your field of view

(FoV) needs. The depth of field (DoF) was experimentally found to be around 1.5

mm at completely open aperture. No focus ring exists on the lens and no external

focus mount was used. Therefore, in order to focus the lens, the working distance

(distance from the lens center to the calibration object) needed to be changed. This

proved to require other separate hardware outside the camera. Because such high

accuracy is required, large vibrations cannot be tolerated so an extremely rigid sys-

tem is required to hold the camera in place. Large, aluminum, breadboard, bench

plates were purchased from Edmund Optics to attach everything in a customizable

fashion. TECHSPEC series linear stages from Edmund Optics were purchased to

allow the cameras to rotate and translate preciously moving up and down precisely

(because of no focus mount). A single similar z-stage was used to move the cali-

bration object up and down. Finally, a goniometer was loosely placed on top of the

z-stage for precise angular adjustment of the calibration plate. This is demonstrated

in Figure 4.1.

In this setup, a mixture of ambient florescent light as well as directional flo-

rescent light were used. The directional light is used to maximize contrast in the

image without over-saturating the image due to specular reflections. The calibra-

tion target is highly reflective; for future application, a target of low reflectively is

optimal as stray specular reflections are common with this target. Because of this,

any direct light used must be observed closely. However, the lighting should be as

constant as possible throughout the experiments to reduce experimental errors due

to lighting. Note that systematic errors from illumination cannot be compensated

for yet as no related direct study has been done prior. For the majority of the ex-

periments, the direct florescent lighting was placed directly between the cameras

pointing down along the Z-axis. The cameras were placed symmetrically about
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Figure 4.1: Optical breadboard setup for calibration with the two 8 MP Adimec
cameras with Schneider Optics lenses setup in a stereo application. The Edmunds
purchased caliration plate setup in a non-coplanar pose upon a z-state and goniome-
ter for precise movement.

the world Z-axis, so any tilts in the ZX plane may cause specular reflections. Any

specular reflections that show up in the image dictate the operator to perform a

small deviation of the illumination position just for that image so as to keep the

experimental variation as low as possible.

The DoF of macro lenses like this are typically very small. In this setup, the

DoF of the lenses proved to be extremely constraining at an experimentally verified

1.5 mm. If too much tilt exists from the camera or calibration target, part of the

target’s grid will be blurred causing unreliable feature point extraction. Because

of this, the amount of tilt was constrained experimentally. In future applications,
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higher tilts can be tolerated if the DoF is increased. An image taken exploiting the

small DoF is shown in Figure 4.2. This is not only an introduction to what the grid

looks like, but also notice the crisp circles near the bottom of the image and very

blurry circles near the top.

Figure 4.2: Edmunds Optics purchased calibration plate image with poor focusing
near the top.

Lastly, the aperture of the lens will be left as open as possible simply to

make sure consistency is held throughout the experimentation process. As of now,

the literature has not explored compensating for the aperture within the pin-hole

camera model. Anything other than an aperture all the way open or closed can

prove to give arbitrary results as the f-stop markers that qualify aperture size are

not precise. Also, the illumination was not able to be increased to give enough

contrast for anything other than the lower end of the f-stop. Future experiments

should require higher intensity illumination to exploit a closed aperture causing the

DoF to increase.

When the application desires high accuracy results like this, the calibration

piece must have very high manufactured accuracy. In fact, Heikkila [6] stated that

”the relative accuracy in the object space should be better than the accuracy aspired

to in the image space.” The accuracy of the system is only as good as the worst
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Circle Diameter Center to Center Spacing
0.25 ± 0.0025 mm 0.5 ± 0.0025 mm

Table 4.1: Spacing and accuracies for the supplied calibration plate.

