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THREE SCIENTIFIC AGNOSTICISMS 



Instant: Is the edge a line? 

 Think of these as intensity profiles. 

 They have different Fourier Series, and 
different energy spectra. 

 They are a trivial subset of what can be 
found in images 

 How do you work with them 

 If they represent the shape of a mountain 
you are climbing 

 If you have the wrong map 

 We assume the real world is shaped 
something like this every day.   
 Processing the stock market 

 Making assumptions about the shape of a 
machined parts or processes. 

 Construction of Autopilot and cruise control 
systems 

Our systems might be better if they could handle more, whatever that means. 
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Over time: measurement isn’t information 

 When we measure: 
 We measure over time 

 The measurements are comprised of 
signal and noises 

 They are fixed in count – the real 
world is continuous the 
measurements are not. 

 Questions 
 How many terms in the Fourier 

series until we are over-fitting? 

 What if we used a Polynomial? 

 Points 
 We have a finite zoo of fit-functions 

here too. 

 Many of our functions come with 
baggage.  
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Variation: The mean is nonphysical 

 Mean is best estimator of 
“central tendency” 

 A measurement of mean is 
incomplete – the real world 
has both variety and noise. 

 Physically valid 
measurements characterize 
uncertainty/variation. 

 There are multiple classes of 
sources of variation: 
phenomena, sensor, and 
model  

 

Our systems might be better they could characterize their own uncertainties. 

Q: Am I a light-year (LY) away from you? 
A: Yes, one LY ± one LY.   



By Agnosticisms I mean: 

1. It can work with many profiles because it makes the data supply the 
profile instead of approaching it with a mean, or an a-priori model.  
Assumes signal energy spectrum doesn’t change (much) over time. 

2. It can automatically remove noise from a system using non-
parametric/hyper-parametric basis functions with a useful fit metric. 
Model Agnostic is the best description for this combination. Assumes 
regularity conditions for Information Criterion are met. 

3. It can automatically account for its own variation (and enable lots of 
fancy processing) by interpolation, and model-agnostic basis 
functions, and an extension to a very useful fit metric.  Imposes 
Discrete Kalman Filter form on process. 



VISUAL METROLOGY  



Measuring things using images 
 Most human-useful visual information is 

complex, and noisy.   

 Procedures that depend on pristine 
phenomena fail.  How do you measure the 
edge of the shoulder? 

 Paradigm 
 We use intensity values/transforms to trigger a 

“measure”.   

 We convert pixel-coordinates to a translated 
phenomena coordinates. 

 Current applications for visual metrology 
 PIV, flow-field metrology 

 Agriculture, Ecology, Geography, … 

 Manufacturing Quality Control, defect capture, 
measurement 

 Health (X-ray, CAT, MRI, …), Security  
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What I measure with Images 

 Part phenomena 
 Substrate and Chip: Center, Edge, 

size 

 Ball Height, Diameter, Offset 

 Ball field Coplanarity 

 Passives, Lids, Pins, Pads, Fiducials, 
Other marks 

 Surface damage, foreign material 

 Some approaches 
 Threshold by intensity 

 Rigid rotation/translation 

 Row and column sums 

 Intensity based triggers 

Substrate 
Passives Die (chip) 

Epoxy 

Marks, Fiducials 
Not a real Chip 



A Measurement Problem 

 Given the picture 

 A movie containing hours of variations of 
this picture. 

 This picture is a calibration wafer on an xy 
table that is part of a laser-scribe. 

 Measure the position of the “lanes”  
 Only approximate pixel size is known (~700 

microns per pixel) 

 We don’t care about each one, we care about 
their center location. 

 We don’t know the y-position where it starts. 

 The camera goes on and off the die 

 to the best accuracy and precision 
possible 
 Try to beat a pixel in resolution. 

Lower Lane 

Upper Lane 



General Approach 

 Procedure: 
Informed by Particle Image Velocimetry (Dr. Adrian, MAE 504) 

 Smooth as needed 

 Find a “particle at each column of pixels in each image” 

 Convolute it (frequency domain) it with what it should be at the next column 

 Repeat until done with all images 

 But 
 Skip images if information is redundant,  

 Don’t miss anything important 

 Make it run “fast” on the computer – we can’t wait weeks to process 

 Desired form of results 
 Give statistics on the wafer, and on each “chip” as defined by “between 

intersections. 

 Give plots of centered data – we don’t care if it starts at pixel x, we care about 
how it changes position over the traverse of the table. 



General results 

 Useful, but involved “voodoo”, “art” or other forms of 
non-science. 

 Detailed (extensively) later in this presentation 

 

 Drove me to explore, and that is a good thing. 

I have been lucky enough to gain a reputation as a solver of exotic problems.  
This is useful because it brings me more exotic problems to solve than I could 
ever have managed alone. 



EXTREME SUB-PIXEL VISUAL 
METROLOGY 



Framework 

Tools 

 Use Gaussians, it is a good basis 
function 

 Use constants that I know [0, 1, pi, 
sqrt(2)] so I can test it.  Make sure it 
can’t be accidentally “perfect”. 

