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ABSTRACT  

   

This research is motivated by a deterministic scheduling problem that is fairly 

common in manufacturing environments, where there are certain processes that call for a 

machine working on multiple jobs at the same time. An example of such an environment 

is wafer fabrication in the semiconductor industry where some stages can be modeled as 

batch processes. There has been significant work done in the past in the field of a single 

stage of parallel machines which process jobs in batches. The primary motivation behind 

this research is to extend the research done in this area to a two-stage flow-shop where 

jobs arrive with unequal ready times and belong to incompatible job families with the 

goal of minimizing total weighted tardiness.  

As a first step to propose solutions, a mixed integer mathematical model is 

developed which tackles the problem at hand. The problem is NP-hard and thus the 

developed mathematical program can only solve problem instances of smaller sizes in a 

reasonable amount of time. The next step is to build heuristics which can provide feasible 

solutions in polynomial time for larger problem instances. The basic nature of the 

heuristics proposed is time window decomposition, where jobs within a moving time 

frame are considered for batching each time a machine becomes available on either stage. 

The Apparent Tardiness Cost (ATC) rule is used to build batches, and is modified to 

calculate ATC indices on a batch as well as a job level.  

An improvisation to the above heuristic is proposed, where the heuristic is run 

iteratively, each time assigning start times of jobs on the second stage as due dates for the 

jobs on the first stage. The underlying logic behind the iterative approach is to improve 

the way due dates are estimated for the first stage based on assigned due dates for jobs in 

the second stage.  
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An important study carried out as part of this research is to analyze the bottleneck 

stage in terms of its location and how it affects the performance measure.  Extensive 

experimentation is carried out to test how the quality of the solution varies when input 

parameters are varied between high and low values.  
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Chapter 1 

INTRODUCTION 

The environment under consideration for the purpose of this research is a 

deterministic scheduling problem based on a two-stage flexible flow shop with a goal of 

minimizing total weighted tardiness. The problem is complicated by adding jobs that 

belong to incompatible families that arrive at different times.    

Overall the problem is classified as a FF2|batch incompatible, ri|∑wiTi in the α|β|γ 

notation of Graham et al. (1979) [17]. This is a common environment seen in many 

manufacturing and packaging processes in industry. Problems with batching of 

incompatible families that minimize total weighted tardiness have been proven to be NP-

hard. Moreover, since the case of FF1|batch incompatible, ri|∑wiTi problem has already 

been proved to be NP-hard by Moench et al. (2005) [9] and this research has added 

several layers of complexity, it becomes obvious that it too is NP-hard. 

An example of this environment is semiconductor wafer fabrication where jobs, 

called lots, need to be batched on parallel machines on consecutive stages. However, lots 

of different families cannot be put together in one batch because of process restrictions. 

Oxidation and diffusion process in semiconductor manufacturing are examples of 

incompatible batch processes. Moench et al. (2005) [9] mention in their paper that these 

processes generally take a longer amount of time as compared to the other steps in 

semiconductor fabrication. Improvements in terms of reducing tardiness in even small 

amounts significantly improve the manufacturing process. This makes the problem 

environment investigated in the research very interesting. 
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Chapter 2 

PROBLEM DESCRIPTION 

The focus of this research is to develop heuristics which will provide feasible 

schedules that seek to minimize total weighted tardiness in a two stage flow-shop with 

jobs that belong to incompatible job families and have unequal (but deterministic) ready 

times. In other words, jobs have to be scheduled to be processed in batches on both stages 

and each stage has a bank of identical parallel machines. Jobs arrive at the first stage at 

deterministic, but not necessarily equal, arrival (ready) times. The problem is simplified 

by assuming that all jobs belonging to the same family will have identical processing 

times and that all machines are capable of processing all families. Due to this assumption 

the problem at hand takes the form of a flexible flow-shop. It must be noted however, that 

while each machine is capable of processing all types of job, jobs of different families 

cannot be batched together on account of differences in processing requirements. After 

the first stage, the jobs are re-batched in preparation for the second stage. An important 

assumption made here is that there is unlimited buffer space between the two stages. 

Overall the problem is designated as FF2|batch incompatible, ri|∑wiTi in the 

α|β|γ notation of Graham et al. (1979) [17]. Here, wi is the weight of job i and ri is its 

ready time.  

The performance measure that will be minimized is total weighted tardiness. 

Weighted tardiness of a job is calculated as the weight (importance/priority) of that job 

times its tardiness. Tardiness is calculated as the non-negative difference between the 

completion time (Ci) and the due date (di) for a job, i.e. max (0, Ci – di). This measure is 

summed over all jobs in the instance to obtain total weighted tardiness. 

The figure below represents the problem described above that is the focus of this 

research. 
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Figure 2-1 Schematic Representation of Problem 

 

Since the job environment calls for unequal ready times, an important aspect of 

this research is to weigh the possibility of starting non-full batches against waiting to 

complete the batch depending on how the performance measure is affected. 

In this research, we will test the heuristic for four different possible scenarios 

involving batching and serial processing (no batching) on parallel machines at each stage. 

The combinations tested will be serial-parallel batching, parallel batching-serial, serial-

parallel batching and serial – serial (no batching on either stage). In the fourth case it 

becomes a two stage, parallel machine flow-shop which is still an NP-hard problem for 

the problem with total weighted tardiness as the performance measure. 
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Chapter 3 

LITERATURE REVIEW 

Within job scheduling, batching jobs in a flow-shop environment is a popular 

subject for research. A lot of work has been done in this field predominantly because of 

its implication and applied usefulness to the semiconductor fabrication processes.  

Batching with incompatible families can be classified into either serial or parallel 

batching. Serial batching is where the total processing time of a batch is determined by 

the sum of all the processing times of the jobs that constitute the batch. On the other 

hand, in parallel batching the processing time of the batch is governed by the processing 

time required by the family to which the jobs of that batch belong i.e. all jobs belong to 

the same family and will have the same processing time which is also the processing time 

of the batch. Parallel batching is sometimes also referred to as “p-batching”.  

Cheng et al. (2004) [1] studied batching in a two stage flow-shop with dedicated 

machines in the second stage and minimizing make-span (F2|batching|Cmax) where F2 

stands for a two stage flow-shop. Their work proposes an algorithm called CHECK 

which solves for a feasible solution by recursive computation of batch sizes and is solved 

in O(n
F
). 

Kim et al. (2009) [2] consider the problem of a hybrid flow-shop with ready 

times and a product-mix ratio constraint (F2|rj, compatible batching|Cmax). Their paper 

suggests three algorithm, namely forward scheduling, backward scheduling and iterative 

search, and within each algorithm, different combinations of dispatching rules are used. 

The authors suggest that future scope for research includes development of local search 

or meta-heuristics to develop a solution that minimizes Cmax. 

C. J. Liao et al. (2008) [3] came up with a couple of mixed integer linear 

programs to tackle the problem of a two machine flow-shop with batching in two 
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scenarios one with waiting between the two stages and the other with no waiting or buffer 

between them. The paper considers p-batching. The performance measure they minimize 

is Cmax and the lower bound for each model is calculated by batching jobs by the LPT 

(longest processing time) rule on one machine and then taking the other machine into 

consideration by adding the processing time of the other machine to the cumulative 

completion time. Alternatively, they also propose a heuristic which uses a time limited 

version of the developed MILP models to compute near optimal solutions. 

Cheng et al. (1996) [4] study an environment where “m” parallel machines exist 

per stage in a flexible flow-shop. The paper suggests a dynamic programming (DP) 

algorithm (initialized using shortest processing time). In the algorithm DP, batches 

containing consecutive jobs (arranged by SPT) are created and then scheduled on the 

machines from the end of the schedule to the front. The complexity of their algorithm is 

O(mn
m+1

) where "n" independent and simultaneously available jobs are to be scheduled 

on “m” identical parallel machines. A lower bound is determined by simplifying the 

problem by assuming that the processing times are identical.  

Oulamara (2007) [5] investigated a flow-shop environment with a parallel 

batching machine and job dependent set up times (F2|p-batch, no-wait|Cmax). The paper 

proposes two algorithms to solve for optimal schedules using valued graphs based on 

processing times and weights assigned to jobs. 

Hall et al. (2003) [6] studied a problem of the reverse nature where there is lot 

splitting in order to reduce the work in progress and lead times. The research done by the 

authors is interesting because of their approach to the problem. The paper suggests that 

the problem can be modeled into a Generalized Travelling Salesman problem (GTSP). 

