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ABSTRACT  
   

In this dissertation, in-situ X-ray and ultraviolet photoemission 

spectroscopy have been employed to study the interface chemistry and electronic 

structure of potential high-k gate stack materials.  In these gate stack materials, 

HfO2 and La2O3 are selected as high-k dielectrics, VO2 and ZnO serve as potential 

channel layer materials. The gate stack structures have been prepared using a 

reactive electron beam system and a plasma enhanced atomic layer deposition 

system. Three interrelated issues represent the central themes of the research: 1) 

the interface band alignment, 2) candidate high-k materials, and 3) band bending, 

internal electric fields, and charge transfer. 1) The most highlighted issue is the 

band alignment of specific high-k structures. Band alignment relationships were 

deduced by analysis of XPS and UPS spectra for three different structures: a) 

HfO2/VO2/SiO2/Si, b) HfO2-La2O3/ZnO/SiO2/Si, and c) HfO2/VO2/ HfO2/SiO2/Si. 

The valence band offset of HfO2/VO2, ZnO/SiO2 and HfO2/SiO2 are determined 

to be 3.4 ± 0.1, 1.5 ± 0.1, and 0.7 ± 0.1 eV. The valence band offset between 

HfO2-La2O3 and ZnO was almost negligible. Two band alignment models, the 

electron affinity model and the charge neutrality level model, are discussed. The 

results show the charge neutrality model is preferred to describe these structures. 

2) High-k candidate materials were studied through comparison of pure Hf oxide, 

pure La oxide, and alloyed Hf-La oxide films. An issue with the application of 

pure HfO2 is crystallization which may increase the leakage current in gate stack 

structures. An issue with the application of pure La2O3 is the presence of carbon 

contamination in the film. Our study shows that the alloyed Hf-La oxide films 
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exhibit an amorphous structure along with reduced carbon contamination. 3) Band 

bending and internal electric fields in the gate stack structure were observed by 

XPS and UPS and indicate the charge transfer during the growth and process. The 

oxygen plasma may induce excess oxygen species with negative charges, which 

could be removed by He plasma treatment. The final HfO2 capping layer 

deposition may reduce the internal potential inside the structures. The band 

structure was approaching to a flat band condition. 
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Chapter 1 

INTRODUCTION 

1.1 CMOS scaling and leakage current 

"The number of transistors incorporated in a chip will approximately 

double every 24 months." —Gordon E. Moore.[1] This is Moore’s law, which 

was introduced in 1965. For decades, essentially, it described the pace of 

technology development for the semiconductor industry.  For a planar technology, 

the dimension of a transistor will be scaled down by a factor of 0.7 every two 

years.  While there have been many challenges met by fundamental and applied  

research, the most serious current problem is the FET ‘gate stack’ which includes 

the gate electrode and the dielectric layer on the silicon channel. 

For a typical Metal Oxide Semiconductor Field Effect Transistor 

(MOSFET), the drive current is an important parameter, which determines the 

on/off status of the device.  A high drive current means a fast switching time. The 

FET drive current ID can be expressed with following equation:  

)
2

)((
2

DS
DSthGSoxD

V
VVV

L
WCI −−= µ , (1.1) 

where μ is the charge-carrier effective mobility, W is the gate width, L is the gate 

length and Cox is the gate oxide capacitance, VGS is the voltage applied between 

the transistor gate and source, VDS is the voltage applied between the drain and 

source, and Vth is the threshold voltage. To obtain the necessary improved 

performance, the Cox must be increased. 
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The MOSFET can be treated as a parallel plate capacitor, and the capacitance can 

be given as: 
 ox

ox t
AkC 0ε=  , (1.2) 

Where k is the relative dielectric constant (relative permittivity), ε0 is the 

permittivity of free space (8.85 × 10-12 F/m), A is the area of the capacitor plate 

and tox the thickness of the dielectric, which usually is an oxide. According to the 

equation, there are three ways to obtain a higher capacitance: 1) increase the area 

A, 2) decrease the thickness of oxide layer tox, and 3) increase the dielectric 

constant k. However, since the transistor size is scaled down in each future 

generation, the area A is always decreasing, which results in a decreased 

capacitance. To maintain the required capacitance, the thickness of dielectric 

oxide tox has been reduced in past generations. Nowdays, as the thickness of oxide 

is at the nanometer scale, the leakage current due to the quantum tunneling effect 

has become large. The tunneling possibility T for a single particle:  

)))((22exp(
2

1
2∫
−

−∝
x

x

ExVmdxT


, (1.3) 

Where V(x) is the barrier height due to the oxide layer, E is the carrier energy, x1 

and x2 are the oxide layer position, and for simplicity, V(x) is considered as a 

constant. Then rewriting Eq. 1.3: 

 )2exp( oxCtT −∝ , (1.4) 

Where 2/)(2 EVmC −=  is constant, and tox is the thickness of the oxide. As 

indicated in the equation, the tunneling leakage current increases exponentially as 

the oxide thickness is reduced. As, the thickness of SiO2 is reduced to below 2 
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nanometers, the gate leakage current due to electrons tunneling electrons the SiO2 

layer has become large. Consequently, the power dissipation increases to 

unacceptable values [2-4]. Therefore, reducing the thickness of the oxide (SiO2) is 

no longer an option for future technology. An alternate approach is to replace 

SiO2 with other oxides that have a higher dielectric constant than the SiO2 which 

is 3.9. These oxides are called high-κ dielectrics. 

1.2 High-k dielectrics 

Silicon dioxide is the crucial material that enabled adoption of Si as the 

basic material in the semiconductor industry. Some of the advantages of SiO2 

include: it is a very good insulator; it can be prepared by the thermal oxidation of 

Si; it is amorphous with few defects; and it is compatible with Si with a low 

interface state density. However, the major issue is the tunneling leakage current 

has exceeded allowed values for the very thin SiO2 which has a dielectric constant 

of 3.9. Consequently, it is necessary to find a new material to replace SiO2 as a 

gate dielectric. Generally, the materials which are typically metal oxides, with a 

dielectric constant higher than the 3.9 value of SiO2, are termed high-k materials. 

The requirements for candidate oxide as high-k materials include:  

1. The dielectric constant (k value) is the key parameter, which must be 

high enough to accommodate years of the scaling down the transistor dimensions. 

2. The material is a good insulator with a large band gap. It has a 

reasonable band offsets with Si which can confine the electrons and holes inside 

the channel layer and prevent carrier injection into its own bands.  

3. It has a smooth interface with Si, with a low density of interface states. 
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4. It is thermally compatible with required high temperature processes. 

 

Figure 1.1. Dielectric constant versus band gap for candidate gate oxides [5]  

Figure 1.1 shows the band gap and dielectric constant of several candidate 

high-k dielectric materials [5]. As indicated in the figure, the candidate materials 

with a higher k value, tend to exhibit a lower band gap. If the band gap is too low, 

the band offset of this material with Si will be small. Table 1.1 lists candidate 

high-k oxide materials and their reported conduction band offset on Si, their band 

gap and k values. The conduction band offset is required to be more than 1 eV, 

otherwise the electrons within the channel layer can tunnel through the gate 

dielectric resulting in a large leakage current. For example TiO2, has a high k 

value of ~ 100, but it is still not a good candidate as the band gap of TiO2 is low 

and the conduction band offset is almost zero to Si. Considering the balance 
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between relative high k value and acceptable band gap, the preferred high-k oxide 

candidates have a k-value between 20-30. So ZrO2 HfO2 and La2O3 are the most 

studied candidates. In addition, Al2O3 with a high band gap, and good insulating 

property, though it has lower k value of 9.  

 

Table 1.1. Dielectric constant (k), experimental band gap and conduction band 

(CB) offset on Si of gate dielectics candidates. [6] 

 K Band Gap (eV) CB Offset (eV) 
Si  1.1  
SiO2 3.9 9 3.2 
Al2O3 9 8.8 2.8 
Ta2O5 22 4.4 0.35 
TiO2 80 3.5 0 
SrTiO3 2000 3.2 0 
ZrO2 25 5.8 1.5 
HfO2 25 5.8 1.4 
HfSiO4 11 6.5 1.8 
La2O3 30 6 2.3 
a-LaAlO3 30 5.6 1.8 

 
 

ZrO2 and HfO2 have similar properties as they are in the same column of 

the periodic table. However, HfO2 is preferred as more stable since ZrO2 may 

form a silicide Zr2Si during high temperature processes [7-10]. La2O3 another 

candidate material, has a slightly higher k value than HfO2, but La2O3 absorbs 

water and carbon dioxide when exposed to air, which forms LaO(OH) and 

carbonate structures. [11-13] It has been reported that HfO2 may form crystalline 

domains which can lead to rough surfaces and electrical leakage. These problems 

have been addressed by alloying other glass forming oxides, like SiO2. Our results 
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reported that HfO2 alloyed with La2O3 may solve this crystallization problem. 

[14]  

1.3 Oxide channel layer material 

Today, single crystalline semiconductor materials such as Si, GaAs and 

GaN and semiconductor related oxides like SiO2, dominate the electronic 

industry. Some oxides such as indium tin oxide (ITO) have wide application as 

conducting oxides. In the future, oxides may have increased applications. In our 

study, we will discuss two oxides for future applications. One is zinc oxide (ZnO), 

which may have potential application in thin film transistors for displays. The 

other is vanadium oxide (VO2), which may have future application in switching or 

memory devices. 

1.3.1 Zinc oxide 

ZnO is a semiconductor material with a direct band gap of 3.4 eV at room 

temperature [15]. Compared to hydrogenated amorphous silicon (a-Si:H) which is 

the active channel layer material of conventional thin film transistors (TFTs) with 

a low mobility of less than 1.0 cm2/Vs [16], ZnO has a room temperature mobility 

of ~100 cm2/V·s [17]. As-grown, undoped, ZnO films typically exhibit n-type 

semiconductor characteristics with an electron concentration from 1017 to 1021 cm-

3. [18, 19] This high carrier concentration has been attributed to defects such as 

zinc interstitials or oxygen vacancies. [20, 21] ZnO, as a transparent conducting 

semiconductor material, has been proposed for the channel layer of transparent 

thin film transistors (TFTs) for flexible transparent display.  
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TFT’s in flexible transparent displays require a process temperature of less 

than 180 °C, and plasma enhanced atomic layer deposition (PEALD) has been 

considered to achieve a ZnO deposition temperature in the range of 25~120 °C. 

High mobility zinc oxide thin films have been successfully grown by thermal 

ALD at temperatures ranging from 200 to 350 °C. [22-24]. Recently, low 

temperature (100~200 °C) thermal ALD growth of ZnO has also reported. [25] 

Diethyl zinc (DEZn) and dimethyl zinc (DMZn) have been employed as 

precursors for this process, and PEALD ZnO thin films have exhibited mobilities 

of 1.0 to 6.0 cm2/V·s [26, 27]. In PEALD, the activated oxygen species generated 

by the plasma can significantly reduce the deposition temperature and produce a 

denser film with a potentially lower defect concentration. In order to minimize the 

effects of defects and excess species, studies up to now have focused on high 

temperature deposition or post deposition annealing. [28-30] However, both are 

high temperature processes , which do not meet the low temperature processing 

requirement for flexible substrates. Thus, incorporation of ZnO into a TFT 

process, requires and approach that has a low deposition temperature and low 

defect density along with identification of dielectric layers to confine carriers in 

the channel. 

1.3.2 Vanadium dioxide 

Vanadium dioxide (VO2) is a narrow band gap material (Eg = 0.7eV) [31], 

with a well known Metal to Insulator Transition (MIT) property. This MIT 

transition can be affect by temperature, [31,32]  strain[33] and electric field. [34-

38] The insulator to metal transition temperature for VO2 is ~70°C (343K), 
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[31,32] with an abrupt three order magnitude change of resistivity. Figure 1.2 

shows the resistance vs temperature transition hysteresis during heating and 

cooling. The other two common vanadium oxides, V2O3 and V2O5, show IMT at 

160K [39] and 530K, respectively [40]. This transition temperature can be 

affected by the strain on the VO2 and substrate. Some studies of VO2 on TiO2 

show that the transition temperature can be as low as 300K due to strains. [33] 

Recently, it has been found that the MIT transition can be achieved by applying 

an external electric field at a constant temperature. [34-38] Figure 1.3 shows the I-

V curve of a VO2 film under the effect of an external electric field. The results 

indicate a critical electric field for MIT transition of ~107 V/m. The large 

resistivity change and the abrupt MIT of VO2, makes it a strong candidate for a 

variety of optical and electrical switching applications. [41,42] 
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Figure 1.2. Resistance  vs Temperature for a VO2 film showing the abrupt change 

in resistance and thermally induced phase transition. [37] 

 

 

Figure 1.3. log(I) vs V curves for a VO2 film  at particular temperatures. [37] 

The mechanism of this MIT has been the subject of numerous papers and 

is still under debate. Researchers have proposed two explanations for the MIT 

transition. The thermally induced MIT has been explained by a structure phase 

transition. When VO2 is heated from low to high temperature through the MIT 

temperature, the VO2 crystal structure changes from the insulating monoclinic 

phase to the metallic tetragonal phase. The results indicated that the MIT is 

attributed to the structure phase transition. [32, 33] More recently, as the electric 

field assisted MIT has been studied, it has been argued that the Mott transition 



  10 

may be the main reason for this MIT. [35-38, 42] Other researchers have 

presented calculations which suggested that Joule heating can not be the main 

reason for MIT. [38] This Mott transition hypothesis argues that when the carrier 

density in VO2 is beyond a critical value a Mott transition occurs independent of a 

structural change. The Mott transition would occur at a critical electron 

concentration given by (NC)1/3 αH ~ 0.25 where, NC is the critical carrier density 

and αH is the Bohr radius.[41]  The results indicate a critical electric field of ~ 107 

V/m and a critical density of ~1019 cm-3.  

However, device structures with VO2 will require integration with high-k 

material which has not beed studied to date. In our study, we investigate a gate 

stack structure of VO2 with HfO2, and understand the band relationship of this 

new structure. 

1.4 Band alignment 

In a CMOS structure, the oxide layer, which is usually SiO2, is the 

insulating layer between channel layer and gate electrode. In our studies the 

semiconductor Si served as the channel layer. Transition metal oxides with high 

dielectric constant are investigated for the insulator layer. In this study HfO2 or 

HfO2-La2O3 alloyed oxide with reasonable dielectric constant ~ 20 were explored 

as possible dielectric materials. Also for the channel layer, we are proposing VO2 

and ZnO as channel layer materials for future application of oxide devices, such 

as switching and memory storage. One of the most important characteristics of 

any new gate stack structure is the barrier height (band offset) between the high-k 

insulator layer and the new oxide channel layer. The band offset is required to be 
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high enough to block the carriers (electrons or holes) in the transistor channel. 

The band alignment of these oxides layers with Si substrate need to be 

determined. 

Currently, two models are often considered to describe the interface band 

alignment of oxide and semiconductor. One is the electron affinity (EA) model, 

which originated from the Schottky-Mott model that describes the barrier between 

a metal and a semiconductor. When a metal and a semiconductor are in contact, 

the n-type Schottyky barrier (Φb) is described as follows: 

Φb = ΦM – χ, (1.5) 

Where the ΦM is the work function of the metal and χ is the electron affinity of 

the semiconductor. In the case of higher the work function than semiconductor 

electron affinity, as shown in Fig. 1.4, electrons from the semiconductor side will 

flow into the metal side, and align the Fermi level with the metal. This will leave 

a depletion layer inside the semiconductor near the interface. Consequenty, the 

vacuum levels of the metal and semiconductor are aligned. When applied to the 

insulator and semiconductor interface, this model has been termed as the electron 

affinity (EA) model. In the EA model, the Fermi level and vacuum levels are 

aligned at the interface of the insulator and the semiconductor. 
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Figure 1.4 Schematic illustration of an n-type Schottky barrier.  a) metal and 

semiconductor are separated. b) Metal and semiconductor are in contact. A 

Schottky barrier is formed. 

The Schottky-Mott model is successful in the metal semiconductor 

systems where thet two vacuum levels at the interface are well aligned. However, 

when the vacuum levels are not aligned, which means an interface dipole is 

present at the interface, the Schottky model is not an accurate description. A 

model has been proposed by Bardeen and Heine that when dealing with surface or 

interface, localized states are present in the band gap [43, 44] These states could 

be called as “metal-induced gap states” (MIGS). [45] These virtual states could be 

thought as the dangling band state dispersed into the semiconductor band gap or 

the metal wave functions decaying exponentially into the semiconductor band 

gap. These states are derived from conduction or valence band states. The cross-

over point or branch point represents the charge neutrality point for the 

semiconductor. This branch-point energy has been termed the charge neutrality 

level (CNL). Consequently, the Fermi level at the interface is pinned near the 
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charge neutrality level. These charge neutrality levels have been calculated for Si, 

Ge some III-V and II-VI compound by Tersoff [45]. J. Robertson also applied this 

model to calculate the CNL for oxides [5] and Mönch calculated the CNLs for 

diamond, zincblende and wurzite structured semiconductors [46]. 

The band alignment between two semiconductors (a and b) depends on the 

interface dipoles [47, 48]. The band alignment is described as matching the CNLs 

and also modified by an S factor, as shown as below:  

Φn =  (χa  – ΦCNL,a) - (χb – ΦCNL,b ) + S (ΦCNL,a  – ΦCNL,b), (1.6) 

Where Φn is the conduction band offset, χ and ΦCNL, are the electron affinity 

values and CNLs of semiconductor a and b. S is the Fermi level pinning factor. 

Mönch found an empirical equation to determine the S value [49], where ∞ε is the 

dielectric constant. 

2)1(1.01
1

−+
=

∞ε
S , (1.7) 

a) When S = 1, substitution into Eq. 1.6, the CNLs canceled each other. The band 

offset is the difference of the electron affinities of the two materials, which is 

described by the EA model.  

b) When S = 0, the Fermi levels are pinned at the CNLs. In the band alignment 

the CNLs are well aligned. This is the CNL model.  

In our study, the band alignment relationships are experimentally 

determined for these new gate stack structures. The two band alignment models 

are then considered to characterize the nature of the electronic states at the 

interface. 
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1.5 Thesis approach 

The gate stack structures are becoming more complicated for today’s and 

future electronic applications. High-k materials are widely employed as insulator 

dielectrics. Also new channel layer materials are being investigated to replace the 

traditional channel layer materials.  In this thesis, we focus on gate stack 

structures with high-k dielectrics and new oxide channel materials, with a 

particular focus on the interface electronic structure. 

In chapter 2, essential information about the instruments is introduced, 

including: a) growth equipment, oxide molecular beam deposition (MBD) and 

plasma enhanced atomic layer deposition (PEALD); b) characterization 

equipments, X-ray photoelectron spectroscopy (XPS) and ultraviolet 

photoelectron spectroscopy (UPS). The band alignment analysis method is also 

described. 

