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ABSTRACT

Recent advances in camera architectures and associated mathematical

representations now enable compressive acquisition of images and videos at low

data-rates. While most computer vision applications of today are composed of

conventional cameras, which collect a large amount redundant data and power

hungry embedded systems, which compress the collected data for further pro-

cessing, compressive cameras offer the advantage of direct acquisition of data

in compressed domain and hence readily promise to find applicability in com-

puter vision, particularly in environments hampered by limited communication

bandwidths. However, despite the significant progress in theory and methods

of compressive sensing, little headway has been made in developing systems

for such applications by exploiting the merits of compressive sensing. In such

a setting, we consider the problem of activity recognition, which is an impor-

tant inference problem in many security and surveillance applications. Since

all successful activity recognition systems involve detection of human, followed

by recognition, a potential fully functioning system motivated by compressive

camera would involve the tracking of human, which requires the reconstruc-

tion of atleast the initial few frames to detect the human. Once the human

is tracked, the recognition part of the system requires only the features to be

extracted from the tracked sequences, which can be the reconstructed images

or the compressed measurements of such sequences. However, it is desirable in

resource constrained environments that these features be extracted from the

compressive measurements without reconstruction. Motivated by this, in this

thesis, we propose a framework for understanding activities as a non-linear

dynamical system, and propose a robust, generalizable feature that can be

extracted directly from the compressed measurements without reconstructing
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the original video frames. The proposed feature is termed recurrence texture

and is motivated from recurrence analysis of non-linear dynamical systems.

We show that it is possible to obtain discriminative features directly from the

compressed stream and show its utility in recognition of activities at very low

data rates.
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Chapter 1

INTRODUCTION

1.1 motivation

Recent years has seen the generation of huge volume of visual information due

to advances in camera capabilities. This has led to a growing need for infor-

mation processing systems to efficiently compress, analyze and store highly

redundant information data captured by imaging devices. Most visual data is

stored in some compressed form or the other. Therefore, it is desirable that

low-level features are directly extracted in compressed domain. Low-level fea-

tures are compact, mathematical representations of the physical properties of

the image data. Although the compressed-domain approach imposes many

difficulties, it opens up an opportunity to reduce the computational complex-

ity because it greatly reduces the amount of data to be analyzed for indexing,

high-level understanding and classification. Feature extraction in compressed

domain is not a new concept and significant research has been done over the

last 3 decades. Earliest work in this area can be referred to [20] who used

Mandala transform as a way of automatic target recognition in compressed

images. A simple model of feature extraction in compressed domain is shown

in figure 1.1.

Compressed do-
main(DCT,Wavelet,
JPEG,MPEG,etc)

Full images are sensed
Feature Extrac-
tion(texture,

shape and colour)

Figure 1.1: A simple existing model of feature extraction in compressed domain
is shown. First full-blown images are acquired, then data is compressed by
exploiting its structure and then features are extracted from the compressed
data.

However, all these methods employ the ‘worst case approach’ of ‘sam-
1



ple first, ask questions later’, where large amounts of data are sampled first

and the structure of the data is exploited to compress the data for storage and

transmission. Breakthrough research in recent years has seen the emergence of

a new sensing method called ‘Compressive Sensing or Sampling’, which allows

us to integrate the process of sensing and compression of data. According to

this theory, instead of using a enormous number of sensors to acquire whole

data, we can sense a compressed version directly in the form of significantly less

number of measurements using very few sensors. A significant progress in the

field of compressive sensing allows signal reconstruction at sub-Nyquist sam-

pling rates by exploiting the additional structure on the signal being sensed.

This is most often in the form of sparsity in an appropriately chosen basis [5].

A large body of work now exists that deals with algorithms for recovery of the

original signal from such compressed measurements. There is a tremendous

breadth of such techniques, and the readers are referred to recent compilations

for a comprehensive survey [16, 18]. However, much less attention has been

devoted to the question of whether higher-level inference tasks such as de-

tection and recognition can be performed without reconstructing the original

signal/images. Recent work shows that simpler tasks like background subtrac-

tion [8] and optical flow estimation [34] are possible using compressive sensing

without reconstruction.

Before we move onto discuss the problem of higher-level inference tasks,

we wish to drive home the motivation behind the usage of compressive cameras

for such tasks. To this end, lets consider the application of unmanned aerial

vehicles(UAVs) which provide realtime video and high resolution aerial images

on demand. These UAVs encounter very high video handling requirements

such as collection of data, followed by transmission of the same to a ground
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station using a low-bandwidth communication link. This results in expensive

methods being employed for video capture, compression, and transmission im-

plemented on the aircraft. Other similar applications like real-time monitoring

of patients, children and elderly persons, sports play analysis are also resource

constrained and have to be achieved in real-time, thus demanding low com-

munication overheads. These applications have a activity recognition system,

as their primary component. Activity recognition systems of today involve

acquisition of the enormous amount of redundant video data, followed by ex-

traction of rich set of features, which involves expensive computations, thus

rendering real-time applications impossible. It is important that we exploit

the inherent structure in the acquired imagery to transmit the small number

of measurements in order to address communication requirements.