accuracy of any individual piece. If the calibration plate (the object in object space)

accuracy is worse than the accuracy desired from the image, then, even with a

perfect algorithm and an extremely high resolution camera, the system will surely

be constrained by the calibration plate. As previously stated, the calibration piece

can be either 2D or 3D such as the ones used by Heikkila [6]. In this application, a

single plain calibration plate is used due to availability and size constraints. A non-

custom Edmund Optics purchased plate was used called a multi-frequency grid

distortion target. It contained printed circles with three different sizes and grid

spacing. The inner-most grid was used with a grid circle count of 26×26. The

spacing is given as well as the very important manufactured tolerances. These

are the tightest tolerances available currently from Edmund Optics without custom

ordering. As noted in Table 4.1, the tolerances are 2.5 µm. This means that a

3D reconstruction application such as this cannot expect a better accuracy than 2.5

µm. Lastly, the circles were manufactured to be painted black while the background

surface is white. This was to provide for maximum contrast upon the image.

4.3 Intrinsic Parameter Estimation Accuracy

Using Monte Carlo simulation trials, as discussed in Section 4.1 we propose a new

measure of camera calibration accuracy. The accuracy measure is the variance, or

equivalently, standard deviation, of the estimated intrinsic parameters when multi-

ple images are used for the camera model estimation in the calibration routine.

Investigation of Approach

Typically, when analyzing the accuracy of an estimated camera model, the actual

value of the pixel error ε is used as the accuracy measure [1,6,13,15,24]. By actual

value of pixel error of the calibration routine, we refer to the mean of n individual
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feature point pixel errors over m images. The pixel error εi j of the ith calibration

feature point using the jth image is defined as the average 2D Cartesian Euclidean

distance between the projected world feature points (X,Y,Z) and the detected feature

points (u,v). A pixel error near zero implies that the camera calibration process has

correctly estimated the camera parameters so as to describe the projection of the

world feature points into the image.

εi j =

∥∥∥∥∥∥∥∥∥∥


ui j

vi j

1

− F̂


Xi j

Yi j

Zi j


∥∥∥∥∥∥∥∥∥∥

2

(4.2)

ε =
1

mn

m

∑
i=1

n

∑
j=1

εi j (4.3)

However, pixel error (PE) has one distinct disadvantage when analyzing its

behavior with respect to the number of images used. Using only a small number

of images (up to 5), it [1] was shown in that average PE decreases with increas-

ing number of images. Specifically, the most improvement in PE was noted near

the minimum number of images required for the specific projective technique, and

continued to converge to a finite number with increasing number of images. Note,

however, that when we used many more images (up to 19), we did not observe the

same trend in the PE. Instead, as the number of images increased, the PE trended

upwards, albeit slowly, as demonstrated in Figure 4.3.

Instead of PE, we propose a different measure of camera calibration accu-

racy. The measure is related to the accuracy of estimation of the calibration model

parameters, and it is expected to change with the number of images, or equivalently,

the number of Monte Carlo simulation trials (MCSTs) used in the calibration. As

each MCST is used with different input information, an estimated parameter value

varies between trials. The variation is due to system noise and variances in cal-
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Figure 4.3: Average pixel error as a function of the number of images used as input
into the calibration routine

ibration object pose from image to image. Thus, the new metric is the standard

deviation of the estimated parameter after T MCSTs.

Since the camera does not change its position while the calibration plate

does and the extrinsic parameters are described as the rigid body motion from the

calibration plate to the camera, the extrinsic parameters are unique for each image

used in a MCST. Between trials, a new subset of images would likely be used,

resulting in new, unique extrinsic parameters that, when clustered together with

other image sets, are expected to be quite different in value. As a result, it does

not make sense to use extrinsic parameters as a performance metric as it would be

inconclusive within a MCSS. Instead, certain intrinsic parameter estimates are used

to form the metric. We chose to use the focal length f , as it has a direct linear

dependence to the camera model. Note that this dependency was also explored by

T. Rahman [25] as it related to distortion parameters over a wide range of possible

distortions. The variance of the focal length estimated f̂i is obtained at the ith

MSCT and given by
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1
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T

∑
i

f̂ 2
i −

[
1
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T

∑
i

f̂i

]2

(4.4)

where T is the total number of MCSTs. Using this metric, the lower the variance of

the estimated focal length, the more accurate the estimate and thus stronger belief

that the focal length has been estimated correctly.

