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ABSTRACT

This dissertation involves three problems that are all related by the use

of the singular value decomposition (SVD) or generalized singular value de-

composition (GSVD). The specific problems are (i) derivation of a generalized

singular value expansion (GSVE), (ii) analysis of the properties of the χ2

method for regularization parameter selection in the case of nonnormal data

and (iii) formulation of a partial canonical correlation concept for continuous

time stochastic processes.

The finite dimensional SVD has an infinite dimensional generalization to

compact operators. However, the form of the finite dimensional GSVD devel-

oped in, e.g., Van Loan [40] does not extend directly to infinite dimensions as

a result of a key step in the proof that is specific to the matrix case. Thus,

the first problem of interest is to find an infinite dimensional version of the

GSVD. One such GSVE for compact operators on separable Hilbert spaces is

developed.

The second problem concerns regularization parameter estimation. The χ2

method for nonnormal data is considered. A form of the optimized regulariza-

tion criterion that pertains to measured data or signals with nonnormal noise

is derived. Large sample theory for φ-mixing processes is used to derive a

central limit theorem for the χ2 criterion that holds under certain conditions.

Departures from normality are seen to manifest in the need for a possibly

different scale factor in normalization rather than what would be used under

the assumption of normality. The consequences of our large sample work are

illustrated by empirical experiments.

For the third problem, a new approach is examined for studying the re-

lationships between a collection of functional random variables. The idea is

based on the work of Sunder [36] that provides mappings to connect the ele-
i



ments of algebraic and orthogonal direct sums of subspaces in a Hilbert space.

When combined with a key isometry associated with a particular Hilbert space

indexed stochastic process, this leads to a useful formulation for situations that

involve the study of several second order processes. In particular, using our

approach with two processes provides an independent derivation of the func-

tional canonical correlation analysis (CCA) results of Eubank and Hsing [13].

For more than two processes, a rigorous derivation of the functional partial

canonical correlation analysis (PCCA) concept that applies to both finite and

infinite dimensional settings is obtained.
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CHAPTER 1

OVERVIEW

1.1 Introduction

The singular value decomposition (SVD) of a matrix is one of the most im-

portant tools in mathematics. It has a long history dating back to the work of

Sylvester [37], Autonne [2], Eckart and Young [10] and many others. There are

now a number of extensions of the SVD involving factorization of more than

one matrix, that are collectively termed generalized singular value decompo-

sitions: i.e., GSVDs. Of particular interest for the work in this dissertation is

the one developed by Van Loan [40] and Paige and Saunders [29]; we will refer

to it as the generalized singular value decomposition (GSVD). Other exten-

sions include the cosine sine decomposition of a partitioned unitary matrix by

Stewart [35], the product SVD proposed by Fernando and Hammarling [14]

and the restricted SVD of three matrices introduced by Zha [42] and further

developed by De Moor and Golub [9].

The SVD and GSVD have diverse applications involving areas such as sig-

nal processing, numerical computation, and statistics. In particular, canonical

correlation analysis (CCA) in statistics is closely related to the SVD. The SVD

and GSVD can also be applied to analyze and to solve least-squares problems

in numerical analysis.

Strictly speaking, the SVD and GSVD refer to decompositions of finite

dimensional matrices. Our interest is in similar decompositions for infinite

dimensional compact operators. In that setting, we will refer to them as

the singular value expansion (SVE) and generalized singular value expansion

(GSVE), respectively. The SVE is an important theoretical tool with practical

application in, e.g., the solution of integral equations.
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This dissertation provides solutions for three distinct problems from math-

ematics and statistics. These problems are related through the principal tool

that is used for their solution and their analysis: i.e., a SVD/ SVE or a GSVD.

1.2 The SVE, SVD and GSVD

Given the importance of the SVD/ SVE and GSVD for what follows, it will

be worthwhile to first give explicit derivations of these decompositions. This

is the subject of the current section. The derivation of a GSVE is the topic of

the next chapter.

1.2.1 The SVE and SVD

Let us initially focus our attention on the SVD/ SVE. We will first derive the

SVE of a compact linear operator in a Hilbert space. This will then allow us

to derive the matrix version as a special case for a finite dimensional operator.

Let H1 and H2 be separable Hilbert spaces with inner products ⟨·, ·⟩Hi
,

and norms || · ||Hi
, i = 1, 2. The set of bounded operators from H1 to H2 will

be denoted by B(H1,H2).

Definition 1.2.1. For an operator A ∈ B(H1,H2), the adjoint A∗ of A is the

element of B(H2,H1) that satisfies ⟨Ag, f⟩H2 = ⟨g, A∗f⟩H1 for any g ∈ H1

and f ∈ H2.

Definition 1.2.2. An operator A ∈ B(H,H) is self-adjoint if A = A∗.

Definition 1.2.3. An operator A ∈ B(H,H) is unitary if A∗A = AA∗ = I.

Definition 1.2.4. A : H1 → H2 is compact if, for any bounded sequence

{gn} ∈ H1, the sequence {Agn} ∈ H2 contains a convergent subsequence.

2



Our interest will be directed toward the case where A is compact. In that

event, A∗A is compact, nonnegative definite and self-adjoint. As such, it has

a pure point spectrum with nonzero eigenvalues λ2j that provide eigenvalue-

eigenfunction pairs (λ2j , gj), j = 1, 2, . . ., where λ21 ≥ λ22 ≥ · · · > 0 and the gj’s

are orthonormal [11].

Now, AA∗ is also compact, nonnegative definite and selfadjoint with

A(A∗Agj) = (AA∗)Agj = λ2jAgj, j = 1, 2, . . . .

Thus, by letting fj = Agj/λj, we obtain the pairs (λ2j , fj), j = 1, 2, . . ., that

form the eigenvalue-eigenfunction system for AA∗. This follows from observing

that

⟨fi, fj⟩H2 = ⟨Agi/λi, Agj/λj⟩H2 = (1/(λiλj))⟨gi, A∗Agj⟩H1

= (λj/λi)⟨gi, gj⟩H1 = δij,

where δij = 0 for i ̸= j and δij = 1 for i = j.

Let Im(A) = {Ag ∈ H2 : g ∈ H1} and Ker(A) = {g ∈ H1 : Ag = 0}

be the range and kernel of A, respectively. Since Im(AA∗) = Im(A), for any

g ∈ Im(A∗)

Ag = A
∞∑
j=1

⟨g, gj⟩H1gj =
∞∑
j=1

⟨g, gj⟩H1Agj

=
∞∑
j=1

λj⟨g, gj⟩H1fj =
∞∑
j=1

λj(fj ⊗ gj)g,

where the tensor product notation (f ⊗ g)h is defined by

(f ⊗ g)h = ⟨h, g⟩Hf. (1.1)

We have just proved the following result.

3



Theorem 1.2.1. [11] Let H1 and H2 be Hilbert spaces and let A be a compact

operator from H1 into H2. Then,

A =
∞∑
j=1

λj (fj ⊗ gj) (1.2)

with

(i) {λ2j} the non-zero eigenvalues of A∗A and AA∗,

(ii) {gj} orthonormal eigenfunctions of A∗A and

(iii) {fj} orthonormal eigenfunctions of AA∗ satisfying Agj = λjfj.

The representation of A in (1.2) is the SVE of the operator. The triples

(λj, fj, gj), j = 1, 2, . . . are sometimes called a singular system for A [11]. The

{λj} are termed singular values while the {fj} and {gj} are the left and right

singular functions, respectively.

The SVE plays a fundamental role in the analysis and solution of least

squares problems through its connection to an operator’s generalized inverse.

A Moore-Penrose generalized inverse A− of a linear operator A satisfies

AA−A = A,A−AA− = A−, (AA−)∗ = AA− and (A−A)∗ = A−A.

Definition 1.2.5. [11] Let Ã := A|Ker(A)⊥. The Moore-Penrose generalized

inverse of a linear operator A is the unique linear extension of Ã−1 to

D(A−) := Im(A)⊕ Im(A)⊥.

A characterization of A− using the SVE of A is provided by the Theorem

1.2.2.

4



Theorem 1.2.2. [11] Let (λj, fj, gj) be a singular system for the compact

linear operator A : H1 → H2. Then,

(i) f ∈ D(A−) if and only if the Picard condition
∞∑
j=1

|⟨f, fj⟩H2 |2

λ2j
< ∞ is

satisfied.

(ii) for f ∈ D(A−),

A−f =
∞∑
j=1

⟨f, fj⟩H2

λj
gj. (1.3)

Proof. For (i) first suppose f ∈ D(A−) and that P is the orthogonal projector

onto Im(A). Then, Pf ∈ Im(A) and there exists g ∈ H1 such that Ag = Pf .

For g ∈ Ker(A)⊥,

Pf =
∞∑
j=1

⟨f, fj⟩H2fj = Ag =
∞∑
j=1

λj⟨g, gj⟩H1fj (1.4)

so that ⟨f, fj⟩H2 = λj⟨g, gj⟩H1 . Since ⟨g, gj⟩H1 are the generalized Fourier

coefficients for g under the {gj} basis for Im(A), {⟨f, fj⟩H2/λj} ∈ l2, the

Hilbert space of square summable sequences. Consequently, the Picard condi-

tion holds.

To go in the other direction, write g =
∞∑
j=1

⟨f, fj⟩H2

λj
gj ∈ H1 to see that

Ag =
∞∑
j=1

⟨f, fj⟩H2fj = Pf ∈ Im(A)

and f ∈ D(A−). Finally, for part (ii) use (1.4) to obtain

g = A−Pf = A−f =
∞∑
j=1

⟨f, fj⟩H2

λj
gj.

The matrix SVD is a special case of the operator SVE. We state this

formally as the next corollary. We use VH to denote the complex-conjugate

transpose of any matrix V.
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Corollary 1.2.1. If A ∈ Cm×n has rank k ≤ min(m,n) < ∞, there exist

unitary matrices

U = [u1, . . . ,um] ∈ Cm×m

and

V = [v1, . . . ,vn] ∈ Cn×n

such that

A = UΛVH =
k∑

j=1

λjujv
H
j ,

where Λ = diag(λ1, . . . , λk, 0, . . .) ∈ Rm×n is a diagonal matrix for which

λ1, . . . , λk satisfy λ1 ≥ λ2 ≥ · · · ≥ λk > 0.

Proof. Since A is of finite rank, it is necessarily compact. Thus, by Theorem

1.2.1, A =
k∑

j=1

λj (uj ⊗ vj) with uj ∈ Cm and vj ∈ Cn. The tensor-product

operator ⊗ in this case is just the vector outer product: i.e., uj ⊗ vj = ujv
H
j .

Actually, an adjoint of an operator between finite-dimensional spaces is

related with the complex conjugate transpose in the following way. Let an

operator A ∈ B(Cn,Cm) with standard basis for Cn and Cm andM(A) be the

matrix representation of A. Then, M(A∗) =M(A)H .

1.2.2 An Illustration of the SVE

The SVE is an important tool that arises in, e.g., the solution of Fredholm

integral equations of the first kind: i.e.,∫ 1

0

K(s, t)g(t)dt = f(s), 0 ≤ s ≤ 1, (1.5)
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where real valued f, g ∈ L2[0, 1], the Hilbert space of square integrable func-

tions on [0, 1]. The L2[0, 1] inner product is

⟨f, g⟩ =
∫ 1

0

f(t)g(t)dt

and the corresponding norms for g ∈ L2[0, 1] and K ∈ L2([0, 1]× [0, 1]) are

∥g∥2 = ⟨g, g⟩, ∥K∥2 =
∫ 1

0

∫ 1

0

|K(s, t)|2dtds.

The SVE gives

K(s, t) =
∞∑
j=1

λjfj(s)gj(t).

Then, by Theorem 1.2.2, under the Picard condition, we have

g(t) =
∞∑
i=1

⟨fj, f⟩
λj

gj(t). (1.6)

For computational purposes, (1.5) is typically approximated using a finite

discrete approximation in place of the integral equation. For example, if we

use a quadrature approximation for (1.5), this produces the linear equations

n∑
j=1

wjK(si, tj)g(tj) = f(si), i = 1, . . . ,m,

with {wj} the quadrature weights. Equivalently, this can be written in the

form Ax = b, where A ∈ Rm×n with elements aij = wjK(si, tj), x ∈ Rn with

elements xj = g(tj) and b ∈ Rm with elements bi = f(si) for i = 1, . . . ,m and

j = 1, . . . , n. Then, the SVD of A can be employed to solve or analyze the

linear system.

Hansen [16] discusses the relationship between the SVD and SVE for (1.5)

when K is square integrable. He shows how to use the SVD to compute an

approximation to the SVE by a universal expansion method. Specifically, let
7



{f 0
1 , . . . , f

0
n} be orthonormal functions in L2[0, 1] and let the matrix A ∈ Rn×n

have elements

aij = ⟨f 0
i , Kf

0
j ⟩, i, j = 1, . . . , n. (1.7)

If the SVD of A gives the singular system (λ̃j,uj,vj) for j = 1, . . . , n, then

the singular system (λj, fj, gj) for K is approximated by

(λ̃j,
n∑

i=1

uijf
0
i (s),

n∑
i=1

vijf
0
i (t)), j = 1, . . . , n.

As an example, consider the first kind Fredholm integral equation∫ a

0

1

1 + s2t2
g(t)dt = f(s), 0 ≤ s ≤ a. (1.8)

Here, the kernel function is K(s, t) = (1 + s2t2)−1. If a = ∞, we have that∫ ∞

0

∫ ∞

0

K(s, t)2dsdt = ∞, (1.9)

in which case K(s, t) is not square integrable and hence there exists no SVE.

However, if we take a = 5 for instance, K(s, t) is square integrable restricted

to [0, 5] × [0, 5] and then we can use the SVD to compute the approximation

to the SVE of the integral operator corresponding to K(s, t).

Now, let the interval [0, 5] be divided into n subintervals with the same

length h = 5/n. The orthonormal functions {f0
i } are chosen to be

f0
i (x) =

 h−1/2, x ∈ ((i− 1)h, ih], i = 1, . . . , n,

0, otherwise.

Thus, (1.7) can be written as

aij = h−1

∫ ih

(i−1)h

∫ jh

(j−1)h

K(s, t)dsdt, i, j = 1, . . . , n, (1.10)
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and we can apply Simpson’s rule to approximate the double integral in (1.10)

to produce a matrix A for use by the SVD. We have listed some computed

singular values λ̃j for different choices of n in Table 1.1. For comparison, we

also list some computed singular values with increasing a at n = 128 in Table

1.2. The effect of (1.9) is seen here in the lack of convergence for the singular

values. We do not expect convergence since the SVE does not exist as a→ ∞.

n λ̃1 λ̃2 λ̃3 λ̃4
16 1.6352 0.7046 0.2323 0.0649
32 1.6408 0.7253 0.2591 0.0877
64 1.6421 0.7300 0.2643 0.0916
128 1.6424 0.7311 0.2656 0.0926

Table 1.1: Computed singular values for a = 5 with increasing n

a λ̃1 λ̃2 λ̃3 λ̃4
5 1.6424 0.7311 0.2656 0.0926
10 1.7768 0.9827 0.4575 0.2026
20 1.8579 1.1408 0.5772 0.2598
40 1.8696 1.1134 0.4814 0.1567

Table 1.2: Computed singular values for n = 128 with increasing a for example
(1.8)

If we consider another first kind Fredholm integral equation∫ ∞

0

e−s2+0.5st−t2g(t)dt = f(s), 0 ≤ s ≤ a, (1.11)

where the kernel function is K(s, t) = e−s2+0.5st−t2 . Since this K(s, t) is square

integrable even at a = ∞, then the SVE exists. Table 1.3 shows some com-

puted singular values with increasing a at n = 128 and convergence is indi-

cated.
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a λ̃1 λ̃2 λ̃3 λ̃4
5 0.6851 0.0364 0.0018 0.0001
10 0.6849 0.0363 0.0018 0.0001
20 0.6840 0.0359 0.0018 0.0001
40 0.6805 0.0342 0.0015 0.0001

Table 1.3: Computed singular values for n = 128 with increasing a for example
(1.11)

1.2.3 The GSVD

The GSVD was first established by Van Loan [40] and is sometimes referred

to as the B-singular value decomposition. It arises in the problem of finding

ζ ≥ 0 for which det(ATA− ζ2BTB) = 0, where A ∈ Cma×n and B ∈ Cmb×n.

The result and proof of the GSVD for the finite dimensional case follows the

developments in Paige and Saunders [30]. Here, and subsequently, we use In

to denote an n-dimensional identity matrix.

Theorem 1.2.3. [30]For matrices A ∈ Cm×n and B ∈ Cp×n, let CH =

(AH ,BH) with C having rank k. Let DC ∈ Rk×k be a diagonal matrix with

the nonzero singular values of C as its diagonal elements. Then, there exist

unitary matrices UA ∈ Cm×m, UB ∈ Cp×p, V ∈ Cn×n and Q ∈ Ck×k such

that

UH
AAV = SA(Q

HDC, 0), UH
BBV = SB(Q

HDC, 0),

where

SA =


Ir

DA

OA

 , SB =


OB

DB

Ik−r−s

 ,
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for integers r and s satisfying 0 ≤ r, s ≤ k, OA and OB matrices of all zeros

andDA and DB diagonal matrices with diagonal elements λA,(r+1), . . . , λA,(r+s)

and λB,(r+1), . . . , λB,(r+s), respectively, satisfying

1 > λA,(r+1) ≥ · · · ≥ λA,(r+s) > 0, 0 < λB,(r+1) ≤ · · · ≤ λB,(r+s) < 1, (1.12)

and

λ2A,i + λ2B,i = 1, i = r + 1, . . . , r + s. (1.13)

Proof. The SVD of C allows us to write

C =

 A

B

 = U

 DC 0

0 0

VH

with U and V unitary matrices and DC a diagonal matrix with the nonzero

singular values of C as its diagonal elements. Now, we can partition U as

U =

 UA1 UA2

UB1 UB2

 .

