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ABSTRACT

Insertion and deletion errors represent an important category of chan-

nel impairments. Despite their importance and much work over the years,

channels with such impairments are far from being fully understood as they

proved to be difficult to analyze.

In this dissertation, a promising coding scheme is investigated over in-

dependent and identically distributed (i.i.d.) insertion/deletion channels, i.e.,

interleaved concatenation of an outer low-density parity-check (LDPC) code

with error-correction capabilities and an inner marker code for synchroniza-

tion purposes. Marker code structures which offer the highest achievable rates

are found with standard bit-level synchronization is performed. Then, to ex-

ploit the correlations in the likelihoods corresponding to different transmitted

bits, a novel symbol-level synchronization algorithm that works on groups of

consecutive bits is introduced. Extrinsic information transfer (EXIT) charts

are also utilized to analyze the convergence behavior of the receiver, and to

design LDPC codes with degree distributions matched to these channels.

The next focus is on segmented deletion channels. It is first shown that

such channels are information stable, and hence their channel capacity exists.

Several upper and lower bounds are then introduced in an attempt to under-

stand the channel capacity behavior. The asymptotic behavior of the channel

capacity is also quantified when the average bit deletion rate is small. Further,

maximum-a-posteriori (MAP) based synchronization algorithms are developed

and specific LDPC codes are designed to match the channel characteristics.

Finally, in addition to binary substitution errors, coding schemes and

the corresponding detection algorithms are also studied for several other mod-
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els with synchronization errors, including inter-symbol interference (ISI) chan-

nels, channels with multiple transmit/receive elements and multi-user commu-

nication systems.
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Chapter 1

INTRODUCTION

In this introductory chapter, our objective here is to give a brief overview of the

topic and contents of this dissertation. Specifically, we first describe a channel

model used to study synchronization errors in communication systems, namely,

insertion/deletion channels, in Section 1.1. We then present our contributions

and outline of the dissertation in Section 1.2.

1.1 Insertion/Deletion Channels

We consider an important category of channel impairments, i.e., synchroniza-

tion errors. Such errors are usually caused by the mismatch between the clocks

of the transmitters and the receivers or imperfect timing-alignment in a record-

ing system, e.g., in the read/write process of bit-patterned media recording

systems [1]. As a result of these type of errors, transmitted symbols can be

deleted and random symbols may be inserted into the received data stream,

whose positions are unknown to the transmitter and the receiver. The result-

ing channels are referred to as insertion/deletion channels.

Many practical systems exhibit insertion and deletion errors. For in-

stance, in the context of wireless communications, with the increasing demands

for mobile data and voice services, e.g., high-definition (HD) video streaming,

video calls on smartphones, the next generation wireless systems are required

to provide high-speed yet reliable and secure communication links in vari-

ous environments, e.g., urban, rural, indoor and outdoor. According to the

International Mobile Telecommunications Advanced (IMT-Advanced) require-

ments on the fourth generation of wireless cellular standards (4G), downlink
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speeds of 100 Mbit/s for high mobility users (vehicles) and 1 Gbit/s for low

mobility users (pedestrians) are specified. At this level of data rates, perfect

synchronization becomes more and more difficult to achieve, and therefore,

synchronization errors may occur. A wireless communication system with a

variable transmission rate is also a good example of a channel where synchro-

nization errors are common [2]. That is, during the interval when the sampling

rate changes, the receiver may lose synchronization for several symbol periods

which may lead to a combination of possible insertions and deletions.

Magnetic and optical recording systems are other examples which fre-

quently suffer from synchronization errors. Variations in the rotation speed

of the hard disks may cause read and write errors which, for example, were

the motivation for considering insertions and deletions in [3] and [4]. Another

important example is the recently developed bit-patterned media recording

technology [1] aiming to achieve ultra-high recording densities and to replace

the conventional film media. In this technology, the recording media is pre-

patterned into small “islands”. For each island, a time window is assigned in

which the writing process can be completed successfully. This brings about the

write synchronization problem as a new design issue compared to the conven-

tional media recording. As a result, written-in errors may occur due to several

reasons; for instance, they may be caused by the imperfect synchronization

of the write head to the bit positions, fluctuations of the bit positions and

the switching field, and so on. Another problem due to mis-synchronization

is that when writing to an island occurs outside the specific time window, ei-

ther the previous bit is overwritten or the current bit is skipped. The writing

process can therefore be viewed as a recording channel with insertion and dele-

tion errors. Since it is hard to adjust the write head to each island perfectly,

2



the insertion and deletion errors cannot be avoided, thus good error correcting

coding schemes are needed. Also, we note that for these channels, inter-symbol

interference (ISI) and additive white Gaussian noise (AWGN) are also present

along with the insertions and deletions.

Channels that experience insertion and deletion errors may also be

present in various other scenarios, including transmission over a serial line (the

clock speed of the transmitter may not be accurately known which leads to an

unknown time of arrival for each bit), and as typos on letters and documents,

i.e., when there is a missing letter or extra letters, which are the motivations

of studying non-standard communication channels in [5].

Despite of the broad applications and the importance of this channel

model, insertion/deletion channels are still far from being fully understood.

For instance, tight upper and lower bounds on their channel capacity are

only available for deletion channels with deletion rate close to zero. In this

dissertation, our main objective is to contribute towards an understanding

of these channels, specifically, by considering design suitable practical coding

schemes. Our main contributions are summarized in the next section, and an

outline of the dissertation is given.

1.2 Outline of the Dissertation and Contributions

We review existing results on insertion/deletion channels in Chapter 2. We

first describe different channel models proposed in the literature. Then, we re-

view the existing results on the channel capacity and coding schemes for inser-

tion/deletion channels. Furthermore, we give a very brief introduction to chan-

nel coding. Specifically, we focus on low density parity check (LDPC) codes

and the corresponding iterative decoding algorithm. We also present some

3



basic ideas of multiple-input multiple-output (MIMO) systems and multi-user

communication systems, since synchronization errors can be considered in the

context of these systems as well.

In Chapter 3, we consider binary channels impaired by independent

and identically distributed (i.i.d.) insertion, deletion, and substitution errors,

whose positions are unknown to either the transmitter or the receiver. As in [6],

we consider the interleaved serial concatenation of an outer error-correcting

code with an inner marker code. To limit the decoding latency, we assume

that the required marker code-based synchronization is performed only once

per received packet, i.e., iterations with the outer decoder are not allowed.

Our first contribution consists of the evaluation of highest rates at which

reliable communications (in the Shannon sense [7]) is possible, for a given

channel and a given marker code. An approximate solution of this problem

was proposed in [6], where the authors characterized the capacity of a proper

time-varying binary symmetric channel (BSC) and conjectured that it gives an

accurate approximation of the actual achievable rate. In our work, we consider

the exact solution to the problem based on mutual information arguments,

i.e., we numerically evaluate the information rates, and show how to exploit

these achievable rate analyses to optimize the marker code structure. As the

marker code-based synchronization algorithm, we first consider the standard

maximum-a-posteriori (MAP) detector working at the bit level [8, 9]. Then,

we introduce the MAP detection at the symbol level, defining a symbol as a

group of m consecutive bits, and demonstrate how this approach can improve

the achievable rates without changing the transmitter structure.

In addition to the achievable rate analysis with a single pass decoder,

we also investigate the outer LDPC code design when multiple-pass decoding is
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used, i.e., synchronization is performed multiple times for each received packet

by iterating between the decoder for the outer code and the synchronization

module. The goal of our design is to find “good” outer LDPC codes concate-

nated with marker codes for transmission over the insertion/deletion channels

which offer better decoding performance compared to the ones optimized for

AWGN channels by varying the variable/check node degree distributions. The

motivation is explained as follows: since the detection extrinsic information

transfer (EXIT) chart [10] is not flat for the channel model under considera-

tion, LDPC codes designed for AWGN channels are no longer optimal when

iterative decoding is performed [11]. Many optimization schemes for LDPC

codes over different types of channels have been reported in the literature, e.g.,

density evolution techniques [12], EXIT chart-based designs [10,13,14]. Here,

we utilize the EXIT charts to analyze the impact of insertions and deletions

on the convergence behavior of the receiver and find good variable/check node

degree distributions.

In Chapter 4, we aim at the development of both information theoretic

results and practical coding schemes for the segmented deletion channel. Com-

pared to channels with i.i.d. deletions, where each bit is independently deleted

with an equal probability, the segmentation assumption imposes certain con-

straints, i.e., in a block of bits of a certain length, only a limited number of

deletions are allowed to occur. In particular, we consider the elementary seg-

mented deletion channel, i.e., no more than one deletion per segment is allowed.

We first show that the segmented deletion channels fall within the framework

of memoryless synchronization error channels (with non-binary inputs), and

by a proper application of Dobrushin’s results [15], we argue that the channel

is information stable. Then, we explore several upper and lower bounds on
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the capacity of these channels by providing the transmitter and the receiver

with genie-aided information, i.e., about which segment has a deletion error.

We also show that when the average bit deletion rate is small, asymptotic

behavior of the capacity can be characterized by utilizing the methodology

developed in [16] to the new model. As a result, a good approximation of the

channel capacity for small deletion probabilities is obtained. Also, we illustrate

that the derived upper and lower bounds behave similarly for some range of

deletion probabilities, while a wide-range of deletion probabilities exist where

improvement of the results is clearly possible.

In addition to the capacity characterization of the segmented deletion

channel, we also consider a practical concatenated coding approach, for which

as in Chapter 3, concatenation of an outer LDPC code for error-correcting

purposes with an inner marker code, which provides re-synchronization capa-

bilities, is explored. Despite the similar encoding procedure (with the i.i.d. in-

sertion/deletion channel case), there are significant differences at the receiver.

In particular, the soft-output synchronization algorithm is no longer optimal.

Therefore, we introduce bit-level and symbol-level MAP detection algorithms

which incorporate the segmentation assumption for improved results. Our ap-

proach is motivated by the fact that if we allow for the use of powerful codes

with strong error-correcting capabilities, a much higher code rate (compared

to the ones reported in [17]) can be achieved with a low probability of error

(when we drop the requirement of no errors).

We deal with the case of insertion/deletion channels with ISI in Chap-

ter 5. Following a similar encoding/decoding procedure to the ones in Chap-

ters 3 and 4, we design a MAP detection algorithm at the bit level based on a

modification of the trellis diagram used in [18]. The derived channel detection
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algorithm jointly achieves equalization for the ISI channel and synchronization

for the insertion/deletion channel. Furthermore, as an alternative to the joint

MAP detection, we introduce several low-complexity solutions. We investigate

the separate channel detection scheme, i.e., the concatenation of an equalizer

for the ISI channel and a MAP detector for synchronization purposes. Then,

we discuss other simplified solutions to the problem by employing the well-

known M- [19] and T- algorithms [20] as simplifications of the full complexity

forward backward algorithm [8, 9]. We also design a soft-input soft-output

stack decoding algorithm [21–23] which utilizes a code-tree instead of the trel-

lis representation. We show that these three approaches greatly reduce the

decoding complexity, especially for channels with long memory or for high

insertion/deletion rates, at the expense of reduced decoding performance.

Chapter 6 is devoted to multi-element/multi-user communication sys-

tems with deletion errors. We describe two new channel models suitable in

certain applications. The first one, namely the MIMO deletion channel, models

the scenarios where multiple transmitters and receivers suffering from synchro-

nization errors are employed, e.g., multi-track bit patterned media recording

systems. The second one, which is referred to as Gaussian multiple access

channel (MAC) with deletion errors, models a scenario where multiple trans-

mitters communicate to the same receiver simultaneously, while each of them

independently suffering from deletion errors. Some potential applications of

this model can be found in the context of asynchronous wireless sensor net-

works [24]. For these two channel models, we consider a coding scheme based

on a serial concatenation of an LDPC code, a marker code and a layered space-

time code (for the MIMO deletion channel case), and design suitable detectors

and iterative decoding schemes operating at the bit level which jointly achieve
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synchronization for the deletion channel and detection for the MIMO and

Gaussian multiple access channels. Utilizing the proposed detector together

with the outer LDPC code, we demonstrate that reliable transmission over

these channels is feasible.

In the last chapter of the dissertation, we summarize our results and

present our contributions. We also provide several possible future research

directions in the context of insertion/deletion channels.
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Chapter 2

REVIEW OF EXISTING RESULTS ON INSERTION/DELETION

CHANNELS

In this chapter, our objective is to review some essential material related to

the insertion/deletion channels in order to provide the necessary background

for the rest of the dissertation and to put our contributions in a proper con-

text. Specifically, we begin with an introduction of insertion/deletion channel

models. Then, in Sections 2.2 and 2.3, we review some important existing

results on their channel capacity and practical coding schemes, respectively,

followed by a general discussion of channel coding techniques in Section 2.4.

In the last section, we provide a brief introduction to MIMO channels and

multi-user communication systems which will be used in the later chapters of

the dissertation.

2.1 Insertion/Deletion Channel Models

Many models for insertion/deletion channels are proposed and studied in the

literature. In [9], a binary synchronization error channel is characterized by

three parameters: Pi, Pd and Ps, which indicate the probability of insertion,

deletion and substitution events as a result of the channel impairments, respec-

tively. Insertion, deletion and substitution errors are described by the state

diagram shown in Fig. 2.1. In this model, the number of consecutive inser-

tions between any two bits can be arbitrary large. In practice, it may be more

suitable to limit the maximum number if consecutive insertions to a value I

because Pi is relatively small in a practical system, and therefore, the prob-

ability of having more than I consecutive insertions between two consecutive

bits may be negligible. Also, each transmitted bit independently gets deleted

9



Insertion of a random bit

(Bernoulli(½))

xk

Deletion

Transmission with

substitution

Transmission without

substitution
xk+1

Pi

Pd

Pt

1-Ps

Ps

Figure 2.1: Mackay’s insertion/deletion channel model.

with probability Pd. Therefore, a transmission event occurs with probability

of Pt = 1 − Pi − Pd. The factor Ps indicates the probability of xk suffering

from a substitution error provided that a transmission event happens.

Zigangirov considers a very similar channel model in [25] where the

only difference is in the definition of the insertion probability: the probability

of no insertion is q1, and number of insertions being i has a probability of

q1p
i
1. Since the summation of all possible event probabilities equals one, i.e.,∑∞
i=0 q1p

i
1 = 1, we have q1 + p1 = 1, which indicates that p1 is the probability

of having at least one insertion. As for the deletion errors, it is assumed that

each transmitted bit1 is deleted with probability p2, and the probability of no

deletion is q2 so that q2 + p2 = 1.

Another important model is introduced in [22] by Gallager. Specifi-

cally, each input bit independently gets deleted (with probability Pd), or gets

replaced by two uniformly distributed random bits (with probability Pi), or is

correctly received (with probability Pc), or incorrectly received2 (with prob-

ability Pe), where Pi + Pd + Pc + Pe = 1. An important difference from the

1The inserted bits cannot be deleted according to the model.
2This is due to the presence of substitution errors.

10



previous two insertion/deletion channel models is that for each transmitted

bit, it cannot experience an insertion event and a deletion event together.

The sticky channel, whose capacity is studied in [26], is a particular

type of insertion channel. In this channel, the transmitted symbols can be

independently repeated several times at the receiver where the number of du-

plications is random and follows some fixed distribution. Typing on a keyboard

maybe an example of a sticky channel. When a certain key is held too long,

the letter typed may be printed multiple times although only one occurrence

should be present at the output.

In [17], a different class of synchronization errors are considered, i.e.,

binary insertion/deletion channels with the additional segmentation assump-

tion. According to the segmentation assumption, several consecutively trans-

mitted bits are considered as one block or segment and the number of inser-

tions/deletions within each segment is limited to a certain number. Motivation

of studying this channel model is that the segmentation assumption appears

naturally in many practical systems. For instance, consider a bit-patterned

media recording system where cycle slips are caused due to the mis-alignment

between the write-head and pre-patterned magnetic islands [1]. In this case,

when a bit is skipped or written multiple times on one island, the next dele-

tion/insertion event will appear only after some number of bits. Another point

in using the segmented deletion channel model is that this model can incor-

porate various types of deletion errors as special cases. When we choose the

length of a segment to be one, the channel becomes an i.i.d. deletion channel.

If the segmentation assumption requires that all the bits from the segment

get deleted whenever an error occurs, the channel becomes a bursty deletion

channel, which can model a variable transmission rate wireless communication

11



system [27], when the receiver lose synchronization for several symbol periods

during the interval of changing sampling rate. More precisely, in this model,

for a binary input and binary output channel, the transmitted bit sequence

is implicitly partitioned into N consecutive disjoint blocks {Xn}Nn=1 each with

the same length of b bits. Note that there is no explicit partitioning at the

transmitter side, however, the receiver is aware of the restriction. During the

transmission, a total number of at most d0 insertions and deletions are allowed

to happen for each Xn, resulting in a received vector of varying lengths. For

instance, if we utilize the insertion model in [22], the length of the received

vector corresponding to Xn takes values in {b− d0, . . . , b, . . . , b+ d0}, and the

positions of insertion/deletion errors are uniformly chosen within the segment.

In addition to the synchronization errors, substitution errors can also be incor-

porated [9, 22], i.e., every undeleted user bit maybe incorrectly received with

a certain probability. We also note that there is no special marker between

the bits of different segments, hence the receiver does not know the segment

boundaries.

In [17], the authors focus on a particular case, namely, the elementary

segmented deletion channel, i.e., the segment Xn is received intact with prob-

ability 1 − Pd while only one bit is deleted with probability Pd. Also, the

deletion events for each segment are independent. A simple example is given

as follows. Assume that the binary sequence 00101101 is transmitted over a

segmented deletion channel with b = 4, it is possible that the third and fifth

bits are deleted, leading to a received sequence of 000101. However, receiving

001001 is impossible as in this case two bits from the second segment would

need to be deleted, which is not allowed.

12



In addition to the above described channel models, it should be noted

that the insertion/deletion errors can also be incorporated with other channel

models and impairments, such as in the presence of AWGN, binary erasure

channels (BECs), channels with ISI, MIMO channels, multiple access chan-

nels, etc. Some of these models will be considered further in the subsequent

chapters.

2.2 Upper/Lower Capacity Bounds on Insertion/Deletion Channels

In this section, we review some existing results on the capacity of inser-

tion/deletion channels. Since the positions of insertions/deletions are unknown

to the transmitter and receiver, study of insertion/deletion channels from an

information theoretic or a practical coding point of view is remarkably diffi-

cult. For i.i.d. insertion/deletion channels, the information stability and the

Shannon’s capacity theorem are proved in [15]. However, a finite-letter ex-

pression of the channel capacity does not exist and only upper/lower bounds

on this quantity are available in the literature. Furthermore, for most models,

these bounds are not tight for almost any range of insertion/deletion proba-

bilities [28–30].

Performance of channels with insertions, deletions and flipping errors by

adding a pseudorandom sequence to the convolutionally coded bits to combat

the synchronization errors is investigated by Gallager in [22]. A lower bound

on their capacity is then derived which is given by

C ≥ 1 + Pilog2Pi + Pdlog2Pd + Pelog2Pe + Pclog2Pc, (2.1)

where Pi, Pd, Pe and Pc are defined in Section 2.1 when explaining Gal-

lager’s model. We stress that this bound is only applicable to Gallager’s

insertion/deletion channel model and is loose for large Pi, Pd values.
13



Combinatorial upper and lower bounds on the capacity of binary in-

sertion and deletion channels when the number of errors in a codeword block

is asymptotically a fraction of the block size are given in [31]. The resulting

upper and lower bounds are given by

1−plog2

(
e2
(

3

2p
+

15

16

)(
3

2p
+

47

16

))
≤ C ≤ 1−(1+p)log2(1+p)+plog2(2p),

(2.2)

where p is the fraction of insertion/deletion errors when the block length goes

to infinity. These bounds are on the zero-error capacity and they do not apply

for the Shannon capacity of these channels.

For the deletion channel, Diggavi and Grossglauser [32] consider an

achievable rate which serves as a lower bound on the capacity of deletion

channels. It is shown that with i.i.d. codebooks, the achievable rate of deletion

channels differs from that of erasure channels by at most H(Pd)−Pd log2
K

K−1

for Pd < 1−K−1, where K is the alphabet size and H(·) is the binary entropy

function. This difference can be further narrowed by considering Markovian

codebooks. Recent works by Drinea and Mizenmacher [33, 34] improve the

bounds in [32], and extend their results to channels with duplication errors

as well. The best reported upper bounds for i.i.d. binary deletion channels

[29] are obtained by providing the transmitter and receiver with genie-aided

information to make the channel memoryless and using the Blahut-Arimoto

algorithm [35, 36] in a suitable way. Furthermore, in [30], the authors extend

their work to compute several upper and lower bounds on the capacity of

channels with insertion, deletion and substitution errors as well.

In two recent papers [16, 37], asymptotic behavior of the capacity for

the binary i.i.d. deletion channel is characterized for small deletion rates.

These papers use different methodologies but reach similar conclusions, i.e.,
14



in [37], it is shown that the capacity lower bound C ≥ 1−H(Pd) is tight as Pd

approaches zero, while in [16], under the same condition, the channel capacity

is quantified as a series expansion of the deletion rate Pd, which for any ϵ > 0

is given as C = 1+Pd log2 Pd− (log2 2e−
∑∞

l=1 2
−l−1l log2 l)Pd+O(P

3/2−ϵ
d ). As

an extension work of [16], in [38], the coefficient for P 2
d is also explicitly given.

The authors in [39] specify a memoryless synchronization error channel by a

stochastic transition probability matrix, and obtain analytical lower bounds

on the capacity for channels with deletions or duplications only, some of which

are expected to be tight for small deletion or duplication probabilities.

2.3 Practical Coding Schemes of Insertion/Deletion Channels

The difficulty in the study of i.i.d. insertion/deletion channels is also con-

firmed by the lack of channel codes able to provide reliable communications

at rates close to the capacity lower bounds [28]. An early approach for identi-

fying synchronization errors is the use of markers referring to the insertion of

known bits at pre-specified positions into the transmitted stream [40], so that

synchronization can be re-gained by locating the markers in the received se-

quence. Apart from these, there are three basic approaches toward designing

codes for channels with synchronization errors: algebraic/number theoretic

code design, convolutional (trellis-based) codes, channel codes based on code

concatenation.

