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ABSTRACT

This dissertation considers two different kinds of two-hop multiple-

input multiple-output (MIMO) relay networks with beamforming (BF). First,

“one-way” amplify-and-forward (AF) and decode-and-forward (DF) MIMO

BF relay networks are considered, in which the relay amplifies or decodes the

received signal from the source and forwards it to the destination, respectively,

where all nodes beamform with multiple antennas to obtain gains in perfor-

mance with reduced power consumption. A direct link from source to destina-

tion is included in performance analysis. Novel systematic upper-bounds and

lower-bounds to average bit or symbol error rates (BERs or SERs) are pro-

posed. Second, “two-way” AF MIMO BF relay networks are investigated, in

which two sources exchange their data through a relay, to improve the spectral

efficiency compared with one-way relay networks. Novel unified performance

analysis is carried out for five different relaying schemes using two, three, and

four time slots in sum-BER, the sum of two BERs at both sources, in two-way

relay networks with and without direct links.

For both kinds of relay networks, when any node is beamforming simul-

taneously to two nodes (i.e. from source to relay and destination in one-way

relay networks, and from relay to both sources in two-way relay networks), the

selection of the BF coefficients at a beamforming node becomes a challenging

problem since it has to balance the needs of both receiving nodes. Although

this “BF optimization” is performed for BER, SER, and sum-BER in this

dissertation, the solution for optimal BF coefficients not only is difficult to

implement, it also does not lend itself to performance analysis because the

optimal BF coefficients cannot be expressed in closed-form. Therefore, the

performance of optimal schemes through bounds, as well as suboptimal ones
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such as strong-path BF, which beamforms to the stronger path of two links

based on their received signal-to-noise ratios (SNRs), is provided for BERs

or SERs, for the first time. Since different channel state information (CSI)

assumptions at the source, relay, and destination provide different error per-

formance, various CSI assumptions are also considered.
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Chapter 1

Introduction

In this chapter, background preliminaries for this dissertation are briefly

described, which are multiple antenna systems, cooperative diversity systems,

and performance metrics. Contributions of this dissertation are listed with

their organization as well.

1.1 Background

Wireless communications is one of the fastest growing industries over

the last decades. The recent number of cellular and wireless network users

worldwide indicates rapid growth of business in wireless systems. Nowadays,

wireless users require more applications, such as peer-to-peer (P2P) file shar-

ing, online gaming, and multimedia. At the same time, there exists increas-

ing user demand for more bandwidth, broader coverage, and better mobility

support, which establishes a trend of significant increase in traffic volume in

wireless networks. To support users’ demand for high data rates in a reliable

manner, one solution is to consider spatial diversity using multiple antennas

at the transmitter and receiver, and cooperative diversity using using relays

between the transmitter and receiver, which are considered throughout the

dissertation.

1.1.1 MIMO Systems

Systems using multiple antennas at the transmitter and receiver are

referred to as multiple-input multiple-output (MIMO) systems, illustrated in

Figure 1.1. MIMO antenna systems take advantage of the spatial diversity to

combat a severe fading environment due to their excellent link reliability [1]

1



since the first paper was presented by Winters in 1987 [2]. MIMO systems’ high

throughput with reliability, spectral efficiency, and degrees of freedom makes

them a powerful candidate of the 4th generation (4G) wireless communications

standards [3]. All 4G candidates such as long term evolution advanced (LTE-

Advanced) and worldwide inter-operability for microwave access (WiMAX)

(i.e. IEEE 802.16m) adopt MIMO [4] to achieve peak data rates of 100 Mbps

for high mobility and 1 Gbps for low mobility, according to the international

mobile telecommunications advanced (IMT-Advanced) requirements [5].

Figure 1.1: A Simple Block Diagram of a MIMO System.

The combination of maximum ratio transmission (MRT) beamforming

(BF) [6], and maximum ratio combining (MRC) beamforming [7] is one sim-

ple way to achieve spatial diversity if full channel state information (CSI) is

available at the transmitter and receiver for the MIMO antenna technology.

Since BF produces or receives a narrow wireless beam, it requires less power

for the same distance compared to a single antenna system, creates or receives

less interference to or from others, and increases reliability for transmission or

reception. Various BF techniques are considered and deployed with MIMO us-

ing multiple directional antenna elements to utilize BF advantages in wireless

standards such as wireless local area network (WLAN) (i.e. IEEE 802.11n) [8],

LTE-Advanced [9], and WiMAX [10].
2



1.1.2 Cooperative Diversity Systems

To support tremendous wireless traffic volume with high reliability and

broader coverage, cooperative diversity schemes, using relays between the

source and destination, have been widely investigated because of their spa-

tial diversity and extensive coverage with reduced power consumption [11–13],

which are also referred as to relay networks.

Figure 1.2: A Two-Hop One-way Relay Network using Multiple Antennas.

1.1.2.1 One-way Relay Networks

Figure 1.2 shows a two-hop one-way relay network using multiple an-

tennas at all nodes. Amplify-and-forward or decode-and-forward (AF/DF)

one-way relaying using two time slots is known to offer gains in performance

when the destination keeps apart from the source, in which the relay and desti-

nation receive the transmitted signal from the source in the first time slot, and

the relay amplifies or decodes and forwards the transmitted signal, and the

destination receives the relayed signal while the source remains silent in the

second time slot [11–13]. To support IMT-Advanced data rate requirements,

4G networks should reduce the cell sizes to decrease power consumption com-

pared with existing systems (i.e. 3rd generation (3G) networks). Additionally,

high speed features cannot be valid indoors because of building penetration
3



loss [14]. To overcome these problems, 4G standards such as LTE-Advanced

and WiMAX support AF/DF multi-hop relay systems to extend service area

and to improve data rates indoors [15–18].

Figure 1.3: A Two-Hop Two-Way Relay Network using Multiple Antennas.

1.1.2.2 Two-way Relay Networks

Even though one-way relaying provides spatial diversity and extensive

coverage with reduced power consumption, it causes a spectral loss due to more

use of time slots. To improve the spectral efficiency in two time slots, two-

way relaying is suggested as illustrated in Figure 1.3, in which two sources

transmit simultaneously their signals to the relay in the first time slot (i.e.

multiple access phase), and the relay amplifies or decodes transmitted signals

and forwards the combined signals to the sources in the second time slot (i.e.

broadcast phase) [19–21]. Unlike one-way relay networks, however, one prob-

lem of this two-slot two-way network is that it cannot utilize the full potential

of relay networks by neglecting possible direct links. To exploit the presence

of direct links in two-way relay networks as illustrated in Figure 1.4, three or

four time slots are necessary, which is discussed in this dissertation. Relay

architectures including one-way and two-way relaying are investigated using
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the present standards such as LTE-Advanced and WiMAX in the literature to

deploy relays efficiently in cellular systems [22, 23].

Figure 1.4: A Two-hop Two-Way Relay Network using Multiple Antennas
with Direct Links.

1.1.3 Performance Metrics

Regardless of systems, theoreticians in wireless communications have

presented their systems’ performance in the form of closed-form expressions.

To provide results in closed-form, the performance metrics of interest should be

clearly defined. Since the advent of wireless communications, one of the per-

formance metrics of interest has been the average probability of error, which

can be either a bit error rate (BER) or symbol error rate (SER) averaged

across fading channels. When memoryless modulated signals are transmitted

and corrupted over an additive white Gaussian noise (AWGN) channel, the in-

stantaneous error rate can be represented, or approximated by the well-known

Gaussian Q-function, in which the performance of communication systems

depends solely on the received signal-to-noise ratio (SNR). In addition, if a

physical phenomenon such as signal attenuation by lossy channels is consid-

ered, the attenuated signal passed through the channel affects the performance
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of communication systems. Hence, the additive noise and signal fading play a

major role in the performance of communication systems [7, 24–26].

The main interest of this dissertation is the average probability of error

defined as follows:

PE = EX

[

aQ
(√

2bX
)]

=

∫ ∞

0
aQ
(√

2bx
)

fX(x)dx, (1.1)

where Q(x) :=
(

1/
√

2π
) ∫∞

x
e−y

2/2dy [7,24–26], EX [·] denotes expectation with

respect to X, a and b are modulation related positive constants, and PE could

be either BER or SER by depending on the choice of a and b. For example,

a = 1 and b = 1 provide exact SER for binary phase shift keying (BPSK),

while a = 2 and b = sin2(π/M) and a = 4
(

1 − 1/
√

M
)

and b = 3/(2(M −

1)) provide tight SER approximations for M-ary PSK (M-PSK) and M-ary

quadrature amplitude modulation (M-QAM), respectively [7, 24, 27]. Since

the tightness of these approximations for different values of a and b are well-

studied in the literature, equation (1.1) is used as the metric of the average

probability of error throughout the dissertation. For another performance

metric of average error rates, sum-BER, sum of BERs at destination nodes, is

considered, since there are two receiving nodes and the worse one dominates

the sum in two-way relay networks. Sum-BER is defined as follows:

Pb =
1

log2(M)

∫ ∞

0
aQ
(√

2bx
)

(fX1(x) + fX2(x)) dx. (1.2)

Communication systems are designed to transmit various information

from sources to destinations. The channel capacity quantifies the maximum

data rates of information transmitted over the channels with arbitrary low

error probability. Therefore, the channel capacity is another excellent perfor-

mance metric of communication systems. Especially, the ergodic capacity can

be considered when the channel is ergodic over AWGN, in which the channel

coefficients vary in time and they can be averaged over their statistics with
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coding with large blocks of data [7, 24, 28]. If the channel is random and er-

godic and the CSI is known at the receiver only, the MIMO channel capacity

with the equal transmit power allocation technique is given by

C = EH

[

log

(

det

(

IMR
+

ρ

MT
HHH

))]

, (1.3)

where MT and MR are the number of transmit and receive antennas, respec-

tively, ρ is average transmit SNR, and (·)H represents a complex Hermitian.

Based on this ergodic capacity, maximum ergodic sum-rate for two-way relay

networks is defined as follows:

R =
1

T

∫ ∞

0
log2(1 + x) (fX1(x) + fX2(x)) dx, (1.4)

where T is the number of time slots used.

1.2 Contributions of Dissertation

In this dissertation, we have considered two different kinds of two-hop

MIMO relay networks with BF. First, one-way AF and DF MIMO BF relay

networks are considered, in which the relay amplifies or decodes the received

signal from the source and forwards it to the destination, respectively, where all

nodes conduct BF with multiple antennas to obtain gains in performance with

reduced power consumption when the destination keeps apart from the source.

A direct link from source to destination is included in performance analysis

since there are no existing closed-form expressions for BERs or SERs, which

are provided herein using novel proposed systematic upper-bounds and lower-

bounds. Second, two-way AF MIMO BF relay networks are investigated, in

which two sources exchange their data through a relay, to improve the spectral

efficiency compared with one-way relay networks. Novel unified performance

analysis is carried out for various different relaying schemes using two, three,
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and four time slots in sum-BER, the sum of two BERs at both sources, in

two-way relay networks with and without direct links.

For both kinds of relay networks, when beamforming to two nodes

simultaneously (i.e. from source to relay and destination in one-way relay net-

works, and from relay to both sources in two-way relay networks), the selection

of the BF coefficients at a beamforming node becomes a challenging problem

since it has to balance the needs of both receiving nodes. Although this BF

optimization is discussed for BER, SER, and sum-BER in this dissertation,

the solution for optimal BF coefficients not only is difficult to implement, it

also does not lend itself to performance analysis because the optimal BF co-

efficients cannot be expressed in closed-form. Therefore, the performance of

optimal schemes through bounds, as well as suboptimal ones such as strong-

path BF, which beamforms to the stronger path of two links based on their

received SNRs, is provided for BERs or SERs, for the first time. Since different

CSI assumptions at the source, relay, and destination provide different error

performance, various CSI assumptions are also considered.

Based on published literature, our contributions can be listed in three

categories, one-way relay networks, average performance bounds, and two-way

relay networks. For one-way relay networks, our contributions are as follows:

• Strong-path BF, the source beamforms to the stronger of S → D and

S → R → D, is analyzed in AF/DF MIMO one-way relay networks with

both known and unknown CSI assumptions, for the first time, and we

show that it outperforms the optimized BF performance at high SNR.
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• When the CSI on S → R and R → D is unknown at the destination

and source, respectively, a novel selection relaying that does not require

threshold optimization is presented.

• A novel combined lower-bound is investigated for AF/DF MIMO BF

relaying networks with known CSI of the relay link at the source and

destination, and we show that the lower-bound is achievable at the ex-

pense of a rate penalty.

• New high SNR performance is analyzed for lower-bound and strong-path

BF with AF MIMO one-way relay networks.

For average performance bounds, our contributions can be listed as

follows:

• Novel average performance bounds are obtained for systems with instan-

taneous SNRs given by a sum of N statistically independent (but not

necessarily identically distributed) non-negative random variables (RVs)

by the product of single integral expressions using the arithmetic mean

(AM) and geometric mean (GM) inequality.

• The tightness of the bounds is evaluated analytically at high SNR, and

the SNR gap between the bounds and the true error rate is shown to go

to zero as the number of RVs N increases.

• Tight closed-form combined expressions for AF relay networks with mul-

tiple relays and AF MIMO BF relay networks with multiple antennas

are obtained, for the first time in the literature.
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• The mathematical technique used to obtain the bounds is applied to

non-Gaussian Middleton’s class-A noise, for the first time.

For two-way relay networks, this dissertation contributes as follows:

• Novel closed-form sum-BER expressions are presented in a unified frame-

work for AF MIMO two-way relaying protocols with BF.

• This is the first dissertation dealing with performance analysis of AF

MIMO two-way relay networks using BF with multiple relay antennas,

to the best of our knowledge.

• Two novel two-way relaying protocols are proposed using three or four

time slots, and we show that two proposed protocols outperform existing

protocols in sum-BER at high-SNR.

• New closed-form high-SNR sum-BER performance is provided in a single

expression for five AF MIMO BF two-way relaying protocols. A novel

analytical high-SNR gap expression between the five different protocols

is provided.

• Novel unified average combined sum-BER approximations in closed-form

for AF MIMO BF two-way relay networks including direct links.

• New unified combined high SNR performance is presented for AF MIMO

BF two-way relay networks including direct links.

• This dissertation is first literature applying the theory of stochastic or-

ders to compare two average sum-BERs and sum-rates for AF MIMO

BF two-way relay networks with and without direct links.
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1.3 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter

2, strong-path BF as a sub-optimal scheme is analyzed, in which the source

beamforms to the stronger of the direct and relay links depending on their

received SNRs at the destination, in AF/DF MIMO fixed one-way relay net-

works when the CSI of the relay link is both known and unknown at the source

and destination. Novel upper-bounds for strong-path BF are presented when

the CSI of the relay is known at the source and destination. A new selection

relaying scheme with strong-path BF is proposed when the CSI of the relay

link is not fully known at the source and destination. High SNR performance

is also analyzed for AF relay networks to simplify the strong-path BF perfor-

mance via diversity and array gain expressions. Performance comparisons are

presented among these schemes with simulation and analytical results.

In Chapter 3, a novel lower-bound of AF/DF MIMO relay networks is

presented with known CSI of the relay link at the source and destination. It is

shown that the lower-bound is achievable at the expense of a rate penalty, and

the achievable scheme using three time slots is analyzed for AF/DF MIMO

fixed two-hop relay networks. When the CSI of the relay link is not known

at the source and destination, selection relaying is considered. High SNR

performance is analyzed for AF relay networks to simplify the lower-bound via

diversity and array gain expressions. The optimal SNR threshold is analyzed

for selection relaying. Comparisons are presented between strong-path BF

and selection relaying with a corresponding lower-bound using simulation and

analytical results.
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In Chapter 4, novel average BER/SER bounds are obtained for systems

with instantaneous SNRs given by a sum of N statistically independent non-

negative random variables (RVs). Their tightness is quantified analytically at

high SNR by calculating the SNR gap, and shown to be within O(1/N) of the

true value. The bounds are most useful when the distribution of the sum is

intractable, since they do not require finding the combined probability density

functions (PDFs) or cumulative distribution functions (CDFs) of the sum. The

bounds are illustrated with the MRC, the combined average performance for

AF relay networks using multiple relays, and AF MIMO single relay systems

with BF using multiple antennas at the source, relay, and destination. In

addition, applicability of the bounds to non-Gaussian noise is addressed, and

the tightness of the bounds is confirmed graphically.

In Chapter 5, unified performance analysis is conducted for AF MIMO

BF two-way relay networks with five different relaying protocols. Two novel

relaying protocols are introduced using three and four time slots suitable for

BF over the existing relaying protocols. As a result, unified CDFs are provided

for unified RVs attained from the five different relaying protocols, and the

closed-form unified sum-BER expression is obtained. Due to simplicity, high

SNR performance expressions are presented for sum-BER, and the analytical

high-SNR gap expression is provided. BF optimization is also discussed for

sum-BER since multiple antennas are used at all nodes. We investigate the

performance of the five protocols using the metric of sum-BER, and show that

the proposed three-slot and four-slot protocols outperform the existing two-

slot, three-slot, four-slot protocols in sum-BER for some practical scenarios

with beamforming, while the two-slot protocol is better than the proposed

protocols when a single relay antenna is used.
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In Chapter 6, unified performance analysis and stochastic ordering have

been carried out for AF MIMO BF two-way relay networks with direct links

in Rayleigh fading. Novel average combined sum-BER performance is pro-

vided in closed-form with a simple expression for three different protocols.

New unified high SNR performance is also presented for its simplicity, and

all performance is compared by simulations. In addition, Stochastic ordering

of average sum-BER and maximum sum-rate is presented using the unified

expressions of AF MIMO BF two-way relay networks with and without di-

rect links. It can be seen that all protocols with direct links dominate the

two-slot protocol without direct links, and the four-slot protocol outperforms

other protocols at high-SNR when direct links cannot contribute much to the

total performance if average transmit SNRs are unbalanced, whereas the three-

slot protocol outperforms other protocols at high-SNR otherwise. In addition,

stochastic ordering can compare two average quantities even when the average

performance is not tractable in closed-form, and it is shown that a large Los

parameter K can provide better performance in sum-BER and sum-rate for

all two-way relay protocols.

Finally, Chapter 7 concludes this dissertation based on the results ob-

tained from Chapter 2 to Chapter 6.
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Chapter 2

Performance Analysis of AF/DF MIMO Relay Networks with Strong-Path

Beamforming

Two-hop multiple-input multiple-output (MIMO) relay networks with

beamforming (BF) are considered such as Figure 2.1, in which a source node

transmits its signals to a destination node aided by a relay node, when the

source and destination conduct BF with multiple antennas, to obtain gains in

performance with reduced power consumption if the destination keeps apart

from the source. Amplify-and-forward (AF) and decode-and-forward (DF)

relaying schemes are considered, in which the relay amplifies or decodes the

received signals from the source and forwards them to the destination, respec-

tively.

Figure 2.1: Relay Network System Model.

When BF to both relay and destination, the selection of the BF coef-

ficients at the source becomes a challenging problem since the source has to

balance the needs of the relay and destination, which is called BF optimiza-

tion. However, the solution for optimal BF coefficients not only is difficult

to implement, it also does not lend itself to performance analysis because the

optimal BF coefficients cannot be expressed in closed-form. Therefore, the per-

formance of optimal schemes through suboptimal ones such as strong-path BF
14



is provided in bit or symbol error rates (BERs/SERs), for the first time. Since

different channel state information (CSI) assumptions at the source, relay, and

destination provide different error performance, various CSI assumptions are

also considered.

In this chapter, strong-path BF, which beamforms from the source to

the stronger path of direct and dual-hop relay links based on their received

signal-to-noise ratios (SNRs) at the destination, is analyzed in AF/DF MIMO

fixed one-way relay networks with both known and unknown CSI assump-

tions. BF in AF/DF relay networks has been studied in the following works.

A closed-form lower-bound of an AF relay link is provided for a single re-

lay antenna with multiple source and destination antennas in [29]. A BER

expression is presented for a MIMO link in [30]. Combined optimized BF

performance is given by using the finite Grassmannian BF vectors in [31].

In BF relay networks, the beamformer at the source has to be selected

depending on the channels of the direct and relay links. An optimal BF vector

is acquired by using the gradient ascent method with finite Grassmannian

initial points maximizing combined received SNR, resulting in a complex non-

convex iterative problem [31]. It is of interest to investigate BF schemes that

are simple to implement and novel analytical upper-bounds for AF/DF relay

networks since there is no a closed-form solution of the optimized BF scheme

in [31]. In strong-path BF, only one BF vector for a stronger path is used for

direct and relay links based on their received SNRs. Strong-path BF has been

introduced without analysis in [31], which we provide herein. When the CSI

on S → R and R → D is unknown at the destination and source, respectively,

a novel selection relaying scheme that does not require threshold optimization

is adopted, and compared with our extension of traditional selection relaying
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schemes with a threshold [11]. In addition, high SNR performance is analyzed

since the strong-path BF performance are complicated and cannot be written

in closed-form.

2.1 System Model

Figure 2.1 shows the system which consists of a source S, a relay R,

and a destination D. The source and destination are equipped with multiple

antennas MS and MD while the relay uses a single antenna. The half-duplex

scenario with a two-slot scheme is considered, in which the relay and desti-

nation receive the transmitted signal from the source in the first time slot,

and the relay amplifies/decodes and forwards the transmitted signal from the

source and the destination receives the relayed signal while the source remains

silent in the second time slot [11].

All CSI is assumed to be known to connected nodes. For example, HSD

is known only to the source and destination but not to the relay. The exception

is knowledge of hRD at the source and of hSR at the destination, whose presence

or absence is both considered herein. The BF vector is chosen based on if the

relay link or the direct link is better in terms of the instantaneous received

SNR.

The received signals using MRT and MRC of the direct and relay links

at the destination for AF relaying are as follows:

ySD =
√
ρSDcHSDHSDfSDx+ cHSDnSD (2.1)

ySRD =

√
ρSRρRDcHRDhRDfRDc

∗
SRhTSRfSRx

√

1 + ρSR‖hTSRfSR‖2

+

√
ρRDcHRDhRDfRDc

∗
SRnSR

√

1 + ρSR‖hTSRfSR‖2
+ cHRDnRD,

(2.2)
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where ρSD, ρSR, and ρRD are average transmit SNRs, cSD (MD × 1), cSR

(1× 1), and cRD (MD × 1) are MRC combining weight vectors or scalars with

Euclidean norm 1; HSD (MD × MS), hSR (MS × 1), and hRD (MD × 1) are

channel coefficient matrices or vectors, assumed to be i.i.d. CN(0, 1); fSD

(MS × 1), fSR (MS × 1), and fRD (1× 1) are BF vectors or scalars with norm

1; x ∈ {±1} is BPSK with E[|x|2] = 1 and E[x] = 0, nSD (MD × 1), nSR

(1 × 1), and nRD (MD × 1) are noise vectors or scalars distributed CN(0, I)

where I is the identity matrix, (·)H denotes a vector Hermitian, (·)∗ represents

a complex conjugate, and (·)T denotes a vector transpose. Variables cSR, fRD,

and nSR are scalars since the relay has a single antenna, which means there is

no BF at the relay.

The received signals using MRT and MRC of the direct and relay links

at the destination for DF relaying are as follows:

ySD =
√
ρSDcHSDHSDfSDx+ cHSDnSD (2.3)

ySRD =
√
ρRDcHRDhRDfRDx̂+ cHRDnRD, (2.4)

where x̂ is the maximum likelihood (ML) decoded symbol from ySR =
√

ρSR

c∗SRhSRfSRx + c∗SRnSR at the first time slot.

The combined received signals for AF and DF relaying using equations

(2.1)-(2.4) can be written as

y = aSD ySD + aSRD ySRD, (2.5)

where aSD and aSRD are combining weights for specific optimization criteria.

The minimum mean square error (MMSE) criterion [24,31,32] is used for AF

relaying. Recall from [24,31, 32] that the MMSE coefficient for aSD is
√

P/N

where P is the signal power and N is the aggregate noise power in equations

(2.1) and (2.3). Similarly, aSRD can be obtained from equations (2.2) and
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(2.4). For DF relaying, cooperative MRC (CMRC) [33] criterion is used to

find aSD and aSRD.

2.2 Performance Analysis

To avoid the complex non-convex optimization problem to solve for

a combined BF as in [31], strong-path BF will be considered, in which the

source beamforms to the stronger path of direct and relay links based on their

instantaneous received SNRs. More specifically, the BF vector is chosen based

on stronger instantaneous received SNR between direct and relay links.

Therefore, if γSD > γSRD, fSD = fSR = vSD, which is the strongest right

singular vector of HSD; otherwise fSD = fSR = vSR, which is hSR/‖hSR‖. For

combining vectors, if γSD > γSRD, cSD = uSD, the strongest left singular

vector of HSD, and cRD = uRD, the strongest left singular vector of hRD,

otherwise cSD = HSDvSR/‖HSDvSR‖ and cRD = uRD.

2.2.1 Known hRD at S and hSR at D

Using equations (2.1) and (2.2), if γSD > γSRD, the received signals at

the destination are given by

ySD =
√
ρSD‖HSDvSD‖x+ uHSDnSD (2.6)

ySRD =

√
ρSRρRD‖hRD‖‖hTSRvSD‖x
√

1 + ρSR‖hTSRvSD‖2
+

√
ρRD‖hRD‖nSR

√

1 + ρSR‖hTSRvSD‖2
+ uHRDnRD. (2.7)

Similarly, if γSD ≤ γSRD, we have

ySD =
√
ρSD‖HSDvSR‖x+

(HSDvSR)H

‖HSDvSR‖
nSD (2.8)

ySRD =

√
ρSRρRD‖hRD‖‖hTSRvSR‖x
√

1 + ρSR‖hTSRvSR‖2
+

√
ρRD‖hRD‖nSR

√

1 + ρSR‖hTSRvSR‖2
+ uHRDnRD. (2.9)
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If the MMSE criterion is used to combine signals for equations (2.6)-

(2.9) when hSR and hRD are known at D and S, respectively, the total instan-

taneous received SNR for the strong-path BF AF relaying can be represented

by

γ =















γSD + γ′SRD, γSD > γSRD

γ′SD + γSRD, γSD ≤ γSRD

, (2.10)

where γSD = ρSD‖HSDvSD‖2, γ′
SRD = γ′

SRγRD/ (1 + γ′
SR + γRD), γ′

SR = ρSR

‖hTSRvSD‖2, γRD = ρRD‖hRD‖2, γ′
SD = ρSD‖HSDvSR‖2, γSR = ρSR‖hTSRvSR‖2,

and γSRD = γSRγRD/ (1 + γSR + γRD). To recall our notation, primes (i.e.

γ′
SD, γ′

SR, and γ′
SRD) indicate instantaneous SNRs with unmatched beam-

formers. A BF vector is “matched” when it is the strongest right singular

vector of the corresponding channel.

Therefore, the instantaneous BER using BPSK is given by

PSBAFE = Pr (γSD > γSRD)Q

(

√

2
(

γSD + γ′SRD
)

)

I(γSD > γSRD)

+ Pr (γSD ≤ γSRD)Q

(

√

2
(

γ′SD + γSRD
)

)

I(γSD ≤ γSRD),

(2.11)

where I(·) is an indicator function. From equation (2.11), an analytical upper-

bound can be obtained if the indicator functions are removed. Using Craig’s

formula for Q(·) functions, the average BER using BPSK is upper-bounded

by

PE ≤ Pr (γSD > γSRD)
1

π

∫ π/2

0
E

[

e
− γSD

sin2 θ

]

E

[

e
− γ′SRD

sin2 θ

]

dθ

+ Pr (γSD ≤ γSRD)
1

π

∫ π/2

0
E

[

e
− γ′SD

sin2 θ

]

E

[

e
− γSRD

sin2 θ

]

dθ.

(2.12)

The first expectation of equation (2.12), E

[

e−γSD/ sin2 θ
]

, can be derived

as (please see details in Appendix 2.1)

E

[

e
− γSD

sin2 θ

]

=

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,m

(

sin2 θ

sin2 θ + ρSD

n

)m+1

, (2.13)
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where dn,m are coefficients given by [30, eqn. (24)], and Tables 2.1-2.3 provide

typical coefficients. The third expectation of equation (2.12), E

[

e−γ
′

SD/ sin2 θ
]

,

can be derived as (please see details in Appendix 2.2)

E

[

e
− γ′SD

sin2 θ

]

=

(

sin2 θ

ρSD + sin2 θ

)MD

. (2.14)

Since integrals cannot be expressed in closed-form, the second and fourth

expectations of equation (2.12), E

[

e−γ
′

SRD/ sin2 θ
]

and E

[

e−γSRD/ sin2 θ
]

, can be

directly evaluated numerically by integrating with the corresponding PDFs.

The PDF of γ′
SRD, fγ′SRD

(x), is given in Appendix 2.3, and that of γSRD,

fγSRD
(x), is given in [29, eqn. (12)]. Therefore, equation (2.11) can be upper-

bounded once equations (2.13) and (2.14) are substituted for equation (2.12),

along with E

[

e−γ
′

SRD/ sin2 θ
]

and E

[

e−γSRD/ sin2 θ
]

.

Table 2.1: The Coefficients dn,m for (MS, MD) = (1, 1), (2, 1), (3, 1), (4, 1), and
(2, 2)

(MS, MD) (1, 1) (2, 1) (3, 1) (4, 1) (2, 2)
n = 1 n = 2 n = 3 n = 4 n = 1 n = 2

m = 0 1 1 1 1 2 -1
m = 1 -2
m = 2 2
m = 3
m = 4

Table 2.2: The Coefficients dn,m for (MS , MD) = (3, 2), (4, 2), and (3, 3)

(MS, MD) (3, 2) (4, 2) (3, 3)
n = 1 n = 2 n = 1 n = 2 n = 1 n = 2 n = 3

m = 0 3 -3 1
m = 1 3 -3/4 -6 3/2
m = 2 -4 -1/4 4 -1/2 12 -3/4
m = 3 3 -6 -3/8 -12 -3/8
m = 4 4 -1/8 6 -3/8
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Table 2.3: The Coefficients dn,m for (MS , MD) = (4, 3) and (4, 4)

(MS, MD) (4, 3) (4, 4)
n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 4

m = 0 4 -6 4 -1
m = 1 6 -3 2/3 -12 6 -4/3
m = 2 -16 1 8/27 36 -6 4/9
m = 3 27 3/8 1/27 -68 1 28/81
m = 4 -24 -3/4 84 -1 92/243
m = 5 10 -5/32 -60 5/2 100/729
m = 6 -15/32 20 -5/2 20/729
m = 7 35/32
m = 8 -35/32

Similarly, based on the combined signal for strong-path BF DF relaying,

when hSR and hRD are known at D and S, respectively, the total received SNR

can be represented by

γ =















(γSD/
√
ρSD±γ′eq/

√
ρRD)

2

γSD/ρSD+γ′2eq/(ρRDγRD) , γSD > γSRD

(γ′SD/
√
ρSD±γeq/

√
ρRD)

2

γ′SD/ρSD+γ2
eq/(ρRDγRD)

, γSD ≤ γSRD

, (2.15)

where γeq = [Q−1 ((1 − PSR) PRD + PSR (1 − PRD))] /2, PSR = Q
(√

2γSR
)

,

PRD = Q
(√

2γRD
)

, γ′
eq = [Q−1 ((1 − P ′

SR) PRD + P ′
SR (1 − PRD))] /2, P ′

SR =

Q
(√

2γ′
SR

)

, and ± is used for x̂ = x or x̂ = −x from equation (2.4). Sub-

optimal CMRC of [33] is used instead of ML since its performance is very

similar to that of ML at high SNR.

Similar to equation (2.11) for AF relaying, if the indicator functions

are removed, the instantaneous BER using BPSK can be upper-bounded by

PSBDFE ≤ Pr (γSD > γSRD)
[

(

1 − P ′
SR

)

Q
(

√

2γx̂=x

)

+ P ′
SRQ

(

√

2γx̂=−x
)]

+ Pr (γSD ≤ γSRD)
[

(1 − PSR)Q
(
√

2γ′x̂=x

)

+ PSRQ
(√

2γ′x̂=−x

)]

,

(2.16)

where γx̂=−x and γ′
x̂=−x are the total received SNRs when γSD > γSRD and

γSD ≤ γSRD for x̂ = −x from equation (2.15), respectively. The average BER
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can be obtained by averaging the instantaneous BER over γSD, γSR, γRD, γ′
SD,

and γ′
SR numerically.

2.2.2 Unknown hRD at S and hSR at D: New Selection Relaying with

Strong-Path BF

If hRD and hSR are unknown at the source and destination, respec-

tively, the most practical approach is selection relaying [11]. In traditional

selection relaying with single antennas using no BF, the relay transmits the

amplified signal to the destination if the received SNR of the S → R exceeds

a predetermined threshold, and the source retransmits the signal otherwise in

the second time slot. In the presence of beamforming, this can be extended

where the relay transmits its signal only when it exceeds a threshold. Since

the optimization of such a threshold requires numerical techniques, however,

we seek a selection relaying approach that does not require a threshold. In our

proposed selection relaying with strong-path BF, the relay transmits the am-

plified signal to the destination if γSD ≤ γSR (i.e. if the strong-path is through

the relay), and the source retransmits the signal otherwise in the second time

slot. The advantages of the strong-path selection relaying are that it is simple

to implement and does not require a threshold.

The source determines the BF vector based on the effective received

SNRs over the channels, HSD and hSR, and the destination combines received

signals based on the received SNRs of HSD and hRD since hRD and hSR are

unknown at the source and destination, respectively. Therefore, if γSD >

γSR, fSD = fSR = vSD, which is the strongest right singular vector of HSD;

otherwise fSD = fSR = vSR, which is hSR/‖hSR‖. For combining vectors, if

γSD > γRD, cSD = uSD and cRD = uRD, otherwise cSD = HSDvSR/‖HSDvSR‖
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and cRD = uRD. Note that this scheme does not require knowledge of hRD

and hSR at the source and destination, respectively.

To characterize performance, if γSD > γSR, the source transmits twice

over two consecutive time slots, where on both slots vSD is used for BF and

uSD is used for combining:

ySD =
√
ρSD‖HSDvSD‖x+ uHSDnSD, (2.17)

and the relay never transmits the amplified signals in this case. If γSD ≤ γSR,

vSR is used for BF and HSDvSR/‖HSDvSR‖ and uRD are used for combining

so that

ySD =
√
ρSD‖HSDvSR‖2x+

(HSDvSR)H

‖HSDvSR‖
nSD (2.18)

ySRD =

√
ρSRρRD‖hRD‖‖hTSRvSR‖x
√

1 + ρSR‖hTSRvSR‖2
+

√
ρRD‖hRD‖nSR

√

1 + ρSR‖hTSRvSR‖2
+ uHRDnRD. (2.19)

If the MMSE criterion is used to combine signals for equations (2.17)-

(2.19), the total instantaneous received SNR for the strong-path BF selection

relaying can be represented by

γ =















2γSD, γSD > γSR

(γ′SD

√
1+γSR+γRD

√
γSR)

2

(1+γSR)(γ′SD+γRD)+γ2
RD

, γSD ≤ γSR

, (2.20)

where γSD = ρSD‖HSDvSD‖2, γ′
SD = ρSD‖HSDvSR‖2, γSR = ρSR‖hTSRvSR‖2,

and γRD = ρRD‖hRD‖2. Therefore, the instantaneous BER for strong-path

BF selection relaying using BPSK is upper-bounded by

PSRAFE ≤ Pr (γSD > γSR)Q
(

√

4γSD

)

+ Pr (γSD ≤ γSR)Q





√
2
(

γ′SD
√

1 + γSR + γRD
√
γSR

)

√

(1 + γSR)
(

γ′SD + γRD
)

+ γ2
RD



 .
(2.21)

Similarly, based on the combined signal for DF relaying, if hSR and

hRD are unknown at D and S, respectively, the total received SNR can be
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represented by

γ =















2γSD, γSD > γSRD

γ′SD±γRD√
γ′SD+γRD

, γSD ≤ γSRD

. (2.22)

The instantaneous BER using BPSK can also be upper-bounded by

PSRDFE ≤ Pr (γSD > γSRD)Q
(

√

2γSD

)

+ Pr (γSD ≤ γSRD)
[

(1 − PSR)Q
(

√

2γx̂=x

)

+ PSRQ
(

√

2γx̂=−x
)]

.

(2.23)

Note that all variables in equations (2.21) and (2.23) are channel dependent,

which makes averaging analytically intractable. However, the average BER

can be obtained by averaging the instantaneous BER in equations (2.21) and

(2.23) over γSD, γSR, γRD, and γ′
SD numerically.

2.3 High SNR Analysis for AF Strong-Path BF

Simple high SNR performance for AF strong-path BF is now considered

to further simplify equations (2.12)-(2.14). The approximation uses the PDFs

of γSD, γSRD, γ′
SD, and γ′

SRD, and shows that they satisfy the assumptions

given in [34], which provides a systematic method for high SNR analysis.

Based on [34], the average BER of an uncoded system using BPSK can be

approximated by

PE = (ρGc)
−Gd + o

(

ρ−Gd
)

(2.24)

as ρ → ∞, where Gc = 2 (
√

π(t + 1))
1/(t+1)

/ (2tαΓ(t + 3/2))
1/(t+1)

is the cod-

ing, or array gain, ρ is the average transmit SNR, Gd = t + 1 is the diversity

order, t is the first nonzero derivative order of the PDF of a channel dependent

random variable λ at the origin.

