
Partial Satisfaction Planning: Representation and Solving Methods

by

J. Benton

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved July 2012 by the
Graduate Supervisory Committee:

Subbarao Kambhampati, Chair
Chitta Baral
Minh B. Do

David E. Smith
Pat Langley

ARIZONA STATE UNIVERSITY

August 2012

ABSTRACT

Automated planning problems classically involve finding a sequence of actions

that transform an initial state to some state satisfying a conjunctive set of goals

with no temporal constraints. But in many real-world problems, the best plan may

involve satisfying only a subset of goals or missing defined goal deadlines. For ex-

ample, this may be required when goals are logically conflicting, or when there are

time or cost constraints such that achieving all goals on time may be too expensive.

In this case, goals and deadlines must be declared as soft. I call these partial satis-

faction planning (PSP) problems. In this work, I focus on particular types of PSP

problems, where goals are given a quantitative value based on whether (or when)

they are achieved. The objective is to find a plan with the bestquality.

A first challenge is in finding adequate goal representationsthat capture com-

mon types of goal achievement rewards and costs. One popularrepresentation is to

give a single reward on each goal of a planning problem. I further expand on this

approach by allowing users to directly introduce utility dependencies, providing for

changes of goal achievement reward directly based on the goals a plan achieves.

After, I introduce time-dependent goal costs, where a plan incurs penalty if it will

achieve a goal past a specified deadline.

To solve PSP problems with goal utility dependencies, I lookat using state-

of-the-art methodologies currently employed for classical planning problems in-

volving heuristic search. In doing so, one faces the challenge of simultaneously

determining the best set of goals and plan to achieve them. This is complicated by

utility dependencies defined by a user and cost dependencieswithin the plan. To ad-

dress this, I introduce a set of heuristics based on combinations using relaxed plans

and integer programming formulations. Further, I explore an approach to improve

search through learning techniques by using automaticallygenerated state features
i

to find new states from which to search. Finally, the investigation into handling

time-dependent goal costs leads us to an improved search technique derived from

observations based on solving discretized approximationsof cost functions.

ii

For my mother Linda Susan Kamins and

late father John “White Cloud” Eldon Benton, Ed.D.

iii

ACKNOWLEDGEMENTS

This dissertation exists because of the support I received from the people in my

life. Academically, the work I have done rests firmly on the shoulders of giants. It

builds on past work, and required mountains of discussion, advice and collaboration

with numerous individuals both within Arizona State University and outside of it.

On a more personal level, my family, friends, dissertation committee, colleagues

and labmates have all graciously helped me when they have seen I needed it.

Foremost, I must thank my advisor, Subbarao Kambhampati, who helped me to

keep things in perspective with his amazing ability to simultaneously see the details

and the big picture in everything. Rao’s vast knowledge and thorough understand-

ing of automated planning has helped me in immeasurable waysand his good hu-

mor, strong willed advice, technical know-how, long-term patience and outspoken

nature have guided me through the process of research. The dedication he gives

to his students is unwavering and kept me on track in pursuit of my research goals

throughout various bumps in the road.

All of my other committee members were also invaluable. Chitta Baral gave

me great technical insights into KR during his amazing lectures. Minh Do provided

priceless advice and technical insights and acted as both a friend and a mentor.

David Smith asked great, tough questions and passed along important wisdom on

using planning technologies in the real world. Pat Langley imparted his broad

perspective on artificial intelligence and cognative science and has always given

excellent advice.

I have had many collaborators in my research that have contributed in unique

and important ways. They all have been vital to my research and each deserves spe-

cial mention and high praise for their advice, mentorship and contributions. First,

I must thank those who sit in my lab and have worked with me directly in person:
iv

Subbarao Kambhampati (my advisor), Menkes van den Briel, William Cushing,

Tuan Nguyen, Sungwook Yoon, and Kartik Talamadupula. I havealso worked with

many individuals in other locations, both near and far: Patrick Eyerich and Robert

Mattmüller (University of Freiburg); Andrew Coles and Amanda Coles (King’s

College London); Malte Helmert (Basal University); SophiaKelley and M. Scott

Thompson (Arizona State University in Anthropology); Matthias Scheutz (Tuffs

University); Rehj Cantrell and Paul Schermerhorn (IndianaUniversity); Wheeler

Ruml, Ethan Burns, Sofia Lemons, Allen Hubbe, and Jordan Thayer (University

of New Hampshire); and Minh Do (NASA Ames Research Center), who is both

a committee member and a collaborator. To all these people—you all know how

important you were and many thanks!

Others in the automated planning community that have given me great insights

and perspectives include Patrik Haslum, Maria Fox, Derek Long, Alan Fern, Ronen

Brafman, Carmel Domshlak, Hécter Geffner, Mausam, Blai Bonet, Daniel Weld,

Daniel Bryce, Jörg Hoffmann, Jorge Baier, Emil Keyder, Héctor Palacios, Christian

Fritz, Sheila McIlraith, Sylvie Thiébaux, Dana Nau, Ugur Kuter, Robert Goldman,

Alfonso Gerevini, Jeremy Frank, Adi Botea, Erez Karpas, Rong Zhou, Michael

Katz, Gabriele Röger, Peter Gregory, Silvia Richter, Manuela Veloso, Kanna Ra-

jan, David Musliner, Terry Zimmerman, Stephen Smith, AdeleHowe, Saket Joshi,

Tran Cao Son, Angel Garcia-Olaya, Stefan Edelkamp, Sven Koenig, Richard Rus-

sell, Romeo Sanchez, Martin Müller, Hootan Nakhost, Richard Dearden, Marie

desJardin, Michael Moffett, Alastair Andrew, Bram Ridder,Neil York-Smith, Ian

Little, and Håkan Younes.

I must also thank my closest friend, Gretchen Corey, who endured my whining

and gave me unique perspectives as I pushed through my research; my mom, Linda

v

Kamins, and late father, John Benton, who always provided anopen ear; and finally,

my dog, Molly, who was always happy to see me and forgiving of her long nights

home alone.

vi

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

CHAPTER

1 Introduction . 1

1.1 Representing Goal Achievement Rewards and Costs 2

1.2 Solution Methods for Partial Satisfaction Planning 4

2 Representations for Partial Satisfaction Planning 11

2.1 Goal Utility Dependencies . 12

2.2 Time-dependent Goal Costs . 13

3 Heuristic Search for Maximizing Net Benefit 16

3.1 Best-First Heuristic Search for PSP 16

4 Solving for Goal Utility Dependencies 27

4.1 IP Encoding forPSPUD . 28

4.2 Delete Relaxation Heuristics for Goal Utility Dependencies 30

4.3 An Admissible LP-based Heuristic for Goal Utility Dependencies . 41

4.4 Improving Net Benefit Through Learning Techniques 54

5 PDDL3 “simple preferences” and PSP 75

5.1 YochanCOST : PDDL3-SP to Hard Goals 77

5.2 YochanPS : PDDL3-SP to PSP . 80

6 Time-dependent Goal Achievement Costs 109

6.1 Background:POPF: Partial Order Planning Forward 110

6.2 Planning with Continuous Cost Functions 112

6.3 Evaluation . 118

7 Related Work . 123
vii

CHAPTER Page

7.1 Representations for Partial Satisfaction Planning 123

7.2 Planners Solving PSP and Their Close Relatives 125

7.3 Solving for Qualitative Preferences 130

7.4 Time-dependent Goal Costs . 131

7.5 Other PSP Work . 132

7.6 Planners using IP or LP in Heuristics134

7.7 Other Heuristics Using Flow Models 134

8 Conclusion and Future Work . 136

REFERENCES . 139

APPENDIX

A ADMISSIBILITY OF hGAI
LP . 150

viii

LIST OF FIGURES

Figure Page

3.1 Anytime A* search algorithm. 22

4.1 Results for goal utility dependency solving methods 67

4.2 The number of highest quality solutions found 68

4.3 A transportation domain example .. 68

4.4 A planning graph showing LP-biased relaxed plan extraction 69

4.5 Results for the tested domains in terms of total net benefit 70

4.6 Example Relational Database: A State from Logisticsworld 71

4.7 Summary of the net benefit number of features 71

4.8 Taxonomic Features found for Rover domain 71

4.9 Results on rovers domain . 72

4.10 Taxonomic features found for satellite domain 72

4.11 Results on satellite domain .. 73

4.12 Taxonomic Features found for zenotravel domain 73

4.13 Results on zenotravel domain .. 74

5.1 PDDL3-SP goal preferences to hard goals. 78

5.2 PDDL3-SP to cost-based planning. 80

5.3 Preferences to PSPnet benefitgoals 82

5.4 Compiling preference preconditions to actions with cost. 84

5.5 Compiling action preferences from PDDL3-SP to cost-based planning. . 86

5.6 Compiling goal preferences from PDDL3-SP to PSP. 87

5.7 IPC-5trucks“simple preferences” . 103

5.8 IPC-5pathways“simple preferences” 104

5.9 IPC-5rovers“simple preferences” . 105

ix

Figure Page

5.10 IPC-5storage“simple preferences” 106

5.11 IPC-5TPP“simple preferences” results 107

5.12 Comparison withAltWlt on IPC-5roversdomain 108

5.13 An example of the “simple preferences” storage domain 108

6.1 Structure of a cost-collection action for time-dependent cost 115

6.2 IPC scores per problem, validated against the continuous cost domain. 122

x

Chapter 1

Introduction

Research into automated planning has usually focused on thefull achievement of

all goals. But this approach neglects many fundamental real-world scenarios where

goals and their achievement deadlines can be only partiallysatisfied. For example,

goals might be logically conflicting, and resource constraints may prevent their

timely achievement. Consider Mars rover mission planning.In this situation, goals

involve performing experiments at a variety of locations with cost constraints (e.g.,

battery power), making it so deadlines might be missed or only a subset of the goals

can be satisfied [88]. We call these problemspartial satisfaction planning(PSP)

problems. In this dissertation, we will focus on particulartypes of PSP problems,

such that goal achievement can be given some value (e.g., reward) and actions are

given costs. The objective is to balance a goal’s achievement value with action costs

to achieve the best plan. In the case where we assign rewards to goals, we want to

maximize the overall difference between the reward gained for achieving goals and

the cost of the actions to achieve them, ornet benefit[95, 88].

In tackling partial satisfaction planning, we face dual challenges:

• Finding adequate goal reward representations that capturecommon types of

goal achievement reward and goal deadline cost; and

• Finding effective methods to solve planning problems that have goals with

these representations.

Representations and solving methods have a strong interaction with one another

and decisions made for approaching one challenge have a direct effect on the other.
1

For instance, focusing on a general representation of goal achievement reward di-

rectly effects (and often increases) the difficulty of solving planning problems that

involve those representations. Hence, the two topics fold into one another and sep-

arating representations and solving methods becomes convoluted. In the end, we

chose to look at our representations in terms of their generality; we reasoned that

more general representations would yield solving methods capable of handling less

expressive representations that others may find more appealing from a user stand-

point. Further, our solving methods may be applicable to other, related problems

and be less specialized in nature.

Given our representations, we solve resulting partial satisfaction planning prob-

lems using state-of-the-art methods in automated planning. The decision to use

these methods were based both on our own experiments and comparisons (which

we discuss) and their applicability to the problems at hand.In the rest of this intro-

duction, we summarize the representations and solving methods that we applied.

1.1 REPRESENTINGGOAL ACHIEVEMENT REWARDS AND COSTS

As a baseline representation for goal reward, one can associate a single reward

value with each goal fact. But even with this relatively simple representation, the

process of finding goals on which to focus is complicated by the fact that they

interact with one another. Actions may share in their achievement of goals (positive

interaction) or conflict (negative interaction). These types of interactions introduce

cost dependenciesbetween goals because the cost of achieving them separatelymay

differ from the cost of achieving them together.

This dissertation work further extends on this representation to directly ad-

dressutility dependencieswhich allow users to specify changes in utility on sets

of goals [29]. Two concrete examples of utility dependency are mutual dependency

2

and conditional dependency. For mutual dependency, the utility of a set of goals is

different from the sum of the utility of each individual goal. For example, (1) while

the utility of having either a left or right shoe alone is zero, the utility of having

both of them is much higher (i.e., the goals complement each other); (2) the util-

ity of having two cars is smaller than the sum of the individual utilities of having

each one of them (i.e., the goals substitute each other). Conditional dependency is

where the utility of a goal or set of goals depends on whether or not another goal

or set of goals is already achieved. For example, the utilityof having a hotel reser-

vation in Hawaii depends on whether or not we have already purchased a ticket to

Hawaii. A main representational challenge is in finding a model where the different

types of goal utility dependencies can be naturally expressed. For this, we use the

Generalized Additive Independence (GAI)model [2], combining utility theory and

deterministic planning. This model has the advantages thatit is expressive, general,

and can be compiled from other models such as UCP-Networks [14].

We also definetime-dependent goal costs, where no cost is given for achieving

a goal by a deadline time, but after that time point cost increases until it reaches

a maximum cost value. For example, consider a satellite where goals should be

achieved on time to avoid negative impact to an organization’s budget (due to em-

ployee and equipment usage). There exists a definable function on the cost for

missing the satellite’s goals. The main challenge in defining these types of goals

is how to best represent them such that they can be easily solved. Using a cost

function on goal achievement time, even if the function is linear, poses some par-

ticular challenges on how to limit the search space to enablesolutions to be found

efficiently. To these ends, we look at representing linear cost functions directly, as

continuous functions over time, and using discrete approximations.

3

To model linear cost functions directly, we use a small subset of the planning

domain description language PDDL+ [43], an extension of PDDL that allows the

modeling of continuous processes over time. This provides for the ability to capture

a numeric representation of thecurrent timewithin a plan, a capability that is oddly

lacking from other versions of PDDL. After this, we then define an action that “col-

lects” the penalty cost based on when the goal is achieved, making the assumption

that the goal can be achieved only once (though relatively simple extensions can

remove this assumption).

For handling the discretized model, we turn to planning domain description lan-

guage PDDL3 [48], which allows us to model soft deadlines with discrete penalities

where if the deadline is missed, then a penalty is paid. Usingthis language, we de-

fine several deadlines for each original continuous deadline goal, generating a step

function and allowing the approximation of the continuous cost function.

1.2 SOLUTION METHODS FORPARTIAL SATISFACTION PLANNING

The main contribution of this dissertaiton is in solving these problems with goal

utility dependencies, where users can define reward dependencies between goals;

and time-dependent goal achievement costs, such that missing a deadline incurs

some penalty cost. We also explore methods for compiling other partial satisfaction

planning problem definitions into thenet benefitmodel and look toward how to

solve them.

Solving for Goal Utility Dependencies

To solve PSP problems with goal utility dependencies we introduce heuristics for

an anytime, best-first branch and bound search (originally defined in the planner

SapaPS [7]) and a learning approach that can be used to improve upon solutions by

restarting the search. The heuristic methods use integer programming (IP) formula-

4

tions to solve the combinatorial problems associated with goal and action selection.

The approach for improving search through learning techniques uses search state

features to find new states from which to search.

In developing heuristics for partial satisfaction planning, the challenge faced is

in simultaneously determining the best set of goals to achieve and finding the best

plan for them. Both are complicated by utility and cost dependencies within a plan.

We first introduce a set of heuristics that use a combination of cost propagation

over a relaxed planning graph (similar to the one used in the planner FF [63]) and

an IP encoding to capture goal achievement cost and goal utility [29]. Specifically,

the approach solves a relaxed version of the planning problem that ignores nega-

tive interactions between actions and utility dependencies between goals. It then

encodes the solution to the relaxed problem in an IP format, capturing the positive

cost dependencies between actions and all goal utility dependencies. The solution

to this IP encoding gives an inadmissible heuristic measurefor states during search,

which effectively removes goals from consideration that appear unreasonable to

achieve. We call this heuristichGAI
relax. We also implemented an admissible version

of this heuristic, which does not find a solution to the relaxed problem but instead

uses amaxpropagation over the planning graph structure, capturing alower bound

on the cost to reach the goals. Then, having found that cost, it encodes the values

along with the utility dependencies of the goals in an IP formulation whose solution

provides an admissible heuristic we callhGAI
max .1

As one would expect, these two heuristics perform much better than a heuris-

tic that completely ignores goal utility dependencies and uses a solely procedural

approach to removing goals (as done in the plannerSapaPS). Its performance also

1In the case of maximizing net benefit, an admissible heuristic will always over-estimate the net
benefit of goal achievement.

5

scales much better than encoding the entire problem as a bounded-length integer

program [29].

While the relaxed plan-based heuristics do a fair job of estimating the cost of

goal achievement, ultimately one would like to select actions and goals together to

optimizenet benefit. This requires a heuristic estimate with more of an “optimiza-

tion” perspective. A standard way of setting up a relaxationsensitive to this is to

formulate an IP encoding for a problem, and then compute the linear programming

(LP) relaxation of this encoding. In addition to being sensitive to the objectives

of the optimization, such encodings are also sensitive to the negative cost interac-

tions between actions—something that is notoriously missing in standard relaxed

plan heuristics. A challenge in adopting such an approach involves deciding ex-

actly what type of IP encoding to use. While bounded horizon encodings have been

explored in past work [29], this can only guarantee feasibleplans, and offers no

guarantees of optimality.

Hence, we use a heuristic adopting a compact IP encoding thatis not dependent

on a horizon bound. It represents the causal interactions between actions, thereby

taking negative interactions between actions into account. It is a relaxation of the

original problem in that it ignores action ordering, allowing for fewer constraints

and variables than typical encodings. By itself, this IP encoding gives an admissible

heuristic. But to increase scalability, an LP relaxation ofthe encoding is used,

keeping the heuristic admissible. We call this heuristichGAI
LP . On domains we

tested, with the use of lookahead techniques, this heuristic performs quite a bit

better than thehGAI
relax heuristic (also applying similar lookahead techniques) interms

of plan quality given a bounded solving time [9].

6

Improving Plan Net Benefit Through Learning

Along with heuristics, this dissertation also investigates a method of improving

heuristic values through learning techniques. With the optimization nature of PSP

net benefitproblems, the STAGE algorithm [15] looked to be an attractive method-

ology, as it had shown promise for improving search in the context of optimization.

STAGE is an online learning approach that was originally invented to improve the

performance of random-restart, hill-climbing techniqueson optimization problems.

Rather than resort to random restarts, which may or may not help the base search to

escape a local minimum, STAGE aims to learn a policy that can intelligently gen-

erate restarts that are likely to lead the hill-climbing search towards significantly

better local optima. The algorithm works in two stages: Stage 1, where a base-level

hill-climbing search is run until reaching a local minimum and Stage 2, where the

algorithm trains on a sequence of states that the hill-climbing search passed through.

The second stage learns a function that predicts, for a givenstates, the valuev of

the optima that will be reached froms by hill-climbing. This learned function is

then used in a new local search to scout for a states′ that has more promise to reach

an even better state. If the learner is effective,s′ is expected to be a good restart

point. This work adapts this approach to operate within our systematic (best-first

branch and bound) search. We call our modified approach Stage-PSP.

The main challenge in adopting STAGE to PSPnet benefitis in finding appro-

priate state features for the learner. Boyan and Moore [15] usedhandcraftedstate

features. Unfortunately, it is infeasible to hand-generate features for every planning

domain and problem. Moreover, such interventions run counter to the tenets of

domain-independent planning. Instead, the features should be generated automat-

ically from the planning problems. This work uses two techniques for generating

7

features. The first uses the “facts” of the states and the actions leading to those

states as features. The second uses a more sophisticated taxonomic syntax to gen-

erate higher level features. Both were implemented and tested them using ourhGAI
relax

heuristic. The results show the promise of this type of learning approach, in one

domain showing significant improvements over using thehGAI
relax heuristic alone.

Solving for Related Partial Satisfaction Planning Models

Though PSPnet benefitis one model of representing PSP problems, another broadly

used model for PSP was introduced in the 2006 International Planning Competi-

tion. The competition organizers defined a language called PDDL3 (version 3 of

the Planning Domain Description Language). In it, they introduced a myriad of

features, including soft top-level goals that induced a cost if they were not satisfied.

They generated subsets of PDDL3 for the competition, one of which wassimple

preferences(PDDL3-SP), and generated a competition track for this subset. We

found that these problems can be compiled into PSPnet benefitsuch that they can

be solved by a PSPnet benefitplanner. Indeed, we implemented this compilation

and entered a planner calledYochanPS into the planning competition [7]. This

planner compiles PDDL3-SP problems into PSPnet benefitproblems and solves

them using the plannerSapaPS . The entry received adistinguished performance

award. Later, we also tried a compilation of PDDL3-SP into cost-based planning in

a planner calledYochanCOST which experiments performed worse than the compi-

lation to PSPnet benefit.

Solving for Time-Dependent Goal Cost

All of the solving methods discussed so far relate to handling atemporal goals.

However, there also exists an important class of PSP problems that involve the par-

tial satisfaction of deadlines. In these problems, a planner may find a plan that

8

achieves a goal past its stated temporal deadline, and giventhis the plan will incur

a penalty cost dependent on when in the plan the goal is finallyachieved. To solve

for these types of problems, we make the assumption that costis monotonically

increasing and that all cost increases occur linearly to some maximum cost value.

As mentioned earlier, we look at solving directly for the continuous representation

of the cost function and a discretized version of the cost function. Solving for the

discretized model yielded key insights and gave way to a tiered search approach,

combining the efficiency benefits that the discretized modelprovides with the ac-

curacy that the continuous model provides. All of the solving methods were imple-

mented in a modified version of the state-of-the-art temporal plannerPOPFto create

a planner called OPTIC (Optimizing Preferences and TIme-Dependent Costs).

In the continuous models we described, the planner was modified to parse and

handle the extension allowing it to capture thecurrent timewithin a plan. With the

best-first branch-and-bound search process used in thePOPFplanner, the algorithm

uses initial, candidate solutions to prune away the search space by using an admissi-

ble estimate on the plan cost to prune parts of the search space that we can guarantee

will lead to worse solutions. For the discretized model, we use the built-in solving

methods within OPTIC made for handling PDDL3 soft deadlines. The results show

that various decretizations can do better than a continuousmodel, dependent on the

domain. However, upon investigating the reason for this, itturns out that the rea-

son the discretized models perform better is because the continuous models’ direct

representation of the cost functions provide less pruning ability than the discretized

model. From these insights, we introduce a tiered search approach that searches for

initial candidate solutions using pruning similar to that seen in the discretized mod-

els. With an initial candidate solution, the technique performs repeated searches

9

mimicking finer and finer grained discretized pruning, gradually approaching the

search pruning found in the continuous model. This approachturns out to be over-

all superior than either directly handling discretized models or continuous models

in the domains tested.

The rest of this dissertation proceeds as follows. We discuss how we formally

represent goal rewards, and the extension into goal utilitydependencies, plus our

extension for time dependent goal rewards (Chapter 2). In Chapter 3, we discuss

the anytime search used in our pursuit of solving PSP net benefit problems. We then

discuss the technical details of heuristics and the learning approach for solving PSP

net benefitproblems with goal utility dependencies along with empirical results

in Chapter 4. In Chapter 5 we discuss the compilation from PDDL3-SP to PSPnet

benefitand the results from an entry into the5th International Planning Competition

in 2006,YochanPS , that used this compilation. We also show a comparison against

using a compilation to cost-based planning in the same planning system. Also in

that section, we discuss difficulties faced when attemptingto select goals up-front

on problems from that planning competition. Chapter 6 discusses the investigation

into solving planning problems withtime dependent goal costs. Finally, Chapter 7

goes over related work and we conclude in Chapter 8.

10

Chapter 2

Representations for Partial Satisfaction Planning

Classic automated planning problems define an initial state, a conjunctive set of

goals. The objective is to find a sequence of actions, also defined in the problem,

that leads from the initial state to a state containing all ofthe goals. Partial satisfac-

tion planning is planning where only some goals or constraints can be satisfied in

full. It can be seen as a generalization of classical planning and provides a natural

extension to capture a range of scenarios that involve limited resources. Those lim-

its can force a choice to ignore goals or constraints that aredesired but unnecessary.

This means that a user must mark goals and other constraints as soft, or optionally

achievable. Further, plans must have a ranking between them, because otherwise

the natural procedure would be to simply ignore everything that is marked as soft.

To enable this ranking, my work assigns quantitative functions over meeting soft

goals and deadlines.

To start, classical planning is the problem of transformingan initial stateI into

a goal stateG ⊆ G, given a finite set of fluentsF whereI ⊆ F andG ⊆ F . To

transformI into a stateG containing all fluents ofG, we define a set of actionsA,

such that each actiona ∈ A has a set of preconditions,pre(a) ⊆ F , a set of delete

effects,del(a) ⊆ F and a set of add effects,add(a) ⊆ F . Applying an actiona

to a states requires thats ⊆ pre(a). When applied tos, an actiona generates a

new states′ such thats′ = (s \ del(a)) ∪ add(a). The objective is to generate a

plan, or a sequence of actionsP = (a0, a1, . . . , an) such that applying each action

in sequence leads to a stateG where∀g ∈ G, g ∈ G.

11

We first look at partial satisfaction planning with net benefit, which extends on

this. It is the problem of finding a plan with the maximumnet benefitor difference

between achieved goal reward and action costs [88, 95]. Eachgoal g ∈ G has a

(constant-valued) utility functionug whereug ≥ 0, representing how muchg is

worth to a user; and each actiona ∈ A has an associated execution costca ≥ 0,

representing how costly it is to execute each action (e.g., representing the amount

of time or resources consumed). All goals becomesoft constraintsso that any plan

achieving a subset of goals (even the empty set) is a valid plan. LetP be the set of

all valid plans and letGP ⊆ G be the set of goals achieved by a planP ∈ P. The

objective is to find a planP that maximizes the difference between total achieved

utility u(GP) and total cost of all actions inP :

arg max
P∈P

∑

g∈GP

ug −
∑

a∈P

ca (2.1)

In this chapter, we discuss extensions to this model that provide for goal utility

dependencies, or reward dependencies between goals such that achieving a set of

goals may have a reward greater (or less) than the sum of each individual goals’

reward. After, we define goal costs in the context of temporalplanning, where

actions have duration and goal achievement after a deadlineincurs a penalty cost.

2.1 GOAL UTILITY DEPENDENCIES

In partial satisfaction planning (PSP) the process of finding goals on which to focus

is complicated by the fact that they interact with one another. For instance, actions

may share in their achievement of goals (positive interaction) or conflict (negative

interaction). These types of interactions introduce cost dependencies between goals

12

because the cost of achieving them separately may differ from the cost of achieving

them together. In the previously defined goal reward model ofPSPnet benefit, goals

only interact through cost dependencies. This work extendsPSP to handle utility

dependencies. This allows users to specify changes in utility based on the achieved

set of goals.

With no utility dependencies on goals their utilities are additive: u(GP) =

Σ
g∈GP

ug, whereug represents the utility of a goalg. To represent goal utility depen-

dencies, we adopt theGeneralized Additive Independence(GAI) model [2]. This

model was chosen because it is expressive, general and we cancompile to it from

other commonly used models such as UCP-Networks [14]. It defines the utility of

the goal setG ask local utility functionsfu(Gk) ∈ R over setsGk ⊆ G. For any

subsetG′ ⊆ G the utility of G′ is:

u(G′) =
∑

Gk⊆G′

fu(Gk) (2.2)

This model allows users to specify changes in utility over sets of goals. We

name the newPSP problem with utility dependencies represented by the GAI

modelPSPUD . If there are|G| local functionsfk(Gk) and eachGk contains a single

goal thenPSPUD reduces to the original PSP problem (no utility dependencies).

2.2 TIME-DEPENDENT GOAL COSTS

So far we have discussed goal utility functions that are independent of achievement

time. That is, the achieved reward is always the same given the same set of achieved

goals. But often penalty can be incurred based onwhena goal is achieved [55]. For

example, consider a delivery truck that must deliver goods by a particular deadline

and being late means reduced payment. This is atime-dependentgoal because final

value of a goal varies with its achievement time.

