Partial Satisfaction Planning: Representation and SgiMethods

by

J. Benton

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Approved July 2012 by the
Graduate Supervisory Committee:

Subbarao Kambhampati, Chair
Chitta Baral
Minh B. Do
David E. Smith
Pat Langley

ARIZONA STATE UNIVERSITY
August 2012

ABSTRACT

Automated planning problems classically involve findingegusence of actions
that transform an initial state to some state satisfying @jwttive set of goals
with no temporal constraints. But in many real-world probge the best plan may
involve satisfying only a subset of goals or missing definedl gleadlines. For ex-
ample, this may be required when goals are logically conflictor when there are
time or cost constraints such that achieving all goals ol timay be too expensive.
In this case, goals and deadlines must be declared as saft.these partial satis-
faction planning (PSP) problems. In this work, | focus ontigatar types of PSP
problems, where goals are given a quantitative value basedhether (or when)
they are achieved. The objective is to find a plan with the geatity.

A first challenge is in finding adequate goal representatibascapture com-
mon types of goal achievement rewards and costs. One paoppla@asentation is to
give a single reward on each goal of a planning problem. harexpand on this
approach by allowing users to directly introduce utilitypdadencies, providing for
changes of goal achievement reward directly based on this ggalan achieves.
After, | introduce time-dependent goal costs, where a planrs penalty if it will
achieve a goal past a specified deadline.

To solve PSP problems with goal utility dependencies, | labkising state-
of-the-art methodologies currently employed for cladsptanning problems in-
volving heuristic search. In doing so, one faces the chgélenf simultaneously
determining the best set of goals and plan to achieve theims.igbomplicated by
utility dependencies defined by a user and cost dependesities the plan. To ad-
dress this, | introduce a set of heuristics based on combmsatising relaxed plans
and integer programming formulations. Further, | explareapproach to improve

search through learning techniques by using automatigaiherated state features
[

to find new states from which to search. Finally, the invedtan into handling
time-dependent goal costs leads us to an improved seattchigee derived from

observations based on solving discretized approximatbnest functions.

For my mother Linda Susan Kamins and

late father John “White Cloud” Eldon Benton, Ed.D.

ACKNOWLEDGEMENTS

This dissertation exists because of the support | receiaed the people in my
life. Academically, the work | have done rests firmly on thewlders of giants. It
builds on past work, and required mountains of discussidvica and collaboration
with numerous individuals both within Arizona State Unsiéy and outside of it.
On a more personal level, my family, friends, dissertatiommittee, colleagues
and labmates have all graciously helped me when they hand seeded it.

Foremost, | must thank my advisor, Subbarao Kambhampati helped me to
keep things in perspective with his amazing ability to sitankously see the details
and the big picture in everything. Rao’s vast knowledge &wodaugh understand-
ing of automated planning has helped me in immeasurable a@y$is good hu-
mor, strong willed advice, technical know-how, long-teratipnce and outspoken
nature have guided me through the process of research. Theatlen he gives
to his students is unwavering and kept me on track in purguityoresearch goals
throughout various bumps in the road.

All of my other committee members were also invaluable. @hgaral gave
me great technical insights into KR during his amazing letuMinh Do provided
priceless advice and technical insights and acted as batieredfand a mentor.
David Smith asked great, tough questions and passed algraytamt wisdom on
using planning technologies in the real world. Pat Langlaparted his broad
perspective on artificial intelligence and cognative soeeand has always given
excellent advice.

| have had many collaborators in my research that have tomdéd in unique
and important ways. They all have been vital to my researdreanh deserves spe-
cial mention and high praise for their advice, mentorshigh eontributions. First,

I must thank those who sit in my lab and have worked with mectliyen person:
\Y

Subbarao Kambhampati (my advisor), Menkes van den Brieljaii Cushing,
Tuan Nguyen, Sungwook Yoon, and Kartik Talamadupula. | lzse worked with
many individuals in other locations, both near and far: iPateyerich and Robert
Mattmuller (University of Freiburg); Andrew Coles and Anda Coles (King'’s
College London); Malte Helmert (Basal University); SopKialley and M. Scott
Thompson (Arizona State University in Anthropology); Muadts Scheutz (Tuffs
University); Rehj Cantrell and Paul Schermerhorn (Indiamaversity); Wheeler
Ruml, Ethan Burns, Sofia Lemons, Allen Hubbe, and Jordan dh@yniversity
of New Hampshire); and Minh Do (NASA Ames Research Centeho v both
a committee member and a collaborator. To all these peopterall know how
important you were and many thanks!

Others in the automated planning community that have givemgraeat insights
and perspectives include Patrik Haslum, Maria Fox, Deretkd,.@lan Fern, Ronen
Brafman, Carmel Domshlak, Hécter Geffner, Mausam, BlaiépDaniel Weld,
Daniel Bryce, Jorg Hoffmann, Jorge Baier, Emil Keyderctde Palacios, Christian
Fritz, Sheila Mcllraith, Sylvie Thiebaux, Dana Nau, Uguutiér, Robert Goldman,
Alfonso Gerevini, Jeremy Frank, Adi Botea, Erez Karpas, qR@hou, Michael
Katz, Gabriele Roger, Peter Gregory, Silvia Richter, Maaweloso, Kanna Ra-
jan, David Musliner, Terry Zimmerman, Stephen Smith, Addteve, Saket Joshi,
Tran Cao Son, Angel Garcia-Olaya, Stefan Edelkamp, SvemigpRichard Rus-
sell, Romeo Sanchez, Martin Muller, Hootan Nakhost, Ridhaearden, Marie
desJardin, Michael Moffett, Alastair Andrew, Bram Riddegil York-Smith, lan
Little, and Hakan Younes.

I must also thank my closest friend, Gretchen Corey, who estdmy whining

and gave me unique perspectives as | pushed through mycksear mom, Linda

Kamins, and late father, John Benton, who always providegpan ear; and finally,
my dog, Molly, who was always happy to see me and forgivingeaflong nights

home alone.

Vi

TABLE OF CONTENTS

Page

TABLE OF CONTENTS Vil

LISTOFFIGURES IX

CHAPTER

1 |Introduction 1
1.1 Representing Goal Achievement Rewards and Costs 2
1.2 Solution Methods for Partial Satisfaction Planning 4

2 Representations for Partial Satisfaction Planning 11
2.1 Goal Utility Dependencies 12
2.2 Time-dependentGoalCosts 13

3 Heuristic Search for Maximizing Net Benefit 16
3.1 Best-First Heuristic SearchforPSP 16

4 Solving for Goal Utility Dependencies 27
4.1 IPEncodingfoPSPP 28
4.2 Delete Relaxation Heuristics for Goal Utility Dependies 30

4.3 An Admissible LP-based Heuristic for Goal Utility Deglemcies . 41

4.4 Improving Net Benefit Through Learning Techniques 54

5 PDDL3 “simple preferences”and PSP 5 7
5.1 Yochaf®s? : PDDL3-SPtoHardGoals 77
5.2 Yochaf®:PDDL3-SPtoPSP 80

6 Time-dependent Goal AchievementCosts 109
6.1 BackgroundpoPk Partial Order Planning Forward 110
6.2 Planning with Continuous Cost Functions 112
6.3 Evaluation 118

7 Related Work 123

CHAPTER Page

7.1 Representations for Partial Satisfaction Planning 123
7.2 Planners Solving PSP and Their Close Relatives 125
7.3 Solving for Qualitative Preferences 130
7.4 Time-dependentGoalCosts 131
75 OtherPSPWork 132
7.6 PlannersusingIPorLPinHeuristics 134
7.7 Other Heuristics Using FlowModels 341
8 Conclusionand FutureWork 136
REFERENCES 139
APPENDIX
A ADMISSIBILITY OF A¢AT . . . o 150

viii

LIST OF FIGURES

Figure Page
3.1 Anytime A*search algorithm. 22
4.1 Results for goal utility dependency solving methods 67
4.2 The number of highest quality solutionsfound 68
4.3 Atransportationdomainexample oL 68
4.4 A planning graph showing LP-biased relaxed plan extract 69
4.5 Results for the tested domains in terms of total net benefi. 70
4.6 Example Relational Database: A State from Logistickor. 71
4.7 Summary of the net benefit number of features 71
4.8 Taxonomic Features found for Roverdomain71
49 Resultsonroversdomain 72
4.10 Taxonomic features found for satellite domain 72
4.11 Results on satellitedomain 73
4.12 Taxonomic Features found for zenotravel domain 73
4.13 Results on zenotraveldomain 74
5.1 PDDL3-SP goal preferencestohardgoals. 78
5.2 PDDL3-SPtocost-based planning. 80
5.3 Preferences to PSRt benefigoals 82
5.4 Compiling preference preconditions to actions withtcos. 84
5.5 Compiling action preferences from PDDL3-SP to cosetigdanning. . 86
5.6 Compiling goal preferences from PDDL3-SPtoPSP. 87
5.7 IPC-5trucks“simple preferences” 103
5.8 IPC-5pathways'simple preferences” 104
5.9 IPC-5rovers“simple preferences” 105

iX

Figure Page

5.10 IPC-5storage‘simple preferences” 106
5.11 IPC-5TPP“simple preferences”results 107
5.12 Comparison wit#ltWit on IPC-5roversdomain 108
5.13 An example of the “simple preferences” storage domain 108
6.1 Structure of a cost-collection action for time-dependest 115
6.2 IPC scores per problem, validated against the continuosisdomnain. 122

Chapter 1

Introduction

Research into automated planning has usually focused diultrechievement of
all goals. But this approach neglects many fundamentaiwedd scenarios where
goals and their achievement deadlines can be only parsiatigfied. For example,
goals might be logically conflicting, and resource constsaamay prevent their
timely achievement. Consider Mars rover mission planninghis situation, goals
involve performing experiments at a variety of locationghwgost constraints (e.g.,
battery power), making it so deadlines might be missed gr asubset of the goals
can be satisfied [88]. We call these problepastial satisfaction plannindPSP)
problems. In this dissertation, we will focus on particulgves of PSP problems,
such that goal achievement can be given some value (e.@rdeand actions are
given costs. The objective is to balance a goal’s achievewadue with action costs
to achieve the best plan. In the case where we assign revagisls, we want to
maximize the overall difference between the reward gainedd¢hieving goals and
the cost of the actions to achieve themnet benefif95, 88].

In tackling partial satisfaction planning, we face duall#ages:

¢ Finding adequate goal reward representations that captumenon types of

goal achievement reward and goal deadline cost; and

¢ Finding effective methods to solve planning problems treatehgoals with

these representations.

Representations and solving methods have a strong intaracth one another

and decisions made for approaching one challenge haved difect on the other.
1

For instance, focusing on a general representation of giedeement reward di-
rectly effects (and often increases) the difficulty of sotyplanning problems that
involve those representations. Hence, the two topics falmone another and sep-
arating representations and solving methods becomes lcoesto In the end, we
chose to look at our representations in terms of their géiherave reasoned that
more general representations would yield solving methagalsle of handling less
expressive representations that others may find more apgdadm a user stand-
point. Further, our solving methods may be applicable t@trelated problems
and be less specialized in nature.

Given our representations, we solve resulting partiasattion planning prob-
lems using state-of-the-art methods in automated plannirtge decision to use
these methods were based both on our own experiments ancadeors (which
we discuss) and their applicability to the problems at hamdhe rest of this intro-

duction, we summarize the representations and solvingadsttinat we applied.
1.1 REPRESENTINGGOAL ACHIEVEMENT REWARDS AND COSTS

As a baseline representation for goal reward, one can asogisingle reward
value with each goal fact. But even with this relatively sienpepresentation, the
process of finding goals on which to focus is complicated gy fct that they
interact with one another. Actions may share in their acmaent of goals (positive
interaction) or conflict (negative interaction). Theseaypf interactions introduce
cost dependencie®tween goals because the cost of achieving them separagly
differ from the cost of achieving them together.

This dissertation work further extends on this represariato directly ad-
dressutility dependenciesvhich allow users to specify changes in utility on sets

of goals [29]. Two concrete examples of utility dependeneyrautual dependency

2

and conditional dependency. For mutual dependency, they afi a set of goals is
different from the sum of the utility of each individual go&lor example, (1) while
the utility of having either a left or right shoe alone is zetloe utility of having
both of them is much higher (i.e., the goals complement e#oér) (2) the util-
ity of having two cars is smaller than the sum of the individuidities of having
each one of them (i.e., the goals substitute each other)diGamal dependency is
where the utility of a goal or set of goals depends on wheth&obanother goal
or set of goals is already achieved. For example, the utfityaving a hotel reser-
vation in Hawaii depends on whether or not we have alreadghased a ticket to
Hawaii. A main representational challenge is in finding a sle¢here the different
types of goal utility dependencies can be naturally exgesEor this, we use the
Generalized Additive Independence (GAlgdel [2], combining utility theory and
deterministic planning. This model has the advantagesttisaxpressive, general,
and can be compiled from other models such as UCP-Netwo#s [1

We also defingime-dependent goal cosishere no cost is given for achieving
a goal by a deadline time, but after that time point cost until it reaches
a maximum cost value. For example, consider a satellite evgeals should be
achieved on time to avoid negative impact to an organizatimmdget (due to em-
ployee and equipment usage). There exists a definable dmnoti the cost for
missing the satellite’s goals. The main challenge in defiriirese types of goals
is how to best represent them such that they can be easilgdsolsing a cost
function on goal achievement time, even if the functionnedr, poses some par-
ticular challenges on how to limit the search space to enstilgions to be found
efficiently. To these ends, we look at representing lineat fimctions directly, as

continuous functions over time, and using discrete appmakons.

3

To model linear cost functions directly, we use a small subkéhe planning
domain description language PDDL+ [43], an extension of BDiat allows the
modeling of continuous processes over time. This providetht ability to capture
a numeric representation of tbarrent timewithin a plan, a capability that is oddly
lacking from other versions of PDDL. After this, we then defam action that “col-
lects” the penalty cost based on when the goal is achievekingnéhe assumption
that the goal can be achieved only once (though relativehpks extensions can
remove this assumption).

For handling the discretized model, we turn to planning dardascription lan-
guage PDDL3 [48], which allows us to model soft deadlinesidiscrete penalities
where if the deadline is missed, then a penalty is paid. Uilsganguage, we de-
fine several deadlines for each original continuous deadjoal, generating a step

function and allowing the approximation of the continuoastdunction.
1.2 SOLUTION METHODS FORPARTIAL SATISFACTION PLANNING

The main contribution of this dissertaiton is in solving fbgroblems with goal
utility dependencies, where users can define reward depeigdebetween goals;
and time-dependent goal achievement costs, such thatngiasdleadline incurs
some penalty cost. We also explore methods for compilingrgibartial satisfaction
planning problem definitions into theet benefimodel and look toward how to

solve them.
Solving for Goal Utility Dependencies

To solve PSP problems with goal utility dependencies weihice heuristics for
an anytime, best-first branch and bound search (originafindd in the planner
Sapd® [7]) and a learning approach that can be used to improve uglatiens by

restarting the search. The heuristic methods use integgraanming (IP) formula-
4

tions to solve the combinatorial problems associated wo#l gnd action selection.
The approach for improving search through learning tealesquses search state
features to find new states from which to search.

In developing heuristics for partial satisfaction plarqithe challenge faced is
in simultaneously determining the best set of goals to aehamd finding the best
plan for them. Both are complicated by utility and cost defeties within a plan.
We first introduce a set of heuristics that use a combinatfortoet propagation
over a relaxed planning graph (similar to the one used in kener FF [63]) and
an IP encoding to capture goal achievement cost and gody (®0]. Specifically,
the approach solves a relaxed version of the planning prokiat ignores nega-
tive interactions between actions and utility dependenbetween goals. It then
encodes the solution to the relaxed problem in an IP fornagutucing the positive
cost dependencies between actions and all goal utilityrigrecies. The solution
to this IP encoding gives an inadmissible heuristic meafsurgtates during search,
which effectively removes goals from consideration thgbesy unreasonable to
achieve. We call this heuristic5!/ . We also implemented an admissible version
of this heuristic, which does not find a solution to the rethpeoblem but instead
uses anaxpropagation over the planning graph structure, capturilogvar bound
on the cost to reach the goals. Then, having found that desmtcbdes the values
along with the utility dependencies of the goals in an IP falation whose solution
provides an admissible heuristic we cafff!.2

As one would expect, these two heuristics perform much bt a heuris-

tic that completely ignores goal utility dependencies asésua solely procedural

approach to removing goals (as done in the plaiSagd*). Its performance also

1In the case of maximizing net benefit, an admissible heangtl always over-estimate the net
benefit of goal achievement.

scales much better than encoding the entire problem as albdtlangth integer
program [29].

While the relaxed plan-based heuristics do a fair job oheatiing the cost of
goal achievement, ultimately one would like to select axgtiand goals together to
optimizenet benefit This requires a heuristic estimate with more of an “optaniz
tion” perspective. A standard way of setting up a relaxatiensitive to this is to
formulate an IP encoding for a problem, and then computearnieal programming
(LP) relaxation of this encoding. In addition to being sémsito the objectives
of the optimization, such encodings are also sensitive@émtgative cost interac-
tions between actions—something that is notoriously mgsén standard relaxed
plan heuristics. A challenge in adopting such an approaabivas deciding ex-
actly what type of IP encoding to use. While bounded horizwrodings have been
explored in past work [29], this can only guarantee feasihms, and offers no
guarantees of optimality.

Hence, we use a heuristic adopting a compact IP encodingsthat dependent
on a horizon bound. It represents the causal interactiotvgele@ actions, thereby
taking negative interactions between actions into accolig a relaxation of the
original problem in that it ignores action ordering, allogifor fewer constraints
and variables than typical encodings. By itself, this IPcgtieg gives an admissible
heuristic. But to increase scalability, an LP relaxationtttg encoding is used,
keeping the heuristic admissible. We call this heurigfig;’. On domains we
tested, with the use of lookahead techniques, this heups&iforms quite a bit
better than th@&! heuristic (also applying similar lookahead techniques}ims

relax

of plan quality given a bounded solving time [9].

Improving Plan Net Benefit Through Learning

Along with heuristics, this dissertation also investigatemethod of improving
heuristic values through learning techniques. With thénaigation nature of PSP
net benefiproblems, the STAGE algorithm [15] looked to be an attractivethod-
ology, as it had shown promise for improving search in theexdrof optimization.
STAGE is an online learning approach that was originallyeirted to improve the
performance of random-restart, hill-climbing technigaesptimization problems.
Rather than resort to random restarts, which may or may pthe base search to
escape a local minimum, STAGE aims to learn a policy that ngeiligently gen-
erate restarts that are likely to lead the hill-climbingrsbaowards significantly
better local optima. The algorithm works in two stages: 8thgvhere a base-level
hill-climbing search is run until reaching a local minimumdaStage 2, where the
algorithm trains on a sequence of states that the hill-dgluigbearch passed through.
The second stage learns a function that predicts, for a gitadas, the valuev of
the optima that will be reached fromby hill-climbing. This learned function is
then used in a new local search to scout for a stateat has more promise to reach
an even better state. If the learner is effectiv/ds expected to be a good restart
point. This work adapts this approach to operate within gstesnatic (best-first
branch and bound) search. We call our modified approach $8&e

The main challenge in adopting STAGE to P&# benefits in finding appro-
priate state features for the learner. Boyan and Moore [$&fibandcraftedstate
features. Unfortunately, it is infeasible to hand-gereefaatures for every planning
domain and problem. Moreover, such interventions run cauta the tenets of
domain-independent planning. Instead, the features dhimibenerated automat-
ically from the planning problems. This work uses two tecjueis for generating

7

features. The first uses the “facts” of the states and therecteading to those
states as features. The second uses a more sophisticatedit@r syntax to gen-
erate higher level features. Both were implemented andde¢kem using ouk&\

heuristic. The results show the promise of this type of le@yapproach, in one

domain showing significant improvements over using/tfig¢! heuristic alone.
Solving for Related Partial Satisfaction Planning Models

Though PSRPet benefits one model of representing PSP problems, another broadly
used model for PSP was introduced in the 2006 Internatiolaanihg Competi-
tion. The competition organizers defined a language call2DLE3 (version 3 of
the Planning Domain Description Language). In it, theyddtrced a myriad of
features, including soft top-level goals that induced d ifdlsey were not satisfied.
They generated subsets of PDDL3 for the competition, onetoiwwassimple
preferencegPDDL3-SP), and generated a competition track for this subgve
found that these problems can be compiled into R8Fbenefisuch that they can
be solved by a PSRet benefiplanner. Indeed, we implemented this compilation
and entered a planner callétcharf® into the planning competition [7]. This
planner compiles PDDL3-SP problems into P benefijpproblems and solves
them using the planneSap&® . The entry received distinguished performance
award. Later, we also tried a compilation of PDDL3-SP intstdmased planning in

a planner calletochaf®S” which experiments performed worse than the compi-

lation to PSPhet benefit
Solving for Time-Dependent Goal Cost
All of the solving methods discussed so far relate to hagdétemporal goals.

However, there also exists an important class of PSP prafleat involve the par-

tial satisfaction of deadlines. In these problems, a plammay find a plan that
8

achieves a goal past its stated temporal deadline, and thisethe plan will incur
a penalty cost dependent on when in the plan the goal is finaljeved. To solve
for these types of problems, we make the assumption thati€@sbnotonically
increasing and that all cost increases occur linearly toesoraximum cost value.
As mentioned earlier, we look at solving directly for the ttonous representation
of the cost function and a discretized version of the costtion. Solving for the
discretized model yielded key insights and gave way to @diesearch approach,
combining the efficiency benefits that the discretized mpdeVvides with the ac-
curacy that the continuous model provides. All of the sajvimethods were imple-
mented in a modified version of the state-of-the-art tenigmamnerrOPFto create
a planner called ©ric (Optimizing Preferences and Time-Dependent Costs).
In the continuous models we described, the planner was reddii parse and
handle the extension allowing it to capture therent timewithin a plan. With the
best-first branch-and-bound search process used maheplanner, the algorithm
uses initial, candidate solutions to prune away the seg@&tesby using an admissi-
ble estimate on the plan cost to prune parts of the searcle paiove can guarantee
will lead to worse solutions. For the discretized model, \se the built-in solving
methods within @Tic made for handling PDDL3 soft deadlines. The results show
that various decretizations can do better than a continomgiel, dependent on the
domain. However, upon investigating the reason for thigyrits out that the rea-
son the discretized models perform better is because thigmoons models’ direct
representation of the cost functions provide less pruniilgyathan the discretized
model. From these insights, we introduce a tiered searctoapp that searches for
initial candidate solutions using pruning similar to the¢s in the discretized mod-

els. With an initial candidate solution, the technique perfs repeated searches

9

mimicking finer and finer grained discretized pruning, getjuapproaching the
search pruning found in the continuous model. This approacis out to be over-
all superior than either directly handling discretized mletr continuous models
in the domains tested.

The rest of this dissertation proceeds as follows. We dsbosv we formally
represent goal rewards, and the extension into goal utibfyendencies, plus our
extension for time dependent goal rewards (Chapter 2). byp€h 3, we discuss
the anytime search used in our pursuit of solving PSP nefiivengblems. We then
discuss the technical details of heuristics and the legrajproach for solving PSP
net benefipproblems with goal utility dependencies along with empgiricesults
in Chapter 4. In Chapter 5 we discuss the compilation from P®BP to PShet
benefitand the results from an entry into th& International Planning Competition
in 2006, Yocharf's , that used this compilation. We also show a comparison again
using a compilation to cost-based planning in the same pigrsystem. Also in
that section, we discuss difficulties faced when attemptingelect goals up-front
on problems from that planning competition. Chapter 6 dises the investigation
into solving planning problems wittime dependent goal costBinally, Chapter 7

goes over related work and we conclude in Chapter 8.

10

Chapter 2

Representations for Partial Satisfaction Planning

Classic automated planning problems define an initial setsonjunctive set of
goals. The objective is to find a sequence of actions, alsoeatefn the problem,
that leads from the initial state to a state containing alhefgoals. Partial satisfac-
tion planning is planning where only some goals or constsatan be satisfied in
full. It can be seen as a generalization of classical plapaird provides a natural
extension to capture a range of scenarios that involveduniésources. Those lim-
its can force a choice to ignore goals or constraints thad@se&ed but unnecessary.
This means that a user must mark goals and other constraiststaor optionally
achievable. Further, plans must have a ranking between, thecause otherwise
the natural procedure would be to simply ignore everythivag ts marked as soft.
To enable this ranking, my work assigns quantitative fuumgiover meeting soft
goals and deadlines.

To start, classical planning is the problem of transfornangnitial statel into
a goal state7 C G, given a finite set of fluents’ wherel C F'andG C F. To
transform/ into a state> containing all fluents ofj, we define a set of actions,
such that each actiane A has a set of preconditiong;e(a) C F, a set of delete
effects,del(a) C F and a set of add effectadd(a) C F. Applying an actiom
to a states requires that C pre(a). When applied te;, an actiona generates a
new states’ such thats’ = (s \ del(a)) U add(a). The objective is to generate a
plan, or a sequence of actiofs= (ag, a4, . . ., a,) such that applying each action

in sequence leads to a statevherevg € G, g € G.

11

We first look at partial satisfaction planning with net betefhich extends on
this. It is the problem of finding a plan with the maximumat benefibr difference
between achieved goal reward and action costs [88, 95]. Baaly € G has a
(constant-valued) utility functiom, whereu, > 0, representing how much is
worth to a user; and each actiane A has an associated execution cgst> 0,
representing how costly it is to execute each action (eepresenting the amount
of time or resources consumed). All goals becauft constraintso that any plan
achieving a subset of goals (even the empty set) is a valid jplet P be the set of
all valid plans and leGG» C G be the set of goals achieved by a planc P. The
objective is to find a plarP that maximizes the difference between total achieved

utility «(Gp) and total cost of all actions if:

arg max Z Uy — Z Ca (2.1)

pep geGp acP

In this chapter, we discuss extensions to this model thatigeedor goal utility
dependencies, or reward dependencies between goals st@ckheving a set of
goals may have a reward greater (or less) than the sum of editidual goals’
reward. After, we define goal costs in the context of tempptahning, where

actions have duration and goal achievement after a deadbnes a penalty cost.
2.1 GoAL UTILITY DEPENDENCIES

In partial satisfaction planning (PSP) the process of figdjoals on which to focus
is complicated by the fact that they interact with one anotRer instance, actions
may share in their achievement of goals (positive inteoagtor conflict (negative

interaction). These types of interactions introduce cepethidencies between goals
12

because the cost of achieving them separately may differ the cost of achieving
them together. In the previously defined goal reward modeRB#inet benefitgoals
only interact through cost dependencies. This work ext&®I3 to handle utility
dependencies. This allows users to specify changes itylidised on the achieved
set of goals.

With no utility dependencies on goals their utilities areitidle: «(Gp) =
gE%Pug, whereu, represents the utility of a goal To represent goal utility depen-
dencies, we adopt th8eneralized Additive Independen@&Al) model [2]. This
model was chosen because it is expressive, general and wmgile to it from
other commonly used models such as UCP-Networks [14]. Ihdsfihe utility of

the goal setz ask local utility functionsf“(Gy) € R over setss, C G. For any

subseti’ C G the utility of G’ is:

u(@) =Y Gk (2.2)
G CG’
This model allows users to specify changes in utility oves s goals. We

name the newPSP problem with utility dependencies represented by the GAI
modelPSP'? . If there ardG/| local functionsf*(G},) and eaclt;, contains a single

goal thenPSP'? reduces to the original PSP problem (no utility dependexcie
2.2 TIME-DEPENDENTGOAL COSTS

So far we have discussed goal utility functions that arepedeent of achievement
time. Thatis, the achieved reward is always the same givesame set of achieved
goals. But often penalty can be incurred basewbena goal is achieved [55]. For
example, consider a delivery truck that must deliver gogda particular deadline

and being late means reduced payment. Thigime-dependergoal because final

value of a goal varies with its achievement time.