This random variable is proportional to the instantaneous SNR as γ =

ρλ, and α = f
(t)
λ (0)/t! 6= 0. The average SNR ρ may be ρSR with ρSD and ρRD
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which are constant multiples of ρSR, and λ may be either λSD := γSD/ρSR or

λSRD := γSRD/ρSR in the sequel. Therefore, equation (2.24) can be calculated

once t and α are found using the corresponding PDFs. The array and diversity

gains, Gc and Gd, in equation (2.24) are found for the direct and multi-hop

links separately, and then they are combined to obtain high SNR performance

for the whole system. High SNR performance for AF strong-path BF can be

obtained once t and α are found using PDFs of λSD := γSD/ρSR, λ′
SD :=

γ′
SD/ρSR, ΛSRD := ΓSRD/ρSR, and Λ′

SRD := Γ′
SRD/ρSR, where we recall that

ΓSRD = γSRγRD/ (γSR + γRD) and Γ′
SRD = γ′

SRγRD/ (γ′
SR + γRD).

For the direct link, the PDFs of λSD and λ′
SD are used to find tSD, t′SD,

and αSD. In this case, tSD = MS · MD − 1 since the diversity order of the

direct link using MRT with MRC when γSD > γSRD is given by MS · MD [6].

Similarly t′SD = MD − 1 since when γSD ≤ γSRD the diversity order is MD. In

the latter case, the BF vector is not matched with the direct link. The tSD

order derivative of the PDF of λSD evaluated at the origin is given in Appendix

2.4. The t′SD order derivative of the PDF of λ′
SD evaluated at the origin is

obtained by (ρSR/ρSD)MD (please see details in Appendix 2.5). Therefore,

both derivatives of λSD and λ′
SD evaluated at the origin are as follows:

f
(tSD)
λSD

(0) =

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,m

(

tSD

m

)

(−1)tSD+m

(

nρSR

ρSD

)tSD+1

(2.25)

f
(t′SD)

λ′SD
(0) =

(

ρSR

ρSD

)MD

. (2.26)

Henceforth, αSD can be obtained using equations (2.25) and (2.26)

αSD =















f
(tSD)

λSD
(0)

(MS ·MD−1)! , γSD > γSRD

f
(t′SD)

λ′

SD

(0)

(MD−1)! , γSD ≤ γSRD

. (2.27)

For the relay link, the PDFs of ΛSRD and Λ′
SRD can be used to find tSRD,

t′SRD, and αSRD. Since the diversity order of the relay link using MRT with
25



MRC when γSD > γSRD is given by 1, t′SRD = 0. In this case, the BF vector

is not matched with the relay link. We have tSRD = min(MS, MD) − 1 since

the diversity order of the relay link using MRT with MRC when γSD ≤ γSRD

is given by min(MS, MD) [35]. The tSRD order derivative of the PDF of ΛSRD

evaluated at the origin can be obtained by removing antenna correlation factors

from [35, eqn. (28)]. The t′SRD order derivative of the PDF of Λ′
SRD evaluated

at the origin can be obtained once MS = 1 is substituted for the tSRD order

derivative of the PDF of ΛSRD evaluated at the origin. Therefore, we have

f
(t′SRD)

Λ′

SRD
(0) =















1, MS < MD or MS > MD > 1

(

ρSR

ρRD

)

+ 1, MS = MD or MS > MD = 1

(2.28)

f
(tSRD)
ΛSRD

(0) =































(

ρSR

ρRD

)MD

, MS > MD

1, MS < MD

(

ρSR

ρRD

)MD

+ 1, MS = MD

. (2.29)

Putting them together, αSRD can be obtained using equations (2.28) and (2.29)

αSRD =















f
(t′SRD)

Λ′

SRD
(0), γSD > γSRD

f
(tSRD)
ΛSRD

(0)

(min(MS ,MD)−1)! , γSD ≤ γSRD

. (2.30)

For the combined link, the diversity order is MS · MD + 1 if γSD >

γSRD because the received SNR of the combined link is γSD + γ′
SRD, and it

is MD + min(MS, MD) if γSD ≤ γSRD because that of the combined link is

γ′
SD + γSRD. The final combined αC is given by using equations (2.25), (2.26),

(2.28) and (2.29).

αC =



















f
(tSD)

λSD
(0)·f(t′SRD)

Λ′

SRD

(0)

(MS ·MD)! , γSD > γSRD

f
(t′SD)

λ′

SD

(0)·f(tSRD)

ΛSRD
(0)

(MD+min(MS ,MD)−1)! , γSD ≤ γSRD

. (2.31)

Based on αC in equation (2.31), the combined link high SNR performance for

the strong-path BF can be obtained when MS ·MD +1 > MD +min(MS, MD)
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as

GSBd = min(MS ·MD + 1,MD + min(MS ,MD)) = MD + min(MS ,MD)

(2.32)

GSBc = [Pr(γSD ≤ γSRD)





f
(MD−1)
λ′SD

(0) · f (min(MS ,MD)−1)
ΛSRD

(0)Γ
(

MD + min(MS ,MD) + 1
2

)

2
√
π(MD + min(MS ,MD))!









−1/GSB
d

.

(2.33)

The combined link high SNR performance for the strong-path BF can be

obtained when MS ·MD + 1 = MD + min(MS, MD), where GSB
d is in equation

(2.32) and

GSBc = [Pr(γSD ≤ γSRD)




f
(MD−1)
λ′SD

(0) · f (min(MS ,MD)−1)
ΛSRD

(0)Γ
(

MD + min(MS ,MD) + 1
2

)

2
√
π(MD + min(MS ,MD))!





+Pr(γSD > γSRD)





f
(MS ·MD−1)
λSD

(0) · f (0)
Λ′

SRD
(0)Γ

(

MS ·MD + 3
2

)

2
√
π(MS ·MD + 1)!









−1/GSB
d

,

(2.34)

which is the same as equation (2.33) except the final term that is present when

MS · MD + 1 = MD + min(MS, MD).

In this case, full diversity order cannot be achieved since all potential

resources of the system are not used as compared with the lower-bound ob-

tained by the three-slot scheme. For special cases, if MS = 1 with arbitrary

MD, the diversity order of strong-path BF is MD + 1. If MD = 1 with arbi-

trary MS, when Pr(γSD > γSRD) ≈ 1 which occurs if both MS and MD are

bigger than 1, strong-path BF diversity is close to optimal. For example, the

diversity order of strong-path BF at high SNR when MD = 1 with arbitrary

MS is 2 but the diversity order for the lower-bound is MS + 1. From equation

(2.32), it is clear that the diversity order of strong-path BF is dominated by
27



the two-hop relay link. Therefore, the role of the relay in improving perfor-

mance for strong-path BF is in increasing the array gain in equations (2.33)

and (2.34), and in improving performance at low SNRs.

2.4 Simulation Results

The relationships among the average SNR values are chosen as ρSR =

ρRD and ρSD dB = ρSR dB − 30 log10(2), which corresponds to the relay

located in the mid-point of the S and D in a simplified path-loss model [7, p.46]

with path-loss exponent of 3 (i.e. the “mid-point relay model”). Alternatively,

we also consider ρSR = ρRD = ρSD which is the “equidistant relay model”.

In Monte-Carlo simulations, the transmitted symbol is BPSK modulated with

unit power, and the channel is 100-symbol block fading with (MS, MD) = (2, 2)

or (4,4). MRC with MMSE combining is used for AF relaying, and MRC with

CMRC combining is used for DF relaying.
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Figure 2.2: 4 × 1 × 4 AF Strong-Path BF Performance with BPSK using the
Mid-Point Relay Model.
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For illustration of our high SNR results, we select ρSR = ρRD = ρSD →

∞ even though our analysis applies to nonequal average SNRs as well. The

combined optimized BF performance from [31] and the lower-bound obtained

by using two different BF vectors “matched” with the relay and direct links,

respectively are included as benchmarks. For BF optimization, 64 Grassman-

nian vectors [36] are used as initial points for the gradient ascent algorithm.

2.4.1 AF/DF Strong-Path BF

This section shows AF/DF strong-path BF performance from Section

2.2, and all CSI is assumed to be known at the source and destination. Figure

2.2 shows 4 × 1 × 4 AF strong-path BF performance with BPSK using the

mid-point relay model. The upper-bound of strong-path BF is from equation

(2.12) and its actual performance is from equation (2.11). The upper-bound

of selection relaying is from equation (2.21) and its actual performance is from

equation (2.21) with the indicator functions. Strong-path BF performance

is 1.9 dB worse than the ideal lower-bound, 0.1 dB worse than optimized

BF performance, and 1 dB better than selection relaying performance at the

rate 10−6. The upper-bounds are 1.1 dB and 1.9 dB worse than their actual

performance at the rate 10−5.

Figure 2.3 shows 4×1×4 DF strong-path BF performance with BPSK

using the mid-point relay model. The upper-bound of strong-path BF is from

equation (2.16) and its actual performance is from equation (2.16) with the

indicator functions. The upper-bound of selection relaying is from equation

(2.23) and its actual performance is from equation (2.23) with the indicator

functions. Strong-path BF performance is 1.2 dB worse than the ideal lower-

bound and 0.4 dB better than selection relaying performance at the rate 10−6.
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The upper-bounds are 1.4 dB and 2.5 dB worse than their actual performance

at the rate 10−5.
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Figure 2.3: 4 × 1 × 4 DF Strong-Path BF Performance with BPSK using the
Mid-Point Relay Model

2.4.2 AF/DF Selection Relaying for Strong-Path BF

This section shows selection relaying with strong-path BF performance

from Section 2.2, where hRD and hSR are assumed to be unknown at the

source and destination, respectively. Our extension of traditional selection

relaying as well as hybrid selection relaying, in which the relay transmits the

amplified signal to the destination if γSD ≤ γSR and γSR > T where T is

the predetermined optimized threshold, and the source retransmits the signal

otherwise in the second time slot (i.e. no relaying if γSD > γSR), is illustrated

by simulations. Even though the hybrid selection relaying slightly outper-

forms the traditional and strong-path selection relaying, it requires threshold

optimization.
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Figure 2.4 shows performance comparisons among 4 × 1 × 4 tradi-

tional, strong-path, hybrid selection relaying schemes using the mid-point relay

model. The combined AF optimized BF performance with 64 initial points

is obtained by Monte-Carlo simulations. AF/DF strong-path selection relay-

ing performance is obtained by averaging the analytical SNR expression from

equations (2.21) and (2.23) with the indicator functions, respectively. The

performance of traditional and hybrid selection relaying, which rely on thresh-

old optimization, illustrates that the gains due to the presence of a threshold

are negligible. This motivates the merits of the proposed threshold-free selec-

tion approach. AF/DF strong-path selection relaying performance is about 1

dB and 0.5 dB worse than the AF optimized BF performance, respectively,

at 10−6. The novel strong-path selection relaying scheme does not require

threshold optimization and its performance is similar to other schemes which

require threshold optimization.
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Figure 2.4: 4 × 1 × 4 Selection Relaying with Strong-Path BF Performance
with BPSK using the Mid-Point Relay Model.
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Based on Monte-Carlo simulation results, the actual strong-path BF

performance is very close to the optimized BF performance and ideal lower-

bounds even though its upper-bound seems loose when path-loss exists. How-

ever, the upper-bounds are very tight to actual performance at high SNR. In

addition, availability of the CSI at the source and destination is very crucial

in performance.

2.4.3 High SNR Analysis for AF Strong-Path BF

This section shows high SNR performance for strong-path BF from

Section 2.3, and all CSI is assumed to be known at the source and destination.

Figure 2.5 shows 4× 1× 4 strong-path BF performance with BPSK using the

mid-point relay model. The combined optimized BF performance with 64 ini-

tial points of [31] is obtained by Monte-Carlo simulations. The upper-bound

of strong-path BF is attained analytically from equation (2.12). The strong-

path BF performance is acquired by averaging the analytical SNR expression

from equation (2.11), and is seen to be very close to the optimized BF perfor-

mance at 10−7 and the upper-bound of strong-path BF is about 1.4 dB worse

than strong-path BF performance at 10−6. The optimized BF performance is

better than strong-path BF performance at low SNR but close to or slightly

worse than strong-path BF performance at high SNR, due to the fact that the

gradient search algorithm used in the optimized scheme is not guaranteed to

converge to the optimum point.

Figure 2.5 shows 2 × 1 × 2 high SNR performance for strong-path BF

with BPSK using the equidistant relay model with ρSR = ρRD = ρSD. The

strong-path BF performance is acquired by averaging the analytical SNR ex-

pression from equation (2.11). The upper-bound of the combined link from
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Figure 2.5: 2× 1 × 2 High SNR Performance for Strong-Path BF with BPSK
using the Equidistant Relay Model.

equation (2.12) and high SNR performance for the combined link from equa-

tions (2.25)-(2.34) are obtained analytically and they match well at high SNR.

The combined upper-bound is about 1 dB worse than the combined strong-

path BF performance at 10−6. The performance is dominated by the two-hop

relay link at high SNR but by the direct link at low SNR. Using the mid-point

relay model, since the BF vector is usually chosen for the relay link at low

SNR and for the direct link at high SNR, the relay contributes to the com-

bined performance more at low SNR than at high SNR because the relay link

performance dominates the combined performance at low SNR.

Table 2.4: Summary of AF/DF BF Relaying Categories

Categories CSI Assumptions BF from S Combining at D

Strong-Path BF All Known 1 Stronger MMSE/CMRC
Selection Relaying Some Unknown 1 Stronger MMSE/CMRC
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2.5 Chapter Summary

Strong-path BF in AF/DF MIMO fixed relay networks has been inves-

tigated with an i.i.d. Rayleigh fading channel. Table 2.4 shows the summary

of assumptions and uses for AF/DF relaying categories with BF in the chap-

ter. Two categories are explored with both fully known and partially known

CSI of the relay link at the source and destination in AF/DF MIMO relay

networks. Novel upper-bounds are presented for AF/DF relaying with known

and unknown CSI of the relay link at the source and destination. This chapter

also adopts a new selection relaying if the CSI of the relay link is unknown

at the source and destination. For strong-path BF, only a single BF vector

is allowed for both direct and relay links. For selection relaying for strong-

path BF, a single BF vector is allowed with partial CSI known at the source

and destination. About the combining scheme at the destination, MRC with

MMSE or MRC with CMRC is used for AF/DF relaying schemes. In addi-

tion, high SNR performance analysis is also conducted to simplify the BER

expressions.

Strong-path BF is a simple approach that avoids complex iterative

techniques for calculating the beamformer and can be matched to different

CSI assumptions. Based on analytical and simulation results, strong-path BF

performance is very similar to the optimized BF scheme of [31]. Gaps between

the lower-bound and strong-path BF performance are within 2 dB at 10−7. In

addition, proposed strong-path selection relaying performance is about 1 dB

worse than the optimized BF performance at high SNR and does not require

threshold optimization. Strong-path BF performance does have a diversity

order that is the same as that of the lower-bound when MS = 1, and is close
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when MD = 1. The relay contributes to the combined performance more at

low SNR than at high SNR since the relay link performance dominates the

combined performance at low SNR in the mid-point relay model.

Appendix 2.1: Derivation of Equation (2.13)

This appendix derives equation (2.13), which is the first expectation of

equation (2.12). Equation (2.13) can be calculated by

E

[

e
− γSD

sin2 θ

]

=

∫ ∞

0
e
− x

sin2 θ fγSD
(x)dx

=

∫ ∞

0
e
− x

sin2 θ

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,m
nm+1xme

− nx
ρSD

m!ρm+1
SD

dx,

(2.35)

where fγSD
(x) is the PDF of γSD, which will be derived in the next paragraph.

Using
∫∞
0

xne−µxdx = n!µ−n−1 [37, p.340] for equation (2.35), equation (2.13)

can be obtained.

The derivation of fγSD
(x) is following. From [30, eqn. (23)], the PDF

of γSD can be directly obtained by using the PDF of ΛSD := γSD/ρSD based

on fY (y) = fX (y/ρSD) /ρSD [38, p.131] as

fγSD
(x) =

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,m
nm+1xme

− nx
ρSD

ρm+1
SD m!

, x > 0. (2.36)

Appendix 2.2: Derivation of Equation (2.14)

This appendix derives E

[

e−γ
′

SD/ sin2 θ
]

of equation (2.14). Since the BF

vector is not matched with the channel HSD, the PDF can be written as

fγ′
SD

(x) =
xMD−1e

− x
ρSD

(MD − 1)!ρMD

SD

, x ≥ 0. (2.37)

By the definition of the expectation,

E

[

e
− γ′SD

sin2 θ

]

=

∫ ∞

0
e
− x

sin2 θ
xMD−1e

− x
ρSD

(MD − 1)!ρMD

SD

dx. (2.38)

If
∫∞
0

xne−µxdx = n!µ−n−1 is used for equation (2.38), equation (2.14) can be

obtained.
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Appendix 2.3: Derivation of the PDF of γ′
SRD

This appendix derives the PDF of γ′
SRD. Since the BF vector is not

matched with the channel hSR and there is no BF for the channel hRD, the

CDFs and PDFs can be written as followings:

Fγ′SR
(x) = 1 − e

− x
ρSR , x ≥ 0 (2.39)

fγ′SR
(x) =

1

ρSR
e
− x

ρSR , x ≥ 0 (2.40)

FγRD
(x) = 1 − e

− x
ρRD

MD−1
∑

p=0

(

x
ρRD

)p

p!
, x ≥ 0 (2.41)

fγRD
(x) =

xMD−1e
− x

ρRD

(MD − 1)!ρMD

RD

, x ≥ 0. (2.42)

Based on the equations (2.39)-(2.42), if the derivation procedures in Appendix

of [29] is followed using
∫∞
0

xν−1e−
β
x
−γxdx = 2

(

β
γ

)
ν
2
Kν

(

2
√

βγ
)

[37, p.368] for

γ′
SRD = γ′

SRγRD/ (1 + γ′
SR + γRD), the CDF of γ′

SRD can be obtained by

Fγ′SRD
(x) = 1 −

2e
−x
(

1
ρSR

+ 1
ρRD

)

√

ρRD

ρSR
xMD− 1

2
√
x+ 1

(MD − 1)!ρMD

RD

MD−1
∑

q=0

(

MD − 1

q

)(

ρRD(x2 + x)

ρSRx2

)q/2

Kq+1

(

2

√

x2 + x

ρSRρRD

)

.

(2.43)

If equation (2.43) is taken derivative with respect to x, the PDF of γ′
SRD can

be obtained by

fγ′SRD
(x) = −

2e
−x
(

1
ρSR

+ 1
ρRD

)

√

ρRD

ρSR
xMD− 3

2

(MD − 1)!ρMD

RD

√
x+ 1

MD−1
∑

q=0

(

MD − 1

q

)(

ρRD(1 + x)

ρSRx

)q/2

[

Kq+1

(

2

√

x2 + x

ρSRρRD

)

((

− 1

ρSR
− 1

ρRD
+MD + q + 1

)

x+MD

−
(

1

ρSR
+

1

ρRD

)

x2

)

− (2x+ 1)

√

x2 + x

ρSRρRD
Kq+2

(

2

√

x2 + x

ρSRρRD

)]

, x ≥ 0.

(2.44)
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Appendix 2.4: Derivation of f
(tSD)
λSD

(0)

This appendix derives f
(tSD)
λSD

(0) for equation (2.25). From [30, eqn.

(23)], the PDF of ΛSD is used to obtain that of λSD := γSD/ρSR = ρSDΛSD/ρSR

using fλSD
(y) = ρSRfΛSD

(yρSR/ρSD) /ρSD by

fλSD
(x) =

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,m

(

nρSR

ρSD

)m+1
xme

−nxρSR
ρSD

m!
, x > 0. (2.45)

If the tSD order derivative is taken for equation (2.45) with respect to x,

f
(tSD)
λSD

(x) =

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,m

(

tSD

m

)

e
−nxρSR

ρSD

m
∑

k=0

Ck (−1)tSD+m+k

(

nρSR

ρSD

)tSD+k+1

xk,

(2.46)

where C0 = 1 and Ck is any real coefficient. Once equation (2.46) is evaluated

at the origin, equation (2.25) can be obtained.

Appendix 2.5: Derivation of f
(t′SD)

λ′SD
(0)

This appendix derives f
(t′SD)

λ′SD
(0) for equation (2.26). The PDF of λ′

SD

is given by

fλ′SD
(x) =

xMD−1e
−xρSR

ρSD

(

ρSD

ρSR

)MD

(MD − 1)!

, x ≥ 0, (2.47)

which can be derived from fγ′SD
(x) = xMD−1e−x/ρSD/(ρMD

SD (MD−1)!), x > 0 us-

ing fλ′SD
(y) = ρSRfγ′SD

(yρSR/ρSD) /ρSD since λ′
SD := γ′

SD/ρSR = ρSDΛ′
SD/ρSR.

If the t′SD order derivative is taken for equation (2.47) with respect to x,

f
(t′SD)

λ′SD
(x) =

t′SD
∑

k=0

(

t′SD
k

)

(−1)ke
−xρSR

ρSD xMD−(t′SD−k+1)

(

ρSD

ρSR

)MD+k
(

MD − (t′SD − k + 1)
)

!

. (2.48)

Once equation (2.48) is evaluated at the origin, (ρSR/ρSD)MD can be obtained.
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Chapter 3

Performance Analysis of AF/DF MIMO Relay Networks with Beamforming

using Multiple Relay Antennas

Two-hop multiple-input multiple-output (MIMO) relay networks with

beamforming (BF) are considered such as Figure 3.1, in which a source node

transmits its signals to a destination node aided by a relay node, when all

nodes conduct BF with multiple antennas, to obtain gains in performance with

reduced power consumption if the destination keeps apart from the source.

Amplify-and-forward (AF) and decode-and-forward (DF) relaying schemes are

considered, in which the relay amplifies or decodes the received signals from

the source and forwards them to the destination, respectively. Even though

their distance is far, the direct link from source to destination is included in

performance analysis since there are no existing closed-form expressions for bit

or symbol error rates (BERs/SERs), which are provided herein using a novel

proposed systematic upper-bound.

Figure 3.1: The System Model of Two-Hop Relay Networks.

When BF to both relay and destination, the selection of the BF coef-

ficients at the source becomes a challenging problem since the source has to

balance the needs of the relay and destination, which is called BF optimiza-

tion. However, the solution for optimal BF coefficients not only is difficult
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to implement, it also does not lend itself to performance analysis because the

optimal BF coefficients cannot be expressed in closed-form. Therefore, the

performance of optimal schemes through bounds is provided in BERs/SERs,

for the first time.

In this chapter, the half-duplex scenario is considered with a two-slot

scheme, and the combined BER or SER performance of relay networks with

BF is analyzed for the first time, to the best of our knowledge. A novel

combined lower-bound is investigated for an AF/DF BF relaying scheme with

known CSI of the relay link at the source and destination. The lower-bound

is obtained by using two different BF vectors “matched” with the relay and

direct links, respectively. A BF vector is matched when it is the strongest

right singular vector of the corresponding channel. It is found that the lower-

bound is achievable at the expense of a rate penalty. The lower-bound and its

achievable scheme are analyzed with the relay using a single antenna in first

two sections, and the lower-bound is analyzed with the relay with multiple

antennas in the following section.

A closed-form performance with a corresponding SNR distribution is

provided for only the multi-hop portion of an AF relay network with a single

relay antenna and multiple source and destination antennas in [29] and [35].

Similar work is done with four equivalent systems for a dual-hop AF relay

network in [39]. These schemes, however, do not utilize the relay network’s

full potential as they exclude the direct link. A general BF structure of the

optimal relay amplifying matrix is derived for AF MIMO relay systems with

a direct link in [40]. On the other hand, a closed-form BER expression is

presented in [30] for a direct point-to-point MIMO link, where the number of

transmit antennas is no less than the number of receive antennas.
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Optimized combined BF for AF relaying is shown to lead to a non-

convex problem and is solved using a gradient ascent algorithm with a finite

number of Grassmannian BF vectors for initial starting points when all CSI is

known at the source and destination in [31]. This solution not only is difficult

to implement, it also does not lend itself to BER or SER analysis because the

optimal BF coefficients cannot be expressed in closed-form. In the view of

this background, it is desirable to analyze the BER performance of optimal

schemes through bounds in relay networks.

3.1 System Model

Figure 3.1 shows the two-hop AF MIMO relay system, which consists

of a source S, a relay R, and a destination D. All nodes are equipped with

multiple antennas, MS, MR, and MD, respectively, and HSD, HSR, and HRD

are channel matrices connecting the nodes, which are assumed to be statis-

tically independent. The half-duplex time division multiple access (TDMA)

scenario is considered with the two-slot scheme, in which the relay and des-

tination receive the transmitted signal from the source in the first time slot,

and the relay amplifies and forwards the transmitted signal and the destina-

tion receives the relayed signal while the source remains silent in the second

time slot [11]. Unless otherwise stated, all CSI is assumed to be known only

to connected nodes. For example, HSD is known only to the source and desti-

nation, but not to the relay. The exception is knowledge of HRD at the source

and of HSR at the destination, whose presence or absence is both considered

herein.
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The received signals using MRT and MRC via the direct and relay links

at the destination for AF relaying are as follows:

ySD =
√
ρSDcHSDHSDfSDx+ cHSDnSD (3.1)

ySRD =

√
ρSRρRDcHRDHRDfRDcHSRHSRfSRx

√

1 + ρSR‖HSRfSR‖2

+

√
ρRDcHRDHRDfRDcHSRnSR
√

1 + ρSR‖HSRfSR‖2
+ cHRDnRD,

(3.2)

where ρSD, ρSR, and ρRD are average transmit SNRs; HSD (MD × MS), HSR

(MR×MS), and HRD (MD×MR) are channel coefficient matrices, assumed to

be i.i.d. according to CN(0, 1); fSD (MS×1), fSR (MS×1)1, and fRD (MR×1)

are BF vectors with norm 1 obtained as the strongest right singular vectors

of corresponding channel coefficient matrices; cSD (MD × 1), cSR (MR × 1),

and cRD (MD × 1) are combining weight vectors with norm 1 obtained as the

strongest left singular vectors of corresponding channel coefficient matrices;

x is transmitted symbol with E[|x|2] = 1 and E[x] = 0; nSD (MD × 1), nSR

(MR × 1), and nRD (MD × 1) are noise according to CN(0, I), where I is the

identity matrix; and (·)H denotes a vector Hermitian.

The received signals using MRT and MRC of the direct and relay links

at the destination for DF relaying are as follows:

ySD =
√
ρSDcHSDHSDfSDx+ cHSDnSD (3.3)

ySRD =
√
ρRDcHRDHRDfRDx̂+ cHRDnRD, (3.4)

where x̂ is the ML decoded symbol from ySR =
√

ρSRc
H
SRHSRfSRx + cHSRnSR

at the first time slot.

Using equations (3.1)-(3.4), the combined received signals for AF and

DF relaying can be written as

y = aSD ySD + aSRD ySRD, (3.5)

1Clearly, fSD = fSR for realizable two-slot schemes, but we allow them to be different
for the purpose of deriving lower-bounds.
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where aSD and aSRD are combining weights for specific optimization criteria.

The MMSE criterion [24,31,32] is used to find aSD and aSRD for AF relaying,

and CMRC is used to find them for DF relaying.

3.2 Performance Analysis for Two-Slot Lower-Bounds with MR = 1

Using a single antenna at R (i.e. MR = 1, the focus of this section is on

schemes that use two time slots: S → R and S → D in the first time slot, and R

→ D in the second time slot. Since the first time slot involves beamforming to

both the relay and the destination (i.e. fSD = fSR), the optimization of the BF

is nontrivial and cannot be expressed in closed-form [31]. To find a universal

performance bound for the two-slot scheme with BF, two distinct BF vectors

are allowed from the source to the relay and destination, respectively. Since a

single antenna is used, two channel coefficient matrices (i.e. HSR and HRD)

should be notated with channel coefficient vectors such as hSR (MS × 1) and

hRD (MD × 1). Therefore, to find a lower-bound, fSD = vSD and fSR = vSR

are chosen with vSD being the strongest right singular vector of HSD and

vSR = hSR/‖hSR‖, respectively, for equations (3.1) and (3.2). In addition,

cSD = uSD and cRD = uRD where uSD is the strongest left singular vector of

HSD and uRD = hRD/‖hRD‖.

The simplest way to attain the lower-bound for the two-slot scheme

is to use a three-slot scheme: The destination receives the transmitted signal

from the source while the relay remains silent in the first time slot; the relay

receives the transmitted signal from the source in the second time slot; the

destination receives the relayed signal from the relay while the source remains

silent in the third time slot. The three-slot scheme, however, has a spectral

efficiency that is 2/3 of the two-slot scheme. Attaining the lower-bound with
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the three-slot scheme is possible with the same power per bit as the two-slot

scheme but it has a loss in spectral efficiency. When this loss is not acceptable,

then the forthcoming lower-bound expression is still useful in bounding the

performance of the best two-slot scheme for any choice of BF.

3.2.1 AF Lower-Bound

If vSD and vSR are used for BF vectors and uSD and uRD are used as

combining vectors in equations (3.1) and (3.2)

ySD =
√
ρSD‖HSDvSD‖x+ uHSDnSD (3.6)

ySRD =

√
ρSRρRD‖hRD‖‖hTSRvSR‖x
√

1 + ρSR‖hTSRvSR‖2
+

√
ρRD‖hRD‖nSR

√

1 + ρSR‖hTSRvSR‖2
+ uHRDnRD. (3.7)

If the MMSE criterion is used to combine signals from equations (3.6) and (3.7)

when all CSI is known at the source and destination, the total instantaneous

received SNR can be represented by

γ = γSD + γSRD = γSD +
γSRγRD

1 + γSR + γRD
, (3.8)

where γSD = ρSD‖HSDvSD‖2 is the instantaneous received SNR of the di-

rect link, γSRD is that of the two-hop relay link, γSR = ρSR‖hTSRvSR‖2 =

ρSR‖hSR‖2, and γRD = ρRD‖hRD‖2.

Using Craig’s formula [7] based on equation (3.8), the average BER

using BPSK can be written as

PE =
1

π

∫ π/2

0
E

[

e
− γSD

sin2 θ

]

E

[

e
− γSRD

sin2 θ

]

dθ. (3.9)

The first expectation in equation (3.9) can be derived as (please see details in

Appendix 3.1)

E

[

e
− γSD

sin2 θ

]

=

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,m

(

sin2 θ

sin2 θ + ρSD

n

)m+1

, (3.10)
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where dn,m are coefficients given by [30, eqn. (24)], and Tables 2.1-2.3 provide

typical coefficients. A closed-form solution of the second expectation in equa-

tion (3.9) is not tractable but it can be lower-bounded by removing the 1 in

the denominator of the last term in equation (3.8), which yields the following

bound (please see details in Appendix 3.2):

E

[

e
− γSRD

sin2 θ

]

≥ 1 −
2
√

ρRD

ρSR

(MD − 1)!ρMD

RD sin2 θ

MS−1
∑

p=0

1

p!

(

1

ρSRρRD

)p/2 p
∑

u=0

MD−1
∑

q=0

(

MD − 1

q

)

(

p

u

)(

ρRD

ρSR

)u/2+q/2
√
π
(

4√
ρSRρRD

)q+u−p+1
Γ(MD + q + u+ 2)Γ(MD + 2p − q − u)

(

1
sin2 θ

+ 1
ρSR

+ 1
ρRD

+ 2√
ρSRρRD

)MD+q+u+2
Γ
(

MD + p+ 3
2

)

2F1

(

MD + q + u+ 2, q + u− p+
3

2
;MD + p+

3

2
;

1
sin2 θ

+ 1
ρSR

+ 1
ρRD

− 2√
ρSRρRD

1
sin2 θ

+ 1
ρSR

+ 1
ρRD

+ 2√
ρSRρRD

)

,

(3.11)

where 2F1(α, β; γ; z) is the Gauss hypergeometric function [37]. Therefore,

equation (3.9) can be lower-bounded once equations (3.10) and (3.11) are

substituted.

3.2.2 High SNR Analysis for AF Lower-Bound

Simple high SNR performance for the lower-bound is now considered

to further simplify equations (3.9)-(3.11). The approximation uses the PDFs

of γSD and γSRD and shows that they satisfy the assumptions given in [34],

which provides a systematic method for high SNR analysis. Based on [34], the

average BER of an uncoded system using BPSK can be approximated by

PE = (ρGc)
−Gd + o

(

ρ−Gd
)

(3.12)

as ρ → ∞, where Gc = 2 (
√

π(t + 1))
1/(t+1)

/ (2tαΓ(t + 3/2))
1/(t+1)

is the array

gain, ρ is the average transmit SNR, Gd = t + 1 is the diversity order, t is

the first nonzero derivative order of the PDF of a channel dependent random

variable λ at the origin. This random variable is proportional to the instanta-
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neous SNR as γ = ρλ, and α = f
(t)
λ (0)/t! 6= 0. The average SNR ρ may be ρSR

with ρSD and ρRD which are constant multiples of ρSR, and λ may be either

λSD := γSD/ρSR or λSRD := γSRD/ρSR in the sequel. Therefore, equation

(3.12) can be calculated once t and α are found using PDFs of λSD and λSRD.

The array and diversity gains, Gc and Gd, in equation (3.12) are found for the

direct and multi-hop links separately, and then they are combined to obtain

high SNR performance for the whole system.

For the direct link, the PDF of λSD, given by Appendix 3.3, is used

to find tSD, the first nonzero derivative order of the PDF of λSD, and αSD =

f
(tSD)
λSD

(0)/tSD!. In this case, tSD = MS · MD − 1 since the diversity order of

MIMO MRT with MRC is given by MS · MD [6]. If the tSD order derivative

of the PDF of λSD is evaluated at the origin, the following can be obtained

(please see details in Appendix 3.3)

f
(tSD)
λSD

(0) =

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,m

(

tSD

m

)

(−1)tSD+m

(

nρSR

ρSD

)tSD+1

. (3.13)

Based on equation (3.13), αSD can be acquired by

αSD =
f

(tSD)
λSD

(0)

(MS ·MD − 1)!
. (3.14)

For the relay link, the PDF of ΛSRD = ΓSRD/ρSR, where ΓSRD =

γSRγRD/ (γSR + γRD) given in [29, eqn. (12)], can be used to find tSRD and

αSRD because the instantaneous SNRs ΓSRD and γSRD are equivalent at high

average SNR since they differ by a constant term in the denominator of equa-

tion (3.8). Since the diversity order of the relay link is given by min (MS, MD)

in [35], tSRD = min (MS , MD) − 1. The tSRD order derivative of the PDF of

ΛSRD evaluated at the origin can be obtained by removing antenna correlation
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factors from [35, eqn. (28)] as follows:

f
(tSRD)
ΛSRD

(0) =































(

ρSR

ρRD

)MD

, MS > MD

1, MS < MD

(

ρSR

ρRD

)MD

+ 1, MS = MD

. (3.15)

Based on equation (3.15), αSRD can be written as

αSRD =
f

(tSRD)
ΛSRD

(0)

(min (MS ,MD) − 1)!
=































(

ρSR
ρRD

)MD

(MD−1)! , MS > MD

1
(MS−1)! , MS < MD
(

ρSR
ρRD

)MD
+1

(MD−1)! , MS = MD

. (3.16)

For the combined link, the PDF of γSD + ΓSRD is a convolution of

fγSD
(x) and fΓSRD

(x), which is difficult to obtain in closed-form. Instead of

using the PDF of γSD + ΓSRD, an alternate approach is used to find tC and

αC for the combined link. We have tC = MS · MD + min(MS, MD) − 1 since

the diversity order of the combined link is MS · MD + min(MS, MD), which

is the sum of the diversity orders of the direct and relay links because the

received SNR of the combined link is γSD + ΓSRD. To find f
(tC)
λSD+ΛSRD

(0), the

product of f
(tSD)
λSD

(0) and f
(tSRD)
ΛSRD

(0) can be used, which is shown in Appendix

3.4. Therefore, the final combined αC is given by using equations (3.13) and

(3.15)

αC =
f

(tSD)
λSD

(0) · f (tSRD)
ΛSRD

(0)

(MS ·MD + min(MS ,MD) − 1)!
. (3.17)

Based on αC and tC , Gd and Gc can be substituted as explained after equation

(3.12). The combined link high SNR performance for the lower-bound can be

obtained by

GLBd = MS ·MD + min(MS ,MD) (3.18)

GLBc = 2

(

2G
LB
d −1αCΓ

(

GLBd + 1
2

)

√
πGLBd

)− 1

GLB
d

. (3.19)

Since all potential resources of the relay network are used, full diversity order

is achieved.
46



3.2.3 DF Lower-Bound

If vSD, vSR, and vRD are used for BF vectors and uSD, uSR, and uRD

are used as combining vectors in equations (3.3) and (3.4),

ySD =
√
ρSDuHSDHSDvSDx+ uHSDnSD (3.20)

ySRD =
√
ρRDuHRDHRDvRDx̂+ uHRDnRD, (3.21)

where x̂ is the ML decoded symbol from ySR =
√

ρSRu
H
SRHSRvSRx+uHSRnSR.

If the CMRC criterion is used to combine signals from equations (3.20)

and (3.21) when all CSI is known at the source and destination, the total

instantaneous received SNR can be represented by

γ =















(γSD/
√
ρSD+γeq/

√
ρRD)

2

γSD/ρSD+γ2
eq/(ρRDγRD) , x̂ = x

(γSD/
√
ρSD−γeq/

√
ρRD)

2

γSD/ρSD+γ2
eq/(ρRDγRD)

, x̂ = −x
, (3.22)

where γeq = [Q−1((1 − PSR)PRD + PSR(1 − PRD))]/2, PSR = Q(
√

2γSR), and

PRD = Q(
√

2γRD) when the sub-optimal CMRC combining scheme [33] is

used. CMRC is used instead of ML [41] because CMRC is much simpler than

ML and the performance of it is very similar to that of ML at high SNR. The

instantaneous BER using BPSK is given by

PDFLBE = (1 − PSR)Q
(

√

2γx̂=x

)

+ PSRQ
(

√

2γx̂=−x
)

. (3.23)

The average BER can be obtained by averaging the instantaneous BER over

γSD, γSR, and γRD numerically.

