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ABSTRACT  

   

Modern primate diet is well-studied because of its considerable influence 

on multiple aspects of morphology, including the shape of the facial skeleton and 

teeth.  It is well-established that differences in craniofacial form influence feeding 

abilities by altering the nature of bite force production.  Tooth morphology, 

likewise, has been shown to vary with diet across primates, particularly in the 

details of occlusal form.  It has also been suggested that tooth form (e.g., tooth 

root size and shape and crown size) reflects, in part, the demands of resisting the 

stresses generated during feeding.  However, while they are central to our efforts 

to infer diet in past species, the relationships between bite force production, 

craniofacial morphology and tooth form are not well-established.  

The current study is separated into two parts.  In Part I, the hypothesis that 

crown size and root surface area are adapted to resist masticatory stress is 

evaluated by testing whether these features show correlated variation along the 

tooth row in a taxonomically diverse sample of primates.  To further explore the 

adaptive nature of this correlation, pair-wise comparisons between primates with 

mechanically resistant diets and closely-related species consuming less resistant 

foods are performed.  If crown size and root surface area covary along the tooth 

row, past research suggests they may be related to bite force.  To test this 

hypothesis, Part II examines the variation of these dental characteristics in 

comparison to theoretically-derived bite force patterns along the tooth row. 

Results suggest that patterns of maximum bite force magnitude along the 

tooth row are variable both within and between species, underscoring the 
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importance of individual craniofacial variation on masticatory force production.  

Furthermore, it is suggested that some adaptations traditionally associated with 

high bite force production (i.e., facial orthognathy) may increase anterior biting 

force at the expense of posterior biting force.  Taken together, results from the 

current study reveal that both tooth root and crown size vary in conjunction with 

the mechanical properties of diet and with bite force patterns along the tooth row 

in anthropoids. 
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CHAPTER 1 

INTRODUCTION 

Modern primate diet is well-studied because of its considerable influence 

on multiple aspects of primate morphology, including the shape of the facial 

skeleton and teeth.  It is well-established that differences in the form of the facial 

skeleton influence feeding abilities by altering the nature of bite force production.  

Tooth morphology, likewise, has been shown to vary with diet across primates, 

particularly in the details of occlusal form. It has also been suggested that tooth 

form (e.g., crown size, enamel thickness and microstructure, occlusal topography, 

tooth root size and shape) reflects, in part, the demands of resisting the stresses 

generated during feeding (Kay, 1975, Lucas et al., 1986, 2008a,b).  However, 

while they are central to our efforts to infer diet in past species, the relationships 

between bite force production, craniofacial morphology and tooth form are not 

well established. 

 Our current understanding of masticatory adaptation derives from the 

interplay of predictions from mechanical models and rigorous testing of those 

predictions via experimental and comparative studies.  The forces that break down 

food are a function of both the occlusal topography of a particular tooth and of the 

ability of the masticatory system to generate bite force on that tooth; therefore, 

both are expected to be related to habitual feeding behaviors.  This study 

evaluates data on tooth morphology in conjunction with models of feeding 

mechanics to test specific hypotheses about how the primate masticatory system 

has responded to dietary pressure over time.  
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Both experimental and theoretical studies suggest that bite forces change 

along the tooth row (in lizards: Anderson et al., 2008; in hyenas: Binder and Van 

Valkenburgh, 2000; in opossums: Thompson et al., 2003; in bats, Dumont and 

Herrel, 2003; in monkeys: Oyen and Tsay 1991; in humans: Mansour and Reynik, 

1975; Pruim et al., 1980; van Eijden et al., 1988; van Eijden, 1991; Iwase, 1998; 

Spencer, 1998; Throckmorton and Ellis, 2001; Ferrario et al., 2004). Such 

variation in force production along the tooth row can be predicted to reflect or 

influence tooth morphology.  Despite this logical connection, studies that 

explicitly test hypotheses regarding dental adaptations to stress resistance are rare 

(e.g. enamel thickness, Dumont, 1995; periodontal ligament morphology, Asundi 

and Kishen, 2000; tooth root size, Spencer, 2003).  Furthermore, there is no 

consensus concerning patterns of bite forces along the tooth row.  While some 

studies find that bite force steadily increases posteriorly (in monkeys, Oyen and 

Tsay 1991; in humans, Mansour and Reynik, 1975; van Eijden, 1991; Iwase, 

1998), others find that bite forces remain static or decrease posteriorly (in 

humans, Pruim et al., 1980; Spencer, 1998; Ferrario et al., 2004). 

Using micro-computed tomography (µCT) scans of skulls from a broad 

taxonomic array of primates, this study examines whether the assumed 

relationship between root and crown size and bite force is supported across a large 

variety of taxa, and also within individuals.  In other words, are the largest teeth 

located where the highest bite forces are produced in the mouth? By determining 

how tooth morphology and bite force covary along the tooth row, this study tests 

the assumed link between them and provides a solid foundation for a more 
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complete understanding of how tooth roots and crowns have evolved in response 

to masticatory force. 

Although tooth roots and crowns are structurally and functionally 

connected, they are different structures evolving under differing selection 

pressures.  Roots are genetically distinct from crowns, develop after crown 

development has ceased, and are attached to their sockets by the periodontal 

ligament (discussed in Chapter 2).  In contrast, crowns develop first and are put to 

use even before the root has finished developing; furthermore, crowns come into 

direct contact with food being chewed and thus experience wear.  Despite their 

shared role in food processing, it is clear that tooth roots and crowns evolve in 

distinct local environments. 

 Research suggests that taxa that eat harder foods have bigger tooth roots 

and crowns; however, there is no work that directly links root size to bite force 

production.   The current study tests the hypothesis that bite force is related to 

tooth (root and crown) size by estimating bite force at each tooth along the tooth 

row and comparing the pattern of bite force magnitude to the pattern of tooth size.  

The largest teeth should be the ones to which the highest bite forces are applied, 

while the smallest teeth should be located where estimated bite forces are lowest.   

 It is important to directly link root size to bite force because roots are 

surrounded by tissue on all sides; that is, roots do not come into direct contact 

with food.  Therefore, some variables that influence crown size (i.e., food particle 

size) may be irrelevant to the evolution of root form.  However, the force with 

which food is processed must travel through both the crown and root, suggesting 
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that both have evolved in response to mechanical loading.  Linking root size to 

bite force allows us to understand tooth morphology as it relates to force 

production alone, rather than the combined pressures of force production and 

particle size and whether the particle is sticky or gritty, all of which may impact 

crown morphology (Lucas et al., 1984; Lucas, 2004).   

This dissertation is divided into seven chapters.  The vast literature 

pertaining to the form and function of the dentition and craniofacial skeleton is 

synthesized and presented in Chapter 2.  This chapter includes descriptions of the 

models of feeding mechanics which are the basis for estimations of bite force in 

the current study and which inform the interpretations of study results.  Chapter 3 

outlines the materials and methods used to carry out the current research, 

including all of the equations used in bite force estimation.  Results and 

discussion of scaling analyses are presented in Chapter 4.  Chapters 5 and 6 

discuss and describe the results of the tests of hypotheses concerning dental form 

along the tooth row and the relationship between dental form and bite force, 

respectively.  Chapter 6 also describes patterns of bite force along the tooth row 

across sample taxa.  Chapter 7 summarizes the important results within the 

current study and discusses possibilities for future research. 

