
Minimizing Total Weighted Tardiness in a Two Staged Flexible Flow-shop with Batch

Processing, Incompatible Job Families and Unequal Ready Times

Using Time Window Decomposition

by

Anubha Alokkumar Tewari

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved July 2012 by the

Graduate Supervisory Committee:

John Fowler, Co-Chair

Lars Monch, Co-Chair

Esma Gel

ARIZONA STATE UNIVERSITY

July 2012

 i

ABSTRACT

This research is motivated by a deterministic scheduling problem that is fairly

common in manufacturing environments, where there are certain processes that call for a

machine working on multiple jobs at the same time. An example of such an environment

is wafer fabrication in the semiconductor industry where some stages can be modeled as

batch processes. There has been significant work done in the past in the field of a single

stage of parallel machines which process jobs in batches. The primary motivation behind

this research is to extend the research done in this area to a two-stage flow-shop where

jobs arrive with unequal ready times and belong to incompatible job families with the

goal of minimizing total weighted tardiness.

As a first step to propose solutions, a mixed integer mathematical model is

developed which tackles the problem at hand. The problem is NP-hard and thus the

developed mathematical program can only solve problem instances of smaller sizes in a

reasonable amount of time. The next step is to build heuristics which can provide feasible

solutions in polynomial time for larger problem instances. The basic nature of the

heuristics proposed is time window decomposition, where jobs within a moving time

frame are considered for batching each time a machine becomes available on either stage.

The Apparent Tardiness Cost (ATC) rule is used to build batches, and is modified to

calculate ATC indices on a batch as well as a job level.

An improvisation to the above heuristic is proposed, where the heuristic is run

iteratively, each time assigning start times of jobs on the second stage as due dates for the

jobs on the first stage. The underlying logic behind the iterative approach is to improve

the way due dates are estimated for the first stage based on assigned due dates for jobs in

the second stage.

 ii

An important study carried out as part of this research is to analyze the bottleneck

stage in terms of its location and how it affects the performance measure. Extensive

experimentation is carried out to test how the quality of the solution varies when input

parameters are varied between high and low values.

 iii

ACKNOWLEDGMENTS

My research, presented in the printed pages of this thesis signifies much more

than the work I did in the duration of my graduate work at Arizona State University. It

serves as a strong reminder of all that I was able to accomplish because of the amazing

people that I have met and who have inspired me in many ways.

First and foremost I would like to extend my gratitude to Dr. John Fowler, my

professor and co-chair of my thesis committee. He has been instrumental in encouraging

me to pursue my interest in research in deterministic scheduling. I would like to thank

him for his able guidance and continued support, which helped me complete my thesis.

I am very grateful to Dr. Lars Moench for his support and constant

encouragement throughout the time that I have worked on my thesis. Dr. Moench was

kind enough to serve as the co-chair on my thesis committee as well. He has been a great

source of knowledge and help, always providing direction and valuable feedback at every

juncture in my road to completion.

My thanks and appreciation goes to my committee member, Dr. Esma Gel for her

time and support, not just in the course of my research but throughout my time at ASU.

Michael Clough and Siddharth Sampath, have served as more than colleagues,

time and again providing me with very important insights and helping me understand a

lot of complex concepts involved in my research.

I would like to take this opportunity to thank Raj Nooti and Michael Britman of

US Airways, for giving me the opportunity to apply the knowledge I have gained during

my masters and also for their compassionate understanding of my hectic schedule during

the final stages of my research.

 iv

I must include a special mention of gratitude to my roommate Soumya Poduri

and my good friend Jaiditya Namburi for being my family while at school, being really

supportive of my work and cheering me on.

Last but definitely not the least I will remain forever grateful to my parents,

without their constant support and unconditional love I would have never been able to

realize my true potential. They never stopped believing in me and that has truly helped

me plough through my research.

 v

TABLE OF CONTENTS

 Page

LIST OF FIGURES .. vii

LIST OF TABLES .. viii

CHAPTER

1 INTRODUCTION ... 1

2 PROBLEM DESCRIPTION ... 2

3 LITERATURE REVIEW .. 4

4 PROBLEM ASSUMPTIONS ... 8

5 MATHEMATICAL MODEL ... 10

6 HEURISTICS DEVELOPED ... 13

6.1 BATC Heuristic .. 13

6.2 Iterative BATC Heuristic .. 17

7 EXPERIMENTATION ... 20

7.1 Comparison Heuristics .. 20

 7.1.1 Batching and scheduling based on Earliest Due Dates 20

 7.1.2 Batching and scheduling based on Release Dates 21

 7.1.3 Batching and scheduling based on ATC 21

 7.1.4 Batching and scheduling based on Random Order 22

7.2 Test data generations and design of experiments 22

8 COMPUTATIONAL RESULTS .. 28

8.1 Effect of number of machines and batch sizes 29

8.2 Effect of G1 (due date tightness factor) and α (release date factor) 31

8.3 Effect of number of jobs/family ... 33

8.4 Effect of bottleneck criticality factor .. 33

 vi

CHAPTER Page

8.5 Effect of number of families ... 34

8.6 Effect of varying time window ... 36

8.7 BATC v/s Iterative BATC .. 36

9 CONCLUSIONS AND FUTURE WORK ... 38

9.1 Conclusions ... 38

9.2 Future Work .. 39

REFERENCES ... 40

APPENDIX

A MATHEMATICAL MODEL CODE ... 42

 vii

LIST OF FIGURES

Figure Page

2-1 Schematic Representation of Problem .. 3

6-1 Implementation of Time Window .. 13

 viii

LIST OF TABLES

Table Page

7-1 Test data generation parameters ... 25

 8-1 Comparison of mathematical model to hueristics .. 28

 8-2 Time taken to compute problem instances ... 29

8-3 Effect of number of machines on each stage .. 30

8-4 Effect of batch size .. 30

8-5 Effect of release date factor ... 32

8-6 Effect of due date tightness factor ... 33

8-7 Effect of number of jobs/family .. 33

8-8 Effect of bottleneck criticality factor .. 34

8-9 Effect of number of families ... 35

8-10 Effect of number of families outside of experimentation 35

8-11 Effect of varying the time window ... 36

 1

Chapter 1

INTRODUCTION

The environment under consideration for the purpose of this research is a

deterministic scheduling problem based on a two-stage flexible flow shop with a goal of

minimizing total weighted tardiness. The problem is complicated by adding jobs that

belong to incompatible families that arrive at different times.

Overall the problem is classified as a FF2|batch incompatible, ri|∑wiTi in the α|β|γ

notation of Graham et al. (1979) [17]. This is a common environment seen in many

manufacturing and packaging processes in industry. Problems with batching of

incompatible families that minimize total weighted tardiness have been proven to be NP-

hard. Moreover, since the case of FF1|batch incompatible, ri|∑wiTi problem has already

been proved to be NP-hard by Moench et al. (2005) [9] and this research has added

several layers of complexity, it becomes obvious that it too is NP-hard.

An example of this environment is semiconductor wafer fabrication where jobs,

called lots, need to be batched on parallel machines on consecutive stages. However, lots

of different families cannot be put together in one batch because of process restrictions.

Oxidation and diffusion process in semiconductor manufacturing are examples of

incompatible batch processes. Moench et al. (2005) [9] mention in their paper that these

processes generally take a longer amount of time as compared to the other steps in

semiconductor fabrication. Improvements in terms of reducing tardiness in even small

amounts significantly improve the manufacturing process. This makes the problem

environment investigated in the research very interesting.

 2

Chapter 2

PROBLEM DESCRIPTION

The focus of this research is to develop heuristics which will provide feasible

schedules that seek to minimize total weighted tardiness in a two stage flow-shop with

jobs that belong to incompatible job families and have unequal (but deterministic) ready

times. In other words, jobs have to be scheduled to be processed in batches on both stages

and each stage has a bank of identical parallel machines. Jobs arrive at the first stage at

deterministic, but not necessarily equal, arrival (ready) times. The problem is simplified

by assuming that all jobs belonging to the same family will have identical processing

times and that all machines are capable of processing all families. Due to this assumption

the problem at hand takes the form of a flexible flow-shop. It must be noted however, that

while each machine is capable of processing all types of job, jobs of different families

cannot be batched together on account of differences in processing requirements. After

the first stage, the jobs are re-batched in preparation for the second stage. An important

assumption made here is that there is unlimited buffer space between the two stages.