A comprehensive survey of works on single-deletion-correcting codes

is provided in [41] primarily focusing on the algebraic/number theoretic ap-

proaches. It becomes evident that even the restriction on the number of pos-

sible insertions/deletions to be only one over a codeword does not offer simple

solutions. Codes with multiple insertion and/or deletion correcting capabil-
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ities are described in [42]. The use of Reed-Muller (1,m) code is discussed

in [43], where in addition to substitution errors, the channel model permits

either the repetition or the deletion of a single bit. Non-binary codes over dele-

tion channels, e.g., Reed-Solomon (RS) codes, are studied in [44], where for

codeword lengths l ≤ 36, RS codes capable of correcting up to l − 3 deletions

are provided. Further, algebraic designs employing cyclic codes are reported

in [45,46].

As an example of the second approach, i.e., convolutional coding over

insertion/deletion channels, we can cite pruned convolutional codes in [47].

[48] considers convolutional codes with a long buffer and bit reversal before

transmission. In [49], new states in the trellis of a convolutional code are

added to accommodate synchronization errors and a special code construction

algorithm is introduced which maximizes the minimum Levenshtein distance

[50] between different codewords. Idea of adopting parallel Viterbi decoders

to correct insertion, deletion and flipping errors is investigated in [51], where

the key is to ensure that the decoding procedure starts from the correctly

synchronized decoder.

To date, coding schemes with the most promising performance reported

over i.i.d. insertion/deletion channels are based on code concatenation. The

key idea is to concatenate, through an interleaver, an outer code with good

error-correction capabilities with an inner code whose aim is to help the re-

ceiver detect synchronization errors due to the presence of insertions/deletions.

For example, [52] considers concatenation of Reed-Solomon codes as outer

codes with an inner code designed using a brute force approach. The paper

shows that these codes are asymptotically good for channels with insertions

and deletions in the sense that the code rate remains positive. Concatenation
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of outer LDPC codes and inner watermark codes are investigated in [9], while

concatenation of LDPC codes and marker codes are studied in [5,6]. Synchro-

nization can be achieved by means of the forward-backward algorithm pre-

sented in [8,9] with the help of information carried by the marker/watermark

codes. A sub-optimal decoding strategy for concatenation of an LDPC code,

a Varshamov-Tenengolts (VT) code and a marker code is considered in [53].

In addition to the i.i.d. insertion/deletion channels, of interest in this

dissertation are the segmented deletion channels as well. For these channels,

there is very little work on suitable channel coding schemes over these channels,

and most of the code designs for i.i.d. insertion/deletion channels cannot be

directly applied, e.g., those in [41,44,47,54]. The only existing coding approach

for this channel is given in [17], where the proposed codes can correct all the

insertions and deletions with no errors when only a single insertion/deletion

error per segment is allowed. The key idea is to encode the data sequence

so that each segment is a codeword from a 1-deletion/insertion correcting

code. Other constraints are also enforced on the codewords which allow for a

simple left-to-right, segment by segment decoding. As an example, a codebook

containing 12 codewords is found for an elementary segmented deletion channel

with a segment size of b = 8, resulting in an overall code rate of R = 0.448.

Higher code rates can be achieved for larger b. Although some extensions have

also been studied offering increased code rates, these coding algorithms require

some check bits and check sums to be known at the receiver side leading to

the need of a perfect side-information channel [17].
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2.4 Channel Coding Overview

It is shown that when the transmission rate is less than the channel capac-

ity, reliable communication is possible even for channels with synchronization

errors [15, 55]. In light of this conclusion, it is also desired to design “good”

codes which can correct possible insertions/deletions as well as other types of

errors.

Theoretically speaking, a randomly chosen code with length n ap-

proaching infinity is a good code with a high probability, as known from the

usual random coding argument in information theory3. However, the corre-

sponding encoding and decoding complexity grows exponentially in n, and

thus it becomes infeasible in practice. This problem is solved by the invention

of turbo codes and the re-discovery of LDPC codes [56,57] in the 1990’s, both

of which offer performance within a fraction of a decibel (dB) of the Shannon

limit over many channels of practical interests and have a practical encoding

and decoding algorithms. Both of two codes are inspired by the idea of ran-

dom coding, and offer excellent performance when very large block sizes are

used, e.g., n > 10000. In the following sub-section, we will introduce some

basic concepts and corresponding decoding algorithms for LDPC codes, since

in the rest of the dissertation we will heavily refer to them.

2.4.1 Low Density Parity Check Codes

The LDPC codes were first introduced by Gallager in his doctoral dissertation

and then were re-discovered by Mackay and Neal [57]. Considering only the

binary LDPC codes, where all operations are carried out in the binary field

3This claim is somewhat weaker for channels with synchronization errors as we do not
know the optimal input distributions in general.
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GF (2), a regular LDPC code is a linear block code defined by an m×n parity

check matrix H with wc ones in every column and wr ones in every row. The

term “low density” means that H is sparse, i.e., wc ≪ m and wr ≪ n. As

a generalization, for irregular LDPC codes, the row weights and/or column

weights of H are not constants. Usually irregular LDPC codes offer a better

error correcting performance than the regular ones with the same rate [57].

An LDPC code (or any linear block code) can be represented by a

Tanner graph. The Tanner graph is a bipartite graph in which the nodes can

be partitioned into two classes, and no edge connects two nodes from the same

class. In the first class of nodes, there is one node for each of the n bits in

the codeword, which are often referred to as the variable nodes. In the second

class of nodes, there is one node for each of the m parity checks equations,

which are often referred to as the check nodes. An edge connects the i-th

variable node ci to the j-th check node fj if and only if (iff) the bit is included

in the parity check, i.e., the ij-th entry in H equals 1. As an example, the

Tanner graph of the linear block code with the following parity check matrix

H =



1 1 1 1 0 0 0 0 0 0

0 0 0 1 0 0 1 0 1 1

0 0 1 0 0 1 0 1 0 1

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0


,

is shown in Fig. 2.2.

2.4.1.1 Message Passing Algorithm

In the very first paper on LDPC codes [56], Gallager provides two decoding

algorithms (one of which is only applicable to BSC) that is near optimal.
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Figure 2.2: Tanner Graph for the example LDPC code.

Later on, other researchers [57] have independently discovered a graph-based

iterative decoding algorithm which offers better decoding results. This algo-

rithm comes with different names under various circumstances, including: the

sum-product algorithm (SPA), the belief-propagation algorithm (BPA), and

the message passing algorithm (MPA).

The objective of SPA is to find a valid codeword x with Hx = 0. The

main idea is that since multiple coded bits are involved in one check equation,

the sum of them should equal to one, therefore, an updated information on one

particular bit can be generated by utilizing the a-priori information from other

bits belonging to the same check equation. As one bit is usually involved in

several check equations, soft information can be iteratively exchanged between

the variable and check nodes which converge to a final decision on all the coded

bits. Before describing the detailed decoding algorithm, we start with some

notation:

• pi: pi = P (ci = 1|yi), where yi is the channel output corresponding to

the bit ci.

• Qi: output a-posteriori probability for the variable node ci,

• qij: information from the ith variable node to the jth check node, where
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qij(x) equals the probability that ci = x given yi and all the extrinsic

information passed to ci from all the check nodes except except fj,

• rji: information from the jth check node to the ith variable node, where

rji(x) equals the probability that parity check equation fj is satisfied,

given ci = x and the other information passed to fj (except ci),

• Rj: the set of column indices of the ones in the j-th row,

• Rj\i: the set of column indices of the ones in the j-th row excluding ci,

• Ci: the set of row indices of the ones in the i-th column,

• Ci\j: the set of row indices of the ones in the i-th column excluding fj.

We the above notation, the message passing algorithm can be written into five

steps. The detailed derivation is omitted and can be found in [57].

1. Initialize

qij(0) = 1− pi,

qij(1) = pi.

2. For the first half of one iteration, at the check node fj, the message

passed to ci is calculated as (one example is given in the left sub-figure

of Fig. 2.3)

rji(0) =
1

2
+

1

2

∏
i′∈Rj\i

(1− 2qi′j(1)),

rji(1) = 1− rji(0).

3. For the second half of one iteration, at the variable node ci, the message

passed to fj is calculated as (one example is given in the right sub-figure
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Figure 2.3: Message passing algorithm at variable/check node.

of Fig. 2.3)

qij(0) = Kij(1− pi)
∏

j′∈Ci\j

rj′i(0),

qij(1) = Kijpi
∏

j′∈Ci\j

rj′i(1),

where Kij is selected so that qij(0) + qij(1) = 1.

4. The information qij and rji are exchanged between the variable and the

check nodes until the maximum of iterations is reached and the final soft

decisions are generated as

Qi(0) = Ki(1− pi)
∏
j∈Ci

rji(0),

Qi(1) = Kipi
∏
j∈Ci

rji(1),

where Ki is selected so that Qi(0) +Qi(1) = 1.

5. Hard decisions are made using

ci =


1 if Qi(1) > 0.5,

0 if Qi(0) > 0.5.
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Message passing algorithm is often carried out using the logarithms of

the ratios of probabilities to ensure numerical stability. We define the following

log-likelihood ratios

L(ci) = log

(
1− pi
pi

)
,

L(qij) = log

(
qij(0)

qij(1)

)
,

L(rji) = log

(
rji(0)

rji(1)

)
,

L(Qi) = log

(
Qi(0)

Qi(1)

)
.

In this case, the computations in steps 2-4 above can be rewritten as

L(rji) =
∏

i′∈Rj\i

αi′j ·

 ∑
i′∈Rj\i

ϕ(βi′j)

 ,

L(qij) = L(ci) +
∑

j′∈Ci\j

L(rj′i),

L(Qi) = L(ci) +
∑
j∈Ci

L(rji),

where αij = sign[L(qij)] and βij = abs[L(qij)], and the hard decisions are made

using

ci =


1 if L(Qi) < 0,

0 otherwise.

The information update in the check node, i.e., obtaining L(rji), can be

time-consuming in the SPA. Therefore, several low-complexity solutions are

proposed at the cost of some performance degradation. Popular choices include

the Min-Sum decoder and the Min-Sum-Plus-Correction-Factor decoder [58].

Details of these algorithms are omitted.
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2.5 Multi-Antenna and Multi-User Communication Systems with

Synchronization Errors

In wireless communications, multiple users often share the same medium. For

instance, multiple transmitters may communicate to the same receiver over

a multiple access channel. As a specific example, in the uplink of a cellular

network, several mobile users may transmit data to the same base station

simultaneously utilizing some kind of multiple access techniques, e.g., time-

division multiple access (TDMA) or code-division multiple access (CDMA). In

order to guarantee a reasonable performance over a multi-user communication

system, in most cases, it is required that perfect synchronization is achieved

among all the users. However, this is a strong assumption for certain types of

applications.

One example scenario is given as follows. Motivated by the needs of

environmental detection, military surveillance, health monitoring, etc., the

idea of distributed sensing has been proposed, e.g., see [59]. The goal is to

deploy a large number of cheap wireless nodes in the place of interest to sense

some ongoing process and allow them to communicate with each other and

also with wired access points through a multiple access channel. Since these

sensor nodes are low-cost and with limited power, sometimes a low-cost yet

inadequate timing recovery block is employed on the sensors resulting in a

wireless multi-user communication system with a varying sampling rate [27].

During the interval of changing the sampling rate, insertion/deletion errors

may occur, hence, when several sensors are communicating to one or more

receivers, each transmitted signal may experience insertion/deletion errors.
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In addition to multi-user communication systems, synchronization er-

rors may be present among different transmitters used at each antenna and the

receiving elements. As an example, consider a multi-track bit-patterned media

recording system [1, 60]. As briefly discussed in Chapter 1, insertion/deletion

errors occur when recoding the information bits onto the existing magnetic

islands. During the writing and reading processes, for a multi-track system,

there are more than one head working on several tracks simultaneously, yield-

ing a MIMO channel. Therefore, treating the original data as the channel

input and the read-out information as the channel output, this particular

storage system can be viewed as the cascade of an insertion/deletion channel

and a MIMO channel.

So far, no explicit channel models or corresponding coding/decoding

schemes have been proposed for MIMO channels and multiple access channels

with synchronization errors. In this dissertation, some approaches to mod-

eling the two types of channels are developed and initial detection/decoding

solutions are provided.

2.6 Chapter Summary

In this chapter, we first reviewed several insertion/deletion channel models

introduced in the literature. Then, from both an information theoretic and a

practical coding point of view, we gave a detailed survey of existing results on

insertion/deletion channels. Furthermore, we presented a summary of channel

coding techniques and LDPC codes in particular. We also described some basic

ideas on MIMO systems, multi-user communication systems and motivate the

need for models incorporating synchronization errors in these contexts.
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Chapter 3

MARKER CODES CONCATENATED WITH LDPC CODES OVER

INSERTION AND DELETION CHANNELS

In this chapter, our aim is to design a practical coding scheme for i.i.d. inser-

tion/deletion channels with substitution errors. We start with a description

of the system model in Section 3.1. In Section 3.2, we review the standard

bit-level MAP detection algorithm and numerically evaluate the ultimate rate

achievable by interleaved concatenated coding schemes. In Section 3.3, we

introduce a novel symbol-level MAP detection algorithm and compare the

relevant achievable rates with those characterizing the standard bit-level ap-

proach. Error-rate results for a practical LDPC-coded scheme are also re-

ported for both bit-level and symbol-level detection algorithms. An EXIT

chart-based LDPC code design process for the insertion and deletion chan-

nels is provided in Section 3.4 along with some example designs. Finally, a

summary is provided in Section 3.5.

3.1 System Description

We consider transmission over binary channels impaired by insertion, dele-

tion, and substitution errors, according to the Gallager’s model described in

Chapter 2. That is each input bit independently gets deleted (with prob-

ability Pd), or gets replaced by two uniformly distributed random bits (with

probability Pi), or is correctly transmitted (with probability Pt(1−Ps)), where

Pt = 1− Pd − Pi, and Ps denotes the flipping probability.

Let xT
1 = {xk}Tk=1 and yR

1 = {yn}Rn=1 be the sequences of bits at the

channel input and channel output, respectively, where the number T of trans-

26



SOURCE

DESTINATION
DECODER

ENCODER

CHANNEL

MARKER

MAP

DETECTOR

INSERTIONΠ

Π
-1

OUTER

OUTER

x
T
1

y
R
1

Figure 3.1: Block diagram of the considered concatenated coding scheme.
Interleaving and deinterleaving blocks are denoted by Π and Π−1, respectively.

mitted bits is a constant system parameter while the number R of received

bits is a random variable depending on the realization of the insertion/deletion

process.

We adopt the coding scheme depicted in Fig. 3.1, which consists of

the interleaved serial concatenation of an outer error-correcting code with an

inner marker code. Specifically, the information bits are first encoded by

means of a powerful channel code (e.g., a turbo or an LDPC code), then the

transmitted sequence is formed by inserting pilot bits, which are often referred

to as markers, to the interleaved sequence of coded bits. The marker bits and

their positions in the transmitted sequence are known to the receiver, which

exploits this information using a MAP detector to recover the synchronization

errors due to insertions/deletions, as explained later. For simplicity, we only

focus on the case of regular marker codes with rate

rM =
NC

NC +NM

,

i.e., the case when the same marker consisting of NM consecutive bits is in-
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Figure 3.2: Example of a marker code with NM = 2 and NC = 5 .

serted every NC bits at the output of the outer encoder. Hence, if the outer

code rate is denoted by rC , the overall code rate is r = rCrM . We notice that

the same coding scheme was considered in [6], while a similar scheme adopt-

ing watermark codes instead of marker codes was considered in [9]. A simple

illustration of a marker code is given in Fig. 3.2.

At the receiver side, given the a priori log-likelihood ratios (LLRs or

L-values) log P (xk=0)
P (xk=1)

, the MAP detection is first executed to generate the con-

ditional probability ξk(xk) = P (yR
1 |xk) for k ∈ {1, 2, . . . , T} and xk ∈ {0, 1}

by exploiting the perfect a priori information from the marker code. Then

the extrinsic information [61] on the transmitted bits can be easily obtained as

log
P (yR

1 |xk=0)

P (yR
1 |xk=1)

= log ξk(0)
ξk(1)

. After being deinterleaved, the a posteriori informa-

tion, i.e., the sum of a priori and extrinsic L-values, feeds the outer decoder,

which finally generates an estimate of the information bits. We point out that

decoding performance can be improved by adopting iterative schemes based

on the exchange of extrinsic information between the MAP detector and the

outer decoder. However, since the MAP detector is typically the bottleneck of

the receiver in terms of latency, we assume that the MAP detection is executed

only once in Sections 3.2 and 3.3. Iterative detection/decoding is considered

in Section 3.4 where specific outer code designs are pursued.
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3.2 Bit-Level Synchronization

Let us first review the bit-level MAP detection algorithm for the considered

channel model. The algorithm, which already appeared in [8, 9] with some

differences in the channel model, is similar to the general forward backward

algorithm (FBA) [62], but it cannot be derived by means of the standard

approach discussed in [62] because the channel model is not a finite-state

Markov chain [8,9]. According to the turbo principle [62], the code constraints

induced by the outer code are neglected in the derivation of the algorithm, and

the bits xT
1 are considered to be statistically independent, namely the a priori

probability P (xT
1 ) is factorized as

∏T
k=1 P (xk), where P (xk) is 1/2 if xk is a

code bit, while it is 0 (or 1) if xk is a pilot bit.

3.2.1 Bit Level MAP Detection

Let us define the binary event Dk,n, with two indices k ∈ {1, 2, . . . , T}, and

n ∈ {0, 1, . . . , R}, which denotes whether, of the first k transmitted bits,

exactly n bits are received, possibly after being corrupted by the channel or

not. We are interested in the exact “frame synchronization” scenario, in which

D0,0 andDT,R are true with probability one, the values of T and R being known

to the receiver. This assumption is not critical since frame synchronization can

be obtained with great accuracy in practice [9]. For a better illustration of

the resynchronization process, a two-dimensional grid is created to represent

the synchronization errors. As shown in Fig. 3.3, the rows and columns on the

grid correspond to the transmitted and received bits xk, k ∈ {1, . . . , T} and

yn, n ∈ {1, . . . , R}, respectively. The solid line refers to one particular channel

realization and the dotted lines indicate the channel without any insertion or

deletion errors. There are only three possible moves to reach a certain state. A
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Figure 3.3: Synchronization represented by a path on a two dimensional grid.

diagonal move from the top left corner to the bottom right corner on the grid

indicates a successful transmission, i.e., no insertion or deletion, but the bit

may not be correctly received. An insertion event is represented by a diagonal

move in two adjacent blocks and a vertical move denotes a deletion event. Let

us also define the function

F (xk, yn) =

 1− Ps if yn = xk

Ps if yn ̸= xk

, (3.1)

and the coefficients

αk(n) = P (yn
1 , Dk,n) , (3.2)

βk(n) = P (yR
n+1|Dk,n) . (3.3)
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These coefficients can be computed by means of the following forward recursion

(where the differences with respect to [8, 9] are due to the adopted channel

model being different):

αk(n) = P (yn
1 , Dk,n, Dk−1,n−2) + P (yn

1 , Dk,n, Dk−1,n) + P (yn
1 , Dk,n, Dk−1,n−1)

= P (yn−2
1 , Dk−1,n−2)P (yn

n−1, Dk,n|Dk−1,n−2)

+ P (yn
1 , Dk−1,n)P (Dk,n|Dk−1,n)

+ P (yn|Dk,n, Dk−1,n−1)P (Dk,n|Dk−1,n−1)P (yn−1
1 , Dk−1,n−1)

=
Pi

4
αk−1(n− 2) + Pd αk−1(n) + Pt αk−1(n−1)

∑
xk

P (xk)F (xk, yn) ,

(3.4)

and the following backward recursion [8, 9]:

βk(n) = P (yR
n+1, Dk+1,n+2|Dk,n) + P (yR

n+1, Dk+1,n|Dk,n)

+ P (yR
n+1, Dk+1,n+1|Dk,n)

= P (yn+2
n+1, Dk+1,n+2|Dk,n)P (yR

n+3|Dk+1,n+2)

+ P (Dk+1,n|Dk,n)P (yR
n+1|Dk+1,n)

+ P (Dk+1,n+1|Dk,n)P (yR
n+2|Dk+1,n+1)P (yn+1|Dk+1,n+1, Dk,n)

=
Pi

4
βk+1(n+ 2) + Pd βk+1(n)

+ Pt βk+1(n+ 1)
∑
xk+1

P (xk+1)F (xk+1, yn+1) , (3.5)

which are both initialized by exploiting the “frame synchronization” assump-

tion. Finally, the target conditional probability can be computed as
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p(yR
1 |xk) =

min(2k,R)∑
n=0

P (yR
1 , Dk,n|xk)

=

min(2k,R)∑
n=0

P (yR
1 , Dk−1,n−2, Dk,n|xk) + P (yR

1 , Dk−1,n, Dk,n|xk)

+ P (yR
1 , Dk−1,n−1, Dk,n|xn)

=
Pi

4

min(2k,R)∑
n=0

αk−1(n− 2)βk(n) + Pd

min(2k,R)∑
n=0

αk−1(n)βk(n)

+ Pt

min(2k,R)∑
n=0

αk−1(n−1)βk(n)F (xk, yn) . (3.6)

3.2.2 Achievable Rates by a Specific Marker Code

An interesting information-theoretic problem that arises is the following: what

is the ultimate rate at which we can reliably (in the Shannon sense [7]) trans-

mit information through the considered concatenated coding scheme? An

approximate solution to this problem can be found in [6], where the authors

investigate the BCJR-once bound [63] and characterize the capacity of a BSC

with a time-varying substitution probability and conjecture that it provides

an accurate characterization of the information rate. Here, we pursue a more

precise solution to the problem. First, we notice that the ultimate rate rC for

the outer code that can be achieved through the considered concatenated cod-

ing system is given by the mutual information between the independent and

uniformly distributed bits at the input of the interleaver at the transmitter

side and the soft information at the output of the deinterleaver at the receiver

side (see Fig. 3.1). Because of the complicated MAP detector, this mutual

information cannot be computed in closed form, but it can be easily evaluated

through Monte Carlo simulations with a large number of channel realizations

by obtaining the histogram of the distribution of the extrinsic information
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(L-values). The reason we choose histograms instead of the Arnold-Loeliger

algorithm [64] is that the latter only gives the no-interleaving mutual informa-

tion while our focus is mainly on interleaved systems using a soft damapper, as

discussed in Section 3.3. Interestingly, this numerical method is equivalent to

the evaluation of the EXIT chart for the MAP detector, particularly of its left-

most point [10]. In fact, the left-most point of a detection EXIT chart gives

the ultimate rate achievable by the outer code when it is concatenated with

the inner detector through an interleaver and iterative detection/decoding is

not allowed [10]. Hence, for a given marker code with rate rM , we can eval-

uate the ultimate value of rC by means of this numerical method, and then

compute the ultimate overall rate as r = rCrM . We will exploit this result in

the next subsection to find optimal marker codes for channels with insertions

and deletions.