CHAPTER 2 

BACKGROUND 

Multiple lines of research suggest that different components of tooth form 

(e.g., root and crown size and shape, enamel microstructure) have been shaped 

primarily in response to selection pressures from food material properties.  
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Studies have suggested a link between tooth morphology and bite force but have 

rarely tested the nature of this link (but see Spencer, 2003).  This study examines 

whether predicted maximum bite force magnitudes match quantified variation in 

root and crown form along the tooth row in a diverse sample of primate taxa, and 

also the extent to which root size and crown size, both of which have been 

proposed to be related to stress resistance, are correlated. 

The current study is divided into two separate but logically connected 

parts.  Part I of the study focuses on variation in tooth root and crown size within 

and among a set of diverse species of primates.  The first portion of this chapter 

will evaluate the current state of knowledge relating to the variation of tooth root 

and crown size, including reviews of tooth anatomy and development, 

comparative and functional morphology, and what is known to be related to 

dental morphological variation in primates.   

Part II of the study compares variation in tooth morphology along the 

tooth row with variation in bite force along the tooth row.  Thus, the second 

portion of this chapter will review our current understanding of craniofacial 

biomechanics, including the models used to estimate bite forces and their 

predictions, and comparative and experimental work in validating said models.  

Finally, the third portion of this chapter outlines hypotheses and rejection criteria. 
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TOOTH FUNCTION AND MORPHOLOGY 

Tooth Anatomy and Development 

A typical mammalian tooth consists of four components (Figure 2.1).   

The innermost component, the pulp, contains blood vessels, lymph, and nerve 

fibers necessary for the upkeep of living tissue.   The pulp is surrounded by 

dentin, the mineralized hard tissue that makes up most of the volume of the tooth.   

The dentin of the crown is covered and protected by an even harder mineralized 

tissue called enamel, while the dentin of the root is covered by the mineralized 

connective tissue, cementum.   The periodontal ligament (PDL) consists mainly of 

collagen fiber bundles that insert into the cementum and attach the root to the 

surrounding alveolar bone.   The PDL is discussed in greater detail below. 

Tooth development begins at six weeks in utero, when the epithelium over 

the mandible thickens to become the dental lamina.   During the lamina stage 

(Figure 2.2), Meckel’s cartilage provides support for developing tissues, and 

blood vessels are already present (Schroeder, 1991).   From the lamina stage, 

development continues through a bud stage to the cap stage, where the tooth bud 

assumes the shape of a dome in response to pressure from the surrounding blood 

vessels.   At this time, mesenchymal cells condense to form the dental papilla, 

from which pulp and dentin derive, and the dental follicle (Bernick and Grant, 

1982).  Additionally, the enamel organ is formed from cells from the epithelial 

cap and eventually produces tooth enamel (Schroeder, 1991).   Together, the 

dental papilla and enamel organ make up the tooth germ.   During the bell stage, 

the tooth germ grows larger and the cells begin to differentiate.   Stellate 
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reticulum, a substance of star-shaped cells pushed apart by fluid pressure, 

separates the inner and outer enamel epithelium.    

 

 

 

 

Fig.  2.1. Major components of tooth structure.  Figure adapted 

from www.nlm.nih.gov. 
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           Fig. 2.2. Tooth crown development.  From Hillson (1986, 2005). 

 

The juncture of the inner/outer epithelium is called the cervical loop.   At 

the end of the bell stage, the developing tooth pinches off from the dental lamina.   

At this point, the inner enamel epithelium has folded to create the shape of the 

enamel-dentine junction (EDJ).   Cells of the inner epithelium elongate to form 

ameloblasts, which move to form the tooth enamel.   Neighboring cells in the 

dental papilla form ondontoblasts, specialized connective tissue cells that build 

and maintain dentin by moving toward the center of the papilla, leaving thin tubes 

of dentin behind (Schroeder, 1991; Park et al., 2007).    

After the crown is fully developed, root formation begins (Figure 2.3).   

An extension of the cervical loop forms a collar of cells called Hertwig’s 

epithelial root sheath (HERS) (Schroeder, 1991; Park et al., 2007), which is 

responsible for signaling the formation of ondontoblasts that create the dentin of 
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the tooth root (Park et al., 2007).   HERS is largely responsible for the size, shape 

and number of roots for each tooth.   For multi-rooted teeth (e.g., postcanine teeth 

like those examined in this study), HERS extends and bends sharply inward, 

forming the epithelial diaphragm at the apical boundary of the papilla (Schroeder, 

1991).   Processes arise from the cervical loop across the apical end of the papilla 

and meet in the center of the future furcation of the roots; here, they fuse to allow 

for the formation of separate epithelial sheaths that will guide future root 

formation (Kovacs, 1971; Schroeder, 1991).     

 

 

Fig. 2.3. Schematic of tooth root development in (a) a 2.5 month-old  

infant and (b) an 8 month-old infant.  HES = Hertwig’s epithelial root  

sheath (Figure from Schroeder, 1991). 

 

 

 

Kovacs (1971) divided root formation into two stages, the eruptive phase 

and the penetrative phase.   The eruptive phase begins with initial root formation 

and continues until the tooth crown comes into functional occlusion.   At this 

point, the root is about 2/3 of its total length.   During the eruptive phase, the 
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epithelial diaphragm retains its position within the dental canal, and the tooth 

moves superiorly.   The penetrative phase of root development begins when the 

tooth crowns are in occlusion.   At this point, the epithelial diaphragm pushes 

down into the alveolar bone, elongating the dental canal as root growth is 

completed (Kovacs, 1971). 

The periodontal ligament  

The periodontal ligament composed primarily of collagen fiber bundles 

that have a complex, three-dimensional overlapping arrangement, which connect 

the tooth root to the alveolar bone (Pearson, 1982).  The collagen fiber bundles, 

along with the blood vessels and nerve endings that supply the tooth, are 

embedded in a gel-like ground substance, which is composed of water, hyaluronic 

acid, proteoglycans, and glycoproteins (Pearson, 1982; Linden, 1990).  Together, 

the collagen fibers, neurovascular structures, and the ground substance comprise 

the PDL.  Aside from anchoring the tooth to the jaw, the PDL functions as a 

hydrodynamic damping mechanism that absorbs and distributes occlusal forces 

into alveolar bone (van Driel et al., 2000) and also provides sensory feedback 

used in the neural control of chewing (Linden, 1990).  Each of these functions is 

discussed separately below. 

PDL biomechanics 

It is now well-established that the PDL responds to force in a viscoelastic 

manner (Embery, 1990; Luke, 1998; Dorrow et al., 2002, 2003; Natali et al., 

2004; Komatsu, 2010; Fill et al., 2011), meaning the PDL has properties of both 

viscous and elastic material.  Elastic materials deform immediately when stressed, 
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and then return to their original form once the stress is removed (Meyers and 

Chawla, 2009).  Liquids have a biomechanical property known as viscosity, a 

liquid’s resistance to movement, which results in frictional energy loss over time 

(Meyers and Chawla, 2009).  Low-viscosity liquids, like water, move more 

quickly and easily, and lose less energy than high-viscosity liquids, like molasses.  

