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ABSTRACT
It is possible in a properly controlled environment, such as industrial metrodogake

significant headway into the non-industrial constraints on image-basitiompos
measurement using the techniques of image registration and achieveblepkesiture
measurements on the order of 0.3% of a pixel, or about an order of magnitude
improvement on conventional real-world performance. These measureneethsra
used as inputs for a model optimal, model agnostic, smoothing for calibratiorsef a la
scribe and online tracking of velocimeter using video input. Using app®griaooth
interpolation to increase effective sample density can reduce aintgdnd improve
estimates. Use of the proper negative offset of the template fuhetiatie result of
creating a convolution with higher local curvature than either temdi&eget function
which allows improved center-finding. Using the Akaike Information @aitewith a
smoothing spline function it is possible to perform a model-optimal smooth on scala
measurements without knowing the underlying model and to determine therfuncti
describing the uncertainty in that optimal smooth. An example of endgri¢ation of
the parameters for a rudimentary Kalman Filter from this is ginevided, and tested.
Using the techniques of Exploratory Data Analysis and the Formulimegigelgorithm
tool to convert the spline models into more accessible analytic fesufied in stable,
properly generalized, KF with performance and simplicity that excéextbook”
implementations thereof. Validation of the measurement includesrtizatalytic case, it
led to arbitrary precision in measurement of feature; in reasotesblease using the
methods proposed, a reasonable and consistent maximum error of around Qe3fgitthe
of a pixel was achieved and in practice using pixels that were 700nm feaias
position was located to within £ 2 nm. Robust applicability is demdssitiay the
measurement of indicator position for a King model 2-32-G-042 rotameter.
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INTRODUCTION

The following describes two “model agnostic” tools for use withsthentific
method: 1) a measurement procedure, described in terms of measuringl physica
dimension on an object using digital images but extensible to non-imagdagg
domains described by the diffusion of information from a central point of gttened 2)
a model-free but model-selection-optimal smooth that results in Eneytressions
describing the underlying system. The nature of tools would be more imehgdiat
recognized if a different label was used, but their nature and funatiold e falsely
represented as well, so although they can go by other labels, the ted@l-agnostic” is
preferred. “Non-parametric” is the most common substitute term, inaplies a lack of
parameters when in fact there are many more parameters thaonedditbdels such as
polynomials. Given the number of parameters, the term “hyper-parehreslightly
more appropriate, but it is still misleading because although theereaary more
parameters, they act together in what statisticians call a “normative” manner. To
say it is “non-informative” means that the initial form does leslead one from
unarticulated initial assumptions down a path that is more prone to ewldt,does not
mean that it provides any less information than other methods — it ppovmte. The
term that fits appropriately is “model-agnostic” because it encapsuddarge number of
common, useful, and simpler tools in a framework that can reduce the irstiah@sons
and resultant errors, and because it indicates that these tools lieenatdet of
baggage than those initially developed during tHecEntury, which are still in common
use.

The order of presentation of these tools is structured so thiitpavallel, as far
as it can, the last two steps of the flowchart of the scientific metitbdhve intention of

supporting the paradigm presented by (Anand, 2010) in the framework he presents for
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“Decision Oriented Design of Experiments”. Anand argues that the unifeighting
on variation is equivalent to an improper and negatively informatioe @nd then
provides a framework for approaching Design of Experiments (DOE) withgelsat
optimally inform the decision of the hypothesis — reweighting the vamiafpropriately.
This work parallels the intention of Anand in that the results ofiegifiin are meant to,
through their “non-informative” utility, or “agnosticism”, maximally suppibr next

steps in scientific investigation or data-driven improvement of pramuptiocesses.

Some Background on Sub-pixel Metrology

Visual metrology is the science of making measurements using phenomena that
parallel the human visual apparatus: light, optics, images, and imalysia.
Metrology, the science of measurement, is also an important part of pdssegn,
process health tracking, and process improvement, and it isrugemtiuict quality
assurance. Notonly is it a part of research in science but it is arfanti part of
profitability for industrial production. Effective production procesgeli@ment requires
information whose certainty or uncertainty is well characterized, ane®asengineered
to provide relevant and actionable results. Optimized production requiregdiaging
process to be held as closely as possible to the ideal process parastatdished
during design phase. Visual metrology is applicable in many of these @ag is
desirable as a measurement tool because it utilizes the mostctiadéthie human
senses: sight. It is for this reason that the model-agnostic measiirie presented and
described in terms of visual metrology: the measurement of physicablecan an
object using a digital image.

Naive feature measurement using images and human eyes requires aa absolut

minimum of 5-8 pixels to comprise a trivial image feature (Shel&pBondarko, 2004)

2



due both to the packing of photoreceptors in the eye and the downstream neudrologica
processors, which are optimized to handle that particular formatoofiation.
(Extensive description of this is contained in the numeric experimestisrsand is
further along in this work.) Slightly less simple features can retuinelreds to
thousands of pixels for humans to detect and process. An example is the number of
pixels required to differentiate one human face from another — théaalrives consumer
cameras to mega-pixels and beyond. Typical numbers of pixels required foy&are-e
feature detection of production typical features can be on the ordereodkskeundred
pixels which comprise a region that is on the order of ten’s of pixels tea sise of
first year calculus and computer programming will often reduce theatymienber of
pixels required for reliable computed metrology to approximately 10-20 goteds
relatively simple feature. Advanced math, including frequency domain methdds
techniques of “textbook” sub-pixel image registration, will allowreasurement of
feature locations with the significant reduction to the order ofideeds a single pixel
(Reed, 2010).

Improvement in visual metrology now requires that sub-pixel methods be more
aggressively explored. The uncertainty of a measurement is dependembotethof
the feature size. This fact directly competes with the definition ditgu®&uality, as an
engineering term, requires the continuous and systematic reduction of urtgéntée
process and the product. This reduction in uncertainty, Edward Deming askents, al
the producer to take advantage of unexpected opportunities and maximizeéecper
value of the product in the marketplace. In visual metrology, the lionitahposed by
pixel size places a floor on the uncertainty of a measurement and theuefoeeceiling

on the quality that the metrology system is capable of supporting. The usepifedub-



methods can remove the discretization imposed by the camera (or otloe)y asran
artificial limit on the quality of the process.

A brief exploration of measurement using sub-pixel methods reveals that it ha
been successfully applied to a number of areas including structural edasgt@delly,
Azeloglu, Kochpura, Sharma, & Gaudette, 2007), thermometry (Laval, 2008),
velocimetry (Yamamoto, 2009), anthropometry (Yu, 2008), densitometry (Liebgott
2008), econometrics (Wang, 2007) and epidemiology (Hughes, 2008). These
demonstrate that systems which discretize continuous data over i dmhdor which
relevant reference allows output profiles to be created can utilzenethod both for

calibration and for ongoing metrology.

Alternative Approaches

There are a number of formalisms used to approach measurement and modeling.
In order to evaluate the merits of each component it is valuable to decotistr
formalisms into the fields of: “basis”, “scope”, “metric”, “fit nod” and “validation”.
Some bases include “polynomial”, “trigonometric”, “radial”, “affimarisformed
sigmoid,” and others. In some cases, these are assembled in netwakanipte, the
“affine transformed sigmoid” is used to construct a number of Neutaldyle topologies
(Bishop, 1996). Some scopes for these bases include: “global”, in wheanglles are
used to determine parameters; “minimally local”, in which only enougitedj samples
are used to determine local interpolation; “hard-bounded intermediateihdowed:;
“soft bounded intermediate,” or weighted. A number of ways of computing the error
between the analytic expressions used to approximate the data ania fteetfiare

used, including the L-norm family members (L1 or “taxicab”, L2 or ‘l€igan”, L-

infinity norm or “Max Error”). Other error relationships include Mahalasalistance,
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Cross-correlation, and a number of Winsorized statistics operated pretteding error
measures. These error values are related to parameters ofisheitettons such that
parameter adjustments are found that reduce, as far as possib&uéhefithe error
metric using procedures that include: gradient descent, expectatiomigsion,
information criteria, genetic algorithms, particle swarm optimiuratand linear simplex
optimization. These lists are by no means exhaustive, but they indicatryhwoad
scope of candidate methods.