Overall the problem is designated as FF2|batch incompatible, ri|∑wiTi in the

α|β|γ notation of Graham et al. (1979) [17]. Here, wi is the weight of job i and ri is its

ready time.

The performance measure that will be minimized is total weighted tardiness.

Weighted tardiness of a job is calculated as the weight (importance/priority) of that job

times its tardiness. Tardiness is calculated as the non-negative difference between the

completion time (Ci) and the due date (di) for a job, i.e. max (0, Ci – di). This measure is

summed over all jobs in the instance to obtain total weighted tardiness.

The figure below represents the problem described above that is the focus of this

research.

 3

Figure 2-1 Schematic Representation of Problem

Since the job environment calls for unequal ready times, an important aspect of

this research is to weigh the possibility of starting non-full batches against waiting to

complete the batch depending on how the performance measure is affected.

In this research, we will test the heuristic for four different possible scenarios

involving batching and serial processing (no batching) on parallel machines at each stage.

The combinations tested will be serial-parallel batching, parallel batching-serial, serial-

parallel batching and serial – serial (no batching on either stage). In the fourth case it

becomes a two stage, parallel machine flow-shop which is still an NP-hard problem for

the problem with total weighted tardiness as the performance measure.

 4

Chapter 3

LITERATURE REVIEW

Within job scheduling, batching jobs in a flow-shop environment is a popular

subject for research. A lot of work has been done in this field predominantly because of

its implication and applied usefulness to the semiconductor fabrication processes.

Batching with incompatible families can be classified into either serial or parallel

batching. Serial batching is where the total processing time of a batch is determined by

the sum of all the processing times of the jobs that constitute the batch. On the other

hand, in parallel batching the processing time of the batch is governed by the processing

time required by the family to which the jobs of that batch belong i.e. all jobs belong to

the same family and will have the same processing time which is also the processing time

of the batch. Parallel batching is sometimes also referred to as “p-batching”.

Cheng et al. (2004) [1] studied batching in a two stage flow-shop with dedicated

machines in the second stage and minimizing make-span (F2|batching|Cmax) where F2

stands for a two stage flow-shop. Their work proposes an algorithm called CHECK

which solves for a feasible solution by recursive computation of batch sizes and is solved

in O(n
F
).

Kim et al. (2009) [2] consider the problem of a hybrid flow-shop with ready

times and a product-mix ratio constraint (F2|rj, compatible batching|Cmax). Their paper

suggests three algorithm, namely forward scheduling, backward scheduling and iterative

search, and within each algorithm, different combinations of dispatching rules are used.

The authors suggest that future scope for research includes development of local search

or meta-heuristics to develop a solution that minimizes Cmax.

C. J. Liao et al. (2008) [3] came up with a couple of mixed integer linear

programs to tackle the problem of a two machine flow-shop with batching in two

 5

scenarios one with waiting between the two stages and the other with no waiting or buffer

between them. The paper considers p-batching. The performance measure they minimize

is Cmax and the lower bound for each model is calculated by batching jobs by the LPT

(longest processing time) rule on one machine and then taking the other machine into

consideration by adding the processing time of the other machine to the cumulative

completion time. Alternatively, they also propose a heuristic which uses a time limited

version of the developed MILP models to compute near optimal solutions.

Cheng et al. (1996) [4] study an environment where “m” parallel machines exist

per stage in a flexible flow-shop. The paper suggests a dynamic programming (DP)

algorithm (initialized using shortest processing time). In the algorithm DP, batches

containing consecutive jobs (arranged by SPT) are created and then scheduled on the

machines from the end of the schedule to the front. The complexity of their algorithm is

O(mn
m+1

) where "n" independent and simultaneously available jobs are to be scheduled

on “m” identical parallel machines. A lower bound is determined by simplifying the

problem by assuming that the processing times are identical.

Oulamara (2007) [5] investigated a flow-shop environment with a parallel

batching machine and job dependent set up times (F2|p-batch, no-wait|Cmax). The paper

proposes two algorithms to solve for optimal schedules using valued graphs based on

processing times and weights assigned to jobs.

Hall et al. (2003) [6] studied a problem of the reverse nature where there is lot

splitting in order to reduce the work in progress and lead times. The research done by the

authors is interesting because of their approach to the problem. The paper suggests that

the problem can be modeled into a Generalized Travelling Salesman problem (GTSP).

Since the GTSP is not useful in larger problem instances the paper suggests a heuristic

 6

algorithm in two phases that first uses a taboo search and then followed by the use of a

greedy algorithm to minimize the makespan.

Brucker et al. (1998) [7] show that in parallel batching machines using some

version of the SPT batch rule on each machine when there is no restriction on batch sizes

is optimal to minimize makespan. However, with fixed batch sizes the dynamic

programming algorithm used for a single machine can be generalized to give a pseudo-

polynomial (in the sum of processing times) algorithm which can be used to solve for an

optimal makespan. The authors also consider single batching machines where they give a

forward dynamic programming algorithm with batch appending which is solved in

O(n
2
P). This problem is binary NP-hard and considers p-batching.

Tang and Liu (2009) [8] considered a two stage flow-shop with one machine in

each stage, where the first machine processes jobs one at a time and the second in

batches. Jobs are assumed to have unequal ready times. The authors propose an MIP

which solves for optimality in small instances and a combination of a Dynamic

Programming algorithm for batching and heuristics based on dispatching rules to

sequence batches.

This research is an extension of the research done by Moench et al. (2005) [9]

where they study a single stage Pm|batch, incompatible|∑ (wiTi) problem. They extend the

research done by Balasubramanian et al. (2004) [10] and Moench et al. (2002) [11] in the

area of solving for Pm|batch, incompatible|∑(wiTi) using genetic algorithms to include

parallel machines in the flow-shop.

Moench et al. (2005) [9] develop two approaches to solve the Pm|batch,

incompatible|∑ (wiTi) problem. The first involves using the genetic algorithm (GA) to

form batches and then schedule them on machines. In their second approach the authors

propose using the GA to first assign jobs to machines and next forms batches and finally

 7

sequences them using dispatching and scheduling approaches for the batching and

sequencing portions. Additionally, they develop a time window decomposition heuristic

which uses a modified version of the ATC rule. Only jobs which are ready in a time

window of t + Δt are considered to form batches and then scheduled on machines after

the best combination of jobs that can form a batch is determined using ATC.

Klemmt et al. (2009) [12] considered a problem which deals with parallel

batching machines in a single stage. They consider unequal ready times and unrelated

parallel machines, where not all jobs can be processed on all machines. They compare the

results of this mathematical model to solutions obtained by using variable neighborhood

search and batching by ATC techniques. The MIP is used for all jobs within each time

window and finds the optimal solution by considering all job combinations. Our research

extends their mathematical model to incorporate a second stage of machines, identical

parallel machines on each stage and incompatible job families where all batch sizes are

the same.

In his doctoral dissertation Devpura [13] approaches the problem of solving for

scheduling batches on parallel machines using a variety of techniques including dynamic

programming, a decomposition heuristic, integer programming with column generation,

ordering heuristics (like earliest due date, ATC, and weighted SPT) etc. However, the

environment solved for does not include unequal ready times.

 8

Chapter 4

PROBLEM ASSUMPTIONS

The assumptions of this research are similar to those made by Klemmt et al.

(2009) and Moench et al. (2005). The assumptions made to simplify the problem at hand

are:

1. There exist f job families. F := {1,…, f } represents the set of all families.

2. Jobs from different families cannot be processed as part of the same batch.

3. There are n jobs to schedule. I := {1,…,n} represents the set of all jobs.

4. There are m1 and m2 identical machines in parallel in stage 1 and 2, respectively.

M1 := {1,…,m1} and M2 := {1,…,m2} represent the set of all machines for stages

1 and 2, respectively.

5. Machine preemption is not allowed.

6. The family of job i is represented as fi.

7. The priority weight for job i is represented as wi.

8. The due date of job i at the end of stage 2 is represented as di.

9. The processing time ps,i of job i on stage s is assumed to be equal on all machines

in the stage. Also it is equal for all jobs of the same family for a single stage.

Processing time is a function of family and stage.

10. The ready time of job i for stage 1 is represented as ri. These may be unequal, but

are deterministic i.e. known ahead of time.