Orthodontic research has revealed that if a force is applied to a tooth, once the 

force is removed the tooth recovers its original position, an elastic property; but it 

also takes time to recover the original position, a viscous property; thus, the PDL 

is viscoelastic (Luke, 1998; Dorrow et al., 2002, 2003; Natali et al., 2004; Meyers 

and Chawla, 2009).  

The viscoelastic nature of the PDL is most likely due to the elastic nature 

of the collagen fibers coupled with the viscous nature of the ground substance and 

other fluids in the periodontal space (Dorrow et al., 2002, 2003).  Collagen fibers 

of the PDL have a wavy, crimped structure when not loaded (Gathercole and 

Keller, 1982); when force is applied to a tooth, these fibers first straighten before 

being loaded in tension (Gathercole and Keller, 1982; Dorrow et al., 2003).  Thus, 

initial responses to stress in the PDL are hypothesized to be governed by the 

ground substance, which is joined later by straightened collagen fibers loaded in 

tension (Dorrow et al., 2003).  However, it should be noted that, while supported 

with indirect evidence, the hypothesis that stress in the PDL is first encountered 

by the ground substance followed by the collagen fibers requires direct testing.  A 

complete understanding of the biomechanical properties of the PDL is unknown 

at this time (Natali et al., 2004; Fill et al., 2010).  
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Although the exact details of the biomechanical behavior of the PDL are 

currently unresolved, research clearly indicates that the PDL plays an important 

role in stress resistance.  Experimental and photoelastic stress analyses indicate 

that the strain profile in a loaded tooth changes at different positions on the tooth 

root (in rodents: Chiba et al., 1990; Komatsu et al., 1998; Yamazaki et al., 2001; 

in humans: Deines et al., 1993, Asundi and Kishen, 2000) such that maximum 

strain and shear stress are highest in the cervical portion of the root and diminish 

apically when loaded axially (Mandel et al., 1986; Asundi and Kishen, 2000).  

Furthermore, the PDL varies in strength and thickness along the tooth root in 

conjunction with masticatory stress patterns; that is, portions of the tooth root that 

experience more stress show a relative increase in the organization and 

attachment of the PDL to the bone and cementum (in rodents: Chiba et al., 1990; 

Komatsu et al., 1998; Yamazaki et al., 2001; in humans: Sloan, 1982; Mandel et 

al., 1986; Deines et al., 1993; Asundi and Kishen, 2000).   

In a recent finite element modeling (FEM) study, Panagiotopoulou and 

colleagues (2011) constructed several FE models with the PDL modeled variably 

in thickness and elasticity that they validated against an experimental protocol.  

They found that strain across the mandible was not affected by changes modeled 

in the PDL material properties; instead, the PDL affected only the local 

environment around the stressed tooth, the alveolar bone adjacent to the tooth 

socket.  Taken together, research indicates that the PDL plays an important role in 

managing the strain environment of a loaded tooth by damping occlusal forces as 

they move through the tooth to the surrounding alveolar bone.  
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Sensory feedback 

The PDL is innervated by two types of nerve groups: somatic sensory and 

autonomic.   The autonomic nerves regulate the smooth muscle cells of blood 

vessels, controlling patterns of blood flow around each tooth, while the sensory 

nerves allow the PDL two types of sensation, pain and pressure (Hannam, 1982).   

Among the sensory cells are periodontal mechanoreceptors (PMRs), nerve 

endings that contain receptor molecules that respond to pressure created when the 

tooth is loaded.  When activated, these mechanoreceptors cause reflex activity in 

the jaw musculature (Hannam, 1982; Morimoto et al., 1989; Linden, 1990; 

Hidaka et al., 1997; Trulsson and Gunne, 1998; Türker and Jenkins, 2000; 

Johnsen and Trulsson, 2003, 2005).    

Experimental work on rabbits has shown that when sensory feedback from 

PMRs is removed using local anesthesia, masseter muscle force during chewing is 

greatly decreased relative to non-anesthetized chewing (Lavigne et al., 1987; 

Morimoto et al., 1989).  Additionally, Haraldson (1983) found that bite forces in 

human subjects with no teeth (who were using dentures) were greatly decreased 

relative to subjects with natural teeth.  In the same study, Haraldson also found 

that while bite-to-bite muscle activity is highly variable in people with natural 

teeth, people wearing dentures do not exhibit variation; in other words, denture-

wearers do not modify muscle activity as they chew.  Experiments in humans that 

measured voluntary maximum bite force both before and after local anesthesia of 

teeth also showed a drastic decrease in bite force after anesthesia was 

administered, unless the subject was given reassurance or visual feedback of bite 
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force level.  Once subjects were certain that they were not going to break their 

teeth, they were able to bite harder by exerting a conscious effort to do so (Lund 

and Lamarre, 1973; Orchardson and MacFarland, 1980; Linden, 1990). 

Consensus is that PMRs are responsible for a major part of jaw closing 

muscle activity during mastication.  When a tooth is loaded and the force 

gradually increases, PMRs excite jaw closing muscular activity; conversely, when 

force on a tooth rapidly increases, PMRs inhibit jaw closure (Lavigne et al., 1987; 

Dessem et al., 1988; Morimoto et al., 1989; Lund, 1990).  Additionally, Turker 

and Jenkins (2000) found that when there is a sudden yield of resistance on the 

tooth (when the tooth is rapidly unloaded), PMRs act to inhibit jaw closure.   

It is important to note here that the fundamental rhythmic pattern of 

mastication is controlled by a central pattern generator (CPG) located in the brain 

stem (Dellow and Lund, 1971).  The output of the CPG is modified by input from 

the motor cortex, which initiates and stops mastication, and by peripheral sensory 

feedback from PMRs, which gives information about food hardness (Linden, 

1990; Agrawal et al., 1998; Foster et al., 2006; Lund and Kolta, 2006; Mistry and 

Hamdy, 2008).  Sensory feedback is not necessary to generate the basic 

masticatory rhythm, but does play a major role in reflex muscle activity during 

chewing (Haraldson et al., 1979, Orchardson and MacFarland, 1980; Haraldson, 

1983; Lavigne et al., 1987; Dessem et al., 1988; Morimoto et al., 1989; Linden, 

1990; Hidaka et al., 1997; Trulsson and Gunne, 1998; Turker and Jenkins, 2000; 

Lund and Kolta, 2006; Mistry and Hamdy, 2008).   
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Taken together, these studies indicate that the PDL and its 

mechanoreceptors can dramatically impact force profiles over a chewing cycle.  

Furthermore, PMRs can enhance or inhibit jaw-closing muscle activity and 

contribute to the control of bite forces (Haraldson, 1983; Morimoto et al., 1989; 

Linden, 1990; Agrawal et al., 1998; Türker and Jenkins, 2000; Türker, 2002; 

Johnsen and Trulsson, 2003, 2005).   

Tooth root comparative and functional morphology 

Theoretical and comparative studies suggest that teeth with more 

attachment sites for the PDL (i.e., teeth with more root surface area), are better 

able to resist masticatory stress compared with teeth with less root surface area 

(Deines et al., 1993; Spencer, 2003).   Comparative studies reveal that among 

species with diets of differing mechanical properties, root surface areas are larger 

in those that process a resistant diet (platyrrhines: Spencer, 2003; cercopithecoids 

and carnivores: Kupzcik, 2003; anthropoids: Kupzcik et al., 2009). 