3.2.3 Marker Code Optimization

In this section, we study the problem of selecting a good marker code. We

first notice that a lower marker code rate or smaller NC leads to better syn-

chronization capabilities since the positions of the insertions and deletions can

be located more precisely; however, this is obtained with an increased over-

head. This argument suggests that an optimal marker code rate rM exists for

different marker codes used over an insertion/deletion channel.

Some results obtained by means of the proposed information rate eval-

uation method of the previous subsection are shown in Figs. 3.4-3.6. Particu-

larly, in Fig. 3.4, it is shown how the overall rate varies, for different deletion

channels (Pi = Ps = 0), as a function of NC , when the two-bit marker “01”

is inserted every NC information-carrying bits. For each value of the deletion
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Figure 3.4: Achievable rates for different deletion channels for the marker “01”
inserted every Nc bits.

probability Pd, a clear maximum is obtained, which determines the marker

code rate that is information-theoretically optimal. Not surprisingly, as dele-

tions become more frequent, the achievable rate decreases, so does the rate of

the optimal marker code, since an effective synchronization process requires

more pilot bits. As another example, Fig. 3.5 compares the impacts of inser-

tion, deletion and substitution errors on the achievable rates with the con-

straint that Pi + Pd + Ps = 0.03. It is clear that for this particular example,

the deletion errors cause more severe damage than the insertion errors to the

performance while the substitution errors degrade the capacity much less than

the synchronization errors. Note that these achievable rates are only valid if a
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Figure 3.5: Achievable rates for different insertion and deletion channels for
the marker “01” inserted every Nc bits.

single synchronization stage is employed (single-pass decoding) and they are

violated when an iterative decoding/synchronization scheme is adopted. We

also note that the gap to the existing Shannon capacity lower bounds is also

large. For instance, a lower bound for the capacity of an i.i.d. deletion channel

with Pd = 0.05 is 0.728 [65] while the maximum rate found in Fig. 3.4 is less

than 0.6.

The proposed approach can be used not only to find the optimal rate

for a given marker code, but also to compare different marker codes. As

an example, the marker code “00” is clearly not a good choice compared to

“01” since there is no transition between the two bits and the receiver cannot
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Figure 3.6: Achievable rates for different markers as a function of the marker
code rate when Pd = 0.01, Ps = 0.01.

determine as precisely whether an insertion or deletion error happens prior

to the specific marker. On the other hand, for “01”, there is a transition in

the marker sequence and a single deletion or insertion can be easily identified.

In Fig. 3.6, we compare four regular marker codes obtained by inserting the

markers “0”, “01”, “001”, and “010” every NC information bits, for the case of

a deletion/substitution channel with Pd = Ps = 10−2. The results, which are

given in terms of the overall rate r as a function of the marker code rate rM ,

show that for this particular channel the best choice of marker code among

the three candidates is to insert the pilot bits “01” every 18 information bits,

which provides an overall rate of about 0.75. It is also not surprising to see

that the marker “001” outperforms “010” for higher marker code rates. This
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Figure 3.7: Example of the bit level MAP detector output.

is attributed to the following: it is more likely that more than one bit get

deleted between two adjacent markers and hence the marker “010” may not

be able to detect these synchronization errors while the marker “001” still can.

We conclude this section by noting that for all the studied scenarios,

the guidelines for marker code design that we obtain through our analysis are

in good agreement with the approximate analysis proposed in [6].

3.3 Symbol-Level Synchronization

One key observation is that, since insertion/deletion channels have memory,

the soft information at the output of the MAP detector corresponding to two
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bits with different time indices is correlated. An example is given in Fig. 3.7

which shows the LLRs of the decoding output from the bit level MAP detec-

tor. The detector identifies which blocks of bits experience synchronization

errors by identifying blocks of bits with log-likelihood ratios close to zero,

since synchronization cannot be re-achieved until the next marker is received.

Consequently, if a bit is not correctly detected, the detection of the following

bit fails with a high probability. If the correlations between consecutive bits

are considered and utilized, better decoding performance may be achieved,

and information is lost when such correlations are neglected, which is exactly

what is done in our concatenated system due to the presence of the inter-

leaver/deinterleaver1 [10]. On the other hand, interleaving is fundamental

because it allows us to split the decoding process into two serial steps, namely

the inner detection and the outer decoding; the other option being joint de-

tection/decoding, which would be computationally infeasible [5, 6, 9]. In the

following, we propose a solution that allows us to recover part of the informa-

tion loss while preserving the interleaving process, hence also its advantage of

splitting the decoding process into inner detection and outer decoding.

3.3.1 Symbol Level MAP Detection

We introduce MAP detection at the symbol level, defining a symbol as a group

of m consecutive bits. Consequently, the T transmitted bits are partitioned

into TS symbols, Sk = xmk
m(k−1)+1, k ∈ {1, 2, . . . , TS}, taking values on {0, 1}m.

The last symbol, however, may consists of less than m bits, but we assume

that T/m = TS is an integer for simplicity. Such computations can be carried

out by means of a symbol-level FBA which is obtained by extending the bit-

1In the context of outer LDPC codes, the interleaving is implicit.
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level derivation given in [8, 9] to the symbol-level case. In the following, we

provide the details of the algorithm.

Let us re-define the binary event Dk,n, with k ∈ {1, 2, . . . , TS} and

n ∈ {1, 2, . . . , R}, which denotes whether, of the first k transmitted symbols

(i.e., km bits), exactly n bits are received or not, possibly after being corrupted

by the channel. With this redefinition of the event Dk,n, the definitions in (3.2)

and (3.3) still hold. As in the bit-level case, the coefficients can be computed

by means of the forward/backward recursions. For simplicity, we give here

the formulations for the case m = 2, i.e., bits {x2k−1, x2k} are grouped as one

symbol, noting that the extension to the case of m > 2 is straightforward. In

this case, there are 9 possible ways to reach a certain state on the trellis, and

the resulting recursions are given as follows:

αk(n) = P 2
d αk−1(n) + PdPt αk−1(n−1)

1∑
i=0

∑
x2k−i

P (x2k−i)F (x2k−i, yn)

+P 2
t αk−1(n−2)

∑
x2k−1

P (x2k−1)F (x2k−1, yn−1) ·
∑
x2k

P (x2k)F (x2k, yn)

+
Pi

4
Pd αk−1(n−2) · 2 + P 2

i

16
αk−1(n−4)

+
Pi

4
Pt αk−1(n−3)

1∑
i=0

∑
x2k−i

P (x2k−i)F (x2k−i, yn−2i) (3.7)

and

βk(n) =P 2
d βk+1(n) + PdPt βk+1(n+1)

2∑
i=1

∑
x2k+i

P (x2k+i)F (x2k+i, yn+1)

+ P 2
t βk+1(n+2)

∑
x2k+1

P (x2k+1)F (x2k+1, yn+1)

·
∑
x2k+2

P (x2k+2)F (x2k+2, yn+2)

+
Pi

4
Pd βk+1(n+2) · 2 + P 2

i

16
βk+1(n+4)

+
Pi

4
Pt βk+1(n+3)

2∑
i=1

∑
x2k+i

P (x2k+i)F (x2k+i, yn+2i−1) , (3.8)
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respectively, and are both initialized by exploiting again the exact “frame

synchronization” assumption. Finally, the target extrinsic information can be

computed to be

p(yR
1 |x2k−1, x2k) = P 2

d

min(4k,R)∑
n=0

αk−1(n)βk(n)

+PdPt

min(4k,R)∑
n=0

1∑
i=0

αk−1(n−1)βk(n)F (x2k−i, yn)

+P 2
t

min(4k,R)∑
n=0

αk−1(n−2)βk(n)F (x2k−1, yn−1)F (x2k, yn)

+
Pi

4
Pd

min(4k,R)∑
n=0

αk−1(n−2)βk(n) · 2

+
Pi

4
Pt

min(4k,R)∑
n=0

1∑
i=0

αk−1(n−3)βk(n)F (x2k−i, yn−2i)

+
P 2
i

16

min(4k,R)∑
n=0

αk−1(n−4)βk(n) . (3.9)

3.3.2 Achievable Rate Improvement with Symbol Level Synchronization

As an example use of the proposed algorithm, Fig. 3.8 compares the mutual

information between the symbols at the input of the interleaver at the trans-

mitter side and the soft information at the output of the deinterleaver at the

receiver side, for the case of one-bit symbols and two-bit symbols. Specifi-

cally, it is shown how the overall achievable rate varies, for an i.i.d. deletion

channel (Pi = Ps = 0, Pd = 0.01), as a function of NC , when the two-bit

marker “01” is inserted every NC information-carrying bits. For compari-

son, the mutual information computed in the absence of interleaving, i.e., by

evaluating the expectations E[logP (yR
1 )] and E[logP (xT

1 ,y
R
1 )] using Monte

Carlo techniques with a large number of channel simulations, and obtaining

I(xT
1 ;y

R
1 ) as T − E[logP (yR

1 )] + E[logP (xT
1 ,y

R
1 )] [18], is also shown. This
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Figure 3.8: Achievable rate improvement through symbol-level decoding for
the marker “01” inserted every Nc bits.

curve quantifies the transmission rate loss due to interleaving. Since the com-

plexity of the algorithm grows exponentially in the group size m which makes

it infeasible for large values of m, only the achievable rate for the case of

2-bit interleaving is shown. It is clear that adopting symbol-level detection

recovers a significant part of the interleaving loss, particularly as the marker

code rate increases. For instance, by comparing the two relevant maximum

achievable rates, we can conclude that symbol-level detection is about 5% bet-

ter in capacity for the given example. Although omitted from this chapter,

other simulation results also show similar gains for different channels, e.g., the

insertion only channel or insertion/deletion channels.
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3.3.3 Exploiting Correlation via Demapper/Detector

In this section, we consider a practical coding scheme with the aim of confirm-

ing the performance gain predicted by our information-theoretic analysis for

the symbol-level detection over the bit-level detection. Specifically, we adopt

a binary LDPC code of length 16383 and rate rC = 0.87 concatenated with

a marker code with rate rM = 30/32, obtained by inserting the marker “01”

every 30 LDPC-coded bits. Hence, the value r = 0.8156 is obtained for the

overall code rate. We compare the performance obtained by feeding the LDPC

decoder with the soft information produced by the bit-level detector and the

symbol-level detector (with m = 2 and m = 3). In the bit-level detection case,

the output of the detector directly feeds the LDPC decoder, which performs

100 self iterations and then produces the estimate of the information bits. In

the symbol-level detection case, the output of the detector cannot directly

feed the LDPC decoder, which is binary and cannot manage symbol-level soft

information. Hence, to convert the symbol-level information to bit-level infor-

mation, we adopt the soft demapper module proposed in [66].

Fig. 3.9 illustrates the process of iterative information exchange be-

tween the demappers and the variable nodes from the outer LDPC code.

Suppose that the 2-bit level MAP decoder generates the output information

ξ(Sk) = P (yR
1 |Sk) where Sk is the symbol representation of two consecutive

bits x2k−1 and x2k. We first start the LDPC decoder with the a priori infor-

mation only from ξ(Sk). When the decoding output of bit x2k−1, ξ(x2k−1), is

available after a few iterations, we treat it as the approximation of P (x2k−1)

and use it to generate new a priori information for bit x2k, φ(x2k) = P (yR
1 |x2k),
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Figure 3.9: Achievable rate improvement through symbol-level decoding for
the marker “01” inserted every Nc bits.

using

φ(x2k) =
∑
Sk

P (yR
1 , Sk|x2k)

=
∑
Sk

P (Sk|x2k)P (yR
1 |Sk, x2k)

=
∑
Sk

P (Sk|x2k)P (yR
1 |Sk)

=
∑
Sk

∑
x2k−1

P (Sk, x2k−1|x2k)P (yR
1 |Sk)

=
∑
Sk

∑
x2k−1

ξ(x2k−1)ξ(Sk)P (Sk|x2k−1, x2k). (3.10)

According to (3.10), we can re-initialize the bit level LDPC decode with the

updated a priori information for the variable nodes and obtain better esti-

mates of the transmitted bits.

In the simulation, for every 10 self iterations of the LDPC decoder, we

perform one iteration of the soft demapper, so that the total number of 100

self iterations of the LDPC decoder is preserved for a fair comparison with the
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Figure 3.10: Decoding improvement through symbol-level decoding for 1-bit
interleaving, 2-bit interleaving and 3-bit interleaving.

bit-level case. The resulting frame-error rate (FER) and bit-error rate (BER)

curves are compared in Fig. 3.10, for the case of a deletion only channel. For

comparison, the ultimate deletion probability Pd at which a scheme with the

considered marker code and an outer code with rate rC = 0.87 can provide

reliable communications is also shown — these values are obtained by means

of the information-theoretic analysis described in the previous sections. An

interesting fact is that a BER lower than 10−2 is obtained by means of MAP

detection with m = 3 at values of the deletion probability at which bit-level

detection cannot converge even in the presence of an information-theoretically

optimal code as shown in Fig. 3.10. The improvement provided by the symbol-
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level detection is evident: for a given BER, using a MAP detector with m = 2

allows the receiver to work with a deletion probability increased by about 10−3

with respect to the bit-level one, and the MAP detector with m = 3 provides

an even greater robustness to deletion errors.

3.4 EXIT Chart-Based Outer LDPC Code Design for Insertion/Deletion

Channels

In the previous sections, with the interest of reducing decoding latency, we

focused on the case of single-pass decoding for the outer code concatenated

with the inner marker code over insertion/deletion channels. We now consider

an iterative scheme where extrinsic information is exchanged between the MAP

detector (synchronization) block and the outer decoder. This is motivated by

the observation that when iterative decoding is allowed, specifically designed

LDPC codes for insertion and deletion channels may provide performance

gains over the ones optimized for AWGN-only channels. Detailed EXIT chart

based analysis offers an insight into this problem.

In this section, we consider an LDPC code consisting of N variable

nodes and N −K check nodes connected by an edge interleaver [57] with code

rate rC = K/N . For simplicity, as in [10], only check-regular LDPC codes

are considered, i.e., every parity-check equation involves a constant number

of variable nodes, denoted by dc. We emphasize that joint design of variable

and check nodes may offer a better performance but the check-regular LDPCs

already give good results as reported in the previous literature. Suppose I is

the total number of different variable node degrees of the LDPC code denoted

by dv,i, i = 1, . . . , I. Let ai to be the fraction of variable nodes with degree

dv,i. The goal of code design is to find the set of parameters {λi} that provides
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Figure 3.11: Detailed decoder/detector block diagram at the receiver side.

the best decoding performance where [10]

I∑
i=1

λi = 1, 0 ≤ λi ≤ 1,

λi =
dv,i

(1− rC)dc
· ai. (3.11)

Because of the first constraint, we need I ≥ 3 to have any flexibility in our

code design.

3.4.1 EXIT Chart Based Analysis of the Decoding Performance

Since the outer LDPC decoder can be partitioned into LDPC variable node

detector (VND) and LDPC check node detector (CND) [10], for multiple-

pass decoding, the information exchanged between the inner MAP detector

and outer LDPC decoder is further illustrated in Fig. 3.11, where Block A

consists of two sub-blocks which are referred to as FBA SISO and LDPC VND.

Mutual information between the LDPC-coded bits and the corresponding L-

values, {IA, IB, IS, IV } ∈ [0, 1], are exchanged between these blocks during

the iterative decoding process. It is worth mentioning that only the extrinsic

information, i.e., the difference between the a priori and the a posteriori L-

values, is exchanged [10].
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Figure 3.12: Detection EXIT chart for several insertion and deletion channels
for the marker “01” inserted every Nc bits.

As stated in Section 3.2, in the sub-block FBA SISO, MAP detection

is applied on the received sequence {yk} with soft input a priori information

given by IV and extrinsic L-values of the transmitted bits are generated. IS

measures the reliability of these L-values. It is difficult to describe the rela-

tionship between IV and IS in closed form, instead, Monte Carlo simulations

are performed to generate the so-called detection EXIT chart. A detection

EXIT chart example for insertion and deletion channels is shown in Fig. 3.12

using bit-level synchronization and the marker code “01”. Marker code rates

are chosen based on the scheme proposed in Section 3.2.3.
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The variable nodes take IS as the a priori information and perform the

standard sum-product algorithm (SPA) with information received from the

LDPC CND. The EXIT curve of the combined FBA SISO and LDPC VND

is described by the relationship between IA and IB, given by [10]

IA(IB, dv) = J
(√

(dv − 1)[J−1(IB)]2 + [J−1(IS)]2
)
, (3.12)

where the function J(σ) is defined as

J(σ) = 1−
∫ ∞

−∞

e−(ξ−σ2/2)2/2σ2

√
2πσ2

· log2[1 + e−ξ]dξ. (3.13)

In this case, IS can be numerically evaluated from the detection EXIT chart

using a polynomial approximation with input IV (IB, dv) = J
(√

dv · J−1(IB)
)
.

For instance, when Pi = Pd = 0.01, we can write,

IS = 0.41491 ·I5V −1.1518 ·I4V +1.2405 ·I3V −0.71968 ·I2V +0.33549 ·IV +0.83146.

For a certain variable node degree distribution, the effective VND transfer

curve is thus

IA(IB) =
I∑

i=1

λi ·IA(IB, dv,i) =
I∑

i=1

λi ·J
(√

(dv,i − 1)[J−1(IB)]2 + [J−1(IS)]2
)
.

(3.14)

At the CND, “box plus” operation [61] is done to generate IB from IA which

can be approximately written as (it is useful to express it as the inverse func-

tion) [10]

I−1
B (IA, dc) = IA(IB, dc) ≈ 1− J

(
J−1(1− IB)√

dc − 1

)
. (3.15)

The EXIT curves IA(I) and I−1
B (I) form the EXIT chart for the entire

receiver which predicts the decoding performance. At the initialization step of

the decoding process, FBA SISO computes the output extrinsic L-values with

no a priori information i.e., IV = 0. VND utilizes the mutual information IS
48



to start the SPA during which the mutual information IA(0) and IB
(
IA(0)

)
are

exchanged between VND and CND. After one iteration of SPA, VND generates

the output extrinsic information which serves as the a priori information for

FBA SISO and starts to iterate from the first step. The difference between the

current and previous iteration is that VND produces more reliable information

IA

(
IB
(
IA(0)

))
if IA(I) > I−1

B (I) ∀I ∈ [0, 1). Iterative decoding stops when

a valid LDPC codeword is obtained or the maximum number of iterations

is reached. At the end of the process, the overall L-values are produced for

the estimation of the transmitted bit sequence. Note that when the condition

IA(I) > I−1
B (I) ∀I ∈ [0, 1) is satisfied, i.e., the “tunnel” created by the two

curves IA(I) and I−1
B (I) is open, the mutual information of VND output will

converge to 1 after several iterations which leads to a decoding performance

with an error rate approaching zero. Thus, the goal of LDPC code design is to

find a set of {λi} that keeps the tunnel open for the highest deletion/insertion

rate.

3.4.2 LDPC Code Design Example for Insertion/Deletion Channels

Design examples are given in Table 3.1 using the bit-level synchronization

algorithm for several insertion/deletion channels, deletion only channels and

insertion only channels, respectively. We choose I = 3 and fix the average

variable node degree d̄v to be 3. Listed LDPC code degree distributions guar-

antee convergence with the highest code rate rC for different deletion/insertion

rates. Therefore, the overall code rate r, product of rM and rC , denotes the

highest achievable rate when iterative decoding is performed. For deletion

probabilities of 0.01 and 0.1, the overall rates are obtained as 0.860 and 0.486,

respectively, where the capacity lower bound is 0.919 for Pd = 0.01 and 0.531

for Pd = 0.1. The corresponding gaps are 0.059 and 0.045 for the two cases,
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Table 3.1: LDPC Code Parameters for Insertion and Deletion Channels

rM rC dc dv a

Pi = Pd = 0.001 0.96 0.9841 189 {2 3 225} {0.8183 0.178 0.0037}
Pi = Pd = 0.003 0.92 0.96 75 {2 3 104} {0.1782 0.82 0.0018}
Pi = Pd = 0.005 0.9 0.9412 51 {2 3 75} {0.2762 0.72 0.0038}
Pi = Pd = 0.007 0.8824 0.9231 39 {2 3 57} {0.2769 0.718 0.0051}
Pi = Pd = 0.009 0.8571 0.9091 33 {2 3 44} {0.244 0.75 0.006}
Pi = Pd = 0.01 0.8571 0.9 30 {2 3 45} {0.3233 0.669 0.0077}
Pi = Pd = 0.02 0.8333 0.8125 16 {2 3 52} {0.4175 0.574 0.0085}
Pi = Pd = 0.03 0.8333 0.7273 11 {2 3 56} {0.5751 0.414 0.0109}
Pi = Pd = 0.04 0.8333 0.625 8 {2 3 97} {0.4641 0.531 0.0049}
Pi = Pd = 0.05 0.8333 0.5 6 {2 3 97} {0.2286 0.769 0.0024}
Pd = 0.002 0.96 0.9836 183 {2 3 227} {0.3723 0.626 0.0017}
Pd = 0.006 0.9355 0.9605 76 {2 3 161} {0.1371 0.862 0.0009}
Pd = 0.01 0.9091 0.9464 56 {2 3 90} {0.1928 0.805 0.0022}
Pd = 0.02 0.875 0.9091 33 {2 3 65} {0.2401 0.756 0.0039}
Pd = 0.04 0.8 0.85 20 {2 3 33} {0.2148 0.778 0.0072}
Pd = 0.06 0.7778 0.7857 14 {2 3 31} {0.2868 0.703 0.0102}
Pd = 0.08 0.7778 0.7 10 {2 3 50} {0.1978 0.798 0.0042}
Pd = 0.1 0.7778 0.625 8 {2 3 69} {0.2679 0.728 0.0041}
Pi = 0.002 0.96 0.9839 186 {2 3 256} {0.4801 0.518 0.0019}
Pi = 0.006 0.9355 0.9605 76 {2 3 170} {0.1402 0.859 0.0008}
Pi = 0.01 0.9091 0.9464 56 {2 3 87} {0.2293 0.768 0.0027}
Pi = 0.02 0.875 0.9091 33 {2 3 53} {0.2775 0.717 0.0055}
Pi = 0.04 0.8 0.85 20 {2 3 25} {0.2554 0.733 0.0116}
Pi = 0.06 0.7778 0.7857 14 {2 3 30} {0.2507 0.74 0.0093}
Pi = 0.08 0.7778 0.7273 11 {2 3 29} {0.4314 0.552 0.0166}
Pi = 0.1 0.7778 0.6667 9 {2 3 28} {0.5125 0.467 0.0205}

which are clearly smaller than the one demonstrated in Section 3.2.3. We also

expect that the gap to the capacity bound can be further narrowed by allowing

I > 3 and not fixing d̄v to be 3.