Since the GTSP is not useful in larger problem instances the paper suggests a heuristic 
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algorithm in two phases that first uses a taboo search and then followed by the use of a 

greedy algorithm to minimize the makespan. 

Brucker et al. (1998) [7] show that in parallel batching machines using some 

version of the SPT batch rule on each machine when there is no restriction on batch sizes 

is optimal to minimize makespan. However, with fixed batch sizes the dynamic 

programming algorithm used for a single machine can be generalized to give a pseudo-

polynomial (in the sum of processing times) algorithm which can be used to solve for an 

optimal makespan. The authors also consider single batching machines where they give a 

forward dynamic programming algorithm with batch appending which is solved in 

O(n
2
P). This problem is binary NP-hard and considers p-batching. 

Tang and Liu (2009) [8] considered a two stage flow-shop with one machine in 

each stage, where the first machine processes jobs one at a time and the second in 

batches. Jobs are assumed to have unequal ready times. The authors propose an MIP 

which solves for optimality in small instances and a combination of a Dynamic 

Programming algorithm for batching and heuristics based on dispatching rules to 

sequence batches. 

This research is an extension of the research done by Moench et al. (2005) [9] 

where they study a single stage Pm|batch, incompatible|∑ (wiTi) problem. They extend the 

research done by Balasubramanian et al. (2004) [10] and Moench et al. (2002) [11] in the 

area of solving for Pm|batch, incompatible|∑(wiTi) using genetic algorithms to include 

parallel machines in the flow-shop.  

Moench et al. (2005) [9] develop two approaches to solve the Pm|batch, 

incompatible|∑ (wiTi) problem. The first involves using the genetic algorithm (GA) to 

form batches and then schedule them on machines. In their second approach the authors 

propose using the GA to first assign jobs to machines and next forms batches and finally 
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sequences them using dispatching and scheduling approaches for the batching and 

sequencing portions. Additionally, they develop a time window decomposition heuristic 

which uses a modified version of the ATC rule. Only jobs which are ready in a time 

window of t + Δt are considered to form batches and then scheduled on machines after 

the best combination of jobs that can form a batch is determined using ATC. 

Klemmt et al. (2009) [12] considered a problem which deals with parallel 

batching machines in a single stage. They consider unequal ready times and unrelated 

parallel machines, where not all jobs can be processed on all machines. They compare the 

results of this mathematical model to solutions obtained by using variable neighborhood 

search and batching by ATC techniques. The MIP is used for all jobs within each time 

window and finds the optimal solution by considering all job combinations. Our research 

extends their mathematical model to incorporate a second stage of machines, identical 

parallel machines on each stage and incompatible job families where all batch sizes are 

the same. 

In his doctoral dissertation Devpura [13] approaches the problem of solving for 

scheduling batches on parallel machines using a variety of techniques including dynamic 

programming, a decomposition heuristic, integer programming with column generation, 

ordering heuristics (like earliest due date, ATC, and weighted SPT) etc. However, the 

environment solved for does not include unequal ready times. 
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Chapter 4 

PROBLEM ASSUMPTIONS 

The assumptions of this research are similar to those made by Klemmt et al. 

(2009) and Moench et al. (2005). The assumptions made to simplify the problem at hand 

are: 

1. There exist f job families. F := {1,…, f } represents the set of all families.  

2. Jobs from different families cannot be processed as part of the same batch. 

3. There are n jobs to schedule. I := {1,…,n} represents the set of all jobs.  

4. There are m1 and m2 identical machines in parallel in stage 1 and 2, respectively. 

M1 := {1,…,m1} and M2 := {1,…,m2} represent the set of all machines for stages 

1 and 2, respectively.  

5. Machine preemption is not allowed.  

6. The family of job i is represented as fi.  

7. The priority weight for job i is represented as wi.  

8. The due date of job i at the end of stage 2 is represented as di.  

9. The processing time ps,i of job i on stage s is assumed to be equal on all machines 

in the stage. Also it is equal for all jobs of the same family for a single stage. 

Processing time is a function of family and stage. 

10. The ready time of job i for stage 1 is represented as ri. These may be unequal, but 

are deterministic i.e. known ahead of time. 

11. The number of jobs that can be processed in one batch depends only on stage. 

This is defined by Bs, for stage s. 

12. All families f can be processed on all machines on each stage. 

13. The completion time of job i is denoted by Ci.  
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14. The weighted tardiness of job i is represented as wiTi= wi*max (Ci - di )
+
, where 

x
+
 stands for the maximum of between x and 0. 

15. Infinite buffer space exists between the two stages. 
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Chapter 5 

MATHEMATICAL MODEL 

The MILP formulated below is an extension of the MILP formulated by Klemmt 

et al. (2009) but has been modified and extended to fit the problem at hand. In the MILP 

proposed by Klemmt et al. mentioned above, the model is built to optimize total weighted 

tardiness on a single stage with “m” parallel machines. The MILP below solves our 

problem at hand - FF2|batch incompatible, ri|∑wiTi.  

While extending the above model above to match this research, the model had to 

be modified to allow for all jobs to be processed on each machine. In the model indices i, 

j, k, l and s are used to depict job, batch, machine, family, and stage, respectively. 

Further, J, K and L stand for the maximum number of batches, machines and families in 

the problem instance. M (big M) is a very large number used to make the MILP linear in 

nature. The parameters used in the mathematical model are: 

1. di = Due date for job i on stage 2. 

2. wi = Weight of job i. 

3. al,i= 1 if job i belongs to family l, 0 otherwise. 

4. Bs= Maximum batch size of stage s. 

5. ps,i = Processing time for job i on stage s. 

6. ri = Ready time of job i to process in Stage 1. 

The decision variables used in the mathematical are: 

1. xi,j,k,s= 1 if job i belongs to batch j on machine k for stage s, 0 otherwise. 

2. yj,k,l,s=1 if batch j on machine k will process family type l for stage s, 0 otherwise. 

3. sj,k,s = Start time of batch j on stage s on machine k. 

4. Ci,s = Completion time for job i in stage s. 
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5. Ti = Tardiness of job i. 

 

The MILP for FF2|batch incompatible, ri|∑wiTi is as follows. 

 

Min ∑                        (5.1) 

Subject to: 

∑ ∑      
 
   

 
         For all i, s;           (5.2) 

∑      
 
      s,   For all j,k,s;                 (5.3) 

∑      
 
          For all j,k,s, L=max for each job type;         (5.4) 

                  For all i,j,k,s and l ∊ family of job i;             (5.5) 

                 For all i,j,k;                                 (5.6) 

                        For all i,j,k1,k2,s;               (5.7) 

 (       )                For all i,j,k,s;                         (5.8) 

     (       )          For all j,k;                 (5.9) 

               For all i.                   (5.10) 

                             For all i,j,k,s                 (5.11)     

Equation (1) represents the objective function i.e. total weighted tardiness that 

this mathematical model is trying to minimize. Constraint set (2) ensures that each job is 

processed in exactly one batch and on exactly one machine on each stage. Maximum 

batch sizes on each stage are limited by constraint set (3). Constraint set (4) ensures that 

all jobs in a batch (on either stage) belong to the same family. Constraint set (5) ensures 

that a job is not part of a batch processing jobs from another family. Together constraint 

sets (4) and (5) ensure that only jobs of the same family are part of a batch. Constraints 

(6) and (9) make sure that a job is put on a machine in stage 2 only after it is ready or has 
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completed processing on stage 1. Constraint set (7) compels the model to start a new 

batch on a machine only after the previous one completes processing. Constraint set (8) 

limits the values that can be assigned to the completion time of each job. Constraint (10) 

determines the objective function (1) to be minimized. Constraint set (11) contains the 

non-negativity constraints.  
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Chapter 6 

HEURISTICS DEVELOPED 

The primary heuristic used in this research is a modification and extension of a 

batching and sequencing heuristic suggested by Moench et al. (2005) [9] for a single 

stage of parallel batching. This heuristic makes use of the ATC (apparent tardiness cost) 

index first proposed by Vepsalainen and Morton (1987) [14].  