3.3 Performance Analysis for the Three-Slot Scheme with MR = 1

The half-duplex scenario is considered with a three-slot scheme, in

which the relay and destination receive the transmitted signal from the source
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with a BF vector matched with the direct link (S → D) in the first time slot;

the relay and destination receive the transmitted signal from the source with

a BF vector matched with the relay link (S → R) in the second time slot;

the destination receives the relayed signal from the relay while the source re-

mains silent in the third time slot [42]. Figure 3.2 shows the three-slot relaying

scheme. We assume that a block of signals is transmitted from the source and

relay for each time slot, so that all channels are considered to be statistically

independent even if same channels are used consecutively.

Figure 3.2: The Three-Slot Scheme.

The received signals using MRT and MRC at the destination and relay

via the first, second, and third time slots are as follows:

ySD,1 =
√
ρSDcHSD,1HSD,1fSDx+ cHSD,1nSD,1 (3.24)

ySR,1 =
√
ρSRc

∗
SR,1h

T
SR,1fSDx+ c∗SR,1nSR,1 (3.25)

ySD,2 =
√
ρSDcHSD,2HSD,2fSRx+ cHSD,2nSD,2 (3.26)

ySR,2 =
√
ρSRc

∗
SR,2h

T
SR,2fSRx+ c∗SR,2nSR,2 (3.27)

ySRD =
√
ρRDcHRDhRDfRDwySR + cHRDnRD, (3.28)

where cSD,1 (MD × 1), cSD,2 (MD × 1), cSR,1 (1 × 1), cSR,2 (1 × 1), and cRD

(MD × 1) are MRC combining weight vectors or scalars with Euclidean norm

1; HSD,1 (MD×MS), HSD,2 (MD×MS), hSR,1 (MS × 1), hSR,2 (MS × 1), and

hRD (MD × 1) are channel coefficient matrices or vectors, assumed to be i.i.d.
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CN(0, 1); nSD,1 (MD × 1), nSD,2 (MD × 1), nSR,1 (1 × 1), nSR,2 (1 × 1), and

nRD (MD × 1) are noise vectors or scalars distributed CN(0, I) where I is the

identity matrix; w is a normalization weight scalar,

1/

√

ρ2
SR

(

‖hTSR,1fSD‖2 + ‖hTSR,2fSR‖2
)2

+ ρSR
(

‖hTSR,1fSD‖2 + ‖hTSR,2fSR‖2
)

,

ySR is the aggregated received signal combining equations (3.25) and (3.27) at

the relay given below.

Using equations (3.24)-(3.27), the combined received signals using the

minimum mean square error (MMSE) criterion [24, 31, 32] at the destination

and relay can be written as follows:

ySD = ρSD|cHSD,1HSD,1fSD|cHSD,1HSD,1fSDx+
√
ρSD|cHSD,1HSD,1fSD|cHSD,1nSD,1

+ ρSD|cHSD,2HSD,2fSR|cHSD,2HSD,2fSRx+
√
ρSD|cHSD,2HSD,2fSR|cHSD,2nSD,2

(3.29)

ySR = ρSR|c∗SR,1hTSR,1fSD|c∗SR,1hTSR,1fSDx+
√
ρSR|c∗SR,1hTSR,1fSD|c∗SR,1nSR,1

+ ρSR|c∗SR,2hTSR,2fSR|c∗SR,2hTSR,2fSRx+
√
ρSR|c∗SR,2hTSR,2fSR|c∗SR,2nSR,2.

(3.30)

Recall from [24, 31, 32] that the MMSE coefficient is
√

P/N where P is the

aggregate signal power and N is the aggregate noise power from equations

(3.24)-(3.27). Before relaying the combined received signals to the destination,

the relay normalizes them to make ρRD represent an average transmit SNR

at the relay. After three time slots, therefore, the received signals at the

destination via the relay and direct links are given by equations (3.28) and

(3.29), respectively.

3.3.1 Performance Analysis

For better performance with no spectral loss, our work focuses on

schemes that use three time slots: S → R and S → D with a BF vector
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matched with S → D in the first time; S → R and S → D with another BF

vector matched with S → R in the second time slot; R → D in the third time

slot. The three-slot scheme is a natural extension of the two-slot scheme, in

which S → R and S → D in the first time slot and R → D in the second time

slot [11], and strong-path BF, which beamforms to the stronger path of direct

and relay links based on their instantaneous received SNR’s [43].

Even though the two-slot scheme allows two distinct BF vectors from

the source to the relay and destination, respectively, to find a universal per-

formance bound, the three-slot scheme can use two different BF vectors nat-

urally during the first and second time slots. Therefore, determining the BF

vectors is not an issue in the three-slot scheme. For BF vectors, fSD is cho-

sen with vSD, the strongest right singular vector of HSD,1, and fSR is chosen

with vSR = hSR/‖hSR‖ for equations (3.24)-(3.30). For combining vectors,

in addition, cSD,1 is used with uSD,1, the strongest left singular vector of

HSD,1, cSD,2 is used with uSD,2 = HSD,2fSR/‖HSD,2fSR‖, and cRD is used

with uRD = hRD/‖hRD‖.

If vSD and vSR are used for BF vectors and uSD,1, uSD,2 and uRD

are used as combining vectors in equations (3.24)-(3.30), the received signals

through all three time slots can be written as follows:

ySD = ρSD
(

‖HSD,1vSD‖2 + ‖HSD,2vSR‖2
)

x

+
√
ρSD

(

‖HSD,1vSD‖uHSD,1nSD,1 + ‖HSD,2vSR‖uHSD,2nSD,2
)

(3.31)

ySR = ρSR
(

‖hTSR,1vSD‖2 + ‖hTSR,2vSR‖2
)

x

+
√
ρSR

(

‖hTSR,1vSD‖nSR,1 + ‖hTSR,2vSR‖nSR,2
)

(3.32)

ySRD =
√
ρRDw‖hRD‖ySR + uHRDnRD, (3.33)

where w is obtained with vSD and vSR.
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If the MMSE criterion is used to combine signals from equations (3.31)

and (3.33) when all CSI is known at the source and destination, the total

instantaneous received SNR can be represented by

γ = γSD + γSRD = ΓSD + Γ′
SD +

(ΓSR + Γ′
SR) ΓRD

1 +
(

ΓSR + Γ′
SR

)

+ ΓRD
, (3.34)

where γSD := ΓSD + Γ′
SD, ΓSD = ρSD‖HSD,1vSD‖2, Γ′

SD = ρSD‖HSD,2vSR‖2,

ΓSR = ρSR‖hSR‖2, Γ′
SR = ρSR‖hTSRvSD‖2, ΓRD = ρRD‖hRD‖2, and γSRD :=

(ΓSR + Γ′
SR) ΓRD/ (1 + (ΓSR + Γ′

SR) + ΓRD). Note that primes (i.e. Γ′
SD and

Γ′
SR) indicate instantaneous received SNR’s with unmatched beamformers.

We also define γ+
SD = ρSD‖H+

SDv+
SD‖2, a received SNR when MS + 1 source

antennas are used for BF via the direct link, where H+
SD (MD × (MS + 1))

is a channel coefficient matrix assumed to be i.i.d. CN(0, 1) and v+
SD is the

strongest right singular vector of H+
SD since the SER performance using γ+

SD

provides an upper-bound for the SER performance using γSD.

Based on an SER expression, PE = E
[

aQ
(√

2bγ
)]

where a and b are

modulation related constants (i.e. a = 1, b = 1 for BPSK and approximately

a = 2, b = sin2(π/M) for M-ary PSK) and γ is an instantaneous received

SNR, [eqn. (20)] [44] presents a simple SER approximation as

PE =
a
√
b

2
√
π

∫ ∞

0

e−bx√
x
Fγ(x)dx. (3.35)

When the CDF’s of γ+
SD and ΓSRD := (ΓSR + Γ′

SR) ΓRD/ ((ΓSR + Γ′
SR) + ΓRD)

are substituted to equation (3.35), the average SER’s for the direct and relay

links are as follows (please see details in Appendix 3.5):

PE,SD ≤ a

2
−

MD
∑

n=1

(MS+MD+1)n−2n2
∑

m=MS−MD+1

m
∑

k=0

a
√
bdn,m+1n

k(2k − 1)!!

2k+1k!ρkSD

(

b+ n
ρSD

)k+ 1
2

(3.36)
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PE,SRD ≥ a

2
−

a
√
b
√

ρRD

ρSR

(MD − 1)!ρMD

RD

MS
∑

p=0

1

p!

(

1

ρSRρRD

)
p
2
MD+p−1
∑

q=0

(

MD + p− 1

q

)(

ρRD

ρSR

)
q
2

(

4√
ρSRρRD

)q−p+1

(

b+ 1
ρSR

+ 1
ρRD

+ 2√
ρSRρRD

)MD+q+ 3
2

Γ(MD + q + 3
2)Γ(MD + 2p − q − 1

2 )

Γ(MD + p+ 1)

2F1

(

MD + q +
3

2
, q − p+

3

2
;MD + p+ 1;

b+ 1
ρSR

+ 1
ρRD

− 2√
ρSRρRD

b+ 1
ρSR

+ 1
ρRD

+ 2√
ρSRρRD

)

,

(3.37)

where dn,m is the coefficient given by [30, eqn. (24)], !! denotes the double fac-

torial defined in [37], and 2F1(α, β; γ; z) is the Gauss hypergeometric function

in [37]. Note that PE,SD is upper-bounded by using γ+
SD instead of γSD since

it is intractable to obtain the CDF and PDF of γSD. Note also that PE,SRD

is lower-bounded by removing the 1 in the denominator of γSRD since an SER

closed-form solution is not tractable with γSRD even though the CDF and

PDF of γSRD are obtained and used to find numerical solutions. Both upper-

bound and lower-bound are tight to the exact SER performance, and enough

to show the superiority of the three-slot scheme over the two-slot scheme in

SER performance at high SNR.

Based on the total instantaneous received SNR given in equation (3.34),

the average combined SER using Craig’s formula [7] can be written as

PE =
1

π

∫
(M−1)π

M

0
E

[

e
− gγSD

sin2 θ

]

E

[

e
− gγSRD

sin2 θ

]

dθ, (3.38)

where g = sin2(π/M) for M-ary PSK including BPSK. A closed-form solution

of the first expectation in equation (3.38) is not tractable but it can be upper-

bounded by using γ+
SD instead of γSD (please see details in Appendix 3.6):

E

[

e
− gγSD

sin2 θ

]

≤
MD
∑

n=1

(MS+MD+1)n−2n2
∑

m=MS−MD+1

dn,m+1

(

sin2 θ

sin2 θ + gρSD

n

)m+1

. (3.39)

A closed-form solution of the second expectation in equation (3.38) is not

obtainable, but it can be lower-bounded by removing the 1 in the denominator
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of γSRD similar to equation (3.37) as follows (please see details also in Appendix

3.6):

E

[

e
− gγSRD

sin2 θ

]

≥ 1 −
2g
√

ρRD

ρSR

(MD − 1)!ρMD

RD sin2 θ

MS
∑

p=0

1

p!

(

1

ρSRρRD

)
p
2
MD+p−1
∑

q=0

(

MD + p− 1

q

)

√
π
(

ρRD

ρSR

)q/2 (
4√

ρSRρRD

)q−p+1

(

g
sin2 θ

+ 1
ρSR

+ 1
ρRD

+ 2√
ρSRρRD

)MD+q+2

Γ(MD + q + 2)Γ(MD + 2p − q)

Γ
(

MD + p+ 3
2

)

2F1

(

MD + q + 2, q − p+
3

2
;MD + p+

3

2
;

g
sin2 θ

+ 1
ρSR

+ 1
ρRD

− 2√
ρSRρRD

g
sin2 θ

+ 1
ρSR

+ 1
ρRD

+ 2√
ρSRρRD

)

.

(3.40)

Therefore, equation (3.38) can be upper-bounded once equations (3.39) and

(3.40) are substituted. Instead of the upper-bound, however, the exact solution

of equation (3.38) can be also obtained by averaging aQ
(

√

2b (γSD + γSRD)
)

numerically.

3.3.2 High SNR Analysis

Simple high SNR performance is now considered to simplify equations

(3.36)-(3.40). The approximation uses PDF’s of γ+
SD and ΓSRD, and we check

that both PDF’s satisfy the assumptions given in [34], which provides a sys-

tematic method for high SNR analysis. Based on [34], the average SER of an

uncoded system can be approximated by

PE = (2bρGa)
−Gd + o

(

ρ−Gd
)

(3.41)

as ρ → ∞, where Ga = ((
√

π(t + 1)) / (a2tαΓ(t + 3/2)))
1/(t+1)

is the array

gain, ρ is the average transmit SNR, Gd = t + 1 is the diversity order, t is

the first nonzero derivative order of the PDF of a channel dependent random

variable λ at the origin, and a and b are modulation specific positive constants

from the instantaneous SER, PE(λ) = aQ
(√

2bρλ
)

. This random variable, λ,

is proportional to the instantaneous SNR as γ = ρλ, and α = f
(t)
λ (0)/t! 6= 0.
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The average transmit SNR ρ may be ρSR with ρSD and ρRD which are constant

multiples of ρSR, and channel dependent random variable λ may be either

λSD := γ+
SD/ρSR or λSRD := ΓSRD/ρSR in the sequel. Therefore, equation

(3.41) can be calculated once t and α are found using the PDF’s of λSD and

λSRD. The array and diversity gains, Ga and Gd, in equation (3.41) are found

for the direct and relay links separately, and then they are combined to obtain

high SNR performance for the whole system.

For the direct link, the PDF of λSD, given by Appendix 3.7, is used

to find tSD, the first nonzero derivative order of the PDF of λSD, and αSD =

f
(tSD)
λSD

(0)/tSD!. In this case, tSD = (MS + 1) ·MD − 1 since the diversity order

of the direct link using MRT with MRC is given by (MS + 1) · MD because

the received SNR of the direct link is ΓSD + Γ′
SD. If the tSD order derivative

of the PDF of λSD is evaluated at the origin, the following can be obtained

(please see details in Appendix 3.7)

f
(tSD)
λSD

(0) =

MD
∑

n=1

(MS+MD+1)n−2n2
∑

m=MS−MD+1

dn,m+1

(

tSD

m

)

(−1)tSD+m

(

nρSR

ρSD

)tSD+1

. (3.42)

Based on equation (3.42), αSD can be acquired by

αSD =
f

(tSD)
λSD

(0)

((MS + 1) ·MD − 1)!
. (3.43)

Therefore, the direct link high SNR performance can be obtained as follows:

PE,SD ≤ (2bρSRGa,SD)−Gd,SD + o
(

ρ
−Gd,SD

SR

)

(3.44)

Gd,SD = (MS + 1) ·MD (3.45)

Ga,SD =

(

a2Gd,SD−1αSDΓ
(

Gd,SD + 1
2

)

√
πGd,SD

)− 1
Gd,SD

. (3.46)

For the relay link, the PDF of λSRD := ΓSRD/ρSR, where ΓSRD is

defined just after equation (3.35), can be used to find tSRD and αSRD because

the instantaneous SNR’s ΓSRD and γSRD are equivalent at high average SNR
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since they differ by a constant term in the denominator of equation (3.34).

Since the diversity order of the relay link is given by min (MS + 1, MD), tSRD =

min (MS + 1, MD) − 1 because the received SNR of the first hop of the relay

link is ΓSR + Γ′
SR. The tSRD order derivative of the PDF of λSRD evaluated

at the origin can be obtained by extending the number of source antennas by

1 and removing antenna correlation factors from [35, eqn. (28)] as follows:

f
(tSRD)
λSRD

(0) =































(

ρSR

ρRD

)MD

, MS + 1 > MD

1, MS + 1 < MD

(

ρSR

ρRD

)MD

+ 1, MS + 1 = MD

. (3.47)

Based on equation (3.47), αSRD can be written as

αSRD =
f

(tSRD)
λSRD

(0)

(min (MS + 1,MD) − 1)!
=































(

ρSR
ρRD

)MD

(MD−1)! , MS + 1 > MD

1
MS ! , MS + 1 < MD
(

ρSR
ρRD

)MD
+1

(MD−1)! , MS + 1 = MD

. (3.48)

Therefore, the relay link high SNR performance can be obtained as follows:

PE,SRD = (2bρSRGa,SRD)−Gd,SRD + o
(

ρ
−Gd,SRD

SR

)

(3.49)

Gd,SRD = min (MS + 1,MD) (3.50)

Ga,SRD =

(

a2Gd,SRD−1αSRDΓ
(

Gd,SRD + 1
2

)

√
πGd,SRD

)− 1
Gd,SRD

. (3.51)

Instead of using the PDF of γ+
SD + ΓSRD, an alternate approach is

used to find tC and αC for the combined link. We have tC = (MS + 1) ·

MD + min(MS + 1, MD) − 1 since the diversity order of the combined link is

(MS + 1) · MD + min(MS + 1, MD), which is the sum of the diversity orders

of the direct and relay links because the received SNR of the combined link

is γ+
SD + ΓSRD. To find f

(tC)
λSD+λSRD

(0), the product of f
(tSD)
λSD

(0) and f
(tSRD)
λSRD

(0)

can be used, which is shown in Appendix 3.4. Therefore, the final combined
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αC is given by using equations (3.42) and (3.47)

αC =
f

(tSD)
λSD

(0) · f (tSRD)
ΛSRD

(0)

((MS + 1) ·MD + min(MS + 1,MD) − 1)!
. (3.52)

Based on αC and tC , Gd and Ga can be substituted as explained after equation

(3.41). The combined link high SNR performance can be obtained as follows:

PE ≤ (2bρSRGa)
−Gd + o

(

ρ
−Gd

SR

)

(3.53)

Gd = (MS + 1) ·MD + min(MS + 1,MD) (3.54)

Ga =

(

a2Gd−1αCΓ
(

Gd + 1
2

)

√
πGd

)− 1
Gd

. (3.55)

Since all potential resources of the relay network are used, full diversity orders

are achieved from the direct, relay, and combined links.

3.3.3 Selection Relaying with BF

If hRD and hSR are unknown at the source and destination, respec-

tively, the most practical approach is selection relaying [11]. In traditional se-

lection relaying with single antennas, the relay transmits the amplified signal

to the destination if the received SNR of the S → R exceeds a predetermined

threshold. In the presence of beamforming using three time slots, this can be

extended where the relay transmits its aggregated amplified signal with BF

only when it exceeds the threshold. Therefore, if the received SNR for the first

two time slots, ΓSR + Γ′
SR, exceeds the threshold at the relay, the relay trans-

mits the aggregated amplified signal, and the source retransmits the signal

with a matched BF vector otherwise in the third time slot.

The source determines the BF vectors based on the channels, HSD and

hSR, and the destination combines received signals based on the received SNR’s

of HSD and hRD since hRD and hSR are unknown at the source and destination,
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respectively. Therefore, if ΓSR + Γ′
SR > T where T is the predetermined

threshold, fSD is chosen with vSD, the strongest right singular vector of HSD,1,

and fSR is chosen with vSR = hSR/‖hSR‖ for equations (3.24)-(3.30). For

combining, cSD,1 is used with uSD,1, the strongest left singular vector of HSD,1,

cSD,2 is used with uSD,2 = HSD,2fSR/‖HSD,2fSR‖, and cRD is used with uRD =

hRD/‖hRD‖. If ΓSR + Γ′
SR ≤ T , vSD,3, the strongest right singular vector of

HSD,3, is used for the BF vector, and uSD,3, the strongest left singular vector

of HSD,3, is used for the combining vector in the third time slot. Note that

this scheme does not require knowledge of hRD and hSR at the source and

destination, respectively.

To characterize performance, if ΓSR + Γ′
SR ≤ T , note that the source

transmits three times with three distinct BF vectors over three statistically in-

dependent consecutive time slots, and the relay never transmits the aggregated

amplified signals in this case. For the first two time slots, vSD and vSR are

used for the BF vectors, and uSD,1 and uSD,2 are used for combining vectors.

For the third time slot, vSD,3 and uSD,3 are used for the BF and combining

vectors, respectively:

ySD,1 =
√
ρSDuHSD,1HSD,1vSDx+ uHSD,1nSD,1 (3.56)

ySD,2 =
√
ρSDuHSD,2HSD,2vSRx+ uHSD,2nSD,2 (3.57)

ySD,3 =
√
ρSDuHSD,3HSD,3vSD,3x+ uHSD,3nSD,3. (3.58)

If ΓSR+Γ′
SR > T , vSD and vSR are used for the BF vectors, and uSD,1, uSD,2,

and uRD are used for the combining vectors:

ySD = ρSD
(

‖HSD,1vSD‖2 + ‖HSD,2vSR‖2
)

x

+
√
ρSD

(

‖HSD,1vSD‖uHSD,1nSD,1 + ‖HSD,2vSR‖uHSD,2nSD,2
)

(3.59)

ySR = ρSR
(

‖hTSR,1vSD‖2 + ‖hTSR,2vSR‖2
)

x

+
√
ρSR

(

‖hTSR,1vSD‖nSR,1 + ‖hTSR,2vSR‖nSR,2
)

(3.60)
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ySRD =
√
ρRDw‖hRD‖ySR + uHRDnRD, (3.61)

where w is obtained with vSD and vSR. Note that the received signal equations

(3.59)-(3.61) when ΓSR+Γ′
SR > T are exactly same as equations (3.31)-(3.33).

If the MMSE criterion is used to combine signals, given by equations

(3.56)-(3.61), for both cases separately, the total instantaneous received SNR

for selection relaying can be represented by

γ =















2ΓSD + Γ′
SD, ΓSR + Γ′

SR ≤ T
(

(ΓSD+Γ′

SD)
√

1+(ΓSR+Γ′

SR)+ΓRD

√

(ΓSR+Γ′

SR)
)2

(1+(ΓSR+Γ′

SR))((ΓSD+Γ′

SD)+ΓRD)+Γ2
RD

, ΓSR + Γ′
SR > T

, (3.62)

where ΓSD = ρSD‖HSD,1vSD‖2, ΓSR = ρSR‖hTSR,2vSR‖2, ΓRD = ρRD‖hRD‖2,

and Γ′
SR = ρSR‖hTSR,1vSD‖2. Therefore, the instantaneous SER for selection

relaying is approximately given by

PSRE = Pr
(

ΓSR + Γ′
SR ≤ T

)

aQ

(

√

2b
(

2ΓSD + Γ′
SD

)

)

+ Pr
(

ΓSR + Γ′
SR > T

)

I
(

ΓSR + Γ′
SR > T

)

aQ







√
2b
(

(ΓSD + Γ′
SD)

√

1 +
(

ΓSR + Γ′
SR

)

+ ΓRD

√

(

ΓSR + Γ′
SR

)

)

√

(

1 +
(

ΓSR + Γ′
SR

)) ((

ΓSD + Γ′
SD

)

+ ΓRD
)

+ Γ2
RD






,

(3.63)

where Pr (ΓSR + Γ′
SR ≤ T ) = 1−e−T/ρSR

∑MS

u=0 (T/ρSR)u /u!, Pr (ΓSR + Γ′
SR >

T ) = 1 − Pr (ΓSR + Γ′
SR ≤ T ) , and I(·) is an indicator function.

Note that all variables in equation (3.63) are channel dependent, which

makes averaging analytically intractable. However, the average SER can be

obtained by averaging the instantaneous SER in equation (3.63) over ΓSD,

ΓSR, ΓRD, and Γ′
SR numerically. Based on equation (3.63), we can also find

numerically the optimal threshold Topt using the following optimization:

minimize E
[

PSRE
]

subject to T ≥ 0.

(3.64)
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3.4 Performance Analysis for Two-Slot Lower-Bounds with Multiple Relay

Antennas

To obtain the lower-bound on performance, two different BF vectors

are used from the source to the relay and destination, respectively. Therefore,

fSD is the strongest right singular vector of HSD, and fSR is the strongest right

singular vector of HSR for equations (3.1) and (3.2).

3.4.1 Performance Analysis

If the MMSE criterion is used to combine signals from equations (3.1)

and (3.2) when all CSI is known at the source and destination, the total

instantaneous received SNR can be represented by

γ = γSD +
γSRγRD

1 + γSR + γRD
, (3.65)

where γSD = ρSD‖HSDfSD‖2, γSR = ρSR‖HSRfSR‖2, γRD = ρRD‖HRDfRD‖2,

and γSRD := γSRγRD/(1 + γSR + γRD).

From an average SER approximation, PE = E
[

aQ
(√

2bγ
)]

, where a

and b are modulation related constants (i.e. approximately a = 1, b = 1 for

BPSK, a = 2, b = sin2(π/M) for M-ary PSK, and a = 4, b = 3/(2(M − 1))

for M-ary QAM) and γ is an instantaneous received SNR, reference [44, eqn.

(20)] presents a simple average SER approximation as

PE =
a
√
b

2
√
π

∫ ∞

0

e−bx√
x
Fγ(x)dx, (3.66)

where Fγ(x) is the cumulative distribution function (CDF) of γ.

If the CDFs of γSD and ΓSRD := γSRγRD/ (γSR + γRD) obtained by

upper-bounding equation (3.65) are substituted to equation (3.66), respec-

tively, the approximate average SERs for the direct and relay links can be
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obtained as follows (please see details in Appendix 3.8):

PE,SD =
a

2
−

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

m
∑

k=0

a
√
bdn,mn

k(2k − 1)!!

2k+1k!ρkSD

(

b+ n
ρSD

)k+ 1
2

(3.67)

PE,SRD ≥ a

2
−

MR
∑

n=1

(MS+MR)n−2n2
∑

m=MS−MR

m
∑

k=0

MR
∑

i=1

(MD+MR)i−2i2
∑

j=MD−MR

k+j
∑
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(

k + j

p

)

a
√
bdn,mdi,jn

k+p+1
2 i
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2

k!j!ρ
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2
SR ρ
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2

RD

(

4
√

ni
ρSRρRD
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(

b+ n
ρSR

+ i
ρRD

+ 2
√

ni
ρSRρRD

)p+j+ 5
2

Γ
(

j + p+ 5
2

)

Γ
(

j + 2k − p+ 1
2

)

Γ (k + j + 2)

2F1



j + p+
5

2
, p − k +

3

2
; k + j + 2;

b+ n
ρSR

+ i
ρRD

− 2
√

ni
ρSRρRD

b+ n
ρSR

+ i
ρRD

+ 2
√

ni
ρSRρRD



 ,

(3.68)

where dn,m are coefficients given by [30, eqn. (24)], !! denotes double factorial

defined in [37], and 2F1(α, β; γ; z) is the Gauss hypergeometric function in

[37, p.1005]. Note that PE,SRD is lower-bounded by removing the 1 in the

denominator of γSRD in equation (3.65). Note also that equations (3.67) and

(3.68) are valid when MS ≥ MD, MS ≥ MR, and MD ≥ MR and are also valid

if MS, MR, and MD are switched each other otherwise. This is true for all

cases about the number of antennas in the sequel.

For the combined instantaneous received SNR, γ = γSD + γSRD, the

following average SER upper-bound expression is used.

PE ≤ a
√
b

2
√

2π

∫ ∞

0

e−bx

4
√
x
FγSRD

(x)dx

∫ ∞

0

e−by

4
√
y
fγSD

(y)dy, (3.69)

where 4
√

x is the fourth root of x, FγSRD
(x) is the CDF of γSRD, and fγSD

(y)

is the probability density function (PDF) of γSD. Equality holds when γSD

is equal to γSRD since the relationship between the arithmetic and geometric

means are used.
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If the PDF of γSD and the CDF of ΓSRD are substituted to equation

(8), the approximate combined average SER can be obtained as follows:

PE ≈ a
√
b

2
√

2π







MD
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n=1

(MS+MD)n−2n2
∑

m=MS−MD
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ρSR
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ρRD
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 .

(3.70)

Note that equation (3.70) is a combined link average SER approximation since

equation (3.69) gives an SER upper-bound for the overall system and using

ΓSRD provides a lower-bound on performance for the relay link. Indeed, since

equation (3.70) is the upper-bound of lower-bound of actual SER performance,

it provides a very tight approximation to actual SER performance for the entire

SNR region except at very low SNR.

3.4.2 High SNR Analysis

Simple high SNR performance is now considered to simplify equations

(3.67), (3.68), and (3.70). The approximation uses the PDFs of λSD :=

γSD/ρSR and λSRD := ΓSRD/ρSR, and both PDFs are checked to satisfy the

assumptions given in [34], which provides a systematic method for high SNR

analysis. Based on [34], the average SER of an uncoded system can be ap-

proximated by

PE = (2bρGa)
−Gd + o

(

ρ−Gd
)

(3.71)
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as ρ → ∞, where ρ is the average transmit SNR, Gd = t + 1 is the diversity

order, Ga = ((
√

π(t + 1)) / (a2tαΓ(t + 3/2)))
1/(t+1)

is the array gain, t is the

first nonzero derivative order of the PDF of a channel dependent random

variable λ at the origin, and a and b are modulation specific positive constants

from the instantaneous SER, PE(λ) = aQ
(√

2bρλ
)

. This random variable, λ,

is proportional to the instantaneous SNR as γ = ρλ, and α = f
(t)
λ (0)/t! 6= 0.

In this chapter, the average transmit SNR ρ may be ρSR with ρSD

and ρRD which are constant multiples of ρSR, and channel dependent random

variable λ may be either λSD or λSRD in the sequel. Therefore, equation (3.71)

can be calculated once t and α are found using the PDFs of λSD and λSRD.

The array and diversity gains, Ga and Gd, in equation (3.71) are found for the

direct and relay links separately, and then they are combined to obtain high

SNR performance for the whole system.

For the direct link, the PDF of λSD is used to find tSD, the first nonzero

derivative order of the PDF of λSD, and αSD = f
(tSD)
λSD

(0)/tSD!. In this case,

tSD = MS ·MD−1 since the diversity order of MIMO MRT with MRC is given

by MS ·MD [6]. If the tSD order derivative of the PDF of λSD is evaluated at

the origin, the following can be obtained

f
(tSD)
λSD

(0) =

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

(

tSD

m

)

(−1)tSD+m dn,m

(

nρSR

ρSD

)tSD+1

. (3.72)

Based on equation (3.72), αSD can be acquired by

αSD =
f

(tSD)
λSD

(0)

(MS ·MD − 1)!
. (3.73)

For the relay link, the PDF of λSRD can be used to find tSRD and

αSRD because the instantaneous SNR’s, ΓSRD and γSRD, are equivalent at

high average SNR since they differ by a constant term in the denominator

of equation (3.65). Since the diversity order of the relay link is given by
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min {MS · MR, MR · MD} [35], tSRD = min {MS · MR, MR · MD}−1. The tSRD

order derivative of the PDF of λSRD evaluated at the origin can be obtained

as follows:

f
(tSRD)
λSRD

(0) =































f
(tRD)
λRD

(0), MS > MD

f
(tSR)
λSR

(0), MS < MD

f
(tSR)
λSR

(0) + f
(tRD)
λRD

(0), MS = MD

, (3.74)

where tSR = MS · MR − 1, tRD = MR · MD − 1, λSR := γSR/ρSR, λRD :=

γRD/ρSR, and f
(tSR)
λSR

(0) and f
(tRD)
λRD

(0) are given as follows:

f
(tSR)
λSR

(0) =

MR
∑

n=1

(MS+MR)n−2n2
∑

m=MS−MR

(

tSR

m

)

(−1)tSR+m dn,mn
tSR+1 (3.75)

f
(tRD)
λRD

(0) =

MR
∑

n=1

(MR+MD)n−2n2
∑

m=MD−MR

(

tSD

m

)

(−1)tRD+m dn,m

(

nρSR

ρRD

)tRD+1

. (3.76)

Based on equation (3.74), αSRD can be written as

αSRD =
f

(tSRD)
λSRD

(0)

(min {MS ·MR,MR ·MD} − 1)!
(3.77)

For the combined link, the PDF of γSD + ΓSRD is a convolution of

fγSD
(x) and fΓSRD

(x), which is difficult to obtain in closed-form. Instead of us-

ing the PDF of γSD+ΓSRD, an alternate approach is used to find tC and αC for

the combined link. We have tC = MS ·MD+min {MS · MR, MR · MD}−1 since

the diversity order of the combined link is MS ·MD+min {MS · MR, MR · MD},

which is the sum of the diversity orders of the direct and relay links because the

received SNR of the combined link is γSD + ΓSRD. To find f
(tC )
λSD+λSRD

(0), the

product of f
(tSD)
λSD

(0) and f
(tSRD)
λSRD

(0) can be used. Therefore, the final combined

αC is given by using equations (3.72) and (3.74)

αC =
f

(tSD)
λSD

(0) · f (tSRD)
λSRD

(0)

(MS ·MD + min {MS ·MR,MR ·MD} − 1)!
. (3.78)
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Based on αC and tC , Gd and Gc can be substituted as explained after equation

(3.71). The combined link high SNR performance can be obtained by

PE = (2bρSRGa)
−Gd + o

(

ρ
−Gd

SR

)

(3.79)

Gd = MS ·MD + min {MS ·MR,MR ·MD} (3.80)

Ga =

(

a2Gd−1αCΓ
(

Gd + 1
2

)

√
πGd

)− 1
Gd

. (3.81)

Since all potential resources of the relay network are used, the lower-bound

can achieve full diversity order, MS · MD + min {MS · MR, MR · MD}. Using

tSD, tSRD, and equations (3.72) and (3.74), high SNR performance for the

direct and relay links can be expressed as equations (3.79)-(3.81) as well.

3.5 Simulation Results

The relationships among the average SNR values are chosen as ρSR =

ρRD and ρSD dB = ρSR dB − 30 log10(2), which corresponds to the relay

located in the mid-point of the S and D in a simplified path-loss model [7, p.46]

with path-loss exponent of 3 (i.e. the “mid-point relay model”). Alternatively,

we also consider ρSR = ρRD = ρSD which is the “equidistant relay model”. In

Monte-Carlo simulations, the transmitted symbol is BPSK, QPSK, or 8-PSK

modulated with unit power, and the channel is 100-symbol block fading with

(MS, MR, MD) = (2, 1, 2), (2,2,2), or (4,1,4). MRC with MMSE combining

is used for all relaying schemes. For illustration of our high SNR results, we

select ρSR = ρRD = ρSD → ∞ even though our analysis applies to nonequal

average SNRs as well. The combined optimized BF performance from [31]

is included as a benchmark. For BF optimization, 8 and 64 Grassmannian

vectors [36] are used as initial points for the gradient ascent algorithm for

2 and 4 source antennas, respectively. Limited feedback performance is also

included using the 8 and 64 Grassmannian BF vectors. For limited feedback
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implementations, once actual BF coefficients are obtained at the destination,

they are compared with Grassmannian vectors in the pre-designed codebook.

The index of the closest vector in Euclidean distance is then sent to the source.
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Figure 3.3: 4 × 1 × 4 Lower-Bound with BPSK using the Mid-Point Relay
Model.

3.5.1 Performance Analysis for Two-Slot Lower-Bounds with MR = 1

Figure 3.3 shows the lower-bound using the mid-point relay model for

a 4 × 1 × 4 system. The combined optimized BF performance with 64 initial

points and the lower-bound using limited feedback with 64 BF vectors from [31]

are illustrated by Monte-Carlo simulations. The lower-bound including the

performance of the direct and relay links from equation (3.9) and its lower-

bound using equation (3.11) for equation (3.9) are presented analytically. The

lower-bound in equation (3.9) is about 1.9 dB better than the optimized BF
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performance at 10−7, and the lower-bound in equation (3.9) and its lower-

bound using equation (3.11) for equation (3.9) are very tight at high SNR.

The lower-bound using limited feedback is similar to or a little better than

the optimized BF performance. In the mid-point relay model, the relay link

performance dominates the combined performance at low SNR whereas the

direct link performance dominates the combined performance at high SNR.
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Figure 3.4: 2×1×2 High SNR Performance with BPSK using the Equidistant
Relay Model.

Figure 3.4 shows the high SNR performance with BPSK for a 2×1×2

lower-bound using the equidistant relay model. The lower-bound for relay,

direct, and combined links from equation (3.9) and high SNR performance for

the lower-bound of relay, direct, and combined links from equations (3.12)-

(3.19) are obtained analytically, and they match well at high SNR. It is seen

that the direct link performance dominates the relay link performance for the
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entire SNR range. As seen in Figure 3.3, however, if the mid-point relay model

is used, the relay link performance dominates the direct link performance at

low SNR. Note that, for the high SNR approximation of the lower-bound to be

tight, the equidistant relay model in Figure 3.4 requires higher SNR compared

with the mid-point relay model in Figure 3.3.
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Figure 3.5: 4 × 1 × 4 AF/DF Relay Network Performance with BPSK using
the Mid-Point Relay Model.

Figure 3.5 shows 4 × 1 × 4 AF/DF relay network performance with

BPSK using the mid-point relay model. For 4 × 1 × 4, most schemes are

about 1.2-1.7 dB better than the optimized scheme in performance at 10−7.

Strong-path BF performance is similar to the optimized performance at 10−7.

The lower-bound of AF MMSE is very tight to AF MMSE performance. AF

schemes are a little better than DF schemes in lower-bounds at high SNR.
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Based on simulations, all lower-bounds are better than the optimized

performance, and the strong-path BF with AF MMSE is similar to or even

better than the optimized performance when the path-loss exists. In general,

AF schemes are better than DF schemes at high SNR even though DF schemes

are slightly better than AF schemes at low SNR, in error performance.