The advantages of the designed codes are also confirmed by the error

rate simulation results shown in Fig. 3.13 and Table 3.2. In the figure, we

pick three codes for insertion/deletion channels with rates rC = 0.96, rC = 0.9

and rC = 0.5 from Table 3.1 and compare them with the codes optimized for

AWGN channels. The length of the LDPC codeword is set to be N = 5000
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Table 3.2: Performance Improvement at a BER level of 10−3 with Specific
LDPC Code Design over Insertion/Deletion Channels

Pi = Pd Ratio of BERs Pi = Pd Ratio of BERs
0.001 1.04 0.1 8.477
0.003 1.256 0.2 14.83
0.005 3.061 0.3 22.07
0.007 5.065 0.4 29.31
0.009 7.018 0.5 35.68
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Figure 3.13: BER performance of different LDPC codes over an inser-
tion/deletion channel with Pi = Pd.
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and the selected marker code rate is determined to maximize the transmis-

sion rate. In Table 3.2, we calculate the ratio of the BERs of the two codes

(optimized one versus the AWGN-only code) when the codes optimized for

insertion and deletion channels attain a BER of 10−3. The higher the ratio,

the greater the improvement. Clearly, all of the codes outperform the ones

designed for AWGN channels. However, the gap becomes less obvious as the

insertion/deletion rate decreases. This is not a surprising result because for

low insertion/deletion probabilities, the detection EXIT chart tends to be flat

as illustrated in Fig. 3.12, which is similar to the one for a memoryless AWGN

channel. In this case, specific design of LDPC code for insertion/deletion chan-

nel may not be required since the gain is negligible. Similar conclusions are

drawn for ISI channels with short channel impulse responses in [13]. Also,

when the symbol-level detection is performed, the left-most point in the de-

tection EXIT chart is much better than the bit-level case as explained in

Section 3.3.2. The right-most point in the detection EXIT chart is identical

for both cases since MAP detector achieves ideal synchronization in this case.

Therefore, the detection EXIT chart for symbol-level detection is flatter than

the one for the bit-level case. This observation suggests that for channels with

low insertion/deletion rates, it is more likely that symbol-level detection itself

already yields a good performance and iterative decoding and LDPC code de-

sign may not be needed, which is also an obvious fact, since when m = T ,

optimal detection (i.e., for synchronization purposes) is achieved and there is

no gain with iterative decoding/demapping. Clearly, this is not feasible in

practice since the detection complexity in m is exponential and T is typically

large.
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3.5 Chapter Summary

In this chapter, we have studied performance of outer LDPC codes concate-

nated with inner marker codes for data transmission over insertion/deletion

channels. Two decoding strategies are considered: single-pass decoding and

multi-pass decoding with information exchange between the inner detector

and the outer decoder. For the first case, through numerical mutual infor-

mation analyses, we have developed a technique that allows us to optimize

the marker code based on the ultimate rate achievable by the concatenated

scheme. Moreover, we have presented a new symbol-level detection algorithm,

which has been proved to outperform the standard bit-level one in terms of

achievable rates. An iterative detector/demapper is also designed which is

able to exploit the results of the symbol level synchronizer. Finally, when

iterative decoding is allowed, we have shown that by choosing good variable

and check node degree distributions, LDPC codes designed for insertion and

deletion channels offer better error correcting capabilities than those optimal

for the AWGN-only channels. Simulation results related to practical LDPC

codes showing clear performance gains have been provided for both cases under

consideration. Although we only focus on marker codes (as the inner synchro-

nization code), similar analyses and design procedure can also be applied to

other concatenated coding schemes, e.g., an LDPC code concatenated with an

inner watermark code [9].
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Chapter 4

CAPACITY BOUNDS AND CONCATENATED CODES OVER

SEGMENTED DELETION CHANNELS

In this chapter, we focus on segmented deletion channels. As described in

Chapter 2, the deletion errors are no longer i.i.d., since for each segment of

bits, only a limited number of deletions are allowed to occur. This channel

model has recently been proposed as motivated by the fact that for practical

systems, when a deletion error occurs, it is more likely that the next one

will not appear very soon. Our specific focus is on the elementary segmented

deletion channel where at most one bit is allowed to be deleted from each

segment.

We first argue that such channels are information stable, hence their

channel capacity exists. Then, we introduce several upper and lower bounds

with two different methods in an attempt to understand their channel capacity

behavior. The first scheme utilizes certain information provided to the trans-

mitter and/or receiver while the second one explores the asymptotic behavior

of the bounds when the average bit deletion rate is small. Obtained results

indicate that when the deletion probability is near zero or near unity (for each

segment), the upper and lower bounds are close to each other hence a char-

acterization of the channel capacity is obtained. Also, for a certain range of

deletion probability, the capacity lower bound and estimated capacity using

the second approach behave similarly, however, there is a wide-range of dele-

tion probabilities where they are far apart. In the second part of the chapter,

we utilize the same concatenated coding scheme as in Chapter 3 to correct

possible deletion errors introduced by the channel. We introduce different
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MAP based channel synchronization algorithms operating at the bit and sym-

bol levels. Specific LDPC code designs for segmented deletion channels and

simulation results are also given.

In Section 4.1, we prove that the Shannon capacity exists, and describe

several capacity upper and lower bounds for the segmented deletion channel.

In Section 4.2, we introduce the proposed concatenated coding scheme along

with the suitable MAP detection algorithms to provide synchronization which

incorporate the segmentation assumption. In Section 4.3, simulation results

for some practical codes are reported. Finally, chapter summary is provided

in Section 4.4.

4.1 Capacity Bounds for Segmented Deletion Channels

4.1.1 Existence of the Shannon Capacity

We first show that the results of Dobrushin in [15] can be applied directly to

the segmented deletion channel model and as a result the Shannon capacity

exists. The key observation is that Dobrushin’s result is more general than the

usual set-up that it is applied to, that is, information stability [67] holds for

a memoryless channel with synchronization errors, indicating that the asymp-

totic behavior of the mutual information density between the input and output

sequences over the sequence length converges to its mean. Therefore, the Shan-

non capacity exists, even when the channel input and output alphabets are not

identical (e.g. binary) and the information and the transmission capacities are

equal. The segmented deletion channel model can equivalently be described

by a 2b-ary input symbol X ′, and binary sequence of output bits Y′ (of vary-

ing lengths, e.g., for the elementary segmented deletion channel, of length b or

b− 1 bits), it is clear that the model in [15] encompasses as a special case the
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Table 4.1: Example of Transition Probability P (Y′|X ′) for b = 2

X ′ Y′ = 00 Y′ = 01 Y′ = 10 Y′ = 11 Y′ = 0 Y′ = 1

0 (00) 1− Pd 0 0 0 Pd 0
1 (01) 0 1− Pd 0 0 Pd/2 Pd/2
2 (10) 0 0 1− Pd 0 Pd/2 Pd/2
3 (11) 0 0 0 1− Pd 0 Pd

segmented deletion channel model (when the deletions occur independently

in different segments). To illustrate this point further, let us give a simple

example. Consider the segmented deletion channel with b = 2 and deletion

probability of Pd. The equivalent channel transition matrix P (Y′|X ′) is as

given in Table 4.1.

With the above explanation, from [15], we can safely say that the seg-

mented deletion channel is information stable, and hence its Shannon capacity

exists. In fact, the capacity per transmitted bit is given by

C = lim
T→∞

1

T
max
P (X)

I(X;Y),

where I(·; ·) is the mutual information between the input sequenceX, of length

T , and output sequence Y.

Although the channel capacity exists, evaluation of the capacity ex-

pression is not straightforward. That is, there is no single-letter or finite-letter

formulation which may be amenable for practical computation which is also

the case for other channel models with synchronization errors. With this mo-

tivation, we next introduce two simple upper/lower bounds on the capacity of

segmented deletion channels. First of all, an obvious capacity upper bound

can be obtained by providing side information to the receiver about the po-

sitions of all the deletions. Therefore, the channel becomes a binary erasure

channel with memory and an erasure probability Pd/b. Since the memory
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does not affect the capacity of an erasure channel [68], 1 − Pd/b becomes a

trivial upper bound on the channel capacity. To obtain a lower bound, we

assume that a long interleaver has been introduced before transmission, and

the corresponding deinterleaver is used at the receiver before decoding. The

equivalent channel is then a binary i.i.d. deletion channel. Since this is a spe-

cific signaling scheme, any achievable rate over a binary i.i.d. deletion channel

with probability Pd/b would be achievable on the segmented deletion channel

providing us with a lower bound on the channel capacity.

4.1.2 Capacity Upper and Lower Bounds with Side Information

In [29], to obtain an upper bound on the capacity for an i.i.d. deletion channel,

some suitable genie-aided information on the deletion process is revealed to the

receiver so that the channel becomes memoryless. For the segmented deletion

channel, we propose a similar method of obtaining upper and lower bounds on

the capacity by providing some side information to both the transmitter and

the receiver.

4.1.2.1 Upper Bound - Version 1

Define the random process V = {Vn}Nn=1, where Vn is a binary valued random

variable which determines whether the n-th segment Xn experiences a deletion

error or not. With the side information being provided to both the transmitter

and receiver, we have

C ≤ 1

b
max
P (Xn)

I(Xn;Yn) ,

where Yn is the received sequence corresponding to Xn with length either b

or b− 1.
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Obviously, 1 − Pd fraction of the blocks see noiseless channels, hence

with the transmitter/receiver side information, we can transmit b bits with

no error. The remaining Pd fraction of blocks will equivalently see a deletion

channel with b input bits and exactly one deletion at the output. The ca-

pacity of such a channel can be computed (for reasonable values of b)1 using

the Blahut-Arimoto Algorithm (BAA) [69, 70]. Denoting the capacity of the

deletion channel with b input bits and b − 1 output bits as Cd(b, 1), we can

write an upper bound on the capacity of segmented deletion channel as

C ≤ 1− Pd + Pd
1

b
Cd(b, 1). (4.1)

4.1.2.2 Upper Bound - Version 2

Following similar line of arguments, we expect the capacity upper bound to

be tighter when “less” side information is provided to the transmitter and

the receiver. For example, we define the random process W = {Wn′}N/2
n′=1,

where Wn′ is a random variable taking values {0, 1, 2}, which determines the

number of deletions in every pair of segments, i.e., in X2n′−1 and X2n′ . When

Wn′ equals 0 or 2, it contains the same information as in the previous case.

Ambiguity only rises when Wn′ = 1, since in this case, we have no idea which

one of the two segments has the deleted bit, and we simply have a channel with

2b bits at the input and one deletion. Therefore, we can write the capacity

upper bound as

C ≤ (1− Pd)
2 + 2Pd(1− Pd)

1

2b
Cd(2b, 1) + P 2

d

1

2b
Cd(2b, 2)

= (1− Pd)
2 + Pd(1− Pd)

1

b
Cd(2b, 1) + P 2

d

1

b
Cd(b, 1), (4.2)

where Cd(2b, 2) denotes the capacity of a channel with 2b bits of input and one

deletion in the first b bits and another one among last b bits. The second line
1The largest value of b we could handle in our computations was 24.
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follows since for the channel with K segments of input bits and one deletion in

each segment, we can deduce the boundaries of every segment in the received

bit sequence without any additional information and hence, Cd(Kb,K) =

KCd(b, 1). Comparing (4.1) and (4.2), it is obvious that with the random

process W, we are able to expand the capacity upper bound as a quadratic

function of Pd and thus obtain a tighter result, as will be shown later. Even

tighter bounds can be achieved when less and less side information is used

at the expense of a much heavier computational load on the BAA algorithm.

Details of this further generalization is omitted from this paper.

For large values of b that are not amenable for the BAA, one can resort

to the upper bound Cd(B, 1) ≤ Cd(b, 1) + (n − 1)b reported in [29], where

B = nb. The bound is tight for large B as it is also shown that

Cd(B, 1) ≥ C ′
d(b, 1) + (n− 1)b−H

(
1

n

)
, (4.3)

where H(·) is the binary entropy function and C ′
d(b, 1) is the achievable rate

for a deletion channel with b independent uniformly distributed (i.u.d.) input

bits and exactly one deletion. The gap between the upper and lower bounds of

Cd(B, 1) gets smaller as n increases, since the entropy term H( 1
n
) approaches

zero. When B ̸= nb, another upper bound can also be used [29]:

Cd(B, 1) ≤ B − 1

B
(2 + Cd(B − 1, 1)) . (4.4)

4.1.2.3 Lower Bounds

Capacity lower bounds can be obtained by revealing some side information

to the receiver, and then by subtracting a certain term to make sure what is

obtained is in fact a lower bound. Specifically, we can write

I(X;Y) = I(X;Y,V)− I(X;V|Y) ≥ I(X;Y,V)−H(V) .
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To compute I(X;Y,V), we cannot optimize the input distribution for every

segment, since the side information is only provided to the receiver. Instead, we

consider i.u.d. inputs. Hence, the following capacity lower bound is obtained,

C ≥ 1− Pd + Pd
1

b
C ′

d(b, 1)−
1

b
H(Pd), (4.5)

where C ′
d(b, 1) refers to the achievable rates with i.u.d. inputs for a b bit input

one deletion channel.

Comparing the capacity upper bound in (4.1) and lower bound in (4.5),

we see that the difference is Pd
1
b
(Cd(b, 1)− C ′

d(b, 1)) +
1
b
H(Pd). When Pd

approaches zero or one, the term 1
b
H(Pd) tends to zero. In fact, when Pd equals

zero or one, the segmented deletion channel becomes a memoryless channel

without any synchronization problems, and the capacity is exactly as given in

(4.1). Furthermore, for large b values, we would expect 1
b
(Cd(b, 1)− C ′

d(b, 1))

to be small. The reason is that since the i.u.d. input sequences are optimal

for the calculation of Cd(b, 0), when the overall deletion rate per transmitted

bit 1
b
goes to zero, i.u.d. inputs will be close to optimal, and therefore, the

gap between the upper and lower bound on the capacity becomes very small.

This observation is quantified in [16], which proves that for an i.i.d. deletion

channel with a small deletion probability, i.u.d. inputs achieve the first order

term of the channel capacity when we express it as a series expansion in terms

of the deletion probability.

Our final argument is that this approach can be easily extended to the

case when more than one synchronization errors are allowed in each segment,

i.e., the ideas are not limited to the elementary segmented deletion channel

only.
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4.1.3 Asymptotic Behavior of the Segmented Deletion Channel Capacity

We now focus on the case where Pd/b is small and characterize the capacity

for a segmented deletion channel using a similar approach employed in [16] for

the case of i.i.d. deletion channels. In particular, for a finite segment length b

with Pd approaching zero, and for a fixed Pd with a large the segment length b,

we show that the capacity can be characterized asymptotically, and therefore,

an approximation to the exact channel capacity can be obtained for small Pd/b

values.

It is proved in [16] that when computing the channel capacity or capac-

ity bounds for an i.i.d. deletion channel, one can restrict the input sequence

to be a stationary ergodic process X = {Xi} with Xi ∈ {0, 1}. We make

an observation that the same argument also holds for the segmented deletion

channel as all the steps in the proof remain valid for our case following a

similar approach.

First of all, some notation is established. Following [16], let L be the

length of the bit runs in the input sequence. Clearly, for the i.i.d. Bernoulli(1/2)

process, PL(l) =
1
2l
, E[L] =

∑∞
l=0 l2

−l = 2, and we refer PL(l) to as the block

perspective run length distribution. We then introduce a new random variable

L0, whose distribution is given as

P (L0 = l) =
lPL(l)

E[L]
.

The random variable L0 denotes, for an arbitrary transmitted bit, the length of

the run it belongs to, which is called the bit perspective run length distribution

of the input sequence [16]. Let Xn be the input sequence of length n and

Y = Y(Xn) represent the corresponding output sequence. Define SL to be
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the set of stationary ergodic processes such that no run has length larger

than L and X∗ to be the i.i.d. Bernoulli(1/2) process, i.e., X∗
i equals 0 or

1 with probability 1/2 each. We define I(Xn) = limn→∞
1
n
I(Xn;Y(Xn)),

H(X) = limn→∞
1
n
H(Xn). Theorems 1-3 below present our main results. We

note that the proofs of these theorems and the related lemmas are extensions

of the corresponding ones in [16], which considers i.i.d. deletion channels.

Theorem 1. Consider a segmented deletion channel with a fixed segment

length b and deletion probability Pd approaching zero. We have ∀ϵ > 0,

lim
n→∞

1

n
I(X∗,n;Y(X∗,n)) = 1− Pd

b
(1 + log2 b− A)− H(Pd)

b
−O(P 2−ϵ

d ) , (4.6)

where A =
∑∞

l=1 2
−l−1l log2 l ≈ 1.28853, and O(·) is the standard big O no-

tation. Clearly, this is an achievability result and serves as a lower bound on

the capacity of the segmented deletion channel as Pd → 0.

Theorem 2. For a segmented deletion channel with a fixed segment length b

and deletion probability Pd approaching zero, there exists Pd,0 > 0 such that

∀Pd < Pd,0 and ϵ > 0, for any input process we have

lim
n→∞

1

n
I(Xn;Y(Xn)) ≤ 1− Pd

b
(1 + log2 b− A)− H(Pd)

b
+O(P

3/2−ϵ
d ) . (4.7)

Clearly, the right-hand side serves as an upper bound on the capacity for the

segmented deletion channel with a finite b and Pd → 0.

Before proving the given theorems, we present two lemmas whose proofs

are given in Appendix A.1.

Lemma 1. For a segmented deletion channel with i.i.d. Bernoulli(1/2) process

as the input, we have ∀ϵ > 0,

lim
n→∞

1

n
H(Y(X∗,n)|X∗,n) =

Pd

b
log2 b+

H(Pd)

b
− A

Pd

b
+O(P 2−ϵ

d ) . (4.8)
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Lemma 2. For any ϵ > 0, there exists K < ∞ and Pd,0 > 0 such that

∀Pd < Pd,0 the following statement holds for the segmented deletion channel.

For any positive integer L∗, if X ∈ SL∗, and H(X) ≥ 1−
(
Pd

b

)1−γ
with γ > 0,

then

lim
n→∞

1

n
H(Y(Xn)|Xn) ≥ Pd

b
log2 b+

H(Pd)

b
−A

Pd

b
−KP 2−ϵ

d (1+P
1/2
d L∗) . (4.9)

Proof of Theorem 1. Without loss of generality, assume that n is a multiple

of b. We have I(Xn;Y) = H(Y) −H(Y|Xn). With the i.i.d. Bernoulli(1/2)

input process X∗,n, for the output process Y(X∗,n), we obtain

H(Y(X∗,n)) = −
∑
y

P (y) log2(P (y))

= −
n/b∑
m=0

(
n/b

m

)
(1− Pd)

n/b−mPm
d

· log2
(

1

2n−m

(
n/b

m

)
(1− Pd)

n/b−mPm
d

)
= n

(
1− Pd

b

)
+HT , (4.10)

where y and m represent the realization of process Y and the corresponding

total number of deletions in y, respectively. The term HT = −
∑n/b

m=0

(
n/b
m

)
(1−

Pd)
n/b−mPm

d log2

((
n/b
m

)
(1− Pd)

n/b−mPm
d

)
= 1

2
log2(2πe

n
b
Pd(1 − Pd)) + o(1) =

O(log2 n) (Corollary 1 of [71]). The proof follows by combining the results of

H(Y(X∗,n)) and H(Y(X∗,n)|X∗,n) given in Lemma 1.

Proof of Theorem 2. It is clear that for any input Xn, the number of deletions

is Binomial(n/b, Pd) distributed, leading to

lim
n→∞

1

n
H(Y(Xn)) ≤ 1− Pd

b
, (4.11)
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where the equality is achieved when input sequence is i.i.d. Bernoulli(1/2)

distributed. In light of Theorem 1, for i.u.d inputs I(X∗,n) > 1 −
(
Pd

b

)1−γ
,

γ > 0, therefore, we only need to consider stationary ergodic processes with

H(X) ≥ I(X∗,n) > 1 −
(
Pd

b

)1−γ
when computing the upper bounds on the

capacity. Combining (4.11) and Lemma 2, we obtain an upper bound on

I(XL∗) for XL∗ ∈ SL∗ , which is constructed from X by flipping the (L∗+1)-th

bit in each run with a length longer than L∗, until no run length exceeds L∗.

Next, we show that we do not lose much with this restriction for large

enough L∗ values. Let F be the vector (of the same length as Y(Xn)) tak-

ing values of 1 wherever the corresponding bit in Y(Xn
L∗) is flipped and 0

otherwise. From [16] (Eqn. (27) and Eqn. (28)), we have |H(Y(Xn)) −

H(Y(Xn
L∗))| ≤ H(F), |H(Y(Xn)|Xn) − H(Y(Xn

L∗)|Xn
L∗)| ≤ H(F) and also

limn→∞
1
n
H(F) ≤

(
Pd

b

)1/2−ϵ′

log2 L
∗/2L∗ ∀ ϵ′ > 0, if L∗ > log2(b/Pd). There-

fore, there exists XL∗ ∈ SL∗ such that

|I(X)− I(XL∗)| ≤
(
Pd

b

)1/2−ϵ′

log2 L
∗/L∗ , (4.12)

Combining (4.11), (4.12), Lemma 2 and taking L∗ = ⌊ 1
Pd
⌋, we get the claim.

Theorems 1 and 2 give the asymptotic capacity for an elementary seg-

mented deletion channel with a fixed segment length b for small Pd values. For

a fixed Pd > 0 and a large segment length b, we have a different characteriza-

tion.