13

Before diving into how these goals are defined, it is important to define temporal

actions in temporal planning problems. Temporal planning problems are typically

defined using a PDDL2.1 model of actions and time [42]. In these models, dura-

tive actions can be split into instantaneous actions like those in classical planning,

where the two parts of an action (a “start” and “end” point) are linked via a defined

duration and invariant conditions (i.e., conditions that must hold throughout the du-

ration of the action). Hence, we can define a ground PDDL2.1 temporal actiona

as having three sets of conditions:pre⊢, conditions that must be true at the start

of a durative action;pre⊣, the conditions that must be true at the end of a durative

action; pre↔, the conditions that must hold during the open interval duration of

the action (i.e., all time points between the start and end ofthe action). Effects of

actions can occur at the start or end as well, whereeff⊢ are the effects that happen

at the start of an action andeff⊣ are the effects that happen at the end of an action.

The duration of the action is single valuedur ∈ R≥0.1 Actions can execute concur-

rently, meaning that actions may start before others have finished. It is important to

note that starting an action forces its end. That is, the end effects of all actions in a

plan must occur before the plan reaches its final goal state. Otherwise, the goal of

planning is the same. From an initial stateI, a final goal state must be found where

all goals in the goal setG are true.

For time-dependent goal costs, we look toward defining a costfunction over

goal achievement within the temporal planning framework. The idea was first

explored by Haddawy and Hanks in the context of planning for optimal utility

plans [55]. One can view these as deadline goals, where no penalty cost is given if

1In PDDL2.1 actions can include a calculable minimum and maximum duration of an action,
but for the sake of simplifying matters, and in all of the domains on which we discuss, we assume
that each action has a single, pre-defined duration.

14

the goal is achieved before a deadline, but afterwards thereis a linear increase in

cost given for goal achievement until reaching a maximum cost value (at another

given time point). We would like to find the lowest cost plan inthe presence of such

goals.2

We model time-dependent goal cost as a function of the goalg and its final

achievement timetg:3

c(g, tg) =






0 if tg ≤ t1

tg−td
td+δ−td

· cg if td < tg ≤ td+δ

cg if td+δ < tg

wherecg is the full cost forg, td is the soft deadline time for the goal andtd+δ is

the time point where full penalty cost is given for the goal. This function ensures

that no cost is given if the goal is achieved beforetd, partial penalty is given if the

goal is achieved betweentd andtd+δ and the full cost is paid if the goal is achieved

aftertd+δ. For each goal, we sum the costs of their achievement and the problem is

to minimize the cost.

2This objective is compilable directly intonet benefitas defined earlier.
3We assume a goal can be achieved once (and not deleted then re-achieved). This assumption

can hold without loss of generality via the use of compilation techniques to force a dummy goal to
become true at the original goal’s first or last achievement time.

15

Chapter 3

Heuristic Search for Maximizing Net Benefit

Effective handling of PSP problems poses several challenges, including an added

emphasis differentiating between feasible and “good” plans. Indeed, in classes of

PSP problems that involve all soft goals and constraints a trivially feasible, but

decidedly non-optimal solution would be the “null” plan; that is, choosing to do

nothing and ignoring the goals. In the case of PSP, one has thecoupled problem

of deciding what goals to pursue (in the case of soft goals), when to achieve them

(in the case of time-dependent costs) and finding the best plan to achieve those

goals so that we may find the best solution. Choosing goals is further complicated

in the presence of goal utility dependencies, were we have toconsider both action

interactions and goal interactions.

All of the main planning methods in this dissertation have their basis in heuris-

tic search (even the techniques inspired by local search that are discussed in Sec-

tion 4.4). In this chapter, we discuss the search method usedfor partial satisfaction

planning when maximizingnet benefit.1

3.1 BEST-FIRST HEURISTIC SEARCH FORPSP

The plannerSapaPS [7] provides the underlying search algorithm for most of the

planners discussed in this dissertation. This best-first, heuristic forward search plan-

ner uses an anytime variation of theA∗ [56] algorithm guided by a heuristic derived

from the relaxed planning graph [63]. LikeA∗, this algorithm starts with the initial

stateSinit and continues to dequeue from the open-list the most promising nodeS

1The planner OPTIC, which is used for handling soft temporal planning deadlines and is dis-
cussed in Chapter 6 also uses heuristic search. However, itssearch works toward minimizing penalty
costs and uses a search strategy geared toward scaling up fortemporal planning.

16

(i.e., highestf(s) = g(s) + h(s) value). For each search nodes, g(s) represents

the benefit achieved so far by visitings from sinit andh(s) represents the projected

maximum additional benefit gained by expandings, with plan benefit defined in

Section 2.1. Though calculatingg(s) is trivial, having a good estimate ofh(s) is

hard and key to the success of best-first search algorithms. During exploration of

the search tree the algorithm keeps outputting better quality plans whenever a node

S with the best-so-farg(s) value is expanded (i.e., it outputs a “best” plan upon gen-

erating it rather than when a state is expanded). LikeA∗, the algorithm terminates

when it chooses a nodes with h(s) = 0 from the open list.

On top of this, the algorithm additionally uses a rudimentary lookahead tech-

nique derived from the relaxed plan graph-based heuristic,similar to what is done

in the planner YAHSP2 [97], but using a relaxed plan structure and without a re-

pair strategy. Specifically, it takes relaxed plans found during the calculation of the

heuristic and repeatedly attempts to simulate their execution until either all actions

have been simulated or no further simulation is possible. The resulting state is then

added to the search queue, effectively probing deeper into the search space.

In practice, the search algorithm prunes the search space byremoving nodes that

appearunpromising(i.e., nodes where the estimated benefit is negative). Though

this improves efficiency, one potential drawback is that when an inadmissible heuris-

tic h(s) underestimates the value of a search nodes, thens will be discarded (when

compared to the benefit of the best solution found so farg(sB) from a statesB)

even if it can be extended to reach a better solution. A similar strategy is used in the

planner OPTIC, which we use for time-dependent costs, though it always uses an

admissible heuristic to prune (and hence does not suffer from this drawback). For

the other planners, one difference fromSapaPS , is that the algorithm is modified

17

to keep some search nodes that appear unpromising when first generated. During

search it sets a valueǫ as half the distance between the best node found so farsB

and the worst-valued unpromising node. For each unpromising search nodes that

is within a thresholdǫ of the current best solution, it findsρ, the complement of the

percentage distance between it and the benefit ofsB (i.e., g(sB)). It then keepss

with probabilityρ. Note that it only uses this method when applying inadmissible

heuristics.

Anytime Best-First Search Algorithm for PSP: One of the most popular methods

for solving planning problems is to cast them as the problem of searching for a

minimum cost path in a graph, then use a heuristic search to find a solution. Many

of the most successful heuristic planners [13, 63, 31, 79, 91] employ this approach

and use variations of best-first graph search (BFS) algorithms to find plans. We

also use this approach to solve PSPnet benefitproblems. In particular, many of

the planners in this dissertation use a variation ofA∗ with modifications to handle

some special properties of PSPnet benefit(e.g., any state can be a goal state when

all goals are soft). The remainder of this section will outline them and discuss the

search algorithm in detail.

Standard shortest-path graph search algorithms search fora minimum-cost path

from a start node to a goal node. Forward state space search for solving classical

planning problems can be cast as a graph search problem as follows: (1) each search

noden represents a complete planning states; (2) if applying actiona to a states

leads to another states′ then actiona represents a directed edgee = s
a
−→ s′ from s

to s′ with the edge costce = ca ; (3) the start node represents the initial stateI; (4) a

goal node is any statesG satisfying all goalsg ∈ G. In our ongoing example, at the

initial stateI = {at(A)}, there are four applicable actionsa1 = Move(A, B), a2 =

18

Move(A, C), a3 = Move(A, D), anda4 = Move(A, E) that lead to four states

s1 = {at(B), g1}, s2 = {at(C), g2}, s3 = {at(D), g3}, ands4 = {at(E), g4}.

The edge costs will represent action costs in this planning state-transition graph2

and the shortest path in this graph represents the lowest cost plan. Compared to

the classical planning problem, the PSPnet benefitproblem differs in the following

ways:

• Not all goals need to be accomplished in the final plan. In the general case

where all goals aresoft, any executable sequence of actions is a candidate

plan (i.e., any node can be a valid goal node).

• Goals are not uniform and have different utility values. Theplan quality is not

measured by the total action cost but by the difference between the cumulative

utility of the goals achieved and the cumulative cost of the actions used. Thus,

the objective function shifts fromminimizingtotal action cost tomaximizing

net benefit.

To cast PSPnet benefitas a graph search problem, some changes are necessary

so that (1) the edge weight representing the change in plan benefit by going from a

search node to its successors and (2) the criteria for terminating the search process

coincides with the objective of maximizing net benefit. First comes a discussion

on the modifications, then a discussion on a variation of theA∗ search algorithm

for solving the graph search problem for PSP. To simplify thediscussion and to

facilitate proofs of certain properties of this algorithm,the algorithm will make the

following assumptions: (1) all goals are soft constraints;(2) the heuristic is admis-

sible. Later follows a discussion about relaxing one or moreof those assumptions.

2In the simplest case where actions have no cost and the objective function is to minimize the
number of actions in the plan, the algorithm can consider allactions having uniform positive cost.

19

g-value: A∗ uses the valuef(s) = g(s) + h(s) to rank generated statess for

expansion withg representing the “value” of the (known) path leading from the

start stateI to s, andh estimating the (unknown) path leading froms to a goal node

that will optimize a given objective function. In PSPnet benefit, g represents the

additional benefit gained by traveling the path fromI to s. For a given states, let

Gs ⊆ G be the set of goals accomplished ins, then:

g(s) = (U(s) − U(I)) − C(PI→s) (3.1)

whereU(s) =
∑

g∈Gs

ug andU(I) =
∑

g∈GI

ug are the total utility of goals satisfied in

s andI. C(PI→s) =
∑

a∈PI→s

ca is the total cost of actions inPI→s. For example:

U(s2) = ug2
= 100, andC(PI→s2

) = ca2
= 90 and thusg(s2) = 100 − 90 = 10.

In other words,g(s) as defined in Equation 3.1 represents the additional benefit

gained when planPI→s is executed inI to reachs. To facilitate the discussion, we

use a new notation to represent the benefit of a planP leading from a states to

another states′:

B(P |s) = (U(s′) − U(s)) −
∑

a∈P

ca (3.2)

Thus, we haveg(s) = B(PI→s|I).

h value: In graph search, the heuristic valueh(s) estimates the path froms to the

“best” goal node. In PSPnet benefit, the “best” goal node is the nodesg such that

traveling froms to sg will give the most additional benefit. In general, the closer

thath estimates the real optimalh∗ value, the better in terms of the amount of search

effort. Therefore, we first introduce the definition ofh∗.

20

Best beneficial plan: For a given states, a best beneficial planP B
s is a plan

executable ins and there is no other planP executable ins such that:B(P |s) >

B(P B
s |s).

Notice that an empty planP∅ containing no actions is applicable in all states

andB(P∅|s) = 0. Therefore,B(P B
s |s) ≥ 0 for any states. The optimal additional

achievable benefit of a given states is calculated as follows:

h∗(s) = B(P B
s |s) (3.3)

In our ongoing example, from states2, the most beneficial plan is

P B
s2

= {Move(C, D), Move(D, E)}, andh∗(s2) = B(P B
s2
|s2) = U({g3, g2, g4})−

U({g2})− (cMove(C,D) + cMove(D,E)) = ((300+100+100)− 100)− (200+50) =

400 − 250 = 150. Computingh∗ directly is impractical as the algorithm needs to

search forP B
s in the space of all potential plans and this is as hard as solving the

PSPnet benefitproblem for the current search state. Therefore, a good approxima-

tion of h∗ is needed to effectively guide the heuristic search algorithm.

Figure 3.1 describes the anytime variation of theA∗ algorithm that is used to

solve the PSPnet benefitproblems. LikeA∗, this algorithm uses the valuef =

g + h to rank nodes to expand, with the successor generator and theg andh values

described above. It is assumed that the heuristic used isadmissible. Because the

algorithm tries to find a plan that maximizesnet benefit, admissibility means over-

estimating additional achievable benefit; thus,h(s) ≥ h∗(s) with h∗(s) defined

above. Like other anytime algorithms, the algorithm keeps one incumbent value

21

SEARCH(〈F, I, G, A〉)
1. g(I) ←

∑
g∈I

ug

2. f(I) ← g(I) + h(I)
3. BB ← g(I)
4. PB ← ∅
5. OPEN ← {I}
6. whileOPEN 6= ∅ and notinterrupteddo
7. s ← arg max

x∈OPEN

f(x)

8. OPEN ← OPEN \ {s}
9. if h(s) = 0

10. stop search
11. else
12. foreachs′ ∈ Successors(s)
13. if g(s′) > BB

14. PB ← plan leading fromI to s′

15. BB ← g(s′)
16. OPEN ← OPEN \ {si : f(si) ≤ BB}
17. if f(s′) > BB

18. OPEN ← OPEN ∪ {s′}
19. ReturnPB

Figure 3.1: Anytime A* search algorithm.

BB to indicate the quality of the best found solution at any given moment (i.e.,

highest net benefit).3

The search algorithm starts with the initial stateI and keeps expanding the

most promising nodes (i.e., one with highestf value) picked from theOPEN list.

If h(s) = 0 (i.e., the heuristic estimate indicates that there is no additional benefit

gained by expandings) the algorithm stops the search. This is true for the termi-

nation criteria of theA∗ algorithm (i.e., where the goal node givesh(s) = 0). If

h(s) > 0, then it expandss by applying applicable actionsa to s to generate all

3Figure 3.1, as implemented in our planners is based onSapaPS and does not include duplicate
detection (i.e., noCLOSEDlist). However, it is quite straightforward to add duplicate detection to
the base algorithm similar to the wayCLOSEDlist is used inA∗.

22

successors.4 If the newly generated nodes′ has a betterg(s′) value than the best

node visited so far (i.e.,g(s′) > BB), then it recordsPs′ leading tos′ as the new

best found plan. Finally, iff(s′) ≤ BB (i.e., the heuristic estimate indicates that

expandings′ will never achieve as much additional benefit to improve the current

best found solution), it will discards′ from future consideration. Otherwises′ is

added to theOPEN list. Whenever a better solution is found (i.e., the value ofBB

increases), it will also remove all nodessi ∈ OPEN such thatf(si) ≤ BB. When

the algorithm is interrupted (either by reaching the time ormemory limit) before the

node withh(s) = 0 is expanded, it will return the best planPB recorded so far (the

alternative approach is to return a new best planPB whenever the best benefit value

BB is improved). Thus, compared toA∗, this variation is an “anytime” algorithm

and always returns some solution plan regardless of the timeor memory limit.

Like any search algorithm, one desired property is preserving optimality. If the

heuristic is admissible, then the algorithm will find an optimal solution if given

enough time and memory.5

Proposition 1: If h is admissible and bounded, then the algorithm in Figure 3.1

always terminates and the returned solution is optimal.

Proof: Given that all actionsa have constant costca > 0, there is a finite number

of sequences of actions (plans)P such that
∑
a∈P

ca ≤ UG. Any states generated by

4Note that with the assumption ofh(s) being admissible, we haveh(s) ≥ 0 because it overes-
timatesB(PB

s |s) ≥ 0.
5Given that there are both positive and negative edge benefitsin the state transition graph, it

is desirable to show that there is no positive cycle (any planinvolving positive cycles will have
infinite achievable benefit value). Positive cycles do not exist in our state transition graph because
traversing over any cycle does not achieve any additional utility but always incurs positive cost. This
is because the utility of a search nodes is calculated based on the world state encoded ins (not what
accumulated along the plan trajectory leading tos), which does not change when going through a
cyclec. However, the total cost of visitings is calculated based on the sum of action costs of the plan
trajectory leading tos, which increases when traversingc. Therefore, all cycles have non-positive
net benefit (utility/cost trade-off).

23

planP such that
∑
a∈P

ca > 2×UG will be discarded and will not be put in theOPEN

list becausef(s) < 0 ≤ BB. Given that there is a finite number of states that can

be generated and put in theOPEN list, the algorithm will exhaust theOPEN list

given enough time. Thus, it will terminate.

The algorithm in Figure 3.1 terminates when either theOPEN list is empty or

a nodes with h(s) = 0 is picked from theOPEN list for expansion. First we

see that if the algorithm terminates whenOPEN = ∅, then the plan returned is

the optimal solution. Iff(s) overestimates the real maximum achievable benefit,

then the discarded nodess due to the cutoff comparisonf(s) ≤ BB cannot lead to

nodes with higher benefit value than the current best found solution represented by

BB. Therefore, our algorithm does not discard any node that canlead to an optimal

solution. For any nodes that is picked from theOPEN list for expansion, we also

haveg(s) ≤ BB becauseBB always represents the highestg value of all nodes that

have ever been generated. Combining the fact that no expanded node represents a

better solution than the latestBB with the fact that no node that was discarded from

expansion (i.e., not put in or filtered out from theOPEN list) may lead to a better

solution thanBB, we can conclude that if the algorithm terminates with an empty

OPEN list then the finalBB value represents the optimal solution.

If the algorithm in Figure 3.1 does not terminate whenOPEN = ∅, then it

terminates when a nodes with h(s) = 0 was picked from theOPEN list. We can

show thats represents the optimal solution and the plan leading tos was the last one

output by the algorithm. Whens with h(s) = 0 is picked from theOPENlist, given

that∀s′ ∈ OPEN : f(s) = g(s) ≥ f(s′), all nodes in theOPENlist cannot lead to

a solution with higher benefit value thang(s). Moreover, letsB represent the state

for which the plan leading tosB was last output by the algorithm; thusBB = g(sB).

24

If sB was generated befores, then becausef(s) = g(s) < g(sB), s should have

been discarded and was not added to theOPEN list, which is a contradiction. If

sB was generated afters, then becauseg(sB) ≥ g(s) = f(s), s should have been

discarded from theOPEN list when sB was added to theOPEN list and thuss

should not have been picked for expansion. Given thats was not discarded, we

haves = sB and thusPs represents the last solution output by the algorithm. As

shown above, none of the discarded nodes or nodes still in theOPEN list whens is

picked can lead to better solution thans, wheres represents the optimal solution.

¤

Discussion: Proposition 1 assumes that the heuristic estimateh is bounded and

this can always be done. For any given states, Equation 3.3 indicates thath∗(s) =

B(P B
s |s) = (U(s′)−U(s))−

∑
a∈P B

s

ca ≤ U(s′) =
∑
g∈s′

ug ≤
∑
g∈G

ug = UG. Therefore,

it is possible to safely assume that any heuristic estimate can be bounded so that

∀s : h(s) ≤ UG.

To simplify the discussion of the search algorithm described above, several as-

sumptions were made at the beginning of this section: all goals are soft, the heuristic

used is admissible, the planner is forward state space, and there are no constraints

beyond classical planning. If any of those assumptions is violated, then some ad-

justments to the main search algorithm are necessary or beneficial. First, if some

goals are “hard goals”, then only nodes satisfying all hard goals can be termination

nodes. Therefore, the condition for outputting the new bestfound plan needs to be

changed fromg(s′) > BB to (g(s′) > BB) ∧ (Gh ∈ s) whereGh is the set of all

hard goals.

Second, if the heuristic is inadmissible, then the final solution is not guaranteed

to be optimal. To preserve optimality, it is possible to place all generated nodes in

25

the OPEN list. Finally, if there are constraints beyond classical planning such as

metric resources or temporal constraints, then adjustments must be made to the state

representation. Indeed, in the case of temporal problems, other search algorithms

may be more suitable so that temporally expressive planningproblems can be han-

dled [27]. To these ends, Chapter 6 discusses the use of a different baseline planner

that is suitable for dealing with temporally expressive planning problems [24, 23]

for soft temporal deadlines.

26

Chapter 4

Solving for Goal Utility Dependencies

While solving for goals that have individual rewards offersits own set of challenges,

handling goal utility dependencies presents its own issues. If dependencies are de-

fined such that only positive reward is given for achieving a set of goals, then we

have the same problem as having individual rewards (i.e., for every goal set we can

define a dummy goal with reward that becomes true when the set becomes true).

However, with negative rewards the situation becomes more difficult in practice.

Indeed, heuristics based on ignoring delete lists of actions have difficulty picking

up on negative penalties. That is, when a goal independentlylooks beneficial but

gives a negative value when combined with other goals, simply generating dummy

sets will not work. The heuristic will assume the “cheapest path” to each goal set,

effectively making the assumption that only the positive benefits of goal achieve-

ment. The issue is that these heuristics typically only consider the cheapest cost

of goal reachability, ignoring decisions on whether to achieve particular sets of end

goals based on negative rewards.

This chapter discusses methods to handle problems with goalutility dependen-

cies. It first briefly discusses a technique that can extend certain integer program

(IP) encodings of planning problems to include constraintson goal utility depen-

dencies. The main disadvantage of this approach is that IP encodings of problems

require a limit on the plan length (i.e., it limits the planning horizon such that op-

timality can never be fully guaranteed), and therefore are only optimal to some

bound. Hence, we cover heuristics that combine planning graph methods with a

declarative integer program (IP) encoding. The first heuristics generate an IP en-

27

coding over the relaxed plan heuristic. In these heuristics, the IP encoding selects

a goal set along with an estimated cost for achieving it. Withthis method it is

possible to generate admissible and inadmissible heuristics, where the admissible

heuristic can guarantee optimal solutions when the search algorithm terminates.

The main innovation is the combination of a relaxed plan thathandles cost interac-

tions between goals and a declarative IP encoding that captures both mutual goal

achievement cost and goal utility dependencies. We then introduce and discuss an

IP-based admissible heuristic that relies on an action ordering relaxation, which

then is further relaxed to a linear program (LP). And finally,we discuss a learning

method that can be used to improve plan quality in some cases.

4.1 IP ENCODING FORPSPUD

Since classical planning problems can be solved by IP, and since IP provides a

natural way to incorporate numeric constraints and objective functions, it follows

thatPSPUD planning problems can be solved by IP as well.

This section discusses an IP formulation to handlePSPUD problems by extend-

ing the generalized single state change (G1SC) formulation[96]. Currently, the

G1SC formulation is the most effective IP formulation for solving classical plan-

ning problems, and it outperforms the previously developedIP formulation used to

solve PSP problems without utility dependencies [95].

The G1SC formulation represents the planning problem as a set of loosely cou-

pled network flow problems, where each network corresponds to one of the state

variables in the planning domain. The network nodes correspond to the state vari-

able values and the network arcs correspond to the value transitions. The planning

problem is to find a path (a sequence of actions) in each network such that, when

merged, they constitute a feasible plan. In the networks, nodes and arcs appear in

28

layers, where each layer represents a plan period. The layers are used to solve the

planning problem incrementally. That is, we start by performing reachability analy-

sis to find a lower bound on the number of layers necessary to solve the problem. If

no plan is found, all the networks are extended by one extra layer and the planning

problem is solved again. This process is repeated until a plan is found (see [96] for

a complete description of the G1SC formulation).

In order to deal with utility dependencies we incorporate four extensions to the

G1SC formulation:

• In PSPUD problems, not all goals have to be achieved for a plan to be feasible.

Therefore, we remove those constraints from the G1SC formulation which

state that goals must be achieved.

• For each goal utility dependency functionGk, we add a variablezGk
∈ {0, 1},

wherezGk
= 1 if all goals inGk are achieved, andzGk

= 0 otherwise.

• For each goal utility dependency functionGk, we add constraints to ensure

thatGk is satisfied if and only if all goalsg ∈ Gk are achieved, that is:

∑

f,g∈Dc:g∈Gk

yc,f,g,T − |Gk| + 1 ≤ zGk
(4.1)

zGk
≤

∑

f∈Dc

yc,f,g,T ∀g ∈ Dc : g ∈ Gk (4.2)

whereDc is the domain of a state variablec, yc,f,g,T ∈ {0, 1} are variables

of the IP problem that represent value changes in the state variables, andT is

the plan horizon.

• We create an objective function to maximize the net-benefit (utility minus

cost) of the plan.

29

MAX
∑

Gk

u(Gk)zGk
−

∑

a∈A,1≤t≤T

caxa,t (4.3)

whereu(Gk) represents the utility of satisfying the goal utility dependency

functionGk, andca represents the cost of executing actiona ∈ A.

The extended G1SC formulation is bounded length optimal (i.e., it generates

optimal plans for a plan horizonT). Global optimality cannot be guaranteed as

there could still be solutions with higher net benefit at longer plan horizons.

4.2 DELETE RELAXATION HEURISTICS FORGOAL UTILITY DEPENDENCIES

A relaxed planning graph is created by iteratively applyingall possible applicable

actions given the propositions available, thereby generating a union of the previ-

ously available propositions with the ones added by applying the actions. This can

provide a cost estimate on reaching a particular proposition by summing the cost of

each action applied to reach it, always keeping the minimum summed cost (i.e., the

cheapest cost to reach any proposition). This process is called cost propagation.

After this, we can extract a relaxed plan from the planning graph by finding the

supporting actions for the set of goals. The heuristic valueis typically taken from

the sum of the cost of all actions in the relaxed plan. If we could extract an optimal

relaxed plan the heuristic would be admissible. However, due to the difficulty of

this task (which is NP-hard [19]) greedier approaches are generally used (such as

preference for the cheapest supporting action at each step).

In these heuristic methods we estimate the costC(g) to achieve each goal [33].

Starting withC(f) = 0 for factsf in the initial stateI andC(f) = C(a) = ∞ for all

other facts and all actions, the propagation rules to estimate costs to achieve factsp

and to execute actionsa are:1

1ca, which is the execution cost ofa, is different fromC(a), which is the estimated cost to
enable the execution ofa (i.e., costs to achieve preconditions ofa)

30

• Facts:∀f : C(f) = MIN
f∈Add(a)

(C(a) + ca)

1. Max-prop:∀a ∈ A : C(a) = MAX
f∈Pre(a)

C(f) ; or

2. Sum-prop:∀a ∈ A : C(a) = Σ
f∈Pre(a)

C(f)

The update rules are used while extending a (relaxed) planning graph structure [11].

After the propagation is done (i.e., no costs change),C(g) is an estimate on the cost

to achieveg for each goalg ∈ G.

Deriving Heuristics from Propagated Costs

This dissertation will use the notationhx
y to name the heuristics. Herex is the

method used to define the goal utilities andy is the method used to estimate the

goal costs. The dependencies between goal utilities can be defined using the GAI

model (discussed in Chapter 2) while the dependencies between goal costs can be

estimated using relaxed plans.2

It is easy enough to observe that if we usemaxpropagation (max-prop), then

C(g) will underestimate the cost to achieveg while there is no such guarantee for

sumpropagation (sum-prop) [13]. With max propagation, we havean admissible

heuristic, allowing optimal solutions to be found. UsingC(g) calculated by the cost

propagation process outlined, we can estimate the achievable benefit value as:

hGAI = MAX
G′⊆G

[u(G′) − (MAX
g∈G′

C(g))] (4.4)

Notice part of the heuristic includes the local utility functions as defined in

Equation 2.2 (see Section 2.1). As such, the heuristic directly applies the GAI

model. If using max-prop, then Equation 4.4 will give thehGAI
max heuristic and if

2Given this notation, we can view the heuristic used in the plannerSapaPS [7] ashsum

relax
because

it sums the individual goal utilities and extracts a relaxedplan to estimate cost.

31

using sum-prop, it will give a correspondinghGAI
sum heuristic. WhilehGAI

max overes-

timates the real achievable benefit, there is no such guarantee for hGAI
sum . Recall

that since the problem involves maximizing net benefit, an heuristic that always

overestimates is required to maintain admissibility. The admissibility of hGAI
max is

maintained since the goal utility dependencies are solved for directly (with the cost

estimates frommaxpropagation) or in a relaxed fashion. In other words, sincemax

propagation provides an underestimate of individual costs, andhGAI
max solves the goal

utility dependencies exactly, its admissibility is maintained since the heuristic will

always provide an overestimate of total achievablenet benefit.