6.1 BATC Heuristic 

The basic fundamental of this heuristic is to only consider jobs ready to be 

processed in a certain time window (t, t + Δt). The logic is that every time a machine 

becomes free on either stage, hypothetical batches are formed (one from each family) and 

one of these is chosen to be scheduled on the machine for processing. The important 

aspect remains that the batches mentioned above are only formed from the set of 

unscheduled jobs which are ready at a time less than the upper limit of the time window 

(t, t + Δt). The figure below depicts how a batch is chosen from all jobs ready in the time 

window t to t + Δt. 

 

Figure 6-1 Implementation of Time Window 
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Using notation similar to that used by Moench et al. (2005), the set of 

unscheduled jobs from family l, with ready times that fall in the time window are 

designated by: 

M(l, t, Δt) := {il | ril < t + Δt}                                       (6.1) 

Here, ril stands for the ready times of job i of family l. Further, another set is 

defined based on the above set with an additional constraint which dictates the maximum 

number of jobs to be considered: 

M`(l, t, Δt, thresh) := {il|il ∈ M (l, t, Δt) and pos(il) < thresh}.            (6.2) 

Pos(il) refers to the position of job i from family l with respect to Iil, where Iil is 

the criterion (ATC) for evaluating jobs. Thresh is a threshold used to calculate the 

maximum number of jobs i to be considered from family l within the time window (t, t + 

Δt) for batching purposes.  In the case that the number of jobs in set M` exceeds the 

maximum batch size of the machine for which these batches are being formed, all 

possible batch combinations of family l, from set M` will have to be considered.  

It is important to note that the amount of time taken to compute all possible batch 

combinations when a machine becomes available depends on the values we assign to Δt 

and thresh. The smaller the time window and thresh value, the fewer jobs will be 

considered for batching from a family l when a machine becomes available at time t.  

The criterion used to evaluate batches is a modification of the ATC index 

described below, where Iil,ATC is the index for job i of family l at time t: 

       ( )   (
   

  
)    (

  (       (     )
 )

  ̅
)                               (6.3) 

Here, k in the denominator stands for the look-ahead parameter and  ̅ stands for 

the average processing time of the unscheduled jobs. Using the parameter thresh, M`(l, t, 

Δt, thresh) is formed from the set M(l, t, Δt) after it is ordered based on non-decreasing 

values of Iil,ATC.  
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From the above ordered set of jobs, M’ we form possible combinations of batches 

for each family once a machine is available. A slightly modified version of the ATC rule 

called the BATC rule is used as a metric to evaluate best batches. This rule was suggested 

by Moench et al. (2005) [9] and is given below. 

   ( )    ∑ (
   

  
)    (

  (          (     )
 )  

  ̅
)  

   
   (

   

 
)            (6.4) 

In the equation above, rbk denotes the maximum ready time of jobs in the batch 

being formed, rbk = maxi∈Bik (rik), nbk is the number of jobs in the batch and B is the 

maximum batch size of the machine under consideration. The calculation of this index 

has two significant parts. One being, that, if a batch is not completely full the BATC 

index of the batch is reduced. This is done by appending the last term to the equation, 

which reduces the ATC index of the batch by multiplying it by the ratio of “fullness” 

(between 0 and 1) of the batch in the case that the batch is not completely full. Thus, by 

penalizing batches which aren’t completely full this rules tries to increase the fullness of 

the batch. The other important point is the inclusion of the term (rbk - t)
+
 to the main slack 

term. This ensures that if the jobs which are to be included in a batch being formed are 

not ready, the importance/ATC index of the batch should be reduced/decreased.  

The algorithm used to solve the two stage flexible flow-shop at hand using the 

two ATC indices/rules defined is given below: 

1. First due dates are calculated for stage 1 for each job by calculating and assigning 

half the slack available to each stage. Slack = max (0, d2i – p1j – p2j - ri) and d1j = 

(ri + p1j + Slack/2) where d1i and d2i are due dates for job i on stage 1 and 2, 

respectively.  

2. A suitable value is chosen for Δt which is the time window within which 

unscheduled jobs are considered for batching. At a given time t, the set M(l, t, Δt) 

is formed which, is then ordered by non-decreasing Iil index (calculated for all 
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unscheduled jobs of each family). From this ordered set, using an assigned value 

for the parameter thresh we form the set M`(l, t, Δt, thresh).  

3. We then select the first machine k, that becomes available at a time less than or 

equal to time t. After this, BATC (batch ATC) values are computed for all 

possible batches (one of each family). From all the batches formed, the one with 

the highest BATC value is selected to be scheduled for processing on this 

machine k.  

4. The new ready time for machine k, as well as completion times for jobs in the 

batch j that has just been processed are calculated. The new ready time for 

machine k becomes max (t, rbl) + p1j, where p1j is the processing time of the 

family which forms batch j for stage 1. The above three steps are repeated until 

all jobs have been scheduled for processing on stage 1. Completion times for the 

jobs are calculated by adding processing time p1j to current time of system/start 

time of batch.  

5. Steps 1, 2, 3 and 4 are executed until all jobs are scheduled to be processed on 

stage 1. 

6. Completion times on stage one for a job i become the ready times of the jobs for 

stage 2.  

7. For stage two, sets M and M` are calculated at time t, given that values for Δt and 

thresh are taken to be the same as for stage 1.    

8. Each time a machine k becomes available, from the set M`, possible 

combinations of batches are formed and the decision index BATC is calculated 

for each of them. 
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9. The batch with the highest BATC index is assigned to machine k. Using the 

processing time required for family l that batch j is from, we now calculate new 

ready time for machine k as well as new completion times for the jobs in batch j.  

10. Repeat steps 6, 7, 8, and 9 iteratively to schedule all jobs for stage 2.  

Considering the fact that the due date and slack of a job play a very important 

role in its batching process; we come up with an additional heuristic which, exploits this 

quality of the ATC and BATC indices. In the above heuristic due dates for stage 1 are 

calculated from given due dates of stage two simply by calculating slack values for each 

job and then assigning half the slack to each stage. Since this way of assigning due dates 

isn’t as efficient in terms of distributing slack to the stage where it is needed more, the 

second heuristic aims to improve the method in which ATC and BATC are calculated by 

assigning more appropriate due dates for stage 1.  

6.2 Iterative BATC Heuristic 

The second heuristic is called the Iterative BATC approach. The important 

difference between this approach and the basic BATC heuristic described above is that 

each job undergoes two separate passes through the BATC heuristic. The first pass is as 

described in the heuristic above. However, before the second pass an essential adjustment 

is made to the calculated due dates of each job. From the first pass of the heuristic we 

have values for s2i (the starting time of each job i on stage 2). Due dates for stage 1 are 

assigned these values, d1i = s2i. The fundamental logic behind this is that if a job doesn’t 

need to start until a certain time t on stage 2 it doesn’t have to complete processing on 

stage 1 until time t as well.  

The main difference between the two approaches will be seen in those jobs which 

are important but have a greater amount of slack that can be assigned to stage 1 since 

there is a long waiting time between the two stages.  
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The algorithm used to implement the Iterative BATC approach is very similar to 

the BATC approach save a reassignment of values and is given below: 

1. Steps 1 – 10 of the algorithm for the BATC heuristic are carried out as is.  

2. New due dates are assigned for stage 1 for each job i as d1i = s2i, where s2i is the 

starting time for job i on stage 2 as calculated by the BATC heuristic.  

3. At a given time t, the set M(l, t, Δt) is formed which is then ordered by non-

decreasing Iil index (calculated for all unscheduled jobs of each family). From 

this ordered set, using an assigned value for the parameter thresh we form the set 

M`(l, t, Δt, thresh).  

4. We then select the first machine k that becomes available at a time less than or 

equal to time t. After this, BATC values are computed for all possible batches 

(one of each family). From all the batches formed, the one with the highest 

BATC value is selected to be scheduled for processing on this machine k.  

5. The new ready time for machine k, as well as completion times for jobs in batch j 

that has just been processed is calculated. The new ready time for machine k 

becomes max (t, rbl) + p1j, where p1j is the processing time of the family which 

forms batch j for stage 1. Completion times for the jobs are calculated by adding 

processing time p1j to current time of system/start time of batch.  

6. Steps 2, 3, 4 and 5 are executed till all jobs are scheduled to be processed on 

stage 1.  

7. Completion times on stage one for job i become the ready time of the job for 

stage 2.  