Theorem 3. For a fixed Pd, for any ϵ > 0, there exists b0 > 0, such that

∀b > b0, the following statement holds for the segmented deletion channel,

lim
n→∞

1

n
I(X∗,n;Y(X∗,n)) ≥ 1−Pd

b
(1 + log2 b− A)−H(Pd)

b
−O(b−2+ϵ) , (4.13)
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where X∗ is the Bernoulli(1/2) process, and

lim
n→∞

1

n
I(Xn;Y(Xn)) ≤ 1− Pd

b
(1 + log2 b− A)−H(Pd)

b
+O(b−3/2+ϵ) , (4.14)

where X is any input process.

Before the proof of the theorem, a lemma is given (whose proof is in

Appendix A.3) is given .

Lemma 3. For any stationary ergodic process X ∈ Sb with H(X) ≥ 1 −(
Pd

b

)1−γ
γ > 0, and any ϵ > 0, there exists κ < ∞ and b0 > 0, such that

∀b > b0

lim
n→∞

1

n
H(Y(Xn)|Xn) ≥ Pd

b
log2 b+

H(Pd)

b
−A

Pd

b
− κb−2+ϵ(1 + b1/2) . (4.15)

Specifically, consider an an i.i.d. Bernoulli(1/2) process X∗. By flipping the

(b+1)-th bit in each run with a length longer than b, until no run length exceeds

b, we obtain a modified process X∗
b ∈ Sb. We can show that

lim
n→∞

1

n
H(Y(X∗,n

b )|X∗,n
b ) =

Pd

b
log2 b+

H(Pd)

b
− A

Pd

b
+O(b−2+ϵ) . (4.16)

Proof of Theorem 3. From (4.10) and (4.16), we have

I(X∗
b) = 1− Pd

b
(1 + log2 b− A)− H(Pd)

b
−O(b−2+ϵ) . (4.17)

As in [16], define α = P (L0 > b)/b, which is the upper bound of the

density of bits in X∗ to be flipped to ensure no run length exceeds b. For

an i.i.d. Bernoulli(1/2) process, we have α = 1
b

∑∞
l=b+1 l/2

l+1 = (1 + 2
b
)2−b−1.

Therefore, limn→∞
1
n
H(F) ≤ H(α) = O(b−ζ) with ζ > 2, where F has the

same definition as the one in the proof of Theorem 2. Following the same
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steps leading to (4.12), we can write, |I(X∗) − I(X∗
b)| = O(b−ζ). Combining

this result with (4.17), the lower bound on the capacity given in (4.13) is

proved.

To obtain the upper bound, again, in light of the achievability result,

we only consider stationary and ergodic processes with H(X) ≥ 1−
(
Pd

b

)1−γ
,

γ > 0. Under this condition, (4.12) still holds. Taking L∗ = b, we conclude

that |I(X)−I(Xb)| = O(b−1.5+ϵ). Combining this result with (4.11) and (4.15)

(which provides the upper bound on I(Xb) for Xb ∈ Sb), we get the claim.

From the above theorems, we conclude that the channel capacity for

segmented deletion channel as Pd

b
→ 0 is dominated by the expression

Cest = 1− Pd

b
(1 + log2 b− A)− H(Pd)

b
, (4.18)

where A ≈ 1.28853.

4.2 Concatenated Coding over Segmented Deletion Channels

We now focus on a practical channel coding scheme suitable for segmented

deletion channels. The proposed encoding and decoding procedure is the same

as the ones developed in Chapter 3. Optimized marker code structure and rate

can be found by choosing the ones with the maximum achievable rates.

Let xT
1 = {xk}Tk=1 and yR

1 = {yn}Rn=1 be the sequences of bits at the

channel input and channel output, respectively, where the number T of trans-

mitted bits is a constant system parameter. We assume T = Nb, where N is

the total number of segments. Since the channel is an elementary segmented

deletion channel, the number R of received bits is a random variable taking

values in the set {T −N, T − N + 1, . . . , T}, depending on the realization of
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Figure 4.1: Trellis for bit-level MAP detection.

the deletion process. The transmitter and the receiver have no information on

the positions of the deletions.

In Chapter 3, MAP detection algorithm was specifically designed for

i.i.d. deletion channels. This detector can be directly applied to a segmented

deletion channel with a deletion probability for each bit set to pd = Pd/b.

However, this would be a sub-optimal choice since it ignores the additional

information due to the segmentation assumption. For example, if the detector

determines that the first bit of a segment is deleted, we can naturally deduce

that there will be no error in the next b− 1 bits. In the following sections, we

describe two other detectors that take the additional segmentation assumption

into consideration and provide improved results.

4.2.1 Improved Bit Level Synchronization

Let us introduce a trellis diagram, as shown in Fig. 4.1, with the state of

trellis at time k (when xk is transmitted) defined to be sk = (dk, i). The term

dk denotes the number of deletions at time k and i is an indicator, where
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i = 0 when no deletion occurs in the segment, and i = 1 otherwise. The

transition probability from one state to another state is determined by the

bit-wise deletion probability, which is set to be pd = Pd/b. When xk is not

the first bit of a segment, transition for state (d, 1) to (d+1, 1) or (d+1, 0) is

prohibited since there is already one bit been deleted in the segment.

Similar to [72], we define the function F (xk, yn) =

 1 if yn = xk

0 if yn ̸= xk

,

and also the sets of forward/backward variables in the usual sense, αk(sk) =

P (yk−dk
1 , sk), βk(sk) = P (yR

k−dk+1|sk). These coefficients can be computed by

means of the following forward/backward recursion [8]:

Case 1: xk is the first bit of the segment:

αk(sk) = P
(
sk = (dk, i),y

k−dk
1

)
= (1− i)(1− pd)

(
αk−1(sk) + αk−1(dk, 1)

)∑
xk

P (xk)F (xk, yk−dk)

+ ipd
(
αk−1(dk − 1, 1) + αk−1(dk − 1, 0)

)
, (4.19)

βk−1(sk−1) = P
(
yR
k−1−dk−1+1|sk−1 = (dk−1, i)

)
= (1− i)

(
pdβk(dk−1 + 1, 1)

+ (1− pd)βk(sk−1)
∑
xk

P (xk)F (xk, yk−dk)
)

+ i
(
(1− pd)βk(dk−1, 0)

∑
xk

P (xk)F (xk, yk−dk)

+ pdβk(dk−1 + 1, 1)
)
, (4.20)

Case 2: xk is not the first bit of the segment:

αk(sk) =
(
1− pd(1− i)

)
αk−1(sk)

∑
xk

P (xk)F (xk, yk−dk)

+ ipdαk−1(dk − 1, 0), (4.21)
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βk−1(sk−1) =
(
1− pd(1− i)

)
βk(sk−1)

∑
xk

P (xk)F (xk, yk−dk)

+ (1− i)pdβk(dk−1 + 1, 1). (4.22)

We are interested in the exact “frame synchronization” scenario, leading to

α0(sk) =

 1 if sk = (0, 0)

0 otherwise
, βT (sk) =


1− Pd if sk = (T −R, 0)

Pd if sk = (T −R, 1)

0 otherwise

.

Finally, the target probability can be computed as

Case 1:

P (yR
1 |xk) = (1− pd)

k/b∑
dk=0

1∑
i=0

αk−1(dk, i)βk(dk, 0)F (xk, yk−dk)

+ pd

k/b∑
dk=0

1∑
i=0

αk−1(dk − 1, i)βk(dk, 1), (4.23)

Case 2:

P (yR
1 |xk) =

k/b∑
dk=0

1∑
i=0

(
1− pd(1− i)

)
αk−1(dk, i)βk(dk, i)F (xk, yk−dk)

+ pd

k/b∑
dk=0

αk−1(dk − 1, 0)βk(dk, 1). (4.24)

4.2.2 Symbol Level Synchronization

The MAP detection algorithms we described in the previous subsections is not

optimal for two reasons, the bit-level interleaving and the inaccurate approx-

imation of pd. However, a symbol-level MAP detector can be easily applied

under this scenario by treating one segment as a symbol.

Let us define the binary event Dk,n, with k ∈ {1, 2, . . . , N} and n ∈

{1, 2, . . . , R}, which denotes whether, of the first k transmitted segments of
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bits, exactly n bits are received or not. Thanks to the assumption of 1-deletion

per segment, symbol-level MAP detection becomes feasible for large values of

b, and the forward/backward recursions are given as follows:

αk(n) = P (yn
1 , Dk,n)

= Pd αk−1(n−b+1)
b−1∑
j=0

b−1∏
i=0
i̸=j

∑
xbk−i

P (xbk−i)F (xbk−i, yn−i′)

+ (1− Pd)αk−1(n−b)
b−1∏
i=0

∑
xbk−i

P (xbk−i)F (xbk−i, yn−i) (4.25)

and

βk(n) = P (yR
n+1|Dk,n)

= Pd βk+1(n+b−1)
b∑

j=1

b∏
i=1
i̸=j

∑
xbk+i

P (xbk+i)F (xbk+i, yn+i′)

+ (1− Pd) βk+1(n+b)
b∏

i=1

∑
xbk+i

P (xbk+i)F (xbk+i, yn+i) (4.26)

respectively, where i′ = i when i < j and i′ = i− 1 when i > j. The final soft

output information is generated as

p(yR
1 |xbk−1, . . . , xbk) = Pd

min(bk,R)∑
n=0

b−1∑
j=0

αk−1(n−b+1)βk(n)
b−1∏
i=0
i̸=j

F (xbk−i, yn−i′)

+(1− Pd)

min(bk,R)∑
n=0

αk−1(n−b)βk(n)
b−1∏
i=0

F (xbk−i, yn−i).(4.27)

Note that both the bit-level and symbol-level synchronization algo-

rithms can be extended to the generalized segmented deletion channel. For

instance, consider at most two deletion errors are allowed in each segment.

For the bit-level synchronization algorithm, the indicator i now should take

values of 0, 1 and 2 and the trellis in Fig. 4.1 needs to be modified accordingly.

For the symbol-level synchronization algorithm, the only necessary change is
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to consider one more state in the FBA algorithm, e.g., add αk−1(n− b+ 2) in

the forward recursion.

4.2.3 Computational Complexity Comparisons

For the sake of computational safety, all the calculations of MAP detection

algorithm are implemented in the log domain to avoid numerical instability.

Therefore, instead of the multiplication operation, the most time-consuming

part becomes log domain addition, denoted as log add. To compare the com-

plexity of the two algorithms, in this section, we use the number of log add

operations required as a metric.

Consider the symbol-level MAP detection with T bits inputs and R bits

output, the size of the trellis diagram is (R + 1) × (N + 1), where N = T/b.

For every time instance we only care about T −R+1 states instead of all the

R + 1 states, since the maximum bits allowed to be deleted is T − R. From

(4.25), computation of each forward quantity needs 2b+2 log add operations.

Therefore, there are altogether N(T−R+1)(2b+2) log add operations for the

forward recursion as well as for the backward recursion. For the same reason, to

generate output soft information in (4.27), approximately 2bN(T−R+1)(b+1)

log add operations needed for the symbol-level MAP detection.

For the bit-level MAP detection, the size of the trellis diagram is

2(T − R + 1) × (T + 1). Computation of each forward quantity needs 2 or 4

log add operations for (6.20) and 3 or 2 operations for (4.21), depending on

the value of i. Hence, on average, total number of T (T − R + 1)(5b + 1)/b =

N(T − R + 1)(5b + 1) log add operations required for the forward recursion

and the same observation holds for the backward recursion. Following the

same logic, approximately 2T (T −R+ 1)(3b+ 1)/b = 2N(T −R+ 1)(3b+ 1)
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Table 4.2: Capacity Upper Bounds Comparison for b ≤ 15.

C ≤
b UB (4.1) UB (4.2)

2 1− 0.5Pd 1− 0.915Pd + 0.445P 2
d

3 1− 0.510Pd 1− 0.794Pd + 0.284P 2
d

4 1− 0.458Pd 1− 0.694Pd + 0.236P 2
d

5 1− 0.428Pd 1− 0.617Pd + 0.189P 2
d

6 1− 0.397Pd 1− 0.555Pd + 0.158P 2
d

7 1− 0.370Pd 1− 0.507Pd + 0.137P 2
d

8 1− 0.347Pd 1− 0.466Pd + 0.120P 2
d

9 1− 0.326Pd 1− 0.433Pd + 0.107P 2
d

10 1− 0.308Pd 1− 0.405Pd + 0.097P 2
d

11 1− 0.292Pd 1− 0.380Pd + 0.089P 2
d

12 1− 0.277Pd 1− 0.362Pd + 0.085P 2
d

13 1− 0.264Pd 1− 0.314Pd + 0.050P 2
d

14 1− 0.253Pd 1− 0.275Pd + 0.023P 2
d

15 1− 0.242Pd 1− 0.245Pd + 0.001943P 2
d

log add operations needed for the bit-level MAP detector to generate output

soft information, .

It is clear that the number of deletions, T −R ∼ TPd/b. Therefore, the

recursions require similar computation load for both detectors, i.e., the number

of log add operations equals O(T 2/b). Difference lies in the generation of the

soft information. As expected, complexity of symbol-level MAP detection

grows exponentially with b while the one for the bit-level MAP detector only

depends on the length of codeword, i.e., T .

4.3 Numerical Examples of the Elementary Segmented Deletion Channels

In this section, we first list some numerical results of the approximation and

upper/lower bounds on the capacity of the elementary segmented deletion

channels. Comparison of the bit-level and symbol-level synchronization al-

gorithms is also provided along with some results on the outer LDPC code

design [72] for this channel model.
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Figure 4.2: Capacity Upper Bound Comparison for b = 3, 7, 15.

4.3.1 Examples for Capacity results

In this subsection, some explicit results on the capacity bounds are provided

as a function of Pd and b. First of all, using BAA, the largest value of b we

can handle for the calculation of Cd(b, 1) is 24, resulting in Cd(24, 1) = 19.65,

therefore from (4.1), C ≤ 1 − 4.35 Pd

b
, ∀ b ≥ 24. The two versions of upper

bounds in Section 4.1.2 is compared in Table 4.2 and Fig. 4.2. In Table 4.2,

we compute the upper bounds in (4.1) and (4.2) for the case of 2 ≤ b ≤ 15.

For the second upper bound (4.2), since we could not obtain exact values of

Cd(2b, 1) when b > 12, we resort to (4.4). Fig. 4.2 compares the capacity upper
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Table 4.3: Capacity Bounds Comparison

b = 3 b = 12
Pd LB (4.5) Cest UB (4.1) LB (4.5) Cest UB (4.1)

0.001 0.99557 0.99576 0.99949 0.99876 0.99877 0.99972
0.01 0.96688 0.96874 0.99493 0.99039 0.99052 0.99721
0.05 0.87361 0.88292 0.97466 0.96179 0.96239 0.98608
0.1 0.78182 0.80045 0.99972 0.93223 0.93344 0.97217
0.2 0.63566 0.67292 0.89866 0.88247 0.88489 0.94434
0.3 0.52069 0.57659 0.84799 0.84051 0.84414 0.91652
0.5 0.35743 0.45059 0.74665 0.77326 0.77931 0.86086
0.75 0.26572 0.40546 0.61997 0.71728 0.72636 0.79130
1 0.38153 0.56785 0.49330 0.71319 0.72529 0.72173

bound for b = 3, 7 and 15. As expected, the improvement is more obvious as

b decreases. Another observation is that when b > 15, it makes no sense to

use (4.2), as the bound on Cd(2b, 1) becomes very loose.

We present Cest for different segment lengths in Fig. 4.3. The result

illustrates that for the same value of Pd/b, segmented deletion channels with

a larger b offer a higher capacity. Comparison of upper/lower bounds from

Section 4.1.2 and Cest is provided in Fig. 4.4 for b = 12. It is clear that the

lower bound remains tight up to around Pd = 0.4 while the upper bound is

quite loose. When Pd/b = 0.08333, i.e., Pd = 1, every segment has deletion

errors, and the decoupling of different segments is possible without any side

information. As discussed before, the upper bound gives the exact value of

capacity and Cest, although exceeds the capacity as given in Table 4.3, still

remains close to it. We also observe that both the lower bound and Cest

are not monotonically decreasing and there is a “tail” like behavior close to

Pd = 1. It is not a surprising result, as the deletion rate approaches unity,

segment-level synchronization becomes less critical and almost every segment

has deletion errors. In this case, a higher capacity may be achieved as the

synchronization errors become less and less important.
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Figure 4.3: Estimate of the segmented deletion capacity (Cest) for small Pd/b.

4.3.2 Detection/decoding Results

We first consider practical coding schemes with the aim of confirming the

performance gain over the existing techniques. The only reported practical

coding scheme is introduced in [17], where for b = 8 the code rate is 0.448.

This code is able to achieve zero error when at most one deletion error occurs

per segment. Although codes with higher rates are also provided which allow

for random errors, we will not consider them in our paper, since it is assumed

that some information generated from the transmitted sequence, e.g., parity

check bits, is known at the receiver, which requires another perfect (side)

channel to communicate.
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Figure 4.4: Comparison of upper and lower bounds on the segmented deletion
channel capacity for b = 12.

In Fig. 4.5, we compare the BER performance of several detectors with

single-pass decoding, i.e., MAP detection for synchronization purpose is only

executed once. We adopt a binary LDPC code with rate 0.78, length 4521 and

insert the marker “01” every 15 LDPC-coded bits. Obviously, symbol-level

MAP detection with iterative soft demapping [66] outperforms other detec-

tors. However for large b, it becomes infeasible. One solution is to consider

only the M largest soft values among the 2b outputs as for greedy multiuser

detection algorithm [73]. Another observation is that the bit-level MAP de-

tector for i.i.d. deletion channel [72] works well at low deletion rate. With
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Figure 4.5: BER performances of different MAP detectors.

the same overall code rate R = 0.693 and single-pass decoding, the bit-level

MAP detector for i.i.d. deletion channel almost provide the same performance

compared to the one discussed in Section 4.2. This is not a surprising result

since the segmentation assumption may not provide additional information to

the detector due to the limited number of deletions. Our final comment is that

when the segment length b is increased for the same average bit deletion prob-

ability Pd/b, the error probability is lower (which is a parallel to the findings

(e.g., in terms of capacity bounds) to the results in the paper).
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Table 4.4: Example LDPC Code Parameters for Segmented Deletion Channels

b rM rC dc dv a

Pd = 0.1 8 0.9 0.9423 52 {2 3 71} {0.5667 0.425 0.0083}
Pd = 0.3 8 0.8333 0.8636 22 {2 3 42} {0.5284 0.458 0.0136}
Pd = 0.5 8 0.75 0.8 15 {2 3 16} {0.3936 0.576 0.0304}
Pd = 0.7 8 0.7143 0.75 12 {2 3 14} {0.3354 0.634 0.0306}
Pd = 0.9 8 0.7143 0.7 10 {2 3 12} {0.4301 0.522 0.0479}
Pd = 0.2 16 0.9 0.9444 54 {2 3 64} {0.6385 0.351 0.0105}
Pd = 0.4 16 0.8571 0.9062 32 {2 3 31} {0.5493 0.431 0.0197}
Pd = 0.6 16 0.8 0.875 24 {2 3 16} {0.4206 0.547 0.0324}
Pd = 0.8 16 0.7778 0.8421 19 {2 3 14} {0.395 0.569 0.036}
Pd = 1 16 0.75 0.8 15 {2 3 14} {0.3318 0.638 0.0302}

4.3.3 LDPC Code Design Examples

As discussed in Chapter 3, the design of LDPC codes for insertion/deletion

channels can rely on utilizing the EXIT charts [10] to predict the error rate

when iterative decoding algorithm is applied. For the MAP detectors described

in Section 4.2, let IV and IS be the mutual information between the LDPC-

coded bits and the corresponding input/output soft values (log-likelihood ra-

tios), respectively. It is shown in [10] that when the detection EXIT chart,

which describes the relationship between output IS and input IV , is non-flat,

i.e., each received symbol depends on multiple transmitted symbols, LDPC

code design for this case is beneficial. For the segmented deletion channel,

since it is not memoryless, instead of using randomly picked LDPC codes as

in Fig. 4.5 or the ones optimized for the AWGN channels (with a flat de-

tection EXIT chart), specially designed LDPC codes can provide a better

performance.

Consider a check-regular LDPC code with constant check node degree

dc. Let I to be the total number of different variable node degrees of the LDPC
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Figure 4.6: Decoding improvement through symbol-level decoding.

code denoted by dv,i, i = 1, . . . , I and ai to be the fraction of variable nodes

with degree dv,i. The goal of code design for a fixed code rate rC is to find the

set of parameters ai, dv,i and dc which provide the best detection/decoding

performance.

Some optimized codes are listed in Table 4.4 with an average variable

node degree of [10] d̄v = 3 and rM is the optimized 2-bit marker code rate

obtained using a similar approach as in [72]. In Fig. 4.6, the highest achiev-

able code rates for the concatenated coding scheme are plotted as a function

of Pd for b = 8. The solid line denotes the achievable rates when LDPC codes

from Table 4.4 are used while the dashed line represents the case for codes

optimized for the AWGN channels. As the deletion rate increases, the rate
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Table 4.5: Rates for Simulated Codes

rM rC overall code rate

Code 1 0.833 0.863 0.719
Code 2 0.75 0.8 0.6
Code 3 0.714 0.75 0.5357
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Figure 4.7: Error rate performances for some codes.

drops from 0.84 to 0.446 bits/channel use. Compared to the codes in [17],

we can always achieve a higher code rate for Pd < 1 due to the more sophis-

ticated detector/decoder configuration and possibility of arbitrarily low error

probabilities (instead of no-errors).

To further illustrate the advantage of the designed codes, we pick sev-

eral codes from Table 4.4, each of length 10000, and depict their error rate
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performance in Fig. 4.7 using the bit-level synchronization algorithm over the

segmented deletion channel. Again, performance of LDPC codes optimized

for the AWGN channels are given in dashed lines (of the same rate but dif-

ferent variable/check node distributions). Parameters of Code 1, 2 and 3 for

the segmented deletion channel are given in the second, third and forth row

of Table 4.4, and their overall code rates are 0.719, 0.6 and 0.5337, respec-

tively. It is obvious that the specifically designed outer LDPC codes for the

segmented deletion channel offer a better performance. We also observe that

the concatenated coding scheme can achieve a higher code rate when Pd

b
gets

smaller. We note, however, that the results obtained are not very close to the

capacity bounds. For instance, if we consider an error rate of 10−3 as reliable

communications, from Fig. 4.7, the corresponding Pd for these three codes are

0.24, 0.44 and 0.6, while the corresponding capacity lower bounds are 0.8127,

0.7152 and 0.6589, respectively. A difference of 0.1 bits/channel use exist be-

tween the capacity lower bounds, and the actual achieved code rates with the

practical channel coding approach, indicating that there is certainly room for

significant improvement with more sophisticated practical coding solutions.

