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ABSTRACT  
   

Nanoporous crystalline oxides with high porosity and large surface 

areas are promising in catalysis, clean energy technologies and 

environmental applications all which require efficient chemical reactions at 

solid-solid, solid-liquid, and/or solid-gas interfaces. Achieving the balance 

between open porosity and structural stability is an ongoing challenge 

when synthesizing such porous materials. Increasing porosity while 

maintaining an open porous network usually comes at the cost of fragility, 

as seen for example in ultra low density, highly random porous aerogels. 

It has become increasingly important to develop synthetic 

techniques that produce materials with these desired properties while 

utilizing low cost precursors and increasing their structural strength. Based 

on non-alkoxide sol-gel chemistry, two novel synthetic methods for 

nanoporous metal oxides have been developed. The first is a high 

temperature combustion method that utilizes biorenewable oil, affording 

gamma alumina (γ-Al2O3) with a surface area over 300 cm3/g and porosity 

over 80% and controllable pore sizes (average pore width 8 to 20 nm). 

The calcined crystalline products exhibit an aerogel-like textural 

mesoporosity. To demonstrate the versatility of the new method, it was 

used to synthesize highly porous amorphous silica (SiO2) which exhibited 

increased mechanical robustness while achieving a surface area of 960 

m2/g and porosity of 85%. 
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The second method utilizes sequential gelation of inorganic and 

organic precursors forming an interpenetrating inorganic/organic gel 

network. The method affords yttria-stabilized zirconia with surface area 

over 90 cm3/g and porosity over 60% and controllable pore sizes (average 

pore width 6 to 12 nm). X-ray diffraction, gas sorption analysis, Raman 

spectroscopy, nuclear magnetic resonance spectroscopy and electron 

microscopy were all used to characterize the structure, morphology, and 

the chemical structure of the newly afforded materials. Both novel 

methods produce products that show superior pore properties and 

robustness compared to equivalent commercially available and currently 

reported materials. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 The diverse crystal structures of metal oxides are responsible for 

the many mechanical, thermal, electrical, optical,1 and catalytic properties 

they exhibit. Open porosity and high surface area are necessary for 

certain applications, such as thermal insulation, filtration, chemical 

sensors, batteries, solar cells, fuel cells, and catalysis.2,3 It is the 

combination of these two requirements that has made highly porous metal 

oxides desirable materials. Highly nanoporous metal oxides with 

accessible three-dimensional surface areas offer unprecedented 

opportunities in catalysis, energy technologies, environmental remediation, 

etc.,4-6 and there has been continual effort to develop new synthetic routes 

with a particular emphasis on better control of their chemical, physical and 

pore-structural characteristics.7-11 

Porous materials are classified by several metrics including pore 

ordering, connectivity and dimensionality, and pore size and pore size 

distribution, all of which determine the overall properties of the resulting 

material.2 Regarding the later, IUPAC has developed three categories for 

pore size classification; micropores whose diameters are less than 2 nm, 

mesopores whose diameters fall between 2 and 50 nm, and macropores 

whose diameters are greater than 50 nm.12 Microporous materials are 

utilized for molecular size selectivity and separation. Macroporous 
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materials are utilized for their efficient mass transport. Mesoporous 

materials can be utilized for size selectivity but contain pores large enough 

for suitable mass transport.  

In addition to size, pore connectivity and morphology directly 

influences the material's properties. The pores of open porous materials 

are accessible from the surface, allowing for increased fluid permeability, 

lower density and higher surface area as compared to closed porous 

materials whose pores are completely isolated.2 The larger surface area 

and interconnectivity of pores is desirable for catalysis and filtration 

purposes, but the increased porosity comes at the cost of mechanical 

strength. This is well demonstrated in the case of Aerogels. Aerogels are a 

type of low density, mesoporous material that exhibit an extensively open 

3D-connected nanopore structure with volume porosities that can reach 

up to 99.8% (that is, 99.8% of the material is empty).13 However, such 

high porosity is linked to structural fragility and thermal instability of 

aerogels. When aged in a liquid or heat treated they often undergo 

structural evolution by chemical transformation, making them a material 

with desirable properties but structural weaknesses.5 Aerogels will be 

discussed in further detail in Section 1.3. 

Silica (SiO2) is the leading metal oxide material in the aerogel 

research field, owing to the depth of research already done on its 

precursors, the ease and control of its synthesis, and the ability to tailor 

the final material for specific applications.5 The large scope of applications 
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for silica aerogels ranges from thermal and acoustical insulation, to 

Cerenkov detectors and catalytic supports. These applications utilize the 

unique optical and thermal conductivity properties of silica aerogels as 

well as the highly porous structure.13 

Alumina (Al2O3) aerogels accounted for about 8 % of the total 

publications on aerogels from 2009-2011.14 Conversely, alumina 

dominated the catalysis research field publication wise, ahead of silica, 

carbon, and metal organic frameworks (MOF’s). Alumina has many 

transition phases, one being γ-Al2O3 which is formed from the thermal 

dehydration of boehmite, AlO(OH). The crystal structure of γ-Al2O3, shown 

in Figure 1.1, is described as a defect spinel structure. Starting from a 

spinel structure with a chemical formula of M3O4 (M
2+(M3+)2O4), one third 

of the M+2 atoms are removed and the remaining M+2 atoms are replaced 

by M+3 to restore electrical neutrality ((M3+)2/3(M
3+)2O4). The resulting 

spinel structure with a chemical formula of M2O3 has 1/9 of all the cation 

sites vacant; i.e., (M3+)3(1−x)O4 where x = 1/9.  For γ-Al2O3, however, the 

exact distribution of these vacancies between tetrahedral and octahedral 

positions is still controversial.15  Gamma-Al2O3 is the desired polymorphic 

phase for catalytic application because of the surface chemistry that the 

phase exhibits due to coordinatively unsaturated sites. 
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  Another dominating material in the catalysis field is yttria-stabilized 

zirconia (YSZ). For applications such as a solid electrolyte in solid-oxide 

fuel cells (SOFC) and catalysis; high porosity, large surface area and 

thermal stability are required of the material. However, the success in 

producing such a material has been limited so far due to the difficult 

synthesis process and the tendency for structural collapse. The parent 

zirconia lattice has three different possible polymorphs, monoclinic, 

tetragonal and cubic. Monoclinic phase is formed in bulk zirconia at 

ambient pressure and at temperatures lower than 1170 °C. However, with 

the addition of 8 – 9 mol% yttria (Y2O3) the high temperature cubic phase, 

which is desired for its increased mechanical and thermal properties, may 

become stable or metastable at room temperature.16 Cubic YSZ adopts a 

fluorite structure (Figure 1.2), with zirconium cations occupying FCC 

positions, coordinated with eight equidistant oxygen atoms occupying 

Figure 1.1.  Defect spinel structure of γ-Al2O3, with Al octahedral (left) and 

tetrahedral (right) positions shown with tetrahedra.  
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interstitial sites. The primitive cell belongs to the space group Fm-3m and 

has lattice parameter a ≈ 5.12Å (the lattice parameter can vary with 

varying dopant mol %).  The substitution of Y3+ for Zr4+ causes the 

formation of oxygen vacancies to account for the charge imbalance. 

These oxygen vacancies are what give YSZ such high ionic conductivity 

and make porous YSZ materials desirable for SOFC applications.  

 

1.2 Sol-Gel Chemistry 

 Porous metal oxides can be synthesized through a variety of 

techniques but sol-gel chemistry is attractive due to the fact that the 

synthesis is done under room conditions at low temperature with 

inexpensive precursors. The ability to tailor the morphology, textural 

properties, and shape of the resulting material by simply varying the drying 

technique or precursors demonstrates the versatility of sol-gel chemistry.17 

Metal oxide sol-gel materials are typically prepared using a metal alkoxide 

Figure 1.2.  Cubic YSZ crystal structure. 
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precursor which then undergoes hydrolysis and condensation.18 The 

intimate mixing of the molecular precursors on an atomic scale makes sol-

gel synthesis attractive for multi-component systems.  The initial formation 

of sols, or stable colloids, is followed by polymerization across the volume 

of the container resulting in gelation. Lastly, drying of the gel produces 

homogeneous monoliths or powders.19 

 The formation of the sol can be achieved through various routes 

and precursors. Metal alkoxides are the most versatile precursor due to 

their high reactivity with nucleophilic solvents which are used during sol-

gel synthesis.20 However there are only a small number of metal alkoxides 

that are readily available and not sensitive to heat, moisture and light, 

making the precursor non-ideal for the synthesis of many transition metal 

oxides. Sols have also been prepared through the aqueous precipitation of 

metal ions in the presence of a base.18 Inorganic salts have been shown 

to be a versatile and inexpensive alternative to alkoxide precursors,21-23 

however their sol-gel polymerization is more complicated due to the 

presence of various molecular species that form depending on the initial 

reactant concentration, pH of the solution, and the oxidation of the metal.18 

The steps of sol-gel synthesis will be discussed in sequential order. 

 Sol-gel polymerization is initiated by the hydrolysis of the metal salt 

where a cation MZ+ is solvated by water molecules by dissolution of the 

salt in water. The hydrolysis equilibrium, as shown in Equation 1 is 



  7 

established with three types of ligands present in a non-complexing 

aqueous media: aquo (OH2), hydroxo (OH), and oxo (=O).18 

[ ] [ ]( ) [ ]( ) ++−++−+ +=↔+−↔− HOMHOHMOHM ZZZ 221
2  Equation 1 

The coordinated water molecules become more acidic due to the 

increased positive partial charge on the hydrogen. This increased charge 

is the result of a partial charge transfer between the filled 3a1 bonding 

orbital of the water molecule and the empty transition metal ion d orbital.  

The established equilibrium shown in Equation 1 depends on the 

magnitude of the charge transfer while the degree of hydrolysis is 

dependant on the coordination number, electronegativity and the charge 

density of the cation and the pH.18,24 Metal cations with high valence (Z > 

5) generally form oxo or oxo-hydroxo complexes while cations with lower 

valence (Z < 4) form aquo, hydroxo, and hydroxo-aquo complexes. The 

degree of hydrolysis of cations with Z=4 is pH dependant and the complex 

can be formed with a combination of oxo, hydroxo, and aquo ligands. 

 After hydrolysis of the metal cation, condensation occurs through 

oxolation or olation depending on the coordination unsaturation of the 

cation.18,24 Oxolation is the formation of M-O-M bridges. If the complex is 

coordinatively unsaturated then this occurs through nucleophilic addition. 

A two-step substitution reaction between oxo-hydroxo species occurs if 

the complex is coordinatively saturated. The first step being nucleophilic 

addition and the second being the elimination of water, forming a M-O-M 

bond.  The second route of condensation, olation, is the formation of 
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hydroxy bridges (M-OH-M) between metal centers through nucleophilic 

substitution of the coordinatively saturdated hydroxo-aquo complexes. 

Water acts as the leaving group while the hydroxo group acts as the 

nucleophile. As more water molecules leave the metal center, the hydroxo 

groups lose their nucleophilicity, halting condensation and requiring a 

further reaction initiator or catalyst for further hydrolysis and condensation 

to occur.  

 Organic epoxides have been added as gel-initiators for inorganic 

salt sol-gel syntheses.22,25,26 The epoxide acts as an acid scavenger, 

slowly increasing the pH facilitating the hydrolysis and condensation of the 

hydrated inorganic salts. The metal cation must be acidic enough to 

protonate the epoxide oxygen, whose ring is irreversibly opened by 

nucleophilic attack from the anionic conjugate base. The counter ion of the 

metal salt must be a stronger nucleophile than water, otherwise 

nucleophilic attack by water on the epoxide results in the formation of a 

diol and regeneration of a proton. Chloride and nitrates are sufficient 

nucleophiles, making chloride and nitrate metal salts excellent precursors 

for the epoxide addition method. The proper ring opening reaction results 

in the elimination of protons from solution and a gradual, uniform increase 

of pH which supports controlled oxolation and olation reactions to occur 

extensively, resulting initially in the formation of a sol and secondly the 

formation of a solid metal oxide gel network.  
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 The formation of a solid network during gelation results in a wet gel. 

The term “wet” refers to the solvent present inside of the pores created by 

the interconnecting metal oxide network. The method which is used to 

remove this liquid determines the final morphology and pore properties of 

the metal oxide material.  

1.3 Aerogels and Supercritical Drying Technique 

 The method of drying wetgels strongly influences the porous 

structure and morphology of the final material (Figure 1.3) adapted from 

Rolison and Dunn.27 Supercritical drying is done at high temperature 

forming aerogels, freeze-drying is done at low temperature forming 

cryogels, evaporative drying is done at ambient conditions forming 

xerogels and ambigels.13  

 

Figure 1.3  Various drying techniques used on sol-gel formed wet gels.  
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The solid structure of cryogels does not vary differently from that of 

aerogels, as both drying techniques remove the liquid form the pores with 

minimal destruction of the wetgel solid network, therefore cryogels will not 

be discussed further. Xerogels are the least porous of the materials, due 

to the collapse of the highly porous inorganic solid network as the solvent 

inside of the pores is evaporated off.5,13,28  During evaporation, as the 

liquid retreats into the gel body, a meniscus is formed inside of the pores. 

As this meniscus recedes through the pore structure, a large force due to 

capillary pressure (Equation 2) acts on the pore walls. The capillary 

pressure is dependant on the specific energy of the liquid-vapor interface, 

γLV, the contact angle, θ, and the surface to volume ratio of the empty 

pores, 
P

P

V

S
.29  

( )
P

PLV
C V

S
P

θγ cos
−=    Equation 2 

These forces are strong enough to cause the pore walls to collapse in on 

themselves (Figure 1.4), resulting in significant shrinkage of the gel body 

(greater than 75% by volume) and densification of the overall inorganic 

network. The ambient conditions under which xerogels are dried makes 

the evaporative drying technique attractive, but the loss of the highly 

porous structure formed in the wetgel proves to be a significant problem. 
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 Comparatively, when the liquid inside of the pores is replaced with 

air without significant change in the volume of the gel body or altering the 

solid structure, then an aerogel is formed.13 These highly divided solids 

have their original gel structure preserved, resulting in low density and 

high surface area materials. Samuel Kistler was the first to explore the 

possibilities of removing liquid inside of a gel network while minimizing the 

formation of capillary pressures by using a supercritical fluid.30 

Supercritical fluids are unique in that they can be thought of as a high 

density gas or low density liquid, allowing them to have liquid like solubility 

and nearly gas-like permeability and diffusion. Kistler exploited these 

properties by taking the solvent inside of the pores up to super critical 

conditions where there is no distinction between the liquid and vapor 

phase, and subsequently degassing the solvent while preserving the solid 

gel structure. At a supercritical state the liquid and vapor phases of the 

solvent have equal densities and there is no liquid-vapor interface, 

eliminating the formation of a meniscus and capillary pressure.  If the path 

Figure 1.4. Capillary forces due to the formation of a meniscus inside 

of a pore and the resulting stress on the solid network. 

network

pore fluid
forces from 

surface tension

pore
network

pore fluid
forces from 

surface tension

pore
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of heating and pressurization of the solvent never crosses the phase 

boundary (Figure 1.5) adapted from Pierre and Pajonk,5 then the solvent 

can be vented off once past the critical temperature, Tc, and critical 

pressure, Pc, leaving the solid gel structure in near the same state as it 

existed in the wetgel. 

 

 The process of supercritical drying requires the use of a high 

pressure autoclave, where the wetgel is heated in a closed environment 

so that the temperature and pressure can exceed Tc and Pc of the pore 

liquid. Due to the extreme conditions required to take most solvents up to 

supercritical state, carbon dioxide is one of the most common solvents 

used in supercritical drying of sol-gel derived materials. The Tc and Tp of 

CO2 are 31°C and 74 bar respectively. However, carbon di oxide is not 

miscible with water, one of the components present in the mother liquor 

Figure 1.5. Phase diagram of CO2 marked with possible supercritical 

drying path. 
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after sol-gel processing, so extensive solvent exchange is required prior to 

drying. If solvent exchange is not complete, the presence of a liquid-liquid 

interface due to immiscibility of solvents can cause the formation of 

capillary pressure inside of the pores.31 Even after a miscible solvent has 

been exchanged with the mother liquor inside of the pores, a sufficient 

amount of time is needed to flush the entire pore structure of the gel with 

liquid CO2 before taken up to supercritical conditions. Alcohols can be 

used as a supercritical solvent, however their high Tc makes the drying 

process more dangerous and some materials dissolve during alcohol 

supercritical treatment.  The final aerogel materials produced from the 

supercritical drying method are unique materials with incredible surface 

area and porosity properties, however the time needed for initial solvent 

exchange, CO2 flushing, and the high temperature and pressure required 

to reach supercritical conditions make the process dangerous, expensive, 

and time consuming. 

 Several ambient-pressure drying techniques have been developed 

for the synthesis of SiO2 aerogel-like materials, known as ambigels. The 

first technique requited surface modification of SiO2 wetgels by a series of 

solvent exchange steps that resulted in the conversion of surface hydroxy 

groups into silyl groups using chlorotrimethylsilane.32,33 This modification 

reduces the reactivity of the surface and when the gel shrinks during 

evaporation of the solvent there is no formation of Si-O-Si bonds across 

the width of the pores, causing irreversible narrowing. This results in the 
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gel “springing back” close to its original volume after the solvent has been 

evaporated. The critical requirement for this drying process is that the 

solid network of the gel must be strong and stable enough to withstand 

shrinkage of up to 25 percent by volume during drying and subsequent 

expansion back to the original volume of the gel without significant 

destruction of the network. The final ambigel material had an aerogel-like 

structure, but still exhibited a lower porosity and higher density then 

respective aerogels. 

 Ambigels could also be achieved if SiO2 wetgels were aged in a 

monomeric solution such as tetraethylalcoxysilane.34 The condensation of 

the monomers in the weaker areas of the gel, such as the particle necks 

and micropores, resulted in a significant increase in network strength. The 

more robust wetgel could then be dried at increased temperature with very 

minimal shrinkage. As stated above, the use of alkoxides as precursors 

and aging solvents becomes a limiting factor due to the toxicity and 

instability with handling when trying to synthesize non-silicate aerogel 

materials. It is apparent that there is a need for new synthetic routes for 

producing highly porous aerogel like materials that bypasses the use of a 

supercritical autoclave and are versatile enough to be applied to many 

metal oxide systems without relying on selective chemicals. 

1.4 Aging 

 The high temperature and pressure environment that wetgels are 

exposed to during supercritical drying causes a structural change. Even 
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though a wetgal has surpassed its gel point, the chemical reactions that 

bring about gelation continue well beyond this point.35 During the time 

after gelation, the gel undergoes polymerization, coarsening and phase 

transformation during aging. The first, polymerization, is when there is an 

increase in connectivity of the network through condensation reactions. In 

the coarsening process, there is dissolution of solid material from the 

positive curvature of the particle and re-precipitation of that material in the 

neck region between two particles where the solubility is less due to the 

negative curvature. This dissolution and re-precipitation causes an 

increase in strength and stiffness of the gel. Lastly, a phase transformation 

can occur through the reorganization of the solid structure. All of these 

aging effects are strongly influenced by various factors such as 

temperature, pressure, pH, type of solvent and concentration of solid 

material; such conditions that are changed during supercritical drying. It 

can be concluded then while there is little shrinkage during supercritical 

drying, 0-25% depending on synthetic conditions, the structure of the 

resulting aerogel is not the same as the network in the wetgel and that the 

solid network undergoes a strengthening during high temperature drying. 