8. For stage two, sets M and M` are calculated at time t, given that values for Δt and 

thresh are taken to be the same as for stage 1.    
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9. Each time a machine k becomes available, from the set M`, possible 

combinations of batches are formed and the decision index BATC is calculated 

for each of them. 

10. The batch with the highest BATC index is assigned to machine k. Using the 

processing time required for family l that batch j is from we now calculate new 

ready time for machine k as well as new completion times for jobs in batch j.  

11. Repeat steps 7, 8, 9 and 10 iteratively to schedule all jobs for stage 2.  

One drawback of running a single iteration of the Iterative BATC heuristic 

occurs because of the ATC index used to order jobs by priority. Since the new internal 

due dates are the starting times of stage 2, in the second pass of the Iterative BATC 

Heuristic, those jobs which are unimportant and are completed after their due dates may 

be even tardier in this pass.  

This can be solved by running the Iterative BATC heuristic multiple times, 

(iteratively) until the value of the total weighted tardiness is not improved any further by 

running more iterations. The heuristic is coded such that the problem instance is passed 

through multiple iterations of the Iterative BATC until the value of the objective function 

does not change with further iterations. The iteration with the lowest value of total 

weighted tardiness is reported as the final solution for that problem instance.  
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Chapter 7 

EXPERIMENTATION 

The mathematical model (MILP) formulated as part of this research can provide 

a basis for the effectiveness of the BATC and Iterative BATC heuristics, but, only for 

relatively small problem instances. Being an NP-hard problem, if the problem instance to 

the MILP is increased beyond a certain size it becomes unsolvable in a reasonable 

amount of time using the mathematical model. The results are discussed in Chapter 8 i.e. 

Computational Results. This creates the need for another heuristic which can provide a 

reliable basis for comparison of solution quality when running larger problem instances. 

7.1 Comparison Heuristics  

Given the nature of the problem and the fact that the performance measure we are 

trying to optimize is total weighted tardiness, intuitively parameters like due dates, 

weights and release dates will have a greater impact on the order in which jobs should be 

processed. It is important to note that these heuristics are implemented only to provide 

some comparison to prove the effectiveness of the two BATC heuristics built. The four 

comparison heuristics that are used to test results assign jobs to machines based on due 

dates, release dates, ATC values and finally in random order. A detailed description of 

each one and its logic follows. 

7.1.1 Batching and scheduling based on Earliest Due Dates (EDD):  

Since changes in due dates directly affect the magnitude of tardiness of each job, 

an approach that processes jobs with earlier due dates will have a greater 

probability of reducing the overall tardiness. The way this approach works can be 

regarded as a dispatching rule with a non-greedy nature. As this approach does 

not use a time window approach there is no in-built decision metric which would 

allow a greedy implementation of this heuristic. The steps it follows are: 
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1. All jobs are sequenced in non-decreasing order of due dates for each job i, di. The 

due dates are due dates for the job at the end of the second stage.  

2. At time t, when a machine becomes free the next job, based on due date priority 

in the sorted list is used to start a new batch. The next job with the same family l 

of job i, from the list is assigned to the newly started batch. This process is 

carried on until the batch reaches capacity. If enough jobs aren’t available the 

batch is sent to the machine at less than capacity. 

3. Finally, total weighted tardiness is calculated and summed across all jobs. 

4. Steps 1 to 3 are repeated until all jobs are scheduled.  

7.1.2 Batching and scheduling based on Release Dates (Ri):  

This heuristic is based on FIFO (first in first out). It can be argued that on a 

dispatching heuristic level there is some value to processing jobs as they arrive 

without trying to apply foresight on how processing the current job affects the 

total weighted tardiness in the system. The underlying logic behind this approach 

is to process jobs in order of the arrival or ready-times ri. It must be noted again 

that this dispatching heuristic does not use a time window approach to implement 

a greedy approach. The steps it follows are: 

1. All jobs are sequenced in order of non-decreasing order of release dates for each 

job i, ri. These are release dates for the jobs at the end of the second stage. 

2. Repeat steps 2 – 4 from section 7.1.1 until all jobs are scheduled.  

7.1.3 Batching and scheduling based on ATC (ATCi):  

Given that the parameter being optimized in our research is weighted tardiness, a 

very important comparison heuristic could be based on ATC values for jobs. 

ATC indices assigned to jobs give importance to both weight and the amount of 

slack available for each job. This approach works like a dispatching rule with a 
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non-greedy nature. As this approach does not use a time window approach there 

is no in-built decision metric which would allow a greedy implementation of this 

heuristic. The steps it follows are: 

1. All jobs are sequenced in non-increasing order of ATC values for each job i, 

ATCi. The ATC values are calculated based on a stage-wise basis given current 

time t, due date and ready times for the stage.  

2. Repeat steps 2 – 4 from section 7.1.1 until all jobs are scheduled.  

7.7.4 Batching and scheduling based on Random Order: The last comparison heuristic 

to be considered for sensitivity analysis is based on jobs being batched based on 

families but from a randomized sequence. It isn’t expected that this heuristic will 

provide the smallest total weighted tardiness value, however, it could be useful to 

construct an upper bound on the value of the optimized solution. This heuristic is 

implemented by following these steps: 

1. Jobs are sequenced in a randomized order, by assigning each job a random value 

and then sorting them based on these random values. Doing this will result in a 

random sequence of jobs which, does not take into account any other values of 

the job’s attributes. 

2. Repeat steps 2 – 4 from section 7.1.1 until all jobs are scheduled.  

 

7.2 Test data generation and design of experiments 

For the purpose of our research we use a method derived by combining the 

approaches of Moench et al. (2005) [9] and Yang et al. (2000) [15] for generation of 

problem instances. The logic behind building a hybrid method is to use the approach by 

Moench et al. where they build test sets for a single stage problem with parallel machines 
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and extend it to a second stage by incorporating ideas used by Yang et al. for testing 

heuristics in flexible flow-shops with multiple stages.  

Montgomery [16] talks about the advantage of using 2
k
 factorial designs to test 

experiments in his book. Those problem instances are tested which use high and low 

values for each variable input parameter which might have a significant effect on the 

result of the experiment. In an attempt to use the significant advantage offered by 2
k
 

designs one high and one low value is used for most parameters that are deemed to be 

important and would change the resultant outcome of the heuristic.  

For the purpose of this research, we combine and select relevant input parameters 

used by Yang et al. and Moench et al, whose values will be varied between high and low. 

The parameters finally chosen are number of machines on stage 1 and 2, number of 

jobs/family, batch sizes on each stage, ready times, number of families, and due dates. 

The cases of 3 and 5 parallel machines on both stages are used to generate 

problem instances. Weights are chosen for each job i, wi from a uniform distribution over 

(0, 1). Next batch sizes for machines can be either 4 or 8 and 3 family types are 

considered for testing. We assume that the number of jobs/family can take values of 

either 10 or 15.  

In their paper, Moench et al. use a parameter α, to define ready times ri for jobs 

which uses an estimate of the makespan for each job based on their processing times, 

number of machines, batch sizes and an average batch utilization. Using similar logic, 

ready times are generated for jobs using the formula:  

            (    
∑ (         )
 
   

     
)                      (7.1) 

In the above formula, m is the total number of machines, B is the maximum batch 

size and fav is the average batch utilization. Average batch utilization is set to 0.75 and α 
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is allowed to take values either 0.25 or 0.75. Using the calculated release dates (ri), due 

dates for jobs at the end of stage 2 are calculated using the formula: 

             (          )                               (7.2) 

In the above formula g1, is called the tightness factor and can take values of 

either 1.1 or 1.5. Lower and higher values are chosen to be assigned to test tight and loose 

due dates, respectively. For each problem instance, processing times are randomly 

assigned to each of the three incompatible job families being considered by using a 

probability distribution shown in table 7-1. Since this research deals with a flexible flow-

shop with two stages, there is some value in testing the efficiency of the heuristics built in 

situations where there is a bottleneck stage. Following the approach of Yang et al. (2000) 

[15], the first step is to calculate the average workload on machines for each stage using 

the processing times assigned above. Average workload is defined as: 

     
∑      
 
   

      
                                                       (7.3) 

In the above equation, st is the stage, mst is the number of machines on this stage 

and Bst is the maximum batch size at the stage. The minimum workload across all stages 

is now called Wmin and is taken as the basic (non bottleneck) stage. Conversely, the other 

stage where the value of the average workload per machine is greater i.e. Wmax is taken as 

the bottleneck stage. Next the value of average workload on the basic stage is normalized 

to one unit and using the bottleneck criticality factor, g3 which is defined as a factor to 

measure how much higher the workload is on a bottleneck machine, we calculate the 

target workload ratio on the bottleneck machine. Considering that the first stage, x is a 

basic stage and the second stage, y is the bottleneck machine, we calculate the target 

workload ratio on the bottleneck stage by the formula: 

      (   )    , where  y = 2.                           (7.4) 
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In the case that, the first stage (x) is the bottleneck stage and the second stage (y) 

is the basic stage, the target workload ratio for the bottleneck stage (x) can be computed 

using the alternative formula: 

      (   )    , where x = 1 and y = 2.                           (7.5) 

The processing times of the bottleneck stage have to be updated so that they meet 

their target workload ratio. Assuming that the second stage (y) is the bottleneck stage, we 

calculate the actual workload ratio by using the formula: 

     
  

    
                                                        (7.6) 

The processing times assigned to the jobs at the bottleneck stage are taken as p
o
y,i. 