11. The number of jobs that can be processed in one batch depends only on stage.

This is defined by Bs, for stage s.

12. All families f can be processed on all machines on each stage.

13. The completion time of job i is denoted by Ci.

 9

14. The weighted tardiness of job i is represented as wiTi= wi*max (Ci - di)
+
, where

x
+
 stands for the maximum of between x and 0.

15. Infinite buffer space exists between the two stages.

 10

Chapter 5

MATHEMATICAL MODEL

The MILP formulated below is an extension of the MILP formulated by Klemmt

et al. (2009) but has been modified and extended to fit the problem at hand. In the MILP

proposed by Klemmt et al. mentioned above, the model is built to optimize total weighted

tardiness on a single stage with “m” parallel machines. The MILP below solves our

problem at hand - FF2|batch incompatible, ri|∑wiTi.

While extending the above model above to match this research, the model had to

be modified to allow for all jobs to be processed on each machine. In the model indices i,

j, k, l and s are used to depict job, batch, machine, family, and stage, respectively.

Further, J, K and L stand for the maximum number of batches, machines and families in

the problem instance. M (big M) is a very large number used to make the MILP linear in

nature. The parameters used in the mathematical model are:

1. di = Due date for job i on stage 2.

2. wi = Weight of job i.

3. al,i= 1 if job i belongs to family l, 0 otherwise.

4. Bs= Maximum batch size of stage s.

5. ps,i = Processing time for job i on stage s.

6. ri = Ready time of job i to process in Stage 1.

The decision variables used in the mathematical are:

1. xi,j,k,s= 1 if job i belongs to batch j on machine k for stage s, 0 otherwise.

2. yj,k,l,s=1 if batch j on machine k will process family type l for stage s, 0 otherwise.

3. sj,k,s = Start time of batch j on stage s on machine k.

4. Ci,s = Completion time for job i in stage s.

 11

5. Ti = Tardiness of job i.

The MILP for FF2|batch incompatible, ri|∑wiTi is as follows.

Min ∑ (5.1)

Subject to:

∑ ∑

 For all i, s; (5.2)

∑

 s, For all j,k,s; (5.3)

∑

 For all j,k,s, L=max for each job type; (5.4)

 For all i,j,k,s and l ∊ family of job i; (5.5)

 For all i,j,k; (5.6)

 For all i,j,k1,k2,s; (5.7)

 () For all i,j,k,s; (5.8)

 () For all j,k; (5.9)

 For all i. (5.10)

 For all i,j,k,s (5.11)

Equation (1) represents the objective function i.e. total weighted tardiness that

this mathematical model is trying to minimize. Constraint set (2) ensures that each job is

processed in exactly one batch and on exactly one machine on each stage. Maximum

batch sizes on each stage are limited by constraint set (3). Constraint set (4) ensures that

all jobs in a batch (on either stage) belong to the same family. Constraint set (5) ensures

that a job is not part of a batch processing jobs from another family. Together constraint

sets (4) and (5) ensure that only jobs of the same family are part of a batch. Constraints

(6) and (9) make sure that a job is put on a machine in stage 2 only after it is ready or has

 12

completed processing on stage 1. Constraint set (7) compels the model to start a new

batch on a machine only after the previous one completes processing. Constraint set (8)

limits the values that can be assigned to the completion time of each job. Constraint (10)

determines the objective function (1) to be minimized. Constraint set (11) contains the

non-negativity constraints.

 13

Chapter 6

HEURISTICS DEVELOPED

The primary heuristic used in this research is a modification and extension of a

batching and sequencing heuristic suggested by Moench et al. (2005) [9] for a single

stage of parallel batching. This heuristic makes use of the ATC (apparent tardiness cost)

index first proposed by Vepsalainen and Morton (1987) [14].

6.1 BATC Heuristic

The basic fundamental of this heuristic is to only consider jobs ready to be

processed in a certain time window (t, t + Δt). The logic is that every time a machine

becomes free on either stage, hypothetical batches are formed (one from each family) and

one of these is chosen to be scheduled on the machine for processing. The important

aspect remains that the batches mentioned above are only formed from the set of

unscheduled jobs which are ready at a time less than the upper limit of the time window

(t, t + Δt). The figure below depicts how a batch is chosen from all jobs ready in the time

window t to t + Δt.

Figure 6-1 Implementation of Time Window

 14

Using notation similar to that used by Moench et al. (2005), the set of

unscheduled jobs from family l, with ready times that fall in the time window are

designated by:

M(l, t, Δt) := {il | ril < t + Δt} (6.1)

Here, ril stands for the ready times of job i of family l. Further, another set is

defined based on the above set with an additional constraint which dictates the maximum

number of jobs to be considered:

M`(l, t, Δt, thresh) := {il|il ∈ M (l, t, Δt) and pos(il) < thresh}. (6.2)

Pos(il) refers to the position of job i from family l with respect to Iil, where Iil is

the criterion (ATC) for evaluating jobs. Thresh is a threshold used to calculate the

maximum number of jobs i to be considered from family l within the time window (t, t +

Δt) for batching purposes. In the case that the number of jobs in set M` exceeds the

maximum batch size of the machine for which these batches are being formed, all

possible batch combinations of family l, from set M` will have to be considered.

It is important to note that the amount of time taken to compute all possible batch

combinations when a machine becomes available depends on the values we assign to Δt

and thresh. The smaller the time window and thresh value, the fewer jobs will be

considered for batching from a family l when a machine becomes available at time t.

The criterion used to evaluate batches is a modification of the ATC index

described below, where Iil,ATC is the index for job i of family l at time t:

 () (

) (

 (()
)

 ̅
) (6.3)

Here, k in the denominator stands for the look-ahead parameter and ̅ stands for

the average processing time of the unscheduled jobs. Using the parameter thresh, M`(l, t,

Δt, thresh) is formed from the set M(l, t, Δt) after it is ordered based on non-decreasing

values of Iil,ATC.

 15

From the above ordered set of jobs, M’ we form possible combinations of batches

for each family once a machine is available. A slightly modified version of the ATC rule

called the BATC rule is used as a metric to evaluate best batches. This rule was suggested

by Moench et al. (2005) [9] and is given below.

 () ∑ (

) (

 (()
)

 ̅
)

 (

) (6.4)

In the equation above, rbk denotes the maximum ready time of jobs in the batch

being formed, rbk = maxi∈Bik (rik), nbk is the number of jobs in the batch and B is the

maximum batch size of the machine under consideration. The calculation of this index

has two significant parts. One being, that, if a batch is not completely full the BATC

index of the batch is reduced. This is done by appending the last term to the equation,

which reduces the ATC index of the batch by multiplying it by the ratio of “fullness”

(between 0 and 1) of the batch in the case that the batch is not completely full. Thus, by

penalizing batches which aren’t completely full this rules tries to increase the fullness of

the batch. The other important point is the inclusion of the term (rbk - t)
+
 to the main slack

term. This ensures that if the jobs which are to be included in a batch being formed are

not ready, the importance/ATC index of the batch should be reduced/decreased.

The algorithm used to solve the two stage flexible flow-shop at hand using the

two ATC indices/rules defined is given below:

1. First due dates are calculated for stage 1 for each job by calculating and assigning

half the slack available to each stage. Slack = max (0, d2i – p1j – p2j - ri) and d1j =

(ri + p1j + Slack/2) where d1i and d2i are due dates for job i on stage 1 and 2,

respectively.

2. A suitable value is chosen for Δt which is the time window within which

unscheduled jobs are considered for batching. At a given time t, the set M(l, t, Δt)

is formed which, is then ordered by non-decreasing Iil index (calculated for all

 16

unscheduled jobs of each family). From this ordered set, using an assigned value

for the parameter thresh we form the set M`(l, t, Δt, thresh).

3. We then select the first machine k, that becomes available at a time less than or

equal to time t. After this, BATC (batch ATC) values are computed for all

possible batches (one of each family). From all the batches formed, the one with

the highest BATC value is selected to be scheduled for processing on this

machine k.

4. The new ready time for machine k, as well as completion times for jobs in the

batch j that has just been processed are calculated. The new ready time for

machine k becomes max (t, rbl) + p1j, where p1j is the processing time of the

family which forms batch j for stage 1. The above three steps are repeated until

all jobs have been scheduled for processing on stage 1. Completion times for the

jobs are calculated by adding processing time p1j to current time of system/start

time of batch.