13

Before diving into how these goals are defined, itis impdrtadefine temporal
actions in temporal planning problems. Temporal planniraplems are typically
defined using a PDDL2.1 model of actions and time [42]. In¢h@®dels, dura-
tive actions can be split into instantaneous actions liksehn classical planning,
where the two parts of an action (a “start” and “end” poin® kmked via a defined
duration and invariant conditions (i.e., conditions thatstrhold throughout the du-
ration of the action). Hence, we can define a ground PDDL2ripteal actiona
as having three sets of conditions:e-, conditions that must be true at the start
of a durative actionpre,, the conditions that must be true at the end of a durative
action; pre.,, the conditions that must hold during the open interval tioinaof
the action (i.e., all time points between the start and enti@fiction). Effects of
actions can occur at the start or end as well, whégrg are the effects that happen
at the start of an action and /-, are the effects that happen at the end of an action.
The duration of the action is single valder € R-,.} Actions can execute concur-
rently, meaning that actions may start before others haish&d. It is important to
note that starting an action forces its end. That is, the &éedte of all actions in a
plan must occur before the plan reaches its final goal stateer®@ise, the goal of
planning is the same. From an initial stdtea final goal state must be found where
all goals in the goal set are true.

For time-dependent goal costs, we look toward defining a fuwsition over
goal achievement within the temporal planning frameworkhe Tdea was first
explored by Haddawy and Hanks in the context of planning fatinoal utility

plans [55]. One can view these as deadline goals, where ratpeost is given if

lIn PDDL2.1 actions can include a calculable minimum and maxn duration of an action,
but for the sake of simplifying matters, and in all of the damsaon which we discuss, we assume
that each action has a single, pre-defined duration.

14

the goal is achieved before a deadline, but afterwards ikaadinear increase in
cost given for goal achievement until reaching a maximunt eakie (at another
given time point). We would like to find the lowest cost plarthie presence of such
goals?

We model time-dependent goal cost as a function of the gaaid its final

achievement time,:3

(
0 ift, <t
o(g:tg) = Zt ey ity <ty <tays
Cqg if tats < tg

wherec, is the full cost forg, ¢, is the soft deadline time for the goal angd ;s is
the time point where full penalty cost is given for the goahislfunction ensures
that no cost is given if the goal is achieved befgyepartial penalty is given if the
goal is achieved betweep andt,, s and the full cost is paid if the goal is achieved

aftert,.s. For each goal, we sum the costs of their achievement and ttsem is

to minimize the cost.

2This objective is compilable directly intoet benefias defined earlier.

3We assume a goal can be achieved once (and not deleted thehiesed). This assumption
can hold without loss of generality via the use of compilatiechniques to force a dummy goal to
become true at the original goal’s first or last achievemierg.t

15

Chapter 3

Heuristic Search for Maximizing Net Benefit

Effective handling of PSP problems poses several chalkgrigeluding an added
emphasis differentiating between feasible and “good” @ldndeed, in classes of
PSP problems that involve all soft goals and constraintsvally feasible, but
decidedly non-optimal solution would be the “null” plan;athis, choosing to do
nothing and ignoring the goals. In the case of PSP, one hasotif@ed problem
of deciding what goals to pursue (in the case of soft goalegnto achieve them
(in the case of time-dependent costs) and finding the besttplachieve those
goals so that we may find the best solution. Choosing goalgtisdr complicated
in the presence of goal utility dependencies, were we hacertsider both action
interactions and goal interactions.

All of the main planning methods in this dissertation haw&rtbasis in heuris-
tic search (even the techniques inspired by local seardhateadiscussed in Sec-
tion 4.4). In this chapter, we discuss the search methodfosg@rtial satisfaction

planning when maximizinget benefit
3.1 BESTFIRST HEURISTIC SEARCH FORPSP

The planneiSap&® [7] provides the underlying search algorithm for most of the
planners discussed in this dissertation. This best-fiestriktic forward search plan-
ner uses an anytime variation of tHé [56] algorithm guided by a heuristic derived
from the relaxed planning graph [63]. Lik&", this algorithm starts with the initial

stateS;,;; and continues to dequeue from the open-list the most progiisbdeS

1The planner @Tic, which is used for handling soft temporal planning deadliaad is dis-
cussed in Chapter 6 also uses heuristic search. Howevazaitsh works toward minimizing penalty
costs and uses a search strategy geared toward scalingtepijooral planning.

16

(i.e., highestf(s) = g(s) + h(s) value). For each search nodgg(s) represents
the benefit achieved so far by visitindrom s;,;; andh(s) represents the projected
maximum additional benefit gained by expandingwith plan benefit defined in
Section 2.1. Though calculating s) is trivial, having a good estimate @f(s) is
hard and key to the success of best-first search algorithragndpexploration of
the search tree the algorithm keeps outputting bettertyydins whenever a node
S with the best-so-fagi(s) value is expanded (i.e., it outputs a “best” plan upon gen-
erating it rather than when a state is expanded). Ukethe algorithm terminates
when it chooses a nodewith A(s) = 0 from the open list.

On top of this, the algorithm additionally uses a rudimeptankahead tech-
nique derived from the relaxed plan graph-based heurgstiu)ar to what is done
in the planner YAHSP2 [97], but using a relaxed plan strieetamd without a re-
pair strategy. Specifically, it takes relaxed plans foundmnduthe calculation of the
heuristic and repeatedly attempts to simulate their exacuintil either all actions
have been simulated or no further simulation is possible. résulting state is then
added to the search queue, effectively probing deeperhitedarch space.

In practice, the search algorithm prunes the search spaegrtmyving nodes that
appearunpromising(i.e., nodes where the estimated benefit is negative). Thoug
this improves efficiency, one potential drawback is thatméreinadmissible heuris-
tic 1(s) underestimates the value of a search ngdeens will be discarded (when
compared to the benefit of the best solution found sgjfay) from a statesp)
even if it can be extended to reach a better solution. A sirsitategy is used in the
planner rTIC, which we use for time-dependent costs, though it always ase
admissible heuristic to prune (and hence does not suffer this drawback). For

the other planners, one difference frdap&® , is that the algorithm is modified

17

to keep some search nodes that appear unpromising wheneinstaged. During
search it sets a valueas half the distance between the best node found sesfar
and the worst-valued unpromising node. For each unpromissarch node that

is within a threshold of the current best solution, it fings the complement of the
percentage distance between it and the benefizdi.e., g(sp)). It then keeps:
with probability p. Note that it only uses this method when applying inadmiesib
heuristics.

Anytime Best-First Search Algorithm for PSP: One of the most popular methods
for solving planning problems is to cast them as the problémsearching for a
minimum cost path in a graph, then use a heuristic searchdafsolution. Many
of the most successful heuristic planners [13, 63, 31, 7Pe®ibloy this approach
and use variations of best-first graph search (BFS) algostto find plans. We
also use this approach to solve P&& benefipproblems. In particular, many of
the planners in this dissertation use a variatiomldfwith modifications to handle
some special properties of P8Bt benefi(e.g., any state can be a goal state when
all goals are soft). The remainder of this section will mélthem and discuss the
search algorithm in detail.

Standard shortest-path graph search algorithms searahmorimum-cost path
from a start node to a goal node. Forward state space searshl¥ing classical
planning problems can be cast as a graph search problentaagso{1) each search
noden represents a complete planning st&t€?) if applying actiona to a states
leads to another statéthen actior: represents a directed edge- s 2 s’ from s
to s’ with the edge cost, = ¢, ; (3) the start node represents the initial stgt¢l) a
goal node is any statg; satisfying all goalg € G. In our ongoing example, at the

initial state/ = {at(A)}, there are four applicable actioas= Move(A, B), as =

18

Move(A,C), a3 = Move(A, D), anday = Move(A, E) that lead to four states
s1 = {at(B), g1}, s2 = {at(C), 92}, s3 = {at(D), gs}, andsy = {at(E), ga}.
The edge costs will represent action costs in this planniagg-gransition grapgh
and the shortest path in this graph represents the lowesptas Compared to
the classical planning problem, the P&& benefiproblem differs in the following

ways:

e Not all goals need to be accomplished in the final plan. In g®egal case

where all goals arsoft, any executable sequence of actions is a candidate

plan (i.e., any node can be a valid goal node).

e Goals are not uniform and have different utility values. plan quality is not
measured by the total action cost but by the difference betiee cumulative
utility of the goals achieved and the cumulative cost of tteas used. Thus,
the objective function shifts frorminimizingtotal action cost tanaximizing

net benefit.

To cast PSRet benefias a graph search problem, some changes are necessary

so that (1) the edge weight representing the change in plagfibby going from a
search node to its successors and (2) the criteria for tatignthe search process
coincides with the objective of maximizing net benefit. Fremes a discussion
on the modifications, then a discussion on a variation ofAhaearch algorithm
for solving the graph search problem for PSP. To simplify diseussion and to
facilitate proofs of certain properties of this algorithtime algorithm will make the
following assumptions: (1) all goals are soft constrai{@¥the heuristic is admis-

sible. Later follows a discussion about relaxing one or nodithose assumptions.

2In the simplest case where actions have no cost and the imejéanction is to minimize the
number of actions in the plan, the algorithm can consideactlbns having uniform positive cost.

19

g-value: A* uses the valugf(s) = g(s) + h(s) to rank generated statesfor
expansion withy representing the “value” of the (known) path leading frora th
start statd to s, andh estimating the (unknown) path leading frarnto a goal node
that will optimize a given objective function. In PSfet benefitg represents the
additional benefit gained by traveling the path frérto s. For a given state, let

G5 C G be the set of goals accomplishedsirthen:

g9(s) = (U(s) —UI)) — C(Pr-s) (3.1)
whereU(s) = Y ug,andU(I) = > u, are the total utility of goals satisfied in
g€l geGT
sandl. C(P_s;) = Y. ¢, is the total cost of actions i#;_.,. For example:
a€Pr_.¢

Ul(sz) = ug, = 100, andC(P;_,) = ¢4, = 90 and thusy(sz) = 100 — 90 = 10.

In other wordsg(s) as defined in Equation 3.1 represents the additional benefit
gained when pla®;_ is executed i to reachs. To facilitate the discussion, we
use a new notation to represent the benefit of a pldeading from a state to

another state’:

B(Pls) = (U(s) = U(s)) =) _ca (3.2)

acP

Thus, we have(s) = B(Pr_s|I).

h value: In graph search, the heuristic valtigs) estimates the path fromto the
“pest” goal node. In PSRet benefitthe “best” goal node is the nodg such that
traveling froms to s, will give the most additional benefit. In general, the closer
thath estimates the real optimat value, the better in terms of the amount of search

effort. Therefore, we first introduce the definition/of

20

Best beneficial plan: For a given states, a best beneficial pla®? is a plan
executable irs and there is no other pla® executable irs such that: B(P|s) >
B(PB|s).

Notice that an empty pla®; containing no actions is applicable in all states
and B(Py|s) = 0. Therefore, B(PZ|s) > 0 for any states. The optimal additional

achievable benefit of a given statés calculated as follows:

I*(s) = B(Ps) (3.3)

In our ongoing example, from state,, the most beneficial plan is
PE = {Move(C, D), Move(D, E)}, andh*(ss) = B(PE|s2) = U({gs, g2 31}) —
U({92}) = (¢Move(c.0) + Crtove(n.2)) = ((300 4100 4 100) — 100) — (200 + 50) =
400 — 250 = 150. Computingh* directly is impractical as the algorithm needs to
search forP? in the space of all potential plans and this is as hard asraplyie
PSPnet benefiproblem for the current search state. Therefore, a goodapa-
tion of A* is needed to effectively guide the heuristic search allgorit

Figure 3.1 describes the anytime variation of thiealgorithm that is used to
solve the PShhet benefipproblems. LikeA*, this algorithm uses the valug =
g + h to rank nodes to expand, with the successor generator ancaiing” values
described above. It is assumed that the heuristic usadnsgssible Because the
algorithm tries to find a plan that maximizast benefitadmissibility means over-
estimating additional achievable benefit; thags) > h*(s) with h*(s) defined

above. Like other anytime algorithms, the algorithm keeps mcumbent value

21

SEARCH((F,I,G, A))
1.g(I) < > uy

g€l
2. f(I) < g(I) + h(I)
4. PB — @
5.0PEN «— {I}
6. whileOPEN +# () and notinterrupteddo

7. s« argmax f(x)
2€OPEN

8. OPEN «— OPEN \ {s}
9. ifh(s)=0
10. stop search
11. else
12. foreachs’ € Successors(s)
13. ifg(s) > Bp
14. Pp <« plan leading fronY to ¢’
15. Bg — g(s)
16. OPEN — OPEN \ {s; : f(s:) < Bp}
17. if f(s') > Bg
18. OPEN «— OPEN U {s'}
19. ReturnPg

Figure 3.1: Anytime A* search algorithm.

Bpg to indicate the quality of the best found solution at any gimeoment (i.e.,
highest net benefib).

The search algorithm starts with the initial stdteand keeps expanding the
most promising node (i.e., one with highesf value) picked from th©PEN list.
If h(s) = 0 (i.e., the heuristic estimate indicates that there is natiadé! benefit
gained by expanding) the algorithm stops the search. This is true for the termi-
nation criteria of thed* algorithm (i.e., where the goal node givess) = 0). If

h(s) > 0, then it expands by applying applicable actionsto s to generate all

SFigure 3.1, as implemented in our planners is baseSap#@® and does not include duplicate
detection (i.e., n@CLOSEDIist). However, it is quite straightforward to add duplieatetection to
the base algorithm similar to the w&l OSEDIist is used inA*.

22

successors. If the newly generated nodé has a better(s’) value than the best
node visited so far (i.eg(s’) > Bp), then it recordsP, leading tos’ as the new
best found plan. Finally, iff (s) < Bg (i.e., the heuristic estimate indicates that
expandings’ will never achieve as much additional benefit to improve thent
best found solution), it will discard’ from future consideration. Otherwiséis
added to th&@ PE N list. Whenever a better solution is found (i.e., the valu&gf
increases), it will also remove all nodesc OPEN such thatf(s;) < Bg. When
the algorithm is interrupted (either by reaching the timevxemory limit) before the
node withh(s) = 0 is expanded, it will return the best pladt; recorded so far (the
alternative approach is to return a new best gtgrwhenever the best benefit value
Bpg is improved). Thus, compared ", this variation is an “anytime” algorithm
and always returns some solution plan regardless of thedrmeemory limit.

Like any search algorithm, one desired property is presgroptimality. If the
heuristic is admissible, then the algorithm will find an opdi solution if given

enough time and memofty.

Proposition 1: If A is admissible and bounded, then the algorithm in Figure 3.1
always terminates and the returned solution is optimal.
Proof: Given that all actiong have constant cosf, > 0, there is a finite number

of sequences of actions (plamB)such that) ~ ¢, < Ugs. Any states generated by
aeP

“Note that with the assumption &fs) being admissible, we have(s) > 0 because it overes-
timatesB(PP|s) > 0.

5Given that there are both positive and negative edge bemefitge state transition graph, it
is desirable to show that there is no positive cycle (any j&olving positive cycles will have
infinite achievable benefit value). Positive cycles do nagtér our state transition graph because
traversing over any cycle does not achieve any additioilaydut always incurs positive cost. This
is because the utility of a search nodis calculated based on the world state encodeditot what
accumulated along the plan trajectory leading)owhich does not change when going through a
cyclec. However, the total cost of visitingis calculated based on the sum of action costs of the plan
trajectory leading t®, which increases when traversing Therefore, all cycles have non-positive
net benefit (utility/cost trade-off).

23

plan P such that) | ¢, > 2 x Ug will be discarded and will not be put in t@PEN

list becausef(s)aipo < Bg. Given that there is a finite number of states that can
be generated and put in ti&PEN list, the algorithm will exhaust th©PEN list
given enough time. Thus, it will terminate.

The algorithm in Figure 3.1 terminates when either @fEN list is empty or
a nodes with h(s) = 0 is picked from theOPEN list for expansion. First we
see that if the algorithm terminates whé&PEN = (), then the plan returned is
the optimal solution. Iff(s) overestimates the real maximum achievable benefit,
then the discarded nodeslue to the cutoff comparisofs) < Bp cannot lead to
nodes with higher benefit value than the current best fouhdisn represented by
Bpg. Therefore, our algorithm does not discard any node thatezahto an optimal
solution. For any node that is picked from th©PEN list for expansion, we also
haveg(s) < Bp becausd3 always represents the highgstalue of all nodes that
have ever been generated. Combining the fact that no exgarutke represents a
better solution than the lateBt; with the fact that no node that was discarded from
expansion (i.e., not put in or filtered out from t@&EN list) may lead to a better
solution thanBg, we can conclude that if the algorithm terminates with an tymp
OPENlist then the finalB value represents the optimal solution.

If the algorithm in Figure 3.1 does not terminate whei? EN = (), then it
terminates when a nodewith h(s) = 0 was picked from th@®©PEN ist. We can
show thats represents the optimal solution and the plan leadingtas the last one
output by the algorithm. Wheswith h(s) = 0 is picked from theOPENIist, given
thatvs’ € OPEN : f(s) = g(s) > f(s'), all nodes in th@©PENIist cannot lead to
a solution with higher benefit value thafis). Moreover, lets; represent the state

for which the plan leading teg was last output by the algorithm; thisg; = g(sp).

24

If sp was generated before then becausé¢(s) = g(s) < g(sg), s should have
been discarded and was not added to@REN list, which is a contradiction. If
sp was generated aftet then because(sz) > g(s) = f(s), s should have been
discarded from th@©PEN list when sz was added to th©PEN list and thuss
should not have been picked for expansion. Given thats not discarded, we
haves = sp and thusP; represents the last solution output by the algorithm. As
shown above, none of the discarded nodes or nodes still @ftEN list whens is
picked can lead to better solution thanwheres represents the optimal solution.
0
Discussion: Proposition 1 assumes that the heuristic estinhaie bounded and
this can always be done. For any given stgtEquation 3.3 indicates that(s) =
B(PB|s) = (U(s)-U(s))— > ca <U() = uy < > u, = Ug. Therefore,
acPB ges' 9eG
it is possible to safely assume that any heuristic estimatebe bounded so that
Vs : h(s) < Ug.

To simplify the discussion of the search algorithm desctilbove, several as-
sumptions were made at the beginning of this section: alkga soft, the heuristic
used is admissible, the planner is forward state space hand are no constraints
beyond classical planning. If any of those assumptionsdkated, then some ad-
justments to the main search algorithm are necessary ofiti@heFirst, if some
goals are “hard goals”, then only nodes satisfying all haragcan be termination
nodes. Therefore, the condition for outputting the new fmstd plan needs to be
changed fromy(s’) > Bp to (¢(s') > Bg) A (G, € s) whereG), is the set of all
hard goals.

Second, if the heuristic is inadmissible, then the final sofuis not guaranteed

to be optimal. To preserve optimality, it is possible to platl generated nodes in

25

the OPEN list. Finally, if there are constraints beyond silza planning such as
metric resources or temporal constraints, then adjussmenst be made to the state
representation. Indeed, in the case of temporal problether gsearch algorithms
may be more suitable so that temporally expressive plarpriolglems can be han-
dled [27]. To these ends, Chapter 6 discusses the use otaatiffbaseline planner
that is suitable for dealing with temporally expressivenpliag problems [24, 23]

for soft temporal deadlines.

26

Chapter 4

Solving for Goal Utility Dependencies

While solving for goals that have individual rewards offéssown set of challenges,
handling goal utility dependencies presents its own issifieependencies are de-
fined such that only positive reward is given for achievingtbdf goals, then we
have the same problem as having individual rewards (i.eevfery goal set we can
define a dummy goal with reward that becomes true when theeseintes true).
However, with negative rewards the situation becomes miffieudt in practice.
Indeed, heuristics based on ignoring delete lists of astlmve difficulty picking
up on negative penalties. That is, when a goal independkrtks beneficial but
gives a negative value when combined with other goals, simg@herating dummy
sets will not work. The heuristic will assume the “cheapedghpto each goal set,
effectively making the assumption that only the positivadfés of goal achieve-
ment. The issue is that these heuristics typically only warsthe cheapest cost
of goal reachability, ignoring decisions on whether to aghiparticular sets of end
goals based on negative rewards.

This chapter discusses methods to handle problems withugitigt dependen-
cies. It first briefly discusses a technique that can externdioeinteger program
(IP) encodings of planning problems to include constraimtgyoal utility depen-
dencies. The main disadvantage of this approach is thatd&damys of problems
require a limit on the plan length (i.e., it limits the plangihorizon such that op-
timality can never be fully guaranteed), and therefore ary optimal to some
bound. Hence, we cover heuristics that combine planninghgraethods with a

declarative integer program (IP) encoding. The first héigegyenerate an IP en-
27

coding over the relaxed plan heuristic. In these heuristies IP encoding selects
a goal set along with an estimated cost for achieving it. Wik method it is
possible to generate admissible and inadmissible hegjstihere the admissible
heuristic can guarantee optimal solutions when the sedgdrithm terminates.
The main innovation is the combination of a relaxed plan kizaidles cost interac-
tions between goals and a declarative IP encoding that photh mutual goal
achievement cost and goal utility dependencies. We theadate and discuss an
IP-based admissible heuristic that relies on an actionrimgleelaxation, which
then is further relaxed to a linear program (LP). And finall discuss a learning

method that can be used to improve plan quality in some cases.
4.1 |P ENCODING FORPSPP?

Since classical planning problems can be solved by IP, amtedP provides a
natural way to incorporate numeric constraints and ohjedtinctions, it follows
thatPSP'P planning problems can be solved by IP as well.

This section discusses an IP formulation to harfiB#” problems by extend-
ing the generalized single state change (G1SC) formuldfiéh Currently, the
G1SC formulation is the most effective IP formulation fohgog classical plan-
ning problems, and it outperforms the previously develdpeidrmulation used to
solve PSP problems without utility dependencies [95].

The G1SC formulation represents the planning problem asaf fm#osely cou-
pled network flow problems, where each network correspoodasé of the state
variables in the planning domain. The network nodes coomdpo the state vari-
able values and the network arcs correspond to the valusiticars. The planning
problem is to find a path (a sequence of actions) in each nktswarh that, when

merged, they constitute a feasible plan. In the networkdes@nd arcs appear in

28

layers, where each layer represents a plan period. Theslayerused to solve the
planning problem incrementally. That is, we start by perfimg reachability analy-
sis to find a lower bound on the number of layers necessaryie #ee problem. If
no plan is found, all the networks are extended by one exyex land the planning
problem is solved again. This process is repeated untilrmiplound (see [96] for
a complete description of the G1SC formulation).

In order to deal with utility dependencies we incorporater fextensions to the

G1SC formulation:

e In PSP? problems, not all goals have to be achieved for a plan to [sitfiea
Therefore, we remove those constraints from the G1SC fation which

state that goals must be achieved.

e For each goal utility dependency functiof, we add a variable;, € {0, 1},

wherez., = 1if all goals inG, are achieved, ang;, = 0 otherwise.

e For each goal utility dependency functic#,, we add constraints to ensure

thatG), is satisfied if and only if all goalg € G are achieved, that is:

> ergr — |Gl +1< 2, (4.1)
fngcheGk
26, < Z Ye,t.q7 Vg€ Do g e Gy (4.2)
fe€D.

whereD, is the domain of a state variabtey. ;,» € {0,1} are variables
of the IP problem that represent value changes in the statbles, and’ is

the plan horizon.

e We create an objective function to maximize the net-benefitity minus

cost) of the plan.

29

MAX D u(Grzg, — Y Caas (4.3)

G a€A,1<t<T

whereu(Gy) represents the utility of satisfying the goal utility dedency

functionGy, andc, represents the cost of executing actioa A.

The extended G1SC formulation is bounded length optimel, (it generates
optimal plans for a plan horizo#’). Global optimality cannot be guaranteed as

there could still be solutions with higher net benefit at lenglan horizons.
4.2 DELETE RELAXATION HEURISTICS FORGOAL UTILITY DEPENDENCIES

A relaxed planning graph is created by iteratively applyatigpossible applicable
actions given the propositions available, thereby geimgyat union of the previ-
ously available propositions with the ones added by apgltte actions. This can
provide a cost estimate on reaching a particular proposityosumming the cost of
each action applied to reach it, always keeping the minimumsed cost (i.e., the
cheapest cost to reach any proposition). This process lesdaadst propagation
After this, we can extract a relaxed plan from the planningprby finding the
supporting actions for the set of goals. The heuristic vaugpically taken from
the sum of the cost of all actions in the relaxed plan. If wel@@xtract an optimal
relaxed plan the heuristic would be admissible. Howevee, tuthe difficulty of
this task (which is NP-hard [19]) greedier approaches aneigdly used (such as
preference for the cheapest supporting action at each step)

In these heuristic methods we estimate the €¢g} to achieve each goal [33].
Starting withC(f) = 0 for facts f in the initial state/ andC(f) = C(a) = oo for all
other facts and all actions, the propagation rules to estim@sts to achieve facts

and to execute actionsare?

Lc,, which is the execution cost af, is different fromC(a), which is the estimated cost to
enable the execution af(i.e., costs to achieve preconditionsm)f

30

e Facts:Vf :C(f) = f]e\{li%z) (C(a) + ca)

1. Max-prop:Va € A:C(a) = fMpA)(() C(f);or
€Pre(a

2. Sum-prop¥a € A:Cla)= ¥ C(f)
f€Pre(a)

The update rules are used while extending a (relaxed) pigmgraph structure [11].
After the propagation is done (i.e., no costs chan@g)) is an estimate on the cost

to achievey for each goal € G.
Deriving Heuristics from Propagated Costs

This dissertation will use the notatidrf to name the heuristics. Hereis the
method used to define the goal utilities ands the method used to estimate the
goal costs. The dependencies between goal utilities carefoged using the GAI
model (discussed in Chapter 2) while the dependencies batgeal costs can be
estimated using relaxed plafs.

It is easy enough to observe that if we usaxpropagation (max-prop), then
C(g) will underestimate the cost to achieyevhile there is no such guarantee for
sumpropagation (sum-prop) [13]. With max propagation, we haneadmissible
heuristic, allowing optimal solutions to be found. Usifig) calculated by the cost

propagation process outlined, we can estimate the acheslbabefit value as:

WO = MAX [u(G) — (MAX C(g)) (4.4)

Notice part of the heuristic includes the local utility falons as defined in
Equation 2.2 (see Section 2.1). As such, the heuristic ttjrepplies the GAI

model. If using max-prop, then Equation 4.4 will give thg4! heuristic and if

2Given this notation, we can view the heuristic used in thapéaSapd® [7] ash:“", because
it sums the individual goal utilities and extracts a relaptah to estimate cost.

31

using sum-prop, it will give a correspondiig}! heuristic. WhilehG4! overes-

max

timates the real achievable benefit, there is no such gesdot R4/, Recall
that since the problem involves maximizing net benefit, amriséc that always
overestimates is required to maintain admissibility. THenssibility of 254! is
maintained since the goal utility dependencies are solvedifectly (with the cost
estimates fronmaxpropagation) or in a relaxed fashion. In other words, smes
propagation provides an underestimate of individual castdhC4! solves the goal
utility dependencies exactly, its admissibility is maintd since the heuristic will
always provide an overestimate of total achievatdebenefit

To handle the goal utility dependencies with the propagated, the heuris-
tic solves the following integer program to get the final h&tic value, where””

represents the propagated cost value:

e Binary Variables:

- Vg € G,VG;, C G, f*(Gy) # 0: create one binary integer variablg,
Xa

-
e Constraints:

- > (1-X)+Xg >1

geGy

—VgEGk: (1_XGk)+Xg21
° ObjeCtive: MAX (Z fu(Gk) * XGk — C)
Relaxed Plan-based Heuristic
hG4I can easily offer a high overestimate on tiet benefitsince it relies on max
propagation, a weak estimate on the cost to achieve indiVigoals. ThehG4!

sum

heuristic, while more informative, relaxes the cost inticn and assumes that
32

plans achieving different goals are independent and do vetlap. To improve
on this, it is possible to adapt the relaxed plan heuristist fintroduced in the FF
planner [63], that solves a relaxation of the planning peobby delete effects (also
called the “delete list”). This heuristic offers improvente overh&/\! by taking
into account actions contributing to the achievement oéshgoals. The challenge
in extending it to PSP with goal utility dependencies is howvefficiently find a
high-benefit relaxed plan in the presence of both cost afithutependencies.