They are now updated by setting them as follows: 

          
  

  

   
                                                       (7.7) 

This will ensure that value of the actual load ratio is the same: 

  

    
                                                               (7.8) 

For the purpose of our testing, we calculate the average workload for both stages 

based on the maximum batch size and the number of machines on the stages. The stage 

with the larger workload ratio is assigned as the bottleneck stage and the procedure 

described above is used to adjust the processing times of the bottleneck stage. We use the 

value 0.25 for the factor g3. The factor g2 which is called the bottleneck location factor is 

used to indicate the stage at which the bottleneck exists. 

  The Table 7-1 below outlines how test cases will be produced to test the 

effectiveness of the proposed heuristics. 

Table 7-1 Test data generation parameters 

Problem Parameter Values Used Total values 

Number of machines on Stage1  3, 5 2 

Number of machines on Stage2  3, 5 2 
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Problem Parameter Values Used Total values 

Number of jobs/family  10, 15, 25, 50 4 

Batch size on stage 1 1,4, 8 3 

Batch size on stage 2 1,4, 8 3 

Number of families 3,5 2 

   

Family processing time 5 with a probability of 0.2 1 

 10 with a probability of 0.3  

 15 with a probability of 0.3  

 20 with a probability of 0.2  

   

Weight per job wi ~ Uniform (0,1) 1 

   

Release Dates for Stage1 (r1,i) ~ Uniform  (0, α*∑(p1,i/ mBfav)+(p2,i/mBfav) 2 

 α = 0.25,0.75  

   

Due dates for Stage2 (d2,1) ri + g1*(p1,i  + p2,i) 2 

 g1 = 1.1, 1.5  

   

Bottleneck Criticality Factor (G3) g3 = 0.25 , 0.375 2 

   

 Total Parameter Combinations 2304 

 Number of problem instances/combination 5 

 Total problem instances 11,520 

 

From the above table, we can see that there are 10 variable parameters with two 

or more values for each. We run 5 replicates for each combination. This gives us a total 

of 11,520 problem instances.  

Similar to Moench et al. (2005) [9], we fix the value of the time window Δt at 4 

for the main experimentation because this provides a tradeoff for solution quality and 

time required for computation. Testing at different values of Δt is not included in the 

design of experiments but is tested at the values 4 and 8. Since the time window is only a 

property of the BATC and Iterative BATC heuristic, it is tested on those two heuristics.  

Another important parameter that has not been included in the design of 

experiments is the look ahead parameter, k. The code has been designed so that it tests 
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the heuristic at different values of k starting from 0.5 and up to 5 in increments of 0.5. 

The value of the look ahead parameter from this grid which results in the solution with 

the least objective value, i.e. total weighted tardiness is chosen and that solution is 

reported. 

Test instances are run on a 64 bit, Intel(R) Core™2 Due CPU, T6600 @ 2.20 

GHz with a 4 GB RAM and Windows Vista software. 
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Chapter 8 

COMPUTATIONAL RESULTS 

The first stage of testing the quality of the solutions found by the heuristic 

involves comparison to the mathematical model for small problem instances. The 

mathematical model is unable to handle problems of size bigger than 3 families and 16 

jobs/family and 2 machines per stage. The comparison of the heuristic against the 

mathematical model is done outside the design of experiments. 

Table 8-1 below summarizes the average results of 10 problem instances of 

testing the solutions found by the BATC and Iterative BATC heuristic against the 

mathematical model for eight combinations of number of families and jobs/family. The 

results are represented in the form of value of total weighted tardiness/ratios compared 

against the best value, which is depicted in bold. 

Table 8-1: Comparison of Mathematical Model to Heuristics 

 Total Weighted Tardiness (Value/Comparison to best) 

Aggregate By: 
Mathematical 

Model 

BATC 

Heuristic 

Iterative BATC 

Heuristic 

2 families, 4 jobs/family 48.3/1.00  52.6/1.09  51.2/1.06 

2 families, 8 jobs/family 68.1/1.00 75.2/1.10 72.9/1.07 

2 families, 16 jobs/family 78.4/1.00 86.7/1.11 84.3/1.08 

2 families, 30 jobs/family 271.12/1.00 318.5/1.17 316.1/1.17 

3 families, 4 jobs/family 57.3/1.00 62.4/1.09 60.1/1.05 

3 families, 8 jobs/family 87.9/1.00 97.7/1.11 95.2/1.08 

3 families, 16 jobs/family 121.6/1.00 139.2/1.14 136.6/1.12 

3 families, 30 jobs/family 464.6/1.00 547.8/1.18 540.6/1.16 

 

As expected, the Iterative BATC heuristic performs better that the BATC 

Heuristic. However, it is important to note that the results of the heuristics are fairly close 

to each other. For small instances the heuristics provide solutions which at the worst are 

18% worse than the optimal solution. This shows that the heuristics are capable of 

solutions of reasonable quality. 
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It is important to note that the MILP takes significantly longer than the BATC 

and the iterative BATC as can be seen by Table 8-2 below. Time required for 

computation jumps in when the number of jobs/family is beyond 16. In these two cases 

the MILP was allowed to run for 2 hours. MIP gap for these two instances is of interest 

and is calculated by using the formula, where LP (TWT) is the value of the LP relaxation: 

                                                      1 -  
   (   )

    (   )
                                                            (8.1) 

The MIP gap observed was at an average of 0.39 (i.e. 39% for 2 families and 30 

jobs/family) and 0.44 (i.e. 44% for 3 families and 30 jobs/family). 

Table 8-2: Time taken for problem instances 

 Time (Value in seconds/Comparison to best) 

Aggregate By: 
Mathematical 

Model 

BATC 

Heuristic 

Iterative BATC 

Heuristic 

2 families, 4 jobs/family 125/42 3/1.00 5/1.7 

2 families, 8 jobs/family 140/47 3/1.00 5/1.7 

2 families, 16 jobs/family 1660/332 5/1.00   6/1.2 

2 families, 30 jobs/family 7200/720 10/1.00   15/1.5 

3 families, 4 jobs/family 240/48 5/1.00 8/1.6 

3 families, 8 jobs/family 350/70 5/1.00 8/1.6 

3 families, 16 jobs/family 2990/498  6/1.00  10/1.6 

3 families, 30 jobs/family 7200/600  12/1.00  15/1.25 

Average results for the larger instances are presented in a table similar to design 

of experiments. In every case the Iterative BATC always yielded the best performance, 

while on an average the dispatching heuristic that came closest would be the ATC. The 

results are presented as values of total weighted tardiness/ratios against the solution of the 

best heuristic which is in bold.  

8.1 Effect of number of machines and batch sizes: 

The number of machines plays a crucial role in the value of the performance 

measure along with the stage in which the machines are located. It is seen that increasing 

the number of machines on the first stage reduces total weighted tardiness to a greater 
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extent as compared to increasing the number of machines on the second stage. This can 

be explained by examining the bottleneck effect that stage 1 plays when there are a fewer 

number of machines on it. As expected, it is seen that the case of 5 machines in both 

stages yields better results than when there are 5 machines on the first stage and 3 

machines on the second. The case of 3 machines on the first stage and 5 on the second 

yields slightly poorer results, but still better than the case in which both stages have only 

3 machines. The Iterative BATC heuristic achieves greater improvements followed by 

iterative BATC and ATC when the number of machines on a stage is increased. Table 8-3 

summarizes these findings below. 