To handle the goal utility dependencies with the propagatedcost, the heuris-

tic solves the following integer program to get the final heuristic value, whereC

represents the propagated cost value:

• Binary Variables:

– ∀g ∈ G, ∀Gk ⊆ G, fu(Gk) 6= 0: create one binary integer variableXg,

XGk
.

• Constraints:

–
∑

g∈Gk

(1 − Xg) + XGk
≥ 1

– ∀g ∈ Gk : (1 − XGk
) + Xg ≥ 1

• Objective: MAX (
∑

fu(Gk) ∗ XGk
− C).

Relaxed Plan-based Heuristic

hGAI
max can easily offer a high overestimate on thenet benefit, since it relies on max

propagation, a weak estimate on the cost to achieve individual goals. ThehGAI
sum

heuristic, while more informative, relaxes the cost interaction and assumes that

32

plans achieving different goals are independent and do not overlap. To improve

on this, it is possible to adapt the relaxed plan heuristic, first introduced in the FF

planner [63], that solves a relaxation of the planning problem by delete effects (also

called the “delete list”). This heuristic offers improvements overhGAI
sum by taking

into account actions contributing to the achievement of several goals. The challenge

in extending it to PSP with goal utility dependencies is how to efficiently find a

high-benefit relaxed plan in the presence of both cost and utility dependencies.

Let GP+ ⊆ G be the set of goals achieved by the relaxed planP+. The relaxed

plan heuristic forPSPUD is:

h∗ GAI
relax = MAX

P+
u(GP+) −

∑

a∈P+

ca (4.5)

Note that Equation 4.5 looks like Equation 2.1 except that the optimal planP

in Equation 2.1 is replaced by the optimal relaxed planP+ (i.e., one achieving

maximum benefit for the relaxed problem) in Equation 4.5.h∗ GAI
relax overestimates

the real achievable benefit and can be used as an admissible heuristic in the search

to find the optimal solution forPSPUD problems.

While finding a satisfying relaxed planP+ for any given goal setGP+ ⊆ G

is polynomial, extractingh∗ GAI
relax requires finding an optimal relaxed plan (highest

benefit). This task is NP-hard even when we already know the optimal goal set

G∗
P+ and actions have uniform cost [19]. To approximateh∗ GAI

relax for PSPUD the

heuristic uses the following three steps. The first two stepswere introduced in the

plannerSapaPS while the third step is novel:

1. Greedily extract a low cost relaxed planP+ that achieves thelargestset of

achievable goals.

33

2. Capture the achievement cost dependencies between achievable goals using

the causal structure ofP+.

3. Pose the problem of extracting the optimal subplan withinP+ that takes both

cost and utility dependencies into account as an IP encoding. A solution

hGAI
relax of this IP encoding is used to estimateh∗ GAI

relax.

Step 1: Heuristically Extract a Low Cost Relaxed Plan: Let G′ ⊆ G be the

set of all achievable goals (C(g) < ∞). The heuristic uses the planning graph and

the propagated achievement costs to heuristically extracta low-cost relaxed plan to

supportG′ as follows:

1. Start with supported factsSF = I, subgoal setSG = G′ \ I and the relaxed

planP+ = ∅.

2. For eachg ∈ SG select a supporting actiona : g ∈ Add(a) with lowest

execution costC(a) value. Update:P+ ← P +∪{a}, SG ← SG∪ (Pre(a)\

SF) andSF ← SF ∪ Add(a).

3. Repeat untilSG = ∅.

This backtrack-free process is guaranteed to finish in time polynomial in the

number of actions.

Step 2: Build Cost Dependencies withinP+: Because certain actions contribute

to the achievement of multiple goals, there are dependencies between the costs to

achieve them. Those relations can be discovered by using thecausal structure of

the extracted relaxed planP+.

34

To capture the mutual dependencies between the goal achievement costs, the

heuristic finds the set of actions shared between different partial plans achieving

different goals. This uses the causal links in the relaxed planP+.

GS(a) =
⋃

p∈Effect(a)

GS(p) (4.6)

GS(p) =





p ∪ (
⋃

p∈Prec(a)

GS(a)) if p ∈ G

⋃
p∈Prec(a)

GS(a) if p 6∈ G
(4.7)

Using the above equations for each actiona, GS(a) contains the set of goalsg

thata contributes to, where the goal-supporting setsGS(a) represent the achieve-

ment cost dependencies between goals.

Step 3: Estimate the Maximum Achievable Benefit: In this step, the heuristic

combines the goal supporting setGS(a) found in the previous step with the goal

utility dependenciesfu to find the most beneficial relaxed planP ′ within P+. One

naive approach to findP ′ ⊆ P+ is to iterate over all2|GP+ | subsetsG′ ⊆ GP+

of goals, whereGP+ is the set of goals achieved byP+, and compare the benefit

of plansP ′ achievingG′. However, when|G| is large this approach becomes im-

practical. Therefore, the heuristic uses a declarative approach of setting up an IP

encoding with its solution representing the most beneficialrelaxed planP ′ ⊆ P+.

Note that while IP is generally slow, the number of actions inthe relaxed plan is

much smaller an IP encoding of the entire (relaxed) planninggraph, giving a rela-

tively reasonable heuristic solving time per node. The heuristic’s IP has constraints

representing the goal supporting setGS(a) found in the previous step. These en-

force the fact that if a given goalg is selected, then any action that contributes to

the achievement ofg should also be selected. The final heuristic IP encoding looks

35

very similar to that used forhGAI
max andhGAI

sum , with added constraints on the actions.

Specifically:

• Binary Variables:

– ∀a ∈ P, ∀g ∈ G, ∀Gk ⊆ G, fu(Gk) 6= 0: create one binary integer

variableXa, Xg, XGk
.

• Constraints:

– ∀a ∈ P, ∀g ∈ GS(a) : (1 − Xg) + Xa ≥ 1

–
∑

g∈Gk

(1 − Xg) + XGk
≥ 1

– ∀g ∈ Gk : (1 − XGk
) + Xg ≥ 1

• Objective: MAX (
∑

fu(Gk) ∗ XGk
− ΣXa ∗ ca)

Solving this IP encoding gives the benefit value of the most beneficial relaxed

planP ′ within P+. The benefit of thisP ′ plan can be used as ahGAI
relax heuristic to

guide search.

Evaluation

We implemented the heuristic framework on top of theSapaPS planner [7] and

compared it with the discussed IP-based encoding of a bounded-length version of

the planning problem. We call the heuristic plannerSPUDSand IP approachiPUD.

SPUDSis compared using the three heuristics we describe (hGAI
relax, hGAI

max , andhGAI
sum)

along with a version ofSapaPS whose heuristic ignores the goal utility dependen-

cies (but whose state evaluation does not).

iPUD runs with CPLEX 10.0, a commercial LP solver, while we uselp solve

version 5.5 (a free solver with a Java wrapper) to solve the IPencodings inSPUDS.

36

We found thatlp solve, while less powerful than CPLEX, has a shorter IP setup

time and is more suitable forSPUDS, which sets up an IP encoding at every search

node. All tests use a P4 2.66GHz/1GB RAM computer with a 600 second time

limit. SPUDSandSapaPS continuously find better solutions until a termination

criterion is met.

Test Problems:ThePSPUD problems were automatically generated from a subset

of the propositional planning benchmarks used in IPC3 and IPC5: In zenotravel,

airplanes move people between cities; insatellite, satellites turn to objects and take

pictures; inrovers, rovers navigate an area to take samples and images; and inTPP,

trucks visit markets to buy products.

For each domain, we implemented a Java program that parses the original prob-

lem files and generates thePSPUD version with action cost and goal utilities ran-

domly generated within appropriate upper and lower bounds.The set of goal de-

pendencies along with their utility values were also randomly generated. Thus, the

number of dependencies, size of the dependencies, set of goals involved, utility val-

ues and action costs were all selected within varied lower and upper bounds for each

domain. All goals are soft, and therefore planners can trivially solve each problem

with the null plan.

For these tests, we varied our bounds on action cost and goal set utility values

such that each domain focuses on different aspects of utility dependency. In zeno-

travel, ending a plan with people at various locations changes utility significantly,

and flying a person between locations has a cost that is only slightly less than the

individual utilities of achieving each goal. Thus, it is vital to have the certain sets

of people at various locations. In TPP, purchasing items hasa cost about equiv-

37

alent to the individual utility of having the item. However,having items together

can change the utility of a plan considerably. The idea is to simulate the benefit of

having several items together (e.g., to build a crate you need wood, nails, a hammer

and saw). The satellite domain removes the emphasis on cost.Here actions have

costs lower than the comparatively higher benefit of having several images (e.g.,

to produce a mosaic image). The domain also adds several negative goal utility

dependencies (i.e., substitution) by including negative utility for having certain sets

of images yet ending a plan by pointing to an inconvenient spot and having only a

few images (e.g., a “partial mosaic”). The rovers domain focuses on substitution as

having certain scientific data together can give redundant information and therefore

remove a large portion of utility gained by having them separate.

SapaPS has a heuristic that only takes cost dependencies into account, such

that it will remove goals from its heuristic calculation only if the cost of reaching

a goal appears greater than its reward. In TPP and zenotravel, the achievement

cost for a single goal is about equivalent to or is (more often) greater than the

reward obtained for the independent goal reward. Since theSapaPS heuristic looks

only at cost dependencies between goals, it is unlikely thatit will choose a good

(or very large) goal set in these domains. With the rovers andsatellite domains,

negative goal utility dependencies exist that effectivelynegate the benefit of simply

achieving goals one after the other. That is, it is often the case in those domains that

achieving two goals together has reward much less than the independent rewards

given for having both goals (such a strategy would yield a negative net benefit).

This is an especially pronounced feature of the satellite domain. In rovers, the cost

of navigating between waypoints where samples may be taken plays a role as well.

In the satellite domain, the heuristic ofSapaPS is likely to select an (incorrect)

38

large set of goals, having ignored negative goal utility dependencies, and in the

rovers domain, it may select an improper goal set due to goal utility dependencies

and action costs.

Analysis: The results in Figure 4.1 show the plan quality achieved by each planning

method (top graph) and the time to reach that quality (bottomgraph). On problems

where only the null plan was found, we indicate the extensivesearch for a better

plan by setting the time to 600 seconds. For every other instance, the time that the

best plan was found is shown. As the figure shows, the tested approaches varied

in their relative plan quality on each domain butSPUDSusing thehGAI
relax heuristic

always performed among the best.

Both the zenotravel and TPP domains involve gathering objects, though zeno-

travel focuses on delivering these objects as well. Positive utility dependencies play

an important role in these domains, since the cost of achieving a single goal often

outweighs the individual reward it gives. We see thatSapaPS does poorly, while the

SPUDSheuristics andiPUD fared much better. Since theSapaPS heuristic is not

informed about utility dependencies, this comes as no surprise. In easier problems,

thehGAI
sum heuristic tends to return plans of similar or equal quality as compared with

the other techniques used. However, as problem size increases,hGAI
sum begins to re-

turn plans of better quality, but still does worse thanhGAI
relax in terms of the overall

number of plans found with best quality. With the IP-only approach,iPUD, as the

size of the problem increases it is unable to find a good feasible solution.

For our version of the satellite domain, goal combinations remove utility from

the overall quality of plans. Also, the plans of higher quality tend to require many

actions. This can be seen in the quality of the plans thatiPUD returns. Its reach-

ability analysis is unable to properly estimate the distance to goals and it therefore

39

begins its solution searching at a small horizon. For thehGAI
relax heuristic, it turns out

that action selection helps guide search toward the goals.

For the rovers domain,iPUD does well on several problems. However, like

in the satellite domain, better quality plans require a larger horizon on some of

the problems than its initial horizon provides. This givesSPUDSwith the hGAI
relax

heuristic an edge overiPUD in 8 of the 20 problems. The heuristicshGAI
sum and

hGAI
max have information regarding utility dependencies, thoughhGAI

sum often performs

worse thanhGAI
relax (solving 5 of 20 problems with better quality plans) andhGAI

max is

only able to find the null plan in every problem instance for rovers, likely because it

cannot detect the cost dependencies between actions in thisversion of the domain.

Also of interest is the time it takes to solve each problem between the heuris-

tic search methods and the IP encoding used iniPUD. Since theSPUDSheuris-

tics solve an IP encoding at each search node, they take much longer to compute

on larger problems than the proceduralSapaPS heuristic. Unfortunately,SapaPS

lacks the heuristic guidance necessary to properly select goals with utility depen-

dencies. Though we found that the per-node IP encoding ofhGAI
relax increased the

amount of time spent per search node by 3 to 200 times over thatof SapaPS (with

the highest increases on larger problems),SPUDSwith the hGAI
relax heuristic does

better overall.

When reaching the time limit (600 seconds for our results),SapaPS , SPUDS

and iPUD return their best solution. InSPUDSandSapaPS this behavior comes

from the best first anytime search and withiPUD this behavior comes from the

CPLEX solver, which can return the best feasible solution found within a given time

limit. Insights can be obtained by observing the amount of time it takes to find the

solution that is eventually returned. We used the anytime behavior to illustrate the

40

scalability of each approach. Figure 4.2 shows, of problems10 through 20 in each

domain (i.e., the most difficult), which technique performsbest in terms of quality

throughout their search (e.g.,hGAI
relax has the best quality for 16 of the problems at

2 seconds). Of our approaches,hGAI
relax performs the best overall. In the 80 tested

problems, it solves 22 instances at 600 seconds better than any other planner. Also

interesting is that in 45 instances it obtains the best plan of the approaches or one

of similar quality (by “similar” we mean within 0.1% of the best solution).

4.3 AN ADMISSIBLE LP-BASED HEURISTIC FORGOAL UTILITY DEPENDEN-

CIES

While we have made efforts toward adapting relaxed plan heuristics for planning

problems with goal utility dependencies, there is still a mismatch in terms of opti-

mization. The overall best performing heuristic we have seen so far is inadmissible.

Instead, we would like an approach that has more of an optimization perspective.

A standard way of setting up a relaxation with an optimization perspective involves

(i) setting up an integer programming (IP) encoding for the problem and (ii) com-

puting a linear programming (LP) relaxation of this encoding. In addition to being

sensitive to the objectives of the optimization, such a relaxation is also sensitive

to more constraints within the problem. In the case of planning, negative interac-

tions between the actions, which is notoriously missing in the standard relaxed plan

heuristics, can be accounted for, potentially leading to better heuristic values. One

challenge in adopting this approach involves deciding on the exact type of IP en-

coding for the PSP problem. Although we have experimented with IP encodings

for PSP in the previous section, such encodings are better suited for problems with

bounded horizons. The normal idea in bounded horizon planning is to put a bound

on the number of plan steps. While this idea works for finding feasible plans, it

41

does not work for finding optimal plans since it is not clear what bound is required

to guarantee optimality. We adopt an encoding that is not dependent on the horizon

bound. In particular, we describe a compact causal encodingfor action selection

that accounts for the delete effects of the actions but ignores action ordering. This

provides an admissible heuristic.

Our formulation is based on domain transition graphs, first used in the planner

Fast Downward [59]. Each of the graphs represents a variablein the multi-valued

SAS+ formalism [3] with a value of a variable existing as a vector and effects as

arcs between them. We define a network flow problem over each ofthem. Side

constraints are introduced to handle pre-, post-, and prevail-conditions of actions.

Additionally, we incorporate parameters, variables, and constraints to handle as-

pects of goal utility dependencies. Unlike a bounded-horizon (or step) encoding,

our encoding is more compact and needs no estimates on plan size for its genera-

tion.

After solving for the LP formulation, we can perform a lookahead, similar to

what we usually do in our best-first search algorithm when we perform satisficing

search (i.e., search using inadmissible heuristics). One difference is that we can

extract the relaxed plan using the LP solution as guidance. That is, during a relaxed

plan extraction process, if an action is in the LP solution aswell as in the planning

graph, we select it. This can occasionally improve quality of solutions over a similar

lookahead using an relaxed plan extraction process that is directed by cost.

LP Heuristic

We present a novel admissible heuristic that solves a relaxation of the original

PSP UD problem by using the LP-relaxation of an IP formulation. We build on the

heuristic discussed in [93] for classical planning. While most heuristics ignore the

42

delete effects of the actions, this heuristic accounts for the delete effects, but ignores

action orderings instead. The formulation that we describeis based on the SAS+

planning formalism [3], where a SAS+ planning task is a tupleΠ = 〈V, A, s0, s∗〉

such thatV = {v1, . . . , vn} represents a set of state variables,A is a finite set of

actions,s0 indicates the initial state ands∗ denotes the goal variable assignments.

Eachv ∈ V has a domainDv and takes a single valuef from it in each states,

stated ass[v] = f . Each actiona ∈ A includes a set of preconditions,pre(a),

post-conditions,post(a), and prevail conditions,prev(a).

Previous work has shown that we can translate classical (STRIPS) planning

problems into SAS+ planning problems [35, 60], and we use this translation process

for generating our heuristic.

We define a SAS+ planning task as a tupleP = (V, s0,G,A), whereV =

{v1, ..., vn} is a finite set of variables. Each variablev ∈ V has an associated finite

domainDc. We write s(v) to denote the value of variablev in states, wheres

is called a partial state ifs(v) is defined for some subset ofV , ands is called a

state ifs(v) is defined for allv ∈ V . s0 is a state called the initial state andG is

a partial state called the goal.A is a finite set of actions. Each actiona ∈ A is of

the form〈pre, post, prev〉, wherepreandpostdescribe the effects of the action and

prev describes the prevail conditions of the action. We writeeff(a, v) to denote

the effect of actiona in variablev andprev(a, v) to denote the the prevail condition

of a in v.

We writec(a) to denote the cost of executing actiona, andu(Gk) to denote the

utility of achieving goal utility dependencyk. The utility of a (partial) states is

given by the sum of all goal utility dependencies satisfied bys. That is,u(s) =

43

∑
k∈K:Gk∈s u(Gk). Our objective is to find a planπ that maximizesnet benefit,

which is given by utility minus cost.

We map this problem into an IP formulation in which the ordering of the actions

is ignored. Hence, the formulation is not dependent on the length of the plan and, as

a result, only a single IP variable is required for each action. It ignores the ordering

of actions and thus is a relaxed formulation of the original problem. After having

the IP formulation, which gives an admissible heuristic, wecall hGAI
IP , we use the

solution to its LP relaxation as a further relaxed admissible heuristic that we call

hGAI
LP . A discussion of the admissibility of the heuristic is foundin Appendix A.

The IP formulation models each variable in the planning problem as an appro-

priately defined network flow problem. Interactions betweenthe variables, which

are the result of the action effects and prevail conditions,are modeled as side con-

straints on the network flow problems. Informally, the formulation seeks to maxi-

mize net benefit subject to five sets of constraints: goal constraints, network flow

constraints, linking constraints, prevail constraints, and goal utility dependency

constraints.

The goal constraints ensure that the hard goals are satisfied, the network flow

constraints model the multi-valued fluents, the linking constraints link the action

variables with the network flows, the prevail constraints state the conditions for

satisfying prevail conditions, and the goal utility dependency constraints state the

conditions for satisfying the goal utility dependencies.

Parameters.In order to describe our formulation, we introduce three parameters:

• cost(a): the cost of actiona ∈ A.

• utility(v, f): the utility of achieving the valuef in state variablev in the

goal state.
44

• utility(k): the utility of achieving the goal utility dependencyGk in the goal

state.

Variables. We define five types of variables: (1) Action variables are used to indi-

cate the number of times an action is executed; (2) End value variables are used to

indicate which value is satisfied at the end of the solution plan; (3) Effect variables

indicate the number of times an effect is executed; (4) prevail variables indicate the

number of times a prevail condition is required; and finally,(5) goal dependency

variables indicate which goal dependencies are satisfied atthe end of the solution

plan.

• action(a) ∈ Z
+: the number of times actiona ∈ A is executed.

• effect(a, v, e) ∈ Z
+: the number of times that effecte in state variablev is

caused by actiona.

• prevail(a, v, f) ∈ Z
+: the number of times that the prevail conditionf in

state variablev is required by actiona.

• endvalue(v, f) ∈ {0, 1}: is equal to 1 if valuef in state variablev is achieved

at the end of the solution plan, 0 otherwise.

• goaldep(k) ∈ {0, 1}: is equal to 1 if goal utility dependencyGk is satisfied,

0 otherwise.

Constraints. The constraints are defined as follows:

• Goal constraints for eachv ∈ V , f ∈ Dv such thatf ∈ Gv. If f is a goal of

v thenf must be the end value ofv.

endvalaue(v, f) = 1 (4.8)

45

• Network flow constraints for eachv ∈ V , f ∈ Dv. If a value is deletedn

times then it must be addedn times. For each variable value there must be a

balance of flow (i.e., the number of deletions equals the number additions).

If f ∈ s0[v] is the initial state ofv, thenf is added by means of a constant.

Similarly, if f ∈ Gv is a goal, or the end value ofv thenf is deleted by means

of theendvalue(v, f) variable.

1{if f ∈ s0[v]} +
∑

effects transition tof

effect(a, v, e) =

∑

effects that transition fromf

effect(a, v, e) + endvalaue(v, f)

(4.9)

• Linking constraints for eacha ∈ A andv ∈ V . Action variables are linked

to their respective effect and prevail variables. Generally there is only one

effect or prevail variable per action per variable. Hence, linking constraints

would normally be defined asaction(a) = effect(a, v, e) or action(a) =

prevail(a, v, f). If an action is executedn times, then its effect or prevail

condition must be executedn times. The SAS+ formalism, however, allows

the precondition of an action to be undefined [3]. We model this by using a

separate effect or prevail variable for each possible pre-condition.

action(a) =
∑

effects ofa in v

effect(a, v, e)

+
∑

prevails ofa in v

prevail(a, v, f)
(4.10)

• Prevail implication constraints for eacha ∈ A, v ∈ V , f ∈ Dv. If a prevail

condition is executed then the corresponding value must be added at least

once. In other words, if there is a prevail condition valuef , thenf must be

46

added. We set M to an arbitrarily large value.

1{if f ∈ s0[v]} +
∑

effects that transition tof

effect(a, v, e) ≥ (4.11)

∑

actions with prevail onf

prevail(a, v, f)/M (4.12)

• Goal dependency constraints for each goal utility dependency k. All values

of the goal utility dependency are achieved at the end of the solution plan if

and only if the goal utility dependency is satisfied.

goaldep(k) ≥
∑

f in dependencyk

endvalue(v, f) − (|Gk| − 1) (4.13)

goaldep(k) ≤ endvalue(v, f) ∀f in dependencyk (4.14)

Example: To illustrate the heuristic, let us consider a transportation problem where

we must deliver a person,per1 to a location,loc2 using a plane,p1, and must end

with the plan atloc3. The cost of flying fromloc1 to loc2 is 150, fromloc1 to loc3

is 100, fromloc3 to loc2 is 200, and fromloc2 to loc3 is 100. To keep the example

simple, we startper1 in p1. There is a cost of 1 for droppingper1off. Havingper1

andp1 at their respective destinations each give us a utility of 1000 (for a total of

2000). Figure 4.3 shows an illustration of the example with each edge labelled with

the cost of travelling in the indicated direction (not shownare the utility values for

each individual goal).

The optimal plan for this problem is apparent. With a total cost of 251, we can

fly from loc1 to loc2, drop off per1, then fly toloc3. Recall that the LP heuristic,

while it relaxes action ordering, works over SAS+ multi-valued fluents. The trans-

lation to SAS+ captures the fact that the plane,p1, can be assigned to only a single

location. This is in contrast to planning graph based heuristics that ignore delete
47

lists. Such heuristics consider the possibility that objects can exist in more than

one location at a given step in the relaxed problem. Therefore, at the initial state,

a planning graph based heuristic would return a relaxed plan(RP) that allowed the

planep1 to fly from loc1 to loc2, andloc1 to loc3, putting it in multiple places at

once.

In contrast, the solution from the LP-based heuristic for this problem at the

initial state includes every action in the optimal plan. In fact, “1.0” is the value re-

turned for these actions.3 Though this is a small example, the behavior is indicative

of the fact that the LP, through the encoding of multi-valuedfluents, is aware that

a plane cannot be wholly in more than one place at a time. In this case, the value

returned (thenet benefit, or 2000 − 251 = 1749) gives us the perfect heuristic.

To use this solution as a candidate in the branch and bound search described in

the next section, we would like to be able to simulate the execution of the relaxed

plan. For the example problem, this would allow us to reach the goal optimally.

But because our encoding provides no action ordering, we cannot expect to prop-

erly execute actions given to us by the LP. For this example, it appears that a greedy

approach might work. That is, we could iterate through the available actions and

execute them as they become applicable. Indeed, we eventually follow a greedy

procedure. However, blindly going through the unordered actions leads us to situ-

ations where we may “skip” operations necessary to reach thegoals. Additionally,

the LP may return values other than “1.0” for actions. Therefore, we have two is-

sues to handle when considering the simulation of action execution to bring us to

a better state. Namely, we must deal with cases where the LP returns non-integer

3The equivalent to what is given byhGAI
IP

.

48

values on the action variables and simultaneously considerhow to order the actions

given to us.

Using an LP for Guidance to Extract a Relaxed Plan:We should only extract

plans for sets of goals that appear to be beneficial (i.e., provide a highnet benefit).

We can use the LP for this, as it returns a choice of goals. Given that the LP can

produce real number values on each variable (in this case a goal variable), we give

a threshold,θG on their value. For every goalg, there is a value assignment given

by the LP,V alue(g). If V alue(g) ≥ θG then we select that goal to be used in the

plan extraction process.

The main idea for extracting a relaxed plan using the LP solution as guidance

is to prefer those actions that are selected in the LP solution. When extracting a

relaxed plan, we first look at actions supporting propositions that are of the least

propagated cost and part of the LP solution. If no such actions support these propo-

sitions, we default to the procedure of taking the action with the least propagated

cost. Again, since the LP encoding can produce fractional values, we place a thresh-

old on action selection,θA. If an action variableaction(a), is greater than the

threshold,action(a) ≥ θA, then that action is preferred in the relaxed plan extrac-

tion process given the described procedure.

To see why the LP makes an impact on the relaxed plans we extract, let us

revisit our ongoing example. Figure 4.4 shows the relaxed planning graph with

each action and proposition labeled with the minimum cost for reaching it (using a

summing cost propagation procedure). Recall that we want tobias our relaxed plan

extraction process toward the actions in the LP because it contains information that

the planning graph lacks–namely, negative interactions.

49

Assume that the LP solver returns the action set{fly(loc1, loc2), fly(loc2, loc3),

drop(p1, loc2)}. Given that both goals are chosen by the LP, we place both goals

into the set of open conditions. We have three layers in the graph, and so we

progress backward from layer 3 to 1. We begin with the least expensive goal at

the last level and find its cheapest action,fly(loc1,loc3). Since this action is not

part of the LP solution (i.e., its value is 0), we move on to thenext least expensive

supporting action,fly(loc2,loc3). This action is in LP’s returned list of actions and

therefore it is chosen to satisfy the goalat(p1,loc3). Next, we support the open con-

dition at(per1,loc2)with drop(per1,loc2). This action is in the LP. We add the new

open conditionat(p1,loc2)then satisfy it with the actionfly(loc1,loc2). We now

have the final relaxed plan by reversing the order in which theactions were added.

Note that without the LP bias we would have the plan{fly(loc1,loc2), fly(loc1,loc3),

drop(per1,loc2)}, which is only partially executable in the original planning prob-

lem.

Evaluation

We created a planner called BBOP-LP (Branch and Bound Over-subscription Plan-

ning using Linear Programming, pronounced “bee-bop-a-loop”) on top of the frame-

work used for the planner SPUDS.hGAI
LP was implemented using the commercial

solver CPLEX 10. All experiments were run on a 3.2 GHz PentiumD with 1 GB

of RAM allocated to the planners.