Let Gp+ C G be the set of goals achieved by the relaxed gtan The relaxed
plan heuristic foPSP? is:

WGl = MAX u(Gp) = Y (4.5)
acP+

Note that Equation 4.5 looks like Equation 2.1 except thatdptimal planP
in Equation 2.1 is replaced by the optimal relaxed plah (i.e., one achieving
maximum benefit for the relaxed problem) in Equation 45¢! overestimates
the real achievable benefit and can be used as an admissibistizen the search
to find the optimal solution foPSPP problems.

While finding a satisfying relaxed plaR™ for any given goal set:p+ C G
is polynomial, extracting* &4/ requires finding an optimal relaxed plan (highest
benefit). This task is NP-hard even when we already know thienapgoal set
G%. and actions have uniform cost [19]. To approximate?;/ for PSP? the

heuristic uses the following three steps. The first two ste@® introduced in the

plannerSapd® while the third step is novel:

1. Greedily extract a low cost relaxed pl&it that achieves thiargestset of

achievable goals.

33

2. Capture the achievement cost dependencies betweewateigoals using

the causal structure @?.

3. Pose the problem of extracting the optimal subplan withirthat takes both
cost and utility dependencies into account as an IP encodfgolution

hG4! of this IP encoding is used to estimate:\/

relax relax*

Step 1: Heuristically Extract a Low Cost Relaxed Plan: Let G’ C G be the
set of all achievable goal€(g) < oc). The heuristic uses the planning graph and
the propagated achievement costs to heuristically exarbmt-cost relaxed plan to

supportG’ as follows:

1. Start with supported factsF' = I, subgoal sebG = G’ \ I and the relaxed

planP* = ().

2. For eachy € SG select a supporting action: g € Add(a) with lowest
execution cost (a) value. UpdatePt — Pt U{a}, SG «— SGU(Pre(a)\
SF)andSF «— SF U Add(a).

3. Repeat untifG = 0.

This backtrack-free process is guaranteed to finish in tiolgnomial in the
number of actions.
Step 2: Build Cost Dependencies withinP*: Because certain actions contribute
to the achievement of multiple goals, there are dependeha®veen the costs to
achieve them. Those relations can be discovered by usingatial structure of

the extracted relaxed plant.

34

To capture the mutual dependencies between the goal anteeweosts, the
heuristic finds the set of actions shared between differartigh plans achieving

different goals. This uses the causal links in the relaxad pt".

GS(a)= |J GSp) (4.6)

pEEf fect(a)

pU(U GS(a)) if peG
GS(]?) _ pEPrec(a) (47)
U GS(a) if po G

pEPrec(a)

Using the above equations for each actioi-S(a) contains the set of goals
thata contributes to, where the goal-supporting $61(a) represent the achieve-
ment cost dependencies between goals.

Step 3: Estimate the Maximum Achievable Benefit: In this step, the heuristic
combines the goal supporting $865(a) found in the previous step with the goal
utility dependencieg™ to find the most beneficial relaxed plét within P*. One
naive approach to find® C P+ is to iterate over alR/“r+| subsetss’ C Gp+

of goals, where7 p+ is the set of goals achieved Y™, and compare the benefit
of plans P’ achievingG’. However, wherjG| is large this approach becomes im-
practical. Therefore, the heuristic uses a declarativecgmbh of setting up an IP
encoding with its solution representing the most benefreil@xed plan”’ C PT.
Note that while IP is generally slow, the number of actiongh@a relaxed plan is
much smaller an IP encoding of the entire (relaxed) plangnagh, giving a rela-
tively reasonable heuristic solving time per node. Theiséails IP has constraints
representing the goal supporting $e¥(a) found in the previous step. These en-
force the fact that if a given goaglis selected, then any action that contributes to

the achievement of should also be selected. The final heuristic IP encodinglook
35

very similar to that used fak¢4! andh¢4!, with added constraints on the actions.

max sum?

Specifically:
e Binary Variables:

- VYa € PVg € G,VG, C G, f“(Gy) # 0: create one binary integer
variableX,, X,, X¢,.

e Constraints:

—Vae PVgeGS(a): (1-X,)+X,>1

- 2 (=X, +X¢, 21

geGy,

— Vg € Gy : (1_XGk)+XgZ 1
e Objective: MAX (> f“(Gy) * X¢, — XX, % ¢,)

Solving this IP encoding gives the benefit value of the moathbeial relaxed
plan P’ within P*. The benefit of this”’ plan can be used ash&! heuristic to

elax

guide search.
Evaluation

We implemented the heuristic framework on top of thapd* planner [7] and
compared it with the discussed IP-based encoding of a baklietgth version of
the planning problem. We call the heuristic planS&UDSand IP approaciPUD.
SPUDSs compared using the three heuristics we desctifi¢/(, h¢41 andh&4!
along with a version o6apd® whose heuristic ignores the goal utility dependen-
cies (but whose state evaluation does not).

IPUD runs with CPLEX 10.0, a commercial LP solver, while we iseolve

version 5.5 (a free solver with a Java wrapper) to solve thenkéddings irSPUDS

36

We found thatlp_solve while less powerful than CPLEX, has a shorter IP setup
time and is more suitable f@PUDS which sets up an IP encoding at every search
node. All tests use a P4 2.66GHz/1GB RAM computer with a 6@@rse time
limit. SPUDSand Sap&® continuously find better solutions until a termination

criterion is met.

Test Problems: The PSPP problems were automatically generated from a subset
of the propositional planning benchmarks used in IPC3 af@biAn zenotravel
airplanes move people between citiessatellitg satellites turn to objects and take
pictures; inrovers rovers navigate an area to take samples and images; aRPjn
trucks visit markets to buy products.

For each domain, we implemented a Java program that paesesgmal prob-
lem files and generates ti&SPP version with action cost and goal utilities ran-
domly generated within appropriate upper and lower boufide set of goal de-
pendencies along with their utility values were also raniyayenerated. Thus, the
number of dependencies, size of the dependencies, setlsfigealved, utility val-
ues and action costs were all selected within varied loweugper bounds for each
domain. All goals are soft, and therefore planners carallivsolve each problem
with the null plan.

For these tests, we varied our bounds on action cost and gbatikty values
such that each domain focuses on different aspects ofyudéipendency. In zeno-
travel, ending a plan with people at various locations clkangility significantly,
and flying a person between locations has a cost that is aglytlsi less than the
individual utilities of achieving each goal. Thus, it isalito have the certain sets

of people at various locations. In TPP, purchasing itemsahesst about equiv-

37

alent to the individual utility of having the item. Howevéraving items together
can change the utility of a plan considerably. The idea isntukate the benefit of
having several items together (e.g., to build a crate yod mexd, nails, a hammer
and saw). The satellite domain removes the emphasis on ldes¢ actions have
costs lower than the comparatively higher benefit of haviemegsal images (e.qg.,
to produce a mosaic image). The domain also adds severdiiveegaal utility
dependencies (i.e., substitution) by including negattitgyufor having certain sets
of images yet ending a plan by pointing to an inconvenient apd having only a
few images (e.g., a “partial mosaic”). The rovers domaimugas on substitution as
having certain scientific data together can give redunddatmation and therefore
remove a large portion of utility gained by having them sapar

Sapd® has a heuristic that only takes cost dependencies into atcsuch
that it will remove goals from its heuristic calculation gnt the cost of reaching
a goal appears greater than its reward. In TPP and zenqgttaeehchievement
cost for a single goal is about equivalent to or is (more Qfgreater than the
reward obtained for the independent goal reward. Sinc&#p&i® heuristic looks
only at cost dependencies between goals, it is unlikelyithaill choose a good
(or very large) goal set in these domains. With the roverssatdllite domains,
negative goal utility dependencies exist that effectivedgate the benefit of simply
achieving goals one after the other. That s, it is often tsedn those domains that
achieving two goals together has reward much less than tlependent rewards
given for having both goals (such a strategy would yield aatieg net benefit
This is an especially pronounced feature of the satellitealn. In rovers, the cost
of navigating between waypoints where samples may be tdlkgs p role as well.

In the satellite domain, the heuristic 8apd® is likely to select an (incorrect)

38

large set of goals, having ignored negative goal utilityetefencies, and in the
rovers domain, it may select an improper goal set due to goay ulependencies
and action costs.

Analysis: The results in Figure 4.1 show the plan quality achieved loj @éanning
method (top graph) and the time to reach that quality (boticaph). On problems
where only the null plan was found, we indicate the extensearch for a better
plan by setting the time to 600 seconds. For every otherngstahe time that the
best plan was found is shown. As the figure shows, the testeehaghes varied
in their relative plan quality on each domain &PUDSusing theh&: heuristic
always performed among the best.

Both the zenotravel and TPP domains involve gathering tdyjétough zeno-
travel focuses on delivering these objects as well. Pesitiility dependencies play
an important role in these domains, since the cost of adalgesisingle goal often
outweighs the individual reward it gives. We see tBapd° does poorly, while the
SPUDSheuristics andPUD fared much better. Since ti#ap&° heuristic is not
informed about utility dependencies, this comes as no mérpin easier problems,
theh&4! heuristic tends to return plans of similar or equal qualgigampared with
the other techniques used. However, as problem size iresgg3.! begins to re-
turn plans of better quality, but still does worse thgf'. in terms of the overall
number of plans found with best quality. With the IP-only eggech,iPUD, as the
size of the problem increases it is unable to find a good feasdiution.

For our version of the satellite domain, goal combinatiemave utility from
the overall quality of plans. Also, the plans of higher gtyalend to require many

actions. This can be seen in the quality of the plans #R&lD returns. Its reach-

ability analysis is unable to properly estimate the distatocgoals and it therefore

39

begins its solution searching at a small horizon. Forfig/, heuristic, it turns out
that action selection helps guide search toward the goals.

For the rovers domainPUD does well on several problems. However, like
in the satellite domain, better quality plans require adargorizon on some of
the problems than its initial horizon provides. This gi@&3UDSwith the h&/2
heuristic an edge ovePUD in 8 of the 20 problems. The heuristié§”! and
hGAL have information regarding utility dependencies, thotgh! often performs

worse tham&! (solving 5 of 20 problems with better quality plans) afg}!! is
only able to find the null plan in every problem instance forens, likely because it
cannot detect the cost dependencies between actions wetisisn of the domain.

Also of interest is the time it takes to solve each problenwbken the heuris-
tic search methods and the IP encoding usePldD. Since theSPUDSheuris-
tics solve an IP encoding at each search node, they take ranger to compute
on larger problems than the proceduBap&® heuristic. UnfortunatelySapd®
lacks the heuristic guidance necessary to properly seteadsgvith utility depen-
dencies. Though we found that the per-node IP encoding’df increased the
amount of time spent per search node by 3 to 200 times oveoft®dapd® (with
the highest increases on larger problen&PUDSwith the h%! heuristic does
better overall.

When reaching the time limit (600 seconds for our resulgpd® , SPUDS
andiPUD return their best solution. ISPUDSand Sap&® this behavior comes
from the best first anytime search and wifPUD this behavior comes from the
CPLEX solver, which can return the best feasible solutiamtbwithin a given time

limit. Insights can be obtained by observing the amountrogtit takes to find the

solution that is eventually returned. We used the anytintebier to illustrate the

40

scalability of each approach. Figure 4.2 shows, of problgéénthrough 20 in each
domain (i.e., the most difficult), which technique perforbest in terms of quality
throughout their search (e.qi%“!/ has the best quality for 16 of the problems at
2 seconds). Of our approachés;; performs the best overall. In the 80 tested
problems, it solves 22 instances at 600 seconds better tiyaptlaer planner. Also
interesting is that in 45 instances it obtains the best pfaheapproaches or one

of similar quality (by “similar” we mean within 0.1% of the besolution).

4.3 AN ADMISSIBLE LP-BASED HEURISTIC FORGOAL UTILITY DEPENDEN

CIES

While we have made efforts toward adapting relaxed planistes for planning
problems with goal utility dependencies, there is still ammatch in terms of opti-
mization. The overall best performing heuristic we havenseefar is inadmissible.
Instead, we would like an approach that has more of an opdiiniz perspective.
A standard way of setting up a relaxation with an optimizaperspective involves
(i) setting up an integer programming (IP) encoding for th&bpem and (ii) com-
puting a linear programming (LP) relaxation of this encgdim addition to being
sensitive to the objectives of the optimization, such axatian is also sensitive
to more constraints within the problem. In the case of plagnnegative interac-
tions between the actions, which is notoriously missingnggtandard relaxed plan
heuristics, can be accounted for, potentially leading ttebd&euristic values. One
challenge in adopting this approach involves deciding @netkact type of IP en-
coding for the PSP problem. Although we have experimented i encodings
for PSP in the previous section, such encodings are beitedgor problems with
bounded horizons. The normal idea in bounded horizon ptanisito put a bound

on the number of plan steps. While this idea works for findiegsfble plans, it

41

does not work for finding optimal plans since it is not cleaivbound is required
to guarantee optimality. We adopt an encoding that is no¢aéent on the horizon
bound. In particular, we describe a compact causal encddimgction selection
that accounts for the delete effects of the actions but Emaction ordering. This
provides an admissible heuristic.

Our formulation is based on domain transition graphs, fisstdun the planner
Fast Downward [59]. Each of the graphs represents a variathe multi-valued
SAS+ formalism [3] with a value of a variable existing as atee@and effects as
arcs between them. We define a network flow problem over eatheai. Side
constraints are introduced to handle pre-, post-, and prewaditions of actions.
Additionally, we incorporate parameters, variables, aodstraints to handle as-
pects of goal utility dependencies. Unlike a bounded-toori@r step) encoding,
our encoding is more compact and needs no estimates on pkfosiits genera-
tion.

After solving for the LP formulation, we can perform a lookald, similar to
what we usually do in our best-first search algorithm when erfopm satisficing
search (i.e., search using inadmissible heuristics). Gfferehce is that we can
extract the relaxed plan using the LP solution as guidankat i, during a relaxed
plan extraction process, if an action is in the LP solutiowel as in the planning
graph, we selectit. This can occasionally improve qualisodutions over a similar

lookahead using an relaxed plan extraction process thatisted by cost.
LP Heuristic
We present a novel admissible heuristic that solves a rietexaf the original

PSPYP problem by using the LP-relaxation of an IP formulation. Wiédbon the

heuristic discussed in [93] for classical planning. Whilesthheuristics ignore the

42

delete effects of the actions, this heuristic accountdfedelete effects, but ignores
action orderings instead. The formulation that we desasb®sed on the SAS+
planning formalism [3], where a SAS+ planning task is a tdple- (V, A, so, s.)
such thatV = {v;,...,v,} represents a set of state variabldsis a finite set of
actions,s, indicates the initial state and denotes the goal variable assignments.
Eachv € V has a domairD, and takes a single valugfrom it in each state,
stated ass[v] = f. Each actiomm € A includes a set of preconditiongye(a),
post-conditionspost(a), and prevail conditiongsrev(a).

Previous work has shown that we can translate classical I&)Rplanning
problems into SAS+ planning problems [35, 60], and we usstthinslation process
for generating our heuristic.

We define a SAS+ planning task as a tupte= (V, s¢,G,.A), whereV =
{v1, ..., v, } is afinite set of variables. Each variakles V' has an associated finite
domainD,.. We write s(v) to denote the value of variablein states, wheres
is called a partial state i§(v) is defined for some subset of, ands is called a
state ifs(v) is defined for allb € V. s, is a state called the initial state agdis
a partial state called the goaM is a finite set of actions. Each actianc A is of
the form(pre, post prev), wherepre andpostdescribe the effects of the action and
prevdescribes the prevail conditions of the action. We weif¢ (a, v) to denote
the effect of actiom in variablev andprev(a, v) to denote the the prevail condition
of a inv.

We writec(a) to denote the cost of executing actiorandu(Gy) to denote the
utility of achieving goal utility dependency. The utility of a (partial) state is

given by the sum of all goal utility dependencies satisfiedsbyrhat is,u(s) =

43

> rek-cres WGE). Our objective is to find a plam that maximizesnet benefit
which is given by utility minus cost.

We map this problem into an IP formulation in which the ordgrof the actions
isignored. Hence, the formulation is not dependent on thgtkeof the plan and, as
a result, only a single IP variable is required for each actibignores the ordering
of actions and thus is a relaxed formulation of the origirmalgtem. After having
the IP formulation, which gives an admissible heuristic,caé 1547, we use the
solution to its LP relaxation as a further relaxed admisskiguristic that we call
h¢al. A discussion of the admissibility of the heuristic is foundAppendix A.

The IP formulation models each variable in the planning [gnwbas an appro-
priately defined network flow problem. Interactions betwdenvariables, which
are the result of the action effects and prevail conditians,modeled as side con-
straints on the network flow problems. Informally, the fotation seeks to maxi-
mize net benefit subject to five sets of constraints: goaltcainss, network flow
constraints, linking constraints, prevail constraintsd ajoal utility dependency
constraints.

The goal constraints ensure that the hard goals are satigiredetwork flow
constraints model the multi-valued fluents, the linking staaints link the action
variables with the network flows, the prevail constrainetestthe conditions for
satisfying prevail conditions, and the goal utility dependy constraints state the
conditions for satisfying the goal utility dependencies.

Parameters.In order to describe our formulation, we introduce threeapeaters:
e cost(a): the cost of actiom € A.

e utility(v, f): the utility of achieving the valug in state variable in the

goal state.
44

e utility(k): the utility of achieving the goal utility dependen€y, in the goal

State.

Variables. We define five types of variables: (1) Action variables areduseandi-

cate the number of times an action is executed; (2) End valtiables are used to
indicate which value is satisfied at the end of the soluti@mp(3) Effect variables
indicate the number of times an effect is executed; (4) piregdaables indicate the
number of times a prevail condition is required; and finalB), goal dependency
variables indicate which goal dependencies are satisfidteatnd of the solution

plan.
e action(a) € Z*: the number of times action€ A is executed.

e c¢ffect(a,v,e) € Z*: the number of times that effeetin state variable is

caused by action.

e prevail(a,v, f) € Z*: the number of times that the prevail conditigrin

state variable is required by action.

e endvalue(v, f) € {0,1}: is equalto 1 if valug in state variable is achieved

at the end of the solution plan, 0 otherwise.

e goaldep(k) € {0, 1}: is equal to 1 if goal utility dependendy,, is satisfied,

0 otherwise.
Constraints. The constraints are defined as follows:

e Goal constraints for eache V, f € D, such thatf € G,. If fis a goal of

v then f must be the end value of

endvalaue(v, f) =1 (4.8)
45

e Network flow constraints for each € V, f € D,. If a value is deleted:
times then it must be addedtimes. For each variable value there must be a
balance of flow (i.e., the number of deletions equals the rerratditions).

If f € so[v] is the initial state ob, then f is added by means of a constant.
Similarly, if f € G, isagoal, or the end value ofthenf is deleted by means
of theendvalue(v, f) variable.

1{if f € sofv]} + > effecta, v, e) =

effects transition tgf

Z effecfa, v, e) + endvalauve(v, f)

effects that transition fronf

(4.9)

e Linking constraints for each € A andv € V. Action variables are linked
to their respective effect and prevail variables. Gengilére is only one
effect or prevail variable per action per variable. Henowihg constraints
would normally be defined asction(a) = ef fect(a,v,e) or action(a) =
prevail(a, v, f). If an action is executed times, then its effect or prevalil
condition must be executedtimes. The SAS+ formalism, however, allows
the precondition of an action to be undefined [3]. We moddl iyl using a
separate effect or prevail variable for each possible predition.

action(a) = Z effecta, v, e)

effects ofa inv

+ Z prevail(a,v, f)

prevails ofa in v

(4.10)

¢ Prevail implication constraints for eache A, v € V, f € D,. If a prevail
condition is executed then the corresponding value mustddechat least

once. In other words, if there is a prevail condition vafyehen f must be

46

added. We set M to an arbitrarily large value.

1{if f € solv]} + > effecta, v, e) > (4.11)

effects that transition tg

Z prevail(a,v, f)/M (4.12)

actions with prevail ory

e Goal dependency constraints for each goal utility depecydén All values
of the goal utility dependency are achieved at the end of dhdien plan if

and only if the goal utility dependency is satisfied.

goaldep(k) > Z endvalue(v, f) — (|Gx| — 1) (4.13)
f in dependency:

goaldep(k) < endvalue(v, f) Vf in dependency (4.14)

Example: To illustrate the heuristic, let us consider a transpatgbroblem where
we must deliver a persopgrlto a locationJoc2 using a planepl, and must end
with the plan atoc3. The cost of flying fromocltoloc2is 150, fromloclto loc3

is 100, fromloc3to loc2is 200, and fromoc2to loc3is 100. To keep the example
simple, we starperlin pl There is a cost of 1 for droppirmerloff. Havingperl
andpl at their respective destinations each give us a utility dfQL(or a total of
2000). Figure 4.3 shows an illustration of the example wétbheedge labelled with
the cost of travelling in the indicated direction (not shaava the utility values for
each individual goal).

The optimal plan for this problem is apparent. With a totadtaaf 251, we can
fly from locl to loc2, drop off perl, then fly toloc3. Recall that the LP heuristic,
while it relaxes action ordering, works over SAS+ multiwed fluents. The trans-
lation to SAS+ captures the fact that the plank,can be assigned to only a single

location. This is in contrast to planning graph based hg&asishat ignore delete
47

lists. Such heuristics consider the possibility that otgean exist in more than
one location at a given step in the relaxed problem. Thesefairthe initial state,
a planning graph based heuristic would return a relaxed ({B&) that allowed the
planeplto fly from loclto loc2, andloclto loc3, putting it in multiple places at
once.

In contrast, the solution from the LP-based heuristic fas firoblem at the
initial state includes every action in the optimal plan. dctf “1.0” is the value re-
turned for these actior’sThough this is a small example, the behavior is indicative
of the fact that the LP, through the encoding of multi-valfleénts, is aware that
a plane cannot be wholly in more than one place at a time. #nddse, the value
returned (thenet benefitor 2000 — 251 = 1749) gives us the perfect heuristic.

To use this solution as a candidate in the branch and bounchsdescribed in
the next section, we would like to be able to simulate the ettec of the relaxed
plan. For the example problem, this would allow us to reaehgbal optimally.
But because our encoding provides no action ordering, weataxpect to prop-
erly execute actions given to us by the LP. For this exampégpears that a greedy
approach might work. That is, we could iterate through thedlakle actions and
execute them as they become applicable. Indeed, we evigntolédw a greedy
procedure. However, blindly going through the unorderddas leads us to situ-
ations where we may “skip” operations necessary to reachdhés. Additionally,
the LP may return values other than “1.0” for actions. Thenefwe have two is-
sues to handle when considering the simulation of actiocgi@n to bring us to

a better state. Namely, we must deal with cases where thetufhsenon-integer

3The equivalent to what is given b2 .

48

values on the action variables and simultaneously conbm&ito order the actions
given to us.

Using an LP for Guidance to Extract a Relaxed Plan:We should only extract
plans for sets of goals that appear to be beneficial (i.evigea highnet benefit

We can use the LP for this, as it returns a choice of goals. rGivat the LP can
produce real number values on each variable (in this caselavgnable), we give

a thresholdf on their value. For every gogl there is a value assignment given
by the LP,Value(g). If Value(g) > 0 then we select that goal to be used in the
plan extraction process.

The main idea for extracting a relaxed plan using the LP soiws guidance
is to prefer those actions that are selected in the LP solutiwhen extracting a
relaxed plan, we first look at actions supporting proposgithat are of the least
propagated cost and part of the LP solution. If no such astsoipport these propo-
sitions, we default to the procedure of taking the actiorhlile least propagated
cost. Again, since the LP encoding can produce fractiorlabgwe place a thresh-
old on action selectiond,. If an action variableiction(a), is greater than the
thresholdaction(a) > 64, then that action is preferred in the relaxed plan extrac-
tion process given the described procedure.

To see why the LP makes an impact on the relaxed plans we gxeaas
revisit our ongoing example. Figure 4.4 shows the relax@tmphg graph with
each action and proposition labeled with the minimum castdaching it (using a
summing cost propagation procedure). Recall that we wantwour relaxed plan
extraction process toward the actions in the LP becausaiaots information that

the planning graph lacks—namely, negative interactions.

49

Assume that the LP solver returns the action{$ig{loc1, loc2) fly(loc2, loc3)
drop(pl, loc2}. Given that both goals are chosen by the LP, we place botts goal
into the set of open conditions. We have three layers in tlaplgrand so we
progress backward from layer 3 to 1. We begin with the leapepgive goal at
the last level and find its cheapest actifig(loc1,loc3) Since this action is not
part of the LP solution (i.e., its value is 0), we move on torle&t least expensive
supporting actionfly(loc2,loc3) This action is in LP’s returned list of actions and
therefore it is chosen to satisfy the ga#p1,loc3) Next, we support the open con-
dition at(perl,loc2)with drop(perl,loc2) This action is in the LP. We add the new
open conditiomat(pl,loc2)then satisfy it with the actiofly(locl,loc2) We now
have the final relaxed plan by reversing the order in whictaetttens were added.
Note that without the LP bias we would have the p{élg(loc1,loc2)fly(loc1,loc3)
drop(perl,loc2}, which is only partially executable in the original plangiprob-

lem.
Evaluation

We created a planner called BBOP-LP (Branch and Bound Quesesiption Plan-
ning using Linear Programming, pronounced “bee-bop-g@-pon top of the frame-
work used for the planner SPUDS¢4! was implemented using the commercial
solver CPLEX 10. All experiments were run on a 3.2 GHz Pentiimwith 1 GB
of RAM allocated to the planners.

The system was compared against SPUDS and two of its hesyisii'/ and
hGAI Recall that the heuristieS?!! greedily extracts a relaxed plan from its plan-
ning graph then uses an IP encoding of the relaxed plan tovegmals that look

unpromising. Using this heuristic, it also simulates thearion of the final relaxed

plan as a macro action at each state. The other heuristiciibSRhat we look at,

50

h&AL 'is admissible and performs max cost propagation (i.eakits the maximum
reachability cost among supporters of any predicate oo@ajctin the planning graph
but does not extract a relaxed plan (and so performs no mackahead). It uses
the propagated costs of the goals on a planning graph aisdadri@inimize the set
using an IP encoding for the goal utility dependencies.

We use the BBOP-LP system with three separate options. fRjadlgi we use
theh$AT heuristic without extracting a relaxed plan for simulatite 24! heuris-
tic with the LP-based heuristic extraction process, andih# heuristic with a
cost-based heuristic extraction process. The searchrtates only when a global
optimal solution is found (or time runs out). A goal and actibreshold for the LP-
based extraction of 0.01 was use8PUDS, using an anytime best-first search with
the admissiblé.%4! heuristic, will also terminate when finding an optimal sant

max

(or a timeout). Note that it is possible that SPUDS using tiaimissibleh&:!
heuristic will terminate without having found an optimaloon (i.e., whenever it
chooses to expand a node whére- 0). Recall that SPUDS using/!Z will also
simulate the execution of the relaxed plan. Each of the @esis run with a time
limit of 10 minutes.

Problems: We tested our heuristics using variants of three domaima fiwe 37
International Planning Competition [744enotravelsatellite androvers We use a
different reward structure from the problems in our pregitests. Thaatelliteand
rovershave more positive goal utility dependencies, increasednefor individual
goals and decreased negative goal utility dependenciestefidre, these domains

are likely to have more positiveet benefigoal sets than in our previous tests. In

“In our experiments, this threshold provided overall betsults over other, higher values for
04 andfs that were tested.