Post-drying, an additional heating step is required for the strengthening of 

the solid structure and for possible phase transition from amorphous to 

crystalline for most metal oxide materials.    

  Aerogels are described as highly divided solids with metastable 

character,5 and if immersed in liquid they collapse immediately.28 For 
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example, silica aerogels loose their structural integrity upon immersion in 

a liquid due to the extreme capillary force exerted on the pore wall36 and 

undergo extensive densification/shrinkage above 850 ºC by particle 

sintering under viscous flow.11,13,37,38 In fact, such densification has been 

utilized to strengthen the silica aerogels by sintering at 900ºC for a short 

period of time (<60min) to give a volume density of ~80%.11  The resulting 

material is more robust but the post drying heat-treatment is an additional 

added step to the already multi-step process required for the synthesis 

and production of aerogels. 

1.5 High Temperature Combustion Synthetic Method 

 Looking at the full process required for the synthesis of aerogels 

brings to light the multitude of steps and bottlenecks present in the 

synthetic process and the flaws that are still present in the final material. 

The first synthetic bottleneck is the extensive solvent exchange that must 

be completed in order to get the wet gel ready for supercritical drying. 

Second, the high pressure autoclave required for supercritical drying is 

both energy and time intensive. Third, an additional heating step post 

drying is needed for any phase change required to obtain the desired final 

material. This heating step comes at the cost of decreased porosity but 

increased mechanical strength. Taking these issues into account, the idea 

for a new synthetic route that replaces the initial pore liquid with a liquid 

that could be rapidly combusted with minimal formation of liquid vapor 

interface, forming a solid residue to act as a structural support that could 
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be slowly removed all while at a temperature that would induce any 

desired phase change but not at the cost of porosity, appears promising.39 

The aforementioned synthetic technique will be referred to as the high 

temperature combustion synthesis from this point forward. 

 The liquid that replaces the initial pore liquid must possess such 

properties as high boiling point, low flash point, high carbon content, and 

similar viscosity as the exchanged solvent. A high boiling point is desired 

in order to achieve minimal formation of liquid-vapor interfaces, prior to 

combustion inside of the pores which is detrimental to the pore structure 

as seen in typical ambient temperature and pressure drying of wetgels. A 

low flash point is desired so that the liquid spontaneously combusts, 

without the need for external ignition, rapidly and at a temperature as 

close to the boiling point as possible. High carbon content results in the 

formation of a large amount of carbon residue which can act as a 

structural support for the solid metal oxide network once the pore liquid 

has been removed. Lastly, a similar viscosity to the replaced pore liquid is 

desired in order to insure complete and efficient exchange of the two 

liquids.  

Oil is a sufficient candidate that meets all of the above 

requirements as well as being economical and easy to handle. Vegetable 

oils are composed of 93-95% triglycerides by weight, typically with long-

chain fatty acids ranging 8-24 carbons in length with varying degrees of 

units of unsaturation and the presence of various functional groups, 
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depending on the species that the oil was extracted from.40  Recently, 

vegetable oils have become the most widely used renewable resource in 

the chemical and polymer industry, with 15% of the ~126 million tons 

produced annually being used in the chemical industry while 80% is used 

for human nutrition.41 Castor oil is an attractive oil from an industrial and 

chemical perspective because it is composed of up to 95% ricinolic acid, 

an ω-9 fatty acid that can be thermally polymerized. The presence of a 

hydroxyl group on C12 makes the oil miscible with alcohol, a property that 

could be utilized during solvent exchange. The wide variety of oils 

available, each with their own structural and thermal properties, gives for 

numerous possibilities of potential liquids to exchange into the pores of 

inorganic wetgels for the proposed high temperature combustion synthesis.  

Recycled oil, or waste vegetable oil (WVO), is an alternative to 

pristine oil when looking at large scale production of mesoporous 

materials using the high temperature combustion method. WVO is 

available in huge abundance as a waste product from the commercial food 

industry and has recently become the dominating precursor for the 

production of biodiesel.42 WVO is desired for replacing pristine vegetable 

oil owing to the fact that it is a cheaper raw material, eliminates the cost of 

waste product disposal and reduces the need to use land for bio-diesel 

producing crops. The versatility of the high temperature combustion 

synthesis of mesoporous materials would allow the use of any of the 

above described oils, with the stipulation that the pore liquid should first be 
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exchanged with a solvent that is miscible with both the mother liquor and 

the utilized oil. This versatility makes the synthesis attractive at both a lab 

scale and potentially could be applied at an industrial production scale. 

 The numerous application demands for highly porous metal oxides 

has brought to light the need for efficient, low cost, versatile synthetic 

processes able to produce materials with controllable pore properties and 

increased mechanical strength. The aim of this thesis is to present two 

new synthetic routes for the production of highly porous metal oxide 

materials and demonstrate the versatility of these processes by applying 

them to several metal oxide systems. The resulting materials are 

comparable or superior to those most recently reported in literature or 

commercially available.  
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CHAPTER 2 

CHARACTERIZATION TECHNIQUES 

2.1 Introduction 

All investigations reported in this thesis used a wide range of 

characterization techniques which further the understanding of the 

syntheses proposed and the final materials produced. Gas sorption 

analysis, in particular nitrogen sorption and desorption studies, were used 

to determine the surface area, pore size, and pore volume of all the 

produced materials. Powder X-ray diffraction (PXRD) was used for phase 

identification and crystallite size calculations. Transmission electron 

microscopy (TEM) and scanning electron microscopy (SEM) allowed the 

investigation of macro- and microscopic structural properties respectively. 

Raman spectroscopy was used in firmly identifying polymorphs of the YSZ 

materials. Solid state magic angle spinning 27Al nuclear magnetic 

resonance spectroscopy (27Al MAS NMR) was employed to examine the 

aluminum coordination environment in the γ-alumina. This chapter is 

divided into individual characterization techniques for which a brief 

discussion about the basic theory and application specific to this work is 

given to assist with the discussion and analysis of results in proceeding 

chapters.    

2.2 Powder X-ray Diffraction (PXRD) 

The structural arrangement of atoms and molecules can be probed 

using PXRD techniques. The short wavelength X-rays can be scattered by 
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electrons in a material and the collection of the elastic scattering events 

can be directly related to the symmetry and atomic distances of the 

material through Bragg’s law.1 Bragg’s law describes the conditions 

needed (scattering angle) for diffraction to occur for a given set of lattice 

plans, given the inter-plane distance and wavelength of the incident X-ray 

beam. The collected diffraction pattern contains peaks that are directly 

related to atomic distances, from which crystal structures can be 

determined (called Bragg reflection peaks or Bragg peaks). Crystallite size 

in nanocrystalline bulk materials can also be calculated from the diffraction 

pattern through Scherrer’s equation (Equation 1) which correlates the 

mean size of the crystallite domains (τ) to the broadening of the diffraction 

peak (β = Full-Width Half-Maximum (FWHM)).2  

θβ
λ

τ
cos

K
=     Equation 1 

Scherrer’s equation is applicable for average crystallite sizes up to about 

100 nm due to other factors that can cause peak broadening such as 

instrumental effects. When comparing the average crystallite size 

determined from Scherrer’s equation to the average particle size values 

calculated from other methods such as gas sorption and electron 

microscopy, it should be noted that discrepancies may occur if primary 

particles are not single crystallite domains.  

 PXRD was used for primary phase identification for the crystalline 

materials produced. For the porous alumina samples, for example, the 
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diffraction pattern for the desired gamma transition phase can be 

distinguished from the other metastable alumina polymorphs (delta and 

theta) that form at higher temperatures from the dehydration of boehmite. 

The defect spinel crystal structure of γ-alumina has been previously 

discussed in Chapter 1, and the transition from γ to δ and θ occurs through 

a change in the degree of order of the tetrahedral Al sublattice, with θ 

having a well ordered sublattice and monoclinic structure.3 The high 

temperature, thermodynamically stable phase α-alumina adopts the well 

known corundum structure. The difference in crystal structure allows for 

primary phase identification through diffraction techniques, which can be 

further verified by studies on the coordination environment of the 

aluminum atoms.  

2.3   Raman Spectroscopy 

Raman spectroscopy can be used for the investigation of materials 

on the atomic scale and in particular the short range structure. Raman 

active modes are attributed to a change in polarizability during the 

vibration of an interatomic bond or series of bonds, providing molecular 

structure information. The number of normal vibrational modes (3N – 6, 

with N = to the number of atoms) can be broken down into various 

irreducible representations in the point group of the molecule. Selection 

rules are then used to determine which symmetries are Raman active.  In 

the scope of this work, Raman spectroscopy is used for the phase 

identification of the produced yttria-stabilized zirconia (YSZ) materials. 
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Typically diffraction techniques are sufficient for determination of 

crystallographic structure information, but in the case where two phases 

have very similar structures resulting in indistinguishable diffraction 

patterns, Raman spectroscopy can be used for primary phase 

identification as the spectral patterns can be very sensitive to the 

symmetry of the vibrational normal modes. For YSZ, the tetragonal 

distortion from the cubic unit cell is only too small to be distinguished by 

the PXRD patterns.  

In order to understand why Raman spectroscopy can be used for 

phase identification near the phase boundaries of YSZ, the structural 

differences between the cubic and tetragonal phase of the parent lattice, 

ZrO2, must be understood, as well how Y2O3 stabilization of ZrO2 occurs. 

The cubic phase of zirconia adopts the fluorite structure, and has been 

extensively described in Chapter 1.  The tetragonal phase of YSZ is 

similar in structure to the cubic phase but adopts two distortions in order to 

prevent an undesirably close oxygen–oxygen contact and forms a 

distorted fluorite structure.4,5 Tetragonal zirconia has a body-centered unit 

cell belonging to the P42/nmc (No. 137) space group with lattice 

parameters a = 3.610 Å and c = 5.168 Å.6 In the tetragonal structure, 

zirconium cations are still coordinated to eight oxygen atoms, however the 

oxygen atoms are alternately displaced up and down along the c axis 

(Figure 2.1). This displacement brings four of the nearest neighbor oxygen 
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atoms closer to the zirconium, to a distance of ~ 2.1 Å, while moving four 

nearest neighbor oxygen atoms further away, to a distance of ~2.3 Å.   

The tetragonal unit cell is primarily used in assigning diffraction 

peaks, while the direct comparison between the cubic and tetragonal 

structures can be made when a ‘supercell’ of the tetragonal structure is 

used whose c axis is parallel and a and b axes are at 45° to the 

corresponding axes of the tetragonal cell.7 The rotation of the axes in the 

supercell makes them almost parallel to the cubic and monoclinic phase 

unit cell axes. The lattice parameters for the supercell are a = 5.105 Å and 

c = 5.168 Å, which gives c/a = 1.012.6  The c/a ratio is commonly used as 

a measure of ‘tetragonality’ of a zirconia sample.  The positions of the 

zirconium and oxygen atoms for the tetragonal unit cell and supercell are 

given in Table 1. 

 
Figure 2.1.  Crystal structures of tetragonal YSZ (left) and tetragonal 

supercell (right).  Small green spheres are Zr atoms and large red ones O 

atoms. 
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Table 1. Atomic positions for YSZ tetragonal cell and supercell.6 

  Position 
Atom Wykoff site Tetragonal Supercell 

Zr 2a 0,0,0  

 1a  0,0,0 

 1b  ½, ½, 0 

 2g  0, ½, z’a 

O 4d 0, ½, za  

 8l  x, y, za 
a z = 0.199, z’ = ½, x = y = ¼ 

 

When doping zirconia with other oxides, such as Y2O3, to achieve 

stabilization of the high temperature cubic phase, a general mechanism is 

fairly well understood.6 The divalent or trivalent cations of the dopant oxide 

cause a charge imbalance when they are substituted with Zr4+, causing 

the formation of oxygen vacancies in the lattice. The cations become 

displaced outward as the oxygen atoms shift closer to the vacancy sites 

due to their inherent positive charge. 

The similar crystallographic structures of cubic and tetragonal YSZ, 

together with the low scattering ability of oxygen, makes it difficult to 

distinguish between the two structures using X-ray diffraction techniques. 

However, the transition from cubic to tetragonal phase occurs through the 

displacement of oxygen from their ideal sites in the fluorite structure of the 

cubic phase,8 and the elongation of the c axis in the tetragonal phase.4 

Raman spectroscopy, which is sensitive to the polarizability of the oxygen 

ions, can be used to clearly identify the presence of both tetragonal and 
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cubic phase due to the transformation that occurs with the oxygen 

sublattice.9 The two distortions give rise to six distinct Raman active 

modes in the tetragonal phase at approximately 115, 266, 326, 474, 616 

and 646 cm-1 which can be assigned to the 3Eg, 2B1g, and 1A1g 

symmetries (Figure 2.2, adapted from Todorovska10). In contrast, the 

cubic phase is identified by one broad peak in the range of 530 – 670 cm-1 

which is assigned to T2g, and other poorly defined features as a result of 

the disorder in the oxygen sublattice, eliminating long range order. 11 It is 

proposed that the substitution of yttrium for zirconium and the resulting 

formation of oxygen vacancies cause the oxygens immediately 

surrounding the vacancies to slightly collapse around the defect.9 The 

presence of tetragonal or cubic phase in YSZ materials can be determined 

using Raman spectroscopy, allowing the degree of stabilization to be 

determined. 

 

Figure 2.2  Representative Raman spectra of tetragonal (1) and cubic (2) 

stabilized zirconia. Adapted from Todorovska.10 
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2.4   MAS 27Al NMR 

 Solid state nuclear magnetic resonance (NMR) is a technique that 

can be used to investigate the structure of materials on the atomic scale, 

in particular the local geometry and coordination environments of atoms, 

and can be applied for both ordered (single crystal) and disordered 

(amorphous) systems. 27Al is one of the most thoroughly studied nuclides. 

With a spin of I = 5/2, 27Al has a non-spherical distribution of nuclear 

electrical charge. This anisotropic distribution results in a nuclear electric 

quadrupole moment in addition to the magnetic dipole moment. This 

makes the nucleus interact not only with the applied magnetic field but 

also the electric field gradients present at the nucleus.12,13 The presence 

of quadrupole interactions causes displacement from the isotropic 

chemical shift as well as peak broadening and distortion. In order to 

negate these effects, 27Al spectra are often acquired at the highest 

possible field strength along with being coupled with magic angle spinning 

(MAS) to narrow the 27Al resonances. In the case of nuclei with spins 

greater than ½, MAS helps reduce the second order effect on the central 

transition due to quadrupole coupling, however this effect can not be 

completely eliminated even under very rapid magic-angle spinning. It is 

generally accepted that the “true” isotropic shifts for 27Al are usually 

displaced to more positive values (less shielded) than reported 27Al peak 

positions.12  
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 For the scope of this thesis, MAS 27Al NMR was used for the phase 

confirmation for the porous alumina (Al2O3) products. Alumina materials 

made from the sol-gel route, or dehydration of boehmite (AlOOH), can 

form four possible phases: gamma (γ), delta (δ), theta (θ), or alpha (α). γ-

Alumina is the desired phase for the porous materials presented, as a 

density increases is observed with the transition to subsequent phases. 

The crystal structure of γ-alumina has been presented in Chapter 1. The 

shifts observed in 27Al NMR are strongly dependant on the coordination 

environment of Al and the nature of the coordinating atoms. In the case of 

Al-O environments, there is a distinguishable separation between the 

chemical shifts for 4-, 5- and 6-coordinated Al.12 Al in a 4-coordinated 

environment gives rise to a shift occurring around 50 to 80 ppm while the 

shift for 6-coordinated Al is from –10 to 15 ppm. The chemical shift for 5-

coordinated Al falls in between around 30 and 40 ppm. The structure of γ-

alumina has both tetrahedral and octahedral aluminum sites while α-

alumina contains only octahedral aluminum sites and hence the two 

phases can be easily be distinguished by the presence or absence of the 

chemical shift in the region from about 50 to 80 ppm (Figure 2.3). The 

identification of the highly desired penta-coordinated aluminum ions, 

whose coordinatively unsaturated structure provide catalytic reactive sites, 

can be difficult due to the previously discussed peak broadening and side 

band formation and requires the acquisition of a high resolution spectra. 
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  2.5  Electron Microscopy 

 Electron microscopy can be used to examine the microstructure 

and homogeneity of surfaces using lower energy electrons in scanning 

electron microscopy (SEM), as well as the nanostructure, primary particle 

morphology, size, and crystallinity through the use of higher energy 

electrons in transmission electron microscopy (TEM). The strikingly high 

resolution achieved in TEM is due to the de Broglie wavelength of 

electrons that is shorter than that of photons used in optical microscopes. 

Furthermore, the electron’s low mass and negative charge allows an 

electrostatic interaction with the electrons in the inspected material, 

causing electron scattering.14 These scattering events create a diffraction 

pattern that can be used to identify the crystal structure and crystalline 

nature of a material. TEM and SEM were both used to examine the micro- 

Figure 2.3.  MAS 27Al NMR of commercially available γ – Al2O3 and α – 

Al2O3. 
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and nano-structures of the materials and also to verify primary particle 

size and crystallinity.    

 Bright-field TEM imaging is commonly used for the imaging of the 

bulk or “gross” morphology, mesoparticle size and morphology as well as 

the determination of atomic ordering of aerogel materials.15 By defocusing 

the image so that Fresnel fringes are observed, which are due to an 

interference effect of the electron plane waves, individual particles within 

the structure can be easily seen. The multi-dimensional structure of 

aerogel-like materials will cause the fringing to appear at different focus 

settings relative to the depths of the particles being examined. This can be 

exploited by taking a set of through-focus images which will go through 

underfocus, Gaussian focus, and over focus conditions and allow the 

connectivity of the particles to be easily imaged. Aerogels exhibit a very 

unique gross morphology which consists of bonded nanoparticles that 

form a bicontinuous, multidimensional nanoscale porous network, as 

schematically shown in Figure 2.4. It is expected that the highly porous 

materials presented in this work will possess a similar aerogel-like 

structure, which can be easily confirmed through TEM studies. 

 
Figure 2.4.  Schematic drawing of 3D aerogel structure 
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 Selected-area diffraction can be used to determine the structural 

ordering of the porous materials. Diffraction patterns of amorphous porous 

materials will show diffuse rings, while materials with crystalline 2 – 100 

nm diameter particles will produce sharp rings. Crystalline porous 

materials with crystallite diameters greater than 100 nm will produce 

diffraction patterns with sharp spots.15 The diffraction patterns, which are 

formed “pictures” of the distribution of the scattered electrons, are directly 

related to the specific spacing in the crystal through Equation 2 where R is 

the measured distance between diffraction spots on the diffraction pattern, 

λ is wavelength of incident electrons, L is the camera length and d  is the 

corresponding crystal spacing.14 For crystalline materials, the defined 

spotted diffraction pattern can be used to determine the d-spacing. 