Let the SVD of UA1 be

UA1 = UASAQ
H

and write

UB1 = UB1QQH = UBLQ
H ,

where UB1Q = UBL with UB unitary and L lower triangular. Then, UA1

UB1

 =

 UA 0

0 UB


 SA

L

QH , (1.14)
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which has orthonormal columns since U is unitary. Thus,

(
UH

A1 UH
B1

) UA1

UB1

 = Ik. (1.15)

Combining (1.15) with (1.14) gives

Q

(
SH
A LH

) UH
A 0

0 UH
B


 UA 0

0 UB


 SA

L

QH = Ik.

From this we obtain SH
ASA +LHL = Ik; i.e., L

HL = Ik −SH
ASA = SH

BSB and,

hence, L = SB.

1.3 Regularization

In this section, we give a directed introduction to the use of regularization

for the solution of ill-posed inverse problems. Such problems arise in many

application areas such as medical imaging. For example, regularization is

essential when attempting to reconstruct a sharp image from an observed

blurred image.

In a general sense, inverse problems concern recovery of the interior infor-

mation (input/source) from the observed information (output/data) through

some connecting system. Taking (1.5) for instance, if K(s, t) and f(s) are

given as the connecting system and output, finding g(t) becomes an inverse

problem. Most inverse problems are ill-posed which forces us to use techniques

that return stable, approximate solutions. A problem is defined to be ill-posed

if it is not well-posed. The latter concept is defined by Hadamard [11] as fol-

lows.
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Definition 1.3.1. A linear problem is well-posed if

(i) for all admissible data, a solution exists,

(ii) for all admissible data, the solution is unique and

(iii) the solution depends continuously on the data.

If any one of the three properties is violated, we call the problem ill-posed.

In this dissertation, we consider the discrete linear inverse problem which

can be expressed as

Ax = b (1.16)

for A ∈ Rm×n, x ∈ Rn, b ∈ Rm and m ≥ n. The known right hand side of

(1.16) consists of unknown true data btrue ∈ Rm and noise ε ∈ Rm; i.e.,

b = btrue + ε. (1.17)

The matrix A in (1.16) derives from the underlying connective system and

is assumed to be known. The vector x is the solution we want to obtain given

the noisy data and the system A. Ideally, the solution should be close to the

true solution xtrue that satisfies

Axtrue = btrue. (1.18)

In practice, all we are given is the noisy data instead of the true data. In

that case, it is possible that (i) no solution exists for (1.16), (ii) the solution

of (1.16) is not unique or (iii) small perturbations of the data lead to a large

perturbations in the solution. Problem (iii) is often reflected in a large condi-

tion number for A. In all three cases, it is necessary to use regularization to

find a best (approximate) solution.
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1.3.1 Regularization Methods

There is a large literature on regularization techniques, e.g., [11], [17] and [41].

Here we illustrate the impact of regularization through the truncated SVD

and the Tikhonov approach.

1.3.1.1 Truncated SVD

Writing the SVD (from Corollary 1.2.1) of A in (1.16) as A =
k∑

j=1

λjujv
T
j

with k being the numerical rank of A, then,

x =
k∑

j=1

uT
j b

λj
vj =

k∑
j=1

uT
j btrue

λj
vj +

k∑
j=1

uT
j ε

λj
vj. (1.19)

From (1.19), it becomes obvious that the solution is contaminated by the

second term of the last expression, especially when λj is much less than uT
j ε.

Recall the Picard condition in Theorem 1.2.2 for the existence of the solu-

tion:

∞∑
j=1

|uT
j b|2

λ2j
<∞. (1.20)

This leads to the introduction of the discrete Picard condition for discrete

linear inverse problems, which is often given us.

Definition 1.3.2. [17] Let τ denote the level at which the computed singular

values λj level off due to rounding errors. Then the discrete Picard condition is

satisfied if, for all singular values greater than τ , the corresponding coefficients

|uT
j b|, on average, decay faster than the λj.

So the idea behind the truncated SVD [19] is to remove those components

in (1.19) that are dominated by the noise, or that violate the discrete Picard

14



condition. Thus, the approximate solution is

xκ =
κ∑

j=1

uT
j b

λj
vj. (1.21)

The integer parameter κ in (1.21), called a regularization parameter, needs to

be chosen so that the noise-dominated terms in (1.19) are discarded to keep

them from unduly perturbing the true solution.

To illustrate using the truncated SVD we work through a Shaw test prob-

lem. The Shaw matrix arises from discretization of the Fredholm integral

equation of the first kind on [−π/2, π/2] with

K(s, t) = (cos(s) + cos(t))2
(
sin(u)

u

)2

,

u = π(sin(s) + sin(t))

and

g(t) = 2e−6(t−0.8)2 + e−2(t+0.5)2 .

After producing A and xtrue, btrue is found by multiplying A and xtrue. A,

xtrue and btrue are output using the regularization toolbox [18] from Matlab.

Now we use the Shaw matrix for A ∈ R40×40 with xtrue and btrue shown in

Figure 1.1.

The right-hand side of (1.16) is obtained by btrue + ε where the noise

vector ε ∼ N40(0, 10
−6I) as shown in Figure 1.2. Here, ε ∼ N40(0, 10

−6I)

denotes that ε follows 40-variate normal distribution with mean 0 and covari-

ance 10−6I. Even for such low noise levels, the ill-posedness is reflected in the

solutions.

Figure 1.3 gives the approximate solutions xκ produced by the truncated

SVD for different values of κ along with the true solution. Figure 1.4 gives the
15
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Figure 1.1: xtrue and btrue
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Figure 1.2: ε and b

corresponding bκ = Axκ as compared with btrue. From the two figures, we

can see that bκ is still a good approximation of btrue even when xκ is a poor

approximation to xtrue. This phenomenon is indicative of the ill-posedness of

the problem and demonstrates that it is important to make a good choice for

the regularization parameter κ. In Figure 1.3, a good approximate solution is

achieved at κ = 9 and the impact of noise on the solution is clearly detectable

for κ = 10, 11, 12 where these approximate solutions oscillate far from the true

solution.
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Figure 1.3: Truncated SVD solutions for different values of the parameter κ
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Figure 1.4: Axκ compared with btrue

18



For further illustration of the discrete Picard condition, we use the discrete

Picard plot shown in Figure 1.5 that displays the λj, |uT
j b|2 and |uT

j b|2/λj.

It indicates that |uT
j b| decays faster than λj when j ≤ 9. For j ≥ 10, |uT

j b|

decays much slower than λj, thereby producing large values of the |uT
j b|/λj

that are dominated by the noise and violating the discrete Picard condition.

Hence, choosing κ = 9 in (1.21) agrees with our visual perception from Figure

1.3.
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Figure 1.5: Discrete Picard plot of a test problem

1.3.1.2 Tikhonov Regularization

As we have seen, the truncated SVD method relies on computing the singular

values and singular vectors of the matrix A. The resulting computational

task can be heavy or not feasible for large-scale problems. In contrast, the

Tikhonov regularization method [39] does not require the calculation of the
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SVD. Instead, we solve the problem

min
x

{
||Ax− b||22 + κ2||x||22

}
(1.22)

for x, where κ > 0 is a parameter that governs the weight of the regularization

or penalty term in (1.22). That is,

xκ = argmin
x

{
||Ax− b||22 + κ2||x||22

}
. (1.23)

The first term of the right hand side of (1.22), i.e., the fidelity term, mea-

sures the fit of the solution to the noisy data and the second term controls the

norm of the solution as a means of governing the noise distortion. There is a

trade off between these two aspects of the criterion and we want to attain a

suitable balance through adjusting the parameter κ.

To obtain a more explicit form for (1.23), we can write it as

xκ = argmin
x

∥∥∥∥∥∥∥
 A

κI

x−

 b

0


∥∥∥∥∥∥∥
2

2

which is now just an ordinary least-squares problem with the consequence that

xκ =


 A

κI


T  A

κI




−1 A

κI


T  b

0


= (ATA+ κ2I)−1ATb. (1.24)

Somewhat more generally, a Tikhonov criterion can be written as

||Ax− b||2Wb
+ ||L(x− x0)||2WL

. (1.25)

Here the weighted norm is ||y||2W = yTWy, for a vector y and non-negative

definite weighting matrix W , L ∈ Rp×n is, e.g., an approximate derivative
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operator and x0 ∈ Rn represents a priori information about the unknown

“signal” vector x. Now the regularization parameter is the weighting matrix

Wb (orWL) whenWL (orWb) is given. The least squares solution x̂ for (1.25)

is seen to be

x̂ = (ATWbA+ LTWLL)
−1ATWb(b−Ax0) + x0 (1.26)

under the invertibility condition for the matrix (ATWbA + LTWLL), i.e.,

Ker(A) ∩Ker(L) = 0.

1.3.2 Methods for Choosing the Regularization Parameter

A regularization method is not completely specified without a proper choice for

its regularization parameter, e.g., the number of terms in the truncated SVD or

the weight parameter for the Tikhonov criterion (1.22) as described in Section

1.3.1. There are various methods of accomplishing this; see [19], [17] and [41],

for example. Here we emphasize three statistical methods: namely, unbiased

predictive risk estimation (UPRE) ([41]), generalized cross validation (GCV)

([41] and [19]) and the χ2 method ([28]). The χ2 method is studied in more

detail in Chapter 3.

1.3.2.1 UPRE

Substituting (1.18) into (1.17) produces the model

b = Axtrue + ε. (1.27)

The predictive error is defined as

PEκ = Axκ −Axtrue
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and the predictive risk is the average of the mean squared norm of the predic-

tive error; i.e.,

1

m
E
(
∥PEκ∥22

)
=

1

m
E
(
∥Axκ −Axtrue∥22

)
.

Both the UPRE and GCV methods are based on estimators of the predictive

risk.

The UPRE method was first developed for model selection in regression

(e.g., [26]) and later used in regularization parameter estimation (see [41] and

references therein). The idea is based on minimization of an unbiased estima-

tor of the predictive risk criterion.

The case of interest is where xκ is a linear estimator for a fixed choice of κ.

In that event, we can write the regularized solution in the form xκ = Rκb for

some regularization matrix Rκ ∈ Rn×m. We then define the influence matrix

as

Aκ = ARκ.

Now we need to introduce the trace lemma wherein we will use tr to denote

the matrix trace.

Lemma 1.3.1. Let h ∈ Rn be a deterministic vector, let ε ∈ Rm be a random

vector with mean 0 and variance-covariance Cb and let B ∈ Rn×m. Then,

E(∥h+Bε∥22) = ∥h∥22 +
m∑
i=1

m∑
j=1

(BTB)ij(Cb)ij

= ∥h∥22 + tr(BCbB
T ).
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Proof. We have

E(∥h+Bε∥22) = ∥h∥22 + 2E(hTBε) + E(εTBTBε)

= ∥h∥22 + 2hTBE(ε) +
m∑
i=1

m∑
j=1

(BTB)ijE(εiεj)

= ∥h∥22 +
m∑
i=1

m∑
j=1

(BTB)ijE(εiεj)

= ∥h∥22 + tr(BCbB
T )

with (BTB)ij the ijth element of BTB.

In model (1.27), we assume that E(ε) = 0 and Cov(ε) = Cb. Since PEκ can

be written as

PEκ = (Aκ − I)Axtrue +Aκε,

by Lemma 1.3.1, an explicit expression for the predictive risk is seen to be

E

(
1

m
∥PEκ∥22

)
=

1

m
∥(Aκ − I)Axtrue∥22 +

tr(AκCbA
T
κ )

m
. (1.28)

Let rκ = Axκ − b be the regularized residual vector

rκ = (Aκ − I)Axtrue + (Aκ − I)ε.

Then, the average of the mean squared sum for the residuals is

E

(
1

m
∥rκ∥22

)
=

1

m
∥(Aκ − I)Axtrue∥22

+
tr(AκCbA

T
κ )

m
− 2tr(AκCb)

m
+

tr(Cb)

m
. (1.29)

Combining (1.28) and (1.29) leads to

E

(
1

m
∥PEκ∥22

)
= E

(
1

m
∥rκ∥22

)
+

2tr(AκCb)

m
− tr(Cb)

m
.
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The UPRE is then defined as

UPRE(κ) =
1

m
∥rκ∥22 +

2tr(AκCb)

m
− tr(Cb)

m
(1.30)

and satisfies E (UPRE(κ)) = E
(

1
m
∥PEκ∥22

)
. The corresponding choice for κ is

κ̂UPRE = argmin
κ

UPRE(κ).

In particular, if Cb = σ2
bI, we have the well-known trace lemma [41].

Lemma 1.3.2. Let h ∈ Rn be a deterministic vector, let ε ∈ Rm be a random

vector with mean 0 and variance-covariance matrix σ2I and let B ∈ Rn×m.

Then,

E(∥h+Bε∥22) = ∥h∥22 + σ2tr(BTB).

Applying Lemma 1.3.2 leads to the result that

E

(
1

m
∥PEκ∥22

)
= E

(
1

m
∥rκ∥22

)
+

2σ2
b

m
tr(Aκ)− σ2

b.

Then, the UPRE becomes

UPRE(κ) =
1

m
∥rκ∥22 +

2σ2
b

m
tr(Aκ)− σ2

b (1.31)

and the corresponding choice for κ is

κ̂UPRE = argmin
κ

UPRE(κ).

As a specific example, consider Tikhonov regularization. From (1.24), the

regularization matrix is Rκ = (ATA + κ2I)−1AT and the influence matrix is

Aκ = A(ATA+ κ2I)−1AT . An application of Corollary 1.2.1 to A produces

Aκ − I = A(ATA+ κ2I)−1AT − I

= UΛVT (VΛTUTUΛVT + κ2VVT )−1VΛTU−UUT

= U(Λ(ΛTΛ+ κ2In)
−1ΛT − Im)U

T . (1.32)
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Then, we have

tr(Aκ) =
n∑

i=1

λ2i
λ2i + κ2

(1.33)

and

(Aκ − I)b =
m∑
i=1

(uT
i b)

−κ2

λ2i + κ2
ui. (1.34)

Thus, by (1.31), (1.33) and (1.34), we obtain

UPRE(κ) =
1

m

m∑
i=1

|uT
i b|2

(
κ2

λ2i + κ2

)2

+ λ2b

(
2

m

n∑
i=1

λ2i
λ2i + κ2

− 1

)
.

From (1.30) and (1.31) we see that the UPRE method relies on the noise

variance Cb or σ2
b which will generally not be known exactly in practice.

Thompson et al. [38] provide several ways of estimating σ2
b that can be used

in the UPRE function. The basic structure is to consider estimators of the

form of bTKb/tr(K), where K is chosen to be some symmetric, nonnegative-

definite matrix that approximately annihilates Axtrue.

1.3.2.2 GCV

The GCV method furnishes an alternative to UPRE which does not need prior

information on (or estimation of) σ2
b. The GCV functional is defined to be

GCV(κ) =
1
m
∥rκ∥22[

1
m
tr(I −Aκ)

]2 . (1.35)

The corresponding choice for κ is

κ̂GCV = argmin
κ

GCV(κ).

One justification for this estimator is the so-called GCV Theorem ([15], [12])

which can be stated as follows for the case of a symmetric Aκ.
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Theorem 1.3.1. Let τj(κ) = (1/m)tr(Aj
κ), j = 1, 2, and assume that τ1(κ) <

1. Then, ∣∣E(GCV(κ))− ( 1
m
E(∥PEκ∥22) + σ2

b)
∣∣

1
m
E(∥PEκ∥22)

≤ g(κ),

where g(κ) = [2τ1(κ) + τ1(κ)
2/τ2(κ)] /(1− τ1(κ))

2.

This theorem implies that when g(κ) is small, the distance between E(GCV(κ))

and (1/m)E(∥PEκ∥22) + σ2
b is also small relative to the predictive risk

(1/m)E(∥PEκ∥22).

In this case, GCV(κ) can be roughly regarded as an unbiased estimator of

(1/m)E(∥PEκ∥22) + σ2
b.

1.3.2.3 χ2 Method

Mead and Renaut [28] have proposed a method for selection of regularization

parameters that will be the focus of Chapter 3. For an ill-posed linear system

(1.16), they consider the generalized Tikhonov regularization criterion (1.25)

and assume that m ≥ n ≥ p, Ker(A) ∩ Ker(L) = 0, L has rank p and the

augmented matrix (A;L) has rank n.

The solution is obtained by solving the weighted least-squares problem

x̂ = argmin
x

J(x),

where J(x) can be equivalently written as

J(x) = (b−Ax)TWb(b− Ax) + (x− x0)
TWx(x− x0), (1.36)

with

Wx = LTWLL.
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Mead [27] considered the case L = I and proposed the χ2 method for

estimating Wb given Wx or Wx given Wb. This idea was extended by Mead

and Renaut [28] for the general case of arbitrary L, using the GSVD. The

technique is based on the distribution of the minimum value of J . We use

x ∼ Nn(x0, Cx) to denote that x follows an n-variate normal distribution

with mean x0 and variance-covariance matrix Cx and use b|x to denote b

conditional on x.

Theorem 1.3.2. [28] Let J(x) be defined as in (1.36). Assume that x ∼

Nn(x0, Cx) where Cx = W−
x with Wx a symmetric nonnegative definite weight-

ing matrix and that b|x ∼ Nm(Ax,W−1
b ) for a symmetric positive definite

weighting matrix Wb. Then, the minimum value of J is a random variable

that has a χ2 distribution with m− n+ p degrees of freedom.