Experimental Results

For our experimental work in analyzing calibration accuracy, we used the same

single camera model. Although prior studies using different accuracy metrics did

not see any improvement by adding higher order distortion terms to the camera

model [6], we wanted to verify this using the new estimate variance metric as well

as figure out the best distortion model for our camera model. This experimentation

study also demonstrates our method of characterizing parameter estimation accu-

racy using Monte Carlo simulations.

The distortion camera model given by Equation (2.7) and Equation (2.8)

expresses the camera model with four distortion parameters: a first and second

order radial k1 and k2 and a first and second order tangential p1 and p2 distortion

parameters. These are the distortion parameters [1, 6] most often used with the

common camera model using Taylor series distortion coefficients (see Equation

(2.6)). Other distortion models without Taylor series coefficients, such as the one

in [26], will not be considered.

We consider four camera models. The first model is in terms of the four

distortion parameters, the two highest orders for both radial and tangential and it is

given by

 IR + IT

JR + JT

=

 ID(k1r2 + k2r4)+2p1IDJD + p2(r2 +2I2
D)

JD(k1r2 + k2r4)+ p1(r2 +2J2
D)+2p2IDJD)

 (4.5)
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The second model only depends on the first order radial distortion parameter and

the two tangential distortion parameters.

 IR + IT

JR + JT

=

 ID(k1r2 +0)+2p1IDJD + p2(r2 +2I2
D)

JD(k1r2 +0)+ p1(r2 +2J2
D)+2p2IDJD)

 (4.6)

The third model depends only on the first order radial and tangential distortion

parameters.

 IR + IT

JR + JT

=

 ID(k1r2 +0)+2p1IDJD +0)

JD(k1r2 +0)+ p1(r2 +2J2
D)+0)

 (4.7)

And finally, the fourth camera model is an extension of the model in Equation (4.5),

but with an added third order radial distortion parameter.

 IR + IT

JR + JT

=

 ID(k1r2 + k2r4 + k3r6)+2p1IDJD + p2(r2 +2I2
D)

JD(k1r2 + k2r4 + k3r6)+ p1(r2 +2J2
D)+2p2IDJD)

 (4.8)

Using the fourth model, we want to explore whether higher order terms will

improve camera model accuracy. Using a single MCSS for each camera model, we

considered T = 100 MCSTs for calibration using N = 20 and k = 10. For each trial

within a set, the focal length f was recorded to obtain the standard deviation σ f of

the MCSS per camera model.

For consistency in comparing results, for each camera model used, σ f was

normalized by a global average focal length µ f so as to have a globally normal-

ized standard deviation from the mean. This relative standard deviation (RSTD)

metric is given by σ f = σ f /µ f . We used the value µ f = 21662 pixels throughout

this work for this setup as it was found to be the mean estimated focal length of

all distortion camera models. For a different setup with a different lens and focal
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Camera First Second First Second Third
Model Order Order Order Order Order σ f f̂
(CM) Radial Radial Tangential Tangential Radial (pixel) (%)
CM1 X X X X − 527.75 2.44
CM2 X − X X − 620.75 2.87
CM3 X − X − − 555.45 2.56
CM4 X X X X X 843.50 3.89

Table 4.2: Standard deviation and RSTD metrics for the four different distortion
camera models using 100 MCSTs with k = 10 calibration input images.

length, it would be difficult to compare results without normalization as the mean

is expected to shift. Without normalization, the standard deviation of a smaller fo-

cal length would be considerably worse off when compared to a much larger focal

length of similiar standard deviation. The results of the RSTD for the four differ-

ent models using k = 10 images are provided in Table 4.2. Note that we use the

notation CM1, CM2, CM3, and CM4 for the first, second, third, and fourth camera

models, respectively. For visual reference, each distortion parameter is shown as a

column and each camera model is shown as a row. The table also further empha-

sizes which distortion parameters are used by each model. From Table 4.2, the first

camera model (CM1) has the lowest estimated focal length RSTD. As a result, we

chose camera model 1 in Equation (4.5) as the camera model for the rest of this

thesis.