In chapter 3, a gate stack structure has been prepared with a HfO2 capping 

layer and an ultra thin VO2 interlayer on oxidized Si substrates.  The 2nm thick 

films of each layer were grown by oxide molecular beam deposition on oxidized 

n- and p-type substrates. This chapter addresses two issues: 1) development of a 

high quality gate stack structure with high-k dielectrics and an oxide channel 

material; 2) the determined the band set off of HfO2/VO2 and the interface 

charges in the processing. TEM analysis confirmed the layer structure and 

indicated sharp interfaces without evidence of interdiffusion. From the in-situ 

XPS and UPS spectra, the valence band offset between the HfO2 and VO2 is 

measured to be 3.4 ± 0.1 eV. The interfacial charge transfer during the processing 
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are discussed. The band alignment for this gate stack structure was deduced. We 

propose that the charge neutrality level model describes this gate stack structure. 

In Chapter 4, the focus is on the candidates high-k materials. In this 

chapter, three high-k materials, pure Hf oxide, pure La oxide, and alloyed Hf-La 

oxide films were prepared by using remote plasma enhanced atomic layer 

deposition (PEALD). The relative composition and atomic bonding structure of 

the films were determined by in-situ X-ray photoelectron spectroscopy (XPS). 

Atomic force microscopy (AFM) and transmission electron microscopy (TEM) 

were implemented to characterize the morphology and crystalline structure. The 

main issue of the HfO2 is the formation of nanocrystalline domains in the film 

which may increase the leakage current.  Our result show that alloyed Hf-La 

oxide has an amorphous structure with a smooth surface. This alloyed oxide could 

be an alternative for pure HfO2 as a possible candidate of high-k dielectrics. We 

also observed that the oxygen plasma treatment may induce excess oxygen 

species in the deposited film. This excess oxygen species could be partially 

removed by a He plasma treatment.  

In chapter 5, we extend our study to new channel layer material ZnO 

which has a relatively high mobility and combine it with our previous study of 

alloyed Hf-La oxide. ZnO is adopted as a channel layer material and integrated 

into a gate stack structure with an alloyed HfO2-La2O3 (11% HfO2 and 89% 

La2O3) layer, which are both grown by PEALD. The band alignment of this 

structure was established for an n-type Si substrate, based on characterization of  

in-situ x-ray and ultraviolet photoemission spectroscopy. A valence band offset of 
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1.5 ± 0.1 eV was measured between a thin ZnO layer and a SiO2 layer. The 

valence band offset between HfO2-La2O3 and ZnO was almost negligible. High 

resolution electron microscopy indicated an amorphous structure of the deposited 

layers. A significant amount of excess oxygen was also observed in the as-

deposited ZnO and (HfO2-La2O3) layers. A helium plasma post-deposition 

treatment can partially remove the excess oxygen in both layers. Our results 

demonstrate confinement of electrons in the ZnO film as a channel layer for thin 

film transistors. 

In chapter 6, we modified the gate stack structure into a quantum well 

structure. This quantum well structure is prepared as an ultra thin VO2 layer 

between two layers of HfO2. The band alignment relationship is studied by 

analysis of in-situ XPS and UPS. The band offset between the HfO2 and VO2 is 

3.4 ± 0.1 eV, which is consistent with our previous result. A band offset of the 

HfO2 layer and the SiO2 layer was measured as 0.7 ± 0.1 eV, which is comparable 

to the value predicted by CNL model. The results demonstrate this well structure 

could contain both electrons and holes, and may have potential applications for 

charge storage in the embedded VO2 layer. 

In chapter 7, the most important results of this dissertation are 

summarized, and future studies based on current work are proposed. 

 
. 
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Chapter 2 

INSTRUMENTS AND ANALYSIS METHOD 

2.1 Introduction 

The experiments are mainly accomplished in-situ using an integrated 

ultrahigh vacuum (UHV) system, as shown in Fig. 2.1, with other ex-situ facilities 

and equipments.  

 

Figure 2.1 Actual view and schematic illustration of the transfer line with 

integrated ultrahigh vacuum (UHV) systems.  

This integrated UHV system involves a linear ~20 m UHV transfer line 

chamber that connects different processes and characterization chambers. The 

UHV transfer line can reach the base pressure of 5×10-10 Torr with 5 cryogenic 

pumps. The sample can be loaded into a loadlock chamber connecting to the 

transfer line. In this study, the following systems are employed, reactive 
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molecular electron beam deposition system (MBD) for oxide growth, remote 

oxygen plasma enhanced atomic layer deposition system (PEALD) which also 

serves as a remote oxygen plasma system for surface cleaning, remoted plasma 

system with H2, N2, He and Ar plasma processes, X-ray photoelectron 

spectroscopy (XPS) for core level analysis, and ultraviolet photoelectron 

spectroscopy (UPS) for valence band spectra. 

The other ex-situ facilities and equipment include: chemical cleaning in a 

cleaning room, typically, an acetone and methanol sonicating cleaning of wafers. 

An Agilent 5500 AFM was used to characterize the morphology of the deposited 

films. A JEOL JEM 4000EX high-resolution electron microscope, operated by 

Dr. David Smith, to observe cross-section image of representative samples. The 

electrical properties of the oxide films were investigated by capacitance voltage 

(C-V) and current voltage (I-V) measurements. 

2.2 Molecular Electron Deposition (MBD) for oxide growth 

2.2.1 Overview of MBD 

The MBD system is based on an electron beam deposition source with an 

oxygen gas delivery system, as shown in Fig. 2.2. The system is pumped by a 10 

inch flange size cryopump and a turbo-molecular drag pump. The base pressure 

can reach ~ of 6×10-9 Torr after baking. Three independent electron beam sources 

are installed with three different metals: hafnium, titanium and vanadium. This 

system is employed to deposit metal oxide films. 
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Figure 2.2 Schematic illustration of molecular electron deposition (MBD) system.  

2.2.2 Electron beam deposition source 

The electron beam deposition source installed on the MBD system was 

obtained from MDC and is operated with an MDC e-Vap CVS emission current 

source controller and a MDC e-Vap CVS 10, 10kW power supply. A typical 

electron gun includes two parts: an electron emitter and the source, shown in Fig. 

2.3. A current (filament current) passing through the emitter filament, generates 

the electron beam (emission current) by the thermionic emission effect. The 

electron beam is accelerated by an electric field and confined by a magnetic field 

to focus on the center of the source. The emission current, which can be adjusted 

by the filament current, is typically 50 ~ 300 mA. The electron beam position can 

be adjusted by the high voltage applied between the filament and the source or the 

magnetic field across the source. The high energy electron beam strikes the source 
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and heats the metal source to the vaporization temperature. Usually, the local 

temperature of the focused spot is above the melting point of the source. Beyond 

the critical temperature, the metal source at the hot spot starts to evaporate. The 

growth rate which is measured by a crystal thickness monitor can be controlled by 

adjusting the emission current.  

 
 
Figure 2.3 Schematic illustration of the electron beam source used for molecular 

beam deposition (MBD) system. The electron emitter and deposition source are 

shown and the electron beam path is marked in blue. 

2.2.3 Oxide growth procedure 

After loading the substrate into the chamber, high voltage (HV) is applied 

between the filament and the selected metal source. Typically, the HV is 6.5 kV 

for the hafnium oxide growth and 5.0 kV for vanadium oxide growth. Then the 

emission current is increased to the critical point when deposition is measured on 
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the crystal oscillator monitor. Typical deposition rates are ~0.01 nm/s. Before 

oxide deposition, the gate valve to the cryopump is closed, and the chamber is 

only pumped by the turbo-molecular pump. The oxygen inlet valve is then 

opened, and high purity oxygen (research grade) gas is delivered into the 

chamber. The oxygen pressure during the growth is 2.0×10-6 Torr for the hafnium 

oxide growth and 6×10-4 Torr for vanadium oxide growth, respectively. Even 

though the oxygen flow rate is maintained at a constant value, the oxygen 

pressure decreases during the growth apparently due to reaction with species 

deposited on the chamber walls. The oxygen flow is adjusted to keep the pressure 

constant. 

2.2.4 Growth of vanadium oxide 

As vanadium oxide is grown under relatively high oxygen pressure ~ 

6×10-4 Torr, problems may occur due to the high oxygen pressure. 

One problem for vanadium oxide growth, is electric arcing occurs at the 

electron beam source. During growth, kilovolts potential is applied between the 

emitter and the metal source. The emitter is at a high negative potential, and other 

parts are grounded. The smallest gap between the negative high voltage emitter 

and grounded parts are around 3-4 mm. If the chamber pressure is less than 1 × 

10-4 Torr then arcing is not detected. However, if the chamber pressure is 

increased to mTorr range, since this is the case for vanadium oxide growth 

condition, arcing was often detected. Approaches often considered to avoid this 

arcing problem include: 1) Reducing the value of the high voltage. However, 
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when the high voltage is changed, the beam spot on the source also changes. The 

magnetic field can be adjusted to move the beam spot back to the center of the 

source. 2) The gas molecules around the e-gun parts are desorbed since the 

emitter is hottest part of the average chamber. The local pressure is considerably 

higher than the whole chamber pressure. Furthermore, oxides may condense 

around the emitter and decompose or evaporate due to the high temperature. To 

avoid these problems, the e-gun can be turned on and the emission current 

increased for 15 min prior to deposition. This pre-deposition heating has been 

adopted to out gas the emitter which may help to reduce this local high pressure 

effect.  

Another problem is concerned with the emitter filament lifetime. The 

emitter filament is made of tungsten wire. Usually, the tungsten filaments can 

work for years in high vacuum conditions. However, if the deposition occurs with 

a relatively high oxygen pressure environment, the filament is degraded due to 

oxidation and evaporation of the oxide. This is evident when a degraded filament 

is replaced, and the aged filament is much thinner than the new one. The tungsten 

oxide can evaporate and deposit around the emitter parts, and contribute to the 

local high pressure. This yellowish deposited tungsten oxide should be cleaned 

when the filament is replaced.   

2.3 Plasma Enhanced Atomic Layer Deposition (PEALD) 

Atomic layer deposition (ALD) is a self-limiting deposition method, 

where growth is achieved by alternatively pulsing precursors and reactants into 

the deposition chamber.[1-3] ALD is similar to chemical vapor deposition (CVD), 
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however, ALD separates the precursors in the gas phase.  The precursor is 

delivered to the chamber until a saturated molecular monolayer is adsorbed on the 

substrate surface. The remaining precursor is purged with a non-reactive gas and 

another precursor or oxidant is delivered into the chamber. This oxidant reacts 

with the previous precursor at the surface of substrate.  

Conventional oxide ALD employs thermal activation to initiate the 

reaction with water molecules as the oxidizer. This thermal ALD process can 

deposit films, in general, between 100 ~ 600 °C. For examples: Growth 

temperature varies from 150 to 600 °C for TiO2 ALD [4] and from 100 to 160 °C 

for ZnO ALD. [5,6] Recently, plasma enhanced ALD (PEALD) has been 

developed, using oxygen plasma as the oxidizer. Compared to thermal ALD, 

PEALD has further advantages including: an ultra low growth temperature, a 

shorter cycle and higher density films. [7-9] Fig. 2.4 shows a schematics of a 

working cycle of plasma enhanced ALD. A pulse of precursor is delivered to the 

reactor using argon as a carrier gas, which is followed by a nitrogen gas purge 

step. In an ideal process one layer of precursor remains on the surface of the 

substrate. In the PEALD process, the oxygen plasma is used as the oxidizer, 

generating oxygen radicals that insert into the precursor ligands which then 

evolve from the surface. The oxygen also reacts with the metal at the surface to 

form the oxide. Due to the nature of the self-limiting process, each cycle results in 

a constant thickness increase and the coating is typically conformal regardless of 

the morphology of the substrate surface.  
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Figure 2.4 Schematic illustration of a working cycle of oxygen plasma enhanced 

atomic layer deposition (PEALD). 

The key parameter of ALD growth is the ALD processing window, which 

is dependent on the growth temperature. Within the ALD growth temperature 

window (T1-T2), the growth rate per cycle (GPC) is constant. However, if the 

growth temperature is out of the temperature window, the growth rate will 

change. Fig. 2.5 shows the growth rate at different temperature regions.  

a) Below the low growth temperature limit (T1): a1) precursor condensation at 

low temperature may result in thicker film deposition. In this case more than one 

monolayer of precursor molecules stick on the surface by both chemisorption and 

physical adsorption. a2) Alternatively the low temperature may result in 

incomplete reaction which will lower the growth rate. The precursors cannot 
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proceed efficiently due to insufficient thermal energy to activate the surface 

reactions. 

b) Above the high growth temperature limit (T2): b1) the precursor may thermally 

decompose at the surface which results in a thicker film. b2) alternatively, the 

precursor may desorb and not adhere to the surface, which may reduce the growth 

rate. The precursor molecules adsorbed on the surface of the sample can re-

evaporate due to the high temperature. 

 
 
Figure 2.5 ALD growth rate at different temperature regions. The growth window 

is between T1 and T2. 

Our plasma enhanced atomic layer deposition (PEALD) system was 

developed from an oxygen plasma enhanced chemical vapor deposition (PECVD) 

system. This system also serves as an oxygen plasma treatment system. Fig. 2.6 

shows a schematic of the PEALD system. The base pressure of the chamber can 
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reach to 5.0×10-9 Torr, pumped by a turbo-drag pump, backed by a roughing 

pump. The remote plasma was excited with 13.56 MHz rf power applied to a 

helical copper coil wound around a 32mm diameter quartz tube that opens toward 

the sample. In these oxygen plasma treatments or ALD growth experiments, the 

forward plasma power was varied from 20 to 200 W, with a low reverse power of 

less than 30 W. During an ALD growth cycle, after the 0.1 s precursor pulse, 

nitrogen gas was introduced for 10 s to purge excess precursor. After the nitrogen 

gas purge, oxygen was introduced into the chamber 6 s before the plasma ignition, 

and the plasma was sustained by rf-power for another 8 s. Subsequently, the 

chamber was pumped for 2 s and purged by nitrogen gas for 8 s before the next 

cycle of growth. The pressure in the chamber during deposition was controlled by 

a throttle valve to a value of 100 mTorr. The Fig. 2.7 shows a schematic of the gas 

pulse sequence for one deposition cycle. 
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Figure 2.6 Schematic drawing of the PEALD system. 

 

 
Figure 2.7 Schematic illustration of the processing sequence in one cycle 

deposition. 

2.4 Photoemission spectroscopy 
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Photoemission spectroscopy system includes a light source, electron 

optics, an electron analyzer, and an electron detector in a vacuum environment. 

Incident photons strike the sample and excite the electrons from relatively deeply 

into (~ micrometers) the sample. However, most of the electrons which are 

excited in the deep region of the sample are not emitted due to scattering and 

recombination. Only excited electrons near the surface can escape from the 

sample. The dependence of the average electron escape depth vs kinetic energy is 

presented in Fig. 2.8.[1] The electrons which are generated near the sample 

surface will be emitted to the vacuum if they still have enough kinetic energy to 

overcome the work function of the material. Many scattered electrons are also 

emitted, but these electrons show up as secondaries in the spectrum and cannot be 

directly related to the valence band electronic states. 

 

 

Figure 2.8 Electrons average escape depth vs kinetic energy. [10] 
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Two main photoemission spectroscopy systems, X-ray photoelectron 

spectroscopy (XPS) and Ultraviolet photoelectron spectroscopy (UPS) have been 

employed in our studies. The main difference between XPS and UPS is the light 

source. XPS employs X-ray as the light source, and for our system a twin anodes 

X-ray gun is installed with Mg and Al sources. The photon energies of these two 

sources are Mg Kα1 (= 1253.6eV) and Al Kα1 (= 1486.6eV). UPS employs 

Ultraviolet light as the light source, which can be generated by a gas plasma 

discharge. Usually, noble gases like helium and argon serve as the discharge gas. 

In our system, research grade purity (99.9999%) He gas serves as the discharge 

gas. In the series of He emitting lines, two of the strongest lines are commonly 

used, He I with a photon energy of 21.2 eV and He II with a photon energy of 

40.8 eV. The He I line is more widely employed as it is the strongest emitting 

line. The other main difference is the energy of the emitted electrons. The 

electrons in the atomic core levels can be excited by the high energy, X-ray 

photons. However, the lower energy UV light photons (He I) are employed to 

excite the electrons in the valence band. Other differences such as analyzer and 

chamber, are based on the emitted electron energy range. Fig. 2.9 shows a 

comparison of XPS and UPS.  
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Figure 2.9 Schematic comparison of the photoemission process for X-ray 

photoemission spectroscopy (XPS) and ultraviolet light photoemission 

spectroscopy (UPS).  

2.4.1 X-ray Photoemission Spectroscopy 

The electrons are excited by X-ray photons, emitted out of the sample, and 

collected and dispersed by an electron spectrometer. The spectrometer records the 

number of electrons by their kinetic energies, usually from 0 ~ 1keV. The kinetic 

energy is typically converted into the binding energy using the following relation: 

BE = hν – KE – W, (2.1) 

where BE is the electron binding energy, hν is X-ray photon energy, KE is the 

detected kinetic energy, and W is the work function of the spectrometer. The 

kinetic energy is referred to the vacuum level, and the work function is the energy 
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between vacuum level and Fermi level. Thus, the binding energy is referred to 

Fermi level. The Fermi level is defined as a zero binding energy. 

2.4.2 Ultraviolet light Photoemission Spectroscopy 

The electrons are excited by UV photons, emitted out of sample, and 

collected and dispersed by the electron spectrometer. The spectrometer also 

records the number of electrons according to their kinetic energies, typically in a 

range of 0 to 50 eV. The kinetic energy is usually converted into binding energy 

using the following relation: 

BE = hν – KE – W + V, (2.2) 

where BE is the electron binding energy, hν is the UV photon energy, KE is the 

kinetic energy, and W is the work function of the spectrometer. V is the bias 

between the sample and analyzer which is grounded. Usually, the sample is 

negatively biased to improve the electron collecting efficiency of the analyzer. 

The kinetic energy is referred to the vacuum level, and the work function is the 

energy between the vacuum level and Fermi level. Thus, the binding energy is 

referred to the Fermi level. The Fermi level is then defined as the zero binding 

energy. 

2.4.3 Calibration of XPS and UPS 

The XPS and UPS spectra are usually presented in binding energies rather 

than kinetic energies. However, the real value measured by the analyzer is the 

kinetic energy of the electrons. When the kinetic energy is converted into the 

binding energy by Equations 2.1 or 2.2, it is necessary to determine the work 

function of the analyzer to calibrate the work function. 
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Usually, for calibration of XPS and UPS, the sample is a clean metal 

surface without an oxide. Oxide samples often display charging related shifts 

which would limit the calibration accuracy. The photons exciting electrons out of 

the sample results in positive charge accumulation at the surface of sample. If the 

sample is an insulator, the accumulated positive charges cannot be compensated 

by electrons, which results in a shift of the whole photoemission spectra to higher 

binding energy. The conducting samples, usually metals, can be achieved by in-

situ growth and characterization without exposure to air. Noble metals, such as 

Au, Pt and Ag, can also serve as calibration samples due to their inherent 

resistance to oxidation. 

There are two common ways to determine the work function of the 

analyzer. One is to measure a core level and compare the peak value to a known 

value. The other way, is to determine the Fermi level of the spectrum, and set this 

value as zero in the binding energy scale. For XPS calibration, the first way, peak 

position comparison, is typically employed. The reason is that XPS signal at 

Fermi level (~ zero binding energy) is relative weak. However, for UPS 

calibration, the second way, Fermi level determination, is preferred. The Fermi 

level obtained by UPS is clear for metal surface spectra. But the peak features of 

the valence band spectra are typically broad and asymmetric, due to the electron 

states distribution. 