LRd λ=     Equation 2 

In polycrystalline or nanocrystalline materials, the sharp rings seen in a 

diffraction pattern are formed due to the shape effect, causing broadening 

of the reciprocal lattice points. In amorphous materials the probability 

function that defines the locations of neighboring atoms is not uniform on 

long range, resulting in broad diffraction rings.14  

The size, shape and connectivity of the primary particles are 

strongly dependent of the synthetic conditions and precursors, as well as 

the actual chemical composition of the produced materials. For example, 

YSZ aerogels and xerogels show very different gross morphologies,16 

while varying between an aluminum chloride and aluminum nitrate 
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precursor changes the shape of the primary particles in γ-alumina 

aerogels.17 The morphological homogeneity, particle connectivity and 

particle size greatly influence the overall structural properties of highly 

porous materials, such as aerogels and the materials presented in this 

wok, making electron microscopy key in the understanding and 

investigation the structure of such materials.  

2.6  Gas Sorption Studies 

The use of volumetric physisorption to analyze the surface area 

and pore properties of porous materials is a well established method, with 

the chosen gas adsorbate dependent of the type of material being 

analyzed and pore properties. For all the presented materials, it is 

assumed based on previous synthesis reports that the newly formed 

materials will exhibit mostly mesoporous character. A volumetric method 

was used to measure the adsorption isotherm.  For this method of 

analysis the material being studied is held at a constant temperature (77 

K) while known volumes of adsorbate (nitrogen) is introduced. Once the 

system has reached equilibrium, the pressure is measured.18 The volume 

adsorbed is plotted versus the adsorptive pressure, which is expressed as 

a ratio of the adsorptive pressure over the standard vapor pressure over 

the bulk liquid, resulting in an isotherm which can then be used to 

calculate surface area and pore properties using various mathematical 

models. Nitrogen gas sorption studies were performed on all produced 

materials and Braunner-Emmett-Teller (BET) specific surface area, 
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Barrett-Joyner-Halenda (BJH) pore distribution plots and average pore 

diameter are reported. A brief description of these models will be given, as 

a full review of all the possible applied analysis mathematical models is 

outside the scope of this thesis. 

The variation of adsorbate-adsorbent interactions as well as the 

pore geometry gives rise to varying shapes of isotherms, which can be 

classified into six different types as defined by deBoer, Brunauer, and 

Gregg (Figure 2.5).18-20 Microporous materials give Type I, while non-

porous or macroporous materials with high energy of adsorption give Type 

II. Type III isotherms are indicative of non-porous or macroporous 

materials with low energy of adsorption. Type IV and type V isotherms are 

both characteristic of materials with mesoporosity with high and low 

energy of adsorption respectively. Type IV isotherms can be attributed the 

material having multiple pore sizes. 

 
Figure 2.5.  Adsorption isotherm types. 
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The mesoporous materials discussed in this work are generally 

characterized by a Type IV isotherm. Initially, monolayer adsorption 

begins and all adsorbed molecules are in contact with the surface of the 

material causing an initial sharp increase in quantity adsorbed over a 

small range of relative pressures (~ 0 – 0.1), forming a characteristic 

“knee” at low relative pressures.20 Once monolayer adsorption is complete 

and multilayer adsorption begins, a slower increase in quantity adsorbed 

is observed with increasing partial pressure as not all of the adsorbate 

molecules are in contact with the surface. At a critical adsorbate film 

thickness, capillary condensation begins, filling the residual pore space 

with condensate and the formation of a meniscus occurs. As the pores 

continue to be filled, a steep increase in amount adsorbed over high 

partial pressures is observed until saturation is reached. The presence of 

macropores can be verified by a sharp increase in quantity adsorbed as 

the relative pressure reaches 1. During the desorption process, 

evaporation of the condensate inside of the pores occurs by the thinning 

of the liquid meniscus and adsorbed layers. The condensation and 

respective evaporation are both processes that are strongly dependent of 

adsorbate-adsorbate and adsorbate-pore wall interactions which are 

influenced by pore size, pore geometry, and surface energy of the 

adsorbent. If these interactions are significantly different between 

adsorption and desorption, then a hysteresis is observed. Different pore 

shapes can be identified by various hysteresis shapes. 
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 Specific surface area was determined assuming the BET 

mathematical treatment.19 The method for determining specific surface 

area of a material (S) is given in Equation 3, where the volume of gas 

adsorbed when the entire surface of the material has monolayer coverage 

(Vm) is unknown. The average area occupied by one molecule of 

adsorbate in a monolayer and the molar volume of gas at STP are Am and 

VM respectably.  

M

mAm

V

ANV
S =     Equation 3 

The BET model is used to solve for Vm (Equation 4) where the volume 

adsorbed in the relative pressure rage of 0.05 – 0.35 (the region wherein 

surface coverage is approximately 100%) for high energy surfaces such 

as silica and alumina. In this model, V is the volume of gas adsorbed at 

STP, Vmon is the volume of gas required for a monolayer and C is a 

constant which describes the attraction forces of the adsorbed molecules 

to each other and to the surface of the material.18  

xCx

C

V

V x

mon )1(1)[1( −+−
= ,          where x = 

sP

P
    Equation 4 

The mesoporosity of the materials was determined using the BJH 

model which calculates the average pore size and total pore volume by 

dividing the range of pore sizes into groups that then have a collective 

average size.20 The total pore volume is derived from the amount of vapor 

adsorbed when all pores are filled with condensed adsorbate, near a 
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relative pressure of 1. BJH analysis calculates the average pore size and 

pore volume based on the emptying of mesopores over a step-wise 

reduction of relative pressures, examining two critical steps; the 

evaporation of the pore core volume and the evaporation of the adsorbed 

layer.  The critical relative pressure that pores lose their “core”, which is 

defined as the volume of condensed adsorbate which evaporates all at 

once when the critical pressure for that radius is reached, is determined by 

the Kelvin equation (Equation 5). The Kelvin radius of a pore, rK, is 

calculated from the gas-liquid surface tension, γ, volume of one mol of 

condensate at temperature T, Vmol, and the contact angle between the 

liquid and pore wall, θ.18 
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The thickness of the adsorbed layer in each pore is calculated using the 

thickness equation (Equation 6) in which Va is the volume of adsorbed gas, 

Vm is the volume of gas for a monolayer, and τ is the thickness for a 

monolayer. 

τ
m

a

V

V
t =          Equation 6 

The use of the Kelvin and Thickness equation allows the amount of 

adsorbate lost in a desorption step to be related to the average size of 

pores that empties during that particular step, resulting in the 
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determination of pore size distribution with respect to pore volume. From 

this, cumulative pore volume and average pore size can be calculated for 

the range of pores 1.5 – ~100 nm in size due to the limitations of the 

instrument employed.  

 BJH analysis is not the most ideal for mesoporous materials with a 

wide range of pore sizes and all calculated values must be understood to 

be mathematical estimations under drastic assumptions on the actual 

conditions of the studied material. The first assumption made using this 

model is that all of the pores are rigid and have a regular shape, which is 

only true for ordered porous materials. The second assumption is that the 

thickness of an adsorbed film inside of a pore is equivalent to that on a flat 

surface, ignoring any interactions that arise due to the proximity of 

adsorbed films to each other inside of the pores. Thirdly, BJH analysis 

assumes that there are no micropores. Lastly, the assumption is made 

that size distribution does not extend continuously from the mesopore 

range to the macropore range, meaning that a plateau must be observed 

in the adsorption isotherm as the relative pressure approaches 1.  

The majority of the assumptions made in the BJH analysis model 

deviate from the actual conditions of materials being analyzed. The 

materials presented in the proceeding chapters are exhibit disordered 

porous structures, with irregular pore shape, size, and connectivity.  Most 

of the materials also exhibit a hierarchically porous structure, meaning that 

their solid walls contain micropores, while the primary particles form a 
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mesoporous structure with the possibility of macropores forming as well. 

However, despite the large discrepancies in the assumptions made in the 

BJH model, it is one of the most well accepted models used currently to 

report mesoporosity, for both ordered and disordered porous materials. 

Therefore, in order for ease of comparison with previously reported 

materials, standard materials, and keeping with the conventionality of gas 

sorption data and analysis presented in literature, the BJH model will be 

used for reporting the cumulative pore volume and average pore diameter.  
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CHAPTER 3 

PREPARATION OF HIGHLY POROUS GAMMA ALUMINA VIA 

COMBUSTION OF BIORENEWABLE OIL 

3.1 Introduction 

Highly mesoporous, transparent γ-alumina particulates were 

successfully prepared using the non-alkoxide sol-gel based synthesis and 

high temperature combustion method discussed in Chapter 1. Upon using 

a pristine or biorenewable oil, the new method affords high porosity (80 – 

88 %), high surface area (295 – 375 m2/g) γ-alumina products with 

controlled pore sizes (average pore diameter = 11 – 21 nm), by achieving 

rapid solvent removal and calcination simultaneously through a single 

combustion step.  The products were characterized by elemental analysis, 

powder X-ray diffraction, solid-state NMR, and high-resolution 

transmission electron microscopy with selected area electron diffraction 

for morphology and structure identification, and ATR-IR spectroscopy for 

surface chemistry and functional groups, and nitrogen 

adsorption/desorption analysis for pore properties. The promising results 

indicate that the new method may be suitable for high-volume production 

of highly porous metal oxides with aerogel-like pore architectures. 

Porous, high surface area γ-Al2O3 materials are widely used in 

catalysis applications in the chemical and petrochemical industry, such as 

the cracking and hydrocracking of petroleum, and the steam reforming of 

hydrocarbon feedstocks.1-3 as well as separation applications.4 
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Compositional, surface area, and porosity control of the material is critical 

for these applications. Sol-gel synthesis is one of the most popular 

synthetic routes for the production of alumina materials and has been 

utilized since initial inception by Yoldas in 1973.5 Yoldas observed that the 

catalyzed hydrolysis and condensation of aluminum alkoxide precursors 

resulted in the formation of solid alumina wetgels that then could be dried 

to form porous transparent alumina materials. 6-8 Since Yoldas’ work, 

aluminum alkoxides have been the most popular precursors for sol-gel 

synthesis of alumina materials until recently, when Baumann et. al. were 

able to obtain transparent alumina aerogels using aluminum salts as 

precursors.9 After being solvated in water, Al(III) cations form a 

hexahydrated complex which acts as an acid, forming hydroxylated 

species that undergo condensation through olation and oxolation 

reactions.10  As the pH is slowly and uniformly increased with the aid of an 

epoxide that acts as a proton scavanger, polynuclear species precipitate 

out of solution and the condensed solid phase spans the volume of the 

solution, forming a complete solid gel.9  

Two parameters that strongly influence the structure and 

mechanical strength of the resulting aerogel material are the anion of the 

aluminum salt precursor and the solvent used during the sol-gel synthesis. 

The hydrolysis and condensation of the hydrated aluminum species as 

well as the aggregation of the colloidal particles is affected by the 

complexing character of the salt anion, changing the final primary particle 
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morphology. Also, the nucleophilicity of the anion towards the protonated 

epoxide varies depending on the solvent used, causing a large variation in 

gelation time. It has been found that AlCl3·6H2O in a 50/50 by volume 

H2O/ethanol solution afforded less dense and more mechanically robust 

aerogels due to the interconnected, fiber-like particles that formed a 

weblike microstructure.9 The work done by Baumann and co-workers 

systematically examines the variation of aluminum salt precursors and 

solvents in an alkoxide free synthesis of alumina aerogels and therefore 

will not be covered further within the scope of this chapter.  

Another challenge facing the non-alkoxide sol-gel synthesis of non-

silicate metal oxides is the significant amount of water in the pores and in 

the solid component present from the precipitation of metal oxides from an 

aqueous solution  The dried inorganic gels are typically metal oxo-

hydroxides or hydrated metal oxides with poor crystallinity, rather than the 

targeted crystalline metal oxides, although they may have a very high 

surface area even when dried under ambient conditions.11-13  For 

crystalline metal oxide products, a subsequent heat treatment through 

calcination is required to drive off the crystal water and/or hydroxyl groups 

and to provide crystallinity, but this often induces pore collapsing.11,14 It 

would be desirable to find a method that avoids time/energy-intensive 

drying processes and achieves rapid removal of the pore liquid and 

calcination of the inorganic solid component simultaneously producing 
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high surface area, porous γ-Al2O3 materials that are comparable to 

aerogels. 

3.2 Experimental Section 

3.2.1 Synthesis of Porous  γ-Al2O3  

The preparation of the initial wet alumina gels followed the 

inorganic precursor method described by Baumann et al. in which 

AlCl3·6H2O is employed as an aluminum ion precursor for alumina aerogel 

preparation.9  In order to examine the effect of the precursor 

concentrations on the pore characteristics, six samples (a – f) were 

prepared with different Al3+ concentrations from 0.46 to 1.23 mol/L (Table 

1).  The 0.61 mol/L concentration (sample b) corresponds to the one 

employed by the chloride precursor method by Baumann et al.  The 

experiments were performed also for the precursor concentrations lower 

than 0.46 mol/L but did not provide satisfactory results.  In a typical 

procedure, a proper amount of AlCl3·6H2O (Sigma-Aldrich, 99%) was 

dissolved in 20 ml of a 50/50 volume mixture of deionized water and 

absolute ethanol (Decon Laboratories, Inc.).  Propylene oxide (PO) (1,2-

epoxypropane, Sigma-Aldrich, 99%) was then added to the clear solution 

in a molar ratio of Al3+:PO of 1:10 and stirred for 10 min.  The reaction was 

exothermic and after stirring the solution had a pH around 2.  The solution 

was then kept at room temperature for gelation which took place typically 

within 3 hours as the pH gradually reached 5.  After three days of aging in 
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a closed container, the gel was broken into smaller pieces of ca. 1 cm3 in 

size and placed in a dimethyl sulfoxide (DMSO) (Sigma-Aldrich, 99.9%) 

bath for three days.  Castor oil is miscible with DMSO, tetrahydrofuran 

(THF) and alcohols. The gel pieces were then transferred to a castor oil 

(The Chemistry Store.com Inc., Cayce, South Carolina, Catalog No. 

51006-5) bath at 50 ºC for three days while occasionally stirring to ensure 

the homogeneity of the olegel.  The soaking periods for water/ethanol–

DMSO and DMSO–oil exchange steps were chosen to ensure full 

exchange and may be shortened if desired.  Upon soaking in DMSO, the 

gels remained rigid during the solvent-exchange period.  Long-term effect 

of DMSO on the gel structure was not examined.  However, it is 

mentioned that the gels slowly dissolve in DMSO upon heating at about 80 

ºC.  As the oil replaced DMSO in the gel, the gel became much harder 

probably due to the high viscosity of the oil.  The oil-soaked gel (olegel) 

pieces were then taken out from the oil bath and placed evenly on a hot 

plate at about 700 ºC.  The olegel pieces ignited instantly with a large 

flame and broke apart into particulates.  The flames ceased within three to 

six minutes and the product was then heated at 700 ºC for 10 hours in air 

in order to ensure the complete burn-off of any carboneous species.  

Alternatively, the removal of the carboneous species could be completed 

under oxygen flow at temperatures as low as 500 ºC for less than three 

hours, without affecting the crystallinity of the final products.  
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3.2.2 Physical Characterization  

High-resolution transmission electron microscopy (HRTEM) was 

performed on a Hitachi HNAR-9000 TEM (LaB6 source, accelerating 

voltage 300kV, Scherzer resolution 0.18 nm).  The TEM samples were 

prepared by first grinding in an agate mortar in ethanol and ultrasonically 

dispersed for 10 minutes.  A drop of the solution was deposited on a 

copper grid covered with a holey carbon film and dried on a hot plate in air.  

The images were taken under bright field conditions and slightly 

defocused to increase contrast.  Selected area electron diffraction (SAED) 

pattern of products was also collected from TEM studies.  

Particle size, phase information, and crystal structure were 

determined using powder x-ray diffraction, collected using a Siemens 

D5000 diffractometer with Cu Kα radiation. MAS 27Al NMR spectroscopic 

studies for phase identification as well as coordination environment of 

Al(III) species, were carried out at the resonance frequency of 800 MHz 

with a rotation frequency of 60 kHz, using Varian Dual Solids/Liquids NMR 

Spectrometer. The presence of organics through the entirety of the 

synthesis was monitored using attenuated total reflectance infrared (ATR-

IR). These spectrometic studies were conducted on a Thermo Nicolet 380 

FT-IR Spectrometer with a Smart Orbit accessory equipped with a 

diamond crystal plate.  Elemental analyses were performed with Perkin-

Elmer 2400 Series II CHNS/O Analyzer in order to estimate with the 

amount of residual carbon in the products.   



  50 

Brunauer-Emmett-Teller (BET) surface areas were measured with 

a Micromeritics ASAP 2020 volumetric adsorption analyzer with nitrogen 

as the adsorbate at 77 K.  Prior to the analysis, samples weighing around 

100 mg were degassed at 350 °C for at least 10 hours un der vacuum until 

a residual pressure of ≤ 10 µmHg was reached. Specific areas were 

calculated according to the BET equation, using nitrogen adsorption 

isotherms in the relative adsorption range from 0.06 to 0.2.  For the 

calculation of pore size distribution, the desorption branch was considered 

and the pore volume was obtained from the amount of nitrogen adsorbed 

at a relative pressure of 0.99.  Mesopore size distributions were obtained 

using the Barrett-Joyner-Halenda (BJH) method assuming a cylindrical 

pore model.15  

3.3 Results and Discussion 

3.3.1 Synthesis 

Figure 3.1 illustrates the overall synthetic procedure.16  As in typical 

sol-gel based porous materials synthesis, our new method starts with the 

formation of an inorganic wet gel and subsequent solvent-exchange steps.  

Unlike in those methods that rely on drying as the way of subsequent pore 

liquid removal, however, the new method employs a combustion process 

which removes a high boiling point organic liquid, castor oil, by burning.  

The original liquid is first replaced by an oil-miscible solvent, DMSO.17  

The solvent is then replaced by an oil to produce an oil-soaked gel (called 
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“olegel” hereafter).  In order to remove the oil from the gel pores, the 

olegel is quickly heated and combusted.  The vegetable oil or plant oil 

does not evaporate significantly before ignition, which avoids serious gel 

shrinkage and pore collapsing during heating.  This combustion 

dehydrates/crystallizes the pore wall material simultaneously without 

drastic pore collapsing.  The removal of all the carboneous species by the 

combustion and calcination leaves a highly porous metal oxide product 

(called “pyrogel” hereafter).  