51

zenotravelmoving between locations has a cost about half that of eaditaidual
goal reward. We also added more negative goal utility depecids to this domain.

We tested on th&PPdomain, but all varieties we attempted returned similarly-
valued plans for nearly all of the problems on each of the oaghwith a few
minor exceptions). Therefore, we do not discuss resultthierdomain.

Analysis: Figure 4.5 shows the results of running the planners in texintise net
benefitof the solutions found and the time it took to search for theegisolution
value. In 13 of the problems thi& 4! heuristic with the LP-based relaxed plan
lookahead technique performed best. In fact, in only fouhefproblem instances
is this method returninget benefivalue less than one of the other metharsn-
travel problems 14 through 17).

Searching with thé:¢4! heuristic allowed us to find the optimal plan in 15 of
the 60 problems, where it exhausted the search space. Weasbtftis tohC4!,
which exhausted the search space in only 2 of the problerasfifgt two zeno-
travel problems). However, to the credit &f4, it was able to come close to
finding near-optimal solutions in some cases in all of the @iosn The new re-
ward structure effectively makes the “best” goal set takeé to reach than in our
previous experiments (i.e., it sometimes requires morer&to reach the better
goal set). Henceh¢4! finds plans that give reward imversunlike in our previ-
ous tests, and is unable to find the plans equivalenttf . BetweenhG4! and
h¢aT (without a lookahead), it turns out thaf4! gets plans of better net benefit
in 3 of the problems izenotravel 1 problem insatelliteand 8 problems imovers
However, given the heuristics and search methodology titale simply collect-

ing more rewards during the search process. Thereforeljfitisult to say how this

relates to scalability. However, one advanta§g’ has is that it is informed as to

52

the negative interactions between actions (unliké! andh&:!1), so is likely to
have a higher degree of informedness (especially as it megivsdual goals).

We note that the LP-based relaxed plan lookahead is oftéertibain the other
methods (in 13 cases). The differences, however, are ysuatlisignificant from
the cost-based relaxed plan lookahead. One obvious reatwat both are designed
to reach the same LP-selected goals, while the LP-basegictedr relaxed plan is
informed as to the negative interactions that exist withmproblem (e.g., a plane
cannot be in more than one place at a time). This has the Held-that unjustified
actions [41] (i.e., actions that do not contribute to thelgase not considered as
often for the lookahead. In our example we saw a best-casasoef this.

Related 2G4 can be fairly accurate in its assessment of which goals tos#o
but this can be to its detriment (especially with its way afrpng relaxed plans and
performing a lookahead). While it is perhaps ultimatelysuimg the “best” sub-
set of goals, if the search cannot actually reach tmampletesubset within the
computational time limit, we will not get all reward for it drwill likely miss the
“second best” goal subset as well. Consider the problem okibg a vacation.
A person would want a plane ticket, a hotel reservation, artigps a rental car.
It is easy enough to see that booking a rental car without lueepticket or ho-

tel reservation is a foolhardy plan. Stopping short of thiremoal set by getting

I even with a lookahead,

ax?

only the car would be unbeneficial. It turns out t
can end up collecting goals that produce negative intenastithrough goal utility
dependencies and cost dependencies), but over time mayab&un achieve ad-
ditional goals that can offset this$s!, while greedier, pursues a larger number of
the goals initially. With limited computational time, thign be a better strategy in

these problems to find higher quality satisficing solutidwste that, even in the oc-

53

casions wheré%a! is calculated significantly more slowly tha4!/ | as happens

in the more difficult problems afenotravel, h¥47 appears to give better quality

plans. This is likely due to its heuristic guidance and/erlttokahead.
4.4 IMPROVING NET BENEFIT THROUGH LEARNING TECHNIQUES

Use of learning techniques to improve the performance afraated planners was
a flourishing enterprise in the late eighties and early msetbut has however
dropped off the radar in the recent years [100]. One appaeason for this is
the tremendous scale-up of plan synthesis algorithms itegtelecade fueled by
powerful domain-independent heuristics. While early pkns needed learning to
solve even toy problems, the orthogonal approach of immrdneristics proved
sufficiently powerful to reduce the need for learning as aatru

However, this situation changing again, with learning it an integral part
of planning, as automated planners move from restrictigesital planning prob-
lems to focus on increasingly complex classes of probl&rike other planning
problems, a dominant approach for PSP problems is forwatg space search
and one challenge in improving these planners has been elageng effective
heuristics that take cost and utility dependencies intoact This section of our
work [99] aims to investigate if it is possible to boost theuhstic search with the
help of learning techniques. Given the optimizing natur@®8P, we were drawn
in particular to STAGE [15], which had shown significant pisenfor improving

search in optimization contexts.

SFor zenotraveproblem 20, the initial state took 47 seconds (though duegeviay the CPLEX
solver works, it likely takes much less time per node).

50ne sign of this renewed interest is the fact that for the finsé, in 2008, the International
Planning Competition had a track devoted to planners thal@nearning techniques. This track
was also held in the 2011 International Planning Compeatitio

54

STAGE is an online learning approach that was originallyeimed to improve
the performance of random-restart hill-climbing techmigjon optimization prob-
lems. Rather than resort to random restarts which may or roapeip the base-
level search escape local minimum, STAGE aims to learn &yt intelligently
generate restart states that are likely to lead the hitMgiing search towards signif-
icantly better local optima. The algorithm proceeds in tterdted stages. In the
first stage, the base-level hill-climbing search is runluhteaches a local mini-
mum. This is followed by a learning phase where STAGE tramthe sequence of
states that the hill-climbing search passed through inrdadkearn a function that
predicts, for any given state the valuev of the optima that will be reached from
by hill climbing. This learned function is then used in the@ed stage (alternative)
local search to scout for a state(that has the highest promise of reaching a better
state). If the learner is effective; is expected to be a good restart point for the
base-level search. The stages are then repeated starting @8 the initial point.

The main challenge in adapting the STAGE approach to PSRvewdind-
ing appropriate state features to drive the learner. Irr thiéginal work, Boyan
and Moore [15] usethand-craftedstate features to drive learning. While this may
be reasonable for the applications they considered, itfé&agible for us to hand-
generate features for every planning domain and problemreder, such man-
ual intervention runs counter to the basic tenets of dormmadependent planning.
Rather, we would like the features to be generated autoatigticom the problem
and domain specifications. To this end, we developed twatqaks for generating
features. The first uses “facts” of the states and the ackaulng to those states as
features. The second, more sophisticated idea uses a Takosyntax to generate

higher level features [77]. We are not aware of any other winakused the STAGE

55

approach in the context of automatically generated featiiée implemented both
these feature generation techniques and used them to adapdmat of the STAGE
approach to support online learning in solving PSP problefigese differ from
methods that refine features, such as those done by FawBgtt\\& compared
the performance of our online learning system to a baselawistic search ap-
proach for solving these planning problems (c.f. [29]). @asults convincingly
demonstrate the promise of our learning approach. Paatigubur on-line learn-
ing system outperforms the baseline system including tamnieg time, which is
typically ignored in prior studies in learning and planning

The contributions of this are thus twofold. First, we dentate that the per-
formance of heuristic search planners in PSP domains campeved with the
help of online learning techniques. There has been litier prork on learning
techniques to improve plan quality. Second, we show thatgbssible to retain the
effectiveness of the STAGE approach without resorting twherafted features.

In the following sections, we give details of our automatedtfire generation
techniques. Then we show a comparison of the performanceardbrdine learn-
ing approach with the baseline heuristic search plannénduss'/ but without

lax

lookahead techniques as typically used in variantSaga’).
Preliminaries

We first provide a few preliminaries on our representatiothef problem for our
feature generation and on the STAGE approach in general.

Problem Representation: To employ our automatic feature generation methods,
we provide a representation of PSP that breaks down the ipgmmoblem into
components typically seen in domain and problem definitio8pecifically, we

define a PSP problerf?® as a tuple of O, P, Y, 1,G,U, C), whereO is a set of

56

constantspP is a set of available predicates arids a set of available action schema.
A factp € P is associated with the appropriate set of constan€s.i® is a set of
all facts. A states is a set of facts and is the initial state. Additionally, we define
the set of grounded actions where eacla € A is generated fromy € Y applied
to appropriate set of constants@in We define actions as we did previously, where
each actiom € A consists of preconditioprre(a) which must be met in the current
state before applying, add(a) describes the set of added facts after applyiagd
del(a) describes the set of deleted facts after applying’ is a cost function that
maps an actiom to a real valued costy : « — R. We define our goal§ and
utility functionsU as in Section 2.

STAGE: STAGE [15] learns a policy for intelligently predicting tast points for

a base-level random-restart hill-climbing strategy. Irkeoby alternating between
two search strategies, called $¥ARCH and SSEARCH O-SEARCH is the base-
level local search which hill-climbs with some natural adtjee functionO for the
underlying problem (e.g., number of bins used in the birkparproblem). The
S-SEARCH works to scout for good restart points for theSBARCH.

The OSEARCHi is run first until, for example, the hill climbing reaches adb
minimum. LetT = sq,s1,...,5, be the trajectory of states visited by the O-
SEARCH, and leto.(s;) = best;~;0(s;) be the objective function value of the best
state found on this trajectory aftey. STAGE now tries to learn a functiovi to
predict that any state that is similar to the state, on the trajectoryl’, will lead
the hill-climbing strategy to an optima of valug(s;).

In the next phase, SEARCH is run usingl” as the objective function, to find
a states that will provide a good vantage point for restarting thes©aRCH S-

SEARCHnNnormally starts frons,,, the state at the end of the trajectory of the previous

57

O-seARCH (although theoretically it can start from any random staeuding the
initial state)’

This sequence of GEARCH, learning and SSEARCH are iterated to provide
multiple restarts for the GEARCH As we go through additional iterations, the
training data for the regression learner increases moiuatibyy For example, after
the OSEARCH goes though a second trajectdfy : s2,...,s? where the best
objective value encountered in the trajectory after statis o2(s;), in addition to
the training data from the first @EARCH s; — o.(s;), we also have the training
datas? — o2(s7). The regression is re-done to find a ngWunction which is then
used for driving SSEARCH in the next iteration.

Boyan and Moore [15] showed that the STAGE approach is éffeetcross a
broad class of optimization problems. The critical indicadf STAGE'’s success
turns out to be availability of good state features that agppert effective (re-
gression) learning. In all the problems that Boyan and Maovestigated, they
provided hand-crafted state features that are customizie tproblem. One of the
features used for bin-packing problems, for example, iz#in@nce of bin fullness.
As we shall see, an important contribution of our work is towlthat it is possible

to drive STAGE with automatically generated features.

Adapting STAGE to Partial Satisfaction Planning

Automated Feature Generation: One key challenge in adapting the STAGE ap-
proach to domain-independent PSP stems from the difficaltbandling the wide
variety of feature space between planning domains. Whele-teependent features

often appear obvious in many optimization problems, donraiependent prob-

’In fact, if we can easily find the global optimum Bf, that would be the ideal restart point for
the OSEARCH This is normally impossible becausemight be learned with respect to nonlinear
(hand-selected) features of state. The inverse imageai the state space forms its own complex
optimization problem, thus necessitating a second locatée

58

lem solvers (such as typical planning systems) generatjyire a different set of
features for each domain. Producing such features by hantgpigctical and it is
undesirable to require users of a planning system to praudb a set. Instead, we
use automated methods for feature construction.

In our work, we experimented with two methods for featureegation. One
method derives propositional features for each problemn filoe ground problem
facts. The other derives relational features for each donnsing a Taxonomic syn-
tax [77]. We describe both below. An important differencéws®en Taxonomic
and propositional feature sets is that the former remamsdéme for each domain,
while the latter changes from problem to problem even in #reesdomain. Thus,
the number of propositional features grows with the sizerobjgms while Taxo-
nomic features does not.

Propositional Features: In a propositional feature set, each fact in the state rep-
resents a feature. Intuitively, if there is some importaat ff that contributes to
the achievement of some goal or a goal by itself, then sthtdsiriclude the fact
should be valued high. In other words, a binary feature thatie with the factf,
should be weighted higher for the target value functiors then natural to have all
the potential state facts or propositions as a feature $gg.ifituitive idea has been
tested in a probabilistic planning system [17]. In theirezabe features were used
to learn policies rather than value functions. Given camtsta and predicate®’ in

a PSP problenP?, we can enumerate all the ground fagts Each ground fact is
made into a binary feature, with the value of the featuredpgunre when the fact is
in the current state. We call the planning and learning systat uses these binary

features a “Propositional” system.

59

Relational Features: Although the propositional feature set in the previous sub-
section is intuitive and a simple method to implement, itrc#irepresent more
sophisticated properties of the domain, where relatiohsdmn state facts are im-
portant, e.g., conjunction or disjunction of the facts.

Our second approach involves relational (object-orientedtures. For many
of the planning domains, it is natural to reason with objaectthe domain. In
particular, it is reasonable to express the value of a staterims of objects. For
example, in a logistics domain, the distance to the goal eamdl represented with
“number of packages not delivered”. Here, the “packageasatteenot delivered yet”
are a good set of objects that indicates the distance to thle ijave can provide a
means to represent a set of objects with such a propertyttieerardinality of the
set could be a good feature for the value function to learn.

Taxonomic syntax [77] provides a convenient framework lfi@se expressions.
In what follows, we review Taxonomic syntax and we define eatdire space with
Taxonomic syntax.

Taxonomic SyntaxA relational databasg is a collection of ground predicates,
where ground predicates are applications of predicatesP to the correspond-
ing set of objectgo € O). Each state in a planning problem is a good example
for a relational database. We prepend a special symlifaihe predicate is from
goal description and if the predicate is both true in the current state and the goal
state.c predicates are a syntactic convenience to express medssealysis [78].
Note that goal information is also part of state informatigm example relational
database (a state from a Logisticsworld domain) is showngdnrg 4.6. In this

example, there are two packagesckageland package?2 packageds not at the

60

goal location angbackagels at the goal location. So there is additional facst(
packagel locationl).

Taxonomic syntax” is defined as follows,

C =a-thing|(p C1 ... 7 ... Cuy))lCNC|-C

It consists ofa-thing, predicates with one position in the argument are left for
the output of the syntax, while other positions are filledwather class expressions,
intersections of class expressions and negations of a elgsession.n(p) is the
arity of the predicate. We define deptll(C') for enumeration purposes-thing

has depth 0 and class expression with one argument preti@stepth 1.

di(p Cv ... 7 ... Cup)) =maxd(C;) +1

Taxonomic Syntax Semantic¥axonomic syntaxC[R] against a relational
databaser describes sets of objecta-thing describes all the objects iR. In
the example in Figure 4.6, they are (cityl, truckl, packagatkage2, locationl,
location2). (p Cy ... 7 ... C,) describes a set of objects that make
the predicate true in R whenO is placed in the ? position while other positions
are filled with the objects that belong to the correspondiagsexpression. For
example, considef’ = (cat ? a-thing) and letR be the relational database in
Figure 4.6. C[R] is then (packagel). Among all the objects, only packagel can
fill in the 7 position and make thecét packagel locationl) predicate true. Note
thata-thing allows any object, including locationl. As another examptmsider
¢’ = (at 7 a-thing). C'[R] is then (packagel, truckl, package?2). It is worth-

while to speculate the meaning 6f It indicates all the objects that fill in the first

61

argument position ofat and make the predicate true in the Logisticsworld, which
means all the objects that are already in the goal.

Feature Generation Function for Partial Satisfaction Ptang: We enumer-
ate limited depth class expressions from the domain definitia-thing is in-
cluded in the feature set by default. Recall the planningaardefinition, P° =
(O,P,Y,1,G,U,C). Using P, the set of predicates, we can enumerate Taxonomic
features. First, for all the predicates, except one argamesition, we fill all the
other argument positions witirthing. This set constitutes the depth 1 Taxonomic
features. For the Logisticsworld; andC” in the above corresponds to this set of
depth 1 features. Depthfeatures can then be easily enumerated by allowing depth
n — 1 Taxonomic syntax in other argument positions than the dyipsition. For
example,(at —(cat ? a-thing) ?)is a depth 2 feature, which is constructed
by using a depth 1 Taxonomic feature at the first argumentiposiThe meaning
of this feature is “the location where a package is not yehengoal location”. In
our experiments, we used depth 2. We could use deeper Taxomeatures, but
this increased the solving time during the enumeration aatliation process. We
call the planning and learning system that uses the clas®&sipn feature set a
“Taxonomic” system. The value of the Taxonomic featuredésdardinality of the
Taxonomic expressions, which gives out sets of objectss akes the features
appropriate for value function learning.

In both the “Propositional” and “Taxonomic” feature set® also use actions
involved as part of the features. Each state in PSP includexce of the actions
that led the initial state to the current state. For the “Teowic” feature set, we
union these actions with state facts for the relational lukega construction. The

semantics of this database straightforwardly follow froaxdnomic syntax. For

62

the “Propositional” feature set, we also enumerate all thtertial ground actions

and assign a binary value 1 if they appear in the actions dldlatol the state.
Evaluation

To test our approach, we again used variations of domainstiie 3rd International
Planning Competition (except for TPP). Our experimentsatsanilla” version of

the search with&!Z (i.e., it does not perform a lookahead). We used a 2.8 GHz
Xeon processor for our tests. For our training data, we used 1000 evaluated
states and set the timeout for each problem to 30 minutes of tiRe . We
implemented our system on top of our search framework and &(sg! without

a relaxed plan lookahead as a baseline search. Note thatamerlg time was not
significant, as the number of automated features generasdywically less than
10,000. This effectively enables our system to performinedearning.

To learn from the feature sets, we used a linear regressioi tidt is, given
our features, we learn a linear function that will output atireated reward and use
this function to determine the “best” rewanét benefistate from which to restart.
To find this function, we used two different libraries for adifferent automated
feature types. The statistical package R [83] was used éoTéxonomic features,
but operated more slowly when learning with the binary peifpanal features.
The Java Weka library worked better on this set, and we tberaised it when
handling features of this type. For our evaluation, we asklthe performance of
the Stage-PSP system in each domain on the baseline pl@9%effage-PSP with

the Taxonomic features, and Stage-PSP with the propoaltfeatures. Note that

Stage-PSP systenmgludelearning time.

8We have tried alternative training data sets, by changiadh parameter variously between
500 to 2000, but the results were more or less the same.

63

For the case of learning with “Taxonomic” features, we alsedia simple wrap-
per method. We greedily add one feature at a time until treecemvergence in the
approximation measure. For this purpose, we used the Resm&iric, which mea-
sures the explanation for the variances. This is a pradigalrithm design choice

for feature selection, since R cannot handle too many featur

Rovers Domain: Figure 4.9 shows the results for this domain. In the graph, th
X-axis is for the problem numbers. There were 20 problemse Ydaxis shows
net-benefit obtained by each system. As can be seen in the fiaxonomic sys-
tem significantly outperformed SPUDS (usihg;\. for most of the problems. The
roversdomain yielded the best results of the three we tested. Excepn a few
problem instances, both feature types, the Taxonomic aopogitional outper-
formed SPUDS(witthG41). The cumulative net benefit across the problems in
each domain is available in Figure 4.7. In Figure 4.7, fortiversdomain, we can
see that both of the learning systems, propositional andri@xic, outperform the
baseline planner, achieving twice the cumulative net beo&fi¢s! alone. This
shows the benefit of the learning involved. Note that, in oqregiments, there was
no prior training. That is, in most of the recent machinenésy systems for plan-
ning, they used prior training data to tune the machine krammhile our systems
learn online.

Finally, Figure 4.8 lists some of the selected features leyvtrapper method
with the Taxonomic system. The first listed feature indisatee number of lo-
cations traveled where soil data is to be communicated istédoc The second
provides the number of “take image” actions with rock-asayn hand. As can

be seen in these expressions, the Taxonomic syntax cansexpiae relationally

expressive notions than ground facts. Note also that thesgteires make sense:

64

Moving to a location where soil data will likely move us to inoped net benefit.
Additionally, taking a goal image while already having fimsl analysis moves us

toward a goal (and therefore higher net benefit).

Satellite Domain: To perform an operation, a satellite needs to turn to thd dgh
rection, calibrate its instruments and finally take a photoesform a measurement.
Figure 4.11 shows the results on satellite domain. The pedoce of Stage-PSP
using either of the feature sets does not dominate as syrasgieen in theovers
domain. However, Stage-PSP still outperformed the baselanner in cumulative
net benefit measure on the problems, as can be verified thféggtre 4.7.

Figure 4.10 lists the features of Taxonomic system foundhbyrapper method.
The first feature expresses correctly-pointing facts (ribtg c-predicates were
used) and the second one expresses the number of actiomsrthett the correctly

pointing areas, these features help with finding end-staaating” goals.

Zenotravel Domain: Figure 4.13 shows the results pénotraveldomain. aThe
learners did not fare as well in this domain. As can be seerigar€ 4.13, the
learning systems lost to SPUDS on the same number of prolasriie number of
problems they won. The cumulative net benefit across prabisishown in Figure
4.7. The numbers show a slight edge using the Taxonomicriesatifhe margin is
much smaller than the other domains.

Figure 4.12 shows the features found in the Taxonomic systémfirst feature
listed expresses the number of refuel actions taken (ahdsstegatively weighted)
and the second expresses the number of zooming actionsttaltengoal location.

When the learning system fared well, for example, in riivers domain, we

found that the learned value function led thesSARCH to a quite deeper state

65

that requires many actions to reach from the initial statealhieves the key goal
facts.

Although we provided the action features to take the actmst structure into
account, the learned value function is not too sensitivdéodctions used. One
possible reason for this may be that the Taxonomic syntaxsetesemantics rather
than bag semantics. That is, when the partial plan correpgrio a search node
contains multiple instances of an action matching a featineaction is counted
only once.

Summary Motivated by the success of the STAGE approach in learnimgpoove

search in optimization problems, we adopted it to partias&ection planning prob-
lems. The critical challenge in the adaptation was the negadvide automated
features for the learning phase of STAGE. We experimentaid twio automated
feature generation methods. One of them—the Taxonomiareaet—is espe-
cially well suited to planning problems because of its ob@eented nature. Our

experiments show that our approach is able to provide ingmants.

66

L9

Solution quality

Solution time (seconds)

200000 —=&— GAl max

100000 -

100 -

| ——GAl relax

——+—GAl sum

Rovers

0.01

I—I—I—I—\‘II"—I—I—I—I—&—H

Satellite TPP

Zenotravel

Rovers

Figure 4.1: Results for goal utility dependency solving inoels

problems with best quality

20

—— GAl relax —m— GAl max

.
A-AAAAdAAhkAALAAAAAdAAAAAAAAANAANR-

0 100 200 300 400 500 600

Time (seconds)

Figure 4.2: The number of highest quality solutions found

Figure 4.3: A transportation domain example

68

69

300 300

fly(loc3,loc2) fly(loc3,loc2)
100 it 100 . 100
at(pll’loc3) .. at(pll,lﬂc3)
100
fly(loc1,loc3) 0

0
at(pl,locl) at(pl1,locl)

150

.......... 5.56.-....."..-. o 111(/]/1./()('2)
fly(loc2,loc3) fly(loc2,loc3) @
151

drop(pl,loc2) 151
@ at(perl,loc2)

Figure 4.4: A planning graph showing LP-biased relaxed pltraction

0L

hep -

300000 -
SPUDS - d
n Ll
250000 max 4
h.p +RP
T 200000 hp + COStRP - “]
c
& UpperBound ~ ®
.

5 150000 4
z

100000

50000

0

2 4 6 8 10 12 14 16 18 20
Problem No.

600000

e |

500000

400000

Wtran,
arann,
“rane,
-
arannananas=="

@
£
o> 300000
£
£
200000
100000
0
2 4 6 8 10 12 14 16 18 20
Problem No.
zenotravel

Figure 4.5: Results for the tested domains in terms of tatbenefit

1200000

1000000

Net Benefit

Time (ms)

Net Benefit

800000

600000

400000

200000

8 10 12 14 16 18 20
Problem No.

Time

600000
500000
400000 -
300000 -
200000 F &

100000 [

0 ——

Problem No.

satellite

300000

250000

200000

150000

Net Benefit

100000

50000

0

8 10 12
Problem No.

14

18

20

600000

500000

400000

300000 -

Time (ms)

200000

100000

-,

t

i
i
i
i

~e—

8 10 12
Problem No.

rovers

16

18

20

(at truckl locationl), (at packagel locationl),
(in-city location1 city1), (in-city location2 cityl)

(gat packagel locationl)

(cat packagel locationl)
(at package?2 location2y#t package2 locationl)

Figure 4.6: Example Relational Database: A State from Ltegieorld

| Domain | Measure | SPUDS | Stage-PSP (Prop) Stage-PSP (Tax)
Rover Net Benefit | 3.0 x10° 6.0 x10° 6.5 x10°
No. Features 14336 2874
satellite | Net Benefit | 0.89 x10° 0.92x10° 1.06 x10°
No. Features 6161 466
zenotravel| Net Benefit | 4.3 x10° 4.1x10° 4.5x10°
No. Features 22595 971

Figure 4.7: Summary of the net benefit number of features

(navigate athinggcommunicated-soil-data ?) ?)

(take-image ? (have-rock-analysis athing ?)
athing athing athing)

Figure 4.8: Taxonomic Features found for Rover domain

71

Rover

100000
90000

80000

70000

60000

50000

40000

30000
20000
10000

0

12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

=#=SPUDS =lll=Taxonomic Propositional

Figure 4.9: Results on rovers domain

(cpointing ? athing)

(turn-to (cpointing ? athing) athing ?)

Figure 4.10: Taxonomic features found for satellite domain

72

Satellite
180000
160000
140000 \
120000 \
100000
80000 — A = A
60000 .Lﬂ_ﬁw A
. y y A B

40000 i " \":'/"-” L. Y\-
20000 1 a

0

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
=#—=SPUDS =lll=Taxonomic Propositional

Figure 4.11: Results on satellite domain

(fuel-level ? (fly athing athing athing athing ?))

(gat ? (zoom athing athing ? athing athing athing))

Figure 4.12: Taxonomic Features found for zenotravel damai

73

Zenotravel

50000
45000 A
40000
35000
30000
25000
20000
15000
10000
5000
0 ?", "V

1 2 3 45 6 7 8 9 1011 12 13 14 1516 17 18 19 20

=#=SPUDS =lll=Taxonomic Propositional

Figure 4.13: Results on zenotravel domain

74

Chapter 5
PDDL3 “simple preferences” and PSP

While our approach to partial satisfaction planning repnéations involves assign-
ing rewards for goal achievement, another equivalent aubres to define costs for
failing to achieve goals. The organizers of @i#e International Planning Competi-
tion (IPC-5) introduced PDDL3.0 [49], which includes thigthod of defining PSP
problems. Indeed, one track named “simple preferencesD{EDSP) has quali-
ties analogous to PSiet benefit Because of the similarity, we studied how our
methods could be applied to this representation. Furthedoaked whether our
planner does better using cost representations alonghy.eonverting reward to
action costs) or if handling rewards directly was a bettgraach to solving the
problem within our framework.

In PDDL3-SP, each preferenge € ¢ includes a variable,, € V that counts
the number of timeg; is violated and:; € C representing the violation cost when
p; 1S not satisfied. Each actiom € A can have preferences associated with its
precondition as can each gogl € G. Additionally, they can include conjunctive

and disjunctive formulas on fluents. The objective funcisn

minimize c; - vy, + co - Uy, + ... + - Vp, (5.1)

where violation costs; € R are multiplied by the number of times is violated.
We introduce a method of converting PDDL3-SP problems iattial satisfac-
tion planning (PSP) problems, which gives the preferencesvard for achieve-

ment rather than a cost for violation. These new problemdloam be solved by a

75

planner capable of solving PSP problems, in our case, wethsgdlanneSapd®
for a resulting planner we cafocharfs .