Fig. 2.10 shows an XPS calibration spectrum with Au 4f peaks. The Au 4f 

peaks are the strongest lines in the Au photoemission spectrum. From curve 

fitting, the Au 4f 7/2 peak position is determined as 83.9 eV with a full with at 
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half maximum (FWHW) of 1.0 eV. Comparing to the standard value of the Au 4f 

7/2 peak position at 84.0 eV, results in a correction of the binding energy by + 0.1 

eV. Also the FWHW can be treated as a resolution parameter of the XPS. 

95 90 85 80
0

5000

10000

15000

20000

25000

 

 
In

te
ns

ity
 (C

ou
nt

s)

Binding Energy (eV)

 Au 4f
 Gauss fitting

 
Figure 2.10 X-ray photoemission spectra of Au 4f peaks. 

Fig. 2.11 shows a UPS calibration spectra of a Au film for calibration. 

Both the He I and He II lines are employed and a 4 volts bias was applied to the 

sample. The front cutoff of the UPS spectrum, which is contributed by the 

electrons with the highest kinetic energy, indicates the Fermi level of a 

conducting sample or the valence band maximum (VBM) of an insulator sample. 

The back side cutoff of a UPS spectrum, which is contributed by the electrons 

with the lowest kinetic energy, indicates the work function of the sample. For this 

gold film, the Fermi level is regarded as the reference point or zero point. In the 

Fig. 2.11 (a), the front side cutoff shows a value of 20.8 eV, indicating the 

electrons at the Fermi level excited by He I UV photons have a kinetic energy of 

20.8 eV. According to equation 2.2, with hν = 21.2 eV, KE = 20.8 eV, V = 4 eV, 
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and BE = 0.0 eV as the zero point, the work function of the analyzer, W, is 

calibrated as 4.4 eV. 

Fig. 2.11(b) and (c) shows the Au film UPS spectra with He II excitation. 

Fig. 2.11 (b) displays whole spectrum and Fig. 2.11 (c) is enlarged to display the 

high kinetic energy part. The UPS He II mode can be obtained by decreasing the 

He pressure of the lamp. Initially, the He lamp is ignited at normal He I pressure. 

In that mode, the lamp is bright with an orange color. Then the pressure of He 

lamp is decrased, until the lamp is close to the extinguishing point. In the He II 

mode, the lamp is dim with a lilac (light purple) color. However, even in the He II 

mode, the He I line (21.2 eV) is still stronger that the He II line. As shown in Fig. 

2.11(b), the signal at low kinetic energies is mostly contributed by He I photons 

and the signal at high kinetic energies which is larger than 21 eV is contributed by 

He II photons. Comparing the intensity of these two parts of the signal, shows that 

the signal from He II line is weaker than the He I line component, even when the 

lamp is operated in the He II mode. Fig. 2.11(c) focuses on the high kinetic 

energy part of spectrum. The front side cutoff is determined as 40.4 eV. 

According to equation 2.2, with hν = 40.8 eV, KE = 40. eV, V = 4 eV, and BE = 

0.0 eV as the zero point, the work function of analyzer W is calibrated as 4.4 eV, 

which is consistent with the value under the He I mode. 
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Figure 2.11 Ultraviolet photoemission spectra of (a) Au foil operated in He I 

mode , (b) ) Au foil operated in He II mode and (c) enlarged high kinetic energy 

part of (b). 

2.5 Band alignment analysis method 

 The band alignment analysis used in this dissertation is based on the XPS 

and UPS measurements. In our study, the typical sample structures were thin 

oxide layers on top of a doped Si wafer with a native oxide. The thickness of each 

thin oxide layer is 1~2 nm and the total thickness of the oxide layers is 4~5 nm. 

The valence band maximum is determined by the front side cutoff of the UPS 

spectra. As the UPS measurement is very sensitive to the surface, we presume the 

VBM determined by UPS is the value at the surface of the layer. For XPS, we 

measured the core level of the elements in the sample. We presume the energy 
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separation between the core level and the VBM is characteristic of the material 

and does not change during the process. Thus, the shifting of XPS core levels 

reflects a change of the VBM. Considering the XPS detecting depth is 5~6 nm, 

the XPS signal has contributions from all the oxide layers and a portion of the Si 

bulk region near the surface. 

2.5.1 Insulator layer 

 Thin oxide layers, typically 1~2 nm thick, are grown on the Si substrate. 

During the processes, charges may transfer between the oxide layers and the Si 

substrate. We presume the charges are trapped at or near the interface of the oxide 

layers, and not inside of the oxide layers. According to Poisson’s equation, the 

electric potential varies linearly across the oxide layer. Thus the core level 

binding energy is also linearly distributed across the oxide layer. Previous study 

proposes that the observed XPS peak position is characteristic of the center of the 

oxide layer. [11] The electric potential across the oxide layer can then be 

calculated from the shifts of the XPS peak positions. When the core level of the 

material measured by XPS shifts by Δ1 during the process, it indicates the VBM 

of the oxide is also shifted by Δ1 eV at the center of an oxide layer. If this shift is 

not affected by other band shifts, the electric potential across this oxide layer is 

calculated as 2×Δ1 eV, as shown in Fig. 2.12 (a). If this shift Δ1 has contributions 

from other band shifts, as shown in the Fig. 2.12 (b), the whole band is shifted up 

by Δ2 at the interface 2. The electric potential across this oxide layer is calculated 

as 2 × (Δ1- Δ2) eV. 
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Figure 2.12 Relationship between the XPS peak shift and the VBM shift, (a) a 

shift of an oxide layer without affected the other layers, (b) a shift of an oxide 

layer which does affect other layers, and (c) band bending in the semiconductor 

substrate.  

2.5.2 Semiconductor substrate 

In this study, doped Si wafers were employed as sample substrates. During 

the process, the trapped charges at the oxide layers can induce a depletion region 

in the Si near the surface. Since the charges in depletion region are uniformly 

distributed, according to Poisson’s equation, the electric potential has a parabolic 

dependence across this depletion region, as shown in Fig. 2.12 (c). As the width 

of the depletion layer is usually tens to above one hundred nanometers, the XPS 

signal is mostly contributed by the interface of the SiO2 and Si. Thus, the Si band 

bending is the same as the XPS peak shifting Δ1, as shown in Fig. 2.12 (c). 

However, if the Si substrate is heavily doped, (the doping concentration is more 

than 1 × 1019 cm-3), the width of the depletion layer is less than 10 nm, which is 
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comparable with the XPS detection depth. In that case, the XPS peak position 

cannot be treated as the value at the interface of oxide and Si.  

The following describes the approach to account for this correction and to 

determine the band bending at the Si/SiO2 interface from a measured shift of a 

core level peak. The photoelectron signal intensity, I, will be attenuated for 

increased depths in the film. The intensity from any thickness is given by 

λ/
0

zeII −= , (2.3) 

where I0 is the signal intensity for the atoms at the surface, z is the depth from 

which the photoelectron originates, and  λ is the photoelectron inelastic mean free 

path. 

The band bending can be calculated using Poisson’s equation: 

ε
ρ

ϕ f−=∇ 2

, (2.4) 

where φ is the electric potential, ρf is the charge density and ε is the dielectric 

permittivity. 

The band bending E can be described by 

2

0
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2
1)( zw

k
nezE −=
ε , (2.5) 

where n is the doping concentration of p-type Si wafer, ~1 × 1019 cm-3, e is the 

electron charge, ~1.6 × 10-19 C, k is the dielectric constant of Si ~11.9,  ε0 is the 

vacuum permittivity, ~8.85 × 10-12 F/m, w is the depletion layer width, and z is 

the depth form the Si/SiO2 interface. 



  42 

In this case the band bending that corresponds to the observed XPS core level 

shift, Eob, can be described using the following expression: 
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where λ is 2.7 nm, the photoelectron inelastic mean free path in Si for Mg kα X-

ray source [12]. Table 1 lists the calculated core level shift for the different 

bending conditions. The calculation is based on a doping concentration of ~1 × 

1019 cm-3, and the XPS peak shift is regarded as the observed band bending. The 

band bending at the interface is calculated with different width of the depletion 

layer, as listed in Table 2.1.  
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Table 2.1. The calculated results of band bending at the Si/SiO2 interface and 

observed band bending for XPS measurement, based on the varied width of the 

depletion layer. 

Width of depletion 

(nm) 

Band Bending 

(observed) (eV) 

Band Bending 

(interface) (eV) 

5 0.09 0.19 

6 0.14 0.27 

7 0.20 0.37 

8 0.28 0.49 

9 0.36 0.62 

10 0.47 0.76 

11 0.58 0.92 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  44 

REFERENCES  
 
[1] T. Suntola, Thin Solid Films 216, 84 (1992). 
 
[2] George, S. M., Ott, A. W., and Klaus, J. W. J. Phys. Chem., 100, 13121 
(1996). 
 
[3] M. Leskela and M. Ritala, Thin Solid Films 409, 138 (2002). 
 
[4] Ritala, M., Leskela, M., Nykanen, E., Soininen, P., and  Niinisto, L. Thin 
Solid Films, 225, 288 (1993). 
 
[5] Yamada, A., Sang, B. S., and Konagai, M. Appl. Surf. Sci., 112, 216 (1997). 
 
[6] Yousfi, E. B., Fouache, J., and Lincot, D. Appl. Surf. Sci., 153, 223 (2000). 
 
[7] Heil, S. B. S., Kudlacek, P., Langereis, E., Engeln, R., van de Sanden, 
M. C. M., and Kessels, W. M. M. Appl. Phys. Lett., 89, 131505 (2006). 
 
[8] Langereis, E., Creatore, M., Heil, S. B. S., Van de Sanden, M. C. M., and 
Kessels, W. M. M. Appl. Phys. Lett., 89, 081915 (2006). 
 
[9] Lim, J. W., and Yun, S. J. Electrochem. Solid-State Lett., 7, F45 (2004).  
 
[10] C. B. Drake. J. Vac. Sci. Tech. 13, 761 (1976). 
 
[11] C. C. Fulton, G. Lucovsky, and R. J. Nemanich, J. Appl. Phys. 99, 063708 
(2006). 
 
[12] S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface  Anal., 17, 911 
(1991). 
 



  45 

Chapter 3 

BAND ALIGNMENT OF VANADIUM OXIDE AS AN INTERLAYER IN A 

HAFNIUM OXIDE-SILICON GATE STACK STRUCTURE 

3.1 Abstract 

Vanadium oxide (VO2) is a narrow band gap material (Eg = 0.7 eV) with a 

thermally induced insulator-metal phase transition (IMT) at ~343 K and evidence 

of an electric field induced transition at T< 343 K. To explore the electronic 

properties of VO2, a sandwich structure was prepared with a 2 nm VO2 layer 

embedded between an oxidized Si(100) surface and a 2 nm HfO2 layer.  The layer 

structure was confirmed with high resolution transmission electron microscopy 

(TEM). The electronic properties were characterized with x-ray and ultraviolet 

photoemission spectroscopy, and the band alignment was deduced on both n-type 

and p-type Si substrates. The valence band offset between VO2 and SiO2 is 

measured to be 4.0 eV. The valence band offset between HfO2 and VO2 is 

measured to be ~3.4 eV. The band relation developed from these results 

demonstrates the potential for charge storage and switching for the embedded 

VO2 layer. 

3.2 Introduction 

Vanadium dioxide (VO2) is a narrow band gap material (Eg = 0.7eV). [1] 

The narrow band gap could enable vanadium dioxide films to act as charge 

storage sites if embedded in a gate stack structure. [2] Other studies have shown 

that vanadium dioxide nanostructures can be embedded in an oxide layer which 
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can be considered for optical data storage. [3] Vanadium dioxide displays an 

insulator to metal transition (IMT) at ~ 343 K with an abrupt three order 

magnitude change of resistivity, which is typically accompanied by a structural 

phase transition.[4-6] The other two common vanadium oxides, V2O3 and V2O5, 

show IMT at 160 K[7] and 530 K, respectively[8]. It has also been proposed that 

the application of an electric field to a VO2 film may increase the carrier density 

which could drive the transition to the metallic phase. This electric field induced 

phase transition could lead to a new class of electric switching devices,[9] which 

could enable oxide based electronics.[10, 11]  

To develop efficient charge storage or switching devices based on the 

electronic properties of VO2, we need to understand the band alignment relative to 

dielectric interfaces and the Si substrate.  In this study, we have prepared a thin 

VO2 layer as an interlayer inserted between the adjoining high-k dielectric 

material (HfO2), and oxidized n- and p-type Si substrates. The layer structure was 

confirmed with high resolution transmission electron microscopy (TEM). The 

measurements on n- and p-type substrates explore charge transfer between the 

layers. Hafnium oxide (HfO2) is one of the most used high-k gate dielectric 

materials with a dielectric constant of 20-25 and band gap of 5.6 eV[12]. In this 

structure the VO2 layer is able to accept charge through tunneling from the 

substrate. With the high-k upper layer an applied gate voltage would control the 

potential of the VO2 layer relative to the substrate.  The band relations for HfO2, 

VO2, and the oxidized n- and p-type Si substrate are determined from in-situ 
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photoemission measurements, and the interfacial charge transfer during the 

growth is discussed.  

3.3 Experiment 

The experiments were accomplished in-situ using an integrated ultrahigh 

vacuum (UHV) system. This system involves a linear ~20 m UHV transfer line 

chamber with a base pressure of 5×10-10 Torr that connects different process and 

characterization chambers. In this study, the following systems are used: remote 

oxygen plasma for cleaning, reactive electron beam deposition system for HfO2 

and VO2 growth, x-ray photoelectron spectroscopy (XPS) for core level analysis, 

and ultraviolet photoelectron spectroscopy (UPS) for valence band spectra. 

The samples are grown on 25mm dia. n-type, phosphorous doped, (100) 

silicon wafers with a resistivity of 0.05-0.09 Ω∙cm and p-type, boron doped, (100) 

silicon wafers with resistivity of 0.006-0.01 Ω∙cm. Before loading into the UHV 

chamber, wafers are cleaned in an ultrasonic acetone bath for 15 min, an 

ultrasonic methanol bath for another 15 min., and dried in ultra high purity 

nitrogen gas. After transfer into the UHV system, the Si(100) surfaces are cleaned 

and oxidized by a remote oxygen plasma. The plasma exposure conditions are as 

follows:  substrate at room temperature, 60 mTorr oxygen pressure, gas flow of 

10 standard cubic centimeters per minute (sccm), and rf power of 30W to excite 

the plasma. The remote oxygen plasma can effectively remove hydrocarbon 

contamination and passivate the Si surface with a thin SiO2 layer [13]. After in 

situ cleaning, the sample was annealed at 500˚C for 5 min. for defect reduction 
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and removal of adsorbed oxygen. The surfaces were then characterized by XPS 

and UPS.  

The VO2 and HfO2 films were deposited in the reactive electron beam 

deposition system which has a base pressure of 7×10-9 Torr. A 2 nm thick VO2 

film was deposited onto the cleaned Si wafer at 550 ºC with an oxygen gas 

pressure of 6×10-4 Torr. Another 2 nm HfO2 film was directly deposited over the 

VO2 layer at room temperature with an oxygen pressure of 2×10-6 Torr. For each 

layer a growth rate of 0.01 nm/s was maintained with a quartz crystal thickness 

rate meter. 

The sample was characterized by XPS and UPS at each step. XPS 

characterization is performed at a base pressure of 6×10-10 Torr using the 1253.6 

eV Mg Kα line of a VG XR3E2 dual anode source and a VG microtech Clam II 

analyzer operated at a resolution of 0.1 eV. The resolution of the analyzer was 

determined from the full width at half maximum (FWHM) of a gold 4f 7/2 

spectral peak to be approximately 1.0 eV; however, through curve fitting, the 

centroid of spectral peaks can be resolved to ± 0.1 eV. Ultraviolet photoemission 

spectra are obtained at a base pressure of 8×10-10 Torr using the He I line at 21.2 

eV and a VSW 50 mm mean radius hemispherical analyzer and VSW HAC 300 

controller operated at an electron energy resolution of 0.15 eV. A negative 4.00 V 

bias was applied to the substrate to overcome the work function of the analyzer. A 

representative sample was observed in cross-section geometry using a JEOL JEM 

4000EX high-resolution electron microscope operated at 400 kV. 
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3.4 Results 

The in-situ experiments consisted of the following process: 1) remote 

oxygen plasma cleaning, 2) XPS and UPS characterization, 3) deposition of ~2 

nm vanadium oxide, 4) XPS and UPS characterization, 5) deposition of ~2 nm of 

hafnium oxide, 6) XPS and UPS characterization. The results of XPS and UPS 

spectra of each step are shown in Figs. 3.1- 3.4. The XPS observation “windows” 

were set for the Si 2p, O 1s, V 2p and Hf 4f core levels. The carbon XPS peaks 

were below the detection limit before and after deposition. 

3.4.1 Si substrate with native oxide layer 

The Si 2p core level is shown in Fig. 3.1. The initial SiO2 layer thickness 

can be determined from the ratio of the bulk (~99 eV) and SiO2 (~104 eV) Si 

peaks. The SiO2 thickness was determined using the following equation [14]: tox = 

λSiO2 ln {[(1/β) (ISiO2
exp/ ISi

exp)] + 1}, where λSiO2 is the attenuation length of the Si 

2p photoelectrons in SiO2, β = (ISiO2
∞/ ISi

∞) is the ratio of the Si 2p intensity from 

thick SiO2 and a Si wafer, and ISiO2
exp/ ISi

exp is the measured ratio of normal 

incident XPS Si 2p intensities. For our XPS instrument configuration, the 

analyzer is normal to the sample. We take λSiO2 to be 2.8±0.02 nm, an average 

from five references [15-19], and β to be 0.83[19]. With these values and the 

measured intensities ratio, the thickness of the initial SiO2 layer on the Si wafer is 

determined to be 0.8±0.1 nm.  
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Figure 3.1 X-ray photoemission spectra of Si 2p peaks for (a) plasma oxidized n-

type Si(100) and (b) p-type Si(100) sample. The curves are for the oxidized Si 

wafer, after deposition of VO2 on Si and after deposition of HfO2.   

For the n-type sample, the XPS binding energies of the Si 2p, O 1s, V 

2p3/2 and Hf 4f 7/2 are summarized in Table 3.1. The initial Si 2p peaks are at 

99.7 and 103.6 eV, respectively, corresponding to bulk Si near the surface and the 
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SiO2 layer of the oxidized Si. Results have established that the Si 2p core level is 

98.8eV below the valence band maximum (VBM) [20]. For the heavily doped n-

type Si wafer, the Fermi level is at 0.9-1.0eV above the VBM. Therefore, the 

initial n-type Si substrate displays a flat band condition as the Si 2p peak is at 99.7 

eV (98.8 + 0.9 eV). After VO2 deposition, the Si bulk and SiO2 related peaks are 

shifted to lower binding energies of 99.4 and 103.0 eV, respectively. After 2 nm 

HfO2 deposition, the Si peaks shift back to 99.6 and 103.2 eV, respectively. The 

shifts in the Si bulk feature are attributed to a change of the band bending in the Si 

substrate, and the differential shifts between the Si substrate and Si oxide features 

are attributed to an electric potential across the SiO2 layer. 