Table 8-3: Effect of number of machines on each stage 

  Total Weighted Tardiness (Value/Comparison to best) 

Aggregate By: 
By 

BATC 

By Iterative      

BATC  

By 

Random  

By   By Release 

Dates 
By ATC  

EDD  

3 m/c on Stage 1              

3 m/c on Stage 2  
940.3/ 

1.029 
913.6 / 

1.000 

1565.4/ 

1.713 

1160.9

/ 1.271 

1158/ 

1.267 

994.7/ 

1.088 

5 m/c on Stage 2  
845.7/ 

1.043 
811.1/ 

1.000 

1364.9/ 

1.683 

1127/ 

1.39 

1124.4/ 

1.386 

889.9/ 

1.097 

5 m/c on Stage 1              

3 m/c on Stage 2  
631.4/ 

1.050 
600.9/ 

1.000 

975.9/ 

1.624 

759.1/ 

1.263 
757.1/ 1.26 

719.4/ 

1.197 

5 m/c on Stage 2  
529.7/ 

1.064 
497.9/ 

1.000 

786.4/ 

1.579 

625.1/ 

1.255 

623.5/ 

1.252 

585.6/ 

1.176 

It is seen that increasing the batch size from 4 jobs/batch to 8 jobs/batch greatly 

reduces the objective function, in most cases, with everything else being constant, 

increasing the batch sees up to a 40% reduction in total weighted tardiness. Results from 

problem instances grouped on the basis of batch sizes are presented below in Table 8-4. 

Table 8-4 Effect of batch size 

 
Total Weighted Tardiness (Value/Comparison to best) 

Aggregate By: 
By 

BATC 

By Iterative      

BATC  

By 

Random  

By  

EDD 

  By Release 

Dates  

By 

ATC  

Size Stg 1: 1 
      

Size Stg 2: 1 
1687/ 

1.035 
1629.6/ 

1.000 

2592.4/ 

1.591 

2060.8/

1.265 

2055.6/ 

1.261 

1799.7/

1.104 
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 Total Weighted Tardiness (Value/Comparison to best) 

Aggregate By: 
By 

BATC 

By Iterative      

BATC  

By 

Random  

By  

EDD 

  By Release 

Dates  

By 

ATC  

Size Stg 2: 4 
1417.1/

1.033 
1371.3/ 

1.000 

2177.6/ 

1.588 

1731.1/

1.262 

1726.7/ 

1.259 

1501.2/

1.095 

Size Stg 2: 8 
1214.6/

1.047 
1160.5/ 

1.000 

1866.5/ 

1.608 

1483.8/

1.279 

1480/ 

1.275 

1277.3/

1.101 

Size Stg 1: 4       

Size Stg 2: 1 
1012.2/ 

1.039 
973.8/ 

1.000 

1555.4/ 

1.579 

1236.5/ 

1.270 

1233.4/ 

1.267 

1069.4/ 

1.098 

Size Stg 2: 4 
843.5/ 

1.047 
805.8/ 

1.000 

1296.2/ 

1.609 

1030.4/

1.279 

1027.8/ 

1.275 

878.8/ 

1.091 

Size Stg 2: 8 
573.6/ 

1.038 
552.5/ 

1.000 

881.4/ 

1.595 

700.7/ 

1.268 

698.9/ 

1.265 

610.3/ 

1.105 

Size Stg 1: 8             

Size Stg 2: 1 
472.4/ 

1.052 
449.1/ 

1.000 

725.9/ 

1.616 

577/ 

1.285 

575.6/ 

1.282 

486.4/ 

1.083 

Size Stg 2: 4 
371.1/ 

1.058 
350.7/ 

1.000 

570.3/ 

1.626 

453.4/ 

1.293 

452.2/ 

1.289 

385.4/ 

1.099 

Size Stg 2: 8 
269.9/ 

1.070 
252.3/ 

1.000 

420.8/ 

1.668 

342.7/ 

1.358 

328.9/ 

1.303 

297.5/ 

1.179 

 

As expected, the best solution is found when batch sizes and number of machines 

on both stages are set to the high values. The Iterative BATC Heuristic performs best in 

all cases. Also, it is seen that the Iterative BATC achieves greatest improvements in 

values of TWT when the batch size on a stage is increased.  

8.2 Effect of G1 (due date tightness factor) and α (release date factor): 

The release date factor, α plays in important role in deciding how close release 

times and due dates are to each other. Smaller values of α yield release times which are 

clustered together. Smaller α values directly translate to jobs with due dates fairly close to 

each other. On pooling results based on α values, it is noticed that instances with lower α 

values, end up yielding higher total weighted tardiness. This seems logical, since in the 

real world this would translate to a greater number of jobs arriving very close to each 

other, causing a built up of inventory before the first stage. Given machine capacity 

constraints, this would cause some jobs to have long waiting times before they are 

processed.   
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Table 8-5 Effect of release date factor 

  Total Weighted Tardiness (Value/Comparison to best) 

Aggregate By: 
By 

BATC 

By Iterative      

BATC  

By 

Random  

By 

EDD   

   By Release 

Dates  

By 

ATC  

Release Date 

Factor : 0.25 

890.7/

1.083 
822.1/ 

1.000 

1491.9/ 

1.815 

1127/ 

1.371 

1110.4/ 

1.351 

909.9/

1.106 

Release Date 

Factor :0.75 

624.6/

1.060 
588.9/ 

1.000 

994.9/ 

1.689 

769.1/ 

1.305 

787.1/ 

1.336 

640.4/

1.087 

 

On the other hand, larger α values mean jobs which have release dates and due 

dates which are further apart from each other. This allows machines to process jobs at a 

rate which is proportional to that of how they arrive. Hence, seeing better solutions for 

larger values of α seems logical. This can be seen by examining the values found in the 

table above which carry total weighted tardiness values for heuristics pooled by release 

date factor. It is seen that the BATC and ATC heuristic perform better in instances with 

ready times which are spread out i.e. α value is high. 

Due dates have a significant bearing on the value of the total weighted tardiness. 

It is observed that when aggregating results on the basis of the due date factor, the best 

result is obtained when G1 = 1.5. This implies that loose due dates will yield better 

solutions and that seems intuitive since we use a modified version of ATC, which, as a 

metric relies greatly on the amount of slack available on each job.  

It is seen that the Iterative BATC and the BATC Heuristic perform best when we 

pool data based on due date tightness factor. The ATC Heuristic performs very well too 

since the ATC index largely depends on the due date and slack of a job. However, it is 

observed that relative to the Iterative BATC heuristic, the BATC and ATC heuristic tend 

to perform better in instances with loose due dates i.e. G1 is set a higher value. Table 8-6 

summarizes these findings. 
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Table 8-6 Effect of due date tightness factor 

  Total Weighted Tardiness (Value/Comparison to best) 

Aggregate By: 
By 

BATC 

By Iterative      

BATC  

By 

Random  

By 

EDD   

   By Release 

Dates  

By 

ATC  

Duedate Tightness 

Factor : 1.1 

836.1/

1.037 
805.9/ 

1.000 

1269.4/ 

1.575 

1009.1/

1.252 

1016.6/ 

1.261 

870.6/

1.08 

Duedate Tightness 

Factor : 1.5 

650/ 

1.058 
614.1/ 

1.000 

987.3/ 

1.608 

746.9/ 

1.216 

775/ 

1.262 

655.7/

1.068 

 

8.3 Effect of number of jobs/family: 

Increasing the number of jobs/family has direct bearing on the value of total 

weighted tardiness that the heuristics yield. Since greater number of jobs/family translates 

to greater test instances. Relative to the iterative BATC, the solution quality provided by 

the ATC heuristic seems to deteriorate with increasing number of jobs/family. Table 8-7 

below summarizes this. 