 Use common sample densities, traverse 
17 – human neural processing, 
recognition, physical intuition. 

 Test conclusions in “good” synthetic 
example (damped nonlinear spring) 
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Fig. 1 - Convoluting Gaussians
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The Four Knobs 

 Initial Sampling 

 How many patches of spatial averaged intensity traverse the 
domain?  

 Spatial discretization in image.   

 Offset of intensities 

Rigid translation in intensity profile domain. 

Somewhat non-physical for pdfs, but good calibration for image 
intensities. 

 Resampling 

This improved the spatial discretization of convolution surprisingly. 

 Smoothing 

to handle the intensity discretization. 

 



Knob: Initial Sampling Density 

Observations 

 Analysis is contrived in terms 
of minimizing maximum error. 

 Max error decreases as cube 
of initial sampling. 

 Mean error is about 16x 
smaller (1.2 decades) 

 For 17 samples per reference 
the expected maximum error 
is 0.044%.   

 Error in terms of pixel size is 
found by dividing the 
expression by Dx.  Max Error 
per pixel is 0.378% 
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Knob: Reference intensity offset 

Observations 

 Negative offset makes 
the convolution have 
more curvature (smaller 
central variation) than 
either input. 

 The curvature affects 
how “quadratic” the top 
is, and makes the 
analytic root a better 
estimate of the true root. 

 Offset was set at 23rd 
percentile (or less) of 
reference intensity. 
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Knob: Interpolation Sampling Density 

Observations 

 The analytic result has many 
“roundoff” results (shown in red).   

 Information is defined here as 
inverse of Error. 

 Dimensionless error is useful 
because it eliminates a need to 
convert to error per pixel. 

 Critical value where resampling 
starts improving values is around 
8.78. 

 A resampling ratio of 10 was a 
good accident. 
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Knob: Smoothing 

Observations: 

 Added noise in this case was uniform, not 
centered.  This is therefore an error-ceiling 
approach. 

 The “nu” is the scaling factor multiplied to the 
noise term where the transition occurs. 

 Discretizing the value from 64 bit (IEEE 784) to 
8-bit (in images) is the same as adding noise. 

 A small smoothing applied to the discretization 
(x≤6% loess) was found to “undo” the effect of 
adding the discretization noise.   

 This should be further investigated for its 
implications in multi-precision computing. 
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Synthetic Case: Setup 
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 Each vertical slice is a Gaussian with 
mean equal to  and standard deviation 
of 0.00825. 

 The image has 480 rows and 640 
columns. 

 Initial column is set to zero mean 
for calibration purposes. RK4/5 =‘ode45’ 



Synthetic Case: Processing 

 Parameters are consistent 
with values determined 
above 

 A Loess smooth of 2.3% 
was used between the raw 
sampling and the super-
sampling. 

 It was found useful to 
express error in terms of 
information per pixel. 

17 samples 

Offset = 23% 
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Synthetic Case: Results 

 The 640 lines resampled to the 66 
time-steps from the numeric 
solver using Hermite interpolation 

 Zero-crossings give error artifacts 

 Indicated by mean-median mismatch 
and iqr vs. population stdev estimate 
mismatches. 

 Visible in error subplot – outliers are 
all toward right side of plot. 

 Max error (red circle) at 0.32%.  
Median error was much better. 

 In 66 samples this compares well 
to the expected ceiling of 0.37%  

 

Error Dx/err

mean 3.1259E-06 5694.7

median 2.7618E-06 1131.5

std/sqrt(n) 2.8534E-07 1633.9

iqr/1.35 2.5036E-06 1324.6

range 9.9724E-06 68074

Statistics (Absolute valued)



GLOBAL SMOOTHING 



Smoothing: First problem 

 Small sample size and 
histograms don’t work 
well together. 

 Empirical CDF works 
better 

 Centered errors cancel 

 Overall trend is easier to 
perceive. 
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AIC+Spline on CDF: The approach 

 Convert data to cumulative domain  

 Use Akaike Information Criteria (AIC) 
to find best smoothing value. 

 Interior minimum is “best”. 

 Take analytic derivative to convert the 
fit to non-cumulative domain. 

 Model is in Cumulative domain 

 Cubics go well with many CDF’s 
 Handles the tails 

 Taylor series error at fourth-order term 
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Akaike Information Criterion (AIC) 

 One of many “Information 
Criterion” 

 Derived from Kullback-
Leibler divergence. 

 Has very useful form (takes 
inputs that are convenient 
outputs) 

 Minimum AIC indicates 
“best” candidate model. 

 
 

 


 k
n

RSS
nAIC 








 2

RSS = Sum of Squared Error 

K = number of parameters in model 

n = number of samples  

 = smoothing parameter used in spline 

H. Akaike, “An information criterion (AIC)”, Math. Sci., 
14(153):5-9 (1976). 



About the Parameter 

Observations 

 Not uniformly sampled 
because experience in 
CDF’s taught me all the 
action happens at the 
end. 