Table 3.1 XPS Si 2p, O1s, V2p 3/2 and Hf 4f 7/2 core level results for 

HfO2/VO2/oxidized n-type Si(100). Values have an uncertainty of ± 0.1 eV. 

 

For the p-type sample, the XPS binding energies of the Si 2p, O 1s, V 

2p3/2 and Hf 4f 7/2 core levels are summarized in Table 3.2. The bulk Si 2p peak 

is at 99.0 eV. Assuming that the Fermi level is 0.1 eV above the VBM for the 

heavily doped p-type Si wafer, and the Si 2p core level is 98.8 eV below the 

n-sample Si 2p (eV) O 1s (eV) V 2p3/2 
(eV) 

Hf 4f7/2 
(eV) 

Process Si bulk SiO2 Main Shoulder   

Substrate 99.7 103.6 532.6 / / / 

2nm VO2 99.4 103.0 530.6 532.0(SiO2) 516.0 / 

2nm HfO2 99.6 103.2 530.9 530.3(VO2) 515.6 17.9 
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valence band maximum (VBM), the results indicate the initial p-type Si substrate 

is at a flat band condition.  

Table 3.2 XPS Si 2p, O1s, V2p 3/2 and Hf 4f 7/2 core level results for 

HfO2/VO2/oxidized p-type Si(100). Values have an uncertainty of ± 0.1 eV.  

 

After VO2 deposition, the Si bulk and SiO2 related peaks are shifted to 

lower binding energies of 99.0 eV and 102.6 eV, respectively. After 2.0 nm HfO2 

deposition, the Si bulk and SiO2 related 2p peaks shift to higher binding energies 

of 99.1 and 103.2, respectively. 

3.4.2 2 nm VO2 

The O 1s and V 2p core levels are shown in Fig. 3.2. For the n-type 

substrate, the peak at 532.6 eV is the O 1s signal of the oxygen in the SiO2 layer. 

After VO2 deposition, the peak at 530.6 eV is attributed to the O 1s signal 

corresponding to the VO2 layer. Also a shoulder peak at the left-hand side of the 

530.6 eV peak is attributed to the O 1s in the SiO2 layer. This shoulder peak is 

located at 532.0 eV, which is 0.6 eV lower than the initial state. This shift is 

consistent with the shift of the Si peak in the SiO2 layer which is also 0.6 eV 

lower after VO2 deposition.  After the HfO2 capping layer, the O 1s peak is 

p-sample Si 2p (eV) O 1s (eV) V 2p3/2 
(eV) 

Hf 4f7/2 
(eV) 

Process Si bulk SiO2 Main Shoulder   
Substrate 99.0  103.2 532.2 / / / 

2nm VO2 99.0 102.6 529.9 531.6(SiO2) 516.2 / 

2nm HfO2 99.1 103.2 530.8 529.7(VO2) / 17.9 
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mostly due to oxygen in the HfO2. After the initial 2.0nm VO2 deposition, the V 

2p3/2 peak is located at 516.0 eV. After the HfO2 deposition, the V 2p3/2 peak is 

shifted to a lower binding energy of 515.6 eV, which may be due to the extraction 

of oxygen from the VO2 layer during HfO2 deposition. The V 2p3/2 peak at 513.3 

eV may be due to other vanadium oxides [21] or vanadium-hafnium interface 

oxides. 

For the p-type substrate, (Fig. 3.2(b)), the peak at 532.2 eV is the O 1s 

signal of the oxygen in the SiO2 layer. After VO2 deposition, the peak at 529.9 eV 

is attributed to the O 1s signal of oxygen in the VO2 layer. Also, a shoulder peak 

at the left-hand side of the 531.6 eV peak is attributed to the O 1s from the SiO2 

layer. This shoulder peak is located at 531.6 eV, which is 0.6 eV lower than the 

initial state. This shift is comparable with the Si peak shift in the SiO2 layer which 

is also 0.6 eV lower after VO2 deposition.  The V 2p3/2 peak is located at 516.2 

eV. After the 2.0 nm HfO2 layer deposition, the intensity of the V 2p3/2 peak due 

to VO2 is significantly decreased.  Again a peak located around 513.5 eV is 

detected, which may be other vanadium oxides or a vanadium-hafnium complex 

oxide. The main O1s peak, located at 530.8 eV after the 2.0 nm HfO2 capping 

layer, represents the oxygen signal from the HfO2 layer. 
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Figure 3.2 X-ray photoemission spectra of O 1s and V 2p peaks for (a) plasma 

oxidized n-type Si(100), (b) vanadium oxide on oxidized n-type Si(100) and (c) 

HfO2 and VO2 on oxidized n-type Si(100).  The figure inset shows the O1s curve 

fitting peaks for 2 nm HfO2 on n-type and p-type Si. 
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3.4.3 2 nm HfO2 

Fig. 3.3 presents the Hf XPS 4f peaks as evidence of the HfO2 layer. For 

the 2.0 nm HfO2 layer on n-type Si, the Hf 4f 7/2 and 4f 5/2 peaks are located at 

17.9 and 19.4 eV, respectively. For the 2.0 nm HfO2 layer on p-type Si, the Hf 4f 

7/2 and 4f 5/2 peaks are located at 17.9 and 19.4 eV, respectively.  
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Figure 3.3 X-ray photoemission spectra of Hf 4f peaks for HfO2 and VO2 on (a) 

oxidized n-type Si(100) substrate and (b) p-type Si(100) substrate.   

 

3.4.4 Ultraviolet photoemission spectra 

The ultraviolet photoemission spectra of the cleaned, oxidized substrate, 

after VO2 deposition, and after HfO2 deposition for both n- and p-type substrates 

are shown in Fig. 3.4. The UPS spectrum of the initial clean SiO2 layer on n-type 

and p-type Si substrates show the valence band maximum (VBM) at 5.5 eV and 

5.0 eV below the Fermi level. The valence band offset between Si and SiO2 is 

then 4.5 eV for the n-type Si substrate, which agrees with previous results for the 

Si-SiO2 band offset [22].  These results are consistent with a low interface state 

density and negligible band bending for the n-type substrate. For the p-type 

substrate, there is an ~0.4 eV inconsistency between the XPS and UPS results for 

the determination of the VBM of the SiO2. Given the sensitivity of UPS 

measurements, we have used the XPS results to determine the relative band 

positions for the SiO2. For the VO2 film, the V 3d peak is close to the Fermi level, 

and the cutoff of this peak gives the valence band maximum at 0.6 eV below the 

Fermi level for both n- and p-type substrates, respectively. After the 2.0 nm HfO2 

layer deposition, the front cutoff of the UPS spectra indicates the valence band 

maximum relative to the Fermi level at 4.0 eV for both of the n-type and p-type 

sample. 
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Figure 3.4 Ultraviolet photoemission spectra of (a) plasma oxidized n-type 

Si(100), (b) vanadium oxide on oxidized n-type Si(100) and (c) HfO2 and VO2 on 

oxidized n-type Si(100).  

3.4.5 Transmission electron microscopy 

Fig. 3.5 displays a cross-sectional electron micrograph of the n-type 

sample structure. The VO2 and HfO2 layers are ~ 1.6 nm and 1.9 nm in thickness, 
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respectively. The final SiO2 layer is ~1.3 nm suggesting that the thickness 

increased due to substrate oxidation during the higher temperature growth of the 

VO2 layer. This is also consistent with the XPS results. From Fig 3.1, the ratio 

(ISiO2
exp/ ISi

exp) of XPS intensities is calculated as 26% for the initial oxidized n-

type substrate which increases to 41% for the final n-type sample. The 

corresponding values are 21% for the initial oxidized p-type substrate which 

increases to 73% for the final p-type sample. Both results indicate that the SiO2 

layer became thicker after deposition of the oxide layers. There is no evidence of 

crystalline order or domains in any of the oxide layers. The contrast of each oxide 

layer is uniform and changes sharply at the Si/SiO2, SiO2/VO2, and VO2/HfO2 

interfaces. The results indicate an amorphous structure and sharp interfaces 

without evidence of intermixing.  
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Figure 3.5 Cross sectional TEM image of the HfO2/VO2/SiO2 structure on n-type 

Si.  A Pt capping layer was employed to protect the surfaces during specimen 

preparation. 

3.5 Discussion 

3.5.1 Valence band offset 

In our study, we employ UPS to determine the VBM and XPS to measure 

the core level energies both with respect to the Fermi energy. For the p-type 

sample, we adopt the value derived from XPS data for the initial band conditions. 

The valence band offset (VBO) of VO2 and SiO2 can be expressed in method 

(3.1) as: 
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VBO = EVBM
SiO2 – EVBM

VO2 - ΔSi - ΔSiO2, (3.1) 

where EVBM
SiO2 and EVBM

VO2 are the VBM (relative to the Fermi level) of the 

initial clean oxidized Si substrate (SiO2 layer) and the VO2 layer obtained by 

UPS, respectively. The ΔSi is the change of band bending of the Si substrate, and 

ΔSiO2 is the change of electric potential across the SiO2 layer both after VO2 layer 

deposition. From Equation 3.1 and Table 3.3(a), the VBO of VO2/SiO2 is 

calculated as 4.0 ± 0.1 eV and 4.0 ± 0.1 eV for films on the n- and p-type Si 

substrate, respectively. 

The band offset (VBO) of VO2 and SiO2 can also be expressed in method 

(3.2) as: 

VBO= (E2p3/2
VO2 – EVBM

VO2) – (E2p
SiO2 – EVBM

SiO2) – Δ1(E2p3/2
VO2 – E2p

SiO2) – 

Δ2(SiO2), (3.2) 

where (E2p3/2
VO2 – EVBM

VO2) is the V 2p3/2 core level to VBM of VO2, (E2p
SiO2 – 

EVBM
SiO2) is the Si 2p core level to VBM of SiO2, Δ1(E2p3/2

VO2 – E2p
SiO2) is the 

energy separation between the V 2p3/2 of VO2 and Si 2p of SiO2, and Δ2(SiO2) is 

the electrical potential across the SiO2 layer. From Equation 3.2 and Table 3.3(b), 

the VBO of VO2/SiO2 is calculated as 4.0 and 4.0 eV for the n-type and p-type Si 

substrates, respectively. The values of the VBO of VO2/SiO2 calculated from the 

two methods are then consistent. 

Table 3.3. Tabulated electronic structure for VO2 on Si substrate, including (a) 

VBM of SiO2 and VO2, the change of band bending (ΔSi), the electrical potential 

change on SiO2 layer (ΔSiO2), and valence band offset (VBO), (b) V 2p3/2 core 
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level to VBM of VO2 (E2p3/2
VO2 – EVBM

VO2), Si 2p core level to VBM of SiO2 

(E2p
SiO2 – EVBM

SiO2), energy separation between V 2p3/2of VO2 and Si 2p of SiO2 

(Δ1), and electrical potential change from the mid of SiO2 layer to the interface of 

VO2/SiO2, (Δ2). For the p-type sample, we adopt the value derived from XPS data 

for the initial band conditions. 

 

 

(b) n-type p-type 
(E2p3/2

VO2 – EVBM
VO2) 

(eV) 515.4 (516.0 – 0.6) 515.6 (516.2 – 0.6) 

(E2p
SiO2 – EVBM

SiO2) (eV) 98.1 (103.6 – 5.5) 98.6 (103.2 – 4.6) 

Δ1 (E2p3/2VO2 - E2pSiO2) 
(eV) 413.0 (516.0 – 103.0) 413.0 (516.2 – 103.2) 

Δ2 (SiO2) (eV) 0.3 0.0 

VBO (eV) 4.0 4.0 
 

The interfacial dipole is calculated as the difference between the vacuum 

levels of the two adjoining materials, which can be expressed as:  

ΔDipole= (hν – WSiO2) – (hν –WVO2) – VBOSiO2/VO2 = WVO2 – WSiO2 – 

VBOSiO2/VO2, (3.3) 

where hν=21.2 eV is the He I photon energy, W represents the width of UPS 

spectra, for SiO2 as 11.7 eV, VO2 as 15.6 eV, and HfO2 as 13.4 eV from the n-

(a) VBM SiO2 
(eV) 

VBM VO2 
(eV) ΔSi (eV) ΔSiO2 (eV) VBO (eV) 

n-type 5.5 0.6 0.3 0.6 4.0 

p-type 4.6 0.6 0.0 0.0 4.0 
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type sample measurements, respectively. Because the spectra for the n-type 

sample were of high quality at both the low and high energy cutoffs, these values 

have been adopted for both the n- and p-type samples. Here (hν –W) is the energy 

of the vacuum level relative to the VBM, and VBOSiO2/VO2 is the SiO2/VO2 

valence band offset. The VO2/SiO2 interfacial dipole can be calculated as 0.1 eV 

on the n- and p-type Si substrate. Similarly, The HfO2/VO2 interfacial dipole can 

be calculated as 1.2 eV on the n-type Si substrate and 1.1 eV on the p-type Si 

substrate. This indicates the electron affinity model only describes the band offset 

of the VO2/SiO2 interface well, indicating a small interfacial dipole, but it is less 

consistent for the whole HfO2/VO2/SiO2/Si bands.  

Robertson [23] has developed a model which presumes that the charge 

will transfer and align the charge neutrality levels (CNL) at the interface. The 

CNL of HfO2 as calculated by LDA is 3.7 eV and the CNL of SiO2 is calculated 

as 4.5 eV [24]. According to the CNL model, the valence band offset of 

HfO2/SiO2 is expected to be 0.8 eV without a VO2 interlayer. Considering the 

valence band offset of VO2/SiO2 is measured as 4.0 eV, the valence band offset of 

HfO2/VO2 is predicted as 3.2 eV by the CNL model. Our results show that for the 

n-type and p-type substrate, the VBM of HfO2 is 4.0 eV, and the VBM of VO2 is 

0.6 eV. The valence band offset for HfO2/VO2 is determined as 3.4 eV, which is 

comparable to the predicted 3.2 eV value.  

We consider now the relative band alignment of HfO2 on SiO2 on Si 

without and with the VO2 inter-layer. The valence band offset of HfO2/SiO2 from 

previous experimental results was found to be 1.05 ± 0.1 eV [25].  In this study 
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the relative band offset of the HfO2/SiO2 with the VO2 interlayer is found to be 

0.8 eV for the n-type substrate and 0.6 eV for the p-type substrate.  Thus it 

appears that both the VO2/SiO2 and HfO2/VO2 interfaces have the same origin of 

the interface dipole.  Robertson has noted that the CNL model would predict a 

VBO of 0.8 eV for HfO2/SiO2 without a VO2 interlayer. This result indicates that 

the CNL model describes the band offset of the HfO2/VO2/Si substrate system. 

3.5.2 Band alignment schematics 

Fig. 3.6 shows diagrams of the band alignment for the different stages of 

development of the n-type sample structure. According to the XPS and UPS 

analysis, the band bending at the SiO2/Si interface is less than the 0.1 eV 

resolution limit of the measurement, which indicates the substrate is at a flat band 

condition. Assuming the 0.1 eV value as a limit, the interface charge density is 

less than 3.6×1011 cm-2. Considering the 1.1 eV band gap of Si and the 8.9 eV 

band gap of SiO2, the conduction band alignment for the oxidized n-type Si 

substrate is also shown in Fig. 3.6(a). After deposition of the 2 nm VO2 layer, the 

bulk Si core level shifts to lower binding energy by ~0.3 eV, indicating upwards 

band bending. The Si core level in the SiO2 layer shifts to lower binding energy 

by ~0.6 eV, indicating an electric potential across the SiO2 layer.  Subtracting the 

Si core level shift (band bending), the potential across the SiO2 layer is 0.6 V (2× 

(0.6 – 0.3) V). Using 0.8 nm for the thickness of the SiO2, the electric field across 

the SiO2 layer is 7.5×108 V/m.  It is presumed that there is no significant electric 

field across the low band gap vanadium oxide layer. According to the UPS 

results, the VBM of VO2 is 0.6 eV below the Fermi level. Considering the band 
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gap of VO2 as 0.7 eV, the band alignment of the two oxide layer structure is 

shown in Fig. 3.6(b). It is noted that the CBM for all of the oxides are deduced 

from the reported values of the band gap, and the CBM are shown as dashed lines 

in the figures. After deposition of the 2 nm HfO2 layer, the Si 2p peaks of the Si 

and SiO2 shift back to 99.6 eV and 103.2 eV, respectively. A slight upwards band 

bending is indicated for the Si wafer, and the potential across the SiO2 is 0.6 V. 

The V 2p3/2 peak shifts from 516.0 to 515.6 eV, an ~0.4 eV shift. According to 

the UPS results, the VBM of HfO2 is 4.0 eV below the Fermi level. Considering 

the VBM of VO2 at 0.6 eV below the Fermi level and assuming a negligable field 

across the VO2 layer, the VBO of HfO2/VO2 is determined as 3.4 eV. Considering 

the band gap of HfO2 as 5.7 eV, the band alignment of the final structure is shown 

in Fig. 3.6(c). 
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Figure 3.6 Band alignment of (a) plasma oxidized n-type Si(100), (b) VO2 on 

oxidized n-type Si(100) and (c) HfO2 and VO2 on oxidized n-type Si(100). 

Dashed lines are used to represent the conduction band minimum of the oxides 

which are deduced from reported values of the band gap. Distances approximately 

represent the experimental film thickness except the depletion region in the Si 

which is compressed as indicated. 
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Fig. 3.7 shows the band alignment diagrams for the different stages of 

development of the p-type sample structure. Considering the 1.1 eV band gap of 

Si, the 8.9 eV band gap of SiO2 and the 4.5 eV band offset at the Si/SiO2 

interface, the band alignment for the oxidized p-type Si substrate is shown in Fig. 

3.7(a). According to the XPS data analysis, the oxidized p-type Si substrate is at a 

flat band condition. After deposition of the 2 nm VO2 layer, the bulk Si core level 

at the SiO2/Si interface remains at the same position as the oxidized Si substrate. 

In this case, after the VO2 deposition, the Si substrate is still at a flat band 

condition. Again, it is also presumed that there is no significant electric field 

across the vanadium oxide layer. According to the UPS results, the VBM of VO2 

is 0.6 eV below the Fermi level. The band alignment of these two oxide layers is 

shown in Fig. 3.7(b). After deposition of the 2 nm HfO2 layer, the bulk Si core 

level at the SiO2/Si interface and the Si core level of the SiO2 shift to higher 

binding energies of 99.1 eV and 103.2 eV, respectively. Considering the 0.1 eV 

uncertainty, the substrate remains at the initial flat band condition. According to 

the UPS results, the VBM of HfO2 is 4.0 eV below the Fermi level. Considering 

the VBM of VO2 at 0.6 eV below Fermi level and assuming a negligible field 

across the VO2 layer, the VBO of HfO2/VO2 is determined as 3.4 eV. The band 

alignment of the final structure is shown in the Fig. 3.7(c).  
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Figure 3.7 Band alignment of (a) plasma oxidized p-type Si(100), (b) VO2 on 

oxidized p-type Si(100) and (c) HfO2 and VO2 on oxidized p-type Si(100). 