Variation in tooth root size both among species and along the tooth row 

has been observed for primates in general (Kovacs, 1971; Abbott, 1984; Kupzcik, 

2003), although traditionally the explanations for the source of this variation have 

been developmentally based, rather than functional in nature.   Furthermore, 

within the field of paleoanthropology, variation in tooth root number has been 

used to assess taxonomic affinity of fossil specimens (Abbott, 1984; Wood et al., 

1988; Tobias, 1995). 

Early studies of tooth root variation that concentrated on developmental 

mechanisms that influence root length found that, in humans, for teeth with 
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deciduous predecessors, early extraction of deciduous dentition adversely affects 

permanent tooth root length (Brin and Koyoumdjisky-Kaye, 1981; Brin et al., 

1991).   Furthermore, early experimental research suggests a correlation between 

facial protrusion and root size such that animals with shorter faces also tend to 

have shorter tooth roots (in rats: Riesenfeld, 1970; in dogs: Riesenfeld and Siegel, 

1970; in baboons: Siegel 1971, 1972; in humans: Garn et al., 1980; Spencer and 

Demes, 1993).   Siegel (1972) found that the highest correlation between root and 

facial length was present in teeth located near growth sites in the jaw: the canine 

near the premaxillary-maxillary suture, M
1
 at the maxillary-palatine suture, and 

M3 near the mandibular ramus.   This evidence supports suggestions that tooth 

root length is affected by developmental processes. 

Finding a developmental link between facial protrusion and root length 

does not preclude the possibility that either or both of these variables are 

influenced by selection for the generation of specific bite forces.  In fact, facial 

length is known to play a very important role in masticatory force production 

(discussed in detail below) (Greaves, 1978; Spencer, 1999).  Furthermore, root 

length may not be equivalent to root surface area.  In other words, a tooth with a 

relatively long root may not have a higher surface area than a tooth with relatively 

shorter roots, depending on how the root is shaped and whether it is single- or 

multi-rooted (Kupczik, 2003; Kupczik et al., 2005).   Kupczik and colleagues 

(2005) explored the relationship between root surface area and the number of 

roots for individual teeth, but found no relationship between the two.   They 

suggested that the number of tooth roots in a given tooth is a genetic 
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polymorphism, rather than an adaptation for increasing root surface area (Kupczik 

et al., 2005).    

Wood et al. (1988) set out to systematically describe postcanine tooth root 

morphology in hominin specimens, with an emphasis on using variation in root 

morphology to assess taxonomic affiliation.   They found that premolar form is 

indeed helpful in distinguishing between eastern African robust australopiths and 

members of the genus Homo.   However it should be noted that the adaptive 

strategy of each group is distinct.   Members of the genus Homo generally have 

smaller, less robust tooth roots than robust australopiths; however the mechanical 

demands of the diet of the latter have been hypothesized to be linked to their 

larger teeth (Robinson, 1956; Wood et al., 1988; and many more).   Additionally, 

Wood et al. (1988) found no consistent interspecific variation in molar root form 

among their hominin sample, suggesting that while some postcanine teeth (i.e., 

premolars) may provide important taxonomic information, molar root 

morphology varies independently of taxonomic affiliation. 

Current research suggests that tooth root surface area correlates with a 

tooth’s ability to withstand masticatory loads such that teeth with more root 

surface area can withstand high magnitude and/or repeated occlusal forces.   

Studies that examine the variation of root form along the tooth row show that 

proxies for root surface area, like root length and root number, may not accurately 

reflect the size of the area of attachment for the PDL (Kupczik et al., 2005).   The 

current study uses measurements of tooth root surface area to evaluate the 



  18 

hypothesis that large tooth roots correlate with high bite forces and large tooth 

crowns. 

Tooth root and crown independence 

Because tooth roots and crowns are physically and functionally connected, 

it is important to assess the degree of independence between them.   While teeth 

with larger crowns generally have larger roots, the proportion of root to crown 

size is not consistent among taxa, suggesting that crown and root size may vary 

independently (Kovacs, 1971; Abbott, 1984; Wood et al., 1988; Kupczik, 2003; 

Spencer, 2003; Kupzcik et al., 2009).   This conclusion is supported by 

experimental studies that show that mice with a mutation in the Nfic gene (a gene 

known to be associated with tooth root development) develop molars with normal 

crowns, but that lack roots entirely (Steele-Perkins et al., 2003).    

Crown size 

In the past, it has been suggested that variation in tooth crown size is 

linked to differences in energy requirements (Pilbeam and Gould 1974; Gould, 

1975), sexual dimorphism (Lucas et al., 1986; Cochran, 1986; Hlusko et al., 

2006), and body size (Kay, 1975, 1978; Goldstein et al., 1978; Gingerich and 

Smith, 1985; Lucas et al., 1986) in addition to variation in the mechanical 

properties of food (and, consequently, bite force) (Kay, 1975, 1978; Hylander, 

1985; Lucas, 1986; Demes and Creel, 1988; Dumont, 1997; Cuozo and Sauther, 

2006).  Additionally, studies have shown that different aspects of crown 

morphology, including overall size, may be affected by changes in developmental 
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factors (Jernvall et al., 2000; Jernvall and Jung, 2000; Kangas et al., 2004; 

Kavanaugh et al., 2007).   

Crown size and metabolic rate 

Gould (1975) famously reasoned that tooth size (specifically, molar size) 

is related to the total intake of food an animal needs to satisfy its baseline energy 

requirements, which are in turn governed by body size and metabolic rate.   

According to Gould’s “metabolic scaling” hypothesis, tooth size should be 

proportional to body mass raised to the 0.75 power, since body mass scales to 

metabolic rate at the 0.75 power.   This is significant because it is a different 

relationship than would be expected based on a hypothesis of geometric scaling or 

isometry, which predicts that tooth size (an area) should scale with body mass (a 

volume)  with a scaling coefficient of two-thirds or 0.67 (For a more detailed 

discussion of scaling, see Chapter 3). 

Gould’s (1975) hypothesis has been challenged and tested in myriad 

different ways, and with a variety of (often conflicting) results (Kay 1975, 1978; 

Wood, 1979; Gingerich and Smith 1985; Lucas et al., 1986b; Vinyard and Hanna, 

2005; Copes and Schwartz, 2010).   While some studies indicate that primate 

postcanine tooth size scales isometrically with body mass (Wood, 1979; 

Gingerich et al., 1982), others suggested negatively (Kay, 1975) or positively 

(Gingerich and Smith, 1985; Vinyard and Hanna, 2005) allometric relationships.   

While the exact relationship between primate body mass and postcanine tooth size 

remains unclear, no study found support for the hypothesis that postcanine tooth 

size scales with metabolic rate. 
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Crown size and sexual dimorphism 

In the studies reviewed above, body size was used as a proxy for 

metabolic rate.   This can be problematic, however, since many (although not all) 

primates have large body size dimorphism.   In such cases, it is necessary to 

examine males and females separately, since the relationship between tooth size 

and body size may differ between the sexes.   Current research indicates that size 

dimorphism varies in magnitude and pattern along the tooth row, and while many 

studies conclude that postcanine tooth dimorphism is low (Oxnard et al., 1985; 

Lucas et al., 1986a; Plavcan, 2002), it is well-documented that among primates 

with substantial body and/or canine size dimorphism, there is greater variation in 

the magnitude of dimorphism for all features (O’Higgins et al., 2001), including 

postcanine tooth size (Masterson and Hartwig, 1998; Uchida, 1998; Plavcan, 

2002).   However, these patterns of variation appear to differ across species 

(Uchida, 1998; Plavcan, 2002).      