 

Figure 3.2a and 3.2b show γ-Al2O3 pyrogels that were obtained as 

glassy (semi)transparent particulates from our experiment.  Olegels burn 

readily, generating large flames, because of the high content of oil in the 

material.  During pyrolysis of oil, the gush of the volatile gases breaks the 

pyrolyzed olegel pieces into small particulates with a broad size range 

from several hundred microns to a couple of millimeters.  After complete 

combustion, the individual particulates are transparent under microscope 

(Figure 3.2b).  Such syntheses were repeated several times, confirming 

 

Figure 3.1.  Pyrogel process for preparation of highly mesoporous 

metal oxides. 
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the reproducibility of the process in terms of both the aforementioned 

physical characteristics and other nature of the materials described 

henceforth.  The elemental analysis shows that the residual carbon 

content is less than 0.25 wt% for the samples and this proves that the oil 

can be burned off almost completely without leaving any significant 

amount of carboneous substances in the products.  The substantial 

transparency is due to the absence of grain boundaries which results in 

low light-scattering.  The glassy, granular form of the products can be well 

suited for industrial processes unlike the powder form, which may possess 

drawbacks, such as dusting and high pressure-drops.2   

 

3.3.2 Powder X-ray Diffraction 

All the six samples exhibit similar patterns regardless of the initial 

precursor concentrations, and the powder XRD pattern of the lowest-

concentration Sample a is shown in Figure 3.3.  The initial wet gels and 

Figure 3.2.  γ-Al2O3 pyrogel particulates (sample a) (a) under a room 

light and (b) under microscope.  The big particulates around the center 

of (b) are about 0.5 mm in length. 
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olegels were amorphous based on the absence of any discernable 

diffraction peaks in their powder XRD patterns.  After the combustion, all 

the pyrogel products show broad Bragg reflection peaks in the XRD 

pattern, indicating some crystallinity.  All the Bragg reflection peaks were 

assigned to the structure of γ-Al2O3 (ICDS 66559).9,18,19   

The γ-Al2O3 structure is typically described as a defect spinel 

structure with varied degrees of a tetragonal distortion (c/a = 1 ~ 0.985) 

which depend on the heating condition.20,21  The broadening of the Bragg 

peaks is caused by the disordering of the aluminum ions particularly at the 

octahedral sites as well as the small particle sizes.  Because of the face-

centered cubic close packing of oxide ions, the (400) and (440) reflections 

tend to dominate the XRD pattern.9  In Figure 3.3, the (400) and (440) 

reflections of the spinel are neither split into two peaks, nor apparently 

asymmetric, which indicates that the products do not exhibit a strong 

tetragonal deformation.  The result positively excludes as a possible 

candidate the δ-Al2O3 structure whose so-called “three spinel blocks 

structure” develops more extensively with a greater tetragonal distortion 

and gives additional Bragg reflections due to the superstructure 

formation.20,21  The (400) and (440) reflections in Figure 3.3 are sharp and 

comparable to the ones reported for the γ-Al2O3 aerogels in the 

literature.9,19  
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3.3.3 Electron Microscopy 

Transmission electron microscopy was used to evaluate the 

microstructure of the alumina pyrogels (Figure 3.4).  The microstructure of 

the six products exhibits a common “textural porosity” arising from three-

dimensional interconnection of rod-shaped particles, 2 – 5 nm in diameter 

and of varying lengths.  The homogeneity of the morphology and particle 

size was confirmed by examining several areas of the TEM grid for each 

sample.  The observed particle sizes and pore structure, described as a 

“weblike” architecture, are consistent with the previous report on γ-Al2O3 

aerogels which were prepared from the same chloride salt precursor 

route.9  Such a weblike microstructure has been considered to provide 

enhanced mechanical integrity to the low-density aerogel materials.22  

Figure 3.3.  Powder X-ray diffraction pattern of γ-Al2O3 pyrogel (sample 

a) compared with calculated Bragg reflection peaks (solid vertical lines) 

(ICSD 66559) 
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Despite the high porosity, the pyrogel products did not break upon 

repeated immersion in liquids such as water, alcohols and hexane, 

indicating that they can be utilized in catalytic applications that involve 

liquid solutions.  This is in contrast to typical metal oxide aerogels that are 

prone to pore collapsing due to capillary pressure and lose their porosity 

significantly.3,23  Lattice fringes are visible in the higher magnification 

image (Figure 3.4b), which indicates that the particles are crystalline in 

nature, consistent with the XRD patterns.  The SAED patterns (Figure 

3.4c) show intense (400) and (440) reflections and other weak ones.  The 

reflections (311), (400), (440) and (444) appear at 2.36, 1.94, 1.36 and 

1.12 Å respectively, and this is in agreement with the theoretical d-spacing 

of those reflections for the cubic γ-Al2O3 structure (2.39, 1.97, 1.40 and 

1.14 Å) with the powder XRD pattern in Figure 3.3. 

 

3.3.4 Surface Area and Porosity Analysis 

The surface areas, average pore diameters and pore volumes for 

the alumina pyrogels were measured using nitrogen adsorption/desorption 

Figure 3.4.  (a), (b) Transmission electron micrographs and (c) selected 

area diffraction (SAED) pattern of γ-Al2O3 pyrogels (sample a) (scale 

bar = 20 and 5 nm for (a) and (b), and 5 nm-1 for (c)). 
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methods (Table 1).  The estimated BET surface areas range from 295 to 

375 m2/g, mostly contributed from mesopores, and do not depend 

significantly on the precursor concentration changes.  For the samples a 

to c in the low precursor concentration range (0.46 – 0.77 mol/L), the 

average pore diameter (17 – 21 nm) and cumulative pore volume (1.6 – 

2.0 cm3/g) increase as the precursor concentration decreases, indicating 

that the new method may allow control of pore sizes to some extent.  In 

the high concentration region (samples d – f), however, such correlation is 

not seen, while all the samples d – f have a lower porosity than the 

samples a – c in the low concentration region.   

A volume porosity of 80 – 88 % is estimated roughly from the pore 

volumes and the theoretical density of γ-Al2O3 as described above.  The 

results are comparable to what have been reported for γ-Al2O3 aerogels 

that were prepared through supercritical drying and subsequent 

calcination.9,19  In particular, the 88 % porosity of the sample a, from the 

lowest precursor concentration, compares well with the 89 % porosity of 

the calcined γ-Al2O3 aerogels reported from the same chloride precursor 

method (the porosity was estimated from the pore volumes and the 

theoretical density of γ-Al2O3).  Their average pore diameters are also very 

much comparable to each other (21 nm vs. 22 nm).  The pore volumes are 

larger than what has been observed for the commercial γ-Al2O3 (pore 

volume of 0.1 – 1.2 cm3/g) which have relatively small pore sizes (2 – 10 

nm).24  Although still significantly high, the maximum surface area of the 
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pyrogels is somewhat lower than that of the reported aerogel (max. 375 vs. 

431 m2/g).  This discrepancy can be due to the different extent of particle 

sintering or differing amounts of micropores.  For the sample a, the 

micropores contribute about 10 % to the total BET surface area.  The 

micropore contribution for the reported γ-Al2O3 aerogel was not given.  

Further optimization of the synthetic parameters may afford higher 

porosity products with higher surface areas. 

 

 

The adsorption/desorption isotherms for the alumina pyrogels are 

summarized for the precursor concentrations of 0.46, 0.77 and 1.07 mol/L 

in Figure 3.5a and 0.61, 0.92 and 1.23 mol/L in Figure 3.5b.  The grouping 

Table 1. Selected Properties of γ-Al2O3 Pyrogels.  

sample 

Al3+ 
precursor 

concentration 
(mol/L) 

BET  
surface 

area 
(m2/g) 

BET surface 
area from 

micropores[a] 
(m2/g) 

BJH 
desorption 
average 

pore 
diameter[b] 

(nm) 

BJH 
adsorption 
cumulative 

pore 
volume[c] 
(cm3/g) 

a 0.46 340 35 21 2.0 

b 0.61 318 26 19 1.8 

c 0.77 327 25 17 1.6 

d 0.92 295 16 12 1.1 

e 1.07 332 22 13 1.3 

f 1.23 375 20 11 1.3 
[a]by the use of t-plots with the Harkins-Jura model.   

[b]4(total pore volume)/(surface area). 

[c]from the pores with their pore width no larger than 150 nm. 
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is solely for the sake of clarity of the figures.  All of those can be classified 

as type IV isotherms, characteristic for mesoporous materials, based on 

the classification by Brunauer.  All the isotherms show an H1-type of 

hysteresis, with hysteresis loops at higher relative pressures above 0.7, 

and thus the desorption branch was used to calculate the pore size 

distribution based on the BJH method (Figure3.6).  The hysteresis loop of 

the sample d is slightly asymmetric with a distant resemblance to an H2-

type loop.  For highly disordered, connected pore systems, a caution 

should be exercised in using the desorption branch for the BJH pore size 

analysis, because the factors that determine the shape of the hysteresis 

loop are still not completely known.25   

Nevertheless, the pore size distribution curves in Figure 3.6 show a 

general trend of pore size increase upon the decrease in precursor 

Figure 3.5.  Nitrogen adsorption/desorption isotherms of six γ-alumina 

pyrogel samples a – f.  (a) for samples a (�), c (�) and e (�), and (b) 

for samples b (�), d () and f (�).  The calculated C values are 133.9, 

130.2, 126.4, 114.6, 119.9 and 118.6 from the BET plots. 
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concentration, which is consistent with the trend in the average pore 

diameter and pore volume as a function of precursor concentration.  The 

curves also indicate relatively narrow pore size distributions and a lack of 

large pores in the samples.  

The hysteresis in the isotherms is typically associated with capillary 

condensation within mesopores.  Therefore, the slight differences in the 

shape of the hysteresis loops of the pyrogel samples are related to the 

delicate variations of the structure of the mesopore network.9,25  The 

observation of the H1- or H2-type hysteresis for the pyrogels is not in 

agreement with the H3-type hysteresis reported for the alumina aerogels 

from the same chloride salt precursor method.9 In ordered pore systems 

very often the H1-type hysteresis occurs, whereas the H2- and H3-type 

hysteresis is typically observed for disordered mesoporous systems.  

Unlike the other types, the isotherms with the H3-type hysteresis do not 

show limiting adsorption at high relative pressure and their desorption 

branch contains a steep region at the relative pressure between 0.4 and 

0.45.  The H3-type hysteresis is prevalent among non-rigid aggregate 

structures made of plate-like plates giving rise to slit-shaped pores and 

can be also due to the presence of a significant amount of macropores.  

Therefore, the H1-type hysteresis observed in Figure 3.5 indicates that the 

weblike architecture may not be the main origin of the H3-type hysteresis 

for the alumina aerogels and that macropores are not significantly present 

in our samples.  
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3.3.5 MAS 27Al NMR 

In order to examine the local structure of the Al3+ ions in the 

alumina particles, the pyrogels were studied using solid state 27Al MAS-

NMR along with a reference γ-alumina (Sigma-Aldrich, Product No. 

544833, particle size: 40 – 47 nm) (Figure 3.7).  27Al NMR chemical shifts 

are directly related to the coordination number of the Al3+ ion.9  Chemical 

shifts for octahedral Al3+ units appear between –10 and 20 ppm, while 

tetrahedral Al3+ centers exhibit peaks between 50 and 80 ppm. The 

spectrum of the alumina pyrogel (Figure 3.7a) is consistent with that of the 

reference γ-alumina (Figure 3.7b), and exhibits the two peaks centered at 

11 and 70 ppm which correspond the tetrahedral and octahedral Al3+ 

species, respectively.26  

 

Figure 3.6. BJH pore distributions of six γ-Al2O3 pyrogel samples a – f.  

� for a; � for b; � for c;  for  d; � for e; � for f.  
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3.3.6 ATR-IR 

All the six samples, as well as other samples prepared in the 

course of the work, showed the same IR spectral features without 

appreciable differences and we show the spectrum of the sample a in 

Figure 3.8.  The weak-intensity peaks between 1500 and 2500 cm–1 

appear at different positions and with various but consistently weak 

intensities among different samples.  They could be due to the stretching 

vibrations of C=C, C≡C and C=O groups in the carboneous materials (< 

0.25 wt%) present in the samples.  Incompletely calcined/dehydrated 

alumina particles can exhibit relatively well-developed absorptions peaks 

between 1300 and 2300 cm–1,27,28. The lack of such absorption peaks in 

 

Figure 3.7.  800 MHz 27Al-MAS-NMR spectra of (a) γ-Al2O3 pyrogels 

(sample a), and (b) γ-Al2O3 reference at a 60 kHz MAS frequency.  
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Figure 3.8 suggests that the calcined samples do not contain an 

appreciable amount of hydroxyl species in the crystal lattice, although their 

presence on the pore surfaces cannot be excluded.  This is not in 

disagreement with the observation from the XRD studies and we suspect 

that the pyrogel process may be well suited for gel calcination in γ-Al2O3 

preparation.  The rapid burning of the oil inside the gel pores may not be 

disadvantageous in achieving proper heating in nanoscale. 

 

3.3.7 Oil Combustion and Olegels 

The choice of the castor oil is based on its propensity to thermally 

polymerize and its relatively high viscosity (232 cP at 40 °C) in comparison 

to other biorenewable oil (25 – 40 cP at 40 °C).29-31  Castor oil, an 

unconjugated oil, is roughly 87 % triglyceride of ricinoleic acid which has a 

double bond in the C-9 position and a hydroxyl in the C-11.32  When 

                       

Figure 3.8.  An ATR-IR spectrum of γ-Al2O3 pyrogel (sample a). 
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heated, it easily dehydrates to become conjugated and thus can 

polymerize at temperatures as low as 150 °C.33 These properties lead to 

slow evaporation/atomization, inefficient mixing with air, oxidative and 

thermal polymerization, and carboneous deposit formation that are in fact 

typical in biorenewable oil combustion processes.34,35  The formation of 

(semi) solid polymer under oxygen-deprived heating conditions can 

effectively avoid liquid/gas interfaces during oil burning, minimizing pore 

collapsing and thus gel shrinkage.  Indeed, such thermal polymerization 

has been exploited successfully in block-copolymer template-based 

processes for ordered mesoporous transition metal oxides by employing 

designer polymers which first become more cross-linked rather than 

decompose when heated.36  In our other experiments, the low-viscosity 

unconjugated oils did not work as effectively as castor oil in alumina 

pyrogel production and yet the products from all the tested oil (soybean oil, 

corn oil and canola oil) still showed high porosities (typically up to 85 %).  

However, it must be mentioned that the synthetic condition was not 

optimized for those oils in those preliminary experiments. 

Olegels themselves are unprecedented materials to our knowledge 

and their detailed calcination mechanism will be studied in due course.  

The combustion of the olegels was found to take five to six times longer 

than what we observed for the corresponding oil itself.  The retarded 

combustion is understandable considering that the well-known low thermal 

conductivity of aerogels is partly due to the slowed gas diffusion through 
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the pore network.37,38  That is, evaporation of the oil and oxygen diffusion 

must take place through the tortuous gel network and hence become 

delayed significantly.  The oxygen-deprived heating leads to thermal 

polymerization of the oil, and subsequent char formation in the pores 

should be helpful in minimizing formation of liquid/gas interfaces.  The 

formation of char materials in the gel pores during the combustion is 

apparent from the pitch-black color of the resulting materials when the 

olegels were deliberately combusted incompletely by removing them from 

heat right after the initially large flames diminish.  However, it is elusive at 

the moment how significantly the in situ formed char material plays a role 

of templating in preserving the porosity.  Further studies will reveal the 

effect of viscosity, composition and volatility of the oils on the properties of 

the products.  

3.4 Conclusion 

It has been successfully shown that through utilization of 

biorenewable oil, highly porous γ-Al2O3 particles can be synthesized.  

Given the flexibility of the method inherent from the adopted sol-gel 

process and from the availability of other various organic liquids and their 

combinations, it is anticipated that the method can be customized for 

syntheses of various porous metal oxides.  The rapid combustion process 

is advantageous for large-scale production of the materials with a 

combustion heat as a useful energy byproduct, which potentially makes 

the method much resource/energy-efficient.   
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CHAPTER 4 

SYNTHESIS OF HIGHLY POROUS GAMMA ALUMINA VIA 

CONTROLLED GEL DENSIFICATION COUPLED WITH COMBUSTIVE 

REMOVAL OF PORE LIQUID 

4.1 Introduction 

Mesoporous γ-alumina particulates with high porosities were 

successfully prepared from sol-gel reactions through controlled pre-

condensation of the gels and subsequent combustion, departing from 

conventional drying processes.   The pre-condensation was achieved by 

using a mixture of tetrahydrofuran (THF) and castor oil or waste vegetable 

oil (WVO) in various proportions as the pore liquid.  After evaporation of 

THF, the gels pre-condensed by the evaporation, were combusted and 

calcined to provide crystalline products with controlled pore volumes 

varying from 0.9 to 2.8 cc/g and pore sizes from 9 to 22 nm.  The largest 

pore volume corresponds to the porosity close to 91 %, making the 

product comparable to previously reported aerogels.  It is also shown that 

utilization of waste oil gives similar controlled porosity of the final materials, 

with pore volumes varying from 0.8 to 2.3 cc/g and pore sizes from 8 to 18 

nm, corresponding to a possible maximum porosity of 89 %.  The 

promising results indicate that the new synthetic method can be employed 

to control the pore properties of the resulting materials, lending itself to 

possible further optimization and higher porosity products, while using an 

industrial waste as resources.  



  69 

High porosity metal oxides such as aerogels are interesting due to 

their potential applications in sorbents, catalysis and thermal insulation.1-5  

The thermal insulation applications are particularly unique to aerogels, as 

an ultra high porosity typically over 90 % is important for desired superior 

insulating properties.6  Various preparation methods have been reported 

to control porosity of the materials, wherein drying processes affect the 

pore texture of the products because surface tension at the liquid/gas 

interface forces primary particles closer together, thus causing undesirable 

condensation and densification of the gels.7-9  Aerogel is obtained from a 

wet gel by replacing the original pore liquid with a supercritical fluid, a 

drying technique that results in low density, high porosity materials.  

Aerogels exhibit a pore structure distinctly different from xerogels, which 

are obtained from a wet gel by the evaporation of the pore liquid, resulting 

in a denser, less porous material.  Many studies have been reported on 

the relationship between synthetic conditions and pore properties of 

aerogel and xerogel.7,10,11   Other than the ambient drying method through 

the spring-back effect which has been limited to silica12, porosities greater 

than 90 % have been rarely achieved without the use of supercritical 

drying. 