Three of the more popular approaches to problems such as this are neural
networks, Kernel Methods, and compressed sensing. Neural networks have the
advantage of being able to generalize high dimensional data well rooe adnallenging
to properly train, and sometimes capture fine (local-scale) &sapaorly. “Kernel
methods” (locally weighted methods) can be computationally cheap, alldyti@ana
expressions for gradients and confidence intervals, and can adequattemefine-
scale functions well and easily, but they do not handle very high dimensilargedata,
efficiently in time. Compressed sensing (Candes & Tao, 2006) is partycinteresting
because it was the first concrete way to “bypass” the Shannon Limaitiign, 1948) in a
wide variety of systems by randomly sampling in the domain then performesy i
optimization using an L1-norm, a very computationally inexpensive method, he fit t
samples to the basis-functions.

In this work a Neural Network basis was not used because though thegsisn
generalize the data, they have more difficulty in representing thediaéls. The model-
optimal spline-smoothing (described below) is a Kernel method iefdtmy a model-
optimal information criterion (detailed below). The extreme sublpneasurement
method (also described extensively below) can be considered a caibe itel the

compressed sensing in that it assumes no basis outside that provided by ifselfla
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however because of the highly constrained nature of the domain a randomgamplin
strategy was less adequate than a uniform sampling strategy. Althewagnbt derived
using the formalization of compressed sensing, and though it could be deconstrdcted a
analyzed using that sort of framework, this is not done here becasiselistantially

beyond the scope of this work.

EXTREME SUB-PIXEL MEASUREMENT

The reason that the extreme sub-pixel metrology described herein is cetside
model agnostic is that it does not presume a basis outside of that provitieddayat
The method described below takes a segment of intensities, either aligméuevpart or
with the rows, and as long as the information spectrum generating gharsteor
“template” is a reasonable characterization of the edge; it@iogasurement to the
fullest limit of the information in the image. Each new measuremengsrak
assumption about the previous one, and each new measurement uses every bit of
information available. The single assumption of this method is thatftrenation
spectrum of the object being measured is either unchanging or slowlyirdnatfghe
profile used is “reasonably characteristic” — if it has the loguUemcy components are
consistent across the domain, then profile mismatch cannot occur.

The following is derived primarily from empirical experience and rmnffirst
principles. It is based on the common sub-pixel technique used in stereo 2-pidte pa
image velocimetry (PIV) and is convolution based (Adrian, 1991). Thaniirig
technique is used to measure laser-illuminated particle positiorftuid,aallowing
computation of an approximation of the velocity field. A firstimage, usedefgm@nce,
is captured and broken down into sub-images. Each sub-image is then cornwittuted

similarly captured and sectioned sub-images of the target. Thimtooathe maximum
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of the convolution indicates the offset between the two images. \ltexaiiations on
this procedure allow the velocity field to be resolved down to a tgpalally greater
than 90% of the individual particles in the field, and allow position oreasent that is
accurate to around 10% of the size of a pixel.

In the large majority of industrial process, continuous material &sured rather
than particles. This enables some variations on the process tiftaigly improve the
quality of the measurement. The most significant variation in apiplchetween
industrial use and PIV is that in particle velocimetry case, the rya@drihe image space
is empty for the purpose of avoiding occlusion of illuminated particlest®r particles
in the fluid, while in the case of a solid-metrology, a large nigjofithe image can be
comprised of information — the total information density is much higher.ai XGA
image (480x640 pixels) it is reasonable for the information to live in a band tHz0
pixels by 640 pixels in size — allowing ~64,000 measurements to inform the output. In a
typical continuous-material measurement a 2-dimensional referaage iof a geometric
structure (edge, curve, or section) is used as the template. ddeélans occur when
the template is taken from and used to measure one or more “peak-lige’ shith
maxima toward the interior, and minima toward the boundaries and emgetbpi
maxima. This assumes that the information spectrum is “mostly” conistardoes not
assume anything about its nature beyond that. It is also preferred foettimdrif the
orientation of the pixels in the camera is positioned parallel to thefthe template.

The numeric result obtained from using a convolution provides a clear peak
indication. This process is repeated as required over the domain of e eneant.

This allows a large number of sequential measurements of the datatify @eestimate
of the position. Several “adjustments” to the typical method are shown hetbwding

extreme super-sampling and negative offset of the template so teantl@ution peak

7



has higher local (quadratic) curvature than either the template oegion it is being

used to measure.

For the material described below, it is assumed that the paraméigr
measured is parallel to the x-axis of the digital image and thatehsurements occur on
the y-axis.

Measurement Procedure:
1. Determine template profile
a. Adjust raw sampling size to be of appropriate density
b. Smooth as needed (slightly) to improve generalization of the template
c. Translate template in a negative direction by an appropriate magnitude
d. Use interpolation to appropriately over-sample the reference
e. Appropriately zero-pad sample “ends” to eliminate Gibbs “ringing”
phenomena
2. Preprocess target profile
a. Set values outside window of interest to zero
b. Smooth appropriately
c. Use interpolation to appropriately improve sampling density of image
3. Fitiny
a. Perform discrete convolution between target and reference with output
same size as target
b. Perform least-squares analytic fit to quadratic over peak of conwoluti
values
i. Find peak using ‘max’
ii. Use twice as many points as parameters in the fit

8



c. Compute continuous analytic root of fit
4. Post-processing

a. Adjust by comparing to calibrated reference as appropriate.

Exploration of Measurement

This experiment is run over two families of test-cases: ArtdBgnthetic, and
Actual. Analytic/Synthetic means that a software tool, in thgedVatLab, was used to
generate a more useful case to explore the phenomenology of the procesk. Actua
indicates that a number of real-world samples, typically digital psteeived from
video footage, are used. The analytic and synthetic are used to showetlopent
process for the heuristics or to demonstrate “benchmarking” of the methbdsesults
section containing the actual values follows the numeric experimeshisearistic
derivation sections.

Using the central limit theorem, it can be asserted that many oelal w
phenomena follow approximately normal distributions in their parameterscentel
limit theorem asserts that the mean of arbitrary finite distobatis itself distributed
normally. This says that the distribution of the mean of means asyoafijoipproaches
a normal distribution. For example, correctly registering Gaussianscarately
represent actual phenomena that have Gaussian noise factors. It issilde pos
approximate many non-Gaussian continuous systems using a sum of many supdrimpose
Gaussians in the form of “radial basis functions”. It is for these megbkat the analytic
models explore elementary functions that can inform parameter settidgmable
extensibility to less pristine problems.

A standard normal distribution is used as the reference, the “yatdsiatk

performs measuring, for the analytic case. Zero mean and unity variancgedras the
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reference normal distribution, while a normal distribution with mafapi, and standard
deviation of the square root of two as the object to measure. The dibjebution has
parameters that are non-integer, so sampling points will not acdlydmtalaced on it.
However, they are well known and will allow an estimation of the effecéigs of the
method.

Four parameters are used to control the analytic case: initial sgrdelnsity,
negative vertical offset of template intensity, interpolation denaitgl smoothing of
discretized data. These are the “dials” to characterize fotigéeontrol of the method.

Initial sampling of the reference and object are set at 17 samplespeefe a
typical minimum feature of features for the human mind (Shelepin & Bkada004).
According to Shelepin and Bondarko it takes 5 receptors in the eye ty skyaarate
two points — to recognize that there are two objects instead of one. In¢himstiance
the four outer receptors are more highly activated than the centeil badransition of a
horizontal surface through an intermediate incline to a separateesurthe simplest
visual profile — is minimally represented by a structure of 3 seaatdature objects
and requires 15+2 pixels where 15 are for the objects and the two aghuiethat
identify them as separate but connected. It is a cognitively usefel batause it is a
typical useful edge size for human-useful selection of references thé most efficient
scale for building the visual intuition that informs algorithm evabmatiThis is the
smallest “template” that the eye can process, and it is therefore theffrasnt
reference for the downstream (in terms of information flow) neuralgssing hardware
to evaluate.