There are two main differences between how PDDL3-SP andrfeBenefit
definesoftgoals. First, in PDDL3-SP, soft goal preferences are agtstiwith a
preference name which allows them to be given a violatioh &escond, goal pref-
erences can consist of a disjunctive or conjunctive goahitda. This is opposed
to PSPnet benefiproblems where individual goals are given reward. Despied

differences, the similarities are abundant:

e Theviolation costfor failing to achieve an individual goal in PDDL3-SP and

achievement utilityn PSPnet benefiare semantically equivalent.

e PDDL3-SP and PSRet benefiboth have a notion of plan quality based on
a quantitative metric. PDDL3-SP bases a plan’s quality on hell it re-
duces the goal preference violation cost. On the other Ha8Bnet benefit
views cost as a monotonically increasing value that meagheeresources

consumed by actions and reward by goal achievement.

e Preferences on action conditions in PDDL3-SP can be viewsealcandi-
tional costin PSPnet benefit The cost models on actions differ only in that
PDDL3-SP provides areferencewvhich acts as a condition for applying ac-

tion cost.

As part of our compilation, we first transform “simple prefece” goals to
equivalent goals with utility equal to the cost producedrot satisfying them in
the PDDL3-SP problem. Specifically, we can compile a godbpeacepref(G’) |
G' C (G to an action that takeS’ as a condition. The effect of the action is a newly

created goal representing the fact that we “have the preteferef(G’).
76

The goal compilation process converts goal preferences adtitional soft
goals and actions achieving them in PSP. We begin by creatingw actiona
for every preferenceref(G') | G’ C G in the goals. The action hasG’ as a
set of preconditions, and a new effegty. We then add;s: to the original goal
set(, and give it utility equal to the costpref(G’)) of violating the preference
pref(G'). We remove the preferengee f (G’) from the resulting problem and also
force every non-compiled action that destr@ysto removeg (by addingg to
the delete list of these actions).

Other compilation methods for handling the constraintsidP3.0 were also
introduced in the IPC-5. For instance, the planner MIPS-X{36&] used a trans-
formation from PDDL3.0 that involved a compilation into bagoals and numeric
fluents. Yocharf® and other compilation approaches proved competitive in the
competition. In fact, botiYocharfS and MIPS-XXL participated in the “simple
preferences” track and received a “distinguished perfoceaaward. However,
the compilation used by MIPS-XXL did not allow the plannerdicectly handle
the soft goal preferences present in PDDL3.0. To assist teraéning whether
considering soft goals directly during the planning preasselpful, we also intro-
duce a separate compilation from PDDL3.0 that completetgiehtes soft goals,
resulting in a classical planning problem with action coside problem is then
solved by the anytimel* search variation implemented ®ap&° . We call the

resulting planneocharf©°7 .
5.1 Yocha®37 : PDDL3-SPTO HARD GOALS

Recently, approaches to compiling planning problems satfigoals to those with
hard goals have been proposed [36]. In fact, Keyder & Geffner fidctly han-

dle PSPnet benefitoy compiling the problem into one with hard goals. While

77

COMPILE-TO-HARD
1.B:=10
2. forallpref(G") | G' C G
3. create two new actionsg andas,

4. pre(a) =G

5. go :=name(pref(G"))

6. eff(ar):=ge

7. C(Cl,l) =0

8 B:=BU {Cl,l}

9

- Gi=(GU{ge}) \{G"}
10. pre(ag) := -G’
11. eff(az) == gor
12. Cf(ag) := c(pref(G"))
13. B:=BU {CLQ}

14. G := (G U {gpes}) \ {G"}
15.4:= BU A

Figure 5.1: PDDL3-SP goal preferences to hard goals.

we explicitly address soft goals iMocharf® , to evaluate the advantage of this
approach we explore the possibility of planning for PDDLB-By compiling to
problems with only hard goals. We call the planner that usisscompilation strat-
egy Yochaf®s7 . It uses the anytimel* search variation fronSapd® but reverts
back to the original relaxed plan heuristic®apg31].

Figure 5.1 shows the algorithm for compiling PDDL3-SP gaaff@rences into
a planning problem with hard goals and actions with costcétrdition preferences
are compiled using the same approach a¥doharf® , which is discussed later.
The algorithm works by transforming a “simple preferencealgnto an equivalent
hard goal with dummy actions that give that goal. Specificalle compile a goal
preferencepref(G') | G’ C G to two actions: actiom, takesG’ as a condition

and actiona, takes—G’ as a condition (foregoing goal achievement). Actign

1This is done so we may compare the compilation in our anytim@éwork.

78

has costzeroand actiom, has cost equal to the violation cost of not achiewvirig
Botha; anda, have a single dummy effect to achieve a newly created hardhyta
indicates we “have handled the preferenge?f(G’). At least one of these actions,
ay Or as, is always included in the final plan, and every other norfiguesice action
deletes the new goal (thereby forcing the planner to agatiddevhether to re-
achieve the hard goal, and again include the necessarywaoméat actions). After
the compilation to hard goals, we will have actions with wigtive preconditions.
We convert these into STRIPS with cost by calling the alponiin Figure 5.4.
After the compilation, we can solve the problem using anyipéa capable of
handling hard goals and action costs. In our case, w&Sapd® with the heuristic
used in the non-PSP plann@apao generatéochaf®s7? . We are nowninimizing
cost instead omaximizingnet benefit (and hence take the negative of the heuristic
for search). In this way, we are performing an anytime sealgbrithm to compare
with Yocharfs . As in Yocharf’s , which we will explain in the next section, we
assign unit cost to all non-preference actions and incrpaskerence cost by a
factor of 100. This serves two related purposes. First, theiktic computation
uses cost propagation such that actions with zero costsaémtially look “free” in
terms of computational effort. Second, and similarly, @tsi that move the search
toward goals take some amount of computational effort wisckeft uncounted
when action costs are zero. In other words, the search nadigatdon completely
neglects tree depth when actions have zero cost.
Example: Consider an example taken from the IPC-5 TPP domain showigin F
ure 5.2 and Figure 5.5. On the left side of these two figures lvegvsexamples

of PDDL3-SP action and goal preferences. On the right sideskow the newly

79

(:action p0Oa-0

‘parameters ()

:cost 0.0

‘precondition (and (stored goodsl
levell))

-effect (and (hasPref-p0a)))

(:action pOa-1
‘parameters ()
:cost 500.0
:precondition (and
(not (stored goodsl levell)))
-effect (and (hasPref-p0a)))
(:goal (preference POA
(stored goodsl1 levell))) With new goal: (hasPref-p0a)

(a) Goal preferences in PDDL3-SP (b) Actions with cost
Figure 5.2: PDDL3-SP to cost-based planning.

created actions and goals resulting from the compilatiatessical planning (with
action costs) using our approach described above.

In this example, the preferred gdaét or ed goodsl | evel 1) has a vio-
lation cost of5 (defined in Figure 5.5). We add a new géalasPr ef - pO0a) and

assign the cost of achieving it with actip@a- 1 (i.e., not having the goal) to 500.

5.2 Yocharf® : PDDL3-SPTO PSP

When all soft goals in PDDL3-SP are compiled to hard goalss @lways easi-
est (in terms of search depth) to do nothing. That is, simpéceting the higher
cost preference avoidance actions will achieve the goalawinlg “handled” the
preference. Consequentially, the relaxed plan baseddtieumay be misleading

because it is uninformed of the mutual exclusion betweerptkeérence evalua-

80

tion actions. That is, the heuristic may see what appear® @ fguick” path to
a goal, where in fact that path requires the undesirablestpesce of violating a
preference. Instead, viewing preferences as goals thdearable to achieve (i.e.,
attaching reward to achieving them) allows the relaxed pkauristic to be directed
to them. As such, we introduce a method of converting PDDE3x&blems into
PSP problems, which gives the preferences a reward forashient rather than a
cost for violation, thus giving better direction for thearéd planning graph heuris-
tic. There are two main differences between how PDDL3-SPRf8ienet benefit
definesoftgoals. First, in PDDL3-SP, soft goal preferences are agtstiwith a
preference name which allows them to be given a violatioh &escond, goal pref-
erences can consist of a disjunctive or conjunctive goahida. This is opposed
to PSPnet benefiproblems where individual goals are given utility. Despitese

differences, the similarities are abundant:

e Theviolation costfor failing to achieve an individual goal in PDDL3-SP and
achievement utilityn PSPnet benefiare semantically equivalent. Thus, if
there is a goay with a violation cost of:(¢g) for notachieving it in PDDL3-
SP, then it is equivalent to having this goal with utility of = c(g) for

achieving it in PSP.

e PDDL3-SP and PSRet benefiboth have a notion of plan quality based on
a quantitative metric. PDDL3-SP bases a plan’s quality on hell it re-
duces the goal preference violation cost. On the other Ha8Bnet benefit
views cost as a monotonically increasing value that meagheeresources
consumed by actions. In PDDL3-SP we have a plan metand a planP;
has a higher quality than a pla if and only if p(P;) < p(FP2). A plan’s

quality in PSPnet benefideals with the trade-off between the utility of the
81

.B:=10

forallpref(G') | G’ C G
pre(a) =G’

ger = name(pref(G'))
eff(a) = gar

B :=BU{a}
U(gar) := c(pref(G"))
G = (GU{ga'}) \{G"}
. forallb € A

10. eff(b) =eff(b)U—~{gcr}
11.A:=BUA

©CONOUAWNE

Figure 5.3: Preferences to P8Pt benefigoals

goals achieved and the cost of the actions to reach the gdhkxefore, a
plan P, has a higher quality than a plah in PSPnet benefiif and only if
U(P)—C(P) > U(P,) — C(P,), whereU(P) represents the utility of a

plan P andC'(P) represents the cost of a pl&h

e Preferences on action conditions in PDDL3-SP can be viewgealcandi-
tional costin PSPnet benefit The cost models on actions differ only in that
PDDL3-SP provides areferencavhich acts as a condition for applying ac-
tion cost. Like violation costs for goal preferences, attiondition violation
cost is incurred if a given action is applied to a state whieat tondition is

not satisfied.

As part of our compilation, we first transform “simple prefece” goals to
equivalent goals with utility equal to the cost producedrot satisfying them in
the PDDL3-SP problem. Specifically, we can compile a godipemcepref(G') |
G’ C (G to an action that takeS’ as a condition. The effect of the action is a newly

created goal representing the fact that we “have the preteferef(G').

82

Both PDDL3-SP and PSRet benefihave a notion of cost on actions, though
their view differs on how to define cost. P8Bt benefitlefines cost directly on each
action, while PDDL3-SP uses a less direct approach by degfihie penalty for not
meeting an execution condition. Therefore, PDDL3-SP cawi®sed as consid-
ering action cost as a conditional effect on an action whest is incurred on the
preference condition’s negation. From this observatiomcan compile PDDL3.0
“simple preferences” on actions in a manner that is simdandw conditional ef-
fects are compiled [46].

Goal Compilation: The goal compilation process converts goal preferences int
additional soft goals and actions achieving them in PSRirEi&.3 illustrates the
compilation of goals. We begin by creating a new actiofor every preference
pref(G') | G' C G in the goals. The action hasG’ as a set of preconditions,
and a new effecty,.. We then addj to the original goal set7, and give it utility
equal to the cost(pref(G’)) of violating the preferencgref(G’). We remove the
preferencerre f(G') from the resulting problem and also force every non-condpile
action that destroys:’ to removeg (by addinggs to the delete list of these
actions).

Action Compilation: To convert precondition action preferences, for each actio
a € A we generaté’(pref(a)) as the power set gfref(a) (i.e.,P(pref(a)) con-
taining all possible subsets pfef(a)). As Figure 5.4 shows, for each combina-
tion of preferences € P(pref(a)), we create an action, derived froma. The
cost of the new actiom, equals the cost of failing to satisfy all preferences in
pref(a) \ s. We remove: from the domain after all of its compiled actionsare
created. Since some preferences contain disjunctiveedaus compile them away

using the method introduced in by Gazen & Knoblock [46] fonwerting disjunc-

83

1:=0

. foralla € A

foreachprecSet € P(pref(a))
pre(a;) := pre(a) U precSet
ef f(a:) = ef f(a)
Ca; = 100 x c(pref(a) \ precSet)

CoNoORWDNE

AZ:AU{CLZ'}
1:=1+1
A=A\ {a}

Figure 5.4: Compiling preference preconditions to actwitk cost.

tive preconditions in ADL to STRIPS. Notice that because & the power set of
preferences, this could potentially result in a large nunolbeewly formed actions.
Since this increase is related to number of preferencesjuhmdber of actions that
need to be considered during search may seem unwieldy. Howes found that in
practice this increase is usually minimal. After completad the planning process,

we apply Equation 5.2 to determine the PDDL3-SP total viokatost evaluation:

TOTALCOST= Y uy,— > ug+ Y ¢, (5.2)

geG g eG a€eP

Action Selection: The compilation algorithm will generate a set of actiehigrom

an original actior with |A,| = 2/P¢/(@l Given that actions inl, appear as sep-
arate operators to a planner, this can result in multiplemadhstances from4,

being included in the plan. Therefore, a planner could pceduans with superflu-
ous actions. One way to fix this issue is to explicitly add niega of the prefer-
ence conditions that are not included in the new action prditions (i.e., we can
use a negation of the precondition formula in the actionsarathan removing the

whole condition). This is similar to the approach taken by&we& Knoblock [46]

84

when compiling away conditional effects. This compilat@pproach, however,
may result in several disjunctive preconditions (from rigmggthe original conjunc-
tive preference formula), which will result in even moreiacs being included in
the problem. To overcome this, we use a simple criterion emptan that removes
the need to include the negation of clauses in the disjunptigferences. Given that
all actions inA, have the same effect, we enforce that for every action getera
from a, only theleast cosapplicable actiom; € A, can be included i at a given
forward search step. This criterion is already includeS8apd .
Example: Consider the examples found in Figures 5.5 and 5.6. Figlrelows
the compilation for the TPP domain actiodr i ve and Figure 5.6 shows a TPP
domain PDDL3-SP goal preference that has been compiledPiBRnet benefit

For the action compilation, Figure 5.5 shows the prefergnogr i ve has a
cost of 10 x 100 = 1000 for failing to have all goods ready to load at level O of a
particular location at the timédr i ve is executed. We translate this idea into one
where we either (1) have all goods ready to load at level Or(ake new action
dr i ve- 0 with cost100) or (2) do not have all goods ready to load at level 1 (as in
the new actiordr i ve- 1 with cost1000).

To convert the goal condition from PDDL3-SP into P& benefitve generate
a single action named for the preference, as shown in FigéreThe new action
takes the preference goal as a precondition and we agaodute the new goal
(hasPr ef - pOa) . However, with this compilation process, we give it a wilit
value of 5.0. This is the same as the cost for being unableh®ee(st or ed
goodsl | evel 1).

As for implementation detailsyocharf® multiplies the original preference

costs by 100 and uses that to direct the forward search. Abrecthat do not

85

(:action drive
‘parameters
(?t - truck ?from ?to - place)
:precondition
(and
(at 2t ?from)
(connected ?from ?to)
(preference p-drive
(and
(ready-to-load
goods1 ?from level0)
(ready-to-load
goods2 ?from level0)
(ready-to-load
goods3 ?from level0))))
-effect (and (not (at ?t ?from))
(at ?t ?to)))

Weight assigned to preferences:
(:metric
(+ (x 10 (is-violated p-drive))
(x 5 (is-violated POA))))

(a) Action preferences in PDDL3-SP

(:action drive-0
‘parameters
(?t - truck ?from ?to - place)
:cost 100
‘precondition (and
(at ?t ?from) (connected
?from ?to)
(ready-to-load
goods1 ?from levelQ)
(ready-to-load
goods2 ?from level0)
(ready-to-load
goods3 ?from level0)))
-effect (and (not (at ?t ?from))
(at ?t ?to)))

(:action drive-1
‘parameters
(?t - truck ?from ?to - place)
:cost 1000
‘precondition (and
(at ?t ?from) (connected
?from ?to))
-effect (and (not (at ?t ?from))
(at ?t ?to)))

(b) Actions with cost

Figure 5.5: Compiling action preferences from PDDL3-SPdst<ased planning.

86

(:action pOa
‘parameters ()
:cost 100
‘precondition (and
(stored goodsl1 levell))
-effect (and (hasPref-p0a)))
(:goal (preference POA (stored goodsl
levell))) With new goal: ((hasPref-p0Oa) 5.0)

(a) Goal preferences in PDDL3-SP (b) Action with cost in PSP
Figure 5.6: Compiling goal preferences from PDDL3-SP to.PSP

include a preference are given a default unit cost. Againjevehis so the heuristic
can direct search toward short-length plans to reduce pigriime. An alternative
to this method of artificial scale-up would be to increaseptteference cost based
on some function derived from the original problem. In outi&h experiments, we
took the number of actions required in a relaxed plan to redictme goals at the
initial state and used this value to generate a scale-uprfabinking this may re-
late well to plan length. However, our preliminary obseiwas using this approach
yielded worse results in terms of plan quality.

After the compilation process is donSapd* is called to solve the new PSP
net benefiproblem with the normal objective of maximizing the net d#gn&/hen
a planP is found, newly introduced actions resulting from the cdatmns of goal

and action preferences are removed before returRitgthe user.
Evaluation

Most of the problems in the “simple preferences” track of {P€onsist of groups
of preferred disjunctive goals. These goals involve vagiaspects of the problems

(e.g., adeadline to deliver a package intilueksdomain). TheYocharf® compilation

87

converts each preferenganto a series of actions that have the preference condi-
tion as a precondition and an effect that indicates phatsatisfied. The utility of

a preferred goal is gained if we have obtained the preferantiee end of the plan
(where the utility is based on the penalty cost of not satigfithe preference in
PDDL3-SP). In this way, the planner is more likely to try tchawve preferences
that have a higher penalty violation value.

In the competitionyocharf’® was able to solve problems in five of the domains
in the “simple preferences” track. Unfortunately, manylod problems in several
domains were large andocharf® ran out of memory due to its action grounding
process. This occurred in thpathways TPP, storageandtrucksdomains. Also,
some aspects of several domains (such as conditional ®f@ct quantification)
could not be handled by our planner directly and needed totmpited to STRIPS.
The competition organizers could not compile tpenstackslomain to STRIPS,
and soYocharf® did not participate in solving it. Additionally, thgipesworld
domain did not provide a “simple preferences” categorgcharf® also handles
hard goals, which were present in some of the problems, byautputting plans
when such goals are satisfied. TBap&d® heuristic was also slightly modified
such that hard goals could never be removed from a relaxed®Ja

To test whether varying goal set sizes for the heuristic gealoval process
affects our results, we compared running the planner witiokéng goal set sizes
in each iteration of at most 1 and at most 2. It turns out thatlinost all of the
problems from the competition, there is no change in theityua the plans found
when looking at individual goals (as against individual Igaand pairs of goals)
during the goal removal process of the heuristic. Only inpnablems in theovers

domain does there exist a minor difference in plan qualibe(m favor of looking

88

at only single goals, and one in favor of looking at set siZeme and two). There
is also an insignificant difference in the amount of time tatefind plans.

In conclusion,Yocharf® performed competitively in several of the domains
given by the organizers of thig" International Planning Competition (IPC-5). Its
performance was particularly good in “logistics” style dainms. The quality of the
plans found byYocharf® earned it a “distinguished performance” award in the
“simple preferences” track. For comparison, we solved B@-b problems with
Yochat®S7 and showed that compiling directly to classical planninthveiction
cost performs worse than compiling to a P8R benefiproblem in the competition
domains.

For the rest of this section, we evaluate the performancéoharf® in each
of the five “simple preferences” domains in which the planparticipated. For
all problems, we show the results from the competition (Wwhian also be found
on the competition website [47]). We focus our discussiomplam quality rather
than solving time, as this was emphasized by the IPC-5 azgesi To compare
Yocharf® and Yochat®s7 , we re-ran the results (with a small bug fix) using a
3.16 GHz Intel Core 2 Duo with 4 GB of RAM, 1.5 GB of which wascalated to
the planners using Java 1.5.

The Trucks Domain: Thetrucksdomain consists of trucks that move packages to
a variety of locations. It is a logistics-type domain witle tbonstraint that certain
storage areas of the trucks must be free before loading &anptace into other
storage areas. In the “simple preferences” version of tbmmain, packages must
be delivered at or before a certain time to avoid incurringefgrence violation

penalty.

89

Figure 5.7(a) shows the results for tinecksdomain in the competition. Over-
all, Yocharf® performed well in this domain compared to the other planirers
the competition. It scaled somewhat better than both MIP&-¥36] and MIPS-
BDD [36], though the competition winner, SGPlan [64] solvaedre problems,
often with a better or equal quality. Notably, in problemshiotugh 9,Yocharf's
had difficulty finding good quality plans. Examining the difénces between the
generated problems provides some insight into this behalidhe first ten prob-
lems of this domain, the number of preferences (i.e., satgjancreased as part of
the increase in problem size. These all included existesi@ntification to handle
deadlines for package delivery, where a package must beedetdi before a particu-
lar encoded time step in the plan (time increases by one un@hwdriving or deliv-
ering packages). For examppgckageInay need to be delivered sometime before
a time step;. Because this criterion was defined using a predicate, ¢hisex the
number of grounded, soft disjunctive goal sets to incréa3eis in turn caused
more goals to be considered at each time step. The planrapdp’'grcost propaga-
tion and goal selection processes would take more time setbecumstances. In
contrast, the second set of problems (problems 11 throughdfained absolute
package delivery times on goal preferences (@agckagelmust be delivered at
exactly timet;) thereby avoiding the need for disjunctive preference® fflanner
solved four instances of these harder probléms.

A seeming advantage tgochaf®S7 in this domain is that it is attempting
to find theleast costlyway of achieving the goal set and does not rely on pruning

away goals a¥ocharf® does. Irtrucks the violation cost for failing to satisfy goal

2Recall that the compilation to PSfet benefigenerates a new action for each clause of a
disjunctive goal formula.

3Note thatYocharf® solved more problems than in the competition on the new rasishe
CPU was faster.

90

preferences turns out to be low for many of the goals, andes8#pd® heuristic
used byYocharf® may prune away some of the lower valued goals if the number
of actions required for achievement is deemed too high. KMewehis advantage
seems not to help the planner too much here. Also notevihatarf®S? has great
difficulty with problems 8 and 9. Again, this is largely duedommpilation of goals

to actions, as the large number of actions that were gemecatesed the planner’s
branching factor to increase such that many states withl éguaistic values were
generated. When large numbers of preferences &gishaif®S? must “decide”

to ignore them by adding the appropriate actions.

The Pathways Domain: This domain has its roots in molecular biology. It models
chemical reactions via actions and includes other actibasdhoose initial sub-
strates. Goals in the “simple preferences” track for thisidm give a preference
on the substances that must be produced by a pathway.

Figure 5.8(a) shows thatocharf’® tends to scale poorly in this domain, though
this largely is due to the planner running out of memory dyitimee grounding pro-
cess. For instance, the number of objects declared in probleaused our ground-
ing procedure to attempt to produce well ouéf actions. On most of its solved
problemsYocharf® provided equal quality in comparison to the other planners.
Figure 5.8(b) shows that botfochaf’® and Yochaf®>7 found plans of equal
quality. Note that fixing a small search bug¥ocharf’® and Yocha¥®S” caused
the planners, in this domain, to fail to find a solution in desb 4 on the new runs
(though Yocharf® was able to find a solution during the competition and this is
the only problem in which¥ocharf® performs worse).

The (IPC-5) Rovers Domain: Theroversdomain initially was introduced at the

37 International Planning Competition (IPC-3). For the “simpreferences” ver-

91

sion used in IPC-5, we must minimize the summed cost of agiiothe plan while
simultaneously minimizing violation costs. Each actios hacost associated with
it through a numeric variable specified in the plan metrice Goals from IPC-3
of communicating rock samples, soil samples and image datemade into pref-
erences, each with varying violation cost. Interestintylis version of the domain
mimics the PSRet benefiproblem in the sense that the cost of moving from place
to place causes a numeric variable to increase monotoniéaich problem spec-
ifies this variable as part of its problem metric, therebpwihg the variable to
act as the cost of traversing between locations. Note tlegptbblems in this do-
main are not precisely the P3Iet benefiproblem but are semantically equivalent.
Additionally, none of the preferences in the competitioolppems for this domain
contain disjunctive clauses, so the number of additionabas generated by the
compilation to PSPet benefits small.

As shown in Figure 5.9(a)ocharf* is able to solve each of the problems with
quality that is competitive with the other IPC-5 particiggnYocha®s7 gives
much worse quality plans on three problems and is compacabtee majority of
the other problems. For this domain, the heuristidaTharf® guides the search
well, as it is made to discriminate between goals based oodsieof the actions to
reach them. On the other hand, as shown in Figure 5.9¢ahaf®S7 attempts to
satisfy the goals in the cheapest way possible and, in trdeharoblems, always
returns an empty plan and then fails to find a better one inltb#eal time. Thus,
Yochafi®37 tends to find plans that trivially satisfy the newly introédchard
goals.

The StorageDomain: Here a planner must discover how to move crates from con-

tainers to different depots. Each depot has specific spdtéahacteristics that must

92

be taken into account. Several hoists exist to perform thamgpand goals involve
preferences for storing compatible crates together indhgesdepot. Incompatible
crates must not be located adjacent to one another. Preéreiso exist about
where the hoists end up.

In this domain, bothYocharf® and Yocha#®s7 failed in their grounding
process beyond problem 5. Figure 5.10(a) shows that, of tblelggns solved,
Yocharf® found solutions with better quality than MIPS-XXL. FigurelB8(b)
shows that bothYocharf® and Yochaf®57 solved versions o$toragethat had
universal and existential quantification compiled awayrfrthe goal preferences
and produced plans of equal quality. Of the problems solyeloldth planners, the
longest plan found in this domain by the two planners costaihactions (the same
plan found by both planners).

The TPP Domain This is the traveling purchaser problem (TPP), a genetaiza
of the traveling salesman problem. In this domain, sevevallg exist at various
market locations. The object of the planning problem is tapase some amount
of each product while minimizing the cost of travel (i.e.ivdrg a truck) and while
also satisfying goal preferences. TREP domain is unique in that it is the only
one in the “simple preferences” track to have preference aston preconditions.
When driving a truck away from a market, we always prefer teetadl of the goods
emptied at that market. Cost is added to the action if wedashtisfy this condition.
Like thetrucksdomain, this is a logistics-like domain. Goal preferenggscally
involve having a certain number of the various goods stored.

As we can see in Figure 5.11(aJpcharf® finds plans of competitive quality
in the problems that were solved. This domain has soft gbasadre mutually

exclusive from one another (i.e., storing various amouhigoods). Though the

93

heuristic used ivocha’® does not identify this, it does focus on finding goals to
achieve that may be of the highest quality. It turns out timat,PP, this is enough.
As the planner searches for a solution, it identifies thisdad looks for plans that
can achieve the highest quality. It is interesting to no# Yocharf’s solves more
problems than MIPS-XXL and MIPS-BDD. Also, when both findwigans, plans
given by Yocharf’® are often of better quality.

As Figure 5.11(b) show/ochaf®S7 has more difficulty finding solutions for
this domain thanyocharf . It attempts to minimize actions as well as cost (as
doesYocharf®), but tends not to improve plan quality after finding a plathwd
lower level of goods (involving fewer actions).

Interestingly, a similarity exists between the anytimedwtr of Yocharf’s
and Yochaf®S7 . Typically, both planners discover initial plans at appnoately
the same rate, and when possible find incrementally betespln fact, only when
Yocharf® finds better solutions does the behavior significantly diffend in these
cases,Yocharf® “reaches further” for more solutions. We largely attribtiés
to the heuristic. That is, by ignoring some of the goals in risleaxed plan, the
planner essentially serializes the goals to focus on dweagch. At each search
node Yocharf® re-evaluates the reachability of each goal in terms of cestus
benefit. In this way, a goal can look more appealing at grefpths of the search.
This is especially noticeable in tA€PP domain. In this domain, all of the higher-
quality plans thatyocharf® found were longer (in terms of number of actions)
than those ofyochaf®>7 in terms of number of actions. This is likely because
the relaxed plan heuristic ifochaf®S7 believes preference goals are reachable

when they are not.