The general problem of activity recognition is difficult to address, since

many features that are useful for object and activity recognition tasks require

non-linear feature extraction techniques. Typical features useful for activity

analysis include histogram of gradients (HOG) [15], optical flow [10], 3D SIFT

[22], contours [36] etc. Activity recognition has a rich and long history in

computer vision, and the readers are referred to recent surveys on this topic

[1]. [12] explored the utility of CS as a compression tool for features that have

already been extracted from the original video, but did not address direct fea-

ture extraction from CS measurements of images. It is quite difficult to obtain

such complex features directly from the compressive measurements without an

intermediate step of signal reconstruction. Thus, there is a growing need to

explore novel features that retain robustness and accuracy, yet are amenable

to extraction directly from compressed measurements. Recently a linear dy-

namical system (LDS) was used to recover videos from CS cameras in [32].
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LDS models are useful for video reconstruction, but being generative models

they are sensitive to spatial/view transforms, thus require further processing

to obtain robust recognition performance. In this thesis, we propose a frame-

work to the understanding of activitiy recognition as a non-linear dynamical

system which involves feature extraction without the reconstruction of original

data.

1.2 contributions and organization:

The main contributions of the thesis are the following:

1. We study the problem of activity recognition from compressive cameras

using the geometric properties of high-dimensional video data,

2. We present a conceptually simple yet robust method for quantifying this

geometric information in terms of recurrence textures,

3. We show the utility of this method for performing robust activity recog-

nition at very low data rates.

This thesis is organized into 5 chapters. Chapter 2 presents the basics of

compressive sensing. In Chapter 3, a theoretical framework to consider the

problem of human activity analysis in compressive cameras is described and the

proposed geometric analysis of video via recurrence analysis, and associated

feature extraction are discussed. Chapter 4 provides a discussion of results

with the proposed method. The last chapter concludes the work and explores

the scope for future research in this direction.
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Chapter 2

COMPRESSIVE SENSING

2.1 compressive sensing: a background

The Shannon-Nyquist sampling theorem states that the sampling frequency

of a signal should be at least twice the highest frequency contained in the

signal, in order to avoid loss of information. In applications like digital im-

age and video cameras, the rate specified by this theorem is so high that it

makes compression essential before transmission. In imaging systems and high

speed analog to digital converters, high sampling rate is very expensive. This

section provides the necessary background about the theory of compressive

sensing, a new paradigm in signal aquisition of compressible signals. Simply

put, CS theory asserts that it is possible to recover signals fully from fewer

number of measurements than what is required by Nyquist rate, provided cer-

tain conditions are met. CS is based on two principles: sparsity of the signals

and incoherence, which deals with the manner in which the signal is sensed.

Sparsity communicates the idea that the ‘information rate’ of a continuous

time signal may be much smaller than suggested by its bandwidth, or that a

discrete-time signal depends on a number of degrees of freedom which is very

small when compared to the length of the signal itself. To be more specific,

CS exploits the fact that many natural signals are sparse or compressible in

the sense that they have compact representations when transformed to ap-

propriate basis ψ. Incoherence extends the notion of the classical uncertainty

principle, ‘A time-limited signal cannot be band-limited signal’ and conveys

the idea that signals having a sparse representation in ψ must be spread out in

the domain in which they are acquired, just as a Dirac or a spike in the time

domain is spread out in the frequency domain. In other words, incoherence
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says that unlike the signal of interest, the sampling/sensing waveforms have

an extremely dense representation in ψ. The crucial observation is that it is

possible to design efficient sensing or sampling systems that capture the useful

information content in a sparse signal and condense it into a small amount of

data. These systems implement correlations of the signal with a small number

of fixed waveforms that are incoherent with the sparsifying basis. Thus the

systems will have sensors to very efficiently capture the information in a sparse

signal without trying to understand that signal. Finally, there are numerical

optimization methods to reconstruct the whole signal from a small number

of measurements. Thus CS is a very efficient protocol by which data can be

sensed at very low rates in the form of incomplete set of measurements and

later uses the computational power to reconstruct the original signal from such

acquired data.

2.2 measurement principle

Unlike in the Shannon/Nyquist sampling, we do not measure the point samples

for representing a signal. However, we obtain linear measurements of the signal

which are projections of the signals onto a measurement space. Thus for a

image, information is not in terms of actual pixels but in terms of a set of

linear measurements. Let g(t) be a signal obtained by projections

yk =< g, φk > k = 1, ...,M (2.1)

We obtain M correlations of the signal with M different sensing waveforms,

φk, which can be Dirac delta functions (spikes) or sinusoids as shown in Figure

2.1. Here we restrict our attention to discrete signals g ∈ RN . This results in

a undersampled situation in which, the number M of available measurements

is much smaller than the dimension N of the signal g. Now we are confronted
6



=

y

M × 1

measurements

K < M << N

φ

M ×N
N × 1 and K-sparse signal

Figure 2.1: Illustration of coded acquistion by compressive sensing. The signal
to be sensed, x is correlated with M sensing waveforms, φ∗1, ..., φ∗M which form
the rows of the sensing matrix φ, yielding M linear measurements.

with an important question about accurate reconstruction from M << N

measurements only. Letting φ denote the M × N sensing matrix with the

vectors φ∗1, ..., φ∗M as rows (a∗ is the complex transpose of a), the process of

recovering g ∈ RN from y = φg ∈ RN is ill-posed in general when M < N :

there are infinitely number of signals, ĝ for which φĝ = y.

