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ABSTRACT

Access control is one of the most fundamental security mechanisms used in

the design and management of modern information systems. However, there still

exists an open question on how formal access control models can be automatically

analyzed and fully realized in secure system development. Furthermore, specify-

ing and managing access control policies are often error-prone due to the lack of

effective analysis mechanisms and tools.

In this dissertation, I present an Assurance Management Framework (AMF)

that is designed to cope with various assurance management requirements from both

access control system development and policy-based computing. On one hand, the

AMF framework facilitates comprehensive analysis and thorough realization of for-

mal access control models in secure system development. I demonstrate how this

method can be applied to build role-based access control systems by adopting the

NIST/ANSI RBAC standard as an underlying security model. On the other hand,

the AMF framework ensures the correctness of access control policies in policy-

based computing through automated reasoning techniques and anomaly manage-

ment mechanisms. A systematic method is presented to formulate XACML in

Answer Set Programming (ASP) that allows users to leverage off-the-shelf ASP

solvers for a variety of analysis services. In addition, I introduce a novel anomaly

management mechanism, along with a grid-based visualization approach, which

enables systematic and effective detection and resolution of policy anomalies. I

further evaluate the AMF framework through modeling and analyzing multiparty

access control in Online Social Networks (OSNs). A MultiParty Access Control

(MPAC) model is formulated to capture the essence of multiparty authorization re-

quirements in OSNs. In particular, I show how AMF can be applied to OSNs for

identifying and resolving privacy conflicts, and representing and reasoning about
i



MPAC model and policy. To demonstrate the feasibility of the proposed methodol-

ogy, a suite of proof-of-concept prototype systems is implemented as well.

ii



Dedicated to my family

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my ad-

visor, Prof. Gail-Joon Ahn. He helped me cultivate a taste in research problems,

and was a constant source of invaluable advice on navigating through the academic

world. I feel truly lucky to have him as my advisor and I sincerely hope that we

will remain both collaborators and friends for many years to come. I also wish to

express my deep appreciation to my PhD committee members, Prof. Stephen S.

Yau, Prof. Partha Dasgupta, and Prof. Nong Ye. The assistance and guidance they

provided in the preparation of this dissertation have been invaluable.

Many thanks to the numerous individuals who worked with me on collabo-

rative papers, and on topics related to my research over the last few years, including

Prof. Joohyung Lee, Dr. Xinwen Zhang (at Huawei America Research Center),

Prof. Yan Zhu (at Peking University), Prof. Wenjuan Xu (at Frostburg State Uni-

versity), Dr. Jing Jin (at Deutsche Bank Global Technologies) and graduate students

Yunsong Meng and Dejun Yang. Their feedback and criticism enriched my work

and helped me to align it with other research projects.

To the Laboratory of Security Engineering for Future Computing (SEF-

COM), it has been a great pleasure working with all lab members during my jour-

ney as a doctoral student, particularly Ziming Zhao, Ruoyu Wu, Yiming Jing, Ketan

Kulkarni, Jan Jorgensen, Michael Mabey, Pradeep Sekar, Justin Paglierani, Deepin-

der Mahi, Michael Sanchez, Patrick Trang and Jeong-Jin Seo. This would never be

possible without their incessant help and insightful discussions.

Last but not least, I would like to thank my wife Lei Shao. Her support,

encouragement, patience and unconditional love enabled me to surpass hardships

and complete this work. I also thank my parents Guohui Hu and Yuanzhen Zhang,

iv



and my sisters Qionghua Hu and Xiaoqiong Hu. They were always supporting me

and encouraging me with their best wishes. Additionally, I would thank my son

Ruijia (Roger) Hu. He gave me the motivation and courage to get through this

work.

My dissertation work was supported in part by the grants from National

Science Foundation (NSF-IIS-0900970 and NSF-CNS-0831360), and Department

of Energy (DE-SC0004308 and DE-FG02-03ER25565).

v



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Statement of the Hypothesis . . . . . . . . . . . . . . . . . . . . . 3

1.2 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Representation and Analysis of Access Control Model . . . . . . . . 6

2.2 Representation and Analysis of Access Control Policy . . . . . . . . 8

Representing and Reasoning about Access Control Policy . . . . . . 8

Anomaly Discovery and Resolution for Access Control Policy . . . 9

Visualization-based Policy Representation . . . . . . . . . . . . . . 10

2.3 Access Control for Online Social Networks . . . . . . . . . . . . . 10

3 Background Information . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Role-Based Access Control Standard . . . . . . . . . . . . . . . . . 13

3.2 Unified Modeling Language and Object Constraint Language . . . . 13

3.3 Role-Based Constraints Language 2000 . . . . . . . . . . . . . . . 14

3.4 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Extensible Access Control Markup Language . . . . . . . . . . . . 16

3.6 Answer Set Programming . . . . . . . . . . . . . . . . . . . . . . . 16

4 Assurance Management Framework (AMF) . . . . . . . . . . . . . . . . 19

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Access Control Model . . . . . . . . . . . . . . . . . . . . . . . . . 20

Analysis Approach in AMF for Access Control Model . . . . . . . 22

vi



CHAPTER Page
Access Control Model Verification . . . . . . . . . . . . . . 23

Access Control Model Testing . . . . . . . . . . . . . . . . 28

Realization and Analysis of RBAC Model . . . . . . . . . . . . . . 29

Realization of RBAC Model . . . . . . . . . . . . . . . . . 30

RBAC Model Representation in UML and OCL . . . 31

RBAC Constraint Specification in OCL . . . . . . . 38

Code Generation . . . . . . . . . . . . . . . . . . . 43

Analysis of RBAC Model . . . . . . . . . . . . . . . . . . . 44

RBAC Model Representation in Alloy . . . . . . . . 45

RBAC Constraint Specification in Alloy . . . . . . . 47

RBAC Function Verification . . . . . . . . . . . . . 47

RBAC Constraint Verification . . . . . . . . . . . . 51

Test Case Generation . . . . . . . . . . . . . . . . . 54

Tool Support. . . . . . . . . . . . . . . . . . . . . . . . . . 56

RBAC Authorization Environment (RAE) . . . . . . 57

RBAC Authorization Simulation System (RASS) . . 59

Tool Chain . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Access Control Policy . . . . . . . . . . . . . . . . . . . . . . . . . 61

Representing and Reasoning about Access Control Policy . . . . . . 63

Example XACML Policy . . . . . . . . . . . . . . . . . . . 64

Abstracting XACML Policy Components . . . . . . . . . . 66

XACML Policy Analysis using ASP . . . . . . . . . . . . . 68

Implementation and Evaluation . . . . . . . . . . . . . . . . 72

Anomaly Detection and Resolution for Access Control Policy . . . . 74

Anomalies in XACML Policies . . . . . . . . . . . . . . . . 76

vii



CHAPTER Page
Underlying Data Structure . . . . . . . . . . . . . . . . . . 79

Conflict Detection and Resolution . . . . . . . . . . . . . . 82

Conflict Detection Approach . . . . . . . . . . . . . 82

Fine-Grained Conflict Resolution . . . . . . . . . . . 89

Redundancy Discovery and Removal . . . . . . . . . . . . . 92

Redundancy Elimination at Policy Level . . . . . . . 92

Redundancy Elimination at Policy Set Level . . . . . 98

Implementation and Evaluation . . . . . . . . . . . . . . . . 101

5 Applying AMF to Online Social Networks . . . . . . . . . . . . . . . . . 108

5.1 Multiparty Access Control for OSNs: Requirements and Patterns . . 111

5.2 Modeling Multiparty Access Control for OSNs . . . . . . . . . . . 115

MPAC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

MPAC Policy Specification . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Identifying and Resolving Privacy Conflicts . . . . . . . . . . . . . 121

Privacy Conflict Identification . . . . . . . . . . . . . . . . . . . . 122

Privacy Conflict Resolution . . . . . . . . . . . . . . . . . . . . . . 124

Generating Conflict-Resolved Policy . . . . . . . . . . . . . . . . . 128

5.4 Logical Representation and Analysis of Multiparty Access Control . 129

Representing Multiparty Access Control in ASP . . . . . . . . . . . 129

Logical Representation of MPAC Model and Policy . . . . . 129

Logical Representation of Privacy Conflict Detection and

Resolution . . . . . . . . . . . . . . . . . . . . . 131

Reasoning about Multiparty Access Control . . . . . . . . . . . . . 131

5.5 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . 133

Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . 133

viii



CHAPTER Page
Evaluation and Experiment . . . . . . . . . . . . . . . . . . . . . . 137

Evaluation of Privacy Conflict Resolution . . . . . . . . . . 137

Evaluation of System Usability . . . . . . . . . . . . . . . . 140

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Realization and Analysis of Access Control Model . . . . . . . . . 149

Analysis and Management of Access Control Policy . . . . . . . . . 149

Applying AMF to Emerging Domains . . . . . . . . . . . . . . . . 150

Social Networks . . . . . . . . . . . . . . . . . . . . . . . . 150

Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . 151

Mobile Computing . . . . . . . . . . . . . . . . . . . . . . 152

Healthcare Systems . . . . . . . . . . . . . . . . . . . . . . 152

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

ix



LIST OF TABLES

Table Page

4.1 Mapping RCL2000 expression to OCL expression for SSoD-CR. . . . . 42

4.2 Experimental results on real-life XACML policies. . . . . . . . . . . . 73

4.3 Atomic Boolean expressions and corresponding Boolean variables for P1. 80

4.4 XACML policies used for evaluation. . . . . . . . . . . . . . . . . . . 105

4.5 Conflict detection and redundancy removal algorithms evaluation. . . . 106

5.1 Usability evaluation for Facebook and Retinue privacy controls. . . . . . 141

5.2 Perceived usability of Factbook privacy controls (before using Retinue). 142

5.3 Perceived usability of Retinue privacy controls (after using Retinue). . . 143

x



LIST OF FIGURES

Figure Page

4.1 Assurance management framework. . . . . . . . . . . . . . . . . . . . 19

4.2 Realization and analysis of access control model. . . . . . . . . . . . . 21

4.3 Function verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Identifying under-constraint. . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Identifying over-constraint. . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Constraint verification. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Test case generation for constraints. . . . . . . . . . . . . . . . . . . . 28

4.8 Realization and analysis of RBAC model with AMF. . . . . . . . . . . 30

4.9 RBAC model representation in UML class diagram. . . . . . . . . . . . 31

4.10 Translation algorithm from RCL2000 to OCL. . . . . . . . . . . . . . . 40

4.11 Generated Java code for CheckStaticConstraints function. . . . . . 44

4.12 Translation algorithm from RCL2000 to Alloy. . . . . . . . . . . . . . 48

4.13 Structural overview of the RAE. . . . . . . . . . . . . . . . . . . . . . 56

4.14 RAE tool and RASS testbed environment . . . . . . . . . . . . . . . . 59

4.15 Toolchain supporting the proposed approach. . . . . . . . . . . . . . . 61

4.16 Representation and analysis of access control policy. . . . . . . . . . . 62

4.17 An example XACML policy. . . . . . . . . . . . . . . . . . . . . . . . 65

4.18 ASP representation of the example XACML policy. . . . . . . . . . . . 69

4.19 Anomalies in an example XACML policy. . . . . . . . . . . . . . . . . 77

4.20 Representing and operating on rules of XACML policy with BDD. . . . 81

4.21 Authorization space representation for policy P1 in the example XACML

policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.22 Aggregation of authorization spaces for policy P1 in the example XACML

policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xi



Figure Page
4.23 Authorization space representation for policy set PS1 in the example

XACML policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.24 Fine-grained conflict resolution framework. . . . . . . . . . . . . . . . 90

4.25 Example of eliminating redundancies at policy level. . . . . . . . . . . 93

4.26 Example of rule correlation break. . . . . . . . . . . . . . . . . . . . . 96

4.27 Example of authorization space segmentation at policy set level for re-

dundancy discovery and removal. . . . . . . . . . . . . . . . . . . . . . 98

4.28 XAnalyzer interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.29 Evaluation of redundancy removal approach. . . . . . . . . . . . . . . 106

5.1 Multiparty access control pattern for profile and relationship sharing. . 111

5.2 Multiparty access control pattern for content sharing. . . . . . . . . . . 113

5.3 An example of multiparty social network representation. . . . . . . . . 118

5.4 Example of privacy conflict identification based on accessor space seg-

mentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 System architecture of Retinue. . . . . . . . . . . . . . . . . . . . . . . 134

5.6 Retinue interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.7 Example of resolving privacy conflicts. . . . . . . . . . . . . . . . . . 137

5.8 Conflict resolution evaluation. . . . . . . . . . . . . . . . . . . . . . . 138

xii



Chapter 1

Introduction

The advent of emerging technologies such as service-oriented architecture and cloud

computing has enabled users to perform business services more efficiently and ef-

fectively. However, we still suffer from unintended security leakages by unautho-

rized actions in business services while providing more convenient services to users

through such a cutting-edge technological growth. Access control is one of the most

fundamental and pervasive mechanisms in use today to secure these services.

There have been two parallel areas in access control research in recent years.

On one hand, there are efforts to develop access control models to fulfil the autho-

rization requirements from real-world application domains. These have turned out

several successful and well-established access control models, such as the RBAC96

model [1], the NIST/ANSI standard RBAC model [2, 3], the RT model [4], and

the Usage Control model [5]. In parallel, and almost separately, many researchers

have devoted to develop policy languages for access control to support policy-based

computing, including application-level policies (e.g., XACML [6], SAML [7], Pon-

der [8] and EPAL [9]), network-level policies (e.g., firewall policy [10] and IPSec

policy [11]), and system-level policies (e.g., SELinux policy [12] and AppArmor

policy [13]).

Software developers utilize models extensively, particularly in the early

software development lifecycle to improve software quality. Since security has

become a necessary part of nearly most modern software and information systems,

access control models can be leveraged to integrate the security concerns into the

software development process [14, 15]. However, several challenging issues should

be taken into account for applying access control models in secure system develop-
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ments. First, there exists a gap between access control models and building secure

systems with such formal models. Access control models are generally described in

some forms of formalism, but software developers are often reluctant to fully adopt

a formal model for their development tasks. Consequently, it is very desirable to

have a mechanism and corresponding tool to aid software developers or system ad-

ministrators in understanding and articulating a specific access control model in the

software analysis and design phases. Second, it is crucial to verify and validate

the access control models and associated constraints before actual implementation

commences, such that flaws and conflicts in the system design can thus be iden-

tified as early as possible, and can be efficiently resolved accordingly. Third, the

access control models that are specified with modeling languages should be trans-

lated to security enforcement codes to derive appropriate security properties for the

system implementation. Besides, the consistency between the design model and its

implementation, and the correctness of the translation should be evaluated.

On the other hand, the use of a policy-based approach has recently received

considerable attention to accommodate the security requirements covering large,

open, distributed and heterogeneous computing environments [6, 8, 10, 12]. Policy-

based computing handles complex system properties by separating policies from

system implementation and enabling dynamic adaptability of system behaviors by

changing policy configurations without reprogramming the systems. Considering

that most recent policy language proposals supporting complicated and distributed

systems, assuring the correctness of policy specifications becomes a crucial and yet

challenging task. Especially, identifying inconsistencies and differences between

policy specifications and their expected functions is critical since the correctness

of the implementation and enforcement of policies heavily relies on the policy

specification. Consequently, the increasing complexity of policy-based comput-

2



ing strongly demands automated analysis techniques. Without having such analysis

techniques in place, most benefits of policy-based techniques and declarative policy

languages may be in vain.

Even though some approaches have been proposed from various aspects to

address the issues with respect to the representation and verification of access con-

trol models [14, 16, 17, 18, 19], as well as the analysis and management of access

control policies [20, 21, 22, 23, 24], the preliminary study in this work clearly iden-

tifies that there is a need to design a systematic mechanism that is general and flexi-

ble enough to reflect and deal with the various assurance management requirements

rising from both access control system development and policy-based computing.

In this research, I would make one step towards this direction. In this dissertation,

I define the concept of assurance as “the process-driven management for access

control systems from formal representation to practical enforcement that ensures

the correctness and conformance of access control systems”.

1.1 Statement of the Hypothesis

Therefore, this research hypothesizes that:

Systematic analysis and practical realization of access control models and

policies are necessary to articulate assurance relevant requirements, such as cor-

rectness and conformance of access control systems, and to accommodate these

requirements for achieving the assurance of access control systems.

In this dissertation, I introduce an Assurance Management Framework (AMF),

which enables formal access control models are fully realized in real systems via

model representation, constraint specification, and generation of enforcement codes.

3



Thus, the gap between access control models and the development of access control

systems can be minimized. Particularly, model-based verification and model-based

testing for access control are articulated in this framework, in which the formal

specifications of access control models and constraints are verified, and test cases

are derived from the formal specifications automatically. The generated test cases

are used to validate whether the secure system design and implementation conform

to the formal specifications. Consequently, the analysis and testing of access con-

trol models in the AMF framework could provide higher assurance for the design

and implementation of access control systems. I then adopt the NIST/ANSI RBAC

standard [2] to demonstrate the feasibility of the proposed approach. An RBAC

authorization environment RAE and a simulation system RASS are implemented as

well, and they can cooperate with Alloy Analyzer [25] to accommodate features

addressed in the framework.

Besides, the AMF framework ensures the correctness of access control poli-

cies for policy-based computing by adopting automated reasoning techniques and

systematic anomaly management mechanisms. I present a logic-based policy man-

agement approach for access control policies especially focusing on XACML (eX-

tensible Access Control Markup Language) policies [6]. Answer Set Programming

(ASP) [26, 27] is adopted to formulate XACML policies that allows users to lever-

age the features of ASP solvers in performing various logical reasoning and analysis

tasks such as policy verification, comparison and querying. Moreover, I introduce

a policy-based segmentation technique to accurately identify policy anomalies and

derive effective anomaly resolutions, along with an intuitive visualization represen-

tation of analysis results. In addition, I discuss the implementation of an anomaly

analysis tool called XAnalyzer and demonstrate how the proposed approach can

efficiently discover and resolve policy anomalies.

4



I further evaluate the applicability of the AMF framework through modeling

and analyzing multiparty access control in Online Social Networks (OSNs). A Mul-

tiParty Access Control (MPAC) model is formulated to capture the core features of

multiparty authorization requirements which have not been accommodated so far

by existing access control systems and models for OSNs (e.g., [28, 29, 30, 31]).

In the meanwhile, since privacy conflicts are inevitable in multiparty authorization,

a systematic mechanism is provided to identify and resolve privacy conflicts for

collaborative data sharing in OSNs. In particular, the conflict resolution indicates

a tradeoff between privacy protection and data sharing by quantifying privacy risk

and sharing loss. Moreover, I introduce an approach for representing and reasoning

about MPAC model and policy with ASP. I also discuss a proof-of-concept proto-

type implementation of the proposed approach called Retinue and provide system

evaluation and usability study of the methodology.

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 discusses re-

lated work. Chapter 3 provides background on several technologies. Chapter 4

overviews the AMF framework, elaborates the processes of the analysis and real-

ization of access control model in AMF, and addresses the techniques of the policy

reasoning and anomaly management in AMF. Chapter 5 articulates how to apply the

AMF framework to OSNs through modeling and analyzing multiparty access con-

trol. Finally, Chapter 6 summarizes this dissertation and presents some directions

for future work.
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Chapter 2

Related Work

In this chapter, I summarize the related work to this dissertation.

2.1 Representation and Analysis of Access Control Model

Many research efforts have been devoted to UML-based modeling of security model.

Ahn et al. [16] showed how RBAC model and constraints can be expressed in UML

using OCL. Jürjens et al. [32] proposed an extension to UML that defines several

new stereotypes towards formal security verification of elements. Alghathbar et

al. [33] defined an approach AuthUML that includes a process and a modeling lan-

guage to express RBAC policies via use cases. Ray et al. [15] specified reusable

RBAC policies using UML diagram templates and showed how RBAC policies can

be easily integrated with the application. Basin et al. [14] defined a metamodel

to generate security definition languages, an instance of which is SecureUML, a

platform-independent language for RBAC. Mouheb et al. [34] presented an aspect-

oriented modeling approach for specifying and integrating security concerns into

UML design models. All of these approaches accommodated security requirements

without considering the validation of security model and policy.

One important aspect of access control model analysis is to formally check

general properties of access control. In formal verification, a formal specification

of a system is proven with a set of higher-level properties that the system should

satisfy [35]. Currently, formal verification offers a rich toolbox containing a variety

of techniques such as model checking [36], SAT solving [37] and theorem prov-

ing [38], for supporting automatic system verification. Schaad and Moffett [17]

specified the access control policies under the RBAC96 and ARBAC97 model and

a set of separation of duty constraints in Alloy. They attempted to check the con-

6



straint violations caused by administrative operations. In [39], Shafig et al. ex-

plored a Petri-Net based framework to verify the correctness of event-driven RBAC

policies in real-time system. Toahchoodee et al. [40] demonstrated how the spatio-

temporal aspects in RBAC model can be verified with Alloy. Alloy is also adopted

to analyze the formal specifications of an RBAC model and constraints, which are

then used for access control system development. In addition, the verified specifica-

tions are used to automatically derive the test cases for conformance testing. In [18],

Shor et al. demonstrated how the USE tool, a validation tool for OCL constraints,

can be utilized to validate authorization constraints against RBAC configurations.

The policy designers can employ the USE-based approach to detect certain conflicts

between authorization constraints and to identify missing constraints. However, the

USE tool mainly focuses on the analysis of OCL constraints and has limitations

for specifying models and policies. Similarly, Basin et al. [19] showed security-

design models represented with UML and OCL can be validated based on system

scenarios, which represent possible run-time instances of systems.

In conformance testing [41], an actual implementation of a system is com-

pared with its specification by means of interactions between the implementation

and test cases. The most significant recent development in testing is the applica-

tion of verification approach which generates test cases from the formal specifica-

tions [42, 43]. However, very few studies addressed how access control mechanisms

could be tested. Recently, mutation analysis was applied to security policy testing.

Masood et al. [44] used formal techniques to conceive a fault model and adopt

mutation for RBAC models. Xie et al. [45] proposed a fault model for XACML

policies. The mutation operators were introduced to implement the fault model.

Pretschner et al. [46] also used mutation analysis and defined security policy mu-

tation operators in order to improve the security tests. However, no existing work

7



could adopt formal verification technologies for test case generation for the purpose

of checking the compliance of access control system design and implementation.

2.2 Representation and Analysis of Access Control Policy

Many research efforts have been devoted to the policy representation and analysis.

I only overview some work closely related to this dissertation, mainly focusing on

representing and analyzing XACML policies.

Representing and Reasoning about Access Control Policy

In [47], a framework for automated verification of access control policies based on

relational first-order logic was proposed. The authors demonstrated how XACML

policies can be translated to the Alloy language [48], and checked their security

properties using the Alloy Analyzer. However, using the first-order constructs of

Alloy to model XACML policies is expensive and still needs to examine its feasi-

bility for larger size of policies. In [49], the authors formalized XACML policies

using a process algebra known as Communicating Sequential Processes. This uti-

lizes a model checker to formally verify properties of policies, and to compare

access control policies with each other. Fisler et al. [20] introduced an approach to

represent XACML policies with Multi-Terminal Binary Decision Diagrams (MTB-

DDs). A policy analysis tool called Margrave was developed. Margrave can verify

XACML policies against the given properties and perform change-impact analysis

based on the semantic differences between the MTBDDs representing the policies.

Kolovski et al. [21] presented a formalization of XACML using description logic

(DL), which is a family of languages that are decidable subsets of first-order logic,

and leveraged existing DL reasoners to conduct policy verification. However, ex-

isting work could only address part of XACML combining algorithms. Also, none

of them could handle conditions represented in XACML policies.
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Anomaly Discovery and Resolution for Access Control Policy

Several work presented policy analysis tools with the goal of discovering policy

anomalies in firewall [22, 23, 24, 50, 51]. However, we cannot directly apply those

analysis approaches for XACML due to several reasons. First, the structure of

firewall policies is flat but XACML has a hierarchical structure supporting recursive

policy specification. Second, a firewall policy only supports one conflict resolution

strategy (first-match) but XACML has four rule/policy combining algorithms. Last

but not the least, a firewall rule is typically specified with fixed fields, while an

XACML rule can be multi-valued.

Some XACML policy evaluation engines, such as Sun PDP [52] and XEngine

[53], have been developed to handle the process of evaluating whether a request sat-

isfies an XACML policy. During the process of policy enforcement, conflicts can

be checked if a request matches multiple rules having different effects, and then

conflicts are resolved by applying predefined combining algorithms in the policy.

Some work addressed the general conflict resolution mechanisms for access

control [54, 55, 56, 57, 58]. Especially, Li et al. [56] proposed a policy combining

language PCL, which can be utilized to specify a variety of user-defined combin-

ing algorithms for XACML. In addition, Bauer et al. [59] adopted a data-mining

technique to eliminate inconsistencies between access control policies and user’s

intentions.

Other related work includes XACML policy integration [60, 61] and XACML

policy optimization [62]. Since anomaly discovery and resolution are challenging

issues in policy integration and redundancy elimination can contribute in policy

optimization, all of those related work are orthogonal to this work.
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Visualization-based Policy Representation

There are several interfaces that have been developed to assist users in creating

and manipulating security policies. Expandable Grid is a tool for viewing and au-

thoring access control policies [63]. The representation in Expandable Grids is a

matrix with subjects shown along the rows, resources shown along the columns,

and effective accesses for the combinations of subjects and resources in the matrix

cells. The SPARCLE Policy Workbench allows policy authors to construct policies

in a natural language interface, which are in turn translated into machine-readable

policies [64]. Even though these interfaces are useful for authoring access control

policies, they cannot effectively represent the results of policy analysis. Moreover,

visualization has been widely used in the security arena for better understanding and

presenting data related to network attacks [65, 66], intrusion detection [67, 68], and

trust negotiations [69]. However, it is rarely adopted for security policy analysis.

2.3 Access Control for Online Social Networks

Access control for OSNs is still a relatively new research area. Several proposals of

an access control scheme for OSNs have been introduced (e.g., [28, 29, 30, 31, 70]).