In studies that have focused specifically on postcanine tooth size and body 

size dimorphism, it has been found that, despite the expectation that males (with a 

larger body mass) would have proportionally large dentition, female primates 

actually have relatively larger postcanine teeth than their male counterparts 

(Lucas et al. 1986a; Cochard, 1987).   Researchers have tried to explain these 

results by observing that female metabolic requirements during pregnancy and 

lactation exceed those of males (Cochard, 1987).   However, this explanation is 

unsatisfactory given that in primates with size monomorphism, postcanine tooth 

size is the same in males and females (Lucas et al., 1986a,b; Cochard, 1987; 
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Lucas, 2004), despite the females’ added metabolic burden associated with 

pregnancy and lactation.    

After years of investigation, the exact relationship between body size and 

postcanine tooth size is not clear.   In fact, Lucas (2004) concludes that “there is 

no critical relationship between postcanine tooth size and body size” (166).   

Recently, it has been suggested that postcanine tooth size, rather than scaling with 

body mass, is more closely influenced by overall facial size (Scott, 2011).   Scott 

found that among 29 species of anthropoids, primates with longer faces also 

tended to have larger postcanine teeth.   Furthermore, when facial size was held 

constant, the correlation between postcanine tooth size and body mass was not 

significant (Scott, 2011).   These findings suggest that facial size (which may vary 

in response to the mechanical challenges of diet, discussed below), rather than 

overall body mass, may explain much of the variation present in primate 

postcanine tooth size.   

Crown size and diet 

It has long been suggested that tooth crown size is directly related to diet, 

such that relatively large tooth crowns are associated with difficult-to-process 

foods.  Within the context of primate dietary research, foods that are difficult to 

process may be described as “hard” or “tough”, depending on their specific 

mechanical properties (discussed in detail below).   While the material properties 

of many primate foods are unknown, there is research containing these data for 

some taxa (pitheciins: Kinzey and Norconk, 1990, 1993; primate faunivores: 

Strait and Vincent, 1998; strepsirrhines: Yamashita, 1998, 2003; M. fuscata: Hill 
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and Lucas, 1996; G. berengei: Elgart-Berry, 2004; mangabeys: Lambert et al., 

2004; Cebus: Wright, 2005; hominoids; Taylor et al., 2008).  The sample for this 

study includes species for which information about food material properties is 

available whenever possible.  Despite the paucity of data on the exact material 

properties of primate foods, there is a rich literature linking variation in crown 

size to variation in the mechanical properties of diet.  Studies that investigate 

dietary correlates of crown size always find that primates whose diets include 

hard and/or tough foods have larger tooth crowns that closely related primates 

with a softer diet (Robinson, 1954; Jolly, 1970; Kay, 1975, 1978, 1981; Lucas et 

al., 1986b; Demes and Creel, 1988; Kinzey and Norconk, 1990, 1992; Anapol and 

Lee, 1994; Cuozo and Sauther, 2006). 

Food Material Properties 

Teeth function to fragment and fracture solid food particles (Lucas and 

Teaford, 1994).   The mechanical properties of food govern how easily a particle 

is fractured (i.e., crack initiation) and fragmented (i.e., crack propagation) and 

consequently the magnitude of bite force necessary to process specific foods.  

External physical properties of food, like size, volume, shape, and abrasiveness, 

all affect the probability of particle fracture.   Changes in these external properties 

correspond to changes in the size of a tooth (Lucas et al., 1986; Teaford, 2002; 

Lucas, 2004).   Thus, food with a large, rough outer shell (like nuts or some fruits) 

is best accommodated by large teeth that can more easily start a crack through the 

outer layer.   Once the crack is begun, however, it must be propagated so that the 

food particle will fragment with further processing.   Fragmentation is governed 
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by the internal properties of food, such as strength, toughness, and deformability 

(Lucas et al., 1986b; Lucas, 2004).   These properties influence the shape of a 

tooth (Kay, 1975; Lucas and Luke, 1984; Lucas et al., 1986b; Teaford and Ungar, 

2000; Teaford, 2002; Lucas, 2004).   Because foods are variable in their internal 

and external mechanical properties, teeth are variable in size and shape. 

When a force is applied to an object, that object is stressed.   Stress always results 

in some amount of distortion (this is also called deformation or strain).   If an 

object deforms enough, it cracks (fractures).    

To understand the relationships among applied force, deformation, and 

fracture of an object, researchers look at the stress/strain ratio (Figure 2.4).   

Stress, σ, is measured as the amount of force divided by the area over which it is 

distributed.   Strain, ε, is a dimensionless variable calculated by the change in the 

length of an object divided by the original length of the object.   By plotting the 

stress/strain ratio for an object, it is possible to determine the amount of force an 

object can withstand before deforming permanently or fracturing.   This is an 

object’s stiffness or rigidity, and is called Young’s modulus or the modulus of 

elasticity (E).   Within the realm of food material properties, a food with a high 

value for E is considered hard (Lucas, 2004; Lucas et al., 2008).   Once an object 

has been fractured or cracked, its internal properties govern how much work is 

needed to propagate the crack further.   This is called toughness and is represented 

by the variable R.   R is the measure of the work done to produce a unit area of 

crack (Lucas, 2004; Lucas et al., 2008).    
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Foods that are resistant to initial fracture (hard foods) require higher bite 

force magnitudes than those that fracture more easily (soft foods).  Likewise, 

foods that resist fragmentation (tough foods) require more repeated forces or 

longer duration of force than those that fragment readily (brittle foods) (Lucas et 

al., 1986b; Lucas, 2004).   Within the context of primate diet, hardness is usually 

used to characterize nuts and fruits, which may be difficult or easy to fracture 

depending on the stage of development, but once breached are generally easy to 

chew.   Toughness characterizes leaves, which fracture very easily, but resist 

crack propagation due to their cellular structure.   While both fruits and leaves can 

be tested for both hardness and toughness, these foods do not have high values for 

both properties (Lucas et al., 2008).   The foods typically eaten by primates that 

are very tough are generally not very hard and vice versa.    
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Fig.  2.4.  Young’s modulus.   The red dot indicates the point at which the 

object under stress permanently deforms. 
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The current study examines the size (surface area) of tooth crowns and 

roots.   According to Lucas (2004), the size of a tooth may be affected by food 

hardness, but not by its toughness.   Instead, toughness exerts pressure on tooth 

shape.   Complicating the matter is the fact that food consumed in the wild may 

also be covered with abrasive particles associated with nearby soil matrix.   

Consequently, a leaf, usually considered tough, may also exhibit characteristics 

associated with hard food due to its accompanying grit (Lucas et al., 1986b; 

Lucas, 2004).   The result of this association is that assessing the differing 

selective pressures of hardness and toughness is difficult, if not impossible, to 

determine without experimental controls.   In view of this difficulty, the current 

study combines hard and tough foods into one category, “resistant”, such that 

primates with a mechanically resistant diet (eating hard and/or tough foods) are 

predicted to have dental morphology such as relatively large tooth roots (Spencer, 

2003; Kupzcik, 2003) and crowns (Demes and Creel, 1988; Spencer, 2003; Lucas, 

2004) that reflects evolution to resist high magnitude and/or high frequency 

loading force. 