4.4 Chapter Summary

In this chapter, we have considered channels with synchronization errors mod-

eled by a bit deletion process with an additional segmentation assumption.

We started with the argument that such channels are information stable, and

their channel capacity exists. Then, we introduced several capacity upper and

lower bounds in an attempt to understand the channel capacity behavior. The

results indicate that when the deletion probability is near zero or near unity

(for each segment), the upper and lower bounds behave similarly and we have

obtained results very close to the capacity. However, there is a wide-range
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of deletion probabilities where they are far apart, hence there is clearly more

room for improvement (in terms of obtaining tighter capacity bounds). In

addition to the information theoretic analysis of the channel, we have also

considered a practical channel coding approach. Specifically, we used outer

LDPC codes concatenated with inner marker codes, and developed suitable

channel detection algorithms for this case. Different MAP based channel syn-

chronization algorithms operating at the bit level and at the symbol level were

introduced. Furthermore, we have compared complexity of the two algorithms

and designed specific LDPC code for the segmented deletion channels which

provide better decoding performance than the one optimized for the AWGN

channels. Simulation results clearly showed the advantages of the proposed

approach. In particular, for the entire range of deletion probabilities less than

unity, the proposed approach offers a significantly larger transmission rate than

the only other alternative solution of the zero-error codes designed in [17].
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Chapter 5

DETECTION/DECODING OVER CHANNELS WITH

SYNCHRONIZATION ERRORS AND INTER-SYMBOL INTERFERENCE

In this chapter, we consider channels with symbol insertions or deletions, along

with ISI. We first start with our motivation of studying this channel model.

Then, we design a MAP detection algorithm at the bit level based on a modi-

fication of the trellis diagram used in [18], which jointly achieves equalization

for the ISI channel and synchronization for the insertion/deletion channel.

Furthermore, as an alternative to the joint MAP detection, we introduce sev-

eral low-complexity solutions. We utilize the M- and T- algorithms imple-

mented as simplifications of the full complexity forward backward algorithm

and also consider a separate channel detection scheme, i.e., the concatenation

of an equalizer for the ISI channel and a MAP detector for synchronization

purposes only. In addition to the two schemes, we also propose a detection

algorithm based on the idea of sequential decoding. We show that these ap-

proaches greatly reduce the decoding complexity, especially for channels with

long memory or for high insertion/deletion rates, at the expense of reduced

decoding performance.

The rest of the chapter is organized as follows. In Sections 5.1 and 5.2,

we present the research motivation and detailed introduction to the specific

channel model. In Sections 5.3 and 5.4, we introduce the full-complexity

bit-level MAP detection algorithm and investigate several sub-optimal, low-

complexity detectors aimed at reducing the decoding complexity. Then, in

Section 5.5, error-rate results for a practical LDPC-coded scheme are reported

for these detectors. Finally, chapter summary is given in Section 5.6.
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5.1 Motivation

We consider channels with symbol insertions or deletions and also suffering

from ISI. Such channels appear in various practical transmission systems such

as bit-patterned media (BPM) recording [1], which is a promising technology

for future storage products due to its increased recording densities and much

higher capacity compared to the conventional storage media. It typically con-

sists of extremely small magnetically stable islands on which data bits are

stored [1]. During the writing process, the write head moves from one island

to another to magnetize them in certain directions based on the bits to be

written. As the island positions show irregularities (jitter) and it is impossible

to perfectly adjust the write head to every island, during the writing pro-

cess some bits may not be correctly aligned (and written) and other bits may

be inserted in error [74]. Since these errors caused by mis-synchronization

are random and unpredictable, the BPM write channel can be modeled as

one with insertions/deletions whose positions are unknown to the transmitter

and/or the receiver. As for the reading process, multiple islands can be read

at the same time, and therefore, the impairments of the readback channels

include ISI, inter-track interference (ITI) and also AWGN [75,76]. Combining

the errors occurring in the write and read processes, a BPM recording system

can be viewed as the cascade of an i.i.d. insertion/deletion channel and an ISI

channel.

Synchronization errors along with ISI result in significant difficulties in

the design and analysis of communication systems. To date, very few results

have been reported on this type of a channel model. Since, even the com-

putation of the capacity for insertion/deletion channels (with no ISI) is very
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Figure 5.1: Channel model with deletions and ISI.

challenging [28–30], the capacity for insertion/deletion channels with ISI re-

mains out of reach. Achievable rates are studied in [18] via a simulation-based

approach, with a specifically designed trellis representation and independent

and uniformly distributed (i.u.d.) inputs. A preliminary work in terms of

practical codes over BPM channels is reported in [77], where the authors con-

sider a BSC instead of an insertion/deletion channel concatenated with an

ISI channel, and introduce several suitable channel detection algorithms along

with channel codes. However, in the current literature, no channel coding

results for insertion/deletion channels with ISI are available.

5.2 Channel Model

We consider transmission over channels impaired by insertion/deletion errors

and ISI. We adopt the same coding scheme as in Chapters 3 and 4, with a

modified MAP detection algorithm. The channel model is depicted in Fig.

5.1.

Assume that the binary phase-shift keying (BPSK) is used and let

xT
1 = {xk}Tk=1 and yR

1 = {yn}Rn=1 be the sequences of symbols at the channel

input and channel output, respectively. The number of transmitted symbols T

is a fixed and given system parameter once the channel code is specified, while

the number of received symbols R is a random variable depending on the re-

alization of the insertion/deletion process. We adopt the channel model given
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in [22] (except that substitution errors are not considered), i.e., each input

symbol either gets deleted (with probability Pd), or replaced by two uniformly

distributed random symbols (with probability Pi), or correctly transmitted

(with probability Pt = 1 − Pd − Pi). We assume that all the synchronization

errors are i.i.d., and neither the transmitter nor the receiver has information

on the positions at which these errors occur. For the ISI channel, the output

at time instant n, yn, depends both on the inputs at n and the previous L

symbols, which is given by

yn =
L∑
l=0

hlx̂n−l + zn, (5.1)

where x̂R
1 is the resulting output of the insertion/deletion channel and L is the

length of the ISI channel, i.e., {hl}Ll=0 are the coefficients of the L+1 channel

taps which are normalized so that
∑L

l=0 |hl|2 = 1 and zn is the AWGN with

zero mean and variance σ2, i.e., zn ∼ N (0, σ2).

5.3 Bit Level MAP Detection Algorithm

As the channel model is a concatenation of an i.i.d. insertion/deletion channel

and an ISI channel, an optimal channel MAP detector should be able to jointly

achieve both equalization for the ISI channel and re-synchronization for the

insertion/deletion channel. In the following, we propose such a joint bit-level

MAP detection algorithm.

5.3.1 Trellis Diagram

Let B be the set of all possible vectors of length L with each element tak-

ing values ±1, and bn be state of the ISI channel at time n, i.e., bn =

[x̂n, . . . , x̂n−L+1]
T . Also define the binary event Dk,n,bn , with k ∈ {1, . . . , T},

n ∈ {1, . . . , R}, and bn ∈ B, which denotes whether, after the first k transmit-
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ted symbols, exactly n symbols are received and the state of the ISI channel

is bn. Note that the received symbol yn is corrupted by the ISI channel, and

the first symbol of bn, bn,0, equals xk under a successful transmission. When

a deletion error occurs, bn = bn−1, and for an insertion event, bn,0 and bn,1 are

two random symbols taking values ±1 with equal probability.

For further illustration, let us consider a simple ISI channel with L = 2

(i.e., a three tap channel) and unity channel taps. We can illustrate the trellis

diagram as in Figure 5.2. With the input xk, the transitions due to deletion,

insertion and successful transmission result in 0, 2 and 1 output symbols,

respectively. Note that a transmitted symbol cannot experience both insertion

and deletion errors at the same time according to the channel model, and

therefore, the state transitions with one output symbol can only happen due

to a successful transmission (corrupted by ISI).

5.3.2 FBA for Insertion/Deletion Channel with ISI

To simplify the notation, we define b
(i)
n , [x̂n−i, . . . , x̂n−L+1]

T and b
(−i)
n ,

[x̂n, . . . , x̂n−L+i+1]
T , 1 ≤ i ≤ L, which are the rest of bn except bn,0, · · · , bn,i−1,

and the rest of bn except bn,L−i, · · · , bn,L−1, respectively. Thus, we can express

bn as bn = [bn,0; · · · ; bn,i−1;b
(i)
n ] = [b

(−i)
n ; bn,L−i; · · · ; bn,L−1].

Similar to the general FBA [9, 62], we first define the forward and

backward quantities as

αk(n,bn) = P (yn
1 , Dk,n,bn), (5.2)

βk(n,bn) = P (yR
n+1|Dk,n,bn), (5.3)

which can be calculated recursively. As in [72], we obtain (for L ≥ 2)
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Figure 5.2: Example state transitions for insertion/deletion channel with ISI
(L = 2).

αk(n,bn) =Pt

∑
j=±1

αk−1(n− 1,bn−1 = [b(1)
n ; j]) · P (xk = bn,0)F1(bn,0, yn,bn−1)

+
Pi

4

∑
j1,j2=±1

αk−1(n− 2,bn−2 = [b(2)
n ; j1; j2]) · F2(yn, yn−1,bn,bn−2)

+ Pd αk−1(n,bn) , (5.4)

βk(n,bn) =Pt

∑
j=±1

βk+1(n+ 1,bn+1 = [j;b(−1)
n ]) · P (xk+1 = j)F1(j, yn+1,bn+1)

+
Pi

4

∑
j1,j2=±1

βk+1(n+ 2,bn+2 = [j1; j2;b
(−2)
n ])

· F2(yn+2, yn+1,bn+2,bn)

+ Pd βk+1(n,bn) , (5.5)

where P (xk) is the a priori probability for transmitted sequence. If the detector

has no a priori information for information bits, then P (xk) is 1/2 if xk is an
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LDPC-coded symbol, or 0 (or 1) if xk belongs to the marker bits. From the ISI

channel model, the two functions, F1(x, y,b) and F2(y, y
′,b,b′), are expressed

as

F1(x, y,b) =
1√
2πσ2

exp

{
−|y − hT · c|2

2σ2

}
, (5.6)

F2(y, y
′,b,b′) =

1

2πσ2
exp

{
−|y − hTc1|2 + |y′ − hTc2|2

2σ2

}
, (5.7)

where h = [h0, · · · , hL]
T , c = [x;b], c1 = [b; b′L−2] and c2 = [b1;b

′], respec-

tively.

We are interested in the exact “frame synchronization” scenario, in

which the values of T and R are known to the receiver. Therefore, the forward

recursion can be initialized by setting (we assume that the last L symbols

being transmitted before the current block are b∗.)

α0(0,b0) =

 1, if b0 = b∗,

0, else.
(5.8)

Similarly, for the backward recursion, we have

βT (R,bR) =

 P (xT = 1)/2L−1, if bR,0 = 1,

P (xT = −1)/2L−1, if bR,0 = −1.
(5.9)

Having the forward and backward quantities, finally, the target condi-

tional probability can be computed as

P (yR
1 |xk) =Pt

min(2k,R)∑
n=0

∑
bn∈B

αk−1(n− 1,bn−1 = [b(1)
n ; xk])βk(n,bn)F1(xk, yn,bn−1)

+
Pi

4

min(2k,R)∑
n=0

∑
bn∈B

∑
j1,j2=±1

βk(n,bn) · F2(yn, yn−1,bn,bn−2)

· αk−1(n− 2,bn−2 = [b(2)
n ; j1; j2])

+ Pd

min(2k,R)∑
n=0

∑
bn∈B

αk−1(n,bn)βk(n,bn) . (5.10)
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We remark here that for the case of L = 1, slight changes of the algorithm are

needed. The forward/backward recursions in this case are given as

αk(n, bn) =Pt

∑
j=±1

αk−1(n− 1, bn−1 = j) · P (xk = bn) · F1(xk, yn, bn−1)

+
Pi

4

∑
j=±1

αk−1(n− 2, bn−2 = j) · F3(yn, yn−1, bn, bn−2)

+ Pd αk−1(n, bn) , (5.11)

βk(n, bn) =Pt

∑
j=±1

βk+1(n+ 1, bn+1 = j) · P (xk+1 = j) · F1(xk+1, yn+1, bn+1)

+
Pi

4

∑
j=±1

βk+1(n+ 2, bn+2 = j) · F3(yn+2, yn+1, bn+2, bn)

+ Pd βk+1(n, bn) , (5.12)

where the function F3(y, y
′, b, b′) is defined as

F3(y, y
′, b, b′) =

1

4πσ2

∑
j=±1

exp

{
−
|y − hTcj|2 + |y′ − hTc′j|2

2σ2

}
, (5.13)

with cj = [b; j] and c′j = [j; b′]. The final step is therefore given by

P (yR
1 |xk) =Pt

min(2k,R)∑
n=0

∑
j=±1

αk−1(n− 1, bn−1 = j) · βk(n, xk) · F1(xk, yn, j)

+
Pi

4

min(2k,R)∑
n=0

∑
j=±1

βk(n, xk) · F3(yn, yn−1, xk, j) · αk−1(n− 2, j)

+ Pd

min(2k,R)∑
n=0

∑
j=±1

αk−1(n, bn = j)βk(n, xk) . (5.14)

5.4 Low Complexity Detection Algorithms

When an ISI channel with a long memory, i.e., large L, and/or an inser-

tion/deletion channel with a high insertion/deletion rate, is considered, the
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joint MAP detection algorithm in Section 5.3 can be highly time-consuming

and it becomes the bottleneck. Hence, low-complexity detection solutions are

essential. With this motivation, in the rest of this section, we consider several

reduced-complexity detection approaches [72].

5.4.1 Separate Detection

We first consider separate detection instead of joint detection to alleviate the

complexity problem. As for the separate detection, the FBA [77] or a soft-

MMSE equalizer [78] is first executed to generate the soft information for x̂R
1 ,

i.e., ξn = log
{

P (x̂n=1|yR
1 )

P (x̂n=−1|yR
1 )

}
for n ∈ {1, 2, . . . , R}. Then a modified bit-level

MAP detector for channel synchronization can be applied. Assuming that

the LLRs belong to observations through an insertion/deletion channel and

a binary asymmetric substitution channel where the substitution probabili-

ties Ps are time-varying across the trellis with Ps = 1
eξn+1

for bit “1” and

Ps =
1

e−ξn+1
for bit “0”. This is clearly a suboptimal approach, however, as

we will illustrate, it performs reasonably well.

Comparing the detection schemes, we see that for the joint detection,

on average, a total number of N ·2L states are considered in each time instance,

while this number is reduced to N + 2L for the separate detection algorithm,

where N is the average number of states with non-zero forward/backward

quantities obtained in (3.4) and (3.5). It is clear that the difference becomes

significant for large Pd and Pi values.

5.4.2 Reduced-Complexity FBA with M- and T-Algorithms

In addition to the separate detection algorithm, we also borrow ideas from

reduced-complexity Viterbi algorithm implementations, i.e., the M-algorithm
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[19] and T-algorithm [20], and design low-complexity MAP detectors for the

insertion/deletion channels with ISI. Their main ideas are very similar, i.e.,

to keep only the best several paths as survivor paths to be extended to the

next trellis interval, and thereby reducing the overall number of operations in

execution of the algorithm.

As for the reduced-complexity FBA of joint MAP detection, the algo-

rithms are described as follows. For the M-algorithm, in each trellis interval

of forward/backward recursion, we first calculate the forward/backward quan-

tities for all states and then sort them. Only the states with the M largest

quantities are retained and the rest of the states are not considered when

obtaining the forward/backward quantities for the next trellis interval. For

the T-algorithm, instead of keeping the paths with the M largest metrics, we

choose the survivor states according to a certain threshold. Suppose Sk is

value of the largest forward/backward quantities at time k. Since all the oper-

ations are done in the log domain for computational safety, we only retain the

states with forward/backward quantities larger than η · SK , with 1 ≤ η ≤ ∞,

where η = ∞ represents the case of full-complexity MAP detection algorithm.

Clearly, the numbers M and η determine the tradeoff between the detection

complexity and overall decoding performance.

5.4.3 Soft-Input Soft-Output Stack Decoding Algorithm

Sequential decoding algorithms [79], e.g., stack and Fano algorithms [58], are

the first practical method to decode convolutional codes and they can also

be used in solving our problem. Compared to the maximum-likelihood (ML)

decoder, which operates on the code trellis, sequential decoding works on the

code tree and does not explore all possible paths as opposed to the Viterbi
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algorithm. It is a sub-optimal solution, however, its performance is good

particular at high signal-to-noise ratios (SNRs). For instance, the soft-input

soft-output (SISO) twin stack decoder developed in [21] offers similar perfor-

mance compared to the MAP decoder for the decoding of recursive systematic

convolutional codes. In [23], it is shown that the SISO stack equalizer offers

near-optimum performance over the MIMO frequency selective fading chan-

nels.

In the following, we aim at building a low-complexity channel detec-

tor using the stack algorithm suitable for our current problem, which jointly

achieves equalization for the ISI channel and synchronization for the inser-

tion/deletion channel.

5.4.3.1 The Stack Algorithm

The objective of the stack algorithm is to find the “best” path throughout

the tree by comparing the metrics associated with different paths (maybe

of different depths). The decoding process starts by initializing a finite-size

stack with the root of the code tree, e.g., normally the all-zero state where

the encoding begins. During each time interval k, the decoder extends the

top node from the stack. The metric associated with each extended partial

path, which depends on the channel transition probability matrix and a-priori

information, for a rate b/c convolutional code is given by [80] ,

c∑
j=1

log

(
P (yjk|v

j
k)

P (yjk)

)
+

b∑
i=1

log
(
P (ui

k)
)
, (5.15)

where {ui
k}, i = 1, . . . , b; {vjk}, {y

j
k}, j = 1, . . . , c are the input/output bits

of the encoder and the corresponding received symbols at time interval k,

respectively. The decoding follows by extending the top node of the stack (a
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sorting procedure is needed based on the metric associated with each path)

until it reaches the leaf of the code tree.

In order to generate the soft-output LLRs for the transmitted symbols,

the FBA is utilized [21]. Following the notation in [21], we define the branch

transition probability as

γ(yk,m,m′) = P (yk, sk = m|sk−1 = m′)

= P (yk|vk) · P (sk = m|sk−1 = m′) . (5.16)

It is shown that either of the two metrics in (5.15) and (5.16) can be used to

decode the convolutional code [21], and is stored in a Gamma matrix during

the decoding process. The generation of the soft output is done by a post-

processing module, which computes the forward/backward quantities and the

final output using the γ metrics recorded in the Gamma matrix [21].

5.4.3.2 Detection Strategy for Insertion/Deletion Channels with ISI

Suppose for a given transmitted sequence and a given received sequence, we

obtain the maximum value of Hk−1,n,bn for a particular k and all n, 0 ≤ n ≤

2k − 2, bn ∈ B. Then, the maximum of Hk,n,bn will be the largest of the the

following quantities [22]:

max(Hk−1,n,bn) + γdel, (5.17)

max(H
k−1,n−2,bn−2=[b

(2)
n ;j1;j2]

) + γins, (5.18)

max(H
k−1,n−1,bn−1=[b

(1)
n ;j]

) + γtra, (5.19)

where j, j1, j2 = ±1 and the quantities

γdel = log(Pd), (5.20)

γins = log(Pi/4) + F ′
2(yn, yn−1,bn,bn−2), (5.21)
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γtra = log(Pt) + log(P (xk = bn,0)) + F ′
1(bn,0, yn,bn−1), (5.22)

are the modified metrics in (5.16) corresponding to the insertion, deletion and

successful transmission. F ′
1(x, y,b) and F ′

2(y, y
′,b,b′) are calculated by taking

the logarithm of the right hand side functions in (5.6) and (5.7). Therefore,

the soft-input soft-output stack algorithm for insertion/deletion channels with

ISI can be generalized as follows:

step 1 Initialize the stack with the root of the tree, i.e., k = 0, n = 0, b = −1.

step 2 Extend the top state (node) from the stack.

step 3 Compute the gamma metrics for all possible transitions due to the in-

sertion, deletion and successful transmission according to (5.20), (5.21)

and (5.22). If the metric of a particular state transition is not recorded,

update the Gamma matrix.

step 4 Update and re-order the stack in the order of metrics. If two paths

merge at the same state, choose the one with a larger metric Hk,n,bn .

step 5 If the top node of the stack is a leaf of the tree, terminate the decoding

process and start the post-processing block to computer the soft output,

otherwise goes to Step 2.

5.5 Simulation Results

In this section, we consider a practical coding scheme with the detection algo-

rithms described in Sections 5.3 and 5.4. We first consider the concatenation of

an i.i.d. deletion channel and a dicode channel in Fig. 5.3. The dicode channel

is the simplest ISI channel with L = 1, described by yn = 1√
2
x̂n− 1√

2
x̂n−1+ zn.

We adopt an outer LDPC code with length 3001 and rate 0.667 concatenated
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Figure 5.3: BER performance over concatenation of an i.i.d. deletion channel
and a dicode channel.

with marker codes of varying rates. The marker codes are obtained by in-

serting the marker “01” every 10, 50 and 100 LDPC-coded bits, respectively.

In the simulation, we implement the joint detection algorithm introduced in

Section 5.3 and set the SNR to be 1/σ2. Fig. 5.3 compares the error rate

performance for different values of Pd and rM , and also the case of an ISI only

channel (Pd = 0). It is clear that when Pd is small, we can achieve a good

error rate performance with a small overhead introduced by the marker code,

e.g., the gap between the cases when Pd = 0 and Pd = 0.001, rM = 50/52
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Figure 5.4: BER performance for the joint and separate MAP detectors.

is only about 0.3 dB. As the deletion probability increases, the performance

with the same marker code degrades significantly.

In Fig. 5.4, we compare the resulting error rate performance of the

joint and separate MAP detectors with the same LDPC code adopted in

Fig. 5.3. Two ISI channels are considered with the channel tap coefficients

H1 = [1 0 1]/
√
2 and H2 = [1 1 1]/

√
3. As expected, the complexity reduc-

tion comes at the price of some performance degradation and the difference

becomes significant for large Pd values. The reason is that an i.i.d. deletion

channel with a large deletion rate means more deletions per transmitted block,
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Figure 5.5: BER performance for the M- and T-algorithms.

and therefore, more states are introduced in the trellis diagram leading to a

more obvious complexity reduction for the separate detection algorithm.