The theorem states that, for normally distributed data and known Wx,

Wb, the minimized values of the criterion J(x̂) follows a χ2 distribution. In

instances where one of the two is unknown, J(x̂) can be used like a test statistic

and inverted to construct a confidence region for the unknown matrix. As a

byproduct one obtains a suitably regularized final choice for x̂ corresponding

to a matrix that falls inside the confidence region.

If Wb and WL are known, Theorem 1.3.2 has the consequence that for

large (m−n+ p) and zα/2 the 100(1−α/2) percentile of the standard normal

distribution, the probability that

m− n+ p−
√

2(m− n+ p)zα/2 < J(x̂) < m− n+ p+
√

2(m− n+ p)zα/2(1.37)

will be approximately 1 − α. Mead [27] proposed choosing Wb (or WL when

L = I) so that these bounds are realized. For instance, suppose we want to
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estimate WL which is assumed to be of the form W−1
L = σ2

xI given Wb. Then,

σx can be found by a single-variable root finding Newton method which solves

F (σx) = J(x̂)− (m− n+ p) = 0, (1.38)

subject to the tolerance |F (σx)| < tol where tol =
√

2(m− n+ p)zα/2. Ex-

perimental results in [27] indicate that this approach can be more effective

than GCV, for example.

1.3.3 An Example

Here, we apply the UPRE, GCV, and χ2 methods for Tikhonov regularization

to the same Shaw test problem that was described in Section 1.3.1.1.

Figures 1.6 and 1.7 show the UPRE(κ) and GCV(κ) functions, respec-

tively. The Tikhonov parameter estimate minimizing the UPRE is obtained at

κ̂UPRE = 0.0033 while the parameter estimate minimizing GCV is obtained at

κ̂GCV = 0.0036. In terms of the χ2 method, in this instance, m = n = p = 40

for L = I and Wb = 106I. So, we are looking for σx such that (1.38) is

satisfied with m − n + p = 40. We pick α = 0.95 such that tol = 0.5609.

Figure 1.8 shows F (σx) and that the Newton method converges in 5 iterations

at σx = 2.0387 and F (σx) = 0.4900. Since in this case, (1.36) can then be

written as

J(x) = 106
(
||b−Ax||22 +

10−6

σ2
x

∥x− x0∥22
)
,

the corresponding Tikhonov parameter in (1.22) is estimated at

κ̂ =

√
10−6

σ̂x
2 =

10−3

2.0387
= 0.00049.

Figure 1.9 illustrates the approximate solutions using these three methods

compared with the true solution.
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Figure 1.6: UPRE function: κ̂UPRE = 0.0033. (Logarithmic scales are used for
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Figure 1.7: GCV function: κ̂GCV = 0.0036. (Logarithmic scales are used for
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1.4 Functional Data Analysis

Functional data can be viewed as collections of sample paths from a stochastic

process that take values in a Hilbert function space. Unlike classic statisti-

cal data, each observation is a function rather than a scalar or vector value.

Data of this type are now relatively common. Many physical processes evolve

smoothly over time and modern computing technology allows for storage of

an extensive digitized record of the outcomes.

Functional data analysis (FDA) is concerned with the development of ex-

tensions of classical multivariate data analysis methods such as principal com-

ponents analysis and canonical correlation analysis (CCA) to the functional

domain. Our emphasis is on functional CCA which concerns investigating the

association between continuous time stochastic processes. A review of clas-

sic finite dimensional multivariate CCA is given first before we discuss the

functional case.

1.4.1 Finite Dimensional CCA

The finite dimensional version of CCA in multivariate analysis stems from

Hotelling [21]. His original CCA development was aimed toward summariz-

ing the relationship between two sets of variables. The basic idea is to find

linear combinations of each set of variables such that these new variables,

called canonical variables, provide a simple representation of the multidimen-

sional correlation structure. The first pair of canonical variables maximizes

the squared correlation between a linear combination of the first set of vari-

ables and that of the second set of variables. The second pair of canonical

variables maximizes the squared correlation between linear combinations of
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each set but are chosen from those that are uncorrelated with the first pair of

variables. This same process is then repeated to construct subsequent pairs of

canonical variables.

To be more explicit, let X ∈ Rp and Y ∈ Rq be random vectors with zero

means and variance-covariance matrices

Var(X) = ΣXX ,Var(Y ) = ΣY Y ,Cov(X, Y ) = ΣXY = ΣT
Y X .

Then, the first canonical correlation ρ1 and associated weight vectors a1 and

b1 are defined as

ρ21 = sup
a∈Rp,b∈Rq

Cov2(aTX, bTY ) = Cov2(aT1X, b
T
1 Y ),

where a and b are subject to

Var(aTX) = Var(bTY ) = 1. (1.39)

For i > 1, the ith canonical correlation ρi and the associated weight vectors

ai and bi are defined as

ρ2i = sup
a∈Rp,b∈Rq

Cov2(aTX, bTY ) = Cov2(aTi X, b
T
i Y ),

where a and b are subject to (1.39) and

Cov(aTX, aTj X) = Cov(bTY, bTj Y )

= Cov(aTX, bTj Y ) = Cov(aTj X, b
TY ) = 0, j < i.

Kshirsagar [22] connected CCA with the SVD. He showed that the canoni-

cal correlations ρi are the singular values of Σ
−1/2
XX ΣXYΣ

−1/2
Y Y and the canonical

variables are obtained from its singular vectors.
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1.4.2 Functional CCA

Several approaches have been developed for functional CCA. The work from

[7] relies on the angles of two subspaces, but it only applies to finite dimen-

sional covariance operators, and in that sense, is covered by Hotelling’s original

treatise.

He et al. [20] consider functional CCA for second order processes in the

sense of Section 4.1. Specifically, let {Xi(t) : t ∈ [0, 1]}, i = 1, 2, be two second

order processes taking values in L2[0, 1] with zero means, covariance kernels

K11(t, s) = E(X1(t)X1(s)), K22(t, s) = E(X2(t)X2(s)) and cross covariance

function K12(t, s) = E(X1(t)X2(s)) with Kij ∈ L2([0, 1]× [0, 1]) for i, j = 1, 2.

He et al. [20] define the integral operator R11 as

R11u(t) =

∫ 1

0

K11(t, s)u(s)ds

for u ∈ L2[0, 1] and define analogous operators R22 and R12. Their version

of canonical correlation involves the singular values of R
−1/2
11 R12R

−1/2
22 . Since

R11 and R22 are compact, they impose range restrictions to ensure that the

inverses are defined. In general, when these conditions do not hold, this may

produce solutions that are suboptimal.

A typical functional CCA formulation focuses on the study of the induced

random variables ⟨X, f⟩H, f ∈ H for some separable Hilbert space H with

inner product ⟨·, ·⟩H. Roughly speaking, given two second order processes

X1, X2 taking values in Hilbert spaces H1 and H2, functional CCA looks for

f∗
i ∈ Hi such that

sup
fi∈Hi

|Corr(⟨X1, f1⟩H1 , ⟨X2, f2⟩H2)| = |Corr(⟨X1, f
∗
1 ⟩H1 , ⟨X2, f

∗
2 ⟩H2)|.
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Using an extended version of this framework, Kupresanin et al. [23] obtain

canonical variables and correlations via spectral decomposition of an operator

on the reproducing kernel Hilbert space (RKHS) generated by the process’

covariance kernels. Their work will be discussed in Chapter 4.

1.4.3 PCCA

Roy [33] extended the canonical correlation idea from two sets of random

variables to three sets in the following way. Let X, Y and Z be three random

vectors. Roy defined the partial canonical correlation of Y and Z to be the

ordinary canonical correlation of Ỹ and Z̃, where

Ỹ = Y − PXY and Z̃ = Z − PXZ

with PX denoting the projection on the linear space spanned by X. In other

words, for partial canonical correlation analysis (PCCA) we are interested in

the relationship between Y and Z after removing X’s influence on both of

them.

Dauxois and Nkiet [7] have developed an abstract version of PCCA that

generalizes Roy’s approach. However, it is applicable to only finite dimensional

covariance operators and, in that sense, fails to incorporate the instance of

functional data.

1.5 Outline of the Thesis

The remainder of the dissertation is laid out as follows. In the next chapter,

we develop a new version of a GSVE. Chapter 3 gives an analysis of the

χ2 method for choosing regularization parameters for nonnormal data. Both

large sample and finite dimensional developments suggest the method may

be sensitive to departures from the assumption of normally distributed data.
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Chapter 4 gives a new methodology for analyzing the relationship between

two or more stochastic processes in a functional data setting. The results of

Eubank and Hsing [13] are re-derived using this framework. Then, a general

notion of PCCA is derived that is valid in both the finite dimensional and

functional case. Chapter 5 summarizes our findings and discusses plans for

future research.
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CHAPTER 2

GSVE FOR COMPACT OPERATORS

2.1 Introduction

One question of interest is whether the matrix GSVD described in Chapter 1

has an extension similar to Theorem 1.2.1 that holds for infinite dimensions.

A direct extension of Theorem 1.2.1 does not appear to be feasible for reasons

described subsequently. However, at least one type of generalized singular

value expansion (GSVE) can be derived as demonstrated in the next section.

2.2 A GSVE

Here we present and prove a form of GSVE that can be applied to two compact

operators. For this purpose we need the Hilbert space l2 of square-summable

sequences. If l = (l1, l2, . . .) and l
′ = (l′1, l

′
2, . . .) are in l2, their inner product

is ⟨l, l′⟩l2 =
∞∑
j=1

ljl′j with l
′
j the complex conjugate of l′j.

Theorem 2.2.1. Suppose that there are two compact operators A and B on

a separable Hilbert space H, such that A : H → HA and B : H → HB for

separable Hilbert spaces HA and HB.

(i) Let {djA, fjA, gjA} and {djB, fjB, gjB} be the singular systems of A and

B, respectively, and let {dj, fj, gj} be the singular system of

C =

 A

B

 .
(ii) Define DA : l2 → l2 by

DAl = (d1Al1, d2Al2, . . .)
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for l = (l1, l2, . . .), and DB : l2 → l2 by

DBl = (d1Bl1, d2Bl2, . . .).

Then, there exist unitary operators Q, QAB in B(l2) and unitary operators G,

FA and FB such that

F ∗
AAG = DAQ

∗,

F ∗
BBG = DBQ

∗
ABQ

∗,

where we have the following definitions:

(i) G∗ : H → l2 is defined by

G∗g = (⟨g, g1⟩H, ⟨g, g2⟩H, . . .) (2.1)

for g ∈ H,

(ii) Q∗ : l2 → l2 is defined by

Q∗l =

(
∞∑
i=1

⟨gi, g1A⟩Hli,
∞∑
i=1

⟨gi, g2A⟩Hli, . . .

)
, (2.2)

(iii) FA : l2 → HA is defined by

FAl =
∑
j

ljfjA,

(iii) FB : l2 → HB is defined by

FBl =
∞∑
j=1

ljfjB,
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(iv) Q∗
AB : l2 → l2 is defined by

Q∗
ABl =

(
∞∑
k=1

⟨gkA, g1B⟩Hlk,
∞∑
k=1

⟨gkA, g2B⟩Hlk, . . .

)
. (2.3)

Proof. Write the SVE of C as

C = FDG∗

with G∗ : H → l2, D : l2 → l2 and F : l2 → HA ⊗ HB defined by (2.1),

Dl = (d1l1, d2l2, . . .) and Fl =
∞∑
j=1

ljfj, respectively. We begin by showing

that G is unitary.

We have

⟨l, G∗g⟩l2 =
∞∑
j=1

lj⟨g, gj⟩H =
∞∑
j=1

lj⟨gj, g⟩H

=

⟨
∞∑
j=1

ljgj, g

⟩
H

.

So,

Gl =
∞∑
j=1

ljgj,

G∗Gl = G∗

(
∞∑
j=1

ljgj

)
= (l1, l2, . . .) = l

and

GG∗g = G (⟨g, g1⟩H, . . .) =
∞∑
j=1

⟨g, gj⟩Hgj = g

as required for a unitary operator.

Now, the SVE for A gives

A = FADAQ
∗
A.
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Without loss of generality, we assume that {gj} provides a complete orthonor-

mal system (CONS) {gj} for H. Then,

gjA =
∞∑
i=1

⟨gjA, gi⟩Hgi

and, hence,

A =
∞∑
j=1

djAfjA ⊗

(
∞∑
i=1

⟨gjA, gi⟩Hgi

)
= FADAQ

∗G∗

with Q∗ defined in (2.2).

We claim that Q is unitary. To see this, write

⟨l2, Q∗l1⟩l2 =
∞∑
j=1

l2j

{
∞∑
i=1

⟨gi, gjA⟩Hl1i

}

=
∞∑
i=1

(
∞∑
j=1

l2j⟨gjA, gi⟩H

)
l1i,

from which it follows that

Ql =

(
∞∑
j=1

lj⟨gjA, g1⟩H,
∞∑
j=1

lj⟨gjA, g2⟩H, . . .

)

and

Q∗Ql = Q∗

(
∞∑
j=1

lj⟨gjA, g1⟩H, . . .

)

=

(
∞∑
i=1

⟨gi, g1A⟩H(
∞∑
j=1

lj⟨gjA, gi⟩H), . . .

)
.

But, for each k,

∞∑
i=1

⟨gi, gkA⟩H
∞∑
j=1

lj⟨gjA, gi⟩H =
∞∑
j=1

lj

∞∑
i=1

⟨gi, gkA⟩H⟨gjA, gi⟩H

=
∞∑
j=1

lj

∞∑
i=1

⟨gi, gkA⟩⟨gi, gjA⟩H

= lk,
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because

∞∑
i=1

⟨gi, gkA⟩H⟨gi, gjA⟩H =
∞∑
i=1

⟨gi, gjA⟩H⟨gi, gkA⟩H

= ⟨gkA, gjA⟩H = δkj

by Parseval’s relation. Similarly,

QQ∗l = Q

(
∞∑
i=1

⟨gi, g1A⟩Hli, . . .

)

=

(
∞∑
j=1

∞∑
i=1

⟨gi, gjA >H li < gjA, g1⟩H, . . .

)

=

(
∞∑
j=1

⟨gjA, g1⟩H
∞∑
i=1

li⟨gi, gjA⟩H, . . .

)
= l.

At this point we have

A = FADAQ
∗G∗

and need to show that FA is unitary. But,

⟨FAl, f⟩HA
=

∞∑
j=1

lj⟨fjA, f⟩HA

=
∞∑
j=1

lj⟨f, fjA⟩HA
= ⟨l, F ∗

Af⟩l2

with

F ∗
Af = (⟨f, f1A⟩HA

, . . . ) .

Thus,

FAF
∗
Af =

∞∑
j=1

⟨f, fjA⟩HA
fjA = f
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and

F ∗
AFAl = F ∗

A

∞∑
j=1

ljfjA =

(
∞∑
j=1

lj⟨fjA, f1A⟩HA
, . . .

)
= (l1, l2, . . . ) = l.

Finally, the SVE of B gives us

B =
∞∑
j=1

djBfjB ⊗

(
∞∑
i=1

⟨gjB, gi⟩Hgi

)
.

However,

∞∑
i=1

⟨gjB, gi⟩Hgi =
∞∑
i=1

∞∑
k=1

⟨gjB, gkA⟩H⟨gkA, gi⟩Hgi.

Therefore, for any g ∈ H,

Bg =
∞∑
j=1

djB

⟨
g,

∞∑
i=1

⟨gjB, gi⟩Hgi

⟩
H

fjB

=
∞∑
j=1

djBfjB

⟨
g,

∞∑
k=1

⟨gjB, gkA⟩H
∞∑
i=1

⟨gkA, gi⟩Hgi

⟩
H

=
∞∑
j=1

djBfjB

∞∑
k=1

⟨gkA, gjB⟩H
∞∑
i=1

⟨gi, gkA⟩H⟨g, gi⟩H

= FBDBQ
∗
ABQ

∗G∗.

And we can show that FB and QAB are unitary in the same way as for FA and

Q.

Theorem 2.2.1 provides a relationship between the singular values of the

different operators that can be summarized as follows.

Corollary 2.2.1. Under the assumptions of Theorem 2.2.1, the singular val-

ues of C, A and B satisfy

D2 = Q
[
D2

A +QABD
2
BQ

∗
AB

]
Q∗.
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Proof. Since  A

B

 = FDG∗ =

 FADAQ
∗G∗

FBDBQ
∗
ABQ

∗G∗

 ,
it follows that

A∗A+B∗B = GD2G∗

= GQD2
AQ

∗G∗ +GQQABD
2
BQ

∗
ABQ

∗G∗.

Note that the form of our GSVE for compact operators differs from the

usual matrix GSVD and this fact is reflected in Corollary 2.2.1 as compared

to identities (1.12)− (1.13). The problem arises when one attempts to directly

extend the proof of Theorem 1.2.3. A key step in that argument was parti-

tioning the matrix operator U that plays the role of F here and arose from the

ordinary SVD of C. Since the resulting sub-operators are finite dimensional,

they will also admit SVDs whose components then appear in subsequent con-

structions.

While it is certainly possible to partition F in a similar manner to the

Paige and Saunders [30] proof, the fact that F is a projection operator ensures

that neither sub-operator can be compact. This forces the proof to go in a

different direction.

2.3 Applications

The objective of this chapter was to develop a version of a GSVE. In that

sense, Theorem 2.2.1 fulfills our stated goal. In the finite dimensional case,

the GSVD has numerous applications. The utility of our GSVE is, on the

other hand, much less clear. We touch on that topic briefly in this section.
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A simple illustration of the information provided by our GSVE is the fol-

lowing well-known result.

Corollary 2.3.1. Under the assumptions of Theorem 2.2.1, d21 ≤ d21A + d21B.

Proof. The inequality is a consequence of Corollary 2.2.1 since

||D2||B(l2) ≤ ||QD2
AQ

∗||B(l2) + ||QQABD
2
BQ

∗
ABQ

∗||B(l2).