Table 8-7 Effect of number of jobs/family 

 
Total Weighted Tardiness (Value/Comparison to best) 

Aggregate By: 
By 

BATC 

By Iterative      

BATC  

By 

Random  

By      By Release 

Dates  
By ATC  

EDD  

Jobs/Family: 10 
559.5/ 

1.013 
551.9/ 

1.000 

1055.4/ 

1.912 

678/ 

1.228 

692.7/ 

1.255 

581.2/ 

1.053 

Jobs/Family: 15 
600.6/ 

1.018 
590/ 

1.000 

1073.5/ 

1.819 

806.1/

1.366 

777.6/ 

1.318 

664.6/ 

1.126 

Jobs/Family: 25 
787.3/ 

1.019 
772.7/ 

1.000 

1297.5/ 

1.679 

942.1/

1.219 

955.8/ 

1.237 

892.1/ 

1.154 

Jobs/Family: 50 
946.8/ 

1.021 
927.3/ 

1.000 

1637.1/ 

1.765 

1247/ 

1.345 

1196.9/ 

1.291 

1096.5/ 

1.183 

 

8.4 Effect of bottleneck criticality factor:  

The results of the extensive testing carried out demonstrate that when g3 is 

higher, the load on the bottleneck machine is higher which leads to higher values of total 

weighted tardiness. It is also seen that when the first stage is the bottleneck, the values 

of the objective function are higher. This can be explained by the fact that when the first 

stage is the bottleneck stage it acts as a siphon, preventing jobs from reaching the second 
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stage in a timely manner. Thus the value of the total weighted tardiness is greater when 

the first stage is the bottleneck stage.  

Also, we noticed a direct correlation between the batch sizes and the bottleneck 

stage. As expected, the stage with the smaller batch size becomes the bottleneck stage. 

Table 8-8 below summarizes the findings when results are pooled on the basis of the 

bottleneck criticality factor. On examining the ratios of the results it becomes clear that 

the BATC and the Iterative BATC Heuristic perform best. The results of the BATC and 

the Iterative BATC are very close to each other. The next best heuristic is the ATC 

heuristic.  

Table 8-8 Effect of bottleneck criticality factor. 

  Total Weighted Tardiness (Value/Comparison to best) 

Aggregate By: 
By 

BATC 

By Iterative      

BATC  

By 

Random  

By      By 

Release 

Dates  

By 

ATC  EDD  

Bottleneck Criticality 

Factor: 0.25 

584.8/

1.029 
568.4/ 

1.000 

998.7/ 

1.757 

724.4/1.

275 

712.6/ 

1.254 

642.1/

1.130 

Bottleneck Criticality 

Factor: 0.375 

877.2/

1.041 
842.6/ 

1.000 

1458/ 

1.73 

1071.6/

1.272 

1068.9/

1.269 

958.1/

1.137 

 

8.5 Effect number of families: 

In an effort to keep the number of instances at a reasonable number, only two 

variations of the number of families are included in the design of experiments. A greater 

number of families translate to a greater number of jobs in a problem instance as the total 

number of jobs is a function of number of families and number of jobs/family. Thus as 

expected when the number of families is increased the value of the objective function 

increases. Table 8-9 below gives the comparison of all heuristics when results are pooled 

on the basis of number of families. 
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Table 8-9 Effect of number of families 

  Total Weighted Tardiness (Value/Comparison to best) 

Aggregate By: 
By 

BATC 

By Iterative      

BATC  

By 

Random  

By      By 

Release 

Dates  

By 

ATC  EDD  

No. of families: 3 
529.0/ 

1.049 
504.5/ 

1.000 

887.6/ 

1.760 

614.1/ 

1.217 

642.4/ 

1.274 

543.2/

1.077 

No. of families: 5 
953.0/ 

1.051 
906.5/ 

1.000 

1349.1/ 

1.488 

1132/ 

1.249 

1169.1/ 

1.289 

997.0/ 

1.100 

  

 Further testing on the number of families beyond the design of experiments is 

carried out where the number of jobs is set to 180 and the number of jobs/family becomes 

a function of 180/f, where f is the number of families. Experimental cases with 3, 5, 9 and 

12 families were run using 5 machines on both stages and the batch size being set to 8. 

The release date factor (α) was set to 0.75, the due date tightness factor (g1) to 1.5 and the 

bottleneck criticality factor (g3) to 0.25.Table 8-10 shows the results of experimentation. 

Table 8-10 Effect of number of families outside of experimentation 

 

 
Total Weighted Tardiness (Value/Comparison to best) 

Aggregate By: By BATC 

By 

Iterative      

BATC 

By 

Random 

By  

EDD 

By 

Release 

Dates 

By 

ATC 

No. of families: 3 
1005.2/ 

1.049 
958.5/ 

1.000 

1686.4/ 

1.760 

1204.7/ 

1.257 

1258.6/ 

1.313 

1132.1/ 

1.181 

No. of families: 5 
1320.2/ 

1.040 
1269.2/ 

1.000 

1888.8/ 

1.488 

1584.8/ 

1.249 

1608.7/ 

1.268 

1467.8/ 

1.156 

No. of families: 9 
1163.9/ 

1.039 
1119.8/ 

1.000 

1952.7/ 

1.744 

1394.9/ 

1.246 

1457.4/ 

1.301 

1295.1/ 

1.151 

No. of families: 12 
1461.7/ 

1.041 
1405.1/ 

1.000 

2091.2/ 

1.488 

1724.6/ 

1.227 

1781.1/ 

1.267 

1514.4/ 

1.077 

 

 As seen from the table above the BATC and Iterative BATC heuristic yield 

relatively better results when the number of families is restricted to smaller numbers. 

When the number of families is increased, the solution quality decreases, but Iterative 

BATC still provides better solution quality than others. Thus it is most important to use 

the proposed heuristics when the number of incompatible families is lower. ATC 
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provides reasonable results when the number of families is large. For the f = 12 case, the 

improvement on solution quality of the Iterative BATC and the BATC heuristic becomes 

less remarked when compared to the ATC. 

 

8.6 Effect of varying time window: 

Experimentation for two values of the time window (Δt) are carried out. Larger 

values of the time window allow a greater number of jobs to be considered each time a 

machine becomes available which leads to a greater number of possibilities in the number 

of batch combinations that are feasible and to be considered. Due to this there is a slight 

increase in computational time as expected. Table 8-11 below represents the effect of 

varying the time window. It is seen that The Iterative BATC performs better than all 

other heuristics. 

Table 8-11 Effect of varying the time window 

 

  Total Weighted Tardiness (Value/Comparison to best) 

Aggregate By: 
By 

BATC 

By Iterative 

BATC  

By 

Random  

By  

EDD 

   By Release 

Dates  
By ATC  

Δt : 4 
848.7/ 

1.053 
805.9/ 

1.000 

1274.2/ 

1.581 

1018.8 

/1.264 

1034.2/ 

1.283 

905.3/ 

1.123 

Δt : 8 
624.8/ 

1.067 
585.3/ 

1.000 

1274.2/ 

2.177 

1018.8/ 

1.741 

1034.2/ 

1.767 

905.3/ 

1.547 

 

8.7 BATC v/s Iterative BATC: 

As expected, based on the testing carried out it becomes clear that the Iterative 

BATC Heuristic performs slightly better than the BATC heuristic in every case. 

However, this is only true when multiple passes of the Iterative BATC are carried out. 

Upon further consideration, the reason why the iterative BATC does not yield better 

results when only one pass is carried out because it highly depends on the weight and 

slack of each job. In some cases assigning the start time of stage 2 as the due date for 

stage 1 would lead to a more loose due date for that job on stage 1, which in turn would 
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reduce its ATC index on account of the greater slack now available. In such cases, this 

job would now be processed later as compared to the earlier case, which would cause an 

increase in the total weighted tardiness for the system. 

In general, using the Iterative BATC proves to be a better approach if time is not 

a constraint since the Iterative BATC approach takes a slightly longer time to carry out 

especially in those instances involving a greater number of jobs.  
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Chapter 9 

CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

From the experimentation conducted, it seems that the BATC and the iterative 

BATC heuristics both perform pretty well. It can be said that it would be prudent to use 

the Iterative BATC in those cases where due dates of jobs were relatively loose and the 

jobs had greater slack. This would allow the Iterative BATC to improve on the solution 

by being able to reassign calculated due dates for the first stage as start times for the 

second. 

However, it must also be mentioned that the Iterative BATC provides only a 

slight improvement on the final solution but the computational time required as compared 

to the BATC heuristic is slightly more. In extremely large problem instances, it could be 

argued, that the BATC would be a practically feasible option as compared to the Iterative 

BATC. In general it is noticed that the lowest value of the objective function is reached 

by the third pass in most cases and the fourth pass in some cases.  