3.5.2 Performance Analysis for the Three-Slot Scheme with MR = 1

As explained in advance, the transmit SNR is normalized with respect

to the number of message bits. For example, therefore, if the two-slot scheme

with BPSK uses the transmit SNR 1, then the three-slot scheme with BPSK

does the transmit SNR 2/3. Therefore, the X-axis in figures represents SNR

per message bit for two-slot schemes, and the three-slot scheme uses less SNR

than the SNR represented on X-axis for fair comparisons. For illustration

of high SNR results, we use the equidistant relay model to show clearly the

diversity order of the relay system even though our analysis applies to any

relay models as well. The combined optimized BF performance from [31], the

strong-path BF performance from [42], and the lower-bound of the two-slot

scheme are included as benchmarks. Unless otherwise stated, the benchmarks

use two time slots with BPSK or QPSK, and the three-slot schemes do QPSK

or 8-PSK. Two-slot schemes with BPSK are compared with three-slot schemes

with QPSK, and two-slot schemes with QPSK are compared with three-slot

schemes with 8-PSK. For BF optimization, 8 Grassmannian vectors [36] are

used as initial points for the gradient ascent algorithm.

Figure 3.6 shows the three-slot scheme performance with QPSK us-

ing the mid-point relay model for a 2 × 1 × 2 system. All exact perfor-

mance for the direct, relay, and combined links is averaged from aQ
(√

2bγSD
)

,
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Figure 3.6: 2 × 1 × 2 Three-Slot Scheme Performance Comparison using the
Mid-Point Relay Model.
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aQ
(√

2bγSRD
)

, and aQ
(

√

2b (γSD + γSRD)
)

, respectively. The direct link

upper-bound is from equation (3.36), the relay link lower-bound is from equa-

tion (3.37), and the combined link upper-bound is from equations (3.38)-(3.40).

It shows that the lower-bound and upper-bound are tight to the exact per-

formance, and the relay link outperforms the direct link at low SNR whereas

the direct link outperforms the relay link at high SNR in the mid-point relay

model.

Figure 3.7 shows the 2 × 1 × 2 three-slot scheme performance com-

parison using the mid-point relay model. While the combined optimized BF

performance using 8 initial points from [31] is illustrated by a Monte-Carlo sim-

ulation, all other performance is presented analytically. The strong-path BF

performance is averaged from equation (7) of [43], and the combined lower-

bound of the two-slot scheme is from equation (7) of [42]. The combined

three-slot scheme performance is from equations (3.38)-(3.40).

The three-slot scheme performance with QPSK are about 1.8 dB bet-

ter than the optimized BF performance with BPSK, about 1.4 dB better than

the strong-path BF performance with BPSK, and about 0.6 dB better than

the lower-bound of the two-slot scheme with BPSK at 10−6 even though all

two-slot scheme performance is better than the three-slot scheme performance

at low SNR. This means that the three-slot scheme with QPSK can trans-

mit 1/3 factor more message bits with better performance than the two-slot

schemes with BPSK at high SNR. Meanwhile, the three-slot scheme perfor-

mance with 8-PSK are about 0.8 dB worse than the optimized BF performance

with QPSK, about 1.3 dB worse than the strong-path BF performance with

QPSK, and about 2.2 dB worse than the lower-bound of the two-slot scheme

with QPSK at 10−7 even though the performance gaps become smaller and
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Figure 3.7: 2 × 1 × 2 Three-Slot Scheme High SNR Performance using the
Equidistant Relay Model.
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the three-slot scheme performance becomes finally better than the two-slot

scheme performance as SNR goes to high. Note that the lower-bound of the

two-slot scheme is an unachievable bound, and the optimized BF and the

strong-path BF are reasonable schemes using two time slots. It is recogniz-

able that the three-slot scheme performance is much better than the two-slot

scheme performance with same modulation if rate loss is acceptable.

Figure 3.8 shows the high SNR performance comparison for a 2×1×2

system using the equidistant relay model. The strong-path BF performance

is same as Figure 3.7, and its high SNR performance is from equations (2.24)-

(2.34). The combined lower-bound of the two-slot scheme is from equation

(7) of [42], and its high SNR performance is from equation (14) of [42]. The

combined three-slot scheme performance is same as Figures 3.6 and 3.7, and

its high SNR performance is from equation (3.53). The three-slot scheme

high SNR performance with QPSK is about 1.9 dB better than the high SNR

performance of the two-slot lower-bound with BPSK and about 3.3 dB better

than the strong-path BF high SNR performance with BPSK at 10−8. On the

other hand, the three-slot scheme high SNR performance with 8-PSK is about

0.35 dB better than the strong-path BF high SNR performance with QPSK

and about 1 dB worse than the high SNR performance of the two-slot lower-

bound with QPSK at 10−9. Note that the three-slot scheme needs more SNR

to outperform the two-slot scheme in the second illustration even though the

three-slot scheme with 8-PSK dominates the two-slot lower-bound with QPSK

at 20 dB. In any cases, the comparison illustrations confirm that the three-slot

scheme can transmit more or same message bits with better performance than

the two-slot scheme at high SNR.
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Figure 3.8: 2×1×2 High SNR Performance Comparison using the Equidistant
Relay Model.

73



−10 −5 0 5 10 15
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR per Message Bit, ρ
SR

 = ρ
RD

 (dB)

S
ym

bo
l E

rr
or

 R
at

e

2x1x2 Selection Relaying Performance Comparison using the Mid−point Relay Model

 

 

Strong−path BF Selection with BPSK in Two−slot
Opimized BF Performance with BPSK in Two−slot
Three−slot Selection Performance with QPSK

−10 −5 0 5 10 15 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR per Message Bit, ρ
SR

 = ρ
RD

 (dB)

S
ym

bo
l E

rr
or

 R
at

e

2x1x2 Selection Relaying Performance Comparison using the Mid−point Rely Model

 

 

Strong−path BF Selection with QPSK in Two−slot
Three−slot Selection Performance with 8PSK
Optimized BF Performance with QPSK in Two−slot

Figure 3.9: 2 × 1 × 2 Selection Relaying Performance Comparison using the
Mid-Point Relay Model.
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This subsection shows the three-slot scheme selection relaying perfor-

mance from Section 3.3.3, where hRD and hSR are assumed to be unknown

at the source and destination, respectively. Our extension of traditional se-

lection relaying with BF using three time slots, in which the relay transmits

the aggregated amplified signal to the destination if ΓSR + Γ′
SR > T , and the

source retransmits the signal otherwise in the third time slot (i.e. no relaying

if ΓSR + Γ′
SR ≤ T ), is illustrated by simulations.

Figure 3.9 shows the 2×1×2 selection relaying performance comparison

among the two-slot and three-slot schemes using the mid-point relay model.

The combined optimized BF performance is from Figure 3.7, and the strong-

path BF selection relaying performance using the two-slot scheme is averaged

from equation (16) of [45]. The three-slot selection relaying performance is

averaged from equation (3.63) with numerically optimized thresholds from

equation (3.64). The three-slot selection relaying performance with QPSK is

about 2.8 dB better than the strong-path BF selection relaying performance

with BPSK, about 1.6 dB better than the optimized BF performance with

BPSK at 10−6. Therefore, the three-slot selection relaying with QPSK can

also transmit 1/3 factor more message bits with better performance than the

two-slot schemes with BPSK at high SNR. Similarly, the three-slot selection

relaying performance with 8-PSK is about 0.3 dB better than the strong-path

BF selection relaying performance with QPSK, about 1.4 dB worse than the

optimized BF performance with QPSK at 10−7 even though the performance

gaps become smaller and the three-slot performance becomes finally better

than the two-slot scheme performance as SNR goes to high. Note that hRD

and hSR are unknown at the source and destination for selection relaying, and

they are known to the optimized BF scheme.
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Figure 3.10: 2×2×2 MIMO BF Performance with QPSK using the Mid-Point
Relay Model.

3.5.3 Performance Analysis for Two-Slot Lower-Bounds with Multiple

Relay Antennas

Figure 3.10 shows 2× 2× 2 MIMO BF performance with QPSK using

the mid-point relay model. From Figure 3.10, simulations mean Monte-Carlo

simulations, and the performance for the direct, relay, and combined links is

from equations (3.67), (3.68), and (3.70), respectively. The direct link per-

formance, the relay link lower-bound, and the combined link approximation

match well with their corresponding simulations. Note that the combined link

approximation is obtained using two different BF vectors from the source to

the relay and destination, respectively.
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Figure 3.11: 2 × 2 × 2 MIMO BF High SNR Performance with QPSK using
the Equidistant Relay Model.

Figure 3.11 shows 2 × 2 × 2 MIMO BF high SNR performance with

QPSK using the equidistant relay model. The high SNR performance for the

direct, relay, and combined links is from equations (3.73), (3.77), and (3.79),

respectively. Even though final high SNR results are omitted for the direct

and relay links, they can be obtained using tSD, tSRD, and equations (3.73)

and (3.77). All high SNR performance matches well with their simulations.

The diversity orders of the direct, relay, and combined links are 4, 4, and 8,

respectively.

Figure 3.12 shows 2 × 2 × 2 MIMO BF performance comparison with

QPSK using two relay models, the mid-point and equidistant relay models.

The system’s lower-bounds and optimized BF performance are from Monte-

Carlo simulations. Their performance gaps are about 1 dB at the error rate
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Figure 3.12: 2× 2× 2 MIMO BF Performance Comparison with QPSK using
Two Relay Models.

10−7 for both relay models. That is why the lower-bound of the system is

useful. Note that the diversity order of optimized BF performance is not same

as that of the lower-bound. In addition, note also that the lower-bound is

actual performance when the number of source antennas, MS, is 1.

Table 3.1: Summary of Relaying Categories with BF

Categories CSI Assumption BF Combining

Three-Slot All CSI 2 Vectors MMSE/CMRC
Lower-Bound All CSI 2 Vectors MMSE/CMRC
Strong-Path All CSI 1 Vector MMSE/CMRC

Selection Partial CSI 1 Vector MMSE/CMRC
Three-Slot Selection Partial CSI 2 Vectors MMSE/CMRC
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3.6 Chapter Summary

Table 3.1 shows the summary of assumptions and uses for AF/DF re-

laying categories in this chapter. Two categories are explored with both fully

known and partially known CSI of the relay link at the source and destination.

First, we have investigated combined lower-bounds in AF/DF MIMO BF fixed

two-hop relay networks using a single relay antenna with an i.i.d. Rayleigh fad-

ing channel. Novel lower-bounds using BF are presented for AF/DF relaying

with known CSI of the relay link at the source and destination. Lower-bounds

are obtained by using two different BF vectors matched with the relay and

direct links, respectively, and are achievable at the expense of a rate penalty

using the proposed three-slot scheme.

Lower-bounds are meaningful due to tight closed-forms to possible per-

formance since finding the optimal BF using the two-slot scheme is a complex

non-convex optimization problem and there is no way to obtain a closed-form

solution. This chapter adopts selection relaying if some CSI of the relay link

is unknown at the source and destination. The optimal SNR threshold is

analyzed and used for selection relaying. High SNR performance analysis is

also done in AF relay networks. We show performance comparisons among

strong-path BF and optimized BF with a corresponding lower-bound.

Based on analytical and simulation results, all lower-bounds are better

than the optimized performance, and AF schemes are better than DF schemes

at high SNR even though DF schemes are a little better than AF schemes

at low SNR. Lower-bounds are useful benchmarks in best performance even

though they have a drawback in spectral efficiency. In addition, availability of

the CSI at the source and destination is crucial in performance.
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Second, AF MIMO fixed two-hop relay networks using a single relay

antenna with BF using three time slots have been investigated with i.i.d.

Rayleigh fading channels. For the three-slot scheme, two different BF vec-

tors are used separately for both direct and relay links using distinct time

slots with full CSI at the source and destination. After signals with a BF

vector matched with the direct link are transmitted, signals with another BF

vector matched with the relay link are transmitted. Once the relay combines

both signals, it transmits aggregated amplified signals to the destination in the

third time slot. If partial CSI is available at the source and destination, the

three-slot selection relaying scheme with BF is used to obtain a full available

diversity. MRC with MMSE is used for combining for all relaying schemes.

In addition, high SNR performance analysis is also conducted to simplify the

SER expressions. For comparisons, Table 3.1 also shows the summary of as-

sumptions and uses for AF relaying categories for two-slot schemes in [42,43].

The three-slot scheme is investigated to explore new relaying schemes

which are easy to implement, are analyzable in closed-form, and have better

performance than two-slot scheme without rate penalty. Even though the

relay contributes to the combined performance more at low SNR than at high

SNR, since the relay link performance dominates the direct performance at low

SNR in the mid-point relay model, the three-slot scheme achieves full diversity

order of (MS +1) ·MD+min(MS +1, MD) when perfect CSI is available at the

source and destination. As a consequence, the three-slot scheme can transmit

more or same message bits with better performance than the two-slot scheme

at high SNR. Adaptive modulation and BF schemes can be considered for the

two-slot and three-slot relaying schemes since the three-slot schemes are not

always better in SER performance with no rate penalty.
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Based on analytical and simulation results using the mid-point and

equidistant relay models, the three-slot scheme performance with QPSK are

about 1.8 dB better than the optimized BF performance with BPSK, about 1.4

dB better than the strong-path BF performance with BPSK, and about 0.6 dB

better than the lower-bound of the two-slot scheme with BPSK at 10−6 even

though all two-slot scheme performance is better than the three-slot scheme

performance at low SNR. The three-slot scheme high SNR performance with

QPSK is about 1.9 dB better than the high SNR performance of the two-slot

lower-bound with BPSK and about 3.3 dB better than the strong-path BF

high SNR performance with BPSK at 10−8. The three-slot scheme selection

relaying performance with QPSK is about 2.8 dB better than the strong-path

BF selection relaying performance with BPSK, about 1.6 dB better than the

optimized BF performance with BPSK at 10−6. Even though the three-slot

scheme performance with 8-PSK requires more SNR to dominate the two-slot

scheme performance with QPSK, similar phenomena happen at high SNR.

Therefore, although all two-slot scheme performance is better than the three-

slot scheme performance at low SNR, the three-slot schemes become better in

SER performance as SNR goes high.

Finally, the combined lower-bound is investigated in MIMO BF AF

fixed two-hop relay networks using multiple relay antennas with i.i.d. Rayleigh

fading channels. A novel lower-bound using MIMO BF is presented for AF

relaying using multiple antennas at the source, relay, and destination when

all CSI of the relay link is known at the source and destination. The lower-

bound is obtained by using two different BF vectors matched with the relay

and direct links, respectively. It is achievable using a three-slot scheme, and

is a lower-bound for two-slot schemes.
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Based on analytical and simulation results, all performance analy-

sis matches with Monte-Carlo simulations, and the systems’s lower-bound is

about 1 dB difference compared with the optimal BF performance at the error

rate 10−7 for both mid-point and equidistant relay models. The lower-bound is

meaningful due to a tight closed-form to possible performance since finding the

optimal BF using the two-slot scheme is a complex non-convex optimization

problem, and there is no way to obtain a closed-form solution. Finally, note

that the lower-bound reduces to the actual performance when the number of

source antennas, MS, is 1.

Appendix 3.1: Derivation of Equation (3.10)

This appendix derives equation (3.10), which is the first expectation of

equation (3.9). Equation (3.10) can be calculated by

E

[

e
− γSD

sin2 θ

]

=

∫ ∞

0
e
− x

sin2 θ fγSD
(x)dx

=

∫ ∞

0
e
− x

sin2 θ

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,m
nm+1xme

− nx
ρSD

m!ρm+1
SD

dx,

(3.82)

where fγSD
(x) is the PDF of γSD, which will be derived in the next paragraph.

Using
∫∞
0

xne−µxdx = n!µ−n−1 [37, p.340] for equation (3.82), equation (3.10)

can be obtained.

The derivation of fγSD
(x) is following. From [30, eqn. (23)], the PDF

of γSD can be directly obtained by using the PDF of ΛSD := γSD/ρSD based

on fY (y) = fX (y/ρSD) /ρSD [38, p.131] as

fγSD
(x) =

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,m
nm+1xme

− nx
ρSD

ρm+1
SD m!

, x > 0. (3.83)

Appendix 3.2: Derivation of Equation (3.11)

This appendix derives equation (3.11), which is the second expectation

of equation (3.9). Equation (3.11) can be calculated by using the integration-
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by-parts method [46], which is PE = −
∫∞
0

(dPE(γ)/dγ)Fγ(γ)dγ, where PE is

the average BER, PE(γ) is the instantaneous BER, and Fγ(γ) is the cumulative

distribution function (CDF) of γ.

E

[

e
− γSRD

sin2 θ

]

≥
∫ ∞

0

1

sin2 θ
e
− x

sin2 θFΓSRD
(x)dx =

∫ ∞

0

1

sin2 θ
e
− x

sin2 θ dx

−
∫ ∞

0

e
− x

sin2 θ

sin2 θ

2e
−x
(

1
ρSR

+ 1
ρRD

)

√

ρRD

ρSR
xMD

MD!ρMD

RD
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∑

p=0

1
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(

x2

ρSRρRD
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p
∑

u=0

(

p

u

)(

ρRD

ρSR

)u/2 MD−1
∑

q=0

(

MD − 1

q

)(

ρRD

ρSR

)q/2

Kq+u−p+1

(

2x√
ρSRρRD

)

dx,

(3.84)

where FΓSRD
(x) is the CDF of ΓSRD = γSRγRD/ (γSR + γRD), which is given

by [29], and Kν(x) is the modified Bessel function of the second kind.

Using
∫∞
0

xµ−1e−αxKν(βx)dx =
√

π(2β)νΓ(µ+ν)Γ(µ−ν)/ ((α + β)µ+ν

Γ(µ + 1/2))2 F1 (µ + ν, ν + 1/2; µ + 1/2; (α − β) / (α + β)) [37, p.700] for equa-

tion (3.84), equation (3.11) can be obtained.

Appendix 3.3: Derivation of Equation (3.13)

This appendix derives f
(tSD)
λSD

(0) for equation (3.13). From [30, eqn.

(23)], the PDF of ΛSD is used to obtain that of λSD := γSD/ρSR = ρSDΛSD/ρSR

using fλSD
(y) = ρSRfΛSD

(yρSR/ρSD) /ρSD by

fλSD
(x) =

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,m

(

nρSR

ρSD

)m+1
xme

−nxρSR
ρSD

m!
, x > 0. (3.85)

If the tSD order derivative is taken for equation (3.85) with respect to x,

f
(tSD)
λSD

(x)

=

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,m

(

tSD

m

)

e
−nxρSR

ρSD

m
∑

k=0

Ck (−1)tSD+m+k

(

nρSR

ρSD

)tSD+k+1

xk,

(3.86)

where C0 = 1 and Ck is any real coefficient. Once equation (3.86) is evaluated

at the origin, equation (3.13) is obtained.
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Appendix 3.4: Derivation of f
(tC)
λSD+ΛSRD

(0)

This appendix derives f
(tC)
λSD+ΛSRD

(0) for the combined link using the

PDFs of direct and relay links. A general case is shown in this appendix

first and appropriate results using PDFs can be substituted for the solution.

Since both PDFs satisfy the assumptions given in [34], they can be written as

follows:

fλSD
(x) = αSDx

tSD + o
(

xtSD+ǫ
)

(3.87)

fΛSRD
(x) = αSRDx

tSRD + o
(

xtSRD+ǫ
)

, (3.88)

as x → 0. Using Craig’s formula, the average BER using BPSK can be written

as

PE =
1

π

∫ π/2

0
E

[

e
− ρSRλSD

sin2 θ

]

E

[

e
− ρSRΛSRD

sin2 θ

]

dθ. (3.89)

Using equations (3.87) and (3.88) and
∫∞
0

xne−µxdx = n!µ−n−1, both expecta-

tions of equation (3.89) can be solved as follows:

E

[

e
− ρSRλSD

sin2 θ

]

=

∫ ∞

0
e
− ρSRλSD

sin2 θ

[

αSDx
tSD + o

(

xtSD+ǫ
)]

dx

= αSDtSD! sin2(tSD+1) θρ
−(tSD+1)
SR + o

(

ρ
−(tSD+1)
SR

)

(3.90)

E

[

e
− ρSRΛSRD

sin2 θ

]

= αSRDtSRD! sin2(tSRD+1) θρ
−(tSRD+1)
SR + o

(

ρ
−(tSRD+1)
SR

)

. (3.91)

Using equations (3.90) and (3.91) and
∫ π/2

0
sin2m xdx = π(2m− 1)!!/(2(2m)!!)

of [37, p.395], where !! denotes double factorial defined in [37], equation (3.89)

can be solved by

PE =
αSDαSRDtSD!tSRD!(2(tSD + tSRD + 2) − 1)!!

2(2(tSD + tSRD + 2))!!
ρ
−(tSD+tSRD+2)
SR

+ o
(

ρ
−(tSD+tSRD+2)
SR

)

.

(3.92)

Therefore, once equation (3.92) is compared with the proof result of [34,

p.1391], f
(tC)
λSD+ΛSRD

(0) can be found by f
(tSD)
λSD

(0) · f
(tSRD)
ΛSRD

(0) since αSD and

αSRD are in a product form in equation (3.92).
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Appendix 3.5: Derivations of Equations (3.36) and (3.37)

This appendix derives equations (3.36) and (3.37), which are SER rep-

resentations of both the direct and relay links. From [30, eqn. (23)], the PDF

of ΓSD can be directly obtained by using the PDF of ΛSD := ΓSD/ρSD based

on fY (y) = fX (y/ρSD) /ρSD [38, p.131] as

fΓSD
(x) =

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,m
nm+1xme

− nx
ρSD

ρm+1
SD m!

, x > 0. (3.93)

Once integration is carried out over the PDF after extending the number of

source antennas by 1 from equation (3.93), the CDF of γ+
SD is obtained by

Fγ+
SD

(x) = 1 −
MD
∑

n=1

(MS+MD+1)n−2n2
∑

m=MS−MD+1

dn,m+1e
−nx
ρSD

m
∑

k=0

(nx)k

k!ρkSD
, x > 0. (3.94)

If equation (3.94) is applied to the SER expression, PE = a
√

b/(2
√

π)
∫∞
0

e−bx

Fγ(x)/
√

xdx, equation (3.36) is obtained.

To obtain the CDF of ΓSRD := (ΓSR + Γ′
SR) ΓRD/ ((ΓSR + Γ′

SR) + ΓRD),

the PDF of the first hop of the relay link should be obtained first. After a

convolution between fΓSR
(x) = xMS−1e−x/ρSR/

(

(MS − 1)!ρMS

SR

)

and fΓ′

SR
(x) =

e−x/ρSR/ρSR is done, if procedures in [29, Appendix] are followed with ΓSRD,

the CDF of ΓSRD is obtained as

FΓSRD
(x) = 1 −

2e
−x
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1
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+ 1
ρRD

)

√
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ρSR
xMD
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∑
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p
2
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∑

q=0

(

MD + p− 1
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)(
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)
q
2

Kq−p+1

(

2x√
ρSRρRD

)

, x ≥ 0,

(3.95)

where Kν(x) is the modified Bessel function of the second kind. Similarly,

equation (3.37) is obtained when the above SER expression is used for equation

(3.95).

85



Appendix 3.6: Derivations of Equations (3.39) and (3.40)

This appendix derives equations (3.39) and (3.40), which are expecta-

tions of both the direct and relay links. From Appendix 3.5, before obtaining

equation (3.94), its PDF obtained by extending the number of source antennas

by 1 is

fγ+
SD

(x) =

MD
∑

n=1

(MS+MD+1)n−2n2
∑

m=MS−MD+1

dn,m+1
nm+1xme

−nx
ρSD

m!ρm+1
SD

, x > 0. (3.96)

Using the PDF, if the following expectation is calculated, then equation (3.39)

can be obtained.

E

[

e
− gγSD

sin2 θ

]

≤
∫ ∞

0
e
− gx

sin2 θ fγ+
SD

(x)dx. (3.97)

Since the CDF of ΓSRD is given in equation (3.95), equation (3.40) can

be calculated by using the integration-by-parts method [46], which is PE =

−
∫∞
0

(dPE(γ)/dγ)Fγ(γ)dγ, where PE is the average SER, PE(γ) is the instan-

taneous SER, and Fγ(γ) is the CDF of γ. Using the CDF given in equation

(3.95) and
∫∞
0

xµ−1e−αxKν(βx)dx =
√

π(2β)νΓ(µ + ν)Γ(µ − ν)/ ((α + β)µ+ν

Γ(µ + 1/2)) 2F1 (µ + ν, ν + 1/2; µ + 1/2; (α − β) / (α + β)) [37, p.700], if the

following integration is solved, equation (3.40) can be obtained.

E

[

e
− gγSRD

sin2 θ

]

≥
∫ ∞

0

g

sin2 θ
e
− gx

sin2 θFΓSRD
(x)dx. (3.98)

Appendix 3.7: Derivation of Equation (3.42)

This appendix derives f
(tSD)
λSD

(0) for equation (3.42). From Appendix

3.6, the PDF of γ+
SD is used to obtain that of λSD := γ+

SD/ρSR = ρSDλ+
SD/ρSR

using fλSD
(y) = ρSRfλ+

SD
(yρSR/ρSD) /ρSD by

fλSD
(x) =

MD
∑

n=1

(MS+MD+1)n−2n2
∑

m=MS−MD+1

dn,m+1

(

nρSR

ρSD

)m+1
xme

−nxρSR
ρSD

m!
, x > 0. (3.99)
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If the tSD order derivative is taken for equation (3.99) with respect to x,

f
(tSD)
λSD

(x) =

MD
∑

n=1

(MS+MD+1)n−2n2
∑

m=MS−MD+1

dn,m+1

(

tSD

m

)

e
−nxρSR

ρSD

m
∑

k=0

Ck (−1)tSD+m+k

(

nρSR

ρSD

)tSD+k+1

xk,

(3.100)

where C0 = 1 and Ck is any real coefficient. Once equation (3.100) is evaluated

at the origin, equation (3.42) is obtained.

Appendix 3.8: Derivation of Equations (3.67) and (3.68)

This appendix derives equations (3.67) and (3.68), which are approxi-

mate average SERs for the direct and relay links. To derive equation (3.67),

fγSD
(x) and FγSD

(x) should be found first. From [30, eqn. (23)], the PDF of

γSD can be obtained using the PDF of ΛSD := γSD/ρSD based on fY (y) =

fX (y/ρSD) /ρSD [38, p.131] as

fγSD
(x) =

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

dn,mn
m+1xme

− nx
ρSD

m!ρm+1
SD

, x > 0. (3.101)

If equation (3.101) is integrated with respect to x, the CDF of γSD can be

acquired by

FγSD
(x) = 1 −

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

m
∑

k=0

dn,me
− nx

ρSD (nx)k

k!ρkSD
, x > 0. (3.102)

When equation (3.102) is substituted to equation (3.66), equation (3.67) can

be obtained.

Similarly, FΓSRD
(x) should be found first to derive equation (3.68).

From [35, Appendix], the CDF of ΓSRD can be calculated by

FΓSRD
(x) = 1 −

∫ ∞

0
F̄γSR

(

x(w + x)

w

)

fγRD
(w + x)dw, (3.103)

where F̄γSR
(x) = 1 − FγSR

(x) and fγRD
(x) are as follows:

F̄γSR
(x) =

MR
∑

n=1

(MS+MR)n−2n2
∑

m=MS−MR

m
∑

k=0

dn,me
− nx

ρSR (nx)k

k!ρkSR
, x > 0. (3.104)
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fγRD
(x) =

MR
∑

i=1

(MR+MD)i−2i2
∑

j=MD−MR

di,ji
j+1xje

− ix
ρRD

j!ρm+1
RD

, x > 0. (3.105)

Equations (3.104) and (3.105) can be derived similar to equations (3.101) and

(3.102).

Once equation (3.104) and (3.105) are substituted to equation (3.103),

the CDF of ΓSRD can be found after mathematical calculations as follows:

FΓSRD
(x) = 1 −

MR
∑

n=1

(MS+MR)n−2n2
∑

m=MS−MR

m
∑

k=0

MR
∑

i=1

(MD+MR)i−2i2
∑

j=MD−MR

k+j
∑

p=0

(

k + j

p

)

2dn,mdi,jn
k+p+1

2 i
2j+k−p+1

2

k!j!ρ
k+p+1

2
SR ρ

2j+k−p+1
2

RD

xk+j+1e
−x
(

n
ρSR

+ i
ρRD

)

Kp−k+1

(

2x

√

ni

ρSRρRD

)

, x > 0,

(3.106)

where Kν(x) is the modified Bessel function of the second kind. Finally, when

equation (3.106) is substituted to equation (3.66), equation (3.68) can be ob-

tained.
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Chapter 4

Performance Bounds on Average Error Rates using the

Arithmetic-Geometric Mean Inequality

One of the performance metrics of interest in communications is the

average probability of error, which can be either a bit or symbol error rate

(BER/SER) averaged across fading channels. When memoryless modulated

signals are transmitted and corrupted over an additive white Gaussian noise

(AWGN) channel, the instantaneous error rate can be represented, or approxi-

mated by the well-known Gaussian Q-function [7,24–26]. Since the Q-function

is given in an integral form, averaging it over fading channels requires alterna-

tive approaches such as Craig’s formula combined with a moment generating

function (MGF) approach [7, 25, 26, 30, 42, 43, 47–50], or approximations with

the integration-by-parts method [35,44–46,51], which are widely used to obtain

closed-form expressions.

When the instantaneous signal-to-noise ratio (SNR) is given by a sum of

N statistically independent non-negative random variables (RVs) and the com-

bined probability density function (PDF) and cumulative distribution function

(CDF) are intractable, Craig’s formula can be used along with the product of

MGFs, which requires at least a double integral (please see details in Section

4.2). This double integral causes mathematical difficulties in obtaining closed-

form expressions. As a consequence, if Craig’s formula combined with a MGF

approach is not solvable, the Chernoff bound [7, 24] can be considered even

though its performance is far from the actual performance. We propose upper

and lower-bounds, which are much tighter than the Chernoff bound and can be

obtained just as simply. This approach enable us to obtain tight closed-form
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combined expressions for AF relay networks with multiple relays and amplify-

and-forward (AF) multiple-input multiple-output (MIMO) beamforming (BF)

relay networks with multiple antennas, for the first time in the literature.

In this chapter, novel average performance bounds are obtained for sys-

tems with instantaneous SNRs given by a sum of N statistically independent

(but not necessarily identically distributed) non-negative RVs by the product

of single integral expressions using the arithmetic mean (AM) and geomet-

ric mean (GM) inequality. Even though the AM-GM inequality is used to

find the distribution bound of a combined RV in [52, 53], it is never consid-

ered to obtain performance bounds using the product of single integrals with

simple distribution functions, to the best of our knowledge. The tightness of

the bounds is evaluated analytically at high SNR. The SNR gap between the

bounds and the true error rate is shown to go to zero as the number of RVs N

increases. The bounds are illustrated with three applications involving maxi-

mum ratio combining (MRC), AF relay networks with multiple relays, and AF

relay networks with a single relay and multiple antennas. The mathematical

technique used to obtain the bounds in this chapter can be applied even to

some of non-Gaussian noise models, as we illustrate with Middleton’s class-A

noise [54].

After the problem statement is described in Section 4.1, existing tech-

niques for calculating average performance are reviewed in Section 4.2. Novel

performance bounds and their derivations are presented in Section 4.3, and the

tightness of the bounds is evaluated analytically at high SNR in Section 4.4.
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Applications involving MRC and relay networks are discussed in Section 4.5,

and non-Gaussian additive noise is considered in Section 4.6. In Section 4.7,

Monte-Carlo simulations compare the bounds with the actual performance.

Finally, Section 4.8 summarizes this chapter.

Notation: f(x) = o(g(x)) as x → c (here c may be either 0 or ∞) means

that limx→c f(x)/g(x) = 0 when f(x) and g(x) are positive for sufficiently

small or large x. f(x) = O(g(x)) as x → c means that f(x)/g(x) is bounded

for x sufficiently close to c.

4.1 Problem Statement

Consider N statistically independent non-negative RVs and their sum

X =
∑N

i=1 Xi = ρ
∑N

i=1 λi, where ρ is the average transmit SNR, and λi are

channel dependent RVs. The interest of this chapter is in calculating the

average probability of error:

PE = EX

[

aQ
(√

2bX
)]

=

∫ ∞

0
aQ
(√

2bx
)

fX(x)dx, (4.1)

where Q(x) :=
(

1/
√

2π
) ∫∞

x
e−y

2/2dy [7,24–26], EX [·] denotes expectation with

respect to X, a and b are modulation related positive constants, and PE could

be either BER or SER by depending on the choice of a and b. For example,

a = 1 and b = 1 provide exact SER for binary phase shift keying (BPSK),

while a = 2 and b = sin2(π/M) and a = 4
(

1 − 1/
√

M
)

and b = 3/(2(M −

1)) provide tight SER approximations for M-ary PSK (M-PSK) and M-ary

quadrature amplitude modulation (M-QAM), respectively [7,24,27]. Since the

tightness of these approximations for different values of a and b are well-studied

in the literature, our focus in this chapter will be on calculating equation (4.1),

and on finding tight and simple bounds on equation (4.1), in cases when the

distribution of X is complicated or intractable.
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4.2 Review of Existing Techniques

Craig’s formula is an alternative form for the Q-function, which is often

used in calculating equation (4.1) [25, 26]:

Q(x) =
1

π

∫ π/2

0
e−x

2/(2 sin2 θ)dθ. (4.2)

Substituting into equation (4.1) we have the so-called MGF approach:

PE =
a

π

∫ π/2

0

N
∏

i=1

[

MXi

(

− b

sin2 θ

)]

dθ, (4.3)

where MX(s) :=
∫∞
0

fX(x)esxdx is the MGF. Clearly equation (4.3) requires

a double integral to obtain the average error rates.

To avoid the double integral, if the integration-by-parts method is used

for equation (4.1), the following alternative equation can be attained [44]:

PE =
a
√
b

2
√
π

∫ ∞

0

e−bx√
x
FX(x)dx, (4.4)

where FX(x) is the CDF of X. In what follows, we derive tight bounds on

equation (4.4) that requires less integrals than equation (4.3) even when the

distribution of the sum X is intractable.

4.3 Novel Average Performance Bounds

Equation (4.3) requires a double integral, which causes mathemati-

cal difficulties in some cases. In addition, if MGFs in equation (4.3) are in-

tractable, the average probability of error cannot be expressed in closed-form.

Therefore, it is of interest to derive expressions involving both PDFs and CDFs

in representing equation (4.1) with reduced number of integrals. The Cher-

noff bound, Q(x) ≤ 1
2
e−x

2/2, does allow tractable expressions but yields rather

loose bounds. This motivates the following novel average performance bounds.
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Theorem 4.1. Let Xi, i = 1, 2, ..., N , be statistically independent non-nega-

tive RVs, and X =
∑N

i=1 Xi be their sum. Then the average performance PE

in equation (4.1) is upper-bounded by

PE ≤ a
√
b

2
√
πN

∫ ∞

0

e−bx1

2N
√
x1
FX1(x1)dx1

[

N
∏

i=2

(
∫ ∞

0

e−bxi

2N
√
xi
fXi

(xi)dxi

)

]

. (4.5)

Equivalently,

PE ≤ a
√
b

2
√
πN

∫ ∞

0

e−bx1

2N
√
x1
FX1(x1)dx1





N
∏

i=2





∫ ∞

0





be−bxi

2N
√
xi

+
e−bxi

2N 2N

√

x2N+1
i



FXi
(xi)dxi







 .

(4.6)

Proof. Please see Appendix 4.1.

Note that both bounds are reduced to equation (4.4) with equality

when N = 1. Note also that the products in equations (4.5) and (4.6) become

the (N − 1)th powers if X2, X3, ..., XN are identically distributed. Recalling

that in general Xi, i = 1, 2, ..., N , need not be identically distributed, it is

clear that X1 should be chosen among all Xi as the one for which the integral

involving the CDF is tractable in equation (4.5). For the MRC case regardless

of fading models, the bounds can be obtained by using the PDF and CDF

of a point-to-point single antenna system, which means that the bounds are

tractable unless the point-to-point single antenna system is not solvable in

closed-form.

4.3.1 Approximations Based on Theorem 4.1

In Section 4.5, we will consider applications where FXi
(xi) = 1−F̄Xi

(xi)

is represented in terms of the complementary CDFs (CCDFs). This raises the

tractability of the integral,
∫∞
0

e−bxi/

(

2N 2N

√

x2N+1
i

)

dxi, in equation (4.6).

To address this issue in a way to obtain the same diversity order as equation
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(4.6), we modify the second term of the inner integral in equation (4.6) to

obtain:

PE ≈ abN− 1
2

2
√
πN

(

1 +
1

2N

)N−1
[

N
∏

i=1

(∫ ∞

0

e−bxi

2N
√
xi
FXi

(xi)dxi

)

]

. (4.7)

This expression makes the associated integrals more tractable in the applica-

tions we consider in Section 4.5. Note that equation (4.7) is most useful when

the CDFs are written in terms of the CCDFs and the corresponding CCDFs

are mathematically tractable, and equations (4.5) and (4.6) are preferable in

other cases.

In addition, since the first term be−bxi/ 2N
√

xi dominates the second term

e−bxi/

(

2N 2N

√

x2N+1
i

)

in equation (4.6), when the term e−bxi/

(

2N 2N

√

x2N+1
i

)

is removed, another approximation is given by

PE ≈ abN−1/2

2
√
πN

[

N
∏

i=1

(∫ ∞

0

e−bxi

2N
√
xi
FXi

(xi)dxi

)

]

. (4.8)

Based on our numerical investigations, equation (4.8) provides a lower-bound

for the entire SNR region, and equation (4.7) gives an upper-bound except the

low SNR region even though it is not straightforward to prove these analyti-

cally. Note that equations (4.7) and (4.8) approach to the actual performance

using equation (4.1) at high SNR as N → ∞. Note also that high SNR gaps

using equations (4.5)-(4.8) are invariant of fading models and modulation re-

lated constants, a and b, as illustrated in Section 4.7.