5. Steps 1, 2, 3 and 4 are executed until all jobs are scheduled to be processed on

stage 1.

6. Completion times on stage one for a job i become the ready times of the jobs for

stage 2.

7. For stage two, sets M and M` are calculated at time t, given that values for Δt and

thresh are taken to be the same as for stage 1.

8. Each time a machine k becomes available, from the set M`, possible

combinations of batches are formed and the decision index BATC is calculated

for each of them.

 17

9. The batch with the highest BATC index is assigned to machine k. Using the

processing time required for family l that batch j is from, we now calculate new

ready time for machine k as well as new completion times for the jobs in batch j.

10. Repeat steps 6, 7, 8, and 9 iteratively to schedule all jobs for stage 2.

Considering the fact that the due date and slack of a job play a very important

role in its batching process; we come up with an additional heuristic which, exploits this

quality of the ATC and BATC indices. In the above heuristic due dates for stage 1 are

calculated from given due dates of stage two simply by calculating slack values for each

job and then assigning half the slack to each stage. Since this way of assigning due dates

isn’t as efficient in terms of distributing slack to the stage where it is needed more, the

second heuristic aims to improve the method in which ATC and BATC are calculated by

assigning more appropriate due dates for stage 1.

6.2 Iterative BATC Heuristic

The second heuristic is called the Iterative BATC approach. The important

difference between this approach and the basic BATC heuristic described above is that

each job undergoes two separate passes through the BATC heuristic. The first pass is as

described in the heuristic above. However, before the second pass an essential adjustment

is made to the calculated due dates of each job. From the first pass of the heuristic we

have values for s2i (the starting time of each job i on stage 2). Due dates for stage 1 are

assigned these values, d1i = s2i. The fundamental logic behind this is that if a job doesn’t

need to start until a certain time t on stage 2 it doesn’t have to complete processing on

stage 1 until time t as well.

The main difference between the two approaches will be seen in those jobs which

are important but have a greater amount of slack that can be assigned to stage 1 since

there is a long waiting time between the two stages.

 18

The algorithm used to implement the Iterative BATC approach is very similar to

the BATC approach save a reassignment of values and is given below:

1. Steps 1 – 10 of the algorithm for the BATC heuristic are carried out as is.

2. New due dates are assigned for stage 1 for each job i as d1i = s2i, where s2i is the

starting time for job i on stage 2 as calculated by the BATC heuristic.

3. At a given time t, the set M(l, t, Δt) is formed which is then ordered by non-

decreasing Iil index (calculated for all unscheduled jobs of each family). From

this ordered set, using an assigned value for the parameter thresh we form the set

M`(l, t, Δt, thresh).

4. We then select the first machine k that becomes available at a time less than or

equal to time t. After this, BATC values are computed for all possible batches

(one of each family). From all the batches formed, the one with the highest

BATC value is selected to be scheduled for processing on this machine k.

5. The new ready time for machine k, as well as completion times for jobs in batch j

that has just been processed is calculated. The new ready time for machine k

becomes max (t, rbl) + p1j, where p1j is the processing time of the family which

forms batch j for stage 1. Completion times for the jobs are calculated by adding

processing time p1j to current time of system/start time of batch.

6. Steps 2, 3, 4 and 5 are executed till all jobs are scheduled to be processed on

stage 1.

7. Completion times on stage one for job i become the ready time of the job for

stage 2.

8. For stage two, sets M and M` are calculated at time t, given that values for Δt and

thresh are taken to be the same as for stage 1.

 19

9. Each time a machine k becomes available, from the set M`, possible

combinations of batches are formed and the decision index BATC is calculated

for each of them.

10. The batch with the highest BATC index is assigned to machine k. Using the

processing time required for family l that batch j is from we now calculate new

ready time for machine k as well as new completion times for jobs in batch j.

11. Repeat steps 7, 8, 9 and 10 iteratively to schedule all jobs for stage 2.

One drawback of running a single iteration of the Iterative BATC heuristic

occurs because of the ATC index used to order jobs by priority. Since the new internal

due dates are the starting times of stage 2, in the second pass of the Iterative BATC

Heuristic, those jobs which are unimportant and are completed after their due dates may

be even tardier in this pass.

This can be solved by running the Iterative BATC heuristic multiple times,

(iteratively) until the value of the total weighted tardiness is not improved any further by

running more iterations. The heuristic is coded such that the problem instance is passed

through multiple iterations of the Iterative BATC until the value of the objective function

does not change with further iterations. The iteration with the lowest value of total

weighted tardiness is reported as the final solution for that problem instance.

 20

Chapter 7

EXPERIMENTATION

The mathematical model (MILP) formulated as part of this research can provide

a basis for the effectiveness of the BATC and Iterative BATC heuristics, but, only for

relatively small problem instances. Being an NP-hard problem, if the problem instance to

the MILP is increased beyond a certain size it becomes unsolvable in a reasonable

amount of time using the mathematical model. The results are discussed in Chapter 8 i.e.

Computational Results. This creates the need for another heuristic which can provide a

reliable basis for comparison of solution quality when running larger problem instances.

7.1 Comparison Heuristics

Given the nature of the problem and the fact that the performance measure we are

trying to optimize is total weighted tardiness, intuitively parameters like due dates,

weights and release dates will have a greater impact on the order in which jobs should be

processed. It is important to note that these heuristics are implemented only to provide

some comparison to prove the effectiveness of the two BATC heuristics built. The four

comparison heuristics that are used to test results assign jobs to machines based on due

dates, release dates, ATC values and finally in random order. A detailed description of

each one and its logic follows.

7.1.1 Batching and scheduling based on Earliest Due Dates (EDD):

Since changes in due dates directly affect the magnitude of tardiness of each job,

an approach that processes jobs with earlier due dates will have a greater

probability of reducing the overall tardiness. The way this approach works can be

regarded as a dispatching rule with a non-greedy nature. As this approach does

not use a time window approach there is no in-built decision metric which would

allow a greedy implementation of this heuristic. The steps it follows are:

 21

1. All jobs are sequenced in non-decreasing order of due dates for each job i, di. The

due dates are due dates for the job at the end of the second stage.

2. At time t, when a machine becomes free the next job, based on due date priority

in the sorted list is used to start a new batch. The next job with the same family l

of job i, from the list is assigned to the newly started batch. This process is

carried on until the batch reaches capacity. If enough jobs aren’t available the

batch is sent to the machine at less than capacity.

3. Finally, total weighted tardiness is calculated and summed across all jobs.

4. Steps 1 to 3 are repeated until all jobs are scheduled.

7.1.2 Batching and scheduling based on Release Dates (Ri):

This heuristic is based on FIFO (first in first out). It can be argued that on a

dispatching heuristic level there is some value to processing jobs as they arrive

without trying to apply foresight on how processing the current job affects the

total weighted tardiness in the system. The underlying logic behind this approach

is to process jobs in order of the arrival or ready-times ri. It must be noted again

that this dispatching heuristic does not use a time window approach to implement

a greedy approach. The steps it follows are:

1. All jobs are sequenced in order of non-decreasing order of release dates for each

job i, ri. These are release dates for the jobs at the end of the second stage.

2. Repeat steps 2 – 4 from section 7.1.1 until all jobs are scheduled.

7.1.3 Batching and scheduling based on ATC (ATCi):

Given that the parameter being optimized in our research is weighted tardiness, a

very important comparison heuristic could be based on ATC values for jobs.

ATC indices assigned to jobs give importance to both weight and the amount of

slack available for each job. This approach works like a dispatching rule with a

 22

non-greedy nature. As this approach does not use a time window approach there

is no in-built decision metric which would allow a greedy implementation of this

heuristic. The steps it follows are:

1. All jobs are sequenced in non-increasing order of ATC values for each job i,

ATCi. The ATC values are calculated based on a stage-wise basis given current

time t, due date and ready times for the stage.

2. Repeat steps 2 – 4 from section 7.1.1 until all jobs are scheduled.

7.7.4 Batching and scheduling based on Random Order: The last comparison heuristic

to be considered for sensitivity analysis is based on jobs being batched based on

families but from a randomized sequence. It isn’t expected that this heuristic will

provide the smallest total weighted tardiness value, however, it could be useful to

construct an upper bound on the value of the optimized solution. This heuristic is

implemented by following these steps:

1. Jobs are sequenced in a randomized order, by assigning each job a random value

and then sorting them based on these random values. Doing this will result in a

random sequence of jobs which, does not take into account any other values of

the job’s attributes.