In Van Loan’s [40] derivation of the GSVD, he uses it to solve the gener-

alized eigenvalue problem of finding ζ2 such that det(ATA− ζ2BTB) = 0 for

real matrices A and B. A similar development is possible with this GSVE.

Suppose we wish to find ζ2 and a g ∈ H such that

A∗Ag = ζ2B∗Bg.

From Theorem 2.2.1, this becomes

GQD2
AQ

∗G∗g = ζ2GQQABD
2
BQ

∗
ABQ

∗G∗g.

Now let g̃ = Q∗G∗g to obtain

D2
Ag̃ = ζ2QABD

2
BQ

∗
AB g̃. (2.4)

Since

g̃ = Q∗(⟨g, g1⟩H, ⟨g, g2⟩H, . . .)

= (⟨g, g1A⟩H, ⟨g, g2A⟩H, . . .),

take g = giB and let

li = (⟨giB, g1A⟩H, ⟨giB, g2A⟩H, . . .). (2.5)
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Then, li ∈ l2 satisfies Q∗
ABli = ei with ei ∈ l2 consisting of all zeros except for

a one as its ith element. Thus, let g̃ = li and (2.4) becomes

Q∗
ABD

2
Ali = ζ2iD

2
Bei.

The last relation provides a characterization of the generalized eigenvalues

that we formally state below.

Corollary 2.3.2. For li defined as in (2.5), ζ2i =
⟨D2

Ali,li⟩l2
d2iB

, i = 1, 2, . . . .
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CHAPTER 3

THE GSVD AND THE χ2 METHOD

3.1 Introduction

We begin this chapter by taking another look at regularization parameter

estimation using the χ2 method discussed in Section 1.3.2.3. By revisiting

the method, we seek to analyze its relevance for data with nonnormal noise

distributions. Recall from Section 1.3.2.3 that the setting is that b|x ∼

Nm(Ax0,W
−1
b ) and x ∼ Nn(x0,W

−
x ). We observe b and wish to use that

information to estimate x.

It will be convenient to use the GSVD in the form given below.

Corollary 3.1.1. Suppose that m ≥ n ≥ p, Ker(A)∩Ker(L) = 0, L has rank

p and the augmented matrix (A;L) has rank n. Then, for matrices A ∈ Rm×n

and L ∈ Rp×n, there exist orthogonal matrices U ∈ Rm×m, V ∈ Rp×p and a

nonsingular matrix X ∈ Rn×n such that

A = U


DA Op×(n−p)

O(n−p)×p In−p

O(m−n)×p On×(n−p)

X−1,L = V[ DL Op×(n−p) ]X−1,

DA = diag(λA1, . . . , λAp),DL = diag(λL1, . . . , λLp),

and

λ2Ai + λ2Li = 1, i = 1, . . . , p,

with

0 ≤ λA1 ≤ · · · ≤ λAp ≤ 1, 1 ≥ λL1 ≥ · · · ≥ λLp > 0.
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This form is a special case of that in Theorem 1.2.3 for L = B, n = k and

X−1 = QTDCV
T .

A proof of Theorem 1.3.2 can now be obtained in the following fashion.

First, standard least-squares theory gives the minimizer of J(x) as

x̂ = (ATWbA+ LTWLL)
−1ATWbr+ x0

with

r = b−Ax0.

The optimized criterion function is therefore

J(x̂) = rT [Wb −WbA(ATWbA+ LTWLL)
−1ATWb]r

= r̃T [Im − Ã(ÃT Ã+ L̃T L̃)−1ÃT ]r̃

with

r̃ =W
1/2
b r, Ã =W

1/2
b A, and L̃ = W

1/2
L L.

An application of Corollary 3.1.1 to Ã and L̃ produces

Ã = U


DA Op×(n−p)

O(n−p)×p In−p

O(m−n)×p O(m−n)×(n−p)

X−1

and

L̃ = V

[
DL(p×p) Op×(n−p)

]
X−1.
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So

ÃT Ã = (X−1)T

 D2
A Op×(n−p)

O(n−p)×p In−p

X−1,

L̃T L̃ = (X−1)T

 DL

O(n−p)×p

[ DL Op×(n−p)

]
X−1

= (X−1)T

 D2
L Op×(n−p)

O(n−p)×p On−p

X−1

and

ÃT Ã+ L̃T L̃ = (XT )−1

 Ip Op×(n−p)

O(n−p)×p In−p

X−1,

since D2
A +D2

L = Ip.

Combining our representations produces

Ã(ÃT Ã+ L̃T L̃)−1ÃT

= U


D2

A Op×(n−p) Op×(m−n)

O(n−p)×p In−p O(n−p)×(m−n)

O(m−n)×p O(m−n)×(n−p) Om−n

UT .

Hence,

Im − Ã(ÃT Ã+ L̃T L̃)−1ÃT

= U


D2

L Op×(n−p) Op×(m−n)

O(n−p)×p On−p O(n−p)×(m−n)

O(m−n)×p O(m−n)×(n−p) Im−n

UT .

Now, since b|x ∼ Nm(Ax,W−1
b ) and x ∼ Nn(x0, Cx), we have

b ∼ N(Ax0,W
−1
b +ACxA

T ).
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Consequently,

r̃ = W
1/2
b [b−Ax0] ∼ N(0, Im + ÃCxÃ

T ). (3.1)

But,

Cx = (LTWLL)
−1 = (L̃T L̃)−1

for

L̃T L̃ = (X−1)T

 D2
L Op×(n−p)

O(n−p)×p On−p

X−1.

Thus,

Cx = X

 D−2
L Op×(n−p)

O(n−p)×p On−p

 (XT )−1

and

Im + ÃCxÃ
T = U

 Ip +DAD
−2
L DA Op×(m−p)

O(m−p)×p Im−p

UT .

From

Ip +DAD
−2
L DA = diag(1 + λ2A1/λ

2
L1, . . . , 1 + λ2Ap/λ

2
Lp)

= diag((λ2L1 + λ2A1)/λ
2
L1, . . . , (λ

2
Lp + λ2Ap)/λ

2
Lp)

= diag(1/λ2L1, . . . , 1/λ
2
Lp),

we can conclude that

Im + ÃCxÃ
T = U

 D−2
L Op×(m−p)

O(m−p)×p Im−p

UT ,
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and

UT r̃ ∼ N

0,

 D−2
L Op×(m−p)

O(m−p)×p Im−p


 .

Therefore,

J(x̂) = (UT r̃)T


D2

L Op×(n−p) Op×(m−n)

O(n−p)×p On−p O(n−p)×(m−n)

O(m−n)×p O(m−n)×(n−p) Im−n

UT r̃.

Let

z =

 DL Op×(m−p)

O(m−p)×p Im−p

UT r̃ (3.2)

= (z1, . . . , zm)
T .

Then, by (3.1), z1, . . . , zm are independent and identically distributed (i.i.d.)

standard normal random variables and

J(x̂) =

p∑
j=1

z2j +
m∑

j=n+1

z2j . (3.3)

Since zj ∼ N(0, 1), z2j has a χ2 distribution with one degree of freedom and

Theorem 1.3.2 follows.

3.2 Nonnormal Data

The assumption of normality is quite restrictive. In this section, we relax the

normality assumption and instead suppose only that

E(b|x) = Ax,Cov(b|x) = W−1
b ,E(x) = x0,

and

Cov(x) = Cx = (LTWLL)
−,
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or, equivalently, that

WL = (LCxL
T )−.

Since the arguments in the previous section used only second moment proper-

ties, representation (3.3) continues to hold with z1, . . . , zm now being uncor-

related random variables that have zero means and unit variances.

To proceed further, we will assume that the sequence of random variables

{zm} is ϕ-mixing as defined below.

Definition 3.2.1. A σ-field on a set E is a family M of subsets of E such

that:

(i) ∅ ∈ M;

(ii) if A ∈ M, then Ac ∈ M;

(iii) if A1,A2, . . . ∈ M, then ∪∞
k=1Ak ∈ M.

Definition 3.2.2. [5] Let {ξk}∞k=−∞ be a sequence of random variables on a

probability space (Ω,A,P), denote the σ-field generated by . . . , ξk−1, ξk as µk

and take µk to be the σ-field generated by ξk, ξk+1, . . .. Then, {ξk} is ϕ-mixing

if there exists a nonnegative function φ such that

|P(E1 ∩ E2)− P(E1)P(E2)| ≤ φ(n)P(E1)

for any E1 ∈ µk, E2 ∈ µk+n and

lim
n→∞

φ(n) = 0.

Here, P denotes the probability measure for the probability space correspond-

ing to the {ξk}.
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Example 3.2.1. The most obvious example of ϕ-mixing is independence in

which case φ(m) ≡ 0.

Example 3.2.2. [5] Let {yk} be a stationary Markov process with finite state

space. Denote the stationary probability for the Markov process as pu, the 1-

step transition probability as puv = P(yk+1 = v|yk = u) > 0 and the n-step

transition probability as p
(n)
uv = P(yn+k = v|yk = u). For i, j ≥ 0, i ̸= j, let Hi

be a set of (i + 1)-tuples of states and Hj be a set of (j + 1)-tuples of states.

Then, for E1 = {(yk−i, . . . , yk) ∈ Hi} and E2 = {(yk+n, . . . , yk+n+j) ∈ Hj}, we

have

|P(E1 ∩ E2)− P(E1)P(E2)|

≤
∑

u0,...,ui,v0,...,vj

pu0pu0u1 . . . pui−1ui
|p(n)uiv0

− pv0 |pv0v1 . . . pvj−1vj

=
∑

u0,...,ui,v0,...,vj−1

pu0pu0u1 . . . pui−1ui

∣∣∣∣∣p(n)uiv0 − pv0
pv0

∣∣∣∣∣ pv0pv0v1 . . . pvj−2vj−1

∑
vj

pvj−1vj

= . . . =
∑

u0,...,ui,v0

pu0pu0u1 . . . pui−1ui

∣∣∣∣∣p(n)uiv0 − pv0
pv0

∣∣∣∣∣ pv0 ,
using the property for a Markov process that

∑
v

puv = 1. Taking φ(n) =

max
ui,v0

∣∣∣∣∣p(n)uiv0 − pv0
pv0

∣∣∣∣∣ gives
|P(E1 ∩ E2)− P(E1)P(E2)| ≤ φ(n)P(E1).

If we assume the transition matrix is irreducible and aperiodic, we have p
(n)
uiv0 →

pv0 when n→ ∞. Thus, φ(n) → 0 and {yk} is ϕ-mixing.

If we can assume the zj in (3.3) are ϕ-mixing, the large sample properties

of J(x̂) for the general case can be established using a functional central limit

theorem from Billingsley [5] (Theorem 21.1 on page 184) that we restate here

for completeness of exposition.
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Theorem 3.2.1. Assume that {ξk} is a sequence of mean zero random vari-

ables that is ϕ-mixing with

∞∑
n=1

φ(n)1/2 <∞.

Then,

σ2 = Var(ξ1) + 2
∞∑
k=2

Cov(ξ1, ξk) (3.4)

converges absolutely. If σ2 > 0, then

(
m∑
j=1

ξj

)
/(
√
mσ) has a standard normal

limiting distribution as m goes to infinity.

Subsequently we will use
d→ to indicate convergence in distribution. Now

take ξj = z2j − 1 and apply Theorem 3.2.1 to obtain

m∑
j=1

z2j −m

√
mσ

d→ N(0, 1),

as m → ∞. In terms of J(x̂), we will employ Theorem 3.2.1 in conjunction

with the following result that is sometimes referred to as Slutsky’s Theorem.

Theorem 3.2.2. [25] If a sequence of random variables Yn converges in distri-

bution to a random variable Y , and An and Bn tend in probability to constants

a and b, respectively, then An +BnYn converges in distribution to a+ bY .

Our main result concerning the large sample properties of J(x̂) is given

below.

Corollary 3.2.1. Under the conditions of Theorem 3.2.1 for ξj = z2j − 1 with

zj in (3.3), if (n− p)/
√
m→ 0 as m→ ∞, then,

1

σ
√
m− n+ p

[J(x̂)− (m− n+ p)]
d→ N(0, 1).
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Proof. By Markov’s inequality, for any ϵ > 0,

P

(
1√
m

n∑
j=p+1

z2j > ϵ

)
≤ n− p

ϵ
√
m
.

By assumption, (n−p)/(ϵ
√
m) → 0 so that (1/

√
m)

n∑
j=p+1

z2j converges to zero

in probability. Hence,

1

σ
√
m− n+ p

[J(x̂)− (m− n+ p)]

=

√
m√

m− n+ p

1√
mσ

(
m∑
j=1

z2j −m−
n∑

j=p+1

z2j + (n− p)

)
d→ N(0, 1)

by Theorem 3.2.2.

Another immediate result is

Corollary 3.2.2. Assume the conditions of Theorem 3.2.1 hold for ξj = z2j −1

with zj in (3.3), and that (n− p)/
√
m→ 0 as m→ ∞. If

Cov(z2i , z
2
j ) = 2δij, for all i, j,

Tm =
J(x̂)− (m− n+ p)√

2(m− n+ p)

has the same limiting distribution as

T̃m =
Vm − (m− n+ p)√

2(m− n+ p)

with Vm distributed as a χ2 random variable with m−n+p degrees of freedom;

i.e., T̃m, Tm both have limiting standard normal distributions.

Corollary 3.2.2 applies to the normal theory case, for example. More gener-

ally, it states that the normal theory formulation for the χ2 method can be

expected to work effectively in large samples if the squares of the zj in (3.3)
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are uncorrelated. Of course, there is no reason to expect this to be true in

general. When the z2j are correlated, the correct scaling factor in the central

limit theorem is provided by (3.4) rather than the 2 that applies under inde-

pendence. The prediction interval used by the χ2 method then needs to have

the form

m− n+ p± σ
√
m− n+ pzα/2. (3.5)

We discuss the consequences of this fact in the next section.

3.3 Implications

In this section we present the results of both analytic and empirical work that

have been used to explore the implications of our findings in the previous

section. Here we focus on the case where b derives from a Poisson distribution

which is often a relevant assumption in the areas of astronomy, microscopy

and medical imaging. (See [41].)

3.3.1 A Simple Example

In this section we examine a toy model where it is possible to obtain an

analytic expression for the variance of J(x̂). Specifically, assume that the

response vector is

b = Ix+ ε

with x ∼ N(0, σ2
xI) and ε = (ε1, . . . , εm)

T is a vector of i.i.d. random variables

from a mean centered Poisson distribution with parameter σ2
b that are also

independent of the components of x.
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We need the moments of ε1 up to order 4 for what follows. These can be

obtained from the moment generating function

Mε1(t) = E(etε1)

= e−σ2
btMε1+σ2

b
(t)

= e−σ2
bteσ

2
b(e

t−1)

= eσ
2
b(e

t−t)−σ2
b .

From this we obtain

M ′
ε1
(t) = σ2

b(e
t − 1)Mε1(t),

M ′′
ε1
(t) = σ2

b(e
t − 1)M ′

ε1
(t) + σ2

be
tMε1(t),

M ′′′
ε1
(t) = σ2

b(e
t − 1)M ′′

ε1
(t) + 2σ2

be
tM ′

ε1
(t) + σ2

be
tMε1(t),

M (iv)
ε1

(t) = σ2
b(e

t − 1)M ′′′
ε1
(t) + 3σ2

be
tM ′′

ε1
(t) + 3σ2

be
tM ′

ε1
(t) + σ2

be
tMε1(t).

Thus,

E(ε1) = M ′
ε1
(t)|t=0 = 0, (3.6)

E(ε21) = M ′′
ε1
(t)|t=0 = σ2

b, (3.7)

E(ε31) = M ′′′
ε1
(t)|t=0 = σ2

b, (3.8)

E(ε41) = M (iv)
ε1

(t)|t=0 = 3σ4
b + σ2

b. (3.9)

Under our simple model,

J(x̂) =
bTb

σ2
b + σ2

x

=
xTx+ 2xTε+ εTε

σ2
b + σ2

x

. (3.10)

Since x = (x1, . . . , xm)
T has i.i.d. N(0, σ2

x) components, we know that

E(xTx) =
m∑
i=1

E(x2i ) = mσ2
x (3.11)
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and

E(xTx)2 =
m∑

i,j=1

E(x2ix
2
j)

= 3mσ4
x +m(m− 1)σ4

x = m2σ4
x + 2mσ4

x (3.12)

because the fourth moment of the standard normal distribution is 3. In par-

ticular, we can now verify directly that E(J(x̂)) = m by (3.10), (3.11) and

(3.7).

To obtain the variance of J(x̂), we first compute its second moment from

(3.10) as

E(J(x̂)2)

= E

(
(xTx)2 + 4(xTε)2 + (εTε)2 + 4xTxxTε+ 4xTεεTε+ 2xTxεTε

(σ2
x + σ2

b)
2

)
.

This expression can be simplified by application of the relations

E((xTx)(xTε)) = E((xTε)(εTε)) = 0, (3.13)

E((xTx)(εTε)) = m2σ2
xσ

2
b, (3.14)

E((xTε)2) = mσ2
xσ

2
b, (3.15)

E((εTε)2) = mE(ε41) +m(m− 1)E(ε1ε2)

= m(3σ4
b + σ2

b) +m(m− 1)σ4
b

= (m2 + 2m)σ4
b +mσ2

b. (3.16)

This results in

E(J(x̂)2) = m2 + 2m+
mσ2

b

(σ2
b + σ2

x)
2
.