4.4 Tightness of the Bounds at High SNR

We now evaluate the tightness of the bounds at high SNR using the

techniques in [34]. Let Xi = ρλi, and the PDFs of λi be given by fλi
(x) =

αix
ti +o (xti) as x → 0 where αi = f

(ti)
λi

(0)/Γ(ti+1), and ti is the first non-zero

derivative order for which f
(ti)
λi

(0) 6= 0. The expression for αi is also valid when

ti is not an integer if fractional calculus is used [55].
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To evaluate the tightness of our bounds, the exact asymptotic error

rate can be obtained by assuming fλi
(x) = αix

ti + o (xti) and substituting in

equation (4.3):

PE =
a
(

∏N
i=1 αiΓ(ti + 1)

)

Γ
(

2
∑N

i=1(ti + 1) + 1
)

22
∑N

i=1(ti+1)+1Γ2
(

∑N
i=1(ti + 1) + 1

) (bρ)−
∑N

i=1(ti+1)

+ o
(

ρ−
∑N

i=1(ti+1)
)

(4.9)

as ρ → ∞.

When Xi = ρλi are applied to equation (4.5), it becomes the following:

PE ≤ a
√
bρ

2
√
πN

∫ ∞

0

e−bρx1

2N
√
x1
Fλ1(x1)dx1

[

N
∏

i=2

(∫ ∞

0

e−bρxi

2N
√
xi
fλi

(xi)dxi

)

]

. (4.10)

If fλi
(x) = αix

ti+o (xti) and Fλi
(x) = αix

ti+1/(ti+1)+o (xti+1) are substituted

into equation (4.10), the average performance is upper-bounded by

PE ≤
aΓ
(

t1 + 2 − 1
2N

)

α1

(

∏N
i=2 αiΓ

(

ti + 1 − 1
2N

)

)

2(t1 + 1)
√
πN

(bρ)−
∑N

i=1(ti+1)

+ o
(

ρ−
∑N

i=1(ti+1)
)

(4.11)

as ρ → ∞. Comparing equations (4.9) and (4.11) we see that their diversity

orders are both equal and given by
∑N

i=1(ti + 1).

Using equations (4.9) and (4.11), the SNR gap for large ρ between the

upper-bound and the actual performance, 10 log10 (ρub/ρac), can be calculated

as

− 10
∑N

i=1(ti + 1)

log10





(t1 + 1)
√
πN

(

∏N
i=1 Γ(ti + 1)

)

Γ
(

2
∑N

i=1(ti + 1) + 1
)

22
∑N

i=1(ti+1)Γ
(

t1 + 2 − 1
2N

)

(

∏N
i=2 Γ

(

ti + 1 − 1
2N

)

)

Γ2
(

∑N
i=1(ti + 1) + 1

)



 .

(4.12)

Notice that the gap at high SNR is independent of the constellation size (i.e. a

and b) but dependent on the number of RVs N and the diversity orders of each
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RV, ti + 1. Using identities, Γ(x + 1) = xΓ(x) and Γ(2x) = 22x−1Γ(x)Γ(x +

1/2)/
√

π, equation (4.12) can be approximated by [5 log10((
∑N

i=1 ti + 1)/N)]/

(
∑N

i=1 ti +1) for large N . For example, when all diversity orders are identical,

ti = t, i = 1, 2, ..., N , the gap becomes [5 log10(t + 1)]/(N(t + 1)). Therefore,

the gap at high SNR behaves like O(1/N), which means the bound becomes

tighter inversely with N , as N → ∞. We applied the same approach to the

expression in equation (4.7) with a resulting high SNR gap obtained as

5
∑N

i=1(ti + 1)
log10





(

1 + 1
2N

)N−1
Γ
(

∑N
i=1(ti + 1) + 1

)(

∏N
i=1 Γ(ti + 2 − 1

2N )
)

√
NΓ

(

∑N
i=1(ti + 1) + 1

2

)(

∏N
i=1 Γ(ti + 2)

)



 .

(4.13)

The SNR gap using equation (4.8) can be obtained by removing (1+1/(2N))N−1

from equation (4.13), and their gaps at high SNR behave like O(1/N) when

all diversity orders are identical as well. Therefore, the gaps among all the

bounds and the actual performance become zero as N → ∞. Note that al-

though the bound is asymptotically tight for large N , even for N = 2 the gap

is rather small, as illustrated in Section 4.7.

4.5 Applications of the Bounds

Three applications are considered in this section, which are receive

diversity systems, relay networks with multiple relays, and relay network with

multiple antennas at all nodes.

4.5.1 Receive Diversity using MRC

To show the tightness of the bounds, the well-known MRC technique [7]

is presented as the first application since its exact performance is obtainable

in closed-form without using the bounds. In this application, the performance

expressions using equations (4.5), (4.7), and (4.8) are compared with the per-

formance using equation (4.1).
96



Consider a receive diversity system, which consists of a transmitter

using a single antenna and a receiver equipped with multiple (N) antennas.

All CSI is assumed to be known only to the destination. The received signal

using MRC at the destination is given by

y =
√
ρ‖h‖x+

hH

‖h‖n, (4.14)

where ρ is the average transmit SNR, x is the transmitted symbol with E[x] = 0

and E[|x|2] = 1, (·)H and (·)T represent a complex Hermitian and a vector

transpose, respectively, h = [h1 h2 ... hN ]T is the channel coefficient vector,

and n is the noise, both having independent identically distributed (i.i.d.)

CN(0, 1) entries.

The total instantaneous received SNR is represented by

γ := ρ‖h‖2 =
N
∑

i=1

γi, (4.15)

where γi = ρ|hi|2, i = 1, 2, ..., N . In this case, γi correspond to Xi and the

combined RV γ is X.

4.5.1.1 Rayleigh Fading

If γ is considered as a single combined RV, a simple average performance

can be obtained using equation (4.4). Since γ is χ2 distributed with N degrees

of freedom, Fγ(x) = 1 − e−x/ρ
∑N−1

p=0 xp/ (p!ρp) , x ≥ 0 [7, p.214], substituting

into equation (4.4) and using
∫∞
0

xn−1/2e−µxdx =
√

π2−nµ−n−1/2(2n− 1)!! [37,

p.345], the average performance can be obtained by

PE =
a

2
−
N−1
∑

p=0

a
√
b(2p− 1)!!

2p+1p!ρp
(

b+ 1
ρ

)p+ 1
2

, (4.16)

where (2p−1)!! = 1 ·3 ·5 · ... · (2p−1), for p ∈ N. The exact performance using

equation (4.1) is the well-known expression for MRC performance in [7, 24],
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and equation (4.16) can be an alternative expression and be the benchmark

for the following performance bounds.

To derive the bounds or approximations we use, recall the PDF and

CDF of γi, fγi
(x) = e−x/ρ/ρ, x ≥ 0 and Fγi

(x) = 1 − e−x/ρ, x ≥ 0, re-

spectively [7, p209]. Substituting these into equations (4.5), (4.7), and (4.8),

respectively, and using the integral
∫∞
0

xν−1e−µxdx = Γ(ν)/µν [37, p.346], the

average performance is upper-bounded or approximated as

PE ≤ a
√
b

2
√
πN







Γ
(

1 − 1
2N

)

b1−
1

2N

− Γ
(

1 − 1
2N

)

(

b+ 1
ρ

)1− 1
2N













Γ
(

1 − 1
2N

)

ρ
(

b+ 1
ρ

)1− 1
2N







N−1

(4.17)

PE ≈ a
√
b

2
√
πN







Γ
(

1 − 1
2N

)

b1−
1

2N

− Γ
(

1 − 1
2N

)

(

b+ 1
ρ

)1− 1
2N







(

1 +
1

2N

)N−1







bΓ
(

1 − 1
2N

)

b1−
1

2N

− bΓ
(

1 − 1
2N

)

(

b+ 1
ρ

)1− 1
2N







N−1 (4.18)

PE ≈ abN−1/2

2
√
πN







Γ
(

1 − 1
2N

)

b1−
1

2N

− Γ
(

1 − 1
2N

)

(

b+ 1
ρ

)1− 1
2N







N

. (4.19)

Equation (4.17) is an application of equation (4.5) and is provably an upper-

bound at all average SNR ρ. Equation (4.18) is an approximation that is also

an upper-bound except at low SNR, albeit not provably. Similarly, equation

(4.19) is an approximate lower-bound for the entire SNR region. In Section

4.7, it will be seen that equations (4.17)-(4.19) with N = 5 are within about

0.2 dB of the exact expression in [45, eqn.(6)] at high SNR regardless of fading

models and modulation schemes. High SNR performance can be obtained

once αi = 1, i = 1, 2, ..., N and ti = 0, i = 1, 2, ..., N are substituted into

the corresponding equations such as equations (4.9) and (4.11).
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4.5.1.2 Rician Fading

Similarly, the PDF and CDF of γi is necessary to derive the bounds

or approximations in Rician fading. The PDF of γi is given by fγi
(x) =

(1 + K)e−K−(1+K)x/ρ I0

(

2
√

K(1 + K)x/ρ
)

/ρ, x ≥ 0 where K is the Rician

factor (i.e. K ≥ 0) and I0(·) is the zero-th order modified Bessel function

of the first kind in [25, p.23], and the CDF can be obtained as Fγi
(x) =

1 − Q1

(√
2K,

√

2(1 + K)x/ρ
)

, x ≥ 0 where Q1(α, β) is the first order

Marcum Q-function [25, p.93] by integrating the PDF. Substituting these

into equation (4.5), and using the integral
∫∞
0

xµ−1/2e−αxI2ν (2β
√

x) dx =

Γ(µ+ν+1/2)β−1eβ
2/2αα−µM−µ,ν (β2/α) /Γ(2ν+1) where Mµ,ν (·) is the Whit-

taker function [37, p.709], the average performance is upper-bounded as

PE ≤ a
√
b

2
√
πN

∫ ∞

0

e−bx

2N
√
x

(

1 −Q1

(

√
2K,

√

2(1 +K)x

ρ

))

dx

[√
1 +Ke−KΓ

(

1 − 1
2N

)

√
ρK

e
K(1+K)

2+2bρ+2K

(

b+
1 +K

ρ

)− 1
2
+ 1

2N

M− 1
2
+ 1

2N
,0

(

K(1 +K)

1 + bρ+K

)]N−1

.

(4.20)

Even though equation (4.20) is not a perfect closed-form expression, it is easy

to evaluate numerically since there exists only a single integral for a point-

to-point single antenna system. Other bounds and approximations can be

evaluated numerically using the PDF and CDF. However, closed-form high

SNR performance can be obtained similarly to Rayleigh fading once αi =

(1 + K)e−K , i = 1, 2, ..., N and ti = 0, i = 1, 2, ..., N are used.

4.5.2 AF Relay Networks with Multiple Relays

In the second application, average performance is analyzed using equa-

tion (4.7) for AF relay networks with multiple relays equipped with a sin-

gle antenna. For this case, neither Craig’s formula with MGFs [47, 50] nor
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approximations with the integration-by-parts method [42, 43] can provide a

closed-form solution, to the best of our knowledge.

Figure 4.1: The System Model of Two-Hop Relay Networks with Multiple
Relays.

Figure 4.1 shows a relay system, which consists of a source S, N −

1 relays Ri , i = 1, 2, ..., N − 1, and a destination D, each equipped with

a single antenna. All CSI is assumed to be known to the destination and

connected nodes. For example, hSD is known to the source and destination,

but not to the relays. The half-duplex time division multiple access (TDMA)

scenario is considered with a two-slot scheme [11], in which the relays and

destination receive the transmitted signal from the source in the first time

slot; the destination receives the relayed signals while the source remains silent

during subsequent (N − 1) time slots.

Reference [47] analyzes the average performance and provides four

bounds for M-PSK modulation with single integrals, and are not in closed-

form. Two bounds in [47] present closed-form expressions only for BPSK,

which are reproduced for comparison in our simulations. For the same sys-

tem model in a Nakagami-m fading environment, reference [50] provides an

upper-bound on an average performance for M-PSK, but the bound contains a

single integral and is not in closed-form. The authors also provide a simplified

version of the bound using the Chernoff bound for one relay with BPSK in
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Rayleigh fading, which is within about 2 dB of the actual performance, as seen

in Section 4.6.2.

The received signals using MRC at the destination via the direct and

relay links are as follows:

ySD =
√
ρSD|hSD|x+

h∗SD
|hSD|

nSD (4.21)

ySRiD =

√
ρSRρRD|hSRi

||hRiD|x
√

1 + ρSR|hSRi
|2

+ |hRiD|
√
ρRD

h∗SRi

|hSRi
|nSRi

√

1 + ρSR|hSRi
|2

+
h∗RiD

|hRiD|
nRiD, (4.22)

where i = 1, 2, ..., N −1, ρSD, ρSR, and ρRD are average transmit SNRs 1, hSD,

hSRi
, and hRD are channel coefficients, assumed to be i.i.d. CN(0, 1); nSD,

nSRi
, and nRiD are noise distributed CN(0, 1); x is the transmitted symbol

with E[x] = 0 and E[|x|2] = 1, and (·)∗ represents a complex conjugate.

Using equations (4.21) and (4.22), the combined received signal at the

destination can be written as

y = aSD ySD +

N−1
∑

i=1

aSRiD ySRiD, (4.23)

where aSD and aSRiD are combining weights for the minimum mean square

error (MMSE) criterion [31,42,43,45] in this work. Recall from the references

that the MMSE coefficients are determined by
√

SP/NP , where SP is the power

of signal portions and NP is the power of noise portions from equations (4.21)

and (4.22).

If the MMSE criterion is used to combine signals from equations (4.21)

and (4.22) when all CSI is known at the destination, the total instantaneous

received SNR is represented by

γ = γSD +

N−1
∑

i=1

γSRiD = γSD +

N−1
∑

i=1

γSRi
γRiD

1 + γSRi
+ γRiD

, (4.24)

1Unlike in Section 4.5.1, here we assume the average SNRs of the channels (i.e. the
direct link and relay links) are different. This can be easily handled since the difference in
the average SNRs can be subsumed into the channel-dependent RVs.
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where γSD = ρSD|hSD|2 is the instantaneous received SNR of the direct link,

γSRiD are the instantaneous received SNRs of the two-hop relay links, γSRi
=

ρSR|hSRi
|2, and γRiD = ρRD|hRD|2. In this case, N RVs for Xi are γSD and

γSRiD, and the combined RV for X is γ. We work with a tight approxi-

mation to each term in the sum of equation (4.24) by considering ΓSRiD :=

γSRi
γRiD/(γSRi

+ γRiD), which provides a performance lower-bound from the

relay links. Note that both γSRiD and ΓSRiD are equivalent at high SNR be-

cause ΓSRiD is obtained by removing the 1 in the denominator of γSRiD in

equation (4.24).

The CDF of the direct link (S → D) is given by FγSD
(x) = 1 −

e−x/ρSD , x ≥ 0 from [7, p.209], and the CDF of ΓSRiD is obtained from [45,

eqn.(26)] by substituting MS = MR = MD = 1 as

FΓSRiD
(x) = 1 − 2x√

ρSRρRD
e
−x
(

1
ρSR

+ 1
ρRD

)

K1

(

2x√
ρSRρRD

)

, x ≥ 0, (4.25)

where Kν(x) is the modified Bessel function of the second kind [37, p.xli].

When both CDFs are substituted to equation (4.7), and the integral
∫∞
0

xν−1

e−µxdx = Γ(ν)/µν [37, p.346] and the following integral from [37, p.700],

∫ ∞

0
xµ−1e−αxKν(βx)dx

=

√
π(2β)ν

(α+ β)µ+ν

Γ(µ+ ν)Γ(µ− ν)

Γ(µ+ 1
2)

2F1

(

µ+ ν, ν +
1

2
;µ+

1

2
;
α− β

α+ β

)

,

(4.26)

where 2F1(α, β; γ; z) is the Gauss hypergeometric function in [37, p.xl], are

used, the average error rate is approximated by

PE ≈ a
√
b

2
√
πN







Γ (C)

bC
− Γ (C)
(

b+ 1
ρSD

)C







(

1 +
1

2N

)N−1

[

bΓ (C)

bC
− 8b

√
πΓ
(

3 − 1
2N

)

Γ (C)

ρSRρRDΓ
(

5
2 − 1

2N

)

B3− 1
2N

2F1

(

3 − 1

2N
,
3

2
;
5

2
− 1

2N
;
A

B

)

]N−1

,

(4.27)
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where A := b + 1/ρSR + 1/ρRD − 2/
√

ρSRρRD, B := b + 1/ρSR + 1/ρRD +

2/
√

ρSRρRD, and C := 1 − 1/(2N).

Note that equation (4.27) is an approximation since the relay link per-

formance using ΓSRiD provides a lower-bound on performance for the relay

links even though equation (4.7) gives a performance upper-bound at high

SNR. However, equation (4.27) actually provides a tight upper-bound at high

SNR due to the tight upper-bound producing equation (4.7) since both γSRiD

and ΓSRiD from the relay link are equivalent at high SNR. Even though equa-

tion (4.27) becomes tighter to the actual performance as N → ∞, it is tight

even for small N (i.e. N = 2 or N = 3) as will be seen in our simulations

in Section 4.7. Note also that the lower-bound using equation (4.8) can be

obtained if the term (1 + 1/(2N))N−1 is removed from equation (4.27).

4.5.3 AF MIMO Beamforming Relay Networks with Multiple Antennas

Figure 4.2 shows a two-hop MIMO relay system, which consists of a

source S, a relay R, and a destination D. All nodes are equipped with mul-

tiple antennas, MS, MR, and MD, respectively, and HSD, HSR, and HRD

are MD × MS, MR × MS, and MD × MR complex Gaussian channel matrices

connecting the nodes, respectively, which are assumed to be statistically inde-

pendent. Similar to the second application, the half-duplex TDMA scenario

is considered with the two-slot scheme, where S transmits to R and D in the

first time slot, and R amplifies and forwards its received signal in the second

time slot while S is silent. All CSI is assumed to be known to the source, the

destination, and connected nodes.

When beamforming to both relay and destination, the selection of the

BF coefficients at the source becomes a challenging problem since the source
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Figure 4.2: The System Model of Two-Hop MIMO Relay Networks.

has to balance the needs of the relay and destination. The optimal choice of

BF by S to D might not be optimal S to R. Optimized combined BF for AF

relaying is shown to lead to a non-convex problem and is solved using a gradient

ascent algorithm with a finite number of Grassmannian BF vectors [36,56] for

initial starting points when all CSI is known at the source and destination

in [31]. This solution not only is difficult to implement, it also does not lend

itself to performance analysis because the optimal BF coefficients cannot be

expressed in closed-form. In the view of this background, it is desirable to

analyze the performance of optimal schemes through bounds.

In this work, the half-duplex scenario is considered with a two-slot

scheme, and the combined performance of AF MIMO relay networks with BF

is analyzed for the first time to the best of our knowledge. A novel combined

lower-bound to any two-slot scheme is obtained by using two different BF

vectors “matched” with the relay and direct links, respectively. A BF vector

is matched when it is the strongest right singular vector of the corresponding

channel. Since in a two-slot scheme two different BF vectors cannot be used

at the same time slot, the lower-bound is achievable at the expense of a rate

penalty with an extra time slot, leading to a three-slot scheme [42]. Therefore,

two different BF vectors are used from the source to the relay and to the
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destination, respectively, to obtain a lower-bound on performance to any two-

slot scheme, or achievable performance with a three-slot scheme at a rate

penalty.

Since two different BF vectors are used from the source to the relay

and to the destination, respectively, the received signals using MRT and MRC

via the direct and relay links at the destination are as follows:

ySD =
√
ρSD‖HSDfSD‖x+

(HSDfSD)H

‖HSDfSD‖
nSD (4.28)

ySRD =

√
ρSRρRD‖HSRfSR‖‖HRDfRD‖x

√

1 + ρSR‖HSRfSR‖2

+

√
ρRD‖HRDfRD‖ (HSRfSR)H

‖HSRfSR‖ nSR
√

1 + ρSR‖HSRfSR‖2
+

(HRDfRD)H

‖HRDfRD‖
nRD,

(4.29)

where ρSD, ρSR, and ρRD are average transmit SNRs; HSD (MD × MS), HSR

(MR×MS), and HRD (MD×MR) are channel coefficient matrices, assumed to

be i.i.d. according to CN(0, 1); fSD (MS×1), fSR (MS×1), and fRD (MR×1)

are BF vectors with norm 1 obtained as the strongest right singular vectors

of corresponding channel coefficient matrices; x is transmitted symbol with

E[|x|2] = 1 and E[x] = 0; nSD (MD×1), nSR (MR×1), and nRD (MD×1) are

noise according to CN(0, I). Using equations (4.28) and (4.29), the combined

received signal at the destination can be obtained using the MMSE coefficients

such as equation (4.23).

If the MMSE criterion is used to combine signals from equations (4.28)

and (4.29) when all CSI is known at the source and destination, the total

instantaneous received SNR is represented by

γ = γSD + γSRD = γSD +
γSRγRD

1 + γSR + γRD
, (4.30)

where γSD = ρSD‖HSDfSD‖2, γSR = ρSR‖HSRfSR‖2, γRD = ρRD‖HRDfRD‖2,

and γSRD := γSRγRD/(1 + γSR + γRD). In this case, N = 2 with X1 = γSD
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and X2 = γSRD, and the combined RV X = γ. ΓSRD := γSRγRD/(γSR + γRD)

is used to obtain the average performance, which provides a lower-bound from

the relay link. While this appears to be a special case of equation (4.24), the

distributions of γSR, γRD, and γSD are much more complicated due to the

MIMO nature of the system.

To obtain the combined average performance, the CDFs of γSD and

ΓSRD are given as follows [45, eqns. (21) and (26)]:

FγSD
(x) = 1 −

MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

m
∑

k=0

dn,me
− nx

ρSD (nx)k

k!ρkSD
, x > 0 (4.31)

FΓSRD
(x) = 1 −

MR
∑

n=1

(MS+MR)n−2n2
∑

m=MS−MR

m
∑

k=0

MR
∑

i=1

(MD+MR)i−2i2
∑

j=MD−MR

k+j
∑

p=0

(

k + j

p

)

2dn,mdi,jn
k+p+1

2 i
2j+k−p+1

2

k!j!ρ
k+p+1

2
SR ρ

2j+k−p+1
2

RD

xk+j+1e
−x
(

n
ρSR

+ i
ρRD

)

Kp−k+1

(

2x

√

ni

ρSRρRD

)

, x > 0,

(4.32)

where dn,m are coefficients given by [30, eqn. (24)], also provided in Tables

2.1-2.3 for completeness. Note that equations (4.31) and (4.32) are valid when

MS ≥ MD, MS ≥ MR, and MD ≥ MR even though other cases can be easily

handled with minor modifications. For example, MS and MD must be switched

in equation (4.31) when MS < MD.

Once both CDFs are substituted into equation (4.7), and the integral
∫∞
0

xν−1e−µxdx = Γ(ν)/µν [37, p.346] and equation (4.26) are used, the com-
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bined average performance can be approximated:

PE ≈ 5a
√
b

8
√

2π







Γ
(

3
4

)

b
3
4

−
MD
∑

n=1

(MS+MD)n−2n2
∑

m=MS−MD

m
∑

k=0

dn,mn
kΓ
(

k + 3
4

)

k!ρkSD

(

b+ n
ρSD

)k+ 3
4











bΓ
(

3
4

)

b
3
4

−
MR
∑

n=1

(MS+MR)n−2n2
∑

m=MS−MR

m
∑

k=0

MR
∑

i=1

(MD+MR)i−2i2
∑

j=MD−MR

k+j
∑

p=0

(

k + j

p

)

2bdn,mdi,jn
CiG

k!j!ρCSRρ
G
RD

√
π
(

4
√

ni
ρSRρRD

)L

Bp+j+ 11
4

Γ
(

j + p+ 11
4

)

Γ
(

j + 2k − p+ 3
4

)

Γ
(

k + j + 9
4

)

2F1

(

j + p+
11

4
, p− k +

3

2
; k + j +

9

4
;
A

B

)]

,

(4.33)

where A := b + n/ρSR + i/ρRD − 2
√

ni/(ρSRρRD), B := b + n/ρSR + i/ρRD +

2
√

ni/(ρSRρRD), C := (k + p + 1)/2, G := (2j + k − p + 1)/2, and L :=

p − k + 1. Note that equation (4.33) is a combined link average performance

approximation with the same reason for equation (4.27), which provides a

very tight approximation to the 3-slot scheme performance for the entire SNR

region. Note also that the lower-bound using equation (4.8) can be obtained

if equation (4.33) is multiplied by 4/5.

4.5.4 Example of Non-Gaussian Noise

Even though we have assumed that the additive noise is Gaussian, the

mathematical technique used to obtain the bounds in this chapter (i.e. AM

and GM inequality) can also be applied to some non-Gaussian noise models

such as Middleton’s class-A noise [54].

We consider the same system model as Section 4.5.1 (i.e. received di-

versity using MRC) using Rayleigh fading with Middleton’s class-A noise such

as equation (1) in [54], in which the noise sample is assumed to be the su-

perposition of a Gaussian component, g, and an impulsive component, i, with

T := σ2
g/σ

2
i . Even though the class-A noise is not Gaussian, it is conditionally
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Gaussian, given a Poisson random variable m of parameter A, with zero mean

and variance σ2
m = σ2 (m/(AT + A) + T/(T + 1)), where σ2 is the variance of

the class-A noise. A is the impulsive index, which makes the noise impulsive

if A is small (i.e. 10−3). Note that we consider “Model I” in [54, eqn.(4)], in

which different diversity branches are influenced by the same physical impul-

sive source, even though other noise models can also be considered.

Consider now N additively related statistically independent non-nega-

tive RVs over the class-A noise in Rayleigh fading environment. In this case,

γi = ρ|hi|2/σ2
m, i = 1, 2, ..., N correspond to Xi and the combined RV γ :=

ρ‖h‖2/σ2
m =

∑N
i=1 γi becomes X from Section II. Therefore, once the PDF and

CDF of γi, fγi
(x) = σ2

me−σ
2
mx/ρ/ρ, x ≥ 0 and Fγi

(x) = 1 − e−σ
2
mx/ρ, x ≥ 0,

respectively, are substituted into equations (4.5) and (4.7), respectively, and

the result is averaged over σ2
m, the average performance is upper-bounded or

approximated as

PE ≤
∞
∑

m=0

αma
√
b

2
√
πN







Γ
(

1 − 1
2N

)

b1−
1

2N

− Γ
(

1 − 1
2N

)

(

b+ σ2
m

ρ

)1− 1
2N













σ2
mΓ
(

1 − 1
2N

)

ρ
(

b+ σ2
m

ρ

)1− 1
2N







N−1

(4.34)

PE ≈
∞
∑

m=0

αmab
N− 1

2

2
√
πN

(

1 +
1

2N

)N−1







Γ
(

1 − 1
2N

)

b1−
1

2N

− Γ
(

1 − 1
2N

)

(

b+ σ2
m

ρ

)1− 1
2N







N

, (4.35)

where αm = e−AAm/m!. The approximation using equation (4.8) can be

obtained by removing the term (1 + 1/(2N))N−1 from equation (4.35).

4.6 Numerical and Simulation Results

In Monte-Carlo or numerical simulations, the transmitted symbol is

BPSK, QPSK, and 16-QAM modulated, and the channel is 100-symbol i.i.d.

Rayleigh and Rician block fading (i.e. K=1). Zero mean and unit variance are

used to Rayleigh fading while
√

K/2 mean and unit variance are used to Rician
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fading. For combining signals, MRC with MMSE is used for all simulations

[31, 42, 43, 45]. In relay networks, the relationships among the average SNR

values are chosen as ρSR = ρRD and ρSD = 10(10 log10(ρSR)−30 log10(2))/10, which

corresponds to the relay located in the mid-point of the S and D in a simplified

path-loss model [7, p.46] with path-loss exponent of 3 (i.e. the “mid-point

relay model”). Alternatively, we also consider ρSR = ρRD = ρSD which is the

“equi-distant relay model” for high SNR analysis even though our analysis

applies to other average SNR values as well. The performance of equation

(4.1) is illustrated by Monte-Carlo simulations as the actual performance in

the sequel. For the class-A noise, A = 1 and A = 0.001 with T = 0.1 are used.

4.6.1 Receive Diversity using MRC

The bound and approximations using equations (4.5), (4.7), and (4.8)

are compared with the performance using equation (4.1) with the number of

antennas, (MS, MD) = (1, 2) in mixed Rayleigh-Rician fading and (MS, MD) =

(1, 5) in Rayleigh fading. To show the tightness of the bounds when the average

SNR values are spread out, different average SNR values for each path are

considered.

Figures 4.3 and 4.4 show the MRC performance and bounds with

BPSK, QPSK, and 16-QAM using (MS, MD) = (1, 2) in mixed Rayleigh-

Rician fading when the average SNR for one path is ρ and that for other other

path is various such as ρ/10, ρ/100, 10ρ, or 100ρ. Regardless of modulation

schemes and SNR spreading, the bounds and approximations using equations

(4.5), (4.7), and (4.8) are about 0.39 dB, 0.25 dB, and 0.23 dB apart from

the actual performance at 10−6, respectively, which match with high SNR

performance, which is the analytical results given by Section 4.4.

109



0 5 10 15 20 25 30
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

1x2 Mixed Rayleigh−Rician (K = 1) MRC Performance with BPSK using Different Average Transmit SNR

SNR per Message Bit, ρ (dB)

Sy
m

bo
l E

rro
r R

at
e

 

 

Upper−bound using Equation (4.5)
Approximation using Equation (4.7)
Actual Performance using Monte−Carlo Simulation
Approximation using Equation (4.8)

ρ
2
 = ρ/100

ρ
2
 = ρ/10

ρ
2
 = ρ

ρ
2
 = 10ρ

ρ
2
 = 100ρ

Figure 4.3: 1× 2 Mixed Rayleigh-Rician MRC Performance and Bounds with
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Figure 4.5 shows the MRC performance and bounds with QPSK and

16-QAM using (MS , MD) = (1, 5) in Rayleigh fading when average SNRs from

each path are ρ, ρ/10, ρ/100, 10ρ, and 100ρ, respectively. Independent of

modulation schemes, the bound and approximations using equations (4.5),

(4.7), and (4.8) are about 0.36 dB, 0.22 dB, and 0.2 dB apart from the actual

performance at 10−9, respectively, which need more SNR to obtain high SNR

performance of Tables 4.1-4.3.

Figure 4.6 shows the MRC performance and bounds with BPSK using

(MS, MD) = (1, 2) in Rayleigh fading using Middleton’s class-A noise (i.e.

A = 1 and A = 0.001 with T = 0.1). The bound and approximations using

equations (4.5), (4.7), and (4.8) are about 0.39 dB, 0.25 dB, and 0.23 dB apart

from the actual performance at 10−8. These gaps at high SNR are same as

those of Gaussian noise cases.
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Figure 4.6: 1 × 2 Rayleigh MRC Performance and Bounds with BPSK using
Middleton Class-A Noise.

Based on numerical evaluations and simulations, the gaps among the

bounds and the actual performance using equation (4.1) become smaller as

the number of antennas increases regardless of modulation schemes and SNR

spreading, as predicted by equations (4.12) and (4.13). However, when an

average SNR becomes low compared with the reference average SNR, the

bounds or approximations become loose at low SNR even though they are

still tight at high SNR.

4.6.2 AF Relay Networks with Multiple Relays

The approximations given in equations (4.7) and (4.8) are used to ob-

tain performance for AF relay networks with multiple relays equipped with a

single antenna, and it is compared with the Monte-Carlo or numerical sim-

ulations using (MS, MR, MD) = (1, 1, 1) with 2 or 4 relays. When average

SNR values are determined, the two relay models are used; the mid-point and
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equi-distant relay models. As benchmarks, the upper and lower-bounds with

BPSK are included from [47, eqn.(19)].
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Figure 4.7: 1 × 1 × 1 AF Relay Network Performance with BPSK using 2
Relays in Rayleigh Fading.

Figures 4.7 and 4.8 shows 1×1×1 AF relay network performance with

BPSK, QPSK, and 16-QAM using 2 relays in Rayleigh fading. The approxi-

mations using equations (4.7) and (4.8) are about 0.24 dB and 0.21 dB apart

from the simulations using equation (4.1) at 10−6, respectively, regardless of

modulation schemes. On the other hand, the upper and lower-bounds with

BPSK from [47, eqn.(19)] are about 1.8 dB and 0.4 dB apart from the simu-

lations at 10−6, respectively. High SNR analysis given by Section 4.4 matches

well with the analytical results.

Figure 4.9 shows 1×1×1 AF relay network performance with BPSK us-

ing 4 relays in the mid-point relay model. The approximations using equation

(4.7) and (4.8) are about 0.18 dB and 0.15 dB apart from the Monte-Carlo sim-

ulations at 10−8, respectively. The upper and lower-bounds from [47, eqn.(19)]

113



0 5 10 15 20 25
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR per Message Bit, ρ
SR

 = ρ
RD

 = ρ
SD

 (dB)

Sy
m

bo
l E

rro
r R

at
e

1x1x1 AF Relay Network Performance with QPSK and 16QAM using 2 Relays in the Equi−distant Relay Model

 

 

Approximation using Equation (4.7)
Actual Performance using Numerical Simulation
Approximation using Equation (4.8)
High SNR Approximation using Equation (4.7)
High SNR Actual Performance using Equation (4.3)
High SNR Approximation using Equation (4.8)

16QAMQPSK

Figure 4.8: 1×1×1 AF Relay Network Performance with QPSK and 16-QAM
using 2 Relays in Rayleigh Fading.
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Figure 4.9: 1 × 1 × 1 AF Relay Network Performance with BPSK using 4
Relays in the Mid-Point Relay Model.
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are about 2.2 dB and 0.7 dB apart from the Monte-Carlo simulation at 10−8,

respectively. The gap between the approximation in equation (4.27) and the

Monte-Carlo simulation becomes smaller as the number of relays increases, as

seen in Figures 4.7-4.9.

4.6.3 AF MIMO BF Relay Networks with Multiple Antennas

The approximations given in equations (4.7) and (4.8) are also used to

obtain performance of AF MIMO BF relay networks using multiple antennas

at the relay, and it is compared with the simulation using (MS, MR, MD) =

(2, 1, 2) or (2, 2, 2) with a single relay. Similar to the previous example, for

average SNR values, the mid-point and equi-distant relay models are used.

As mentioned in Section 4.5.3, we are analyzing the performance of an ideal

beamformer at S that is matched to both R and D to derive a lower-bound

on any two-slot scheme. As a benchmark, the approximation using equation

(4.5) from our previous work [45, eqn.(9)] is included since equation (4.33)

uses equation (4.7).

Figure 4.10 shows 2 × 1× 2 AF MIMO BF relay network performance

with QPSK and 16-QAM using a single relay in Rayleigh fading. The approx-

imations using equations (4.5), (4.7), and (4.8) fit well to the simulation at

high SNR, and they seem to agree with the actual performance. High SNR

analysis given by Section 4.4 also matches well with the analytical results.

The same trend is observed for the 2 × 2 × 2 setup in Figure 4.11. The gaps

among the approximations and the simulations become smaller as the number

of antennas at the relay increases.
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Figure 4.10: 2× 1× 2 AF MIMO BF Relay Network Performance with QPSK
and 16-QAM using 1 Relay in Rayleigh Fading.
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Figure 4.11: 2× 2× 2 AF MIMO BF Relay Network Performance with QPSK
and 16-QAM using 1 Relay in the Mid-Point Relay Model.

116



4.7 Chapter Summary

Novel average performance bounds are presented for systems with in-

stantaneous SNRs given by a sum of N statistically independent non-negative

RVs using the AM and GM inequality. The gaps among the bounds and the

actual performance at high SNR are dependent on the number of RVs and the

diversity orders. In particular, the tightness of the bounds is quantified ana-

lytically at high SNR, and shown to go to zero as O(1/N) for large N , which

is presented in Tables 4.1-4.3. Since the bounds can be used for any fading

models with PDFs or CDFs available using the products of single integrals,

they are simple to apply.

Table 4.1: The Analytical High SNR Gaps in dB from the Bounds to the
Actual Performance for Receive Diversity Systems

Bounds Receive Diversity with MRC
N = 2 N = 5 N = 10

Equation (4.5) 0.39 0.22 0.12
Equation (4.7) 0.25 0.18 0.11
Equation (4.8) 0.23 0.15 0.08

Table 4.2: The Analytical High SNR Gaps in dB from the Bounds to the
Actual Performance for AF Multiple Relay Systems

Bounds AF Multiple Relay System
N = 3 N = 5 N = 10

(2 Relays) (4 Relays) (9 Relays)
Equation (4.5) 0.32 0.22 0.12
Equation (4.7) 0.24 0.18 0.11
Equation (4.8) 0.21 0.15 0.08

The bounds are most useful when the distribution of the sum is in-

tractable since they do not require finding the combined PDFs or CDFs of

the sum. They are applied to obtain average performance in receive diversity
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Table 4.3: The Analytical High SNR Gaps in dB from the Bounds to the
Actual Performance for AF MIMO BF Relay Systems

Bounds AF MIMO BF Relay System
N = 2 N = 2 N = 2

(2 × 1 × 2) (2 × 2 × 2) (3 × 3 × 3)
Equation (4.5) 0.034 0.019 0.0035
Equation (4.7) 0.149 0.105 0.05
Equation (4.8) 0.013 0.016 0.0033

using MRC to show the tightness of the bounds to the actual performance.