2. Repeat steps 2 – 4 from section 7.1.1 until all jobs are scheduled.

7.2 Test data generation and design of experiments

For the purpose of our research we use a method derived by combining the

approaches of Moench et al. (2005) [9] and Yang et al. (2000) [15] for generation of

problem instances. The logic behind building a hybrid method is to use the approach by

Moench et al. where they build test sets for a single stage problem with parallel machines

 23

and extend it to a second stage by incorporating ideas used by Yang et al. for testing

heuristics in flexible flow-shops with multiple stages.

Montgomery [16] talks about the advantage of using 2
k
 factorial designs to test

experiments in his book. Those problem instances are tested which use high and low

values for each variable input parameter which might have a significant effect on the

result of the experiment. In an attempt to use the significant advantage offered by 2
k

designs one high and one low value is used for most parameters that are deemed to be

important and would change the resultant outcome of the heuristic.

For the purpose of this research, we combine and select relevant input parameters

used by Yang et al. and Moench et al, whose values will be varied between high and low.

The parameters finally chosen are number of machines on stage 1 and 2, number of

jobs/family, batch sizes on each stage, ready times, number of families, and due dates.

The cases of 3 and 5 parallel machines on both stages are used to generate

problem instances. Weights are chosen for each job i, wi from a uniform distribution over

(0, 1). Next batch sizes for machines can be either 4 or 8 and 3 family types are

considered for testing. We assume that the number of jobs/family can take values of

either 10 or 15.

In their paper, Moench et al. use a parameter α, to define ready times ri for jobs

which uses an estimate of the makespan for each job based on their processing times,

number of machines, batch sizes and an average batch utilization. Using similar logic,

ready times are generated for jobs using the formula:

 (
∑ ()

) (7.1)

In the above formula, m is the total number of machines, B is the maximum batch

size and fav is the average batch utilization. Average batch utilization is set to 0.75 and α

 24

is allowed to take values either 0.25 or 0.75. Using the calculated release dates (ri), due

dates for jobs at the end of stage 2 are calculated using the formula:

 () (7.2)

In the above formula g1, is called the tightness factor and can take values of

either 1.1 or 1.5. Lower and higher values are chosen to be assigned to test tight and loose

due dates, respectively. For each problem instance, processing times are randomly

assigned to each of the three incompatible job families being considered by using a

probability distribution shown in table 7-1. Since this research deals with a flexible flow-

shop with two stages, there is some value in testing the efficiency of the heuristics built in

situations where there is a bottleneck stage. Following the approach of Yang et al. (2000)

[15], the first step is to calculate the average workload on machines for each stage using

the processing times assigned above. Average workload is defined as:

∑

 (7.3)

In the above equation, st is the stage, mst is the number of machines on this stage

and Bst is the maximum batch size at the stage. The minimum workload across all stages

is now called Wmin and is taken as the basic (non bottleneck) stage. Conversely, the other

stage where the value of the average workload per machine is greater i.e. Wmax is taken as

the bottleneck stage. Next the value of average workload on the basic stage is normalized

to one unit and using the bottleneck criticality factor, g3 which is defined as a factor to

measure how much higher the workload is on a bottleneck machine, we calculate the

target workload ratio on the bottleneck machine. Considering that the first stage, x is a

basic stage and the second stage, y is the bottleneck machine, we calculate the target

workload ratio on the bottleneck stage by the formula:

 () , where y = 2. (7.4)

 25

In the case that, the first stage (x) is the bottleneck stage and the second stage (y)

is the basic stage, the target workload ratio for the bottleneck stage (x) can be computed

using the alternative formula:

 () , where x = 1 and y = 2. (7.5)

The processing times of the bottleneck stage have to be updated so that they meet

their target workload ratio. Assuming that the second stage (y) is the bottleneck stage, we

calculate the actual workload ratio by using the formula:

 (7.6)

The processing times assigned to the jobs at the bottleneck stage are taken as p
o
y,i.

They are now updated by setting them as follows:

 (7.7)

This will ensure that value of the actual load ratio is the same:

 (7.8)

For the purpose of our testing, we calculate the average workload for both stages

based on the maximum batch size and the number of machines on the stages. The stage

with the larger workload ratio is assigned as the bottleneck stage and the procedure

described above is used to adjust the processing times of the bottleneck stage. We use the

value 0.25 for the factor g3. The factor g2 which is called the bottleneck location factor is

used to indicate the stage at which the bottleneck exists.

 The Table 7-1 below outlines how test cases will be produced to test the

effectiveness of the proposed heuristics.

Table 7-1 Test data generation parameters

Problem Parameter Values Used Total values

Number of machines on Stage1 3, 5 2

Number of machines on Stage2 3, 5 2

 26

Problem Parameter Values Used Total values

Number of jobs/family 10, 15, 25, 50 4

Batch size on stage 1 1,4, 8 3

Batch size on stage 2 1,4, 8 3

Number of families 3,5 2

Family processing time 5 with a probability of 0.2 1

 10 with a probability of 0.3

 15 with a probability of 0.3

 20 with a probability of 0.2

Weight per job wi ~ Uniform (0,1) 1

Release Dates for Stage1 (r1,i) ~ Uniform (0, α*∑(p1,i/ mBfav)+(p2,i/mBfav) 2

 α = 0.25,0.75

Due dates for Stage2 (d2,1) ri + g1*(p1,i + p2,i) 2

 g1 = 1.1, 1.5

Bottleneck Criticality Factor (G3) g3 = 0.25 , 0.375 2

 Total Parameter Combinations 2304

 Number of problem instances/combination 5

 Total problem instances 11,520

From the above table, we can see that there are 10 variable parameters with two

or more values for each. We run 5 replicates for each combination. This gives us a total

of 11,520 problem instances.

Similar to Moench et al. (2005) [9], we fix the value of the time window Δt at 4

for the main experimentation because this provides a tradeoff for solution quality and

time required for computation. Testing at different values of Δt is not included in the

design of experiments but is tested at the values 4 and 8. Since the time window is only a

property of the BATC and Iterative BATC heuristic, it is tested on those two heuristics.

Another important parameter that has not been included in the design of

experiments is the look ahead parameter, k. The code has been designed so that it tests

 27

the heuristic at different values of k starting from 0.5 and up to 5 in increments of 0.5.

The value of the look ahead parameter from this grid which results in the solution with

the least objective value, i.e. total weighted tardiness is chosen and that solution is

reported.

Test instances are run on a 64 bit, Intel(R) Core™2 Due CPU, T6600 @ 2.20

GHz with a 4 GB RAM and Windows Vista software.

 28

Chapter 8

COMPUTATIONAL RESULTS

The first stage of testing the quality of the solutions found by the heuristic

involves comparison to the mathematical model for small problem instances. The

mathematical model is unable to handle problems of size bigger than 3 families and 16

jobs/family and 2 machines per stage. The comparison of the heuristic against the

mathematical model is done outside the design of experiments.

Table 8-1 below summarizes the average results of 10 problem instances of

testing the solutions found by the BATC and Iterative BATC heuristic against the

mathematical model for eight combinations of number of families and jobs/family. The

results are represented in the form of value of total weighted tardiness/ratios compared

against the best value, which is depicted in bold.

Table 8-1: Comparison of Mathematical Model to Heuristics

 Total Weighted Tardiness (Value/Comparison to best)

Aggregate By:
Mathematical

Model

BATC

Heuristic

Iterative BATC

Heuristic

2 families, 4 jobs/family 48.3/1.00 52.6/1.09 51.2/1.06

2 families, 8 jobs/family 68.1/1.00 75.2/1.10 72.9/1.07

2 families, 16 jobs/family 78.4/1.00 86.7/1.11 84.3/1.08

2 families, 30 jobs/family 271.12/1.00 318.5/1.17 316.1/1.17

3 families, 4 jobs/family 57.3/1.00 62.4/1.09 60.1/1.05

3 families, 8 jobs/family 87.9/1.00 97.7/1.11 95.2/1.08

3 families, 16 jobs/family 121.6/1.00 139.2/1.14 136.6/1.12

3 families, 30 jobs/family 464.6/1.00 547.8/1.18 540.6/1.16

As expected, the Iterative BATC heuristic performs better that the BATC

Heuristic. However, it is important to note that the results of the heuristics are fairly close

to each other. For small instances the heuristics provide solutions which at the worst are

18% worse than the optimal solution. This shows that the heuristics are capable of

solutions of reasonable quality.