Carminati et al. [28] introduced a trust-based access control mechanism, which al-

lows the specification of access rules for online resources where authorized users

are denoted in terms of the relationship type, depth, and trust level between users

in OSNs. They further presented a semi-decentralized discretionary access control

system and a related enforcement mechanism for controlled sharing of information

in OSNs [29]. Fong et al. [31] proposed an access control model that formalizes and

generalizes the access control mechanism implemented in Facebook. Gates [71] de-

scribed relationship-based access control as one of the new security paradigms that

addresses the requirements of the Web 2.0. Then, Fong [30] recently formulated this

10



paradigm called a Relationship-Based Access Control (ReBAC) that bases autho-

rization decisions on the relationships between the resource owner and the resource

accessor in an OSN. However, none of these work could accommodate privacy con-

trol requirements with respect to the collaborative data sharing in OSNs.

Recently, semantic web technologies have been used to model and express

fine-grained access control policies for OSNs (e.g., [72, 73, 74]). Especially, Carmi-

nati et al. [72] proposed a semantic web based framework for social network access

control. Three types of policies are defined in this framework, including autho-

rization policy, filtering policy and admin policy, which are modeled with the Web

Ontology Language (OWL) and the Semantic Web Rule Language (SWRL). Access

control policies regulate how resources can be accessed by the participants; filter-

ing policies specify how resources have to be filtered out when a user fetches an

OSN page; and admin policies can determine who is authorized to specify policies.

Although they claimed that flexible admin policies are needed to bring the system

to a scenario where several access control policies specified by distinct users can

be applied to the same resource, however, lack of formal descriptions and concrete

implementation of the proposed approach leaves behind the ambiguities of their

solution.

Several recent work [75, 76, 77, 78, 79] recognized the need of joint man-

agement for data sharing, especially photo sharing, in OSNs. In particular, Squic-

ciarini et al. [78] proposed a solution for collective privacy management for photo

sharing in OSNs. This work considered the privacy control of a content that is co-

owned by multiple users in an OSN, such that each co-owner may separately specify

her/his own privacy preference for the shared content. The Clarke-Tax mechanism

was adopted to enable the collective enforcement for shared content. Game theory

was applied to evaluate the scheme. However, a general drawback of this solution
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is the usability issue, as it could be very hard for ordinary OSN users to compre-

hend the Clarke-Tax mechanism and specify appropriate bid values for auctions. In

addition, the auction process adopted in their approach indicates only the winning

bids could determine who was able to access the data, instead of accommodating

all stakeholders’ privacy preferences.

Measuring privacy risk in OSNs has been addressed recently by several

work [80, 81, 82]. Becker et al. [80] presented PrivAware, a tool to detect and re-

port unintended information loss through quantifying privacy risk associated with

friend relationship in OSNs. In [82], Talukder et al. discussed a privacy protection

tool, called Privometer, which can measure the risk of potential privacy leakage

cased by malicious applications installed in the user’s friend profiles and suggest

self-sanitization actions to lessen this leakage accordingly. Liu et al. [81] proposed

a framework to compute the privacy score of a user, indicating the user’s potential

risk caused by her/his participation in OSNs. Their solution also focused on the

privacy settings of users with respect to their profile items.

12



Chapter 3

Background Information

This chapter gives a brief introduction to several relevant technologies.

3.1 Role-Based Access Control Standard

RBAC standard was proposed by National Institute of Standards and Technologies

(NIST) in 2001 [2] and formally adopted as an ANSI standard in 2004 [3]. The

NIST/ANSI RBAC standard is composed of two parts: RBAC Reference Model

and RBAC System and Administrative Functional Specification. The reference

model defines sets of basic RBAC elements and relations, such as a set of roles,

a set of users, a set of permissions, and relationships between users, roles, and

permissions. The system and administrative functional specification identifies all

necessary functionalities required by role-based systems. These functionalities are

divided into three categories: administrative operations, administrative reviews, and

supporting system functions. In addition, the NIST/ANSI RBAC standard has four

components: Core RBAC, Hierarchical RBAC, Static Separation of Duty (SSoD)

relations, and Dynamic Separation of Duty (DSoD) relations. In this dissertation, I

adopt this standard model as a basis for the model representation.

3.2 Unified Modeling Language and Object Constraint Language

Unified Modeling Language (UML) [83] is a general-purpose visual modeling lan-

guage in which we can specify, visualize, and document the artifacts of software

systems. It captures decisions and understanding about systems that must be con-

structed. UML has become a standard modeling language in the field of software

engineering. UML defines notions for building many diagrams–such as use case di-

agram, class diagram, collaboration diagram and so on–to depict a particular view

of a system. In this work, I focus on the class diagram and object diagram of UML.
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A class diagram depicts a structural view of information in a system. Classes are

defined in terms of their attributes and relationships. The relationships include as-

sociation, generalization/specialization, and aggregation of classes. An object dia-

gram is an instance of a class diagram. It shows the system states as a collection of

objects at a particular point in time. In this work, I concentrate on class and object

diagrams for representing RBAC model and system configuration, respectively.

The semi-formal semantics of UML has ambiguity and inconsistency is-

sues [84]. Object Constraint Language (OCL) is a constraint expression language

that enables users to describe constraints for UML-based models. OCL constraints

typically specify restrictions that state conditions for all instances of the classes. In

this work, I adopt OCL to specify RBAC policies. OCL offers a number of advan-

tages over the use of UML diagrams for modeling software systems. First, OCL

expressions make the definition of UML graphical models more consistent and pre-

cise. Second, OCL has a formal semantic based on mathematical set theory and

predicate logic. Thus, it is possible to have OCL expressions ensure whether the

model representations are correct and consistent with other elements of the model.

Third, UML diagrams and OCL expressions can be integrated to support model-

driven system development. As pointed out in [85], the OCL can be regarded as a

key ingredient of UML-based model representation.

3.3 Role-Based Constraints Language 2000

Role-based Constraints Language 2000 (RCL2000) [86] is a formal specification

language for RBAC policies and helps identify useful role-based authorization con-

straints such as prohibition, obligation and cardinality constraints. The users of

RCL2000 are security policy designers who understand organizational objectives

and articulate security policies to support these objectives. RCL2000 also provides

n-ary expressions and more flexibility in expressing access control constraints [87].
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RCL2000 has six entity sets called users (U), roles (R), permissions (P), ses-

sions (S), objects (OBJ), and operations (OP). Additional elements used in RCL2000

are three conflicting sets CR, CP and CU. CR is defined as a collection of conflicting

role sets; CP is denoted as a collection of conflicting permission sets; and CU is a

collection of conflicting user sets. RCL2000 supports six RBAC system functions

user, roles, sessions, permissions, operations and object. Also, RCL2000

defines two nondeterministic functions, OE (one element) and AO (all other). The

OE(X) function allows users to get one element from a set X, and AO(X) is used to

get a set by taking out one element. In this work, RCL2000 expressions are used to

specify formal authorization policies derived from the NIST/ANSI RBAC standard.

3.4 Alloy

Alloy [88] is a structural modeling language based on first-order logic, and de-

signed for the specification of object models through graphical and textual structure.

An Alloy model is a structured specification composed with the following com-

ponents: Signature, Fact, Function, Predicate and Assertion. The Alloy

Analyzer [25] is an automated constraint solver for analyzing (verifying and val-

idating) models written in Alloy. Alloy Analyzer provides two kinds of automatic

analysis–simulation in which the consistency of a fact or predicate is demonstrated

by generating a snapshot of the model; and checking in which a consequence of

the specification is tested by attempting to generate a counterexample for an as-

sertion. The former is useful for demonstrating the feasibility of a specification,

where conflicting constraints could be detected, while the latter is for validating the

correctness of a certain property in a system, where the assertion could be proved

based on the facts defined in the model and within a finite scope of instances.
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3.5 Extensible Access Control Markup Language

Extensible Access Control Markup Language (XACML) [6] has become the de

facto standard for describing access control policies and offers a large set of built-

in functions, data types, combining algorithms, and standard profiles for defining

application-specific features. At the root of all XACML policies is a policy or a

policy set. A policy set is composed of a sequence of policies or other policy sets

along with a policy combining algorithm and a target. A policy represents a single

access control policy expressed through a target, a set of rules and a rule combining

algorithm. The target defines a set of subjects, resources and actions the policy or

policy set applies to. For an applicable policy or policy set, the corresponding target

should be evaluated to be true; otherwise, the policy or policy set is skipped when

evaluating an access request. A rule set is a sequence of rules. Each rule consists of

a target, a condition, and an effect. The target of a rule decides whether an access

request is applicable to the rule and it has a similar structure as the target of a policy

or a policy set; the condition is a boolean expression to specify restrictions on the

attributes in the target and refine the applicability of the rule; and the effect is either

permit or deny. If an access request satisfies both the target and condition of a

rule, the response is sent with the decision specified by the effect element in the

rule. Otherwise, the response yields NotApplicable which is typically considered

as deny.

3.6 Answer Set Programming

Answer set programming (ASP) [26, 27] is a recent form of declarative program-

ming that has emerged from the interaction between two lines of research — non-

monotonic semantics of negation in logic programming and applications of satis-

fiability solvers to search problems. The idea of ASP is to represent the search

problem we are interested in as a logic program whose intended models, called
16



“stable models (a.k.a. answer sets),” correspond to the solutions of the problem,

and then find these models using an answer set solver — a system for computing

stable models. Like other declarative computing paradigms, such as SAT (Satisfia-

bility Checking) and CP (Constraint Programming), ASP provides a common basis

for formalizing and solving various problems, but is distinct from others such that

it focuses on knowledge representation and reasoning: its language is an expressive

nonmonotonic language based on logic programs under the stable model seman-

tics [89, 90], which allows elegant representation of several aspects of knowledge

such as causality, defaults, and incomplete information, and provides compact en-

coding of complex problems that cannot be translated into SAT and CP [91].

As the mathematical foundation of answer set programming, the stable model

semantics was originated from understanding the meaning of negation as failure in

Prolog, which has the rules of the form

a1← a2, . . . ,am,not am+1, . . . ,not an (3.1)

where all ai are atoms and not is a symbol for negation as failure, also known as

default negation. Intuitively, under the stable model semantics, rule (3.1) means that

if you have generated a2, . . . ,am and it is impossible to generate any of am+1, . . . ,an

then you may generate a1. This explanation seems to contain a vicious cycle, but

the semantics are carefully defined in terms of fixpoint.

While it is known that the transitive closure (e.g., reachability) cannot be

expressed in first-order logic, it can be handled in the stable model semantics. Given

the fixed extent of edge relation, the extent of reachable is the transitive closure of

edge.

reachable(X ,Y )← edge(X ,Y ).

reachable(X ,Y )← reachable(X ,Z),reachable(Z,Y ).
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Several extensions were made over the last twenty years. The addition of

cardinality constraints turns out to be useful in knowledge representation. A car-

dinality constraint is of the form lower{l1, . . . , ln}upper where l1, . . . , ln are literals

and lower and upper are numbers. A cardinality constraint is satisfied if the num-

ber of satisfied literals in l1, . . . , ln is in between lower and upper. It is also allowed

to contain variables in cardinality constraints. For instance,

more than one edge(X)← 2{edge(X ,Y ) : vertex(Y )}.

means that more than one edge(X) is true if there are at least two edges connect X

with other vertices.

The language also supports choice, counting and aggregates, such as count,

sum, min, and max. For instance, the following rule uses an aggregate to represent

the policy that each referee should be assigned at least 3 proposals but no more than

8 proposals:

3≤ {assign(R,P) : proposal(P)} ≤ 8← re f eree(R).

The language also has useful constructs, such as strong negations, weak con-

straints, and preferences. What distinguishes ASP from other nonmonotonic for-

malisms is the availability of several efficient implementations, answer set solvers,

such as Smodels1, Cmodels2, Clasp3, which led to practical nonmonotonic reason-

ing that can be applied to various level applications.

1http://www.tcs.hut.fi/Software/smodels.
2http://www.cs.utexas.edu/users/tag/cmodels.html.
3 http://potassco.sourceforge.net.
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Chapter 4

Assurance Management Framework (AMF)

In this chapter, I first give a brief overview of the assurance management frame-

work. I then discuss approaches in AMF for the realization and analysis of access

control models, and the analysis and management of access control policies.

4.1 Overview

The AMF framework depicted in Figure 4.1 is designed to manage the assurance of

access control systems with respect to both access control model and access control

policy. Regarding access control model, the AMF framework enables realization

and analysis of formal access control models in secure system development. Model

verification and model testing for access control are articulated in this framework,

where the formal specifications of access control models are verified, and test casesAssurance Management Framework (AMF)Model/Policy RepresentationModel RepresentationModel ImplementationAccess Control Model Formal RepresentationVisual RepresentationAccess Control Policy
Model/Policy AnalysisModel VerificationModel TestingAccess Control Model Policy ReasoningAnomaly Detection/ResolutionAccess Control Policy

Mechanisms
Toolkits

Figure 4.1: Assurance management framework.
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are derived from the formal specifications automatically. The generated test cases

are in turn used to validate whether the secure system design and implementation

conform to the formal specifications. From the perspective of access control policy,

the AMF framework ensures the correctness of access control policies for policy-

based computing through automated reasoning techniques, and anomaly detection

and resolution mechanisms. A logic-based reasoning approach is adopted for ac-

cess control policies that allows users to leverage the features of logic solvers in

performing various logical reasoning and analysis tasks. In addition, this frame-

work contains a comprehensive anomaly detection and resolution mechanism in-

tegrated with a visualization-based policy representation that facilitates systematic

and effective detection and resolution of access control policy anomalies. Finally,

a suite of tools should be developed to support all features addressed in the AMF

framework.

4.2 Access Control Model

I first address the processes for realizing and analyzing access control models in

the AMF framework, which is shown in Figure 4.2. In the modeling stage, formal

specifications of access control models and constraints are verified. Additionally,

application-oriented authorization model representation and constraint specification

are derived from the formal specifications of access control models and constraints,

which can also be utilized to produce test cases. Then, the generated test cases are

used to validate the application-oriented models and constraints. In the implemen-

tation stage, authorization enforcement codes are generated systematically from the

application-oriented specifications. The correctness and conformance of generated

codes are also evaluated by using the generated test suites. I divide all tasks into

two categories as follows:
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Figure 4.2: Realization and analysis of access control model.

1. Realization of access control model

• Application-oriented representation of access control model and con-

straint. The representation of an access control model and correspond-

ing constraints should enable software engineers to integrate security

aspects into the applications without knowing details of the access con-

trol model. In this regard, a well-designed and general-purpose repre-

sentation should be considered as a means to represent access control

models and constraints in an intuitive fashion.

• Automatic generation of access control enforcement code. It is also a

crucial aspect to make the transparent transition from system design to

secure system implementation. The goal of code generation in AMF

is to automatically generate executable modules from the application-
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oriented specifications of access control models and constraints by a

well-known software engineering mechanism, such as the Model Driven

Development (MDD) [92]. The generated authorization modules would

be eventually integrated into the real systems to achieve an acceptable

degree of assurance in secure system development.

2. Analysis of access control model

• Verification of formal access control model. One of promising advan-

tages in mathematical and logic-based techniques for access control

models is that formal reasoning of the authorization properties can be

performed. Since the formal access control models serve as a basis for

secure system development in AMF, obviously the formal specifications

of models should be proved based on the expected authorization prop-

erties.

• Automatic test case generation from formal specification. While for-

mal verification can prove violation or satisfaction of properties, it is

not sufficient enough to practically guarantee the assurance. The proof

only shows that a given formal specification fulfills a set of properties.

However, we should consider the actual implementation is influenced

by other facts, such as platforms, transformation approaches, compilers,

and so on. Consequently, the implemented modules should be further

tested.

Analysis Approach in AMF for Access Control Model

I introduce a methodology composing formal analysis and conformance testing for

building access control systems. As demonstrated in Figure 4.2, the formal access

control model serves as the core of following tasks: (1) formal verification, (2) sys-
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tem design, and (3) test generation. In this work, both model verification and model

testing are supported by the same formal verification technology for the purposes

of automatic verification and test case generation. A notable advantage of using

model-based approach is to reduce the complexity of analysis, thus minimizing the

state explosion problem.

In order to articulate the methodology clearly, I first define access control

model specification as follows:

Definition 1 (Access Control Model Specification). An access control model spec-

ification M is defined as M = (O,F,C), where

• O is the component representation of an access control model, which defines

sets of basic access control entities and relations;

• F is a set of access control function specifications, which specify the features

required by an access control system; and

• C is a set of access control constraint specifications, which define higher-level

organizational policies.

Access Control Model Verification

I take into account the following verification problem for access control models:

given an access control model specification M and an access control model property

P, does M satisfy P? I consider two kinds of property, access control functional

property Pf and access control authorization property Pa. Therefore, the verification

of an access control model is decomposed into two steps, access control function

verification and access control constraint verification.

Definition 2 (Access Control Function Verification). For an access control model

specification M = (O,F,C) and an access control functional property Pf , proving
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whether M satisfies Pf , denoted by M � Pf , is called access control function verifi-

cation.

That is, if we can determine that M satisfies Pf , it means the access control

functional property Pf is held on the access control model specification M. Hence,

we can make sure the functional components in a formal model specification M are

correct with respect to expected properties.

Figure 4.3 illustrates a reasoning process for the formal verification. The

access control model specification M and the functional property Pf are encoded

and then fed into a formal verifier. The verifier in turn checks whether the functional

property is violated or not. If a functional property violation is encountered, it

means the access control model specification does not conform to the functional

property, leading the refinement of model specification.

Figure 4.3: Function verification.

A critical task for specifying constraints is to determine whether a set of

constraint expressions really reflects the desired authorization requirements prop-

erly. Normally, constraints prohibit an action or state occurring in the system. Two

issues should be considered carefully while analyzing a given set of constraints

against the expected authorization requirements. First, constraints may be too weak,

named under-constraint to grant undesired system states. A safety problem (i.e. the

leakage of a right to an unauthorized user) can be resulted from the weak con-

straints. Second, constraints may be too strong, named over-constraint to deny

desired system states. Strong constraints can cause availability problems. For ex-

ample, an entitled user cannot own the right to access a resource.
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A concept of authorization state space is introduced to identify under- and

over-constraints in an access control model specification. An authorization state

space represents an entire space that an access control system probably covers. In

other words, all possible system states of an access control system consist of an

authorization state space. Regarding access control requirements, an authorization

state space can be divided into two subspaces: (1) the desired authorization state

subspace Sd , which contains authorization states that should be allowed to occur

in an access control system according to the authorization requirements. (2) the

undesired authorization state subspace Su, which contains authorization states that

should be prohibited to appear in an access control system against the authoriza-

tion requirements. On one hand, we are able to specify the desired authorization

state subspace with the expected authorization properties Pa+ and the undesired

authorization state subspace with the unexpected authorization properties Pa− , re-

spectively. On the other hand, from the perspective of access control specification,

an authorization state space can be divided into permitted authorization state sub-

space Sp and prohibited/constrained authorization state subspace Sc. The most ideal

view of an authorization state space is that the desired authorization state subspace

is contained by the permitted authorization state subspace, and the undesired autho-

rization state subspace is included in the prohibited authorization state subspace.

It means the specified constraints meet the authorization requirements accordingly.

Unfortunately, the ideal view is far from the reality. Two situations may exist in

practice.

Figure 4.4 depicts one case, which demonstrates that the permitted autho-

rization state subspace Sp covers partial undesired authorization state subspace Su

due to the reason of under-constraint.
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Figure 4.4: Identifying under-constraint.

When the prohibited authorization state subspace Sc is a subset of the unde-

sired authorization state subspace Su, and there is an overlap between the permitted

authorization state subspace Sp and the undesired authorization state subspace Su,

under-constraint occurs in the constraint specifications.

 

Figure 4.5: Identifying over-constraint.

Another case is shown in Figure 4.5. Over-constraint is presented in this

case, where the permitted authorization state subspace Sp is covered by the desired

authorization state subspace Sd , and the prohibited authorization state subspace Sc

contains partial desired authorization state subspace Sd .
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Using formal verification, both over- and under-constraints for an access

control model specification are analyzed automatically with a set of given access

control properties. A general definition for access control constraint verification is

given as follows:

Definition 3 (Access Control Constraint Verification). For an access control model

specification M = (O,F,C) and an access control authorization property Pa, prov-

ing whether M satisfies Pa, denoted by M � Pa, is called access control constraint

verification.

In order to identify under-constraint, the unexpected authorization property

Pa− is used to replace Pa, and an expression that addresses the analysis for under-

constraint can be defined as follows: M � Pa− ⇒ C ↓, where C↓ denotes under-

constraint.

As demonstrated on the bottom part of the Figure 4.4, if an unexpected au-

thorization property Pa− , which represents the authorization subspace Sp ∩ Su, is

satisfied by the access control model specification Sc, under-constraint is detected.

Figure 4.6 (a) depicts the processes of constraint verification for determining under-

constraint. If the verifier proves an unexpected authorization property Pa− is held

on the access control model specification M, we conclude that the given constraint

specifications are too weak, and should be strengthened to exclude undesired au-

thorization properties or contain required authorization properties.

Figure 4.6: Constraint verification.
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The expected authorization property Pa+ is utilized to substitute Pa for iden-

tifying over-constraint as summarized in the following expression: M 2 Pa+ ⇒ C

↑, where C↑ denotes over-constraint.

The bottom part of the Figure 4.5 depicts the over-constraint situation.

Based on the expression, I introduce processes for identifying over-constraint as

shown in Figure 4.6 (b). If the verifier checks the expected authorization property

Pa+ is not satisfied by access control model specification M, this points out the de-

fined constraints are too strong. Thus, the constraint definitions should be refined

by reducing the restriction of constraints.

Access Control Model Testing

Model-based testing is a software testing method in which the models defined in

software construction are used to drive the testing process. Numerous formal veri-

fication techniques have been used for model-based testing [93]. The idea of auto-

mated test generation from the formal verification is that counterexamples may be

generated to illustrate a property violation by the formal verification, and counterex-

amples are interpreted as test cases. This work intends to use a formal specification

of access control model and constraint to automatically derive test cases for testing

authorization constraints in access control systems.

Figure 4.7: Test case generation for constraints.
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Two kinds of test cases are generated: one is called negative test case, de-

noted as T−, which is considered as an undesired access control authorization state

that should be denied by the constraints in an access control system. Another test

case is named positive test case, denoted as T+. This test case represents a desired

access control authorization state, which should be allowed to appear in an access

control system.

The following expression specifies the generation of negative test case based

on the satisfiability verification: (O,F,−) 2C⇒ T−. Negative test case T− can be

derived from a formal specification, in which an access control model specification

M
′
= (O,F,−) does not satisfy the constraint specification C as demonstrated in

Figure 4.7 (a). Since the constraint specification C is taken out from the access

control model specification M
′
, the authorization property expressed by constraint

specification is not exactly held on the access control model specification. The

verifier can generate counterexamples, which are then used to construct negative

test cases.

Positive test case T+ is generated from a formal specification, as we draw

the constraint specification C from the access control model specification M
′
=

(O,F,−), and take the negated constraint specification ¬C as the authorization

property to verify the access control model specification M
′
. Counterexamples are

derived and utilized to build positive test cases. The following expression summa-

rizes this characteristic: (O,F,−) 2 ¬C⇒ T+. Corresponding process is shown in

Figure 4.7 (b).

Realization and Analysis of RBAC Model

I demonstrate the feasibility of the proposed approach for constructing role-based

access control systems, leveraging the NIST/ANSI RBAC standard [2, 3] as the

underlying authorization model since it includes most of RBAC features [1] and
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Figure 4.8: Realization and analysis of RBAC model with AMF.

has been widely adopted in information assurance community. Role-based Con-

straints Language 2000 (RCL2000) [86] is utilized to define authorization con-

straints formally in RBAC. As demonstrated in Figure 4.8, the formal access con-

trol model and constraints are the core of the entire processes for serving the fol-

lowing tasks: (1) formal verification, (2) system design, and (3) test generation.

Correspondingly, three high-level access control models–such as verification-based

model, application-oriented model, and test-based model–are constructed based on

the formal model. In this approach, the formal access control model and associ-

ated constraints can be fully translated to application-oriented model representation

and constraint specification, which then generate enforcement codes. Also, both

model-based verification and model-based testing are supported by the same for-

mal verification technology for the purposes of automatic verification and test case

generation.

Realization of RBAC Model

For building an access control system based on a particular access control model,

it is very important to have an application-oriented representation of the access

control model for software engineers. UML is the standard language in modeling
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Figure 4.9: RBAC model representation in UML class diagram.

community and the usage of UML for the representation of security models has

been recommended [94]. Furthermore, in order to make RCL2000 expressions

more meaningful to ordinary system developers, this method translates RCL2000-

based constraints into OCL specifications which are closely coupled with UML.

Then UML-based modeling and OCL specifications are facilitated to automatically

generate system modules, called RBAC enforcement codes which can be deployed

in an RBAC-centric system implementation.

RBAC Model Representation in UML and OCL The NIST/ANSI RBAC stan-

dard defines three models: Core RBAC, Hierarchical RBAC and Constrained RBAC.

The Constrained RBAC in the standard adds separation of duty relations. However,

there are two limitations in the Constrained RBAC model. First, the SoD constraints

in the standard are applied only to the activation of roles without considering other

components in RBAC model. Second, the standard defines Static SoD (SSoD) re-

lations with respect to user-role assignments over pairs of roles and Dynamic SoD
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(DSoD) relations with the aspect of role activation in a user’s session. These two

constraints in the standard mainly reflect the simplest separation of duty properties.

More fine-grained constraints cannot be defined adequately. Thus special constraint

specification languages are desirable to provide much richer expression for RBAC

constraints. To reduce these limitations, I extend the Constrained RBAC to consider

all aspects of role-based constraints and specify separation of duty constraints with

RCL2000 where a variety of separation of duty properties can be expressed.