Alumina is most widely used for supports of industrial catalysts 

because of its advantages in cost and chemical/thermal stability, as well 

as controllable pore properties.13-16  Various alumina products with a wide 

range of surface areas and porosities suitable for a variety of catalytic 
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applications are commercially available.8  However, the industrial 

importance and demand for alumina (and alumina based materials) makes 

it a very active area of research including the development and 

investigation of new preparation methods with ability to control pore 

structures in a cost effective and environmentally viable manner.  In fact, 

alumina aerogels with ultra high porosity have been relatively expensive to 

produce due to the supercritical drying process employed in the 

literature.17,18 

In previous work, a synthetic method that produces highly 

mesoporous, transparent γ-alumina particulates while sidestepping drying 

processes typical in sol-gel-based synthetic methods was reported.19  In 

the synthesis, the pore liquid in the wet gel was first exchanged with a 

solvent that is miscible with vegetable (biorenewable) oil.  The solvent was 

then replaced by the oil to produce an oil-soaked gel (called “olegel”).  In 

order to remove the oil from the gel pores, the olegel was quickly heated 

and combusted.  The heating dehydrates/crystallizes the pore wall 

material simultaneously without drastic pore collapsing.  The combustive 

removal of all the carboneous species by the combustion and calcination 

leaves a highly porous metal oxide product (called “pyrogel”).  Compared 

to organic solvents, the vegetable oil or plant oil does not evaporate as 

significantly before ignition, which may avoid serious gel shrinkage and 

pore collapsing during the heating.  It was shown that the new method 

afforded relatively high mesopore volume close to 2.0 cc/g, which 
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corresponds to 88 % porosity (hereafter, porosity is given as the one 

estimated from the alumina density and pore volume from BET analysis).  

Given the fact that the as-prepared alumina wet gels contained only less 

than 0.8% of solid boehmite in volume, the observed porosity implies that 

the gel shrinkage or consolidation is still significant.  Indeed, even for 

alumina aerogels, volume shrinkage up to 45% has been observed during 

calcination alone, a step necessary to form crystalline γ-Al2O3 via the 

dehydration of boehmite.17   Further studies will be required to fully 

understand the capacity of the new method and to extend it so as to 

produce materials with even higher porosities by minimizing the gel 

condensation during the combustion. 

One distinct feature of the olegel route is that the oil has the highest 

boiling point among the pore liquids, such as water, alcohols and other 

typical organic solvents, utilized during the synthetic steps.  This in fact 

allows the elimination of the low-boiling point solvent in the olegels more 

rapidly and completely; i.e., simple heating of the olegel in a lab oven 

evaporates the solvents, leaving only the oil in the pores.  The loss of the 

solvents in the pores inevitably causes gel shrinkage (condensation).  On 

the other hand, this effect can be utilized to deliberately pre-condense the 

gel before the subsequent combustion and to study its effect on the 

resulting pyrogel porosity.  Herein, we demonstrate that such controlled 

gel pre-condensation is beneficial and can be used to tailor the porosity of 

the pyrogel products, with pore volumes reaching up to 2.8 cc/g, 
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corresponding to 91 % porosity. It is also demonstrated that waste 

vegetable oil, an industrial waste, can be utilized in place of fresh oil, and 

a product with porosity reaching 89 % can still be achieved, which makes 

the new synthetic more attractive in terms of effective use of resources.  

4.2 Experimental 

4.2.1 Synthesis of Variable Porosity γ-Al2O3 

Two different oils were employed; castor oil (The Chemistry 

Store.com Inc, Cayce, South Carolina, Catalog No. 51006-5; boiling point 

= 313 °C) and waste vegetable oil.  The waste vegetab le oil (WVO) was 

donated by Arizona BioDiesel (Gilbert, Arizona; website at 

www.azbiodiesel.com) and used after filtration to remove any solid 

particles.  For each oil, the initial wet alumina gel was prepared following 

the procedure described by Baumann et al. using inorganic salt precursors 

and an epoxide as a gel initiator.17  In a typical procedure, 29.6 g of 

AlCl3·6H2O (Sigma-Aldrich, 99%) was dissolved in 200 ml of a 50:50 

volume mixture of deionized water and absolute ethanol (Decon 

Laboratories, Inc.).  Propylene oxide (PO) (1,2-epoxypropane, Sigma-

Aldrich, 99%) was then added to the clear solution in a molar ratio of 

Al3+:PO of 1:10 and stirred for 10 min.  The reaction was exothermic and 

after stirring, the solution had a pH around 2.  Gelation of the solution 

generally occurred within 30 min at room temperature, with the final pH of 

the gel reaching about 5.  After three days of aging in a closed container 
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the gels were broken into smaller pieces of ca. 1 cm3 and placed in a bath 

of tetrahydrofuran (THF) (Spectrum Laboratories; boiling point = 66 °C) for 

three days with the bath solvent being replaced once a day.  Subsequently, 

olegels were prepared from the wet gels by modifying the process 

described in our previous work,19 in order to accommodate controlled pre-

condensation of the gel as the following.   

For each set of the experiments with castor oil or waste vegetable 

oil, the THF-soaked gel was first divided into ten samples.  The samples 

were placed separately in different baths that contained mixtures of oil and 

THF at various ratios (Tables 1 and 2), and were allowed to soak for two 

days and subsequently removed from the baths.  The sample names are 

designated based on the oil used, castor oil (C) and WVO (W), and the oil 

vol% in the oil/THF mixtures.  As a reference, one sample (REF in Table 

1) was thoroughly soaked only in a THF bath, by changing the solvent 

once a day for three days.  The oil molecules in the oil/THF mixture 

outside the gel slowly diffuse through the gel pores.  The equilibrium of the 

diffusion was monitored by color change of the gel.  The color intensity did 

not increase after one day, indicating that the diffusion could reach to an 

equilibrium within a day.  After the soaking steps, all the samples were 

then placed in a lab oven heated at 70 °C for 4 h t o evaporate off the THF, 

leaving only the oil in the gel pores (olegel preparation).  

A small amount of excess oil was dropped onto each olegel sample 

and the olegel pieces were coated evenly with the oil by rolling the 
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individual pieces around in the added excess oil.  This additional oil 

coating was found to be effective in providing more homogeneous 

combustion products by minimizing premature oil evaporation from the 

surface of the olegel pieces.  The olegel pieces were then evenly spread 

on an Inconel dish and placed in an ashing furnace (Carbolite AAF 1100) 

preheated at 700 °C.  The olegel pieces ignited withi n 3 – 10 seconds, 

giving off a large flame before breaking apart into small particulates.  The 

flame ceased within three to six minutes and the material was further kept 

at 700 °C for 10 h in the furnace to completely bur n off any carbonaceous 

species.  Analysis of the residual carbon content was obtained by 

employing Perkin-Elmer 2400 Series II CHNS/O Analyzer with a thermal 

conductivity detector.  

4.2.2 Physical Characterization 

Powder X-ray diffraction (PXRD) data was collected using a 

Siemens D5000 diffractometer with a Cu-Kα radiation.  High-resolution 

transmission electron microscopy (HRTEM) was performed on a JEOL 

JEM 2000FX TEM (LaB6 source, accelerating voltage 200 kV, PTP 

resolution 0.28 nm).  The TEM samples were prepared by first grinding the 

pyrogels in an agate mortar in ethanol.  A copper grid covered with lacy 

carbon was submerged in the solution, taken out and then allowed to dry 

in air.  The images were taken under bright field conditions.  N2 sorption 

experiments were carried out with a Micromeritics ASAP2020 volumetric 

adsorption analyzer (samples REF, C10, C20, C90, C100, and all WVO 
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samples), or with a Micromeritics Tristar II 3020 (samples C30 – C80), by 

using nitrogen as the adsorbate at 77K.  Prior to the analysis, samples 

weighing around 150 mg were degassed at 300 °C for 10  h under vacuum 

on the ASAP2020 until a residual pressure of ≤10 µmHg was reached, or 

under ambient pressure on the Tristar II 3020.  Specific surface areas 

were calculated according to the Brunauer-Emmett-Teller (BET) equation 

using nitrogen adsorption isotherms in the relative pressure range from 

0.06 to 0.2.  For the calculation of pore size distribution, the desorption 

branch was considered and the pore volume was obtained from the 

amount of nitrogen adsorbed at a relative pressure of 0.99.  Mesopore 

size distributions were obtained using the Barrett-Joyner-Halenda (BJH) 

method assuming a cylindrical pore model.  HP 5890 Gas Chromatograph 

interfaced to a HP 5972 Mass Selective Detector Quadruple Mass 

Spectrometer was used for compositional analysis of the waste vegetable 

oil.  In order to increase the volatility of the fatty acids, they were 

converted to their corresponding fatty acid methyl esters (FAME) before 

the analysis.   

4.3 Results and Discussion 

4.3.1  Synthesis 

Highly mesoporous, glassy (semi)transparent γ-alumina particulates 

were prepared with different pore sizes and pore volumes by varying the 

oil:THF ratio of the pore liquid in the presented new procedure (Table 1 
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and 2 for the castor oil-based and the WVO-based samples, respectively).  

The substantial transparency is consistent with previous results19 and is 

due to the absence of grain boundaries which results in low light-

scattering.  The synthetic procedure closely follows our previous work 

based on a gel combustion process, rather than drying.  As in typical sol-

gel based porous materials synthesis, the procedure starts with the 

formation of an inorganic wet gel.  The water/ethanol pore liquid is first 

replaced by THF, a low-boiling point solvent that is miscible with vegetable 

oil as well as water and ethanol.  A certain amount of the THF in the gel 

pores is then replaced by the oil, by soaking the gel in an oil/THF mixture 

bath with a predetermined oil:THF ratio (the second column in Tables 1 

and 3).  The oil:THF ratio in the gel at diffusion equilibrium (the third 

column in Tables 1 and 3) can be estimated based on the experimental 

wet gel volumes, oil/THF volumes and on the theoretical pore volume 

determined from the volume of solid in the wet gel (0.8 vol%).  The 

subsequent heating of the gel at 70 °C evaporates the  THF, leaving only 

the oil in the gel pores.  The THF evaporation causes the gel to condense 

to a controlled or predetermined extent in that the condensed volume of 

the gel is determined by the relative amount of oil in the pores and thus 

the condensation ratio can be estimated as the ratio of the initial gel 

volume to the final gel volume (the fourth column in Tables 1 and 3).  The 

pre-condensed gels are combusted to give the calcined γ-alumina 

pyrogels.  After the subsequent carbon burn-off, elemental analysis 
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showed that the residual carbon content is less than 0.3 wt% for the 

samples. 

 

Table 1. Selected properties of γ-Al2O3 pyrogel samples synthesized 

using castor oil.  

Sample 

Oil:THF 
vol. in 

exchange 
solvent 

Oil:THF 
vol. in 

pores at 
equilibrium 

Pre-
condense 

ratio[a] 

REF 0:100 0:100 122 

C10 10:90 7:93 12 

C20 20:80 15:85 6.4 

C30 30:70 22:78 4.4 

C40 40:60 29:71 3.4 

C50 50:50 37:63 2.7 

C60 60:40 44:56 2.2 

C70 70:30 51:49 1.9 

C80 80:20 59:41 1.7 

C90 90:10 66:34 1.5 

C100 100:0 73:27 1.4 

[a](Initial gel volume)/(final gel volume after THF evaporation) 
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It was observed that the oil/THF soaked gels cracked and broke 

apart into small particles during the THF evaporation, in addition to their 

apparent shrinkage.  The resulting olegels were always harder than the 

original oil/THF-soaked gels.  For the samples with castor oil, the olegels 

were completely transparent for the samples made with an oil volume 

between 10 and 50 % (samples C10 – C50).  For 50 – 100 % oil volume, 

the olegels became opaque and white during the THF evaporation (C60 – 

Table 2. Properties of γ-Al2O3 pyrogel samples synthesized using 

castor oil.  

Sample 

BET 
surface 

area 
(m2/g) 

BET surface 
area from 

micropores[a] 
(m2/g) 

BJH pore 
diameter[b] 

(nm) 

BJH 
pore 

volume[c] 
(cm3/g) 

Porosity[d] 
(%) 

REF 237 20 9 0.7 73 

C10 339 44 18 2.2 89 

C20 338 45 22 2.8 91 

C30 322 36 20 2.2 89 

C40 328 37 17 1.9 88 

C50 299 27 11 1.1 81 

C60 275 24 9 0.9 77 

C70 300 28 13 1.3 83 

C80 372 34 13 1.7 86 

C90 317 38 17 1.9 88 

C100 320 42 21 2.2 89 

[a] by the use of t-plots with the Harkins-Jura model. 
[b] 4(total pore volume)/(surface area).  

[c] from the pores with the pore width no larger than 150 nm. 
[d]from the BJH pore volume and theoretical density of γ-Al2O3 
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C100), with the opacity increasing with the oil amount.  However, the 

resulting pyrogel particles were semitransparent or transparent (after the 

calcination).  It is suspected that there is a certain degree of microscopic 

heterogeneity in oil distribution, due to the increased viscosity of the 

THF/oil mixture, causing visible light scattering in the samples made with 

higher oil content.  This heterogeneity, however, is not apparent in the 

final pyrogels, showing that the employed combustion process is forgiving 

towards minimal heterogeneous oil distribution.  For the samples treated 

with the WVO, the effect of the oil amount was not as pronounced.  Slight 

shrinkage was observed in the samples with oil content higher than 50 %, 

but all samples appeared translucent and amber in color, reflecting the 

dark color of the WVO.  The olegels from the WVO are always less hard 

than those from castor oil.  This is due to the fact that castor oil is more 

viscous than the majority of plant or vegetable oil.20  The GC-MS analysis 

of the WVO showed highest concentrations of palmitic and linoleic acid, 

with behenic and arachidic acids being second most in abundance. These 

acids make up the major triglycerides found in palm oil, sunflower oil, corn 

oil, canola oil and peanut oil.21  
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Table 3. Selected properties of γ-Al2O3 pyrogel samples synthesized 

using WVO.  

Sample 

Oil:THF 
vol. in 

exchange 
solvent 

Oil:THF 
vol. in 

pores at 
equilibrium 

Pre-
condensation 

ratio[a] 

W10 10:90 7:93 12 

W20 20:80 15:85 6.4 

W30 30:70 22:78 4.4 

W40 40:60 29:71 3.4 

W50 50:50 37:63 2.7 

W60 60:40 44:56 2.2 

W70 70:30 51:49 1.9 

W80 80:20 59:41 1.7 

W90 90:10 66:34 1.5 

W100 100:0 73:27 1.4 

[a](Initial gel volume)/(final gel volume after THF evaporation) 
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4.3.2  Powder X-ray Diffraction 

All of the samples exhibit similar XRD patterns regardless of the oil 

type and oil amount used for their synthesis, and the patterns show the 

Bragg reflection peaks that are assigned to the structure of γ-Al2O3 (ICSD 

66559).17,18,22  No impurities were observed in the XRD patterns.  Figure 

4.1 shows the powder XRD patterns of six representative samples, REF, 

C20, C60, C100, W20 and W80, which are chosen for their highest or 

lowest porosities (column 9 in Tables 1 and 2).  The γ-Al2O3 structure is 

typically described as a defect spinel structure with varied degrees of a 

Table 4. Properties of γ-Al2O3 pyrogel samples synthesized using WVO.  

Sample 

BET 
surface 

area 
(m2/g) 

BET surface 
area from 

micropores[a] 
(m2/g) 

BJH pore 
diameter[b] 

(nm) 

BJH 
pore 

volume[c] 
(cm3/g) 

Porosity[e] 
(%) 

W10 326 40 17 2.0 88 

W20 332 39 18 2.3 89 

W30 297 28 10 1.1 81 

W40 286 23 9 1.0 78 

W50 298 29 9 1.0 79 

W60 294 28 9 1.0 78 

W70 290 27 8 0.9 76 

W80 288 26 8 0.8 75 

W90 293 25 8 0.8 76 

W100 286 25 8 0.8 76 
[a]by the use of t-plots with the Harkins-Jura model.   

[b]4(total pore volume)/(surface area). 
[c]from the pores with the pore width no larger than 150 nm. 
[d]from the BJH pore volume and theoretical density of γ-Al2O3
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tetragonal distortion (c/a = 1 ~ 0.985) which depend on the heating 

condition.23,24  The broadening of the Bragg peaks may be attributed to 

two factors, the disordering of the aluminum ions particularly at the 

octahedral sites, and small constituting particle sizes.  Because of the 

face-centered cubic close packing of oxide ions, the (400) and (440) 

reflections tend to dominate the XRD pattern.17   

In Figure 4.1, the (400) and (440) reflections of the spinel are neither split 

into two peaks, nor apparently asymmetric, which indicates that the 

products do not exhibit a strong tetragonal deformation.  The results 

positively exclude the so-called “three spinel blocks structure” of δ-Al2O3, 

 
 
Figure 4.1. Powder X-ray diffraction patterns of samples REF, C20, 

C60, C100, W20 and W80, along with the simulated pattern of γ-Al2O3 

(ICSD 66559). 
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which develops more extensively with a greater tetragonal distortion and 

gives additional Bragg reflections due to the superstructure formation.23,24   

4.3.3  Electron Microscopy 

Transmission electron microscopy was used to evaluate the 

microstructure of the varying samples of pyrogels.  Homogeneity of the 

final pyrogel samples was confirmed by examining multiple areas of the 

TEM sample grid.  Pyrogels with the highest (samples C20 and W20) and 

lowest pore porosities (samples C60 and W80) are shown in Figure 4.2.  

All of the samples exhibited a common three-dimensional interconnection 

of rod shaped particles from 2 – 7 nm in diameter and of varying lengths.  

The web-like textural porosity is consistent with previous reports on the 

preparation of γ-Al2O3 pyrogels and aerogels using the same precursors 

for initial wet-gel formation.17,19  The degree of connectivity of the particles 

appeared to vary between samples.  A large difference can be seen in the 

concentration of particles within a given area as well as the degree of 

connectivity, with connectivity being defined as the number of particles in 

contact with a given particle.  Due to the random pore network nature of 

the pyrogels, it is difficult to quantify the exact interparticle spacing and 

connectivity by sole examination of the structure using TEM, yet general 

observations can be made after looking at several areas of the material on 

the TEM sample grid.  The larger pore width and pore volume samples 

showed, in general, a lesser degree of connectivity and larger interparticle 

spacing compared to the smaller pore width and pore volume samples.  
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The TEM microstructural observations were supported by the trends in 

BJH pore volumes and the average pore sizes of the samples (Tables 1 

and 2).  

 

4.3.4  Surface Area and Porosity Analysis 

The specific surface areas, average pore diameters and pore 

volumes for the alumina pyrogels were measured using nitrogen 

adsorption/desorption methods (Tables 2 and 4).  The 

adsorption/desorption isotherms for the alumina pyrogels are summarized 

in Figure 4.3.  All of the isotherms can be classified as type IV, 

 
Figure 4.2. High-resolution transmission micrographs of samples (a) 

C20, (b) W20, (c) C60 and (d) W80 
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characteristic for mesoporous materials, based on the classification by 

Brunauer.  All the isotherms show an H1- or H2-type of hysteresis, with 

hysteresis loops at relative pressures above 0.7 for the castor oil samples 

and 0.65 for the WVO samples. 