2.3 incoherence and sparsity of signals

This section presents the two fundamental principles underlying CS: sparsity

and incoherence.

2.3.1 sparsity

Most natural signals have compact representations when transfomed to a ap-

propriate basis. For the image in Figure 2.2(a), wavelet coefficients provide

a very compact representation. In mathematical terms, we wish to express a
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vector g ∈ RN (such as the N -pixel image in Figure 2.2) in an orthonormal

basis (such as a wavelet basis) ψ = [ψ1, ψ2, ...ψN ] as follows:

g(t) =
N∑
i=1

xiψi(t) (2.2)

where x is the coefficient sequence of g, xi =< g, ψi >. Compactly we can

write g as ψx where (ψ is N × N matrix with ψ1, ψ2, ..., ψN as columns).

Thus when a signal has a sparse expansion, we can reject the small coefficients

without any significant loss. Now, consider gK(t) obtained by keeping only

the terms corresponding to the K largest values of (xi) in the expansion (2).

By definition, gK := ψxK , where xK is the vector of coefficients xi with all

but the largest K set to zero. This vector is sparse, since barring few, all of

its entries are zero. Such objects with at most K nonzero entries are called

K-sparse. Since ψ is an orthonormal basis (or orthobasis), we have || g −

gK ||2=|| x − xK ||2, and if x is sparse or compressible in the sense that

the sorted magnitudes of the xi decay quickly, then x is well approximated

by xK and therefore, the error || g − gK ||2 is small. Thus one can throw

away a significant portion of the coeffiecients without much loss. In figure,

2.2(c) we show an example where the perceptual loss is barely observable from

the image of 65,536 pixels to its approximation obtained by throwing away

90% of the coefficients. Sparsity is a fundamental modeling tool which allows

efficient fundamental signal processing; e.g., accurate statistical estimation

and classification, efficient data compression, and so on. By determining how

efficiently signals can be acquired nonadaptively, sparsity has a significant

impact on the process of aquisiton process itself.
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Figure 2.2: a) Original image with 65,536 pixels with pixel values in the range
[0,255], b) A very large number of wavelet coefficients are nearly zero, indicat-
ing the image’s compressible nature which is true for most natural images, c)
No perceptual loss in reconstructed image after rejecting 90% of the wavelet
coefficients

2.3.2 incoherent sampling

Suppose we have a pair (φ, ψ) of orthobases of RN . The first basis φ is used

for sensing the signal g and the second is used to represent g. The coherence

between the sensing basis φ and the representation basis ψ is

µ(φ, ψ) =
√
n.max |< φk, ψj >|, ∀1 ≤ k, j ≤ n (2.3)

Thus correlation measures the largest correlation between any two elements

of φ and ψ. If φ and ψ contain highly correlated elements, the coherence

is large. Otherwise, it is small. From basic linear algebra, the coherence,

µ(φ, ψ) ∈ [1,
√
n]. Since in compressive sensing, the pairs of bases of interest

are required to have low coherence, we will now give examples of such cases.

Firstly, φ is the canonical or spike basis φk(t) = δ(t− k) and ψ is the Fourier

basis, ψj(t) = n−1/2ei2πjt/n. Since φ is the sensing matrix, this corresponds to

the traditional sampling scheme in time. The coherence of time-frequency pair

follows the relation, µ(φ, ψ) = 1 and therefore, we have maximal incoherence.

In the second example, we have wavelets bases for ψ and noiselets [11] for φ.

The coherence between noiselets and Haar wavelets is
√
2 and that between
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noiselets and Daubechies D4 and D8 wavelets is respectively, about 2.2 and

2.9. Noiselets are also maximally incoherent with spikes and incoherent with

the Fourier basis. The noiselets are very important for efficient CS implemen-

tations since they are incoherent with bases providing sparse representations

of image data [6]. As a third example, we have random matrices which are

highly incoherent with any fixed basis ψ. We select an orthobasis φ uniformly

at random, which can be done by orthonormalizing N vectors sampled inde-

pendently and uniformly on the unit sphere. Then with high probability, the

coherence between φ and ψ is about
√
2log(N).

2.4 measurement systems and sparse signal recovery conditions

We wish to recover all the N coefficients of g, but we get to observe only

a subset of the samples M ⊂ 1, 2, ..N . These samples are encoded in the

following manner.

yk =< g, φk > k = 1, ...,M (2.4)

The reconstruction equation ĝ = ψx̂, where x̂ is the solution obtained through

l1-norm minimization through the convex optimization program given by

max
x̂∈RN

|| x̂ ||1 s.t yk =< g, φk > k = 1, ...,M (2.5)

Suppose the signal g ∈ RN in terms of the coefficient x is K-sparse, then

selecting M measurements in the φ domain uniformly at random gives the

following.