Figure 4.9 shows a UML class diagram which depicts a complete represen-

tation of the NIST/ANSI RBAC model including Core RBAC, Hierarchical RBAC

and Constrained RBAC. The representation can be decomposed to partially support

Core RBAC or different compositions of three reference models. It contains classes,

relationships between classes, and cardinalities in relationships. The basic entities

are user, role, permission, and session classes. The permission class is represented

as a composition of operation and object classes. The role hierarchy relationship is

reflected in role class as a recursive relationship. The standard RBAC model only

supports two separation of duty relations: SSoD and DSoD relations. As discussed

above, constraints should be applied to all RBAC entities. Thus, in the model rep-

resentation, I introduce two components such as SCR (Static Conflicting Roles)

and DCR (Dynamic Conflicting Roles) that support SSoD and DSoD relations in

the standard. Four new components SCP, DCP, SCU and DCU are created to sup-

port constraints in other RBAC entities such as permissions and users. These six

components have dependency relationships with corresponding RBAC components

in UML class diagram and are utilized by constraint expressions to identify more

fine-grained SoD constraints.

The functional specification in the standard defines various functions that

role-based systems should provide. Since I use an object-oriented approach to ex-
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press these functionalities of the standard, some subtle changes must be conducted

in the definition of each function. For example, the RBAC standard defines two

functions, AddInheritance and AddAscendant, to support building a new role

inheritance relationship in role hierarchy. The standard explains AddInheritance

is used to establish a new immediate inheritance relationship between two existing

roles and AddAscendant is used to create a new role and to add this new roles as

an immediate ascendant of an existing role. In object-oriented system design, every

function is attached to a class. Therefore, the function AddInheritance cannot be

used as a single class (role class in the model representation). On the other hand,

since CreateRole function can be implicitly derived from role class in the UML

class diagram at the implementation stage, AddAscendant may not include the op-

eration for creating a new role. In the model representation, I define a function

named AddSenior which adds an immediate senior role object to current role ob-

ject instead of adopting two functions proposed in the standard. For role hierarchy,

I also add two review functions AllSeniors and AllJuniors to query all seniors

and juniors of a role object, because these two functions can frequently be called

by many other functions, as well as by constraints in the presence of role hierar-

chy. Similarly, several review functions related to role hierarchy are added into the

model representation. For example, two review functions, AuthorizedRoles and

AuthorizedUsers, for a permission to find a set of roles that authorize the given

permission and to get a set of users that can authorize the given permission through

their roles, respectively. For brevity, I elaborate a few typical functional definitions

of three components in the standard and corresponding OCL-based definitions.

A. Functional definition of Core RBAC

Administrative commands: These commands are for the creation and

maintenance of RBAC element sets and relations by administrators. The func-
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tions for adding and deleting an element such as AddRole and DeleteRole can

be created from UML class diagrams in the implementation step. A command

specification for AssignUser is defined with OCL as follow:

context Role::AssignUser(u:User)

pre : self.user->excludes(u)

post: self.user->includes(u)

Deassigning a user is symmetric to adding a user, the following is the defi-

nition of DeassignUser. We can also define GrantPermission and

RevokePermission in the same way.

context Role::DeassignUser(u:User)

pre : self.user->includes(u)

post: self.user->excludes(u)

Review functions: These functions are for administrators to query RBAC

element sets and relations. Query operations do not change system states and they

return a value or a set of values. In OCL, they are defined as a body expression.

The following OCL definition supports a review function AssignedUsers:

context Role::AssignedUsers():Set(User)

body: self.user->asSet()

Similarly, the definition of UserPermissions with OCL as follows:

context User::UserPermissions():Set(Permission)

body: self.role.permission->asSet()
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Supporting system functions: The functions are applied to create and

maintain RBAC dynamic properties with regard to users’ sessions and access con-

trol decisions. CreateSession creates a session for a user. The specification is

below:

context User::CreateSession():Session

post: result.oclIsNew() and self.session->includes(result)

CheckAccess checks whether an operation on an object is allowed to be

performed in a particular session. OCL representation for this function is defined

as follows:

context Session::CheckAccess(op:Operation, ob:Object):Boolean

pre : true

post: self.SessionRoles()->exists(r|r.permission

->exits(p|p.operation->includes(op)

and p.object->includes(ob)))

B. Functional definition of Hierarchical RBAC

As illustrated in Figure 4.9, we have four major functions such as AddSenior,

DeleteSenior, AddJunior and DeleteJunior, which are used for administrators

to maintain inheritance relationships among roles. I define AddSeniors in OCL as

follows:

context Role::AddSeniors(r:Role)

pre : self.senior->excludes(r)

post: self.senior->includes(r)
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I define two new review functions AllSeniors and AllJuniors for role hi-

erarchy. The following definition is for AllSeniors, which is a recursive definition

with OCL.

context Role::AllSeniors():Set(Role)

body: self.senior->union(self.senior->

collect(r|r.AllSeniors()))->asSet()

AllSeniors and AllJuniors, are very useful for other functions and con-

straints in presence of role hierarchy. The following is an example in applying

AllSeniors to the definition of AuthorizedRoles for user component in RBAC.

context User::AuthorizedRoles():Set(Role)

body: Role.allInstances()->select(r|

r.AllSeniors()->including(r)->

exists(r1|self.role->includes(r1)))

Note that the definition of AuthorizedRoles should be carefully formu-

lated to reflect the role inheritance with respect to user and session components

using AllSeniors and with respect to permission component using AllJuniors.

The definition of

AuthorizedRoles for permission is given as follows:

context Permission::AuthorizedRoles():Set(Role)

body: Role.allInstances()->select(r|

r.AllJuniors()->including(r)->

exists(r1|self.role->includes(r1)))
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C. Functional definition of Constrained RBAC

In this approach, the definitions related to constraint expressions are incor-

porated with corresponding components in UML-based model representation. I

introduce two new system functions CheckStaticConstraints and

CheckDynamicConstraints for RBAC model to enforce constraint expressions

and to check conflicts. The functions for constraint checking can be used by other

related functions in RBAC model as well1. The following two definitions are for

AssignUser and AddActiveRole functions, respectively.

context Role::AssignUser(u:User)

pre : self.user->excludes(u)

post: self.user->includes(u) and

if (self.CheckStaticConstraints()->

isEmpty()) or

(u.CheckStaticConstraints()->isEmpty())

then

self.user->excludes(u)

endif

In AssignUser, the assignment operation can affect the status of two ob-

jects, user and role objects. Hence, the static constraints for user and role classes

need be enforced at the same time to prevent possible conflicts resulted from the

assignment operation.
1For example, AssignUser and GrantPermission utilize CheckStaticConstraints

to check the static assignment relations, and CreateSession and AddActiveRole employ
CheckDynamicConstraints to check dynamic attributes related to sessions.
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context Session::AddActiveRole(r:Role)

pre : self.user.role->includes(r) and

self.role->excludes(r)

Post: self.role->includes(r) and

if (self.CheckDynamicConstraints()->

isEmpty()) or (self.user.

CheckDynamicConstraints()->isEmpty())

then

self.role->excludes(r)

endif

AddActiveRole can also bring the effect to both a session and a user who

invokes the session. CheckDynamicConstraints for session and user classes

should be performed in AddActiveRole to avoid possible violations of constraints.

RBAC Constraint Specification in OCL In NIST/ANSI RBAC standard, SSoD

constraints are defined with two arguments: a role set rs that includes two or more

roles, and a natural number n, called the cardinality, with the property that 2≤ n≤

|rs| which means a user can be assigned to more than equal to two roles and fewer

than the size of role set rs. The similar definition is used in DSoD constraints

with respect to the activation of roles in sessions. The definition of constraints

in the standard has limitations. To overcome such obstacles for considering other

components in RBAC, I use RCL2000 that defines three sets, CR, CP and CU, as the

collections for conflicting role sets, conflicting permission sets and conflicting user

sets, respectively. Each conflicting set can include two or more elements. However,
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there is no notation for the cardinality attribute in conflicting sets itself. Normally,

we can regard the cardinality number n in RCL2000 always greater than equal to

two for each conflicting set. In order to support a more general cardinality property

defined in the standard, I extend the definition for CR, CP and CU in RCL2000

to support the cardinality attribute. In addition, two new functions, GetSet and

GetCardinality, are defined in RCL2000 to allow to get the conflicting element

set and the cardinality number. I usually write GetSet as GS and GetCardinality

as GC in constraint expressions. As discussed before, I also extend CR to SCR and

DCR, CP to SCP and DCP, and CU to SCP and DCP, to support SSoD constraints

and DSoD constraints separately.

Policy designers can employ RCL2000 to specify complex authorization

policies to meet high-level security requirements along with the NIST/ANSI RBAC

standard. The next important step is that RCL2000 policy specifications need to be

realized in UML-based RBAC representation which, in turn, we need to translate

RCL2000 expressions to OCL expressions.

RCL2000 has two nondeterministic functions, OE and AO. The OE(X) func-

tion allows users to get one element from a set X. Multiple occurrences of OE(X) in

a single RCL2000 expression all select the same element from a set X. With AO(X)

we can get a set by taking out one element, thus we can express AO(X) as X -

{OE(X)}. The OE function can be converted to an OCL expression with any opera-

tion. For example, OE(X) can be translated to X->any(true). Then AO(X) can be

correspondingly translated to X-{X->any(true)}.

RCL2000 supports six RBAC system functions user, roles, sessions,

permissions, operations and object. These function expressions can be simply

represented in OCL. For example, roles(u), which returns all the roles assigned

to the user u, can be converted to u.role. In RCL2000, roles∗ and permissions∗
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Figure 4.10: Translation algorithm from RCL2000 to OCL.

are defined as a variant of roles and permissions to support role hierarchy.

For example, roles∗(u) returns a set of roles for which a given user is autho-

rized. In the previous section, I have defined several review functions. Using
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such definitions, roles∗ and permissions∗ functions can be translated. For exam-

ple, roles∗(u) and permission∗(r) are converted to AuthorizedRoles(u) and

AuthorizedPermissions(r).

Each term in RCL2000 is converted to corresponding OCL operator or func-

tion. For example, operators like ̸=,≤,≥,⇒, and ∧ are replaced by <>, <=, >=,

implies, and and operations correspondingly; ∈, ∩, and ∪ can be expressed by

include, intersection and union functions in OCL respectively. The detailed

translation algorithm is described in Figure 4.10.

Next, I illustrate two typical RBAC constraints specified in RCL2000, and

give equivalent OCL expressions generated by the translation algorithm.

Constraint 1: (SSoD-CR): The number of conflicting roles, which are from

the same conflicting role set, authorized to a user cannot exceed the cardinality

number of the conflicting role set.

RCL2000 Expression:

| roles∗(OE(U))∩GS(OE(SCR)) |≤ GC(OE(SCR))

Translated OCL Expression:

context User

inv: let

scr:SCR = SCR.allInstances()->any(true)

in

self.AuthorizedRoles()->intersection(scr.

RoleSet)->size() <=scr.SetCardinality
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Table 4.1: Mapping RCL2000 expression to OCL expression for SSoD-CR.

RCL2000 OCL Meaning

OE(SCR)
scr:SCR = SCR. a collection which is a pairs of a
allInstances()->any(true) conflicting role set and a cardinality

for the conflicting role set
OE(U) self a single user

roles*(OE(U)) self.AuthorizedRoles()
return all roles that are authorized to a
single user considering role hierarchy

GS(OE(SCR)) scr.RoleSet return a conflicting role set
GC(OE(SCR)) scr.SetCardinality return the cardinality of a conflicting role set

∩ intersection return the intersection of two sets
| set | set->size() return the cardinality number of a set

Table 4.1 explains the mapping from the RCL2000 expression to the OCL

expression for this constraint. All components in the RCL2000-based constraint

expression can be mapped to corresponding OCL components precisely.

Constraint 2: (User-based DSoD):The number of conflicting roles, which

are from the same conflicting role set, activated directly (or indirectly via inheri-

tance) by a user cannot exceed the cardinality number of the conflicting role set.

RCL2000 Expression:

| roles∗(sessions(OE(U)))∩GS(OE(DCR)) |≤ GC(OE(DCR))

Translated OCL Expression:

context User

inv: let

dcr:DCR = DCR.allInstances()->any(true)

in

self.session.AuthorizedRoles()->

intersection(dcr.RoleSet)->size()

<=dcr.SetCardinality
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Code Generation The code generation part of the approach enables users to build

a real application by creating a platform independent model and then transforming

it to platform dependent codes. The objective for code generation is to generate

security enforcement codes with some degree of assurance based on model speci-

fication represented by UML and OCL. As I addressed in the previous section, all

model components and constraints are evaluated so the enforcement codes gener-

ated from the model representation should fully reflect features and functionalities

of a formal security model, especially the NIST/ANSI RBAC standard in this arti-

cle. Although I select the Java language as the target language in the framework,

I believe this approach can be extended for other languages as well. The process

of mapping model specification to enforcement codes could be performed by the

adoption of the tools such as Octopus [95] and Dresden OCL toolkit [96]. Due to

the page limitation, I omit the discussion of the details of general transformation

process from UML and OCL to Java codes. Instead, I only discuss several critical

issues related to the transformation process.

In the specification of RBAC model, RBAC model elements and relations

are defined using the UML class diagrams and the functionalities and constraints

of RBAC model are specified with OCL expressions. To implement UML model

elements, the classes, attributes, operations and associations need to be translated

into corresponding Java classes or operations. Then, each class in the model is

mapped to one Java class; an operation for the class is created by one operation in

Java class; and an attribute and its association with the class in the model generate a

private class member and get and set operations in the Java class. Also, the basic

types of OCL are mapped to corresponding Java types. For example, Real in OCL

is mapped to float in Java. OCL collection type is implemented as a library using

Set or List of Java language. It is a little complicated when implementing this
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Figure 4.11: Generated Java code for CheckStaticConstraints function.

library, because OCL collections have a large amount of predefined operations, such

as select and collect. These operations need be defined as standard operations

using Java. Based on the implemented standard OCL library, OCL expressions can

directly generate Java codes.

In the implementation, two special system functions, CheckStaticConstr-

aints and CheckDynamicConstraints, for Constrained RBAC are created au-

tomatically to collect and enforce static and dynamic constraint expressions re-

spectively for corresponding components. While we can use a universal function,

such as a CheckConstraints function, to check all constraints for one compo-

nent, for the purpose of making checking procedures more efficient, I provide two

system functions for constraint checking. Session-related constraint expressions

are performed by CheckDynamicConstraints, and other constraints are enforced

by CheckStaticConstraints. Figure 4.11 shows the generated Java codes for

CheckStaticConstraints function of user class. Note that CheckStaticConst-

raints function includes the codes for checking two static SoD constraints with CR

and CU as well.

Analysis of RBAC Model

I utilize a SAT solver as an underlying formal verification technique to demonstrate

automatic analysis and test generation for the formal specifications of an RBAC
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model and associated constraints based on the approaches and definitions intro-

duced in Section 4.2. Alloy [88] is used as an intermediate language into which

the RBAC model is constructed and the RCL2000-based constraints are translated.

Then, using Alloy tool called Alloy Analyzer [25], which uses a SAT solver that

supports enumeration, the RBAC model and corresponding constraints are ana-

lyzed, and test cases are generated from the RBAC model specifications.

RBAC Model Representation in Alloy The NIST/ANSI standard for RBAC

gives an RBAC reference model, which defines sets of basic RBAC elements and

relations, including a set of roles, a set of users, a set of permissions, relationships

between users, roles, and permissions. I define a primary representation of the

NIST/ANSI RBAC model in Alloy as follows:

module RBAC

sig User {}

sig Role {}

sig Operation {}

sig Object {}

sig Permission {Operation, Object}

sig Session {}

sig URA {

ura: User->Role}

sig PRA {

pra: Permission->Role}
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sig US {

us: User!->Session}

sig SR {

sr: Session->Role}

sig PB {

pb: Operation->Object}

The above defines the core element sets and relations in an RBAC model. A

role hierarchy relation supporting hierarchical RBAC is defined as follows:

sig RRA {

hierarchy: Role->Role}

To specify SSoD relations and DSoD relations in the context of conflicting

roles, which are addressed in the NIST/ANSI RBAC model, I give the following

Alloy definitions 2:

sig SCR {

conflict role: set Role,

cardinality: Int}

sig DCR {

conflict role: set Role,

cardinality: Int}
2The separation of duty relations in the NIST/ANSI RBAC model can be extended to support

conflicting permissions and conflicting users, using several definitions such as {SCP, DCP} and
{SCU, DCU}, respectively.
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RBAC Constraint Specification in Alloy In order to reason about RCL2000

policy specifications using Alloy tool, we need to translate RCL2000 policy ex-

pressions to Alloy statements. Similar to the translation from RCL2000 to OCL,

six RBAC system functions user, roles, sessions, permissions, operations

and object can be represented in Alloy. For instance, roles(u) is converted to

u.(URA.ura). Also, roles∗ and permissions∗ are able to converted to Alloy

using “*”, which denotes a reflexive transitive closure operator, and “∼”, which

denotes transpose operator to support the role hierarchy. Each term in RCL2000

can be also converted to corresponding Alloy operator. Figure 4.12 gives a detailed

translation algorithm.

The following examples give equivalent Alloy expressions for SSoD-CR and

User-based DSoD constraints.

Translated Alloy Expression for SSoD-CR constraint:

all u:User | all scr:SCR |

#((u.(URA.ura).∼*(RRA.hierarchy)) &

scr.conflict role) <= scr.cardinality

Translated Alloy Expression for User-based DSoD constraint:

all u:User | all dcr:DCR |

#(u.(US.us).(SR.sr).∼*(RRA.hierarchy) &

dcr.conflict role) <= dcr.cardinality

RBAC Function Verification The functional specification in the NIST/ANSI stan-

dard for RBAC defines various functions that role-based systems should provide.

These functionalities are described in the standard using a set-based specification
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Figure 4.12: Translation algorithm from RCL2000 to Alloy.

language, Z. Prior to applying these functional definitions for role-based system de-

velopment, the correctness of these definitions needs be checked rigorously. Formal

verification is necessary for this objective.
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In this subsection, I employ DeleteRole function as an example to demon-

strate how the formal verification can assist in finding mistakes in the functional

specifications. In hierarchical RBAC, the following functional properties must be

achieved by the DeleteRole function.

1. The existing role is removed from the Role date set.

2. Any use-to-role assignment relation established by the role is removed.

3. Any permission-to-role assignment relation established by the role is removed.

4. Any role hierarchy relationship established by the role is removed.

The following is the functional definition of DeleteRole for supporting

hierarchical RBAC in the NIST/ANSI RBAC standard.

DeleteRole(role:NAME) ▹
role ∈ ROLES
UA’ = UA \ {u:Users • u 7→ role}

assigned users’ = assigned user \ {role 7→ assigned user(role)}
PA’=PA \ {op:OPS,obj:OBJS • (op,obj) 7→ role}

assigned permissions’=assigned permissions \ {role 7→ assigned permissions(role)}
ROLES’=ROLE \ {role} ◃

An Alloy function is constructed based on the above definition as follows:

fun DeleteRole(r:Role){

r in Role =>

all p:Permission |

all u:User| (u->r) in URA.ura =>

URA.ura = (URA.ura - (u->r))) &&

(all p:Permission | (p->r) in PRA.pra =>
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PRA.pra = (PRA.pra - (p->r))) &&

(Role = Role - r) }

We can also define an Alloy assertion to describe the RBAC functional prop-

erties Pf discussed earlier. Corresponding functional properties for DeleteRole

operation with the notion of hierarchical RBAC are defined as follows:

assert Check DeleteRole {

all r:Role| all r’:Role | all u:User |

all p:Permission |

DeleteRole(r) &&

//The role is removed from the role set

r !in Role &&

//Corresponding UA relations are removed

(u->r) !in URA.ura &&

//Corresponding PA relations are removed

(p->r) !in PRA.pra &&

//Inheritance relations are removed

(r->r’) !in RRA.hierarchy &&

(r’->r) !in RRA.hierarchy }

check Check DeleteRole

By running Alloy Analyzer, we can validate this assertion against the RBAC

model specification, which contains the DeleteRole function specification. The
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Alloy Analyzer detects counterexamples, which identify violations of the assertion

with respect to the function specification. After careful inspection, I found that

the functional definition of DeleteRole for hierarchical RBAC in the NIST/ANSI

RBAC standard misses a step for removing inheritance relations established by the

role that is being deleted. In [97], another formal definition of DeleteRole function

for hierarchical RBAC is given. Using the same approach, I identified that the steps

for removing UA relations and PA relations are missed in their specification as well.

RBAC Constraint Verification I now demonstrate how to identify under- and

over-constraints with Alloy using the aforementioned approach in Section 4.2.

Regarding separation of duty principles, the following authorization prop-

erty considering the role hierarchy is unexpected:

• Two conflicting roles are authorized to the same user.

I specify this unexpected authorization property Pa− in Alloy as follows:

pred Check SSoD[ disj r1,r2:Role, u:User, scr:SCR] {

//r1 and r2 are mutually exclusive

r1 in scr.conflict role &&

r2 in scr.conflict role &&

scr.cardinality = 1 &&

//r1 and r2 are authorized to the same user

r1 in u.(URA.ura).∼*(RRA.hierarchy) &&

r2 in u.(URA.ura).∼*(RRA.hierarchy) }

run Check SSoD
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Suppose the policy designer only defines a simple SSoD constraint, which

ignores the role hierarchy relation. We can translate the RCL2000 expression for

the simple SSoD constraint to the Alloy expression, and put it into an Alloy fact as

an Alloy constraint as follows:

fact SSoD {

all u:User | all scr:SCR |

#(u.(URA.ura) & scr.conflict role)

<= scr.cardinality }

When running the predicate Check SSoD defined above, instances–in which

conflicting roles are indirectly assigned to a user–are found by Alloy Analyzer. It

means the unexpected authorization property is held by the constraint specification.

In addition, we can conclude the constraint is too week with respect to the autho-

rization property.

Taking into account the following authorization properties for dynamic sep-

aration of duty principle, “a user cannot activate two conflicting roles in the same

session, but can activate them in the different session,” I specify this expected au-

thorization property Pa+ in Alloy as follows:

assert Check DSoD {

all u:User | all disj r1,r2:Role |

all disj s1,s2:Session | all dcr: DCR |

//r1 and r2 are dynamic conflicting roles

r1 in dcr.conflict role &&

r2 in dcr.conflict role &&
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dcr.cardinality = 1 &&

//u creates s1, s2

(u->s1) in US.us &&

(u->s2) in US.us &&

//r1 and r2 cannot be activated in the

//same session, but can be activated

//in the different session

(r1->s1) in ∼SR.sr &&

(r2->s1) !in ∼SR.sr &&

(r2->s2) in ∼SR.sr }

check Check DSoD

Assuming the policy designer defines a User-based DSoD constraint 3 as I

demonstrated before, I define an Alloy fact, which contains this constraint specifi-

cation.

fact DSoD {

all u:User | all dcr:DCR |

#(u.(US.us).(SR.sr) & dcr.conflict role)

<= dcr.cardinality }

Running “check Check DSoD” in Alloy Analyzer, counterexamples are found.

It indicates the expected authorization property expressed in assertion Check DSoD

is denied by the constraint specification. That is, the constraint is too strong, and
3To reduce the complicity, the role hierarchy is omitted in this constraint.
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should be weakened to contain the expected authorization properties. If we replace

the User-based DSoD constraint with the Session-based DSoD constraint, the ex-

pected authorization property defined in assertion Check DSoD is held.

Test Case Generation As mentioned earlier, negative test cases T− are derived

from a formal access control model specification, in which the constraint specifica-

tion is drawn out and serves as an authorization property for the formal verification,

while positive test cases T+ are generated from a formal specification if we take the

constraint specification out of the access control model specification, and consider

the negated constraint specification as an authorization property.

I take the simple SSoD CR constraint as an example to demonstrate the

process of automated test generation. The following assertion is defined to drive

the negative test cases for the constraint specification.

assert SSoD CR {

all u:User | all scr:SCR |

#(u.(URA.ura) & scr.conflict role)

<= scr.cardinality }

check SSoD CR

Checking this assertion against the RBAC model specification, in which

SSoD CR constraint has been taken out, counterexamples are generated. These

counterexamples are used to construct negative test cases as undesired system states

to test the conformance of the SSoD CR constraint in both access control system

design and implementation.
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To derive positive test cases for the simple SSoD CR constraint, the negated

constraint specification is used as an authorization property. I define an assertion

for this objective as follows:

assert Neg SSoD CR {

all u:User | all scr:SCR |

#(u.(URA.ura) & scr.conflict role)

> scr.cardinality }

check Neg SSoD CR

Note that the above assertion states the number of roles–which are from a

conflicting role set–assigned to a user must exceed the cardinality number of the

conflicting role set. Supposing the cardinality number is one, it means a user must

own two or more conflicting roles. Through running this assertion, counterexam-

ples are also generated. Then, positive test cases serving as desired system states

are constructed from these counterexamples.

To generate more meaningful test cases for real application domains, Alloy

signatures need to reflect all RBAC configuration components of the targeted ap-

plication domain for producing specialized instances of the defined Alloy module.

Then, running the constraint assertion with the scope enables Alloy to generate test

cases. Suppose we have a banking system with a user Bob and two conflicting roles,

customerServiceRep and loanOfficer. We first need to define the appropriate

assignment of user, role and conflicting role set as follows.

one sig Bob extends User{}

one sig customerServiceRep,loanOfficer extends
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Figure 4.13: Structural overview of the RAE.

Role{}

fact SCR rules {

customerServiceRep in SCR.conflict role &&

loanOfficer in SCR.conflict role }

Alloy definition is then provided to Alloy Analyzer so that it can run SSoD

assertion defined earlier with the scope of one user and two roles. Finally, Al-

loy Analyzer can generate a negative test case for the conformance testing, such

that the user Bob is assigned to two conflicting roles, customerServiceRep and

loanOfficer.

Tool Support.

In this section, I introduce the tools developed to support the realization and analysis

of RBAC model with AMF.
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RBAC Authorization Environment (RAE) To demonstrate the usability of the

approach, a tool called RAE was developed which is based on ArgoUML, an open

source UML-based modeling tool [98]. RAE tool is composed of three major com-

ponents, specification component, analysis component and code generation compo-

nent as shown in Figure 4.13. Specification component is responsible for specifying

RBAC model and constraints. Analysis component is in charge of conflict and vi-

olation checking so as to validate RBAC model and constraints. Code generation

component is used to automatically generate enforcement codes.