The vertical offset applied to the reference curve has the advartagating
higher curvature in the convoluted result, thereby giving a betteatodiof maximum

location. This is counter-intuitive because the classic framework foratadding these
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convolutions is probabilistic and a negative probability has no physical medrtiag.
convolution of two non-offset Gaussian distributions yields anothersizaughose
variance is the sum of the squares of their standard deviations. Ifatence Gaussian
is negatively offset, then the curvature of the convolution near its meagmnificantly
smaller than that of either input. If the negative offset is tolo, ignverts the concavity
of the convolution, and the estimate of the mean, the maximum in convejutiges to
the edge of the target. A balanced approach to the negative offset maxsomzavity

of the convolution near the mean without inverting its value.

Interpolation density improves estimation of maximum location, but can
introduce errors where the underlying function is not precisely cubic. Séhefunigh-
oversampling is counter-intuitive because it does not add informatibe gystem. It
acts, in effect, like a quadrature assuring that the distance betvecerean of each
Gaussian and its sample points tends toward zero — and that the number o sample
either side of the mean tend toward having equal weight in the convolution.dAn od
number of points distributed uniformly and symmetrically across the an@gtissians
and exactly locating one sample point at the mean yield a convolution peak that is
analytically exactly at the point of maximum correlation. When the Gaussknown a-
priori then an exact sampling can be contrived to result in perfect rmesut, but when
the sum of Gaussians comprising the asymptotic Galerkin approximationretithe
world intensity profile is not known the blind cubic interpolationhia imit of many
samples delivers results that approach ideal sampling. The higheimgpdggisity also
improves the robustness of the algorithm by not allowing under-sampling to dietnact
the results, while also constraining the noise-energy captutsgluse of few spatially

segregated samples acts to reduce the total noise energy represémanformation.
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Too much over-sampling adversely impacts compute-times, and a calibratien of t
measurement is always required.

Smoothing overcomes both noise in the data and the effect of discretization.
When the image is converted from “analytic”, a 64 bit ‘double’ representats
described by IEEE 754 (Moler, 1996), to the unsigned 8, 16, or 24 bit integer values
stored in images, there is information loss that adversely isipaathod performance
over the analytic case. The use of an appropriate smooth allows foy loualle
intensity values, smooth slope, and a smaller noise impact to the megsadess. It
can effectively repair the impact of the discretization on thenmition content.

Figure 1 shows example reference and object functions, as wellraggudting
convolution and its maximum. Several features can be observed from this figure
including that the reference is zero-padded. This observation indicate® false-
indication was induced by Gibbs phenomena; the sampling begins and ends exactly on
the endpoints. When the zero padding is not considered, this particulamangdéion
falsely suggests that the best value for pi is 3.0, but when the paddsagljghe exact
result is recovered. If the reference Gaussian were not shiftkeé graxis, it could be
observed that the convolution of two Gaussians is itself a Gaussian funchiemadius
of curvature of the convolution result on the figure is less than @iftiee source
distributions. This has significant impact on the analytic centering. fdigta
centering is accomplished by first performing LSQ fit of a quadratibg maximum and
several of its nearest neighbors and then computing the analytic roct g@fadaatic. If
the radius of curvature is large, then the impact of noise is feedphind the error is
increased. If the radius of curvature is small, then the region ehds¢ a better fit to a

quadratic function over the points, and the impacts of noise on the estimatdwced.
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Figure 1 — Sub-pixel Measurement: Convoluting Gaussians

Initial Sampling Density

A very important question raised by this process is which spatial disti@tizo
use since the pixels in an image are equivalent to a uniform spatiplisg. In the
analytic form used, the value should be able to be approximated to arbitrarioprecis
Figure 2 shows the accuracy of the fit function when the sampling is sweptfrange
of 0.1 to 0.02. Many of the values are substantially below the error ceiling+{jedut
one of the assumptions in this work, and one very consistent with both thegfenti-
infinity filtering, is that it is engineered against a universe whepérmam perversity is
assumed. Constraint of the maximum error is also consistent wittathework for
compressed sensing. The focus is on minimizing the absolute worst-dasmaece

with the assumption that average results will be considerably i@grov
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Figure 2—Sulpixel MeasuremenError vs. Initial Samplindpensity

The fit equation foerror ceiling was determined, using the&ga geneti

algorithm tool(Schmidt & Lipson, 200, to be:
1) y = 02738 Ag”

This equation impliethat without interpolatiothe maximum error expected for
samples per referencbauld be on the order of 0.044%. It can be obskihat the
typical error is about 1.2 decades, or about 1&gismaller than this maxim. When
thenumber of sample measuremeis odd and the spacing of those samplirsgs the
left-mostone very close in approe to the exact endpoint, then the metlagduracy
approaches zero erroif he method comes close to this once per sanopletandthis
happens repeatedly and more frequently as thalisd@impling density is increas
Dividing expression 1 by the spacing yields an iseequadratic relationip betweer

sampling size and error per pi}
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Figure 3 — Sub-pixel Measurement: Error vs. Reference Offset
Negative Offset of Template

Figure 3 shows the estimation error as a function of the offset offdrenee.
The domain is the percent downward shift, while the range indicatesaleeo$ the
error. A perturbed sampling value of 18, instead of 17 points as mentionedwaasve,
used here to show the error at approximately 10"-3.2. Use of 17 sampleiristiie
artificially low value of “eps”, the smallest positive number the coepcan represent,
for the method — an artifact of the location of a sample at the exactanel symmetric
location of samples along both sides of the Gaussian. Notice how apprdpwateard
shifts caused the error to go down to round-off. Using this figure, a downwarbyshift
the 23" percentile value of the intensity was selected since it is towardenter of the
region of good improvement caused by shift. After tH&gitcentile, the shift of the

template begins to harm the estimation of the mean.
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Super-sampling Rate

Finite precision metrology and data representation does not allovwbfoagr
sampling spacing. The continuous nature of the real world allows the paak of
observed Gaussian shaped object to exist in real-valued locations, bairitiea can
represent only a finite subset of them — the fixed midpoints of its pixdksfolt this
reason and the reasons previously mentioned that a minimum energy, Hpiengevise
cubic interpolation between points is used. This makes better useimfotimeation from
the image without necessarily requiring a higher pixel density carméeHermite
interpolation also avoids artificial Gibbs effect variation agsdged with other cubic
interpolation methods.

Figure 4 shows the error for interpolation. Again notice the very low values
(red), essentially “eps” that originate from the analytiecds can also be observed that
the error initially increases to a peak and then decays along adrgjenat is
approximately hyperbolic. Most of the variation as a function of intatiool factor

happens close to zero, suggesting the use of a log-log scaled plot.
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Figure 4— Sub-pixel Measurement: Error vs. Super-sampling Dengilingds shown
in dark blue while the “accidentally exact” values are shown in the lighder
An interpolated graph of coordinate transformed inverse error, thenafion, is
shown in Figure 5. For all interpolation factors above about 8.78, and within the
transformed coordinates, the improvement in error approximately follpog/ar law.
A linear function in a log-log plot transforms into a power-law in lineaedr
coordinates. A resampling factor of 20 reduces the error by more thanraofést®
while resampling by a factor of 100 improves this to a factor over 145. Hhe pe
resolution improvement that can be achieved will be impacted by noise amdauseri-
analytic case. This fact does not indicate that there is infinitgimi@r improvement,
but if the noise can be managed it indicates there is some improvavadable here.

Substantial compute-time costs are incurred by using resampling ratiesHbv
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Figure 5 — Sub-pixel Measurement: Information vs. Super-sampling Density

Several values from the smoothing spline interpolant are indicateabie T.
Resampling ratio values above 100 were not considered due to the high compute time

required.