Thus,

Var(J(x̂)) = E(J(x̂)2)− (E(J(x̂)))2

= 2m+
mσ2

b

(σ2
b + σ2

x)
2
> 2m.
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Note that Var(J(x̂)) does not behave like 2m even in an asymptotic sense

as

Var(J(x̂))

m
→ 2 +

σ2
b

(σ2
b + σ2

x)
2
= 2 +

1

(σb + σ2
x

σb
)2

as m → ∞. However, large values of σ2
b, small values of σ2

b relative to σ2
x,

or large values of σ2
x relative to σ2

b will provide cases where a choice of 2m

for the variance of J(x̂) may be effective. These cases are consistent with

what we would expect. When σ2
b (σ2

x) is small (large) relative to σ2
x (σ2

b),

b is dominated by x and will be roughly N(0, σ2
xI). On the other hand, if

σ2
b is large, bTb is basically a sum of squares of independent, mean centered

Poisson random variables and the central limit theorem provides the normal

approximation for J(x̂).

With this as an introduction, we now turn to empirical examples with

problems of a more complicated and realistic nature. That is the subject of

the next section.

3.3.2 Empirical Study

We now describe the outcome of some Monte Carlo experiments. These were

carried out using both normal and Poisson data for comparison purposes. For

both instances, we took m = n = p. That is, we generate data from the model

b = Ax+ ε

with x having a N(0, σ2
xI) distribution and ε either having N(0, σ2

bI) or a

mean centered Poisson distribution with variance σ2
b. The matrix A is chosen

from one of two matrix types that are known to be ill conditioned: namely,

(i) the Phillips [18] matrix. This matrix arises from discretization of the

Fredholm integral equation of the first kind from Section 1.2.2 on [−6, 6].
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The Kernel K is given by

K(s, t) = ψ(s− t)

with

ψ(x) =

 1 + cos
(
πx
3

)
, |x| < 3,

0, |x| ≥ 3.

(ii) the Shaw [18] matrix. This also arises from discretization of the Fredholm

integral equation of the first kind on [−π/2, π/2] with

K(s, t) = (cos(s) + cos(t))2
(
sin(u)

u

)2

,

u = π(sin(s) + sin(t)).

These matrices are evaluated using the regularization toolbox [18] from Mat-

lab.

The error vector ε is generated from a given distribution (either normal or

Poisson) and then added to Ax after generating x from N(0, σ2
xI). Then, the

simulation scheme is set out in Algorithm 3.3.1.

ALGORITHM 3.3.1
1: For i = 1, . . . , i0
2: For j = 1, . . . , j0
3: Calculate J(x̂)ij
4: Calculate sJ(x̂)ij = (J(x̂)ij −m)/

√
m

5: End j
6: Use the j0 sJ(x̂)ij values to assess the goodness-of-fit for the N(0, 2)

distribution with the Kolmogorov Smirnov statistic. Denote the p-value
of the test by pvi

7: End i
8: Test that the i0 p-values pvi come from a uniform distribution on [0, 1]

The basic premise is that the sJ(x̂)ij should behave like values from a nor-

mal distribution with variance 2 when both x and ε have normal distributions.
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The objective is to see how this changes when ε is Poisson. For this purpose,

we keep track of various statistics over the course of the simulation: namely,

the sample mean of the {sJ(x̂)ij}j0j=1,

sJ(x̂)i· =

j0∑
j=1

sJ(x̂)ij

j0
,

the sample mean of the {sJ(x̂)i·}i0i=1,

sJ(x̂)·· =

i0∑
i=1

sJ(x̂)i·

i0
,

the simulation variance of the {sJ(x̂)ij}j0j=1,

V̂ar(sJ(x̂)i·) =

j0∑
j=1

(sJ(x̂)ij − sJ(x̂)i·)
2,

and the sample mean of the {V̂ar(sJ(x̂)i·)}i0i=1

V̂ar(sJ(x̂)··) =

i0∑
i=1

V̂ar(sJ(x̂)i·)

i0
.

Similarly, the sample mean and variance of the p-values {pvi}i0i=1 of the Kol-

mogorov Smirnov test with N(0, 2) are pv· and V̂ar(pv·) respectively.

Note that in step (iv), we do tests for the uniform distribution because

under the null hypothesis H0 that J(x̂) follows a N(0, 2) distribution, the p-

values follow a uniform distribution on [0, 1]. This comes from the following

theorem.

Theorem 3.3.1. Under the null hypothesis H0 that a test statistic follows

an assumed continuous distribution, the p-values of the test statistic follow a

uniform distribution on [0, 1].
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Proof. If a random variable X has cumulative distribution function (CDF)

F (X), then P(F (X) ≤ u) = P(X ≤ F−1(u)) = F (F−1(u)) = u. In particular,

if X is a test statistic, its p-value is 1 − F (x0) = P(X ≥ x0|H0 is true) with

x0 the observed value of X. The result now follows from the symmetry of the

uniform distribution around 0.5.

To evaluate the data produced by our Monte Carlo experiments we used

the Kolmogorov Smirnov (KS) test [3]. This test is used to assess whether

a sample of data is drawn from some specified distribution by measuring the

distance between the empirical distribution and the one that was specified.

That is, the null hypothesis H0 is that the sample data comes from the given

distribution while the alternative hypothesis Ha is that the sample data does

not follow the given distribution.

Suppose F (x) is the given distribution function, and Fm(x) is its empirical

counterpart from the sample data, which is defined as

Fm(x) =
number of elements in the sample ≤ x

sample size m
.

Then, the KS test statistic is defined as
√
m sup

x
|Fm(x) − F (x)|, where m is

the sample size [3]. The larger the test statistic, the more evidence there is to

reject H0. When F (x) is continuous, under H0, the test statistic converges to

the Kolmogorov distribution. So, we reject H0 when the test statistic is larger

than critical values of the Kolmogorov distribution.

In our particular setting, the distribution will correspond to that of a

N(0, 2) distribution (i.e., for the sJ(x̂) data) or the uniform distribution on

[0, 1] (i.e., for the p-values). We chosem ∈ {20, 40, 80, 100, 200, 400, 800, 1600},

j0 = 50 and i0 = 1000. To simplify the plots, we indicate the values of m by

{1, 2, . . . , 8} instead of {20, 40, 80, 100, 200, 400, 800, 1600}. For the normal
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case, σ2
x = 1.22, σ2

b = 1.52 while for the Poisson case σ2
x = 1.22, σ2

b = 1. That

is, we generate a random vector ε from the Poi(1)-1 distribution as the noise

and form b = Ax+ ε for each data set in the study.

Figure 3.1 shows typical data sets for the Poisson case. Here a b and

corresponding Ax for each size of Shaw matrix A illustrate how the Poisson

noise is added. Now consider J(x̂) as a function of σx and denote it by J(x̂σx).

Then, Figure 3.2 plots the J(x̂σx) functions for the data in Figure 3.1. The

true value σx = 1.2 is marked in the plots. The χ2 method looks for the

function’s root to estimate σx.

Figure 3.3 gives one example of relative histograms of sJ(x̂) for the normal

and Poisson cases, respectively, that correspond to i = 25 and m = 400 in

Algorithm 3.3.1. The p-values of the KS test with N(0, 2) are 0.9709 for the

normal case and 0.0261 for Poisson one, which indicates the normality of the

distribution of sJ(x̂) in Figure 3.3 (a) and nonnormality of the distribution in

(b).

Summary plots of the statistics provided by our simulation are given in

Figures 3.4-3.8. Figure 3.4 shows sJ(x̂)·· and V̂ar(sJ(x̂)··) as a function of

m. We see that the mean is preserved but that the variance is increased as

anticipated for the Poisson case. Figure 3.5 shows pv· and V̂ar(pv·). Figure 3.6

provides the p-values of the KS test for the Unif(0, 1) distribution. From these

plots, we can see that V̂ar(sJ(x̂)··) is clearly larger than 2 and actually close

to 3 in the Poisson case. Also, compared with the normal case, the KS test

results show that sJ(x̂) does not fit the N(0, 2) distribution for the Poisson

case since the p-values are quite close to 0. For validation of the Poisson case,

Figure 3.7 gives the results on p-values from the KS test with N(0, σ̂2), where

σ̂2 = V̂ar(sJ(x̂)..) and Figure 3.8 shows the p-values of the KS test for the
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Figure 3.1: One example of generated b and Ax for different values of m
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Figure 3.2: The J(x̂σx) function corresponding to data in Figure 3.1 (Loga-
rithmic scale is used for x-axis.)
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(b) Poisson case

Figure 3.3: One example of the relative histograms of sJ(x̂)

Unif(0, 1) distribution. This confirms that at least in this particular instance,

it is necessary to adjust the choice of σ2 in (3.5) and use a value other than 2.
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Figure 3.4: Normal/Poisson case: mean of mean of sJ(x̂) and mean of variance
of sJ(x̂)

3.4 Parameter Estimation

From the work in the previous section we saw that the variance of sJ(x̂) was

better approximated by σ̂2 rather than 2 in the case of Poisson errors. The key

question is whether or not this influences the χ2 method for selection of the
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Figure 3.5: Normal/Poisson case: mean and variance of p-values from the KS
test
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Figure 3.6: Normal/Poisson case: p-values of the KS test for Unif(0,1)
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level of regularization. To investigate this issue, we conducted further experi-

ments under the same basic design as in Section 3.3; i.e., we take m = n = p,

m ∈ {20, 40, 80, 100, 200, 400, 800}, x0 = 0, L = I, W−
x = σ2

xI = 1.22I and

W−1
b = σ2

bI = I in (1.36). We chose A to be the Phillips matrix and gener-

ated the same error vectors from the mean centered Poisson distribution as in

Section 3.3. For the variance parameter we use the empirical approximation

σ̂2 ∈ {2.4609, 2.7054, 2.8099, 2.8951, 2.9403, 2.9605, 2.9950} with the order of

these values corresponding to the different choices of m. We then estimate

σx by the χ2 method through finding the root of J(x̂σx) − m = 0 with two

different tolerances
√
2mzα/2 and

√
σ̂2mzα/2. In order to have a more accurate

estimation of σx, we pick α = 0.95 making a relatively small tolerance.

Algorithm 3.4.1 below describes the experimental procedure.

ALGORITHM 3.4.1
1: Generate x from N(0, 1.22I)
2: For k=1,. . . ,1000
3: Generate b by adding centered noise ε to Ax such that b = Ax + ε

where
ε is generated from Poi(1)− 1 distribution

4: For σ2 = 2, σ̂2

5: Use the χ2 method to estimate σx
6: End σ2

7: End k

The distributions of estimated σx for two cases σ2 = 2 and σ2 = σ̂2 are

quite right-skewed. Thus, we show the median in Table 3.1 and find that there

are not many differences between the two cases. In fact we are interested in the

circumstance where the estimated σx’s are different using σ
2 = 2 and σ2 = σ̂2.

rD in Table 3.1 also indicates that around 5% − 12% out of 1000 estimated

σx are different. Table 3.2 gives the five number summary for those cases

having different estimated σx consisting of the minimum observation (min),
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25th percentile (Q1), median, 75th percentile (Q3) and maximum observation

(max). The range of the estimated σx is smaller for σ2 = σ̂2. However, if we

only look at the median, using σ2 = σ̂2 only works better (closer to the true

value σx = 1.2) when m = 40 and m = 80.

σ2 = 2 σ2 = σ̂2

m median rD
20 0.8820 0.8793 4.7%

40 1.3966 1.3858 7.5%

80 1.0273 1.0354 7.5%

100 0.8022 0.8022 8.8%

200 0.6047 0.6047 9.1%

400 0.8407 0.7981 8.4%

800 1.4704 1.6330 11.6%

Table 3.1: The median of all the estimated σx for σ2 = 2 and σ2 = σ̂2 and
percentage of cases where the estimates of σx differed

m min Q1 median Q3 max

20(σ2 = 2) 0.473 0.64975 0.92854 2.048 39.522

20 0.46557 0.6314 0.89534 1.8975 35.454

40(σ2 = 2) 0.80496 0.91003 1.391 1.9101 54.875

40 0.79416 0.89134 1.3455 1.8181 51.165

80 (σ2 = 2) 0.29563 0.59407 1.7439 3.9716 144.73

80 0.2893 0.57151 1.5645 4.7875 136.26

100 (σ2 = 2) 0.28054 0.53812 1.4057 13.97 1712

100 0.27391 0.51398 1.4799 16.785 1639.1

200 (σ2 = 2) 0.18826 0.37472 1.7039 80.524 2055.7

200 0.18096 0.35406 1.9049 100 1943.6

400 (σ2 = 2) 0.20432 0.42302 1.9156 145.29 12728

400 0.19974 0.40399 3.5391 155.19 12096

800 (σ2 = 2) 0.18952 0.71713 1.3066 146.39 11775

800 0.18434 0.66212 1.6922 181.97 11127

Table 3.2: Comparison of five number data summary of those different σx’s
using σ2 = 2 and σ2 = σ̂2 with sample size 1000rD
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However, we find that the iteration times of the Newton method are less

for cases where the estimators differ when we use σ2 = σ̂2. This is due to

the fact that the larger tolerance makes for faster convergence. We pick two

examples for illustration. Figure 3.9 and Table 3.3 describe how the algorithm

converges. In this case, m = 80 and k = 35. Figure 3.9 plots the function

J(x̂σx) −m as a function of σx. Values at each iteration are shown by small

circles with a large circle indicating the final estimator. Table 3.3 lists the

values of σx and (J(x̂σx)−m)it at each iteration. With α = 0.95, the tolerance

is 0.7932 for σ2 = 2 and 0.9402 for σ2 = σ̂2. We can see that after iterating

6 steps, J(x̂) −m reaches -0.8417 which satisfies the tolerance restriction for

σ2 = σ̂2 and concludes the iteration. Figure 3.10 and Table 3.4 show similar

information form = 80 and k = 167. Here, the number of iterations is reduced

by two for σ2 = σ̂2 as compared to the normal case with σ2 = 2.
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Figure 3.9: An example for k = 35, m = 80

On the other hand, we are interested in whether the true σx falls in the

confidence interval

{σx : −
√
σ2mzα/2 < J(x̂true σx)−m <

√
σ2mzα/2} (3.17)
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Figure 3.10: Another example for k = 167, m = 80

σ2 = 2 σ2 = σ̂2

# of iterations (σx)it (J(x̂σx)−m)it (σx)it (J(x̂σx)−m)it

1 1 1.3152 1 1.3152

2 10 -7.342 10 -7.342

3 5.1695 -6.2719 5.1695 -6.2719

4 2.5220 -4.8339 2.5220 -4.8339

5 1.4771 -2.408 1.4771 -2.408

6 1.2152 -0.8417 1.2152 -0.8417

7 1.1063 0.1119

Table 3.3: Values of σx and (J(x̂σx) −m)it at each iteration for the example
in Figure 3.9

σ2 = 2 σ2 = σ̂2

# of iterations (σx)it (J(x̂σx)−m)it (σx)it (J(x̂σx)−m)it

1 1 5.6967 1 5.6967

2 10 -2.3267 10 -2.3267

3 3.3072 -0.8091 3.3072 -0.8091

4 1.745 1.0904

5 2.1328 0.2618

Table 3.4: Values of σx and (J(x̂σx) −m)it at each iteration for the example
in Figure 3.10
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for σ2 = 2 or σ2 = σ̂2 and α = 0.95. Let tol =
√
σ2mzα/2 then Table 3.5

shows the number of times out of 1000 that the true σx falls in the confidence

interval (3.17). The use of σ2 = σ̂2 as opposed to σ2 = 2 results in a closer

approximation of the expected 5%. For m = 200 and m = 400, the propor-

tion of times that the true σx falls in the confidence interval for σ2 = σ̂2 is

significantly larger than that for σ2 = 2 at the significance level 0.15. Table

3.5 lists the mean and standard deviation of the estimated σx values for those

cases where the true σx = 1.2 is inside the confidence interval. While there

are no significant differences between the means for σ2 = 2 and σ2 = σ̂2, the

standard deviations, when σ2 = σ̂2, are in all but one instance larger than for

σ2 = 2. This suggests that the two choices for σ2 produce similar σx values

on the average but the estimated σx values exhibit more variation when σ2 is

chosen correctly.

If we consider the posterior uncertainty for x, we have

Cov(x|b) = (ATWbA+Wx)
−1

= (ÃT Ã+ σ−2
x I)−1

for Ã =W
1/2
b A. Applying SVD to Ã to have Ã = Udiag(σA1, . . . , σAk, 0, . . . , 0)V

T ,

where k is the rank of Ã, we obtain

Cov(x|b) = (VT )−1diag

(
1

σ2
A1 + 1/σ2

x

, . . . ,
1

σ2
Ak + 1/σ2

x

, σ2
x, . . . , σ

2
x

)
V−1.

It suggests that the posterior uncertainty for x is also more variable for σ2 =

σ̂2.
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σ2 = 2 σ2 = σ̂2 σ2 = 2 σ2 = σ̂2

m # of |J(x̂true σx)−m| ≤ tol mean std mean std

20 47 51 1.1863 0.0381 1.1818 0.0447

40 48 53 1.1901 0.0259 1.1900 0.0305

80 30 36 1.1870 0.0609 1.1861 0.0597

100 32 40 1.2456 0.0869 1.2511 0.1855

200 42 53 1.4086 0.6295 1.5073 0.8112

400 45 56 1.2456 0.1372 1.2793 0.2583

800 47 54 1.2654 0.1586 1.3210 0.2534

Table 3.5: Experiment on whether the true σx is covered by interval (3.17)
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CHAPTER 4

FUNCTIONAL CCA AND PCCA

4.1 Introduction

In this chapter we provide a new formulation of the functional CCA and

PCCA concepts that were discussed in Chapter 1. We begin in this section

with a few key definitions and some further literature review. In the next

section, we describe the properties of the H-valued random variables that

arise in Section 4.2. Our main results for functional CCA are then laid out

in Section 4.3. Section 4.4 extends the Section 4.3 work to include functional

PCCA.