Dashed lines are used to represent the conduction band minimum of the oxides 

which are deduced from reported values of the band gap.  

The results show the development of the band alignment for the HfO2, 

VO2 and oxidized Si substrate. Charges presumably due to defects in the oxide 

layers affect the band alignment which changes during growth. The VO2/SiO2 
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interface traps negative charges after the VO2 deposition for the n-type sample. 

The fact that the VO2 CBM is near the Fermi level enables accommodation of 

excess positive or negative charges. The upwards band bending of the n-type Si 

substrate indicates these positive charges accumulate at the depletion region near 

the interface. For both n- and p-type substrates, the band offset between the VO2 

layer and SiO2 layer is measured as 4.0 ± 0.1 eV.  

3.6 Conclusions 

A gate stack structure has been prepared with HfO2 and an ultra thin VO2 

layer on oxidized Si substrates.  The films were developed by reactive e-beam 

deposition on oxidized n- and p-type substrates. The TEM analysis confirmed the 

layer structure and indicated sharp interfaces without evidence of interdiffusion. 

The band alignment for this gate stack structure was deduced from in-situ XPS 

and UPS spectra. A band offset of 4.0 ± 0.1 eV was measured between an ultra 

thin VO2 layer and the SiO2 layer. After the HfO2 capping layer deposition, only 

small changes in the band alignment are observed. The band offset between the 

HfO2 and VO2 is 3.4 ± 0.1 eV. The relative band offset between the HfO2 and 

SiO2 with a VO2 interlayer is 0.7 ± 0.1 eV which is comparable to the value 

without a VO2 inter-layer. The results also show charge transfer to the VO2 for 

growth on the n-type substrate. The band diagram for this gate stack structure 

shows a confined-well band structure, demonstrating the potential for charge 

storage for the embedded VO2 layer. 
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Chapter 4 

LOW TEMPERATURE GROWTH OF HIGH-K HF-LA OXIDES BY 

REMOTE-PLASMA ATOMIC LAYER DEPOSITION: MORPHOLOGY, 

STOICHIOMETRY, AND DIELECTRIC PROPERTIES 

This work is collaborated with Dr. Fu Tang.  

My contribution is the data analysis and the paper writing. 

4.1 Abstract 

In this work, we investigated the growth of Hf oxide, La oxide, and 

alloyed Hf-La oxide films using remote-plasma atomic layer deposition (RPALD) 

at temperatures ranging from ~80°C to ~250 °C. The relative composition and 

atomic bonding structure of the film were determined by in situ x-ray 

photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) and 

transmission electron microscopy (TEM) were implemented to characterize the 

morphology and crystalline structure. The XPS results indicated that for low 

temperature Hf oxide growth, a significant amount of excess oxygen species was 

observed in the deposited film. This oxygen could lead to instabilities and 

adversely affect the function of thin film transistors (TFTs). We established that a 

He plasma post deposition treatment can partially remove the excess oxygen. In 

addition, the pure Hf oxide films show a surface morphology with protruding 

islands over a smooth surface which reflects the crystallized nature of the Hf 

oxide domains. In order to suppress the crystallization of the Hf oxide and to 

obtain a smooth morphology, 1-3 cycles of La-oxide were employed between 

adjacent Hf-oxide cycles. The Hf-La oxide films showed reduced roughness 
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compared with that of the pure Hf oxide film. Carbon residue in the alloyed film 

is also reduced compared with that of the La oxide film. Finally, the electrical 

properties of the deposited films were characterized by capacitance-voltage (C-V) 

and current-voltage (I-V) measurement. The I-V curves show that the alloyed Hf-

La oxide films have a higher break down field than that of pure Hf oxide films.  

4.2 Introduction 

High-k oxides have been widely employed in Si-based nanoscale 

transistors in order to reduce the gate tunneling current and energy 

consumption.[1, 2] Recently, the application of high-k dielectrics is also emerging 

in other semiconductor areas including thin film transistors (TFTs) for flexible 

electronics. A high-k gate dielectric layer can significantly reduce the threshold 

voltage, increase the on/off current ratio and enhance the mobility of TFTs. [3]  

One of the limiting factors in implementing high-k materials for flexible 

electronics is the development of a low temperature deposition process.  

Plasma-enhanced atomic layer deposition (PEALD) [4-7] has been 

considered as a promising approach for deposition of high-k dielectrics at low 

temperatures. Atomic layer deposition (ALD) is a self-limiting growth method, 

where growth is achieved by alternatively pulsing precursors into the deposition 

chamber. [8,9] The advantages of ALD include conformal coating, thickness 

uniformity, and composition and stoichiometry control. In PEALD, the excess 

activated oxygen species generated by the plasma can significantly reduce the 

deposition temperature and produce a denser film and potentially a lower defect 

concentration. In order to minimize the effects of the defects and excess species, 
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studies up to now have focused on films deposited at high temperature or treated 

with high temperature annealing.[4,6,7] Neither process is appropriate for flexible 

substrates.  

In this study, we have systematically investigated the properties of as-

deposited Hf oxide, La oxide, and Hf-LaOx films using remote plasma atomic 

layer deposition (RPALD) at temperatures ranging from ~80°C to ~250 °C. Ion 

induced effects can be neglected because of the low ion density of the remote 

plasma treatment. The film bonding and composition were characterized with in 

situ X-ray photoemission spectroscopy (XPS); the morphology was characterized 

with atomic force microscopy; the crystalline structure was determined from cross 

section transmission electron microscopy (TEM); and the electrical properties 

were deduced from capacitance-voltage (C-V) and current-voltage (I-V) 

measurements. We found that a significant amount of excess oxygen species is 

observed for the Hf oxide film at low deposition temperature, which can be 

partially removed by a post He plasma treatment.  In addition, by alloying with 

La, the morphology and electrical properties of the oxide film were improved. 

4.3 Experiment 

The substrates used in this study are ambient oxidized n-type Si (100) 

wafers. Prior to loading the substrates into the vacuum chamber, the wafers were 

ultrasonically cleaned in acetone and methanol for ~15 minutes duration for each 

process.  The deposited samples were transferred to an XPS chamber through an 

ultra high vacuum (UHV) transfer line which enables in situ measurement without 

introducing contamination. The high-k oxide films were deposited using a custom 
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computer controlled RPALD system. The base pressure of the chamber was ~1.0 

× 10-8 Torr from the turbo-drag pump backed with a dry diaphragm pump. After 

the 0.1 s precursor pulse, the pressure increases to ~800 - 900 mTorr. Nitrogen 

gas was introduced for 10s to purge any excess precursor. After the nitrogen 

purge, oxygen was introduced into the chamber for 6 s, and then excited by rf-

power for 2-20 s. The pressure in the chamber during deposition was controlled 

by a throttle valve to a value of ~110 mTorr. The stainless steel bubbler 

containing the Hf precursor (Tetrakis(ethylmethylamino)hafnium(IV)) was 

maintained at ~70 ºC during deposition. For the lanthanum oxide growth, the 

precursor Tris(isopropylcyclopenta-dienyl)lanthanum was heated to a temperature 

of ~168 ºC. The chamber and gas lines were heated to ~100 °C to avoid precursor 

condensation. The remote plasma was excited with 13.56 MHz rf-power applied 

to a helical copper coil wound around a 32mm dia. quartz tube that opens toward 

the sample. In these experiments the plasma power was varied from 80 to 200 W. 

The post-deposition He plasma treatment was excited with 35 W for a typical 

duration of ~20 minutes.  Because of the remote plasma excitation without sample 

bias, the sample is exposed to free radicals and excited molecules and a very low 

density of ions.  

After deposition, the pressure was reduced in the deposition chamber, and 

the sample was transferred to the XPS system through the UHV linear transfer 

chamber.  XPS characterization is performed at a base pressure of 6×10-10 Torr 

using the 1253.6 eV Mg Kα line of a VG XR3 source and a VG microtech Clam 

II analyzer operated at a resolution of 0.1 eV.  The films for XPS analysis were 
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~3-5 nm thick, and our prior studies have established that charging effects can be 

neglected because of tunneling to the conducting Si substrates. 

An Agilent 5500 AFM was used to characterize the morphology of the 

deposited films under tapping mode with silicon tip. Representative samples were 

observed in cross-section geometry using a JEOL JEM 4000EX high-resolution 

electron microscope operated at 400 kV. The electrical properties of the oxide 

films were investigated by capacitance voltage (C-V) and current voltage (I-V) 

measurements using a mercury probe station system (MSI Electronics Mercury 

Probe Hg412-3). 

4.4 Results and discussion 

4.4.1 Hafnium oxide films 

a) Oxygen species 

Figure 4.1 shows the XPS scan of the Hf oxide films grown on Si 

substrates at different temperatures. From the curves, we find that the O 1s 

features can be fitted with two peaks. The peak at ~530 eV is attributed to oxygen 

in the Hf oxide. The other peak has a higher binding energy at ~532 eV, which 

has been attributed to the presence of excess oxygen species.[10,11] These 

species may include molecular oxygen or bound hydroxyl groups. At lower 

deposition temperatures the peak from the excess species dominates the spectrum, 

while at higher temperatures, this peak is significantly reduced. 

Figure 4.1(d) presents a quantitative analysis of the oxygen 1s peak area 

from Hf oxide (I1) and the excess oxygen (I2). Here, I1 or I2 are obtained from the 

integrated peak area divided by the atomic sensitivity factor, and each peak area 
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has been normalized to the integrated area of the Hf 4f peaks. As the deposition 

temperature increases, I1 increases, suggesting increased stoichiometric bonding 

of the Hf and oxygen. Conversely, I2 from absorbed oxygen is reduced as the 

temperature is increased. The results suggest that the precursor may be not fully 

oxidized at low growth temperature. In addition, excess oxygen molecules or OH 

are weakly bonded in the film which may limit the efficiency of the atomic 

oxygen in the plasma. At high growth temperature, the excess oxygen species 

desorb, resulting in a more completely oxidized film, and the XPS is dominated 

by a single, narrower peak. 

 

Figure 4.1. XPS O 1s spectra for Hf oxide deposited at substrate temperatures of: 

(a) 70 °C, (b) 125 °C, and (c) 250 °C. The normalized O peak area (d) from Hf 
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oxide (I1) and excess oxygen (I2) at different temperatures.  

b) Post He-plasma treatment 

The presence of excess oxygen may adversely affect the stability and 

function of TFTs. For example, the excess oxygen has been shown to form an 

electron surface accumulation layer which reduces the mobility of the ZnO 

channel layer.[12,13] As already noted thermal approaches employed to reduce 

the excess species include increasing the growth temperature or annealing the film 

after growth. However, for flexible electronics applications, increased 

temperature methods are limited because of the substrate thermal stability. An 

alternative method, which has been demonstrated on zinc oxide, is to expose the 

film to ultraviolet (UV) light.[14]  Here, we have employed a He plasma post-

deposition exposure which generates UV light dominated by ~21.2 eV photons. 

Figure 4.2 shows the Hf and oxygen XPS peaks before and after He plasma 

treatment. We find that the excess oxygen peak is indeed decreased as most 

molecular oxygen is removed by He plasma treatment. However, the narrow 

oxygen peak may come from the oxygen in residue bound hydroxyl groups. 

Accompanying the oxygen reduction, the binding energies of both the Hf and O 

peaks shift by ~1.4 eV to higher values. As the thickness of this sample is 

estimated as ~3 nm, the charging effect can be neglected. 
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Figure 4.2. XPS spectra of (a) O 1s, and (b) Hf 4f peaks, for as-deposited Hf 

oxide film and post He-plasma processed film. 

Figure 4.3 presents a schematic of the proposed mechanism for photo-

induced desorption of the excess species in the oxide films. The presence of the 

excess oxygen in the film leads to sites which can accept negative charges. Thus, 

there will be negative charge distributed through the film, which forms a dipole 

structure with the positive charge in the Si substrate. This charge distribution will 

produce an electric field across the oxide as has been described in prior work from 

our laboratory.[15] The UV photons in the He plasma can penetrate ~13nm into 
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the oxide which can induce desorption through the thickness of the film which 

reduces the sites available for charge transfer and the electric field across the 

oxide. This is consistent with the binding energy shift to higher values as 

observed from the XPS measurements. The XPS measurements also show that the 

excess oxygen is only partially released. This could be due to the fact that 

molecular oxygen species can be released through photo-induced desorption 

while other species such as hydroxyl groups still remain due to stronger bonding 

with the oxide.  

 

Figure 4.3. Schematic of the proposed mechanism for oxygen desorption induced 

by the He plasma process: (a) the excess oxygen in the as-deposited Hf oxide 

film; and (b) oxygen desorbed from the film during ultraviolet light (UV) 

illumination generated from the He plasma. 

c) Morphology 

In addition to the excess oxygen species in the Hf oxide films, AFM 

measurements show that the morphology of the Hf oxide film also has some 

undesired features. Figure 4.4 presents topography images of films deposited at 

different plasma conditions (a) 80 W with a 8 s oxygen plasma pulse, and (b) 20 
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W with a 2 s oxygen plasma pulse. The morphology of both films showed similar 

features: a number of protruding islands extending beyond the smooth surface. 

The average thickness of the films is ~10 nm, however, the peak-valley height can 

reach ~20 nm. In the case of high oxygen plasma power and long plasma 

exposure, the density of protruding islands was slightly increased. These 

protruding islands are presumed to be crystallized grains, as found by Hausmann 

et al.[16] Even with the plasma power reduced to 20 W and a short exposure time 

of 2 s, significant crystallization was still detected.   
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Figure 4.4. AFM topography images of Hf oxide films deposited with O plasma 

pulse conditions of: (a) 80 W and 8 s exposure, (b) 20 W and 2 s exposure, and (c) 

the ALD processing sequence. 

4.4.2 La oxide films 

Figure 4.5 presents AFM and XPS results of La oxide films deposited with 

different plasma power and oxygen exposure times. Both films have a smooth 

surface without protruding islands, consistent with the amorphous nature typically 

obtained for La oxides.[17,18] Although the morphology is improved, the XPS 

indicates the presence of a significant amount of carbon in the deposited films 

(see Fig. 4.5). The feature normally associated with adventitious surface carbon at 

~284 eV is hardly evident. With higher power or longer oxygen plasma exposure, 

the carbon concentration can be reduced. The binding energy of the C 1s peak 

shifts from ~291 eV to ~290 eV depending on the conditions employed for the 

oxygen plasma step. This range of binding energy is close to the value for carbon 

bonded in carbonate structure, which indicates the oxidation of the carbon. This 

detection of carbon oxide could be due to the absorption of CO2  and formation of 

La2O2CO3 during the growth of La oxide.[19]  



  82 

 
Figure 4.5. AFM topography images of La oxide films deposited with O plasma 

pulse conditions of: (a) 80 W and 20 s exposure, and (b) 160 W and 20 s 

exposure; (c) XPS spectra of the C 1s peak and (d) carbon concentrations of La 

oxide films deposited with different O plasma pulse conditions. 

4.4.3 Hf-La oxide films 

In order to suppress crystallization of the Hf oxide film, we deposited 

alloyed Hf-La oxide films by growing 1-3 cycles of La-oxide between two 

adjacent Hf-oxide cycles. This approach has also been employed at higher 

deposition temperatures using thermal ALD.[20-22] The relative percentages of 

Hf and La in the alloyed films can be controlled by the ratio of the number of Hf 

and La cycles. As shown in Fig. 4.6, AFM images of the alloyed Hf-La oxide 

films display a significant reduction in the density of protruding islands compared 
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with that of pure Hf oxide films. The thickness of the films is ~7 nm. For the film 

grown with a 1La/1Hf cycle ratio, a number of tall islands are observable 

protruding from the surface. When the cycle ratio is increased to 2La/1Hf, the 

density of protruding island is suppressed. In Fig. 4.6(c), an analysis of the 

element concentration is listed. From the figure, it is evident that carbon in the 

alloyed films can be controlled to a relatively low value of ~1.6%. This result 

suggests that the incorporated Hf inhibits the formation of La carbonate 

(La2O2CO3) during the ALD growth. 

 

Figure 4.6. AFM topography images of the oxide film deposited with different 

cycle ratios: (a) 1La/1Hf and (b) 2La/1Hf; (c) atomic concentrations. 

a) Film Crystallinity 
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Figure 4.7 shows cross-sectional electron micrographs of the pure Hf 

oxide film and the alloyed Hf-La oxide film. It is evident that micro-crystalline 

domains extend through the entire thickness of the Hf oxide. The existence of 

such grain boundaries is often associated with enhanced leakage current. For the 

alloyed film, electron micrographs did not reveal evidence for distinct crystalline 

structures, thus indicating an amorphous structure for the alloy. These 

observations are consistent with the conclusions deduced from the AFM 

measurements. 

 

Figure 4.7. Cross sectional TEM images of: (a) pure Hf oxide, and (b) alloyed 

oxide film with a 2La/1Hf cycle ratio. 

b) Electrical properties 

A mercury probe was employed to measure the capacitance vs. voltage at 
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low frequency for the deposited oxide film. Using the low frequency results, we 

found that the effective dielectric constants of the pure Hf oxide film and alloyed 

Hf-La oxide films were 18.1±1.2 and 14.2±1.5, respectively. Figures 4.8(a) and 

4.8(b) show I-V curves of pure Hf oxide and alloyed Hf-La oxide just before 

breakdown.  We found that the alloyed Hf-La oxide film has a break down 

strength of 3.0 ± 0.3 MV/cm while the breakdown strength of the pure Hf oxide 

film is 1.4 ± 0.2 MV/cm. He et al[20] also reported a higher breakdown field for 

alloyed Hf-La oxide than that of pure Hf oxide after the films were annealed to 

above 500 ºC. 
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Figure 4.8. I-V curves of: (a) pure Hf oxide, and (b) alloyed oxide film. 

4.5 Conclusions 

We have found: (1) significant excess oxygen species are present in Hf 

oxide films deposited at low temperature by RPALD, which can be partially 

removed by a post He plasma treatment; (2) crystallized grains protrude from the 

surface of Hf oxide films even when using low rf power to excite the oxygen 

plasma and a short exposure time; (3) the alloyed Hf-La oxide film displays a 

smooth surface and low C concentration; (4) the alloyed Hf-La oxide film has a 
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higher breakdown voltage than that of pure Hf oxide film consistent with an 

amorphous structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  88 

REFERENCES 

[1] A. I. Kingon, J. P. Maria and S. K. Streiffer, Nature 406, 1032 (2000). 
 
[2] G. D. Wilk, R. M. Wallace and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).  
 
[3] B. H. Lee, K. H. Lee, S. Im and M. M. Sung, Org. Electron. 9, 1146 (2008). 
 
[4] P. K. Park, J. S. Roh, B. H. Choi and S. W. Kang, Electrochem. Solid State 
Lett. 9, F34 (2006). 
 
[5] J. S. Park, H. S. Park and S. W. Kang, J. Electrochem. Soc. 149, C28 (2002). 
 
[6] Y. Won, S. Park, J. Koo, S. Kim, J. Kim and H. Jeon, Appl. Phys. Lett. 87, 
262901 (2005). 
 