Table 1 —Resampling Versus Error Reduction

Resampling Scaling
Ratio Error | 1/ Error
1.00 1.000 1.000
1.71 43.34 0.023
8.78 1.00 0.999
10 0.759 1.317
20 0.179 5.575
50 0.0278 | 36.014
100 0.00687 | 145.613
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Effects of Noise Energy

Noisy systems have different results each time they are measured. This
necessitates the use of an ensemble of repeated measurementsterideatiae central
tendency and the variation of the system of interest. In this case an ensiemble
1000 runs, measurement repetitions perturbed by uniform random noise at several
sampling densities was used. Figure 6 shows the maximum noise acrosgihidens
versus a sweep of additive uniform noise factor for differenpsasizes. The figure
indicates a very clear transition in which noise factor decsedigitly and the error in
estimate decreases substantially. As the noise decreasesisifperrit) the variation in
the error takes on a very different phenomenology. It can be observed thatasiiees

of samples increases, the error location for this transition beconadigrs

10
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Figure 6 — Sub-pixel Measurement: Error Norm vs. Uniform Noisérgcaactor for an
ensemble of 1000 runs at sampling densities of 7, 12, and 17.

19



This result motivated a sweep of sampling sizesranigk factors tdetermine
empirically the relationship between the addedenaisd the transition from very orde
error scaling (on left of transition) to highly om result (on right). The result of this
figure 7, and equation 2. The correlation coeffix of the resultant fits 99.6%, which is
desirablyhigh, but the general for also relates surprisinglyell to the energy within th

additive noise signal.
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Figure 7 — Sulpixel MeasuremenCharacterize TransitioBoundary in Error lorm as a
Function of Initial Sampling Densi

The general form of this transition region, deteraad using AIC as selectic
criteria and the Eureqga to(Schmidt & Lipson, 2009)applied to the numeric results

shown in equation 2.

1 2
vy = 1.111 (—)
(2) 2N
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When taken into account with the facts that the energy in a signalisrfional
to the 2-norm of its components, that the mean value for a uniform random function is
half the (typically unity) range, and that the measured values werea togarithmically
spaced grid and were the first point within the stable zone equation 2 leagls to th
conclusion that for a constant template offset and resampling factor tivede capable
of withstanding noise with an energy value that is less than or eque#aofhe energy
in the information signal. The signal-energy is the 2-norm of the intesfditye samples
divided by the infinity norm of the samples. The noise energy transstialiso
significant because it informs management of accuracy in r&gistimeasurement by
controlling the energy of the error signal in the input. If the energy ofdise is equal
to or greater than 90% the energy in the information, then the rdgistbatsed
measurement becomes problematic. If the energy of the noise is sidlyifieas than
the energy of the signal, then the above forms for the analytic case raggaiform
the measurement. In image registration, this energy result azssetl¢o inform the
spatial scale of the local deformation field.

These analytic results suggest that with proper conditioning, meastrem
accuracy can be significantly improved compared to conventional methodse Bigdin
that the maximum relative error for the uniformly noisy case over amndis of 1000
elements at N=17 was 0.4%. The median error value left of the iibansds about 6%
of the max, so over a series of measurements and with any form of reasoraiilarsy
the expected error term is still around 0.03%. For an additive noise whose mtsle exis
(unlike the uniform random), the method is going to yield lower levelsthan given
here. The uniform distribution has no true mode, while a large humber of masgaeal
noise probability density functions including the popular Gaussian (or Normal)

distribution and the Cauchy distribution, have clear central tenddandregsjuency
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domain. Itis an adverse probability density and demonstrates a boundary which
comprises a ceiling for well-behaved distributions.
Smoothing the Discretization

The only “dial” that has not been explored is the impact of numeric distieh
on error. For the above material, the representation was performed usiradpMauble
precision, which conforms to IEEE standard 754 (Moler, 1996) andrisseagied using
1+11+52 = 64 bits. When comparing the mutual histogram of fit error shown in #gure
but using 64 bit integers and doubles, this procedure resulted in a straghhbse fit
was exact to round-off. Conventional imaging systems yield much smigllendth
representations — typically 8 to 24 bits for a single color. When comparieg tref 8-
bit representations versus 64-bit representations, the disticetizaror significantly
impacts the overall registration accuracy. This is overcome in appked by the use of
a “Lowess” smooth operated over the template and the data with a sai@lbaameter

of approximately 6%.
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Figure 8 —Nonlinear Pendulum Image. Time is shown on horizontal axis andyand
position (in pixels, not radians) is approximated on vertical axis.
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Results: Synthetic Case

Figure 8 shows the image created by sweeping the mean of a 2d gaussian curve,
standard deviation 0.014, along the path generated by following the angle of
displacement for a damped nonlinear pendulum. The ordinary differentialcequati
(ODE) for the pendulum is evaluated over a time domain of O to 10 (s) wighbws1 in
its equivalent pixel indices (480x640). The 2d reference profil&éntas a subset of the
entire range at time = 2.8951 seconds, or x-pixel number 186. It is a v&itiealf the
surface, a line of constant time, whose profile is shown in Figure 9. Niaticenly the
highest 17 values of the Gaussian were used — indicating why the standatitidevas

set as it was.
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Figure 9 —Nonlinear Pendulum: Section and Template

Notice that the sampling is not truly symmetric around the mean ofahesan
because the offsets in the Intensity values of points neasitytefi 0.88. The impact of
this is that without calibrating to a “zero” value, the measuremelitbavie consistent
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bias. In the simulation, this means that the template measuteszeto to determine the
bias in all other measurements. In physical systems, it meankdhaeasurement
system should be calibrated and high precision references can be engmediexd
system to allow equivalent calibration. Investment in finding cleveswagchieve real
world calibration using the data contained in the image can subByaintarove results
with limited resources. It is also considered good practice for ¢asumement system to
be shown statistically capable using a Measurement Capability An@EIA) or also

as Process Measurement Characterization (PMC). This preaffscitively described

in (NIST/SEMATECH, 1998). The original, re-sampled, and offset teeplate shown
in Figure 10. Again, notice the demonstrated zero-padding at the taitsis Thitical for

accurate determination of position.
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7a a0 g2 g4 a6 8a a0 92 a4
y-axls

Figure 10 —Nonlinear Pendulum: Reference, Resampled, and Offset Profiles

Next, using the single reference, we iterate through the numericosoffaund using
ode45, the MatLab implementation of the Runga-Kutta 4/5 numeric solver) apd@m
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it with the cubic interpolation of the measured value. The results giritigss are
shown in Figure 11. The error plot starts around time of 0.3 (s), because #&a@Gsin
the plot of figure 8 were truncated before this time, as they wepéagled with their

mean adjacent to the top of the field of view.
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Figure 11 — Nonlinear Pendulum: Synthetic Example Measurement el subplot
shows exact versus computed position while lower shows the log-scaleeievesr per
pixel, also known as the information per pixel.