Patterns of molar crown size 

There is variation in the pattern of postcanine tooth size along the tooth 

row among primates (Swindler, 1979, 2002; Gingerich and Schoeninger, 1979; 

Lucas et al., 1986b) such that, while some species show the pattern M1>M2>M3 

(e.g., humans and cebids), others show M1<M2>M3 (e.g., Alouatta and Pan) or 

even M1<M2<M3 (e.g., Mandrillus and Papio).   While this variation is often 

described, the explanation for differing patterns of postcanine crown size is still 
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unclear.   Studies focusing on developmental factors suggest that M1 has the 

ability to inhibit the development of subsequent molar teeth (Sofaer, 1977; 

Kavanaugh et al., 2007).   Kavanaugh and colleages (2007) suggest that by 

manipulating the balance of molecular signals that activate and inhibit tooth 

formation, M1 controls an “inhibitory cascade” that sequentially affects molars 

along the tooth row, potentially creating differing patterns of crown size among 

species.   One consequence of this developmental mechanism is that M2 

consistently makes up about one-third of the molar tooth row in rats (Kavanaugh 

et al., 2007).   Lucas et al. (1986b) show that M2 is the least variable molar in the 

primate tooth row, which Kavanaugh et al. (2007) cite as support that the 

inhibitory cascade they observed in mice may apply across mammals. 

In addition to concluding that M2 is not particularly variable among 

primates, Lucas et al. (1986b) used a ratio of M1 occlusal area to M3 occlusal 

area to determine whether patterns of crown size along the molar row are 

correlated with diet.   They found that the M1/M3 ratio is inversely related to the 

percentage of leaves (and in some cases, leaves and seeds) consumed.   In other 

words, primates that consumed large amounts of leaves had larger M3s relative to 

M1s, resulting in larger overall postcanine occlusal area for more folivorous 

primate species (Lucas et al., 1986b).  

The production of phenotypic variation is constrained by functional, 

environmental, and developmental factors, none of which are mutually exclusive.   

Developmental mechanisms such as the inhibitory cascade are manifestations of 

how selection for functional features, like tooth size, may be implemented 
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(Kavanaugh et al., 2007).   While it is obvious that changes in complex 

developmental interactions can affect the ultimate phenotype of a tooth (Steele-

Perkins et al., 2003; Kavanaugh et al., 2007; Park et al., 2007), the fact that crown 

size correlates with the mechanical properties of food so consistently (Jolly, 1970; 

Kay, 1975, 1978, 1981; Lucas et al., 1986b; Demes and Creel, 1988; Kinzey and 

Norconk, 1990, 1992; Anapol and Lee, 1994; Cuozo and Sauther, 2006)  suggests 

that the ultimate variable driving variation in tooth size is functional in nature. 

Note about tooth enamel 

Many studies suggest that dietary variation has been a major determinant 

of variation in enamel thickness.   Regardless of size, animals that process hard 

diets have thicker enamel than their close relatives who process soft diets 

(primates and bats: Dumont, 1995, 1999; primates: Shellis et al., 1998; 

hominoids: Smith et al., 2005, Vogel et al., 2008).   The current study was 

designed with the intention of comparing enamel thickness along the tooth row 

both within and between species to test the hypothesis that enamel thickness 

varies with bite force along the tooth row.   However, the data necessary to assess 

this hypothesis cannot be collected from the current sample due to extreme wear 

on the tooth crowns and a paucity of juvenile specimens.   Future investigations 

into the relationship between enamel thickness and bite force will require a 

sample that has been specially selected to include juveniles at each stage of dental 

development within a species, so that patterns of enamel thickness along the tooth 

row can be examined.   
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CRANIOFACIAL BIOMECHANICS 

The upper and lower jaw work in concert with the dentition to process 

food; consequently, differences in craniofacial form are often interpreted in the 

context of dietary adaptation (DuBrul, 1974, 1977; Hylander, 1979a; Rak, 1986; 

Bouvier, 1986a,b; Demes and Creel, 1988; Spencer and Demes, 1993; Spencer, 

1995, 1999; Wright, 2005; Constantino, 2007; Constantino and Wood, 2007; and 

many more).   Craniofacial diversification can be seen in closely related lineages 

that utilize differing dietary strategies.   For example, within cebids, Cebus apella, 

a hard object feeder, has larger temporalis muscles, wider zygomatic arches, and 

taller mandibular rami than its closest relatives (Constantino, 2007).   Similarly, 

robust australopiths have flat, “dished” faces, hypermegadont dentition, and 

robust mandibular corpora compared to their gracile counterparts, and it has been 

suggested that they were hard object feeders and/or tough food specialists 

(DuBrul, 1974, 1977; Rak, 1986; Hylander, 1988).    

The type of food an animal can consume is at least partially constrained by 

the maximum bite forces it can produce.   Jaws capable of producing high 

magnitude bite forces may be advantageous for seed predators (e.g.,  pitheciines), 

while a more energy-efficient masticatory system may be better suited to primates 

who spend much of their time chewing tough leaves (e.g.  colobines).   By 

observing the relationships among the muscles of mastication and their 

relationship to the maxilla, mandible, temporomandibular joints (TMJs), and 

teeth, differences in force production capability among taxa can be compared.   

The primary selection pressures related to the production of masticatory force are 
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those that favor an increase in force magnitude or those that favor a decrease in 

the energetic cost of mastication (i.e., long duration/high frequency loading) 

(Spencer, 1995).    

To understand systematically how bite forces are distributed along the jaw 

and how changes in face and jaw form affect feeding mechanics, mathematical 

models have been developed that treat the jaw as if it were a Class III lever (Gysi, 

1921; Greaves, 1978; Smith, 1978; Spencer, 1995).   These models of feeding 

mechanics are crucial to the study of the evolution of force production, but it is 

important to note that all models are simplifications and are therefore incomplete 

to some extent.    While such simplifications may obscure the finer details of any 

mechanical structure, they are necessary in order to answer simple questions that 

would otherwise go unanswered due to complex interactions within the system.   

Ultimately, of course, these models must be validated against experimental and/or 

comparative data.    

The models discussed below were formulated to facilitate the comparison 

of craniofacial structure among primates (rather than describe movement and 

muscle activity during mastication) and are therefore relatively simple.   First and 

foremost, the concept of static equilibrium is key to these models.   In a static 

analysis, it is assumed that no motion occurs, such that the sum total of all forces 

acting on a body cancel each other.   This principle allows for the calculation of a 

force given the appropriate information of other forces in action, and is generally 

thought to be acceptable for most analyses of force production during feeding.   

Additionally, analyses of masticatory forces use vector mechanics, with the 
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complex forces at the occlusal surface, in the TMJ, and generated by masticatory 

muscles simplified using vectors, which can be manipulated mathematically or 

graphically.   Commonly, the force vectors for each of the masticatory adductor 

muscles (temporalis, masseter, and medial pterygoid) are summed to produce a 

single muscle resultant force vector.   Because these forces are complex, it is also 

common to analyze only components of the bite force, muscle resultant force, and 

joint reaction force within a defined reference framework (e.g.  relative to the 

occlusal plane).    