The system was compared against SPUDS and two of its heuristics,hGAI
relax and

hGAI
max . Recall that the heuristichGAI

relax greedily extracts a relaxed plan from its plan-

ning graph then uses an IP encoding of the relaxed plan to remove goals that look

unpromising. Using this heuristic, it also simulates the execution of the final relaxed

plan as a macro action at each state. The other heuristic in SPUDS that we look at,

50

hGAI
max , is admissible and performs max cost propagation (i.e., it takes the maximum

reachability cost among supporters of any predicate or action) on the planning graph

but does not extract a relaxed plan (and so performs no macro lookahead). It uses

the propagated costs of the goals on a planning graph and tries to minimize the set

using an IP encoding for the goal utility dependencies.

We use the BBOP-LP system with three separate options. Specifically, we use

thehGAI
LP heuristic without extracting a relaxed plan for simulation, thehGAI

LP heuris-

tic with the LP-based heuristic extraction process, and thehGAI
LP heuristic with a

cost-based heuristic extraction process. The search terminates only when a global

optimal solution is found (or time runs out). A goal and action threshold for the LP-

based extraction of 0.01 was used.4 SPUDS, using an anytime best-first search with

the admissiblehGAI
max heuristic, will also terminate when finding an optimal solution

(or a timeout). Note that it is possible that SPUDS using the inadmissiblehGAI
relax

heuristic will terminate without having found an optimal solution (i.e., whenever it

chooses to expand a node whereh = 0). Recall that SPUDS usinghGAI
relax will also

simulate the execution of the relaxed plan. Each of the planners is run with a time

limit of 10 minutes.

Problems: We tested our heuristics using variants of three domains from the3rd

International Planning Competition [74]:zenotravel, satellite, androvers. We use a

different reward structure from the problems in our previous tests. Thesatelliteand

rovershave more positive goal utility dependencies, increased reward for individual

goals and decreased negative goal utility dependencies. Therefore, these domains

are likely to have more positivenet benefitgoal sets than in our previous tests. In

4In our experiments, this threshold provided overall betterresults over other, higher values for
θA andθG that were tested.

51

zenotravel, moving between locations has a cost about half that of each individual

goal reward. We also added more negative goal utility dependencies to this domain.

We tested on theTPPdomain, but all varieties we attempted returned similarly-

valued plans for nearly all of the problems on each of the methods (with a few

minor exceptions). Therefore, we do not discuss results forthis domain.

Analysis: Figure 4.5 shows the results of running the planners in termsof thenet

benefitof the solutions found and the time it took to search for the given solution

value. In 13 of the problems thehGAI
LP heuristic with the LP-based relaxed plan

lookahead technique performed best. In fact, in only four ofthe problem instances

is this method returningnet benefitvalue less than one of the other methods (zeno-

travelproblems 14 through 17).

Searching with thehGAI
LP heuristic allowed us to find the optimal plan in 15 of

the 60 problems, where it exhausted the search space. We contrast this tohGAI
max ,

which exhausted the search space in only 2 of the problems (the first twozeno-

travel problems). However, to the credit ofhGAI
max , it was able to come close to

finding near-optimal solutions in some cases in all of the domains. The new re-

ward structure effectively makes the “best” goal set take longer to reach than in our

previous experiments (i.e., it sometimes requires more actions to reach the better

goal set). Hence,hGAI
max finds plans that give reward inroversunlike in our previ-

ous tests, and is unable to find the plans equivalent tohGAI
relax. BetweenhGAI

max and

hGAI
LP (without a lookahead), it turns out thathGAI

max gets plans of better net benefit

in 3 of the problems inzenotravel, 1 problem insatelliteand 8 problems inrovers.

However, given the heuristics and search methodology this entails simply collect-

ing more rewards during the search process. Therefore, it’sdifficult to say how this

relates to scalability. However, one advantagehGAI
LP has is that it is informed as to

52

the negative interactions between actions (unlikehGAI
max andhGAI

relax), so is likely to

have a higher degree of informedness (especially as it nearsindividual goals).

We note that the LP-based relaxed plan lookahead is often better than the other

methods (in 13 cases). The differences, however, are usually not significant from

the cost-based relaxed plan lookahead. One obvious reason is that both are designed

to reach the same LP-selected goals, while the LP-based extracted relaxed plan is

informed as to the negative interactions that exist within the problem (e.g., a plane

cannot be in more than one place at a time). This has the side-effect that unjustified

actions [41] (i.e., actions that do not contribute to the goal) are not considered as

often for the lookahead. In our example we saw a best-case scenario of this.

Related,hGAI
relax can be fairly accurate in its assessment of which goals to choose,

but this can be to its detriment (especially with its way of pruning relaxed plans and

performing a lookahead). While it is perhaps ultimately pursuing the “best” sub-

set of goals, if the search cannot actually reach thatcompletesubset within the

computational time limit, we will not get all reward for it and will likely miss the

“second best” goal subset as well. Consider the problem of booking a vacation.

A person would want a plane ticket, a hotel reservation, and perhaps a rental car.

It is easy enough to see that booking a rental car without the plane ticket or ho-

tel reservation is a foolhardy plan. Stopping short of the entire goal set by getting

only the car would be unbeneficial. It turns out thathGAI
relax, even with a lookahead,

can end up collecting goals that produce negative interactions (through goal utility

dependencies and cost dependencies), but over time may be unable to achieve ad-

ditional goals that can offset this.hGAI
LP , while greedier, pursues a larger number of

the goals initially. With limited computational time, thiscan be a better strategy in

these problems to find higher quality satisficing solutions.Note that, even in the oc-

53

casions wherehGAI
LP is calculated significantly more slowly thanhGAI

relax, as happens

in the more difficult problems ofzenotravel5, hGAI
LP appears to give better quality

plans. This is likely due to its heuristic guidance and/or the lookahead.

4.4 IMPROVING NET BENEFIT THROUGH LEARNING TECHNIQUES

Use of learning techniques to improve the performance of automated planners was

a flourishing enterprise in the late eighties and early nineties, but has however

dropped off the radar in the recent years [100]. One apparentreason for this is

the tremendous scale-up of plan synthesis algorithms in thelast decade fueled by

powerful domain-independent heuristics. While early planners needed learning to

solve even toy problems, the orthogonal approach of improved heuristics proved

sufficiently powerful to reduce the need for learning as a crutch.

However, this situation changing again, with learning becoming an integral part

of planning, as automated planners move from restrictive classical planning prob-

lems to focus on increasingly complex classes of problems.6 Like other planning

problems, a dominant approach for PSP problems is forward state space search

and one challenge in improving these planners has been in developing effective

heuristics that take cost and utility dependencies into account. This section of our

work [99] aims to investigate if it is possible to boost the heuristic search with the

help of learning techniques. Given the optimizing nature ofPSP, we were drawn

in particular to STAGE [15], which had shown significant promise for improving

search in optimization contexts.

5Forzenotravelproblem 20, the initial state took 47 seconds (though due to the way the CPLEX
solver works, it likely takes much less time per node).

6One sign of this renewed interest is the fact that for the firsttime, in 2008, the International
Planning Competition had a track devoted to planners that employ learning techniques. This track
was also held in the 2011 International Planning Competition.

54

STAGE is an online learning approach that was originally invented to improve

the performance of random-restart hill-climbing techniques on optimization prob-

lems. Rather than resort to random restarts which may or may not help the base-

level search escape local minimum, STAGE aims to learn a policy to intelligently

generate restart states that are likely to lead the hill-climbing search towards signif-

icantly better local optima. The algorithm proceeds in two iterated stages. In the

first stage, the base-level hill-climbing search is run until it reaches a local mini-

mum. This is followed by a learning phase where STAGE trains on the sequence of

states that the hill-climbing search passed through in order to learn a function that

predicts, for any given states, the valuev of the optima that will be reached froms

by hill climbing. This learned function is then used in the second stage (alternative)

local search to scout for a states′ (that has the highest promise of reaching a better

state). If the learner is effective,s′ is expected to be a good restart point for the

base-level search. The stages are then repeated starting with s′ as the initial point.

The main challenge in adapting the STAGE approach to PSP involves find-

ing appropriate state features to drive the learner. In their original work, Boyan

and Moore [15] usedhand-craftedstate features to drive learning. While this may

be reasonable for the applications they considered, it is infeasible for us to hand-

generate features for every planning domain and problem. Moreover, such man-

ual intervention runs counter to the basic tenets of domain-independent planning.

Rather, we would like the features to be generated automatically from the problem

and domain specifications. To this end, we developed two techniques for generating

features. The first uses “facts” of the states and the actionsleading to those states as

features. The second, more sophisticated idea uses a Taxonomic syntax to generate

higher level features [77]. We are not aware of any other workthat used the STAGE

55

approach in the context of automatically generated features. We implemented both

these feature generation techniques and used them to adapt avariant of the STAGE

approach to support online learning in solving PSP problems. These differ from

methods that refine features, such as those done by Fawcett [39]. We compared

the performance of our online learning system to a baseline heuristic search ap-

proach for solving these planning problems (c.f. [29]). Ourresults convincingly

demonstrate the promise of our learning approach. Particularly, our on-line learn-

ing system outperforms the baseline system including the learning time, which is

typically ignored in prior studies in learning and planning.

The contributions of this are thus twofold. First, we demonstrate that the per-

formance of heuristic search planners in PSP domains can be improved with the

help of online learning techniques. There has been little prior work on learning

techniques to improve plan quality. Second, we show that it is possible to retain the

effectiveness of the STAGE approach without resorting to hand-crafted features.

In the following sections, we give details of our automated feature generation

techniques. Then we show a comparison of the performance of our online learn-

ing approach with the baseline heuristic search planner (using hGAI
relax but without

lookahead techniques as typically used in variants ofSapaPS).

Preliminaries

We first provide a few preliminaries on our representation ofthe problem for our

feature generation and on the STAGE approach in general.

Problem Representation: To employ our automatic feature generation methods,

we provide a representation of PSP that breaks down the planning problem into

components typically seen in domain and problem definitions. Specifically, we

define a PSP problemP o as a tuple of(O, P, Y, I,G, U, C), whereO is a set of

56

constants,P is a set of available predicates andY is a set of available action schema.

A fact p ∈ P is associated with the appropriate set of constants inO. P is a set of

all facts. A states is a set of facts andI is the initial state. Additionally, we define

the set of grounded actionsA, where eacha ∈ A is generated fromy ∈ Y applied

to appropriate set of constants inO. We define actions as we did previously, where

each actiona ∈ A consists of preconditionpre(a) which must be met in the current

state before applyinga, add(a) describes the set of added facts after applyinga and

del(a) describes the set of deleted facts after applyinga. C is a cost function that

maps an actiona to a real valued cost,C : a → R. We define our goalsG and

utility functionsU as in Section 2.

STAGE: STAGE [15] learns a policy for intelligently predicting restart points for

a base-level random-restart hill-climbing strategy. It works by alternating between

two search strategies, called O-SEARCH and S-SEARCH. O-SEARCH is the base-

level local search which hill-climbs with some natural objective functionO for the

underlying problem (e.g., number of bins used in the bin-packing problem). The

S-SEARCH works to scout for good restart points for the O-SEARCH.

The O-SEARCH is run first until, for example, the hill climbing reaches a local

minimum. LetT = s0, s1, . . . , sn be the trajectory of states visited by the O-

SEARCH, and leto∗(si) = bestj>iO(sj) be the objective function value of the best

state found on this trajectory aftersi. STAGE now tries to learn a functionV to

predict that any states′ that is similar to the statesi on the trajectoryT , will lead

the hill-climbing strategy to an optima of valueo∗(si).

In the next phase, S-SEARCH is run usingV as the objective function, to find

a states that will provide a good vantage point for restarting the O-SEARCH. S-

SEARCHnormally starts fromsn, the state at the end of the trajectory of the previous

57

O-SEARCH (although theoretically it can start from any random state,including the

initial state).7

This sequence of O-SEARCH, learning and S-SEARCH are iterated to provide

multiple restarts for the O-SEARCH. As we go through additional iterations, the

training data for the regression learner increases monotonically. For example, after

the O-SEARCH goes though a second trajectoryT2 : s2
0, . . . , s

2
n where the best

objective value encountered in the trajectory after states2
j is o2

∗(sj), in addition to

the training data from the first O-SEARCH si → o∗(si), we also have the training

datas2
j → o2

∗(s
2
j). The regression is re-done to find a newV function which is then

used for driving S-SEARCH in the next iteration.

Boyan and Moore [15] showed that the STAGE approach is effective across a

broad class of optimization problems. The critical indicator of STAGE’s success

turns out to be availability of good state features that can support effective (re-

gression) learning. In all the problems that Boyan and Mooreinvestigated, they

provided hand-crafted state features that are customized to the problem. One of the

features used for bin-packing problems, for example, is thevariance of bin fullness.

As we shall see, an important contribution of our work is to show that it is possible

to drive STAGE with automatically generated features.

Adapting STAGE to Partial Satisfaction Planning

Automated Feature Generation: One key challenge in adapting the STAGE ap-

proach to domain-independent PSP stems from the difficulty in handling the wide

variety of feature space between planning domains. While task-dependent features

often appear obvious in many optimization problems, domain-independent prob-

7In fact, if we can easily find the global optimum ofV , that would be the ideal restart point for
the O-SEARCH. This is normally impossible becauseV might be learned with respect to nonlinear
(hand-selected) features of state. The inverse image ofV on the state space forms its own complex
optimization problem, thus necessitating a second local search.

58

lem solvers (such as typical planning systems) generally require a different set of

features for each domain. Producing such features by hand isimpractical and it is

undesirable to require users of a planning system to providesuch a set. Instead, we

use automated methods for feature construction.

In our work, we experimented with two methods for feature generation. One

method derives propositional features for each problem from the ground problem

facts. The other derives relational features for each domain using a Taxonomic syn-

tax [77]. We describe both below. An important difference between Taxonomic

and propositional feature sets is that the former remains the same for each domain,

while the latter changes from problem to problem even in the same domain. Thus,

the number of propositional features grows with the size of problems while Taxo-

nomic features does not.

Propositional Features: In a propositional feature set, each fact in the state rep-

resents a feature. Intuitively, if there is some important fact f that contributes to

the achievement of some goal or a goal by itself, then states that include the fact

should be valued high. In other words, a binary feature that is true with the factf ,

should be weighted higher for the target value function. It is then natural to have all

the potential state facts or propositions as a feature set. This intuitive idea has been

tested in a probabilistic planning system [17]. In their case, the features were used

to learn policies rather than value functions. Given constantsO and predicatesP in

a PSP problemP o, we can enumerate all the ground factsP. Each ground fact is

made into a binary feature, with the value of the feature being truewhen the fact is

in the current state. We call the planning and learning system that uses these binary

features a “Propositional” system.

59

Relational Features: Although the propositional feature set in the previous sub-

section is intuitive and a simple method to implement, it cannot represent more

sophisticated properties of the domain, where relations between state facts are im-

portant, e.g., conjunction or disjunction of the facts.

Our second approach involves relational (object-oriented) features. For many

of the planning domains, it is natural to reason with objectsin the domain. In

particular, it is reasonable to express the value of a state in terms of objects. For

example, in a logistics domain, the distance to the goal can be well represented with

“number of packages not delivered”. Here, the “packages that are not delivered yet”

are a good set of objects that indicates the distance to the goal. If we can provide a

means to represent a set of objects with such a property, thenthe cardinality of the

set could be a good feature for the value function to learn.

Taxonomic syntax [77] provides a convenient framework for these expressions.

In what follows, we review Taxonomic syntax and we define our feature space with

Taxonomic syntax.

Taxonomic Syntax:A relational databaseR is a collection of ground predicates,

where ground predicates are applications of predicatesp ∈ P to the correspond-

ing set of objects(o ∈ O). Each state in a planning problem is a good example

for a relational database. We prepend a special symbolg if the predicate is from

goal description andc if the predicate is both true in the current state and the goal

state.c predicates are a syntactic convenience to express means-ends analysis [78].

Note that goal information is also part of state information. An example relational

database (a state from a Logisticsworld domain) is shown in Figure 4.6. In this

example, there are two packagespackage1andpackage2. package2is not at the

60

goal location andpackage1is at the goal location. So there is additional fact, (cat

package1 location1).

Taxonomic syntaxC is defined as follows,

C = a-thing|(p C1 . . . ? . . . Cn(p))|C ∩ C|¬C

It consists ofa-thing, predicates with one position in the argument are left for

the output of the syntax, while other positions are filled with other class expressions,

intersections of class expressions and negations of a classexpression.n(p) is the

arity of the predicatep. We define depthd(C) for enumeration purposes.a-thing

has depth 0 and class expression with one argument predicatehas depth 1.

d((p C1 . . . ? . . . Cn(p))) = max d(Ci) + 1

Taxonomic Syntax Semantics:Taxonomic syntaxC[R] against a relational

databaseR describes sets of objects.a-thing describes all the objects inR. In

the example in Figure 4.6, they are (city1, truck1, package1, package2, location1,

location2). (p C1 . . . ? . . . Cn(p)) describes a set of objectsO that make

the predicatep true inR whenO is placed in the ? position while other positions

are filled with the objects that belong to the corresponding class expression. For

example, considerC = (cat ? a-thing) and letR be the relational database in

Figure 4.6. C[R] is then (package1). Among all the objects, only package1 can

fill in the ? position and make the (cat package1 location1) predicate true. Note

thata-thing allows any object, including location1. As another example, consider

C ′ = (at ? a-thing). C ′[R] is then (package1, truck1, package2). It is worth-

while to speculate the meaning ofC. It indicates all the objects that fill in the first

61

argument position ofcat and make the predicate true in the Logisticsworld, which

means all the objects that are already in the goal.

Feature Generation Function for Partial Satisfaction Planning: We enumer-

ate limited depth class expressions from the domain definition. a-thing is in-

cluded in the feature set by default. Recall the planning domain definition,P o =

(O, P, Y, I, G, U, C). UsingP , the set of predicates, we can enumerate Taxonomic

features. First, for all the predicates, except one argument position, we fill all the

other argument positions witha-thing. This set constitutes the depth 1 Taxonomic

features. For the Logisticsworld,C andC ′ in the above corresponds to this set of

depth 1 features. Depthn features can then be easily enumerated by allowing depth

n − 1 Taxonomic syntax in other argument positions than the output position. For

example,(at ¬(cat ? a-thing) ?) is a depth 2 feature, which is constructed

by using a depth 1 Taxonomic feature at the first argument position. The meaning

of this feature is “the location where a package is not yet in the goal location”. In

our experiments, we used depth 2. We could use deeper Taxonomic features, but

this increased the solving time during the enumeration and evaluation process. We

call the planning and learning system that uses the class expression feature set a

“Taxonomic” system. The value of the Taxonomic features is the cardinality of the

Taxonomic expressions, which gives out sets of objects. This makes the features

appropriate for value function learning.

In both the “Propositional” and “Taxonomic” feature sets, we also use actions

involved as part of the features. Each state in PSP includes atrace of the actions

that led the initial state to the current state. For the “Taxonomic” feature set, we

union these actions with state facts for the relational database construction. The

semantics of this database straightforwardly follow from Taxonomic syntax. For

62

the “Propositional” feature set, we also enumerate all the potential ground actions

and assign a binary value 1 if they appear in the actions that led to the state.

Evaluation

To test our approach, we again used variations of domains from the 3rd International

Planning Competition (except for TPP). Our experiments usea “vanilla” version of

the search withhGAI
relax (i.e., it does not perform a lookahead). We used a 2.8 GHz

Xeon processor for our tests. For our training data, we usedn = 1000 evaluated

states and set the timeout for each problem to 30 minutes of CPU time 8. We

implemented our system on top of our search framework and used hGAI
relax without

a relaxed plan lookahead as a baseline search. Note that the learning time was not

significant, as the number of automated features generated was typically less than

10,000. This effectively enables our system to perform on-line learning.

To learn from the feature sets, we used a linear regression fit. That is, given

our features, we learn a linear function that will output an estimated reward and use

this function to determine the “best” rewardnet benefitstate from which to restart.

To find this function, we used two different libraries for ourdifferent automated

feature types. The statistical package R [83] was used for the Taxonomic features,

but operated more slowly when learning with the binary propositional features.

The Java Weka library worked better on this set, and we therefore used it when

handling features of this type. For our evaluation, we address the performance of

the Stage-PSP system in each domain on the baseline planner [29], Stage-PSP with

the Taxonomic features, and Stage-PSP with the propositional features. Note that

Stage-PSP systemsincludelearning time.

8We have tried alternative training data sets, by changing the “n” parameter variously between
500 to 2000, but the results were more or less the same.

63

For the case of learning with “Taxonomic” features, we also used a simple wrap-

per method. We greedily add one feature at a time until there is convergence in the

approximation measure. For this purpose, we used the R-square metric, which mea-

sures the explanation for the variances. This is a practicalalgorithm design choice

for feature selection, since R cannot handle too many features.

Rovers Domain: Figure 4.9 shows the results for this domain. In the graph, the

X-axis is for the problem numbers. There were 20 problems. The Y-axis shows

net-benefit obtained by each system. As can be seen in the figure, Taxonomic sys-

tem significantly outperformed SPUDS (usinghGAI
relax for most of the problems. The

roversdomain yielded the best results of the three we tested. Except for on a few

problem instances, both feature types, the Taxonomic and propositional outper-

formed SPUDS(withhGAI
relax). The cumulative net benefit across the problems in

each domain is available in Figure 4.7. In Figure 4.7, for theroversdomain, we can

see that both of the learning systems, propositional and Taxonomic, outperform the

baseline planner, achieving twice the cumulative net benefit of hGAI
relax alone. This

shows the benefit of the learning involved. Note that, in our experiments, there was

no prior training. That is, in most of the recent machine learning systems for plan-

ning, they used prior training data to tune the machine learner, while our systems

learn online.

Finally, Figure 4.8 lists some of the selected features by the wrapper method

with the Taxonomic system. The first listed feature indicates the number of lo-

cations traveled where soil data is to be communicated is located. The second

provides the number of “take image” actions with rock-analysis in hand. As can

be seen in these expressions, the Taxonomic syntax can express more relationally

expressive notions than ground facts. Note also that these features make sense:

64

Moving to a location where soil data will likely move us to improved net benefit.

Additionally, taking a goal image while already having finished analysis moves us

toward a goal (and therefore higher net benefit).

Satellite Domain: To perform an operation, a satellite needs to turn to the right di-

rection, calibrate its instruments and finally take a photo or perform a measurement.

Figure 4.11 shows the results on satellite domain. The performance of Stage-PSP

using either of the feature sets does not dominate as strongly as seen in therovers

domain. However, Stage-PSP still outperformed the baseline planner in cumulative

net benefit measure on the problems, as can be verified throughFigure 4.7.

Figure 4.10 lists the features of Taxonomic system found by the wrapper method.

The first feature expresses correctly-pointing facts (notethat c-predicates were

used) and the second one expresses the number of actions thatturn to the correctly

pointing areas, these features help with finding end-state “pointing” goals.

Zenotravel Domain: Figure 4.13 shows the results ofzenotraveldomain. aThe

learners did not fare as well in this domain. As can be seen in Figure 4.13, the

learning systems lost to SPUDS on the same number of problemsas the number of

problems they won. The cumulative net benefit across problems is shown in Figure

4.7. The numbers show a slight edge using the Taxonomic features. The margin is

much smaller than the other domains.

Figure 4.12 shows the features found in the Taxonomic system. The first feature

listed expresses the number of refuel actions taken (and is thus negatively weighted)

and the second expresses the number of zooming actions takento the goal location.

When the learning system fared well, for example, in theroversdomain, we

found that the learned value function led the S-SEARCH to a quite deeper states,

65

that requires many actions to reach from the initial state but achieves the key goal

facts.

Although we provided the action features to take the action cost structure into

account, the learned value function is not too sensitive to the actions used. One

possible reason for this may be that the Taxonomic syntax uses set semantics rather

than bag semantics. That is, when the partial plan corresponding to a search node

contains multiple instances of an action matching a feature, the action is counted

only once.

Summary Motivated by the success of the STAGE approach in learning toimprove

search in optimization problems, we adopted it to partial satisfaction planning prob-

lems. The critical challenge in the adaptation was the need to provide automated

features for the learning phase of STAGE. We experimented with two automated

feature generation methods. One of them—the Taxonomic feature set—is espe-

cially well suited to planning problems because of its object-oriented nature. Our

experiments show that our approach is able to provide improvements.

66

0

100000

200000

S
o

lu
ti

o
n

 q
u

a
li
ty

GAI relax

GAI max

GAI sum

SapaPS

iPUD

Satellite TPP Zenotravel Rovers

0.01

1

100

S
o

lu
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

Satellite TPP Zenotravel Rovers

Figure 4.1: Results for goal utility dependency solving methods

6
7

0

5

10

15

20

0 100 200 300 400 500 600

Time (seconds)

#
 p

ro
b

le
m

s
 w

it
h

 b
e
s
t

q
u

a
li

ty GAI relax GAI max
GAI sum SapaPS
iPUD

Figure 4.2: The number of highest quality solutions found

loc1

loc3

loc2

150

100

100200

Figure 4.3: A transportation domain example

68

at(p1,loc1)

fly(loc1,loc3)

fly(loc1,loc2)

fly(loc1,loc3)

fly(loc1,loc2)

at(pl1,loc1)

at(pl1,loc2)

fly(loc2,loc3)

at(pl1,loc3)

fly(loc3,loc2)

at(pl1,loc1)

at(pl1,loc3)

at(pl1,loc2)

fly(loc1,loc3)

fly(loc1,loc2)

fly(loc2,loc3)

fly(loc3,loc2)

at(pl1,loc1)

drop(p1,loc2)

at(pl1,loc3)

at(pl1,loc2)

at(per1,loc2)

150

100

150

00

100

100

150

250

100

0

150

100

150

151

0

300

151

100

150

250

300

2

3

1

Figure 4.4: A planning graph showing LP-biased relaxed planextraction

6
9

Net Benefit

 0

 50000

 100000

 150000

 200000

 250000

 300000

 2 4 6 8 10 12 14 16 18 20

N
et

 B
en

ef
it

Problem No.

hLP

SPUDS

hmax

hLP + RP

hLP + Cost RP

Upper Bound

0

200000

400000

600000

800000

1000000

1200000

 2 4 6 8 10 12 14 16 18 20

N
et

 B
en

ef
it

Problem No.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 2 4 6 8 10 12 14 16 18 20

N
et

 B
en

ef
it

Problem No.

Time

 0

 100000

 200000

 300000

 400000

 500000

 600000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(m

s)

Problem No.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(m

s)

Problem No.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(m

s)

Problem No.

zenotravel satellite rovers

Figure 4.5: Results for the tested domains in terms of total net benefit

7
0

(at truck1 location1), (at package1 location1),
(in-city location1 city1), (in-city location2 city1)
(gat package1 location1)
(cat package1 location1)
(at package2 location2) (gat package2 location1)

Figure 4.6: Example Relational Database: A State from Logisticsworld

Domain Measure SPUDS Stage-PSP (Prop) Stage-PSP (Tax)

Rover Net Benefit 3.0×105 6.0×105 6.5×105

No. Features 14336 2874

satellite Net Benefit 0.89×106 0.92×106 1.06×106

No. Features 6161 466

zenotravel Net Benefit 4.3×105 4.1×105 4.5×105

No. Features 22595 971

Figure 4.7: Summary of the net benefit number of features

(navigate athing (gcommunicated-soil-data ?) ?)

(take-image ? (have-rock-analysis athing ?)
athing athing athing)

Figure 4.8: Taxonomic Features found for Rover domain

71

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Rover

SPUDS Taxonomic Propositional

Figure 4.9: Results on rovers domain

(cpointing ? athing)

(turn-to (cpointing ? athing) athing ?)

Figure 4.10: Taxonomic features found for satellite domain

72

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Satellite

SPUDS Taxonomic Propositional

Figure 4.11: Results on satellite domain

(fuel-level ? (fly athing athing athing athing ?))