Specification component consists of four sub-components: RBAC model

representation, system state presentation, constraint specification and collection

management. Figure 4.14(a) shows the implementation of the RBAC model pre-

sentation and constraint specification components.

• RBAC model representation employs UML diagrams to represent RBAC model.

This component is implemented based on ArgoUML.

• System state presentation is responsible to create snapshots of the system

model at particular points using UML object diagrams, which is composed of

a set of objects and a set of association links.

• Constraint specification provides an environment to easily specify authoriza-

tion constraints using RCL2000 and OCL. It is further divided into four

sub-components: constraints template, syntax and type checking, translat-

ing RCL2000 to OCL, and translating RCL2000 to Alloy. To simplify the

constraint definition, some reusable constraint templates for typical RBAC

constraints are provided in the constraint expression editor. Also it has a syn-

tax assistant for user to construct complicated RCL2000 or OCL constraint

expressions conveniently. The syntax checking verifies the constraints ex-

pression against the grammar of the specification language. The type check-
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ing ensures that every RCL2000 or OCL constraints expression can be typed

correctly.

• Conflicting collection management. In the RAE tool, conflicting collections

(SCR/DCR, SCP/DCP and SCU/DCU) are maintained separately from the

constraint expressions.

Validation component is composed of three sub-components: constraint

checking, system state checking and conflicting collection checking.

• Constraint checking tests whether the constraint is violated by the current

system state (snapshot), when a new constraint is established or an old con-

straint is modified. It supports both RCL2000 constraint checking and OCL

constraint checking.

• System state checking is response for identifying the conflicts whenever a

system state is changed. The RAE tool supports four kinds of assignment

relation checking: UA (user-to-role assignment), PA (permission-to-role as-

signment), RH (role-to-role assignment) and role activation. When any as-

signment occurs, all related authorization constraints are evaluated against

the changed system state.

• Conflicting collection checking is in charge of detecting the conflicts resulting

from any changes of conflicting collections. Changing a conflicting collection

affects the semantics of relevant SD constraint expressions.

Code generation component is used to generate java code automatically for

RBAC model and constraints. The enforcement codes are used by developers for

role-based systems.
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(a) RAE: RBAC model and constraint specification.

(b) RASS: simulation of creating session, activating role and check-
ing dynamic constraints.

Figure 4.14: RAE tool and RASS testbed environment

RBAC Authorization Simulation System (RASS) The main purpose of build-

ing an RBAC authorization simulation system is to verify the consistency and cor-

rectness of the generated RBAC enforcement codes. The following goals can be

achieved by the simulation system: (1) executing the RBAC authorization man-
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agement operations to check all administrative functions and review functions; (2)

applying session-related operations to simulate system actions, such as creating a

session and checking dynamic constraints; and (3) using “Check Access” function

to simulate the practical processes of authorization checking.

The RAE tool can generate enforcement codes from the model specified

with the composition of UML and OCL. The model elements and relations defined

with UML are translated to corresponding Java classes and operations. OCL ex-

pressions that define the body of a function or a constraint are translated to the

body of the corresponding Java methods. The generated codes are plain Java codes,

and can be utilized by developers to integrate into a real application system required

RBAC features. I built the RASS system through designing a web-based user inter-

face and a storage layer to incorporate the generated RBAC enforcement modules.

The web-based user interface provides intuitive interactions between the users and

the system functions, which are provided by generated codes, and the storage layer

is in charge of storing the RBAC configurations.

In RASS, RBAC function and constraint implementations are verified by

running extensive test cases. A snapshot of running test cases in RASS system is

shown in Figure 4.14(b). In this snapshot, the simulation of some dynamic system

actions, such as creating and deleting a session, activating and dropping a role, and

checking dynamic constraints, are presented. Consequently, corresponding system

functions, such as CreateSession and DeleteSession, AddActivateRole and

DropActivateRole, and CheckDynamicConstraints, in RBAC model are able

to be evaluated under the simulation system.

Tool Chain The toolset in this work constitutes a toolchain with Alloy Analyzer

depicted in Figure 4.15 to facilitate the application of the proposed methodology for
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Figure 4.15: Toolchain supporting the proposed approach.

automatic analysis, realization and conformance testing of RBAC model and con-

straints. The policy designers are able to specify RBAC constraints with RCL2000,

and then convert RCL2000-based constraints to Alloy expressions in RAE. The

generated Alloy specifications for constraints can be forwarded to Alloy Analyzer.

The formal specifications of an RBAC model are also constructed to Alloy, then

analyzed by Alloy Analyzer as well. In addition, Alloy Analyzer allows to generate

all nonisomorphic instances from an Alloy specification. These instances are then

used as test cases, which are fed into RAE to construct system states. Importantly,

such cases are checked against constraints to validate the RBAC model and con-

straint specifications in the stage of system design as well as utilized by RASS to

evaluate the generated RBAC codes under the simulation. Meanwhile, constraint

anomaly and violation are also analyzed by RAE and RASS.

4.3 Access Control Policy

With the explosive growth of Web applications and Web services deployed on the

Internet, the use of a policy-based approach has received considerable attention to

accommodate the security requirements covering large, open, distributed and het-

erogeneous computing environments. In the era of distributed, heterogeneous and

Web-oriented computing, the increasing complexity of policy-based computing de-
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mands strong support of policy analysis techniques. Without analysis, most benefits

of policy-based techniques and declarative policy languages may be in vain.

In order to ensure the correctness of access control policies for policy-based

computing, I incorporate automated reasoning techniques and systematic anomaly

management mechanisms into the AMF framework as shown in Figure 4.16. For

policy reasoning, I introduce a logic-based reasoning approach for access control

policies. The approach first converts access control policies to a logic-based repre-

sentation. Then, by means of off-the-shelf logic solvers, a variety of analysis ser-

vices can be provided to ensure policy-based system management. The following

are several policy reasoning services that can be accomplished by the logic-based

reasoning approach.

Figure 4.16: Representation and analysis of access control policy.

• Policy Verification. Check if the policy satisfies a particular policy property.

If not, give a counterexample.

• Policy Comparison. For two policies (or policy sets) P1 and P2 check if

whenever P1 yields a decision, P2 will yield the same decision, too. If not,

give a counterexample.
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• Change-Impact Analysis. This analysis consumes two policies that span a set

of changes and summarizes the differences between the two policies. The

analysis can happen even in the absence of formal properties about the sys-

tems.

• Policy Querying. Search for policies in the policy set with respect to particu-

lar attribute values.

Although the logic-based reasoning approach can also support policy anomaly

detection by verifying policies against the given properties [21], it cannot exhaus-

tively identify all potential policy anomalies. Therefore, the AMF framework for

access control policy analysis needs additional modules to systematically man-

age policy anomalies for accurate policy anomaly detection and effective policy

anomaly resolution. Since information visualization technique [99] enables users

to explore, analyze, reason and explain abstract information by taking advantage

of their visual cognition, I further integrate an information visualization technique

in the anomaly management mechanism, which contains two major tasks, conflict

detection and resolution and redundancy discovery and removal.

In this section, I address the policy analysis approach using XACML, which

has become the de facto standard for specifying and enforcing access control poli-

cies for various applications and services, especially, in current Web-based comput-

ing environment.

Representing and Reasoning about Access Control Policy

XACML has been widely adopted to specify access control policies for various

Web applications. With expressive policy languages such as XACML, assuring

the correctness of policy specifications becomes a crucial and yet challenging task

due to the lack of logical and formal foundation. The logic-based policy reason-
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ing approach first turn XACML policies to ASP programs. Compared to a few

existing approaches to formalizing XACML policies, such as [20, 21], the formal

representation in this work is more straightforward and can cover more XACML

features. Furthermore, translating XACML to ASP allows users to leverage off-

the-shelf ASP solvers for a variety of analysis services. I also overview a tool

XACML2ASP and conduct experiments with real-world XACML policies to evaluate

the effectiveness and efficiency of the solution in this work.

Example XACML Policy

Consider an example XACML policy for a software development company, which

is utilized throughout this section, shown in Figure 4.17. The root policy set ps1

contains two policies p1 and p2 which are combined using first−applicable com-

bining algorithm. The policy p1, which is the global policy of the entire company,

has two rules r1 and r2 indicating that

• all employees can read and change codes during working hours from 8:00 to

17:00 (r1), and

• nobody can change code during non-working hours (r2).

On the other hand, each department is responsible for deciding whether

employees can read codes during non-working hours. A local policy p2 for a devel-

opment department with three rules r3, r4 and r5 is that

• developers can read codes during non-working hours (r3),

• testers cannot read codes during non-working hours (r4), and

• testers and developers cannot change codes during non-working hours (r5).

64



Figure 4.17: An example XACML policy.

Note that the rule combining algorithm for policy p1 is permit−overrides

and the rule combining algorithm for policy p2 is deny−overrides.
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Abstracting XACML Policy Components

I consider a subset of XACML that covers more constructs than the ones consid-

ered in [100] and [21]. I allow the most general form of Target, take into account

Condition, and cover all four combining algorithms.

XACML components can be abstracted as follows: Attributes are the names

of elements used by a policy. Attributes are divided into three categories: subject

attributes, resource attributes and action attributes. A Target is a triple ⟨Subjects,

Resources, Actions⟩. A Condition is a conjunction of comparisons. An Effect is

either “permit,” “deny,” or “indeterminate.”

• An XACML rule can be abstracted as

⟨RuleID,Effect,Target,Condition⟩

where RuleID is a rule identifier. For example, rule r1 in Figure 4.17 can be

viewed as

⟨r1,permit,⟨employee,read∨change,codes⟩,8≤ time≤ 17⟩.

• An XACML policy can be abstracted as

⟨PolicyID,Target,Combining Algorithm,⟨r1, . . . ,rn⟩⟩

where PolicyID is a policy identifier, r1, . . . ,rn are rule identifiers and Com-

bining Algorithm is either permit−overrides, deny−overrides, or

first−applicable. For example, policy p1 in Figure 4.17 is abstracted as:

⟨p1,Null,permit−overrides,⟨r1,r2⟩⟩.

• Similarly an XACML policy set can be abstracted as

⟨PolicySetID,Target,Combining Algorithm,⟨p1, . . . , pm, psm+1, . . . , psn⟩⟩
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where PolicySetID is a policy set identifier, p1, . . . , pm are policy identifiers,

psm+1, . . . , psn are policy set identifiers, and Combining Algorithm is either

permit−overrides, deny−overrides, first−applicable, or

only−one−applicable. For example, policy set ps1 can be viewed as

⟨ps1,Null,first−applicable,⟨p1,p2⟩⟩.

Turning XACML into ASP. I provide a translation module that turns an

XACML description into a program in answer set programming (ASP) [26, 27].

This interprets a formal semantics of XACML language in terms of the Answer Set

semantics.

The translation module converts an XACML rule

⟨RuleID,Effect,Target,Condition⟩

into a set of ASP rules 4

decision(RuleID,Effect)← Target∧Condition.

An XACML policy

⟨PolicyID,Target,Combining Algorithm,⟨r1, . . . ,rn⟩⟩

can be also translated into a set of ASP rules. In the following we assume that

R and R′ are variables that range over all rule ids, and V is a variable that ranges

over {permit,deny,indeterminate}. In order to represent the effect of each rule ri

(1≤ i≤ n) on policy, I write

decision from(PolicyID,ri,V )← decision(ri,V ).

Each rule combining algorithms is turned into logic programming rules un-

der the stable model semantics as follows:
4I identify Target with the conjunction of its components. Also, I identify “∧ ” with “,”, “← ”

with “ :- ” and a rule of the form A← B,C∨D as a set of the two rules A← B,C. and A← B,D.
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• permit−overrides of policy p is represented as

decision(p,permit)← decision f rom(p,R,permit)∧Target.

decision(p,deny)← decision f rom(p,R,deny)∧ not decision(p,permit)

∧Target.

• deny−overrides of policy p is represented as

decision(p,deny)← decision f rom(p,R,deny)∧Target.

decision(p,permit)← decision f rom(p,R,permit)∧ not decision(p,deny)

∧Target.

• first−applicable of policy p is represented as

has decision f rom(p,R)← decision f rom(p,R,V ).

decision(p,V )← decision f rom(p,ri,V )∧
∧

1≤k≤i−1

not

has decision f rom(p,rk)∧Target.

The translation of a policy set is similar to the translation of a policy ex-

cept that the policy combining algorithm only−one−applicable needs to be taken

into account. For instance, only−one−applicable of policy set ps is represented as

follows:

decision(ps,V )← decision f rom(ps,P,V )∧1{has decision f rom(ps,P) : policy(P)}1.

decision(ps,indeterminate)← 2{has decision f rom(ps,P) : policy(P)}.

Figure 4.18 shows an ASP representation of the example XACML policy in

the language of Gringo by applying the translation approach.

XACML Policy Analysis using ASP

Once we represent an XACML into an ASP program Π, we can use off-the-shelf

ASP solvers for several automated analysis services. In this section, I mainly illus-

trate how policy verification can be handled by the policy analysis approach.
68



__________________________________________________________
value(permit;deny;indeterminate).
rule(r1;r2;r3;r4;r5).
policy(p1;p2).
policyset(ps1).
time(0..23).
#domain value(V;V1).
#domain rule(R;R1).
#domain policy(P).
#domain time(T).

% domain definition
subject(employee) :- subject(developer).
subject(employee) :- subject(tester).

% r1
decision(r1,permit) :- subject(employee),action(read),

resource(codes),8<=T,T<=17, current_time(T).
decision(r1,permit) :- subject(employee),action(change),

resource(codes),8<=T,T<=17, current_time(T).
% r2
decision(r2,deny) :- subject(employee),action(change),

resource(codes).
% r3
decision(r3,permit) :- subject(developer),action(read),

resource(codes).
% r4
decision(r4,deny) :- subject(tester),action(read),

resource(codes).
% r5
decision(r5,deny) :- subject(tester),action(change),

resource(codes).
decision(r5,deny) :- subject(developer),action(change),

resource(codes).
% p1
decision_from(p1,r1,V) :- decision(r1,V).
decision_from(p1,r2,V) :- decision(r2,V).
decision(p1,permit) :- decision_from(p1,R,permit).
decision(p1,deny) :- decision_from(p1,R,deny),

not decision(p1,permit).
% p2
decision_from(p2,r3,V) :- decision(r3,V).
decision_from(p2,r4,V) :- decision(r4,V).
decision_from(p2,r5,V) :- decision(r5,V).
decision(p2,deny) :- decision_from(p2,R,deny).
decision(p2,permit) :- decision_from(p2,R,permit),

not decision(p2,deny).
% ps1
decision_from(ps1,p1,V) :- decision(p1,V).
decision_from(ps1,p2,V) :- decision(p2,V).
has_decision_from(ps1,p1) :- decision_from(ps1,p1,V).
decision(ps1,V) :- decision_from(ps1,p1,V).
decision(ps1,V) :- decision_from(ps1,p2,V),

not has_decision_from(ps1,p1).
__________________________________________________________

Figure 4.18: ASP representation of the example XACML policy.
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The problem of verifying a security property F against an XACML descrip-

tion can be cast into the problem of checking whether the program

Π∪Πquery∪Πconfig

has no answer sets, where Π is the program corresponding to the XACML specifica-

tion, Πquery is the program corresponding to the program that encodes the negation

of the property to check, and Πconfig is the following program that generates arbi-

trary configurations.

subject_attributes(developer;tester;employee).

action_attributes(read;change).

resource_attributes(codes).

1{subject(X) : subject_attributes(X)}.

1{action(X) : action_attributes(X)}.

1{resource(X) : resource_attributes(X)}.

1{current_time(X) : time(X)}1.

If no answer set is found, this implies that the property is verified. Oth-

erwise, an answer set returned by an ASP solver serves as a counterexample that

indicates why the description does not entail F . This helps the policy designer find

out the design flaws in the policy specification.

For example, consider the example XACML policy shown in Figure 4.17.

We need to ensure that a developer cannot change codes during non-working hours.

The input query Πquery can be represented as follows:

working_hours :- 8<=T, T<=17,current_time(T).

check :- decision(ps1,permit),
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subject(developer),action(change),

resource(codes),not working_hours.

:- not check.

Given the corresponding ASP program of ps1, the negation of the property,

and Πconfig, Gringo and ClaspD return no answer set from which we conclude that

the property is held.

As another example, consider the query if a developer is always allowed to

read codes during non-working hours. This query Πquery can be represented as

working_hours :- 8<=T, T<=17,current_time(T).

check :- decision(ps1,deny),

subject(developer), action(read),

resource(codes),not working_hours.

:- not check.

A policy designer may intend that this property would follow based on the

policy specification. However, the following answer set is found, which indicates a

design flaw of the policy.

{subject(developer) action(read)

action(change) resource(codes)

decision(ps1,deny) decision(p1,deny)

decision(p2,deny) decision(r2,deny)

decision(r3,permit) decision(r5,deny)}

That is, a developer’s request to read the codes is denied if his request also

includes changing the codes5. From this answer set, the policy designer finds that
5XACML supports multi-valued requests, which contains multiple id-value pairs in the subject,

resource, or action attribute.
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p2, which is supposed to return permit, returns deny. It is because r5 returns deny,

and the combining algorithm of p2 is deny−overrides.

In fact, the reason that ps1 returns deny is because p1 returns deny. Rule

r1 is not applicable since its condition is not satisfied and rule r2 returns deny.

Then, the policy designer realizes the flaw and could disallow the concurrency of

two actions within a request. However, even after adding such a constraint, another

answer set is found as follows:

{subject(developer) subject(tester)

action(read) resource(codes)

decision(ps1,deny) decision(p2,deny)

decision(r3,permit) decision(r4,deny)}

That is, when someone is both developer and tester, he cannot read codes

during non-working hours since rule r4 disallows it. In this answer set, ps1 returns

deny because p1 is not applicable and p2 returns deny. In turn, it is because r4

returns deny. If we add a constraint disallowing a person to be both developer and

tester roles simultaneously, the program returns no answer set as intended.

Implementation and Evaluation

A tool called XACML2ASP have been implemented in Java 1.6.3. XACML2ASP can

automatically convert core XACML and RBAC constraint expressions into ASP.

The generated ASP-based policy representations are then fed into an ASP reasoner

to carry out analysis services. I evaluated the efficiency and effectiveness of the

proposes approach on several real-world XACML policies. Gringo was employed

as the ASP solver for the evaluation. The experiments were performed on Intel Core

2 Duo CPU 3.00 GHz with 3.25 GB RAM running on Windows XP SP2.
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In the evaluation, I utilized ten real-world XACML policies collected from

three different sources. Six of the policies, CodeA, CodeB, CodeC, CodeD, Continue-

a and Continue-b are XACML policies used by [20]; among them,

Continue-a and Continue-b are designed for a real-world Web application support-

ing a conference management. Three of the policies Weirdx, FreeCS and GradeSheet

are utilized by [101]. The Pluto policy is employed in ARCHON system,6 which

is a digital library that federates the collections of physics with multiple degrees of

meta data richness.

Table 4.2: Experimental results on real-life XACML policies.

Policy # of Rules Converting Time(s) Reasoning Time(s)
CodeA 2 0.000 0.000
CodeB 3 0.000 0.000
CodeC 4 0.000 0.002
CodeD 5 0.000 0.004
Weirdx 6 0.005 0.006
FreeCS 7 0.005 0.006

GradeSheet 14 0.015 0.012
Pluto 21 0.016 0.031

Continue-a 298 0.120 0.405
Continue-b 306 0.125 0.427

Table 4.2 shows the number of rules contained in each policy, the conversion

time from XACML to ASP, and the reasoning time using Gringo + claspd for each

policy. Note that the reasoning time was measured by enabling Gringo + claspd

to generate answer sets representing all permitted requests for each policy. From

Table 4.2, we observe that the conversion time from XACML to ASP in XACML2ASP

is fast enough to handle larger size of policies, such as Continue-a and Continue-b.

It also indicates that the reasoning process for policy analysis in ASP solver is also

efficient enough for a variety of policy analysis services.
6http://archon.cs.odu.edu/.
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Anomaly Detection and Resolution for Access Control Policy

In an XACML policy, multiple rules may overlap, which means one access re-

quest may match several rules. Moreover, multiple rules within one policy may

conflict, implying that those rules not only overlap each other but also yield dif-

ferent decisions. Conflicts in an XACML policy may lead to both safety problem

(e.g. allowing unauthorized access) and availability problem (e.g. denying legiti-

mate access). An intuitive means for resolving policy conflicts by a policy designer

is to remove all conflicts by modifying the policies. However, resolving conflicts

through changing the policies is remarkably difficult, even impossible, in practice

from many aspects. First, the number of conflicts in an XACML policy is poten-

tially large, since an XACML policy may consist of hundreds or thousands of rules.

Second, conflicts in XACML policies are probably very complicated, because one

rule may conflict with multiple other rules, and one conflict may be associated with

several rules. Besides, an XACML policy for a distributed application may be ag-

gregated from multiple parties. Also, an XACML policy may be maintained by

more than one administrator. Without a priori knowledge on the original intentions

of policy specification, changing a policy may affect the policy’s semantics and may

not resolve conflicts correctly. Furthermore, in some cases, a policy designer may

intentionally introduce certain overlaps in XACML policy components by implic-

itly reflecting that only the first rule is important. In this case, conflicts are not an

error, but intended, which would not be necessary to be changed.

Since the conflicts in XACML policies always exist and are hard to be elim-

inated, XACML defines four different combining algorithms to automatically re-

solve conflicts [6]: Deny-Overrides, Permit-Overrides, First-Applicable and Only-

One-Applicable. Unfortunately, XACML currently lacks a systematic mechanism

74



for precisely detecting conflicts. Identifying conflicts in XACML policies is crit-

ical for policy designers since the correctness of selecting a combining algorithm

for an XACML policy or policy set component heavily relies on the information

from conflict diagnosis. Without precise conflict information, the effectiveness of

combining algorithms for resolving policy conflicts cannot be guaranteed.

Another critical problem for XACML policy analysis is redundancy discov-

ery and removal. A rule in an XACML policy is redundant if every access request

that matches the rule also matches other rules with the same effect. As the response

time of an access request largely depends on the number of rules to be parsed within

a policy, redundancies in a policy may adversely affect the performance of policy

evaluation. Therefore, policy redundancy is treated as policy anomaly as well. With

the significant growth of Web applications deployed on the Internet, XACML poli-

cies grow rapidly in size and complexity. Hence, redundancy elimination can be

treated as one of effective solutions for optimizing XACML policies and improving

the performance of XACML evaluation.

Recently, policy anomaly detection has received a great deal of attention [22,

102, 103, 23], especially, in firewall policy analysis. Corresponding policy analysis

tools, such as Firewall Policy Advisor [22] and FIREMAN [23], with the goal of

discovering firewall policy anomalies have been developed. However, we cannot

directly adopt those prior analysis approaches for XACML due to several reasons.

First, most prior approaches mainly have the capability to detect pairwise policy

anomalies, while a complete anomaly detection should consider all policy com-

ponents as a whole piece. In other words, prior policy analysis approaches are

still needed to be improved [104]. Second, the structure of firewall policies is flat

but XACML has a hierarchical structure supporting recursive policy specification.

Third, a firewall policy only supports one conflict resolution strategy (first-match)
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to resolve conflicts but XACML has four rule/policy combining algorithms. Last

but not the least, a firewall rule is typically specified with fixed fields, while an

XACML rule can be multi-valued. Therefore, a new policy analysis mechanism is

desirable to cater those requirements from anomaly analysis in XACML policies.

In this part, I introduce a policy-based segmentation technique, which adopts

a binary decision diagram (BDD)-based data structure to perform set operations,

for policy anomaly discovery and resolution. Based on this technique, an autho-

rization space defined by an XACML policy or policy set component can be di-

vided into a set of disjoint segments. Each segment associated with a unique set of

XACML components indicates an overlap relation (either conflicting or redundant)

among those components. Accurate anomaly information is crucial to the success

of anomaly resolution. For example, conflict diagnosis information provided by a

policy analysis tool can be utilized to guide the policy designers in selecting ap-

propriate combining algorithms. Moreover, I observe that current XACML conflict

resolution mechanisms are too restrictive by applying only one combining algo-

rithm to resolve all identified conflicts within an XACML policy or policy set com-

ponent. Also, many other desirable conflict resolution strategies exist [55, 54, 56],

but cannot be directly supported by XACML. Thus, I additionally present a flexible

and extensible policy conflict resolution mechanism in this dissertation. Besides,

I discuss the implementation of a policy analysis tool XAnalyzer, which is based

on the proposed approach. To evaluate the practicality of the tool, the experiments

deal with both real-life and synthetic XACML policies.

Anomalies in XACML Policies

An XACML policy may contain both policy components and policy set compo-

nents. Often, a rule anomaly occurs in a policy component, which consists of a

sequence of rules. On the other hand, a policy set component consists of a set of
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Figure 4.19: Anomalies in an example XACML policy.

policies or other policy sets, thus anomalies may also arise among policies or policy

sets. Thus, I address XACML policy anomalies at both policy level and policy set

level.
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• Anomalies at Policy Level: A rule is conflicting with other rules, if this rule

overlaps with others but defines a different effect. For example, the deny rule

r1 is in conflict with the permit rule r2 in Figure 4.19 because rule r2 allows

the access requests from a designer to change codes in the time interval [8:00,

17:00], which are supposed to be denied by r1; and a rule is redundant if there

is other same or more general rules available that have the same effect. For

instance, if we change the effect of r2 to Deny, r3 becomes redundant since

r2 will also deny a designer to change reports or codes in the time interval

[12:00, 13:00].

• Anomalies at Policy Set Level: Anomalies may also occur across policies or

policy sets in an XACML policy. For example, considering two policy com-

ponents P1 and P2 of the policy set PS1 in Figure 4.19, P1 is conflicting with

P2, because P1 permits the access requests that a developer changes reports in

the time interval [8:00, 17:00], but which are denied by P2. On the other hand,

P1 denies the requests allowing a designer to change reports or codes in the

time interval [12:00, 13:00], which are permitted by P2. Supposing the effect

of r2 is changed to Deny and the condition of r2 is removed, r4 is turned to

be redundant with respect to r2, even though r2 and r4 are placed in different

policies P1 and P2, respectively.