We begin with two important definitions.

Definition 4.1.1. A random variable X on a probability space {Ω,A,P} is

said to be second order if E|X|2 =
∫
Ω
|X|2dP <∞.

Definition 4.1.2. A second-order stochastic process is a family of second-

order random variables {X(t), t ∈ T} defined on a common probability space.

Assume now that we have two second order stochastic processes

{Xi(t) : t ∈ T} , i = 1, 2

for some index set T. Then, provided all relevant variances are finite, we can

define the covariance kernels

Ki(t, t
′) = Cov(Xi(t), Xi(t

′))

for t, t′ ∈ T, i = 1, 2. Inference is then based on the collection of random

variables in L2
Xi
, i = 1, 2: the completion of the set of random variables of the
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form of
n∑

j=1

ajXi(tj) for aj ∈ R, tj ∈ T and n ∈ Z+, with the inner product

⟨
m∑
j=1

ajXi(tj),
n∑

j′=1

bj′Xi(t
′
j′)⟩L2

Xi
=

m∑
j=1

n∑
j′=1

aibj′Ki(tj, t
′
j′).

Since covariance kernels are positive definite functions, they generate RKHSs

in the sense defined below

Definition 4.1.3. Let H be a Hilbert space of functions on some set T and

denote by ⟨·, ·⟩H the inner product in H. A bivariate function K on T× T is

said to be a reproducing kernel for H if

(i) for every t ∈ T, K(·, t) ∈ H and

(ii) for every t ∈ T and f ∈ H, f(t) = ⟨f,K(·, t)⟩H.

When (i)–(ii) hold, H is said to be a RKHS with reproducing kernel K.

Aronszajn [1] shows that functions of the form
m∑
i=1

aiK(·, ti) for ai ∈ R, ti ∈ T

and m = 1, 2, . . ., are dense in H. So H is separable.

Now, each function K1 and K2 has a corresponding Hilbert function space

H(K1) and H(K2) for which it is the reproducing kernel. The importance of

this fact derives from the isometries between the L2
Xi

and H(Ki) produced by

the mappings Ψi(Ki(·, t)) = Xi(t) as demonstrated in numerous articles by

Parzen (e.g., [32]).

Using these isometries, Eubank and Hsing [13] defined the first canonical

correlation ρ and associated canonical variables Ψ1(f1),Ψ2(f2) as

ρ2 = sup
a1∈L2

X1
,a2∈L2

X2

Cov2(a1, a2)

= sup
f1∈H(K1),f2∈H(K2)

Cov2(Ψ1(f1),Ψ2(f2))

= Cov2(Ψ1(f1),Ψ2(f2)),
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where f1 and f2 are subject to

∥∥f1∥∥2H(K1)
= Var(Ψ1(f1)) = 1 = Var(Ψ2(f2)) =

∥∥f2∥∥2H(K2)
.

Additional canonical variables can then be obtained recursively by restricting

attention to functions that are orthogonal to the previous ones in the sequence.

Observe that

Cov(Ψ1(f1),Ψ2(f2)) = ⟨f1(⋆), ⟨K12(⋆, ·), f2(·)⟩H(K2)⟩H(K1)

with K12(t1, t2) = E[X1(t1)X2(t2)] the X1 and X2 process cross-covariance

kernel. Thus, the problem is equivalent to finding the singular system of the

operator R12 defined by

(R12f2)(t1) = ⟨K12(t1, ·), f2(·)⟩H(K2), f2 ∈ H(K2). (4.1)

Since R12 is compact, we may write

R12 =
∞∑
j=1

ρjφj2 ⊗ φj1

with {φji}∞j=1 a CONS for H(Ki), and 1 ≥ ρ1 ≥ ρ2 ≥ . . .. The Eubank and

Hsing [13] solution returns the (first) canonical variable pair (Ψ1(φ11),Ψ2(φ12))

with canonical correlation coefficient ρ = ρ1. We will give an independent

derivation of this result in Section 4.3.

4.2 H-valued Random Variables

Let (Ω,A,P) be a probability space and let H represent a real, separable

Hilbert space with norm and inner product || · ||H and ⟨·, ·⟩H, respectively. The

Borel σ-field generated by the class of all open subsets of H will be denoted

by B. A B measurable function on (H,B) is then defined as follows.
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Definition 4.2.1. A mapping X : Ω → H is called an H-valued random

variable if X is B measurable; that is, for every set E ∈ B

X−1(E) = {ω : X(ω) ∈ E} ∈ A.

Our attention will be restricted to second order random variables that

satisfy E||X||2H < ∞ with expectation being relative to P . Associated with

such a random variable, we can define the Hilbert space indexed process

{⟨X, f⟩H : f ∈ H}. (4.2)

Then, from [24] and [4], there exists an element h ∈ H and a covariance

operator S such that for all f , f ′ ∈ H,

E[⟨X, f⟩H] = ⟨h, f⟩H

and

E[⟨X − h, f⟩H⟨X − h, f ′⟩H] = ⟨f, Sf ′⟩H. (4.3)

Here h is the mean of the process and for simplicity we assume that ||h||H = 0.

In that case, ( 4.3) simplifies to

E[⟨X, f⟩H⟨X, f ′⟩H] = ⟨f, Sf ′⟩H.

It is known that S is a Hilbert-Schmidt operator: e.g., [24]. In particular, this

means it is compact and admits the eigenvalue-eigenvector decomposition

S =
∞∑
j=1

λjφj ⊗ φj,

where λ1 ≥ λ2 ≥ . . . > 0.
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4.3 Functional CCA

In this and the subsequent section, our goals are twofold:

(i) to obtain a novel, rigorous derivation of CCA for Hilbert space valued

processes that coincides with the developments in Section 1.4 and

(ii) to extend this CCA notion to include an infinite dimensional analog of

PCCA as defined in Section 1.4.

The setting to be studied can be described as follows. There are two

separable Hilbert spaces H1 and H2 with norms and inner products || · ||i

and ⟨·, ·⟩i, i = 1, 2, and a probability space (Ω,A,P). Then, X1 and X2 are,

respectively, H1 and H2-valued random variables with associated covariance

operators S1 and S2. From [4] it may be concluded that there are also cross-

covariance operators

S12 : H2 → H1 and S21 : H1 → H2

with, e.g.,

E⟨X1, f1⟩1⟨X2, f2⟩2 = ⟨f1, S12f2⟩1

and

S12 = S∗
21.

The functional CCA problem addressed in the work of [8] and [20] is based

on finding f1 ∈ H1, f2 ∈ H2 to maximize

|Corr(⟨X1, f1⟩1, ⟨X2, f2⟩2)|.
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As stated, a solution does not exist since the maximizers need not to be in

H1 or H2 ([13], [23] and [6]). This problem is ignored in [8] while He et al.

[20] impose additional restrictions to insure that the maximizers f1 and f2 are

attained within H1 and H2.

Let {λji, φji}∞j=1 for i = 1, 2 be the eigenvalue-eigenvector pairs for the Si.

Then, rather than working with the random variables of the form (4.2), we

deal with the more general formulation of the processes

Zi(fi) =
∞∑
j=1

fji⟨Xi, φji⟩i, (4.4)

that are indexed by the Hilbert spaces

Hi(Si) =

{
fi : fi =

∞∑
j=1

λjifjiφji, ||fi||2Hi(Si)
=

∞∑
j=1

λjif
2
ji = ||S−1/2

i fi||2i

}
.(4.5)

In the case of a random variable ⟨Xi, fi⟩Hi
with fi ∈ Hi, this reduces to (4.4)

with fji = ⟨fi, φji⟩i. The Hilbert space

L2
Zi

=

{
Zi(fi) : fi ∈ Hi(Si),

||Zi(fi)||2L2
Zi

= Var(Zi(fi)) =
∞∑
j=1

λjif
2
ji = ||fi||2Hi(Si)

}
(4.6)

is clearly congruent (isometric) to Hi(Si).

To connect the development thus far with the Eubank and Hsing [13] ap-

proach in Section 1.4, observe that the Karhunen-Loeve theorem gives a more

direct interpretation of the Xi processes when they have meaningful pointwise

values: e.g., when the processes are continuous with probability one. In that

case,

Xi(t) =
∞∑
j=1

⟨Xi, φji⟩φji(t)
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for which the covariance kernel is

Ki(t, t
′) = Cov(Xi(t), Xi(t

′)) =
∞∑
j=1

λjiφji(t)φji(t
′)

and the RKHS corresponding toXi(·) isHi(Si). For our particular formulation

using Hilbert space indexed processes, Parzen [32] called Hi(Si) a congruent

RKHS with reproducing kernel Ki.

Now we construct a new Hilbert space

H0 =
{
h = (f1, f2) : fi ∈ Hi(Si), i = 1, 2, ||h||20 = ||f1||2H1(S1)

+ ||f2||2H2(S2)

}
.

From this we obtain the H0 indexed process

Z(h) = Z1(f1) + Z2(f2)

with covariance function

Cov(Z(h), Z(h′)) = Cov(Z1(f1), Z1(f
′
1)) + Cov(Z2(f2), Z2(f

′
2))

+Cov(Z1(f1), Z2(f
′
2)) + Cov(Z1(f

′
1), Z2(f2))

= ⟨f1, f ′
1⟩H1(S1) + ⟨f2, f ′

2⟩H2(S2)

+Cov(Z1(f1), Z2(f
′
2)) + Cov(Z1(f

′
1), Z2(f2)). (4.7)

In order to avoid the degenerate setting where perfect prediction is possible,

we make the assumption

Assumption A1 There exist no (f1, f2) ∈ H0 such that

|Corr(Z1(f1), Z2(f2))| = 1.
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The cross-covariance terms in (4.7) can be characterized as deriving from

operators between H1(S1) and H2(S2). To see this, define the functional

lf2(f1) = Cov(Z1(f1), Z2(f2))

on H1(S1). Clearly, lf2 is linear since covariance is bilinear and, from (4.4),

Z1(αf1 + α′f ′
1) =

∞∑
j=1

[αfj1 + α′f ′
j1]⟨X1, φj1⟩1

= αZ1(f1) + α′Z1(f
′
1)

for any scalars α, α′ and any f1, f
′
1 ∈ H1(S1). Also, by the Cauchy-Schwarz

inequality,

|lf2(f1)| ≤
√
VarZ1(f1)VarZ2(f2)

= ||f1||H1(S1)||f2||H2(S2).

Thus, lf2 is a bounded linear functional on H1(S1) and by the Riesz represen-

tation theorem, there is a bounded operator C12 : H2(S2) → H1(S1) satisfying

Cov(Z1(f1), Z2(f2)) = ⟨f1, C12f2⟩H1(S1).

Similarly, there is a bounded operator C21 : H1(S1) → H2(S2) with C21 = C∗
12,

which satisfies

Cov(Z1(f1), Z2(f2)) = ⟨C21f1, f2⟩H2(S2). (4.8)

Proposition 4.3.1. Under Assumption A1, ||C12|| = ||C21|| < 1.

Proof. By definition, we have

||C12||2 = sup
f2∈H2(S2),||f2||H2(S2)

=1

||C12f2||2H1(S1)
. (4.9)
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An application of the Cauchy-Schwarz inequality produces

|Cov(Z1(f1), Z2(f2))| = |⟨f1, C12f2⟩H1(S1)|

<
√

VarZ1(f1)VarZ2(f2)

= ||f1||H1(S1)||f2||H2(S2)

with the strict inequality coming from Assumption A1. Now take f1 = C12f2

to obtain ||C12f2||2H1(S1)
< ||C12f2||H1(S1)||f2||H2(S2).

The operators C12 and S12 are, of course, related as we now explain. For

this purpose, define

H̃(Si) =

{
f̃i : f̃i =

∞∑
j=1

f̃jiϕij, ||f̃i||2H̃(Si)
=

∞∑
j=1

λij f̃
2
ij = ||S1/2

i f̃i||2 <∞

}
, i = 1, 2.

Then, Si is an isometric mapping from H̃(Si) onto H(Si); i.e., H̃(Si) =

S−1
i H(Si). This leads us to

Lemma 4.3.1. S12 is an operator from H̃(S2) into H(S1) with ||S12|| < 1.

Proof. For any f̃2 ∈ H̃(S2) and f1 ∈ H(S1)

Cov(Z1(f1), Z2(S2f̃2)) =
∑
i,j

f1if̃2j⟨ϕ1i, S12ϕ2j⟩

=
∑
i,j

f1if̃2j⟨S1/2
1 ϕ1i, S

1/2
1 S12ϕ2j⟩H(S1)

=
∑
i,j

λ1if1if̃2j⟨ϕ1i, S12ϕ2j⟩H(S1)

= ⟨f1, S12f̃2⟩H(S1).

Now use the Cauchy-Schwarz inequality and ||S2f̃2||H(S2) = ||f̃2||H̃(S2)
. �
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Lemma 4.3.1 provides the means to characterize C12. Specifically, observe

that

Cov(Z1(f1), Z2(S2f̃2)) = ⟨f1, S12f̃2⟩H(S1)

= ⟨f1, S12S
−1
2 S2f̃2⟩H(S1)

= ⟨f1, C12S2f̃2⟩H(S1).

In addition, the fact that S12 is compact on H along with an argument similar

to that of Lemma 4.3.1 reveals that C12 is the limit of a sequence of finite

dimensional operators. We summarize these findings as follows.

Theorem 4.3.1. C12 = S12S
−1
2 is a compact operator from H(S2) into H(S1).

Referring once again to the Eubank and Hsing approach of Section 1.4, we

know in that instance that K12(·, t2) ∈ H1(S1), and K12(t1, ·) ∈ H2(S2); so,

R12 in (4.1) is a bounded operator from H2(S2) into H1(S1) with the property

that

Cov(Z1(f1), Z2(f2)) = ⟨f1, R12f2⟩H1(S1).

Therefore, R12 = C12.

For h ∈ H0, define

Qh = (f1 + C12f2, f2 + C21f1) (4.10)

or, equivalently, it will be convenient to use the matrix form

Qh =

 I C12

C21 I


 f1

f2

 (4.11)

with the convention that we view the resulting vector as an element of H0.

Observe that

Cov(Z(h), Z(h′)) = ⟨h,Qh′⟩0.
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This leads to the following proposition.

Proposition 4.3.2. Q : H0 → H0 is invertible with inverse defined by

Q−1(h) = (C−1
11.2f1 − C12C

−1
22.1f2, C

−1
22.1f2 − C21C

−1
11.2f1), (4.12)

where h = (f1, f2) ∈ H0 and

Cii.k = I − CikCki = (I − CikCki)
∗

for i, k = 1, 2.

Analogous to (4.11), (4.12) will also be expressed as

Q−1h =

 C−1
11.2 −C12C

−1
22.1

−C21C
−1
11.2 C−1

22.1


 f1

f2

 .
Proof. The form of the inverse follows directly once we have shown all the

relevant inverses exist. Thus, let us concentrate on the latter task.

We can write Q = I − T with

Th = (−C12f2,−C21f1) = −

 0 C12

C21 0


 f1

f2

 .
Then,

||Th||20 = ||C12f2||2H1(S1)
+ ||C21f1||2H2(S2)

≤ ||C12||2|||f2||2H2(S2)
+ ||C21||2||f1||2H1(S1)

= ||C12||2[||f1||2H1(S1)
+ ||f2||2H2(S2)

]

= ||C12||2||h||20

< ||h||20

by Proposition 4.3.1. Theorem 4.40 of [34] now has the consequence that

I − T = Q is invertible.
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To complete the proof, we need to show that C11.2 and C22.1 are invertible.

This again follows from Theorem 4.40 of [34] because C11.2 = I −C12C21 with

||C21|| = ||C12|| < 1 from Proposition 4.3.1.

Now define

H(Q) =

h : h = Q

 f1

f2

 , fi ∈ Hi(Si), i = 1, 2, ||h||2H(Q) = ||Q−1/2h||20

 .

We have the following proposition.

Proposition 4.3.3. H(Q) is congruent to

L2
Z =

{
Z(h) : h ∈ H0, ||Z(h)||2L2

Z
= Var(Z(h))

}
under the mapping Ψ(h) = Z(Q−1h).

Proof. Clearly, for h ∈ H0, ||Z(h)||2L2
Z
= ⟨h,Qh⟩0 = ||Qh||2H(Q).

With Proposition 4.3.3 in hand we can now give our formulation of CCA.

Specially, we seek fi ∈ Hi(Si) to maximize |Cov(Z1(f1), Z2(f2))|. But,

Cov(Z1(f1), Z2(f2)) = Cov(Z(f1, 0), Z(0, f2))

=

⟨
Q

 f1

0

 , Q
 0

f2

⟩
H(Q)

which leads to the conclusion that it is equivalent to find fi ∈ Hi(Si) to

maximize ∣∣∣∣∣∣∣
⟨
Q

 f1

0

 , Q
 0

f2

⟩
H(Q)

∣∣∣∣∣∣∣ .
The corresponding canonical variables are then recovered via the congruence

mapping that links the two spaces.
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The analysis from this point is driven by the results of [36] as described in

Section 4.5. For that purpose, we express H(Q) as

H(Q) =M1 +M2

with

M1 =

h ∈ H(Q) : h = Q

 f1

0

 := (f1, C21f1), f1 ∈ H1(S1)

 (4.13)

and

M2 =

h ∈ H(Q) : h = Q

 0

f2

 := (C12f2, f2), f2 ∈ H2(S2)

 . (4.14)

Regarding M1 and M2, we have the following result.

Proposition 4.3.4. H(Q) =M1+M2 with “+” indicating an algebraic direct

sum.

Proof. Clearly any element of H0 can be written as the sum of elements inM1

and M2. We therefore need only show that M1 ∩M2 = {0}. Thus, suppose

there exist f1 ∈ H1(S1) and f2 ∈ H2(S2) such that

⟨f1, C21f1⟩H1(S1) = ⟨C12f2, f2⟩H2(S2).