 

 

 
Figure 4.3. N2 sorption isotherms of the samples (a) REF (�), C10 (�), 

C20 (�), C30 (�), C40 (�), C50 (�); (b) C60 (⊳), C70 (�), C80 (�), 

C90 (), C100 (�); (c) REF (�), W10 (�), W20 (�), W30 (�), W40 

(�), W50 (�); (b) W60 (⊳), W70 (�), W80 (�), W90 (), W100 (�). 
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The desorption branch was used to calculate the pore size distribution 

based on the BJH method (Figure 4.4). From the BET analysis, the 

estimated surface areas range from 275 to 372 m2/g for the pyrogels 

made using castor oil and 286 to 332 m2/g for samples made using WVO, 

mostly contributed from mesopores.   

The surface area of the pyrogels does not appear to be dependent of the 

oil/THF mixture as there was no definitive trend seen in either series of 

samples.  However, all of the pyrogel samples do show a greater surface 

 
 
Figure 4.4. BJH pore width distribution of the (a) REF (�), C10 (�), 

C20 (�), C30 (�), C40 (�), C50 (�); (b) C60 (⊳), C70 (�), C80 (�), 

C90 (), C100 (�); (c) REF (�), W10 (�), W20 (�), W30 (�), W40 
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area than the REF sample, which was synthesized using THF as the sole 

pore liquid, indicating that the presence of oil in the gel pores positively 

influences the pore property. 

The BJH pore volume and pore width of the pyrogel products are 

shown as a function of the oil content in Figures 4.5 and 4.6, respectively.  

All the olegel samples have a pore volume larger than the sample REF 

(0.7 cm3/g), which is consistent with the surface area results.  For castor 

oil-based pyrogel products (solid circles in Figure 4.5), the pore volume 

increases as the oil content increases but rapidly reaches its maximum 

value of 2.8 cm3/g at C20 (i.e., 15 % oil in the pores).  It decreases down 

to 0.9 cm3/g when the oil content is about 45 % in the pore liquid.  As the 

oil content in the olegels increases further, the pore volume becomes 

larger again up to 2.2 cm3/g (C100, 73 % oil).  For the pyrogels from WVO 

(solid triangles in Figure 4.5), a similar trend is observed and the 

maximum pore volume occurs for W20, which is consistent with the castor 

oil results (solid circles).  However, the 2.3 cm3/g pore volume of W20 is 

significantly lower than that of C20.  Furthermore, all the products from the 

high WVO content olegels have a noticeably small pore volume which is 

close to the value from the sample REF.  In any event, the maximum pore 

volume of 2.8 cm3/g found for C20 corresponds to 91 % porosity based on 

the theoretical density of γ-Al2O3.  This is higher than the 88 % porosity 

(2.0 cm3/g BJH pore volume) of the pyrogel reported in our previous work 

and also the 89 % porosity (2.3 cm3/g) of the calcined γ-Al2O3 aerogels 
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reported from the same chloride precursor method.17  The latter is 

comparable to the pore volume found for W20, indicating that the 

utilization of WVO in the pyrogel synthesis can provide products with 

porosities as high as what has been found for calcined aerogels from 

supercritical drying. 

 

The trend in the pore width of the pyrogels shown in Figure 4.6 

correlates with their respective pore volume.  The maximum pore widths 

are 22 nm (C20) for the castor oil-based pyrogels and 18 nm (W20) for the 

 
 
Figure 4.5. Pore volume vs. oil content of the olegels for the castor oil-

based samples (C10 – C100, solid circles) and the waste vegetable oil-

based samples (W10 – W100, solid triangles), with the sample REF at 

0 % oil content.   
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WVO-based pyrogels.  The pore widths of W70 – W100 pyrogels are 8 nm, 

which is comparable to the sample REF.  For the castor oil-based 

pyrogels, however, the pore width of C70 – C100 monotonically increases 

up to 21 nm as the castor oil content increases.   

As far as castor oil is concerned, the increase in porosity in the high oil 

content region is consistent with our previous assumption that the 

presence of oil in the pores is critical in preserving pore structure to some 

extent during the calcination.  When the olegel burns, evaporation of the 

oil and oxygen diffusion takes place through the tortuous gel network and 

 
 
Figure 4.6. BJH pore width vs. oil content of the olegels for the castor 

oil-based samples (C10 – C100, solid circles) and the waste vegetable 

oil-based samples (W10 – W100, solid triangles), with the sample REF 

at 0 % oil content.   
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hence become delayed significantly, as understandable considering that 

the well-known low thermal conductivity of aerogels is partly due to the 

slowed gas diffusion through the pore network.25,26  This is evidenced by 

the observation that the combustion of the olegels takes five to six times 

longer than what we observed for the corresponding oil itself.  The 

oxygen-deprived heating leads to thermal polymerization of the oil and 

subsequent char formation in the pores which may help minimizing 

formation of liquid/gas interfaces.  The formation of char materials in the 

gel pores during the combustion is apparent from the pitch-black color of 

the resulting materials when the olegels were deliberately combusted 

incompletely by removing them from heat right after the initially large 

flames diminish. 

For the WVO-based pyrogels, however, the consistently low 

porosities among the products from the high oil content olegels imply that 

the role of WVO in pore preservation is minimal for those samples.  The 

reason for the less spectacular performance of WVO may be understood 

from the difference in the chemical and thermal characteristics of the two 

oils.  In castor oil, the main fatty acid, comprising of almost 87% of the 

total amount of triglycerides, is ricinoleic acid, a C15-hydrocarbon chain 

with one double bond at the C-9 position and a hydroxyl at the C-11 

position.27  The presence of the hydroxyl makes castor oil the most 

viscous and least volatile among most vegetable or plant oil.  Upon 

heating, the hydroxyl group combines with a hydrogen on a β-carbon to 
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undergo dehydration and hence provides conjugated double bonds which 

then undergo polymerization at temperatures as low as 150 °C. 28 The 

lower onset temperature of polymerization leads to slow 

evaporation/atomization of the oil, increased oxidative and thermal 

polymerization and promotion of the formation of carboneous residue 

deposit.29  On the contrary, the WVO in this work consists mainly of 

palmitic and linoleic acids as the most dominant fatty acids present.  

Linoleic acid has two unconjugated double bonds in each hydrocarbon 

chain while palmitic acid has a saturated hydrocarbon chain.  Their free-

radical polymerization becomes significant only at higher temperatures.  

This would result in a larger amount of evaporation during combustion 

causing a significant collapse of the pore structure, leading to a lower 

porosity pyrogel, which is disfavored for our purpose.. 

 Even for the pyrogels from the low oil content olegels, the castor oil 

still provides a higher pore volume than the WVO and yet the difference is 

not as drastic.  Especially, C10 and W10 are much the same with 2.2 and 

2.0 cm3/g pore volumes and 18 and 17 nm pore width, respectively.  This 

indicates that the effect of oil characteristic is much less pronounced in 

determining the porosity at the lower oil contents.  Furthermore, it is 

striking that the porosities from the low oil content olegels are much higher 

than the ones from the high oil content olegels.  These observations can 

be explained by considering the fact that the low oil content olegels have a 

denser solid network due to the controlled pre-condensation through 
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selective THF evaporation.  When the olegels burn, the consequent pore 

collapsing is expected to be less severe if the pore wall is denser and thus 

potentially more robust, and the resulting pyrogels are more porous.  In 

addition, the denser olegels are less likely affected by the nature of the oil, 

which is consistent with our observation.  Future studies will reveal the 

effect of temperature and type of solvent in solvent/oil mixture on the pre-

condensation and therefore pore properties of the final pyrogels.  

4.4 Conclusion 

It has been demonstrated that utilization of biorenewable oil and 

control of gel pre-condensation can afford highly mesoporous, glassy 

(semi)transparent γ-alumina particulates all while bypassing the 

supercritical drying process.  While the important role of the oil in gel 

calcination has been illustrated already, this work newly shows that 

controlled pre-condensation of the wet gel can drastically increase the 

porosity of the final product in a synergistic way.  Control over the pore 

volume and pore width could be achieved by simply choosing the proper 

pre-condensation ratio.  It is also shown that WVO can be a viable 

replacement for pure oil for the synthesis of highly porous γ-alumina that is 

in par with γ-alumina aerogels from supercritical drying, providing a 

synthetic procedure that utilizes a waste material as a chemical 

component in synthesis and as a source of heat that may be convertible 

into electrical energy.  
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CHAPTER 5 

SYNTHESIS OF ROBUST SILICA AEROGEL-LIKE MATERIALS VIA A 

HIGH TEMPERATURE COMBUSTION ROUTE 

5.1 Introduction 

 Silica gel materials are some of the most studied materials in 

inorganic chemistry owing to the abundance of silicon present on earth 

and the presence of polysilicate gels and particles in natural systems.  

Tetraehtylorthosilicate (TEOS), on of the most common precursors used in 

the modern day synthesis of silica gels, was first synthesized in 1845 by 

Ebelmen who subsequently also discovered that TEOS could undergo 

hydrolysis producing fibers that would form into gels over an extended 

period of time.1 This initial discovery was further confirmed and formulated 

into the knowledge that organosilicate compounds could form siloxane 

polymers containing organic side groups, and through subsequential 

hydrolysis and condensation, result in monolithic gels.2  The ease at which 

silica gels form made them an ideal candidate for the first attempts to 

produce aerogels, materials in which the liquid inside of the gel’s pores is 

exchanged for air.3  Silica aerogels and other highly porous silica materials 

have become some of the most utilized materials for catalysis and 

catalytic supports,4-8 thermal9-12 and acoustical insulation,13,14 filtration and 

separation applications,15 as well as use in optical sensors.16 

 The vast variety of uses for silica (SiO2) aerogels has created such 

a demand that the materials currently being mass produced and sent out 
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for use in large scale production applications.17,18  Aerogels have 

historically been made using a supercritical drying technique, which has 

been extensively covered in Chapter 1 of this thesis. Recently, attempts 

have been made to synthesize SiO2 aerogel-like materials using ambient 

drying techniques that involve surface modification that prevent the 

irreversible collapse of the pores during evaporation of the solvent out of 

the wet gel.19-24  The resulting materials exhibit aerogel-like porosity and 

surface areas, however are impractical at large scale due to the expensive 

precursors required for the surface modification. Even with the possibility 

of using an ambient temperature and pressure drying technique, aerogels 

ultra low density and high porosities come at the price of mechanical 

strength. Controlled sintering of the solid network has been shown to 

increase the mechanical strength of SiO2 aerogels, allowing them to be 

immersed in liquid with minimal structural collapse.24  It is ideal to find a 

synthetic route in which highly porous SiO2 can be produced without the 

need for high pressure autoclaves or super critical drying and the use of 

expensive precursors. The formed product must exhibit mechanical 

robustness so it can be utilized in applications that may require the 

material to be wetted or soaked in a liquid without complete structural 

collapse.  

 It has been shown in the case of γ - alumina, that a high 

temperature combustion synthetic technique is viable for producing highly 

porous, robust, metal oxide materials.25  It was shown that starting with an 
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inorganic wet gel, the liquid inside of the pores can be replaced with a 

combustible liquid, such as oil, that can then be exposed to temperatures 

above the liquids auto-ignition temperature, causing spontaneous 

combustion and rapid formation of solid carbon residue acting as a 

structural support inside of the pores. The carbon residue can then be 

slowly burned away affording a robust, porous product. It will be shown 

that a high temperature combustion synthesis could be used for the 

production of SiO2 materials with high porosities, controllable pore volume 

and pore width, as well as mechanical strength great enough to allow 

them to be submerged in liquids without structural collapse. 

5.2 Experimental 

5.2.1 Synthesis of porous SiO2 

The initial wet silica gel was prepared following the procedure 

described by Livermore et al.26, a base catalyzed synthesis using TEOS 

as a silica source. In a typical procedure, two solutions were made, a silica 

solution and a catalyst solution. For the silica solution, 25 mL of TEOS 

was added to 40 mL of absolute ethanol and mixed. 1.21 mL of 0.5 M 

ammonium fluoride was then added to the silica solution and stirred. The 

catalyst solution was prepared by combining 35 mL of absolute ethanol, 

70 mL of water and 0.275 mL of 30% aqueous ammonia. The catalyst 

solution was slowly stirred into the silica solution until a homogeneous 

solution was achieved. The solution was allowed to sit at room 

temperature until a solid gel had formed. 
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After the initial wet silica gel preparation, the olegel preparation was 

done following the procedure described in Chapter 3 of this thesis. The 

wet gel was allowed to age for x days after initial gelation occurred. After 

aging in a closed container the gels were broken into smaller pieces of ca. 

1 cm3 and placed in a bath of tetrahydrofuran (THF) (Spectrum 

Laboratories; boiling point = 66 °C) for three days w ith the bath solvent 

being replaced once a day.  Subsequently, olegels were prepared from 

the wet gels by modifying the process described in our previous work,25 in 

order to accommodate controlled pre-condensation of the gel as the 

following.   

Once solvent exchange was sufficiently completed, the THF-

soaked gels were divided into ten samples.  The samples were placed 

separately in different baths that contained mixtures of oil and THF at 

various ratios (Table 1), and were allowed to soak for two days and 

subsequently removed from the baths.  The sample names are designated 

by the oil vol % in the oil/THF mixtures. As a reference, one sample (REF 

in Table 1) was thoroughly soaked only in a THF bath, by changing the 

solvent once a day for three days.  The oil molecules in the oil/THF 

mixture outside the gel slowly diffuse through the gel pores.  The 

equilibrium of the diffusion was monitored by color change of the gel.  The 

color intensity did not increase after one day, indicating that the diffusion 

could reach to an equilibrium within a day.  After the soaking steps, all the 

samples were then placed in a lab oven heated at 70 °C  for 4 h to 
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evaporate off the THF, leaving only the oil in the gel pores (olegel 

preparation).  

A small amount of excess oil was dropped onto each olegel sample 

and the olegel pieces were coated evenly with the oil by rolling the 

individual pieces around in the added excess oil.  This additional oil 

coating was found to be effective in providing more homogeneous 

combustion products by minimizing premature oil evaporation from the 

surface of the olegel pieces.  The olegel pieces were then evenly spread 

on an Inconel dish and placed in an ashing furnace (Carbolite AAF 1100) 

preheated at 500 °C.  The olegel pieces ignited withi n 3 – 10 seconds, 

giving off a large flame before breaking apart into small particulates.  The 

flame ceased within three to six minutes and the material was further kept 

at 500 °C for 10 h under a constant flow of oxygen to completely burn off 

any carbonaceous species. 

5.2.2  Physical Characterization 

 Powder X-ray diffraction (PXRD) data was collected using a 

Siemens D5000 diffractometer with a Cu-Kα radiation.  High-resolution 

transmission electron microscopy (HRTEM) was performed on a JEOL 

JEM 2000FX TEM (LaB6 source, accelerating voltage 200 kV, PTP 

resolution 0.28 nm).  The TEM samples were prepared by first grinding the 

pyrogels in an agate mortar in ethanol.  A copper grid covered with lacy 

carbon was submerged in the solution, taken out and then allowed to dry 

in air.  The images were taken under bright field conditions. Scanning 
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electron microscopy (SEM) studies was performed using ground samples 

on a FEI XL-30 Environmental SEM using 2 keV electrons. N2 sorption 

experiments were carried out with a Micromeritics ASAP2020 volumetric 

adsorption analyzer), by using nitrogen as the adsorbate at 77K.  Prior to 

the analysis, samples weighing around 150 mg were degassed at 300 °C 

for 10 h under vacuum on the ASAP2020 until a residual pressure of ≤10 

µmHg was reached. Specific surface areas were calculated according to 

the Brunauer-Emmett-Teller (BET) equation using nitrogen adsorption 

isotherms in the relative pressure range from 0.06 to 0.2.  For the 

calculation of pore size distribution, the desorption branch was considered 

and the pore volume was obtained from the amount of nitrogen adsorbed 

at a relative pressure of 0.99.  Mesopore size distributions were obtained 

using the Barrett-Joyner-Halenda (BJH) method assuming a cylindrical 

pore model.  

5.3 Results and Discussion 

5.3.1 Synthesis 

 Highly mesoporous silica particles were prepared with varying pore 

sizes and pore volumes achieved through changing the oil:THF ratio of the 

pore liquid and subsequent high temperature combustion. The acid 

catalyzed sol-gel synthesis of silica wet gels using TEOS as a precursor is 

a well known and studied procedure. The mixed solution of the base 

catalyst and silica precursors undergoes gelation within 30 minutes, 

transitioning from a transparent sol liquid to a translucent gel. Allowing the 
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gel time to age is crucial in the strengthening of the solid silica network.27 

Aging in the mother-liquor solution of the initial synthesis plays a role in 

further strengthening the solid network. The unreacted oligomers present 

in the mother solution as well as the excess water and ethanol, can further 

undergo hydrolysis and condensation on the surface of the newly formed 

sol particles, increasing the precipitation of solid material onto the solid 

network resulting in strengthening of the solid network.  

After the initial formation and aging of the wet gel, the procedure 

closely follows our previous work described in Chapter 4 on the controlled 

condensation and subsequent gel combustion, rather than supercritical or 

ambient drying. For the controlled condensation route, the pore liquid is 

replaced first with THF, although other aprotic-polar solvents can be used. 

Second, a fraction of the THF is replaced with oil, by soaking the gels in a 

oil/THF mixture bath with a predetermined oil:THF ratio (the second 

column in Table 1). Heating of the gels at 70 °C cause s the THF, and any 

unexchanged solvent, to be evaporated off leaving only oil inside of the 

gel pores. As observed with alumina wet gels, the evaporation of the THF 

causes the gel to controllably condense meaning that the condensed 

volume is determined by the volume of the oil present inside of the pores 

which has been predetermined. Varying the volume of oil in the initial 

oil:THF mixture allows control over the condensed volume and resulting 

pore properties of the final material. After the gels have been pre-

condensed, they are then combusted to give silica pyrogels. After carbon 
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burn-off, elemental analysis showed the pyrogels had an average residual 

carbon content less than 0.5 wt%. 

 

It was observed that the oil containing gels, after the THF had been 

evaporated off, maintained their initial oil/THF soaked gel shape, with the 

exception of their apparent shrinkage. The evaporation of the THF did not 

cause any cracking or breaking apart of the gel pieces. The opacity of the 

oil filled gels increased with increasing oil content, which could be due to 

Table 1. Selected properties of SiO2 pyrogel samples synthesized using 

castor oil.  

Sample 

Oil:THF 
vol. in 

exchange 
solvent 

BET 
surface 

area 
(m2/g) 

BET 
surface 

area from 
micropore[a] 

(m2/g) 

BJH 
 pore 

diameter[b] 

(nm) 

BJH  
pore 

volume[c] 

(cm3/g) 

Porosity[e] 
(%) 

REF 0:100 811 17 3.9 0.9 66 

S10 10:90 957 35 7.8 2.1 82 

S20 20:80 872 28 7.3 1.8 80 

S30 30:70 849 36 6.8 1.7 79 

S40 40:60 959 38 6.5 1.8 80 

S50 50:50 828 12 6.4 1.6 78 

S60 60:40 963 17 6.6 1.9 81 

S70 70:30 811 18 7 1.7 79 

S80 80:20 788 22 8.4 1.9 81 

S90 90:10 687 20 10.4 2.5 85 

S100 100:0 632 16 11.3 2.0 82 
[a]by the use of t-plots with the Harkins-Jura model.   