A policy anomaly may involve in multiple rules. For example, in Fig-

ure 4.19, access requests that a designer changes codes in the time interval [12:00,

13:00] are permitted by r2, but denied by both r1 and r3. Thus, this conflict asso-

ciates with three rules. For another example, suppose the effect of r3 is changed

to Permit and the subject of r3 is replaced by Manager and Developer. If we only

examine pairwise redundancies, r3 is not a redundant rule. However, if we check

multiple rules simultaneously, we can identify r3 is redundant considering r2 and r5
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together. I observe that precise anomaly diagnosis information is crucial for achiev-

ing an effective anomaly resolution. In this work, I attempt to design a systematic

approach and corresponding tool not only for accurate anomaly detection but also

for effective anomaly resolution.

Underlying Data Structure

The proposed policy-based segmentation technique introduced in subsequent sec-

tions requires a well-formed representation of policies for performing a variety of

set operations. Binary Decision Diagram (BDD) [105] is a data structure that has

been widely used for formal verification and simplification of digital circuits. In

this work, I leverage BDD as the underlying data structure to represent XACML

policies and facilitate effective policy analysis.

Given an XACML policy, it can be parsed to identify subject, action, re-

source and condition attributes. Once these attributes are identified, all XACML

rules can be transformed into Boolean expressions [106]. Each Boolean expression

of a rule is composed of atomic Boolean expressions combined by logical opera-

tors ∨ and ∧. Atomic Boolean expressions are treated as equality constraints or

range constraints on attributes (e.g. Sub ject = “student”) or on conditions (e.g.

8 : 00≤ Time≤ 17 : 00).

Example 1 Consider the example XACML policy in Figure 4.19 in terms of atomic

Boolean expressions. The Boolean expression for rule r1 is:

(Sub ject = “Designer”∨Sub ject = “Tester”)∧(Resource= “Codes”)∧(Action=

“Change”)
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The Boolean expression for rule r2 is:

(Sub ject = “Designer”∨Sub ject = “Developer”)∧(Resource= “Reports”∨

Resource = “Codes”)∧ (Action = “Read”∨Action = “Change”)∧ (8 : 00 ≤

Time≤ 17 : 00)

Boolean expressions for XACML rules may consist of atomic Boolean ex-

pressions with overlapping value ranges. In such cases, those atomic Boolean ex-

pressions are needed to be transformed into a sequence of new atomic Boolean ex-

pressions with disjoint value ranges. Agrawal et al. [107] have identified different

categories of such atomic Boolean expressions and addressed corresponding solu-

tions for those issues. I adopt similar approach to construct the Boolean expressions

for XACML rules.

Table 4.3: Atomic Boolean expressions and corresponding Boolean variables for
P1.

Unique Atomic Boolean Expression Boolean Variable
Sub ject = “Designer” S1
Sub ject = “Tester” S2
Sub ject = “Developer” S3
Sub ject = “Manager” S4
Resource = “Reports” R1
Resource = “Codes” R2
Action = “Read” A1
Action = “Change” A2
8 : 00≤ Time < 12 : 00 C1
12 : 00≤ Time < 13 : 00 C2
13 : 00≤ Time≤ 17 : 00 C3

Each of the atomic Boolean expression is encoded as a Boolean variable.

For example, an atomic Boolean expression Subject=“Designer” is encoded into a

Boolean variable S1. A complete list of Boolean encoding for the example XACML

policy in Figure 4.19 is shown in Table 4.3. I then utilize the Boolean encoding to

construct Boolean expressions in terms of Boolean variables for XACML rules.
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Example 2 Consider the example XACML policy in Figure 4.19 in terms of Boolean

variables. The Boolean expression for rule r1 is:

(S1∨S2)∧ (R2)∧ (A2)

The Boolean expression for rule r2 is:

(S1∨S3)∧ (R1∨R2)∧ (A1∨A2)∧ (C1∨C2∨C3)

Figure 4.20: Representing and operating on rules of XACML policy with BDD.

BDDs are acyclic directed graphs which represent Boolean expressions com-

pactly. Each nonterminal node in a BDD represents a Boolean variable, and has two

edges with binary labels, 0 and 1 for nonexistent and existent, respectively. Termi-

nal nodes represent Boolean value T (True) or F (False). Figures 4.20(a) and 4.20(b)

give BDD representations of two rules r1 and r2, respectively.

Once the BDDs are constructed for XACML rules, performing set opera-

tions, such as unions (∪), intersections (∩) and set differences (\), required by the

policy-based segmentation algorithms (see Algorithm 1 and Algorithm 2) is effi-

cient as well as straightforward. Figure 4.20(c) shows an integrated BDD, which
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is the difference of r2’ BDD from r1’ BDD (r2 \ r1). Note that the resulting BDDs

from the set operations may have less number of nodes due to the canonical repre-

sentation of BDD.

Conflict Detection and Resolution

I first introduce a concept of authorization space, which adopts aforementioned

BDD-based policy representation to perform policy anomaly analysis. This concept

is defined as follows:

Definition 4 (Authorization Space). Let Rx, Px and PSx be the set of rules, policies

and policy sets, respectively, of an XACML policy x. An authorization space for an

XACML policy component c ∈ Rx ∪Px ∪PSx represents a collection of all access

requests Qc to which a policy component c is applicable.

Conflict Detection Approach The proposed conflict detection mechanism exam-

ines conflicts at both policy level and policy set level for XACML policies. In order

to precisely identify policy conflicts and facilitate an effective conflict resolution, I

introduce a policy-based segmentation technique to partition the entire authoriza-

tion space of a policy into disjoint authorization space segments. Then, conflicting

authorization space segments (called conflicting segment in the rest of this disserta-

tion), which contain policy components with different effects, are identified. Each

conflicting segment indicates a policy conflict.

Conflict Detection at Policy Level. A policy component in an XACML

policy includes a set of rules. Each rule defines an authorization space with the

effect of either permit or deny. An authorization space with the effect of permit

is called as permitted space and an authorization space with the effect of deny is

called as denied space in this dissertation.

82



Algorithm 1 shows the pseudocode of generating conflicting segments for

a policy component P. An entire authorization space derived from a policy com-

ponent is first partitioned into a set of disjoint segments. As shown in lines 17-33

in Algorithm 1, a function called Partition() accomplishes this procedure. This

function works by adding an authorization space s derived from a rule r to an autho-

rization space set S. A pair of authorization spaces must satisfy one of the follow-

ing relations: subset (line 19), superset (line 24), partial match (line 27), or disjoint

(line 32). Therefore, one can utilize set operations to separate the overlapped spaces

into disjoint spaces.

Conflicting segments are identified as shown in lines 6-10 in Algorithm 1.

A set of conflicting segments CS : {cs1, cs2, . . . , csn} from conflicting rules has the

following three properties:

1. All conflicting segments are pairwise disjoint:

csi∩ cs j = /0,1≤ i ̸= j ≤ n;

2. Any two different requests q and q
′

within a single conflicting segment (csi)

are matched by exact same set of rules:

GetRule(q) = GetRule(q
′
), 7∀q ∈ csi,q

′ ∈ csi,q ̸= q
′
; and

3. The effects of matched rules in any conflicting segments contain both “Permit”

and “Deny.”

To facilitate the correct interpretation of analysis results, a concise and in-

tuitive representation method is necessary. For the purposes of brevity and under-

standability, I first employ a two dimensional geometric representation for each

authorization space segment. Note that a rule in an XACML policy typically has
7GetRule() is a function that returns all rules matching a request.
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Algorithm 1: Identify Disjoint Conflicting Authorization Spaces of Policy P
Input: A policy P with a set of rules.
Output: A set of disjoint conflicting authorization spaces CS for P.

1 /* Partition the entire authorization space of P into disjoint spaces*/
2 S.New();
3 S←− Partition P(P);
4 /* Identify the conflicting segments */
5 CS.New();
6 foreach s ∈ S do
7 /* Get all rules associated with a segment s */
8 R

′ ←− GetRule(s);
9 if ∃ri ∈ R

′
,r j ∈ R

′
, ri ̸= r j and ri.E f f ect ̸= r j.E f f ect then

10 CS.Append(s);

11 Partition P(P)
12 R←− GetRule(P);
13 foreach r ∈ R do
14 sr←− AuthorizationSpace(r);
15 S←− Partition(S,sr);

16 return S;

17 Partition(S,sr)
18 foreach s ∈ S do
19 /* sr is a subset of s*/
20 if sr ⊂ s then
21 S.Append(s\ sr);
22 s←− sr;
23 Break;

24 /* sr is a superset of s*/
25 else if sr ⊃ s then
26 sr←− sr \ s;

27 /* sr partially matches s*/
28 else if sr ∩ s ̸= /0 then
29 S.Append(s\ sr);
30 s←− sr ∩ s;
31 sr←− sr \ s;

32 S.Append(sr);
33 return S;

multiple fields, thus a complete representation of authorization space should be

multi-dimensional. Also, I utilize colored rectangles to denote two kinds of au-

thorization spaces: permitted space (white color) and denied space (grey color),

respectively. Figure 4.21(a) gives a representation of the segments of authoriza-

tion space derived from the policy P1 in the XACML example policy shown in

Figure 4.19. We can notice that five unique disjoint segments are generated. In par-

ticular, three conflicting segments cs1, cs2 and cs3 are identified, representing three

policy conflicts.
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(a) Disjoint segments of authorization
space for policy P1.

(b) Grid representation of policy conflict in policy
P1.

Figure 4.21: Authorization space representation for policy P1 in the example
XACML policy.

When a set of XACML rules interacts, one overlapping relation may be as-

sociated with several rules. Meanwhile, one rule may overlap with multiple other

rules and can be involved in a couple of overlapping relations (overlapping seg-

ments). Different kinds of segments and associated rules can be viewed like Fig-

ure 4.21(a). However, it is still difficult for a policy designer or administrator to

figure out how many segments one rule is involved in. To address the need of a

more precise conflict representation, I additionally introduce a grid representation

that is a matrix-based visualization of policy conflicts, in which space segments are

displayed along the horizontal axis of the matrix, rules are shown along the vertical

axis, and the intersection of a segment and a rule is a grid that displays a rule’s

subspace covered by the segment.

Figure 4.21(b) shows a grid representation of conflicts in the policy P1 in the

example policy. We can easily determine which rules are covered by a segment, and

which segments are associated with a rule. For example, as shown in Figure 4.21(b),

we can notice that a conflicting segment cs2, which points out a conflict, is related

to a rule set consisting of three rules r1, r2 and r3 (highlighted with a horizontal

red rectangle), and a rule r2 is involved in three conflicting segments cs1, cs2 and

cs3 (highlighted with a vertical red rectangle). The grid representation provides a
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better understanding of policy conflicts to policy designers and administrators with

an overall view of related segments and rules.

Conflict Detection at Policy Set Level. There are two major challenges

that need to be taken into consideration when we design an approach for XACML

analysis at policy set level.

1. XACML supports four rule/policy combining algorithms: First-Applicable,

Only-One-Applicable, Deny-Overrides, and Permit-Overrides.

2. An XACML policy is specified recursively and therefore has a hierarchical

structure. In XACML, a policy set contains a sequence of policies or policy

sets, which may further contain other policies or policy sets.

Each authorization space segment also has an effect, which is determined by

the XACML components covered by this segment. For nonconflicting segments,

the effect of a segment equals to the effect of components covered by this segment.

Regarding conflicting segments, the effect of a segment depends on the following

four cases of combining algorithm (C A ), which is used by the owner (a policy or

a policy set) of the segment.

1. C A =First-Applicable: In this case, the effect of a conflicting segment equals

to the effect of the first component covered by the conflicting segment.

2. C A =Permit-Overrides: The effect of a conflicting segment is always as-

signed with “Permit,” since there is at least one component with “Permit”

effect within this conflicting segment.

3. C A =Deny-Overrides: The effect of a conflicting segment always equals to

“Deny.”
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4. C A =Only-One-Applicable: The effect of a conflicting segment equals to the

effect of only-applicable component.

To support the recursive specifications of XACML policies, an XACML

policy can be parsed and modeled as a tree structure, where each terminal node rep-

resents an individual rule, each nonterminal node whose children are all terminal

nodes represents a policy, and each nonterminal node whose children are all non-

terminal nodes represents a policy set. At each nonterminal node, the target and

combining algorithm are stored. At each terminal node, the target and effect of the

corresponding rule are stored.

Algorithm 2 shows the pseudocode of identifying disjoint conflicting autho-

rization spaces for a policy set PS based on the tree structure. In order to partition

authorization spaces of all nodes contained in a policy set tree, this algorithm recur-

sively calls the partition functions, Partition P() and Partition PS(), to deal

with the policy nodes (lines 16-17) and the policy set nodes (lines 19-20), respec-

tively. Once all children nodes of a policy set are partitioned, we can then represent

the authorization space of each child node (E) with two subspaces permitted sub-

space (EP) and denied subspace (ED) by aggregating all “Permit” segments and

“Deny” segments, respectively, as follows: EP =
∪

si∈SE
si if E f f ect(si) = Permit

ED =
∪

si∈SE
si if E f f ect(si) = Deny

(4.1)

where SE denotes the set of authorization space segments of the child node E.

For example, since the combining algorithm (C A ) of the policy P1 in the

example XACML policy is Deny-Overrides, the effects of three conflicting seg-

ments shown in Figure 4.21 are “Deny”. Figure 4.22 shows the result of aggre-
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Algorithm 2: Identify Disjoint Conflicting Authorization Spaces of Policy Set PS
Input: A policy set PS with a set of policies or other policy sets.
Output: A set of disjoint conflicting authorization spaces CS for PS.

1 /* Partition the entire authorization space of PS into disjoint spaces*/
2 S.New();
3 S←− Partition PS(PS);
4 /* Identify the conflicting segments */
5 CS.New();
6 foreach s ∈ S do
7 E←− GetElement(s);
8 if ∃ei ∈ E,e j ∈ E, ei ̸= e j and ei.E f f ect ̸= e j.E f f ect then
9 CS.Append(s);

10 Partition PS(PS)
11 S

′′
.New();

12 C←− GetChild(PS);
13 foreach c ∈C do
14 S

′
.New();

15 /* c is a policy*/
16 if IsPolicy(c) = true then
17 S

′ ←− Partition P(c);
18 /* c is a policy set*/
19 else if IsPolicySet(c) = true then
20 S

′ ←− Partition PS(c)

21 EP.New();
22 ED.New();
23 foreach s

′ ∈ S
′ do

24 if Effect(s
′
) = Permit then

25 EP←− EP∪ s
′
;

26 else if Effect(s
′
) = Deny then

27 ED←− ED∪ s
′
;

28 S
′′ ←− Partition(S′′ ,EP);

29 S
′′ ←− Partition(S′′ ,ED);

30 return S
′′
;  

Figure 4.22: Aggregation of authorization spaces for policy P1 in the example
XACML policy.

gating authorization spaces of the policy P1, where two subspaces PP
1 and PD

1 are

constructed.
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(a) Disjoint segments of authorization space for policy
set PS1.

(b) Grid representation of policy conflicts
in policy set PS1.

Figure 4.23: Authorization space representation for policy set PS1 in the example
XACML policy.

In order to generate segments for the policy set PS, we can then leverage

two subspaces (EP and ED) of each child node (E) to partition existing authorization

space set belonging to PS (lines 28-29). Figure 4.23(a) represents an example of the

segments of authorization space derived from policy set PS1 in the example policy

(Figure 4.19). We can observe that seven unique disjoint segments are generated,

and two of them cs1 and cs2 are conflicting segments. I additionally give a grid

representation of conflicts in the policy set PS1 shown in Figure 4.23(b). Then, we

can easily identify that the conflicting segment cs1 is related to two subspaces: P1’s

permitted subspace PP
1 and P2’s denied subspace PD

2 , and the policy P1 is associated

with two conflicts, where P1’s permitted subspace PP
1 is involved in the conflict

represented by cs1 and P1’s denied subspace PD
1 is related to the conflict represented

by cs2.

Fine-Grained Conflict Resolution Once conflicts within a policy component or

policy set component are identified, a policy designer can choose appropriate con-

flict resolution strategies to resolve those identified conflicts. However, current

XACML conflict resolution mechanisms have limitations in resolving conflicts ef-

fectively. First, existing conflict resolution mechanisms in XACML are too restric-
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Figure 4.24: Fine-grained conflict resolution framework.

tive and only allow a policy designer to select one combining algorithm to resolve

all identified conflicts within a policy or policy set component. A policy designer

may want to adopt different combining algorithms to resolve different conflicts.

Second, XACML offers four conflict resolution strategies. However, many conflict

resolution strategies exist [54, 55, 56], but cannot be specified in XACML. Thus,

it is necessary to seek a comprehensive conflict resolution mechanism for more ef-

fective conflict resolution. Towards this end, I introduce a flexible and extensible

conflict resolution framework to achieve a fine-grained conflict resolution as shown

in Figure 4.24.

Effect Constraint Generation from Conflict Resolution Strategy. The

conflict resolution framework introduces an effect constraint that is assigned to

each conflicting segment. An effect constraint for a conflicting segment defines

a desired response (either permit or deny) that an XACML policy should take
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when any access request matches the conflicting segment. The effect constraint is

derived from the conflict resolution strategy applied to the conflicting segment. A

policy designer chooses an appropriate conflict resolution strategy for each identi-

fied conflict by examining the features of conflicting segment and associated con-

flicting components. In the conflict resolution framework, a policy designer is able

to adopt different strategies to resolve conflicts indicated by different conflicting

segments. In addition to four standard XACML conflict resolution strategies, user-

defined strategies [56], such as Recency-Overrides, Specificity-Overrides and High-

Majority-Overrides, can be implied in the framework as well. For example, apply-

ing a conflict resolution strategy, High-Majority-Overrides, to the second conflict-

ing segment cs2 of policy P1 depicted in Figure 4.21, an effect constraint Effect =

“Deny” will be generated for cs2.

Conflict Resolution Based on Effect Constraints. A key feature of adopt-

ing effect constraints in the framework is that other conflict resolution strategies

assigned to resolve different conflicts by a policy designer can be automatically

mapped to standard XACML combining algorithms, without changing the way

that current XACML implementations perform. As illustrated in Figure 4.24, an

XACML combining algorithm can be derived for a target component by examin-

ing all effect constraints of the conflicting segments. If all effect constraints are

“Permit,” Permit-Overrides is selected for the target component to resolve all con-

flicts. In case that all effect constraints are “Deny,” Deny-Overrides is assigned to

the target component. Then, if the target component is a policy set and all effect

constraints can be satisfied by applying Only-One-Applicable combining algorithm,

Only-One-Applicable is selected as the combining algorithm of the target compo-

nent. Otherwise, First-Applicable is selected as the combining algorithm of the

target component. In order to resolve all conflicts within the target component by
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applying First-Applicable, the process of reordering conflicting components is com-

pulsory. Therefore, the first-applicable component in each conflicting segment has

the same effect with corresponding effect constraint.

Redundancy Discovery and Removal

The proposed redundancy discovery and removal mechanism also leverage the policy-

based segmentation technique to explore redundancies at both policy level and pol-

icy set level. I give a definition of rule redundancy as follows, which serves as a

foundation of the redundancy elimination approach.

Definition 5 (Rule Redundancy). A rule r is redundant in an XACML policy p

iff the authorization space derived from the resulting policy p′ after removing r is

equivalent to the authorization space defined by p.

Redundancy Elimination at Policy Level I employ following four steps to iden-

tify and eliminate rule redundancies at policy level: authorization space segmenta-

tion, property assignment for rule subspaces, rule correlation break, and redundant

rule removal.

Authorization Space Segmentation. I first perform the policy segmenta-

tion function Partition P() defined in Algorithm 1 to divide the entire autho-

rization space of a policy into disjoint segments. I classify the policy segments in

following categories: non-overlapping segment and overlapping segment, which is

further divided into conflicting overlapping segment and non-conflicting overlap-

ping segment. Each non-overlapping segment associates with one unique rule and

each overlapping segment is related to a set of rules, which may conflict with each

other (conflicting overlapping segment) or have the same effect (non-conflicting

overlapping segment). Figure 4.25(a) illustrates an authorization space segmenta-

tion for a policy with eight rules. In this example, two policy segments s4 and s6
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are non-overlapping segments. Other policy segments are overlapping segments,

including two conflicting overlapping segments s1 and s3, and two non-conflicting

overlapping segments s2 and s5.

(a) Authorization space segmentation. (b) Property assignment.

(c) Redundancy removal.

Figure 4.25: Example of eliminating redundancies at policy level.

Property Assignment for Rule Subspaces. In this step, every rule sub-

space covered by a policy segment is assigned with a property. Four property values,

removable (R), strong irremovable (SI), weak irremovable (WI) and correlated (C),

are defined to reflect different characteristics of rule subspace. Removable property

is used to indicate that a rule subspace is removable. In other words, removing such

a rule subspace does not make any impact on the original authorization space of an

associated policy. Strong irremovable property means that a rule subspace cannot
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be removed because the effect of corresponding policy segment can be only decided

by this rule. Weak irremovable property is assigned to a rule subspace when any

subspace belonging to the same rule has strong irremovable property. That means a

rule subspace becomes irremovable due to the reason that other portions of this rule

cannot be removed. Correlated property is assigned to multiple rule subspaces cov-

ered by a policy segment, if the effect of this policy segment can be determined by

any of these rules. I next introduce three processes to perform the property assign-

ments to all of rule subspaces within the segments of a policy, considering different

categories of policy segments.

Process1: Property assignment for the rule subspace covered by a non-overlapping

segment. A non-overlapping segment contains only one rule subspace. Thus,

this rule subspace is assigned with strong irremovable property. Other rule

subspaces associated with the same rule are assigned with weak irremovable

property, excepting the rule subspaces that already have strong irremovable

property.

Process2: Property assignment for rule subspaces covered by a conflicting seg-

ment. I present this property assignment process based on the following three

cases of rule combining algorithm (C A ).

1. C A =First-Applicable: In this case, the first rule subspace covered by

the conflicting segment is assigned with strong irremovable property.

Other rule subspaces in the same segment are assigned with removable

property. Meanwhile, other rule subspaces associated with the same rule

are assigned with weak irremovable property except the rule subspaces

already having strong irremovable property.

2. C A =Permit-Overrides: All subspaces of “deny” rules in this conflict-

ing segment are assigned with removable property. If there is only
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one “permit” rule subspace, this case is handled which is similar to

the First-Applicable case. If any “permit” rule subspace has been as-

signed with weak irremovable property, other rule subspaces without

irremovable property are assigned with removable property. Otherwise,

all “permit” rule subspaces are assigned with correlated property.

3. C A =Deny-Overrides: This case is dealt with as the same as Permit-

Overrides case.

Process3: Property assignment for rule subspaces covered by a non-conflicting

overlapping segment. If any rule subspace has been assigned with weak ir-

removable property, other rule subspaces without irremovable property are

assigned with removable property. Otherwise, all subspaces within the seg-

ment are assigned with correlated property.

Figure 4.25(b) shows the result of applying the property assignment mech-

anism, which performs three property assignment processes in sequence, to the

example presented in Figure 4.25(a). We can easily identify that r3 and r8 are re-

movable rules, where all subspaces are with removable property. However, we need

to further examine the correlated rules r2, r4 or r7, which contain some subspaces

with correlated property.

Rule Correlation Break and Redundancy Removal. Rule subspaces cov-

ered by an overlapping segment are correlated with each other when the effect of

overlapping segment can be determined by any of those correlated rules. Thus,

keeping one correlated rule and removing others may not change the effect of cor-

responding segment. Such a correlated relation is called as vertical rule correlation,

which can be identified in property assignment step. In addition, we can observe

that some rule may be involved in several correlated relations. For example, in Fig-

ure 4.25(b), r4 has two subspaces that are involved in the correlated relations with
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r2 and r7, respectively. This kind of correlated relation is called as horizontal rule

correlation. Obviously, we cannot resolve a correlation individually and those two

dimensions of rule correlation should be take into consideration. Therefore, we can

further construct rule correlation groups based on those two kinds of rule correla-

tions so that dependent relationships among multiple correlated rules within one

group can be examined together. For example, a correlation group g consisting of

three rules r2, r4 and r7 can be identified in Figure 4.25(b) based on two dimensions

of rule correlation.

Figure 4.26: Example of rule correlation break.

We can additionally observe that different sequences to break rule correla-

tions in a correlation group may lead to different results for redundancy removal.

Figure 4.26(a) shows correlated relations of rules r2, r4 and r7 in the correlation

group g. We can break their correlation relations via different sequences. Fig-

ure 4.26(b) shows one possible solution. If we first assign two subspaces of r4 with

removable property, r4 becomes a removable rule but r2 and r7 are turned to an irre-

movable rules. However, regarding another solution represented in Figure 4.26(c),

if we first assign the correlated subspace of r2 with removable property, then only r4

becomes an irremovable rule. Both r2 and r7 are removable. Thus, it is necessary to

seek an optimal solution to obtain maximum redundancy removal. To achieve this

goal, we can compute a correlation degree (CD) for each correlated rule r using the

following equation:
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Algorithm 3: Redundancy Elimination of Policy P: RedundancyEliminate P(P)
Input: A policy P with a set of rules.
Output: A redundancy-eliminated policy P

′
.

1 /* Partition the entire authorization space of P into disjoint spaces*/
2 S.New();
3 S←− Partition P(P);
4 /* Property assignment for all rule subspaces */
5 PropertyAssgin P(S);
6 /* Rule correlation break */
7 G←− CorrelatonGroupConstruct(S);
8 foreach g ∈ G do
9 foreach r ∈ g do

10 r.CD←− ∑si∈CS(r)
1

NC(si)−1 ;

11 SP←− GetCorrelatedSubspace(MinCDRule(g))
12 foreach sp ∈ SP do
13 sp.Property←− R ;
14 if |GetCorrelatedSubspace(sp)|= 1 then
15 SP

′ ←− GetCorrelatedSubspace(sp);
16 SP

′
.Property←− SI ;

17 AssginSI(SP
′
);

18 /*Redundancy removal */
19 P

′ ←− P;
20 foreach r ∈ P

′ do
21 if AllRemovalProperty(r) = true then
22 P

′ ←− P
′ \ r;

23 return P
′
;

CD(r) = ∑
si∈CS(r)

1
NC(si)−1

(4.2)

Note that CS(r) is a function to return all correlated segments of a rule r, and

NC(si) is a function to return the number of correlated rules within a segment si.