 29

It is important to note that the MILP takes significantly longer than the BATC

and the iterative BATC as can be seen by Table 8-2 below. Time required for

computation jumps in when the number of jobs/family is beyond 16. In these two cases

the MILP was allowed to run for 2 hours. MIP gap for these two instances is of interest

and is calculated by using the formula, where LP (TWT) is the value of the LP relaxation:

 1 -
 ()

 ()
 (8.1)

The MIP gap observed was at an average of 0.39 (i.e. 39% for 2 families and 30

jobs/family) and 0.44 (i.e. 44% for 3 families and 30 jobs/family).

Table 8-2: Time taken for problem instances

 Time (Value in seconds/Comparison to best)

Aggregate By:
Mathematical

Model

BATC

Heuristic

Iterative BATC

Heuristic

2 families, 4 jobs/family 125/42 3/1.00 5/1.7

2 families, 8 jobs/family 140/47 3/1.00 5/1.7

2 families, 16 jobs/family 1660/332 5/1.00 6/1.2

2 families, 30 jobs/family 7200/720 10/1.00 15/1.5

3 families, 4 jobs/family 240/48 5/1.00 8/1.6

3 families, 8 jobs/family 350/70 5/1.00 8/1.6

3 families, 16 jobs/family 2990/498 6/1.00 10/1.6

3 families, 30 jobs/family 7200/600 12/1.00 15/1.25

Average results for the larger instances are presented in a table similar to design

of experiments. In every case the Iterative BATC always yielded the best performance,

while on an average the dispatching heuristic that came closest would be the ATC. The

results are presented as values of total weighted tardiness/ratios against the solution of the

best heuristic which is in bold.

8.1 Effect of number of machines and batch sizes:

The number of machines plays a crucial role in the value of the performance

measure along with the stage in which the machines are located. It is seen that increasing

the number of machines on the first stage reduces total weighted tardiness to a greater

 30

extent as compared to increasing the number of machines on the second stage. This can

be explained by examining the bottleneck effect that stage 1 plays when there are a fewer

number of machines on it. As expected, it is seen that the case of 5 machines in both

stages yields better results than when there are 5 machines on the first stage and 3

machines on the second. The case of 3 machines on the first stage and 5 on the second

yields slightly poorer results, but still better than the case in which both stages have only

3 machines. The Iterative BATC heuristic achieves greater improvements followed by

iterative BATC and ATC when the number of machines on a stage is increased. Table 8-3

summarizes these findings below.

Table 8-3: Effect of number of machines on each stage

 Total Weighted Tardiness (Value/Comparison to best)

Aggregate By:
By

BATC

By Iterative

BATC

By

Random

By By Release

Dates
By ATC

EDD

3 m/c on Stage 1

3 m/c on Stage 2
940.3/

1.029
913.6 /

1.000

1565.4/

1.713

1160.9

/ 1.271

1158/

1.267

994.7/

1.088

5 m/c on Stage 2
845.7/

1.043
811.1/

1.000

1364.9/

1.683

1127/

1.39

1124.4/

1.386

889.9/

1.097

5 m/c on Stage 1

3 m/c on Stage 2
631.4/

1.050
600.9/

1.000

975.9/

1.624

759.1/

1.263
757.1/ 1.26

719.4/

1.197

5 m/c on Stage 2
529.7/

1.064
497.9/

1.000

786.4/

1.579

625.1/

1.255

623.5/

1.252

585.6/

1.176

It is seen that increasing the batch size from 4 jobs/batch to 8 jobs/batch greatly

reduces the objective function, in most cases, with everything else being constant,

increasing the batch sees up to a 40% reduction in total weighted tardiness. Results from

problem instances grouped on the basis of batch sizes are presented below in Table 8-4.

Table 8-4 Effect of batch size

Total Weighted Tardiness (Value/Comparison to best)

Aggregate By:
By

BATC

By Iterative

BATC

By

Random

By

EDD

 By Release

Dates

By

ATC

Size Stg 1: 1

Size Stg 2: 1
1687/

1.035
1629.6/

1.000

2592.4/

1.591

2060.8/

1.265

2055.6/

1.261

1799.7/

1.104

 31

 Total Weighted Tardiness (Value/Comparison to best)

Aggregate By:
By

BATC

By Iterative

BATC

By

Random

By

EDD

 By Release

Dates

By

ATC

Size Stg 2: 4
1417.1/

1.033
1371.3/

1.000

2177.6/

1.588

1731.1/

1.262

1726.7/

1.259

1501.2/

1.095

Size Stg 2: 8
1214.6/

1.047
1160.5/

1.000

1866.5/

1.608

1483.8/

1.279

1480/

1.275

1277.3/

1.101

Size Stg 1: 4

Size Stg 2: 1
1012.2/

1.039
973.8/

1.000

1555.4/

1.579

1236.5/

1.270

1233.4/

1.267

1069.4/

1.098

Size Stg 2: 4
843.5/

1.047
805.8/

1.000

1296.2/

1.609

1030.4/

1.279

1027.8/

1.275

878.8/

1.091

Size Stg 2: 8
573.6/

1.038
552.5/

1.000

881.4/

1.595

700.7/

1.268

698.9/

1.265

610.3/

1.105

Size Stg 1: 8

Size Stg 2: 1
472.4/

1.052
449.1/

1.000

725.9/

1.616

577/

1.285

575.6/

1.282

486.4/

1.083

Size Stg 2: 4
371.1/

1.058
350.7/

1.000

570.3/

1.626

453.4/

1.293

452.2/

1.289

385.4/

1.099

Size Stg 2: 8
269.9/

1.070
252.3/

1.000

420.8/

1.668

342.7/

1.358

328.9/

1.303

297.5/

1.179

As expected, the best solution is found when batch sizes and number of machines

on both stages are set to the high values. The Iterative BATC Heuristic performs best in

all cases. Also, it is seen that the Iterative BATC achieves greatest improvements in

values of TWT when the batch size on a stage is increased.

8.2 Effect of G1 (due date tightness factor) and α (release date factor):

The release date factor, α plays in important role in deciding how close release

times and due dates are to each other. Smaller values of α yield release times which are

clustered together. Smaller α values directly translate to jobs with due dates fairly close to

each other. On pooling results based on α values, it is noticed that instances with lower α

values, end up yielding higher total weighted tardiness. This seems logical, since in the

real world this would translate to a greater number of jobs arriving very close to each

other, causing a built up of inventory before the first stage. Given machine capacity

constraints, this would cause some jobs to have long waiting times before they are

processed.

 32

Table 8-5 Effect of release date factor

 Total Weighted Tardiness (Value/Comparison to best)

Aggregate By:
By

BATC

By Iterative

BATC

By

Random

By

EDD

 By Release

Dates

By

ATC

Release Date

Factor : 0.25

890.7/

1.083
822.1/

1.000

1491.9/

1.815

1127/

1.371

1110.4/

1.351

909.9/

1.106

Release Date

Factor :0.75

624.6/

1.060
588.9/

1.000

994.9/

1.689

769.1/

1.305

787.1/

1.336

640.4/

1.087

On the other hand, larger α values mean jobs which have release dates and due

dates which are further apart from each other. This allows machines to process jobs at a

rate which is proportional to that of how they arrive. Hence, seeing better solutions for

larger values of α seems logical. This can be seen by examining the values found in the

table above which carry total weighted tardiness values for heuristics pooled by release

date factor. It is seen that the BATC and ATC heuristic perform better in instances with

ready times which are spread out i.e. α value is high.

Due dates have a significant bearing on the value of the total weighted tardiness.

It is observed that when aggregating results on the basis of the due date factor, the best

result is obtained when G1 = 1.5. This implies that loose due dates will yield better

solutions and that seems intuitive since we use a modified version of ATC, which, as a

metric relies greatly on the amount of slack available on each job.

It is seen that the Iterative BATC and the BATC Heuristic perform best when we

pool data based on due date tightness factor. The ATC Heuristic performs very well too

since the ATC index largely depends on the due date and slack of a job. However, it is

observed that relative to the Iterative BATC heuristic, the BATC and ATC heuristic tend

to perform better in instances with loose due dates i.e. G1 is set a higher value. Table 8-6

summarizes these findings.