Fig. 5.5 illustrates the performance of the M- and T-algorithms with

M = 5, 8, 12 and η = 1.1, 1.3, 1.5, respectively. We utilize the same LDPC

code along with a rate rM = 50/52 marker code and consider an i.i.d. deletion

channel with Pd = 0.001 and an ISI channel with tap coefficients H1. For com-

parison, the performance of the full-complexity joint MAP detection algorithm

is also shown. For the M-algorithm, on average, we select 30.3%, 48.5% and

72.8% of all the states as survivors. For the T-algorithm, we eliminate around

92%, 83% and 67% of all the states when SNR is 6 dB. The performance
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Figure 5.6: BER performance for the stack algorithms with different stack
size.

improvement when more states are retained in the FBA is evident, as the per-

centage of the surviving states increases, the slopes of the BER curves become

closer to the one obtained by the full complexity algorithm. Comparing the

two algorithms, we notice that the T-algorithm has two advantages. First,

it does not require the step of sorting as we only need to find the state with

largest forward/backward quantity. Second, the number of states to be kept

in each interval is varying which results in significant complexity savings at

high SNRs, where the most possible state is much more “clearer” and there

are few states exceeding the threshold.
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Figure 5.7: Complexity comparison for stack algorithm.

The performance comparison of the MAP detector, stack algorithm

with infinite/finite stack size is provided in Fig. 5.6. The system parameters

are the same as the ones in Fig 5.5. As expected, a larger stack size leads

to a better performance. When an infinite-size stack is enforced, the stack

algorithm offers almost the same performance of the MAP detector.

The improved performance of the stack algorithm with a larger stack

size comes at a price of a more complicated system. The numerical results for

complexity comparison between the stack algorithm-based detector and the

MAP detector are shown in Fig. 5.7. We use the same definition of complexity
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as in [23], which is the average number of extended branches, i.e., the number of

metrics stored in the Gamma matrix, per transmitted symbol. Obviously, the

complexity increases with a larger stack size and converges to the same level

(around 2.66) at high SNRs. Contrary to the full-complexity MAP detector,

at high SNRs, the complexity drops dramatically representing a considerable

reduction in the number of computations.

5.6 Chapter Summary

In this chapter, we have considered detection/decoding algorithms for i.i.d.

insertion/deletion channels with ISI. Through a suitable trellis diagram, we

have developed a MAP detection algorithm operating at the bit level which

provides both equalization for the ISI channel and synchronization for the in-

sertion/deletion channel. Besides the joint MAP detection algorithm, we have

also introduced several sub-optimal detectors aimed at reducing the detection

complexity for channels with long memory. Three different approaches have

been proposed, i.e., the separate detection algorithm, M- and T- algorithms,

and the soft-input soft-output stack detection algorithm. Numerical examples

are provided to illustrate the tradeoffs between the channel detection algorithm

complexity and the error rate performance.
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Chapter 6

MULTI-ANTENNA AND MULTI-USER COMMUNICATION SYSTEMS

WITH DELETION ERRORS

In this chapter, instead of considering point-to-point systems with a single

transmit and a single receive element, we take a step forward and study two

cases: one utilizing multiple transmit/receiver elements and the other con-

sidering the case of multiple users communicating with a receiver through a

multiple access channel.

We first consider an N ×M MIMO channel with i.i.d. deletion errors.

Specifically, during transmission, symbols may be deleted independently of

each other (both spatially and temporally). This model is an extension of the

i.i.d. deletion channel model for the single-input single-output communication

scenario usually considered in the literature (e.g., see [28]). We further con-

sider modulated symbols (using BPSK) and the effects of the electronic noise

at the receiver(s). To communicate reliably over the MIMO deletion channel,

we adopt a coding scheme, which is a serial concatenation of an LDPC code,

a marker code [72] and a layered space-time code, and design two channel

detectors. At the receiver, a bit-level MAP detector is deployed which jointly

achieves synchronization for the deletion channel and detection for the MIMO

channel. The resulting soft information is then fed to the message passing

decoder (for the LDPC code). We also propose an alternative detector explor-

ing the idea of interference cancellation (IC) which enables a layer-by-layer

detection, and, therefore, existing synchronization algorithms (such as the one

in [72]) can be directly utilized.
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We then study a coding scheme for the case of multiple access channel

in the presence of synchronization errors with a focus on the case of 2-user

Gaussian multiple access channel with i.i.d. deletion errors. Again, general-

ization to the N -user Gaussian multiple access channel with insertion/deletion

errors is possible. The system model can be viewed as a 2 × 1 (distributed)

MIMO system, however, detection/decoding algorithms are different from the

ones introduced for the MIMO deletion channel as shown in later sections.

The chapter is organized as follows. Our motivation and system model

including the specific channel model and the coding scheme are described in

Sections 6.1 and 6.2. In Section 6.3, two different channel detectors for the

MIMO deletion channel are proposed. In Section 6.4, a channel detection

algorithm along with an iterative decoding scheme is introduced for the 2-user

Gaussian multiple access deletion channel. Simulation results are provided in

Section 6.5, and concluding remarks are given in Section 6.6.

6.1 Motivation

The previous works on insertion/deletion channels in the literature focus ex-

clusively on the case where there is a single transmitter and a single receiver.

On the other hand there are many applications in which multiple-transmit and

multiple-receive elements are employed [81]. Also multiple users may trans-

mitting to the same receiver at the same time. The main objective of this

chapter is to bring about a new channel modeling synchronization errors by

also considering possible mismatches between different transmit and receive

element pairs, and to consider a practical channel coding solution that can be

employed for reliable communication.
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Figure 6.1: MIMO deletion channel model.

The MIMO deletion channel model we advocate is motivated by some

practical digital communications applications, e.g., multi-track BPM record-

ing systems [1, 60]. In this recording technology, the medium is prepatterned

with magnetically stable (small) islands which suffer from imperfect synchro-

nization. Furthermore, synchronization of the islands in the parallel tracks

is not guaranteed. During the writing process, the signals are recorded in

multiple tracks and synchronization errors occur due to possible imperfect

alignment between the write head and the magnetic islands [74]. There are M

heads reading N tracks simultaneously, yielding an N × M MIMO channel.

Combining the errors occurring in the write and read processes, a multi-track

BPM recording system can be viewed as the cascade of a deletion channel and

an N × M MIMO channel. In a wireless sensor network, due to the power

consumption constraints and other hardware limitations [59], perfect synchro-

nization may not be feasible among different sensor nodes. When multiple

sensors communicate simultaneously (over a multiple access channel) with one

or more receivers, each transmitted sequence may experience deletion events

independently from the other transmissions, and the resulting channel would

be an asynchronous multiple access channel.
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6.2 System Model

In this section, we describe the details of MIMO deletion channels and multiple

access channels with deletion errors. Particularly, for the MIMO deletion

channel, we focus on the case of N = 2 and M = 2 with the stipulation that

extensions to arbitrary N,M are straightforward. The channel model, shown

in Fig. 6.1, is the concatenation of a deletion channel with a 2 × 2 MIMO

channel. The deletion channel is a standard i.i.d. deletion channel with symbol

deletion probability Pd. For the MIMO channel, if the transmitted sequence

is x, the received signal (in the absence of noise) is given by y = A · x, where

A =

 1 α

α 1

 (6.1)

whose ij-th entry is the channel gain from the j-th transmitter to the i-th

receiver. The matrix A is assumed to be deterministic and symmetric for

simplicity. For instance, the coefficient α could represent the amount of ITI

in a magnetic recording channel.

As for the proposed channel coding solution, we adopt a concatenated

coding scheme similar to the one in [72], which consists of the interleaved

serial concatenation of an outer LDPC code with an inner marker code and

a layered space-time code. Specifically, the information bits are first encoded

by an LDPC code, then marker bits are periodically inserted, e.g., we insert

a two-bit marker “01” after every 10 LDPC-coded bits. Assume that the

resulting bit sequence is of length T . This sequence is first modulated using

BPSK, i.e., xT
1 = {xk}Tk=1, and then converted into two parallel subsequences,

each with length T/2. Due to the i.i.d. deletions, random symbols get deleted

resulting in a total number of R1 symbols in the first subsequence x̂1 and R2
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symbols in the second subsequence x̂2, where R1 and R2 are random variables

(both binomial with parameters T/2 and Pd). The received signals at the two

receive elements are

y1 = x̂1 + αx̂2 + z1 ,

y2 = αx̂1 + x̂2 + z2 , (6.2)

where z1, z2 are independent white Gaussian noise sequences with zero mean

and variance σ2. Note that x̂1 and x̂2 may be of different lengths, i.e., R1 ̸= R2,

therefore, we define their vector sum as

if a+ b = c , then ck =


ak + bk if k ≤ min(|a|, |b|)

ak if |b| < k ≤ |a|

bk if |a| < k ≤ |b|

,

where k and | · | represent the element index and the length of the vector,

respectively. An alternative system model is also considered in this chapter

(Section 6.3.2), where instead of choosing one LDPC code and a serial-to-

parallel converter, we select two separate LDPC codes with the same length

to be transmitted as the two parallel bit streams.

As for the 2-user Gaussian multiple access channel with deletions, the

only difference from the previous case is that the information bits from the

two users are encoded by separate LDPC codes of the same length. Assume

that each sequence x is of length T , under the assumption of equal power

allocation for the two users and block fading, the received signal is expressed

as

y = α1x̂1 + α2x̂2 + z, (6.3)

where α1, α2 are the channel coefficients, and z is the vector of independent
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                      y2,n = αx1,n+i+1 +x2,n+j+z2,n
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Figure 6.2: Example of state transitions on the trellis diagram.

Gaussian noise term with zero mean and a variance of σ2. Clearly, a single

element receiver is assumed.

6.3 Detection Algorithms for MIMO Channels with Deletions

In this section, we propose two solutions for the channel detection algorithm at

the bit level, which generates soft information on the transmitted bits, i.e., the

log-likelihood ratio log
{

P (xk=1|y1,y2)
P (xk=−1|y1,y2)

}
for k ∈ {1, . . . , T}. The first one is the

MAP detector, which jointly achieves synchronization and channel detection.

The second one provides a low-complexity alternative, which utilizes the idea

of interference cancellation in the decoding of the layers of the MIMO channel1.

6.3.1 Joint MAP Detection Algorithm

The joint MAP detector generates soft information for all the LPDC-coded

bits based on the received signals y1 = {y1,n}Rn=1 and y2 = {y2,n}Rn=1, where

R = max(R1, R2). We define the state of the trellis to be sn = (d1,n, d2,n),

where d1,n denotes the total number of deletions for the first stream of bits at

time n (i.e., by the time the n-th symbols in y1 and y2 are received) and d2,n
1In this case, we assume separate LDPC codes for the two elements at the transmitter.
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represents the total number of deletions for the second stream. An example

of state transitions is shown in Fig. 6.2.

Defining YR
1 = [y1;y2], we first express the forward and backward

quantities as

αn(sn) = P
(
sn = (d1,n, d2,n),Y

n
1

)
, (6.4)

βn(sn) = P
(
YR

n+1|sn = (d1,n, d2,n)
)
, (6.5)

which can be calculated by means of the following recursion:

αn(sn) = P
(
sn = (d1,n, d2,n),Y

n
1

)
=
∑
sn−1

P
(
sn−1 = (d1,n−1, d2,n−1), sn,Y

n−1
1 ,Yn

)
=
∑
sn−1

P
(
sn,Yn|sn−1 = (d1,n−1, d2,n−1)

)
αn−1(sn−1), (6.6)

βn(sn) = P
(
YR

n+1|sn = (d1,n, d2,n)
)

=
∑
sn+1

P
(
Yn+1,Y

R
n+2, sn+1 = (d1,n+1, d2,n+1)|sn

)
=
∑
sn+1

P
(
sn+1 = (d1,n+1, d2,n+1),Yn+1|sn

)
βn+1(sn+1), (6.7)

where Yn = [y1,n, y2,n]
T is the n-th column in Y. By exploiting the “frame

synchronization” assumption [72], the forward recursion can be initialized by

setting

α0(s0) =

 1, if s0 = (0, 0),

0, else.
(6.8)

Similarly for the backward recursion, we have

βR(sR) =

 1, if sR = (T/2−R1, T/2−R2),

0, else.
(6.9)
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Define γn(sn−1, sn) = P
(
sn = (d1,n, d2,n),Yn|sn−1 = (d1,n−1, d2,n−1)

)
.

It is straightforward to show that

γn(sn−1, sn) = P (Yn|sn−1, sn)P (sn|sn−1), (6.10)

where

P (sn|sn−1) = P
d1,n+d2,n−d1,n−1−d2,n−1

d (1− Pd)
2, (6.11)

if d1,n ≥ d1,n−1, d2,n ≥ d2,n−1, and 0 otherwise. Also

P
(
Yn|sn−1, sn

)
=
∑

i,j=±1

P (Yn|x1,n+d1,n = i, x2,n+d2,n = j)

· P (x1,n+d1,n = i)P (x2,n+d2,n = j)

=
1

2πσ2

∑
i,j=±1

exp

{
−(y1,n − (i+ αj))2

2σ2

}
P1(i)

· exp
{
−(y2,n − (αi+ j))2

2σ2

}
P2(j), (6.12)

where P1(i) = P (x1,n+d1,n = i) and P2(j) = P (x2,n+d2,n = j). They are set to

0 or 1 for the marker bits and 0.5 for the LDPC-coded bits.

Having the forward and backward quantities, it is easy to show the

following equations:

P (YR
1 |xk) =

∑
sn

∑
sn−1

P (sn, sn−1,Y
n−1
1 ,Yn,Y

R
n+1|xk)

=
∑
sn

∑
sn−1

αn−1(sn−1)P (sn|sn−1)P (Yn|sn−1, sn, xk)βn(sn), (6.13)

where n = k − d, d = dn,2 if k > T
2
and d = dn,1 otherwise. Also, we have

P (Yn|sn−1, sn, xk) =
1

2πσ2

∑
i=±1 exp

{
− (y1,n−(i+αxk))

2

2σ2

}
exp

{
− (y2,n−(αi+xk))

2

2σ2

}
P1(i), if k > T

2
,

1
2πσ2

∑
i=±1 exp

{
− (y1,n−(xk+αi))2

2σ2

}
exp

{
− (y2,n−(αxk+i))2

2σ2

}
P2(i), else.

(6.14)
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After obtaining P (YR
1 |xk), we can compute the LLR log

{
P (xk=1|YR

1 )

P (xk=−1|YR
1 )

}
(as-

suming equally likely LDPC-coded bits).

6.3.2 Separate Detection with Interference Cancellation

As simplifications of the joint detection algorithm, separate detection is possi-

ble among different receiver elements by utilizing two IC schemes, as described

here.

6.3.2.1 IC with Non-Decoded Bits

Using the QR decomposition [81,82], we can write the received sequences as

YR
1 =

 y1

y2

 =

 1 α

α 1

·
 x̂1

x̂2

+
 z1

z2

 = QR

 x̂1

x̂2

+
 z1

z2

 , (6.15)

where R is a 2 × 2 upper triangular matrix and Q is a 2 × 2 unitary matrix

with QHQ = I2.

Let us left-multiply YR
1 with QH , which gives

Ŷ = QHY = R ·

 x̂1

x̂2

+ Ẑ, (6.16)

where Ẑ = QH

 z1

z2

. Since R is an upper triangular matrix, the second row

in Ŷ, ŷ2, solely consists of the transmitted sequence from the second layer.

Therefore, the MAP detection algorithm in [72] can be directly applied to

generate the soft information for the outer LDPC decoder2.

For the first bit stream, estimates of x̂2 (as hard decisions) are first

obtained based on ŷ2. Then, they are multiplied by the off-diagonal coefficient
2A slight change in the algorithm is needed, since [72] only considers substitution-type

errors instead of additive white Gaussian noise.
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α and subtracted from y1. If all the decisions on x̂2 are correctly made, the

interference from the second stream is cancelled out and the same decoding

procedure as in [72] can be performed.

6.3.2.2 IC with Decoded Bits

The interference cancellation scheme in the previous section does not utilize

the error-correction capability offered by the outer LDPC decoder. In the

following, we consider an IC scheme where the LDPC decoder is integrated

into the process.

Let x̃2 be the final LDPC decoding output of the coded bits trans-

mitted as the second stream, and LLR(x2) be the vector of the correspond-

ing log-likelihood ratios generated by the MAP detector. We group x̃2 into

consecutive blocks, each consisting of all the LDPC-coded bits between two

adjacent markers. The blocks of bits with successful transmissions, i.e., when

no deletions occur, are marked “good”, while the remaining blocks of bits are

determined to be “contaminated” by deletions and are not used in the IC

process. The positions of deletion errors can be found by identifying when

the LLR values are close to zero, e.g., by obtaining the average of absolute

values of the LLRs for each block and making a decision on the presence of

deletion errors by comparing this value to a pre-determined threshold. Recall

that without deletion errors, the mean of the absolute LLR value is 2/σ2, and

therefore, we set the threshold to be η · 2/σ2, where 0 < η < 1. The positions

of these blocks in the received sequence are then estimated by [9]

k̂ = argmax
k

αn(k)βn(k), (6.17)

where αn(k) and βn(k) are the forward/backward quantities defined in the

FBA in Chapter 3, n is the index of the last bit of the previous block in the
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transmitted sequence and k is the index of the corresponding received bit3.

Finally, the sequence to be subtracted from y1 is generated by substituting

the bits in the hard decision of x̂2 with the “good” bits from x̃2 (the starting

positions are estimated using (6.17)).

When x̃1 is obtained, this information can also be utilized to cancel

the interference for the second bit stream. The same procedure follows and

iterative decoding between the first and the second data streams can be per-

formed.

6.4 Detection/Decoding Algorithms for Two-User Gaussian Multiple Access

Channel with Deletions

In this section, instead of considering systems with multiple-transmit and

multiple-receive elements, we study the case where two transmitters commu-

nicate with the same receiver in the presence of deletion errors. We first

introduce a joint MAP detection algorithm which achieves channel detection

and synchronization simultaneously. Then, we describe an iterative decoding

algorithm utilizing the output from the MAP detector, through which infor-

mation from the two users can be decoded separately.

6.4.1 Joint MAP Detection Algorithm

The joint MAP detector generates soft information for all the possible LDPC-

coded bit pairs based on the received signal y. We define the state of the

trellis to be sn = (d1,n, d2,n), where d1,n denotes the total number of deletions

from the first user by time n (the n-th symbol in y) and d2,n represents the

total number of deletions from the second user.

3The definitions are different from the ones in Section 6.3.1.
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We assume that the total number of deletions for both users are avail-

able at the receiver end, i.e., D1 = T −R1 and D2 = T −R2 are known to the

receiver. Note that, for a particular bit in x1, there are D1 + D2 + 1 bits in

x2 that may be received at the same time, and vice versa. Therefore, the soft

output of the FBA should generate the probabilities

P (y|x1,k, x2,k−D1), P (y|x1,k, x2,k−D1+1), . . . , P (y|x1,k, x2,k),

P (y|x1,k, x2,k+1), . . . , P (y|x1,k, x2,k+D2−1), P (y|x1,k, x2,k+D2),

for the transmitted bits from the first user, and

P (y|x1,k−D2 , x2,k), P (y|x1,k−D2+1, x2,k), . . . , P (y|x1,k, x2,k),

P (y|x1,k+1, x2,k), . . . , P (y|x1,k+D1−1, x2,k), P (y|x1,k+D1 , x2,k),

for the transmitted bits from the second user.

We first define the forward and backward quantities as

αn(sn) = P
(
sn = (d1,n, d2,n),y

n
1

)
, (6.18)

βn(sn) = P
(
yR
n+1|sn = (d1,n, d2,n)

)
, (6.19)

which can be calculated by means of the following recursion

αn(sn) = P
(
sn = (d1,n, d2,n),y

n
1

)
=
∑
sn−1

P
(
sn, yn|sn−1

)
αn−1(sn−1 = (d1,n−1, d2,n−1)), (6.20)

and

βn−1(sn−1) = P
(
yR
n |sn−1 = (d1,n−1, d2,n−1)

)
=
∑
sn

P
(
sn = (d1,n, d2,n), yn|sn−1

)
βn(sn), (6.21)
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where yn is the n-th symbol in y. By exploiting the “frame synchronization”

assumption, the forward recursion can be initialized by setting

α0(s0) =

 1, if s0 = (0, 0),

0, else.
(6.22)

Similarly for the backward recursion,

βR(sR) =

 1, if sR = (R1, R2),

0, else.
(6.23)

Define γn(sn−1, sn) = P
(
sn = (d1,n, d2,n), yn|sn−1 = (d1,n−1, d2,n−1)

)
,

d1,n ≥ d1,n−1 and d2,n ≥ d2,n−1. It is straightforward to show that

γn(sn−1, sn) = P (yn|sn−1, sn)P (sn|sn−1), (6.24)

where P (sn|sn−1) can be obtained from (6.11), and

P
(
yn|sn−1, sn

)
=
∑

i,j=±1

P (yn|x1,n+d1,n = i, x2,n+d2,n = j)

· P (x1,n+d1,n = i)P (x2,n+d2,n = j)

=
∑

i,j=±1

F (yn, i, j)P (x1,n+d1,n = i)P (x2,n+d2,n = j), (6.25)

where the F (·) function is slightly different from the previous case, and it is

given by

F (y, x1, x2) =
1√
2πσ2

exp

{
−(y − (α1x1 + α2x2))

2

2σ2

}
. (6.26)

Having the forward and backward quantities, it is easy to show the

following equalities
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P (yR
1 |x1,k, x2,k+j1) =

∑
sn−1

D1∑
dn=0

αn−1(sn−1)P (sn|sn−1)F (yn, x1,k, x2,k+j1)

βn(sn = (dn, dn + j1)), (6.27)

P (yR
1 |x1,k+j2 , x2,k) =

∑
sn−1

D2∑
dn=0

αn−1(sn−1)P (sn|sn−1)F (yn, x1,k+j2 , x2,k)

βn(sn = (dn + j2, dn)), (6.28)

where j1 ∈ {−D1, . . . , D2}, j2 ∈ {−D2, . . . , D1} and n = k − dn.