(gat ? (zoom athing athing ? athing athing athing))

Figure 4.12: Taxonomic Features found for zenotravel domain

73

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Zenotravel

SPUDS Taxonomic Propositional

Figure 4.13: Results on zenotravel domain

74

Chapter 5

PDDL3 “simple preferences” and PSP

While our approach to partial satisfaction planning representations involves assign-

ing rewards for goal achievement, another equivalent approach is to define costs for

failing to achieve goals. The organizers of the5th International Planning Competi-

tion (IPC-5) introduced PDDL3.0 [49], which includes this method of defining PSP

problems. Indeed, one track named “simple preferences” (PDDL3-SP) has quali-

ties analogous to PSPnet benefit. Because of the similarity, we studied how our

methods could be applied to this representation. Further, we looked whether our

planner does better using cost representations alone (i.e., by converting reward to

action costs) or if handling rewards directly was a better approach to solving the

problem within our framework.

In PDDL3-SP, each preferencepi ∈ φ includes a variablevpi
∈ V that counts

the number of timespi is violated andci ∈ C representing the violation cost when

pi is not satisfied. Each actiona ∈ A can have preferences associated with its

precondition, as can each goalg ∈ G. Additionally, they can include conjunctive

and disjunctive formulas on fluents. The objective functionis:

minimize c1 · vp1
+ c2 · vp2

+ ... + cn · vpn
(5.1)

where violation costsci ∈ R are multiplied by the number of timespi is violated.

We introduce a method of converting PDDL3-SP problems into partial satisfac-

tion planning (PSP) problems, which gives the preferences areward for achieve-

ment rather than a cost for violation. These new problems canthen be solved by a

75

planner capable of solving PSP problems, in our case, we usedthe plannerSapaPS

for a resulting planner we callYochanPS .

There are two main differences between how PDDL3-SP and PSPnet benefit

definesoftgoals. First, in PDDL3-SP, soft goal preferences are associated with a

preference name which allows them to be given a violation cost. Second, goal pref-

erences can consist of a disjunctive or conjunctive goal formula. This is opposed

to PSPnet benefitproblems where individual goals are given reward. Despite these

differences, the similarities are abundant:

• Theviolation costfor failing to achieve an individual goal in PDDL3-SP and

achievement utilityin PSPnet benefitare semantically equivalent.

• PDDL3-SP and PSPnet benefitboth have a notion of plan quality based on

a quantitative metric. PDDL3-SP bases a plan’s quality on how well it re-

duces the goal preference violation cost. On the other hand,PSPnet benefit

views cost as a monotonically increasing value that measures the resources

consumed by actions and reward by goal achievement.

• Preferences on action conditions in PDDL3-SP can be viewed as acondi-

tional costin PSPnet benefit. The cost models on actions differ only in that

PDDL3-SP provides apreferencewhich acts as a condition for applying ac-

tion cost.

As part of our compilation, we first transform “simple preference” goals to

equivalent goals with utility equal to the cost produced fornot satisfying them in

the PDDL3-SP problem. Specifically, we can compile a goal preferencepref(G′) |

G′ ⊆ G to an action that takesG′ as a condition. The effect of the action is a newly

created goal representing the fact that we “have the preference”pref(G′).
76

The goal compilation process converts goal preferences into additional soft

goals and actions achieving them in PSP. We begin by creatinga new actiona

for every preferencepref(G′) | G′ ⊆ G in the goals. The actiona hasG′ as a

set of preconditions, and a new effect,gG′. We then addgG′ to the original goal

setG, and give it utility equal to the costc(pref(G′)) of violating the preference

pref(G′). We remove the preferencepref(G′) from the resulting problem and also

force every non-compiled action that destroysG′ to removegG′ (by addinggG′ to

the delete list of these actions).

Other compilation methods for handling the constraints in PDDL3.0 were also

introduced in the IPC-5. For instance, the planner MIPS-XXL[36] used a trans-

formation from PDDL3.0 that involved a compilation into hard goals and numeric

fluents. YochanPS and other compilation approaches proved competitive in the

competition. In fact, bothYochanPS and MIPS-XXL participated in the “simple

preferences” track and received a “distinguished performance” award. However,

the compilation used by MIPS-XXL did not allow the planner todirectly handle

the soft goal preferences present in PDDL3.0. To assist in determining whether

considering soft goals directly during the planning process is helpful, we also intro-

duce a separate compilation from PDDL3.0 that completely eliminates soft goals,

resulting in a classical planning problem with action costs. The problem is then

solved by the anytimeA∗ search variation implemented inSapaPS . We call the

resulting plannerYochanCOST .

5.1 YochanCOST : PDDL3-SPTO HARD GOALS

Recently, approaches to compiling planning problems withsoftgoals to those with

hard goals have been proposed [36]. In fact, Keyder & Geffner [66]directly han-

dle PSPnet benefitby compiling the problem into one with hard goals. While

77

COMPILE-TO-HARD

1. B := ∅
2. forall pref(G′) | G′ ⊆ G
3. create two new actionsa1 anda2

4. pre(a1) := G′

5. gG′ := name(pref(G′))
6. eff(a1) := gG′

7. C(a1) := 0
8. B := B ∪ {a1}
9. G := (G ∪ {gG′}) \ {G′}

10. pre(a2) := ¬G′

11. eff(a2) := gG′

12. C(a2) := c(pref(G′))
13. B := B ∪ {a2}
14. G := (G ∪ {gpref}) \ {G

′}
15. A := B ∪ A

Figure 5.1: PDDL3-SP goal preferences to hard goals.

we explicitly address soft goals inYochanPS , to evaluate the advantage of this

approach we explore the possibility of planning for PDDL3-SP by compiling to

problems with only hard goals. We call the planner that uses this compilation strat-

egyYochanCOST . It uses the anytimeA∗ search variation fromSapaPS but reverts

back to the original relaxed plan heuristic ofSapa[31].1

Figure 5.1 shows the algorithm for compiling PDDL3-SP goal preferences into

a planning problem with hard goals and actions with cost. Precondition preferences

are compiled using the same approach as inYochanPS , which is discussed later.

The algorithm works by transforming a “simple preference” goal into an equivalent

hard goal with dummy actions that give that goal. Specifically, we compile a goal

preferencepref(G′) | G′ ⊆ G to two actions: actiona1 takesG′ as a condition

and actiona2 takes¬G′ as a condition (foregoing goal achievement). Actiona1

1This is done so we may compare the compilation in our anytime framework.

78

has costzeroand actiona2 has cost equal to the violation cost of not achievingG′.

Botha1 anda2 have a single dummy effect to achieve a newly created hard goal that

indicates we “have handled the preference”pref(G′). At least one of these actions,

a1 or a2, is always included in the final plan, and every other non-preference action

deletes the new goal (thereby forcing the planner to again decide whether to re-

achieve the hard goal, and again include the necessary achievement actions). After

the compilation to hard goals, we will have actions with disjunctive preconditions.

We convert these into STRIPS with cost by calling the algorithm in Figure 5.4.

After the compilation, we can solve the problem using any planner capable of

handling hard goals and action costs. In our case, we useSapaPS with the heuristic

used in the non-PSP plannerSapato generateYochanCOST . We are nowminimizing

cost instead ofmaximizingnet benefit (and hence take the negative of the heuristic

for search). In this way, we are performing an anytime searchalgorithm to compare

with YochanPS . As in YochanPS , which we will explain in the next section, we

assign unit cost to all non-preference actions and increasepreference cost by a

factor of 100. This serves two related purposes. First, the heuristic computation

uses cost propagation such that actions with zero cost will essentially look “free” in

terms of computational effort. Second, and similarly, actions that move the search

toward goals take some amount of computational effort whichis left uncounted

when action costs are zero. In other words, the search node evaluation completely

neglects tree depth when actions have zero cost.

Example: Consider an example taken from the IPC-5 TPP domain shown in Fig-

ure 5.2 and Figure 5.5. On the left side of these two figures we show examples

of PDDL3-SP action and goal preferences. On the right side, we show the newly

79

(:goal (preference P0A
(stored goods1 level1)))

(a) Goal preferences in PDDL3-SP

(:action p0a-0
:parameters ()
:cost 0.0
:precondition (and (stored goods1

level1))
:effect (and (hasPref-p0a)))

(:action p0a-1
:parameters ()
:cost 500.0
:precondition (and

(not (stored goods1 level1)))
:effect (and (hasPref-p0a)))

With new goal: (hasPref-p0a)

(b) Actions with cost

Figure 5.2: PDDL3-SP to cost-based planning.

created actions and goals resulting from the compilation toclassical planning (with

action costs) using our approach described above.

In this example, the preferred goal(stored goods1 level1) has a vio-

lation cost of5 (defined in Figure 5.5). We add a new goal(hasPref-p0a) and

assign the cost of achieving it with actionp0a-1 (i.e., not having the goal) to 500.

5.2 YochanPS : PDDL3-SPTO PSP

When all soft goals in PDDL3-SP are compiled to hard goals, itis always easi-

est (in terms of search depth) to do nothing. That is, simply executing the higher

cost preference avoidance actions will achieve the goal of having “handled” the

preference. Consequentially, the relaxed plan based heuristic may be misleading

because it is uninformed of the mutual exclusion between thepreference evalua-

80

tion actions. That is, the heuristic may see what appears to be a “quick” path to

a goal, where in fact that path requires the undesirable consequence of violating a

preference. Instead, viewing preferences as goals that aredesirable to achieve (i.e.,

attaching reward to achieving them) allows the relaxed planheuristic to be directed

to them. As such, we introduce a method of converting PDDL3-SP problems into

PSP problems, which gives the preferences a reward for achievement rather than a

cost for violation, thus giving better direction for the relaxed planning graph heuris-

tic. There are two main differences between how PDDL3-SP andPSPnet benefit

definesoftgoals. First, in PDDL3-SP, soft goal preferences are associated with a

preference name which allows them to be given a violation cost. Second, goal pref-

erences can consist of a disjunctive or conjunctive goal formula. This is opposed

to PSPnet benefitproblems where individual goals are given utility. Despitethese

differences, the similarities are abundant:

• Theviolation costfor failing to achieve an individual goal in PDDL3-SP and

achievement utilityin PSPnet benefitare semantically equivalent. Thus, if

there is a goalg with a violation cost ofc(g) for not achieving it in PDDL3-

SP, then it is equivalent to having this goal with utility ofug = c(g) for

achieving it in PSP.

• PDDL3-SP and PSPnet benefitboth have a notion of plan quality based on

a quantitative metric. PDDL3-SP bases a plan’s quality on how well it re-

duces the goal preference violation cost. On the other hand,PSPnet benefit

views cost as a monotonically increasing value that measures the resources

consumed by actions. In PDDL3-SP we have a plan metricρ and a planP1

has a higher quality than a planP2 if and only if ρ(P1) < ρ(P2). A plan’s

quality in PSPnet benefitdeals with the trade-off between the utility of the
81

1. B := ∅
2. forall pref(G′) | G′ ⊆ G
3. pre(a) := G′

4. gG′ := name(pref(G′))
5. eff(a) := gG′

6. B := B ∪ {a}
7. U(gG′) := c(pref(G′))
8. G := (G ∪ {gG′}) \ {G′}
9. forall b ∈ A

10. eff(b) := eff(b) ∪ ¬{gG′}
11. A := B ∪ A

Figure 5.3: Preferences to PSPnet benefitgoals

goals achieved and the cost of the actions to reach the goals.Therefore, a

planP1 has a higher quality than a planP2 in PSPnet benefitif and only if

U(P1) − C(P1) > U(P2) − C(P2), whereU(P) represents the utility of a

planP andC(P) represents the cost of a planP .

• Preferences on action conditions in PDDL3-SP can be viewed as acondi-

tional costin PSPnet benefit. The cost models on actions differ only in that

PDDL3-SP provides apreferencewhich acts as a condition for applying ac-

tion cost. Like violation costs for goal preferences, action condition violation

cost is incurred if a given action is applied to a state where that condition is

not satisfied.

As part of our compilation, we first transform “simple preference” goals to

equivalent goals with utility equal to the cost produced fornot satisfying them in

the PDDL3-SP problem. Specifically, we can compile a goal preferencepref(G′) |

G′ ⊆ G to an action that takesG′ as a condition. The effect of the action is a newly

created goal representing the fact that we “have the preference”pref(G′).

82

Both PDDL3-SP and PSPnet benefithave a notion of cost on actions, though

their view differs on how to define cost. PSPnet benefitdefines cost directly on each

action, while PDDL3-SP uses a less direct approach by defining the penalty for not

meeting an execution condition. Therefore, PDDL3-SP can beviewed as consid-

ering action cost as a conditional effect on an action where cost is incurred on the

preference condition’s negation. From this observation, we can compile PDDL3.0

“simple preferences” on actions in a manner that is similar to how conditional ef-

fects are compiled [46].

Goal Compilation: The goal compilation process converts goal preferences into

additional soft goals and actions achieving them in PSP. Figure 5.3 illustrates the

compilation of goals. We begin by creating a new actiona for every preference

pref(G′) | G′ ⊆ G in the goals. The actiona hasG′ as a set of preconditions,

and a new effect,gG′ . We then addgG′ to the original goal setG, and give it utility

equal to the costc(pref(G′)) of violating the preferencepref(G′). We remove the

preferencepref(G′) from the resulting problem and also force every non-compiled

action that destroysG′ to removegG′ (by addinggG′ to the delete list of these

actions).

Action Compilation: To convert precondition action preferences, for each action

a ∈ A we generateP (pref(a)) as the power set ofpref(a) (i.e.,P (pref(a)) con-

taining all possible subsets ofpref(a)). As Figure 5.4 shows, for each combina-

tion of preferences ∈ P (pref(a)), we create an actionas derived froma. The

cost of the new actionas equals the cost of failing to satisfy all preferences in

pref(a) \ s. We removea from the domain after all of its compiled actionsas are

created. Since some preferences contain disjunctive clauses, we compile them away

using the method introduced in by Gazen & Knoblock [46] for converting disjunc-

83

1. i := 0
2. forall a ∈ A
3. foreachprecSet ∈ P (pref(a))
4. pre(ai) := pre(a) ∪ precSet
5. eff(ai) := eff(a)
6. cai

:= 100 × c(pref(a) \ precSet)
7. A := A ∪ {ai}
8. i := i + 1
9. A := A \ {a}

Figure 5.4: Compiling preference preconditions to actionswith cost.

tive preconditions in ADL to STRIPS. Notice that because we use the power set of

preferences, this could potentially result in a large number of newly formed actions.

Since this increase is related to number of preferences, thenumber of actions that

need to be considered during search may seem unwieldy. However, we found that in

practice this increase is usually minimal. After completion of the planning process,

we apply Equation 5.2 to determine the PDDL3-SP total violation cost evaluation:

TOTALCOST =
∑

g∈G

ug −
∑

g′∈G′

ug′ +
∑

a∈P

ca (5.2)

Action Selection:The compilation algorithm will generate a set of actionsAa from

an original actiona with |Aa| = 2|pref(a)|. Given that actions inAa appear as sep-

arate operators to a planner, this can result in multiple action instances fromAa

being included in the plan. Therefore, a planner could produce plans with superflu-

ous actions. One way to fix this issue is to explicitly add negations of the prefer-

ence conditions that are not included in the new action preconditions (i.e., we can

use a negation of the precondition formula in the actions rather than removing the

whole condition). This is similar to the approach taken by Gazen & Knoblock [46]

84

when compiling away conditional effects. This compilationapproach, however,

may result in several disjunctive preconditions (from negating the original conjunc-

tive preference formula), which will result in even more actions being included in

the problem. To overcome this, we use a simple criterion on the plan that removes

the need to include the negation of clauses in the disjunctive preferences. Given that

all actions inAa have the same effect, we enforce that for every action generated

from a, only theleast costapplicable actionai ∈ Aa can be included inP at a given

forward search step. This criterion is already included inSapaPS .

Example: Consider the examples found in Figures 5.5 and 5.6. Figure 5.5 shows

the compilation for the TPP domain action:drive and Figure 5.6 shows a TPP

domain PDDL3-SP goal preference that has been compiled intoPSPnet benefit.

For the action compilation, Figure 5.5 shows the preferencep-drive has a

cost of10 × 100 = 1000 for failing to have all goods ready to load at level 0 of a

particular location at the timedrive is executed. We translate this idea into one

where we either (1) have all goods ready to load at level 0 (as in the new action

drive-0 with cost100) or (2) do not have all goods ready to load at level 1 (as in

the new actiondrive-1 with cost1000).

To convert the goal condition from PDDL3-SP into PSPnet benefitwe generate

a single action named for the preference, as shown in Figure 5.6. The new action

takes the preference goal as a precondition and we again introduce the new goal

(hasPref-p0a). However, with this compilation process, we give it a utility

value of 5.0. This is the same as the cost for being unable to achieve(stored

goods1 level1).

As for implementation details,YochanPS multiplies the original preference

costs by 100 and uses that to direct the forward search. All actions that do not

85

(:action drive
:parameters

(?t - truck ?from ?to - place)
:precondition

(and
(at ?t ?from)

(connected ?from ?to)
(preference p-drive

(and
(ready-to-load

goods1 ?from level0)
(ready-to-load

goods2 ?from level0)
(ready-to-load

goods3 ?from level0))))
:effect (and (not (at ?t ?from))

(at ?t ?to)))

Weight assigned to preferences:
(:metric

(+ (× 10 (is-violated p-drive))
(× 5 (is-violated P0A))))

(a) Action preferences in PDDL3-SP

(:action drive-0
:parameters

(?t - truck ?from ?to - place)
:cost 100
:precondition (and

(at ?t ?from) (connected
?from ?to)

(ready-to-load
goods1 ?from level0)

(ready-to-load
goods2 ?from level0)

(ready-to-load
goods3 ?from level0)))

:effect (and (not (at ?t ?from))
(at ?t ?to)))

(:action drive-1
:parameters

(?t - truck ?from ?to - place)
:cost 1000
:precondition (and

(at ?t ?from) (connected
?from ?to))

:effect (and (not (at ?t ?from))
(at ?t ?to)))

(b) Actions with cost

Figure 5.5: Compiling action preferences from PDDL3-SP to cost-based planning.

86

(:goal (preference P0A (stored goods1
level1)))

(a) Goal preferences in PDDL3-SP

(:action p0a
:parameters ()
:cost 100
:precondition (and

(stored goods1 level1))
:effect (and (hasPref-p0a)))

With new goal: ((hasPref-p0a) 5.0)

(b) Action with cost in PSP

Figure 5.6: Compiling goal preferences from PDDL3-SP to PSP.

include a preference are given a default unit cost. Again, wedo this so the heuristic

can direct search toward short-length plans to reduce planning time. An alternative

to this method of artificial scale-up would be to increase thepreference cost based

on some function derived from the original problem. In our initial experiments, we

took the number of actions required in a relaxed plan to reachall the goals at the

initial state and used this value to generate a scale-up factor, thinking this may re-

late well to plan length. However, our preliminary observations using this approach

yielded worse results in terms of plan quality.

After the compilation process is done,SapaPS is called to solve the new PSP

net benefitproblem with the normal objective of maximizing the net benefit. When

a planP is found, newly introduced actions resulting from the compilations of goal

and action preferences are removed before returningP to the user.

Evaluation

Most of the problems in the “simple preferences” track of IPC-5 consist of groups

of preferred disjunctive goals. These goals involve various aspects of the problems

(e.g., a deadline to deliver a package in thetrucksdomain). TheYochanPS compilation

87

converts each preferencep into a series of actions that have the preference condi-

tion as a precondition and an effect that indicates thatp is satisfied. The utility of

a preferred goal is gained if we have obtained the preferenceat the end of the plan

(where the utility is based on the penalty cost of not satisfying the preference in

PDDL3-SP). In this way, the planner is more likely to try to achieve preferences

that have a higher penalty violation value.

In the competition,YochanPS was able to solve problems in five of the domains

in the “simple preferences” track. Unfortunately, many of the problems in several

domains were large andYochanPS ran out of memory due to its action grounding

process. This occurred in thepathways, TPP, storageand trucksdomains. Also,

some aspects of several domains (such as conditional effects and quantification)

could not be handled by our planner directly and needed to be compiled to STRIPS.

The competition organizers could not compile theopenstacksdomain to STRIPS,

and soYochanPS did not participate in solving it. Additionally, thepipesworld

domain did not provide a “simple preferences” category.YochanPS also handles

hard goals, which were present in some of the problems, by only outputting plans

when such goals are satisfied. TheSapaPS heuristic was also slightly modified

such that hard goals could never be removed from a relaxed plan [8].

To test whether varying goal set sizes for the heuristic goalremoval process

affects our results, we compared running the planner with removing goal set sizes

in each iteration of at most 1 and at most 2. It turns out that inalmost all of the

problems from the competition, there is no change in the quality of the plans found

when looking at individual goals (as against individual goals and pairs of goals)

during the goal removal process of the heuristic. Only in twoproblems in therovers

domain does there exist a minor difference in plan quality (one in favor of looking

88

at only single goals, and one in favor of looking at set sizes of one and two). There

is also an insignificant difference in the amount of time taken to find plans.

In conclusion,YochanPS performed competitively in several of the domains

given by the organizers of the5th International Planning Competition (IPC-5). Its

performance was particularly good in “logistics” style domains. The quality of the

plans found byYochanPS earned it a “distinguished performance” award in the

“simple preferences” track. For comparison, we solved the IPC-5 problems with

YochanCOST and showed that compiling directly to classical planning with action

cost performs worse than compiling to a PSPnet benefitproblem in the competition

domains.

For the rest of this section, we evaluate the performance ofYochanPS in each

of the five “simple preferences” domains in which the plannerparticipated. For

all problems, we show the results from the competition (which can also be found

on the competition website [47]). We focus our discussion onplan quality rather

than solving time, as this was emphasized by the IPC-5 organizers. To compare

YochanPS andYochanCOST , we re-ran the results (with a small bug fix) using a

3.16 GHz Intel Core 2 Duo with 4 GB of RAM, 1.5 GB of which was allocated to

the planners using Java 1.5.

The Trucks Domain: Thetrucksdomain consists of trucks that move packages to

a variety of locations. It is a logistics-type domain with the constraint that certain

storage areas of the trucks must be free before loading can take place into other

storage areas. In the “simple preferences” version of this domain, packages must

be delivered at or before a certain time to avoid incurring a preference violation

penalty.

89

Figure 5.7(a) shows the results for thetrucksdomain in the competition. Over-

all, YochanPS performed well in this domain compared to the other plannersin

the competition. It scaled somewhat better than both MIPS-XXL [36] and MIPS-

BDD [36], though the competition winner, SGPlan [64] solvedmore problems,

often with a better or equal quality. Notably, in problems 7 through 9,YochanPS

had difficulty finding good quality plans. Examining the differences between the

generated problems provides some insight into this behavior. In the first ten prob-

lems of this domain, the number of preferences (i.e., soft goals) increased as part of

the increase in problem size. These all included existential quantification to handle

deadlines for package delivery, where a package must be delivered before a particu-

lar encoded time step in the plan (time increases by one unit when driving or deliv-

ering packages). For example,package1may need to be delivered sometime before

a time stept3. Because this criterion was defined using a predicate, this caused the

number of grounded, soft disjunctive goal sets to increase.2 This in turn caused

more goals to be considered at each time step. The planning graph’s cost propaga-

tion and goal selection processes would take more time in these circumstances. In

contrast, the second set of problems (problems 11 through 20) contained absolute

package delivery times on goal preferences (e.g.,package1must be delivered at

exactly timet5) thereby avoiding the need for disjunctive preferences. The planner

solved four instances of these harder problems.3

A seeming advantage toYochanCOST in this domain is that it is attempting

to find theleast costlyway of achieving the goal set and does not rely on pruning

away goals asYochanPS does. Intrucks, the violation cost for failing to satisfy goal

2Recall that the compilation to PSPnet benefitgenerates a new action for each clause of a
disjunctive goal formula.

3Note thatYochanPS solved more problems than in the competition on the new runs,as the
CPU was faster.

90

preferences turns out to be low for many of the goals, and so the SapaPS heuristic

used byYochanPS may prune away some of the lower valued goals if the number

of actions required for achievement is deemed too high. However, this advantage

seems not to help the planner too much here. Also note thatYochanCOST has great

difficulty with problems 8 and 9. Again, this is largely due tocompilation of goals

to actions, as the large number of actions that were generated caused the planner’s

branching factor to increase such that many states with equal heuristic values were

generated. When large numbers of preferences existYochanCOST must “decide”

to ignore them by adding the appropriate actions.

The Pathways Domain: This domain has its roots in molecular biology. It models

chemical reactions via actions and includes other actions that choose initial sub-

strates. Goals in the “simple preferences” track for this domain give a preference

on the substances that must be produced by a pathway.

Figure 5.8(a) shows thatYochanPS tends to scale poorly in this domain, though

this largely is due to the planner running out of memory during the grounding pro-

cess. For instance, the number of objects declared in problem 5 caused our ground-

ing procedure to attempt to produce well over106 actions. On most of its solved

problemsYochanPS provided equal quality in comparison to the other planners.

Figure 5.8(b) shows that bothYochanPS andYochanCOST found plans of equal

quality. Note that fixing a small search bug inYochanPS andYochanCOST caused

the planners, in this domain, to fail to find a solution in problem 4 on the new runs

(thoughYochanPS was able to find a solution during the competition and this is

the only problem in whichYochanPS performs worse).

The (IPC-5) Rovers Domain: The roversdomain initially was introduced at the

3rd International Planning Competition (IPC-3). For the “simple preferences” ver-

91

sion used in IPC-5, we must minimize the summed cost of actions in the plan while

simultaneously minimizing violation costs. Each action has a cost associated with

it through a numeric variable specified in the plan metric. The goals from IPC-3

of communicating rock samples, soil samples and image data are made into pref-

erences, each with varying violation cost. Interestingly,this version of the domain

mimics the PSPnet benefitproblem in the sense that the cost of moving from place

to place causes a numeric variable to increase monotonically. Each problem spec-

ifies this variable as part of its problem metric, thereby allowing the variable to

act as the cost of traversing between locations. Note that the problems in this do-

main are not precisely the PSPnet benefitproblem but are semantically equivalent.

Additionally, none of the preferences in the competition problems for this domain

contain disjunctive clauses, so the number of additional actions generated by the

compilation to PSPnet benefitis small.

As shown in Figure 5.9(a),YochanPS is able to solve each of the problems with

quality that is competitive with the other IPC-5 participants. YochanCOST gives

much worse quality plans on three problems and is comparableon the majority of

the other problems. For this domain, the heuristic inYochanPS guides the search

well, as it is made to discriminate between goals based on thecost of the actions to

reach them. On the other hand, as shown in Figure 5.9(b),YochanCOST attempts to

satisfy the goals in the cheapest way possible and, in the harder problems, always

returns an empty plan and then fails to find a better one in the allotted time. Thus,

YochanCOST tends to find plans that trivially satisfy the newly introduced hard

goals.

The Storage Domain: Here a planner must discover how to move crates from con-

tainers to different depots. Each depot has specific spatialcharacteristics that must

92

be taken into account. Several hoists exist to perform the moving, and goals involve

preferences for storing compatible crates together in the same depot. Incompatible

crates must not be located adjacent to one another. Preferences also exist about

where the hoists end up.

In this domain, bothYochanPS and YochanCOST failed in their grounding

process beyond problem 5. Figure 5.10(a) shows that, of the problems solved,

YochanPS found solutions with better quality than MIPS-XXL. Figure 5.10(b)

shows that bothYochanPS andYochanCOST solved versions ofstoragethat had

universal and existential quantification compiled away from the goal preferences

and produced plans of equal quality. Of the problems solved by both planners, the

longest plan found in this domain by the two planners contains 11 actions (the same

plan found by both planners).

The TPP Domain This is the traveling purchaser problem (TPP), a generalization

of the traveling salesman problem. In this domain, several goods exist at various

market locations. The object of the planning problem is to purchase some amount

of each product while minimizing the cost of travel (i.e., driving a truck) and while

also satisfying goal preferences. TheTPP domain is unique in that it is the only

one in the “simple preferences” track to have preference over action preconditions.

When driving a truck away from a market, we always prefer to have all of the goods

emptied at that market. Cost is added to the action if we fail to satisfy this condition.

Like the trucksdomain, this is a logistics-like domain. Goal preferences typically

involve having a certain number of the various goods stored.