The proposed heuristics can also be used to solve a special case of the problem at 

hand where ready times of all jobs are set to 0, i.e. all jobs are available for processing at 

time t = 0. Thus the problem at hand can be simplified to FF2|batch incompatible|∑wiTi. 

Since, all jobs are available for processing at the time the heuristic is run, the subset of 

jobs that can be used to calculate the next batch to be processed will consist of all 

unprocessed jobs from the family to be processed. Thus the heuristic will force all 

batches to run at capacity as that will ensure that the solution has the smallest total 

weighted tardiness. Another point worth noting is that, the length of the time window, Δt 

can be set to ∞ to reach the same result as all jobs are already available at time t = 0 and 

the heuristic does not need to wait for additional jobs to become ready for processing.  
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9.2 Future Work  

Based on findings from testing done on the two heuristics, certain areas of further 

research which would make it more usable in real environments seem promising. The 

environment considered in this research approximates set up times to be zero. It is 

assumed that machines do not need any set up and all different families are processed as 

soon as they are scheduled on machines. A further extension to our research can be to 

include family and stage dependent set up times for both stages, which will make its real 

world implications greater since on a factory floor, each different type of job normally 

requires some sort of setup on the machine to customize the machine for the processing 

required. 

Furthermore, this research assumes that there is unlimited buffer space between 

the two stages. However, this is not necessarily true in all practical situations, where 

because of space constraints there might be a limited buffer space between the two 

stages. It could be an interesting area to investigate how solutions would change when the 

number of jobs that can wait in front of the second stage is restricted. The assumptions of 

Klemmt et. al. (2009) [12] such as machine specific batch sizes and dedication of 

machines make the problem more realistic or real world like.  

Another extension to this research could be to test the developed heuristics with 

wider environments, additional stages or even for other performance measures such as 

makespan. 



  40 

REFERENCES 

1. T. C. E. Cheng, T. Y. Kovolou & K. N. Chakhlevich. Batching in a two-stage flow-

shop with dedicated machines in the second stage. IIE Transactions 2004 36, 87–93. 

 

2. Y. Kim, B. Joo & J. Shin. Heuristics for a two stage hybrid flow-shop scheduling 

problem with ready times and a product-mix ratio constraint. J Heuristics 2009 15, 

19–42.  

 

3. C. Liao & L. Liao. Improved MILP models for two-machine flow-shop with batch 

processing machines. Mathematical and Computer Modeling 48 (2008) 1254–1264. 

 

4. T. Cheng, T., Z. Chen, M. Kovalyov, & B. Lin. Parallel-machine batching and 

scheduling to minimize total completion time. IIE Transactions, 1996 28, 953. 

 

5. A. Oulamara. Makespan minimization in a no-wait flow shop problem with two 

batching machines. Computers & Operations Research 34 (2007) 1033–1050. 

 

6. N. Hall, G. Laporte, E. Selvarajah & C. Sriskandarajah. Scheduling and Lot 

Streaming in Flow-shops with No-Wait in Process. IIE Transactions (2002) 34, 953–

970. 

 

7. P. Brucker, A. Gladky, J.A. Hoogeveen, M.Y. Kovalyov, C.N. Potts, T. Tautenhahn, 

S.L. van de Velde. Scheduling a batching machine. Journal of Scheduling (1998) 31 -

54. 

 

8. L. Tang & P. Liu. Minimizing makespan in a two-machine flow-shop scheduling 

with batching and release times. Mathematical and Computer Modeling 49 (2009) 

1071-1077. 

 

9. L. Moench, H. Balasubramanian, J. W. Fowler, M. E. Pfund. Heuristic scheduling of 

jobs on parallel batch machines with incompatible job families and unequal ready 

times. Computers & Operations Research 32 (2005) 2731–2750. 

 

10. H. Balasubramanian, L. Moench, J. W. Fowler, M. E., Pfund. Genetic algorithm 

based scheduling of parallel batch machines with incompatible families to minimize 

total weighted tardiness. International Journal of Production Research  42 (2004) 

1621–38. 

 

11. L. Moench, H. Balasubramanian, J. W. Fowler, M. E., Pfund. Minimizing total 

weighted tardiness on parallel batch processing machines using genetic algorithms. 

Proceedings of the International Symposium on Operations Research, Klagenfurt, 

Austria;2002.p.205–11. 

 

12. A. Klemmt, C. Almeder, L. Moench, G. Weigert. A comparison of MIP based 

decomposition techniques and VNS approaches for batch scheduling problems. IIE 

Transactions (2009) 1686 – 1694. 

 



  41 

13. A. Devpura. Scheduling Parallel and single batch machines to minimize total 

weighted tardiness. Doctoral Dissertation (Arizona State University), June 2003.  

 

14. A. P. J. Vepsalainen, T. E. Morton. Priority rules for job shops with weighted 

tardiness costs. Management Science 1987; 33(8):1035–47. 

 

15. Y. Yang, S. Kreipl and M. Pinedo. Heuristics for minimizing total weighted tardiness 

in flexible flow shops. Journal of Scheduling.  J. Sched. 2000; 3:89-108 

 

16. D. C. Montgomery. Design and Analysis of Engineering Experiments. Published by 

John Wiley & Sons (2008).  

 

17. R Graham, E Lawler, J Lenstra, A Rinnooy Kann. Optimization and approximation 

in deterministic sequencing and scheduling: A survey. Annals of Discrete 

Mathematics 1979; 5:287–326. 

 



  42 

APPENDIX A 

MATHEMATICAL MODEL CODE 
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/********************************************* 

 * OPL 6.1 Model 

 * Author: Anubha 

 * Creation Date: Feb 28, 2011 at 7:41:39 PM 

 *********************************************/ 

int job = ...; 

int batch = ...; 

int machine_in_1 = ...; 

int machine_in_2 = ...; 

int family = ...; 

int stage = ...; 

int G = ...; 

range I=1..job; 

range J=1..batch; 

range K1=1..machine_in_1; 

range K2=1..machine_in_2; 

range L=1..family; 

range ST=1..stage; 

; 

float d[I]=...; 

float w[I]=...; 

float r[I]=...; 

float p[ST][I]=...; 

int B[ST]=...; 

int a[L][I]=...; 

; 

dvar boolean x[I][J][K1][ST]; 

dvar boolean y[J][K1][L][ST]; 

; 

dvar float+ s[1..(batch+1)][K1]; 

dvar float+ t[1..(batch+1)][K2]; 

dvar float+ C[ST][I]; 

dvar float+ T[I]; 

; 

minimize sum(i in I) (w[i]*T[i]); 

; 

subject to 

{ 

forall (i in I, st in ST) 

A1: sum(j in J, k1 in K1) (x[i][j][k1][st]) == 1; 

; 

forall (j in J, k1 in K1, st in ST) 

A2: sum(i in I) (x[i][j][k1][st]) <= (B[st]); 

; 

forall (j in J, k1 in K1, st in ST) 

A3: sum(l in L) (y[j][k1][l][st]) == 1; 

; 

forall (i in I, j in J, k1 in K1, l in L, st in ST) 

A4: (y[j][k1][l][st]) - (a[l][i])*(x[i][j][k1][st]) >= 0; 

; 

forall (i in I, j in J, k1 in K1, st in ST) 

A5: (x[i][j][k1][st])*(r[i]) <= (s[j][k1][st]); 

; 

forall (i in I, j in J, k1 in K1, st in ST) 

A6: (s[j][k1][st]) + (p[st][i])*(x[i][j][k1][st]) <= 

(s[j+1][k1][st]); 
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; 

forall (i in I, j in J, k1 in K1, st in ST) 

A7: (G*(1 - (x[i][j][k1][st]))) + (C[st][i]) >= (s[j][k1][st]) + 

(p[st][i]); 

; 

forall (i in I, j in J, k1 in K1, k2 in K2) 

A8: (C[1][i]) <= (s[j][k2][2]) + G*(1 - (x[i][j][k2][2])); 

; 

forall (i in I) 

A9: (C[2][i]) - (T[i]) <= (d[i]); 

}; 

execute DISPLAY_RESULTS{ 

  writeln("Tardiness =",T); 

  writeln("Completion Time =",C[2]); 

  writeln("x =",x); 

  writeln("u =",u); 

  writeln("Stage 1 Start Times =",s); 

  writeln("Stage 2 Start Times =",t); 

} 

 

 



 

                  

 