A couple of approximations are adapted to obtain the combined average per-

formance for AF relay networks using multiple relays equipped with a single

antenna, and for AF MIMO BF single relay systems using multiple antennas

at the source, relay, and destination. The gaps among the bounds and the sim-

ulations become smaller as the number of antennas and the number of relays

increase. Even though the bounds are derived for AWGN, they can also be

applied to some non-Gaussian noise models, as we illustrate with the class-A

noise. In all the cases considered, the bounds are with a fraction of a dB of

their actual values.

Appendix 4.1: Proof of Theorem 4.1

The average performance in equation (4.1) can be written as

PE =

∫ ∞

0

∫ ∞

0
...

∫ ∞

0
aQ





√

√

√

√2b

(

N
∑

i=1

xi

)





(

N
∏

i=1

fXi
(xi)dxi

)

, (4.36)

where fXi
(xi) are the PDFs of statistically independent non-negative RVs, Xi.

To calculate equation (4.36), the first integral with respect to x1 has to be

considered at first

∫ ∞

0
aQ





√

√

√

√2b

(

N
∑

i=1

xi

)



 fX1(x1)dx1. (4.37)
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Since equation (4.37) can be solved by the integration-by-parts method,

the key ingredient is the derivative of Q-function. Using the differentiation of

a definite integral with respect to a parameter [37, p.21],

d

dα

∫ ψ(α)

φ(α)
f(x, α)dx =

dψ

dα
f(ψ(α), α) − dφ

dα
f(φ(α), α) +

∫ ψ(α)

φ(α)

∂f

∂α
dα, (4.38)

the derivative of Q-function is obtained by

d

dx1
Q





√

√

√

√2b

(

N
∑
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)





=
d

dx1





1

2
− 1√

π

∫

√

b(
∑N

i=1 xi)

0
e−t

2
dt



 = −
√
be−b(

∑N
i=1 xi)

2

√

π
(

∑N
i=1 xi

)

.

(4.39)

Therefore, the first integral with respect to x1 of equation (4.36) is

attained by the integration-by-parts method using equations (3.37) and (4.39)

as

∫ ∞

0
aQ





√

√

√

√2b

(

N
∑

i=1

xi

)



 fX1(x1)dx1 =

∫ ∞

0

a
√
be−b(

∑N
i=1 xi)

2

√

π
(

∑N
i=1 xi

)

FX1(x1)dx1, (4.40)

where FX1(x1) is the CDF of X1. Based on the first integral, equation (4.40),

equation (4.36) can be rewritten as

PE =
a
√
b

2
√
π

∫ ∞

0

∫ ∞

0
...

∫ ∞

0

e−b(
∑N

i=1 xi)
√

∑N
i=1 xi

FX1(x1)dx1

(

N
∏

i=2

fXi
(xi)dxi

)

. (4.41)

Using the relationship between AM and GM,
∑N

i=1 xi ≥ N N

√

∏N
i=1 xi, the

following inequality can be obtained
√

√

√

√

N
∑

i=1

xi ≥
√
N 2N

√

√

√

√

N
∏

i=1

xi. (4.42)

Once equation (4.42) is applied to equation (4.41), a novel upper-bound is

obtained by equation (4.5). Equivalently, if integrals with PDFs are not

tractable, equation (4.5) can be written with CDFs using the integration-

by-parts method as equation (4.6).

119



Chapter 5

Unified Sum-BER Performance Analysis of AF MIMO Beamforming in

Two-Way Relay Networks

Cooperative diversity schemes, using relays between the source and

destination, have been widely investigated because of their spatial diversity

and extensive coverage with reduced power consumption [11–13]. Amplify-

and-forward or decode-and-forward (AF/DF) one-way relaying using two time

slots is known to offer gains in performance when the destination keeps apart

from the source, in which the relay and destination receive the transmitted

signal from the source in the first time slot, and the relay amplifies or decodes

and forwards the transmitted signal, and the destination receives the relayed

signal while the source remains silent in the second time slot [11–13], referred

to as one-way relaying.

Even though one-way relaying provides spatial diversity and extensive

coverage with reduced power consumption, it causes a spectral loss due to

more use of time slots. To improve the spectral efficiency in two time slots,

two-way relaying is suggested, in which two sources transmit simultaneously

their signals to the relay in the first time slot (i.e. multiple access phase),

and the relay amplifies or decodes received signals and forwards the combined

signals to the sources in the second time slot (i.e. broadcast phase) [19–21].

Multiple-input multiple-output (MIMO) technology has been consid-

ered as a way to combat severe fading due to its excellent link reliability

based on achievable spatial diversity [1]. When multiple antennas are used,

the combination of maximum ratio transmission (MRT) beamforming (BF) [6]

and maximum ratio combining (MRC) beamforming [7] is one simple way to
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achieve spatial diversity if full channel state information (CSI) is available at

the source and destination. Since BF produces or receives a narrow wireless

beam, it requires less power for the same distance compared to a single antenna

system, creates or receives less interference to or from others, and increases

reliability for transmission or reception. Various BF techniques are considered

and deployed with MIMO using multiple directional antenna elements to uti-

lize BF advantages in wireless standards such as wireless local area network

(WLAN) (i.e. IEEE 802.11n) [8], LTE-Advanced [9], and WiMAX [10].

Figure 5.1: System Model of Two-Hop MIMO Two-Way Relay Networks.

When two nodes, A and B in Figure 5.1, communicate each other

through the relay R, one-way relay systems using four time slots (i.e. A →

R → B and B → R → A sequentially) can achieve less maximum ergodic sum-

rate than two-way relay systems which use two or three time slots, due to more

use of time slots [57]. In two-slot two-way relay networks, A and B transmit

their signals to R in the first time slot, and R amplifies the added received

signals and forwards them to both A and B in the second slot, while A and

B transmit their signals to R in the first and second time slots, respectively,

and R weighs the received signals, amplifies the added signals, and forwards

them to both A and B in the third slot in three-slot two-way relay networks

[19, 21, 57, 58]. Figure 5.2 illustrates five transmission schemes used in this
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chapter. Even though maximum ergodic sum-rate is better for the schemes

using less time slots such as the two-slot scheme, the ones using more time

slots such as the three-slot scheme can be better in sum-BER since they can

be good for optimization and beamforming, which are not valid for the ones

using less time slots.

Figure 5.2: Transmission Schemes for Two-Way Relay Networks.

After AF and decode-and-forward (DF) two-way relay networks are

proposed in [19], sum-bit error rate (BER) and maximum ergodic sum-rate

for systems using a single antenna at all nodes are analyzed for two-way re-

lay systems in [21, 59, 60]. Reference [21] provides closed-form sum-BER and

maximum ergodic sum-rate for the two-slot, three-slot, and four-slot two-way

relay systems with a single antenna at each node over Rayleigh fading, and
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introduces power allocation for each received signal from A and B at R for

the three-slot protocol when average transmit SNRs at A and B are suffi-

ciently different (i.e. “unbalanced”). Reference [59] also presents sum-BER

and maximum ergodic sum-rate bounds for systems using Alamouti code for

the two-slot protocol when multiple antennas are used at A and B while a sin-

gle antenna is used at R. Performance analysis is carried out for AF two-slot

two-way relay systems with BF using a single relay antenna over Nakagami-m

fading in [61]. Using multiple antennas at R, meanwhile, BF optimization for

only maximum ergodic sum-rate is conducted without performance analysis

for AF MIMO two-slot two-way relay systems in [62–64]. BF optimization is

our term for simultaneous beamforming at R to both A and B. Reference [65]

investigates the effects of channel estimation error at A and B for AF MIMO

two-way relaying, and provides maximum ergodic sum-rate lower-bounds with

imperfect channel state information (CSI) at A and B.

Based on this background, our contributions in this chapter are as

follows:

• Novel closed-form sum-BER expressions are presented in a unified frame-

work for AF MIMO two-way relaying protocols with BF.

• This is the first dissertation dealing with performance analysis of AF

MIMO two-way relay networks using BF with multiple relay antennas,

to the best of our knowledge.

• Two novel two-way relaying protocols are proposed using three or four

time slots, and we show that two proposed protocols outperform existing

protocols in sum-BER at high-SNR.
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• New closed-form high-SNR sum-BER performance is provided in a single

expression for five AF MIMO BF two-way relaying protocols. Based on

this high-SNR analysis, an analytical high-SNR gap expression between

the five different protocols is provided.

After system models are described for the five two-way relaying proto-

cols with a single relay antenna in Section 5.1, unified performance analysis

including high-SNR analysis is presented in Section 5.2. Multiple relay anten-

nas are considered in Section 5.3, and BF optimization is discussed in Section

5.4. Numerical and Monte-Carlo simulations compare the performance of five

different relaying protocols in Section 5.5. Finally, Section 5.6 summarizes this

chapter.

5.1 System Model

Figure 5.1 shows a two-hop MIMO two-way relay system, which consists

of two sources, which are also destinations, A and B, and a relay R. All nodes

are equipped with multiple antennas, MA, MB, and MR, respectively. HAR,

HBR, HRA, and HRB are MR × MA, MR × MB, MA × MR, and MB × MR

statistically independent complex Gaussian channel matrices connecting the

nodes, respectively. The channel coefficients are assumed to remain static

while A and B exchange their data, and channels are reciprocal in the sense

that HRA = HH
AR and HRB = HH

BR, where (·)H denotes a matrix Hermitian.

We assume that transmitters have knowledge only on connected nodes while

receivers can access full CSI.

A half-duplex time division multiple access (TDMA) scenario is consid-

ered with five different transmission protocols, illustrated in Figure 5.2. The

direct links, A → B and B → A, are assumed to be negligible even though
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their presence can be incorporated into our analysis. Symbols are transmitted

with zero mean and unit variance, and additive noise is independent complex

Gaussian with zero mean and unit variance. When multiple antennas are

considered at R, BF optimization has to be conducted at R in two-slot and

first three-slot protocols. We therefore first consider a single relay antenna

to obtain closed-form expressions for all protocols in Section 5.2, and extend

this to multiple antennas in Section 5.3. Since system models are well studied

in [19, 21, 59–61], we present unified instantaneous received SNR representa-

tions for each protocol. Note that when the protocols with different number

of slots are compared, transmit power is normalized so that each node uses

the same power, and the constellation sizes are chosen so that the rates are

fixed as well.

5.1.1 Extension of Existing Protocols

In this subsection, three two-way relaying protocols discussed in [21],

where only a single antenna is considered at all nodes, are extended to using

multiple antennas with BF at A and B. Note that BF optimization is not

necessary even for the two-slot and first three-slot protocols when MR = 1, so

that performance analysis in closed-form is tractable.

5.1.1.1 Two-Slot Protocol

In the two-slot protocol, A and B transmit their signals to R using

the corresponding matched BF vectors in the first time slot, and R amplifies

the added signals and forwards them to A and B in the second time slot [21].

When A and B beamform in the first time slot, they use the matched BF

vectors, the strongest right singular vectors of HAR and HBR, denoted by fAR

and fBR, respectively.
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5.1.1.2 First Three-Slot Protocol

In the first three-slot protocol, A transmits its signal to R using fAR

in the first time slot; B transmits its signal to R using fBR in the second

time slot; R weighs the received signals from A and B (i.e. with α ≥ 0 and

β ≥ 0 satisfying α2 + β2 = 1), amplifies the added signals, and forwards them

to A and B in the third time slot. Coefficients α and β are weights for two

received signals from A and B at R, respectively, which can be determined to

minimize instantaneous sum-BERs using brute force search [21]. Since there

is no closed-form for α and β when instantaneous sum-BER is optimized, α

and β can be chosen based on average channel statistics using our high-SNR

expressions, as described in Section 5.3.2.1.

5.1.1.3 First Four-Slot Protocol (One-Way Relaying)

In the first four-slot protocol, A transmits its signal to R using fAR in

the first time slot; R amplifies the received signal and forwards it to B in the

second time slot; B transmits its signal using fAR to R in the third time slot; R

amplifies the other received signal and forwards it to A in the fourth time slot.

Note that transmit power normalization is required due to two transmissions

at R (i.e. half of the power used by the two-slot protocol).

5.1.2 Proposed Protocols

In what follows, we propose new relaying protocols for better perfor-

mance in closed-form.
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5.1.2.1 Second Three-Slot Protocol

In the second three-slot protocol, A and B transmit their signals using

fAR and fBR, respectively, to R in the first time slot, R amplifies the received

sum and forwards it to A and B in the second and third time slots, consec-

utively, and both signals are received at A and B. Since R forwards twice,

transmit power normalization is required at R. To combine two received sig-

nals at the receivers, the minimum mean square error (MMSE) combining

scheme is used [42, 43, 45]. Note that there is no need for combining in the

existing protocols since there exists only one desired signal for them.

5.1.2.2 Second Four-Slot Protocol

The second four-slot protocol is proposed to obtain better sum-BER

by taking advantage of the technique used in the first three-slot protocol,

which is weighting two received signals from A and B at R with α and β,

respectively. In the second four-slot protocol, A transmits its signal using fAR

to R in the first time slot; B transmits its signal using fBR to R in the second

time slot; R weighs the received signals with coefficients α and β, amplifies

the weighted sum and forwards it to A and B in the third and fourth time

slots, consecutively. Transmit power normalization is also required at R due

to two transmissions. To combine two received signals at A and B, separately,

the MMSE combining is used.

5.1.3 Unified SNR Representations for Five Different Protocols for MR = 1

For the aforementioned protocols, after canceling the self-interferences,

portions of received signals coming back through R induced by A and B, with
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MRC and MMSE combining, the instantaneous received SNRs at A and B

can be expressed, respectively, in a unified framework:

γBRA =
ABRAγBRγRA

BBRAγBR + CBRAγRA + 1
(5.1)

γARB =
AARBγARγRB

BARBγAR + CARBγRB + 1
, (5.2)

where γAR = ρAR‖hARfAR‖2, γBR = ρBR‖hBRfBR‖2, γRA = ρRA‖hRA‖2, and

γRB = ρRB‖hRB‖2; ρAR, ρBR, ρRA, and ρRB are average transmit SNRs, where

we assume ρRA = ρRB; hAR, hBR, hRA = hHAR, and hRB = hHBR are channel

coefficient vectors, assumed to be i.i.d. CN(0, 1); fAR and fBR are BF vectors

with norm 1 obtained as hHAR/‖hAR‖ and hHBR/‖hBR‖, respectively; ABRA,

BBRA, CBRA, AARB, BARB, and CARB are non-negative constants in Table

5.1 for all five protocols. These SNR representations will be used to find dis-

tributions for performance analysis. We consider removing 1 from equations

(5.1) and (5.2) to obtain closed-form sum-BER expressions, denoted respec-

tively as ΓBRA and ΓARB, which are equivalent to equations (5.1) and (5.2) at

high-SNR [21,66].

Table 5.1: The Coefficients for Equations (5.1) and (5.2) when MR = 1

Constants ABRA BBRA CBRA AARB BARB CARB

2-slot 1 1 1 + ρAR

ρRA
1 1 1 + ρBR

ρRB

First 3-slot β2 β2 1 + α2ρAR

ρRA
α2 α2 1 + β2ρBR

ρRB

First 4-slot 1
2

1 1
2

1
2

1 1
2

Second 3-slot 1 1 1
2

+ ρAR

ρRA
1 1 1

2
+ ρBR

ρRB

Second 4-slot β2 β2 1
2

+ α2ρAR

ρRA
α2 α2 1

2
+ β2ρBR

ρRB

5.2 Performance Analysis for MR = 1

Sum-BER performance analysis including high-SNR analysis is carried

out using the unified received SNR expressions. The multiple relay antenna

case is described in Section 5.3.
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5.2.1 Performance Metric

For the performance metric, we consider sum-BER, sum of BERs at A

and B, since there are two receiving nodes and the worse one dominates the

sum. Sum-BER for all protocols is defined as follows:

Pb =
1

log2(M)

∫ ∞

0
aQ
(√

2bx
)

(fγARB
(x) + fγBRA

(x)) dx, (5.3)

where Q(x) :=
(

1/
√

2π
) ∫∞

x
e−y

2/2dy and a and b are modulation related

positive constants. For example, a = 1 and b = 1 provide exact BER for

binary phase shift keying (BPSK), while a = 2 and b = sin2(π/M) and

a = 4
(

1 − 1/
√

M
)

and b = 3/(2(M − 1)) provide tight SER approxima-

tions for M-ary PSK (M-PSK) and M-ary quadrature amplitude modulation

(M-QAM), respectively.

5.2.2 Sum-BER using Unified SNR Representations

When cumulative distribution functions (CDFs) are available instead

of probability density functions (PDFs), the following alternative equation can

be used to calculate sum-BER.

Pb =
a
√
b

2
√
π log2(M)

∫ ∞

0

e−bx√
x

(FγBRA
(x) + FγARB

(x)) dx

≥ a
√
b

2
√
π log2(M)

∫ ∞

0

e−bx√
x

(FΓBRA
(x) + FΓARB

(x)) dx.

(5.4)

Note that the second line of equation (5.4) provides a lower-bound in sum-

BER since the CDFs of ΓBRA and ΓARB, described at the end of Section 5.1.3,

are used.

To calculate sum-BER using the unified SNR representations, the dis-

tributions of equations (5.1) and (5.2) should be obtained first. Since we use

the distributions of ΓBRA and ΓARB, when we consider Rayleigh fading, the
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distributions can be obtained as follows (please see Appendix 5.1 for deriva-

tions):

FΓBRA
(x) = 1 −

MB−1
∑

p=0

MA+p−1
∑

k=0

(

MA + p− 1

k

)

2B
2MA+p−k−1

2
BRA C

k+p+1
2

BRA

A
MA+p

BRA p! (MA − 1)!ρ
k+p+1

2
BR ρ

2MA+p−k−1

2
RA

xMA+pe
− x

ABRA

(

CBRA
ρBR

+
BBRA
ρRA

)

Kk−p+1

(

2x

ABRA

√

BBRACBRA

ρBRρRA

)

,

(5.5)

FΓARB
(x) = 1 −

MA−1
∑

p=0

MB+p−1
∑

k=0

(

MB + p− 1

k

)

2B
2MB+p−k−1

2
ARB C

k+p+1
2

ARB

A
MB+p

ARB p! (MB − 1)!ρ
k+p+1

2
AR ρ

2MB+p−k−1

2
RB

xMB+pe
− x

AARB

(

CARB
ρAR

+
BARB
ρRB

)

Kk−p+1

(

2x

AARB

√

BARBCARB

ρARρRB

)

,

(5.6)

where Kν(x) is the modified Bessel function of the second kind [37].

Since the CDFs of ΓBRA and ΓARB are available and they are math-

ematically tractable, the alternative equation, equation (5.4), can be used to

calculate sum-BER. As a result, once equations (5.5) and (5.6) are substituted

to the second line of equation (5.4), the sum-BER can be lower-bounded in
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closed-form as

Pb ≥
a

log2(M)
−
MA−1
∑

p=0

MB+p−1
∑

k=0

(

MB + p− 1

k

)

a
√
bB

2MB+p−k−1

2
ARB C

k+p+1
2

ARB

log2(M)A
MB+p

ARB p! (MB − 1)!ρ
k+p+1

2
AR ρ

2MB+p−k−1

2
RB

(

4
AARB

√

BARBCARB

ρARρRB

)k−p+1

(

b+ CARB

AARBρAR
+ BARB

AARBρRB
+ 2

AARB

√

BARBCARB

ρARρRB

)MB+k+ 3
2

Γ
(

MB + k + 3
2

)

Γ
(

MB + 2p − k − 1
2

)

Γ(MB + p+ 1)

2F1

(

MB + k +
3

2
, k − p+

3

2
;MB + p+ 1;

b+ CARB

AARBρAR
+ BARB

AARBρRB
− 2

AARB

√

BARBCARB

ρARρRB

b+ CARB

AARBρAR
+ BARB

AARBρRB
+ 2

AARB

√

BARBCARB

ρARρRB





−
MB−1
∑

p=0

MA+p−1
∑

k=0

(

MA + p− 1

k

)

a
√
bB

2MA+p−k−1

2
BRA C

k+p+1
2

BRA

log2(M)A
MA+p

BRA p! (MA − 1)!ρ
k+p+1

2
BR ρ

2MA+p−k−1

2
RA

(

4
ABRA

√

BBRACBRA

ρBRρRA

)k−p+1

(

b+ CBRA

ABRAρBR
+ BBRA

ABRAρRA
+ 2

ABRA

√

BBRACBRA

ρBRρRA

)MA+k+ 3
2

Γ
(

MA + k + 3
2

)

Γ
(

MA + 2p− k − 1
2

)

Γ(MA + p+ 1)

2F1

(

MA + k +
3

2
, k − p+

3

2
;MA + p+ 1;

b+ CBRA

ABRAρBR
+ BBRA

ABRAρRA
− 2

ABRA

√

BBRACBRA

ρBRρRA

b+ CBRA

ABRAρBR
+ BBRA

ABRAρRA
+ 2

ABRA

√

BBRACBRA

ρBRρRA



 ,

(5.7)

where 2F1(α, β; γ; z) is the Gauss hypergeometric function [37, p.1005]. Note

that equation (5.7) provides tight sum-BER lower-bounds for all five two-way

relay protocols. To obtain equation (5.7), the following integral is used [37,
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p.700]:

∫ ∞

0
xµ−1e−αxKν(βx)dx

=

√
π (2β)ν

(α+ β)µ+ν

Γ(µ+ ν)Γ(µ− ν)

Γ(µ+ 1
2 )

2F1

(

µ+ ν, ν +
1

2
;µ+

1

2
;
α− β

α+ β

)

.

(5.8)

5.2.3 High-SNR Analysis for Sum-BER using Unified SNR Representations

The expression in equation (5.7) is tight at high SNR, but rather com-

plicated. It can be simplified considerably by diversity and array gain analysis.

Simple high-SNR performance is now considered to further simplify equation

(5.7). The approximation uses the probability density functions (PDFs) of

instantaneous SNRs normalized by the average SNR on each link defined as

λARB := ΓARB/ρAR and λBRA := ΓBRA/ρAR where ρAR is the average trans-

mit SNR from A to R, and both PDFs are shown satisfying the assumptions

in [34], which provides a systematic method for high-SNR analysis. To sim-

plify our analysis, we assume that ρBR, ρRA, and ρRB are constant multiples

of ρAR. Based on [34, eqn.(1)], the average sum-BER of an uncoded system

can be written as

Pb =
1

log2(M)

(

(2bρARGARB)−dARB + (2bρARGBRA)−dBRA

)

+ o
(

ρ
−min{dARB ,dBRA}
AR

)

,

(5.9)

as ρAR → ∞, where dARB = tARB + 1 and dBRA = tBRA + 1 are the diversity

orders; tARB and tBRA are the first nonzero derivative orders of the PDFs of

channel dependent random variables, λARB and λBRA, at the origin, respec-

tively; GARB = (
√

π (tARB + 1) / (a2tARBηARBΓ (tARB + 3/2)))
1/(tARB+1)

and

GBRA = (
√

π (tBRA + 1) / (a2tBRAηBRAΓ (tBRA + 3/2)))
1/(tBRA+1)

are the array

gains; ηARB = f
(tARB)
λARB

(0)/Γ (tARB + 1) 6= 0 and ηBRA = f
(tBRA)
λBRA

(0)/Γ (tBRA + 1)

6= 0. The expression for ηARB and ηBRA are also valid when tARB and tBRA

are not integers if fractional calculus is used [55]. Therefore, equation (5.9)
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can be calculated once tARB , tBRA, ηARB , and ηBRA are found using the PDFs

of λARB and λBRA.

For the A → R → B path, tARB = min{MA, MB}−1 since the diversity

order of the A → R → B path is min{MA, MB} [45, eqn.(16)]. The tARB

order derivative of the PDF of λARB evaluated at the origin can be obtained

as (please see Appendix 5.2 for derivation)

f
(tARB)
λARB

(0) =































f
(tRB)
λRB

(0), MA > MB

f
(tAR)
λAR

(0), MA < MB

f
(tAR)
λAR

(0) + f
(tRB)
λRB

(0), MA = MB

, (5.10)

where tAR = MA − 1 and tRB = MB − 1 [45, eqn.(12)] are the first nonzero

derivative orders of the PDFs of λAR := γAR/ρAR and λRB := γRB/ρAR, at the

origin, respectively;

f
(tAR)
λAR

(0) =

(

CARB

AARB

)tAR+1

(5.11)

f
(tRB)
λRB

(0) =

(

BARBρAR

AARBρRB

)tRB+1

. (5.12)

Therefore, ηARB can be written as

ηARB =
f

(tARB)
λARB

(0)

Γ (min{MA,MB})
. (5.13)

Similarly, for the B → R → A path, tBRA = min{MA, MB} − 1 since

the diversity order of the B → R → A path is min{MA, MB}. The tBRA

order derivative of the PDF of λBRA evaluated at the origin can be obtained

as (please see Appendix 5.2 for derivation)

f
(tBRA)
λBRA

(0) =































f
(tBR)
λBR

(0), MA > MB

f
(tRA)
λRA

(0), MA < MB

f
(tBR)
λBR

(0) + f
(tRA)
λRA

(0), MA = MB

, (5.14)
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where tBR = MB − 1, tRA = MA − 1 [45, eqn.(12)] are the first nonzero

derivative orders of the PDFs of λBR := γBR/ρAR and λRA := γRA/ρAR, at the

origin, respectively;

f
(tBR)
λBR

(0) =

(

CBRAρAR

ABRAρBR

)tBR+1

(5.15)

f
(tRA)
λRA

(0) =

(

BBRAρAR

ABRAρRA

)tRA+1

. (5.16)

Therefore, ηBRA can be written as

ηBRA =
f

(tBRA)
λBRA

(0)

Γ (min{MA,MB})
. (5.17)

As a consequence, high-SNR performance can be obtained as follows:

Pb =
1

log2(M)

(

(2bρARGARB)−d + (2bρARGBRA)−d
)

+ o
(

ρ−dAR

)

(5.18)

d = min{MA,MB} (5.19)

GARB =

(

a2d−1ηARBΓ
(

d+ 1
2

)

√
πd

)− 1
d

(5.20)

GBRA =

(

a2d−1ηBRAΓ
(

d+ 1
2

)

√
πd

)− 1
d

. (5.21)

High-SNR performance for sum-BER given in equations (5.18)-(5.21) is much

simpler than the closed-form lower-bounds in equation (5.7) so that it is easy

to evaluate sum-BER at high-SNR. Note that the diversity order of all five

two-way relay systems is min{MA, MB}, and equations (5.18)-(5.21) provide

tight sum-BER lower-bounds for all five two-way relay protocols.

5.3 Multiple Antennas at R

When we consider multiple antennas at R, BF optimization at R is

necessary for the two-slot and first three-slot protocols. In this case, there is

no closed-form expression for performance analysis since optimal beamformers

cannot be expressed in closed-form. Meanwhile, since BF optimization is
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not necessary for the second three-slot, first four-slot, and second four-slot

protocols, performance analysis with multiple relay antennas can be done with

unified received SNRs when MR > 1, which can be represented by equations

(5.1) and (5.2) with the constants in Table 5.2. Note that this analysis is

also applicable for the two-slot and first three-slot protocols as unattainable

lower-bounds of BF optimization since two different BF vectors matched with

corresponding channels are used at R to achieve the lower-bounds.

Table 5.2: The Coefficients for Equations (5.1) and (5.2) when MR > 1

Constants ABRA BBRA CBRA AARB BARB CARB

2-slot 1 1 1 + ρAR

ρRA
1 1 1 + ρBR

ρRB

First 3-slot β2 β2 1 + α2ρAR

ρRA
α2 α2 1 + β2ρBR

ρRB

First 4-slot 1
2

1 1
2

1
2

1 1
2

Second 3-slot
DBRA,3

2
1 1

2
+ ρAR

ρRA

DARB,3

2
1 1

2
+ ρBR

ρRB

Second 4-slot
β2DBRA,4

2
β2 1

2
+ α2ρAR

ρRA

α2DARB,4

2
α2 1

2
+ β2ρBR

ρRB

In Table 5.2, all values are exact except those denoted by DARB,3,

DBRA,3, DARB,4, and DBRA,4, which are approximations. To clarify how the

approximations in Table 5.2 can be obtained, the instantaneous received SNRs

are discussed for the second three-slot protocol as an example. The instan-

taneous received SNRs for the second three-slot protocol at A and B are as

follows:

γBRA = γBRA,1 + γBRA,2 =
γBR

γRA

2

γBR + γAR + γRA

2
+ 1

+
γBR

γ′

RA

2

γBR + γAR +
γ′

RA

2
+ 1

(5.22)

γARB = γARB,1 + γARB,2 =
γAR

γRB

2

γAR + γBR + γRB

2
+ 1

+
γAR

γ′

RB

2

γAR + γBR +
γ′

RB

2
+ 1

, (5.23)

where γ′
RA = ρRA‖HRAfRB‖2 and γ′

RB = ρRB‖HRBfRA‖2, which are instanta-

neous received SNRs with non-matched BF vectors. Since γBRA,1 and γBRA,2

in equation (5.22) are correlated and γBRA,1 dominates γBRA,2, we approxi-

mate γBRA,2 with κγBRA,1 where κ := E[γBRA,2]/E[γBRA,1], so that the av-

erage values are the same: E[γBRA,2] = E[κγBRA,1]. Here 0 < κ < 1 since
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γRA is the instantaneous SNR obtained by matched BF, whereas γ′
RA re-

sults when BF is not matched. This approximation is exact if γBRA,2 were

a constant multiple of γBRA,1. It becomes tighter as MR increases because κ

becomes smaller as MR increases, but it is independent of average transmit

SNRs, MA, and MB since they do not have any effect on κ, which is checked

with numerical investigations. Therefore, γBRA,2 can be absorbed in ABRA

as in Table 5.2, DBRA,3 = 1 + E[γBRA,2]/E[γBRA,1]. Note that DBRA,3 and

DARB,3 = 1 + E[γARB,2]/E[γARB,1] provide exact performance when MR = 1

such as equations (5.7) and (5.18), and they also present a tight performance

lower-bound even when MR > 1, which becomes tighter as MR increases. Sim-

ilarly, DARB,4 and DBRA,4 can be obtained for the second four-slot protocol.

5.3.1 Performance Analysis

We now consider performance analysis using the unified received SNRs

when MR > 1. Similar to obtaining equation (5.7) when MR = 1, the dis-

tributions of the unified received SNRs for multiple relay antennas should be

attained to calculate sum-BER for MR > 1. The CDFs of ΓBRA and ΓARB

can be obtained as follows (please see Appendix 5.1 for derivations):

FΓBRA
(x) = 1 −

MR
∑

n=1

(MB+MR)n−2n2
∑

m=MB−MR

m
∑

k=0

MR
∑

i=1

(MA+MR)i−2i2
∑

j=MA−MR

k+j
∑

p=0

(

k + j

p

)

2dn,mdi,j

k!j!ρ
p+k+1

2
BR ρ

2j+k−p+1
2

R

(CBRAn)
p+k+1

2 (BBRAi)
2j+k−p+1

2

A
k+j+1
BRA

xk+j+1e
− x

ABRA

(

CBRAn

ρBR
+

BBRAi

ρR

)

Kp−k+1

(

2x

ABRA

√

BBRACBRAni

ρBRρR

)

(5.24)
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FΓARB
(x) = 1 −

MR
∑

n=1

(MA+MR)n−2n2
∑

m=MA−MR

m
∑

k=0

MR
∑

i=1

(MB+MR)i−2i2
∑

j=MB−MR

k+j
∑

p=0

(

k + j

p

)

2dn,mdi,j

k!j!ρ
p+k+1

2
AR ρ

2j+k−p+1
2

R

(CARBn)
p+k+1

2 (BARBi)
2j+k−p+1

2

A
k+j+1
ARB

xk+j+1e
− x

AARB

(

CARBn

ρAR
+

BARBi

ρR

)

Kp−k+1

(

2x

AARB

√

BARBCARBni

ρARρR

)

,

(5.25)

where dn,m are coefficients given by [30, eqn.(24)], also provided in Tables 2.1-

2.3 for completeness. Note that equations (5.24) and (5.25) are valid when

MA ≥ MR and MB ≥ MR even though other cases can be easily handled

with minor modifications. For example, MA and MR must be switched in

equations (5.24) and (5.25) when MA < MR. Once equations (5.24) and

(5.25) are substituted to the second line of equation (5.4), the sum-BER can

be obtained in closed-form similar to equation (5.7), which are tight sum-BER

lower-bounds for the first four-slot, second three-slot, and second four-slot

protocols.

5.3.2 High-SNR Analysis

Based on the procedures in Section 5.2.3, we should calculate the tARB

order derivative of the PDF of λARB evaluated at the origin and the tBRA order

derivative of the PDF of λBRA evaluated at the origin to obtain high-SNR per-

formance when MR > 1. For each path, tARB = tBRA = MR ·min{MA, MB}−1

since the diversity order of the A → R → B and B → R → A paths is

MR ·min{MA, MB} [45, eqn.(16)]. Therefore, the tARB and tBRA order deriva-

tives of the PDFs of λARB and λBRA evaluated at the origin, respectively,

can be obtained using the following equations (please see Appendix 5.2 for

derivation):

f
(tAR)
λAR

(0) =

MR
∑

n=1

(MA+MR)n−2n2
∑

m=MA−MR

dn,m

(

tAR

m

)

(−1)tAR+m

(

nCARB

AARB

)tAR+1

(5.26)
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f
(tRB)
λRB

(0) =

MR
∑

n=1

(MB+MR)n−2n2
∑

m=MB−MR

dn,m

(

tRB

m

)

(−1)tRB+m

(

nρARBARB

AARBρR

)tRB+1

(5.27)

f
(tBR)
λBR

(0) =

MR
∑

n=1

(MB+MR)n−2n2
∑

m=MB−MR

dn,m

(

tBR

m

)

(−1)tBR+m

(

nρARCBRA

ABRAρBR

)tBR+1

(5.28)

f
(tRA)
λRA

(0) =

MR
∑

n=1

(MA+MR)n−2n2
∑

m=MA−MR

dn,m

(

tRA

m

)

(−1)tRA+m

(

nρARBBRA

ABRAρR

)tRA+1

, (5.29)

where tAR = tRA = MA ·MR− 1 and tBR = tRB = MB ·MR− 1 [45, eqn.(12)].

Once equations (5.26)-(5.29) are substituted into equations (5.10) and (5.14),

the resulting high-SNR performance using equations (5.18)-(5.21) and d =

MR · min{MA, MB} can provide tight sum-BER lower-bounds for the second

three-slot, first four-slot, and second four-slot protocols.

5.3.2.1 α-β Optimization

Following [21], it is possible determine the weighting coefficients, α

and β, for the first three-slot and second four-slot protocols to minimize in-

stantaneous sum-BERs using brute force search, which is not tractable in

closed-form. However, since we are interested in high-SNR performance, we

can obtain closed-form expressions using average high-SNR performance in

equation (5.18), especially when MA = MB = MR = 1 as a special case. After

every variable is substituted into equation (5.18) and considering α2 +β2 = 1,

by differentiating equation (5.18) with respect to β, optimal βs for the first

three-slot and second four-slot protocols can be obtained, respectively, as fol-

lows:

β2
three−slot =

√

ρAR(ρAR+ρRA)
ρRA

√

ρAR(ρAR+ρRA)
ρRA

+
√

ρBR(ρBR+ρRB)
ρRB

(5.30)

β2
four−slot =

√

ρAR(ρAR+ρRA/2)
ρRA/2

√

ρAR(ρAR+ρRA/2)
ρRA/2

+
√

ρBR(ρBR+ρRB/2)
ρRB/2

(5.31)
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Both β2s become 1
2

when ρAR = ρBR = ρRA = ρRB , while β2s are bigger

than 1
2

when ρAR > ρBR, which indicates the α-β optimization is most useful

when ρAR and ρBR are unbalanced. Note that these results are from average

high-SNR performance, which leads to worse performance compared with nu-

merically optimizing the instantaneous sum-BERs with respect to β. However,

equations (5.30) and (5.31) do not require instantaneous channel knowledge

and can be expressed in closed-form. Note that an implicit equation for opti-

mal β is available even when multiple antennas are considered at all nodes.

5.3.2.2 Analytical Gap among Protocols at High-SNR

We now provide analytical gaps in average SNR for equal Pb between

the five protocols at high-SNR. When we compare performance between two

protocols, let us denote i and j for worse and better protocols in sum-BER,

respectively, to make analytical gaps non-negative. Once i and j for each

protocol are applied to equation (5.18) and their difference in dB is considered,

the analytical gap expression can be obtained as follows:

10 log10

(

ρiAR

ρ
j
AR

)

= 10 log10

(

bj log2

(

M j
)

bi log2 (M i)

)

+
10

d
log10





ai log2

(

M j
) (

ηiARB + ηiBRA
)

aj log2 (M i)
(

η
j
ARB + η

j
BRA

)



 .

(5.32)

Based on equation (5.32), we recognize that the analytical gap between pro-

tocols i and j depends on choice of modulation (i.e. a, b, and M), diversity

order d, and average transmit SNRs and constants from Tables 5.1 and 5.2 in

which need to be substituted to compute ηARB and ηBRA.

Note that we use QPSK, 8-QAM, and 16-QAM for the two-slot, three-

slot, and four-slot protocols, respectively, for rate normalization. Therefore,

since a, b and M are fixed for all protocols, the analytical gap is mainly deter-

mined by the diversity order and the ratio of ηARB and ηBRA from equations
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(5.10)-(5.21) as follows:
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η
j
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RA
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BRAρ

j
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)d

+

(

Bj
BRAρ

j
AR

Aj
BRAρ

j
RA

)d
.

(5.33)

Therefore, the balance between ρAR and ρBR and the balance between MA and

MB have an impact on the gap.

For example, when ρAR = ρBR (i.e. balanced), the gap remains the

same unless the diversity order is changed. Therefore, if MA is fixed, the gap

increases as MB increases until MB reaches to MA, but it remains the same

even though MB increases after MA = MB due to d = MR · min{MA, MB}.