Then, from (4.7)

Cov(Z1(f1), Z2(f2)) = ⟨f1, C12f2⟩H1(S1),

Var(Z1(f1)) = ⟨f1, f1⟩H1(S1) = ⟨f1, C12f2⟩H1(S1),

and

Var(Z2(f2)) = ⟨f2, f2⟩H2(S2) = ⟨f2, C21f1⟩H2(S2) = ⟨C12f2, f1⟩H1(S1).
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But, these relations have the consequence that |Corr(Z1(f1), Z2(f2))| = 1

which contradicts Assumption A1.

To relate this to Sunder’s scheme in Section 4.5, let L1 = M1 and L2 =

M2 ∩M⊥
1 . Then, for h1 = Q

 f1

0

 ∈ M1 and h2 = Q

 0

f2

 ∈ M2 with

||hi||H(Q) = 1, i = 1, 2, the first canonical correlation can be characterized as

ρ = sup
h1∈M1,h2∈M2

||hi||H(Q)=1,i=1,2

|⟨h1, h2⟩H(Q)|

= sup
h1∈L1,h̃2∈L2

||h1||H(Q)=1,||h̃2+Bh̃2||H(Q)=1

|⟨h1, Bh̃2 + h̃2⟩H(Q)|

= sup
h1∈L1,h̃2∈L2

||h1||H(Q)=1,||h̃2+Bh̃2||H(Q)=1

|⟨h1, Bh̃2⟩H(Q)|

≤ sup
h1∈L1,h̃2∈L2

||h1||H(Q)=1,||h̃2+Bh̃2||H(Q)=1

||h1||H(Q)||Bh̃2||H(Q)

= sup
h̃2∈L2

||h̃2+Bh̃2||H(Q)=1

||Bh̃2||H(Q)

for B = PL1|M2(PL2|M2)
−1. But, by taking h1 = Bh̃2/||Bh̃2||H(Q), we obtain

⟨h1, Bh̃2⟩H(Q) = ||Bh̃2||H(Q). So, the bound is attainable and holds with equal-

ity. Thus, we have shown that

ρ = sup
h̃2∈L2

||Bh̃2||H(Q)

subject to

1 = ||h2||2H(Q) = ||Bh̃2 + h̃2||2H(Q)

= ⟨Bh̃2 + h̃2, Bh̃2 + h̃2⟩H(Q)

= ⟨h̃2, h̃2⟩H(Q) + 2⟨Bh̃2, h̃2⟩H(Q) + ⟨Bh̃2, Bh̃2⟩H(Q)

= ⟨h̃2, h̃2⟩H(Q) + ⟨Bh̃2, Bh̃2⟩H(Q)

= ⟨h̃2, (I +B∗B)h̃2⟩H(Q),
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since Bh̃2 ∈ L1 is orthogonal to h̃2 ∈ L2.

The operator I +B∗B is self-adjoint and positive. Therefore, it has a self-

adjoint square root (I +B∗B)1/2. Moreover, (I +B∗B) and (I +B∗B)1/2 are

invertible meaning that we can equivalently work with h̃′2 = (I + B∗B)1/2h̃2

and maximize

||Bh̃2||H(Q) = ||B(I +B∗B)−1/2h̃′2||H(Q)

subject to h̃′2 ∈ L2 and ||h̃′2||2H(Q) = 1. A consequence of Theorem 4.3.2 below

is that B∗B is compact. Hence, the maximizer is the eigenvector for the largest

eigenvalue of the operator

T = (I +B∗B)−1/2B∗B(I +B∗B)−1/2.

In general, the eigenvalues and eigenvectors for T are the values α̃2 > 0

and vectors h̃′2 ∈ L2 of unit norm that satisfy

T h̃′2 = α̃2h̃′2.

Some algebra reveals that this is equivalent to finding a vector h̃2 ∈ L2 that

solves

B∗Bh̃2 = α2h̃2, (4.15)

where

α2 =
α̃2

1− α̃2
(4.16)

and

||h̃2||2H(Q) = 1.

87



From (4.16) it follows that

ρ = α̃ =
α√

1 + α2
. (4.17)

Now suppose that h̃2 ∈ L2 is any vector that satisfies (4.17). Its M1

component is Bh̃2 and its M2 component is Bh̃2 + h̃2. These correspond to

the canonical variables Ψ(Bh̃2), Ψ(h̃2 + Bh̃2) of the Z1 and Z2 spaces. As

such, both need to have unit variance. At present, we have

||Bh̃2||2H(Q) = ⟨h̃2, B∗Bh̃2⟩H(Q) = α2,

and

||h̃2 +Bh̃2||2H(Q) = 1 + α2.

Therefore, the canonical variable for the Z1 space is

Ψ

(
1

α
Bh̃2

)
, (4.18)

and the canonical variable for the Z2 space is

Ψ

(
1√

1 + α2
(h̃2 +Bh̃2)

)
. (4.19)

The correlation between these two random variables is

ρ = Cov

(
Ψ

(
1

α
Bh̃2

)
,Ψ

(
1√

1 + α2
(h̃2 +Bh̃2)

))
= ⟨ 1

α
Bh̃2,

1√
1 + α2

(h̃2 +Bh̃2)⟩H(Q)

=
1

α
√
1 + α2

⟨Bh̃2, Bh̃2⟩H(Q)

=
α2

α
√
1 + α2

=
α√

1 + α2
(4.20)
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as expected from (4.17).

It remains to characterize B∗B. This is accomplished in the following

propositions and corollaries.

Proposition 4.3.5. If h = (C12f2, f2) ∈M2, then PL1|M2h = (C12f2, C21C12f2).

Proof. Let h2 = (C12f2, f2) ∈M2 and h1 = (f1, C21f1) ∈M1 = L1. Then,

⟨PL1|M2h2, h1⟩H(Q) = ⟨h2, h1⟩H(Q) (4.21)

for every h1 ∈M1. Writing PL1|M2h2 = (f ⋆
1 , C21f

⋆
1 ) leads to

⟨PL1|M2h2, h1⟩H(Q) = ⟨(f ⋆
1 , C21f

⋆
1 ), (f1, 0)⟩0

= ⟨f ⋆
1 , f1⟩H1(S1)

= ⟨(C12f2, f2), h1⟩H(Q)

= ⟨(C12f2, f2), (f1, 0)⟩0

= ⟨C12f2, f1⟩H1(S1)

for every f1 ∈ H1(S1). So, f
⋆
1 = C12f2.

Proposition 4.3.5 has the following immediate corollaries.

Corollary 4.3.1. If h = (C12f2, f2) ∈ M2, then PL2|M2h = (I − PL1|M2)h =

(0, C22.1f2).

Corollary 4.3.2. If h = (0, f̃2) ∈ L2, (PL2|M2)
−1h = (C12C

−1
22.1f̃2, C

−1
22.1f̃2).

Corollary 4.3.3. For h = (0, f̃2) ∈ L2, we have

Bh := PL1|M2(PL2|M2)
−1h = (C12C

−1
22.1f̃2, C21C12C

−1
22.1f̃2).

Corollary 4.3.4. Let h, h′ ∈ L2, then

⟨h, h′⟩H(Q) = ⟨(0, f̃2), Q−1(0, f̃2
′
)⟩0 = ⟨f̃2, C−1

22.1f̃2
′⟩H2(S2). (4.22)
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Corollary 4.3.5. B∗(f1, C21f1) = (0, C21f1).

Proof. For h = (f2, C21f1) ∈M1 = L1 and h̃ = (0, f̃2) ∈ L2,

⟨h,Bh̃⟩H(Q) = ⟨Q−1h,Bh̃⟩0

= ⟨(f1, 0), (C12C
−1
22.1f̃2, C21C12C

−1
22.1f̃2)⟩0

= ⟨f1, C12C
−1
22.1f̃2⟩H1(S1)

= ⟨C−1
22.1C21f1, f̃2⟩H2(S2)

= ⟨B∗h, h̃⟩H(Q).

An application of Corollary 4.3.4 completes the proof.

Corollary 4.3.3 and 4.3.5 in combination give us the desired characteriza-

tion as follows.

Theorem 4.3.2. For h = (0, f̃2) ∈ L2,

B∗B(0, f̃2) = B∗(C12C
−1
22.1f̃2, C21C12C

−1
22.1f̃2)

= (0, C21C12C
−1
22.1f̃2).

The eigenvalue-eigenvector problem for B∗B can now be formulated in

various ways; e.g., for a generic u that does not need to be the same on each

line, we can write

(i) C21C12C
−1
22.1u = α2u

⇔ C21C12u = α2C22.1u

⇔ (1 + α2)C21C12u = α2u

⇔ C21C12u = ρ2u, or

(ii) C21C12C
−1
22.1u = α2u

⇔ (C22.1 − I)C−1
22.1u = α2u

90



⇔ u = α2u+ C−1
22.1u

⇔ (1− α2)u = C−1
22.1u

⇔ C22.1u = 1
1−α2u.

We illustrate special cases through the examples below.

Example 4.3.1. Suppose that S1, S2 and S12 are all full rank, finite-dimensional

matrices. Then,

C12 = S12S
−1
2 , C21 = S21S

−1
1

and

C22.1 = I − S21S
−1
1 S12S

−1
2 = [S2 − S21S

−1
1 S12]S

−1
2 .

Thus,

C21C12u = ρ2u

⇔ [S21S
−1
1 S12S

−1
2 ]u = ρ2u

⇔ S21S
−1
1 S12u = ρ2S2u

⇔ S
−1/2
2 S21S

−1/2
1 S

−1/2
1 S12S

−1/2
2 S

1/2
2 u = ρ2S1/2u

⇔ S̃∗S̃u = ρ2u.

Therefore, our formulation in this instance is equivalent to the SVD of S̃ =

S
−1/2
1 S12S

−1/2
2 which in turn, is equivalent to Hotelling’s classic solution for

the finite dimensional case as established in [22].

Example 4.3.2. For the pointwise FDA setting, we have

(C12f2)(t1) = ⟨K12(t1, ·), g(·)⟩H2(S2) (4.23)
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and the eigenvalue-eigenvector decomposition of C21C12 = C∗
12C12 is equiva-

lent to the SVE of C12. Thus, our solution coincides with the Eubank/Hsing

solution for this case.

4.4 PCCA

A similar approach to that of the previous section can be used to address the

PCCA setting. There are now three Hilbert spaces H1, H2 and H3 with norms

and inner products ∥ · ∥i and ⟨·, ·⟩i, i = 1, 2, 3. Then, the Xi are Hi-valued

random variables with associated covariance operators Si, i = 1, 2, 3. As in

Section 4.3, we can also define the cross-covariance operators S12, S13, S23 and

their adjoints.

For i = 1, 2, 3, the Hilbert spaces L2
Zi

spanned by the process Zi(fi), fi ∈

Hi, and their congruent Hilbert space Hi(Si) with indexed process Zi(fi) are

defined exactly the same as (4.6) and (4.5). Hence, by the Riesz representation

theorem, there are bounded operators Cij : Hj(Sj) → Hi(Si) satisfying

Cov(Zi(fi), Zj(fj)) = ⟨fi, Cijfj⟩Hi(Si)

for i, j = 1, 2, 3 and i ̸= j. Also, we have that Cij = C∗
ji.

We construct the new Hilbert space

H0 = { h = (f1, f2, f3) :

fi ∈ Hi, i = 1, 2, 3, ∥h∥20 = ∥f1∥2H1(S1)
+ ∥f2∥2H2(S2)

+ ∥f3∥2H3(S3)
}.

The corresponding H0 indexed process is obtained as

Z(h) = Z1(f1) + Z2(f2) + Z3(f3).

For h ∈ H0, define

Qh = (f1 + C12f2 + C13f3, C21f1 + f2 + C23f3, C31f1 + C32f2 + f3)
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which can be written equivalently in the matrix form

Qh =


I C12 C13

C21 I C23

C31 C32 I



f1

f2

f3


and

Cov(Z(h), Z(h′)) = ⟨h,Qh′⟩0.

Now we want to show that Q is invertible. We write Q as

Q =


I C12 C13

C21 I C23

C31 C32 I

 :=

 I B̃

C̃ D̃

 ,

where B̃ =

[
C12 C13

]
, C̃ =

 C21

C31

 and D̃ =

 I C23

C32 I

. If the inverse
of Q exists, standard results on the form of the inverse of a block matrix tell

us it should be of the form

Q−1 =

 I + B̃Ẽ−1C̃ −B̃Ẽ−1

−Ẽ−1C̃ Ẽ−1

 , (4.24)
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where

Ẽ = D̃ − C̃B̃

=

 I C23

C32 I

−

 C21

C31

[ C12 C13

]

=

 I − C21C12 C23 − C21C13

C32 − C31C12 I − C31C13


=

 C
1/2
22.1 0

0 C
1/2
33.1


·

I −
 0 −C−1/2

22.1 (C23 − C21C13)C
−1/2
33.1

−C−1/2
33.1 (C32 − C31C12)C

−1/2
22.1 0




·

 C
1/2
22.1 0

0 C
1/2
33.1

 .
From Proposition 4.3.2, C22.1 and C33.1 are invertible. Then, in order to show

the invertibility of Q, it suffices to show the norm of 0 −C−1/2
22.1 (C23 − C21C13)C

−1/2
33.1

−C−1/2
33.1 (C32 − C31C12)C

−1/2
22.1 0

 (4.25)

is less than 1 by Theorem 4.40 of [34]. To see that this is the case, we first

establish

Lemma 4.4.1. The projection of Z2(f2) onto L
2
Z1

is Z1(C12f2).

Proof. If PZ1Z2(f2) denotes the projection, it must satisfy

Cov(Z1(f1), PZ1Z2(f2)) = Cov(Z1(f1), Z2(f2))
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for every f1 ∈ H1(S1). Since there is some f∗
1 ∈ H1(S1) such that PZ1Z2(f2) =

Z1(f
∗
1 ), then

Cov(Z1(f1), Z2(f2)) = ⟨f1, C12f2⟩H1(S1)

= Cov(Z1(f1), Z1(f
∗
1 ))

= ⟨f1, f ∗
1 ⟩H1(S1).

Therefore, f ∗
1 = C12f2.

Similarly, we have

Lemma 4.4.2. The projection of Z3(f3) onto L
2
Z1

is Z1(C13f3).

Besides having Assumption A1 apply to both the pairs Z1, Z2 and Z1, Z3,

we also need the following assumption for PCCA.

Assumption A2 There exist no f2 ∈ H2(S2) and f3 ∈ H3(S3) such that

|Corr(Z2(f2)− PZ1Z2(f2), Z3(f3)− PZ1Z3(f3))| = 1.

Now we have the following lemma.

Lemma 4.4.3. ∥C−1/2
22.1 (C23 − C21C13)C

−1/2
33.1 ∥H2(S2) < 1.

Proof. Observe that

|Cov(Z2(f2)− Z1(C12f2), Z3(f3)− Z1(C13f3))|

= |⟨f2, C23f3⟩H2(S2) − ⟨f2, C21C13f3⟩H2(S2)|

< (Var(Z2(f2)− Z1(C12f2)))
1/2(Var(Z3(f3)− Z1(C13f3)))

1/2

= ⟨f2, C22.1f2⟩1/2H2(S2)
⟨f3, C33.1f3⟩1/2H3(S3)

= ∥C1/2
22.1f2∥H2(S2)∥C

1/2
33.1f3∥H3(S3).
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Letting f̃2 = C
1/2
22.1f2 and f̃3 = C

1/2
33.1f3, we then obtain

⟨f̃2, C−1/2
22.1 (C23 − C21C13)C

−1/2
33.1 f̃3⟩H2(S2) < ∥f̃2∥H2(S2)∥f̃3∥H3(S3).

Finally, take f̃2 = C
−1/2
22.1 (C23 − C21C13)C

−1/2
33.1 f̃3 to see that

∥C−1/2
22.1 (C23 − C21C13)C

−1/2
33.1 f̃3∥H2(S2) < ∥f̃3∥H3(S3).

An identical argument shows that

Lemma 4.4.4. ∥C−1/2
33.1 (C32 − C31C12)C

−1/2
22.1 ∥H3(S3) < 1.

In combination, Lemmas 4.4.3 and 4.4.4 show that the norm of (4.25) is

less than 1. Thus,

I −

 0 −C−1/2
22.1 (C23 − C21C13)C

−1/2
33.1

−C−1/2
33.1 (C32 − C31C12)C

−1/2
22.1 0


is invertible and Q−1 exists with the form given in (4.24).

Now define

H(Q) = {h : h = Q


f1

f2

f3

 , fi ∈ Hi(Si), i = 1, 2, 3, ∥h∥2H(Q) = ∥Q−1/2h∥20}.

The three process version of Proposition 4.3.3 is provided by

Proposition 4.4.1. H(Q) is congruent to

L2
Z = {Z(h) : h ∈ H0, ∥Z(h)∥2L2

Z
= Var(Z(h))}

under the mapping Ψ(h) = Z(Q−1h).
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For the PCCA formulation, we wish to find f2 ∈ H2(S2) and f3 ∈ H3(S3)

to maximize

|Cov(Z2(f2)− Z1(C12f2), Z3(f3)− Z1(C13f3))|.

Since

Cov(Z2(f2)− Z1(C12f2), Z3(f3)− Z1(C13f3))

= Cov(Z(−C12f2, f2, 0), Z(−C13f3, 0, f3))

=

⟨
Q


−C12f2

f2

0

 , Q


−C13f3

0

f3


⟩

H(Q)

,

it suffices to find f2 ∈ H2(S2) and f3 ∈ H3(S3) to maximize∣∣∣∣∣∣∣∣∣∣
⟨
Q


−C12f2

f2

0

 , Q


−C13f3

0

f3


⟩

H(Q)

∣∣∣∣∣∣∣∣∣∣
.