[7] S. Choi, J. Koo, H. Jeon and Y. Kim, J. Korean Phys. Soc. 44, 35 (2004). 
 
[8] M. Leskela and M. Ritala, Thin Solid Films 409, 138 (2002). 
 
[9] T. Suntola, Thin Solid Films 216, 84 (1992). 
 
[10] L. Belau, J. Y. Park, T. Liang and G. A. Somorjai, J. Vac. Sci. Technol. B 
26, 2225 (2008). 
 
[11] C. Driemeier, R. M. Wallace and I. J. R. Baumvol, J. Appl. Phys. 102, 
024112 (2007). 
 
[12] S. Lee, S. Bang, J. Park, S. Park, W. Jeong and H. Jeon, Phys. Status Solidi 
A-Appl. Mat. 207, 1845 (2010). 
 
[13] S. Song, W. K. Hong, S. S. Kwon and T. Lee, Appl. Phys. Lett. 92, 263109 
(2008). 
 
[14] H. Kind, H. Q. Yan, B. Messer, M. Law and P. D. Yang, Adv. Mater. 14, 158 
(2002). 
 
[15] C. C. Fulton, G. Lucovsky, and R. J. Nemanich, J. Appl. Phys. 99, 063708 
(2006). 
 
[16] D. M. Hausmann and R. G. Gordon, J. Cryst. Growth 249, 251 (2003). 
 
[17] Jin-Bo Chengb, Ai-Dong Li, Qi-Yue Shao, Hui-Qin Ling, Di Wu,Yuan 
Wang, Yong-Jun Bao, Mu Wang, Zhi-Guo Liu, Nai-Ben Ming, Applied Surface 
Science 233 91–98 (2004). 



  89 

 
[18] K. Kukli, M. Ritala, V. Pore, M. Leskelä, T. Sajavaara, R. I. Hegde, D. C. 
Gilmer, P. J. Tobin, A. C. Jones, and H. C. Aspinall, Chem. Vap. Deposition, 12, 
158–164 (2006). 
 
[19] M. Nieminen, M. Putkonen and L. Niinisto, Appl. Surf. Sci. 174, 155 (2001). 
 
[20] W. He, D. S. H. Chan, S. J. Kim, Y. S. Kim, S. T. Kim and B. J. Cho, J. 
Electrochem. Soc. 155, G189 (2008). 
 
[21] T. Wang and J. G. Ekerdt, Chem. Mat. 21, 3096 (2009). 
 
[22] T. Wang and J. G. Ekerdt, Chem. Mat. 22, 3798 (2010). 
 

 

 

 

 

 

 

 



  90 

Chapter 5 

BAND ALIGNMENT OF ZINC OXIDE AS A CHANNEL LAYER IN A 

GATE STACK STRUCTURE GROWN BY PLASMA ENHANCED 

ATOMIC LAYER DEPOSITION 

5.1 Abstract 

A gate stack structure with a thin ZnO layer between an oxidized Si(100) 

surface and an alloyed hafnium and lanthanum oxide (HfO2-La2O3) layer was 

prepared by plasma enhanced atomic layer deposition (PEALD) at ~ 175 °C. High 

resolution electron microscopy indicated an amorphous structure of the deposited 

layers. The electronic properties were characterized with x-ray and ultraviolet 

photoemission spectroscopy. A significant amount of excess oxygen was 

observed in the as-deposited ZnO and (HfO2-La2O3) layers. A helium plasma 

post-deposition treatment can partially remove the excess oxygen in both layers. 

The band alignment of this structure was established for an n-type Si substrate. A 

valence band offset of 1.5 ± 0.1 eV was measured between a thin ZnO layer and a 

SiO2 layer. The valence band offset between HfO2-La2O3 (11% HfO2 and 89% 

La2O3) and ZnO was almost negligible. The band relationship developed from 

these results demonstrates confinement of electrons in the ZnO film as a channel 

layer for thin film transistors. 

5.2 Introduction 

Many applications are considering flexible displays based on transparent 

thin film transistors (TFTs). However, conventional TFTs prepared with 
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hydrogenated amorphous silicon (a-Si:H) as the active channel layer material are 

limited by a low mobility less than 1.0 cm2/Vs [1]. Alternatively, transparent 

semiconductor materials such as zinc oxide have been proposed for the channel 

layer. ZnO is a semiconductor material with a direct band gap of 3.4 eV at room 

temperature [2], and a room temperature mobility of 10~100 cm2/V·s [3, 4]. As-

grown, undoped, ZnO films typically exhibit n-type semiconductor characteristics 

with an electron concentration from 1017 to 1021 cm-3. [5, 6] This high carrier 

concentration has been attributed to defects such as zinc interstitials or oxygen 

vacancies. [7, 8]  

Atomic layer deposition (ALD) has been considered as a promising 

approach for ZnO film deposition for TFTs. ALD is a self-limiting process, where 

growth is achieved by alternatively pulsing precursors into the deposition 

chamber. [9, 10] The advantages of ALD include conformal coating, thickness 

uniformity, and composition and stoichiometry control. High mobility zinc oxide 

thin films have been successfully grown by thermal ALD at temperatures ranging 

from 200 to 350 °C. [11-13]. Recently, low temperature (100~200 °C) thermal 

ALD growth of ZnO has also reported. [14]  

TFT’s in flexible transparent displays require a process temperature less 

than 180 °C, and plasma enhanced atomic layer deposition (PEALD) has been 

considered to achieve a ZnO deposition temperature in the range of 25~120 °C. 

Diethyl zinc (DEZn) and dimethyl zinc (DMZn) have been employed as 

precursors for this process, and PEALD ZnO thin films have exhibited mobilities 

of 1.0 to 6.0 cm2/V·s [15, 16]. In PEALD, the activated oxygen species generated 
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by the plasma can significantly reduce the deposition temperature and produce a 

denser film with potentially lower defect concentration. In order to minimize the 

effects of the defects and excess species, studies up to now have focused on high 

temperature deposition or post deposition annealing. [17-19] Neither process is 

appropriate for flexible substrates. Thus, incorporation of ZnO into a TFT process 

requires low temperature processes, and in this study we employ PEALD growth 

and a low temperature treatment process as a possible approach. 

For TFT device structures, it is necessary to understand the band 

alignment of ZnO and appropriate dielectrics. In this study, an ultrathin ZnO film 

was prepared as an interlayer between an alloyed HfO2-La2O3 layer and an 

oxidized Si substrate. This alloyed HfO2-La2O3 high-k dielectric has 

advantageous properties of high dielectric constant ~14 and an amorphous 

structure with a low leakage current. [20] High resolution electron microscopy has 

confirmed the amorphous structure of the deposited films. The band relations for 

HfO2- La2O3, ZnO and the oxidized n-type Si substrate were then determined 

from in situ photoemission measurements. The results are also sensitive to 

internal electric fields and interfacial charge transfer which can occur during 

growth. 

5.3 Experiment 

     The experiments are accomplished in-situ using an integrated ultrahigh 

vacuum (UHV) system. This system involves a linear ~20 m UHV transfer line 

chamber with a base pressure of 5×10-10 Torr that connects different process and 

characterization chambers, which enables in situ measurement without 
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introducing contamination. In this study, the following systems are used: remote 

oxygen plasma for cleaning, remote helium plasma for film treatment, plasma 

enhanced atomic layer deposition for HfO2-La2O3 and ZnO growth, X-ray 

photoelectron spectroscopy (XPS) for core level analysis, and ultraviolet 

photoelectron spectroscopy (UPS) for valence band spectra. 

The substrates used in this study are ambient oxidized n-type, 

phosphorous doped, Si (100) wafers with a resistivity of 0.05-0.09 Ω∙cm. Prior to 

loading the substrates into the vacuum chamber, the wafers were ultrasonically 

cleaned in acetone and methanol for 15 min for each process, and dried in 

ultrahigh-purity nitrogen gas. After transfer into the UHV system, the Si(100) 

surfaces were cleaned and oxidized by a remote oxygen plasma process. The 

plasma exposure conditions were as follows:  substrate at room temperature, 60 

mTorr oxygen pressure, gas flow of 10 standard cubic centimeters per minute 

(sccm), and rf power of 30W to excite the plasma. The remote oxygen plasma can 

effectively remove hydrocarbon contamination and passivate the Si surface with a 

thin SiO2 layer [21]. After in-situ cleaning, the sample was annealed at 500̊C for 

5 minutes for defect reduction and removal of adsorbed oxygen. The surfaces 

were then characterized by XPS and UPS.  

The oxide films were deposited using a custom computer-controlled 

PEALD system at a growth temperature of ~ 175 °C. The base pressure of the 

chamber was 1.0 ×10-8 Torr from the turbo-drag pump. After the 0.1 s precursor 

pulse, nitrogen gas was introduced for 10 s to purge excess precursor. After the 

nitrogen purge, oxygen was introduced into the chamber 6 s before the plasma 
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excitation, and the plasma was sustained by rf-power for another 8 s. 

Subsequently, the chamber was pumped for 2 s and purged by nitrogen gas for 8 s 

before the next growth cycle. The pressure in the chamber during deposition was 

controlled by a throttle valve to a value of 100 mTorr. The stainless steel bubbler 

containing the Zn precursor (dimethyl zinc, DMZn) was cooled to -17.2 ˚C during 

deposition. For growth of the hafnium and lanthanum oxides, the Hf precursor 

(tetrakis(ethylmethylamino)hafnium(IV)) and La precursor 

(tris(isopropylcyclopenta-dienyl)lanthanum) were heated to 48 ˚C and 168 ˚C, 

respectively. The chamber and gas lines were heated to ~100 ˚C to avoid 

precursor condensation. The remote oxygen plasma was excited with ~200 W of 

13.56 MHz rf-power applied to a helical copper coil wound around a 32 mm 

diameter quartz tube that opens toward the sample. The post-deposition He 

plasma treatment was excited with 30 W for 5 min. with a He gas flow rate of 90 

sccm, and the chamber pressure was maintained at ~60 mTorr. The remote plasma 

excitation (without sample bias), results in the sample being exposed to free 

radicals, excited molecules and a low density of ions. A representative sample 

was observed in cross-section geometry using a JEOL JEM 4000EX high-

resolution electron microscope operated at 400 keV. 

The sample was characterized by XPS and UPS after each processing step. 

XPS characterization was performed at a base pressure of 6×10-10 Torr using the 

1253.6 eV Mg Kα line of a VG XR3 source and a VG microtech Clam II analyzer 

operated at a resolution of 0.1 eV. The films for XPS analysis were less than 5 nm 

thick, and our prior studies have established that charging effects can be neglected 
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because of tunneling to the conducting Si substrate. [22] Ultraviolet 

photoemission spectra are obtained at a base pressure of 8×10-10 Torr using the He 

I line at 21.2 eV and a VSW 50 mm mean radius hemispherical analyzer and 

VSW HAC 300 controller operated at an electron energy resolution of 0.15 eV. A 

negative 6.00 V bias was applied to the substrate to overcome the work function 

of the analyzer. 

5.4 Results and discussion 

The in-situ experiments consisted of the following deposition and 

treatment process: 1) remote oxygen plasma cleaning of the Si substrate, 2) 

PEALD growth of a ~1.5 nm zinc oxide film, 3) 5 min. He plasma treatment, 4) 

PEALD growth of a ~2 nm of HfO2-La2O3 film, 5) 5 min. He plasma treatment. 

In-situ XPS and UPS measurements were employed after each processing step, 

and the spectra are shown in Figs. 5.1- 5.4. The XPS observation “windows” were 

set for the Si 2p, O 1s, Zn 2p, La 3d, Hf 4f and C 1s core levels.  

5.4.1 Oxidized Si substrate  

The Si substrate was processed with an oxygen plasma and then annealed 

in vacuum at 500 °C for 5 minutes. A prior study has established that the SiO2 

layer is ~1.0nm thick. [23] The sample was then transferred in UHV to chambers 

for the XPS and UPS measurements. The XPS scans of the Si 2p core level are 

shown in Fig. 5.1. The XPS binding energies of the Si 2p (Si and SiO2), along 

with those of Zn 2p 3/2, La 3d 5/2 and Hf 4f 7/2 are summarized in Table 5.1. 

The initial Si 2p peaks are at 99.7 and 103.6 eV, respectively, corresponding to 

bulk Si near the surface and the SiO2 layer of the oxidized Si. Prior studies have 
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established that the Si 2p core level is 98.8 eV below the valence band maximum 

(VBM) [23]. For the doped n-type Si wafer, the Fermi level is at 0.9-1.0 eV above 

the VBM. Therefore, the initial n-type Si substrate displays a flat band condition 

as the Si 2p peak is at 99.7 eV (98.8 + 0.9 eV). After ZnO deposition, the Si bulk 

and SiO2 related peaks shifted to lower binding energies of 99.5 and 103.0 eV, 

respectively. However, after the He plasma treatment, the Si peaks shifted back to 

99.7 and 103.5 eV, respectively. After the 2 nm HfO2-La2O3 deposition, the Si 

peak corresponding to bulk Si shifted to a lower binding energy of 99.6 eV, and 

after the He plasma treatment, it shifted back to 99.7 eV. The shifts in the Si bulk 

feature are attributed to a change of the band bending in the Si substrate, and the 

differential shifts between the Si substrate and the Si oxide features are attributed 

to an electric potential across the SiO2 layer. 
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Figure 5.1 X-ray photoemission spectra of the Si 2p peaks for the oxidized n-type 

Si(100) substrate. The curves are for the oxidized Si (100) substrate, as-deposited 
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ZnO on the Si substrate, He plasma treated ZnO film, as-deposited HfO2-La2O3 

on ZnO, and He plasma treated HfO2-La2O3 film. 

5.4.2 1.5 nm ZnO 

After characterization of the Si substrate, a ~1.5 nm thick ZnO film was 

deposited using 6 PEALD growth cycles with a rate of 0.25 nm/cycle. The XPS 

and UPS measurements followed the growth. The film was then treated using a 

He plasma, which was again followed with XPS and UPS scans. The XPS spectra 

of the Zn 2p 3/2 core level are shown in Fig. 5.2.  The initial as-deposited Zn 2p 

3/2 peak was located at 1021.2 eV, but after the He plasma treatment the peak 

shifted to a higher binding energy of 1022.2 eV. Similarly, after capping by the 

HfO2-La2O3 layer, the Zn 2p 3/2 peak shifted back to 1021.0 eV. After the He 

plasma treatment, the peak shifted to a higher binding energy of 1021.9 eV.  

1030 1020 1010

2000

4000

6000

8000

10000

 
 

In
te

ns
ity

 (C
ou

nt
s)

Binding Energy (eV)

 ZnO as-dep
 ZnO He plas
 HfO2-La2O3 as-dep
 HfO2-La2O3 He plasZn 2p 3/2

 
Figure 5.2 X-ray photoemission spectra of the Zn 2p 3/2 peaks for the oxidized n-

type Si(100) substrate. The scans are for the oxidized Si (100) substrate, as-
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deposited ZnO, He plasma treated ZnO film, as-deposited HfO2-La2O3, and He 

plasma treated HfO2-La2O3 film. 

In our previous work, a mechanism of photon-induced desorption of the 

excess oxygen species was proposed to explain this phenomenon. [20] During a 

remote oxygen plasma ALD deposition, excess oxygen may be incorporated in 

the film which can then accept negative charges. The negative charges in the ZnO 

will induce positive charges in the depletion region of the Si substrate. We 

suggest that the charges in the ZnO will reside near the ZnO/SiO2 interface due to 

the presence of the electric field. This charge distribution produces an electric 

field largely across the SiO2 layer. In the band diagram, it results in upward band 

bending in the Si and band tilting in the SiO2 layer, shown schematically in Fig. 

5.3 (a). The UV photons generated in the He plasma can penetrate through the 

film, and induce desorption of the excess oxygen. The process leads to recovery 

of the flat band condition as shown in Fig. 5.3 (b), consistent with the binding 

energy shift to higher values observed from the XPS measurements. 
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Figure 5.3 Schematic of the proposed mechanism for oxygen desorption induced 

by the He plasma process: (a) excess oxygen is incorporated in the as-deposited 

oxide film and (b) oxygen is desorbed from the film during ultraviolet light (UV) 

illumination generated from the He plasma. The band alignment diagram shows 

the band shifts before and after He plasma treatment. 

5.4.3 2 nm HfO2-La2O3  

The PEALD system was employed to deposit a ~2 nm HfO2-La2O3 

alloyed film on the ZnO layer using six cycles of 1 HfO2 step followed by 3 

La2O3 steps. The relative concentration of HfO2 and La2O3 in the alloyed films 

can be controlled by the ratio of the number of HfO2 and La2O3 cycles. For this 

alloyed film, the relative concentration determined by XPS was 11% HfO2 and 
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89% La2O3. The HfO2-La2O3 alloyed films exhibit an amorphous structure 

without crystalline grains which is contrasted to the nanocrystalline structure 

typically observed for pure HfO2. [20] After the HfO2-La2O3 deposition, the 

sample was again treated by the helium plasma process to remove excess oxygen.  

Each step of the process was characterized with XPS and UPS. The XPS 

spectra of the La 3d, Hf 4f and C 1s core levels are shown in Fig. 4. For the as-

deposited film, the La 3d 5/2 peak was located at 833.9 eV, and after He plasma 

treatment, the peak shifted to 835.1 eV (shown in Fig. 5.4(a)). The peaks at ~ 837 

eV and 856 eV are the La 3d satellite peaks which are observed in dielectric films. 

[24] Similarly, the Hf 4f 7/2 peak was at 16.4 eV for the as-deposited film, and 

after He plasma treatment, the peak shifted to 17.4 eV. The peak shifts are 

attributed to charge transfer during processing, as shown in Fig. 5.3. After the 

initial PEALD deposition, the excess oxygen acquires a negative charge which 

produces an electric field across the oxide and upward band bending in the Si. 

After the He plasma treatment, the plasma-generated UV light enhances 

desorption of the excess oxygen, leading to a flat band condition. The observed 

peak shifts are also consistent with the Zn 2p peak shifts.  

Fig. 5.4(c) shows the C 1s peaks during the process. The feature normally 

associated with adventitious surface carbon at 284 eV is hardly evident. However, 

a feature at ~ 294 eV became evident after deposition of the HfO2-La2O3 layer. 

This peak is interpreted as partially oxidized carbon, which has been attributed to 

the formation of La2O2CO3 during the growth of La oxide. [25] This oxidized 

carbon peak also shifted to higher binding energy after the He plasma treatment. 
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Figure 5.4 X-ray photoemission spectra of (a) La 3d peaks, (b) Hf 4f peaks, and 

(c) C 1s peaks. The curves are for the oxidized Si (100) substrate, as-deposited 

ZnO, He plasma treated ZnO film, as-deposited HfO2-La2O3, and He plasma 

treated HfO2-La2O3 film. 

5.4.4 Ultraviolet photoemission spectra 

The ultraviolet photoemission spectra for the cleaned, oxidized substrate, 

after ZnO deposition, and after the HfO2-La2O3 deposition are shown in Fig. 5.5. 