Since each policy segment contains multiple correlated rules (NC(si)≥ 2), 1
NC(si)−1

gives the degree of breakable correlation relations associated with a policy segment

si if we set a rule r as removable. To maximize the number of removable rules for re-

dundancy resolution,the correlation break process selects one rule with the minimal

CD as the candidate removable rule each time. For instance, applying this equa-

tion to calculate correlation degrees of three rules demonstrated in Figure 4.26(a),

CD(r2) and CD(r7) equal to 1, and CD(r4) equals to 2. Thus, we can select either
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r2 or r7 as the candidate removable rule in the first break step. Finally, two rules r2

and r7 become removable rules after breaking all correlations.

The pseudocode of the algorithm for eliminating redundancy at policy level

is shown in Algorithm 3. Figure 4.25(c) depicts the result of applying this algo-

rithm to the example given in Figure 4.25(a). Four rules r2, r3, r7 and r8 were

identified as redundant rules and removed from the policy. However, if we lever-

age traditional redundancy detection method [103, 22], which was limited to detect

pairwise redundancies, to this example, only two redundant rules r2 and r7 can be

discovered.

Redundancy Elimination at Policy Set Level Similar to the solution of conflict

detection at policy set level, we can handle the redundancy removal for a policy set

based on an XACML tree structure representation. If the children nodes of the pol-

icy set is a policy node in the tree, we perform RedundancyEliminate P() func-

tion to eliminate redundancies. Otherwise, RedundancyEliminate PS() function

is excused recursively to eliminate redundancy in a policy set component.

Figure 4.27: Example of authorization space segmentation at policy set level for
redundancy discovery and removal.
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After each component of a policy set PS performs redundancy removal, the

authorization space of PS can be then partitioned into disjoint segments by per-

forming Partition() function. Note that, in the solution for conflict detection

at policy set level, authorization subspaces of each child node are aggregated be-

fore performing space partition, because we only need to identify conflicts among

children nodes to guide the selection of policy combining algorithms for the policy

set. However, for redundancy removal at policy set level, both redundancies among

children nodes and rule (leaf node) redundancies, which may exist across multiple

policies or policy sets, should be discovered. Therefore, we keep the original seg-

ments of each child node and leverage those segments to generate the authorization

space segments of PS. Figure 4.27 demonstrates an example of authorization space

segmentation of a policy set PS with three children components P1, P2 and P3. The

authorization space segments of PS are constructed based on the original segments

of each child component. For instance, a segment s
′
2 of PS covers three policy

segments P1.s1, P2.s1 and P3.s2, where Pi.s j denotes that a segment s j belongs to a

policy Pi.

The property assignment step at policy set level is similar to the property

assignment step at policy level, except that the policy combining algorithm Only-

One-Applicable needs to be taken into consideration at policy set level. The Only-

One-Applicable case is handled similar to the First-Applicable case. We first check

whether the combining algorithm is applicable or not. If the combining algorithm is

applicable, the only-applicable subspace is assigned with strong irremovable prop-

erty. Otherwise, all subspaces within the policy set’s segment are assigned with

removable property.

I utilize a similar correlation break mechanism introduced previously to

break the correlation relations among the segments of child components of PS.
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Algorithm 4: Eliminate Redundancies of a Policy Set PS: RedundancyElimi-
nate PS(PS)
Input: A policy set PS with a set of policies or other policy sets.
Output: A redundancy-eliminated policy set PS

′
.

1 E←− GetChild(PS);
2 foreach e ∈ E do
3 /* e is a policy*/
4 if IsPolicy(e) = true then
5 e

′ ←− RedundancyEliminate P(e);
6 /* e is a policy set*/
7 else if IsPolicySet(e) = true then
8 e

′ ←− RedundancyEliminate PS(e)

9 E
′ ←− E

′ ∪ e
′
;

10 /* Partition the authorization space of PS into disjoint spaces*/
11 foreach e

′ ∈ E
′ do

12 foreach s ∈ GetSegment(e
′
) do

13 S←− Partition(S,s);

14 /* Property assignment for all subspaces covered by the segments of PS */
15 PropertyAssgin PS(S);
16 /* Correlation break */
17 CorrelationBreak PS(S);
18 /*Redundancy removal for child components of PS */
19 PS

′ ←− PS;
20 foreach e ∈ PS do
21 if AllRemovalProperty(e) = true then
22 PS

′ ←− PS
′ \ e;

23 /*Redundancy removal for rules of PS */
24 foreach e ∈ PS

′ do
25 S←− GetSubspace(e);
26 foreach s ∈ S do
27 if s.Property = R then
28 S←− GetSubspaceWithSI(s);
29 foreach s ∈ S do
30 if OneSISubspace(GetRule(s)) = true then
31 SP←− GetRuleSubspace(GetRule(s))\ s;
32 foreach sp ∈ SP do
33 sp.Property←− R ;

34 SP
′ ←− GetSubspace(s);

35 foreach sp′ ∈ SP′ do
36 sp′.Property←− R ;

37 foreach r ∈ SP
′ do

38 if AllRemovalProperty(r) = true then
39 SP

′ ←− SP
′ \ r;

40 return PS
′
;

Since there may exist multiple correlated segments of children components with

the minimal correlation degree (CD) value, I additionally compute a removal value

100



(RV ), which indicates the possibility of rule redundancy removal if we set a corre-

lated segment with removable property, for all candidate segments using following

equation:

RV (s) = ∑
ri∈RHI(s)

1
NHI(ri)

(4.3)

Note that RHI(s) is a function to return all rules having a subspace in the

segment s with strong irremovable property, and NHI(ri) is a function to return the

number of the rule’s subspace with strong irremovable property. 1
NHI(ri)

measures

the possibility of turning a rule to a removable rule if we change a strong irremov-

able rule subspace to be removable. The correlated segment with the maximum RV

value has the highest priority to be chosen for breaking correlations.

After assigning properties to all segments of children components of PS, we

need to examine whether any child component is redundant. If a child component

is redundant, this child component and all rules contained in the child component

are removed from PS. Then, we need to examine whether there exist any redundant

rules. In this process, the properties of all rule subspaces covered by a removable

segment of a child component of PS needs to be changed to removable. Note that

when we change the property of a strong irremovable rule subspace to removable,

other subspaces in the same rule with dependent weak irremovable property need

to be changed to removable correspondingly. Algorithm 4 shows the pseudocode

of eliminating redundancies for a policy set PS.

Implementation and Evaluation

A policy analysis tool called XAnalyzer have been implemented in Java. Based

on the policy anomaly analysis mechanism, it consists of four core components:

segmentation module, effect constraint generation module, strategy mapping mod-
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ule, and property assignment module. The segmentation module takes XACML

policies as an input and identifies the authorization space segments by partitioning

the authorization space into disjoint subspaces. XAnalyzer utilizes APIs provided

by Sun XACML implementation [52] to parse the XACML policies and construct

Boolean encoding. JavaBDD [108], which is based on BuDDy package [109], is

employed by XAnalyzer to support BDD representation and authorization space

operations. The effect constraint generation module takes conflicting segments as

an input and generates effect constraints for each conflicting segment. Effect con-

straints are generated based on strategies assigned to each conflicting segment. The

strategy mapping module takes conflict correlation groups and effect constraints

of conflicting segments as inputs and then maps assigned strategies to standard

XACML combining algorithms for examined XACML policy components. The

property assignment module automatically assigns corresponding property to each

subspace covered by the segments of XACML policy components. The assigned

properties are in turn utilized to identify redundancies.

Considering the complexity of tasks involved in the policy analysis, it is de-

sirable to provide intuitive user interfaces for policy designers or administrators for

effective policy anomaly detection and resolution. Since the grid representation of

policy anomalies offers a succinct view of the interactions of overlapping rules and

enables policy designers or administrators to better understand policy anomalies,

the grid representation of policy anomalies has been implemented in XAnalyzer as

well.

XAnalyzer provides two policy viewers, Conflict Viewer (Figure 4.28(a))

and Redundancy Viewer (Figure 4.28(b)), to visualize the outputs of policy con-

flict analysis and policy redundancy analysis, respectively. In addition, XAnalyzer

offers flexible ways to handle large-scale policies. There are two kinds of visualiza-
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(a) Conflict Viewer.

(b) Redundancy Viewer.

Figure 4.28: XAnalyzer interface.

tion interfaces in each viewer: one interface shows an entire snapshot of all anoma-

lies; another interface shows a partial snapshot only containing anomalies within

one correlation group. In addition, XAnalyzer shows a hierarchical structure of
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policies and allow policy designers or administrators to view policy anomalies at

different levels independently. The hierarchical structure of policies is presented

by a tree of policy components on the left side of the interfaces. A policy designer

or administrator can choose a particular policy component such as Policy or Policy

Set node for anomaly analysis. If an administrator chooses a Policy node for the

analysis, anomalies in that particular Policy node are displayed in terms of the rule

subspaces involved. Otherwise, if an administrator chooses a Policy Set node, all

anomalies within that particular node are displayed in terms of allowed and denied

subspaces of policy or policy set components.

I evaluated the efficiency and effectiveness of XAnalyzer for policy anal-

ysis on both real-life and synthetic XACML policies. The experiments were per-

formed on Intel Core 2 Duo CPU 3.00 GHz with 3.25 GB RAM running on Win-

dows XP SP2. In the evaluation, I utilized five real-life XACML policies, which

were collected from different sources. Three of the policies, CodeA, Continue-a

and Continue-b are XACML policies used in [20]; among them, Continue-a and

Continue-b are designed for a real-world Web application supporting a confer-

ence management. GradeSheet is utilized in [101]. The Pluto policy is employed

in ARCHON system, 8 which is a digital library that federates the collections of

physics with multiple degrees of meta data richness. Since it is hard to get a large

volume of real-world policies due to the reason that they are often considered to

be highly confidential, I generated four large synthetic policies SyntheticPolicy-

1, SyntheticPolicy-2, SyntheticPolicy-3 and SyntheticPolicy-4 for further evaluating

the performance and scalability of the tool. These synthetic policies are multi-

layered, where each policy component has a randomly selected combining algo-

rithm and each rule has randomly chosen attribute sets from a predefined domain.
8http://archon.cs.odu.edu/
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Table 4.4: XACML policies used for evaluation.

Policy Rule (#) Policy (#) Policy Set (#)
1 (CodeA) 4 2 5

2 (SamplePolicy) 6 2 1
3 (GradeSheet) 13 1 0

4 (Pluto) 22 1 0
5 (SyntheticPolicy-1) 147 30 11

6 (Continue-a) 312 276 111
7 (Continue-b) 336 305 111

8 (SyntheticPolicy-2) 456 65 40
9 (SyntheticPolicy-3) 572 114 75
10 (SyntheticPolicy-4) 685 188 84

I also use SamplePolicy, which is the example XACML policy represented in Fig-

ure 4.19, in the experiments. Table 4.4 summarizes the basic information of each

policy including the number of rules, the number of policies, and the number of

policy sets.

I conducted two separate sets of experiments for the evaluation of conflict

detection approach and the evaluation of redundancy removal approach, respec-

tively. Also, I performed evaluations at both policy level and policy set level. Ta-

ble 4.5 summarizes the evaluation results.

Evaluation of Conflict Detection. Time required by XAnalyzer for con-

flict detection highly depends upon the number of segments generated for each

XACML policy. The increase of the number of segments is proportional to the

number of components contained in an XACML policy. From Table 4.5, we can

observe that XAnalyzer performs fast enough to handle larger size XACML poli-

cies, even for some complex policies with multiple levels of hierarchies along with

hundreds of rules, such as two real-life XACML policies Continue-a and Continue-

b and four synthetic XACML policies. The time trends observed from Table 4.5 are

promising, and hence provide the evidence of efficiency of the conflict detection

approach.
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Table 4.5: Conflict detection and redundancy removal algorithms evaluation.

Policy Partitions BDD Conflict Detection Redundant Removal
(#) Nodes (#) Policy Level(#) Policy Set Level(#) Time (s) Policy Level(#) Policy Set Level(#) Time (s)

1 (CodeA) 6 16 1 1 0.082 1 0 0.087
2 (SamplePolicy) 8 34 0 2 0.090 0 2 0.095
3 (GradeSheet) 18 45 0 4 0.098 0 2 0.113

4 (Pluto) 34 78 0 5 0.136 0 3 0.147
5 (SyntheticPolicy-1) 205 112 8 14 0.329 7 4 0.158

6 (Continue-a) 439 135 9 17 0.583 11 7 0.214
7 (Continue-b) 468 146 10 21 0.635 12 7 0.585

8 (SyntheticPolicy-2) 523 209 29 17 0.896 14 8 0.623
9 (SyntheticPolicy-3) 614 227 39 19 0.948 17 10 0.672

10 (SyntheticPolicy-4) 814 265 56 19 1.123 23 12 0.803

(a) Redundancy elimination rate. (b) Performance improvement.

Figure 4.29: Evaluation of redundancy removal approach.

Evaluation of Redundancy Removal. In the second set of experiments, I

evaluated the proposed redundancy analysis approach based on those experimental

XACML policies. The evaluation results shown in Table 4.5 also indicate the effi-

ciency of the redundancy analysis algorithm. Moreover, I conducted the evaluation

of effectiveness by comparing the redundancy analysis approach with traditional

redundancy analysis approach [103, 22], which can only identify redundancy rela-

tions between two rules. Figure 4.29(a) depicts the results of the comparison exper-

iments. From Figure 4.29(a), we can observe that XAnalyzer could identify that

an average of 6.3% of total rules are redundant. However, traditional redundancy

analysis approach could only detect an average 3.7% of total rules as redundant

rules. Therefore, the enhancement for redundancy elimination was clearly observed
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through comparing the proposed redundancy analysis approach with traditional re-

dundancy analysis approach in the experiments.

Furthermore, when redundancies in a policy are removed, the performance

of policy enforcement is improved generally. For each of XACML policies in

the experiments, Figure 4.29(b) depicts the total processing time in Sun XACML

PDP [52] for responding 10,000 randomly generated XACML requests. The eval-

uation results clearly show that the processing times are reduced after eliminating

redundancies in XACML policies applying either traditional approach or this ap-

proach, and this approach can obtain better performance improvement than tradi-

tional approach.
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Chapter 5

Applying AMF to Online Social Networks

Online social networks (OSNs) such as Facebook, Google+, and Twitter are in-

herently designed to enable people to share personal and public information and

make social connections with friends, coworkers, colleagues, family and even with

strangers. In recent years, we have seen unprecedented growth in the application of

OSNs. For example, Facebook, one of representative social network sites, claims

that it has more than 800 million active users and over 30 billion pieces of con-

tent (web links, news stories, blog posts, notes, photo albums, etc.) shared each

month [110]. To protect user data, access control has become a central feature of

OSNs [111, 112].

A typical OSN provides each user with a virtual space containing profile

information, a list of the user’s friends, and web pages, such as wall in Facebook,

where users and friends can post content and leave messages. A user profile usually

includes information with respect to the user’s birthday, gender, interests, education

and work history, and contact information. In addition, users can not only upload a

content into their own or others’ spaces but also tag other users who appear in the

content. Each tag is an explicit reference that links to a user’s space. For the pro-

tection of user data, current OSNs indirectly require users to be system and policy

administrators for regulating their data, where users can restrict data sharing to a

specific set of trusted users. OSNs often use user relationship and group member-

ship to distinguish between trusted and untrusted users. For example, in Facebook,

users can allow friends, friends of friends, groups or public to access their data,

depending on their personal authorization and privacy requirements.
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Although OSNs currently provide simple access control mechanisms allow-

ing users to govern access to information contained in their own spaces, users, un-

fortunately, have no control over data residing outside their spaces. For instance, if

a user posts a comment in a friend’s space, s/he cannot specify which users can view

the comment. In another case, when a user uploads a photo and tags friends who

appear in the photo, the tagged friends cannot restrict who can see this photo, even

though the tagged friends may have different privacy concerns about the photo. To

address such a critical issue, preliminary protection mechanisms have been offered

by existing OSNs. For example, Facebook allows tagged users to remove the tags

linked to their profiles or report violations asking Facebook managers to remove

the contents that they do not want to share with the public. However, these simple

protection mechanisms suffer from several limitations. On one hand, removing a

tag from a photo can only prevent other members from seeing a user’s profile by

means of the association link, but the user’s image is still contained in the photo.

Since original access control policies cannot be changed, the user’s image continues

to be revealed to all authorized users. On the other hand, reporting to OSNs only

allows users to either keep or delete the content. Such a binary decision from OSN

managers is either too loose or too restrictive, relying on the OSN’s administration

and requiring several people to report their request on the same content. Hence, it is

essential to develop an effective and flexible access control mechanism for OSNs,

accommodating the special authorization requirements coming from multiple asso-

ciated users for managing the shared data collaboratively.

In Chapter 4, I demonstrated the proposed AMF framework with the real-

ization and analysis of access control models, and the representation and analysis of

access control policies, separately. However, there is no obvious connection among

the adopted formal access control models, such as NIST/ANSI RBAC standard,

109



and access control policies, such as XACML policies. In this part, I will evaluate

the AMF framework using an access control model and associated access control

policies through modeling and analyzing multiparty access control in OSNs. I be-

gin by examining how the lack of multiparty access control for data sharing in

OSNs can undermine the protection of user data. Some typical data sharing pat-

terns with respect to multiparty authorization in OSNs are also identified. Based

on these sharing patterns, a multiparty access control (MPAC) model is formulated

to capture the core features of multiparty authorization requirements which have

not been accommodated so far by existing access control systems and models for

OSNs (e.g., [28, 29, 30, 31, 70]). The model also contains a multiparty policy spec-

ification scheme. In the meanwhile, a systematic conflict detection and resolution

mechanism is addressed to cope with privacy conflicts occurring in collaborative

management of data sharing in OSNs. The conflict resolution approach in this

work balances the need for privacy protection and the users’ desire for information

sharing by quantitative analysis of privacy risk and sharing loss.

Another compelling feature of the proposed solution is the support of analy-

sis on multiparty access control model and systems. The correctness of implemen-

tation of an access control model is based on the premise that the access control

model is valid. Moreover, while the use of multiparty access control mechanism can

greatly enhance the flexibility for regulating data sharing in OSNs, it may poten-

tially reduce the certainty of system authorization consequences due to the reason

that authorization and privacy conflicts need to be resolved elegantly. Assessing

the implications of access control mechanisms traditionally relies on the security

analysis technique, which has been applied in several domains (e.g., operating sys-

tems [113], trust management [114], and role-based access control [115, 116]). I

additionally introduce a method to represent and reason about the model in a logic
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(a) A disseminator shares other’s profile. (b) A user shares her/his relationships.

Figure 5.1: Multiparty access control pattern for profile and relationship sharing.

program. Besides, a proof-of-concept prototype of the approach is implemented

in the context of Facebook. The experimental results based on comprehensive sys-

tem evaluation and usability study demonstrate the feasibility and practicality of the

proposed solution.

5.1 Multiparty Access Control for OSNs: Requirements and Patterns

In this section, I proceed with a comprehensive requirement analysis of multiparty

access control in OSNs. Meanwhile, I discuss several typical sharing patterns oc-

curring in OSNs where multiple users may have different authorization require-

ments to a single resource. I specifically analyze three scenarios—profile sharing,

relationship sharing and content sharing—to understand the risks posted by the lack

of collaborative control in OSNs. I leverage Facebook as the running example in

this work since it is currently the most popular and representative social network

provider. In the meantime, I reiterate that the proposed solution could be easily

extended to other existing social network platforms, such as Google+ [117].

Profile sharing: An appealing feature of some OSNs is to support social ap-

plications written by third-party developers to create additional functionalities built

on the top of users’ profile for OSNs [118]. To provide meaningful and attractive

services, these social applications consume user profile attributes, such as name,

birthday, activities, interests, and so on. To make matters more complicated, social
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applications on current OSN platforms can also consume the profile attributes of

a user’s friends. In this case, users can select particular pieces of profile attributes

they are willing to share with the applications when their friends use the applica-

tions. At the same time, the users who are using the applications may also want

to control what information of their friends is available to the applications since it

is possible for the applications to infer their private profile attributes through their

friends’ profile attributes [119]. This means that when an application accesses the

profile attributes of a user’s friend, both the user and her friend want to gain con-

trol over the profile attributes. If we consider the application is an accessor, the

user is a disseminator and the user’s friend is the owner of shared profile attributes

in this scenario, Figure 5.1(a) demonstrates a profile sharing pattern where a dis-

seminator can share others’ profile attributes to an accessor. Both the owner and

the disseminator can specify access control policies to restrict the sharing of profile

attributes.

Relationship sharing: Another feature of OSNs is that users can share their

relationships with other members. Relationships are inherently bidirectional and

carry potentially sensitive information that associated users may not want to dis-

close. Most OSNs provide mechanisms that users can regulate the display of their

friend lists. A user, however, can only control one direction of a relationship. Con-

sider, for example, a scenario where a user Alice specifies a policy to hide her friend

list from the public. However, Bob, one of Alice’s friends, specifies a weaker policy

that permits his friend list visible to anyone. In this case, if OSNs can solely en-

force one party’s policy, the relationship between Alice and Bob can still be learned

through Bob’s friend list. Figure 5.1(b) shows a relationship sharing pattern where

a user called owner, who has a relationship with another user called stakeholder,

shares the relationship with an accessor. In this scenario, authorization require-
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(a) A shared content has multiple stakehold-
ers.

(b) A shared content is published by a con-
tributor.

(c) A disseminator shares other’s content published by a
contributor.

Figure 5.2: Multiparty access control pattern for content sharing.

ments from both the owner and the stakeholder should be considered. Otherwise,

the stakeholder’s privacy concern may be violated.

Content sharing: OSNs provide built-in mechanisms enabling users to com-

municate and share contents with other members. OSN users can post statuses and

notes, upload photos and videos in their own spaces, tag others to their contents,

and share the contents with their friends. On the other hand, users can also post

contents in their friends’ spaces. The shared contents may be connected with mul-

tiple users. Consider an example where a photograph contains three users, Alice,

Bob and Carol. If Alice uploads it to her own space and tags both Bob and Carol

in the photo, we call Alice the owner of the photo, and Bob and Carol stakehold-

ers of the photo. All of them may specify access control policies to control over

who can see this photo. Figure 5.2(a) depicts a content sharing pattern where the

owner of a content shares the content with other OSN members, and the content

has multiple stateholders who may also want to involve in the control of content
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sharing. In another case, when Alice posts a note stating “I will attend a party on

Friday night with @Carol” to Bob’s space, we call Alice the contributor of the note

and she may want to make the control over her notes. In addition, since Carol is

explicitly identified by @-mention (at-mention) in this note, she is considered as

a stakeholder of the note and may also want to control the exposure of this note.

Figure 5.2(b) shows a content sharing pattern reflecting this scenario where a con-

tributor publishes a content to other’s space and the content may also have multiple

stakeholders (e.g., tagged users). All associated users should be allowed to define

access control policies for the shared content.

OSNs also enable users to share others’ contents. For example, when Alice

views a photo in Bob’s space and decides to share this photo with her friends, the

photo will be in turn posted in her space and she can specify access control policy

to authorize her friends to see this photo. In this case, Alice is a disseminator of

the photo. Since Alice may adopt a weaker control saying the photo is visible to

everyone, the initial access control requirements of this photo should be compliant

with, preventing from the possible leakage of sensitive information via the proce-

dure of data dissemination. Figure 5.2(c) shows a content sharing pattern where the

sharing starts with an originator (owner or contributor who uploads the content)

publishing the content, and then a disseminator views and shares the content. All

access control policies defined by associated users should be enforced to regulate

access of the content in disseminator’s space. For a more complicated case, the dis-

seminated content may be further re-disseminated by disseminator’s friends, where

effective access control mechanisms should be applied in each procedure to regulate

sharing behaviors. Especially, regardless of how many steps the content has been

re-disseminated, the original access control policies should be always enforced to

protect further dissemination of the content.
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5.2 Modeling Multiparty Access Control for OSNs

In this section, I discuss the formalization of a MultiParty Access Control (MPAC)

model for OSNs and a policy scheme for the specification of MPAC policies in

OSNs.

MPAC Model

An OSN can be represented by a relationship network, a set of user groups and a

collection of user data. The relationship network of an OSN is a directed labeled

graph, where each node denotes a user and each edge represents a relationship

between two users. The label associated with each edge indicates the type of the

relationship. Edge direction denotes that the initial node of an edge establishes the

relationship and the terminal node of the edge accepts the relationship. The number

and type of supported relationships rely on the specific OSNs and its purposes.

Besides, OSNs include an important feature that allows users to be organized in

groups [120, 121] (or called circles in Google+ [122]), where each group has a

unique name. This feature enables users of an OSN to easily find other users with

whom they might share specific interests (e.g., same hobbies), demographic groups

(e.g., studying at the same schools), political orientation, and so on. Users can join

in groups without any approval from other group members. Furthermore, OSNs

provide each member a Web space where users can store and manage their personal

data including profile information, friend list and content.

Recently, several access control schemes (e.g., [28, 29, 30, 31]) have been

proposed to support fine-grained authorization specifications for OSNs. Unfortu-

nately, these schemes can only allow a single controller, the resource owner, to

specify access control policies. Indeed, a flexible access control mechanism in a

multi-user environment like OSNs should allow multiple controllers, who are as-
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sociated with the shared data, to specify access control policies. As I identified

previously in the sharing patterns (Section 5.1), in addition to the owner of data,

other controllers, including the contributor, stakeholder and disseminator of data,

need to regulate the access of the shared data as well. I define these controllers as

follows:

Definition 6 (Owner). Let d be a data item in the space of a user u in the social

network. The user u is called the owner of d.

Definition 7 (Contributor). Let d be a data item published by a user u in someone

else’s space in the social network. The user u is called the contributor of d.