If ρAR 6= ρBR (i.e. unbalanced), α and β in ηARB and ηBRA play important

roles on the gap. When the second four-slot protocol with α-β optimization is

compared with other protocols, if ρAR > ρBR with MA = MB, the gap increases

as ρAR increases due to the benefit of α-β optimization. However, since β2 ≈ 0

when MA < MB regardless of ρAR and ρBR, the combination of ρAR > ρBR

and MA < MB removes an advantage of the α-β optimization, so that other

protocols have better performance than the second four-slot protocol in this

case. Therefore, the α-β optimization can be useful when ρAR 6= ρBR with

careful consideration of MA and MB.

5.4 BF Optimization

Since BF optimization is required in the two-slot and first three-slot

schemes, BF optimization is discussed in this section. From the literature

in [31, 63, 64], BF optimization does not seem to have an analytical solution,

so we take use of relatively simple numerical methods to obtain sum-BER

when BF optimization is necessary.
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5.4.1 Gradient BF Optimization

For the first three-slot protocol, we should optimize only a BF vector

at R suitable to both A and B for the third time slot since two separate

signals are received at R in the first two time slots. Therefore, gradient BF

optimization can be used for the first three-slot protocol due to its simplicity.

For sum-BER, the following optimization expression can be found to obtain

the optimal BF vector f⋆R at R.

minimize
[

Q
(

√

2bγARB

)

+Q
(

√

2bγBRA

)]

, (5.34)

where

γARB =
AARBγARρR‖HRBfR‖2

BARBγAR‖fR‖2 + β2γBR‖fR‖2 + ρR‖HRBfR‖2 + ‖fR‖2
, (5.35)

γBRA =
ABRAγBRρR‖HRAfR‖2

BBRAγBR‖fR‖2 + α2γAR‖fR‖2 + ρR‖HRAfR‖2 + ‖fR‖2
, (5.36)

ρR := ρRA = ρRB, and fR is the complex valued optimization variable. The

above non-constraint optimization problem can be solved numerically for fR

using the following gradient with proper line search.

∇fR
f (fR) = −

√
be−bγARB∇fR

γARB

2
√
πγARB

−
√
be−bγBRA∇fR

γBRA

2
√
πγBRA

, (5.37)

where f (fR) = Q
(√

2bγARB
)

+ Q
(√

2bγBRA
)

. The gradient algorithm works

as described in Algorithm 5.1. From the algorithm, ι and ζ can be chosen

as real values between 0 and 1, and t can be chosen as a positive integer.

Grassmannian vectors can be obtained from the online reference [36] based

on the number of antenna elements. ǫ can be an arbitrary small number (i.e.

0.001), but it should be chosen carefully since the number of iterations in the

algorithm depends on 1/ǫ. Since the gradient algorithm finds local extreme

values based on initial points, we try to find a global extreme value based on

as many local extreme values as the number of given Grassmannian vectors.
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5.4.2 Iterative MSMSE BF Optimization

Meanwhile, for the two-slot protocol, we should jointly optimize BF and

combining vectors at A, B and R, respectively, since two signals are received

simultaneously at R in the first time slot. In this chapter, iterative minimum

sum-MSE (MSMSE) BF optimization is used for the two-slot protocol, which

is a combination of MSMSE algorithm in [62] and iterating algorithm in [63].

For sum-BER, since we assume that optimal fAR and fBR can be obtained as

matched filters and optimal cAR and cBR can be obtained as MMSE filters, the

following non-convex optimization problem can be used to obtain the optimal

W at R (please see Appendix 5.3 for details).

minimize tr
{

E

[

(yBRA −√
ρBRxB) (yBRA −√

ρBRxB)H
]}

+ tr
{

E

[

(yARB −√
ρARxA) (yARB −√

ρARxA)H
]}

subject to tr
{

WWH
}

≤ 1,

(5.38)

where

yBRA =
√
ρBRκc

H
ARHH

ARWHBRfBRxB + κcHARHH
ARWnR + cHARnA, (5.39)

yARB =
√
ρARκc

H
BRHH

BRWHARfARxA + κcHBRHH
BRWnR + cHBRnB , (5.40)

κ =

√

ρR

ρARWHARfARfHARHH
ARWH + ρBRWHBRfBRfHBRHH

BRWH + WWH
,

(5.41)

fAR (MA × 1), fBR (MB × 1), cAR (MA × 1), cBR (MB × 1), and W (MR × MR)

are the complex valued optimization variables, E [xAx∗
A] = E [xBx∗

B] = 1,

E
[

nRn
H
R

]

= IMR
, E
[

nAn
H
A

]

= IMA
, E
[

nBnHB
]

= IMB
, and ∗ denotes complex

conjugate.

The above optimization problem can be solved iteratively based on

Algorithm 5.2, which uses Karush-Kuhn-Tucker (KKT) necessary condi-

tions for optimality [62, 63, 67]. From the algorithm, ǫ can be an arbitrary
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small number (i.e. 0.001), ITER can be a reasonable number of iterations

(i.e. 50), ⊗ denotes Kronecker product, ‖W‖F denotes Frobenius norm of

W, vec (W) makes a column vector w from W, A = ρARHARfARf
H
ARH

H
AR,

B = κ2HBRcBRc
H
BRH

H
BR, C = ρBRHBRfBRf

H
BRHH

BR, D = κ2HARcARc
H
ARH

H
AR,

and V = ρARκHARfARc
H
BRH

H
BR + ρBRκHBRfBRc

H
ARH

H
AR. Note that proper

normalization is required to make ρAR, ρBR, and ρR represent average SNRs

at each node. Note also that Algorithm 5.2 converges to a local minimum

SMSE point since the SMSE is reduced by updating the matrix W and vectors

cAR, cBR, fAR, and fBR, and it decreases monotonically. [68].

5.5 Numerical and Simulation Results

In Monte-Carlo simulations, the transmitted symbol is QPSK, 8-QAM,

or 16-QAM modulated for two-slot, three-slot, four-slot protocols, respectively,

for rate normalization. Zero mean and unit variance are used to model the

Rayleigh block fading channel. The distance between A and R is set as a

reference d0 whereas the distance between A and B is d. Therefore, once d0

is determined, 10 log10(ρBR) = 10 log10(ρAR)− 10γ log10((1− d0)/d0), where γ

is the path-loss exponent of the simplified path-loss model in [7]. Note that

average transmit SNR is normalized in unified received SNR expressions for

fair comparison among all protocols.

5.5.1 Accuracy of Analysis

This subsection shows the accuracy of our analysis in equations (5.7)

and (5.18) with MR = 1, and the analysis using equations (5.24)-(5.29) with

MR > 1. Figures 5.3 and 5.4 show 2×1×2 and 2×2×2 AF MIMO BF two-way

relay network performance in sum-BER when both average transmit SNRs are

balanced (i.e. ρAR = ρBR due to d0 = 0.5), respectively. All simulation curves

144



0 5 10 15 20 25 30

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR per Message Bit, ρ
AR

 = ρ
BR

 = ρ
RA

 = ρ
RB

 (dB)

Su
m

−B
ER

2x1x2 AF MIMO BF Two−way Relay Network Performance for Five Protocols when d
  0

 = 0.5

 

 

First 4−slot Monte−Carlo Simulation
Second 4−slot Monte−Carlo Simulation
First 3−slot Monte−Carlo Simulation
Second 3−slot Monte−Carlo Simulation
2−slot Monte−Carlo Simulation
First 4−slot Performance in Equation (5.7)
Second 4−slot Performance in Equation (5.7)
First 3−slot Performance in Equation (5.7)
Second 3−slot Performance in Equation (5.7)
2−slot Performance in Equation (5.7)
First 4−slot High SNR in Equation (5.18)
Second 4−slot High SNR in Equation (5.18)
First 3−slot High SNR in Equation (5.18)
Second 3−slot High SNR in Equation (5.18)
2−slot High SNR in Equation (5.18)

2−slot : QPSK
3−slot : 8−QAM
4−slot : 16−QAM

Figure 5.3: 2× 1× 2 AF MIMO BF Two-Way Relay Network Performance in
Sum-BER when d0 = 0.5.
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145



in Figures 5.3 and 5.4 are from Monte-Carlo simulations. All analytical curves

of five protocols are from equation (5.7) and using equations (5.24) and (5.25)

with proper constants given in Tables 5.1 and 5.2. All high-SNR analytical

curves are from equation (5.18) and using equations (5.26)-(5.29) with related

constants in Tables 5.1 and 5.2. Our analysis including high-SNR analysis

matches exactly with Monte-Carlo simulations at high-SNR in Figures 5.3

and 5.4. Note that sum-BER performance using equation (5.7) and using

equations (5.24) and (5.25) provides tight lower-bounds to equation (5.3).

5.5.2 α-β Optimization

This subsection shows α-β optimization related figures. Figure 5.5

shows the optimal average β2 for the first three-slot and second four-slot pro-

tocols at high-SNR using equation (5.18) for 1 × 1 × 1 AF two-way relay

network performance with ρAR = ρRA = ρRB = 40 dB when average transmit

SNRs are unbalanced (i.e. ρAR 6= ρBR due to d0 6= 0.5) to show the accuracy

of equations (5.30) and (5.31). Using the same setup, analytical results in

equations (5.30) and (5.31) present β2 = 0.82915 and β2 = 0.85159 for the

first three-slot and second four-slot protocols, respectively.

Figure 5.6 shows 2 × 1 × 2 AF MIMO BF two-way relay network per-

formance in sum-BER when average transmit SNRs are unbalanced. All sim-

ulation curves in Figure 5.6 are from numerical simulations using equation

(5.3), where the optimal βs are selected based on instantaneous channel re-

alization. All analytical curves of two protocols are from equation (5.7) with

proper constants. All high-SNR analytical curves are from equation (5.18)

with related constants. β2 = 0.87196 and β2 = 0.88471 are used for optimal

values at high-SNR using equation (5.18) for the first three-slot and second
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four-slot protocols, respectively. The optimal βs are chosen to minimize av-

erage high-SNR performance in our analysis. Our analysis in equation (5.7)

matches exactly with high-SNR analysis in equation (5.18). However, about

1 dB gaps exist between our analysis and numerical simulations at high-SNR

due to choice of optimal βs.

5.5.3 Comparisons of Protocols

This subsection compares sum-BER performance among five relaying

protocols. Note that α-β optimization is performed when average transmit

SNRs are unbalanced, and BF optimization, using the gradient algorithm in

[31] for the first 3-slot protocol and the iterative minimum sum-MSE (MSMSE)

from [62,63] for the 2-slot protocol, is conducted when multiple relay antennas

are used. Figure 5.7 shows 2 × 2 × 2 AF MIMO BF two-way relay network

performance comparison among five protocols when average transmit SNRs

are balanced. All simulation curves are from numerical simulations with ΓARB

and ΓBRA for fair comparison, and all analytical curves are using equations

(5.24) and (5.25) with proper constants. Note that the two-slot and first

three-slot protocols need to find optimal beamformers for minimum sum-BER.

Our proposed three-slot protocol with normalized rate outperforms all other

protocols at high-SNR in Figure 5.7.

Figure 5.8 shows 2×1×2 AF MIMO BF two-way relay network perfor-

mance comparison when d0 = 0.3. All simulation curves are from numerical

simulations using equation (5.3) with α-β optimization. All analytical curves

are from equation (5.7) with proper constants. Note that the first three-

slot and second four-slot protocols need to find optimal α and β satisfying

α2 + β2 = 1 for instantaneous minimum sum-BER. Our proposed four-slot
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protocol with optimal α and β and normalized rate outperforms all other

protocols at high-SNR in Figure 5.8.

The analytical high-SNR gaps between five protocols for three scenarios

based on equations (5.18) and (5.26)-(5.29) are given in Tables 5.3 and 5.4.

All gaps are from the best protocol for each scenario in dB. For example,

the best protocol in sum-BER for 2 × 1 × 2 AF MIMO BF two-way relay

networks when transmit SNRs are balanced is the two-slot protocol, and the

gap from the two-slot protocol to the second three-slot protocol is 0.6608 dB.

Note that the proposed four-slot protocol is the best protocol for 2×1×2 AF

MIMO BF two-way relay networks when transmit SNRs are unbalanced, and

the proposed three-slot protocol is the best protocol for 2 × 2 × 2 AF MIMO

BF two-way relay networks when transmit SNRs are balanced.

Table 5.3: The Analytical High-SNR Gaps using Equation (5.32) between Five
Protocols in dB for 2 × 1 × 2 Two-Way Relaying

Balanced SNR Unbalanced SNR
Best Protocol 2-slot Best Protocol Second 4-slot

Gap to First 3-slot 3.1014 Gap to 2-slot 1.7106
Gap to Second 3-slot 0.6608 Gap to First 3-slot 0.9651
Gap to First 4-slot 3.3547 Gap to Second 3-slot 2.0607

Gap to Second 4-slot 3.3547 Gap to First 4-slot 1.1622

Table 5.4: The Analytical High-SNR Gaps using Equation (5.32) between Five
Protocols in dB for 2 × 2 × 2 Two-Way Relaying

Balanced SNR
Best Protocol Second 3-slot
Gap to 2-slot 0.8412

Gap to First 3-slot 2.9071
Gap to First 4-slot 2.1083

Gap to Second 4-slot 2.9495
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5.6 Chapter Summary

Unified performance analysis has been conducted for AF MIMO BF

two-way relay networks with five different relaying protocols using two, three,

or four time slots. We first have introduced novel “second three-slot” and

“second four-slot” protocols suitable for BF and better sum-BER perfor-

mance. Novel closed-form unified sum-BER expressions have been presented

with corresponding closed-form unified CDFs. Furthermore, new closed-form

unified high-SNR performance expressions have been provided for simplicity

and mathematical tractability, and the analytical high-SNR gap expression is

provided. BF optimization is also discussed using the gradient algorithm and

iterative MSMSE algorithm.

Based on analytical and simulation results, we have investigated the

performance of five different protocols with two, three, or four time slots using

the sum-BER metric. As a result, we can conclude that the proposed three-

slot protocol outperforms all other protocols at high-SNR when multiple relay

antennas are used, and the proposed four-slot protocol outperforms all other

protocols at high-SNR when average transmit SNRs are unbalanced. There-

fore, we can say that the proposed protocols are a good alternative to the

two-slot protocol when multiple relay antennas are used and average transmit

SNRs are unbalanced.

Appendix 5.1: Derivations of Equations (5.5), (5.6), (5.24), and (5.25)

This appendix derives the CDFs of ΓARB and ΓBRA with a general MR

so that it covers equations (5.5), (5.6), (5.24), and (5.25). We derive the CDF

of ΓARB first and discuss the CDF of ΓBRA later. For the CDF of ΓARB, the

following procedures can be used by the definitions of CDF and complementary
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CDF (CCDF):

FΓARB
(x) =

∫ ∞

0
Pr

(

AARBγARy

BARBγAR + CARBy
≤ x

)

fγRB
(y)dy

= 1 −
∫ ∞

BARBx/AARB

F̄γAR

(

CARB

AARBy −BARBx

)

fγRB
(y)dy

= 1 −
∫ ∞

0
F̄γAR

(

CARBx (w +BARBx)

AARBw

)

fγRB

(

w +BARBx

AARB

)

dw

AARB
,

(5.42)

where F̄γAR
(x) is the CCDF of γAR, which F̄γAR

(x) = 1 − FγAR
(x). Since the

CDF of γAR and the PDF of γRB are given by [45, eqns.(24)-(25)]

FγAR
(x) = 1 −

MR
∑

n=1

(MA+MR)n−2n2
∑

m=MA−MR

m
∑

k=0

dn,m(nx)ke−nx/ρAR

k!ρkAR
, x > 0 (5.43)

fγRB
(x) =

MR
∑

i=1

(MB+MR)i−2i2
∑

j=MB−MR

di,ji
j+1xje−ix/ρR

j!ρj+1
R

, x > 0. (5.44)

Equation (5.25) can be acquired after complicated mathematical manipula-

tions if equations (5.43) and (5.44) are substituted to the last line of equation

(5.42). Using similar procedures, equation (5.24) can also be obtained us-

ing the corresponding constants and subscripts. Once MR = 1 is applied to

equations (5.24) and (5.25), equations (5.5) and (5.6) can be attained.

Appendix 5.2: Derivations of Equations (5.10), (5.14), and (5.26)-(5.29)

This appendix derives the tARB and tBRA order derivatives of the PDFs

of λARB and λBRA evaluated at the origin, respectively, with a general MR so

that it covers all cases. We derive the tARB order derivative of the PDF of

λARB and evaluate it at the origin first, and then we discuss the tBRA order

derivative of the PDF of λBRA evaluated at the origin later. To acquire the

tARB order derivative of the PDF of λARB, we need to obtain the PDF of λARB.

Since λARB = ΓARB/ρAR, we can easily find the PDF of λARB if the PDF of

ΓARB is given. From equation (5.2), ΓARB can be rewritten as

ΓARB =
AARBγARγRB

BARBγAR + CARBγRB

=
AARB

BARBCARB

BARBCARBγARγRB

BARBγAR + CARBγRB
=

AARB

BARBCARB
W,

(5.45)
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where W := BARBCARBγARγRB/ (BARBγAR + CARBγRB), which is the re-

ceived SNR of a two-hop relay system when the noise variance of the first

hop is removed.

Since we consider high-SNR, W can be approximated by min{BARBγAR,

CARBγRB} [21]. Based on the identity for the minimum of two independent

RVs in [38, eqn.(6.58)], the PDF of W can be approximated at high-SNR as

fW (x) ≈ fBARBγAR
(x)F̄CARBγRB

(x) + fCARBγRB
(x)F̄BARBγAR

(x)

=

MR
∑

n=1

(MA+MR)n−2n2
∑

m=MA−MR

MR
∑

i=1

(MB+MR)i−2i2
∑

j=MB−MR

j
∑

p=0

dn,mdi,jn
m+1ipxm+pe

−x
(

n
BARBρAR

+ i
CARBρR

)

m!p! (BARBρAR)m+1 (CARBρR)p

+

MR
∑

i=1

(MB+MR)i−2i2
∑

j=MB−MR

MR
∑

n=1

(MA+MR)n−2n2
∑

m=MA−MR

m
∑

k=0

dn,mdi,jn
kij+1xk+je

−x
(

n
BARBρAR

+ i
CARBρR

)

k!j! (BARBρAR)k (CARBρR)j+1
.

(5.46)

Using the identity of [38, eqn.(6.5)], the PDF of λARB can be approxi-

mated at high-SNR as fλARB
(x) ≈ BARBCARBρARfW (BARBCARBρARx/AARB)

/AARB since λARB = ΓARB/ρAR. Once fλARB
(x) is differentiated tARB times

and evaluated at the origin for each case (i.e. MA > MB, MA < MB, and

MA = MB), the following equation can be obtained:

f
(tARB)
λARB

(0) =































f
(tRB)
λRB

(0), MA > MB

f
(tAR)
λAR

(0), MA < MB

f
(tAR)
λAR

(0) + f
(tRB)
λRB

(0), MA = MB

, (5.47)

where f
(tAR)
λAR

(0) and f
(tRB)
λRB

(0) are given in equations (5.26) and (5.27), respec-

tively. Once MR = 1 is applied to equation (5.47), equation (5.10) can be

attained. Using similar procedures, equation (5.14) can be obtained.
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Appendix 5.3: Derivation of Iterative MSMSE BF Optimization Algorithm

This appendix derives iterative MSMSE BF optimization algorithm

(i.e. Algorithm 5.2) used in Section 5.4.2. When we consider the two-slot

protocol using the system model in Figure 5.1, the received signals at R, A,

and B, respectively, after self-interference cancelation, can be written as

yR =
√
ρARHARfARxA +

√
ρBRHBRfBRxB + nR (5.48)

yBRA =
√
ρBRκc

H
ARHH

ARWHBRfBRxB + κcHARHH
ARWnR + cHARnA (5.49)

yARB =
√
ρARκc

H
BRHH

BRWHARfARxA + κcHBRHH
BRWnR + cHBRnB , (5.50)

where

κ =

√

ρR

ρARWHARfARfHARHH
ARWH + ρBRWHBRfBRfHBRHH

BRWH + WWH
;

(5.51)

cAR (MA× 1) and cBR (MB × 1) are combining weight vectors; xA and xB are

transmitted symbols with E[|xA|2] = E[|xB |2] = 1 and E[xA] = E[xB] = 0; nR

(MR × 1), nA (MA × 1), and nB (MB × 1) are noise according to CN(0, I);

W (MR × MR) is the linear processing matrix, which includes the BF and

combining vectors at R.

Since we are interested in sum-BER, the following sum-BER minimiza-

tion problem can be obtained:

minimize
[

Q
(

√

2bγARB

)

+Q
(

√

2bγBRA

)]

subject to ‖fAR‖2 ≤ 1

‖fBR‖2 ≤ 1

tr
{

WWH
}

≤ 1,

(5.52)

where

γARB =
ρARκ

2cHBHH
BRWHARfARfHARHH

ARWHHBRcB

κ2cHBHH
BRWWHHBRcB + cHB cB

, (5.53)
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γBRA =
ρBRκ

2cHAHH
ARWHBRfBRfHBRHH

BRWHHARcA

κ2cHAHH
ARWWHHARcA + cHA cA

, (5.54)

and tr(K) is the trace operator of matrix K. This is not a convex problem.

To handle this non-convex problem, the problem can be simplified into

following simple problems as follows:

minimize
[

Q
(

√

2bγARB

)

+Q
(

√

2bγBRA

)]

subject to ‖fAR‖2 ≤ 1

‖fBR‖2 ≤ 1,

(5.55)

when cAR, cBR, and W are given.

minimize
[

Q
(

√

2bγARB

)

+Q
(

√

2bγBRA

)]

(5.56)

when fAR, fBR, and W are given.

minimize
[

Q
(

√

2bγARB

)

+Q
(

√

2bγBRA

)]

subject to tr
{

WWH
}

≤ 1,

(5.57)

where W is the optimization variable when fAR, fBR, cAR, and cBR are given.

Even though this approach is sub-optimal, well-known convex results for equa-

tions (5.55) and (5.56) and necessary optimal conditions for equation (5.57)

can be used.

Specifically, the solutions for equation (5.55) are well-known matched

filters, f⋆AR = ρARκHH
ARW

HHBRcBR and f⋆BR = ρBRκHH
BRW

HHARcAR. The

solutions for equation (5.56) are well-known MMSE filters,

c⋆AR =
[

κ2HH
ARWWHHAR + IMA

]−1
ρBRκHH

ARWHBRfBR

and

c⋆BR =
[

κ2HH
BRWWHHBR + IMB

]−1
ρARκHH

BRWHARfAR.
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However, since equation (5.57) is not easy to solve, we consider a min-

imum sum-MSE (MSMSE) problem for it as

minimize tr
{

E

[

(yBRA −√
ρBRxB) (yBRA −√

ρBRxB)H
]}

+ tr
{

E

[

(yARB −√
ρARxA) (yARB −√

ρARxA)H
]}

subject to tr
{

WWH
}

≤ 1,

(5.58)

Even though equation (5.58) is not a convex problem, we can solve it iteratively

with the Lagrange multiplier and KKT necessary conditions [67] for optimal

W⋆.

From equation (5.58), the Lagrangian function is defined by

L (fAR, fBR, cAR, cBR,W)

:= tr
{

ρBRκ
2cHARHH

ARWHBRfBRfHBRHH
BRWHHARcAR + cHARcAR

+κ2cHARHH
ARWWHHARcAR − 2ρBRκc

H
ARHH

ARWHBRfBR + ρBR
}

+ tr
{

ρARκ
2cHBRHH

BRWHARfARfHARHH
ARWHHBRcBR + cHBRcBR

+κ2cHBRHH
BRWWHHBRcBR − 2ρARκc

H
BRHH

BRWHARfAR + ρAR
}

+ λ
(

tr
{

WWH
}

− 1
)

,

(5.59)

where λ is the Lagrange multiplier. Based on KKT conditions ∇WL (fAR, fBR,

cAR, cBR,W) = 0 in [67], if ∇Xtr {AXB} = BA is used, we can obtain the

following crucial equation:

AWHB + CWHD + WH (B + D) + λWH = V, (5.60)

where matrices A, B, C, D, and V are defined below equation (5.41). Once

W is left multiplied to equation (5.60) and the trace operator is used, the

Lagrange multiplier λ can be obtained as in Algorithm 5.2 based on the

power constraint. In addition, if the vector operator with vec (AXB) =
(

BT ⊗ A
)

vec (X) is used to equation (5.60), vec (W) can also be attained

as in Algorithm 5.2. Therefore, if we optimize fAR, fBR, cAR, cBR, and W

iteratively, Algorithm 5.2 can be obtained.
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Chapter 6

Unified Performance Analysis and Stochastic Ordering of AF MIMO

Beamforming Two-way Relay Networks with Direct Links

Even though one-way relay networks have been widely studied due to

spatial diversity and extensive coverage [11, 12], the attention of researchers

has moved to two-way relay networks because of better spectral efficiency, in

which two sources exchange their data through a relay in two time slots [19,

20,57]. The “two-slot” protocol without direct links dominate other protocols

(i.e. “three-slot” and “four-slot”) in sum-bit error rate (BER) of two-way

relay networks with normalized rate and power while the three-slot protocol

is better in average sum-BER when average transmit powers from two sources

are significantly different [21].

One problem of the two-slot protocol is, however, that it cannot utilize

the full potential of relay networks by neglecting possible direct links due to

the half duplex constraint. To exploit the presence of direct links in two-way

relay networks, three or four time slots are necessary. Including direct links,

reference [69] provides upper-bounds on sum-rate and outage probability with

the three-slot and four-slot protocols, and reference [70] presents a mechanism

combining multiuser diversity and incremental relaying, and outage analysis

for multiuser two-way relay systems with the three-slot protocol.

Recently, systematic applications of stochastic ordering literature are

presented for comparing physical layer communication systems [71]. Even

though the theory of stochastic orders in [72] offers a wide range of framework

to compare two RVs in applications of statistics, biology, economics, opera-

tions research, and reliability theory, the applications of this theory in physical
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layer communication systems are very limited such as outage probability based

comparisons [73,74]. Due to the lack of literature using the theory of stochastic

orders in physical layer communication systems, reference [71] provides some

physical layer communication examples illustrating that stochastic orders are

useful in comparing systems by exploiting monotonicity, convexity, and com-

plete monotonicity, which can be easily connected with performance metrics

such as error rates and ergodic capacity.

Since the average probability of error is one of the performance metrics

of interest in communications, we present novel unified average combined sum-

BER approximations in closed-form for amplify-and-forward (AF) multiple-

input multiple-output (MIMO) beamforming (BF) two-way relay networks

including direct links with three different protocols in Rayleigh fading. New

unified high signal-to-noise ratio (SNR) performance is also presented, and all

performance is compared by simulations. In addition, since the authors in [71]

never consider MIMO and two-way relay systems, we compare AF MIMO

BF two-way relay networks using the theory of stochastic orders in terms of

sum-BER and maximum sum-rate.

After system models are described for the five two-way relaying proto-

cols with a single relay antenna in Section 6.1, unified performance analysis

including high-SNR analysis is presented in Section 6.2. Multiple relay anten-

nas are considered in Section 6.3, and numerical and Monte-Carlo simulations

compare the performance of five different relaying protocols in Section 6.4.

Finally, Section 6.5 summarizes this chapter.
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6.1 System Model

Figure 6.1 shows a two-hop MIMO two-way relay system with direct

links, which consists of two sources, which are also destinations, A and B,

and a relay R. All nodes are equipped with multiple antennas, MA, MB,

and MR, respectively. HAR, HBR, HRA, and HRB are MR × MA, MR ×

MB, MA × MR, and MB × MR statistically independent complex Gaussian

channel matrices connecting the nodes, respectively. The channel coefficients

are assumed to remain static while A and B exchange their data so that HRA =

HH
AR and HRB = HH

BR, where (·)H denotes a matrix Hermitian. We assume

that transmitters have knowledge only on connected nodes while receivers can

access full CSI.

Figure 6.1: System Model of Two-Hop MIMO Two-Way Relay Networks with
Direct Links.

A half-duplex time division multiple access (TDMA) scenario is con-

sidered with three different transmission protocols, illustrated in Figure 6.2.

Symbols are transmitted with zero mean and unit variance, and additive noise

is independent complex Gaussian with zero mean and unit variance. When

multiple antennas are considered at all nodes, BF optimization has to be con-
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ducted, at all nodes in the three-slot protocol but only at A and B in the first

and second four-slot protocol. We therefore first consider a single antenna

at all nodes to obtain closed-form expressions for all protocols in Section 6.2,

and extend this to multiple antennas in Section 6.3. Since system models are

well studied in [19, 21, 59–61], we present unified instantaneous received SNR

representations for each protocol. Note that when the protocols with different

number of slots are compared, transmit power is normalized so that each node

uses the same power, and the constellation sizes are chosen so that the rates

are fixed as well. Note that the two-slot and second three-slot protocols from

Chapter 5 are eliminated herein since they cannot accommodate direct links

in the presence of the half-duplex assumption.

Figure 6.2: Transmission Schemes for Two-Way Relay Networks with Direct
Links.
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6.1.1 First Three-Slot Protocol

In the first three-slot protocol, A transmits its signal to both B and R

in the first time slot; B transmits its signal to both A and R in the second

time slot; R weighs the received signals from A and B (i.e. with α ≥ 0 and

β ≥ 0 satisfying α2 + β2 = 1), amplifies the added signals, and forwards them

to both A and B in the third time slot. To combine two received signals at

A and B, separately, the MMSE combining is used [42, 43, 45]. Note that

choosing coefficients α and β is well studied in Chapter 5.

6.1.2 First Four-Slot Protocol

In the first four-slot protocol, A transmits its signal to both B and

R in the first time slot; R amplifies the received signal and forwards it to B

in the second time slot; B transmits its signal to both A and R in the third

time slot; R amplifies the other received signal and forwards it to A in the

fourth time slot. Note that transmit power normalization is required due to

two transmissions at R.

6.1.3 Second Four-Slot Protocol

The second four-slot protocol is proposed to obtain better sum-BER

by taking advantage of the technique, which is weighting two received signals

from A and B at R with α and β, respectively. In the second four-slot protocol,

A transmits its signal to both B and R in the first time slot; B transmits its

signal to both A and R in the second time slot; R weighs the received signals

with coefficients α and β, amplifies the weighted sum and forwards it to both

A and B in the third and fourth time slots, consecutively. Transmit power
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normalization is also required at R due to two transmissions. To combine

three received signals at A and B, separately, the MMSE combining is used.

6.1.4 Unified SNR Representations for Three Different Protocols for

MA = MB = MR = 1

For the aforementioned protocols, after canceling the self-interferences

with MRC and MMSE combining, the instantaneous received SNRs at A and

B can be expressed, respectively, in a unified framework:

γA = γBRA + γBA =
ABRAγBRγRA

BBRAγBR + CBRAγRA + 1
+ γBA (6.1)

γB = γARB + γAB =
AARBγARγRB

BARBγAR + CARBγRB + 1
+ γAB, (6.2)

where ABRA, BBRA, CBRA, AARB, BARB, and CARB are non-negative constants

of each received SNR, given in Table 6.1; γAR = ρAR|hAR|2, γBR = ρBR|hBR|2,

γRA = ρRA|hRA|2, γRB = ρRB|hRB|2, γAB = ρAB|hAB|2, and γBA = ρBA|hBA|2;

ρAR, ρBR, ρRA, ρRB, ρAB, and ρBA are average transmit SNRs; hAR, hBR, hRA,

hRB, hAB, and hBA are channel coefficients, assumed to be i.i.d. according to

CN(0, 1); α and β are weights satisfying α2 + β2 = 1 for two received signals

from A and B at R, respectively [21]. To obtain tight bounds, we drop 1s in

the denominators of both γBRA and γARB, and denote them with ΓBRA and

ΓARB, respectively. Note that γBRA and γARB are equivalent to ΓBRA and

ΓARB, respectively, at high SNR.

Table 6.1: The Coefficients for Equations (6.1) and (6.2) when MA = MB =
MR = 1

Constants ABRA BBRA CBRA AARB BARB CARB

First three-slot β2 β2 1 + α2ρAR

ρRA
α2 α2 1 + β2ρBR

ρRB

First four-slot 1
2

1 1
2

1
2

1 1
2

Second four-slot β2 β2 1
2

+ α2ρAR

ρRA
α2 α2 1

2
+ β2ρBR

ρRB
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6.2 Performance Analysis for MA = MB = MR = 1

Sum-BER performance analysis including high-SNR analysis is carried

out using the unified received SNR expressions. The multiple relay antenna

case is described in Section 6.3.

6.2.1 Performance Metric

For the performance metric, we consider sum-BER, which is defined as

follows for all protocols:

Pb =
1

log2(M)

∫ ∞

0
aQ
(√

2bx
)

(fγA
(x) + fγB

(x)) dx, (6.3)

where Q(x) :=
(

1/
√

2π
) ∫∞

x
e−y

2/2dy and a and b are modulation related

positive constants. For example, a = 1 and b = 1 provide exact BER for

binary phase shift keying (BPSK), while a = 2 and b = sin2(π/M) and

a = 4
(

1 − 1/
√

M
)

and b = 3/(2(M − 1)) provide tight SER approxima-

tions for M-ary PSK (M-PSK) and M-ary quadrature amplitude modulation

(M-QAM), respectively.

6.2.2 Sum-BER using Unified SNR Representations

Calculating equation (6.3) using equations (6.1) and (6.2) is hard since

the distributions of γA and γB are intractable. However, since the cumulative

distribution functions (CDFs) of ΓARB and ΓBRA and the probability den-

sity functions (PDFs) of γAB and γBA are available, the following alternative

equation can be used to calculate sum-BER [66, eqn.(5)].

Pb ≈
a
√
b

log2(M)
√

8π

∫ ∞

0

e−bx1

4
√
x1
FΓARB

(x1)dx1

∫ ∞

0

e−bx2

4
√
x2
fγAB

(x2)dx2

+
a
√
b

log2(M)
√

8π

∫ ∞

0

e−bx1

4
√
x1
FΓBRA

(x1)dx1

∫ ∞

0

e−bx2

4
√
x2
fγBA

(x2)dx2.

(6.4)
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Note that equation (6.4) provides an approximation in sum-BER since the

CDFs of ΓBRA and ΓARB are used.

To calculate sum-BER using the unified SNR representations, the dis-

tributions of ΓARB, ΓBRA, γAB, and γBA should be obtained first. When we

consider Rayleigh fading, fγAB
(x) = e−x/ρAB/ρAB and fγBA

(x) = e−x/ρBA/ρBA

are given in [7], and the CDFs of ΓBRA and ΓARB can be obtained by substi-

tuting MA = MB = 1 into equations (5.5) and (5.6), respectively, as follows:

FΓBRA
(x) = 1 − 2x

ABRA

√

BBRACBRA

ρBRρRA
e
− x

ABRA

(

CBRA
ρBR

+
BBRA
ρRA

)

K1

(

2x

ABRA

√

BBRACBRA

ρBRρRA

) (6.5)

FΓARB
(x) = 1 − 2x

AARB

√

BARBCARB

ρARρRB
e
− x

AARB

(

CARB
ρAR

+
BARB
ρRB

)

K1

(

2x

AARB

√

BARBCARB

ρARρRB

)

,

(6.6)

where Kν(x) is the modified Bessel function of the second kind.

As a result, once fγAB
(x), fγBA

(x), and equations (6.5) and (6.6) are

substituted to equation (6.4), the sum-BER can be approximated in closed-
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form with the integral in equation (5.8) as

Pb ≈









Γ
(

3
4

)

b
3
4

− 8
√
πBARBCARB

A2
ARBρARρRB

(

b+ CARB

AARBρAR
+ BARB

AARBρRB
+ 2

AARB

√

BARBCARB

ρARρRB

)
11
4

a
√
bΓ
(

3
4

)

Γ
(

11
4

)

Γ
(

3
4

)

log2(M)ρAB
√

8π
(

b+ 1
ρAB

)
3
4
Γ
(

9
4

)

2F1





11

4
,
3

2
;
9

4
;
b+ CARB

AARBρAR
+ BARB

AARBρRB
− 2

AARB

√

BARBCARB

ρARρRB

b+ CARB

AARBρAR
+ BARB

AARBρRB
+ 2

AARB

√

BARBCARB

ρARρRB









+









Γ
(

3
4

)

b
3
4

− 8
√
πBBRACBRA

A2
BRAρBRρRA

(

b+ CBRA

ABRAρBR
+ BBRA

ABRAρRA
+ 2

ABRA

√

BBRACBRA

ρBRρRA

)
11
4

a
√
bΓ
(

3
4

)

Γ
(

11
4

)

Γ
(

3
4

)

log2(M)ρBA
√

8π
(

b+ 1
ρBA

)
3
4
Γ
(

9
4

)

2F1





11

4
,
3

2
;
9

4
;
b+ CBRA

ABRAρBR
+ BBRA

ABRAρRA
− 2

ABRA

√

BBRACBRA

ρBRρRA

b+ CBRA

ABRAρBR
+ BBRA

ABRAρRA
+ 2

ABRA

√

BBRACBRA

ρBRρRA









(6.7)

where 2F1(α, β; γ; z) is the Gauss hypergeometric function [37, p.1005]. Note

that equation (6.7) provides tight sum-BER approximations for all two-way

relay protocols with direct links. Note also that equation (6.7) presents much

better performance than equation (5.7) regardless of protocols due to the per-

formance contribution from direct links. Equation (6.7) can be used to obtain

equation (5.7) by removing contribution from direct links, Γ (3/4) / (ρBA (b

+1/ρBA)3/4
)

, in the second and fourth lines of equation (6.7), when MA =

MB = MR = 1.