The UPS spectrum of the initial clean SiO2 layer on an n-type Si substrate 

typically shows the valence band maximum (VBM) at 5.5 eV below the Fermi 

level. The valence band offset between Si and SiO2 is then 4.5 eV for the n-type 

Si substrate, which agrees with previous results [26].  These results are consistent 

with a low interface state density and negligible band bending for the n-type 

substrate. For the ZnO film, the front cutoff of the UPS spectra indicates the 

valence band maximum which is at 4.0 eV and 3.0 eV below the Fermi level 
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before and after the He plasma treatment, respectively. After the 2.0 nm HfO2-

La2O3 layer deposition, the front cutoff of the UPS spectra is at 2.8 eV and 4.0 eV 

below the Fermi level before and after He plasma treatment, respectively. The 

VBM shift is again attributed to the He plasma treatment effect. 
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Figure 5.5 Ultraviolet photoemission spectra of the oxidized Si (100) substrate, 

as-deposited ZnO, He plasma treated ZnO film, as-deposited HfO2-La2O3, and He 

plasma treated HfO2-La2O3 film. The straight lines indicate  the position of the 

VBM. 

5.4.5 Transmission electron microscopy 

Figure 5.6 displays a cross-sectional high resolution electron micrograph 

of the sample structure. The total thickness of the oxide layers is ~4.5 nm. The 

HfO2-La2O3 layer is evident as the the upper ~2.0 nm layer. The contrast of the 

HfO2-La2O3 layer is uniform, and the HfO2-La2O3/ZnO interface is sharp as is the 

SiO2/Si interface. However, the interface of ZnO/SiO2 is not evident due to the 
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low contrast difference between ZnO and SiO2. There is no evidence of 

crystalline order or domains in any of the oxide layers. The results indicate an 

amorphous structure with sharp interfaces without evidence of intermixing.  

 
 
Figure 5.6 Cross sectional high-resolution electron micrograph of the HfO2-

La2O3/ZnO/SiO2 structure on n-type Si.   

5.4.6. Band alignment schematics 

Figure 5.7 shows diagrams of the band alignment for the stacked structure 

during processing. The initial cleaned oxidized Si substrate displays a flat band 

condition, shown in Fig. 5.7(a). After ZnO deposition, the SiO2 band is tilted 

upwards, shown in Fig. 5.7(b). The valence band offset between ZnO and SiO2 

can be determined using the following expression: 

VBO= (E2p3/2
ZnO – EVBM

ZnO) – (E2p
SiO2 – EVBM

SiO2) – Δ1(E2p3/2
ZnO – E2p

SiO2) – 

Δ2(SiO2)    

where (E2p3/2
ZnO – EVBM

ZnO) is the Zn 2p3/2 core level to the VBM of ZnO, 

(E2p
SiO2 – EVBM

SiO2) is the Si 2p core level to the VBM of SiO2, Δ1(E2p3/2
ZnO – 

E2p
SiO2) is the energy separation between the Zn 2p3/2 of ZnO and Si 2p of SiO2, 
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and Δ2(SiO2) is the half value of the electrical potential across the SiO2 layer. The 

electrical potential across the SiO2 layer can be calculated as 0.8 eV, based on the 

Si 2p peak shift of ~ 0.6 eV and the substrate Si 2p peak shift of ~ 0.2eV. From 

Table 5.1, the VBO of ZnO and SiO2 is calculated as 1.5 eV. After He plasma 

treatment, the bands return to a flat band condition as the Si 2p peaks return to 

their initial position for the cleaned Si substrate, shown in Fig. 5.7(c). The VBO 

of ZnO and SiO2 is the difference between the VBM of ZnO and SiO2 which, as 

measured by UPS, is ~ 1.5 (5.5 - 4.0) eV. This value is consistent with the 1.5 eV 

value, deduced from the XPS measurements.  

 

Figure 5.7 Band alignment diagram of (a) the oxidized Si (100) substrate, (b) as-

deposited ZnO on the oxidized Si substrate, (c) He plasma treated ZnO film, (d) 
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as-deposited HfO2-La2O3 on ZnO, and (e) He plasma treated HfO2-La2O3 film. 

Dashed lines are used to represent the conduction band minimum of the oxides 

which are deduced from reported values of the band gap. Horizontal distances 

approximately represent the experimental film thickness except for the depletion 

region in the Si which is compressed as indicated. 

Table 5.1: XPS of Si 2p (Si and SiO2), Zn 2p, La 3d, Hf 4f core levels, and 

valence band maximum (VBM) relative to the Fermi level, in eV. 

 
Si 2p 

(Si) 

Si2p 

(SiO2) 

Zn 2p 

3/2 

La 3d 

5/2 

Hf 4f 

7/2 
VBM 

n-Si 99.7 103.6 / / / 5.5 

ZnO as-dep. 99.5 103.0 1021.2 / / 3.0 

ZnO He plas. 99.7 103.5 1022.2 / / 4.0 

HfO2-La2O3 as-

dep. 
99.6 / 1021.0 833.9 16.4 2.8 

HfO2-La2O3 He 

plas. 
99.7 / 1021.9 835.1 17.4 4.0 

 

After HfO2-La2O3 layer deposition, the Si 2p and Zn 2p 3/2 peaks shift to 

lower binding energy, indicating an electric potential across the SiO2 layer and 

band bending in the Si substrate, shown in Fig. 5.7(d). After the He plasma 

treatment, the Si 2p peak shifts back to a flat band condition. The Zn 2p 3/2, La 

3d 5/2 and Hf 4f 7/2 also shift ~ 1 eV to higher binding energy, which is also 

consistent with the return to flat bands in the Si. The results indicate that there is 
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almost no offset between the valence bands of the HfO2-La2O3 and ZnO films. In 

addition, the vacuum levels of the HfO2-La2O3 and ZnO are almost aligned. The 

reported values of the band gaps are 8.9 eV for SiO2 and 3.4 eV for ZnO [2].  

However, we suggest that the actual band gap of this ultrathin amorphous ZnO 

film may be larger. A report of ZnO film grown by MOCVD at 200 °C using 

DMZn as the precursor shows a band gap of 4.0 eV, which was attributed to 

disorder and nanocrystallinity. [27] Moreover, ZnO film grown by PEALD at l00 

°C shows no preferred growth orientation. [28] We also assume 6.0 eV for the 

band gap of the HfO2-La2O3 alloyed film since the band gap of both HfO2 and 

La2O3 are ~6.0 eV. [29] It is noted that the CBM of the oxides has been deduced 

based on the reported band gaps of the materials: 8.9 eV for SiO2, 4.0 eV for ZnO 

and 6.0 eV for the HfO2-La2O3 alloyed film.  Since these are deduced values, the 

CBM levels are shown as dashed lines in the figures. 

The electron affinity (EA) model can predict the band offset of two 

materials, which presumes two materials align vacuum levels at the interface. A 

deviation from the EA prediction can be described as an interfacial dipole. 

Consequently, the interfacial dipole is often described as the difference between 

the vacuum levels at the interface of the two adjoining materials. Experimentally 

this can be determined from the photoemission results using:  

ΔDipole= (hν – WSiO2) – (hν –WZnO) – VBOSiO2/ZnO = WZnO – WSiO2 – 

VBOSiO2/ZnO 
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where hν=21.2 eV is the He I photon energy, W represents the width of UPS 

spectra (W for SiO2 is 11.5 eV, ZnO is 13.7 eV, and HfO2-La2O3 is 13.7 eV, 

respectively). Here (hν –W) is the energy of the vacuum level relative to the 

VBM, and VBOSiO2/ZnO is the SiO2/ZnO valence band offset. Using this 

expression, the experimental results indicate a value of 0.7 eV for the ZnO/SiO2 

interfacial dipole. Similarly, the HfO2-La2O3/ZnO interfacial dipole is essentially 

zero, since the HfO2-La2O3 and ZnO films show the same UPS spectral width and 

a negligible band offset. This result is displayed in Fig. 5.8, where the vacuum 

levels of the HfO2-La2O3 and ZnO films are aligned, with a negligible interface 

dipole, which indicates that the electron affinity model can describe the HfO2-

La2O3/ZnO band offset. For the ZnO/SiO2 interface, a 0.7 eV interfacial dipole is 

determined, which indicates the electron affinity model is limited for that 

interface.  
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Figure 5.8 Interfacial band alignment diagram of the HfO2-La2O3/ZnO/SiO2 stack 

structure at a flat band condition. The VBM and Vac. Level are determined from 

the experiments, the CBM are from the band gap, and the CNL are from 

theoretical reports [29-32]. 

For most heterostructures, interface bonding leads to charge transfer and 

an interface dipole. For dielectric interfaces a model has been developed by 

Robertson and Mönch which presumes that the charge will transfer to align the 

charge neutrality levels (CNL) at the interface. [29,30] The CNLs of HfO2, La2O3 

and SiO2 are calculated as 3.7 eV, 2.3 eV, [29] and 4.5 eV [31] respectively. The 

CNL of zincblende and wurtzite ZnO has been calculated as 3.6 eV [32] and 3.4 

[31], respectively. Alternatively, Mönch employed an empirical model and 

determined the CNL of ZnO as 2.8 eV [30]. The CNLs of the materials are 
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displayed in Fig. 5.8.  For ZnO a band from 2.8 to 3.4 eV is employed and for 

HfO2-La2O3 a band from 2.3 to 3.7 eV is indicated. It is evident that the CNL 

model is capable of describing this structure. However, experimental uncertainties 

due to the nanocrystalline and alloyed structure of the films and the different 

theoretical values limit a more detailed analysis at this time.  

5.5 Conclusions 

A gate stack structure has been deposited at low temperature by PEALD 

consisting of an HfO2-La2O3 alloyed oxide layer (11% HfO2 and 89% La2O3) and 

an ultra thin ZnO layer on an oxidized Si substrate. After PEALD growth, excess 

oxygen is present in the HfO2-La2O3 alloyed film and the ZnO film, and can be 

partially removed by a helium plasma treatment for each film. TEM micrographs 

indicated an amorphous structure of the deposited films. The band alignment for 

this gate stack structure was deduced from in situ XPS and UPS spectra. A 

valence band offset of 1.5 ± 0.1 eV was measured between the ultrathin ZnO layer 

and the SiO2 layer. After He plasma treatment, the structure exhibits low interface 

charge density and flat band conditions. After deposition of the HfO2-La2O3 

alloyed oxide capping layer, the valence band offset between the HfO2-La2O3 and 

ZnO is almost negligible. The band alignment diagrams also show charge transfer 

during each step of the film growth and processing. The band diagram for this 

gate stack structure indicates that conduction band electrons can be confined in a 

ZnO channel layer, demonstrating the potential for application in TFT transistors 

for display devices. 
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Chapter 6 

BAND ALIGNMENT OF VANADIUM OXIDE BETWEEN TWO 

HAFNIUM OXIDE LAYERS AS A CONFINED WELL STRUCTURE ON 

SILICON 

6.1 Abstract 

Vanadium oxide (VO2) is a narrow vanadium dioxide (VO2) is a small 

band gap material that undergoes a metal-insulator phase transition (MIT) at ~343 

K due to increasing temperature and evidence of an electric field induced 

transition at T< 343 K.  In this study we prepare a sandwich type gate structure 

consisting of two ~1.5 nm hafnium oxide (HfO2) layers with a ~2.0 nm VO2 

interlayer all grown on oxidized n-type silicon substrate. Electrinic properties of 

the sample were characterized by x-ray, as well as ultraviolet photoelectron 

spectroscopy after each layer of the structure was grown. The band alignment of 

each step of growth was analyzed. The valence band offset for the SiO2/HfO2 

interface is measured as 0.7 eV, and the valence band offset of the HfO2/VO2 

interface is measured as 3.4 eV. 

6.2 Introduction 

Vanadium dioxide (VO2) is a narrow band gap material (Eg = 0.7eV) [1], 

with a well known Metal to Insulator Transition (MIT) property. This MIT 

transition can be affect by the temperature change, [1,2]  strain[3] and electric 

field. [4-8]The insulator to metal transition temperature for VO2 is ~70°C (343K), 

[1,2] with an abrupt three order magnitude change of resistivity. This transition 
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temperature can be affected by the strain on the VO2 and substrate. Some studies 

of VO2 on TiO2 show that the transition temperature can be as low as 300K due to 

the strains. [3] Recently, people also found that the MIT transition can be 

achieved by applying an external electric field without temperature changes. [4-8] 

This critical electric field for MIT transition is ~107 V/m. The large resistivity 

change and abrupt MIT of VO2, makes it a strong candidate for a variety of 

optical and electrical switching applications. [9,10] 

To develop efficient charge storage or switching devices based on the 

electronic properties of VO2, we need to understand the band alignment of VO2 

relative to dielectric interfaces and the Si substrate. In this study, we have 

prepared a thin VO2 layer as an interlayer inserted between two layers of the high-

k dielectric material (HfO2), and oxidized n-type Si substrates. The measurements 

on n-type substrates explore charge transfer between the layers. Hafnium oxide 

(HfO2) is one of the most used high-k gate dielectric materials with a dielectric 

constant of 20-25 and band gap of 5.6 eV[11]. In this structure the VO2 layer is 

able to accept charge through tunneling from the substrate. With the high-k layers 

an applied gate voltage would control the potential of the VO2 layer relative to the 

substrate.  The band relations for HfO2, VO2, and the oxidized n-type Si substrate 

are determined from in-situ photoemission measurements, and the interfacial 

charge transfer during the growth is discussed.  

6.3 Experiment  

The experiments were accomplished in-situ using an integrated ultrahigh 

vacuum (UHV) system. This system involves a linear ~20 m long UHV transfer 
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line chamber with a base pressure of 5×10-10 Torr that connects different process 

and characterization chambers. In this study, the following systems are used: 

remote oxygen plasma for cleaning, reactive electron beam deposition system for 

HfO2 and VO2 growth, X-ray photoelectron spectroscopy (XPS) for core level 

analysis, and ultraviolet photoelectron spectroscopy (UPS) for valence band 

spectra. The sample is transferred between each chamber by a sample cart in the 

UHV transfer line without exposing to air. 

The samples are grown on 25mm dia. n-type, phosphorous doped, (100) 

silicon wafers with a resistivity of 0.05-0.09 Ω∙cm. Before loading into the UHV 

chamber, wafers are cleaned in an ultrasonic acetone bath for 15 min, an 

ultrasonic methanol bath for another 15 min., and dried in ultra high purity 

nitrogen gas. After transfer into the UHV system, the Si(100) surfaces are cleaned 

and oxidized by a remote oxygen plasma. The plasma exposure conditions are as 

follows:  substrate at room temperature, 60 mTorr oxygen pressure, gas flow of 

10 standard cubic centimeters per minute (sccm), and rf power of 30W to excite 

the plasma. The remote oxygen plasma can effectively remove hydrocarbon 

contamination and passivate the Si surface with a thin SiO2 layer [12]. After in-

situ cleaning, the sample was annealed at 500̊C for 5 min. for defect reduction 

and removal of adsorbed oxygen. The surfaces were then characterized by XPS 

and UPS.  

The VO2 and HfO2 films were deposited in the reactive electron beam 

deposition system which has a base pressure of 7×10-9 Torr. A 1.5 nm HfO2 film 

was directly deposited onto the cleaned Si wafer at room temperature with an 
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oxygen pressure of 2×10-6 Torr. A 2 nm thick VO2 film was deposited onto the 

1.5 nm HfO2 layer at 550 ºC with an oxygen gas pressure of 6×10-4 Torr. Another 

1.5 nm HfO2 film was directly deposited over the VO2 layer at room temperature 

with an oxygen pressure of 2×10-6 Torr. For each layer a growth rate of 0.01 nm/s 

was maintained with a quartz crystal thickness rate meter. 

     The sample was characterized by XPS and UPS at each step. XPS 

characterization is performed at a base pressure of 6×10-10 Torr using the 1253.6 

eV Mg Kα line of a VG XR3E2 dual anode source and a VG microtech Clam II 

analyzer operated at a resolution of 0.1 eV. The resolution of the analyzer was 

determined from the full width at half maximum (FWHM) of a gold 4f 7/2 

spectral peak to be approximately 1.0 eV; however, through curve fitting, the 

centroid of spectral peaks can be resolved to ± 0.1 eV. Ultraviolet photoemission 

spectra are obtained at a base pressure of 8×10-10 Torr using the He I line at 21.2 

eV and a VSW 50 mm mean radius hemispherical analyzer and VSW HAC 300 

controller operated at an electron energy resolution of 0.15 eV. A negative 4.00 V 

bias was applied to the substrate to overcome the work function of the analyzer.  

6.4 Results 

     The in-situ experiments consisted of the following process: 1) remote 

oxygen plasma cleaning of n-type Si substrate followed by a 5min 500°C 

annealing, 2) XPS and UPS characterization, 3) deposition of ~1.5 nm of hafnium 

oxide, 4) XPS and UPS characterization, 5) deposition of ~2.0 nm vanadium 

oxide, 6) XPS and UPS characterization, 7) deposition of ~1.5 nm of hafnium 

oxide, 8) XPS and UPS characterization. The results of XPS and UPS spectra of 
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each step are shown in Figs. 6.1- 6.4. The XPS observation “windows” were set 

for the Si 2p, Hf 4f, O 1s and V 2p core levels. The carbon XPS peaks were below 

the detection limit before and after deposition. 

6.4.1 Si substrate with native oxide layer 

The Si 2p core level is shown in Fig. 6.1. The initial SiO2 layer thickness 

can be determined from the ratio of the bulk (~99 eV) and SiO2 (~104 eV) Si 

peaks. The SiO2 thickness was determined using the following equation [13]: tox = 

λSiO2 ln {[(1/β) (ISiO2
exp/ ISi

exp)] + 1}, where λSiO2 is the attenuation length of the Si 

2p photoelectrons in SiO2, β = (ISiO2
∞/ ISi

∞) is the ratio of the Si 2p intensity from 

thick SiO2 and a Si wafer, and ISiO2
exp/ ISi

exp is the measured ratio of normal 

incident XPS Si 2p intensities. For our XPS instrument configuration, the 

analyzer is normal to the sample. We take λSiO2 to be 2.8±0.02 nm, an average 

from five references [14-18], and β to be 0.83[18]. With these values and the 

measured intensities ratio, the thickness of the initial SiO2 layer on the Si wafer is 

determined to be 0.8 ± 0.1 nm.  
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Figure 6.1 X-ray photoemission spectra of Si 2p peaks for (a) plasma oxidized n-

type Si(100) sample. The curves are for the oxidized Si substrate, after deposition 

of the first HfO2 layer on Si, after deposition of VO2 interlayer and after 

deposition of second HfO2 layer.   

The XPS binding energies of the Si 2p, O 1s, V 2p3/2 and Hf 4f 7/2 are 

summarized in Table 6.1. The initial Si 2p peaks are at 99.7 and 103.7 eV, 

respectively, corresponding to bulk Si near the surface and the SiO2 layer of the 

oxidized Si. Results have established that the Si 2p core level is 98.8eV below the 

valence band maximum (VBM) [19]. For the heavily doped n-type Si wafer, the 

Fermi level is at 0.9-1.0eV above the VBM. Therefore, the initial n-type Si 

substrate displays a flat band condition as the Si 2p peak is at 99.7 eV (98.8 + 0.9 

eV). After first 1.5 nm HfO2 layer deposition, the Si bulk and SiO2 related 2p 

peaks shift to lower binding energies of 99.6 and 103.5, respectively. After 2.0 
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nmVO2 layer deposition, the Si bulk and SiO2 related peaks are shifted to lower 

binding energies of 99.5 and 102.8 eV, respectively. After second 1.5 nm HfO2 

layer deposition, the Si peaks shift back to 99.7 and 103.4 eV, respectively. The 

shifts in the Si bulk feature are attributed to a change of the band bending in the Si 

substrate, and the differential shifts between the Si substrate and Si oxide features 

are attributed to an electric potential across the SiO2 layer. 