4We also note evidence of this exists by the fact thatharf’® tends to do better as problems
scale-up.

94

Other Tracks: While Yocharf® participated in the IPC-5 as a partial satisfac-
tion planner capable of handling PDDL3.0, it is basedSapaand therefore is
capable of handling a wide variety of problem types. Becaidhis, the plan-
ner also participated in both the “metrictime” and “propiasial” tracks. In the
“metrictime” track, Yocharf$ performed quite well in terms of finding good qual-
ity (short makespan) plans, performing best in one domaia ‘time” versions of
openstacKsand second best in three domains (the “time” versiostofageand
trucks and the “metrictime” version ofovery. The performance in these prob-
lems can be attributed to the action re-scheduling proeedtiapa which takes
an original parallel, temporal plan and attempts to re-ortdeactions to shorten
the makespan even more [30]. This especially holds fooffenstackgroblems,
whose plans have a high amount of parallelism.

Looking at the results ofocharf® versus SGPlan for the tempoaenstacks
domain provides some further insight into this behaviorerEin the more difficult
problems thatvocharf® solves, the plans contained an equal or greater number of
actions. Howeveryocharf® parallelized them to make better use of time using its

action scheduling mechanism (which, again, was inheritaah the planneGapa.

Summary of IPC-5 Results: Yocharf® performs competitively in many domains.
In the trucksdomain, Yocharf® scaled better than MIPS-XXL and MIPS-BDD,
but was outperformed overall in terms of number of problepigesi by SGPlan,
the winner of the competition. There are several technaadons fovocharf ’s
inability to solve large problems in many of the domaingcharfs ’s parsing
and grounding routine was quite slow and takes most if natfahe allocated 30

minutes time to parse large problems in many domains.

95

In three domainst{ucks TPP, androvers, Yocharf® predominately gave bet-
ter quality plans tharvochaif®S7 . From the search behavior, in many cases the
compilation to hard goals caused the planner to quickly shamive solutions (i.e.,
trivially achieving the hard goals without achieving theference) despite the ad-
ditional cost associated with doing so. This is attributethe fact that the heuristic
also minimizes the number of actions in the plan while mizimg cost (since the
heuristic counts all non-preference actions with a costWhile this same qual-
ity exists in the heuristic used byocharf® , handlingsoftgoals directly helps the
planner by allowing it to completely avoid considering asl@ment of goals. In
other words, the planner can focus on satisfying only thasésghat it deems ben-
eficial and can satisfy some subset of them without sele@otns that “grant
permission” to waive their achievement.

Note that one issue withochaf®S7 is that the number of “dummy” actions
that must be generated can affect its search. For everytbpctions to decide
to “not achieve the goal” can be applicable, and thereforstiine considered (such
that a node is generated for each one). This can quickly ¢legsearch space,
and therefore results in a disadvantage to the planner ax#be of the problems
increasesYocharf® , on the other hand, by directly handling soft goals, candcavoi
inserting such search states into the space, thereby sicgers scalability over
Yochai©s7 .

Interestingly, Keyder and Geffner performed a similar gthettween cost-based
and PSP planners handling compiled versions of problemsoomaths from the
2008 International Planning Competition [67]. While theg dot perform a head-
to-head comparison on the same satisficing planner for manBiSPnet benefit

versus handling compiled cost-based versions of the prohlthey did show some

96

benefits. That is, one can use the start-of-the-art in caséd, satisficing planners
through compiling PSihet benefiproblems into cost-based versions of the prob-
lems. Of course, the question of whether we should be hajn@BPnet benefit
problems directly or compile them to cost-based planniredds on several fac-
tors. For instance, if there are further side constrairtged to goal choice that
a compilation could not handle, then solving a P8R benefipproblem directly
would likely be a better choice. Also, planners are likelygspond differently to
compiled versions of a problem versus direct handling ofl ghaice depending

upon the technigues they empfy.
Up-front Goal Selection in Competition Domains

While Sap&* , and by extensiorYocharf’® , performs goal re-selection during
search, one can also imagine dealing with soft goals by tseiethem before the
planning process begins. Afterward, a planner can treagdhexted goals dsard
and plan for them. The idea is that this two-step approachrednce the com-
plexities involved with constantly re-evaluating the givgoal set, but it requires
an adequate technique for the initial goal selection pmc@s$ course, performing
optimal goal selection is as difficult as finding an optimarpto the original PSP
net benefiproblem. However, one can imagine attempting to find a féasit of
goals using heuristics to estimate how “good” a goal set g, &ain, proving the
satisfiability of goals requires solving the entire plammnproblem or at least per-
forming a provably complete analysis of the mutual exclasibetween the goals
(which is as hard as solving the planning problem).

Given that hard goals must be non-mutex, one may believathabst domains

mutually exclusive soft goals would be rare. However, usarsquite easily specify

5Since our original comparison, others have also shown atstances where handling PDDL3-
SP problems directly can often be better than compilatiarost-based planning [21].

97

soft goals with complex mutexes lingering among them. Fstaince, consider a
blocks world-like domain in which the soft goals involve bks stacked variously.
If we have three blocksa(b, andc) with the soft goalgon a b) (on b ¢) and(on ¢
a), we have a ternary mutual exclusion and we can at best acbidydwo of the
goals at a time. For any number of blocks, listing every stagkossibility will
always generate-ary mutexes, where can be as large as the number of blocks in
the problem.

Further, the IPC-5 “simple preferences” domains have maayy mutual ex-
clusions between goals with sometimes complex interagtguch that the satis-
faction of one set of goals may be negatively dependent upersatisfaction of
another set of goals (i.e., some goal sets are mutex with gta sets). It turns out
that even when binary mutexes are taken into account, ass wih the planner
AltWit (which is an extension of the plann@ftAlt 7S), these complex interactions
cannot be detected [85].

Specifically, the planneAltWit uses a relaxed planning graph structure to “pe-
nalize” the selection of goals that appear to be binary miyteaclusive by solving
for each goal individually, then adding cost to relaxed plémat interfere with
already-chosen goals. In other words, given a relaxed ma@a Selected goaj
calledr,, and a relaxed plan for a candidate ggalr,, we have a penalty cost
c for the selection ofy’ if any action inr, interferes with an action in (i.e., the
effects of actions i, delete the preconditions found iy in actions at the same
step). A separate penalty is given if preconditions in théas ofr, are binary
and statically mutex with preconditions in the actions-pfind the maximum of

the two penalties is taken. This is then added to the costagated through the

98

planning graph for the goalAltWit then greedily selects goals by processing each
relaxed plan in turn, and selects the one that looks mosfficeaie

To see if this approach is adequate for the competition beadks, we con-
verted problems from each of the five domains into a format ¢ha be read by
AltwWit. We found that irstorage TPP, trucks andpathwaysAltWiIt selects goals
but indicates that there exists no solution for the set kasl HoweverAltWit
found some success movers a PSPnet benefidomain where mutual exclusion
between goals is minimal in the benchmark set. The planneralvke to solve 16
of the 20 problems, whil&ocharf’® was able to solve all 20. Of the ona&Wit
failed to solve, it explicitly ran out of memory or gave esoFigure 5.12 shows the
results. In 12 of the 16 problem&[tWIt is capable of finding better solutions than
Yocharf’s . AltWit also typically does this faster. As an extreme example, tb fin
the eventual final solution to problem 12rofrers Yocharf® took 172.53 seconds
while AltWIt took 324 milliseconds.

We believe that the failure oAltWIit on the other competition domains is not
just a bug, but rather a fundamental inability of its up-frobjective selection ap-
proach to handle goals with complex mutual exclusion reteti To understand
this, consider a slightly simplified version of the simpleferencestoragedo-
main from the IPC-5. In this domain we have crates, storagasardepots, load
areas, containers and hoists. Depots act to group storage eto a single cate-
gory (i.e., there are several storage areas within a sirgglet)l Hoists can deliver a
crate to a storage area adjacent to it. Additionally, haiatsmove between storage
areas within a depot, and through load areas (which conmegcitds). When a crate

or hoist is in a storage area or load area, then no other hotsate may enter into

99

the area. Crates begin by being inside of a container in adozal (hence the load
area is initially passable, as no crates are actually insfide.

Figure 5.13 shows the layout in our example (which is a sifiegliversion of
problem 1 from the competition). In the problem there exast®ist, a crate, a con-
tainer, two depotsdepot, anddepot,) and two storage areas in each depat (o,
sag_1 In depoty and sa;_g, sa;_1 in depot,). The storage areas are connected to
each other, and one in each depot is connected to the loadiagEhe crate begins
inside of the container and the hoist begins afdpot; at sa;_y. We have several
preferences: (1) the hoist and crate should end up in diffefepots (with a viola-
tion penalty of 1), (2) the crate should bedepot, (violation penalty of 3), (3) the
hoist should be iBa_q or sag_; (violation penalty of 3), (4»a;_o should be clear
(i.e., contains neither the hoist nor the crate with a viotapenalty of 2), and (5)
sag_1 should be clear (violation penalty of 2).

The (shortest) optimal plan for this problem involves onlgvimg the hoist.
Specifically, moving the hoist from its current locatiofa, _, to sag_; (using 3
moves). This satisfies preference (1) because the cratd is aadepot (hence it
will always be in a “different depot” than the hoist), (3) la@se the hoistis igag_1,
(4) becausea;_g is clear and (5) because,_; is clear. It violates the soft goal
(2) with a penalty cost of 3. Of course, finding the optimalhpleould be nice, but
we would also be satisfied with a feasible plan. However gtliea heavy burden
on the goal selection process to find a satisfiable, conpmegt. In this problem
the “simple preference” goals have complex, non-binaryualutxclusions.

Consider thAltWit procedure for finding a set of goals for this domahft\Wit
selects goals greedily in a non-deterministic way. But thpartant aspect oAl-

tWit here is how it defines its penalty costs for noticing mutualesion between

100

goals. Interference involves the effect of one action d®jethe precondition of
another action. However, there are often several ways wff@aty a preference,
most of which do not interfere with satisfying another prefee in the relaxed
setting. For instance, consider preference (1), that weldHwave the create and
hoist in different depots. A preference of this form essalytinvolves several dis-
crete disjunctive clauses, (e.g., “do not have the hoist.at; or do not have the
crate indepot;”). Satisfying for one of these clauses is sufficient to bedi¢hat
the preference can be achieved. If we achieve one of thage ‘@0 not have the
hoist atsa;_1"), the clause is satisfied. Of course even in the relaxedlenojwe
must satisfy each of the disjunctive clauses (e.g., we caa &ach of “do not have
the hoist atsa,_, wherez,y € {0,1}" or “do not have the crate idepot, where
xz € {0,1}"). It turns out that these are satisfiable in the initial stato this is a
trivial feat. If we then choose goal preference (2), havimg ¢rate indepot,, we
can find a relaxed plan that moves the hoist to the load anemwues the crate from
the container and places it #a,_, (which is indepot,). Satisfying (3), having the
hoist atsaq_q or sag_, l0oks statically mutex with (1), but the competing needs or
interference penalty costs apply only when a relaxed plastexSince none ex-
ists for (1), AltWit finds a relaxed plan that moves the hoisktg_;.% Satisfying
preference goal (4) requires that we move a single stegy-asasisfiable, and shar-
ing an action with (2), and hence there exists no interfereaccompeting needs.
Preference goal (5) is satisfied at the initial state.

From this analysis, we can see thtWIt selects each of the goals, as there

exist no penalties to make them look unappealing. It willsegquently fail when

SEven if a relaxed plan were to exist for (1), the disjunctileuses make interference difficult
to identify—i.e., we can be satisfying for “do not have thaterindepot,” which is not mutex with
preference (3).

101

attempting to find a solution for the goals—there exists ng wasatisfy for all
of the preferences. The complex mutual exclusions andrispe clauses cause
AltWit to select goal sets that are impossible to achieve. Fromdhe pf view
of the competitionAltWit suffers from similar issues in all but one of the “simple
preference” domains (namely, the “simple preferencesSigarofrovers.

In summary, while up-front selection of objectives doeswalPSPnet benefit
problems to use other planners, as we have suspected, ineoohgmains the

objective selection cannot even guarantee satisficinggla@yond the null plan).

102

400

350 -=-YochanPS
300 r -x-SGPlan
o 250 / —A- MIPS-XXL
'75 500 / -o-MIPS-BDD
g
150
100 /
50
x\
0 .+.+n4f*-!-!l~hal=ﬁ-u-H-u-p
1 2 3 45 6 7 8 9 101112 13 1415 16 17 18 19 20
Problem
(a) IPC-5 resultsYocharf® solved 13; MIPS-XXL solved 3;
MIPS-BDD solved 4; SGPlan solved 20
1800
1600
r -A-YochanPS
1400 —
/ -&-YochanCOST
1200
1000 /
> 800 f
'75 600 /
d 400
A
200 Ak =
0 —— —& A o~ i -
1 6 11 16
Problem

(b) Yocharf® vs. Yochat®S7 . Yocharf’® solved 14;Yochati®>7 solved 12

Figure 5.7: IPC-Srucks“simple preferences”

103

T

35
-a-YochanPS
30
—+-SGPlan
25
-e-MIPS-XXL a a
= i . Pl L. B A
£ 2 7 e mips-oD N £ AT
3 15 i/ "—\—#. - N »
#--‘ ‘ R ’ \ ' /
/ ®n7 ¥
10 \I /
v M
5 }i‘\\ ’I ’
‘,-—L
0 l T T T
1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Problem
(a) IPC-5 resultsYocharf® solved 4; MIPS-XXL solved 15
MIPS-BDD solved 10; SGPlan solved 30
4
-»-YochanPS
3 — —A-YochanCOST .
Fey
T 2
>3
(e}
1
0
2 3

Problem
(b) Yocharf® vs. Yochait®ST . Yochad’® solved 3;Yochat®S” solved 3

Figure 5.8: IPC-Hathways'simple preferences

104

4500

4000 -m-YochanPS 9
1 [
3500 -%-SGPlan |
3000 +— I
-o-MIPS-XXL [
5. 2500 |
2 |
© 2000
S]
I 1500 !
I
1000
500 % —
0
123 456 7 8 9 1011121314151617 181920
Problem
(a) IPC-5 resultsYocharf® solves 20; MIPS-XXL solves 15;
SGPlan solves 20
6000
—+-YochanPS "
5000 :
-a-YochanCOST ,{"
1
4000 1
1
\
£ 3000 i
© \
S 2000 .
[
1000
0
0 5 10 15 20

Problem
(b) Yocharf® vs. Yocha¥®S” . Yochad’s solves 20;Yochai®s7 solves 20

Figure 5.9: IPC-5overs*“simple preferences”

105

1800 - -a-YochanPS X
1600 —— -%-SGPlan 1
]
1400 - _q.MIPS-XXL % !
>. 1200 +— -\ !
k= -- MIPS-BDD o I
T 1000 +— x g
g s00 / '
,at
600 Ko %
/
400 - %
200 - .
0 "r':'/x" b

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Problem

(a) IPC-5 resultsYocharf® solves 5; MIPS-XXL solves 4;
MIPS-BDD solves 4; SGPlan solves 20

160
140 —— %-YochanPS /
120 —— —=4=YochanCOST /

80 /
60 /
40 /'\-/
. e

. -~

1 2 3 4 5
Problem

(b) Yocharf® vs. Yochat®S” . Yochaf’S solves 5;Yochaf®s7 solves 5

Quality

Figure 5.10: IPC-Storage“simple preferences”

106

2000

1600 - =a-SGPlan .Lﬁl;
1400 — --&-MIPS-XXL !
!
5. 1200 -— == MIPS-BDD
2 |
Tg 1000 .e‘-
g 800 e
600
400
200
0 (M=l
1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Problem
(a) IPC-5 resultsYocharfs solves 12; MIPS-XXL solves 9;
MIPS-BDD solves 9; SGPlan solves 20
700
-k-YochanPS
600
-&-YochanCOST f\I
500
2 400 ‘ o
© A~
> PR
I 300 o
/ P
,l
1 3 5 7 9 11

Problem
(b) Yocharf® vs. Yochait®S” . Yocharf’s$ solves 12;Yochai®>7 solves 12

Figure 5.11: IPC-9'PP“simple preferences” results

107

1600
-&-YochanPS

1400
-A-AltWIt
12
0 A
\
1000 \
= 800 ‘\
E
g 600
i
400
200
0
1 6 11 16
Problem
Figure 5.12: Comparison witAltWIt on IPC-5roversdomain
Depot, Depot,
load area
Sag g Sago Sai o Sa; g
container

Figure 5.13: An example of the “simple preferences” stoidgm®ain

108

Chapter 6

Time-dependent Goal Achievement Costs

For years, much of the research in temporal planning hasesotdward finding
plans with the shortest makespan, making the assumptioththatility of a plan
corresponds with the time at which it ends. In many probldmogiever, this does
not align well with the true objective. Though it is oftentmal that goals are
achieved in a timely manner, it does not always follow that shortest plan will
be the best in terms of achievement time ifiedividual goals. These objectives
can occur, for example, when planning for crew activityyvater operations, con-
signment delivery, or manufacturing. A few temporal plasne.f., [52], [23]) are
capable of reasoning over similar problems by, for instadedéning hard dead-
lines. But ranking plans in terms of temporal preferenceplan trajectory or soft
deadlines (i.e., those deadlines that can be exceededt butast) has been less
widely explored [36].

The first challenge one faces in considering these problsinew best to rep-
resent them so they can be solved. Modeling soft deadlingsandiscrete penalty
cost, as can be done in the planning domain description &geprbDL3, provides
an attractive solution to this. In this language, missingadiine incurs a discrete
penalty cost, but discrete models like this have their dadass With deadlines, for
instance, when goal achievement occurs after the deadtime, gven by a small
amount, the full cost must be paid. This fits some situatiofts-example, arriv-
ing at a ferry terminal after the ferry has left—but it misefas others, such as
being one second late in delivering retail goods. In thosesaonce the ideal time

for an activity has passed, it is still desirable to achidwe goal at some point,
109

though preferably sooner. The cost is continuous tamé-dependentzero for a
certain amount of time, then progressively increasinghisiwork, we look toward
handling these types of time-dependent, monotonicallgegsing cost functions.
In dealing with these types of problems, we present teclasighat build on
POPF[23], a planner particularly well-suited to handling temglaconstraints such
as soft deadlines due to its rich temporal reasoning engihis. chapter discusses
the specifics of how to encode time-dependent cost usingianfat of the planning
desciption languagedbbL+ [43], and show how a planner can be adapted to support
it. In the evaluation we show that the final plannepr1@C (Optimizing Preferences
and TIme-dependent Costs), has state-of-the-art perfarenan temporabbDL3
benchmark domains; and that the direct specification of &ruaous cost function
IS not just elegant, but also offers better performanceh(g&arch pruning) than if

simply compiled to a single sequence of discrete-cost dezxll
6.1 BACKGROUND: POPE PARTIAL ORDER PLANNING FORWARD

This work builds on the planneroPF[23], as it offers state-of-the-art temporal
planning for planning problems that require concurrenchisTs important, be-
cause deadlines can induce required concurrency even latepns that could oth-
erwise be solved using action sequences (see [27] for agdigruof these issues).
The key distinction betweemopPFand other forward-chaining temporal planners is
that, rather than enforcing a strict total-order on all stagded to the plan, it builds
a partial-order plan based on the facts and variables egféao by each step. To
support this, each fagtand variablev is annotated with information relating it to

the plan steps. Briefly:

e F'*(p) (F~(p))isthe index of the plan step that most recently added (eld)et

D
110

e FP*(p)is aset of pairs, eachi, d), used to record steps with a precondition
p. i denotes the index of a plan step, ahds {0,¢}. If d=0, thenp can
be deleted at or after stépthis corresponds to the end oPabDL over all

condition. Ifd=e¢, thenp can only be deletedafter:.
e ['P~(p), similarly, records negative preconditionsan

o V< (v) gives the index of the step in the plan that most recently hegffact

upon variable;

e VVP(v) is a set containing the indices of steps in the plan that hefeered to
the variablev since the last effect on. A step depends onif it either has a
precondition orv; an effect needing an input value @for is the start of an

action with a duration depending @n

The application of actions to states then updates thesdations and, based on
their values, produces ordering constraints. Steps addang ordered aftefF —(p);
those deleting, after ' (p). Hence, there is a total-ordering on the effects applied
to each fact. Preconditions are fixed within this orderingrerapplying a step with
a preconditiorp orders it after’"* (p); and recording it inF’P* (p) ensures the next
deletor ofp will ultimately be ordered after it. Similarly, negativeqmonditions are
ordered after somé'~ (p) and before the next'(p). Finally, steps modifying
are totally ordered, and steps referringtare fixed within this order (due to effects
onv being ordered after the pre-existing’(v)).

An important difference between partially and totally aetbapproaches is that
the preconditions to support an action are only forced taue simultaneously if
it is added to the plan. Consider a precondition formkilghat refers to multiple

facts/variables. We can say thist F if the facts/variable values i supportr'. If
111

we apply an action with preconditioll we add ordering constraints as discussed
above, as otherwise, we could not guarantee the requistfedaiable values fof’
are met simultaneously.

For example, considef'=(a A —b). In a state wher&EF it is possible that
another actionB*, addingb can be applied after its last deletét; (). Since the
last adder of:, F'"(a), is not necessarily ordered with respect to either(b) or
BT the plan may be scheduled suBt is beforeF'*(a), and thusa A —b is not
necessarily true at any point. The key point here is thatingsia stateS; where

S;EF is not sufficient to guarantel will be satisfied during the plan.
6.2 PR.ANNING WITH CONTINUOUS COST FUNCTIONS

In considering problems with continuously changing cosgoals, there are two

key challenges:

1. How to best represent planning problems where the valagtsn rests with

the time individual goals are achieved.
2. Given a representation, how to solve these problems.

In addressing the first point, this work explores how to es®L3 to represent
discretizations of the continuous cost function, and regméng cost functions di-
rectly using a combination a¢fobL+ and cost evaluation actions. The semantics of
PDDL3 offer an all-or-nothing approach to cost, requiring theegation of a set of
deadlines for the same goal, giving a piece-wise representaf the original cost
function. This may be sufficient (or even accurate) for marmpfems. For exam-
ple, the London Underground system operates on a fixed sleheduere making a

stop 5 minutes late may be no worse than being 3 minutes i#tter &vay the train

112

will depart at the same time. But in other problems, it leay@sn questions on the
granularity of cost deadlines.

As an example, consider a simple logistics problem wherel#tries, oranges
and apples must be delivered to locatioBs O and A respectively. Each fruit has
a different shelf-life. From the time they are harvesteg)eplast 20 days, oranges
15 days and blueberries 10 days. The truck has a long waywel tidriving with
the perishable goods from an origin poifAt Let us assume equal profit for the
length of time each item is on a shelf. The time to drive betweand B is 6 days,
betweenP and A is 7 days, betwee® andO is 3 days, and betwee# and B is
5 days. To make all deliveries, the shortest plan has a duarafi1l5 days; that is,
drive to pointsA, B, thenO in that order. If we were to deliver the goods in this
order, the blueberries and oranges will rot before theyirélaeir destinations, and
the total time-on-shelf for the apples would be 13 days. eladt we need a plan
gets the best overall value. A plan that drives to p@nt), then A achieves this,
though it does so in 17 days. In this case, summing the tota-tn-shelf across
all fruits gives us 15 days. Given a fruit tygleand a shelf-life,sl; (in days), we
can create a set of deadlines such that the cost incread¢sipyeach day.

An unfortunate disadvantage of this approach is that it mgyoperly repre-
sent costs; for example, missing the deadline by only a femnemis would im-
mediately place the cost in the next day “bracket”, an ovstiligct requirement for
this problem. In this case, a more direct approach to reptiegecost is desirable.
Therefore, we also consider cost represented by a connuoanotonically in-
creasing function, comprising arbitrary piecewise monetoexpressible in PDDL.
In this representation, cost is zero until time pdintthen increases continuously

until it reaches a cost at a time point;;, s (see Section 2.2). This approach re-

113

moves issues of granularity for the domain modeler when #reynot required.
However, the question is which model is better in practicad Ave shall see later
in this chapter that while representing cost functionsreisty has disadvantages,
it also has benefits in terms of solving time which we can ntggover to solving

for continuous representations (generating a hybricdedisearch approach).
Continuous Cost Functions in PDDL+

We now look at how to model continuous cost functions usingL+ [43] without
reference to deadlines #’DDL3. First, in order to track the time elapsed through-
out the plan, we introduce a variaklileurrent-tine), assigned the value 0 in the
initial state. This is updated continuously by a proces$ wi conditions and the
effect(increase (current-tine) (+ #t 1)), increasing the value of current-time by
one per time-unit. As processes execute whenever theiitcmmslare met, and in
this case the condition is tautologous, one can now writerstvhose effects are
dependent on the time at which they are executed.

For each goal facg; upon which one wants to enforce a time-dependent cost,
one adds a facgoal -g; to the initial state, and replaces the goal with a fact
col lected-g;. Then, it is possible to create an action following the teatglin
Figure 6.1; the action can have arbitrary parameters, asregfjby the goal, and
the cost function can differ for different goals. The linerkead with+ is optional,
depending on the semantics required. For goals that sheusispafter the cost has
been collected, the line is present; otherwise, it is note ¢bnditional effects of
the example increases the variafieal - cost by a linear formulaiturrent-tineis
afterdeadl i ne- one- g; (i.e.,t4), but before i nal - deadl i ne- g; and by a fixed amount
of current-time is afterfinal -deadl i ne-g; (i.e., t445). This corresponds with the

definition from Section 2.2. With additional conditionafesfts (i.e., intermedi-

114

(:action collect-goal-gl :paraneters (?pl ?p2 - obj)
:precondition (and (goal-gl ?pl ?p2) (gl ?pl ?p2))
ceffect (and (collected-gl ?pl ?p2)
(not (goal -gl ?pl ?p2))
(not (gl ?pl ?p2))
(when (> (current-tinme) (final-deadline-gl ?pl ?p2))
(increase (total-cost) (full-penalty ?pl ?p2)))
(when (and (> (current-tine) (deadline-one-gl ?pl ?p2))
(<= (current-tinme) (final-deadline-gl ?pl ?p2))))
(i ncrease (total -cost)
(* (full-penalty ?pl ?p2)
(/ (- (current-tine) (deadline-one-gl ?pl ?p2))
(- (final-deadline ?pl ?p2) (deadline-one-gl ?pl ?p2))
)))))

Figure 6.1: Structure of a cost-collection action for tidependent cost

ate deadlines), the cost function can consist of an arpitramber of stages, each
taking the form of any mathematical function expressiblemmL. If restricting

attention to cost functions that monotonically increase (problems where doing
things earlier is always better), any reasonable cost@aplanner using this model

will apply such actions sooner rather than later to achiewemal cost.
Comparison to Discretized Model

The cost functions above (omitting the asterisked effeatehaPDDL3 analog. In
theory, it is possible to obtain the same expressive powarbgting a sequence
of several discretepbpL3 deadline (i.e.wi t hi n) preferences, with the spacing be-
tween them equal to the greatest common divisor (GCD) obadaturations, and
each with an appropriate fraction of the cost. In other wowgscan define a step
function approximation of the cost function using the GCRi#dine cost intervals.
This could give a substantial blow-up in the size of many fEois. A more coarse
discretization with the discrete deadlines spaced furdipart than the GCD may
be more practical. However, a planner using such a model sayfail to reach

optimal solutions; it may be possible to achieve a goal @alut not sufficiently

115

early to achieve the earlier deadlines, so the planner wilracognize this as an

improved plan.
Solving for Time-dependent Continuous Costs

The new planner, ©ric, handles these problems by extendingrl@Fscheduler,
heuristic and the search strategy. The planner also makaalbdextension to han-
dle the very basic type ¢fDDL+ process needed to support ther ent - t i ne ticker.
Specifically, processes with static preconditions andilidfects on a variable de-
fined in the initial state (but not subsequently changed lyetifiect of any other
actions). Supporting these requires very little reasomrtge planner.