As we can see in Figure 5.11(a),YochanPS finds plans of competitive quality

in the problems that were solved. This domain has soft goals that are mutually

exclusive from one another (i.e., storing various amounts of goods). Though the

93

heuristic used inYochanPS does not identify this, it does focus on finding goals to

achieve that may be of the highest quality. It turns out that,in TPP, this is enough.

As the planner searches for a solution, it identifies this fact and looks for plans that

can achieve the highest quality. It is interesting to note thatYochanPS solves more

problems than MIPS-XXL and MIPS-BDD. Also, when both find solutions, plans

given byYochanPS are often of better quality.

As Figure 5.11(b) shows,YochanCOST has more difficulty finding solutions for

this domain thanYochanPS . It attempts to minimize actions as well as cost (as

doesYochanPS), but tends not to improve plan quality after finding a plan with a

lower level of goods (involving fewer actions).

Interestingly, a similarity exists between the anytime behavior of YochanPS

andYochanCOST . Typically, both planners discover initial plans at approximately

the same rate, and when possible find incrementally better plans. In fact, only when

YochanPS finds better solutions does the behavior significantly differ. And in these

cases,YochanPS “reaches further” for more solutions. We largely attributethis

to the heuristic. That is, by ignoring some of the goals in therelaxed plan, the

planner essentially serializes the goals to focus on duringsearch. At each search

nodeYochanPS re-evaluates the reachability of each goal in terms of cost versus

benefit. In this way, a goal can look more appealing at greaterdepths of the search.4

This is especially noticeable in theTPPdomain. In this domain, all of the higher-

quality plans thatYochanPS found were longer (in terms of number of actions)

than those ofYochanCOST in terms of number of actions. This is likely because

the relaxed plan heuristic inYochanCOST believes preference goals are reachable

when they are not.

4We also note evidence of this exists by the fact thatYochanPS tends to do better as problems
scale-up.

94

Other Tracks: While YochanPS participated in the IPC-5 as a partial satisfac-

tion planner capable of handling PDDL3.0, it is based onSapaand therefore is

capable of handling a wide variety of problem types. Becauseof this, the plan-

ner also participated in both the “metrictime” and “propositional” tracks. In the

“metrictime” track,YochanPS performed quite well in terms of finding good qual-

ity (short makespan) plans, performing best in one domain (the “time” versions of

openstacks) and second best in three domains (the “time” version ofstorageand

trucks and the “metrictime” version ofrovers). The performance in these prob-

lems can be attributed to the action re-scheduling procedure of Sapa, which takes

an original parallel, temporal plan and attempts to re-order its actions to shorten

the makespan even more [30]. This especially holds for theopenstacksproblems,

whose plans have a high amount of parallelism.

Looking at the results ofYochanPS versus SGPlan for the temporalopenstacks

domain provides some further insight into this behavior. Even in the more difficult

problems thatYochanPS solves, the plans contained an equal or greater number of

actions. However,YochanPS parallelized them to make better use of time using its

action scheduling mechanism (which, again, was inherited from the plannerSapa).

Summary of IPC-5 Results:YochanPS performs competitively in many domains.

In the trucksdomain,YochanPS scaled better than MIPS-XXL and MIPS-BDD,

but was outperformed overall in terms of number of problems solved by SGPlan,

the winner of the competition. There are several technical reasons forYochanPS ’s

inability to solve large problems in many of the domains:YochanPS ’s parsing

and grounding routine was quite slow and takes most if not allof the allocated 30

minutes time to parse large problems in many domains.

95

In three domains (trucks, TPP, androvers), YochanPS predominately gave bet-

ter quality plans thanYochanCOST . From the search behavior, in many cases the

compilation to hard goals caused the planner to quickly choose naı̈ve solutions (i.e.,

trivially achieving the hard goals without achieving the preference) despite the ad-

ditional cost associated with doing so. This is attributed to the fact that the heuristic

also minimizes the number of actions in the plan while minimizing cost (since the

heuristic counts all non-preference actions with a cost 1).While this same qual-

ity exists in the heuristic used byYochanPS , handlingsoftgoals directly helps the

planner by allowing it to completely avoid considering achievement of goals. In

other words, the planner can focus on satisfying only those goals that it deems ben-

eficial and can satisfy some subset of them without selectingactions that “grant

permission” to waive their achievement.

Note that one issue withYochanCOST is that the number of “dummy” actions

that must be generated can affect its search. For every step,the actions to decide

to “not achieve the goal” can be applicable, and therefore must be considered (such

that a node is generated for each one). This can quickly clog the search space,

and therefore results in a disadvantage to the planner as thescale of the problems

increases.YochanPS , on the other hand, by directly handling soft goals, can avoid

inserting such search states into the space, thereby increasing its scalability over

YochanCOST .

Interestingly, Keyder and Geffner performed a similar study between cost-based

and PSP planners handling compiled versions of problems on domains from the

2008 International Planning Competition [67]. While they did not perform a head-

to-head comparison on the same satisficing planner for handling PSPnet benefit

versus handling compiled cost-based versions of the problems, they did show some

96

benefits. That is, one can use the start-of-the-art in cost-based, satisficing planners

through compiling PSPnet benefitproblems into cost-based versions of the prob-

lems. Of course, the question of whether we should be handling PSPnet benefit

problems directly or compile them to cost-based planning depends on several fac-

tors. For instance, if there are further side constraints related to goal choice that

a compilation could not handle, then solving a PSPnet benefitproblem directly

would likely be a better choice. Also, planners are likely torespond differently to

compiled versions of a problem versus direct handling of goal choice depending

upon the techniques they employ.5

Up-front Goal Selection in Competition Domains

While SapaPS , and by extensionYochanPS , performs goal re-selection during

search, one can also imagine dealing with soft goals by selecting them before the

planning process begins. Afterward, a planner can treat theselected goals ashard

and plan for them. The idea is that this two-step approach canreduce the com-

plexities involved with constantly re-evaluating the given goal set, but it requires

an adequate technique for the initial goal selection process. Of course, performing

optimal goal selection is as difficult as finding an optimal plan to the original PSP

net benefitproblem. However, one can imagine attempting to find a feasible set of

goals using heuristics to estimate how “good” a goal set is. But, again, proving the

satisfiability of goals requires solving the entire planning problem or at least per-

forming a provably complete analysis of the mutual exclusions between the goals

(which is as hard as solving the planning problem).

Given that hard goals must be non-mutex, one may believe thatin most domains

mutually exclusive soft goals would be rare. However, userscan quite easily specify

5Since our original comparison, others have also shown otherinstances where handling PDDL3-
SP problems directly can often be better than compilation tocost-based planning [21].

97

soft goals with complex mutexes lingering among them. For instance, consider a

blocks world-like domain in which the soft goals involve blocks stacked variously.

If we have three blocks (a, b, andc) with the soft goals(on a b), (on b c), and(on c

a), we have a ternary mutual exclusion and we can at best achieveonly two of the

goals at a time. For any number of blocks, listing every stacking possibility will

always generaten-ary mutexes, wheren can be as large as the number of blocks in

the problem.

Further, the IPC-5 “simple preferences” domains have manyn-ary mutual ex-

clusions between goals with sometimes complex interactions such that the satis-

faction of one set of goals may be negatively dependent upon the satisfaction of

another set of goals (i.e., some goal sets are mutex with other goal sets). It turns out

that even when binary mutexes are taken into account, as is done with the planner

AltWlt (which is an extension of the plannerAltAlt PS), these complex interactions

cannot be detected [85].

Specifically, the plannerAltWlt uses a relaxed planning graph structure to “pe-

nalize” the selection of goals that appear to be binary mutually exclusive by solving

for each goal individually, then adding cost to relaxed plans that interfere with

already-chosen goals. In other words, given a relaxed plan for a selected goalg

calledrg, and a relaxed plan for a candidate goalg′, rg′, we have a penalty cost

c for the selection ofg′ if any action inrg′ interferes with an action inr (i.e., the

effects of actions inrg′ delete the preconditions found inrg in actions at the same

step). A separate penalty is given if preconditions in the actions of rg′ are binary

and statically mutex with preconditions in the actions ofrg and the maximum of

the two penalties is taken. This is then added to the cost propagated through the

98

planning graph for the goal.AltWlt then greedily selects goals by processing each

relaxed plan in turn, and selects the one that looks most beneficial.

To see if this approach is adequate for the competition benchmarks, we con-

verted problems from each of the five domains into a format that can be read by

AltWlt . We found that instorage, TPP, trucks, andpathways, AltWlt selects goals

but indicates that there exists no solution for the set it selects. However,AltWlt

found some success inrovers, a PSPnet benefitdomain where mutual exclusion

between goals is minimal in the benchmark set. The planner was able to solve 16

of the 20 problems, whileYochanPS was able to solve all 20. Of the onesAltWlt

failed to solve, it explicitly ran out of memory or gave errors. Figure 5.12 shows the

results. In 12 of the 16 problems,AltWlt is capable of finding better solutions than

YochanPS . AltWlt also typically does this faster. As an extreme example, to find

the eventual final solution to problem 12 ofrovers, YochanPS took 172.53 seconds

while AltWlt took 324 milliseconds.

We believe that the failure ofAltWlt on the other competition domains is not

just a bug, but rather a fundamental inability of its up-front objective selection ap-

proach to handle goals with complex mutual exclusion relations. To understand

this, consider a slightly simplified version of the simple preferencesstoragedo-

main from the IPC-5. In this domain we have crates, storage areas, depots, load

areas, containers and hoists. Depots act to group storage areas into a single cate-

gory (i.e., there are several storage areas within a single depot). Hoists can deliver a

crate to a storage area adjacent to it. Additionally, hoistscan move between storage

areas within a depot, and through load areas (which connect depots). When a crate

or hoist is in a storage area or load area, then no other hoist or crate may enter into

99

the area. Crates begin by being inside of a container in a loadarea (hence the load

area is initially passable, as no crates are actually insideof it).

Figure 5.13 shows the layout in our example (which is a simplified version of

problem 1 from the competition). In the problem there existsa hoist, a crate, a con-

tainer, two depots (depot0 anddepot1) and two storage areas in each depot (sa0−0,

sa0−1 in depot0 andsa1−0, sa1−1 in depot1). The storage areas are connected to

each other, and one in each depot is connected to the loading area. The crate begins

inside of the container and the hoist begins at indepot1 at sa1−0. We have several

preferences: (1) the hoist and crate should end up in different depots (with a viola-

tion penalty of 1), (2) the crate should be indepot0 (violation penalty of 3), (3) the

hoist should be insa0−0 or sa0−1 (violation penalty of 3), (4)sa1−0 should be clear

(i.e., contains neither the hoist nor the crate with a violation penalty of 2), and (5)

sa0−1 should be clear (violation penalty of 2).

The (shortest) optimal plan for this problem involves only moving the hoist.

Specifically, moving the hoist from its current location,sa1−0, to sa0−1 (using 3

moves). This satisfies preference (1) because the crate is not in a depot (hence it

will always be in a “different depot” than the hoist), (3) because the hoist is insa0−1,

(4) becausesa1−0 is clear and (5) becausesa0−1 is clear. It violates the soft goal

(2) with a penalty cost of 3. Of course, finding the optimal plan would be nice, but

we would also be satisfied with a feasible plan. However, there is a heavy burden

on the goal selection process to find a satisfiable, conjunctive set. In this problem

the “simple preference” goals have complex, non-binary mutual exclusions.

Consider theAltWlt procedure for finding a set of goals for this domain.AltWlt

selects goals greedily in a non-deterministic way. But the important aspect ofAl-

tWlt here is how it defines its penalty costs for noticing mutual exclusion between

100

goals. Interference involves the effect of one action deleting the precondition of

another action. However, there are often several ways of satisfying a preference,

most of which do not interfere with satisfying another preference in the relaxed

setting. For instance, consider preference (1), that we should have the create and

hoist in different depots. A preference of this form essentially involves several dis-

crete disjunctive clauses, (e.g., “do not have the hoist atsa1−1 or do not have the

crate indepot1”). Satisfying for one of these clauses is sufficient to believe that

the preference can be achieved. If we achieve one of these (e.g., “do not have the

hoist atsa1−1”), the clause is satisfied. Of course even in the relaxed problem, we

must satisfy each of the disjunctive clauses (e.g., we can have each of “do not have

the hoist atsax−y wherex, y ∈ {0, 1}” or “do not have the crate indepotx where

x ∈ {0, 1}”). It turns out that these are satisfiable in the initial state, so this is a

trivial feat. If we then choose goal preference (2), having the crate indepot0, we

can find a relaxed plan that moves the hoist to the load area, removes the crate from

the container and places it insa0−0 (which is indepot0). Satisfying (3), having the

hoist atsa0−0 or sa0−1 looks statically mutex with (1), but the competing needs or

interference penalty costs apply only when a relaxed plan exists. Since none ex-

ists for (1),AltWlt finds a relaxed plan that moves the hoist tosa0−1.6 Satisfying

preference goal (4) requires that we move a single step–easily satisfiable, and shar-

ing an action with (2), and hence there exists no interference or competing needs.

Preference goal (5) is satisfied at the initial state.

From this analysis, we can see thatAltWlt selects each of the goals, as there

exist no penalties to make them look unappealing. It will subsequently fail when

6Even if a relaxed plan were to exist for (1), the disjunctive clauses make interference difficult
to identify–i.e., we can be satisfying for “do not have the crate indepotx” which is not mutex with
preference (3).

101

attempting to find a solution for the goals—there exists no way to satisfy for all

of the preferences. The complex mutual exclusions and disjunctive clauses cause

AltWlt to select goal sets that are impossible to achieve. From the point of view

of the competition,AltWlt suffers from similar issues in all but one of the “simple

preference” domains (namely, the “simple preferences” version ofrovers).

In summary, while up-front selection of objectives does allow PSPnet benefit

problems to use other planners, as we have suspected, in complex domains the

objective selection cannot even guarantee satisficing plans (beyond the null plan).

102

350

400

YochanPS

250

300 SGPlan

MIPS XXL

y

150

200

250

MIPS BDD

Q
u
a
li
ty

100

150

0

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

(a) IPC-5 results.YochanPS solved 13; MIPS-XXL solved 3;
MIPS-BDD solved 4; SGPlan solved 20

1600

1800

Y h PS

1200

1400
YochanPS

YochanCOST

800

1000

y

400

600

Q
u
a
li
ty

0

200

1 6 11 16

Problem

(b) YochanPS vs. YochanCOST . YochanPS solved 14;YochanCOST solved 12

Figure 5.7: IPC-5trucks“simple preferences”

103

30

35

YochanPS

25

30

SGPlan

MIPS XXL

15

20
MIPS BDD

Q
u
a
li
ty

10

Q

0

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

(a) IPC-5 results.YochanPS solved 4; MIPS-XXL solved 15;
MIPS-BDD solved 10; SGPlan solved 30

4

Y h PS

3

YochanPS

YochanCOST

2

Q
u
a
li
ty

1

Q

0

1 2 3

Problem

(b) YochanPS vs. YochanCOST . YochanPS solved 3;YochanCOST solved 3

Figure 5.8: IPC-5pathways“simple preferences”

104

4000

4500

YochanPS

3000

3500 SGPlan

2000

2500
MIPS XXL

a
li
ty

1000

1500Q
u

0

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

(a) IPC-5 results.YochanPS solves 20; MIPS-XXL solves 15;
SGPlan solves 20

3000

4000

5000

6000

YochanPS

YochanCOST

ty

0

1000

2000

3000

0 5 10 15 20

Problem

Q
u
a
li
t

(b) YochanPS vs. YochanCOST . YochanPS solves 20;YochanCOST solves 20

Figure 5.9: IPC-5rovers“simple preferences”

105

1800

2000

YochanPS

1400

1600 SGPlan

MIPS XXL

1000

1200
MIPS BDD

Q
u
a
li
ty

400

600

800Q

0

200

400

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

(a) IPC-5 results.YochanPS solves 5; MIPS-XXL solves 4;
MIPS-BDD solves 4; SGPlan solves 20

140

160

YochanPS

100

120

140 YochanPS

YochanCOST

80

100

Q
u
a
li
ty

40

60Q

0

20

1 2 3 4 5

Problem

(b) YochanPS vs. YochanCOST . YochanPS solves 5;YochanCOST solves 5

Figure 5.10: IPC-5storage“simple preferences”

106

1000

1200

1400

1600

1800

2000

YochanPS

SGPlan

MIPS XXL

MIPS BDD

a
li
ty

a
li
ty

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

Q
u

Problem

Q
u

(a) IPC-5 results.YochanPS solves 12; MIPS-XXL solves 9;
MIPS-BDD solves 9; SGPlan solves 20

400

500

600

700

YochanPS

YochanCOST

u
a
li
ty

0

100

200

300

1 3 5 7 9 11

Problem

Q
u

(b) YochanPS vs. YochanCOST . YochanPS solves 12;YochanCOST solves 12

Figure 5.11: IPC-5TPP“simple preferences” results

107

1000

1200

1400

1600
YochanPS

AltWlt

y

0

200

400

600

800

1 6 11 16

Problem

Q
u
a
li
ty

Figure 5.12: Comparison withAltWlt on IPC-5roversdomain

!"#$%� !"#$%�
)$*+'*,"*'

-*��� -*��� -*��� -*���
/$0%*10",

'

/,*%"
'

2$1-%
'

Figure 5.13: An example of the “simple preferences” storagedomain

108

Chapter 6

Time-dependent Goal Achievement Costs

For years, much of the research in temporal planning has worked toward finding

plans with the shortest makespan, making the assumption that the utility of a plan

corresponds with the time at which it ends. In many problems,however, this does

not align well with the true objective. Though it is often critical that goals are

achieved in a timely manner, it does not always follow that the shortest plan will

be the best in terms of achievement time forindividual goals. These objectives

can occur, for example, when planning for crew activity, elevator operations, con-

signment delivery, or manufacturing. A few temporal planners (c.f., [52], [23]) are

capable of reasoning over similar problems by, for instance, defining hard dead-

lines. But ranking plans in terms of temporal preferences onplan trajectory or soft

deadlines (i.e., those deadlines that can be exceeded, but at a cost) has been less

widely explored [36].

The first challenge one faces in considering these problems is how best to rep-

resent them so they can be solved. Modeling soft deadlines with a discrete penalty

cost, as can be done in the planning domain description languagePDDL3, provides

an attractive solution to this. In this language, missing a deadline incurs a discrete

penalty cost, but discrete models like this have their downsides. With deadlines, for

instance, when goal achievement occurs after the deadline point, even by a small

amount, the full cost must be paid. This fits some situations—for example, arriv-

ing at a ferry terminal after the ferry has left—but it mismatches others, such as

being one second late in delivering retail goods. In those cases, once the ideal time

for an activity has passed, it is still desirable to achieve the goal at some point,

109

though preferably sooner. The cost is continuous andtime-dependent: zero for a

certain amount of time, then progressively increasing. In this work, we look toward

handling these types of time-dependent, monotonically increasing cost functions.

In dealing with these types of problems, we present techniques that build on

POPF[23], a planner particularly well-suited to handling temporal constraints such

as soft deadlines due to its rich temporal reasoning engine.This chapter discusses

the specifics of how to encode time-dependent cost using a fragment of the planning

desciption languagePDDL+ [43], and show how a planner can be adapted to support

it. In the evaluation we show that the final planner, OPTIC (Optimizing Preferences

and TIme-dependent Costs), has state-of-the-art performance on temporalPDDL3

benchmark domains; and that the direct specification of a continuous cost function

is not just elegant, but also offers better performance (with search pruning) than if

simply compiled to a single sequence of discrete-cost deadlines.

6.1 BACKGROUND: POPF: PARTIAL ORDER PLANNING FORWARD

This work builds on the plannerPOPF [23], as it offers state-of-the-art temporal

planning for planning problems that require concurrency. This is important, be-

cause deadlines can induce required concurrency even in problems that could oth-

erwise be solved using action sequences (see [27] for a discussion of these issues).

The key distinction betweenPOPFand other forward-chaining temporal planners is

that, rather than enforcing a strict total-order on all steps added to the plan, it builds

a partial-order plan based on the facts and variables referred to by each step. To

support this, each factp and variablev is annotated with information relating it to

the plan steps. Briefly:

• F+(p) (F−(p)) is the index of the plan step that most recently added (deleted)

p;
110

• FP
+(p) is a set of pairs, each〈i, d〉, used to record steps with a precondition

p. i denotes the index of a plan step, andd ∈ {0, ǫ}. If d=0, thenp can

be deleted at or after stepi: this corresponds to the end of aPDDL over all

condition. Ifd=ǫ, thenp can only be deletedǫ afteri.

• FP
−(p), similarly, records negative preconditions onp.

• V eff (v) gives the index of the step in the plan that most recently had an effect

upon variablev;

• VP(v) is a set containing the indices of steps in the plan that have referred to

the variablev since the last effect onv. A step depends onv if it either has a

precondition onv; an effect needing an input value ofv; or is the start of an

action with a duration depending onv.

The application of actions to states then updates these annotations and, based on

their values, produces ordering constraints. Steps addingp are ordered afterF−(p);

those deletingp, afterF+(p). Hence, there is a total-ordering on the effects applied

to each fact. Preconditions are fixed within this ordering where applying a step with

a preconditionp orders it afterF+(p); and recording it inFP
+(p) ensures the next

deletor ofp will ultimately be ordered after it. Similarly, negative preconditions are

ordered after someF−(p) and before the nextF+(p). Finally, steps modifyingv

are totally ordered, and steps referring tov are fixed within this order (due to effects

onv being ordered after the pre-existingVP(v)).

An important difference between partially and totally ordered approaches is that

the preconditions to support an action are only forced to be true simultaneously if

it is added to the plan. Consider a precondition formulaF that refers to multiple

facts/variables. We can say thatS²̃F if the facts/variable values inS supportF . If
111

we apply an action with preconditionF we add ordering constraints as discussed

above, as otherwise, we could not guarantee the requisite fact/variable values forF

are met simultaneously.

For example, considerF=(a ∧ ¬b). In a state whereS²̃F it is possible that

another action,B+, addingb can be applied after its last deletor,F−(b). Since the

last adder ofa, F+(a), is not necessarily ordered with respect to eitherF−(b) or

B+ the plan may be scheduled suchB+ is beforeF+(a), and thusa ∧ ¬b is not

necessarily true at any point. The key point here is that visiting a stateSi where

Si²̃F is not sufficient to guaranteeF will be satisfied during the plan.

6.2 PLANNING WITH CONTINUOUS COST FUNCTIONS

In considering problems with continuously changing cost ongoals, there are two

key challenges:

1. How to best represent planning problems where the value ofa plan rests with

the time individual goals are achieved.

2. Given a representation, how to solve these problems.

In addressing the first point, this work explores how to usePDDL3 to represent

discretizations of the continuous cost function, and representing cost functions di-

rectly using a combination ofPDDL+ and cost evaluation actions. The semantics of

PDDL3 offer an all-or-nothing approach to cost, requiring the generation of a set of

deadlines for the same goal, giving a piece-wise representation of the original cost

function. This may be sufficient (or even accurate) for many problems. For exam-

ple, the London Underground system operates on a fixed schedule, where making a

stop 5 minutes late may be no worse than being 3 minutes late; either way the train

112

will depart at the same time. But in other problems, it leavesopen questions on the

granularity of cost deadlines.

As an example, consider a simple logistics problem where blueberries, oranges

and apples must be delivered to locations,B, O andA respectively. Each fruit has

a different shelf-life. From the time they are harvested, apples last 20 days, oranges

15 days and blueberries 10 days. The truck has a long way to travel, driving with

the perishable goods from an origin pointP . Let us assume equal profit for the

length of time each item is on a shelf. The time to drive between P andB is 6 days,

betweenP andA is 7 days, betweenB andO is 3 days, and betweenA andB is

5 days. To make all deliveries, the shortest plan has a duration of 15 days; that is,

drive to pointsA, B, thenO in that order. If we were to deliver the goods in this

order, the blueberries and oranges will rot before they reach their destinations, and

the total time-on-shelf for the apples would be 13 days. Instead, we need a plan

gets the best overall value. A plan that drives to pointB, O, thenA achieves this,

though it does so in 17 days. In this case, summing the total time-on-shelf across

all fruits gives us 15 days. Given a fruit typef and a shelf-life,slf (in days), we

can create a set of deadlines such that the cost increases by1/slf each day.

An unfortunate disadvantage of this approach is that it may improperly repre-

sent costs; for example, missing the deadline by only a few moments would im-

mediately place the cost in the next day “bracket”, an overlystrict requirement for

this problem. In this case, a more direct approach to representing cost is desirable.

Therefore, we also consider cost represented by a continuous, monotonically in-

creasing function, comprising arbitrary piecewise monotones expressible in PDDL.

In this representation, cost is zero until time pointtd, then increases continuously

until it reaches a costc at a time pointtd+δ (see Section 2.2). This approach re-

113

moves issues of granularity for the domain modeler when theyare not required.

However, the question is which model is better in practice. And we shall see later

in this chapter that while representing cost functions discretely has disadvantages,

it also has benefits in terms of solving time which we can migrate over to solving

for continuous representations (generating a hybrid, tiered search approach).

Continuous Cost Functions in PDDL+

We now look at how to model continuous cost functions usingPDDL+ [43] without

reference to deadlines inPDDL3. First, in order to track the time elapsed through-

out the plan, we introduce a variable(current-time), assigned the value 0 in the

initial state. This is updated continuously by a process with no conditions and the

effect(increase (current-time) (* #t 1)), increasing the value of current-time by

one per time-unit. As processes execute whenever their conditions are met, and in

this case the condition is tautologous, one can now write actions whose effects are

dependent on the time at which they are executed.

For each goal factgi upon which one wants to enforce a time-dependent cost,

one adds a factgoal-gi to the initial state, and replaces the goal with a fact

collected-gi. Then, it is possible to create an action following the template in

Figure 6.1; the action can have arbitrary parameters, as required by the goal, and

the cost function can differ for different goals. The line marked with* is optional,

depending on the semantics required. For goals that should persist after the cost has

been collected, the line is present; otherwise, it is not. The conditional effects of

the example increases the variabletotal-cost by a linear formula ifcurrent-time is

afterdeadline-one-gi (i.e.,td), but beforefinal-deadline-gi and by a fixed amount

of current-time is afterfinal-deadline-gi (i.e., td+δ). This corresponds with the

definition from Section 2.2. With additional conditional effects (i.e., intermedi-

114

(:action collect-goal-g1 :parameters (?p1 ?p2 - obj)
:precondition (and (goal-g1 ?p1 ?p2) (g1 ?p1 ?p2))
:effect (and (collected-g1 ?p1 ?p2)

(not (goal-g1 ?p1 ?p2))
(not (g1 ?p1 ?p2))

(when (> (current-time) (final-deadline-g1 ?p1 ?p2))
(increase (total-cost) (full-penalty ?p1 ?p2)))

(when (and (> (current-time) (deadline-one-g1 ?p1 ?p2))
(<= (current-time) (final-deadline-g1 ?p1 ?p2))))

(increase (total-cost)
(* (full-penalty ?p1 ?p2)
(/ (- (current-time) (deadline-one-g1 ?p1 ?p2))
(- (final-deadline ?p1 ?p2) (deadline-one-g1 ?p1 ?p2))

)))))

Figure 6.1: Structure of a cost-collection action for time-dependent cost

ate deadlines), the cost function can consist of an arbitrary number of stages, each

taking the form of any mathematical function expressible inPDDL. If restricting

attention to cost functions that monotonically increase (i.e., problems where doing

things earlier is always better), any reasonable cost-aware planner using this model

will apply such actions sooner rather than later to achieve minimal cost.

Comparison to Discretized Model

The cost functions above (omitting the asterisked effect) have aPDDL3 analog. In

theory, it is possible to obtain the same expressive power bycreating a sequence

of several discretePDDL3 deadline (i.e.,within) preferences, with the spacing be-

tween them equal to the greatest common divisor (GCD) of action durations, and

each with an appropriate fraction of the cost. In other words, we can define a step

function approximation of the cost function using the GCD todefine cost intervals.