 Density is “high enough” 
to “sufficiently” 
characterize domain. 
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Smoothing: Analytic Model 

 Sampling 

 There are 30 samples taken 
per second  

 There repetitions of the cycle 
that are sampled. 

 This is required to characterize 
“capability”. 

 Statistics folks prefer 30 as 
a minimum sample size.   
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Fig. 14- Smoothing on Corrupted Sine
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Smoothing: Finding the AIC 

 Model is in non-cumulative 
domain so AIC is calculated there. 

 There is a clear interior minimum 
at 265 

 If treated in cumulative domain 
the “drunkards-walk” is 
confounded with the “model”. 

 Interior is critical – the right end 
perfectly interpolates and is a 
false-positive. 

 AIC derived parameter is 0.039% 
off of a least-squares reduction to 
the exact one – its effectively 
identical 
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Variation is decreased 
by 59.3% 

 

Decrease is non-
uniform, big errors 
are fixed more than 
small ones. 



MODEL VARIATION 



Variation in the model 

 AIC is an approximation of the 
log-likelihood. 

 There is a “puddle” of candidate 
models. 

 Using the ratio of AIC to optimal 
AIC (Akaike weights) the 
following set the size of the 
puddle: 

 0 to 2 : substantial support 

 4 to 7 : considerably less support 

 Over 10 : essentially no support 

 This family of candidate models 
describes the model uncertainty 
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Evaluated over domain (EDA) 

 Used 200 candidate 
models uniformly 
spaced across puddle. 

 Computed standard 
deviation of ensemble 
at every point 

 Observations 

 High correlation in 
the lag plot 

 Exponential-like 
distribution in eCDF 
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As a function of State 

 Informed by General form of 
Kalman filter (to follow) 

 Reasonable trend suggests 
use of smoother 

 Smoothed form looks 
quadratic 

 Smoothed for is analytic 
already, but using a fit tool 
can make it more user-
friendly. 
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Simpler Variance function 

 Inputs were last 4 
state variables:  
x(t-1)… x(t-4) 

 Output variable was 
smoothed state 
standard deviation 



State Estimate 

 Vertical line test is failed 

 Non-Markov function 

 Needs two priors to 
specify state 

 Using Eureqa/Formulize 
a simpler (non-spline) 
analytic form was 
found. 

 R2 is the fit statistic, not 
the variance. 
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Kalman Filtering 

 Process: 

 Predict using model 

 Update estimate using 
measurement 

 Assumptions: 

 Markov – last state 
estimate holds all 
information needed. 

 Uncorrelated noise 

 Update model is good 

Taken From Welch (2006) 
http://www.cs.unc.edu/~welch/kalman/  

http://www.cs.unc.edu/~welch/kalman/


Our System 

Filter Parameters 
1. H = 1 
2. B = 0 
 
Reasoning 
1. Direct state measurement  
2. This Parameter estimation does not require 

control input. 
 

Assumptions: 
1. All new information is provided in most recent 

step. 
2. State update function sufficiently describes 

underlying physics 
3. Noise is  

a) Centered 
b) Uncorrelated 

4. Underlying  state is interior to span between 
model prediction and measurement 

Measurement “z” 

Actual state “x” 

State Estimate “x+” 

State Prediction “x-” 

“R” covariance 

“P” covariance 

“Q” covariance 



Variation due to Measurement 

 The measurement process 
introduces noise and 
discretization error. 

 The measurement variance is 
shown on the left.   

 EDA within the lag plot shows 
in log-log scale the distribution 
is gaussian. 

 The mean, or expectation, of 
this is 0.88402. 
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The Kalman Gain 

 The function is simplified 
using our expressions for 
“R” and “P” 

 The minus means “prior”, a 
before-estimate.  Plus would 
be “posterior” or “after”. 

 Lag function suggests 
deterministic model in x 
(unsurprisingly) 
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Empirical Kalman Filter Results 

 Over an 10 runs the mean 
reduction in norm of errors using  
 the AIC fit was 60.7% ± 1.2% 

 The Kalman Filter 34.6% ± 2.4% 

 However the Kalman filter 
generalized the behavior better, 
and stages for other KF-derived 
tools (like smoothers and data 
assimilation) 
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The really important part: It worked reasonably well “out the gate” without tuning. 



RESULTS 



Case 1: Lane Tracking 

Brief Embedded PowerPoint 



Case 2: Ball Tracking 

Brief Embedded PowerPoint 



Summary 

 A method has been demonstrated that is useful for 
extreme sub-pixel measurement and is model agnostic in 
terms of the nature of the feature profile, in 1d or 2d.  Its 
real-world results are compatible with analytic cases. 

 A method has been demonstrated that is useful for 
removing the noise from the signal and is model-agnostic 
to the underlying model.  This method was extended into 
a framework for approaching the model uncertainty, and 
was applied to in a demonstration of a Kalman Filter. 



QUESTIONS? 