Scheduling: The compilation (in the absence of support for events) reguhat
all cost functions be monotonically increasing. Given (aisd the absence of pref-
erences and continuous numeric change, other than the)telegmple temporal
problem (STP) [28] scheduler suffices; the lowest cost foivargplan can be
achieved by scheduling all actions at their earliest pdsgime, and so can rep-
resent the plan as a simple temporal problem as in the oftiginerplanner. The
earliest time for each action can be found by performing gleisource shortest
path (SSSP) algorithm on the temporal constraints of a plehen acol | ect - g;
action is first added to the plan, the planner increases tterded plan cost ac-
cording to its cost function evaluated at its allotted titagagp. Subsequently, if the
schedule of a plan movesl | ect - g; to a later timestamp, the cost of the plan is
increased to reflect any consequential increase in the wostién of the action.
Admissible Heuristic: Now that it is possible to compute the cost of solutions,
a heuristic can be used to guide search toward finding higltitgsolutions; and
ideally, an admissible heuristic that can be used for pignim satisficing plan-

ning, relaxed plan length has been a very effective heali88], and QrTIC uses

116

this to guide search. The planner continues to use this§eeidrch (as done in the
other planners we discuss in this dissertation), but it at&s a second, admissible,
heuristic for pruning. Each reachalde | ect - cost action yet to be applied will
appear in a temporal relaxed planning graph (TRPG). #T10s TRPG, one can
obtain an admissible estimate of eawhl ect - g;’s achievement time by using its
cost at the action layer in which it appears. Since costs amotonically worsen-
ing, this cost is an admissible estimate of the cost of cbhiigdhe associated goal.
Sincecol | ect - g; actions achieve a goal which is never present as a precomaii

an action, and they have numeric effects only on cost, thélydimodel ofdirect-
achievement costssed in the heuristic dfoPF[22]. Thus, the sum of the costs of
the outstanding collect actions, at their earliest respetayers, is an admissible
estimate of the cost of reaching the remaining goals.

Tiered Search: While searching for a solution, the planner can use the asibiés
estimateh,, for pruning. In general, it can prune a statereached by incurring
costg(s) (as computed by the scheduler), with admissible heurisigt kg, (s),

if g(s) + ha(s) > ¢, wherec is an upper-bound on cost (e.g., the cost of the best
solution so far). If the granularity of costi§, then states are keptgfs) + h,(s) <

¢ — N. In the case oPDDL3, where exceeding deadlines incurs a discrete cost,
N is the cost of the cheapest preference. When searching waittincious time-
dependent costs, though is arbitrarily small, so the number of such states is
large. Hence, compared to the discrete-cost case, thegsléat greater risk of
exhausting the available memory. If one inflatdd then more states could be
pruned. However, this forfeits optimality, effectivelytuening to the discretized

case.

117

As a compromise, it may be better to use a tiered searchgyradpecifically,
one can invoke WA* a number of times in sequence, starting aitarger value
of N and finishing withN=¢ (some small number). The principle is similar to
IDA* [70], and reminiscent of iterative refinement in IPP [6But applied to prun-
ing on plan quality. That s, it is possible to introduce agragsive bound on cost,
i.e., assume there exists a considerably better solutam tiat already found; if
this does not appear to be the case, then one can graduatkythel bound. The
difference from IDA* comes in the heuristic value used foareh. Since the plan-
ner still uses relaxed plan length to guide search, we usadhsssible cost-based

heuristic and cut-off value only for pruning.
6.3 EVALUATION

No benchmarks with continuous cost functions exist so watetesome based on
existing problems; namely, Elevators, Crew Planning andr@facks, from IPC-
2008. In Elevators, the objective is to bring people to thieal floors using differ-
ent elevators capable of reaching various floors at diffesipeeds. The deadlines
were generated based on greedy, independent solutionsdopassenger, thereby
generating a “reasonable” wait time for the soft deadling arpartially random-
ized “priority” time for when full cost is incurred (with thelea that some people
are either more important or more impatient than others.) dagh of problems
4-14 from the original problem set (solvable bgprH, there were three problems
generated. In Crew Planning, the goals involve a crew peifay various tasks. In
this domain, for each problem solvable bppPF(1-20), we generated soft dead-
lines on each crew member finishing sleep, and random deadtin payload tasks
each day. In Openstacks, a manufacturing-based domaimpeginal problem is

augmented by soft deadlines based on production durations.

118

The critical question to answer is whether supporting cwaus costs is better
than using a discretization comprising a series of increatieleadlines (modeled
usingPDDL3). Thus, for each continuous model several discretizedlenos, with
each continuous cost function approximated by either 3, S0opreferences (10
being the closest approximation), were generated. Thisrmgpared to ®TIC with
the continuous model, and either normal search (only poustates that cannot
improve on the best solution found), or the tiered searclerde=d in Section 6.2.
In the latter, the value oV was based on the coét of the first solution found.
The tiers used werf) /2, Q/4,Q/8,Q /16, ¢|. Each tier had at most a fifth of the
30 minutes allocated. The results are shown in Figure 6e2gtaphs show scores
calculated as in IPC-2008; i.e. the score on a given probtera §iven configura-
tion is the cost of the best solution found (by any configorgtion that problem,
divided by the cost of its solution.

First, observe that the solid line, denoting tiered sednels, consistently good
performance. Compare this to continuous-cost search utithers; it is worse
sometimes in Elevators, often in Crew Planning, and mosteably in Open-
stacks. These domains, in left-to-right order, have a msgjvely greater tendency
for search to reach states that could potentiallyn@rginally better than the in-
cumbent solution; risking exhausting memory before reaghi state that ismuch
better. This is consistent with the performance of the mggtessive split configu-
ration, where we split the continuous cost function int@thdiscrete all-or-nothing
penalty deadlines. In Elevators, and some Crew Planniniglgmes, its aggressive
pruning makes it impossible for it (or the other split confagions) to find the best
solutions. But, looking from left-to-right between eaclag, the memory-saving

benefits of this pruning become increasing important, an@jpgnstacks, it is find-

119

ing better plans. Here, too, the split configurations withakes pruning (5 and
10) suffer the same fate as non-tiered continuous seararewhemory use limits
performance.

From these data, it is clear that the benefit of tiered-saarttiat it is effectively
performing dynamic discretization. Because we have madaatinuous-costs in
the domain, rather than compiling them away, the “improveinequirement” be-
tween successive solutions becomes a search-controlateaiather than an arti-
fact of the approximation used. In earlier tiers, searcmestheavily, and makes
big steps in solution quality. In later tiers, pruning isdegalous, allowing smaller
steps in solution quality, overcoming the barrier causeddarse pruning. This is
vital to close the gap between a solution that is optimal ating to some granular-
ity, but not globally optimal. A fixed granularity due to a cpiation fundamentally
prevents search from finding the good solutions it can fint witiered approach.

Finally, note that plan makespan is not always a good analoglan cost.
In Elevators, it appears to be reasonable (likewise inPibeL3 encoding of the
Pipesworld domain earlier in the evaluation). In Crew Piagrand Openstacks,
though, we see that minimizing makespan produces poortgsaliutions; indeed
in Openstacks, low makespan solutions are particularly bad
Summary We have considered temporal planning problems where théuwagion
is not directly linked to plan makespan and explored how tudiatemporal prob-
lems with continuous cost functions that more appropyatebdel certain classes
of real-world problems and gone on to show the advantagesasfoning with a
continuous model of such problems versus a compilaticrDioL3 via discretiza-

tion. Our tiered search approach appears to offer the berddfithe discretized

120

representation while operating over the continuous remtesion of the planning

problem.

121

act

Score (IPC 2008 Metric)

0.8

0.6

0.4

0.2

Elevators

Minimize Makespan =+~

Split into 10
Splitinto 5 -
Splitinto 3 -~~~

Continuous ---#---

Continuoys, tiered —°—

10 15 20 25 30

Problem Number

(a) Elevators

etric,

core

Crew Planning

a—

BT

—
L

Minimize Makespan -+~

Split into 10
Splitinto 5 -
Split into 3 ---@---

Continuous

)) Con‘tinuous, ‘tiered Te—

Score (IPC 2008 Metric)

8 10 12 14 16 18
Problem Number

(b) Crew planning

20

0.2

Openstacks

Minimize Makespan -+ -

Split into 10

Splitinto 5 -

Splitinto 3 ---&3---

Continuous ~--=---
)) Cpminuous, tie‘red —e—
10 15 20 25

Problem Number

(c) Openstacks

Figure 6.2:IPC scores per problem, validated against the continuostsdamain

30

Chapter 7
Related Work

While there has been recent growth in research for solviagrphg problems in the
presence of soft (prioritized) goals, such problems haes logscussed in the field
of artificial intelligence before. Indeed, Simon discussesiies of goal choice,
relating it to computation time, cognition and motivati@®v]. However, only in
the last several years has there been a significant effoingumodern planning
technology to solve problems of this nature.

Issues like how to best represent soft goals, whether catignlapproaches are
always effective in all PSP problems, and the level of exgpvesess required for
solving real-world problems with soft goals are still oparegtions. Representing
PSP problems is the foremost problem, and a variety of appesahave been pro-
posed. For instance, work has been done in defining quaétgbal preferences,
soft constraints on plan trajectories and explicit det¢ians on resource limita-
tions. The solving methods range from various heuristic@g@ghes, compilations
to other problem substrates (e.g., integer programmingotelan formula satis-
fiability) or compilations that reduce soft goal constraita planning with other

objectives. In this chapter, we review these methods.
7.1 REPRESENTATIONS FORPARTIAL SATISFACTION PLANNING

For atemporal goal satisfaction, much of this dissertdti@anses on both goabst
andutility dependencies. We use tgeneral additive independenogodel for rep-
resenting goal utility dependencies, but there are sewénal attractive models. In
particular, thdJCP-Networkmodel [14] allows one to specify preference relation-

ships between goals with an associated reward for thesfaation. This model
123

focuses orconditionaldependencies (i.e., if one already has an airplane ticket to
Hawaii, then one will get reward for having a hotel resexvain Hawaii). Another
similar approach is to use tlggraphical mode[2]. While both of these provide a
graphical representation that can make it easier for usensderstand (and define)
dependencies, GAIl is more general and both of these modelbecaompiled to
GAl.

The languages from the 2006 and 2008 International PlanGomgpetitions,
PDDL3 [48] and PDDL3.1 (respectively), can also be used poagent goal utility
dependencies. Indeed, they are capable of representirggaoomlex preferences
over trajectories and therefore focus on a broader problass ¢han ours. Only
one domain from the planning competitiomgyodworking(from 2008), contains
well-defined utility dependencies between goals. Evenigixdbmain, those utility
dependencies are strictly positive, making goal choicemaasier than if negative
utility dependencies existed. Indeed, it is unclear whetimy planner capable of
handling PDDL3 dependencies can deal with negative deperase(our prelimi-
nary testing shows that they cannot, though it may be pastltasily force them
to).

Qualitative preference-based planners also treat goasfasonstraints; how-
ever, goals are not quantitatively differentiated by thditity values, but their
preferences are instead qualitatively represented. @Qtiedi preferences are nor-
mally easier to elicit from users, but they are less expvesand there can be many
plans generated that are incomparable. Brafman and ChestyL6] use TCP-
Networks to represent the qualitative preferences betweafs. Some examples
are: (1)¢1 = go» means achieving, is preferred to achieving.; (2) g1 > —¢1

means achieving; is better than not achieving it. Using the goal preferengles)

124

P, is considered better than pldn if the goal set achieved b¥, is preferred to
the goal set achieved ki, according to the pre-defined preferences. A Pareto op-
timal plan P is the plan such that the goal set achieved-ig not dominated (i.e.,
preferred) by the goal set achieved by any other plan. TrdrPamtelli [92] intro-
duced the PP language that can specify qualitative prefeseon plan trajectories
such as preferences over the states visited by the plan omotiens executed at
different states. PP uses a nested subset of temporal kigidgr to PDDL3) to
increase the set of possible preferences over a plan waje®P is later extended

with quantification and variables by Bienvenu et al. [10].
7.2 PR.ANNERS SOLVING PSPAND THEIR CLOSE RELATIVES

There are several planners that solve PSP and closelyd@iatblems, and they fall
into three distinct strategies: (1) up-front goal selatti@) combined goal and ac-
tion selection (i.e., planning directly on action and gadéstion); (3) compilation
into another substrate (e.g., cost-based planning, infeggramming or boolean
formula satisfiability). All of these approaches try to sotlie problem of choosing
among the2l¥! possible goal sets in different ways.

Up-front Goal Selection: An appealing method is to perform goal selection up-
front and find a reasonable plan for those goals then eitbprastfind another goal
set to try to get an even better plan. This is a two-step sfyatehere in step one we
heuristically select a subset of soft goals and in step twoaweert the goal set into
hard goals then use a non-PSP solving method to find a solitidhose goals.
This lets you use an “off-the-shelf” planner for finding dodns. The planners
SGPIlan[64], the orienteering-planner (OP) [88)/tAlt S [95] and HSP [57] all
use this type of strategysGPlanperforms an up-front goal selection that has not

been well-described in the literature, though it iteratesugh all soft goals and

125

uses a heuristic to choose a “best” goal set. It then sohe@ptbblem using its
regular search. In its first step, OP uses the solution of alsinproblem to select
both the subset of goals and the order to achieve them. Theabproblem is
built by first propagating the action costs on the plannirggpgrand constructing the
orienteeringproblem, which is a variation of theaveling salesmaproblem. The
approach was used to find a solution with limited resourced,similar approach
was used by Garcia-Olaya, et al. [45] in their work on theesanoblem. Note that
theorienteeringproblem has similarities to the flow-network IP formulativa use
the planner BBOP-LP for thefa! heuristic.

Unlike the orienteering-planne@ltAlt 7S relies on the cost-sensitive planning
graph and uses a different technique to analyze the graptutistically select the
most beneficial subset of goals. After the goals are foité/t *> uses a variation
of the regression search plann@ltAlt to search for a low cost plan. HgRiorks
somewhat differently. It iterates through all soft goalssahd uses IDA[70] to
solve the goal set it decides is best. On each iteration of |liAhooses a “best”
goal set that gives the current highest bound plan qualityguss heuristic. This
can be seen as a mixed strategy between up-front goal seletid performing
goal selection during search.

The disadvantage of this approach is that if the heuristiahé first step do
not select the right set of goals then the planner may eithdrfipoor quality plan
or can take a lot of time to discover that the problem is uredallr before it can
switch to another goal set. Therefore, if the first step damsselect theexact
optimal goal set, then the final plan is not guaranteed to bienap Moreover, if
there is an unachievable goal selected, then the planniereitn in failure (with

some planners trying to select another set of goals afts}. thihdeed, as shown

126

in Section 5.2 AltAlt 7S and its improved versioAltWIt never try to solve more
than a single (hard) goal set and can consistently selesethef goals containing
non-obvious mutexes on many problems.

Combined Action and Goal Selection:Our approaches fall into this category. The
SPUDS and BBOP-LP heuristics perform goal and action getebefore they re-
turn a heuristic value. Several other PSP planners perfoisriyipe of search. Of
course, the planner we have based our workap&* , does this [7] (as well as
its PDDL3-SP variantyocharf®). It uses a goal selection technique during search
(i.e., per state). The planners MIPS-XXL [36], MIPS-BDD [3&amer [37], and
HPlan-P [5] also perform goal selection during the planmpnacess. With the ex-
ception of Gamer, these planners use a forward search. MM¥Y36] and MIPS-
BDD [34] both compile plan trajectory preferences from PCELinto Bichi au-
tomata and “simple preferences” into PDDL2.1 numericalrftasg¢hat are changed
upon a preference violation. MIPS-XXL then uses Metric-Rthws enforced hill-
climbing algorithm to find the final solution. On the other HaMIPS-BDD stores
the expanded search nodes in BDD form and uses a boundeiti-lsrgj-optimal
BFS search for BDDs to solve the compiled problems. While mibng to NFA
seems to allow those planners to handle the preferencedgedeDDL3, it is not
clear if there is any performance gain from doing so. Ganrethe other hand uses
a perimeter search, performing a breadth-first backwandkséa generate a pattern
database for a later breadth-first forward search. To hasuftegoals, the planner
searches (without heuristic guidance) in a manner similaur search, pruning
nodes that appear worse in quality than the best-known ptaHPlan-P, Baier et
al. [5] compile trajectory preferences into additionalgicates and actions by first

representing them as a non-deterministic finite state aatfm(NFA). The heuristic

127

is then adjusted to take into account that different prefege have different val-
ues so that the planner is guided toward finding overall gaadity plans. The
planner is then extended to have a more sophisticated salg@tithm where con-
ducting a planning search and monitoring the parametrizedl &e done closely
together [4].

Bonet & Geffner [12] present a planner whose search is guiedeveral
heuristics approximating the optimal relaxed plan usirggrédmk of d-DNNF the-
ory. While the search framework is very similar to ours argllburistic is relaxed
plan-based, the problem tackled is a variation of PSP wheaewdilities are not as-
sociated with facts achieved at the end of the plan execbtibachievedometime
during the plan execution. This way, it is a step in movingrfrine PSP definition
of traditional “at end” goals to a more expressive set of goalstraints on the plan
trajectory defined in PDDL3. The heuristic computation theg is expensive, due
to compiling the problem into a d-DNNF.

Compilation Approaches: While goal and action selection can be done directly
during the search for plans, it is also possible to effettigempile out goal se-
lection from the problem, as we saw Wochaf®>7 . This approach is quite ap-
pealing because any planner capable of handling actios ¢asing with whatever
other constraints the problem may have) can be used to dudvproblem. This
effectively changes the search space representation, hitel wie saw this has a
mostly negative effect in the comparison betwe@ehaf©>? and Yocharf’s |, it
allows the use of other planners so that no special mechamsed be invented
for goal selection. Indeed, Keyder & Geffner [66, 67] toolsthpproach and show
that it allows one to use the benefits of state-of-the-arnmmas. Their compilation

differs from Yochaf®S7 in that (1) they do not handle conditional costs on actions

128

and (2) they use a compilation trick that forces the statespnto an “evaluation

mode” such that costs for not achieving goals are only imzliduring this mode.

Using this compilation, they showed that planners madeltegaartial satisfaction

planning problems directly performed worse than curreatesof-the-art cost-based
planners. The advantage of using the latest techniquesftrbased planning is
seductive, but it is unclear how well specialized techngjfoe goal selection would

work in the state-of-the-art planners or how well they cdudehdle more complex
constraints on goal selection (e.g., goal utility depewtEnor explicit resource

limitations). Given our experiences wittochaif®S7 | it appears that handling soft
goals directly can (at least in our framework) provide begteality plans.

These approaches are also unlikely to handle goal utilipeddencies well
when the heuristic is unable to take negative goal utilifyedelencies into account.
Some preliminary experiments we have done have illustiatgtthis problem can
occur when a heuristic simply ignores delete lists. Thisisduse propagation and
relaxed plan heuristics can assume that the positive-gtajoal set can always be
achieved together without penalty, and hence the heuwitignore negative goal
utility dependencies associated with certain goal subsets

Other compilation methods use solvers not explicitly mamtepfanning prob-
lems. For instanceDptiPlan[95] extends an integer programming (IP) encoding
for bounded parallel length classical planning to solveRB& problem by adding
action cost and goal utility. It relaxes the hard goal caists by moving those
goals satisfying conditions into the IP’s objective funati This way, goals can be
treated as soft constraints. The advantag®pfiPlars approach is that off-the-
shelf IP solvers can be used to find the final plan that is gteedrto be optimal

up to a bounded parallel plan length. The disadvantage sfajyproach is that it

129

does not scale up well as compared with heuristic approaehésone can see this
in experiments on the encoding used iBLD. van den Briel et al. [94] also pro-
posed a set of constraints that could be applied to PDDL3.avewit appears this
encoding was never implemented.

Another recent compilation approach tried by Russell anttiéfouses a SAT
encoding on PSRet benefitvith goal utility dependencies [84]. It extends a ver-
sion of the “thin-gp” encoding from & PLAN [65], then encodes utilities using an
objective function over a Weighted Partial Max-SAT (WPMaat) problem. Like
the iPUD approach, it is a bounded-length optimal encoding. In tloblems gen-
erated by Russell and Holden, the approach scales nearlglb&@wnd often better)
thaniPUD, though has markedly worse behaviozanotravebs it extends its solv-
ing horizon. A somewhat similar SAT encoding was used for BB[53]. In both
of these encodings, they first find the maximally achievatde puality valueC,
thenn = [logy(C') + 1] ordered bitd,, ..., b, are used to represent all possible plan
quality values within the range of 0 t@. For the PDDL3-based planner, the SAT
solver was modified with branching rules over thésbits. These are then used to

find a bounded-length plan with the maximum achievable plality value.
7.3 SOLVING FOR QUALITATIVE PREFERENCES

Qualitative representations of preferences are typigadly-numeric rankings be-
tween choices of goals (e.g., one might prefer white winetowine when one has
fish). One problem with qualitative representations is thigtpossible to generate
different plans that arsncomparableto one another (i.e., you cannot say whether
they are better, worse, or of equal value). Nonethelesg,dffier some advantages

to users in that it is often easier for people to think symtadly rather than quanti-

130

tatively (e.g., saying one prefers white wine to red winehiigh can be easier than
enumerating the possible values for each combination ofwaimd fish).

For the representation used by Brafman & Chernyavsky over
TCP-Networks [16], a CSP-based planner is used to find a salilehgth opti-
mal plan. They do this by changing the branching rules in a €8%er so that
the most preferred goal and the most preferred assignmesadh goal are always
selected first. Thus, the planner first branches on the gbatdering according to
goal preferences before branching on actions making upléme p

Both logic-based [92] and heuristic search based [10] @enhave been used
to solve planning problems with qualitative preferencgsesented in the language
PP by using weighting functions to convert qualitative prefices to quantitative
utility values. This is due to the fact that quantitativefprences such as PSP
and PDDL3 fit better with a heuristic search approach th&gsan a clear way to
compute and comparig(current cost) and (“cost-to-go”) values. The weights are
then used to compute thgandh values guiding the search for an optimal or good

quality solution.
7.4 TIME-DEPENDENT GOAL COSTS

While temporal planning has long held the interest of thapilag community (c.f.,
Zeno [80], TGP [90], TLPlan [1], Sapa [32], LPG [52], CRIKE'Z§], TFD [38]),
strong interest in preference-based and partial satisfagtanning (e.g.net benefit
planning) is relatively recent.

My work on time-dependent goal costs can be seen as a cresdetween
the areas. But others have emerged over the years. To outdagey the earliest
work in this direction is by Haddawy & Hanks, in their planf@rRRHUS [55].

This planner allows a decision-theoretic notiondgfadline goalssuch that late

131

goal achievement grants diminishing returns [55]. For swears after this work,
the topic of handling costs and preferences in temporalnit@received little at-
tention. As mentioned earlier, in 2006, PDDL3 [50] introdda subset of linear
temporal logic (LTL) constraints and preferences into ageral planning frame-
work. PDDL3 provides a quantitative preference languagedhowed the defini-
tion of temporal preferences within the already temporelgressive language of
PDDL2.1 [42]. However, few temporal planners have beert bugupport the tem-
poral preferences available (cMPs-XXL [36], SGR.ANS [64]), and none that are
suitable for temporally expressive domains [27]. Otheeneavork uses the notion

of time-dependent costs/rewards in continual planningnéaorks (c.f., [73, 18]).
7.5 OrHER PSP WORK

We briefly go over some other related work on partial sattgfacplanning, dis-
cussing partial satisfaction of numeric values, RePbenefitising Markov Deci-
sion Processes (MDPs), techniques for oversubscribed stthg and finally work
related to our learning approach.

Degree of Satisfaction on Metric Goals: The reward models we have used have
all dealt with logical goals. However, it is possible to sfyeceward on numeric
values as well. Some of our previous work, done before bagihis dissertation
work, handled numeric goal reward, where the definition ofamel is over the final
value of a numeric variable [8]. To handle this type of rewavd used a heuristic
method similar to that of the planner Metric-FF, which effegly tracks upper and
lower bounds on numeric variables on a planning graph streict Using these
bounds, it is then possible to estimate the cost (given tita@ost propagation) and

reward for achieving certain values.

132

Using Markov Decision Processes (MDPs)Another way of solving PSP prob-
lems is to model them directly as deterministic MDPs [62],evehactions have
different costs. One way to look at this is to encode any stgte which any of the
goals hold) as a terminal state with the reward defined asutimeo$ the utilities of
the goals that hold i8. However, rather than reifying goals rewards in this way, we
can use a compilation approach similar to the one defined pgéte& Geffner [67]
discussed earlier, which avoids several problems (e.gl,rgeachievement) in the
state space for the solving method. The optimal solutiom#&RSP problem can
then be extracted from the optimal policy of this MDP. Givéist our solution
methods can be seen as an efficient way of directly computiagptan without
computing the entire policy (in fact*(S) can be viewed as the optimal value of
S). For time-dependent costs or reward, it is also possibiertoulate the problem
using an MDP model [76].

Oversubscribed Scheduling:Over-subscription and partial satisfaction issues have
received more attention in the scheduling community. EarlWwork in
over-subscription scheduling used “greedy” approacheshich tasks of higher
priorities are scheduled first [71, 82]. More recent effdrévve used stochastic
greedy search algorithms on constraint-based intervd]sdgénetic algorithms [54],
and iterative repairing techniques [72] to solve this peatbimore effectively. Some
of those techniques can potentially help PSP planners tagfed! solutions. For
example, scheduling tasks with higher priorities sharesessimilarity with the
way Alt AltP* builds the initial goal set, and iterative repairing tecjugs may help
local search planners such as LPG [51] in solving PSP prablem

Learning to Improve Plan Quality: There has been very little prior work fo-

cused on learning to improve plan quality. The closest iegraystem for planning

133

that tried to improve the quality of plans produced was thekway Pérez [81]
almost a decade ago. In contrast to the approach in thisrthiiea, that work
used explanation-based learning techniques to learntseardrol rules. As we
discussed, one reason Stage-PSP outperforms SPUDS ik¢h@sEARCH with
learned evaluation function allows it to go to deeper paftthe search tree (and
probe those regions with SPUDS search). While the StageaRfaiithm did not
use the lookahead technique to reach deeper into the sgaach, ghis ends up

achieving a similar effect.
7.6 BR.ANNERS USINGIP ORLP IN HEURISTICS

This dissertation work makes extensive use of heuristi¢th @inbedded integer
programming (IP) formulations. This allows the techniqt@sonsider the com-
plex interactions between goal and action selection inrptap Bylander [20] also
used an IP formulation (and an LP relaxation) as a heuristiea planner Lplan, but
this heuristic has a bounded horizon, and so with actiorsaastnot be guaranteed
optimal (unlikeh$5! andhG4l). Coles et al. [25] also have used LP formulations
in combination with delete relaxation heuristics. Howetkeir work focuses on
increasing the informedness of heuristics for planningmtiere is an interaction
between numeric variables. The work for embedded PDDL3peetes into the
planner @TIC also uses IP formulations [21, 6]. Other work has used lipear

gramming directly in the planning process to handle nunjéB8tand temporal [75]

aspects of the planning problem.
7.7 OrHER HEURISTICSUSING FLOW MODELS

The structure encoding in o5’ heuristic has strong connections to teusal
graph[59] andcontext-enhanced additiy@1] heuristics, both of which implement

similar flow structure and procedurally solve the resultietaxed model of the
134

planning problem. Indeed, both of these heuristics canlailyirepresent the neg-
ative interactions of actions and have shown better behatien compared against
a purely relaxed plan based heuristic in many domains. Offerelice with those

heuristics, however, is that they are inadmissible whek&gdé is admissible.