This could give a substantial blow-up in the size of many problems. A more coarse

discretization with the discrete deadlines spaced furtherapart than the GCD may

be more practical. However, a planner using such a model may also fail to reach

optimal solutions; it may be possible to achieve a goal earlier but not sufficiently

115

early to achieve the earlier deadlines, so the planner will not recognize this as an

improved plan.

Solving for Time-dependent Continuous Costs

The new planner, OPTIC, handles these problems by extending thePOPFscheduler,

heuristic and the search strategy. The planner also makes a small extension to han-

dle the very basic type ofPDDL+ process needed to support thecurrent-time ticker.

Specifically, processes with static preconditions and linear effects on a variable de-

fined in the initial state (but not subsequently changed by the effect of any other

actions). Supporting these requires very little reasoningin the planner.

Scheduling: The compilation (in the absence of support for events) requires that

all cost functions be monotonically increasing. Given this(and the absence of pref-

erences and continuous numeric change, other than the ticker) a simple temporal

problem (STP) [28] scheduler suffices; the lowest cost for a given plan can be

achieved by scheduling all actions at their earliest possible time, and so can rep-

resent the plan as a simple temporal problem as in the original POPFplanner. The

earliest time for each action can be found by performing a single-source shortest

path (SSSP) algorithm on the temporal constraints of a plan.When acollect-gi

action is first added to the plan, the planner increases the recorded plan cost ac-

cording to its cost function evaluated at its allotted timestamp. Subsequently, if the

schedule of a plan movescollect-gi to a later timestamp, the cost of the plan is

increased to reflect any consequential increase in the cost function of the action.

Admissible Heuristic: Now that it is possible to compute the cost of solutions,

a heuristic can be used to guide search toward finding high-quality solutions; and

ideally, an admissible heuristic that can be used for pruning. In satisficing plan-

ning, relaxed plan length has been a very effective heuristic [63], and OPTIC uses

116

this to guide search. The planner continues to use this for its search (as done in the

other planners we discuss in this dissertation), but it alsouses a second, admissible,

heuristic for pruning. Each reachablecollect-cost action yet to be applied will

appear in a temporal relaxed planning graph (TRPG). In OPTIC’s TRPG, one can

obtain an admissible estimate of eachcollect-gi’s achievement time by using its

cost at the action layer in which it appears. Since costs are monotonically worsen-

ing, this cost is an admissible estimate of the cost of collecting the associated goal.

Sincecollect-gi actions achieve a goal which is never present as a precondition of

an action, and they have numeric effects only on cost, they fitthe model ofdirect-

achievement costsused in the heuristic ofPOPF[22]. Thus, the sum of the costs of

the outstanding collect actions, at their earliest respective layers, is an admissible

estimate of the cost of reaching the remaining goals.

Tiered Search: While searching for a solution, the planner can use the admissible

estimateha for pruning. In general, it can prune a states, reached by incurring

cost g(s) (as computed by the scheduler), with admissible heuristic cost ha(s),

if g(s) + ha(s) ≥ c, wherec is an upper-bound on cost (e.g., the cost of the best

solution so far). If the granularity of cost isN , then states are kept ifg(s)+ha(s) ≤

c − N . In the case ofPDDL3, where exceeding deadlines incurs a discrete cost,

N is the cost of the cheapest preference. When searching with continuous time-

dependent costs, though,N is arbitrarily small, so the number of such states is

large. Hence, compared to the discrete-cost case, the planner is at greater risk of

exhausting the available memory. If one inflatedN , then more states could be

pruned. However, this forfeits optimality, effectively returning to the discretized

case.

117

As a compromise, it may be better to use a tiered search strategy. Specifically,

one can invoke WA* a number of times in sequence, starting with a larger value

of N and finishing withN=ǫ (some small number). The principle is similar to

IDA* [70], and reminiscent of iterative refinement in IPP [69], but applied to prun-

ing on plan quality. That is, it is possible to introduce an aggressive bound on cost,

i.e., assume there exists a considerably better solution than that already found; if

this does not appear to be the case, then one can gradually relax the bound. The

difference from IDA* comes in the heuristic value used for search. Since the plan-

ner still uses relaxed plan length to guide search, we use theadmissible cost-based

heuristic and cut-off value only for pruning.

6.3 EVALUATION

No benchmarks with continuous cost functions exist so we created some based on

existing problems; namely, Elevators, Crew Planning and Openstacks, from IPC-

2008. In Elevators, the objective is to bring people to theirfinal floors using differ-

ent elevators capable of reaching various floors at differing speeds. The deadlines

were generated based on greedy, independent solutions for each passenger, thereby

generating a “reasonable” wait time for the soft deadline and a partially random-

ized “priority” time for when full cost is incurred (with theidea that some people

are either more important or more impatient than others.) For each of problems

4–14 from the original problem set (solvable byPOPF), there were three problems

generated. In Crew Planning, the goals involve a crew performing various tasks. In

this domain, for each problem solvable byPOPF (1–20), we generated soft dead-

lines on each crew member finishing sleep, and random deadlines for payload tasks

each day. In Openstacks, a manufacturing-based domain, each original problem is

augmented by soft deadlines based on production durations.

118

The critical question to answer is whether supporting continuous costs is better

than using a discretization comprising a series of incremental deadlines (modeled

usingPDDL3). Thus, for each continuous model several discretized problems, with

each continuous cost function approximated by either 3, 5 or10 preferences (10

being the closest approximation), were generated. This is compared to OPTIC with

the continuous model, and either normal search (only pruning states that cannot

improve on the best solution found), or the tiered search described in Section 6.2.

In the latter, the value ofN was based on the costQ of the first solution found.

The tiers used were[Q/2, Q/4, Q/8, Q/16, ǫ]. Each tier had at most a fifth of the

30 minutes allocated. The results are shown in Figure 6.2, the graphs show scores

calculated as in IPC-2008; i.e. the score on a given problem for a given configura-

tion is the cost of the best solution found (by any configuration) on that problem,

divided by the cost of its solution.

First, observe that the solid line, denoting tiered search,has consistently good

performance. Compare this to continuous-cost search without tiers; it is worse

sometimes in Elevators, often in Crew Planning, and most noticeably in Open-

stacks. These domains, in left-to-right order, have a progressively greater tendency

for search to reach states that could potentially bemarginally better than the in-

cumbent solution; risking exhausting memory before reaching a state that ismuch

better. This is consistent with the performance of the most aggressive split configu-

ration, where we split the continuous cost function into three discrete all-or-nothing

penalty deadlines. In Elevators, and some Crew Planning problems, its aggressive

pruning makes it impossible for it (or the other split configurations) to find the best

solutions. But, looking from left-to-right between each graph, the memory-saving

benefits of this pruning become increasing important, and byOpenstacks, it is find-

119

ing better plans. Here, too, the split configurations with weaker pruning (5 and

10) suffer the same fate as non-tiered continuous search, where memory use limits

performance.

From these data, it is clear that the benefit of tiered-searchis that it is effectively

performing dynamic discretization. Because we have modeled continuous-costs in

the domain, rather than compiling them away, the “improvement requirement” be-

tween successive solutions becomes a search-control decision, rather than an arti-

fact of the approximation used. In earlier tiers, search prunes heavily, and makes

big steps in solution quality. In later tiers, pruning is less zealous, allowing smaller

steps in solution quality, overcoming the barrier caused bycoarse pruning. This is

vital to close the gap between a solution that is optimal according to some granular-

ity, but not globally optimal. A fixed granularity due to a compilation fundamentally

prevents search from finding the good solutions it can find with a tiered approach.

Finally, note that plan makespan is not always a good analog for plan cost.

In Elevators, it appears to be reasonable (likewise in thePDDL3 encoding of the

Pipesworld domain earlier in the evaluation). In Crew Planning and Openstacks,

though, we see that minimizing makespan produces poor quality solutions; indeed

in Openstacks, low makespan solutions are particularly bad.

Summary We have considered temporal planning problems where the cost function

is not directly linked to plan makespan and explored how to handle temporal prob-

lems with continuous cost functions that more appropriately model certain classes

of real-world problems and gone on to show the advantages of reasoning with a

continuous model of such problems versus a compilation toPDDL3 via discretiza-

tion. Our tiered search approach appears to offer the benefits of the discretized

120

representation while operating over the continuous representation of the planning

problem.

121

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

S
co

re
 (

IP
C

 2
00

8
M

et
ric

)

Problem Number

Elevators

Minimize Makespan
Split into 10
Split into 5
Split into 3

Continuous
Continuous, tiered

(a) Elevators (b) Crew planning

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

S
co

re
 (

IP
C

 2
00

8
M

et
ric

)

Problem Number

Openstacks

Minimize Makespan
Split into 10
Split into 5
Split into 3

Continuous
Continuous, tiered

(c) Openstacks

Figure 6.2:IPC scores per problem, validated against the continuous cost domain

1
2

2

Chapter 7

Related Work

While there has been recent growth in research for solving planning problems in the

presence of soft (prioritized) goals, such problems have been discussed in the field

of artificial intelligence before. Indeed, Simon discussedissues of goal choice,

relating it to computation time, cognition and motivation [87]. However, only in

the last several years has there been a significant effort in using modern planning

technology to solve problems of this nature.

Issues like how to best represent soft goals, whether compilation approaches are

always effective in all PSP problems, and the level of expressiveness required for

solving real-world problems with soft goals are still open questions. Representing

PSP problems is the foremost problem, and a variety of approaches have been pro-

posed. For instance, work has been done in defining qualitative goal preferences,

soft constraints on plan trajectories and explicit declarations on resource limita-

tions. The solving methods range from various heuristic approaches, compilations

to other problem substrates (e.g., integer programming or boolean formula satis-

fiability) or compilations that reduce soft goal constraints to planning with other

objectives. In this chapter, we review these methods.

7.1 REPRESENTATIONS FORPARTIAL SATISFACTION PLANNING

For atemporal goal satisfaction, much of this dissertationfocuses on both goalcost

andutility dependencies. We use thegeneral additive independencemodel for rep-

resenting goal utility dependencies, but there are severalother attractive models. In

particular, theUCP-Networkmodel [14] allows one to specify preference relation-

ships between goals with an associated reward for their satisfaction. This model
123

focuses onconditionaldependencies (i.e., if one already has an airplane ticket to

Hawaii, then one will get reward for having a hotel reservation in Hawaii). Another

similar approach is to use thegraphical model[2]. While both of these provide a

graphical representation that can make it easier for users to understand (and define)

dependencies, GAI is more general and both of these models can be compiled to

GAI.

The languages from the 2006 and 2008 International PlanningCompetitions,

PDDL3 [48] and PDDL3.1 (respectively), can also be used to represent goal utility

dependencies. Indeed, they are capable of representing more complex preferences

over trajectories and therefore focus on a broader problem class than ours. Only

one domain from the planning competitions,woodworking(from 2008), contains

well-defined utility dependencies between goals. Even in this domain, those utility

dependencies are strictly positive, making goal choice much easier than if negative

utility dependencies existed. Indeed, it is unclear whether any planner capable of

handling PDDL3 dependencies can deal with negative dependencies (our prelimi-

nary testing shows that they cannot, though it may be possible to easily force them

to).

Qualitative preference-based planners also treat goals assoft constraints; how-

ever, goals are not quantitatively differentiated by theirutility values, but their

preferences are instead qualitatively represented. Qualitative preferences are nor-

mally easier to elicit from users, but they are less expressive and there can be many

plans generated that are incomparable. Brafman and Chernyavsky [16] use TCP-

Networks to represent the qualitative preferences betweengoals. Some examples

are: (1)g1 ≻ g2 means achievingg1 is preferred to achievingg2; (2) g1 ≻ ¬g1

means achievingg1 is better than not achieving it. Using the goal preferences,plan

124

P1 is considered better than planP2 if the goal set achieved byP1 is preferred to

the goal set achieved byP2 according to the pre-defined preferences. A Pareto op-

timal planP is the plan such that the goal set achieved byP is not dominated (i.e.,

preferred) by the goal set achieved by any other plan. Tran and Pontelli [92] intro-

duced the PP language that can specify qualitative preferences on plan trajectories

such as preferences over the states visited by the plan or over actions executed at

different states. PP uses a nested subset of temporal logic (similar to PDDL3) to

increase the set of possible preferences over a plan trajectory. PP is later extended

with quantification and variables by Bienvenu et al. [10].

7.2 PLANNERS SOLVING PSPAND THEIR CLOSE RELATIVES

There are several planners that solve PSP and closely related problems, and they fall

into three distinct strategies: (1) up-front goal selection; (2) combined goal and ac-

tion selection (i.e., planning directly on action and goal selection); (3) compilation

into another substrate (e.g., cost-based planning, integer programming or boolean

formula satisfiability). All of these approaches try to solve the problem of choosing

among the2|G| possible goal sets in different ways.

Up-front Goal Selection: An appealing method is to perform goal selection up-

front and find a reasonable plan for those goals then either stop or find another goal

set to try to get an even better plan. This is a two-step strategy, where in step one we

heuristically select a subset of soft goals and in step two weconvert the goal set into

hard goals then use a non-PSP solving method to find a solutionfor those goals.

This lets you use an “off-the-shelf” planner for finding solutions. The planners

SGPlan[64], the orienteering-planner (OP) [88],AltAlt PS [95] and HSP∗p [57] all

use this type of strategy.SGPlanperforms an up-front goal selection that has not

been well-described in the literature, though it iterates through all soft goals and

125

uses a heuristic to choose a “best” goal set. It then solves the problem using its

regular search. In its first step, OP uses the solution of a simpler problem to select

both the subset of goals and the order to achieve them. The abstract problem is

built by first propagating the action costs on the planning graph and constructing the

orienteeringproblem, which is a variation of thetraveling salesmanproblem. The

approach was used to find a solution with limited resources, and similar approach

was used by Garcı́a-Olaya, et al. [45] in their work on the same problem. Note that

theorienteeringproblem has similarities to the flow-network IP formulationwe use

the planner BBOP-LP for thehGAI
LP heuristic.

Unlike the orienteering-planner,AltAlt PS relies on the cost-sensitive planning

graph and uses a different technique to analyze the graph to heuristically select the

most beneficial subset of goals. After the goals are found,AltAlt PS uses a variation

of the regression search plannerAltAlt to search for a low cost plan. HSP∗
p works

somewhat differently. It iterates through all soft goal sets and uses IDA∗ [70] to

solve the goal set it decides is best. On each iteration of IDA∗, it chooses a “best”

goal set that gives the current highest bound plan quality using its heuristic. This

can be seen as a mixed strategy between up-front goal selection and performing

goal selection during search.

The disadvantage of this approach is that if the heuristics in the first step do

not select the right set of goals then the planner may either find a poor quality plan

or can take a lot of time to discover that the problem is unsolvable before it can

switch to another goal set. Therefore, if the first step does not select theexact

optimal goal set, then the final plan is not guaranteed to be optimal. Moreover, if

there is an unachievable goal selected, then the planner will return in failure (with

some planners trying to select another set of goals after this). Indeed, as shown

126

in Section 5.2,AltAlt PS and its improved versionAltWlt never try to solve more

than a single (hard) goal set and can consistently select theset of goals containing

non-obvious mutexes on many problems.

Combined Action and Goal Selection:Our approaches fall into this category. The

SPUDS and BBOP-LP heuristics perform goal and action selection before they re-

turn a heuristic value. Several other PSP planners perform this type of search. Of

course, the planner we have based our work on,SapaPS , does this [7] (as well as

its PDDL3-SP variant,YochanPS). It uses a goal selection technique during search

(i.e., per state). The planners MIPS-XXL [36], MIPS-BDD [34], Gamer [37], and

HPlan-P [5] also perform goal selection during the planningprocess. With the ex-

ception of Gamer, these planners use a forward search. MIPS-XXL [36] and MIPS-

BDD [34] both compile plan trajectory preferences from PDDL3.0 into Büchi au-

tomata and “simple preferences” into PDDL2.1 numerical fluents that are changed

upon a preference violation. MIPS-XXL then uses Metric-FF with its enforced hill-

climbing algorithm to find the final solution. On the other hand, MIPS-BDD stores

the expanded search nodes in BDD form and uses a bounded-length cost-optimal

BFS search for BDDs to solve the compiled problems. While compiling to NFA

seems to allow those planners to handle the preference language PDDL3, it is not

clear if there is any performance gain from doing so. Gamer, on the other hand uses

a perimeter search, performing a breadth-first backward search to generate a pattern

database for a later breadth-first forward search. To handlesoft goals, the planner

searches (without heuristic guidance) in a manner similar to our search, pruning

nodes that appear worse in quality than the best-known plan.In HPlan-P, Baier et

al. [5] compile trajectory preferences into additional predicates and actions by first

representing them as a non-deterministic finite state automata (NFA). The heuristic

127

is then adjusted to take into account that different preferences have different val-

ues so that the planner is guided toward finding overall good quality plans. The

planner is then extended to have a more sophisticated searchalgorithm where con-

ducting a planning search and monitoring the parametrized NFA are done closely

together [4].

Bonet & Geffner [12] present a planner whose search is guidedby several

heuristics approximating the optimal relaxed plan using the rank of d-DNNF the-

ory. While the search framework is very similar to ours and the heuristic is relaxed

plan-based, the problem tackled is a variation of PSP where goal utilities are not as-

sociated with facts achieved at the end of the plan executionbut achievedsometime

during the plan execution. This way, it is a step in moving from the PSP definition

of traditional “at end” goals to a more expressive set of goalconstraints on the plan

trajectory defined in PDDL3. The heuristic computation theyuse is expensive, due

to compiling the problem into a d-DNNF.

Compilation Approaches: While goal and action selection can be done directly

during the search for plans, it is also possible to effectively compile out goal se-

lection from the problem, as we saw inYochanCOST . This approach is quite ap-

pealing because any planner capable of handling action costs (along with whatever

other constraints the problem may have) can be used to solve the problem. This

effectively changes the search space representation, and while we saw this has a

mostly negative effect in the comparison betweenYochanCOST andYochanPS , it

allows the use of other planners so that no special mechanisms need be invented

for goal selection. Indeed, Keyder & Geffner [66, 67] took this approach and show

that it allows one to use the benefits of state-of-the-art planners. Their compilation

differs fromYochanCOST in that (1) they do not handle conditional costs on actions

128

and (2) they use a compilation trick that forces the state-space into an “evaluation

mode” such that costs for not achieving goals are only incurred during this mode.

Using this compilation, they showed that planners made to solve partial satisfaction

planning problems directly performed worse than current state-of-the-art cost-based

planners. The advantage of using the latest techniques for cost-based planning is

seductive, but it is unclear how well specialized techniques for goal selection would

work in the state-of-the-art planners or how well they couldhandle more complex

constraints on goal selection (e.g., goal utility dependencies or explicit resource

limitations). Given our experiences withYochanCOST , it appears that handling soft

goals directly can (at least in our framework) provide better quality plans.

These approaches are also unlikely to handle goal utility dependencies well

when the heuristic is unable to take negative goal utility dependencies into account.

Some preliminary experiments we have done have illustratedthat this problem can

occur when a heuristic simply ignores delete lists. This is because propagation and

relaxed plan heuristics can assume that the positive-valued goal set can always be

achieved together without penalty, and hence the heuristicwill ignore negative goal

utility dependencies associated with certain goal subsets.

Other compilation methods use solvers not explicitly made for planning prob-

lems. For instance,OptiPlan[95] extends an integer programming (IP) encoding

for bounded parallel length classical planning to solve thePSP problem by adding

action cost and goal utility. It relaxes the hard goal constraints by moving those

goals satisfying conditions into the IP’s objective function. This way, goals can be

treated as soft constraints. The advantage ofOptiPlan’s approach is that off-the-

shelf IP solvers can be used to find the final plan that is guaranteed to be optimal

up to a bounded parallel plan length. The disadvantage of this approach is that it

129

does not scale up well as compared with heuristic approaches, and one can see this

in experiments on the encoding used foriPUD. van den Briel et al. [94] also pro-

posed a set of constraints that could be applied to PDDL3. However, it appears this

encoding was never implemented.

Another recent compilation approach tried by Russell and Holden uses a SAT

encoding on PSPnet benefitwith goal utility dependencies [84]. It extends a ver-

sion of the “thin-gp” encoding from SATPLAN [65], then encodes utilities using an

objective function over a Weighted Partial Max-SAT (WPMax-Sat) problem. Like

the iPUD approach, it is a bounded-length optimal encoding. In the problems gen-

erated by Russell and Holden, the approach scales nearly as well (and often better)

thaniPUD, though has markedly worse behavior inzenotravelas it extends its solv-

ing horizon. A somewhat similar SAT encoding was used for PDDL3 [53]. In both

of these encodings, they first find the maximally achievable plan quality valueC,

thenn = ⌈log2(C)+1⌉ ordered bitsb1, ..., bn are used to represent all possible plan

quality values within the range of 0 toC. For the PDDL3-based planner, the SAT

solver was modified with branching rules over thosebi bits. These are then used to

find a bounded-length plan with the maximum achievable plan quality value.

7.3 SOLVING FOR QUALITATIVE PREFERENCES

Qualitative representations of preferences are typicallynon-numeric rankings be-

tween choices of goals (e.g., one might prefer white wine to red wine when one has

fish). One problem with qualitative representations is thatit is possible to generate

different plans that areincomparableto one another (i.e., you cannot say whether

they are better, worse, or of equal value). Nonetheless, they offer some advantages

to users in that it is often easier for people to think symbolically rather than quanti-

130

tatively (e.g., saying one prefers white wine to red wine with fish can be easier than

enumerating the possible values for each combination of wine and fish).

For the representation used by Brafman & Chernyavsky over

TCP-Networks [16], a CSP-based planner is used to find a bounded-length opti-

mal plan. They do this by changing the branching rules in a CSPsolver so that

the most preferred goal and the most preferred assignment for each goal are always

selected first. Thus, the planner first branches on the goal set ordering according to

goal preferences before branching on actions making up the plan.

Both logic-based [92] and heuristic search based [10] planners have been used

to solve planning problems with qualitative preferences represented in the language

PP by using weighting functions to convert qualitative preferences to quantitative

utility values. This is due to the fact that quantitative preferences such as PSP

and PDDL3 fit better with a heuristic search approach that relies on a clear way to

compute and compareg (current cost) andh (“cost-to-go”) values. The weights are

then used to compute theg andh values guiding the search for an optimal or good

quality solution.

7.4 TIME-DEPENDENT GOAL COSTS

While temporal planning has long held the interest of the planning community (c.f.,

Zeno [80], TGP [90], TLPlan [1], Sapa [32], LPG [52], CRIKEY [26], TFD [38]),

strong interest in preference-based and partial satisfaction planning (e.g.,net benefit

planning) is relatively recent.

My work on time-dependent goal costs can be seen as a cross-over between

the areas. But others have emerged over the years. To our knowledge, the earliest

work in this direction is by Haddawy & Hanks, in their plannerPYRRHUS [55].

This planner allows a decision-theoretic notion ofdeadline goals, such that late

131

goal achievement grants diminishing returns [55]. For several years after this work,

the topic of handling costs and preferences in temporal planning received little at-

tention. As mentioned earlier, in 2006, PDDL3 [50] introduced a subset of linear

temporal logic (LTL) constraints and preferences into a temporal planning frame-

work. PDDL3 provides a quantitative preference language that allowed the defini-

tion of temporal preferences within the already temporallyexpressive language of

PDDL2.1 [42]. However, few temporal planners have been built to support the tem-

poral preferences available (c.f.,MIPS-XXL [36], SGPLAN 5 [64]), and none that are

suitable for temporally expressive domains [27]. Other recent work uses the notion

of time-dependent costs/rewards in continual planning frameworks (c.f., [73, 18]).

7.5 OTHER PSP WORK

We briefly go over some other related work on partial satisfaction planning, dis-

cussing partial satisfaction of numeric values, PSPnet benefitusing Markov Deci-

sion Processes (MDPs), techniques for oversubscribed scheduling and finally work

related to our learning approach.

Degree of Satisfaction on Metric Goals: The reward models we have used have

all dealt with logical goals. However, it is possible to specify reward on numeric

values as well. Some of our previous work, done before beginning this dissertation

work, handled numeric goal reward, where the definition of reward is over the final

value of a numeric variable [8]. To handle this type of reward, we used a heuristic

method similar to that of the planner Metric-FF, which effectively tracks upper and

lower bounds on numeric variables on a planning graph structure. Using these

bounds, it is then possible to estimate the cost (given through cost propagation) and

reward for achieving certain values.

132

Using Markov Decision Processes (MDPs):Another way of solving PSP prob-

lems is to model them directly as deterministic MDPs [62], where actions have

different costs. One way to look at this is to encode any stateS (in which any of the

goals hold) as a terminal state with the reward defined as the sum of the utilities of

the goals that hold inS. However, rather than reifying goals rewards in this way, we

can use a compilation approach similar to the one defined by Keyder & Geffner [67]

discussed earlier, which avoids several problems (e.g., goal re-achievement) in the

state space for the solving method. The optimal solution to the PSP problem can

then be extracted from the optimal policy of this MDP. Given this, our solution

methods can be seen as an efficient way of directly computing the plan without

computing the entire policy (in fact,h∗(S) can be viewed as the optimal value of

S). For time-dependent costs or reward, it is also possible toformulate the problem

using an MDP model [76].

Oversubscribed Scheduling:Over-subscription and partial satisfaction issues have

received more attention in the scheduling community. Earlier work in

over-subscription scheduling used “greedy” approaches, in which tasks of higher

priorities are scheduled first [71, 82]. More recent effortshave used stochastic

greedy search algorithms on constraint-based intervals [44], genetic algorithms [54],

and iterative repairing techniques [72] to solve this problem more effectively. Some

of those techniques can potentially help PSP planners to findgood solutions. For

example, scheduling tasks with higher priorities shares some similarity with the

wayAltAltps builds the initial goal set, and iterative repairing techniques may help

local search planners such as LPG [51] in solving PSP problems.

Learning to Improve Plan Quality: There has been very little prior work fo-

cused on learning to improve plan quality. The closest learning system for planning

133

that tried to improve the quality of plans produced was the work by Pérez [81]

almost a decade ago. In contrast to the approach in this dissertation, that work

used explanation-based learning techniques to learn search control rules. As we

discussed, one reason Stage-PSP outperforms SPUDS is that the S-SEARCH with

learned evaluation function allows it to go to deeper parts of the search tree (and

probe those regions with SPUDS search). While the Stage-PSPalgorithm did not

use the lookahead technique to reach deeper into the search space, this ends up

achieving a similar effect.

7.6 PLANNERS USING IP OR LP IN HEURISTICS

This dissertation work makes extensive use of heuristics with embedded integer

programming (IP) formulations. This allows the techniquesto consider the com-

plex interactions between goal and action selection in planning. Bylander [20] also

used an IP formulation (and an LP relaxation) as a heuristic in the planner Lplan, but

this heuristic has a bounded horizon, and so with action costs cannot be guaranteed

optimal (unlikehGAI
LP andhGAI

max). Coles et al. [25] also have used LP formulations

in combination with delete relaxation heuristics. However, their work focuses on

increasing the informedness of heuristics for planning when there is an interaction

between numeric variables. The work for embedded PDDL3 preferences into the

planner OPTIC also uses IP formulations [21, 6]. Other work has used linearpro-

gramming directly in the planning process to handle numeric[98] and temporal [75]

aspects of the planning problem.

7.7 OTHER HEURISTICS USING FLOW MODELS

The structure encoding in ourhGAI
LP heuristic has strong connections to thecausal

graph[59] andcontext-enhanced additive[61] heuristics, both of which implement

similar flow structure and procedurally solve the resultingrelaxed model of the

134

planning problem. Indeed, both of these heuristics can similarly represent the neg-

ative interactions of actions and have shown better behavior when compared against

a purely relaxed plan based heuristic in many domains. One difference with those

heuristics, however, is that they are inadmissible whereashGAI
LP is admissible.