 

Table 6.1. XPS of Si 2p (Si and SiO2), O 1s, V 2p 3/2, Hf 4f 7/2 core levels, and 

valence band maximum (VBM) relative to the Fermi level, in eV, for 

HfO2/VO2//HfO2/oxidized n-type Si(100). Values have an uncertainty of ± 0.1 

eV. 

 

6.4.2 HfO2 layers 

Two HfO2 layers were deposited on the sample with 1.5 nm thick for each 

layer. The first layer was deposited directly on the n-type Si substrate with native 

oxide. The second layer was deposited on the top of the VO2 interlayer. Fig. 6.2 

presents the Hf XPS 4f peaks as evidence of the HfO2 layers. For the first 1.5 nm 

 Si 2p (eV) O 1s (eV) V 2p3/2 
(eV) 

Hf 4f7/2 
(eV) 

VBM 
(eV) 

Process Si bulk SiO2 Main    
Substrate 99.7 103.7 532.6 / / 5.5 
1.5nm 
HfO2 

99.6 103.5 531.2 / 18.3 4.5 

2.0nm 
VO2 

99.5 102.8 530.2 515.5 17.2 0.8 

1.5nm 
HfO2 

99.7 103.4 531.0 / 18.0 4.2 
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HfO2 layer on n-type Si, the Hf 4f 7/2 peak is located at 18.3 eV. As the VO2 

interlayer was deposited, the Hf 4f 7/2 peakis located at 17.2 eV. When the 

second 1.5 nm HfO2 layer was deposited on top of the VO2 interlayer, the Hf 4f 

7/2 peak is located at 17.9 eV.  
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Figure 6.2 X-ray photoemission spectra of Hf 4f peaks for the deposition of the 

first HfO2 layer on Si, after deposition of VO2 interlayer and after deposition of 

second HfO2 layer.   

6.4.3 2.0 nm VO2 layer 

A 2.0 nm thick VO2 interlayer was deposited between two HfO2 layers. 

The O 1s and V 2p core levels are shown in Fig. 6.3. The peak around 530~533 

eV is the O 1s peak. The signal of this O 1s peak is contributed by the all the 

oxides on the top of sample. However, the Main peak position is mostly 

contributed by the top oxide layer at the each step of growth. For the Si substrate, 

the peak at 532.6 eV is the O 1s signal of the oxygen in the SiO2 layer. After the 
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first HfO2 layer, the O 1s peak at 531.2 eV is mostly due to oxygen in the HfO2. 

After VO2 deposition, the peak at 530.2 eV is attributed to the O 1s signal 

corresponding to the VO2 layer. After the second HfO2 capping layer, the O 1s 

peak at 531.0 is mostly due to oxygen in the second HfO2 layer. After the initial 

2.0nm VO2 deposition, the V 2p3/2 peak is located at 515.5 eV. After the HfO2 

deposition, the V 2p3/2 peak is broadened in the range of 513~515 eV, which 

may be due to the extraction of oxygen from the VO2 layer during HfO2 

deposition. The V 2p3/2 peak at 513.4 eV may be due to other vanadium oxides 

[20] or vanadium-hafnium interface oxides. The peaks at 522 eV are the satellite 

peaks of O 1s, which are due to the satellite lines of non-monochromatic Mg X-

ray source.  
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Figure 6.3 X-ray photoemission spectra of O 1s and V 2p peaks for the oxidized 

Si substrate, after deposition of the first HfO2 layer on Si, after deposition of VO2 

interlayer and after deposition of second HfO2 layer.   
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6.4.4 Ultraviolet photoemission spectra 

The ultraviolet photoemission spectra of the cleaned, oxidized substrate, 

after first layer of HfO2 deposition, after VO2 deposition, and after second layer of 

HfO2 deposition are shown in Fig. 6.4. The UPS spectrum of the initial clean SiO2 

layer on n-type Si substrates shows the valence band maximum (VBM) at 5.5 eV 

below the Fermi level. The valence band offset between Si and SiO2 is then 4.5 

eV for the n-type Si substrate, which agrees with previous results for the Si-SiO2 

band offset [21].  This result is consistent with a low interface state density and 

negligible band bending for the Si substrate. After the first 1.5 nm HfO2 layer 

deposition, the front cutoff of the UPS spectrum indicates the valence band 

maximum relative to the Fermi level at 4.5 eV. For the VO2 film, the V 3d peak is 

close to the Fermi level, and the cutoff of this peak gives the valence band 

maximum at 0.8 eV below the Fermi level. After the second 1.5 nm HfO2 layer 

deposition, the front cutoff of the UPS spectrum indicates the valence band 

maximum relative to the Fermi level at 4.2 eV. 
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Figure 6.4 Ultraviolet photoemission spectra of  the oxidized Si substrate, the first 

as-deposited HfO2 layer on Si, after deposition of VO2 interlayer and after 

deposition of second HfO2 layer.   

6.5 Discussion 

Figure 6.5 shows diagrams of the band alignment for the stacked structure 

during processing. As shown in the Fig It is noted that the CBM for all of the 

oxides are deduced from the reported values of the band gap, and the CBM are 

shown as dashed lines in the figures. The initial cleaned oxidized Si substrate 

displays a flat band condition, shown in Fig. 6.5(a). After first 1.5 nm HfO2 

deposition, the SiO2 band is tilted upwards, shown in Fig. 6.5(b). It is presumed 

that there is no significant electric field across the HfO2 layer. The valence band 

offset between HfO2 and SiO2 can be determined using the following expression: 

VBO= (E4f7/2
HfO2 – EVBM

HfO2) – (E2p
SiO2 – EVBM

SiO2) – Δ1(E4f7/2
HfO2 – E2p

SiO2) – 

Δ2(SiO2), (6.1)    
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where (E4f7/2
HfO2 – EVBM

HfO2) is the Hf 4f7/2 core level to the VBM of HfO2, 

(E2p
SiO2 – EVBM

SiO2) is the Si 2p core level to the VBM of SiO2, Δ1(E4f7/2
HfO2 – 

E2p
SiO2) is the energy separation between the Hf 4f7/2 of HfO2 and Si 2p of SiO2, 

and Δ2(SiO2) is the half value of the electrical potential across the SiO2 layer. 

Based on the Si 2p peak of SiO2 shift of ~ 0.2 eV and the substrate Si 2p peak 

shift of ~ 0.1eV, the electrical potential across the SiO2 layer can be calculated as 

0.2 (2 × (0.2 – 0.1)) eV. From Table 1, the VBO of HfO2 and SiO2 is calculated as 

0.7 eV.  

 

Figure 6.5 Band alignment of the oxidized Si substrate, after deposition of the 

first HfO2 layer on Si, after deposition of VO2 interlayer and after deposition of 
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second HfO2 layer. Dashed lines are used to represent the conduction band 

minimum of the oxides which are deduced from reported values of the band gap. 

Distances approximately represent the experimental film thickness except the 

depletion region in the Si which is compressed as indicated. 

After VO2 layer deposition, the Si 2p and Hf 4f 7/2 peaks shift to lower 

binding energy, indicating an electric potential across the SiO2 layer and band 

bending in the Si substrate, shown in Fig. 6.5(c). After second HfO2 layer 

deposition, the Si 2p and Hf 4f 7/2 peak shifts approaching to the band condition 

of initial HfO2 layer deposition, shown in Fig. 6.5(d).The valence band offset of 

HfO2/VO2 can be deduce from the band alignment schematics, which is 3.4 eV. 

This result is consistent with our previous study [22]. However, in the Fig. 6.5(c), 

the band offset of VO2/HfO2 shows around 2.6 eV. This difference may be due to 

the processing sequence. We suggest that the VO2/HfO2 interface after the high 

temperature growth of the VO2 layer on the first layer HfO2 may be different than 

the HfO2/VO2 interface after the room temperature growth of the second HfO2 

layer. During high temperature deposition of the VO2 layer, a fraction of the 

oxygen in first HfO2 layer may be extracted into VO2 film. When the second 

HfO2 layer was deposited on the VO2 layer at room temperature, the oxygen may 

diffuse back the first HfO2 layer and compensate the oxygen deficiency of that 

layer. 

For most heterostructures, interface bonding leads to charge transfer and 

an interface dipole. The interfacial dipole is often described as the difference 
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between the vacuum levels at the interface of the two adjoining materials. 

Experimentally this can be determined from the photoemission results using:  

ΔDipole= (hν – Wa) – (hν –Wb) – VBOa/b = Wb – Wa – VBOa/b, (6.2) 

For dielectric interfaces a model has been developed by Robertson and Mönch 

which presumes that the charge will transfer to align the charge neutrality levels 

(CNL) at the interface. [23,24] The CNLs of HfO2 and SiO2 are calculated as 3.7 

eV [23] and 4.5 eV [25] respectively. Thus, the predicted value of band offset 

between HfO2 and SiO2 is 0.8 eV, which is very similar to our measured value 

0.7 eV. It indicates the CNL model can describe this system. 

6.6 Conclusions 

A quantum well structure has been prepared with an ultra thin VO2 layer 

between 2 layers of HfO2 on oxidized Si substrates.  The films were developed by 

reactive e-beam deposition on oxidized n-type Si substrates. The band alignment 

for this gate stack structure was deduced from in-situ XPS and UPS spectra. A 

band offset of 0.7 ± 0.1 eV was measured between the 1.5 nm HfO2 layer and the 

SiO2 layer, which is comparable to the value predicted by CNL model. After the 

VO2 interlayer and the HfO2 capping layer deposition, the band offset between the 

HfO2 and VO2 is 3.4 ± 0.1 eV. The band diagram for this quantum well structure 

shows a confined-well band structure, demonstrating the potential for charge 

storage for the embedded VO2 layer. 
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Chapter 7 

SUMMARY AND FUTURE WORK 

7.1 Summary 

The research described in this dissertation has involved the following 

topics: a) Thin oxide film growth by plasma enhanced atomic layer deposition 

(PEALD) and molecular beam deposition (MBD). High dielectric constant 

materials HfO2 and La2O3 which were grown as the dielectrics in a gate stack 

structure.  Conducting oxide materials VO2 and ZnO which were grown as the 

conducting layer in a gate stack structure. b) Characterization of gate stack 

structures with X-ray photoelectron spectroscopy (XPS) and ultraviolet 

photoelectron spectroscopy (UPS), and interfacial charge distribution was 

discussed based on the analysis of XPS and UPS spectra. Band alignment 

schematics are developed for these gate stack structures, and two band alignment 

models for semiconductor heterostructures, based on the electron affinity (EA) 

model and the charge neutrality level (CNL) model were discussed for these gate 

stack structures.  

A gate stack structure was prepared with a HfO2 capping layer and an ultra 

thin VO2 interlayer on oxidized Si substrates.  The 2nm thick films were grown 

by oxide molecular bean deposition on oxidized n- and p-type substrates. The 

TEM analysis confirmed the layer structure and indicated sharp interfaces without 

evidence of interdiffusion. The band alignment for this gate stack structure was 

deduced from in-situ XPS and UPS spectra. The valence band offset between an 

ultra thin VO2 layer and the SiO2 layer is measured to be 4.0 ± 0.1 eV.  After the 
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HfO2 capping layer deposition, only small changes in the band alignment are 

observed. The valence band offset between the HfO2 and VO2 is measured to be 

3.4 ± 0.1 eV. According to the CNL model, the valence band offset of HfO2/SiO2 

is expected to be 0.8 eV without a VO2 interlayer. The relative band offset 

between the HfO2 and SiO2 with a VO2 interlayer is 0.7 ± 0.1 eV which is 

comparable to the predicted value without a VO2 inter-layer. This result shows the 

CNL model can describe the structure. The results also show charge transfer to 

the VO2 during growth on the n-type substrate. The band diagram for this gate 

stack structure shows a confined-well band structure, demonstrating the potential 

for charge storage for the embedded VO2 layer. 

For the dielectric layer, we also expand pure Hf oxide to pure La oxide 

which is another popular high-k material. In the chapter 4, three high-k material, 

pure Hf oxide, pure La oxide, and alloyed Hf-La oxide films were developed by 

using remote-plasma atomic layer deposition (RPALD). The growth conditions 

were investigated at growth temperatures ranging from ~80°C to ~250 °C and 

different alloy composition. The relative composition and atomic bonding 

structures of the film were determined by in-situ X-ray photoelectron 

spectroscopy (XPS). Atomic force microscopy (AFM) and transmission electron 

microscopy (TEM) were implemented to characterize the morphology and 

crystalline structure.  

For low temperature Hf oxide growth, The XPS results indicated a 

significant amount of excess oxygen species was observed in the deposited film. 

These excess oxygen species may be induced by the oxygen plasma processing 
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during growth. We established that a He plasma post deposition treatment can 

partially remove the excess oxygen. In addition, the pure Hf oxide films show a 

surface morphology with protruding islands over a smooth surface which reflects 

the crystallized nature of the Hf oxide domains. In order to suppress the 

crystallization of the Hf oxide and carbon contamination of the La oxide, the Hf-

La oxide film was grown by PEALD.  XPS, TEM and AFM results indicated that 

the Hf-La oxide films showed an amorphous or disordered structure with no 

evidence of nanocrystalline domains. Carbon residue in the alloyed film is also 

reduced compared with that of the La oxide film. Finally, the electrical properties 

of the deposited films were characterized by capacitance-voltage (C-V) and 

current-voltage (I-V) measurement. The I-V curves show that the alloyed Hf-La 

oxide films have a higher break down field than that of pure Hf oxide films. 

With the achievement of high quality high-k dielectrics (HfO2-La2O3), the 

research was extended to new channel layer materials. ZnO was considered as a 

channel layer material and integrated into a gate stack structure with an alloyed 

HfO2-La2O3 (11% HfO2 and 89% La2O3) layer. These thin films were prepared by 

plasma enhanced atomic layer deposition (PEALD). High resolution electron 

microscopy indicated an amorphous structure of the deposited layers. The 

electronic properties were characterized with in-situ x-ray and ultraviolet 

photoemission spectroscopy. A significant amount of excess oxygen was also 

observed in the as-deposited ZnO and (HfO2-La2O3) layers. A helium plasma 

post-deposition treatment can partially remove the excess oxygen in both layers. 

Furthermore, the band alignment of this structure was established for an n-type Si 
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substrate. A valence band offset of 1.5 ± 0.1 eV was measured between a thin 

ZnO layer and a SiO2 layer. The valence band offset between HfO2-La2O3 and 

ZnO was almost negligible. The band relationship developed from these results 

demonstrates confinement of electrons in the ZnO film as a channel layer for thin 

film transistors. 

The studies of the gate stack structure of HfO2/VO2 on Si substrate, 

employed a modified multilayer structure. This confined well structure was 

prepared with an ultra thin VO2 layer between two HfO2 layers on oxidized Si 

substrates.  The films were developed by reactive e-beam deposition on oxidized 

n-type Si substrates. The band alignment for this gate stack structure was deduced 

from in-situ XPS and UPS spectra. A band offset of 0.7 ± 0.1 eV was measured 

between the 1.5 nm HfO2 layer and the SiO2 layer, which is comparable to the 

value predicted by the CNL model. After the VO2 interlayer and the HfO2 capping 

layer deposition, the band offset between the HfO2 and VO2 is 3.4 ± 0.1 eV, 

which is consistent with previous results discussed in chapter 3. The band 

diagram for this confined well structure shows both electrons and holes can be 

confined in the VO2 layer. The results demonstrate this confined well structure 

has potential for applications for charge storage in the embedded VO2 layer. 

7.2 Future work 

7.2.1 Alloyed HfO2-SiO2 dielectrics 

Currently, HfO2 is one of the most studied among the high-k material 

candidates. However, one problem for pure HfO2 is the formation of 

nanocrystalline domains, which results in a high leakage current. This problem 
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can be mitigated by alloying HfO2 with other oxides. In our previous study, we 

reported that HfO2 alloyed with La2O3 is an approach to address this problem. [1] 

This alloyed hafnium lanthanum oxide has an amorphous structure without 

obvious crystallized grains. I-V measurements show that this uniform amorphous 

alloyed oxide film has a lower leakage current than that of a pure hafnium oxide 

film. However, La2O3 can absorb water and carbon dioxide when exposed to air, 

which leads to the formation of LaO(OH) and carbonate features. [2, 3] An 

alternate approach is to prepare HfO2 alloyed with SiO2 for the gate dielectric 

insulator, [4, 5] as SiO2 does not readily absorb water and CO2. This structure is 

more compatible with current semiconductor technology. Besides maintaining a 

low leakage current, it is also required that the transistor gate dielectric insulator 

exhibits a band alignment that can block both holes and electrons. This requires a 

wide band gap of material, and HfO2 has a band gap of 5.7 eV and SiO2 has a 

band gap of 8.9 eV. Both materials are suitable candidates for this band alignment 

requirement. The film also exhibits a low density of electronically active defects 

(bulk and interface), and the interface is stable for the required thermal process.  

The first part of this proposed project is to employ plasma enhanced ALD to 

achieve a high quality HfO2-SiO2 dielectrics for TFTs. 

7.2.2 Alumina Zinc oxide and vanadium oxide for thin film transistor 

The interest in future flexible displays based on and transparent thin film 

transistor (TFT) has significantly increased. However, traditional TFT’s based on 

amorphous silicon (a-Si) as the active channel layer material has several 

limitations including a low mobility below 1.0 cm2/Vs [6]. Recently, transparent 
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semiconductor materials such as zinc oxide have been proposed as a channel layer 

material as an alternative to a-Si. ZnO is a wide band gap semiconductor material. 

At room temperature, crystalline ZnO has a mobility of ~100 cm2/Vs [7] which is 

much higher than that of a-Si. In addition, zinc oxide thin films can be 

successfully grown even at a temperature of 100 °C and below [8]. In our 

previous study, ZnO films were grown by PEALD and integrated into gate stack 

structure. Recently, aluminum doped ZnO (AZO) has been considered as a new 

conducting transparent oxide, which has the potential to replace ITO in some 

applications. The resistivity of AZO can be below 10-3 Ω*cm [9-11], which is 

lower than that of undoped ZnO 105Ω*cm [10]. Another metal-like oxide is 

vanadium dioxide (VO2). Vanadium dioxide (VO2) is a narrow band gap material 

(Eg = 0.7eV) [12], with a well known Metal to Insulator Transition (MIT). At 

room temperature, VO2 shows insulating characteristics. When VO2 is heated 

above ~70°C (343K), the insulator to metal transition occurs, [12, 13] with an 

abrupt three order of magnitude change of resistivity. Recently, research has 

indicated that the MIT can be achieved by applying an external electric field at a 

constant temperature. [14-18] We propose that we can control the current passing 

through this VO2 channel layer by applying a gate voltage.  
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