Definition 8 (Stakeholder). Let d be a data item in the space of a user in the social

network. Let T be the set of tagged users associated with d. A user u is called a

stakeholder of d, if u ∈ T .

Definition 9 (Disseminator). Let d be a data item shared by a user u from someone

else’s space to his/her space in the social network. The user u is called a dissemi-

nator of d.

I now formally define the MPAC model as follows:

• U = {u1, . . . ,un} is a set of users of the OSN. Each user has a unique identi-

fier;

• G = {g1, . . . ,gn} is a set of groups to which the users can belong. Each group

also has a unique identifier;
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• P = {p1, . . . , pn} is a collection of user profile sets, where pi = {qi1, . . . ,qim}

is the profile of a user i ∈ U . Each profile entry is a <attribute: profile-

value> pair, qi j =< attr j : pvalue j >, where attr j is an attribute identifier

and pvalue j is the attribute value;

• RT is a set of relationship types supported by the OSN. Each user in an OSN

may be connected with others by relationships of different types;

• R= {r1, . . . ,rn} is a collection of user relationship sets, where ri = {si1, . . . ,sim}

is the relationship list of a user i ∈ U . Each relationship entry is a <user:

relationship-type> pair, si j =< u j : rt j >, where u j ∈U , rt j ∈ RT ;

• C = {c1, . . . ,cn} is a collection of user content sets, where ci = {ei1, . . . ,eim}

is a set of contents of a user i ∈U , where ei j is a content identifier;

• D = {d1, . . . ,dn} is a collection of data sets, where di = pi∪ ri∪ ci is a set of

data of a user i ∈U ;

• CT = {OW,CB,ST,DS} is a set of controller types, indicating ownerOf, con-

tributorOf, stakeholderOf, and disseminatorOf, respectively;

• UU = {UUrt1, . . . ,UUrtn} is a collection of uni-directional binary user-to-user

relations, where UUrti ⊆U×U specifies the pairs of users having relationship

type rti ∈ RT ;

• UG⊆U×G is a set of binary user-to-group membership relations;

• UD= {UDct1, . . . ,UDctn} is a collection of binary user-to-data relations, where

UDcti ⊆U ×D specifies a set of < user,data > pairs having controller type

cti ∈CT ;

• relation members : U RT−→ 2U , a function mapping each user u ∈U to a set of

users with whom s/he has a relationship rt ∈ RT :
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Figure 5.3: An example of multiparty social network representation.

relation members(u : U,rt : RT ) = {u′ ∈U | (u,u′) ∈UUrt};

• ROR members : U RT−→ 2U , a function mapping each user u ∈ U to a set of

users with whom s/he has a transitive relation of a relationship rt ∈ RT , de-

noted as relationships-of-relationships (ROR). For example, if a relationship

is friend, then its transitive relation is friends-of-friends (FOF):

ROR members(u : U,rt : RT ) = {u′ ∈ U | u′ ∈ relation members(u,rt)∨

(∃u′′ ∈U [u′′ ∈ ROR members(u,rt))∧u′ ∈ ROR members(u′′,rt)]};

• controllers : D CT−−→ 2U , a function mapping each date item d ∈ D to a set of

users who are the controller with the controller type ct ∈CT :

controllers(d : D,ct : CT ) = {u ∈U | (u,d) ∈UDct}; and

• group members : G→ 2U , a function mapping each group g ∈ G to a set of

users who belong to the group:

group members(g : G) = {u ∈U | (u,g) ∈UG};

groups(u : U) = {g ∈ G | (u,g) ∈UG};

118



Figure 5.3 depicts an example of multiparty social network representation.

It describes relationships of five individuals, Alice (A), Bob (B), Carol (C), Dave

(D) and Edward (E), along with their relations with data and their groups of in-

terest. Note that two users may be directly connected by more than one edge

labeled with different relationship types in the relationship network. For exam-

ple, in Figure 5.3, Alice (A) has a direct relationship of type colleagueOf with

Bob (B), whereas Bob (B) has a relationship of friendOf with Alice (A). In addi-

tion, two users may have transitive relationship, such as friends-of-friends (FOF),

colleagues-of-colleagues (COC) and classmates-of-classmates (LOL) in this exam-

ple. Moreover, this example shows that some data items have multiple controllers.

For instance, RelationshipA has two controllers: the owner, Alice (A) and a stake-

holder, Carol (C). Also, some users may be the controllers of multiple data items.

For example, Carol (C) is a stakeholder of RelationshipA as well as the contributor

of ContentE . Furthermore, we can notice there are two groups in this example that

users can participate in: the “Fashion” group and the “Hiking” group, and some

users, such as Bob (B) and Dave (D), may join in multiple groups.

MPAC Policy Specification

To enable a collaborative authorization management of data sharing in OSNs, it

is essential for multiparty access control policies to be in place to regulate access

over shared data, representing authorization requirements from multiple associated

users. The policy specification scheme is built upon the proposed MPAC model.

Accessor Specification: Accessors are a set of users who are granted to access

the shared data. Accessors can be represented with a set of user names, a set of

relationship names or a set of group names in OSNs. The accessor specification is

formally defined as follows:
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Definition 10 (Accessor Specification). Let ac ∈U ∪RT ∪G be a user u ∈U, a

relationship type rt ∈ RT , or a group g ∈ G. Let at ∈ {UN,RN,GN} be the type

of the accessor specification (user name, relationship type, and group name, re-

spectively). The accessor specification is defined as a set, accessors = {a1, . . . ,an},

where each element is a tuple < ac,at >.

Data Specification: In OSNs, user data is composed of three types of information,

user profile, user relationship and user content.

To facilitate effective privacy conflict resolution for multiparty access con-

trol, I introduce sensitivity levels for data specification, which are assigned by the

controllers to the shared data items. A user’s judgment of the sensitivity level of

the data is not binary (private/public), but multi-dimensional with varying degrees

of sensitivity. Formally, the data specification is defined as follows:

Definition 11 (Data Specification). Let dt ∈ D be a data item. Let sl be a sensi-

tivity level, which is a rational number in the range [1,5], assigned to dt. The data

specification is defined as a tuple < dt,sl >.

Access Control Policy: To summarize the above-mentioned policy elements, I in-

troduce the definition of a multiparty access control policy as follows:

Definition 12 (MPAC Policy). A multiparty access control policy is a 4-tuple P=<

controller,accessor,data,e f f ect >, where

• controller is defined as a 2-tuple < cn,ct >, where cn ∈U is a user who can

regulate the access of data, and ct ∈CT is the type of the cn;
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• accessor is a set of users to whom the authorization is granted, representing

with an access specification defined in Definition 10.

• data is represented with a data specification defined in Definition 11; and

• e f f ect ∈ {permit,deny} is the authorization effect of the policy.

Suppose a controller can leverage five sensitivity levels: 1 (lowest), 2 (low),

3 (medium), 4 (high), and 5 (highest) for the shared data. I give a motivating ex-

ample to demonstrate how multiple controllers are able to specify their privacy

concerns over a shared content as follows:

Example 3 There is a shared photo, funny.jpg, in the social network. Alice is the

owner of this photo, and Bob and Carol are two stakeholders of this photo. Alice

authorizes her friends to view this photo and she considers the photo has a high

sensitivity level; Bob allows the users in hiking group to access this photo and he

considers the photo has a medium sensitivity level; and Carol permits her friends

of friends to see this photo and she considers the photo has a high sensitivity level.

These policies are expressed as:

p1 = (<Alice, OW>, {< f riendO f , RN>}, < f unny. jpg, 4>, permit).

p2 = (<Bob, ST>, {<hiking, GN>}, < f unny. jpg, 3>, permit).

p3 = (<Carol, ST>, {< f riendO f Friend, RN>}, < f unny. jpg, 4>, permit).

5.3 Identifying and Resolving Privacy Conflicts

When two users disagree on whom the shared data item should be exposed to, we

say a privacy conflict occurs. The essential reason leading to the privacy conflicts

is that multiple associated users of the shared data item often have different privacy

concerns over the data item. For example, assume that Alice and Bob are two
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controllers of a photo. Each of them defines a privacy policy stating only her/his

friends can view this photo. Since it is almost impossible that Alice and Bob have

the same set of friends, privacy conflicts may always exist considering collaborative

control over the shared data item.

A naive solution for resolving multiparty privacy conflicts is to only allow

the common users of accessor sets defined by the multiple controllers to access the

data [79]. Unfortunately, this solution is too restrictive in many cases and may not

produce desirable results for resolving multiparty privacy conflicts. Let’s consider

an example that four users, Alice, Bob, Carol and Dave, are the controllers of a

photo, and each of them allows her/his friends to see the photo. Suppose that Alice,

Bob and Carol are close friends and have many common friends, but Dave has no

common friends with them and has a pretty weak privacy concern on the photo. In

this case, adopting the naive solution for conflict resolution may turn out that no one

can access this photo. Nevertheless, it is reasonable to give the view permission to

the common friends of Alice, Bob and Carol. A strong conflict resolution strategy

may provide a better privacy protection. Meanwhile, it may reduce the social value

of data sharing in OSNs. Therefore, it is important to consider the tradeoff between

privacy protection and data sharing when resolving privacy conflicts. To address

this issue, I introduce a mechanism for identifying multiparty privacy conflicts, as

well as a systematic solution for resolving multiparty privacy conflicts.

Privacy Conflict Identification

Through specifying the access control policies to reflect the privacy concern, each

controller of the shared data item defines a set of trusted users who can access the

data item. The set of trusted users represents an accessor space for the controller.

I adopt a space segmentation approach [123] introduced in Section 4.3 to partition

accessor spaces of all controllers of a shared data item into disjoint segments. Then,
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Algorithm 5: Identification of Conflicting Accessor Space
Input: A set of accessor space, A.
Output: A set of disjoined conflicting accessor spaces, CS.

1 /* Partition the entire accessor space */
2 S←− Partition(A);
3 /* Identify the conflicting segments */
4 CS.New();
5 foreach s ∈ S do
6 /* Get all controllers associated with a segment s */
7 C←− GetControllers(s);
8 if |C|< |A| then
9 CS.Append(s);

10 Partition(A)
11 foreach a ∈ A do
12 sa←− FriendSet(a);
13 foreach s ∈ S do
14 /* sa is a subset of s*/
15 if sa ⊂ s then
16 S.Append(s\ sa);
17 s←− sa;
18 Break;

19 /* sa is a superset of s*/
20 else if sa ⊃ s then
21 sa←− sa \ s;

22 /* sa partially matches s*/
23 else if sa∩ s ̸= /0 then
24 S.Append(s\ sa);
25 s←− sa∩ s;
26 sa←− sa \ s;

27 S.Append(sa);

28 return S;

conflicting accessor space segments called conflicting segments, which contain ac-

cessors that some controllers of the shared data item do not trust, are identified.

Each conflicting segment contains at least one privacy conflict. Algorithm 5 shows

the pseudocode of generating conflicting accessor space segments for all controllers

of a shared data item.

Figure 5.4 gives an example of identifying privacy conflicts based on ac-

cessor space segmentation. I use circles to represent accessor spaces of three con-

trollers, c1, c2 and c3, of a shared data item. We can notice that three of accessor

spaces overlap with each other, indicating that some accessors within the overlap-

ping spaces are trusted by multiple controllers. After performing the space seg-
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Figure 5.4: Example of privacy conflict identification based on accessor space seg-
mentation.

mentation, seven disjoint accessor space segments are generated as shown in Fig-

ure 5.4 (a). To represent privacy conflicts in an intuitive way, I additionally in-

troduce a grid representation of privacy conflicts, in which space segments are dis-

played along the horizontal axis of a matrix, controllers are shown along the vertical

axis of the matrix, and the intersection of a segment and a controller is a grid that

displays the accessor subspace covered by the segment. I classify the accessor space

segments as two categories: non-conflicting segment and conflicting segment. Non-

conflicting segment covers all controllers’ access spaces, which means any accessor

within the segment is trusted by all controllers of the shared data item, indicating no

privacy conflict occurs. A conflicting segment does not contain all controllers’ ac-

cess spaces that means accessors in the segment are untrusted by some controllers.

Each untrusting controller points out a privacy conflict. Figure 5.4 (b) shows a grid

representation of privacy conflicts for the example. We can easily identify that the

segment ps is a non-conflicting segment, and cs1 through cs6 are conflicting seg-

ments, where cs1, cs2 and cs3 indicate one privacy conflict, respectively, and cs4,

cs5 and cs6 are associated with two privacy conflicts, respectively.

Privacy Conflict Resolution

The process of privacy conflict resolution makes a decision to allow or deny the

accessors within the conflicting segments to access the shared data item. In general,
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allowing the assessors contained in conflicting segments to access the data item may

cause privacy risk, but denying a set of accessors in conflicting segments to access

the data item may result in sharing loss. The proposed privacy conflict resolution

approach attempts to find an optimal tradeoff between privacy protection and data

sharing.

Measuring Privacy Risk: The privacy risk of a conflicting segment is an indicator

of potential threat to the privacy of controllers in terms of the shared data item: the

higher the privacy risk of a conflicting segment, the higher the threat to controllers’

privacy. The basic premises for the measurement of privacy risk for a conflicting

segment are the following: (a) the lower the number of controllers who trust the

accessors within the conflicting segment, the higher the privacy risk; (b) the stronger

the general privacy concerns of controllers, the higher the privacy risk; (c) the more

sensitive the shared data item, the higher the privacy risk; and (d) the wider the data

item spreads, the higher the privacy risk.

Therefore, the privacy risk of a conflicting segment is calculated by a mono-

tonically increasing function with the following parameters:

• Number of privacy conflicts: The number of privacy conflicts in a conflicting

segment is indicated by the number of the untrusting controllers. The untrust-

ing controllers of a conflict segment i are returned by a function controllersut(i);

• General privacy concern of an untrusting controller: The general privacy

concern of an untrusting controller j is denoted as pc j in the range [1, 5].

The general privacy concern of a controller can be derived from her/his de-

fault privacy setting for data sharing. Different controllers may have different

general privacy concern with respect to the same kinds of data. For example,

125



public figures may have higher privacy concern on their shared photos than

ordinary people;

• Sensitivity of the data item: Data sensitivity in a way defines controllers’ per-

ceptions of the confidentiality of the data being transmitted. The sensitivity

level of the shared data item explicitly chosen by an untrusting controller j

is denoted as sl j in the range [1, 5]. The factor depends on the untrusting

controllers themselves. Some untrusting controllers may consider the shared

data item with the higher sensitivity; and

• Visibility of the data item: The visibility of the data item with respect to a

conflicting segment captures how many accessors are contained in the seg-

ment i, denoted as ni. The more the accessors in the segment, the higher the

visibility.

The privacy risk of a conflict segment i due to an untrusting controller j,

denoted as PR(i, j), is defined as

PR(i, j) = pc j⊗ sl j (5.1)

where, operator ⊗ is used to represent any arbitrary combination functions. For

simplicity, I utilize the product operator.

In order to measure the overall privacy risk of a conflicting segment i, de-

noted as PR(i), we can use following equation to aggregate the privacy risks of i

due to different untrusting controllers. Note that we can also use any combination

function to combine the per-controller privacy risk. For simplicity, I employ the

summation operator here.

PR(i) = ni× ∑
j∈controllersut(i)

(pc j× sl j) (5.2)
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Measuring Sharing Loss: When the decision of privacy conflict resolution for a

conflicting segment is “deny”, it may cause losses in potential data sharing, since

there are controllers expecting to allow the accessors in the conflicting segment to

access the data item. Similar to the measurement of the privacy risk, five factors are

adopted to measure the sharing loss for a conflicting segment. Compared with the

factors used for quantifying the privacy risk, the only difference is that I will utilize

a factor, number of trusting controllers, to replace the factor, number of privacy

conflicts (untrusting controllers), for evaluating the sharing loss of a conflicting

segment. The overall sharing loss SL(i) of a conflicting segment i is computed as

follows:

SL(i) = ni× ∑
j∈controllerst(i)

(5− pc j)× (5− sl j) (5.3)

where, function controllerst(i) returns all trusting controllers of a segment i.

Conflict Resolution on the Tradeoff between Privacy Protection and Data Shar-

ing: The tradeoff between privacy and utility in data publishing has been recently

studied [124, 125]. Inspired by those work, I introduce a mechanism to balance

privacy protection and data sharing for an effective privacy conflict resolution in

OSNs.

An optimal solution for privacy conflict resolution should cause a little more

privacy risk when allowing the accessors in some conflicting segments to access the

data item, and gets lesser loss in data sharing when denying the accessors to access

the shared data item. Thus, for each conflict resolution solution s, a resolving score

RS(s) can be calculated using the following equation:

RS(s) =
1

α ∑i1∈CSs
p
PR(i1)+β ∑i2∈CSs

d
SL(i2)

(5.4)
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where, CSs
p and CSs

d denote permitted conflicting segments and denied conflicting

segments respectively in the conflict resolution solution s. And α and β are prefer-

ence weights for the privacy risk and the sharing loss, 0≤ α ,β ≤ 1 and α +β = 1.

Then, the optimal conflict resolution CRopt on the tradeoff between privacy

risk and sharing loss can be identified by finding the maximum resolving score:

CRopt = max
s

RS(s) (5.5)

To find the maximum resolving score, we can first calculate the privacy risk

(PR(i)) and the sharing loss (SL(i)) for each conflict segment (i), individually. Fi-

nally, following equation can be utilized to make the decisions (permitting or deny-

ing conflicting segments) for privacy conflict resolution, guaranteeing to always

find an optimal solution.

Decision =

 Permit if αSL(i)≥ βPR(i)

Deny if αSL(i)< βPR(i)
(5.6)

where, α and β are preference weights for the privacy risk and the sharing

loss, 0≤ α ,β ≤ 1 and α +β = 1.

Generating Conflict-Resolved Policy

Once the privacy conflicts are resolved, we can aggregate accessors in permitted

conflicting segments CSp and accessors in the non-conflicting segment ps (in which

accessors should be always allowed to access the shared data item) together to gen-

erate a new accessor list (AL) as follows:

AL = (
∪

i∈CSp

Accessors(i))∪Accessors(ps) (5.7)
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Using the example shown in Figure 5.4, assume that cs1 and cs3 become

permitted conflicting segments after resolving the privacy conflicts. Therefore, the

aggregated accessor list can be derived as AL = Accessors(cs1)∪Accessors(cs3)∪

Accessors(ps). Finally, the aggregated accessor list is used to construct a conflict-

resolved privacy policy for the shared data item. The generated policy will be lever-

aged to evaluate all access requests toward the data item.

5.4 Logical Representation and Analysis of Multiparty Access Control

In this section, I adopt answer set programming (ASP), a recent form of declarative

programming [26, 27], to formally represent the model, which essentially provide

a formal foundation of the model in terms of ASP-based representation. Then, I

demonstrate how the correctness analysis and authorization analysis [126] of mul-

tiparty access control can be carried out based on such a logical representation.

Representing Multiparty Access Control in ASP

I introduce the logical representation of MPAC model/policy and MPAC privacy

conflict detection/resolution.

Logical Representation of MPAC Model and Policy

The basic components and relations in the OSN representation can be directly de-

fined with corresponding predicates in ASP. The OSN representation supports tran-

sitive relationships. For example, David is a friend of Allice, and Edward is a friend

of David in a social network. Then, we call Edward is a friends of friends of Allice.

The friend relation between two users Allice and David is represented in ASP as

follows:

f riend(Allice,David).
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It is known that the transitive closure (e.g., reachability) cannot be expressed

in first-order logic [26], however, it can be easily handled in the stable model se-

mantics. Then, friends-of-friends can be represented with ASP as follows:

f riendO f Friend(X ,Y )← f riend(X ,Y ).

f riendO f Friend(X ,Z)← f riend(X ,Y )∧ f riend(Y,Z)∧X ̸= Z.

The translation module converts a multiparty authorization policy

(⟨cn,ct⟩,{⟨ac1,at1⟩, . . . ,⟨acn,atn⟩},⟨d,sl⟩,e f f ect)

into three ASP rule

sensitivityLevel(cn,d,sl).

decision(cn,U,d,e f f ect)←
∨

1≤k≤n

ack(cn,X)∧ ct(cn,d).

decision(cn,U,d,e f f ect)←¬decision(cn,U,d,e f f ect).

where if e f f ect is permit then e f f ect is deny and vise versa. Then, three privacy

policies in Example 3 can be represented in ASP as follows:

%P1

sensitivityLevel(alice,funny.jpg,4).

decision(alice,U,funny.jpg,permit) <- owner(alice,funny.jpg)

& friend(alice,U).

decision(alice,U,funny.jpg,deny) <- not decision(alice,U,funny.jpg,

permit).

%P2

sensitivityLevel(bob,funny.jpg,3).

decision(bob,U,funny.jpg,permit) <- stakeholder(bob,funny.jpg) &

memberOf(U, hikingGroup).

decision(bob,U,funny.jpg,deny) <- not decision(bob,U,funny.jpg,

permit).
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%P3

sensitivityLevel(carol,funny.jpg,4).

decision(carol,U,funny.jpg,permit) <- stakeholder(carol,funny.jpg) &

friendOfFriend(carol,U).

decision(carol,U,funny.jpg,deny) <- not decision(carol,U,funny.jpg,

permit).

Logical Representation of Privacy Conflict Detection and Resolution

Privacy conflicts can be also identified by logic-based reasoning. Suppose Fig-

ure 5.4 represents the accessor space segmentation of the tree policies defined by

three controllers, Alice (c1), Bob (c2) and Carol (c3), in Example 3. Accessors in

the conflicting segment cs1 are permitted by Alice and Bob, and denied by Carol.

Then, we can identify this conflicting segment with the following ASP program:

cs(1,U) <- decision(alice,U,funny.jpg,permit) & decision(bob,U,funny.jpg,

permit) & decision(carol,U,funny.jpg,deny).

The aggregation of privacy risks can be computed naturally using the aggre-

gate functions in ASP as follows:

pr(I,Val) <- Sigma = #sum [sensitivityLevel(U1,d,SL) : decision(U1,U,d,deny)

= (pc*SL)]& N = #count {cs(I,U1): user(U1)} & Val=Sigma*N & cs(I,U).

Similarly, sharing lost can be computed using ASP rules as follows:

sl(I,Val) <- Sigma = #sum [sensitivityLevel(U1,d,SL) : decision(U1,U,d,deny)

= (5-pc)*(5-SL)] & N = #count {cs(I,U1): user(U1)} & Val=Sigma*N & cs(I,U).

Reasoning about Multiparty Access Control

One of the promising advantages in logic-based representation of access control

is that formal reasoning of the authorization properties can be achieved. Once we
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represent the multiparty access control model into an ASP program, we can use

off-the-shelf ASP solvers to carry out automated authorization analysis tasks.

Authorization analysis is employed to examine over-sharing (does current

authorization state disclose the data to some users undesirable?) and under-sharing

(does current authorization state disallow some users to access the data that they

are supposed to be allowed?). This analysis service should be incorporated into

OSN systems to enable users checking potential authorization impacts derived from

collaborative control of shared data.

Example 4 (Checking over-sharing) Alice has defined a policy to disallow her fam-

ily members to see a photo, party.jpg. Then, she wants to check if any family mem-

bers can see this photo after applying conflict resolution mechanism for collab-

orative authorization management considering different privacy preferences from

multiple controllers. The input query can be represented as follows:

denyBy(Alice,U) <- decision(Alice,U,party.jpg,deny) & permit(N1) & cs(N1,U).

If any answer set is found, it means that there are family members who can

see the photo. Thus, from the perspective of Alice’s authorization, this photo is over

shared to some users.

Example 5 (Checking under-sharing) Bob has defined a policy to authorize his

friends to see a photo, funny.jpg. He wants to check if any friends cannot see this

photo in current system. The input query can be specified as follows:

permitBy(Bob,U) <- decision(Alice,U,funny.jpg,permit) & deny(N1) & cs(N1,U).

If an answer set contains check, this means that there are friends who cannot

view the photo. Regarding Bob’s authorization requirement, this photo is under

shared with his friends.
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In addition to the authorization analysis, the individual privacy risk and shar-

ing lost for each controller can be also calculated by the logic-based reasoning. For

instance, the privacy risk of the controller Alice can be represented as follows:

ipr(Alice,Y) <- X = #count {denyBy(Alice,U1) : user(U1)} &

sensitivityLevel(Alice,funny.jpg,N) & Y = X*N.

And the sharing lost of the controller can be computed as:

isl(Alice,Y) <- X = #count {permitBy(Alice,U1) : user(U1)} &

sensitivityLevel(Alice,funny.jpg,N) & Y = X*(5-N).

5.5 Implementation and Evaluation

In this section, I address the prototype implementation of the proposed application

in the context of Facebook and discuss the experimental results.

Prototype Implementation

A proof-of-concept Facebook application has been implemented for the collabora-

tive management of shared data called Retinue (http://apps.facebook.com/retinue tool).

This prototype application enables multiple associated users to specify their privacy

concerns to co-control a shared data item. Retinue is designed as a third-party Face-

book application which is hosted in an Apache Tomcat application server support-

ing PHP and MySQL databases, with a user interface built using jQuery and jQuery

UI and built on an AJAX-based interaction model. Retinue application is based on

the iFrame external application approach. Using the Javascript and PHP SDK, it

accesses users’ Facebook data through the Graph API and Facebook Query Lan-

guage. It is worth noting that the current implementation was restricted to handle

photo sharing in OSNs. Obversely, the proposed approach can be generalized to

deal with other kinds of data sharing (e.g. videos and comments) in OSNs as long
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(a) Collaborative control overview.

(b) Operational components in Retinue application.

Figure 5.5: System architecture of Retinue.

as the stakeholder of shared data are identified with effective methods like tagging

or searching.

Figure 5.5 shows the system architecture of Retinue. The overview of col-

laborative control process is depicted in Figure 5.5(a), where the owner can regulate

the access of the shared data. In addition, other controllers, such as the contribu-
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(a) Main interface. (b) Controllers’ interfaces.