The lower subplot is the ratio of the pixel size to the error. This esamate of
the information per pixel. The smallest value, corresponding with stigieor rate,
occurs near time of 3(s) and has a value of 311.94. This means that, ise¢hihea
worst case error is about 0.32% of a pixel in size. The error statisTiable 2
demonstrate close agreement in standard deviation and pseudo-sigma, and some

disagreement in mean versus median. The ratio of mean error to maximum error is

consistent with the observations of figure 2 at a value of 18.25.
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Table 2 — Error statistics for figure 11b

Statistics (Absolute valued) |
Error Ax/err
mean 3.1259E-06 5694.7
median 2.7618E-06 1131.5
std/sqgrt(n] 2.8534E-07 1633.9
iqr/1.35 2.5036E-06 1324.6
[range | 9.9724E-06 | 68074 |

In the table, the vertical pixel size is referred to/e’,'and there are 480 pixels
over the rage of -04y< 1. Pseudo-sigma, indicated by “iqr/1.35", is the interquartile
range, the difference between third and first quartiles of the datdedilby 1.35. This
fraction of the igr is a robust estimator for the standard devialithe disagreement in
central tendencies, in the median vs. the mean, suggests therdiare skdéwing the
mean. In this example, the approach that minimizing the maximum erresgonds to
substantially improving the mean and standard deviation errors has beeredalithis

concludes the synthetic problem section applied to extreme sub-pixel nme@sure

OPTIMAL CHARACTERIZATION
It is possible to use a “non-parametric”, more properly a model-agnostic or
hyper-parametric, smooth with optimal model selection criteria inrmamiis sum
domain to optimally smooth arbitrary continuous systems and to determine model-
variation. Although the data domain is most often used when applying thisiprede
the data, it can be useful to perform these operations in the continuous sum domai
especially in the case of high energy centered additive noise, bélcsudiscrete

integral transform is noise reducing. After conversion to non-sum domairnfoynpiag
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an analytic derivative on the fit, the result can again be smoothedonigwhat better
results than just smoothing the original form.

Analysis is the process that converts the output of the measursteendata,
into an evaluation of the premise of the experiment. Its purpose is to bramingiel
understanding from raw data. This is accomplished, typically, by summamnizdtmany
measurements, often so many that it is too large to be easily handled, atadipod
even comprehended, into the parameters of an expression which is iesélf ableasily
handled, manipulated and understood. The simplest non-trivial statistiteae that
evaluate to a single scalar, including the moments of the data, of Wwhiametan value
and standard deviation are the most popular. The parameters of more complex
expressions followed the scalars as summarizations meant to chizeatte behavior of
the data. A number of great minds performed the early work on the method of Least
Squares (LSQ) including Legendre, Gauss, and Markoff (Plackett, 1949)igaisd i
ubiquitous and important a method that it is now typical of first-yearrlialgabra. LSQ
is an optimization metric that determines parameter values by mingiie sum of
squares of error between values generated by the fit and the data. ddleastras sum
of squared errors, sum of absolute errors, maximum error, and correlafboieot are
used to determine the appropriateness of the fit of the data to tiecaggpression. |If
the errors are above what is considered an acceptable threshold oricori®la¢low
what is considered an acceptable threshold, then the model is deepprdpnate for
describing the data. LSQ is used extensively to associate a large number of
measurements with relatively few parameters in a model at mang tewebrk, but it
has the problem that it must first have the analytic expression with whidsociate

parameters before it can be operated to determine what the paraneterse
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formatting and execution are highly model dependent and so this method, whileisseful
not model-agnostic.

The idea to use a smoothed polynomial line, or “spline”, as an interpolant was
originated in the area of descriptive modeling, and not predictive mgdelrafters
over a century ago would elastically bend metal pieces between fixdd fmomake a
smooth line for creating the line of curve for a boat, a building, or otheedsurface.
Strength of materials gives that the shape of the elasticatlgdiohin piece of metal
comprising these curves is piecewise cubic. The mathematicgltibbim were
developed in the early 1960’s (Schoenberg, 1964) and resulted in 1967 in something
called “spline smoothing” (Reinsch, 1967), although these techniquestddteo
common use for another 30 years because of advancements in video renderinipeuring
1990’s. The spline smooth is a process whereby an optimization is performed whose
input is a single “smoothing parameter” and whose output is a piecewisecame
whose performance approximates a least squares linear interpolanthetmarameter is
close to zero, and that approximates a pure cubic spline interpolant wheratnetpais
close to unity. The spline interpolant to otherwise perfectly linearcdatdave more
parameters than samples and so it is hyper-parametric.

One of the more recent developments in associating data with moddis are t
families of model-selection optimal information criteria. One ofrtiwst common of
these is the Akaike Information Criterion (AIC) (Akaike, 1976) (Machlan & Peel,
2000). As described in (Cavanaugh, 1997) the AIC is an asymptotic estimdter of t
Kullback-Leibler divergence, or “cross entropy”, and indicates the inctilrips
between the fitted function and the underlying or “true” model. It is genexailficable
to all probability distributions for which consistency and asymptotic abityrof the

maximum likelihood vector can be established. One of the featuresgditivipopular
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use is that it can be expressed very simply in terms of the residuralteer number of
samples, and the number of parameters in the model as shown in (Hu, 2007). Sample
sizes used here are such that no small-sample correction is needeglitielye

determine the AIC.

AlC-Spline Smoothing

In combination with the AIC, however, the smoothing parameter is settdbeha
smoothed spline is model optimal — it describes the “true modsti &nly the data and
only requires that the regularity conditions are met. It is model-fredelroptimal,
model-agnostic smoothing.

Another way to get smoothed estimates of the state underlying some noise
corrupted data is by application of the Kalman Filter (Simon, 2006). Kaltens fhre
used extensively in state estimation, and updating forecasting becaueptthmlly
integrate a measurement with a forecast. The biggest challartge #¢alman filter and
its derivatives is how to handle nonlinearity, especially in thHe sfstimate covariance
matrix. The novel application presented here is that the Kalmanefijtextions are used
on AIC-spline smoothed data to back out an empirically generated, model-optimal
Kalman gain and state covariance update without assuming a model a-phisris
model-agnostic model determination. In this case the methods are applied , dakehof
simplicity, to scalar functions, but the underlying methods are viablase in
multivariate case.

For the following analytic demonstration, only the non-cumulative domvai
be used, but in the case of the tool calibration, a cumulative sum domain wadJ heed
result of applying this method to data is a model-selection-optimal smodtle data,

and an estimate of the state estimate covariance.
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Inverse Modeling Procedure:

1.

Use optimal model section criterion (AIC) with smoothing spline on datatto g
smoothed values
a. For mean state
b. For state covariance function
Use results from step 1 to get measurement covariance
Use state covariance and measurement covariance to compose Kalman Gain
a. If system is simple enough convert to analytic form
b. For substantial multidimensionality consider leaving underlying
equations in smoothed-spline form
Validate stability and quality of results
a. For reduction of error given known/simulated system

b. For stability of known/simulated system using sensitivity analysis

Spline smoothing used here is consistent with the MatLab implementatiba in (

Boor, 1978). The smoothing parameter is swept from 0 to 1 in a logistic manner a

shown in figure 12. This gives higher density at the “tails” allowing bd&grmination

of the optimal smoothing coefficient.
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Figure 12 — Optimal Characterization: Smoothing Parameter vs. Index

The Akaike Information Criterion (AIC) is an optimal model selectiotegon
originally described in (Akaike, 1976). The equation used here to computd¢CGHor a

particular smoothing parameter is presented in (Hu, 2007):

n

3)  AIC(v)=n- (@j +2-k(v)

This expression indicates that both the residual sum of squares ofatierfddel (RSS)

and the number of effective model parameters of the effective smootie fkhations of

the smoothing parametev™ The sum of squared residuals is also referred to as sum of
squared error (SSE) in mechanical engineering nomenclature. The vdiukifothe

above expression is taken as the number of samples.

Applying this AIC-informed smoothing method to the cumulative sum can

require more finesse. It many times yields a classic minimum wradieating model-
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optimal smoothing parameter, but in cases where the underlying integralrdmodel is
an indeterminate form, the derivative of the AIC, or its multipNeainverse must be
used, depending on which application of L'Hospital’s rule (L'Hospital, 1696) is
appropriate. The integral-domain transform, though it reduces théuaepbf centered
noise, can confound a mean-noise drift with the estimated model. In both the
conventional form, and the integral-domain form, the graph of the AIC, or itsatieey
versus the index of the smoothing parameter, often clearly indicatesewtietre are
multiple scales of information in the underlying system, and the approxéwaitupon
which they operate. Some care is required to determine the apf@@mmain within
which to formulate this smoothing.