 33

Table 8-6 Effect of due date tightness factor

 Total Weighted Tardiness (Value/Comparison to best)

Aggregate By:
By

BATC

By Iterative

BATC

By

Random

By

EDD

 By Release

Dates

By

ATC

Duedate Tightness

Factor : 1.1

836.1/

1.037
805.9/

1.000

1269.4/

1.575

1009.1/

1.252

1016.6/

1.261

870.6/

1.08

Duedate Tightness

Factor : 1.5

650/

1.058
614.1/

1.000

987.3/

1.608

746.9/

1.216

775/

1.262

655.7/

1.068

8.3 Effect of number of jobs/family:

Increasing the number of jobs/family has direct bearing on the value of total

weighted tardiness that the heuristics yield. Since greater number of jobs/family translates

to greater test instances. Relative to the iterative BATC, the solution quality provided by

the ATC heuristic seems to deteriorate with increasing number of jobs/family. Table 8-7

below summarizes this.

Table 8-7 Effect of number of jobs/family

Total Weighted Tardiness (Value/Comparison to best)

Aggregate By:
By

BATC

By Iterative

BATC

By

Random

By By Release

Dates
By ATC

EDD

Jobs/Family: 10
559.5/

1.013
551.9/

1.000

1055.4/

1.912

678/

1.228

692.7/

1.255

581.2/

1.053

Jobs/Family: 15
600.6/

1.018
590/

1.000

1073.5/

1.819

806.1/

1.366

777.6/

1.318

664.6/

1.126

Jobs/Family: 25
787.3/

1.019
772.7/

1.000

1297.5/

1.679

942.1/

1.219

955.8/

1.237

892.1/

1.154

Jobs/Family: 50
946.8/

1.021
927.3/

1.000

1637.1/

1.765

1247/

1.345

1196.9/

1.291

1096.5/

1.183

8.4 Effect of bottleneck criticality factor:

The results of the extensive testing carried out demonstrate that when g3 is

higher, the load on the bottleneck machine is higher which leads to higher values of total

weighted tardiness. It is also seen that when the first stage is the bottleneck, the values

of the objective function are higher. This can be explained by the fact that when the first

stage is the bottleneck stage it acts as a siphon, preventing jobs from reaching the second

 34

stage in a timely manner. Thus the value of the total weighted tardiness is greater when

the first stage is the bottleneck stage.

Also, we noticed a direct correlation between the batch sizes and the bottleneck

stage. As expected, the stage with the smaller batch size becomes the bottleneck stage.

Table 8-8 below summarizes the findings when results are pooled on the basis of the

bottleneck criticality factor. On examining the ratios of the results it becomes clear that

the BATC and the Iterative BATC Heuristic perform best. The results of the BATC and

the Iterative BATC are very close to each other. The next best heuristic is the ATC

heuristic.

Table 8-8 Effect of bottleneck criticality factor.

 Total Weighted Tardiness (Value/Comparison to best)

Aggregate By:
By

BATC

By Iterative

BATC

By

Random

By By

Release

Dates

By

ATC EDD

Bottleneck Criticality

Factor: 0.25

584.8/

1.029
568.4/

1.000

998.7/

1.757

724.4/1.

275

712.6/

1.254

642.1/

1.130

Bottleneck Criticality

Factor: 0.375

877.2/

1.041
842.6/

1.000

1458/

1.73

1071.6/

1.272

1068.9/

1.269

958.1/

1.137

8.5 Effect number of families:

In an effort to keep the number of instances at a reasonable number, only two

variations of the number of families are included in the design of experiments. A greater

number of families translate to a greater number of jobs in a problem instance as the total

number of jobs is a function of number of families and number of jobs/family. Thus as

expected when the number of families is increased the value of the objective function

increases. Table 8-9 below gives the comparison of all heuristics when results are pooled

on the basis of number of families.

 35

Table 8-9 Effect of number of families

 Total Weighted Tardiness (Value/Comparison to best)

Aggregate By:
By

BATC

By Iterative

BATC

By

Random

By By

Release

Dates

By

ATC EDD

No. of families: 3
529.0/

1.049
504.5/

1.000

887.6/

1.760

614.1/

1.217

642.4/

1.274

543.2/

1.077

No. of families: 5
953.0/

1.051
906.5/

1.000

1349.1/

1.488

1132/

1.249

1169.1/

1.289

997.0/

1.100

 Further testing on the number of families beyond the design of experiments is

carried out where the number of jobs is set to 180 and the number of jobs/family becomes

a function of 180/f, where f is the number of families. Experimental cases with 3, 5, 9 and

12 families were run using 5 machines on both stages and the batch size being set to 8.

The release date factor (α) was set to 0.75, the due date tightness factor (g1) to 1.5 and the

bottleneck criticality factor (g3) to 0.25.Table 8-10 shows the results of experimentation.

Table 8-10 Effect of number of families outside of experimentation

Total Weighted Tardiness (Value/Comparison to best)

Aggregate By: By BATC

By

Iterative

BATC

By

Random

By

EDD

By

Release

Dates

By

ATC

No. of families: 3
1005.2/

1.049
958.5/

1.000

1686.4/

1.760

1204.7/

1.257

1258.6/

1.313

1132.1/

1.181

No. of families: 5
1320.2/

1.040
1269.2/

1.000

1888.8/

1.488

1584.8/

1.249

1608.7/

1.268

1467.8/

1.156

No. of families: 9
1163.9/

1.039
1119.8/

1.000

1952.7/

1.744

1394.9/

1.246

1457.4/

1.301

1295.1/

1.151

No. of families: 12
1461.7/

1.041
1405.1/

1.000

2091.2/

1.488

1724.6/

1.227

1781.1/

1.267

1514.4/

1.077

 As seen from the table above the BATC and Iterative BATC heuristic yield

relatively better results when the number of families is restricted to smaller numbers.

When the number of families is increased, the solution quality decreases, but Iterative

BATC still provides better solution quality than others. Thus it is most important to use

the proposed heuristics when the number of incompatible families is lower. ATC

 36

provides reasonable results when the number of families is large. For the f = 12 case, the

improvement on solution quality of the Iterative BATC and the BATC heuristic becomes

less remarked when compared to the ATC.

8.6 Effect of varying time window:

Experimentation for two values of the time window (Δt) are carried out. Larger

values of the time window allow a greater number of jobs to be considered each time a

machine becomes available which leads to a greater number of possibilities in the number

of batch combinations that are feasible and to be considered. Due to this there is a slight

increase in computational time as expected. Table 8-11 below represents the effect of

varying the time window. It is seen that The Iterative BATC performs better than all

other heuristics.

Table 8-11 Effect of varying the time window

 Total Weighted Tardiness (Value/Comparison to best)

Aggregate By:
By

BATC

By Iterative

BATC

By

Random

By

EDD

 By Release

Dates
By ATC

Δt : 4
848.7/

1.053
805.9/

1.000

1274.2/

1.581

1018.8

/1.264

1034.2/

1.283

905.3/

1.123

Δt : 8
624.8/

1.067
585.3/

1.000

1274.2/

2.177

1018.8/

1.741

1034.2/

1.767

905.3/

1.547

8.7 BATC v/s Iterative BATC:

As expected, based on the testing carried out it becomes clear that the Iterative

BATC Heuristic performs slightly better than the BATC heuristic in every case.

However, this is only true when multiple passes of the Iterative BATC are carried out.

Upon further consideration, the reason why the iterative BATC does not yield better

results when only one pass is carried out because it highly depends on the weight and

slack of each job. In some cases assigning the start time of stage 2 as the due date for

stage 1 would lead to a more loose due date for that job on stage 1, which in turn would

 37

reduce its ATC index on account of the greater slack now available. In such cases, this

job would now be processed later as compared to the earlier case, which would cause an

increase in the total weighted tardiness for the system.

In general, using the Iterative BATC proves to be a better approach if time is not

a constraint since the Iterative BATC approach takes a slightly longer time to carry out

especially in those instances involving a greater number of jobs.

 38

Chapter 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

From the experimentation conducted, it seems that the BATC and the iterative

BATC heuristics both perform pretty well. It can be said that it would be prudent to use

the Iterative BATC in those cases where due dates of jobs were relatively loose and the

jobs had greater slack. This would allow the Iterative BATC to improve on the solution

by being able to reassign calculated due dates for the first stage as start times for the

second.