Figure 5.6: Retinue interfaces.

tor, stakeholders and disseminators, can specify their privacy concerns over the

shared data as well. To effectively resolve privacy conflicts caused by different pri-

vacy concerns of multiple controllers, the data owner can also adjust the preference

weights for the privacy risk and the sharing loss to make an appropriate privacy-

sharing tradeoff. Figure 5.5(b) shows the core components in Retinue application

and their interactions. The Retinue application is hosted on an external website, but

is accessed on a Facebook application frame via an iFrame. The Facebook server

handles login and authentication for the application, and other user data is imported

on the user’s first login. At this point, users are asked to specify their initial privacy

settings and concerns for each type of photo. All photos are then imported and

saved using these initial privacy settings. Users’ networks and friend lists are im-

ported from Facebook server as well. Once information is imported, a user accesses

Retinue through the application page on Facebook, where s/he can query access in-

formation, complete privacy setting for photos in which s/he is a controller, and

view photos s/he is allowed to access. The component for privacy conflict man-
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agement in Retinue application is responsible for the privacy conflict detection and

resolution, and the generation of conflict-resolved privacy policy, which is then used

to evaluate access requests for the shared data.

A snapshot of the main interface of Retinue is shown in Figure 5.6 (a). All

photos are loaded into a gallery-style interface. To access photos, a user clicks the

“Access” tab and then s/he can view her/his friends’ photos that s/he was authorized.

To control photo sharing, a user clicks the “Owned”, “Tagged”, “Contributed”, or

“Disseminated” tabs, then selects any photo in the gallery to define her/his privacy

preferences for that photo. The controllers’ interfaces are depicted in Figure 5.6 (b).

A controller can select the trusted groups of accessors and assign corresponding

trust levels, as well as choose the sensitivity level for the photo. Also, the privacy

risk and sharing loss for the controller with respect with the photo are displayed

in the interface. In addition, the controller can immediately see how many friends

can or cannot access the photo in the interface. If the controller clicks the buttons,

which show the numbers of accessible or unaccessible friends, a window appears

showing the details of all friends who can or cannot view the photo. The purpose

of such feedback information is not only to give a controller the information of

how many friends can or cannot access the photo, but as a way to react to results.

If the controller is not satisfied with the current situation of privacy control, s/he

may adjust her/his privacy settings, contact the owner of the photo to ask her/him to

change the weights for the privacy risk and the sharing loss, or even report a privacy

violation to request OSN administrators to delete the photo. If the user is the owner

of the photo, s/he can also view the overall privacy risk and sharing loss for the

shared photo, and has the ability to adjust the weights to balance privacy protection

and data sharing of the shared photo.
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(a) Naive solution. (b) Facebook solution. (c) Retinue solution.

Figure 5.7: Example of resolving privacy conflicts.

Evaluation and Experiment

Here I address the evaluation of the proposed conflict resolution approach and sys-

tem usability study.

Evaluation of Privacy Conflict Resolution

I evaluate the proposed approach for privacy conflict resolution by comparing Ret-

inue solution with the naive solution and the privacy control solution used by ex-

isting OSNs, such as Facebook (simply called Facebook solution in the rest of this

dissertation) with respect to two metrics, privacy risk and sharing loss. Consider

the example demonstrated in Figure 5.4, where three controllers desire to regulate

access of a shared data item. The naive solution is that only the accessors in the non-

conflicting segment are allowed to access the data item as shown in Figure 5.7(a).

Thus, the privacy risk is always equal to 0 for this solution. However, the sharing

loss is the absolute maximum, as all conflicting segments, which may be allowed by

at least one controller, are always denied. The Facebook solution is that the owner’s

decision has the highest priority. All accessors within the segments covered by the

owner’s space are allowed to access the data item, but all other accessors are denied

as illustrated in Figure 5.7(b). This is, obviously, ideal for the owner, since her/his

privacy risk and sharing loss are both equal to 0. However, the privacy risk and the

sharing loss are large for every non-owner controller.
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(a) Privacy risk.

(b) Sharing loss.

(c) Resolving score.

Figure 5.8: Conflict resolution evaluation.

For Retinue solution, each conflicting segment is evaluated individually. Us-

ing the same example given in Figure 5.4, suppose cs1 and cs3 become permitted

conflicting segments after resolving the privacy conflicts. Figure 5.7(c) demon-
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strates the result of the privacy conflict resolution. Retinue solution make a tradeoff

between privacy protection and data sharing by maximizing the resolving score,

which is a combination of privacy risk and sharing loss. The worst case of Retinue

solution is the same as the naive solution–only mutually permitted accessors are al-

lowed to access the data item. However, this case only occurs when strong privacy

concerns are indicated by each controller. On the other hand, if all accessors have

pretty weak privacy concerns, all accessors in conflicting segments may be allowed

to access the data, which is not possible with either of other two solutions. Such a

case leads to a sharing loss of 0, but does not have an significantly increased privacy

risk against other two solutions.

To quantitatively evaluate Retinue solution, the experiment used cases where

there are three controllers of shared data items and assume that each controller has

indicated to allow her/his friends to view the data item. I also utilized the average

number of user friends, 130, which is claimed by Facebook statistics [110]. Ad-

ditionally, assume all controllers share 30 friends with each other, 10 of which are

shared among everyone (common users). All settings including privacy concerns,

sensitivity levels, and trust levels were randomized for each case, and the privacy

risk, sharing loss, and resolving score for each case were calculated. To represent

the data sensibly, the samples were sorted from lowest resolving score to highest

under the evaluation. Figure 5.8 shows the experimental results with respect to

randomly generated 30 user cases.

In Figure 5.8(a), we can observe that the privacy risks for the naive solution

are always equal to 0, since no untrusted accessors are allowed to view the data item.

The privacy risks for Facebook solution and Retinue solution wavered. Obviously,

this depends greatly on the settings of the non-owner controllers. If these controllers

are apathetic toward the shared data item, Facebook solution will be preferable.
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However, it should be noted that Facebook solution had very high extrema. This is

avoided in Retinue solution where high privacy risks will usually result in denying

access.

Unsurprisingly, the sharing loss for the naive solution was always the high-

est, and often higher than both other two solutions as shown in Figure 5.8(b). Ret-

inue solution usually had the lowest sharing loss, and sometimes is equivalent to

the naive or Facebook solution, but rarely greater than. One may notice that the

sharing loss is very low compared to the privacy risks in this experience. This is an

inherent effect of Retinue solution itself–if sharing loss is very high, users will be

granted access to the data item, changing this segment’s sharing loss to zero.

As we can notice from Figure 5.8(c), the resolving score for Retinue solution

is always as good as or better than the naive or Facebook solution. In the sample

data, it was usually significantly better, and rarely was the same as either of other

two solutions. It further indicates that Retinue solution can always achieve a good

tradeoff between privacy protection and data sharing for privacy conflict resolution.

Evaluation of System Usability

Participants and Procedure: Retinue is a functional proof-of-concept implementa-

tion of collaborative privacy management. To measure the practicality and usability

of the proposed mechanism, I conducted a survey study (n=30) to explore the fac-

tors surrounding users’ desires for privacy controls such as those implemented in

Retinue. Particularly, I were interested in users’ perspectives on the current Face-

book privacy system and their desires for more control over photos they do not own.

I recruited participants through university mailing lists and through Facebook itself

using Facebook’s built-in sharing API. Users were given the opportunity to share

the application and play with their friends. While this is not a random sampling,
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Table 5.1: Usability evaluation for Facebook and Retinue privacy controls.

Metric
Facebook Retinue

Average Upper bound on 95% Average Lower bound on 95%
confidence interval confidence interval

Likability 0.20 0.25 0.83 0.80
Simplicity/Usefulness 0.38 0.44 0.72 0.64
Control 0.20 0.25 0.83 0.80

recruiting using the natural dissemination features of Facebook arguably gives an

accurate profile of the ecosystem.

In the user study (http://bit.ly/retinue study), participants were asked to first

answer some questions about their usage and perception of Facebook’s privacy con-

trols. Users were then instructed to install the application using their Facebook pro-

files and complete the following actions: set privacy settings for a photo they do

not own, set privacy settings for a photo they own, and answer questions about their

understanding. As users completed these actions, they were asked questions on the

usability of the controls in Retinue.

User Study of Retinue: The criteria for usability evaluation were split into three

areas: likeability, simplicity/usefulness, and control. Likeability is a measure of a

user’s satisfaction with a system; simplicity/usefulness is a measure how intuitive

and useful the system is; and control is a measure of the user’s perceived control

of their personal data. All questions were either True/False or measured on a 5-

point likert scale (scaled from 0 to 1 for numerical analysis). For measurement and

analysis, a higher number is used to indicate a positive opinion or perception of the

system, while a lower number is used to indicate a negative one. I were interested in

the average user perception of the system, so I analyzed a 95% confidence interval

for the users’ answers. This assumes the population to be mostly normal.

Before Using Retinue. Before using Retinue, users were asked a few ques-

tions about their usage of Facebook to determine the user’s perceived usability of
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the current Facebook’s privacy controls. For the confidence interval, I were inter-

ested in determining the average user’s maximum positive opinion of Facebook’s

privacy controls, so I looked at the upper bound of the confidence interval.

An average user asserts at most 25% positively about the likability and con-

trol of Facebook’s privacy management mechanism, and at most 44% on Face-

book’s simplicity/usefulness as shown in Table 5.1. This demonstrates an average

negative opinion of the Facebook’s privacy controls that users currently must use.

A detailed table for the perceived usability evaluation of Facebook privacy controls

is provided in Table 5.2.

Table 5.2: Perceived usability of Factbook privacy controls (before using Retinue).

Evaluation Questions Average Positive Response
Likability 0.20
If someone uploads a photo of me, Facebook allows me to restrict whether 0.33
someone else can see it on my Facebook page: True (1) or False (0)
If someone uploads a photo of me, Facebook allows me to restrict whether 0.07
someone can see it through the uploader’s Facebook page: True(1) or False(0)
On Facebook, there is a high potential of my data being viewed by parties 0.17
I wish to hide it from - Strongly agree (1) - Strongly Disagree(5)
I am concerned with providing personal data (e.g. photos) on Facebook 0.22
because it could be used or abused in unforeseen ways - Strongly agree (1)
- Strongly Disagree(5)
Simplicity/Usefulness 0.38
In terms of everyday use I find the current Facebook privacy controls: 0.42
Confusing(1) - Intuitive/Understanding (5)
Facebook gives me adequate control over who can access the content I own: 0.48
No control(1)-Complete control(5)
Facebook gives me adequate control over who can access content 0.25
I have a stake in but do not own: No Control(1) - Complete Control(5)
Control 0.20
I wish I had more control over pictures I am tagged in: Selected (0) or Not (1) 0.13
I wish people I tagged in pictures I own could help control the privacy 0.13
of these photos: Selected (0) or Not (1)
I fear that sensitive photos I upload may be seen by people I do not want 0.33
to view them (e.g. parents, employers) : Selected (0) or Not (1)
I fear that sensitive photos OTHERS upload may be seen by people I do 0.13
not want to view them (e.g. parents, employers) : Selected (0) or Not (1)
I wish I could check if certain users had access to specific photos: 0.17
Selected (0) or Not (1)

After Using Retinue. Users were then asked to perform a few tasks in Ret-

inue: control settings for a photo they are tagged in, control settings for a photo

they own, and check user access to a photo they own or are in. For the confidence
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interval, I were interested in determining the average user’s minimum positive opin-

ion of Retinue’s privacy controls, so I looked at the lower bound of the confidence

interval.

An average user asserts at least 80% positively about the likability and con-

trol of Retinue’s privacy controls, and at least 64% positively on Retinue’s simplici-

ty/usefulness as shown in Table 5.1. This demonstrates an average positive opinion

of the controls and ideas presented to users in Retinue. A detailed table for the

perceived usability evaluation of Retinue privacy controls is given in Table 5.3.

Table 5.3: Perceived usability of Retinue privacy controls (after using Retinue).

Evaluation Questions Average Positive Response
Likability 0.83
I would use tagged/posted controls on a daily basis if implemented in Facebook 0.8
I would use owner controls on a daily basis if implemented in Facebook 0.73
I would use query controls on a daily basis were they implemented in Facebook 0.8
If Facebook Implemented controls like Retinue’s to control photo privacy, 0.93
I would be happier with privacy controls
I like the idea of sharing control of my photos with those tagged 0.83
I like the idea of sharing control of my photos with those who posted them on my wall 0.81
I like the idea of being able to control photos in which I am tagged 0.86
Simplicity/Usefulness 0.72
Setting my privacy settings for a photo in Retinue is Complicated (1) - Simple (5) 0.48
Setting tagged/posted privacy settings in Facebook is Less complicated (0) - More 0.6
complicated/Not possible (1)
Controlling a photo as an owner in Retinue is Complicated (1) - Simple (5) 0.65
Setting privacy for photos I own on Facebook is Less complicated (0) - More 0.4
complicated/Not possible (1)
Querying user access to a photo in Retinue is Complicated (1) - Simple (5) 0.82
Querying user access on Facebook is Less complicated (0) - More complicated 0.73
/Not possible (1)
If Facebook Implemented controls like Retinue’s to control photo privacy, 0.87
I would be more likely to use privacy controls on a regular basis
If Facebook Implemented controls like Retinue’s to control photo privacy, 0.88
my photo privacy would be improved
If Facebook Implemented controls like Retinue’s to control photo privacy, 0.86
my usage of privacy controls would be clearer and more understandable
If Facebook Implemented controls like Retinue’s to control photo privacy, 0.75
controlling privacy would require less mental effort
If Facebook Implemented controls like Retinue’s to control photo privacy, 0.76
it would be easier to control photo privacy
If Facebook Implemented controls like Retinue’s to control photo privacy, 0.81
it would be easier to understand who can access my photos
Control 0.83
I feel more in control of tagged/posted photos on Facebook (1) - Retinue (5) 0.83
I feel more in control of photos I own on Facebook (1) - Retinue (5) 0.75
I feel more aware of others’ ability to see my photos on Facebook (1) - Retinue (5) 0.78
If Facebook Implemented controls like Retinue’s to control photo privacy, 0.88
my photos would be better protected
If Facebook Implemented controls like Retinue’s to control photo privacy, 0.9
I would have more control over my photos
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5.6 Discussion

In the multiparty access control system, a group of users could collude with one

another so as to manipulate the final access control decision. Consider an attack

scenario, where a set of malicious users may want to make a shared photo available

to a wider audience. Suppose they can access the photo, and then they all tag

themselves or fake their identities to the photo. In addition, they collude with each

other to assign a very low sensitivity level for the photo and specify policies to grant

a wider audience to access the photo. With a large number of colluding users, the

photo may be disclosed to those users who are not expected to gain the access. To

prevent such an attack scenario from occurring, three conditions need to be satisfied:

(1) there is no fake identity in OSNs; (2) all tagged users are real users appeared

in the photo; and (3) all controllers of the photo are honest to specify their privacy

preferences.

Regarding the first condition, two typical attacks, Sybil attacks [127] and

Identity Clone attacks [128], have been introduced to OSNs and several effective

approaches have been recently proposed to prevent the former [129, 130] and lat-

ter attacks [131], respectively. To guarantee the second condition, an effective tag

validation mechanism is needed to verify each tagged user against the photo. In the

current system, if any users tag themselves or others in a photo, the photo owner will

receive a tag notification. Then, the owner can verify the correctness of the tagged

users. As effective automated algorithms (e.g., facial recognition [132]) are being

developed to recognize people accurately in contents such as photos, automatic tag

validation is feasible. Considering the third condition, the current system provides a

function to indicate the potential authorization impact with respect to a controller’s

privacy preference. Using such a function, the photo owner can examine all users
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who are granted the access by the collaborative authorization and are not explicitly

granted by the owner her/himself. Thus, it enables the owner to discover potential

malicious activities in collaborative control. The detection of collusion behaviors

in collaborative systems has been addressed by the recent work [133, 134]. The

future work would integrate an effective collusion detection technique into MPAC.

To prevent collusion activities, the current prototype has implemented a function

for owner control, where the photo owner can disable any controller, who is sus-

pected to be malicious, from participating in collaborative control of the photo. In

addition, I would further investigate how users’ reputations–based on their collab-

oration activities–can be applied to prevent and detect malicious activities in the

future work.
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Chapter 6

Conclusion

In this chapter, I summarize the contributions of this dissertation and discuss some

directions for future work.

6.1 Summary

Security has become a core ingredient of nearly most modern software and informa-

tion systems. However, security countermeasures are often integrated into existing

systems after significant security problems are discovered during the administration

or usage phase. In order to effectively address security aspects in secure system de-

velopment and management, more convenient and mature mechanisms should be

designed.

In this dissertation, I have presented an Assurance Management Framework

(AMF) for comprehensive analysis and realization of access control models in se-

cure system development, through access control model representation, constraint

specification, generation of enforcement code, and analysis and testing of access

control models. I introduced the concept of an authorization state space to assist

tasks in identifying unique characteristics of constraints in access control model

specification during a course of the model analysis. Corresponding analysis pro-

cesses for the formal verification and automatic test generation were articulated as

well. In addition, I demonstrated how the proposed methodology can be applied to

build role-based access control systems by adopting the NIST/ANSI RBAC stan-

dard as an underlying security model. For the realization of RBAC model, I showed

how the formal RBAC model and constraints can be represented with UML dia-

grams and OCL expressions. The UML/OCL-based specifications of RBAC model

and constraints enable the automatic generation of executable authorization mod-
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els. To analyze the RBAC model, I utilized Alloy as an underlying formal verifica-

tion tool to demonstrate automatic analysis and test case generation for the formal

specifications of RBAC model. An RBAC authorization environment RAE and a

simulation system RASS were implemented as well to accommodate core features

addressed in the AMF framework.

On the other hand, the AMF framework ensures the correctness of access

control policies in policy-based computing through automated reasoning techniques

and anomaly management mechanisms. I demonstrated a systematic method to

represent XACML policies in ASP that allows users to leverage ASP solvers for a

variety of analysis tasks. I also discussed the design of a tool called XACML2ASP,

which can seamlessly work with existing ASP solvers for XACML policy analysis.

In addition, I presented a novel anomaly management mechanism and a grid-based

visualization approach, which enable effective detection and resolution of policy

anomalies. An anomaly analysis tool for XACML policies called XAnalyzer was

implemented as well.

Online social networks (OSNs) have experienced tremendous growth in re-

cent years and become a de facto portal for hundreds of millions of Internet users.

However, OSNs currently do not provide any mechanism to enforce privacy con-

cerns over data associated with multiple users. To this end, I further evaluated

the AMF framework through modeling and analyzing multiparty access control in

OSNs. I first formulated an access control model to capture the essence of mul-

tiparty authorization requirements, followed by a multiparty policy specification

scheme. Then, I provided a systematic mechanism to identify and resolve privacy

conflicts for collaborative data sharing. The conflict resolution in this work indi-

cates a tradeoff between privacy protection and data sharing by quantifying privacy

risk and sharing loss. I also presented a logical representation of the access control
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model with ASP for performing various analysis tasks on the model. A proof-of-

concept implementation of the proposed solution called Retinue was discussed as

well, along with the extensive system evaluation and usability study.

Contribution

As a summary, the contributions of this research are as follows:

• Articulation of automated analysis and thorough realization of formal access

control models in secure system development via model representation, gen-

eration of enforcement code, and verification and testing of access control

models.

• A logic-based reasoning approach for access control policies, adopting a log-

ical programming to formulate access control policies that allows users to

leverage the features of logic solvers in performing various logical reasoning

and analysis tasks.

• A comprehensive anomaly management mechanism incorporated with a

visualization-based policy representation to facilitate systematic and effective

detection and resolution of access control policy anomalies.

• Evaluation of the applicability of proposed AMF framework through mod-

eling and analyzing multiparty access control, which facilitates a systematic

solution for collaborative management of shared data in OSNs.

• Demonstration of the feasibility of the proposed methodology through a suite

of proof-of-concept implementations.
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6.2 Future Work

This ground-breaking work also has several future research directions:

Realization and Analysis of Access Control Model

The toolset in this work for realizing and analyzing access control models consti-

tutes a set of modules including a formal analysis tool such as Alloy Analyzer to

facilitate the features of the proposed methodology in performing tasks related to

analysis and conformance testing of role-based authorization systems. As part of

future work, I would examine how such a formal analysis can be integrated seam-

lessly with the toolset. In addition, to address the limitation of using SAT solver for

the purpose of formal analysis, I plan to investigate the relationship between the size

of represented model and the time required for verification and test case generation

in this approach. Furthermore, I would attempt to extend the framework for dealing

with more complicated system properties such as temporal and context attributes.

Thus, other specification languages and tools for performing formal analysis in the

framework would be investigated as well. Moreover, I believe that more practi-

cal engineering processes for secure system development should be addressed so

that software developers can easily adopt this approach in their development prac-

tices [135]. Therefore, I would explore such a practical engineering process for

building authorization systems based on the AMF framework.

Analysis and Management of Access Control Policy

I have demonstrated the logic-based policy reasoning approach using ASP and the

policy anomaly management mechanism based on BDD. A comparison of various

techniques for policy analysis should be conducted, guiding the policy designers

to choose appropriate methods for different policy analysis tasks. Also, the cov-

erage of the proposed policy analysis approach needs to be further extended with
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respect to more policy features such as handling multi-valued requests, compli-

cated conditions, obligation, and user-defined functions. In addition, it is necessary

to enhance the policy analysis tool in this work to provide those features and cor-

responding analysis services while obscuring the details of the logic formalism.

Furthermore, I would evaluate the effectiveness of the proposed policy analysis

and management approach and conduct usability studies of the proposed policy

visualization approach with subject matter experts. Besides, I plan to extend the

proposed analysis approach to handle distributed policy management. Addition-

ally, even though I have applied the anomaly analysis mechanism to XACML [123]

and firewall policies [50, 24], I would further explore how the policy analysis and

anomaly management mechanism can be applied to more existing access control

policy languages [51], such as SAML [7], Ponder [8] and EPAL [9].

Applying AMF to Emerging Domains

I would apply the AMF framework to address the security challenges brought by

emerging domains, including social networks [76, 117, 136, 137, 138, 139], cloud

computing [140, 141, 142, 143, 144, 145, 146], mobile computing [147, 148, 149],

and healthcare systems [57, 58, 150].

Social Networks

As the popularity of OSNs continues to grow, a huge amount of personal and private

information uploaded to OSNs. To protect such a large volume of sensitive infor-

mation, much more research needs to be done in the field of security and privacy for

OSNs. In OSNs, collaborative mechanism may allow users to take advantage of the

wisdom of crowds when making policy decisions related to user-to-user interaction.

I plan to continue this research in the direction of multiparty access control to ex-

plore comprehensive decision making methods, such as decision making based on

game theory [151], and analysis services for collaborative management of shared
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data in OSNs. Also, I would explore more criteria to evaluate the features of the

proposed MPAC model. For example, more comprehensive experiments should be

conducted to evaluate the effectiveness of MPAC conflict resolution approach based

on the tradeoff of privacy risk and sharing loss [136]. In addition, users may be in-

volved in the control of a larger number of shared photos and the configurations of

the privacy preferences may become time-consuming and tedious tasks in OSNs.

Therefore, I would study inference-based techniques [152] that leverage machine

learning and data mining approaches to facilitate both smart user management and

automated privacy policy configuration in MPAC. Besides, I plan to systematically

integrate the notion of trust and reputation into the MPAC model and investigate a

comprehensive solution to cope with collusion attacks for providing a robust MPAC

service in OSNs. Also, I would extend this work to address security and privacy

challenges for other social network platforms such as Google+ [122].

Cloud Computing

The emerging cloud-computing paradigm is rapidly gaining momentum as an al-

ternative to traditional information technology due to the reason that it provides

an extensible and powerful environment for growing amounts of services and data.

However, the unique aspects of cloud computing also exacerbate security and pri-

vacy challenges. Based on the proposed AMF framework, I am planning to ex-

plore various approaches to cope with the access control challenges in clouds. In

particular, I noticed that extensive collaborations exist among services provided

by different clouds, which might have different security mechanisms and privacy

management approaches. Hence, I will explore the approaches to address the het-

erogeneity among the policies from different cloud domains. And I believe that

the use of policy ontology [51] is a promising approach to accommodate such an

issue. Additionally, since policy conflicts are inevitable, arising in the interopera-
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tion process of multi-domain services in clouds, a more comprehensive mechanism

for policy anomaly detection and resolution [123, 24] is essential to prevent the

potential security breaches caused by policy integration in cloud computing.

Mobile Computing

Nowadays, OSN providers like Facebook or Google offer their users with web-

based Location-based Services (LBSs) like Facebook Places [153] or Google Lati-

tude [154]. To facilitate proactive LBSs, most OSN providers also provide Location-

based Social Network Services (LB-SNSs) for mobile platforms like the Android,

iOS, or Symbian. However, at present almost none of these implementations guar-

antees a sufficient degree of information security and privacy as well as location

integrity for their users. To address these limitations, I intend to apply the AMF

framework to explore solutions that support a secure, privacy-preserving, and

location-restricted LB-SNSs for mobile platforms. Furthermore, as smartphones

have become an indispensable part of daily life, mobile users are increasingly rely-

ing on them to process personal information with feature-rich applications. How-

ever, recent studies show that smartphone platforms are vulnerable to a variety

of attacks that could bypass these existing security mechanisms [147, 148]. This

requires robust security systems for protecting sensitive applications and data on

mobile devices. Thus, I would apply the AMF framework to investigate effective

mechanisms for enhancing existing smartphone protection systems.

Healthcare Systems

Security and privacy in healthcare systems grow in importance. The adoption of

electronic health records, increased regulation, provider consolidation and the in-

creasing need for information exchange between patients, providers and payers, all

point towards the need for developing effective security and privacy mechanisms

to protect healthcare systems. Moreover, the advent of social networking applica-
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tions for healthcare systems, such as Google Health [155] and Microsoft Health-

Vault [156], has the potential to significantly alter the manner in which patients in-

teract with healthcare providers. Therefore, I would apply the AMF framework to

address a variety of security and privacy issues in healthcare systems including data

integrity, regulatory compliance, selective sharing, consent delegation, trust man-

agement, and so on. In particular, based on a unified logical EHR model [57, 58]

and a compliance analysis framework for healthcare systems [150], I would in-

vestigate how the AMF framework can systematically manage complex policies to

reduce risks in such a dynamic and collaborative environment.
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