135

Chapter 8

Conclusion and Future Work

As agents acting in the real world, we must always make decisions on which sets

of goals we should direct our actions toward achieving. Earlier work in automated

planning addressed these issues, ranging from mention of the problem by Simon

in 1964 [86] to more recent discussions on the subject with respect to decision

theory [40, 55]. However, until recently work in the area hasbeen sparse. This

likely had to do with a lack of scalable methods for planning—it was hard enough

to find short plans, let alone decide on which goals to achieveor the quality of the

plans eventually found. However, now as we reach an era whereautomated methods

for planning have become progressively more scalable and able to plug into larger,

more complex systems, a user should naturally expect the ability to handle these

real-life decisions on goal and constraint choice. Hence, it is imperative that the

study of these types of problems progresses. This brings us to the main thrust of this

dissertation work; that is, to expand upon representational and solving methods for

partial satisfaction planning (PSP) problems. In particular, this work looks toward

allowing a richer set of reward representations for handling goal choice. We defined

goal utility dependenciesand time dependent goal coststo these ends. For goal

utility dependencies, we used thegeneral additive independence(GAI) model. This

model has the benefit that it fits well within heuristic searchapproaches, and it can

be generated from other models. For time dependent goal costs, we presented a

linearly increasing cost function after a deadline point, where penalty up to some

maximum value would be given for failing to achieve a goal by aspecified deadline.

136

We introduced several approaches used to solve for goal utility dependencies.

First, we showed a novel heuristic framework that combines cost propagation and

an integer program (IP) encoding to capture mutual dependencies of goal achieve-

ment cost and goal utility. We compared these heuristics to abounded length IP-

based solving method and found that, while the IP-based method often did well on

easier problems, the heuristic method scaled much better. Of these methods, we

found that the heuristichGAI
relax, which extracts a relaxed plan for all goals then en-

codes it in an IP along with goal utility dependencies, performed best among these

methods.

After this, we introduced another novel heuristic based on arelaxed IP encoding

of the original problem that keeps delete lists (unlike our other heuristics) but ig-

nores action ordering. We then use the LP-relaxation of thisencoding as an admis-

sible heuristic and found that it performed better thanhGAI
relax andhGAI

max , performing

much better in terms of allowing us to reach optimal solutions, and finding better-

quality solutions even when it did not lead to optimal solutions. Finally, we looked

at a learning method based on the local search technique called STAGE with the

intention of improving search.

We also explored temporal problems withtime-dependent goal costs, or contin-

uous cost functions that model certain classes of real-world problems with penalty

costs for missing deadlines. We went on to show the advantages of reasoning with

a continuous model of such problems versus a compilation toPDDL3 via discretiza-

tion.

For future work on goal utility dependencies, it might be beneficial to use some

of the recent work in partially including mutual exclusionsin heuristics [58, 68].

Performed properly, this could allow us to only look at the mutual exclusions that

137

are specific to negative goal utility dependencies so that penalty might be avoided.

Further, we intend to explore ways of integratingPDDL3 and continuous cost mod-

els, and supporting other continuous-cost measures, such as a continuous-cost ana-

log to always-within (i.e., cost functions over time windows).

In terms of partial satisfaction planning generally, we plan to extend represen-

tational models to handle resource constraint issues. At a base level, one can view

work in partial satisfaction planning as extending models of decision theory into

the realm of planning. Indeed, early work in the area looked at the problem in

this way and the use of general additive independence to model goal utility depen-

dencies stems from decision theoretic work on preferences [2]. Work in handling

partial satisfaction planning could be further enhanced byaddressing issues of re-

source constraints, where resources that are not directly correlated with costs can be

handled in conjunction with rewards for goals, as recently suggested by Smith [89].

138

REFERENCES

[1] F. Bacchus and F. Kabanza. Using temporal logics to express search control
knowledge for planning.Artificial Intelligence, 16:123–191, 2000.

[2] Fahiem Bacchus and Adam Grove. Graphical models for preference and util-
ity. In In Proceedings of the Eleventh Conference on Uncertainty inArtificial
Intelligence, pages 3–10, 1995.

[3] Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ plan-
ning. Computational Intelligence, 11(4):625–655, 1995.

[4] Jorge Baier, Fahiem Bacchus, and Sheila McIllraith. A heuristic search ap-
proach to planning with temporally extended preferences. In Proceedings of
IJCAI-07, 2007.

[5] Jorge Baier, Jeremy Hussell, Fahiem Bacchus, and SheilaMcIllraith. Plan-
ning with temporally extended preferences by heuristic search. InProceed-
ings of the ICAPS Booklet on the Fifth International Planning Competition,
2006.

[6] J. Benton, Amanda Coles, and Andrew Coles. Temporal planning with pref-
erences and time-dependent continuous costs. InProceedings of the 22nd
International Conference on Automated Planning and Scheduling, 2012.

[7] J. Benton, Minh Do, and Subbarao Kambhampati. Anytime heuristic search
for partial satisfaction planning.Artificial Intelligence, 173:562–592, April
2009.

[8] J. Benton, Minh B. Do, and Subbarao Kambhampati. Over-subscription
planning with numeric goals. InProceedings of the Joint International Con-
ference on Artificial Intelligence, pages 1207–1213, 2005.

[9] J. Benton, Menkes van den Briel, and Subbarao Kambhampati. A hybrid lin-
ear programming and relaxed plan heuristic for partial satisfaction planning
problems. In Mark Boddy, Maria Fox, and Sylvie Thiébaux, editors, Pro-
ceedings of the Seventeenth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2007), pages 34–41. AAAI Press, 2007.

139

[10] Meyghyn Bienvenu, Christian Fritz, and Sheila McIlraith. Planning with
qualitative temporal preferences. InProceedings of the International Con-
ference on Principles of Knowledge Representation and Reasoning, pages
134–144, 2006.

[11] Avrim Blum and Merrick Furst. Planning through planning graph analysis.
Artificial Intelligence Journal, 90:281–330, 1997.

[12] Blai Bonet and Héctor Geffner. Heuristics for planning with penalties and
rewards using compiled knowledge. InProceedings of KR-06, 2006.

[13] Blai Bonet, Gábor Loerincs, and Héctor Geffner. A robust and fast action
selection mechanism for planning. InProceedings of the Fourteenth National
Conference on Artificial Intelligence (AAAI 1997), pages 714–719. AAAI
Press, 1997.

[14] Craig Boutilier, Fahiem Bacchus, and Ronen I. Brafman.UCP-networks:
A directed graphical representation of conditional utilities. In UAI, pages
56–64, 2001.

[15] Justin Boyan and Andrew Moore. Learning evaluation functions to improve
optimization by local search.Journal of Machine Learning Research, 1:77–
112, 2000.

[16] Ronen I. Brafman and Yuri Chernyavsky. Planning with goal preferences
and constraints. InProceeding of ICAPS-05, 2005.

[17] Olivier Buffet and Douglas Aberdeen. FF+FPG: Guiding a policy-gradient
planner. InProceedings of International Conference on Automated Planning
and Scheduling, pages 42–48, 2007.

[18] Ethan Burns, J. Benton, Wheeler Ruml, Minh B. Do, and Sungwook Yoon.
Anticipatory on-line planning. InProceedings of the 22nd International
Conference on Automated Planning and Scheduling (ICAPS), 2012.

[19] Tom Bylander. The computational complexity of propositional strips plan-
ning. Artificial Intelligence Journal, 69:165–204, 1994.

140

[20] Tom Bylander. A linear programming heuristic for optimal planning. In
AAAI-97/IAAI-97 Proceedings, pages 694–699, 1997.

[21] Amanda Coles and Andrew Coles. LPRPG-P: Relaxed Plan Heuristics for
Planning with Preferences. InProceedings of the 21st International Confer-
ence on Automated Planning and Scheduling (ICAPS), June 2011.

[22] Amanda Coles, Andrew Coles, Allan Clark, and Stephen Gilmore. Cost-
sensitive concurrent planning under duration uncertaintyfor service level
agreements. InProceedings of the 21st International Conference on Auto-
mated Planning and Scheduling (ICAPS), pages 34–41, June 2011.

[23] Amanda Coles, Andrew Coles, Maria Fox, and Derek Long. Forward-
chaining partial-order planning. InProceedings of the 20th International
Conference on Automated Planning and Scheduling (ICAPS), May 2010.

[24] Andrew Coles, Maria Fox, Keith Halsey, Derek Long, and Amanda Smith.
Managing concurrency in temporal planning using planner-scheduler inter-
action.Artificial Intelligence, 173:1–44, 2009.

[25] Andrew Coles, Maria Fox, Derek Long, and Amanada Smith.A hybrid
relaxed planning graph-LP heuristic for numeric planning domains. InPro-
ceedings of the 18th International Conference on AutomatedPlanning and
Scheduling, pages 52–59, 2008.

[26] Andrew Coles, Maria Fox, Derek Long, and Amanda Smith. Planning with
problems requiring temporal coordination. InProceedings of the 23rd AAAI
Conference on Artificial Intelligence (AAAI), July 2008.

[27] William Cushing, Subbarao Kambhampati, Mausam, and Dan Weld. When
is temporal planningreally temporal planning? InProceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI), pages
1852–1859, 2007.

[28] Rina Dechter.Constraint Processing. Morgan Kaufmann, 2003.

[29] Minh B. Do, J. Benton, Menkes van den Briel, and SubbaraoKambhampati.
Planning with goal utility dependencies. In Manuela M. Veloso, editor,Pro-

141

ceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI 2007), pages 1872–1878, 2007.

[30] Minh B. Do and Subbarao Kambhampati. Improving the temporal flexibility
of position constrained metric temporal plans. InInternational Conference
on Automated Planning and Scheduling, pages 42–51, 2003.

[31] Minh B. Do and Subbarao Kambhampati. Sapa: A multi-objective metric
temporal planner.Journal of Artificial Intelligence Research, 20:155–194,
2003.

[32] Minh B. Do and Subbarao Kambhampati. Sapa: Multi-objective Heuris-
tic Metric Temporal Planner.Journal of Artificial Intelligence Research,
20:155–194, 2003.

[33] Minh B. Do and Subbarao Kambhampati. Partial satisfaction (over-
subscription) planning as heuristic search. InProceedings of KBCS-04, 2004.

[34] Stefan Edelkamp. Optimal symbolic PDDL3 planning withMIPS-BDD.
In Proceedings of the ICAPS Booklet on the Fifth InternationalPlanning
Competition, 2006.

[35] Stefan Edelkamp and Malte Helmert. Exhibiting knowledge in planning
problems to minimize state encoding length. In Susanne Biundo and Maria
Fox, editors,Recent Advances in AI Planning. 5th European Conference on
Planning (ECP 1999), volume 1809 ofLecture Notes in Artificial Intelli-
gence, pages 135–147, Heidelberg, 1999. Springer-Verlag.

[36] Stefan Edelkamp, Shahid Jabbar, and Mohammed Nazih. Large-scale opti-
mal PDDL3 planning with MIPS-XXL. InProceedings of the ICAPS Booklet
on the Fifth International Planning Competition, 2006.

[37] Stefan Edelkamp and Peter Kissmann. Optimal symbolic planning with ac-
tion costs and preferences. InProceedings of the 21st International Joint
Conference on Artificial Intelligence, pages 1690–1695, 2009.

[38] Patrick Eyerich, Robert Mattmüller, and Gabriele Röger. Using the context-
enhanced additive heuristic for temporal and numeric planning. In Proceed-

142

ings of 19th International Conference on Automated Planning and Schedul-
ing (ICAPS), September 2009.

[39] Tom Fawcett. Knowledge-based feature discovery for evaluation functions.
Computational Intelligence, 12:42–64, 1996.

[40] Jerome Feldman and Robert Sproull. Decision theory andartificial intelli-
gence ii: The hungry monkey.Cognitive Science, 1(2):158–192, April 1977.

[41] Eugene Fink and Qiang Yang. Formalizing plan justifications. InProceed-
ings of the Ninth Conference of the Canadian Society for Computational
Studies of Intelligence, pages 9–14, 1992.

[42] Maria Fox and Derek Long. PDDL2.1: An extension of PDDL for express-
ing temporal planning domains.Journal of Artificial Intelligence Research,
20:61–124, 2003.

[43] Maria Fox and Derek Long. Modelling mixed discrete-continuous domains
for planning.Journal of Artificial Intelligence Research, 27:235–297, 2006.

[44] Jeremy Frank, Ari Jonsson, Robert Morris, and David Smith. Planning and
scheduling for fleets of earth observing satellites. InProceedings of Sixth
Int. Symp. on Artificial Intelligence, Robotics, Automation & Space, 2001.

[45] Angel Garcı́a-Olaya, Tomás de la Rosa, and Daniel Borrajo. A distance
measure between goals for oversubscription planning. InPreprints of the
ICAPS’08 Workshop on Oversubscribed Planning and Scheduling, 2008.

[46] B. Gazen and C. Knoblock. Combining the expressivenessof ucpop with the
efficiency of graphplan. InFourth European Conference on Planning, 1997.

[47] Alfonso Gerevini, Yannis Dimopoulos, Patrik Haslum, and Alessan-
dro Saetti. 5th international planning competition website.
http://zeus.ing.unibs.it/ipc-5/.

[48] Alfonso Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti, and Yan-
nis Dimopoulos. Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the planners.Artificial
Intelligence Journal, 173(5-6):619–668, 2009.

143

[49] Alfonso Gerevini and Derek Long. Plan constraints and preferences in
PDDL3: The language of the fifth international planning competition. Tech-
nical report, University of Brescia, Italy, August 2005.

[50] Alfonso Gerevini and Derek Long, editors.Fifth International Planning
Competition (IPC-5): planner abstracts, 2006.

[51] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina.Planning through
stochastic local search and temporal action graphs in lpg.Journal of Ar-
tificial Intelligence Research, 20:239–290, 2003.

[52] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina.An Approach to
Temporal Planning and Scheduling in Domains with Predictable Exogenous
Events.Journal of Artificial Intelligence Research, 25:187–231, 2006.

[53] Enrico Giunchiglia and M. Maratea. Planning as satisfiability with prefer-
ences. InProceedings of AAAI Conference on Artificial Intelligence, pages
987–992, 2007.

[54] Al Globus, James Crawford, Jason Lohn, and Anna Pryor. Scheduling earth
observing satellites with evolutionary algorithms. InProceedings of Interna-
tional Conference on Space Mission Challenges for Information Technology,
2003.

[55] Peter Haddawy and Steve Hanks. Utility models for goal-directed decision-
theoretic planners.Computational Intelligence, 14:392–429, 1993.

[56] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths.IEEE Transactions of
Systems Science and Cybernetics, SSC-4(2):100–107, July 1968.

[57] Patrik Haslum. Additive and reversed relaxed reachability heuristics revis-
ited. InBooklet of the 2008 International Planning Competition, 2008.

[58] Patrik Haslum.hm(P) = h1(P m): Alternative characterisations of the gen-
eralisation fromhmax to hm. In Alfonso Gerevini, Adele Howe, Amedeo
Cesta, and Ioannis Refanidis, editors,Proceedings of the Nineteenth Inter-
national Conference on Automated Planning and Scheduling (ICAPS 2009),
pages 354–357. AAAI Press, 2009.

144

[59] Malte Helmert. The Fast Downward planning system.Journal of Artificial
Intelligence Research, 26:191–246, 2006.

[60] Malte Helmert. Concise finite-domain representationsfor PDDL planning
tasks.Artificial Intelligence, 173:503–535, 2009.

[61] Malte Helmert and Héctor Geffner. Unifying the causalgraph and additive
heuristics. In Jussi Rintanen, Bernhard Nebel, J. Christopher Beck, and Eric
Hansen, editors,Proceedings of the Eighteenth International Conference on
Automated Planning and Scheduling (ICAPS 2008), pages 140–147. AAAI
Press, 2008.

[62] Jessey Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. SPUDD:
Stochastic planning using decision diagrams. InProceedings of Proceedings
of the Conference on Uncertainty in Artificial Intelligence, pages 279–288,
1999.

[63] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan gen-
eration through heuristic search.Journal of Artificial Intelligence Research,
14:253–302, 2001.

[64] Chih-Wei Hsu, Benjamim Wah, Ruoyun Huang, and Yixin Chen. New fea-
tures in SGPlan for handling preferences and constraints inPDDL3.0. In
Proceedings of the ICAPS Booklet on the Fifth InternationalPlanning Com-
petition, 2006.

[65] Henry Kautz, Bart Selman, and Jörg Hoffmann. Satplan:Planning as satis-
fiability. In Booklet of the 5th International Planning Competition, 2006.

[66] Emil Keyder and Hector Geffner. Set-additive and tsp heuristics for plan-
ning with action costs and soft goals. InProceedings of the Workshop on
Heuristics for Domain-Independent Planning, ICAPS-07, 2007.

[67] Emil Keyder and Hector Geffner. Soft goals can be compiled away.Journal
of Artificial Intelligence Research, 36:547–556, September 2009.

[68] Emil Keyder, Jörg Hoffmann, and Patrik Haslum. Semi-relaxed plan heuris-
tics. In Proceedings of the 22nd International Conference on Automated
Planning and Scheduling, 2012.

145

[69] Jana Koehler. Planning under resource constraints. InProceedings of the
13th European Conference on Artificial Intelligence, pages 489–493, 1998.

[70] Richard Korf. Depth-first iterative-deepening: An optimal admissible tree
search.Artificial Intelligence, 27:97–109, 1985.

[71] Laurence Kramer and Mark Giuliano. Reasoning about andscheduling
linked HST observations with spike. InProceedings of International Work-
shop on Planning and Scheduling for Space, 1997.

[72] Laurence Kramer and Stephen Smith. Maximizing flexibility: A retraction
heuristic for oversubscribed scheduling problems. InProceedings of IJCAI-
03, 2003.

[73] Seth Lemons, J. Benton, Wheeler Ruml, Minh B. Do, and Sungwook Yoon.
Continual on-line planning as decision-theoretic incremental search. InAAAI
Spring Symposium on Embedded Reasoning: Intelligence in Embedded Sys-
tems, 2010.

[74] D. Long and M. Fox. The third international planning competition (IPC3).
http://planning.cis.strath.ac.uk/competition/, 2002.

[75] Derek Long and Maria Fox. Exploiting a graphplan framework in temporal
planning. InProceedings of ICAPS-2003, 2003.

[76] Mausam and Daniel Weld. Planning with durative actionsin stochastic do-
mains.Journal of Artificial Intellgience Research, 31:33–82, 2008.

[77] David McAllester and Robert Givan. Taxonomic syntax for first order infer-
ence.Journal of the ACM, 40(2):246–283, 1993.

[78] A. Newell and H. A. Simon.Human problem solving. Prentice-Hall, 1972.

[79] XuanLong Nguyen, Subbarao Kambhampati, and Romeo Sanchez-Nigenda.
Planning graph as the basis to derive heuristics for plan synthesis by state
space and csp search.Artificial Intelligence, 135(1-2):73–124, 2002.

146

[80] S. Penberthy and D. Weld. Temporal Planning with Continuous Change.
In Proceedings of the 12th National Conference on Artificial Intelligence
(AAAI), 1994.

[81] M. Alicia Pérez. Representing and learning quality-improving search con-
trol knowledge. InProceedings of the International Conference on Machine
Learning, pages 382–390, 1996.

[82] W. Potter and J. Gasch. A photo album of earth: Scheduling landsat 7 mis-
sion daily activities. InProceedings of SpaceOp, 1998.

[83] R-Project.The R Project for Statistical Computing. www.r-project.org.

[84] Richard Russell and Sean Holden. Handling goal utilitydependencies in a
satisfiability framework. InProceedings of the 20th International Confer-
ence on Automated Planning and Scheduling, pages 145–152, 2010.

[85] Romeo Sanchez-Nigenda and Subbarao Kambhampati. Planning graph
heuristics for selecting objectives in over-subscriptionplanning problems.
In Proceedings of ICAPS-05, 2005.

[86] Herbert Simon. On the concept of the organizational goal. Administrative
Science Quarterly, 9(1):1–22, June 1964.

[87] Herbert Simon. Motivational and emotional controls ofcognition. Psycho-
logical Review, 74(1):29–39, January 1967.

[88] David E. Smith. Choosing objectives in over-subscription planning. In
Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, Proceedings
of the Fourteenth International Conference on Automated Planning and
Scheduling (ICAPS 2004), pages 393–401. AAAI Press, 2004.

[89] David E. Smith. Planning as an iterative process. InProceedings of the 26th
AAAI Conference on Artificial Intelligence, 2012.

[90] David E. Smith and Daniel S. Weld. Temporal Planning with Mutual Exclu-
sion Reasoning. InProcedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI), 1999.

147

[91] Edelkamp Stefan. Taming numbers and durations in the model checking inte-
grated planning system.Journal of Artificial Intelligence Research, 40:195–
238, 2003.

[92] Son Tran and Enrico Pontelli. Planning with preferences using logic pro-
gramming. Theory and Practice of Logic Programming, 6(5):559–608,
2006.

[93] Menkes van den Briel, J. Benton, Subbarao Kambhampati,and Thomas
Vossen. An LP-based heuristic for optimal planning. In Christian Bessiere,
editor,Proceedings of the Thirteenth International Conference onPrinciples
and Practice of Constraint Programming (CP 2007), volume 4741 ofLec-
ture Notes in Computer Science, pages 651–665. Springer-Verlag, 2007.

[94] Menkes van den Briel, Subbarao Kambhampati, and ThomasVossen. Plan-
ning with preferences and trajectory constraints by integer programming. In
Proceedings of Workshop on Preferences and Soft Constraints at ICAPS-06,
2006.

[95] Menkes van den Briel, Romeo Sanchez Nigenda, Minh B. Do,and Sub-
barao Kambhampati. Effective approaches for partial satisfaction (over-
subscription) planning. InProceedings of the Twentieth National Conference
on Artificial Intelligence (AAAI 2004), pages 562–569. AAAI Press, 2004.

[96] Menkes van den Briel, Thomas Vossen, and Subbarao Kambhampati. Re-
viving integer programming approaches for AI planning: A branch-and-cut
framework. InProceedings of the Fifteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS-05), pages 310–319, 2005.

[97] Vincent Vidal. YAHSP2: Keep it simple, stupid. InProceedings of the 7th
International Planning Competition (IPC’11), Freiburg, Germany, 2011.

[98] Steve Wolfman and Daniel Weld. The LPSAT engine and its applicationto
resource planning. InProceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI-99), pages 310–317, 1999.

[99] Sungwook Yoon, J. Benton, and Subbarao Kambhampati. Anonline learn-
ing method for improving over-subscription planning. InProceedings of the

148

Eighteenth International Conference on Automated Planning and Schedul-
ing, pages 404–411, 2008.

[100] Terry Zimmerman and Subbarao Kambhampati. Learning-assisted auto-
mated planning: looking back, taking stock, going forward.AI Mag.,
24(2):73–96, 2003.

149

APPENDIX A

ADMISSIBILITY OF hGAI
LP

150

To show the admissibility ofhGAI
LP , we can show thathGAI

IP captures a subset of

the constraints in the original SAS+ planning problem. SincehGAI
IP offers a further

relaxation, it is also an admissible heuristic.

Theorem 1. For large enough M,hGAI
IP will always return solutions of value greater

than or equal to the original planning problemP (that is, hIP is an admissible

heuristic).

Proof. For the multi-valued representation of the planning problem, we can show

that all feasible solutions toP can be mapped to feasible solutions ofhGAI
IP . Hence,

hGAI
IP is a relaxation of the original problem and is admissible when optimally

solved given an objective function that returns a value equal to or greater than the

original goal utility dependency planning problem.

The constraints produced by 4.13 and 4.14 help ensure that goal reward is

counted appropriately inhIP , and do not directly relate to thefeasibilityconstraints

in the original problem.

Recall that a solution toP , π, is a sequence of applicable actions starting

from the initial stateso. The mappingπ to a solution the encoding for finding

hIP (a set of variable assignments in the integer program) is straight forward.

First, assume all variables inhIP are initially assigned to 0. For each appear-

ance of an action inπ, the corresponding variables inhIP in are incremented

by 1. That is,∀ai ∈ π we increase the variableaction(ai) by 1. We also in-

crement action effect variables corresponding toej ∈ effectai
, such that∀ej ∈

effectai
, effect(ai, var(effectai,ej

), ej) is incremented by 1. Prevail conditions

are handled similarly, where∀pj ∈ prevailai
, prevail(ai, var(prevailai,pj

), pj) is

increased by 1. Goal utility dependencies and final state rewards are handled by

taking the final state given from applying all actions inπ (in order),sn. For every
151

variable,v ∈ V we take the value assigned to it insn, fsn
∈ Dv and assign a value

of 1 toendvalue(v, fsn
). To handle goal utility dependencies, we take each depen-

dency,Gk, and determine whether it is insn (a polynomial time operation). If so,

then we assign a value of 1 togoaldep(k).

This variable assignment scheme will always produce a feasible solution inhIP .

We show how each set of constraints is satisfied independently.

Equation 4.10: By definition of our translation, it is easy to see that the con-

straints generated by this equation will always be satisfied. The effect(ai, v, e)

andprevail(ai, v, f) IP variables will be incremented if and only ifaction(ai) is

incremented. Hence, the constraints generated by equation4.10 will always be

satisfied.

Equation 4.9: Revisiting the definition of a feasible solution forP helps show

how these constraints will always hold in our translation. Recall that a solution

is feasible inP only if an actionai can only be applied to a statesi (i.e., ai is

applicable insi). One of the requirements for an action to be applicable is that its

preconditions must hold insi. For that to be the case, one of two possible cases

must be true. First,s0 may have contained the assignmentv = fj and no action

prior to ai has any effect (other thanv = fj) that changesv. Second, some action

prior to ai in the action sequenceπ, ai−x, could have contained the effectv = fj ,

and no other actions betweenai−x andai may have contained effects onv (other

thanv = fj).1

Given our translation scheme, this would mean that constraints generated by

equation 4.9 for valuef on variablev would have a1 on the left side of the equation

if the first condition was met. Given the second condition, the effect variable onv

1These cases are intuitively easy to see and can be easily derived by induction.

152

for the actionai−x becomes1 on the left hand side (sinceai−x transitioned into the

valuef on variablev). Also, an effect variable forai becomes1 on the right hand

side. This means that, provided there always exists an effect that transitions from

v = fj, the right and left hand sides will always be equal.

Finally, to handle the case where no such transition fromv = fj exists, we use

theendvalue(v, fj) variable on the right hand side. This variable becomes1 when

sn contains the assignmentv = fj . Similarly to action applicability, this occurs in

two cases. First, whens0 contains the assignmentv = fj and no action inπ contains

an effect onv (other thanv = fj). Second, when an actionan−1−x contained the

effect assignmentv = fj and no other action afteran−1−x contains any assignment

onv (other thanv = fj). This effectively models “end flow”. Hence, the equations

will always be balanced in our translation.

Equation 4.11: The left hand side is equivalent to the left hand side of equa-

tion 4.9. In the translation, IP variables associated with the prevail conditions of

actions will always be increased by 1. Therefore, the prevail implication constraints

will always be satisfied (with a large enoughM value).

Equations 4.13 and 4.14: With the translation scheme,goaldep(k) can only be

0 or 1. If goal dependency exists in the end state,sn, then it has the value of1. The

end state values,endvalue(v, f), are also binary in nature. They similarly can only

be1 if a particular valuef is in the end state. To violate equation 4.13, the sum of

all end values of a given dependency must be less than 1 despite the dependency

existing. However, this cannot be the case because for the translation ensures that

individual goal assignments within a goal utility dependency exist before increasing

goaldep(k).

153

Similar reasoning holds for equation 4.14. If a goal utilitydependency exists

(i.e., goaldep(k) = 1), then the associated end values (i.e.,endvalue(v, f)) must

have existed.

Objective Function: Since we have shown thathGAI
IP is a relaxation of the

original problem, we need now only show that the objective function allows thehIP

to return a value of greater or equal value toP . This is quite straight forward to see.

The IP formulation is effectively equivalent to the objective ofP , the maximization

of net benefit. Therefore, when solved optimally it will always return a value equal

to or greater than the optimal solution toP given that the problem is a relaxation of

the original.

154