In our first experimental study, we used a constant number of images (k=10)

to keep the experimental variables fixed other than the distortion camera model

parameters. For the next study, we vary the number of images using the first camera

model. There is always discussion of how many images are needed to produce a

perfectly determined or overdetermined system of equations. With our calibration

plate, we used 676 feature points producing 676 equations per image, so we have

a highly overdetermined system of equations. Thus, we want to study how many

images would suffice for an acceptable level of estimation accuracy.
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Using T = 100 MCSTs as before, we varied the number of images from

k = 10 to k = 19 images. For each trial within a set, the focal length f was recorded

and the standard deviation as a function of the number of images, k, is shown in

Fig. 4.4. This metric can be equated to a real world, by multiplying it by the pixel

size SI or SJ (they are the same in our square pixel camera) of 6.5 microns per pixel.

This results in the actual focal length of the lens in our pin-hole camera model. For

comparison consistency, the RSTD is shown in Fig 4.5.

Figure 4.4: Focal Length standard deviation (STD) using 100 MCSTs for different
number of images into the calibration routine

Discussion

Table 4.2 shows that, in fact, the model with the two highest order, both radial and

tangential distortion parameters, does indeed produce the most statistically consis-

tent terms. It thus indicates the best camera model to produce an accurate esti-

mation of the focal length, which is the most important intrinsic parameter. This

result using estimated camera parameters across a Monte Carlo simulation is inline

with previous results using pixel error as their metric. If one was to desire a Tay-

lor series representation of distortion parameters as their distortion camera model,
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Figure 4.5: Focal length relative standard deviation (RSTD) using 100 MCSTs for
different number of images into the calibration routine

the two highest order terms for both radial and tangential would produce the most

consistent intrinsic parameter estimation. The first model in Equation (4.5) is the

consistently chosen distortion camera model.

From the results in Fig 4.5, the standard deviation of the focal length is

approximately 0.015% the value of its mean when k = 10 images are used. When

k = 19 images are used, the standard deviation reduced by an order of magnitude to

0.0015% of its mean. It is clear that adding more images to the calibration routine

produces a fairly linear improvement to focal length estimation. We expect that

this trend will continue as the number of images increases more than 19. Thus, the

more images added to the estimation, the higher the estimated calibration model

accuracy.

Note that in order to explore the type of calibration accuracy required for

different applications, a similiar approach can be followed. The resulting estimated

values will change depending on the calibration object tolerances, number of fea-

ture points on an object, and number of images. Also note that this procedure can
33



be extended to other intrinsic parameters. However, for our application of stereo

3D reconstruction, the focal length was the most relevant intrinsic parameter.

4.4 Reduction in Algorithm Computational Time

Although we have demonstrated in Section 4.3 that the more images used as input

to the calibration parameter estimation, the higher the estimated calibration model

performance, adding a large number of images can increase computational time.

Here, we investigate how the maximum likelihood estimator (MLE) thresholds can

be improved for our application to significantly reduce computational time while

maintaining high accuracy criteria.

Investigation of Approach

As discussed in Section 3.5, Bouguet’s calibration toolbox utilizes a non-linear

optimization technique (Levenberg-Marquardt’s least squares MLE) to minimize

pixel error over the camera model functions in Equation (3.2). Because this is an

iterative solution, it requires a stopping criteria. The two stopping criteria used in

this toolbox are a lower threshold T1 on the percentage change δ of the focal length f

and principle point (I0,J0) compared to the previous iteration’s values and an upper

threshold T2 for the number of maximum iterations allowed. The former can be

described in more detail as the norm percentage change for each iteration given by

δ =

√
( f (new)− f (old))

2
+(I(new)

0 − I(old)
0 )

2
+(J(new)

0 − J(old)
0 )

2√
f (new)2

+ I(new)
0

2
+ J(new)

0
2

(4.9)

For example, f (new) refers to the current iteration’s focal length estimate while f (old)

refers to the previous iteration’s estimate. For each iteration, δ is computed and

compared with a user defined threshold T1. The second threshold of maximum

iterations per calibration T2 is also user defined. When the minimization function

reaches either of the thresholds, the function ceases to continue and is said to be

complete.
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Within each iteration, the camera model parameters are approaching their

optimal value. They can be said to be approaching a local pixel error minima that

is hopefully the global minima of the parameter search space. That, however, is

constrained by the abilities of the implemented MLE approach, the Levenberg-

Marquardt algorithm (LMA).