Simple lever model 

The most basic model used to interpret the biomechanics of chewing is a 

simple lever model.   In this model, the masticatory adductors (the temporalis, 

masseter, and medial pterygoid muscles) apply an upward force on the mandible, 

closing it, and this upward pull is resisted by downward reaction forces at the bite 

point and the TMJs.   The muscle moment arm, or lever arm, is the perpendicular 

distance from the muscle force to the fulcrum (usually modeled at the TMJ).   The 

resistance moment arm (here, the bite force moment arm) is the distance from the 

resistance force (the bite point) to the fulcrum (Figure 2.5).     

Following the principle of static equilibrium, the basic equation for 

determining force magnitudes in this simple model is: 

Bb + Jj + Mm = 0 

(1) 

where B, J, and M are the magnitudes of the bite force, joint reaction force, and 

muscle resultant respectively, and b, j, and m are their respective moment arms.   
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Placing the fulcrum at the TMJ means that j equals zero in this equation because 

no torque is generated by J.   Using this model, bite forces and joint reaction 

forces can be calculated for a given bite point (Gysi 1921; Bramble, 1978; 

Greaves, 1978; Smith 1978; Hylander, 1985; Spencer, 1995).    
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Fig.  2.5.  Simple lever model.   J = joint reaction force.   M = muscle resultant.   

B = bite force magnitude.   m = muscle moment arm (lever arm).   b = bite force 

moment arm (load arm). 
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Using the simple lever model described above, researchers have found that 

when bite points are located in the anterior dental arcade, the working side (w-s) 

and balancing side (b-s) TMJs are compressed and resist most of the load;  as the 

bite point moves posteriorly, it approaches the muscle resultant force and bears 

more of the load relative to the TMJs (Hylander, 1979b, 1985; Hylander and 

Bays, 1978, 1979).   Bite points posterior to the muscle resultant can therefore 

result in tension at the TMJ as the condyle is pulled away from its articulation 

point (discussed in further detail below) (Maynard-Smith and Savage, 1959; 

DuBrul, 1974, 1977; Hylander 1975, 1978, 1985; Greaves, 1978; Smith, 1978; 

Demes and Creel, 1988; Spencer, 1995, 1999). 

A longer bite force moment arm relative to the muscle moment arm results 

in less bite force for the amount of muscle force input and more condylar reaction 

force; conversely, a relatively short bite force moment arm reduces condylar 

reaction force and allows larger bite forces to be generated for a given amount of 

muscle force (Gysi, 1921; Bramble, 1978; Smith, 1978; Antón, 1994).   The 

simple lever model predicts that an increase in bite force magnitude can be 

achieved temporarily by moving the bite point posteriorly along the tooth row or, 

permanently, by configurational changes in the masticatory system during 

evolution (Gysi 1921; Bramble, 1978; Greaves, 1978; Smith 1978; Hylander, 

1985; Spencer, 1995, 1999; Wright, 2005; Constantino, 2007).   These adaptations 

include anteroposterior shortening of the face, anterior repositioning of the 

masticatory muscles, and vertical deepening of the face and are seen in primates 

with resistant diets (e.g.  Cebus apella).  Each of these adaptations increases 
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mechanical advantage, the former two by increasing the lever/load arm ratio 

(Figure 2.6), described above (decreasing the distance between the masticatory 

muscles and the bite point) (DuBrul, 1977; Hylander, 1979a, Ravosa, 1990; 

Spencer and Demes, 1993; Antón, 1994) and the latter by raising the TMJ above 

the occlusal plane, which also increases leverage (Maynard-Smith and Savage, 

1959; Ward and Molnar, 1980; Spencer, 1995), discussed below.   In addition to 

these changes, force production can be increased without changing spatial 

relationships by increasing the size of the muscles of mastication.     

Muscle resultant inclination and raising the TMJ in the simple lever model 

The simple lever model assumes that the TMJ lies on the occlusal plane, 

and that the muscle resultant vector is perpendicular to the occlusal plane, two 

assumptions that are violated in primates (and most other mammals), which 

typically have TMJs situated high above the occlusal plane and an 

anterosuperiorly inclined muscle resultant (Spencer, 1995).  Raising the TMJ in 

the simple lever model results in a reference line that changes with each bite point 

(Figure 2.7), resulting in the augmentation of the bite force moment arm for each 

bite point.  Furthermore, reorienting the reference line for each bite point results 

in a change in the magnitude and direction of the normal and axial components of 

muscle resultant force, joint reaction force and bite force (Spencer, 1995).  If the 

TMJ is raised while the muscle resultant vector is oriented vertically relative to 

the occlusal plane, the normal component of the muscle resultant force is 

decreased, and the bite force curve becomes flattened, especially distally 

(Spencer, 1995).  
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Fig.  2.6.  Mechanical advantage.  a) J = joint reaction force, M = muscle 

resultant force, B = bite force, m = lever arm, b = load arm.  b) An anterior 

movement in muscle resultant, M, relative to the joint reaction force, J, results 

in an increased lever arm/load arm ratio (m/b), increasing the bite force. 

 

 

 

 

 

 

 

 

 
Fig. 2.7. Raising the TMJ above the occlusal plane.  Note that the  

reference line changes with each bite point (1, 2, and 3). 
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The simple lever model only considers forces that are perpendicular 

(normal) to the reference line.  However, this is unlikely to reflect reality given 

that the muscles of mastication are not oriented completely vertically relative to 

the occlusal plane.  If the muscle force vector is angled (Figure 2.8), it can be 

broken down into its component parts, the vertical MN and axial MA, which 

together make up the total muscle force, M. 

 

 

 
       Fig. 2.8. Vectors of M. 
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The magnitude of MN and MA are determined by the angle of M at the 

reference line such that 

MN = M sin θ 

(2) 

MA = M cos θ 

(3) 

 

When the TMJ is raised and the muscle resultant is inclined, the resulting changes 

in the relative magnitudes of MN and MA at each bite point and in the length of the 

muscle resultant moment arm impact the shape of the bite force curve.  When the 

muscle resultant vector is perpendicular to the reference line, MN has the highest 

magnitude and MA is zero; as the changing bite point moves the reference line, MN 

will decrease relative to MA (Spencer, 1995).  Furthermore, the muscle resultant 

moment arm, m, will be augmented.  The combined result of raising the TMJ and 

inclining the muscle resultant in the simple lever model is a bite force curve in 

which bite force is increasing at all bite points, but the shape of the curve is  

relatively flattened.  In other words, bite force magnitude continues to increase 

distally along the tooth row, but the change in force on adjacent teeth is relatively 

small.   

Even when considering the effects of a raised TMJ and an 

anterosuperiorly inclined muscle resultant, the simple lever model predicts that 

bite forces will increase as the bite point moves posteriorly along the tooth row 

due to a decrease in the bite force moment arm relative to the muscle resultant 

moment arm.  However, the simple model also predicts that the TMJ may be 

loaded in tension at posterior bites, which would result in joint dislocation 
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(discussed above).  Most mammals are able to chew without dislocating the TMJ, 

suggesting that the simple lever model is incomplete. 