IfM ≥ C.µ2(φ, ψ).K.log(N), for some positive constant C, the solution

to equation 2.5 is exact with overwhelming probability. It follows that the

role of coherence is very simple; the smaller the coherence, the fewer samples

are needed, and hence we look for systems with low coherence. Also the

signal g can be exactly recovered from smaller data set through minimizing a
10



convex function which need not have any knowledge about number of nonzero

coefficients and their locations or values.

2.5 reconstruction algorithms

The objective of the CS decoder is to reconstruct the K-sparse signal g ∈ RN

from its compressive measurements y ∈ RM . One method of solving this l1

optimization problem is through Basis Pursuit (BP). Yet another method of

reconstruction through Basis Pursuit Denosing (BPDN) is well suited in cases

where measurements are noisy. The measuring process with noise can be given

by

y = φx+ z, y ∈ RM , x ∈ RN , z ∈ RM (2.6)

where z is a stochastic noise or a deterministic unknown error term. The

solution to the BPDN optimization problem is given by

x̂ = argmin || x̂ ||1 s.t. || y − φψx ||< ε (2.7)

where ε is a constant which takes into account the variance of the noise z.

2.6 compressive imaging

In this section we describe the application of compressive sensing to a imag-

ing device, developed in Rice University [37]. The compressive imaging system

developed by them embodies a microcontrolled mirror array propelled by pseu-

dorandom and other measurement bases and a single or multiple photodiode

optical sensor. CS camera by employing a single photon detector, provides a

significant advantage over conventional cameras in that it can be adapted to

image at wavelengths which are not possible with the latter. The compressive

measurements of the image are computed optically, as per the CS theory. And

finally, CS reconstruction algorithms are employed to recover the actual im-
11



ages. In addition to this, it provides the provison of acquiring measurements

of a video signal which can be reconstructed by either 2-D reconstruction of

one frame at a time or joint 3-D reconstruction. The measurement bases used

in the camera are incoherent with any sparse bases, and hence the camera

can be used to capture all kinds of images. The compressive imaging block

diagram from [37] is shown in the Figure 2.3. The hardware implementation

Figure 2.3: Figure from [37]: Compressive Imaging (CI) camera block dia-
gram. Incident lightfield (corresponding to the desired image x) is reflected
off a digital micromirror device (DMD) array whose mirror orientations are
modulated in the pseudorandom pattern m supplied by the random number
generators (RNG). Each different mirror pattern produces a voltage at the
single photodiode that corresponds to one measurement ym.

of the above imaging system is a single-pixel camera. It incorporates a micro-

controlled mirror array displaying a time sequence of M pseudorandom basis

images, φm which is combined with a single optical sensor to compute inco-

herent image measurements y. The camera provides the luxury of adaptively

selecting the number of measurements to be computed, by trading off the ex-

tent of compression versus acquisition time, while the conventional cameras

trade off the resolution against the the number of pixel sensors.
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Chapter 3

PROBLEM FORMULATION

3.1 dynamical models of activity recognition

In this chapter we formalize the problem of activity recognition from funda-

mentals, develop the theory and cast it as a problem of texture recognition.

The problem of action recognition can be studied at two levels of complex-

ity, one being the simple movements performed by a single human, termed

as ‘actions’ and other being ‘activities’, the coordinated combination of sev-

eral simple movements performed by a small group of humans. Examples of

actions can be running, swimming, walking, bending etc. and examples of ac-

tivities are two persons shaking hands, a group of people dancing in a certain

coordinated manner. Here, we give a overview of approaches of action recog-

nition. Since our method (explained later in this chapter) relies on quantifing

fine variations in non-linear dynamical system, we restrict to only dynamical

models used for action recognition. [29] lists down 3 major dynamical models

used for action recognition, namely Hidden Markov Models, Linear Dynamical

Systems and Non-linear Dynamical System.

3.1.1 hidden markov models

The Hidden Markov Model(HMM) is a statistical tool for modeling generative

sequences governed by an underlying process which generates an observable

sequence. The system being modeled is assumed to be a Markov process with

unobserved (hidden) states. Each state has a probability distribution over

the possible output tokens. Therefore the sequence of tokens generated by an

HMM gives information about the sequence of states. In the case of action

recognition, the temporal evolution of a activity is modeled by HMM. HMMs
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first gained popularity in speech recognition [30]. [25, 2] applied HMMs to

model the temporal evolution of human gait patterns for action recognition.

Since these methods assume that the feature sequences on which HMM is

enforced, are obtained from actions perfomed by a single person, they are not

useful in modeling activities perfomed by more than one person. HMMs are

limited in their applicability to stationary actions due to the assumption of

Markovian dynamics and the time-invariant nature of the model.