The results for smoothing method to an additive noise corrupted signal follow.
The AIC of the smoothing parameter for a sine curve with amplitude 6 anthang
frequency 2 that has additive standard normal noise evaluated over a domain of 30
cycles, and that is sampled at 30 samples per period is shown in figureth3hd3
number of cycles and the number of samples per cycle are set at 30 biesaase i
convention for the minimum sufficient population size to assure stattisiigaficance.
The i.i.d. additive noise used here is not applied within the framework alnaak filter,
so it is not assigned explicitly to measurement or to model variation. Nodatear
interior minima around index of 265. An analysis of the squared error versus ggooth
parameter using exact data, for this case, gives the minimum at index 2/per¢ant
difference between these two values is 0.039%, thus the method is consadieied
as delivering a good approximation of the parameter that delivers a miremoim
approximation to the exact underlying function. It is an assumption in thiedhttat

the noise corrupted system is not ideally fit by a cubic interpolant.
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Figure 13 — Optimal Characterization: AIC and Log-Negativavagve AIC for
Smoothing of Sine using Constrained Domain of Smoothing Spline.
The smallest interior AIC indicates the optimal parameter to useotfAiplhe
corrupted, smoothed, and exact values over a small section of the domainrisrshow
figure 14. The exact is the spline smoothing that results in the feastempared to the

exact value. The improvement due to smoothing is more clearly demonstrdtisd in t
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smaller portion of the domain than for an image of the entire domain.
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Figure 14 — Optimal Characterization: Validating Smoothing on Cardupine

It can be observed that the smoothed value is interior between the noise-
corrupted values and the true values, and that the location of highegediseis where
there is high curvature. The general form of the smoothed function hastpverfcy
deviations from the true value, but the high frequency variations corsisterthe
additive noise have been reduced. There are also larger scalesdrits lze seen when
comparing the AIC smoothed values at the first peak versus the fiest vahe first
peak overestimates the exact while the first valley slightly ustievates it. For the
most part the large scale structure of the underlying system hascoegared. Figure
15 shows the transformation of the noise in CDF-domain with the first addjtiartile
statistics indicating that the noise was reduced by about 59.3%. Tiksiva&onsistent
with improvement seen with Kalman-derived smoothers (also mentionattiendections

of this paper) without needing the substantial staging and ephemerigdeoyithem.
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Figure 15 — Optimal Characterization: Comparison of Pre and PasitBarror
Distributions
It is also asserted in (Hu, 2007) that a family of smoothing parawedtess

could be used, ranging from the optimal AIC to all functions whose AIC snnat fixed
offset of the optimum that can range from a value of AIC+2 for “subatasupport” to a
value of AIC+10 to envelope all but models with “essentially no support”. i his
referring to the Bayes Factor described in (MacLachlan & Peel, 2800); doing this
all candidate models with the selected level of support are accooniaddrms of
model variation. Referring again to the AIC plot and its interpretatiofstibstantial
support” a traverse of the smoothing parameter values associated @ittalées within
10 of the minimum by the standard deviation of a uniformly spaced ensemble of 400
smoothing parameter values yielded the modified 4-plot shown in Figure 16. Tda typi
4-plot displays a histogram in the lower-left quadrant, but the empiri2Blias the
information describing the distribution, as well as much lower noigbouti the need for

the hidden parametric nature of the binning process. The upper-left quadranttshows
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estimated covariance over the domain as calculated using the AIC+10tmisioe all

models through “essentially no support”.

0.05 L3

e &

Run Sequence Plot

Probability plot for Normal distribution

0.999+ - - - -+ R el s et
0@@5:::::‘ ,,,,,,,,, :::‘t
Ofgr---d---t @ oo
0.75F " @ —— -+ -~ -
051 r
0.25 R
X017 S s Bl Sl
O.Q)gg',[::::‘::::4::::*::::L
0.001f - - - - S
0.05 01 015 0.2
X Data

Figure 16 — Optimal Characterization: Estimation of Statéaviae Function, “P”, using
AIC and Akaike Weight Informed Alternative Splines

Although it is tempting to take the median value, shown in the lower right
quadrant, and apply it as a constant value for the state-estimateinogaa comparison
of the mean state to the mean variation indicates the constant valsgffisignt to
describe the estimate uncertainty. The lag-plot (upper right) hgh artough
correlation to suggest that the relationship between values is causarandnstant.
Another application of the previously mentioned smooth applied to the plae of t
estimated versus the estimated variation in the state yieldsl#ti@nship shown in
figure 17. The solid red line is central tendency of the variatitheoftate estimate —
when the state is at its extreme values, the expected varia@ogds, but when it is zero

there is a nonzero floor to the variation. This is a very clear andfiexearelationship.
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Figure 17 — Optimal Characterization: State Estimate Uaiogyt

The smoothed relationship, shown in red, is another implementation of the
previously mentioned model-optimal smoothing. Because the smoothing parameter was
selected using the AIC we can know that the behavior is characteristis, raither
constant nor linear. Now that the central tendency of the state updateriwaradi the
central tendency of uncertainty in state estimate have been apprakimatg model-
optimal smooth, the next step is to transform these high parameter-countatayns
into more accessible analytic expressions. The method through which the smoothed
signal is used to determine the analytic form of the underlying systpringe the

description of the Kalman Filter as background.

Empirical Kalman Filter
The Kalman Filter has been a useful tool for state estimation, smoothing, and

forecasting since Kalman'’s original paper was published in 1960 (Kalman, 1860).
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accessible introduction is provided in (Welch & Bishop, 2006) and more coiypate
deeply described in (Simon, 2006) and (Andrews & Grewal, 2008). Nomenclature used

here are, as far as is reasonable, consistent with the work wh(@&/&ishop, 2006).

For the system whose state is described by:
4) X, =AX_,+Bu_ +w,_,;
(5) z, =Hx, +V,
Where the following is true:
(6) Q= cov(w)
(7) R=cov(v)
©® R =% -xJx-xT)

The equations describing Discrete-Time Linear Kalman r-itteglecting control-input

terms, are:
(9) x) = E(x,)
10) x©=Ax" +Bu,,
(11) PO =AP_A"+Q
(12) K, =P HT(HRHT +R)"
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(13)

(14)

P=(-KHP

%0 =% + K, (z - H%)

In the extended Discrete-Time Kalman filter the analog equations fqd@) (12) and

(14), from (Simon, 2006) are:

(15)

(16)

17)

(18)

X0 = s (x)

.
of, of,
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PkH — [afk—l
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T
e J

of,
. Jle[ aer

-1
oh, |
ov |xk

R

X = X + Kk(zk _hk(;(lz))

These provide the general forms for the prior and posterior state testifitee

state uncertainty estimate and the Kalman gain can be explorechindkthese

variables. Equations 15-18 indicate the best order for determining theddessiiables.

Any process that transforms numeric information from one form to ancdhnentroduce

artifacts into the data that reduce or misdirect downstream tneistmie is therefore a

good practice to express the critical downstream forms, such as covastintge, or

Kalman gain, in terms of the least transformed upstream variabigsrms of the

highest quality upstream information. Although this would be prohibitive ibpadd

on nonlinear analytic functions, it is much easier when using numeric datgply s1put

and output values and let the GA tool determine the analytic expression.
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A lag-plot of the state is shown in figure 18. The vertical lineitelitates that
the previous state estimate is insufficient to uniquely specifguhent state, and more

information is required.
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Figure 18 — Optimal Characterization: Lag Plot of State Estima

There are a number of ways to determine the underlying relationship, and
mileage will vary. Simplicity and stability are to be given prefeegtbut heuristics like
the number of terms in the preferred Taylor series approximation, ter difference
approximation are alternatives to be considered. In this case, EDA givésasults.
When using the Genetic Algorithm (GA) tool a comparison of the AIC or &ICatt
“scree” plot analysis (Cattell, 1966) on the SSE terms gives tmatresults. One of the
data segregation modes used in the GA tool is model-generalization,thisdnmode one
part of the data is used for the fit and a segregated part is used foidhgora It must

be kept in mind that not only must each expression fit the data, but togethemusie
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operate stably and well. Equation 19 is the analytic expression detdrta relate the

current state to the prior state.
(19) X =1.95621%;,-X/,, R*=99.99

Using the model suggested by figure 17, a non-discrete function of the stat
estimate was used to describe the state covariance. The relgtiashound using the
previously mentioned Genetic Algorithm tool, but instead of operating only on the
current state estimate, the previous 4 states were supplieddidatas, in keeping with
giving non-transformed data to get the best fit expressions. Thestiatatmn
covariance found is indicated in expression (20) — this comprisesoithe prior model
covariance without the need to account for “Q”: everything in her@dehrelated
variation, and it is only model related variation. This inclutiesvery good but

imperfect modeling of the underlying system using the smoothing spline.
(20) R =002897-000475% ,-%; , +0.006851(%; , [,

The R2 statistic for this fit is 99.39% - acceptably high for de$eeiptse.