[b]4(total pore volume)/(surface area). 
[c]from the pores with the pore width no larger than 150 nm. 
[d]from the BJH pore volume and theoretical density of SiO2 
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the microscopic heterogeneity in oil distribution. However, after 

combustion, it was observed that the resulting silica pyrogels were all 

completely transparent in appearance. The rapid combustion caused the 

gel pieces to break apart into a wide distribution of particle sizes ranging 

form a couple hundred microns to 8 mm. The breaking of the initial gel 

particle can be attributed to rapid formation of volatile gases in the gel 

body.25 

5.3.2. Surface Area and Porosity Analysis 

 The surface areas, average pore diameters and pore volumes for 

the silica pyrogels were measured using nitrogen adsorption/desorption 

methods (Table 1) The adsorption/desorption isotherms for the silica 

pyrogels are summarized in Figure 5.1. All of the samples showed type IV 

sorption isotherms with hysteresis loops at relative pressures above 0.6, 

which is characteristic of mesoporous materials. The estimated BET 

surface areas for all the samples range from 630 – 960 m2/g, with majority 

contribution from mesopores, and appears to not be dependant on the 

oil/THF mixture due to the absence of trend as the ratio was varied across 

the samples. When compared to the reference sample which had only 

THF as a pore liquid, the oil containing samples showed significantly 

larger surface areas.  
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 The pore size distribution plots calculated from the desorption 

branch of the isotherm using the BJH method are shown in Figure 5.2. A 

general trend can be seen that with increasing oil volume, there is an 

increase in the broadness of the pore distribution. This could be due to 

inhomogeneous solvent and oil exchange. As the oil volume % increases 

in the oil/solvent mixture, the viscosity of the exchanging solution 

increases, making the full exchange of pore liquid with the oil/solvent 

mixture diffusion dependent. The heterogeneity of incomplete exchange 

could cause a wider distribution in pore sizes.  

Figure 5.1.  N2 sorption isotherms for silica pyrogel samples 

synthesized with varying oil volume.  
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A comparison of total pore volume and average pore width between 

the silica pyrogel products synthesized with varying oil volume % is 

graphed in Figure 5.3.  The pore width reaches a maximum of 11.3 nm 

when 100% of the pore liquid is oil and slowly starts to decrease with 

decreasing volume of oil, reaching a minimum of 6.4 nm when the oil 

content is about 50 % of the pore liquid. As the oil content decreases 

further, an increase in pore width is seen, with a second maximum pore 

width of 7.8 nm is reached when about 10% of the pore liquid is oil. A very 

similar trend is seen with the pore volume. 

 A maximum pore volume of 2.5 cm3/g is achieved when the pore 

liquid is 90 % oil, and slowly decreases to a minimum pore volume of 1.6 

cm3/g at 50 % oil volume only to slowly increase up to 2.1 cm3/g when the 

pore liquid is 10% oil in volume. The maximum pore volume corresponds 

to 85 % porosity, which is comparable to the porosities of silica aerogels 

that have been sintered at 500 °C, and greater than the porosities of 

Figure 5.2.  Pore distribution curves for silica pyrogel samples synthesized 

with varying oil volume. 
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mesoporous silica produced using template methods that have been 

calcined at 600 °C. 28 These high porosities and surface areas indicate that 

the high temperature combustion method with controlled condensing can 

produce comparable materials synthesized using supercritical drying or 

expensive templates (Table 2). The small contribution of microporosity to 

the overall porosity of the pyrogel materials results in a more robust 

structure.  

5.3.3. Electron Microscopy Studies 

 Scanning electron microscopy was used to evaluate the 

macrostructure and homogeneity of the surface of the silica pyrogel 

samples. All of the samples had similar surface morphology, with 

representative images shown in Figure 5.4 of sample Z4. The samples 

 

Figure 5.3.  Average pore width and pore volume for REF, and S10 – 

S100. 
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had homogeneous surfaces, free of large macropores as evident by the 

solid appearance of the particle surface. Transmission electron 

microscopy was used to evaluate the microstructure of the silica materials. 

The samples all exhibited similar microstructures as well, with the only 

difference being the density of particles. The lowest porosity product had a 

larger density of particles in a given area while the highest porosity 

product had a lower density of particles in a given area. Images from the 

highest porosity product are shown in Figure 5.5. Homogeneity of the final 

pyrogel samples was confirmed by examining multiple areas of the TEM 

grid.  

 

 

Figure 5.4. SEM images of representative silica pyrogel material. 
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All of the samples exhibited an intricate web-like three-dimensional 

structure with well-sintered elongated particles. This morphology is 

significantly different from the morphology typically seen in porous silica 

xerogels and aerogels produced using a base catalyzed TEOS sol-gel 

synthesis. For comparison and to verify that the observed morphology was 

not due to beam damage, several commercially available mesoporous 

silica samples, Davisil Grade 646, Davisil Grade 12, and chromatography 

column silica were examined using the exact same TEM sample prep and 

imaging conditions. The commercially available silica materials had 

varying particle size across the different samples, but all were composed 

of semi-spherical particles loosely sintered together forming a textural 

porosity consistent with that observed in silica aerogels. The highest 

surface area sample, Davisil 646, had a primary particle size of ~ 10 nm 

while Davisil Grade 12 and the chromatography column silica had a 

primary particle size of ~ 20 nm.  Beam damage could be ruled out as 

 

Figure 5.5. TEM images of representative silica pyrogel material 
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there was no change in particle shape, size, or morphology after extensive 

time of beam exposure to the same area of a particle for both the 

commercially available silica and the silica pyrogel particles.  

 

The ultra high porosity of aerogels is desirable for application 

purposes, however, it leads to very weak structural integrity.24 The 

porosity of the reported pyrogels is lower than that of synthesized silica 

aerogels but the structural strength of the pyrogels is much greater that 

that of fragile aerogels. In order to assess the general robustness of the 

newly afforded silica pyrogels, the materials were soaked in various 

solvents such as water, ethanol, acetone, and hexanes and observations 

Table 2. Comparison of commercially available and recently reported 

mesoporous silica materials.  

 

BET 
surface 

area 
(m2/g) 

BET 
surface 

area from 
micropores 

(m2/g) 

BJH 
pore 

diameter 
(nm) 

BJH 
pore 

volume 
(cm3/g) 

Porosity 

(%) 

SiO2 Aerogel >1600 NR 20 – 150 
1.8 - 
130 

80 – 
99.8 

Davisil Grade 
646[a] 746 201 3.7 0.15 25 

Davisil Grade 12[a] 308 70 12.3 1.1 70 

Column 
Chromatography 

SiO2
[a] 

361 67 8.5 0.9 67 

Ordered SiO2 from 
template 

synthesis[b] 
670 NR 21 2.2 83 

SiO2 pyrogel S90 687 20 10 2.5 85 
 

[a]Purchased from Sigma-Aldrich   

[b]Sample MSU-J-TEOS-65 °C from Jiao et al.28 
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were made about the structural integrity of the material afterwards. Two 

mechanical robustness tests were carried out. The first was by dropping 

small drops of liquid onto the particles, allowing the liquid to be absorbed 

by the particle and observing the change in macroscopic structure of the 

particle. The liquids were rapidly absorbed by the particles, with the lowest 

surface tension liquids being absorbed the fastest. One the liquid was 

absorbed the particle remained completely in-tact and not cracking or 

breaking could be observed. The particle maintained its original shape and 

no visible changes could be seen. Repeated wetting of dry particles 

showed that the silica pyrogels were able to absorb liquids without any 

visible change or damage to the solid structure. 

The second test was done by dropping the silica particles into a 

large volume of solvent. The particles initially floated on the surface of the 

liquids, until the diffusion of the liquid through the solid caused the 

particles sink. The higher the surface tension of the liquid, the longer it 

took for the particles to sink and solvents with very higher surface tension 

like water, respectably, required the particles to be shaken into the 

solution in order to allow the diffusion of the liquid through the material. 

Once the particles sank to the bottom, the solutions were shaken for 

several seconds, allowing the particles to become dispersed in the liquid. 

The amount of time it took for the particles to sink back down to the 

bottom of the container was compared to the standard silica materials, 

fumed silica, Davisil Grade 646, Davisil Grade 12, and Column 
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chromatography silica. It was observed that the silica pyrogel materials 

sank to the bottom seconds faster then the Davisil and column 

chromatography silica. Fumed silica stayed dispersed in solution for one 

day. The mechanical robustness of the silica pyrogels along with being 

able to be easily dispersed and re-collected in a solution without structural 

collapse and maintaining a high porosity makes them a perfect candidate 

for applications that require soaking, impregnation, filtration or separation 

steps. 

The unique well-sintered morphology and resulting increased 

mechanical robustness of the pyrogel is most likely due to the high 

temperature combustion of the oil inside of the pores. Around 500 °C, the 

residual alkoxide moieties present on the surface of the solid network 

begin to burn off causing the condensation of neighboring silanols.24 This 

condensation eliminates surface reactive sites, but does not contribute to 

the densification or increased mechanical robustness of the solid network. 

It is not until temperatures greater than 850 °C that  the sintering of silica 

particles under viscous flow occurs. The increased formation of siloxane 

bonds results in densification of solid structure. 22-24 

When the oil-filled gels are combusted, the actual temperature that 

the particle “sees” is much greater than the 600 °C temp erature of the 

oven due to the heat of combustion of castor oil (38.65 kJ/g). This 

temperature is great enough to cause sintering of the individual silica 

particles creating the well sintered web-like morphology seen in the 
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pyrogel products. However, the time that the particles are exposed to 

these high temperatures is on the order of tenths of a second, resulting in 

only slight sintering and densification. This “flash-sintering” greater 

preserves the initial solid structure of the oil soaked gel giving products 

with higher porosity and equal or greater mechanical robustness as 

compared to aerogels sintered at 900 °C for 10, 30, an d 60 minutes.24 

5.4 Conclusion 

 High temperature combustion of oil filled silica wet gels with initial 

pre-condensing has been shown to produce highly mesoporous 

transparent silica particles with controllable pore size and pore volume. 

The quick sintering of primary particles during the combustion step results 

in a unique, web-like morphology that contributes to increased mechanical 

robustness of the final product without sacrificing porosity or surface area. 

It has already been shown that the high temperature combustion aids in 

dehydration of certain hydrous metal oxide gels, but in the case of silica, 

this work newly shows that the combustion step aids in the formation of a 

new, unique, well sintered solid network while removing the pore liquid 

and preserving the porous network structure simultaneously. This 

strengthening of the solid leads to a material that can be immersed into 

various liquids without destruction to the porous structure as well as a 

material that can be dispersed in a liquid and recovered quickly, all while 

avoiding the use of expensive drying techniques or template precursors.  
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CHAPTER 6 

SYNTHESIS OF HIGHLY POROUS YTTRIA-STABILIZED ZIRCONIA 

FROM INTERPENETRATING INORGANIC/ORGANIC NETWORKS 

6.1 Introduction 

Zirconia is one of the best known corrosion-resistant, refractory 

materials1 and exhibits several unique properties making it a versatile 

materials. Zirconia shows chemical inertness under most conditions, but 

can be catalytically active if treated with sulfur. At ambient temperature, it 

is an electrical insulator but if mixed with tetravalent oxides can form a 

high temperature ionic conductor. Additionally, zirconia-metal oxide alloys 

exhibit high-strength, low-fracturing properties, which when combined with 

its low thermal conductivity makes it a desirable material for thermal 

barrier coatings in turbine engines. Zirconia is a polymorphic oxide, whose 

stable structure is monoclinic at temperatures under 1170ºC, tetragonal 

from 1170-2370ºC, and cubic at temperatures above 2370ºC.2 The high 

temperature cubic phase is the most desirable phase for oxide conduction 

applications, and can be stabilized at room temperature by forming 

oxygen vacancies through substitution of Zr4+ with alkaline earth or rare 

earth cations. Yttria has been used as a stabilizer in zirconia parent-

lattices to form partially stabilized or fully stabilized cubic zirconia 

materials (YSZ), depending on the substitution percentage.3-6 It has been 

found that substitution of 8 – 10 mol% of Y2O3, corresponding to either full 

cubic stabilization or  mixed tetragonal-cubic stabilization, is the most 
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practical for electrolyte applications, with the optimal being around 8 - 9 

mol%.7  

YSZ materials with high surface area and mesoporosity are highly 

desirable for solid oxide fuel cell applications as well as uses as gas 

sensors,8 catalyst substrates9 and membranes.10  Different approaches 

have been taken to try and synthesize highly porous YSZ materials, with 

recent advances using block copolymers11 and sol-gel technique to 

synthesize aerogels.12,13 The later produced YSZ particles that were 

thermally stable after supercritical drying but then experienced structural 

collapse during the necessary heating step at 550ºC for the transition to a 

crystalline product. The former was able to achieve an ordered 

mesoporous material whose structure was stable up to 500ºC but then 

observed a significant decrease in surface area and pore volume when 

heated to 800ºC, all while requiring the use an expensive block-copolymer 

as an initial precursor. It is apparent that the synthesis of mesoporous 

YSZ materials is not trivial and there is a need for a synthetic procedure 

that does not require expensive, reactive precursors all while producing a 

product that is able to maintain its porous structure at high temperatures, 

is desirable.  

Recently, Volosin et al. reported a one-pot synthesis of 

interpenetrating inorganic and organic gel networks to form mesoporous 

antimony-doped tin oxide (ATO).14 Precursor solutions of inorganic salts, 

resorcinol and formaldehyde were initially mixed together. An epoxide was 
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then added to slowly increase the pH causing the gelation of the inorganic 

precursors. The gel was then heated to 70ºC to induce the gelation of the 

resorcinol formaldehyde (R-F) precursors present inside of the pores 

formed by the inorganic solid network. The solvent was then evaporated 

out of the composite gel, forming a xerogel, which was pyrolyzed at 500ºC 

to remove the R-F gel while dehydrating the ATO gel resulting in a 

crystalline, mesoporous ATO material. The key to this method is the 

sequential gelation (versus simultaneous gelation) of the inorganic and 

organic precursors, ensuring that the inorganic solid network is completely 

formed into a continuous network before the organic gel forms inside of 

the pores, acting as a sacrificial support. The synthesis of other metal 

oxides, such as YSZ, utilizing concurrent gelation and the formation of 

interconnecting inorganic and organic networks may provide an easy, one-

pot method that produces mesoporous, crystalline YSZ materials. 

6.2 Experimental Section 

6.2.1 Synthesis of YSZ Gels 

 Multiple samples were prepared by varying two different synthetic 

parameters, the concentration of the zirconium precursor and the 

concentration of the melamine precursor. The specific concentrations for 

each sample are listed in Table 1. It should be noted that while it is stated 

that the concentration of zirconium and melamine were varied, the 

concentration of ytrrium and formaldehyde precursor were also adjusted 
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accordingly so that the final Zr/Y mole ratio was 5.13 (9% Y2O3) and the 

melamine/formaldehyde molar ratio was 3.6 for all samples.  

 In a typical synthesis the sample was prepared by making two 

precursor solutions. The first, being the inorganic precursor solution, was 

prepared by dissolving 2.3 g of ZrCl4 in 8.0 g of deionized water followed 

by dissolving 0.6 g of YCl3·6H2O, producing a precursor solution that had 

a pH of about 1. The second solution, being the organic precursor solution, 

was prepared by dissolving 7.0 g of melamine in 10.5 g of dionized water 

and 8.3 g of 90% ethanol followed by the addition of 16.2 g of 37 w/w% 

formaldehyde solution (Sigma-Aldrich, 7-8% methanol as stabilizer). Due 

to the limited solubility of melamine in water, the organic solution was 

heated to 90ºC in a sealed container, to ensure complete dissolution of the 

melamine and then allowed to cool to room temperature producing a 

precursor solution that had a pH of about 6. The inorganic precursor 

solution was then added slowly to the organic precursor solution while 

stirring vigorously, and continued stirring for 2 minutes until a 

homogeneous solution was achieved. After stirring, the solution was 

allowed to sit, and gelation occurred in about one minute with the final pH 

dependent on the concentration of the organic and inorganic precursors, 

as reported in Table 1. The gel was sealed and aged at room temperature 

for one day, in which a hard solid white gel monolith formed. The gel was 

subsequently placed in an oven at 70ºC for three days after which the gel 

shrank by 5 vol %.  
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The monolithic composite gel was then removed and broken up 

prior to being air-dried for several days. The drying caused the composite 

materials to significantly shrink. The xerogels were then heated in an 

ashing furnace for 10 hours at 600ºC to produce a white material that had 

a fluffy, airy texture. Calcination variation experiments were carried out by 

further heating the mesoporous YSZ product to 800, 900, 1000, and 

1100ºC, resulting in a denser looking material. 

6.2.2. Physical Characterization 

 Particle size and phase information were determined using powder 

X-ray diffraction (PXRD), with the data collected using a Siemens D5000 

diffractometer with a Cu-Kα radiation. Further phase information was 

collected using Raman spectroscopy. Data was collected using a custom 

built Raman spectrometer in a 180 ° geometry. The sam ple was excited 

using a 100 mW Compass 532 nm laser coupled with an Acton 300i 

spectrograph and a back thinned Princeton Instruments liquid nitrogen 

cooled CCD detector.  Data was collected from 200 to 800 cm-1. 

Transmission electron microscopy (TEM) was performed on a JEOL JEM 

2000FX TEM (LaB6 source, accelerating voltage 200 kV, PTP resolution 

0.28 nm). TEM samples were prepared by first grinding the material in an 

agate mortar in ethanol.  A copper grid covered with lacy carbon was 

submerged in the solution, taken out and then allowed to dry in air.  The 

images were taken under bright field conditions and slightly defocused to 

increase contrast. Scanning electron microscopy (SEM) studies was 
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performed using ground samples on a FEI XL-30 Environmental SEM 

using 5 keV electrons.  

N2 sorption experiments were carried out with a Micromeritics 

Tristar II 3020 at 77K.  Prior to the analysis, samples weighing around 300 

mg were degassed at 300 °C for 10 h under a continuous flow of nitrogen 

at ambient pressure.  Specific surface areas were calculated according to 

the Brunauer-Emmett-Teller (BET) equation using nitrogen adsorption 

isotherms in the relative pressure range from 0.06 to 0.2.  For the 

calculation of pore size distribution, the desorption branch was considered 

and the pore volume was obtained from the amount of nitrogen adsorbed 

at a relative pressure of 0.99.  Mesopore size distributions were obtained 

using the Barrett-Joyner-Halenda (BJH) method assuming a cylindrical 

pore model. Elemental analysis was performed with Perkin-Elmer 2400 

Series II CHNS/O Analyzer in order to estimate with the amount of 

residual carbon in the products. 