3.1.2 linear dynamical models

Linear Dynamical models are an extension of HMMs to continuous space. Thus

the state-space is allowed to assume values in Rk where k is the dimensionality

of the state-space. A first-order time-invariant Gauss-Markov Processes as

described in [29] is given by the following.

x(t) = Ax(t− 1) + w(t), w ∼ N(0, Q) (3.1)

y(t) = Cx(t) + v(t), v ∼ N(0, R) (3.2)

where x ∈ Rd is the d-dimensional state vector and y ∈ Rn is a n-dimensional

feature vector with d << n, A, the transition matrix and C, the measurement

matrix. w and v are the process and observation noise respectively which

are Gaussian distributed with zero-means and covariance matrices Q and R

respectively. There is a rich literature to obtain the closed form solutions

for learning the model parameter (A,C) from the feature sequence y. This

model has been successfully used in applications of recognition of actions and

actions based on gait, most notably in [27, 13]. Recently a linear dynamical

system (LDS) [31] was used to recover videos from CS cameras and recognize

actions. Here the compressive measurements, instead of feature vectors were

used to form the temporal sequence y. However, as with HMMs, since LDSs
14



are developed using Markovian dynamics, the drawback of this model is its

time-invariant nature which renders it useless for non-stationary actions.

3.1.3 nonlinear dynamical models

A activity is composed of sequences of actions of short durations. Hence it

is not possible to model the whole activity by a single LDS. In such a case,

each action can be modeled by a different LDS. This gives rise to the notion

of switching LDSs. Thus the model parameters (A,C) will now vary with

time and are replaced by (A(t), C(t)) [29]. Approaches to model activities

using LDSs are restricted to use time series data, which lies on Euclidean

space. However most successful features used in computer vision are non-

linear features like SIFT, HOG. [10] describes a activity recognition method

in which the temporal evolution of histogram of oriented optical flow(HOOF)

features is modeled using Nonlinear Dynamical Systems(NLDSs).

3.2 problem formulation

Now, we formulate the problem of action recogntion from compressive measure-

ments into one of identifying discriminative features in a non-linear dynamical

system. To start with, when a sequence of images is acquired by a compressive

camera, the measurements are generated by a sensing strategy which maps the

image space I ∈ RN to an observation space Z ∈ RM . The overall mapping

consists of a transformation F from the 3D scene-space S to image-space, with

the addition of noise n in the sensor, followed by the measurement matrix φ,

which gives measurements Z,

I(t) = F ◦ S(t) + n(t) (3.3)

Z(t) = φI(t) (3.4)
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Here S(t) refers to a model of the scene (such as a CAD model) with a human

performing an action. Compressive sensing represents a succession of data-

reduction operations, going from the full-blown space of 3D scenes to image-

space, and then to measurement-space. Assuming that the changes in the

scene are due to a human performing some activity, we seek features that can

be extracted directly from the sequence of measurements {Z(t)}. Since we do

not intend to reconstruct the image-sequence, we are restricted in our ability

to extract meaningful features. However, the JL-lemma suggests that the

general geometric relations of a set of points in a high-dimensional space can be

preserved by certain embeddings into a low-dimensional space. In the case of

compressive sensing, this embedding is achieved by the random measurement

matrix φ, in other words orthogonally projecting to RM . Formally stated, the

Johnson-Lindenstrauss lemma is given as follows:

Given 0 < ε < 1 , a set X of Q points in RN , and a number M > N0 =

O( log(Q)
ε2

) , there is a Lipschitz function f : RN → RM such that

(1− ε)‖v − u‖2 ≤ ‖f(v)− f(u)‖2 ≤ (1 + ε)‖v − u‖2 (3.5)

At this point in time, we recall the fact that many human activities lie in-

trinsically on low-dimensional manifolds. For example, the deformations seen

in the shape of a tracked human silhouette performing a activity like walking

are governed by physical body constraints, more specifically the joint-angles

in the body. Thus number of degrees of freedom required to determine a hu-

man activity is significantly small when compared to high-dimensional image

data. It is shown in [4] that these images of tracked humans when considered

as points in a high-dimensional visual input space, lie on a low dimensional

manifold and a lot of work has been done to explicitly model the manifold and

extract its structure from full-blown images for tracking and activity recogni-
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tion [24, 23]. Using JL-lemma, it is shown in [3] that if sufficient number M

of random projections of a manifold-modeled signal are taken, then with high

probability, all pairwise Euclidean and geodesic distances between points on

the manifold are well preserved. Thus manifold structure obtained from CS

measurements will be about the same as that obtained from the images. Last

few years has seen considerable amount of research to exploit the above notion

to reveal the structure of the underlying manifold from CS measurements, most

notably in [19], where a greedy algorithm is developed to estimate the smallest

dimension to which the high-dimensional data can be projected and perform

manifold learning. While we do not attempt to explicitly determine manifold

structure, our work is related to the above mentioned works in that we wish to

utilize the inherent geometric structure for activity recognition which is what

activity recognition methods using manifolds are based on and that we wish to

do it from CS measurements directly. Motivated by this, we wish to explore

the notion of recurrence plots which encode the geometric structures of the

data [17]. Further, considering that the system defined in equation (3.4) is a

non-linear dynamical system, we attempt to understand the system properties

via its recurrence properties [26, 38].