Using expression (8) and (19), the measurement covariance “R”, not to be
confused with the fit statistic, can be estimated. Given the naittine noise, this is a
constant value, so the expectation is computed over the entire domain. liffaa Igain
expression, including that the transform from measurement to state domains, “H” i

unity, becomes:
(21) K, =P (P +085214"
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A graph that compares the noise-corrupted data, the AIC-Spline smoothed data,

and the updated Kalman filtered data is shown in figure 19. The filteredisahewn

in blue.
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Figure 19 — Optimal Characterization: Graphic Evaluation of@drKalman Filter
Performance vs. Globally Informed Smooth and True Model.
It can be seen that both the exact-informed AIC smooth and the KF work to

reduce the effect of the noise. The Kalman filter is seeded with someabasaging of
the corrupted values. Over an ensemble of 10 runs, this discrete Kakexaretilices the
norm of the noise by 34.59% * 0.0239% while the AIC-smooth reduces the norm of the
noise by 60.73% + 0.0124%. The system was stable under the assumptions that neithe
the nature of the noise nor the nature of the underlying system was changeng. T
Kalman derived slightly overshoots the true value at some points étafjer time 1.25
in figure 19), and this is a substantial improvement in nature overl@S@line smooth

which will always undershoot in a case like this. The first run des¢tatman filter
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reduced the noise only by about 57% as much as the AIC-smooth but it compensates for
that by more effectively generalizing the underlying system. AlthougKahman-

filtered values are compatible with the AIC-informed smooth, they endibtg of the

Kalman filter including Rausch-Tung-Streibel (RTS) smoothing, destiibESimon,

2006) and (Andrews & Grewal, 2008), which can improve the signal quality leveaw
Kalman filter. This concludes the synthetic problem section appliedgaiemmodel-

optimal inverse system modeling.

RESULTS:

The presentation of method and results is as follows. Although the methods
described were developed with the use of relatively simple antdgticases, they must
be applicable in real-world circumstances. The methods for measurerdesmhaothing
are shown to be valid in the case of finding the calibration valugksdory stage of a
Panasonic laser scribe, and also in application to the vided-bssesurement to the 2d
position of the indicator for a King model 2-32-G-042 rotameterdfuailocity

measurement device).

Laser Scribe Calibration

When applied to the determination of y-position variation for the caliorati
the XY stage of a Panasonic Laser scribe, the measurement mettled $i@0,000
position measurements across the wafer that were accuratmontusing pixels that
were ~700nm in size. The laser scribe is a device that uses an g-totatnbve a wafer
under a laser beam to cut a channel that a die-saw will then follamgtdate the dies
out. The variation in the position of the path between the dies, callé@et*snd

shown in figure 20, must be characterized as part of tool qualificatidnasthis can be
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robustly accounted for in the engineering of die-sizes, and thus makeshef die

material and the very expensive upstream processing of the wafer.

Figure 20 — Test Case 1: Image from Calibration of Laser Scribeéts” indicated by
red boxes)

These calibration values are used to set these variations intg-titagectory of
the wafer under the beam. The data available to calibrate the tookwpgli2d
grayscale XGA video that showed the x-y table moving under the iakaef The
wafer was rotated slightly so that a perfect line on the wafer took up 3tplmobws of
pixels in the image. The video was deconstructed into individual filag tis¢ K
Multimedia Player, a freeware video player/decoder provided by Pandoi@Kafean
company. The files were loaded into MatLab and the non-informative regemas
culled. A reasonable section of “street” was selected as templatethed, and super-
sampled. The number of frames required for a particular feature tatvedssid of view
of the image was counted, and it was determined that it took about 2@ fiamacfeature
shown on the extreme upstream (right) edge of the field of to no longer begeispla
Using the Nyquist sampling criterion, it was determined that dfahe pixels would be
measured every tenth image, then the streets would be measured fitioy-pbevery
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point possible. An image smoothing operation that had a sigma of 3 gv (of 255) and a
spread of 5 pixels was operated on the images of the reference and tlagetéonpl

remove gv noise (room temperature cameras have 3-8 gv of thermal noissup&he
sampling value selected was 10x. The method was operated as described above on
features indicating either side of the street, and then averageeM{aghtalibration) to
indicate pixel-location of the center of the street. The raw y-pagitata was then
smoothed using an AIC informed spline smooth operated over the ~4.5e5 measurements.
The effect of this smooth was evaluated by comparing it to the numeric mienyof
values for each image over the run — the agreement supports the AlCeaasertzng

the phenomena and superior to a simple average. An intensity indicator wastused
summed the columns, to indicate when the “intersection” of a horizontdl aticta

vertical street was crossed. In this way, the data was abletod®ssed both in terms

of performance across the entire wafer and on a die-by-die basis. Figlrew&lthe y-

position across the entire wafer.
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Figure 21 — Test Case 1: Measured Lane Position over Wafer.oH@aliaxis is
measurement index, and vertical value is measured position of cefgeef’ in pixels.

The non-linear trend over the wafer can be seen by comparing the genestl line
transportation between indices 0 and 200,000 with that from around 200,000 to the end.
The motion of one is generally horizontal while the other is, in this repeson, at a
nearly 45 degree angle from the horizontal — it nosedives. If the engimestovessume
that the center value was more characteristic, or that the trgjestarthe first half of

the path were characteristic, the consequence could be expensivedattddiagnose.
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Figure 22 — Test Case 1: Centered Lane Position over Single Fram&pHubplot
shows the data and a linear fit of that data and the lower subplot showsat @BError
between the linear fit and the data.

The variation over a single frame is interesting. Each of the ‘fégffons
measured (in blue) in the upper portion of figure 22 is comprised of 188 ®of
independent measurements varying by a very small amount. Given the jmoduct
process used to create the template, these are clearly regionstafitpasition. The
linear fit of the measured position is shown by the red line. The CBfearror
between the fit and the measurements is shown in the lower portion. sliagive
interquartile distance of 0.0285 pixels, which suggests sample standeiibten
values over the image is about 0.0211 pixels. Inspection clearly reve@spoftnear-

constant height, for example, around index 150 of figure 2.2.
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A comparison of two lanes from the same image is shown in figure 23.eNotic
the correlations between the lanes that occur at indices of appteki30, 130, 430,

and 600.