However, it must also be mentioned that the Iterative BATC provides only a

slight improvement on the final solution but the computational time required as compared

to the BATC heuristic is slightly more. In extremely large problem instances, it could be

argued, that the BATC would be a practically feasible option as compared to the Iterative

BATC. In general it is noticed that the lowest value of the objective function is reached

by the third pass in most cases and the fourth pass in some cases.

The proposed heuristics can also be used to solve a special case of the problem at

hand where ready times of all jobs are set to 0, i.e. all jobs are available for processing at

time t = 0. Thus the problem at hand can be simplified to FF2|batch incompatible|∑wiTi.

Since, all jobs are available for processing at the time the heuristic is run, the subset of

jobs that can be used to calculate the next batch to be processed will consist of all

unprocessed jobs from the family to be processed. Thus the heuristic will force all

batches to run at capacity as that will ensure that the solution has the smallest total

weighted tardiness. Another point worth noting is that, the length of the time window, Δt

can be set to ∞ to reach the same result as all jobs are already available at time t = 0 and

the heuristic does not need to wait for additional jobs to become ready for processing.

 39

9.2 Future Work

Based on findings from testing done on the two heuristics, certain areas of further

research which would make it more usable in real environments seem promising. The

environment considered in this research approximates set up times to be zero. It is

assumed that machines do not need any set up and all different families are processed as

soon as they are scheduled on machines. A further extension to our research can be to

include family and stage dependent set up times for both stages, which will make its real

world implications greater since on a factory floor, each different type of job normally

requires some sort of setup on the machine to customize the machine for the processing

required.

Furthermore, this research assumes that there is unlimited buffer space between

the two stages. However, this is not necessarily true in all practical situations, where

because of space constraints there might be a limited buffer space between the two

stages. It could be an interesting area to investigate how solutions would change when the

number of jobs that can wait in front of the second stage is restricted. The assumptions of

Klemmt et. al. (2009) [12] such as machine specific batch sizes and dedication of

machines make the problem more realistic or real world like.

Another extension to this research could be to test the developed heuristics with

wider environments, additional stages or even for other performance measures such as

makespan.

 40

REFERENCES

1. T. C. E. Cheng, T. Y. Kovolou & K. N. Chakhlevich. Batching in a two-stage flow-

shop with dedicated machines in the second stage. IIE Transactions 2004 36, 87–93.

2. Y. Kim, B. Joo & J. Shin. Heuristics for a two stage hybrid flow-shop scheduling

problem with ready times and a product-mix ratio constraint. J Heuristics 2009 15,

19–42.

3. C. Liao & L. Liao. Improved MILP models for two-machine flow-shop with batch

processing machines. Mathematical and Computer Modeling 48 (2008) 1254–1264.

4. T. Cheng, T., Z. Chen, M. Kovalyov, & B. Lin. Parallel-machine batching and

scheduling to minimize total completion time. IIE Transactions, 1996 28, 953.

5. A. Oulamara. Makespan minimization in a no-wait flow shop problem with two

batching machines. Computers & Operations Research 34 (2007) 1033–1050.

6. N. Hall, G. Laporte, E. Selvarajah & C. Sriskandarajah. Scheduling and Lot

Streaming in Flow-shops with No-Wait in Process. IIE Transactions (2002) 34, 953–

970.

7. P. Brucker, A. Gladky, J.A. Hoogeveen, M.Y. Kovalyov, C.N. Potts, T. Tautenhahn,

S.L. van de Velde. Scheduling a batching machine. Journal of Scheduling (1998) 31 -

54.

8. L. Tang & P. Liu. Minimizing makespan in a two-machine flow-shop scheduling

with batching and release times. Mathematical and Computer Modeling 49 (2009)

1071-1077.

9. L. Moench, H. Balasubramanian, J. W. Fowler, M. E. Pfund. Heuristic scheduling of

jobs on parallel batch machines with incompatible job families and unequal ready

times. Computers & Operations Research 32 (2005) 2731–2750.

10. H. Balasubramanian, L. Moench, J. W. Fowler, M. E., Pfund. Genetic algorithm

based scheduling of parallel batch machines with incompatible families to minimize

total weighted tardiness. International Journal of Production Research 42 (2004)

1621–38.

11. L. Moench, H. Balasubramanian, J. W. Fowler, M. E., Pfund. Minimizing total

weighted tardiness on parallel batch processing machines using genetic algorithms.

Proceedings of the International Symposium on Operations Research, Klagenfurt,

Austria;2002.p.205–11.

12. A. Klemmt, C. Almeder, L. Moench, G. Weigert. A comparison of MIP based

decomposition techniques and VNS approaches for batch scheduling problems. IIE

Transactions (2009) 1686 – 1694.

 41

13. A. Devpura. Scheduling Parallel and single batch machines to minimize total

weighted tardiness. Doctoral Dissertation (Arizona State University), June 2003.

14. A. P. J. Vepsalainen, T. E. Morton. Priority rules for job shops with weighted

tardiness costs. Management Science 1987; 33(8):1035–47.

15. Y. Yang, S. Kreipl and M. Pinedo. Heuristics for minimizing total weighted tardiness

in flexible flow shops. Journal of Scheduling. J. Sched. 2000; 3:89-108

16. D. C. Montgomery. Design and Analysis of Engineering Experiments. Published by

John Wiley & Sons (2008).

17. R Graham, E Lawler, J Lenstra, A Rinnooy Kann. Optimization and approximation

in deterministic sequencing and scheduling: A survey. Annals of Discrete

Mathematics 1979; 5:287–326.

 42

APPENDIX A

MATHEMATICAL MODEL CODE

 43

/***

 * OPL 6.1 Model

 * Author: Anubha

 * Creation Date: Feb 28, 2011 at 7:41:39 PM

 ***/

int job = ...;

int batch = ...;

int machine_in_1 = ...;

int machine_in_2 = ...;

int family = ...;

int stage = ...;

int G = ...;

range I=1..job;

range J=1..batch;

range K1=1..machine_in_1;

range K2=1..machine_in_2;

range L=1..family;

range ST=1..stage;

;

float d[I]=...;

float w[I]=...;

float r[I]=...;

float p[ST][I]=...;

int B[ST]=...;

int a[L][I]=...;

;

dvar boolean x[I][J][K1][ST];

dvar boolean y[J][K1][L][ST];

;

dvar float+ s[1..(batch+1)][K1];

dvar float+ t[1..(batch+1)][K2];

dvar float+ C[ST][I];

dvar float+ T[I];

;

minimize sum(i in I) (w[i]*T[i]);

;

subject to

{

forall (i in I, st in ST)

A1: sum(j in J, k1 in K1) (x[i][j][k1][st]) == 1;

;

forall (j in J, k1 in K1, st in ST)

A2: sum(i in I) (x[i][j][k1][st]) <= (B[st]);

;

forall (j in J, k1 in K1, st in ST)

A3: sum(l in L) (y[j][k1][l][st]) == 1;

;

forall (i in I, j in J, k1 in K1, l in L, st in ST)

A4: (y[j][k1][l][st]) - (a[l][i])*(x[i][j][k1][st]) >= 0;

;

forall (i in I, j in J, k1 in K1, st in ST)

A5: (x[i][j][k1][st])*(r[i]) <= (s[j][k1][st]);

;

forall (i in I, j in J, k1 in K1, st in ST)

A6: (s[j][k1][st]) + (p[st][i])*(x[i][j][k1][st]) <=

(s[j+1][k1][st]);

 44

;

forall (i in I, j in J, k1 in K1, st in ST)

A7: (G*(1 - (x[i][j][k1][st]))) + (C[st][i]) >= (s[j][k1][st]) +

(p[st][i]);

;

forall (i in I, j in J, k1 in K1, k2 in K2)

A8: (C[1][i]) <= (s[j][k2][2]) + G*(1 - (x[i][j][k2][2]));

;

forall (i in I)

A9: (C[2][i]) - (T[i]) <= (d[i]);

};

execute DISPLAY_RESULTS{

 writeln("Tardiness =",T);

 writeln("Completion Time =",C[2]);

 writeln("x =",x);

 writeln("u =",u);

 writeln("Stage 1 Start Times =",s);

 writeln("Stage 2 Start Times =",t);

}