6.4.2 Iterative Decoding with Outer LDPC Decoders

Having the channel detector output

L(x1,k) = [P (y|x1,k, x2,k−D1), . . . , P (y|x1,k, x2,k), . . . , P (y|x1,k, x2,k+D2)] ,

(6.29)

L(x2,k) = [P (y|x1,k−D2 , x2,k), . . . , P (y|x1,k, x2,k), . . . , P (y|x1,k+D1 , x2,k)] ,

(6.30)

∀k ∈ {1, . . . , T}, we are able to perform iterative decoding on a 2-user MAC

factor graph [83]. Let m
(1)
vs [k] and m

(2)
vs [k] be the decoding outputs (log-

likelihood ratios) for the k-th bit from the first and second LDPC decoders,

respectively, and define

P
(1)
k,m =



P (y|x1,k = 0, x2,k+m = 0)

P (y|x1,k = 0, x2,k+m = 1)

P (y|x1,k = 1, x2,k+m = 0)

P (y|x1,k = 1, x2,k+m = 1)


, (6.31)
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Figure 6.3: Factor graph for 2-user LDPC-MAC.

P
(2)
k,m =



P (y|x1,k+m = 0, x2,k = 0)

P (y|x1,k+m = 1, x2,k = 0)

P (y|x1,k+m = 0, x2,k = 1)

P (y|x1,k+m = 1, x2,k = 1)


. (6.32)

The updated message to be passed to the i-th LDPC decoder, m
(i)
sv [k], is cal-

culated as

m(1)
sv [k] =

D2∑
m=−D1

log
P

(1)
k,m(4) exp(m

(2)
vs [k +m]) +P

(1)
k,m(3)

P
(1)
k,m(2) exp(m

(2)
vs [k +m]) +P

(1)
k,m(1)

, (6.33)

m(2)
sv [k] =

D1∑
m=−D2

log
P

(2)
k,m(4) exp(m

(1)
vs [k +m]) +P

(2)
k,m(3)

P
(2)
k,m(2) exp(m

(1)
vs [k +m]) +P

(2)
k,m(1)

, (6.34)

where P
(1)
k,m(i) and P

(2)
k,m(j) are the i-th and j-th elements in (6.31) and (6.32),

respectively.

A detailed joint factor graph for the 2-user LDPC MAC in given in

Fig. 6.3. The factor graphs of the two LDPC decoders are connected by the

state check node (denoted as the black box in the figure), in which updated soft

information m
(1)
sv and m

(2)
sv are generated based on (6.33) or (6.34). Depending

on the order of the information exchange, serial or parallel scheduling for

iterative decoding can be performed [83]. For serial scheduling, the decoding

process starts with the LDPC decoder corresponding to the first user. With
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no information from the second LDPC decoder (m
(2)
vs [k] = 0, ∀k), the soft

information being passed to the first LDPC decoder is generated (from (6.33))

at the state check node. After performing the SPA, m
(1)
vs is generated, and

based on (6.34), the new decoding iterations for the second user start. In

serial scheduling, a decoding round for one user is not initialized until the

decoding procedure for the other user is completed. As for the case of parallel

scheduling, the decoding iterations for two users are activated simultaneously.

6.5 Simulation Results

In this section, we first consider an example of the proposed coding scheme

with the aim of demonstrating reliable communication through the MIMO

deletion channel. In particular, we utilize an LDPC code of length 3001 and

rate 0.667 and two marker codes with rates rM = 23/25 and 48/50, obtained

by inserting a two-bit marker “01” every 23 or 48 LDPC-coded bits. Using

the joint detection algorithm, in Fig. 6.4, we plot the error-rate performance

for different Pd and α values, where the SNR is defined as 1/σ2. It is clear

that when the deletion rate is high and the marker code rate is not sufficiently

low, there exists an error floor, which indicates that deletion errors are not

fully-corrected. When the α value is decreased, e.g., the ITI from the adjacent

track is less severe, the performance improves dramatically. The last comment

is that when α = 0, the MIMO channel degrades to a conventional AWGN

channel (as can be inferred from (6.2)), which offers the same result as for the

case of the cascade of an i.i.d. deletion channel and an AWGN channel.

Fig. 6.5 compares the BER performance for different interference can-

cellation schemes over the MIMO deletion channel. We focus on the case of

Pd = 0.001 and rM = 48/50, and we set η = 0.6. We observe that there is
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Figure 6.4: Error rate performance with various Pd, α and marker code rate.

a noticeable gap between the joint detection algorithm in Section 6.3.1 and

the IC scheme in Section 6.3.2.1 (about 1dB for the first layer and 1.5dB for

the second layer). We can narrow this gap by applying the scheme introduced

in Section 6.3.2.2. It is also shown in the figure that, for this example, the

performance improves with further iterations and the bit error rate finally con-

verges to the joint detection result. However, we also observe an error floor,

which indicates existence of persistent errors when determining the locations

of deletions. This problem may be alleviated by using a lower rate marker

code, at the expense of a larger overhead.
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Figure 6.5: Error rate performance for different IC schemes.

For the case of the multiple access channel, we utilize an LDPC code of

length 1920 and rate 0.333 and marker codes with rates rM = 20/22, obtained

by inserting the two-bit marker “01” every 20 LDPC-coded bits. Again, we

set the SNR to be 1/σ2 and let Pd = 0.001. In Fig. 6.6, we plot the error-

rate performance for different α values. Clearly, a more distinctive channel

condition, i.e., a larger difference between two α values, leads to a better

performance yet more obvious gap between the two users.
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6.6 Chapter Summary

In this chapter, we have described channel models suitable for applications em-

ploying multiple transmit/receive elements and allowing multiple users with

imperfect synchronization. For the 2× 2 MIMO deletion channel, we have de-

veloped two detection algorithms operating at the bit level. The first detection

algorithm is based on the MAP criterion while the second approach utilizes

the IC scheme for the detection of layered space-time codes, which offers a

low-complexity solution. We have also described a detection/decoding scheme

for a 2-user Gaussian multiple access channel with i.i.d. deletion errors. By
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generating a vector of soft information for each transmitted bit from each

user and introducing an iterative decoding algorithm (between two LDPC de-

coders), we have shown that the information from two users can be successfully

decoded simultaneously, as confirmed by the simulation results.
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Chapter 7

SUMMARY AND CONCLUSIONS

Insertion and deletion errors represent some of the most important channel

impairments and exist in many applications including high data rate wire-

less communications, bit-patterned media recoding systems, and so on. Many

problems including finding tight upper and lower bounds on the channel ca-

pacity and developing good error correcting codes are extremely challenging

even for some seemingly simple cases.

In this dissertation, we have considered practical coding schemes over

i.i.d. insertion/deletion channels, i.e., using an outer LDPC code concatenated

with an inner marker code. We first described the bit-level MAP decoding

algorithm for Gallager’s insertion/deletion channel model. For single-pass de-

coding, through numerical mutual information analyses, we developed a tech-

nique that allows us to optimize the marker code based on the ultimate rate

achievable by the concatenated scheme. Moreover, we presented a new symbol-

level detection algorithm, which has been proved to outperform the standard

bit-level one in terms of achievable rates. We also considered a multi-pass

decoding with information exchange between the inner detector and the outer

decoder, and showed that by choosing good variable and check node degree

distributions, LDPC codes designed for insertion and deletion channels offer

better error correcting capabilities than those optimal for the AWGN-only

channels. Simulation results related to practical LDPC codes showing clear

performance gains were provided for both cases under consideration.

We have also studied segmented deletion channels introduced in [17]. In

this line of work, we first gave an argument that such channels are information
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stable, and their channel capacity exists. Then, we introduced several capac-

ity upper and lower bounds in an attempt to understand the channel capacity

behavior. The results indicate that when the deletion probability is near zero

or near unity (for each segment), the upper and lower bounds behave similarly

and the results very close to the capacity. However, there is a wide-range of

deletion probabilities where they are far apart, hence there is room for further

improvement in terms of obtaining tighter capacity bounds. In addition to the

information theoretic analysis of the channel, we also considered a practical

channel coding approach with suitable channel detection algorithms. Different

MAP based channel synchronization algorithms operating at the bit level and

at the symbol level were introduced, and their detection complexities were

compared. Using the same method for the case of i.i.d. insertion/deletion

channels, we designed specific LDPC codes for segmented deletion channels

which provide better performance than the one optimized for the AWGN chan-

nels. Simulation results clearly show the advantages of the proposed approach.

In particular, for the entire range of deletion probabilities less than unity, the

proposed approach offers a significantly larger transmission rate than the only

other alternative solution of the zero-error codes designed in [17].

As another contribution, we described the problem of coding over in-

sertion/deletion channel with ISI. We designed a MAP detection algorithm at

the bit level based on a modification of the trellis diagram used in [18], which

jointly achieves equalization for the ISI channel and synchronization for the in-

sertion/deletion channel. Then, as an alternative to the joint MAP detection,

we introduced several low-complexity solutions. We utilized the stack, M- and

T- algorithms implemented as simplifications of the full complexity forward

backward algorithm and also considered a separate channel detection scheme,
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i.e., concatenation of an equalizer for the ISI channel and a MAP detector for

synchronization purposes. We showed that these approaches greatly reduce

the decoding complexity, especially for channels with long memory or for high

insertion/deletion rates, at the expense of reduced decoding performance.

Finally, we focused on the case where multiple antennas and multiple

users are present. We first provided the system model and the motivation for

studying these channels. We designed two detection algorithms for a 2 × 2

MIMO deletion channel, one is the full-complexity bit level MAP detector

and the other explores suitable interference cancellation schemes. For a 2-

user multiple access channel in the presence of deletion errors, we introduced

a joint detection algorithm (with modifications of the MAP detector for the

2×2 MIMO deletion channel) and an iterative decoding strategy which enables

information exchange between the two LDPC decoders. Through illustrative

simulation results, we showed that reliable communications over these two

channels are possible.

To summarize, in this dissertation, we have studied an important chan-

nel impairment, namely, presence of insertion and deletion errors in commu-

nication systems. We focused on finding an efficient (low detection/decoding

complexity) yet good channel codes (with achievable rates close to the the ca-

pacity (bounds)) when synchronization errors are present. We demonstrated

that by utilizing a marker code concatenated with an LDPC code, reliable

communication is possible for (segmented) insertion/deletion channels with

substitution errors, ISI, multiple antennas and multiple users.

Based on our findings, we can cite several possible future research di-

rections. First of all, in all the results, we assume that perfect channel in-

formation is available at the receiver, i.e., Pi, Pd and Ps is accurately known.
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It would be interesting to study the impact of imperfect knowledge of the

insertion/deletion probabilities on the detection/decoding performance. Fur-

thermore, in this work, we focus on the use of marker codes for synchroniza-

tion, while on the other hand, watermark codes have been proposed as an

alternative solution [9]. A better performance may be obtained if the ideas

of watermark and marker codes can be combined together. Extensions of the

work on segmented deletion channels are also possible, i.e., more general cases

can be taken into account, such as the presence of insertion errors and multi-

ple synchronization errors per segment instead of only one. Note that in this

dissertation, LDPC code designs are only done for the i.i.d. insertion/deletion

channel and the segmented deletion channel. Same method can be applied

to insertion/deletion channels with ISI, MIMO deletion channels and multiple

access channels with synchronization errors. Last but not the least, when ad-

ditional constraints on the insertions/deletions are enforced, e.g., a minimum

gap between adjacent errors is K bits/symbols, or a presence of feedback loop,

e.g., the transmitter knows some knowledge about the insertion/deletion real-

ization, a better coding/decoding schemes may be designed.
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Appendix A

PROOFS OF RESULTS FROM CHAPTER 4

A.1 Proof of Lemma 1

Proof of Lemma 1. Define Dn to be an n-bit vector that contains a 1 if and

only if the corresponding bit in Xn is deleted. We have H(Dn) = n
b
(Pd log2 b+

H(Pd)). With this definition, the random processes D is non-stationary which

even though X is stationary and ergodic. In order to make it stationary, we

let the “first” segment of the channel start at a random position which is

uniformly chosen from {1, 2, . . . , b}, which does not affect the capacity. To

prove this, we write P (Dt = d0, Dt+1 = d1, . . . , Dt+τ = dτ ) =
∑b

i=1 P (Dt =

d0, Dt+1 = d1, . . . , Dt+τ = dτ |At = i)P (At = i), where At = i is the event that

Xt is the i-th bit of a segment. Clearly, P (At = i) equals 0 or 1 for different t

values and P (Dt = d0, Dt+1 = d1, . . . , Dt+τ = dτ |At = i) ̸= P (Dt = d0, Dt+1 =

d1, . . . , Dt+τ = dτ |At = j), ∀i ̸= j, τ > 0. Hence, D is not stationary. When

the input sequence starts at a random position of the segment, the positions

of all the segment boundaries become random variables and P (At) = 1/b.

Consequently, we have

P (Dt = d0,Dt+1 = d1, . . . , Dt+τ = dτ )

=
1

b

b∑
i=1

P (Dt = d0, Dt+1 = d1, . . . , Dt+τ = dτ |At = i)

=
1

b

b∑
i=1

P (Dt′ = d0, Dt′+1 = d1, . . . , Dt′+τ = dτ |At′ = i)

= P (Dt′ = d0, Dt′+1 = d1, . . . , Dt′+τ ),

where t ̸= t′. Hence, D becomes stationary. It is easy to deduce that

135



H(Y|Xn) = H(Dn,Y|Xn)−H(Dn|Y,Xn)

= H(Dn|Xn)−H(Dn|Y,Xn)

= H(Dn)−H(Dn|Y,Xn) . (A.1)

The exact evaluation of the termH(Dn|Xn,Y) is troublesome; however, under

the condition that Pd/b is small, it can be bounded.

The following arguments follow similar steps as in [16], which considers

the case of i.i.d. deletions. Let D̂n be the vector obtained by flipping “1”s in

Dn for two cases. First, when a particular run (consecutive bits of the same

value) experiences deletion errors, which is referred to as the error run, and the

number of deletions exceeds one, we flip all 1s in Dn which are associated with

that error run. Secondly, when different error runs span the same segment,

we flip all 1s in Dn which are associated with these error runs. One example

is given as follows. Suppose we transmit a sequence 001 000 001 110 over a

segmented deletion channel with b = 3, and receive 01000110. Obviously, one

bit gets deleted from each segment resulting in a total number of 24 possible

realizations of D (one of the two 0’s gets deleted from the first segment, one

of the three 0’s gets deleted from the second segment, one of the two 0’s gets

deleted from the third segment, and one of the two 1’s gets deleted from the last

segment). Since the third bit run (five consecutive 0’s) have two deletion errors

and the forth bit run with only one error but share the same segment with

another error run, we assume an auxiliary channel that generates 01000001110

and the corresponding D̂ can only be either 100 000 000 000 or 010 000 000

000 with equal probability. By doing so, we guarantee that every deletion

error from this auxiliary channel belongs to a bit run with a single deletion

and every bit from that run can be deleted with an equal probability.
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The process D̂ = f(D,X) is also stationary with P (D̂i = 1) being

upper bounded by Pd/b. A lower bound on P (D̂i = 1) can be obtained as

follows. Let l0 be the length of a bit run which contains Xi and spans (j−m1)-

th to (j + m2)-th segments. When D̂i = 1, the (j − m1)-th to (j + m2)-th

segments will not experience deletion error except the j-th segment, to which

Xi belongs. Also, any bit from a run which starts from the (j+m2)-th segment

or ends in the (j −m1)-th segment will not be deleted. Let l1 and l2 be the

run lengths of the run which ends in the (j −m1)-th segment and starts from

the (j+m2)-th segment, respectively. There is only one deletion error in these

segments and it has to be in the j-th segment. Therefore, considering the

worst case scenario, we have,

P (D̂i = 1) ≥
∞∑

l1,l2=1

Pd

b
(1− Pd)

l0+l1+l2+4(b−1)PL(l1, l2)

≥ Pd

b
− (l0 + E[l1] + E[l2] + 4(b− 1))P 2

d .

For any input process with a finite average run length, we can write P (D̂i =

1) ∈ (Pd/b−K∗l0P
2
d , Pd/b), where K∗ < ∞ is a nonnegative integer.

With the above definition of D̂ and letting Ŷ to be the outcome of Xn

corresponding to the deletion pattern D̂n, it is clear that runs with length l = 1

do not contribute to H
(
D̂n|Xn, Ŷ

)
. Furthermore, no run with more than

one deletion can contribute to H
(
D̂n|Xn, Ŷ

)
as they all have been reversed.

Therefore, only runs with length l ≥ 2 and one deletion lead to a contribution

of log2 l to H
(
D̂n|Xn, Ŷ

)
since the deleted bit is uniformly chosen, which is

guaranteed by the definition of D̂ and the channel model. Finally, we con-

clude that H(D̂n|xn, ŷ) =
∑

r∈R log2(lr), where R is the set of runs on which

deletions occur and lr is the corresponding run length. Therefore, from [16],
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for any stationary ergodic process such that E[L0 log2 L0] < ∞, we have

lim
n→∞

1

n
H
(
D̂n|Xn, Ŷ

)
=

Pd

b
E[log2 L0]− δ , (A.2)

where 0 ≤ δ ≤ K∗P 2
dE[L0 log2 L0].

Define Z = D ⊕ D̂, which represents the difference between D and

D̂. The process Z is stationary with z = P (Zi = 1) ≤ K∗E[L0]P
2
d . Note

that (Xn, Ŷ, D̂n) is a function of (Xn,Y,Dn,Zn), we have |H(Xn,Y,Dn) −

H(Xn, Ŷ, D̂n)| = |H(Xn,Y,Dn)−H(Xn,Y,Dn,Zn)| = H(Zn|Xn,Y,Dn) ≤

H(Zn). Same argument also holds for |H(Xn,Y) − H(Xn, Ŷ)|. Therefore

from [16], |H(Dn|Xn,Y) − H(D̂n|Xn, Ŷ)| ≤ 2H(Zn) ≤ 2nH(z) Hence, the

following equation follows,

H(Y|Xn) = H(Dn)−H(D̂n|Xn, Ŷ) + nδ′ , (A.3)

where −2H(z) ≤ δ′ ≤ δ + 2H(z). Combining (A.2) and (A.3), we obtain

lim
n→∞

1

n
H (Y|Xn) =

Pd

b
log2 b+

H(Pd)

b
− Pd

b
E[log2 L0] + δ′ . (A.4)

For the input process X∗, it is easy to verify that E[L0 log2 L0] < ∞. In this

case, z = O(P 2
d ), and therefore, δ′ = O(P 2−ϵ

d ) for any ϵ > 0. Hence, from

(A.4), the lemma is proved.

A.2 Proof of Lemma 2

Proof of Lemma 2. Lemma 2 provides a lower bound on limn→∞
1
n
H (Y|Xn).

Based on the result given in (A.4), the only work is to quantify the lower

bounds on δ′ and E[log2 L0] for any stationary ergodic process.

First of all, (A.3) states that δ′ ≥ −2H(z). From the proof of Lemma 1,

we have z = P (Zi = 1) ≤ K∗E[L0]P
2
d . According to [16] (Lemma IV.3), for

any stationary ergodic process satisfying the condition H(X) > 1 −
(
Pd

b

)1−γ
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(γ > 0), the mean of the bit perspective run lengthE[L0] ≤ K ′(1+
(
Pd

b

)1/2−ϵ′

L∗),

K ′ < ∞ for any integer L∗. Combining the upper bound on z and E[L0],

we conclude that H(z) ≤ K ′′P 2−ϵ
d (1 + P

1/2
d L∗) ∀Pd < Pd,0 and consequently

δ′ ≥ −K ′P 2−ϵ
d (1 + P

1/2
d L∗) [16], where K ′ < ∞ is a positive integer. Also

from [16] (Lemma IV.3), we have |A− E[log2 L0]| = O(P
1/2−ϵ
d log2 L

∗). Com-

bining these results with (A.4), the lemma is proved.

A.3 Proof of Lemma 3

Proof of Lemma 3. In this case, define D̂n to be generated by flipping the ones

in Dn when the corresponding error run spans two segments, which is different

from the one defined in the proof of Lemma 1. In order to obtain a stationary

process D̂, we still let the first segment of the input process start at a random

position which is uniformly chosen from {1, 2, . . . , b}.

For any stationary and ergodic processX, the starting point of a bit run

is uniformly distributed within the segment1. Also, since the positions of the

segment boundaries are random with a uniform distribution, the probability

that the error run with length l0 spans two segments is l0−1
b
, if we restrict the

input process X ∈ Sb, i.e., l0 ≤ b. Therefore, it is clear that P (D̂i = 1) =

Pd

b
(1− l0−1

b
). Also, with the same definition of Z as in the proof of Lemma 1,

we have z = P (Zi = 1) ≤ b−2E[L0]. Following the same steps of the proof

in Lemma 1, we have, for any stationary ergodic process X ∈ Sb such that

E[L0 log2 L0] < ∞,

lim
n→∞

1

n
H
(
D̂n|Xn, Ŷ

)
=

Pd

b
E[log2 L0]−

Pd

b2
E[(L0 − 1) log2 L0] . (A.5)

1To see this, let us first consider the case of b = 2 and suppose that the bit run starts
at the first bit of the segment with probability p1 and at the last bit of the segment with
probability p2. Clearly, p1 = p1 ·peven+p2 ·podd, where peven and podd are the probabilities
of the run length being an even or odd number, respectively. Since peven = 1 − podd, we
have p1 = p2 = 0.5. Extension to the general case is straightforward and the detailed proof
is omitted.
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Substituting (A.5) into (A.3), the following result appears under the same

condition,

lim
n→∞

1

n
H (Y|Xn) =

Pd

b
log2 b+

H(Pd)

b
− Pd

b
E[log2 L0] + δ′ , (A.6)

where −2H(z) ≤ δ′ ≤ δ + 2H(z), δ = b−2E[L0 log2 L0].

For the processX∗
b ∈ Sb, z ≤ b−2E[L0] = O(b−2), and therefore,H(z) =

O(b−2+ϵ). Since −2H(z) ≤ δ′ ≤ b−2E[L0 log2 L0] + 2H(z) and it is easy to

verify in this case E[L0 log2 L0] < ∞, we conclude that δ′ = O(b−2+ϵ) for any

ϵ > 0. Hence, (4.16) is proved.

To show (4.15), we follow the same rationale in the proof of of Lemma 2.

since z ≤ b−2E[L0] and for any stationary ergodic process satisfying the

condition H(X) > 1 −
(
Pd

b

)1−γ
(γ > 0), E[L0] ≤ κ′(1 +

(
Pd

b

)1/2−ϵ′

b) (let

L∗ = b), we get H(z) ≤ κ⋆b−2+ϵ(1 + b1/2) ∀b > b0. Using the conclusion that

|A− E[log2 L0]| = O(b−1/2+ϵ) [16] (Lemma IV.3), the result follows.
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