The corresponding canonical variables are gained via the congruence mapping

Ψ as in the CCA case.

Again, we apply the results from Sunder [36] described in Section 4.5. We

express H(Q) as

H(Q) =M1 +M2 +M3

with

M1 =

h ∈ H(Q) : h = Q


f1

0

0

 := (f1, C21f1, C31f1)
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M2 =

h ∈ H(Q) : h = Q


0

f2

0

 := (C12f2, f2, C32f2)


and

M3 =

h ∈ H(Q) : h = Q


0

0

f3

 := (C13f3, C23f3, f3)

 .

Regarding M1, M2 and M3, we have the following proposition.

Proposition 4.4.2. H(Q) =M1+M2+M3 with “+” indicating an algebraic

direct sum.

Proof. The proof is similar to that of Proposition 4.3.4. We need to show

that M1 ∩M2 ∩M3 = {0}. Suppose there exist fi ∈ H(Si), i = 1, 2, 3, such

that (f1, C21f1, C31f1) = (C12f2, f2, C32f2) = (C13f3, C23f3, f3). Then, we can

conclude that

Cov(Z2(f2)− Z1(C12f2), Z3(f3)− Z1(C13f3))

= ⟨f1, f1⟩H1(S1) − ⟨f3, f3⟩H3(S3) = ⟨f1, f1⟩H1(S1) − ⟨f2, f2⟩H2(S2),

Var(Z2(f2)− Z1(C12f2)) = ⟨f1, f1⟩H1(S1) − ⟨f2, f2⟩H2(S2)

and

Var(Z3(f3)− Z1(C13f3)) = ⟨f1, f1⟩H1(S1) − ⟨f3, f3⟩H3(S3).

Hence,

Corr(Z2(f2)− Z1(C12f2), Z3(f3)− Z1(C13f3)) = 1

which contradicts Assumption A2.
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If we let L1 =M1, L2 =M2 ∩M⊥
1 and L3 =M3 ∩M⊥

2 ∩M⊥
1 , then for

ĥ2 = Q


−C12f2

f2

0

 ∈M2 − PL1M2 and ĥ3 = Q


−C13f3

0

f3

 ∈M3 − PL1M3

with ∥ĥi∥2 = 1, i = 2, 3, the first partial canonical correlation can be charac-

terized as

ρ = sup
ĥ2∈M2−PL1

M2,ĥ3∈M3−PL1
M3

||ĥi||H(Q)=1,i=2,3

∣∣∣⟨ĥ2, ĥ3⟩H(Q)

∣∣∣
= sup

h̃2∈L2,h̃3∈L3
||h̃2||H(Q)=1,||Bh̃3+h̃3||H(Q)=1

∣∣∣⟨h̃2, Bh̃3 + h̃3⟩H(Q)

∣∣∣
= sup

h̃2∈L2,h̃3∈L3
||h̃2||H(Q)=1,||Bh̃3+h̃3||H(Q)=1

∣∣∣⟨h̃2, Bh̃3⟩H(Q)

∣∣∣
≤ sup

h̃2,h̃3
||h̃2||H(Q)=1,||Bh̃3+h̃3||H(Q)=1

∥h̃2∥H(Q)∥Bh̃3∥H(Q)

= sup
h̃3∈L3,||Bh̃3+h̃3||H(Q)=1

∥Bh̃3∥H(Q)

for B = PL2|M3(PL3|M3)
−1. The bound is attainable and holds with equality

by taking h̃2 = Bh̃3/∥Bh̃3∥H(Q). Thus, we see that

ρ = sup
h̃3∈L3

∥Bh̃3∥H(Q)

subject to

1 = ∥ĥ3∥2H(Q) = ⟨h̃3, (I +B∗B)h̃3⟩H(Q).

Also, similarly as before, it is equivalently to maximize

∥Bh̃3∥H(Q) = ∥B(I +B∗B)−1/2h̃′3∥H(Q)
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subject to h̃′3 ∈ L3 and ∥h̃′3∥2H(Q) = 1. The maximizer is the eigenvector for

the largest eigenvalue of the operator

T = (I +B∗B)−1/2B∗B(I +B∗B)−1/2.

Let α̃2 > 0 and h̃′3 ∈ L3 with unit norm be eigenvalues and eigenvectors

for T , and α2 > 0 and h̃3 ∈ L3 be eigenvalues and eigenvectors of B∗B. Then,

it can be seen that

ρ = α̃ =
α√

1 + α2
.

If h̃3 ∈ L3 is any eigenvector of B∗B, then its M2 − PL1M2 component is

Bh̃3 and itsM3−PL1M3 component is Bh̃3+ h̃3. The corresponding canonical

variables are Ψ(Bh̃3) and Ψ(h̃3 + Bh̃3) of the Z2 − PZ1Z2 and Z3 − PZ1Z3

spaces, respectively. Due to the required unit variance, we have that the

partial canonical variable for Z2 space is

Ψ

(
1

α
Bh̃3

)
,

and the partial canonical variable for the Z3 space is

Ψ

(
1√

1 + α2
(h̃3 +Bh̃3)

)
.

Thus, the partial canonical correlation is

ρ =
1√

1 + α2
.

Now we characterize B∗B through the following propositions and corollar-

ies.

Proposition 4.4.3. If h = (C12f2, f2, C32f2) ∈M2, then

PL1|M2h = (C12f2, C21C12f2, C31C12f2).
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Proof. For h1 = (f1, C21f1, C31f1) ∈M1 = L1, we have the relation

⟨PL1|M2h, h1⟩H(Q) = ⟨h, h1⟩H(Q).

Writing PL1|M2h = (f ⋆
1 , C21f

⋆
1 , C31f

⋆
1 ) leads to

⟨PL1|M2h, h1⟩H(Q) = ⟨(f⋆
1 , C21f

⋆
1 , C31f

⋆
1 ), (f1, 0, 0)⟩0

= ⟨f⋆
1 , f1⟩H1(S1)

= ⟨h, h1⟩H(Q)

= ⟨(C12f2, f2, C32f2), (f1, 0, 0)⟩0

= ⟨C12f2, f1⟩H1(S1)

for every fi ∈ Hi(Si) with i = 1, 2. So f ⋆
1 = C12f2.

Proposition 4.4.3 has the following corollaries.

Corollary 4.4.1. If h = (C12f2, f2, C32f2) ∈M2, then

PL2|M2h = (I − PL1|M2)h = (0, C22.1f2, (C32 − C31C12)f2).

Corollary 4.4.2. If h = (C13f3, C23f3, f3) ∈M3, then

PL1|M3h = (C13f3, C21C13f3, C31C13f3).

Corollary 4.4.3. If h = (C13f3, C23f3, f3) ∈M3, then

PL2|M3h = (0, (C23 − C21C13)f3, (C32 − C31C12)C
−1
22.1(C23 − C21C13)f3).

Proof. For h̃2 = (0, C22.1f2, (C32 − C31C12)f2) ∈ L2 and h ∈ M3, we have the

relation

⟨PL2|M3h, h̃2⟩H(Q) = ⟨h, h̃2⟩H(Q).
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If we write PL2|M3h = (0, C22.1f
⋆
2 , (C32 − C31C12)f

⋆
2 ), then,

⟨PL2|M3h, h̃2⟩H(Q)

= ⟨(0, C22.1f
⋆
2 , (C32 − C31C12)f

⋆
2 ), (−C12f2, f2, 0)⟩0

= ⟨C22.1f
⋆
2 , f2⟩H2(S2)

= ⟨h, h̃2⟩H(Q)

= ⟨(0, 0, f3), (0, C22.1f2, (C32 − C31C12)f2)⟩0

= ⟨f3, (C32 − C31C12)f2⟩H3(S3)

= ⟨(C23 − C21C13)f3, f2⟩H2(S2).

So, f⋆
2 = C−1

22.1(C23 − C21C13)f3.

Corollary 4.4.4. If h = (C13f3, C23f3, f3) ∈M3, then

PL3|M3h = (0, 0, [C33.1 − (C32 − C31C12)C
−1
22.1(C23 − C21C13)]f3).

Proof. PL3|M3h = (I − PL1|M3 − PL2|M3)h.

For notational simplicity, let C0 = C33.1−(C32−C31C12)C
−1
22.1(C23−C21C13).

Corollary 4.4.5. For h = (0, 0, f̃3) ∈ L3,

Bh := PL2|M3(PL3|M3)
−1h

= (0, (C23 − C21C13)C
−1
0 f̃3, (C32 − C31C12)C

−1
22.1(C23 − C21C13)C

−1
0 f̃3).

Corollary 4.4.6. If h = (0, C22.1f2, (C32 − C31C12)f2) ∈ L2, then

B∗h = (0, 0, (C32 − C31C12)f2).
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Proof. For h = (0, C22.1f2, (C32 − C31C12)f2) ∈ L2 and h̃3 = (0, 0, f̃3) ∈ L3,

⟨Bh̃3, h⟩H(Q) = ⟨Bh̃3, Q−1h⟩0

= ⟨Bh̃3, (−C12f2, f2, 0)⟩0

= ⟨(C23 − C21C13)C
−1
0 f̃3, f2⟩H2(S2)

= ⟨C−1
0 f̃3, (C32 − C31C12)f2⟩H3(S3)

= ⟨h̃3, B∗h⟩H(Q)

= ⟨Q−1h̃3, B
∗h⟩0

= ⟨([C21C
−1
22.1(C23 − C21C13)− C13]C

−1
0 f̃3,

−C−1
22.1(C23 − C21C13)C

−1
0 f̃3, C

−1
0 f̃3), B

∗h⟩0.

Therefore,

B∗h = (0, 0, (C32 − C31C12)f2).

Now, through Corollaries 4.4.5 and 4.4.6, we finally obtain

Theorem 4.4.1. For h = (0, 0, f̃3) ∈ L3,

B∗Bh = (0, 0, (C32 − C31C12)C
−1
22.1(C23 − C21C13)C

−1
0 f̃3)).

4.5 Technical Appendix

The essential tool that is used for our work in Section 4.3 and Section 4.4

derives from the results in Sunder [36]. We summarize the key aspects that

are needed for our purpose in this appendix.

Assume that a Hilbert space H with inner product ⟨·, ·⟩ and norm || · ||

can be written as the algebraic direct sum of n closed subspaces M1, . . . ,Mn.
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That is,

H =
n∑

i=1

Mi,

where M1, . . . ,Mn are closed subspaces of H that satisfy

Mi ∩
∑
j ̸=i

Mj = {0} .

Now, for 1 ≤ k ≤ n, define

Rk =
k∑

i=1

Mi, Lk = Rk ∩R⊥
k−1.

Then, Lk⊥Mi, for i = 1, . . . , k−1, and by construction H =
n∑

i=1

Li. Similarly,

k∑
i=1

Li =
k∑

i=1

Mi.

Let PMk
and PLk

be the orthogonal projection operators onto Mk and Lk,

respectively. Then, for 1 ≤ k ≤ n and 1 ≤ j ≤ k ≤ n, we define the restriction

of PLj
to Mk by

PLj |Mk
x = PLj

x

for x ∈Mk. Similarly,

PMk|Lj
y = PMk

y

for y ∈ Lj. Our first result states that PLk|Mk
is actually invertible.

Lemma 4.5.1. PLk|Mk
is one-to-one and onto.

Proof. By definition, PLk|Mk
is the projection operator PLk

restricted to Mk.

In general, PLk
maps

k∑
i=1

Mi onto Lk. But, ⊕k−1
i=1Li =

k−1∑
i=1

Mi⊥Lk. So, PLk

mapsMk onto Lk. If x ∈Mk satisfies PLk
x = 0, it must be that x ∈Mk∩L⊥

k =

Mk ∩
k−1∑
i=1

Mi. By assumption, the only element of this set is the 0 vector.
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The adjoint for PLj |Mk
is determined in the next lemma.

Lemma 4.5.2. (PLj |Mk
)∗ = PMk|Lj

.

Proof. Let x ∈ Lj and y ∈Mk. Then,

⟨PMk
x, y⟩ = ⟨x, PMk

y⟩ = ⟨x, y⟩ = ⟨x, PLj
y⟩ = ⟨x, PLj |Mk

y⟩.

For any x ∈ H, we can write x =
n∑

j=1

xj for some unique set of vectors

x1, x2, . . . , xn with xj ∈ Lj. In particular,

PMk
x =

k∑
j=1

PMk
xj

since PMk
x ∈Mk = ⊕k

i=1Li⊥Lj for j > k. But, if PMk
x ∈Mk, it must be that

PMk
xj =

k∑
i=1

PLi|Mk
PMk

xj.

That leads to

PMk
x =

k∑
j=1

k∑
i=1

PLi|Mk
PMk

xj =
k∑

j=1

k∑
i=1

PLi|Mk
PMk|Lj

PLj
x,

because P ∗
Lj

= PLj
and P 2

Lj
= PLj

. We have therefore proved the following

result.

Theorem 4.5.1. PMk
=

k∑
j=1

k∑
i=1

PLi|Mk
PMk|Lj

PLj
.

Theorem 1 of Sunder (1988) is an immediate corollary of our expression for

PMk
.
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Corollary 4.5.1. For x ∈Mk, we can write Mk as

Mk =
{
(PL1|Mk

x, . . . , PLk−1|Mk
x, PLk|Mk

x, 0, . . . , 0)
}

=
{
(PL1|Mk

(PLk|Mk
)−1PLk|Mk

x, . . . , PLk−1|Mk
(PLk|Mk

)−1PLk|Mk
x, PLk|Mk

x, 0, . . . , 0)
}

=
{
(AL1|Lk

z, . . . , ALk−1|Lk
z, z, 0, . . . , 0)

}
,

where z = PLk|Mk
x ∈ Lk and ALj |Lk

= PLj |Mk
(PLk|Mk

)−1 for 1 ≤ j ≤ k ≤ n.

Corollary 4.5.1 has the consequence that problems involving optimization over

Mk can instead be formulated in terms of equivalent problems on Lk.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

The research presented in this dissertation addresses theory and application

of the SVD and GSVD for both finite and infinite dimensional problems, the

latter in the form of the SVE and the GSVE. The first problem we addressed

was that of finding one possible extension of the GSVD as a GSVE for compact

operators. We found that it is not possible to directly extend the work of Van

Loan [40] on the finite dimensional GSVD because a key step is only valid for

matrix operators. So we constructed our GSVE in a new way.

Second, we focused on the χ2 method for regularization parameter esti-

mation. Previous work has suggested that the normal theory version of the

χ2 method could also be used for nonnormal data. We proved that under

the condition of ϕ-mixing, the variance factor used to normalize the penalized

least-squares criterion is not 2 for nonnormal data. An analytic example is

presented where the actual variance factor is larger than 2 for a simple Pois-

son case. Since the ϕ-mixing property is only an asymptotic condition, we

presented an empirical study to estimate the new variance factor for selected

finite sample experiments. The simulation results verified that the variance

factor is larger than 2 in a more involved context that uses Poisson errors

with normal signals that are blurred with Phillips and Shaw matrix transfor-

mations. We also explored how this affects parameter estimation for solving

the regularization problems. Though the estimated values of the parameter

do not differ much, we found that using an alternative variance factor that

is tailored to the simulation produces confidence intervals with a coverage of

the true parameter that is closer to the nominal level and larger than using

the original variance factor. Also choosing the alternative variance factor pro-
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duced different regularization parameter choices between 5% and 12% of the

time and saved computation time when these choices differed.

Third, we provide a rigorous derivation for canonical correlation and partial

canonical correlation for certain Hilbert space indexed stochastic processes.

This work removes these restrictions that existed in previous work such as

Dauxois et al. [7] [8] largely focus on the finite dimensional covariance opera-

tors whose range are closed and He et al. [20] impose restrictions on the cross-

covariances of coefficients in the two process’ Karhunen- Loeve expansions to

insure that the canonical variables are elements of H. For two processes, our

derivation produces the same solution as in Eubank and Hsing [13]. While it

appears to be difficult to use their approach to obtain results for the PCCA

framework, the approach here extends readily to the PCCA and more general

settings. It relies on a key congruence mapping between the space spanned

by a second order, H-valued process and a particular Hilbert function space

derived from the process’ covariance operator. It is an application of method-

ology for constructing orthogonal direct sums from algebraic direct sums of

closed subspaces.

Topics to be addressed in future work include the following.

(i) It is important to explore more applications of the new GSVE derived in

Chapter 2. One possible direction is the time series regression model of

Parzen [31] which provides the infinite dimensional analog of the finite

dimensional linear model. It will be interesting to see whether the new

GSVE can be used to study time series regression similarly to the use

of the GSVD for the study of linear models as presented by Van Loan

[40]. Another possible direction is to find a new form of GSVD to obtain
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estimates of GSVE as Hansen [16] used SVD to approximate SVE.

(ii) While our results in Chapter 3 show that we cannot assume the same

variance factor for normal and nonnormal measurements, more work

needs to be done to evaluate the impact of the variance factor in regu-

larization parameter estimation. Our current results do not show that

the results are significantly better when a more appropriate variance is

used, although the use of the large variance factor makes the tolerance on

the iteration less severe thereby allowing the algorithm to converge more

quickly. It would be interesting to consider other distributions for error

term such as the gamma distribution. It is also of interest to determine

how to choose the variance factor for real data.

(iii) In Chapter 4, we have developed a framework that can be used to study

the correlation properties of groups of Hilbert space indexed stochastic

processes. Our applications have been restricted to groups of size two or

three; however, it is clear that similar analyses are possible with any finite

number of processes. For example, the partial canonical correlation work

of Section 4.4 extends in principle to examination of pairs of residual

processes after correcting for projections onto several other processes.
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