3.3 recurrence textures and classification of activities

Recurrence plots (RPs) are a visualization tool for dynamical systems. These

plots often reveal correlations in the data that are not easily detected in the

original time series. A recurrence matrix defined as

R(i, j) = θ(ε− ‖xi − xj‖2) (3.6)

where xt is the observed time series and θ(.) is the Heaviside step function.

RPs which are thus binary images displaying black dots where the values
17



are within the threshold ε, are shown to capture the system’s behavior and

be distinctive for different dynamical systems. Recurrence plots are intricate

and visually appealing. They are also useful for finding hidden correlations

in highly complicated data. Moreover, because they make no demands on

the stationarity of a data set, RPs are particularly useful in the analysis of

systems whose dynamics may be changing. For example, Casdagli[7] used RPs

to characterize time series generated by dynamical systems driven by slowly

varying external forces.

At the time instant t, the compressive measurement of the image obser-

vation (the tth frame of the video sequence) is Z(t) ∈ RM . Thus, if a sufficient

number of measurements are taken, then with high probability the RPs for the

compressed {Z(t)} and uncompressed signals {I(t)} will be the same. Though

these seems like a straightforward consequence of the JL-lemma, we formally

quantify the exact error between these RPs in section 3.4. Thus, we propose

to use the recurrence relations of {Z(t)} as a means to acquire discriminative

features from activities. In order to quantify the structures in RPs, a set of

measures known as Recurrence Quantitative Analysis have been proposed by

[17, 26, 38]. Recurrence Quantification Analysis, is particularly useful in find-

ing locations in the data where the underlying dynamics change. RQA is the

best available approach to analyze the dynamics of a system from recurrence

plots. In order to perform RQA on a data set, we first construct a RP, choos-

ing a threshold and then use that RP to compute statistical values namely %

recurrence(REC), % determinism (DET) and entropy. The first of these statis-

tics, termed % recurrence(REC), is simply the percentage of points on the RP

that are darkened. The second RQA statistic is called % determinism(DET);

it measures the percentage of recurrent points in a RP that are contained in
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lines parallel to the main diagonal. Diagonal lines are included in the analysis,

if and only if they meet or exceed some prescribed minimum length threshold.

Intuitively, DET measures how organized a RP is. The third RQA statistic

called entropy, is closely related to % determinism. Entropy(ENT) is calcu-

lated by binning the diagonal lines according to their lengths and using the

following formula:

ENT = −
N∑
k=1

Pklog(Pk) (3.7)

where N is the number of bins and Pk is the percentage of all lines that fall

into bin k. However, the lumped nature of RQA measures do not capture the

dynamics of different system unambiguously, sometimes yielding similar RQA

measures for structurally dissimilar RPs. For example in figure 3.1, it is shown

Figure 3.1: Figure from [21]: RQA results on structurally dissimilar RPs can
be almost identical. These two very different RPs, one (left) from the Rossler
system and other,(right) a sine-wave signal of varying period, have equal or
near-equal values of REC (2.1%) and DET (42.9% for the Rossler data and
45.8% for the varying-period sine wave).

that two structurally different RPs that are almost identical from the stand-

point of RQA. Moreover, the RPs themselves are very sensitive to the thresh-

old, leading to different structures for different thresholds for the same system.
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These limitations motivate us to make use of the full geometric information

encoded in the non-thresholded recurrence matrices or the non-thresholded

recurrence plots(NTRPs). We term the non-thresholded recurrence matrices

simply as ‘Distance’ matrices. But instead of calculating the distance matrix

for the time series obtained from the sequence of measurements, we calculate

it for the time series obtained by taking the first derivative measurements

(successive difference operation). Thus, for each sequence of compressive mea-

surements {Z(t)} the distance matrix is a square-symmetric matrix, D of size

(T − 1)× (T − 1), given by

D(i, j) = ‖Ż(i)− Ż(j)‖2 (3.8)

where Ż(i) = Z(i+1)−Z(i). We perform this successive difference operation

as a way to remove the effects of a static background, so that features are

more sensitive to movement in the scene. On visualizing the distance matrices

as intensity images as shown in figure 3.2, it is clear that different activities

give rise to widely different recurrence textures. Motivated by this, we pose

the problem of classification of the dynamical system as a texture recognition

problem. To this end, we utilize a computationally simple yet powerful texture

classification method based on local binary patterns (LBPs) [28]. Certain

LBPs termed as ‘uniform’ are fundamental properties of image texture and

and their occurrence histogram is proven to be a powerful texture feature.

3.4 quantification of error in ntrps

Before we move to explain how texture recognition is performed using LBPs,

we wish to know exactly, by how much the non-thresholded recurrence plots(NTRPs)

obtained from CS measurements differ from those obtained from original im-

ages. Formally, we will quantify the error between two ‘Distance’ matrices
20



Figure 3.2: Row1: Examples of different activities from UMD dataset; Row2:
Corresponding recurrence texture representations of the actions.

in terms of Q, the number of frames used to obtain those matrices, M , the

number of CS measurements, N , the dimension of the original image. From

[14], we gather that a linear mapping represented by aM×N matrix φ, whose

entries are randomly drawn from certain probability distributions, can be con-
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sidered as Lipschitz function f . Hence from JL-lemma it follows that for every

two points xi and xj in image space I ∈ RN and M > O( log(Q)
ε2

), we have the

relation in (3.9).