Before moving forward, an important note must be said about computa-

tional time. All of the studies in this work were done in MATLAB. In order to time

how long a section of code takes to run, MATLAB offers two ways of doing so - the

tic toc approach and a built in Profiler integral to optimizing a piece of code for run

time purposes. However, if the computer is running many computationally inten-

sive tasks in the background, the run time will be longer than normal. The absolute

best method of correctly identifiying how much computational time spent on a task

would be to track the clock cycles. However, MATLAB offers no such built in func-

tionality. Moving forward, to mitigate this, all simulations were run on the same

computer with all unneeded processes removed. The tic toc method was used as it

is extremely simple to implement and has an experimentally measured 99.9957%

average accuracy per calibration routine when compared to the MATLAB profiler.

Because they are so similar, both approaches are worthy of implementation.

Experimental Results

In this study, we lay a baseline case of Bouguet’s implementation to investigate

its statistical properties concerning its intrinsic parameter estimation and computa-

tional run time. This baseline case is called the ”Default Method” (DM). T = 100

MCSTs were ran for each number of images k. Within each trial, the focal length,

pixel error (PE), and time per iteration were recorded. Because this is a baseline

case of how the camera calibration routine runs naturally as designed, the thresh-

olds were set at their default values - T1 = 1× 10−9 and T2 = 30. We have included

pixel error only because it has been used so extensively in prior works and can be
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shown that the same conclusion about computational time can be said for parameter

estimation STD as well as pixel error.

Figure 4.6: The average focal length STD across every iteration of a MCSS versus
number of images input into the calibration routine

Figure 4.7: The average pixel error across every iteration of a MCSS versus number
of images input into the calibration routine
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Figure 4.8: The average total iterations needed per Monte Carlo simulation trial
(MCST) within a Monte Carlo simulation set (MCSS) versus number of images
input into the calibration routine

Figure 4.9: The average cumulative time over iterations per Monte Carlo simulation
trial (MCST) within a Monte Carlo simulation set (MCSS) versus number of images
input into the calibration routine
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Fig. 4.6 shows similiar results from Fig. 4.4. However, Fig. 4.6 expands to

include the results per iteration. The same could be said for Fig. 4.7 as it is simply

an expansion of Fig. 4.3 to include results per iteration. First, we clearly see that

the results once again show that the more images are fed to the calibration routine,

the lower the focal length STD per MCSS will be. The opposite trend can be said

for PE as it rises with increasing number of images. Neither of these conclusions

are new, however.

It is important to note that it is very difficult to compare setup to setup using

pixel error. The amount of pixel disparity from a projected point to a detected point

upon the image from setup to setup is dependent on pixel size, magnification of

camera, inherent inaccuracies of the calibration piece, and the intrinsic and extrinsic

parameters of the camera (not estimated parameters of the camera model). If one

was to use a camera with a larger pixel size with all things being equal, a pixel error

of, for example, 0.1 pixels would mean more than from a camera with a smaller

pixel size. A camera that is closer to the object will have a higher magnification.

This means that the object is projected onto a larger portion of the image sensor.

Therefore, higher pixel errors will naturally arise due to the inaccuracies of the

calibration plate.

Next, it is noted that the typical cutoff for the optimizer is at 18-19 iterations,

shown clearly in Fig. 4.8. This is the trial to trial average within a MCSS of the total

iterations needed to finish optimizing under the baseline rules of default thresholds.