6.2.3 High-SNR Analysis for Sum-BER using Unified SNR Representations

Simple high-SNR performance is now considered to further simplify

equation (6.7). The high SNR analysis uses the PDFs of instantaneous SNRs
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normalized by the average SNR on each link defined as λARB := ΓARB/ρAR,

λBRA := ΓBRA/ρAR, λAB := γAB/ρAR, and λBA := γBA/ρAR where ρAR is

the average transmit SNR from A to R, and all PDFs are shown satisfying

the assumptions in [34], which provides a systematic method for high-SNR

analysis. To simplify our analysis, we assume that ρAB, ρBA, ρBR, ρRA, and

ρRB are constant multiples of ρAR. Based on [34, eqn.(1)], the average sum-

BER of an uncoded system can be written as

Pb =
1

log2(M)

(

(2bρARGA)−d + (2bρARGB)−d
)

+ o
(

ρ−dAR

)

, (6.8)

as ρAR → ∞, where GA = (
√

π (tA + 1) / (a2tAηAΓ (tA + 3/2)))
1/(tA+1)

and

GB = (
√

π (tB + 1) / (a2tBηBΓ (tB + 3/2)))
1/(tB+1)

are the array gains; d =

tA+1 = tB+1 are the diversity orders; tA and tB are the first nonzero derivative

orders of the PDFs of channel dependent random variables, λARB + λAB and

λBRA + λBA, at the origin, respectively; ηA = f
(tA)
λBRA+λBA

(0)/Γ (tA + 1) 6= 0

and ηB = f
(tB)
λARB+λAB

(0)/Γ (tB + 1) 6= 0. The expression for ηA and ηB are

also valid when tA and tB are not integers if fractional calculus is used [55].

Therefore, equation (6.9) can be calculated once tA, tB, ηA, and ηB are found

using the PDFs of λARB, λBRA, λAB, and λBA.

When MA = MB = MR = 1, tA = tB = 1 due to the diversity order

d = 2 [45, eqn.(16)]. Therefore, based on equation (3.17) and Appendix 3.4,

ηA and ηB can be written as

ηA = fλBA
(0)fλBRA

(0) =
ρAR

ρBA

(

BBRAρAR

ABRAρRA
+
CBRAρAR

ABRAρBR

)

(6.9)

ηB = fλAB
(0)fλARB

(0) =
ρAR

ρAB

(

BARBρAR

AARBρRB
+
CARB

AARB

)

, (6.10)

where fλARB
(x) = e−x/BARB/BARB+ρARe−ρARx/(CARBρRB)/ (CARBρRB), fλBRA

(x)

= ρARe−ρARx/(BBRAρBR)/ (BBRAρBR)+ρARe−ρARx/(CBRAρRA)/ (CBRAρRA), which

can be obtained by substituting MA = MB = 1 into equation (5.46), fλAB
(x) =

ρARe−ρARx/ρAB/ρAB, and fλBA
(x) = ρARe−ρARx/ρBA/ρBA.
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As a consequence, high-SNR performance can be obtained as follows:

Pb =
1

log2(M)

(

(2bρARGA)−2 + (2bρARGB)−2
)

+ o
(

ρ−2
AR

)

(6.11)

GA =

(

2aηAΓ
(

5
2

)

2
√
π

)− 1
2

(6.12)

GB =

(

2aηBΓ
(

5
2

)

2
√
π

)− 1
2

. (6.13)

High-SNR performance for sum-BER given in equations (6.11)-(6.13) is much

simpler than the closed-form approximations in equation (6.7), so that it is

easy to evaluate sum-BER at high-SNR. Note that the diversity order of all

three two-way relay systems is 2, and equations (6.11)-(6.13) provide tight

sum-BER approximations for all two-way relay protocols with direct links.

Compared with equation (5.18) when MA = MB = MR = 1, the diversity

order of equation (6.11) is 2 while that of equation (5.18) is 1, which leads

equation (6.11) to have better performance than equation (5.18) at high SNR.

6.2.3.1 α-β Optimization

Similar to Chapter 5, we can obtain closed-form expressions using aver-

age high-SNR performance in equation (6.11). Therefore, after every variable

is substituted into equation (6.11) and considering α2 + β2 = 1, by differenti-

ating equation (6.11) with respect to β, optimal βs for the first three-slot and

second four-slot protocols can be obtained, respectively, as follows:

β2
three−slot =

√

ρAR(ρAR+ρRA)
ρRA

√

ρAR(ρAR+ρRA)
ρRA

+
√

ρBR(ρBR+ρRB)
ρRB

(6.14)

β2
four−slot =

√

ρAR(ρAR+ρRA/2)
ρRA/2

√

ρAR(ρAR+ρRA/2)
ρRA/2

+
√

ρBR(ρBR+ρRB/2)
ρRB/2

, (6.15)

which are exactly same as equations (5.30) and (5.31). Both β2s become 1
2

when ρAR = ρBR = ρRA = ρRB, while β2s are bigger than 1
2

when ρAR > ρBR,
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which indicates the α-β optimization is most useful when ρAR and ρBR are

unbalanced. Note that these results are from average high-SNR performance,

which leads to worse performance compared with numerically optimizing the

instantaneous sum-BERs with respect to β. However, equations (6.14) and

(6.15) do not require instantaneous channel knowledge and can be expressed

in closed-form.

6.3 Multiple Antennas at All Nodes

When we consider multiple antennas at all nodes, BF optimization is

necessary, at all nodes for the first three-slot protocol but only at A and B for

four-slot protocols. In this case, there is no closed-form expression for perfor-

mance analysis since optimal beamformers cannot be expressed in closed-form.

In addition, BF optimization is well studied in Chapter 5. Therefore, we con-

sider lower-bounds of all protocols with direct links, where each node utilizes

two distinct BF vectors matched with corresponding channels, to compare

each other.

To clarify how Table 6.2 can be obtained, the instantaneous received

SNRs are discussed for the second four-slot protocol as an example. The

instantaneous received SNRs for the second four-slot protocol at A and B are

as follows, respectively:

γBRA = γBRA,1+γBRA,2 =
β2γBR

γRA

2

β2γBR + α2γAR + γRA

2 + 1
+

β2γBR
γ′RA

2

β2γBR + α2γAR +
γ′RA

2 + 1
(6.16)

γARB = γARB,1+γARB,2 =
α2γAR

γRB

2

α2γAR + β2γBR + γRB

2 + 1
+

α2γAR
γ′RB

2

α2γAR + β2γBR +
γ′

RB

2 + 1
,

(6.17)

where γ′
RA = ρRA‖HRAfRB‖2 and γ′

RB = ρRB‖HRBfRA‖2, which are instan-

taneous received SNRs with non-matched BF vectors. With the same rea-
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son as Table 5.2, DBRA,4 = 1 + E[γBRA,2]/E[γBRA,1] and DARB,4 = 1 +

E[γARB,2]/E[γARB,1] can be obtained for the second four-slot protocol.

Table 6.2: The Coefficients for Equations (6.1) and (6.2) when Multiple An-
tennas are Used at All Nodes

Constants ABRA BBRA CBRA AARB BARB CARB

First Three β2 β2 1 + α2ρAR

ρRA
α2 α2 1 + β2ρBR

ρRB

First Four 1
2

1 1
2

1
2

1 1
2

Second Four
β2DBRA,4

2
β2 1

2
+ α2ρAR

ρRA

α2DARB,4

2
α2 1

2
+ β2ρBR

ρRB

6.3.1 Performance Analysis

We now consider performance analysis using the unified received SNRs

when multiple antennas are used at all nodes. Similar to obtaining equation

(6.7), the distributions of the unified received SNRs for multiple antennas at

all nodes should be attained to calculate sum-BER. The CDFs of ΓBRA and

ΓARB can be obtained as equations (5.24) and (5.25):

FΓBRA
(x) = 1 −

MR
∑

n=1

(MB+MR)n−2n2
∑

m=MB−MR

m
∑

k=0

MR
∑

i=1

(MA+MR)i−2i2
∑

j=MA−MR

k+j
∑

p=0

(

k + j

p

)

2dn,mdi,j

k!j!ρ
p+k+1

2
BR ρ

2j+k−p+1
2

R

(CBRAn)
p+k+1

2 (BBRAi)
2j+k−p+1

2

A
k+j+1
BRA

xk+j+1e
− x

ABRA

(

CBRAn

ρBR
+

BBRAi

ρR

)

Kp−k+1

(

2x

ABRA

√

BBRACBRAni

ρBRρR

)

(6.18)

FΓARB
(x) = 1 −

MR
∑

n=1

(MA+MR)n−2n2
∑

m=MA−MR

m
∑

k=0

MR
∑

i=1

(MB+MR)i−2i2
∑

j=MB−MR

k+j
∑

p=0

(

k + j

p

)

2dn,mdi,j

k!j!ρ
p+k+1

2
AR ρ

2j+k−p+1
2

R

(CARBn)
p+k+1

2 (BARBi)
2j+k−p+1

2

A
k+j+1
ARB

xk+j+1e
− x

AARB

(

CARBn

ρAR
+

BARBi

ρR

)

Kp−k+1

(

2x

AARB

√

BARBCARBni

ρARρR

)

,

(6.19)

where dn,m are coefficients given by [30, eqn.(24)], also provided in Tables 2.1-

2.3 for completeness. Note that equations (6.18) and (6.19) are valid when
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MA ≥ MR and MB ≥ MR even though other cases can be easily handled with

minor modifications.

In addition, the PDFs of γAB and γBA are given as follows from equation

(2.36):

fγAB
(x) =

MB
∑

n=1

(MA+MB)n−2n2
∑

m=MA−MB

dn,mn
m+1xme

− nx
ρAB

m!ρm+1
AB

(6.20)

fγBA
(x) =

MA
∑

n=1

(MB+MA)n−2n2
∑

m=MB−MA

dn,mn
m+1xme

− nx
ρBA

m!ρm+1
BA

(6.21)

Therefore, once equations (6.18)-(6.21) are substituted to equation (6.4), the

sum-BER can be obtained in closed-form similar to equation (6.7), which are

sum-BER lower-bounds for all protocols with direct links. When multiple

antennas are used at all nodes, the performance using equations (6.18)-(6.21)

is much better than that using equations (5.24) and (5.25) due to the effect of

direct links.

6.3.2 High-SNR Analysis

Based on the procedures in Section 3.4.2, we should calculate the tA

order derivative of the PDF of λBRA + λBA and the tB order derivative of the

PDF of λARB + λAB evaluated at the origin, both evaluated at the origin, to

obtain high-SNR performance when multiple antennas are used at all nodes.

Using multiple antennas, however, the PDFs of λBRA+λBA and λARB+λAB are

difficult to obtain in closed-form. Instead of using the PDFs of λBRA+λBA and

λARB +λAB, an alternate approach is used to find ηA and ηB for the combined

links. We have tA = tB = MR ·min{MA, MB}+MA ·MB−1 since the diversity

orders of the combined links are MR ·min{MA, MB}+MA ·MB [45, eqn.(16)],

which are the sums of the diversity orders of the direct and relay links. To
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find f
(tA)
λBRA+λBA

(0) and f
(tB)
λARB+λAB

(0), the product of f
(tBRA)
λBRA

(0) and f
(tBA)
λBA

(0)

and that of f
(tARB)
λARB

(0) and f
(tAB)
λAB

(0) can be used, respectively.

For the A → R → B path, tARB = MR · min{MA, MB} − 1 since the

diversity order of the A → R → B path is MR · min{MA, MB} [45, eqn.(16)].

The tARB order derivative of the PDF of λARB evaluated at the origin can be

obtained as follows (Please see Appendix 5.2 for derivation):

f
(tARB)
λARB

(0) =































f
(tRB)
λRB

(0), MA > MB

f
(tAR)
λAR

(0), MA < MB

f
(tAR)
λAR

(0) + f
(tRB)
λRB

(0), MA = MB

, (6.22)

where

f
(tAR)
λAR

(0) =

MR
∑

n=1

(MA+MR)n−2n2
∑

m=MA−MR

dn,m

(

tAR

m

)

(−1)tAR+m

(

nCARB

AARB

)tAR+1

, (6.23)

f
(tRB)
λRB

(0) =

MR
∑

n=1

(MB+MR)n−2n2
∑

m=MB−MR

dn,m

(

tRB

m

)

(−1)tRB+m

(

nρARBARB

AARBρR

)tRB+1

,

(6.24)

and tAR = MA·MR−1 and tRB = MB ·MR−1 [45, eqn.(12)] are the first nonzero

derivative orders of the PDFs of λAR := γAR/ρAR and λRB := γRB/ρAR, at the

origin, respectively.

Similarly, for the B → R → A path, tBRA = MR · min{MA, MB} − 1

since the diversity order of the B → R → A path is MR · min{MA, MB}.

The tBRA order derivative of the PDF of λBRA evaluated at the origin can be

obtained as (please see Appendix 5.2 for derivation)

f
(tBRA)
λBRA

(0) =































f
(tBR)
λBR

(0), MA > MB

f
(tRA)
λRA

(0), MA < MB

f
(tBR)
λBR

(0) + f
(tRA)
λRA

(0), MA = MB

, (6.25)
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where

f
(tBR)
λBR

(0) =

MR
∑

n=1

(MB+MR)n−2n2
∑

m=MB−MR

dn,m

(

tBR

m

)

(−1)tBR+m

(

nρARCBRA

ABRAρBR

)tBR+1

,

(6.26)

f
(tRA)
λRA

(0) =

MR
∑

n=1

(MA+MR)n−2n2
∑

m=MA−MR

dn,m

(

tRA

m

)

(−1)tRA+m

(

nρARBBRA

ABRAρR

)tRA+1

, (6.27)

and tBR = MB ·MR−1, tRA = MA ·MR−1 [45, eqn.(12)] are the first nonzero

derivative orders of the PDFs of λBR := γBR/ρAR and λRA := γRA/ρAR, at the

origin, respectively.

For the direct links, tBA = tAB = MA · MB − 1 since the diversity

orders of B → A and A → B are given by MA · MB [6]. If the tBA and tAB

order derivatives of the PDFs of λBA and λAB are evaluated at the origin, the

following can be obtained

f
(tAB)
λAB

(0) =

MB
∑

n=1

(MA+MB)n−2n2
∑

m=MA−MB

dn,m

(

tAB

m

)

(−1)tAB+m

(

nρAR

ρAB

)tAB+1

(6.28)

f
(tBA)
λBA

(0) =

MA
∑

n=1

(MB+MA)n−2n2
∑

m=MB−MA

dn,m

(

tBA

m

)

(−1)tBA+m

(

nρAR

ρBA

)tBA+1

. (6.29)

Using equations (6.22)-(6.29), therefore, the final combined ηA and ηB

are given by

αA =
f

(tBRA)
λBRA

(0) · f (tBA)
λBA

(0)

Γ (MA ·MB +MR · min {MA,MB})
(6.30)

αB =
f

(tARB)
λARB

(0) · f (tAB)
λAB

(0)

Γ (MA ·MB +MR · min {MA,MB})
. (6.31)

As a consequence, high-SNR performance can be obtained as follows:

Pb =
1

log2(M)

(

(2bρARGA)−d + (2bρARGB)−d
)

+ o
(

ρ−dAR

)

(6.32)

d = MR · min{MA,MB} +MA ·MB (6.33)
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GA =

(

a2d−1ηAΓ
(

d+ 1
2

)

√
πd

)− 1
d

(6.34)

GB =

(

a2d−1ηBΓ
(

d+ 1
2

)

√
πd

)− 1
d

. (6.35)

Note that the diversity order of all three two-way relay systems with direct

links is MR · min{MA, MB} + MA · MB, and equations (6.32)-(6.35) provide

sum-BER lower-bounds for all two-way relay protocols with direct links. Note

also that equation (6.32) can be used to obtain equation (5.18) by removing

contribution from direct links, MA · MB, f
(tAB)
λAB

(0), and f
(tBA)
λAB

(0). Due to

different diversity orders, equation (6.32) presents much better performance

than equation (5.18) regardless of protocols.

6.4 Stochastic Ordering of AF MIMO BF Two-Way Relay Networks

In what follows, we compare performance of AF MIMO BF two-way

relay networks with and without direct links using the theory of stochastic

orders in terms of sum-BER and maximum sum-rate since the authors in [71]

never consider MIMO and two-way relay systems. We start with stochastic

ordering preliminaries.

6.4.1 Preliminaries

We explore “integral stochastic order”, which can be used in commu-

nication systems. The integral stochastic order is defined as [75]

X ≤ℜ Y ⇔ E [g(X)] ≤ E [g(Y )] ,∀g(·) ∈ ℜ, (6.36)

where X and Y are RVs and ℜ is a set of real valued functions such as g(·) :

R
+ → R, which is a generator of the integral stochastic order, ≤ℜ. Since there

are more than one generator, we show a few of them herein.
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For the first example, the magnitude of two RVs can be compared by

the “usual stochastic order”, which is defined by

X ≤st Y ⇔ FX(x) ≥ FY (x),∀x, (6.37)

where FX(x) and FY (x) are CDFs of X and Y , respectively. This order means

that comparing X and Y with respect to ≤st corresponds to comparing their

outage probabilities for all thresholds. The generator for the usual stochastic

order in equation (6.36) is the set of increasing functions [75].

For the second example, the “convex ordering” denoted as X ≤cx Y is

presented, where the generator in equation (6.36) is the set of convex func-

tions. Since E[X] = E[Y ] when X and Y are convex ordered and ≤cx gives us a

measure of variability, X ≤cx Y means X is less variable than Y even though

the RVs have same mean value. Actually, convex ordering of two RVs can

provide a qualitative measure of average performance because many perfor-

mance metrics such as channel capacity and error rates are convex or concave

functions of instantaneous SNRs.

For the third example, the “Laplace transform order” is considered as

X ≤Lt Y ⇔ E [exp (−ρX)] ≥ E [exp (−ρY )] ,∀ρ ≥ 0. (6.38)

In this case, the generator in equation (6.36) is the set of − exp (−ρx) , ∀ρ ≥

0. More generally, when g(x) is a completely monotonic (c.m.) function,

(−1)ndng(x)/dxn ≥ 0 for x > 0 and n = 0, 1, 2, . . ., equation (6.38) becomes

X ≤Lt Y ⇔ E [g (X)] ≥ E [g (Y )] . (6.39)

Furthermore, when g(x) is a completely monotonic derivative (c.m.d.) func-

tion, (−1)ndn(dg(x)/dx)/dxn ≥ 0 for x > 0 and n = 0, 1, 2, . . ., equation (6.38)

becomes

X ≤Lt Y ⇔ E [g (X)] ≤ E [g (Y )] . (6.40)
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Based on careful investigations, it is beneficial to recognize that X ≤cx Y ⇒

Y ≤Lt X and X ≤st Y ⇒ X ≤Lt Y for any of two RVs, X and Y .

6.4.2 Stochastic Ordering

Using the Laplace transform order, we compare sum-BER and max-

imum sum-rate of two-way AF MIMO BF relay networks with and without

direct links. Without loss of generality, we assume ρ = ρAR = ρBR = ρRA =

ρRB = ρAB = ρBA ≥ 0 for transmit SNRs at each node in two-way relay net-

works. Therefore, all RVs for two-way relay networks in Chapters 5 and 6 can

be written as γAR = γRA = ρλAR, γBR = γRB = ρλBR, and γAB = γBA = ρλAB

for simplicity. As an example, g(x) using the unified received SNR represen-

tations at A and B for two-way AF MIMO BF relay networks without direct

links, equations (5.1) and (5.2), can be rewritten as

gBRA (x) =
ABRAx1x2

BBRAx1 + CBRAx2 + 1
ρ

(6.41)

gARB (x) =
AARBx1x2

BARBx2 + CARBx1 + 1
ρ

, (6.42)

where x := [x1 x2], RVs X1 := λBR and X2 := λAR are statistically inde-

pendent, and AARB, BARB, CARB, ABRA, BBRA, and CBRA are non-negative

constants in Table 5.2.

When multiple RVs are considered, reference [71] provides the following

mathematical tool:

Theorem 6.1. Let RVs X1, X2, . . . , XN be statistically independent and RVs

Y1, Y2, . . . , YN be also statistically independent. If Xn ≤Lt Yn for n = 1, 2, . . . , N ,

then g (X1, X2, . . . , XN) ≤Lt g (Y1, Y2, . . . , YN) for g(·) : R
m → R

+ such that

∂g (x1, x2, . . . , xN) /∂xn is c.m. for n = 1, 2, . . . , N when all other variables

are fixed.
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Since ∂gBRA (x) /∂xn and ∂gARB (x) /∂xn using equations (6.41) and

(6.42) are c.m. for n = 1, 2 (i.e. as seen by taking multiple derivatives) based

on Theorem 6.1 given by [71], we can say that gBRA (X) ≤Lt gBRA (Y) and

gARB (X) ≤Lt gARB (Y) if Xn ≤Lt Yn for n = 1, 2, where X := [X1 X2] and

Y := [Y1 Y2].

Similar to the previous example, we can apply the Laplace transform

order to two-way AF MIMO BF relay networks with direct link as well. If

we consider the relay networks illustrated in Figure 6.1, unified instantaneous

received SNR expressions in equations (6.1) and (6.2) can be rewritten as

follows:

gA (x) =
ABRAx1x2

BBRAx1 + CBRAx2 + 1
ρ

+ x3 (6.43)

gB (x) =
AARBx1x2

BARBx2 + CARBx1 + 1
ρ

+ x3, (6.44)

where x := [x1 x2 x3], and RVs X1 := λBR, X2 := λAR, and X3 := λAB

are statistically independent. Based on Theorem 6.1 given by [71], since

∂gA (x) /∂xn and ∂gB (x) /∂xn using equations (6.43) and (6.44) are c.m. for

n = 1, 2, 3 (i.e. as seen by taking multiple derivatives), we can say that

gA (X) ≤Lt gA (Y) and gB (X) ≤Lt gB (Y) if Xn ≤Lt Yn for n = 1, 2, 3, where

X := [X1 X2 X3] and Y := [Y1 Y2 Y3].

Since we are interested in sum-BER and maximum sum-rate, we con-

sider the following metrics:

Pb =
a

log2(M)

(

E

[

Q
(

√

2bρgA (X)
)

+Q
(

√

2bρgB (X)
)])

(6.45)

R =
1

T
(E [log2 (1 + ρgA (X)) + log2 (1 + ρgB (X))]) , (6.46)

where T is the number of time slots used. By comparing gA (X) and gA (Y),

and gB (X) and gB (Y), separately, using the Laplace transform order, we can

obtain the following theorem:
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Theorem 6.2. Let RVs X1, X2, . . . , XN be statistically independent and RVs

Y1, Y2, . . . , YN be also statistically independent, and let X := [X1 X2 . . . XN ]

and Y := [Y1 Y2 . . . YN ]. If Xn ≤Lt Yn for n = 1, 2, . . . , N , then

E [Pb (ρgA (X)) + Pb (ρgB (X))] ≥ E [Pb (ρgA (Y)) + Pb (ρgB (Y))] (6.47)

E [R (ρgA (X)) +R (ρgB (X))] ≤ E [R (ρgA (Y)) +R (ρgB (Y))] (6.48)

for g(·) : R
m → R

+ such that ∂g (x1, x2, . . . , xN) /∂xn is c.m. for n =

1, 2, . . . , N when all other variables are fixed.

Proof. Since Pb(ρx) := Q
(√

2bρx
)

is c.m. and R(ρx) := log2 (1 + ρx) is

c.m.d. [71], if gA (X) ≤Lt gA (Y) and gB (X) ≤Lt gB (Y) when Xn ≤Lt Yn

for n = 1, 2, . . . , N , E [Pb (ρgA (X))] ≥ E [Pb (ρgA (Y))] and E [Pb (ρgB (X))] ≥

E [Pb (ρgB (Y))] based on equation (6.39), and E [R (ρgA (X))] ≤ E [R (ρgA (Y)

)] and E [R (ρgB (X))] ≤ E [R (ρgB (Y))] based on equation (6.40). Therefore,

Theorem 6.2 is proved when above relevant expectations are added.

The same result can be obtained for AF MIMO BF two-way relay

networks without direct link using the Laplace transform order. For example, if

we consider the number of relay antennas in Rayleigh fading, X ≤Lt Y if MX
R ≤

MY
R , where large MR presents better performance in sum-BER and sum-rate,

which can be easily seen based on our average performance in closed-form. As

another example, if we consider Rician fading, the average sum-BER and sum-

rate improve as the line of sight (LoS) parameter K increases [71]. Therefore,

we can say that X ≤Lt Y if KX ≤ KY , which means large K provides better

performance in sum-BER and sum-rate, as illustrated in Section 6.5. Note that

we can compare two average quantities using the Laplace transform order even

though the average performance of sum-BER and sum-rate is not tractable in

closed-form for Rician fading.
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6.5 Numerical and Simulation Results

In Monte-Carlo simulations, the transmitted symbol is QPSK, 8-QAM,

or 16-QAM modulated for two-slot, three-slot, four-slot protocols, respectively,

for rate normalization. The two-slot protocol without direct links is included

as a benchmark. Zero mean and unit variance are used to model the Rayleigh

or Rician block fading channel. The distance between A and R is set as a

reference d0 whereas the distance between A and B is d. Therefore, once d0 is

determined, 10 log10(ρBR) = 10 log10(ρAR)− 10γ log10((1− d0)/d0), where γ is

the path-loss exponent of the simplified path-loss model in [7]. We also con-

sider strong and weak direct links using a scaling factor in simulations. Note

that average transmit SNR is normalized in unified received SNR expressions

for fair comparison among all protocols.

6.5.1 Accuracy of Analysis

This subsection shows the accuracy of our analysis in equations (6.7),

(6.11), (6.14), (6.15), (6.32), and the analysis using equations (6.18)-(6.21).

Figures 6.3 and 6.4 show 1 × 1 × 1 and 2 × 2 × 2 AF two-way relay network

performance in sum-BER when the path-loss exponent γ = 3 and both average

transmit SNRs are balanced (i.e. ρAR = ρBR due to d0 = 0.5), respectively.

All simulation curves in Figure 6.3 are from Monte-Carlo simulations while all

simulation curves in Figure 6.4 are from numerical simulations. All analytical

curves of three protocols in Figure 6.3 are from equation (6.7) with proper con-

stants given in Table 6.1, but all analytical curves of three protocols in Figure

6.4 are from using equations (6.18)-(6.21) with proper constants given in Table

6.2. All high-SNR analytical curves in Figures 6.3 and 6.4 are from equations

(6.11) and (6.32), respectively. Our high-SNR analysis matches exactly with
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Monte-Carlo simulations at high-SNR, and our analysis is within 0.2 dB in

Figures 6.3 and 6.4. Note that sum-BER performance in equations (6.7) and

using equations (6.18)-(6.21) provides tight approximations to equation (6.3).

Note also that performance using the first four-slot protocol is exactly same

as that using the second four-slot protocol in Figure 6.3.
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Figure 6.3: 1× 1 × 1 AF Two-Way Relay Network Performance in Sum-BER
when γ = 3 and d0 = 0.5.

Figure 6.5 shows the optimal average β2 for the first three-slot and

second four-slot protocols at high-SNR using equation (6.11) for 1× 1× 1 AF

two-way relay network performance with ρAR = ρRA = ρRB = 40 dB when

average transmit SNRs are unbalanced (i.e. ρAR 6= ρBR due to d0 = 0.3).

Using the same setup, analytical results in equations (6.14) and (6.15) present

β2 = 0.82915 and β2 = 0.85159 for the first three-slot and second four-slot

protocols, respectively.

Figure 6.6 shows 1 × 1 × 1 AF two-way relay network performance in

sum-BER when average transmit SNRs are unbalanced. All simulation curves
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Figure 6.4: 2× 2 × 2 AF Two-Way Relay Network Performance in Sum-BER
when γ = 3 and d0 = 0.5.
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Figure 6.6: 1× 1 × 1 AF Two-Way Relay Network Performance in Sum-BER
when γ = 3 and d0 = 0.3.

in Figure 6.6 are from numerical simulations using equation (6.4), where the

optimal βs are selected based on instantaneous channel realization. All analyt-

ical curves of two protocols are from equation (6.7) with proper constants. All

high-SNR analytical curves are from equation (6.11) with related constants.

β2 = 0.82915 and β2 = 0.85159 are used for optimal values at high-SNR using

equation (6.11) for the first three-slot and second four-slot protocols, respec-

tively. The optimal βs are chosen to minimize average high-SNR performance

in our analysis. Our analysis in equation (6.7) matches exactly with high-

SNR analysis in equation (6.11). However, about 1 dB gaps exist between our

analysis and numerical simulations at high-SNR due to choice of optimal βs.

6.5.2 Comparisons of Protocols

This subsection compares sum-BER performance among three relaying

protocols. Note that α-β optimization is performed when average transmit

SNRs are unbalanced, for the first three-slot and second four-slot protocols.
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Figure 6.7 shows 1×1×1 AF two-way relay network performance comparison

when γ = 3 and d0 = 0.3. All simulation curves are from numerical simulations

using equation (6.4) with α-β optimization. All analytical curves are from

equation (6.7) with proper constants. Note that the first three-slot and second

four-slot protocols need to find optimal α and β satisfying α2 + β2 = 1 for

instantaneous minimum sum-BER. The first three-slot protocol with optimal

α and β and normalized rate outperforms other protocols at high-SNR in

Figure 6.7.
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Figure 6.7: 1 × 1 × 1 AF Two-Way Relay Network Performance Comparison
in Sum-BER when γ = 3 and d0 = 0.3.

Figure 6.8 shows 2 × 2 × 2 AF MIMO BF two-way relay network per-

formance comparison when γ = 3, ρAB = ρBA = ρAR/106, and d0 = 0.3. All

simulation curves are from numerical simulations using equation (6.4) with

α-β optimization. All analytical curves are from using equations (6.18)-(6.21)

with proper constants. Note that the first three-slot and second four-slot pro-

tocols need to find optimal α and β satisfying α2 + β2 = 1 for instantaneous
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Figure 6.8: 2 × 2 × 2 AF Two-Way Relay Network Performance Comparison
in Sum-BER when γ = 3, ρAB = ρBA = ρAR/106, and d0 = 0.3.

minimum sum-BER. The second four-slot protocol with optimal α and β and

normalized rate outperforms other protocols at high-SNR in Figure 6.8.

Based on simulations, note that all protocols with direct links outper-

form the two-slot protocol without direct links for all scenarios. The second

four-slot protocol dominates other protocols when direct links hardly help the

total performance (i.e. ρAB = ρBA = ρAR/106), whereas the first three-slot

dominates other protocols otherwise.

6.5.3 Stochastic Ordering

This subsection illustrates stochastic ordering of sum-BER and maxi-

mum sum-rate for two-way relay protocols with and without direct links pre-

sented in Section 6.4.2. We use Rician fading with the LoS parameters KX = 1

and KY = 3 to show the usefulness of stochastic ordering since the average

performance of sum-BER and sum-rate is not tractable in closed-form for Ri-
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Figure 6.9: 2× 1× 2 AF MIMO BF Two-Way Relay Network Performance in
Sum-BER without Direct Links when γ = 3 and d0 = 0.5.
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Figure 6.10: 2 × 1 × 2 AF MIMO BF Two-Way Relay Network Performance
in Sum-BER with Direct Links when γ = 3 and d0 = 0.5.
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Figure 6.11: 2 × 1 × 2 AF MIMO BF Two-Way Relay Network Performance
in Sum-Rate without Direct Links when γ = 3 and d0 = 0.5.
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Figure 6.12: 2 × 1 × 2 AF MIMO BF Two-Way Relay Network Performance
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185



cian fading. Figures 6.9 and 6.10 show 2× 2× 2 AF MIMO BF two-way relay

network performance in sum-BER with and without direct links, respectively,

when γ = 3 and d0 = 0.5. From Figures 6.9 and 6.10, large K (i.e. KY )

provides better performance in sum-BER for all protocols regardless of direct

links, which matches with results in Section 6.4.2.

Figures 6.11 and 6.12 show 2 × 2 × 2 AF MIMO BF two-way relay

network performance in sum-rate with and without direct links, respectively,

when γ = 3 and d0 = 0.5. From Figures 6.11 and 6.12, large K (i.e. KY )

provides better performance in sum-rate for all protocols regardless of direct

links, which matches with results in Section 6.4.2 as well.

6.6 Chapter Summary

Unified performance analysis and stochastic ordering have been con-

ducted for AF MIMO BF two-way relay networks with direct links using three

different relaying protocols. After introducing the two-way relaying protocols

with direct links, novel closed-form unified sum-BER expressions have been

presented with corresponding closed-form unified CDFs. Furthermore, new

closed-form unified high-SNR performance expressions have been provided for

simplicity and mathematical tractability. Stochastic ordering of sum-BER and

maximum sum-rate is also provided using the unified expressions of AF MIMO

BF two-way relay networks with and without direct links.

Based on analytical and simulation results, we have investigated the

performance of three different protocols with three or four time slots using the

sum-BER metric. As a result, we can conclude that all protocols with direct

links dominate the two-slot protocol without direct links, and the three-slot

protocol outperforms other protocols at high-SNR when direct links are con-
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sidered, while the four-slot protocol outperforms other protocols at high-SNR

when direct links cannot contribute much to the total performance if aver-

age transmit SNRs are unbalanced. Finally, stochastic ordering can compare

two average quantities even when the average performance is not tractable in

closed-form, and it is shown that a large Los parameter K can provide better

performance in sum-BER and sum-rate for all two-way relay protocols.
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Chapter 7

Conclusions

The combined performance is analyzed for AF/DF two-hop MIMO

beamforming relay networks using one-way relay protocols. Since the solution

for optimal BF coefficients not only is difficult to implement, it also does not

lend itself to performance analysis because the optimal BF coefficients cannot

be expressed in closed-form when beamforming to both relay and destination,

the suboptimal strong-path BF and new selection relaying with strong-path

BF are considered under the different CSI assumptions. In addition to pre-

senting novel selection relaying, the performance analysis including high SNR

analysis for strong-path BF is conducted in BERs/SERs for the first time.

When 4 antennas are used for the source and destination and one antenna

is used for the relay, simulations show that strong-path BF slightly outper-

forms the optimized BF performance and selection relaying with strong-path

BF performance is about 1 dB away from the optimized BF performance at

the reasonable error rate. Note that full CSI is available for strong-path BF

and the optimized BF but partial CSI is known for selection relaying with

strong-path BF.

Novel lower-bounds of AF/DF MIMO BF relay networks are presented

with known CSI of the relay link at the source and destination. It is shown

that the lower-bound is achievable at the expense of a rate penalty, and the

achievable scheme using three time slots is also analyzed for AF/DF MIMO BF

fixed two-hop relay networks for the first time. When the CSI of the relay link

is not available at the source and destination, selection relaying is considered,

in which the optimal SNR threshold is used. New high SNR performance is
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also analyzed for AF relay networks to simplify the lower-bound via diversity

and array gain expressions. Simulations show that lower-bounds are about 1

dB better than the optimized BF performance and AF relaying performance

is better than DF relaying performance at high SNR. The availability or the

CSI at the source and destination is crucial in BER/SER performance.

Novel average BER/SER bounds are obtained for systems with instan-

taneous SNRs given by a sum of N statistically independent non-negative RVs

using the AM and GM inequality. Their tightness is quantified analytically at

high SNR by calculating the SNR gap, and shown to be within O(1/N) of the

true value for large N . The bounds are most useful when the distribution of

the sum is intractable, since they do not require finding the combined PDFs or

CDFs of the sum. The bounds are illustrated with the MRC, the combined av-

erage performance for AF relay networks using multiple relays, and AF MIMO

single relay systems with BF using multiple antennas at the source, relay, and

destination. In addition, applicability of the bounds to non-Gaussian noise is

addressed, and the tightness of the bounds is confirmed graphically. Simula-

tions show that the bounds are tight at high SNR for all examples even when

the RVs are spread out.

Unified performance analysis is conducted for AF MIMO BF two-way

relay networks with five different relaying protocols. Two novel relaying pro-

tocols are introduced using three and four time slots suitable for BF. Unified

CDFs and PDFs are provided and the closed-form sum-BER expression is

obtained as a result. Due to simplicity and mathematical tractability, high

SNR performance expressions are presented for sum-BER and the analytical

high-SNR gap expression is provided. BF optimization is also discussed for

sum-BER since multiple antennas are used at all nodes. We investigate the
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performance of the five protocols with two, three, or four time slots using

the metrics of sum-BER, and show that the proposed three-slot and four-slot

protocols outperform the existing two-slot, three-slot, four-slot protocols in

sum-BER for some practical scenarios with beamforming, while the two-slot

scheme is better than the proposed protocols when a single relay antenna is

used with balanced transmit powers. Therefore, the proposed protocols give

a excellent comprise with the two-slot protocol in sum-BER.

Finally, unified performance analysis and stochastic ordering have been

conducted for AF MIMO BF two-way relay networks with direct links us-

ing three different relaying protocols. After introducing the two-way relaying

protocols with direct links, novel closed-form unified sum-BER expressions

have been presented with corresponding closed-form unified CDFs. Further-

more, new closed-form unified high-SNR performance expressions have been

provided for simplicity and mathematical tractability. Stochastic ordering of

sum-BER and sum-rate is also provided using the unified expressions of AF

MIMO BF two-way relay networks with and without direct links. In this case,

we can say that all protocols with direct links dominate the two-slot protocol

without direct links, and the four-slot protocol outperforms other protocols

at high-SNR when direct links cannot contribute much to the total perfor-

mance if average transmit SNRs are unbalanced, whereas the three-slot pro-

tocol outperforms other protocols at high-SNR otherwise. Stochastic ordering

can compare two average quantities even when the average performance is not

tractable in closed-form, and it is shown that a large Los parameter K can

provide better performance in sum-BER and sum-rate for all two-way relay

protocols.
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