(1− ε)‖xi − xj‖2 ≤ ‖φxi − φxj‖2 ≤ (1 + ε)‖xi − xj‖2 (3.9)

By defining similar inequalities for every pair of points in a sequence of Q

images and then adding them, we arrive at the relation in (3.10).

(1− ε)
Q∑
i=1

Q∑
j=1

‖xi − xj‖2 ≤
Q∑
i=1

Q∑
j=1

‖φxi − φxj‖2 ≤ (1 + ε)

Q∑
i=1

Q∑
j=1

‖xi − xj‖2

(3.10)

The summation terms in this inequality are nothing but the squares of forbe-

nius norms of the respective NTRPs, which in effect yields us the following

inequality. √
(1− ε)‖I‖F ≤ ‖Z‖F ≤

√
(1 + ε)‖I‖F (3.11)

where ‖I‖F and ‖Z‖F denote the forbenius norms of the ‘Distance matrices’ in

image and compressed domain respectively. We denote the ratio of forbenius

norm in the compressed domain to that in the image domain as RF and it

follows the bounds in equation (3.12).

√
(1− ε) ≤ RF ≤

√
(1 + ε) (3.12)

This ratio RF requires to be as close to unity as possible to ensure minimum

deviation in compressed domain. We define this deviation from unity as EF ,

and hence the bounds for it are given by equation (3.13)

√
(1− ε)− 1 ≤ EF ≤

√
(1 + ε)− 1 (3.13)

where EF = RF − 1. Since ε is directly related to M and Q, we can now say

that we have quantified the error between the NTRPs obtained from original
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image domain and those from compressed domain in terms of the number of

measurements and the number of points used to obtain those NTRPs. Since

M is directly proportional to Q and inversely proportional to the square of

ε, to be able to force EF close to zero, by taking very few measurements, it

is necessary that we construct the NTRPs from sequences of small number of

images.

3.5 local binary patterns

Local binary patterns (LBP) is a type of feature used for classification in

computer vision. LBP was first described in 1994 [33]. It has since been found

to be a powerful feature for texture classification.

The LBP feature vector in its simplest form is created in the following

manner.

• Divide the examined window to cells (e.g. 16x16 pixels for each cell)

• For each pixel in a cell, compare the pixel to each of its 8 neighbors (on

its left-top, left-middle, left-bottom, right-top, etc.). Follow the pixels

along a circle, i.e. clockwise or counter-clockwise.

• Where the center pixel’s value is greater than the neighbor, write ‘1’.

Otherwise, write ‘0’. This gives an 8-digit binary number (which is

usually converted to decimal for convenience)

• Compute the histogram, over the cell, of the frequency of each ‘number’

occurring (i.e., each combination of which pixels are smaller and which

are greater than the center)

• Normalize the histogram
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• Concatenate normalized histograms of all cells. This gives the feature

vector for the window

Figure 3.3: Local Binary Patterns
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Chapter 4

EXPERIMENTS AND RESULTS

4.1 activity recognition

For experiments, we choose the UMD Human Activity Dataset [35] and the

UCSD Traffic Dataset[9]. The UMD database consists of 10 different activ-

ities: Bend, Jog, Push, Squat, Wave, Kick, Batting, Throw, Turn Sideways

and Pick Phone. Each activity was repeated 10 times, so there were a total of

100 sequences in the dataset. Each sequence consists of 80 images and were

cropped to a resolution of 331 × 301. Some samples of the various activites

Figure 4.1: Samples images from various activities from UMD dataset

are shown in Figure 4.1. Each image is sensed compressively at measurement

factors of 100, 400, 800, 1000 and 1200 by taking the corresponding number

of random measurements. To achieve this, we multiplied the full images with
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a sensing matrix φ, which contained Gaussian i.i.d entries with expectation 0

and variance 1
M
, where M is the number of the measurements, corresponding

to the compression factor. Since the background is relatively static, in each

sequence, differences of compressive measurements of successive images are

taken to remove the effect of the static background. These difference measure-

ments are used to generate a distance matrix of size 79×79 for each sequence.

As explained before these distance matrices are viewed as textures.

Activity 1 2 3 4 5 6 7 8 9 10
1 10 0 0 0 0 0 0 0 0 0
2 0 10 0 0 0 0 0 0 0 0
3 0 0 9 1 0 0 0 0 0 0
4 0 0 0 10 0 0 0 0 0 0
5 0 0 0 0 10 0 0 0 0 0
6 3 0 0 0 0 6 0 1 0 0
7 0 0 0 0 0 0 10 0 0 0
8 1 0 0 0 0 0 0 7 1 1
9 0 0 0 0 0 0 0 0 10 0
10 0 0 0 0 0 0 0 2 0 8

Table 4.1: Confusion table for activity recognition experiment using compres-
sive measurements at a compression ratio = 100. The confusion matrix exhibits
a strong diagonal structure, which implies that most activities are recognized
correctly.