Figure 23 — Test Case 1: Centered Single-image Values for Higthéroaver Lanes.
The x axis is pixel index while the y axis indicates the frame-cehestmate of
position. The darker blue is the higher lane and the lighter red is tee |mve.
When the variations in lane position are adjusted for the angulargniseint,
and sections of corresponding consistent geometry are evaluatedifdion from their
mean it was found that they vary by much smaller values than theskzatgestructure,
on the order of 0.0025 pixels, or about 1.8nm.
A die-scale plot of the lane positions is shown in figure 24. Ther&bigmap” in
the trajectory at around pixel 1.5e4. The consistent location alongethebdt only
along 8 of them, suggests this is a systematic defect in the caljnadfer that is

engineered into the upstream processes, and not a defect of the xy-stage.
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Figure 24 — Test Case 1: Measured Lane Position over each "Die"x-dxis is the
column index ranging from O through about 2.5e6 pixels. The y-axis is the measured
center of the lane, also in pixels ranging from values of 204 through 209.
The very slight ripples are noise artifacts from the smoothing pratesdata
was smoothed in integral domain, so it is under-smoothed by a small amounbeusd all
the user to see the scale of the pictures supporting the infonnaatioell as the
information itself. One “ripple” is the result of measuring one entigge. Table 3
indicates the by-die and overall variation statistics that areubethto set the street

position calibration of the tool. It can be seen that lane y-position hlyifassrange of

nearly 2.5 pixels and that the die-to-die variation in lane height canrbecisas 67%.
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Table 3 — Test Case 1: Lane Measurement Statistics

Raw Value Centered Value

idx mean std mean std
1 208.368 0.19646 1.30682 0.01075
2 208.223 0.24195 1.16193 0.05624
3 207.722 0.31254 0.66050 0.12683
4 207.509 0.18756 0.44806 0.00186
5 207.410 0.15419 0.34869 -0.03152
6 207.421 0.11575 0.35974 -0.06996
7 207.433 0.08994 0.37175 -0.09577
8 207.809 0.17354 0.74749 -0.01216
9 207.641 0.08621 0.58004 -0.09950
10 207.574 0.13431 0.51299 -0.05139
11 207.329 0.20517 0.26731 0.01947
12 207.136 0.16071 0.07414 -0.02500
13 206.616 0.18015 -0.44570 -0.00556
14 206.200 0.17747 -0.86188 -0.00823
15 205.610 0.21940 -1.45152 0.03369
16 205.213 0.10062 -1.84807 -0.08508
17 204.829 0.25554 -2.23229 0.06983
grand 207.061 0.18571 0.06013
grand abs | 206.980 0.17597 0.80464 0.04723

Using a demonstrably linear section of the part that spanned severesithag
had been model optimally smoothed it was again shown that this method, using pixels
that were on the order of 700 nm in size was able to effectively locateriter of the
lane such that variation in the mean estimate was consistent wjiidheneasurement
of 1.8 nm. Using the described method to measure the calibration offsekpfdtage,
the tool was able to be set such that the variation between actbelsesition and

intended position was less than one micron without risk of harm to the product.
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Velocimeter Tracking

When applied to the measurement of the indicator position for a Kingneteaa
(velocimeter) more preprocessing was required. The method waseidteEnie used
with LabVIEW and a webcam to allow online (non-supervised) flow speed mesnire
of a Propylene-Glycol/water solution flowing through a solar-thermatctoli. The
supplied image was intended to be an aggressive benchmark of the method.ialhe init

form of the video is shown in figure 25.

Figure 25 — Test Case 2: Image of Flowmeter Setup.

The operation of this method upon the flowmeter images was ideal for amumbe
of reasons that, on the surface, make the work more challenging, but alsoshow th
strength of the method. Inspection of Figure 25 shows that the upper reataitdes
the portion of the field of view that was within the focal region ofcdmera, while the
lower rectangle indicates the region of interest outside therre@gifocus. The

illumination was not uniform over the scale indicating flow-speed, sm#tbod would
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have to be made resistant to this sort of variation in order to op@tagéandicator ticks
are so blurred that they cannot be clearly differentiated. This shevgseat degree of
information loss, but it also allows all results to be communicatestrimstof pixel-
indices, which works reasonably well and enables less ambiguous mvedwadterror
terms. The indicator was 13 pixels across of a 640 pixel wide imags.isThvery
small 2% of the field of view, so there could be substantial impnent realized by
making the indicator larger and thus encoding more information about it®pasio
the image. The shape of the indicator changed over the field of view ligltittgy — it
cast a shadow that was different at one end of the scale from the othedgéloé the
indicator is not clearly demarked against the background, againngsaola poor signal
— it is expected that in more controlled environment the method would have higher
quality results. The axis of motion of the indicator is not aligned Wwétcamera, so 2d
motion must be accounted for — the method must be applied in 2 dimensions instead of
one.

The preprocessing, like mentioned earlier, involved first segmentiragehs of
interest from the total image to reduce the compute time, and theacsimgt from the
entire image another image in which the ball was out of its typical(atéhe extreme
value for flow rate and thus outside expected behavior of the system undgpeoy t
normal operation, and also blurred by motion resulting in substantially Ioteesity
values). This substantially reduced the impact of noise, but therdilvaimall-value
variation across the field of view. The intensities were mappedtfrer@-bit range of 0
to 255 gv to a double-precision ranging from 0 to 1. An empirical CDF of the iptensit
values revealed that the region around the ball was at substantially intgisities than
the rest of the region of interest, so intensities below the ciytidetermined threshold

were set to zero. A template region around the ball was selected and sindothe
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dimensional convolution was performed between the truncated template aflthe b

(appropriately super-sampled, and offset in intensity) which result@@idimensional

array of convolution intensities. A 2-dimensional quadratic surfasdit@ the region

surrounding the peak of this field, and an analytic root indicating thédoaaf

maximum convolution was found. This was performed over all available images.
Figure 26, below, shows the difference between the original arsnibethed

and super-sampled template of the ball. The intensities refleedbaing, and the low-

brightness of the illumination. The template at its peak only traver8eoPthe

intensity spectrum. This image has the same information content agrkirepresented

using 6-bit colors.

Figure 26 — Test Case 2: Indicator Reference (raw pixel vahe®asmoothed and
super-sampled below)
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This shows the effect of the over-sampling rate of 10 that was usedTtere.
smoothing was set consistent with that described above in that it was belstartdard
deviation of the information and acted to allow clean alignment of thettaith the
image. Although the inputs to the velocimeter were not supplied, a redhin thie
video was found where the ball responds to what appears to be a step input.u&e val

for this region are displayed in figure 27.
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Figure 27 — Test Case 2: Useful Rotameter Indicator Values

The behavior of the indicator is too erratic within the supplied videg/as to
allow characterization of the system kinematics, and there waslivator of imposed
control inputs to allow formulation as a Kalman Filter. The region of gldescending
constant flow between about 2 (s) and 8(s) looks like a close analog efghresgtonse
of an under-damped second order system. Between 10(s) and 16(s), it appears to
governed by a resonance phenomenon. If the system parameters were knowe, then t

control input as a function of indicator position history could be detechamen with
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phenomena of overshoot or resonance as was demonstrated in the analytiticase. T
exercise staged the operator of the rotameter to be able to perform otdmetaz
measurement through a video camera observing the rotameter.
CONCLUSIONS

The results demonstrated heuristic method for achieving extrergaib
measurement accuracy on the order of 0.3% of a pixel in controlled butatdpeatl-
world applications, including model-optimal noise removal from the raa: dethe error
achieved in the first case is two orders of magnitude better thaerfioenpance ceiling
indicated by Reed and Adrian. This quality of result was confirmed in theatadn of
the laser-scribe, allowed measurement of features to within 2nmpizelg that were
700nm in size, and it allowed the tool to achieve operational variatiow logle micron.
The error found in the second demonstrates the applicability of this methidvktse
inputs. It was shown in the velocimeter tracking results that eitbrsubstantial
accuracy settings, if the system was not set up to reduce the noisessawa highly
controlled manner, then there is a very solid floor to the quality of theeatst

A framework was demonstrated that provided two model-optimal forms for the
Kalman filter, one in spline equations and the other in human-tractaliyti@ana
expressions. These did not require prior analytic knowledge of the undexygitegn or
the measurement system. Their results worked “out the gate” and aentalhgt
different in nature than the “textbook” results of conventional timation methods. A
system thus created using the guidelines presented in this work would beéxpect
have repeatable performance that consistent with those demonsiragegalman filter,
with two prior state estimates, gave results compatible with algipkienal smooth

comprised of on the order of 1000 samples.
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