135

Chapter 8

Conclusion and Future Work

As agents acting in the real world, we must always make datsson which sets
of goals we should direct our actions toward achieving. iBawork in automated
planning addressed these issues, ranging from mentioregfrtstblem by Simon
in 1964 [86] to more recent discussions on the subject witipeet to decision
theory [40, 55]. However, until recently work in the area lh@en sparse. This
likely had to do with a lack of scalable methods for planningwas hard enough
to find short plans, let alone decide on which goals to achietbe quality of the

plans eventually found. However, now as we reach an era vauoenated methods
for planning have become progressively more scalable aled@lplug into larger,

more complex systems, a user should naturally expect thiyaii handle these
real-life decisions on goal and constraint choice. Hercis, imperative that the
study of these types of problems progresses. This bringsthie tmain thrust of this
dissertation work; that is, to expand upon representatemd solving methods for
partial satisfaction planning (PSP) problems. In particuhis work looks toward
allowing a richer set of reward representations for hamgdijoal choice. We defined
goal utility dependencieandtime dependent goal costs these ends. For goal
utility dependencies, we used theneral additive independen(@Al) model. This

model has the benefit that it fits well within heuristic seaapproaches, and it can
be generated from other models. For time dependent goad,cestpresented a
linearly increasing cost function after a deadline poirtheve penalty up to some

maximum value would be given for failing to achieve a goal lspacified deadline.

136

We introduced several approaches used to solve for godlywtiépendencies.
First, we showed a novel heuristic framework that combirest propagation and
an integer program (IP) encoding to capture mutual depemneenf goal achieve-
ment cost and goal utility. We compared these heuristicsbhoumded length IP-
based solving method and found that, while the IP-basedadaeifien did well on
easier problems, the heuristic method scaled much bettetheSe methods, we
found that the heuristie&7'! | which extracts a relaxed plan for all goals then en-
codes itin an IP along with goal utility dependencies, pented best among these
methods.

After this, we introduced another novel heuristic based miaxed IP encoding
of the original problem that keeps delete lists (unlike otlmeo heuristics) but ig-
nores action ordering. We then use the LP-relaxation ofght®ding as an admis-
sible heuristic and found that it performed better thgrt! andhS4!, performing
much better in terms of allowing us to reach optimal solwicaand finding better-
quality solutions even when it did not lead to optimal sauos. Finally, we looked
at a learning method based on the local search techniquedc&TAGE with the
intention of improving search.

We also explored temporal problems wiime-dependent goal costs contin-
uous cost functions that model certain classes of realdymdblems with penalty
costs for missing deadlines. We went on to show the advastaigeasoning with
a continuous model of such problems versus a compilatiemtn_ 3 via discretiza-
tion.

For future work on goal utility dependencies, it might be &fgial to use some

of the recent work in partially including mutual exclusiansheuristics [58, 68].

Performed properly, this could allow us to only look at thetnal exclusions that

137

are specific to negative goal utility dependencies so thaalpemight be avoided.
Further, we intend to explore ways of integratppL3 and continuous cost mod-
els, and supporting other continuous-cost measures, sugle@ntinuous-cost ana-
log toal ways-wi t hin (i.e., cost functions over time windows).

In terms of partial satisfaction planning generally, wenpia extend represen-
tational models to handle resource constraint issues. Asta level, one can view
work in partial satisfaction planning as extending modélgexision theory into
the realm of planning. Indeed, early work in the area looketha problem in
this way and the use of general additive independence to Ingodéutility depen-
dencies stems from decision theoretic work on preferer@lesork in handling
partial satisfaction planning could be further enhanceadgressing issues of re-
source constraints, where resources that are not diremtiglated with costs can be

handled in conjunction with rewards for goals, as recentgested by Smith [89].

138

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

F. Bacchus and F. Kabanza. Using temporal logics to esgpsearch control
knowledge for planningArtificial Intelligence 16:123-191, 2000.

Fahiem Bacchus and Adam Grove. Graphical models foepeeice and util-
ity. In In Proceedings of the Eleventh Conference on Uncertaindyiificial
Intelligence pages 3-10, 1995.

Christer Backstrom and Bernhard Nebel. Complexisutes for SAS plan-
ning. Computational Intelligencel1(4):625—-655, 1995.

Jorge Baier, Fahiem Bacchus, and Sheila Mclllraith. Aimegic search ap-
proach to planning with temporally extended preferencefrdceedings of
IJCAI-07, 2007.

Jorge Baier, Jeremy Hussell, Fahiem Bacchus, and Skkilbraith. Plan-
ning with temporally extended preferences by heuristicdean Proceed-
ings of the ICAPS Booklet on the Fifth International Plargqh@ompetition
2006.

J. Benton, Amanda Coles, and Andrew Coles. Temporalnteywith pref-
erences and time-dependent continuous cost®rdeeedings of the 22nd
International Conference on Automated Planning and Scliegit2012.

J. Benton, Minh Do, and Subbarao Kambhampati. Anytimériséic search
for partial satisfaction planningArtificial Intelligence 173:562-592, April
20009.

J. Benton, Minh B. Do, and Subbarao Kambhampati. Ovéssrtiption
planning with numeric goals. IRroceedings of the Joint International Con-
ference on Artificial Intelligencepages 1207-1213, 2005.

J. Benton, Menkes van den Briel, and Subbarao Kambhan#phaybrid lin-
ear programming and relaxed plan heuristic for partiak&attion planning
problems. In Mark Boddy, Maria Fox, and Sylvie Thiébauxit@d, Pro-
ceedings of the Seventeenth International Conference tonfaed Plan-
ning and Scheduling (ICAPS 200prges 34-41. AAAI Press, 2007.

139

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Meyghyn Bienvenu, Christian Fritz, and Sheila Mclthai Planning with
qualitative temporal preferences. Broceedings of the International Con-
ference on Principles of Knowledge Representation and &teag pages
134-144, 2006.

Avrim Blum and Merrick Furst. Planning through plangigraph analysis.
Artificial Intelligence Journal90:281-330, 1997.

Blai Bonet and Héctor Geffner. Heuristics for plangiwith penalties and
rewards using compiled knowledge. Pnoceedings of KR-Q&006.

Blai Bonet, Gabor Loerincs, and Héctor Geffner. Ausband fast action
selection mechanism for planning.Pnoceedings of the Fourteenth National
Conference on Artificial Intelligence (AAAI 199 fages 714—-719. AAAI
Press, 1997.

Craig Boutilier, Fahiem Bacchus, and Ronen |. Brafma#sCP-networks:
A directed graphical representation of conditional uékt In UAI, pages
56-64, 2001.

Justin Boyan and Andrew Moore. Learning evaluatiorctions to improve
optimization by local searchlournal of Machine Learning Research 77—
112, 2000.

Ronen |. Brafman and Yuri Chernyavsky. Planning wittalgpreferences
and constraints. IRroceeding of ICAPS-Q2005.

Olivier Buffet and Douglas Aberdeen. FFPG: Guiding a policy-gradient
planner. InProceedings of International Conference on Automated iifam
and Schedulingpages 42-48, 2007.

Ethan Burns, J. Benton, Wheeler Ruml, Minh B. Do, andduwok Yoon.
Anticipatory on-line planning. IrProceedings of the 22nd International
Conference on Automated Planning and Scheduling (ICAERY.

Tom Bylander. The computational complexity of progimsial strips plan-
ning. Artificial Intelligence Journal69:165-204, 1994.

140

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Tom Bylander. A linear programming heuristic for op@ihplanning. In
AAAI-97/1AAI-97 Proceedingpages 694—-699, 1997.

Amanda Coles and Andrew Coles. LPRPG-P: Relaxed Planistes for
Planning with Preferences. Rroceedings of the 21st International Confer-
ence on Automated Planning and Scheduling (ICAP&)e 2011.

Amanda Coles, Andrew Coles, Allan Clark, and StepheimGie. Cost-
sensitive concurrent planning under duration uncertaiatyservice level
agreements. IiProceedings of the 21st International Conference on Auto-
mated Planning and Scheduling (ICARBages 34-41, June 2011.

Amanda Coles, Andrew Coles, Maria Fox, and Derek Longorward-
chaining partial-order planning. IRroceedings of the 20th International
Conference on Automated Planning and Scheduling (ICAR&Yy 2010.

Andrew Coles, Maria Fox, Keith Halsey, Derek Long, anch@nda Smith.
Managing concurrency in temporal planning using planceeduler inter-
action. Artificial Intelligence 173:1-44, 2009.

Andrew Coles, Maria Fox, Derek Long, and Amanada Smith.hybrid
relaxed planning graph-LP heuristic for numeric planniogndins. InPro-
ceedings of the 18th International Conference on AutomBgtadning and
Schedulingpages 52-59, 2008.

Andrew Coles, Maria Fox, Derek Long, and Amanda SmitlanRing with
problems requiring temporal coordination. Rnoceedings of the 23rd AAAI
Conference on Artificial Intelligence (AAAJuly 2008.

William Cushing, Subbarao Kambhampati, Mausam, and Deld. When
is temporal planningeally temporal planning? IrfProceedings of the
20th International Joint Conference on Artificial Inteigce (IJCAI) pages
1852-1859, 2007.

Rina DechterConstraint ProcessingMorgan Kaufmann, 2003.

Minh B. Do, J. Benton, Menkes van den Briel, and Subb#ambhampati.
Planning with goal utility dependencies. In Manuela M. \&lpeditor,Pro-

141

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

ceedings of the 20th International Joint Conference onfisidl Intelligence
(IJCAI 2007) pages 1872-1878, 2007.

Minh B. Do and Subbarao Kambhampati. Improving the terapflexibility
of position constrained metric temporal plans.Ihternational Conference
on Automated Planning and Schedulipgges 42-51, 2003.

Minh B. Do and Subbarao Kambhampati. Sapa: A multi-otiye metric
temporal plannerJournal of Artificial Intelligence Researc20:155-194,
2003.

Minh B. Do and Subbarao Kambhampati. Sapa: Multi-otiyecHeuris-
tic Metric Temporal Planner.Journal of Artificial Intelligence Research
20:155-194, 2003.

Minh B. Do and Subbarao Kambhampati. Partial satigéact{over-
subscription) planning as heuristic searchPtoceedings of KBCS-02004.

Stefan Edelkamp. Optimal symbolic PDDL3 planning wkiPS-BDD.
In Proceedings of the ICAPS Booklet on the Fifth InternatidAknning
Competition 2006.

Stefan Edelkamp and Malte Helmert. Exhibiting knovgedn planning
problems to minimize state encoding length. In Susannediwand Maria
Fox, editorsRecent Advances in Al Planning. 5th European Conference on
Planning (ECP 1999)volume 1809 ofLecture Notes in Atrtificial Intelli-
gence pages 135-147, Heidelberg, 1999. Springer-Verlag.

Stefan Edelkamp, Shahid Jabbar, and Mohammed Nazityelscale opti-
mal PDDL3 planning with MIPS-XXL. IfProceedings of the ICAPS Booklet
on the Fifth International Planning CompetitipR006.

Stefan Edelkamp and Peter Kissmann. Optimal symbddicrpng with ac-
tion costs and preferences. Rroceedings of the 21st International Joint
Conference on Atrtificial Intelligen¢@ages 1690-1695, 20009.

Patrick Eyerich, Robert Mattmiller, and Gabrieleged Using the context-
enhanced additive heuristic for temporal and numeric praprn Proceed-

142

ings of 19th International Conference on Automated Plagrind Schedul-
ing (ICAPS) September 2009.

[39] Tom Fawcett. Knowledge-based feature discovery fatueation functions.
Computational Intelligencel2:42—64, 1996.

[40] Jerome Feldman and Robert Sproull. Decision theoryaatificial intelli-
gence ii: The hungry monkegognitive Sciengel(2):158-192, April 1977.

[41] Eugene Fink and Qiang Yang. Formalizing plan justifmas. InProceed-
ings of the Ninth Conference of the Canadian Society for Gaatipnal
Studies of Intelligenceages 9-14, 1992.

[42] Maria Fox and Derek Long. PDDL2.1: An extension of PDit éxpress-
ing temporal planning domaingournal of Artificial Intelligence Research
20:61-124, 2003.

[43] Maria Fox and Derek Long. Modelling mixed discrete-ttonous domains
for planning.Journal of Artificial Intelligence ResearcR7:235-297, 2006.

[44] Jeremy Frank, Ari Jonsson, Robert Morris, and DavidtBmiPlanning and
scheduling for fleets of earth observing satellites.Ploceedings of Sixth
Int. Symp. on Atrtificial Intelligence, Robotics, Automat&® Space 2001.

[45] Angel Garcia-Olaya, Tomas de la Rosa, and Daniel &orr A distance
measure between goals for oversubscription planningPréprints of the
ICAPS’08 Workshop on Oversubscribed Planning and Scheg)@DO08.

[46] B. Gazen and C. Knoblock. Combining the expressiveatsspop with the
efficiency of graphplan. IIFourth European Conference on Plannjrig97.

[47] Alfonso Gerevini, Yannis Dimopoulos, Patrik Haslumnda Alessan-
dro Saetti. 5" international planning competition website.
http://zeus.ing.unibs.it/ipc-5/.

[48] Alfonso Gerevini, Patrik Haslum, Derek Long, Alessem&aetti, and Yan-
nis Dimopoulos. Deterministic planning in the fifth intetiodal planning
competition: PDDL3 and experimental evaluation of the pkxs. Artificial
Intelligence Journgl173(5-6):619-668, 2009.

143

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Alfonso Gerevini and Derek Long. Plan constraints amefgrences in
PDDL3: The language of the fifth international planning ceitpon. Tech-
nical report, University of Brescia, Italy, August 2005.

Alfonso Gerevini and Derek Long, editorsFifth International Planning
Competition (IPC-5): planner abstraGgt2006.

Alfonso Gerevini, Alessandro Saetti, and Ivan Serin@lanning through
stochastic local search and temporal action graphs in l[fmurnal of Ar-
tificial Intelligence Researgt20:239-290, 2003.

Alfonso Gerevini, Alessandro Saetti, and Ivan SerinAn Approach to
Temporal Planning and Scheduling in Domains with Predlet&xogenous
Events.Journal of Artificial Intelligence ResearcR5:187-231, 2006.

Enrico Giunchiglia and M. Maratea. Planning as satsliiy with prefer-
ences. InProceedings of AAAI Conference on Artificial Intelligenpages
987-992, 2007.

Al Globus, James Crawford, Jason Lohn, and Anna Pryoine8uling earth
observing satellites with evolutionary algorithms Hroceedings of Interna-
tional Conference on Space Mission Challenges for Infolmnafechnology
2003.

Peter Haddawy and Steve Hanks. Utility models for gliedcted decision-
theoretic plannersComputational Intelligencel4:392—-429, 1993.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. Ana basis for
the heuristic determination of minimum cost patHEEE Transactions of
Systems Science and Cybernet®SC-4(2):100-107, July 1968.

Patrik Haslum. Additive and reversed relaxed readitghieuristics revis-
ited. InBooklet of the 2008 International Planning Competiti@d08.

Patrik Haslum.x™(P) = h'(P™): Alternative characterisations of the gen-
eralisation fromh™* to h™. In Alfonso Gerevini, Adele Howe, Amedeo
Cesta, and loannis Refanidis, editdPspceedings of the Nineteenth Inter-
national Conference on Automated Planning and Schedul®gRS 2009)
pages 354-357. AAAI Press, 2009.

144

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Malte Helmert. The Fast Downward planning systefaurnal of Artificial
Intelligence Researcl26:191-246, 2006.

Malte Helmert. Concise finite-domain representatitorsPDDL planning
tasks.Artificial Intelligence 173:503-535, 2009.

Malte Helmert and Héctor Geffner. Unifying the caugedph and additive
heuristics. In Jussi Rintanen, Bernhard Nebel, J. ChristoBeck, and Eric
Hansen, editor®2roceedings of the Eighteenth International Conference on
Automated Planning and Scheduling (ICAPS 20@3ges 140-147. AAAI
Press, 2008.

Jessey Hoey, Robert St-Aubin, Alan Hu, and Craig Bartil SPUDD:
Stochastic planning using decision diagramsPtaceedings of Proceedings
of the Conference on Uncertainty in Artificial Intelligengmges 279-288,
1999.

Jorg Hoffmann and Bernhard Nebel. The FF planningsyst-ast plan gen-
eration through heuristic searchournal of Artificial Intelligence Research
14:253-302, 2001.

Chih-Wei Hsu, Benjamim Wah, Ruoyun Huang, and Yixin €h&lew fea-
tures in SGPlan for handling preferences and constrainBDBL3.0. In
Proceedings of the ICAPS Booklet on the Fifth Internatid?lahning Com-
petition, 2006.

Henry Kautz, Bart Selman, and Jorg Hoffmann. SatpRlanning as satis-
fiability. In Booklet of the 5th International Planning Competitj@906.

Emil Keyder and Hector Geffner. Set-additive and tsprisics for plan-
ning with action costs and soft goals. Rroceedings of the Workshop on
Heuristics for Domain-Independent Planning, ICAPS-BG07.

Emil Keyder and Hector Geffner. Soft goals can be costpdway.Journal
of Artificial Intelligence Researcl36:547-556, September 20009.

Emil Keyder, Jorg Hoffmann, and Patrik Haslum. Seelaxed plan heuris-
tics. In Proceedings of the 22nd International Conference on Autetha
Planning and Schedulin@012.

145

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Jana Koehler. Planning under resource constraintroceedings of the
13th European Conference on Atrtificial Intelligenpages 489-493, 1998.

Richard Korf. Depth-first iterative-deepening: An opal admissible tree
search Artificial Intelligence 27:97—109, 1985.

Laurence Kramer and Mark Giuliano. Reasoning about sciteduling
linked HST observations with spike. FProceedings of International Work-
shop on Planning and Scheduling for Spat@97.

Laurence Kramer and Stephen Smith. Maximizing flexiailA retraction
heuristic for oversubscribed scheduling problemsPioceedings of IJCAI-
03, 2003.

Seth Lemons, J. Benton, Wheeler Ruml, Minh B. Do, andg8wok Yoon.
Continual on-line planning as decision-theoretic incrataksearch. IAAAI
Spring Symposium on Embedded Reasoning: Intelligence beéded Sys-
tems 2010.

D. Long and M. Fox. The third international planning qoatition (IPC3).
http://planning.cis.strath.ac.uk/competition/, 2002.

Derek Long and Maria Fox. Exploiting a graphplan franoekvin temporal
planning. InProceedings of ICAPS-2003003.

Mausam and Daniel Weld. Planning with durative actionstochastic do-
mains.Journal of Artificial Intellgience ResearcB1:33—-82, 2008.

David McAllester and Robert Givan. Taxonomic syntaxficst order infer-
ence.Journal of the ACM40(2):246-283, 1993.

A. Newell and H. A. SimonHuman problem solvingPrentice-Hall, 1972.

XuanLong Nguyen, Subbarao Kambhampati, and Romeoteandigenda.
Planning graph as the basis to derive heuristics for plathegis by state
space and csp seardchurtificial Intelligence 135(1-2):73-124, 2002.

146

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

S. Penberthy and D. Weld. Temporal Planning with Cardgirs Change.
In Proceedings of the 12th National Conference on Artificidklligence
(AAAI), 1994.

M. Alicia Pérez. Representing and learning qualitygroving search con-
trol knowledge. InProceedings of the International Conference on Machine
Learning pages 382-390, 1996.

W. Potter and J. Gasch. A photo album of earth: Scheduéndsat 7 mis-
sion daily activities. IProceedings of Space(Qp998.

R-Project.The R Project for Statistical Computing/ww.r-project.org.

Richard Russell and Sean Holden. Handling goal utdipendencies in a
satisfiability framework. InProceedings of the 20th International Confer-
ence on Automated Planning and Schedylpages 145-152, 2010.

Romeo Sanchez-Nigenda and Subbarao Kambhampati. niRtagraph
heuristics for selecting objectives in over-subscriptpanning problems.
In Proceedings of ICAPS-02005.

Herbert Simon. On the concept of the organizational.gdaministrative
Science Quarterly9(1):1-22, June 1964.

Herbert Simon. Motivational and emotional controlscofnition. Psycho-
logical Review74(1):29-39, January 1967.

David E. Smith. Choosing objectives in over-subsadoiptplanning. In
Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editersceedings
of the Fourteenth International Conference on AutomateanRing and
Scheduling (ICAPS 2004pages 393—401. AAAI Press, 2004.

David E. Smith. Planning as an iterative processPioceedings of the 26th
AAAI Conference on Artificial Intelligenc2012.

David E. Smith and Daniel S. Weld. Temporal Planningwitutual Exclu-
sion Reasoning. IRrocedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI) 1999.

147

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Edelkamp Stefan. Taming numbers and durations in théahehecking inte-
grated planning systendournal of Artificial Intelligence Research0:195—
238, 2003.

Son Tran and Enrico Pontelli. Planning with preferenasing logic pro-
gramming. Theory and Practice of Logic Programming(5):559-608,
2006.

Menkes van den Briel, J. Benton, Subbarao Kambhampati, Thomas
Vossen. An LP-based heuristic for optimal planning. In €iain Bessiere,
editor,Proceedings of the Thirteenth International Conferenc®uanciples
and Practice of Constraint Programming (CP 200¥dlume 4741 of_ec-
ture Notes in Computer Sciengeges 651-665. Springer-Verlag, 2007.

Menkes van den Briel, Subbarao Kambhampati, and Thdrassen. Plan-
ning with preferences and trajectory constraints by integegramming. In
Proceedings of Workshop on Preferences and Soft Constrain€CAPS-06
2006.

Menkes van den Briel, Romeo Sanchez Nigenda, Minh B. & Sub-
barao Kambhampati. Effective approaches for partial feati®on (over-
subscription) planning. IRroceedings of the Twentieth National Conference
on Artificial Intelligence (AAAI 2004 pages 562-569. AAAI Press, 2004.

Menkes van den Briel, Thomas Vossen, and Subbarao Kampati. Re-
viving integer programming approaches for Al planning: Ach-and-cut
framework. InProceedings of the Fifteenth International Conference on A
tomated Planning and Scheduling (ICAPS-(Qigges 310-319, 2005.

Vincent Vidal. YAHSP2: Keep it simple, stupid. Froceedings of the 7th
International Planning Competition (IPC’11Freiburg, Germany, 2011.

Steve Wolfman and Daniel Weld. The LPSAT engine and pigliaationto
resource planning. IRroceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI-99)pages 310-317, 1999.

Sungwook Yoon, J. Benton, and Subbarao Kambhampatiordime learn-
ing method for improving over-subscription planning.Aroceedings of the

148

Eighteenth International Conference on Automated Plagr@nd Schedul-
ing, pages 404-411, 2008.

[100] Terry Zimmerman and Subbarao Kambhampati. Learasgjsted auto-
mated planning: looking back, taking stock, going forwardl Mag.
24(2):73-96, 2003.

149

APPENDIX A
ADMISSIBILITY OF hGA!

150

To show the admissibility ok$4!, we can show that¢2'! captures a subset of
the constraints in the original SAS+ planning problem. 8ikigs' offers a further

relaxation, it is also an admissible heuristic.

Theorem 1. For large enough MA%2Y will always return solutions of value greater
than or equal to the original planning proble (that is, h;p is an admissible

heuristic).

Proof. For the multi-valued representation of the planning prohle/e can show
that all feasible solutions t& can be mapped to feasible solutions:gf'’. Hence,
h$2 is a relaxation of the original problem and is admissible mvioptimally
solved given an objective function that returns a value etguar greater than the
original goal utility dependency planning problem.

The constraints produced by 4.13 and 4.14 help ensure tratrgovard is
counted appropriately ih; p, and do not directly relate to tHeasibilityconstraints
in the original problem.

Recall that a solution td?, w, is a sequence of applicable actions starting
from the initial states,. The mappingr to a solution the encoding for finding
hip (a set of variable assignments in the integer program) egétr forward.
First, assume all variables il;» are initially assigned to 0. For each appear-
ance of an action inr, the corresponding variables iy in are incremented
by 1. That is,Ya, € m we increase the variablection(a;) by 1. We also in-
crement action effect variables corresponding.tae ef fect,,, such thatve; €
ef fectq,, ef fect(as,var(ef fecty,), ;) is incremented by 1. Prevail conditions
are handled similarly, wherép; € prevail,,, prevail(a;, var(prevailg, p,), p;) 1S
increased by 1. Goal utility dependencies and final statandsvare handled by

taking the final state given from applying all actionsqirin order),s,,. For every
151

variable,u € V we take the value assigned to itdp, f;, € D, and assign a value

of 1 toendvalue(v, fs,). To handle goal utility dependencies, we take each depen-
dency,Gy, and determine whether it is i3, (a polynomial time operation). If so,
then we assign a value of 1 goaldep(k).

This variable assignment scheme will always produce alfEasolution inh;p.
We show how each set of constraints is satisfied indepernydentl

Equation 4.1Q0 By definition of our translation, it is easy to see that tha-co
straints generated by this equation will always be satisfilde e f fect(a;, v, e)
andprevail(a;, v, f) IP variables will be incremented if and onlydttiona;) is
incremented. Hence, the constraints generated by equéatidnwill always be
satisfied.

Equation 4.9 Revisiting the definition of a feasible solution férhelps show
how these constraints will always hold in our translatiorec&l that a solution
is feasible inP only if an actiona; can only be applied to a state (i.e., a; IS
applicable ins;). One of the requirements for an action to be applicableasith
preconditions must hold ig;. For that to be the case, one of two possible cases
must be true. Firsts, may have contained the assignment= f; and no action
prior to a; has any effect (other than= f;) that changes. Second, some action
prior to a, in the action sequence, a;_,, could have contained the effect= f;,
and no other actions between_, anda, may have contained effects an(other
thanv = f;).t

Given our translation scheme, this would mean that comsgr@enerated by
equation 4.9 for valug on variablev would have a on the left side of the equation

if the first condition was met. Given the second conditior, ¢ffect variable om

These cases are intuitively easy to see and can be easilgdéry induction.

152

for the actionu;_, becomed on the left hand side (sineg_, transitioned into the
value f on variablev). Also, an effect variable foti; becomed on the right hand
side. This means that, provided there always exists antdffattransitions from
v = f;, the right and left hand sides will always be equal.

Finally, to handle the case where no such transition from f; exists, we use
theendvalue(v, f;) variable on the right hand side. This variable becomnesen
s, contains the assignment= f;. Similarly to action applicability, this occurs in
two cases. First, whesq contains the assignment= f; and no action inr contains
an effect orw (other tharw = f;). Second, when an actian,_;_,, contained the
effect assignment = f; and no other action aftes,_,_, contains any assignment
onwv (other tharw = f;). This effectively models “end flow”. Hence, the equations
will always be balanced in our translation.

Equation 4.11 The left hand side is equivalent to the left hand side of equa
tion 4.9. In the translation, IP variables associated whth pirevail conditions of
actions will always be increased by 1. Therefore, the prawglication constraints
will always be satisfied (with a large enoudh value).

Equations 4.13 and 4.14With the translation schemgoaldep(k) can only be
0 or 1. If goal dependency exists in the end statethen it has the value df. The
end state valuesndvalue(v, f), are also binary in nature. They similarly can only
be 1 if a particular valuef is in the end state. To violate equation 4.13, the sum of
all end values of a given dependency must be less than 1 ddbpidependency
existing. However, this cannot be the case because fordhslation ensures that
individual goal assignments within a goal utility depencieexist before increasing

goaldep(k).

153

Similar reasoning holds for equation 4.14. If a goal utititgpendency exists
(i.e., goaldep(k) = 1), then the associated end values (ie@dvalue(v, f)) must
have existed.

Objective Function: Since we have shown thatZ!! is a relaxation of the
original problem, we need now only show that the objectivefion allows thé; p
to return a value of greater or equal valugtoThis is quite straight forward to see.
The IP formulation is effectively equivalent to the objeetof P, the maximization
of net benefit. Therefore, when solved optimally it will alygareturn a value equal
to or greater than the optimal solutionfogiven that the problem is a relaxation of

the original. O

154