6.3 Results and Discussion 

6.3.1 Synthesis 

 The overall synthetic procedure for the synthesis of highly 

mesoporous YSZ is illustrated in Figure 6.1. An inorganic-organic 

composite gel is produced by the sequential formation of a hydrous YSZ 

gel network proceeded by the formation of a melamine-formaldehyde (M-

F) gel network, with the two networks interpenetrating each other. The 

synthesis is carried out by initially dissolving the organic and inorganic 
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precursors separately, due to the limited solubility of the melamine in 

water and the hydrolysis rate of ZrCl4. This ensures complete dissolution 

of all the precursors. The MF precursor solution had an initial pH of 6 while 

the Zr and Y precursor solution had an initial pH of 1 due to the 

hydrochloric acid generated during the hydrolysis of ZrCl4 and YCl3·6H2O.  

The two precursor solutions are then mixed together in one pot in which 

vigorous stirring is required in order to obtain a homogeneous solution. 

The pH of the mixed solution varied from 1 - 4 depending on the 

concentration of organic precursors. A weak, opaque gel forms within 

about two minutes after stirring has ceased and subsequently a hard, 

white gel is formed after 24 h. 

 

 

The initial gelation point is attributed to the formation of the 

inorganic network as supported by several different factors that would 

induce this formation. First, zirconium and yttrium salts can undergo pH 

initiated hydrolysis and condensation to form sol-gel materials, however 

this process usually requires the presence of an acid scavenger, such as 

Figure 6.1.  Synthetic procedure for interpenetrating organic/inorganic 

gel network.  
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an epoxide, to cause the slow increase in pH.15 Slow consumption of the 

acid increases the pH of the solution and results in the precipitation of sol 

particles which then condense together forming the spanning network of 

the inorganic gel. In the presented synthesis, the only source for the acid 

to be consumed by is the organic precursors. It was found in a control 

experiment that no gelation or visible change in viscosity occurred when 

ZrCl4 and YCl3·6H2O salts were dissolved in water without the presence of 

M-F precursors, supporting that another source must act on the system to 

induce gelation.  

The exact mechanism of this initial gelation is not known and is 

outside the scope of this thesis, but a possible explanation is presented. 

Acidic conditions are required to promote the condensation of 

intermediates in the polymerization of melamine and formaldehyde.15 

However this catalyzed process is only effective at elevated temperatures 

typically above 60ºC16-18. The increase in pH observed in our MF-YSZ 

systems, which results in the initial gelation of the inorganic network, 

indicates that the acid present is slowly being consumed, possibly by MF 

polymerization taking place at room temperature. A similar effect at room 

temperature has been observed in ATO-RF composite gels.14 The change 

in color of the gel from opaque to white over 24 h after initial gelation also 

supports that some extent of polymerization is occurring between the 

melamine and formaldehyde monomers. Control experiments showed that 

pure YSZ gels formed using an epoxide-addition sol-gel route with 
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water/ethanol ratios equivalent to those in the MF-YSZ composite 

synthesis, are opaque in color. The white color observed could then be 

due to the change in light scattering as the organic monomers present 

inside of the pores of the YSZ network, start to form longer, polymeric 

chains. 

The second factor that would support the initial formation of the 

inorganic network is the decreased solubility of the YSZ sol particles in 

ethanol. The final solution, after the organic and inorganic precursors 

solutions were combined, contained up to 42% ethanol by volume as 

compared to the initial inorganic precursor solution which contained only 

deionized water. The decrease in solubility of the sole particles in this 

ethanolic environment induces rapid condensation of the formed 

oligomers and results in decreased gelation time.12 Upon subsequent 

heating at 90ºC, the M-F polymerization fully occurred in the hydrous YSZ 

gel to give a very hard, solid white gel. It is plausible that the acid present 

from the inorganic precursors may catalyze the polymerization. However, 

it has been shown that the inorganic gel network itself may also promote 

polymerization,14 owing to the fact that high valent metal oxides can act as 

Lewis acids.19,20 Both the acid present from the precursors and the pre-

formed YSZ gel network could play a role in catalyzing the M-F 

polymerization. 

The YSZ/M-F composite gels were then dried in air to form 

composite xerogels and then subsequently heated to 600ºC for 10 h to 
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ensure complete combustion of the organic component. Elemental 

analysis shows that the residual carbon content is less than 0.4 wt% for 

the samples which supports that the organic component of the composite 

gel can be almost completely removed without leaving any significant 

amount of carbon residue in the final product.  

6.3.2. Powder X-ray Diffraction 

 Preliminary phase information can be deduced from x-ray 

diffraction. All samples exhibited similar patterns, independent of 

precursor concentrations, with the XRD pattern of the sample with highest 

organic precursor concentration, Z4, shown in Figure 6.2. After removal of 

the organic component of the composite gel and calcinations at 600ºC, all 

of the YSZ materials showed almost identical diffraction patterns with 

semi-broad Bragg reflection peaks, indicating crystallinity of the product as 

well as small particle size. All of the refection peaks could be assigned to 

either tetragonal or cubic phase of YSZ, with no evidence showing the 

presence of the low temperature monoclinic phase. XRD can be used to 

rule out the presence of the monoclinic phase however it is known that the 

small atomic scattering factor of oxygen makes it difficult to distinguish 

between the tetragonal and cubic phases near the phase boundary, which 

occurs at 8-10 mol% stabilization with Y2O3.
21 All of the YSZ materials 

presented are 9.09% Y2O3 stabilized, falling within this range. The 

significant difference between the diffraction patterns of the tetragonal 

phase vs. the cubic phase is the formation of doublets, or ‘splitting’, of 
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several of the peaks due to the elongation of the c axis. This distinction 

becomes increasingly difficult in nanocrystalline materials because of the 

peak overlap due to crystallite size broadening effects.22    

 

6.3.3 Raman Spectroscopy 

Primary phase information as well as identification of any transition 

from cubic to tetragonal phase was determined using Raman 

spectroscopy. The crystallographic structure of cubic and tetragonal YSZ 

as well as a full discussion addressing the use of Raman spectroscopy for 

phase identification has been given in Chapter 1 and Chapter 2.  The 

Raman spectra for the samples with varying organic precursor 

concentration are show in Figure 6.3. The Raman spectra for the sample 

with the highest M-F concentration, Z4, show some tetragonal 

characteristic with peaks at 260, 323, 468, and 642 cm-1 along with a 

broad peak from 580 to 620 cm-1 indicative of the cubic phase. Simply 

Figure 6.2. XRD pattern of M-F YSZ sample Z4. 
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reducing the concentration of M-F from 1.75 M to 1.43 M, sample Z3, 

reduces the amount of tetragonal character drastically, with very weak 

features at 260, 336, 465, and 635 cm-1 still present but a significant cubic 

phase broad peak from 590 to 630 cm-1. By further reducing the amount of 

M-F, samples Z2 and Z1, a continued decrease in the amount of 

tetragonal phase can be seen. The lowest M-F concentration sample, Z1, 

shows only three very broad features around 250, 330 and 450 cm-1, and 

is dominated by a broad peak present between 570 and 650 cm-1. This 

presence of tetragonal phase in 9.09 mol% Y2O3 YSZ systems is 

consistent with what has been observed before in the synthesis of YSZ 

aerogels,12 where full cubic stabilization could only be achieved with 17 

mole % Y2O3.  

For solid oxide fuel cell applications it has been found that the material 

Figure 6.3.  Raman spectra of samples with varying M-F content Z1, Z2, 

Z3, Z4 (left, listed top to bottom) and varying YSZ content Z6, Z5, Z4 

(right, listed top to bottom). 

Raman Shift Raman Shift 
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with cubic structure at the lowest stabilization limit (8-10 mol %) shows the 

highest ionic conductivity, making our synthesized YSZ materials very 

near to having the desired properties for use in such application. 

When the concentration of the inorganic precursors was varied, it 

was found that there was little effect on the phase composition of the final 

YSZ material. Raman spectra are shown in Figure 6.3 for the series Z4, 

Z5 and Z6, where the M-F concentration was held constant and the 

zirconium precursor concentration decreased. The spectra show four 

broad peaks that can be assigned to the tetragonal phase as well as one 

broad shoulder/peak in the range of 570 to 640 cm-1 which can be 

assigned to the cubic phase. It can be concluded that the inorganic 

precursor concentration is not a critical parameter in controlling what 

phase is formed in the final material. 

6.3.4 Electron Microscopy 

  Macroscopic structural features of the YSZ materials were 

examined through SEM studies on ground samples. All seven products 

had similar microscopic features, with representative images shown in 

Figure 6.4, of sample Z4 which had the highest porosity. The powder 

samples show a homogeneous textured surface with the absence of hard, 

dense agglomerates or any other heterogeneous aggregation.  
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Primary particle and nanoscopic structure studies were conducted using 

TEM. All samples showed very similar structures, with a representative 

image shown in Figure 6.5 of sample Z4 which had the highest porosity. 

The observations of round primary particle shape sintered together 

forming a large porous cluster network forming textural porosity is similar 

to the structures observed in previously reported YSZ aerogel particles 

synthesized from sol-gel routes.12,15 The crystalline nature of the particles 

is confirmed by the presence of lattice fringes as shown in higher 

magnification image of Figure 6.5, which is consistent with the Bragg 

peaks observed in the collected XRD patterns. The average particle size 

of 18.5 nm determined by TEM is slightly larger than the average 

crystallite size of 13.0 nm calculated from XRD. The difference between 

the two determined sizes could be attributed to two possible factors; the 

first is peak broadening in the XRD pattern due to the presence of both 

tetragonal and cubic phase. The second factor could be that one primary 

Figure 6.4. SEM micrographs of highest porosity sample, Z4, at low 

magnification (left) and high magnification (right). 
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particle may be composed of more then one crystallite, making the 

primary particle size observed in TEM larger then the crystallite size 

calculated from XRD. 

 

 

6.3.5  Surface Area and Porosity Analysis 

 The surface areas, average pore diameters and pore volumes for 

the porous YSZ products were measured using nitrogen 

adsorption/desorption analysis and are summarized in Table 1. YSZ 

materials which were prepared with a melamine concentration of 1.75 had 

consistent BET surface areas ranging from 73 to 76 m2/g with the change 

of concentration of zirconium having little effect on the resulting surface 

areas of the products. The adsorption isotherms for samples Z4, Z5, and 

Z6 are almost identical (Figure 6.6), showing a hysteresis loop starting at 

relative pressure of 0.5, indicating mesoporosity, The YSZ materials that 

Figure 6.5.  TEM micrographs of the highest porosity sample, Z4, at 

low magnification (left) and high magnification (right). 
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were made with a zirconium concentration of 0.25 with varying 

concentration of melamine had BET surface areas ranging from 76 to 87 

m2/g, with a trend seen that increased melamine concentration samples 

showed an increase in volume of N2 adsorbed, as indicated by their 

isotherms (Figure 6.7). 

However, it should be noted that sample Z1, which had the lowest 

concentration of melamine at 0.59 M, has a drastically lower BET surface 

area. This could be due in part to the incomplete formation of a solid 

inorganic gel network. The pH of the combined solution of the inorganic 

and organic precursors was 1 for sample Z1. It is known that the rate of 

Table 1. Selected properties of YSZ synthesized using inorganic-

organic interpenetrating network with varying inorganic and organic 

precursor concentrations. 

  

Sample [Zr+4] 
(mol/L) 

[Melamine] 
(mol/L) 

pH at 
gelation 

point 

BET 
surface 

area 
(m2/g) 

BJH pore 
diameter[a] 

(nm) 

BJH 
pore 

volume[b] 
(cm3/g) 

Z1 0.25 0.59 1 54 4.7 0.06 

Z2 0.25 1.05 2 87 6 0.16 

Z3 0.25 1.43 3.5 85 8.3 0.21 

Z4 0.25 1.75 4 76 12.4 0.26 

Z5 0.23 1.75 4 72 12.2 0.25 

Z6 0.21 1.75 4 73 11.6 0.26 

[a] 4(total pore volume)/(surface area). 
[b] from the pores with the pore width no larger than 150 nm. 
[c]from the BJH pore volume and theoretical density of 9 mol% YSZ 
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condensation and subsequent precipitation of sol particles is pH 

dependent, and at low pH, the rate of condensation is very slow as well as 

the low pH inhibits the precipitation of the newly formed oligomers. 

Without an increase in pH, the inorganic precursors can only form a 

weakly spanning solid, which results in a weak inorganic solid structure. 

This weak solid structure will not be able to further withstand the removal 

of the polymerized organic gel support inside of the pores, resulting in 

pore collapse forming larger particles giving a smaller specific surface 

area. All of the YSZ products exhibited a Type IV isotherm, with a plateau 

at high relative pressure and a closed desorption hysteresis loop, 

indicative of mesoporous materials.23 

 

A trend can be seen in the BJH pore volume as the concentration 

of organic precursor is varied Table 1. The pore volume increases from 

0.06 to 0.26 cm3/g as the concentration of melamine is increased from 

0.59 to 1.75 M. This trend is in agreement with the conclusion that the M-F 

Figure 6.6.  N2 isotherm (left) and BJH pore distribution plots (right) for 

M-F YSZ samples Z4, Z5, and Z6. 
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gel is forming an interpenetrating network and is taking on the role of a 

hard template. As the physical volume of the solid organic network is 

increased, by increasing the concentration of the organic precursors, the 

pore volume that the inorganic gel is able to maintain during solvent 

evaporation and subsequent removal of the organic gel also increases. 

These results are consistent with other inorganic-organic composite 

systems synthesized using a similar route.24 

 

 

The increase in pore volume with increasing organic precursor 

concentration is accompanied by an increase in pore size. The BJH pore 

distribution, Figure 6.7, shows maxima at 2, 4, 8, and 30 nm for samples 

Z1, Z2, Z3, Z4 respectively. By varying the amount of the organic gel 

component in the organic-inorganic composite gel, the resulting YSZ 

products can have volume porosities varying from 27 to 61 %, which is 

estimated roughly from the pore volumes and theoretical density of 9 % 

Figure 6.7  N2 isotherm (left) and BJH pore distribution plots (right) for 

M-F YSZ sample Z1, Z2, Z3, Z4. 
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YSZ. To our knowledge, this is the highest porosity achieved in the 

synthesis of mesoporous YSZ materials after calcination at 600ºC, even 

when compared to ordered porous YSZ materials synthesized using 

templating techniques.11 

 Changing the inorganic precursor concentration had little effect on 

the resulting pore size and pore volume of the final YSZ products (Figure 

6.6). All three samples that had equal M-F concentrations but varying 

zirconium concentrations resulted in materials with average pore 

diameters of ~12 nm and pore volumes of ~0.26 (Table 1). It can be 

concluded that varying the inorganic component within the range allowed 

by the synthesis to produce homogeneous products, has little effect on the 

surface area and pore properties of the final material.  

6.4 High Temperature Studies 

 High temperature studies were carried out on the highest porosity 

product, Z4, after initial removal of the organic gel component and 

calcination at 600ºC for 10 hr. Each sample was subsequently heated for 

10 hours at the indicated temperature, ranging from 800 to 1100ºC. The 

naming convention for this set of samples is the sample name followed by 

the calcination temperature (Z4_calcination temperature).  
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The specific surface area decreases with increasing calcination 

temperature (Table 2) and can be correlated to the increase in crystallite 

size, as calculated from the XRD pattern and confirmed with TEM, as well 

as the increase in average pore diameter as the particles are further 

sintered together. The sintering of particles and loss of porosity due to 

structural changes in the solid framework is expected with increased 

calcination temperature for highly porous YSZ materials, of which most 

see loss of porous structure at temperatures below 800 ºC11,13,15 It was 

observed that the densification effects of sintering are minimal up to 

temperatures of 900 ºC, with the final material having a pore volume of 

0.19 cm3/g correlating to a volume porosity of 54%. The final resulting 

material after calcination at 1100 ºC maintained a volume porosity of 23%, 

Table 2. Selected properties of sample Z4 calcined at various 

temperatures. 

Sample 

BET 
surface 

area 
(m2/g) 

BJH pore 
diameter[a] 

(nm) 

BJH pore 
volume[b] 
(cm3/g) 

Porosity[c] 
(%) 

Z4_600 72 14 0.28 63 

Z4_800 34 27 0.24 59 

Z4_900 26 31 0.19 54 

Z4_1000 15 29 0.1 35 

Z4_1100 8 33 0.05 23 

[a] 4(total pore volume)/(surface area). 
[b] from the pores with the pore width no larger than 150 nm. 
[c]from the BJH pore volume and theoretical density of 9 mol% YSZ 
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demonstrating that the synthesized porous YSZ could be a viable material 

for higher temperature applications.  

 The preservation of the desired cubic structure is also key during 

increased calcination temperatures. As explained previously, XRD can be 

used for the determination of crystallite size, however Raman 

spectroscopy must be used for phase determination to distinguish 

between tetragonal and cubic phase. It can be seen that increasing 

calcination temperature results in an increase in tetragonal phase present. 

Sample M1_600 shows very broad, weak peaks at 250, 320 470, and 640 

cm-1 indicating the presence of some tetragonal phase, but a dominant 

broad peak between 560 and 615 cm-1 belongs to the cubic phase (Figure 

6.8). The broad peak associated with the cubic phase is still dominant up 

to 900 ºC, after which the four peaks assigned to the tetragonal phase 

become more pronounced. Increasing the mol % of Y2O3 might provide 

complete stabilization of the porous YSZ material at high temperature, 

however the lowest doping content possible is desired for SOFC 

applications.  
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6.5 Conclusion 

 Highly porous yttria-stabilized zirconia materials have numerous 

catalysis, catalytic support, and fuel cell applications. Currently, 

supercritical drying and templating techniques  have been the only options 

for synthesizing such materials with the final products showing limited 

thermal stability, mechanical robustness, and requiring expensive 

precursors and time consuming techniques. It has been presented here 

that the formation of interpenetrating inorganic and organic networks by 

concurrent gelation technique was successfully applied to the synthesis of 

9 mol % YSZ. The removal of the organic portion through calcination 

resulted in porous, crystalline products with controllable pore size and 

pore volume by varying the volume of organic component, the best having 

a volume porosity of 63%. Raman spectroscopy confirmed the 

Figure 6.8. Raman spectra for Z4_600, Z4_800, Z4_900, Z4_1000, 

and Z4_1100 (listed top to bottom), highest porosity samples calcined 

at indicated temperatures.  

Raman Shift 
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stabilization of the desired cubic phase up to 900 ºC, with partial 

stabilization up to 1100 ºC where the final material maintained a 23% 

volume porosity. The produced YSZ material shows thermal and 

mechanical structure stability. All of the past and current reported 

techniques for producing porous YSZ materials demonstrate the difficulty 

in finding a synthetic procedure that results in the formation of a YSZ 

material that contain all of the desired mechanical, structural and 

conductive properties needed for wide-use applications. Most of the 

reported procedures are able to exploit one property at the expense of the 

others, making porous YSZ systems very challenging from a synthetic 

point of view. The use of a sequential gelation process forming two 

interpenetrating networks seems very promising in that the final material 

produced shows mechanical and thermal stability as well as having the 

desired phase and controllable pore properties. 
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