Because every number of images produced an average between 18 and 19 iterations,

we rounded down and called 18 iterations finished. Using 19 iterations as the global

average would falsify data as the average iteration count per number of images

never even reached that value once.
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However, the most important conclusion to draw from both Fig. 4.6 and

Fig. 4.7 is that the STD and PE respectively clearly show a converging trend for

every plot line. It can be seen that both the STD and PE, due to the estimation of

the camera model parameters, converges to their best accuracy extremely quickly

at around 8-12 iterations.

There is clearly an opportunity to save time by constraining the maximum

number of iterations allowed, T2. If we take the average cumulative time to reach 10

iterations tk
10 per k images and the same average cumulative time to finish optimiz-

ing tk
f per k images under the baseline default thresholds, we can show the average

time saved per k images in percentage is given by

t̂k =
tk

f − tk
10

tk
f

(4.10)

This is essentially the local normalized time saved. This idea of reducing T2 is

referred to as the ”Reduced Default Method” (RDM). This can be shown visually

for k=10 in Fig. 4.10. It is incredibely important to note here that though we

used a global average to normalize focal length, a local average was used here for

time. This was done because focal length can easily change from application to

application while time is a human concept that will not change from application to

application. Time is already normalized for us based on its definition while focal

length is not. Thus, we applied a normalizing agent to move forward.

However, this train of thinking can quickly lead us short of the requirement

for high-accuracy 3D reconstruction. Fig. 4.11 shows how much accuracy we are

losing by stopping the optimizer short, by taking the STD for the k images at 10

iterations and at final completion and taking their percentage difference for all k

values. The methodolgy is exactly the same as with the computational time saved.
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Figure 4.10: RDM - By shortening maximum iterations to 10 (approximate itera-
tions needed for convergence), the mean of the total time saved per Monte Carlo
simulation trial (MCST) within a Monte Carlo simulation set (MCSS) versus num-
ber of images input into the calibration routine

All of the prior work of this section can be concluded and summarized into

a single table shown in Table (4.3).

DM RDM DM to RDM Difference
k Iter ST D Cumulative Iter ST D Cumulative Accuracy Nominal

(pix) Time (s) (pix) Time (s) Lost (in STD) Time
(×10−3 %) Saved (%)

10 18 329.24 7.27 10 328.94 3.95 1.37 45.7
11 18 319.47 7.67 10 319.23 4.16 1.12 45.8
12 18 249.71 8.08 10 249.55 4.31 0.73 46.6
13 18 205.16 7.82 10 205.01 4.20 0.69 46.3
14 18 196.63 8.59 10 196.58 4.64 0.23 46.0
15 18 196.23 9.27 10 196.11 4.98 0.58 46.2
16 18 152.94 9.55 10 152.82 5.11 0.58 46.5
17 18 124.07 10.13 10 123.98 5.37 0.43 47.0
18 18 90.36 10.70 10 90.31 5.69 0.25 46.8
19 18 59.194 11.24 10 59.14 5.96 0.22 47.0

Table 4.3: The summary of the time savings and accuracy lost of improving upon
the baseline case by reducing the maximum iterations allowed to T2 = 10.
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Figure 4.11: By shortening the number of maximum iterations to 10 iterations (iter-
ations needed for convergence), the average percentage lose of the STD per Monte
Carlo simulation trial (MCST) within a Monte Carlo simulations set (MCSS) versus
number of images input into the calibration routine

Each row of Table 4.3 signifies the results for each number of images k. The

difference between DM and RDM is the culmination of Fig. 4.11 and 4.10.

Discussion

Table 4.3 shows that, in fact, we can improve upon the default values present in

Bouguet’s classic toolbox. Fig. 4.4 and 4.7 both show the typical accuracy metric

and our new Monte Carlo parameter estimation accuracy metric as converging to an

optimal value much earlier than the maximum iterations T2 is set to. For example

on Fig. 4.7, for 10 images from iteration 12 to iteration 13, on average, only 1.46×

10−8 pixels of error was corrected for by better camera model parameter estimation.