We used local binary pattern features [28] to classify the textures. Thus,

each sequence is represented by LBP feature descriptor of length 38 which gives

the normalized histograms of 38 binary patterns. For this experiment, we

performed a leave-one-execution-out test, in which we trained on 9 executions

and tested on the remaining execution for all activities using a simple nearest-

neighbor classifier. In table 4.1, we show the confusion matrix obtained for the

activity recognition experiment using the proposed method for a compression

factor of 100. The classification accuracy is obtained to be 90%.
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Compression factor Recognition Rate
Uncompressed 90%

100 90%
400 86%
800 84%
1000 81%
1200 80%

Table 4.2: Activity recognition rate for different compression factors. The
recognition rates are quite stable even at very high compression rates.

In table 4.2, we present average recognition results when the compres-

sion ratio was varied across a broad range of values. We observe that the

proposed framework works very well across a wide variety of compression fac-

tors. These are encouraging and positive results, which suggest that signif-

icant performance improvements are possible by a careful choice of features

and classifiers. The UCSD Traffic Dataset[9] consists of 254 videos captur-

ing the highway traffic in Seattle. These videos are acquired from a single

stationary camera over two days. The database contains different kinds of

traffic patterns and weather conditions like overcast, sunny, rain drops on the

camera lens. Each video is of length 50 frames at a resolution of 320 × 240

pixels. The database was labeled according to the amount of the traffic con-

gestion in each video. Out of the 254 sequences, 44 are of heavy traffic, 45 of

medium traffic, and 165 of light traffic. In figure 4.2, sample images from the

three types of traffic are shown. We perform a classification experiment of the

videos into these three categories. There are four different train-test scenarios

provided with the dataset. For comparison, firstly at fixed compression ratio

of 25×, we perform the same experiments with CS-LDS [31] as well as our

method. The results show that our method performs significantly better than

CS-LDS method for compression ratio equal to 25. Secondly, we perform the

4 experiments using our method for different compression ratios.
27



(a) Light

(b) Medium

(c) Heavy

Figure 4.2: Samples images from 3 different types of traffic from UCSD dataset:
Light, Medium and Heavy

Expt.1 Expt.2 Expt.3 Expt.4
Our method 92.06 92.19 85.94 92.06

CS-LDS(d=10) 84.12 87.5 89.06 85.71

Table 4.3: Classification results (in %) on the UCSD Traffic Dataset.

Compression ratio Expt.1 Expt.2 Expt.3 Expt.4
25× 92.06 92.19 85.94 92.06
150× 88.89 78.13 78.13 82.54
300× 87.30 82.81 76.56 82.54

Table 4.4: Classification results at different compression ratios (in %) on the
UCSD Traffic Dataset.

4.2 error in ntrps

In section 3.4, we derived a relation to quantify the error between the NTRPs

in the image domain and compressed domain. Here we empirically verify the

inequalities derived for this deviation by calculating NTRPs for sequences of

images for activities from the UMD dataset. It is shown in figure 4.3 that

empirical results are consistent with the bounds given by equation (3.13). We
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Figure 4.3: Comparison of the upper and lower bounds for EF with empirical
results. The errors in NTRPs obtained for sequences of images for activities
from UMD dataset, for different compression ratios are consistent with the
theoretical bounds calculated. The errors are very much within tolerable lim-
its even for high compression ratios, thus promising the applicability of our
approach for similar inference problems.

notice that the deviation in NTRPs is very much within tolerable limits even

for a very high compression ratio of 1200, thus promising the applicability of

our approach for similar inference problems. The deviation, EF naturally in-

creases with ε which in turn is proportional to logarithm of number of points

needed to obtain NTRPs and inversely proportional to the number of mea-

surementsM . Thus for a fixed deviation, it is possible to decrease the number

of measurements, if we use less number of points to obtain NTRPs. From this

we can conclude that if we know in advance that a small number of frames

gives discriminative information about a activity, we can reduce the number

of measurements to capture those fewer number of frames.
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Chapter 5

FUTURE WORK

In this thesis, we presented a framework to address activity recognition from

compressive cameras. This has potential applications in a wide variety of re-

source constrained contexts such as in remote air-borne surveillance, or home-

based security and health-care systems. We proposed a solution based on

dynamical analysis via recurrence relations, which has an interpretation in

terms of geometric structures of high-dimensional data. We showed that these

geometric structures are preserved even in the compressed domain, and do

contain significant discriminative information to recognize activities at very

low data-rates. We further quantified the deviation in geometric structures in

compressed domain from those in original image domain and showed that the

deviations are within tolerable limits even for a very high compression ratio.

Having explored feature extraction at the most basic level for action recogni-

tion, future research can be pursued in following two ways. Firstly, we plan to

the explore the possiblity of extraction of more sophisticated and traditionally

successful features like motion vectors for activity recognition. Secondly, we

will be looking into the problem of extraction of more general features like

shapes, integral images directly from compressed images, the kind of features

that are useful in general computer vision problems and not necessarily only

activity recognition.
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