That is approximately only 2.08 × 10−5% improvement from its current result at

12 iteration. We can conclude that the optimizer is doing very little from iteration

to iteration to optimize our camera model after the point of convergence. Because

of this, we are allowed to further reduce T2 to 10 iterations, for example. From

all k values, we see an average time savings of about 46.4%. Not only do we see
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a significant reduction in computational time, we see a minimal loss in accuracy.

From all k values, we see an average accuracy loss of about 6.2 × 10−4 % in terms

of the STD.

Table 4.3 also shows a fairly constant time savings no matter how many im-

ages are used. This is due to two reasons. First, as already stated, we are using a

local normalizing agent from Equation (4.10) that normalizes the cumulative time

difference between DM and RDM by the DM time for every k value. The cumula-

tive time at any iteration will indeed be larger, for example at k = 19 images, when

compared to the cumulative time at the same iteration for a lower k value. Instead,

we have chosen a global threshold for maximum iterations and all images will stop

at the same iteration count because of this. Coupling that the time per iteration is

fairly linear according to Fig. 4.9, and since Equation (4.10) states that the percent-

age difference is always between the new RDM T2 value and DM’s average total

iterations, we should expect a fairly constant time savings irrespective of the value

k.

However, we based our decision of choosing T2 = 10 as an early cutoff point

based on visual evidence. Moving forward, we constructed a performance trade off

analysis. As discussed, we saved computational time by reducing the maximum

iterations to 10, however, we lose a certain amount of accuracy. This is a trade-

off and changing T2 will trade benefits from computational time and accuracy, as

demonstrated in Fig. 4.12.

This shows us that if we pick T2 = 1, we would save nearly 100% time;

however, we would lose almost 0.2% accuracy in terms of STD. That is certainly

a very small accuracy loss even for allowing the optimizer only one iteration to

work. This is only because of the chosen maximum likelihood estimator and the

high density feature point calibration object. This may not be possible for other

applications. Nonetheless, for optimal performance trade off, it is clear that choos-
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Figure 4.12: Performance trade off - By shortening maximum number of itera-
tions T2 to a certain value, the average percentage lose of STD and computational
time per Monte Carlo simulation trial (MCST) within a Monte Carlo simulation set
(MCSS) will change (k = 10 images)

ing T2 between 8 and 10 iterations would maximize computational time saved and

minimize accuracy loss.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary

In this thesis, we proposed a new way of characterizing accuracy of a camera cali-

bration method as well as improving upon a well known method for all applications

while using Monte Carlo simulations. The standard deviation of an estimated in-

trinsic camera model parameter within a Monte Carlo set was shown to improve

with increasing number of images as well as with increasing iterations within the

iterative maximum likelihood estimation (MLE) optimizer. Using this method of

experimentation, we have also shown that the MLE optimizer does not require all

the iterations it was provided with as thresholds governing its operation. In fact,

we reduced the number of iterations to account for over 45% reduction in compu-

tational time while only losing 0.001% of the new relative focal length standard

deviation within a Monte Carlo set accuracy metric.

5.2 Future Work

Chapter 4 used exclusively either a constant number of images k or a range varying

from ten to nineteen. This was able to sufficiently show the required trends. Further

analysis should at least include the minimum number of images of two in order to

fully understand the limitations. Expanding the maximum number of images to a

value in the range of fifety or one hundred would more accurately generalize many

of the trends seen here to show whether they are indeed linear as they appear or if

they exhibit a higher order response.

It was shown that the Monte Carlo simulation approach can be used to test

the random sampling of images in order to show accuracy trending for various

parameters within Bouguet’s toolbox implementing Zhang’s MLE. However, there

exists many varied approaches that this Monte Carlo approach could be applied to,

such as the approach by Heikkila, Tsai, Weng, and many others [6,13,15,17,27,28].

44



Lastly, it was shown that focal length estimation accuracy within a Monte

Carlo simulation set was reduced with increasing number of images. Focal length

was chosen as the key estimated parameter because of its key dependence in ob-

taining successful 3D reconstruction. In order to explore more possibilities that the

Monte Carlo method can be used, further analysis with other intrinsic camera pa-

rameters could be implemented including principle point and distortion parameters,

especially using a wide-angle lens.
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