Constrained lever model 

 

The simple lever model predicts increasing bite forces as the bite point 

moves posteriorly along the tooth row.   However, the TMJ may be dislocated 

(the mandibular condyle is pulled away from its articular surface) at posterior bite 

points (Maynard-Smith and Savage, 1959; DuBrul, 1974, 1977; Hylander 1975, 

1978, 1985; Greaves, 1978; Smith, 1978; Demes and Creel, 1988; Spencer, 1995, 

1998).   Greaves (1978) argued that the ligaments of the TMJ are poorly suited to 

resist tensile forces and therefore constraints must exist in the masticatory system 

to avoid regular TMJ dislocation.   He therefore proposed a modified model of 

masticatory biomechanics, often referred to as the constrained lever model. 

One way Greaves’ (1978) constrained lever model differs from previous models 

is that it is oriented in the occlusal view.    

The upward pull of the muscle resultant force is resisted at three points:  

the working side (w-s) TMJ, the balancing side (b-s) TMJ, and the bite point, 

making up what Greaves called the “triangle of support” (Figure 2.9).   The 

muscle resultant lies on the midline because the muscles of mastication on both 

sides of the TMJ are assumed to be exerting maximum (and equal) force.  When 

bite points are located in the anterior dental arcade, the w-s and b-s TMJ resist 

most of the load.   As the bite point moves posteriorly, the area included within 

the triangle of support diminishes such that eventually the muscle resultant will 

fall outside its boundaries, at which point the mandibular condyle is prone to 
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dislocation.  To prevent dislocation, it is hypothesized that at posterior bite points 

the muscle resultant is shifted from the midline toward the working side dentition 

by reducing muscle force on the balancing side (Figure 2.10) (Greaves, 1978).  

This action serves to maintain the muscle resultant within the triangle of support 

and protect the TMJ from dislocation by avoiding loading the joint in tension 

(Greaves, 1978; Spencer, 1995, 1999).   

 

 

 
Fig.  2.9.   The constrained lever model (Greaves, 1978).  Viewing the mandible 

from the occlusal surface, it is possible to consider both anteroposterior and 

mediolateral relationships between the working- and balancing-side joint reaction 

forces (JW and JB, respectively), the muscle resultant (M) and the bite force (B).  

(mandible illustration from Aiello and Dean, 2002; figure modified after Spencer, 

1995) 
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Fig.  2.10.   Triangle of support.   An anterior bite point (1) creates a triangle of 

support that encompasses a midline muscle resultant.   Bite point 2 is the most 

posterior bite point possible while still maintaining a midline muscle resultant 

within the triangle.   Bite point 3 creates a triangle of support in which a midline 

muscle resultant cannot fall.   The muscle resultant must be moved laterally so 

that it is encompassed within the triangle of support by reducing muscle force on 

the balancing side.  (mandible illustration from Aiello and Dean, 2002; modified 

after Spencer, 1995) 
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Building on Greaves (1978), Spencer and Demes (1993) proposed that the 

masticatory system can be divided into three regions, defined by how TMJ 

integrity is maintained in each (Figure 2.11).   Region I is in the anterior portion 

of the mouth.   Bite points located here produce a triangle of support that encloses 

a midline muscle resultant.   Thus, bite points within Region I never require a 

shift in the muscle resultant to protect against jaw dislocation.   Predictions for 

bite forces in Region I are identical for both the simple and the constrained lever 

model:  as the bite point moves posteriorly in this region, maximum bite force 

increases.    

Region II is posterior to Region I and requires that the muscle resultant be 

shifted laterally to maintain position within the triangle of support by reducing 

muscle force on the balancing side.   Here, the predictions of the constrained 

model deviate from those of the simple model.   While the simple lever model 

predicts an increase in bite forces as the bite point moves distally, the constrained 

model predicts that maximum bite force in Region II will remain constant due to 

the reduction of force necessary to maintain joint integrity as the bite point moves 

further distally.  Greaves (1978) hypothesized that grinding dentition is located in 

Region II because this is the part of the mouth where the highest bite forces are 

predicted, and indeed among anthropoids premolar and molar teeth typically fall 

into Region II (Spencer, 1995).  Region III is the most posterior region, where the 

muscle resultant will never fall into the triangle of support regardless of the 

amount of lateral shifting.   For this reason, teeth are not expected to be located in 

Region III.    
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Fig.  2.11.   Regions I, II, and III.   Note that mediolateral changes in tooth 

position can shift the bite point from Region II to Region I, averting the need for 

differential shifts in muscle activity to maintain the integrity of the TMJ.  

(mandible illustration from Aiello and Dean, 2002; modified after Spencer, 1999). 
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Effect of configurational changes on bite force curves in Region II 

Mediolateral changes in the bite point can alter constraints on muscle 

activity and bite force patterns (Spencer, 1995; Osborn, 1996).   Primates with 

relatively narrow palates, like baboons, have increased their bite force capabilities 

by evolving dentition positioned more medially relative to the TMJs (Spencer, 

1995).   In Region II, bite forces increase with medial movement because less of a 

reduction in b-s muscle force is needed to shift the muscle resultant into this 

region.   As teeth move medially (or as the TMJs move laterally), the triangle of 

support will encompass a midline muscle resultant at more posterior bite points.   

Therefore, lateral shifting of the muscle resultant is only needed at the most 

posterior bite points, shortening Region II.   Conversely, moving the bite point 

laterally (or the TMJs medially) will effectively lengthen Region II, since a lateral 

shift of muscle resultant is needed relatively anteriorly in this configuration 

(Spencer, 1995). 

Like the simple lever model discussed above, the constrained lever model 

assumes that the TMJ lies in the occlusal plane and that the muscle resultant 

vector is vertical, unlike the configuration in primates in which the TMJ is raised 

above the occlusal plane and the muscle resultant vector is inclined.  Similar to 

the simple lever model, raising the TMJ in the constrained lever model results in a 

decrease in the normal component reaction force magnitudes, an effect that 

becomes more pronounced distally as the reference plane becomes more inclined 

(Spencer, 1995).  Recall that in Greaves’ (1978) constrained lever model, the bite 

force curve in Region II is predicted to be flat; thus, raising the TMJ above the 
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occlusal plane in the constrained lever model depresses an already-flat curve, 

resulting in a decline in distal bite forces (Spencer, 1995).  Therefore, it has been 

hypothesized that the highest bite forces are produced at the anterior portion of 

Region II (Spencer, 1995), a departure from the simple lever model that predicts 

higher bite forces as the bite point moves posteriorly.   

As with the simple lever model, the depression of bite forces that occurs 

when the TMJ is raised can be counteracted by inclining the muscle resultant 

vector.  However, the combined increase in the height of the TMJ and inclination 

of the muscle resultant vector results in a change in the intersection point between 

the triangle of support and the muscle resultant vector, which results in changes in 

the length of the muscle resultant moment arm, m, and has major implications for 

the boundaries of Region II (Figure 2.12).  The higher the TMJ, the more 

anteriorly an inclined muscle resultant intersects with the reference plane, 

increasing the length of the muscle resultant moment arm and shifting Region II 

anteriorly along the tooth row.  Thus, b-s muscle force will decrease at more 

anterior bite points, resulting in the depression of calculated bite forces (Spencer, 

1995).  Together, raising the TMJ and inclining the muscle resultant in the 

constrained lever model can result in multiple patterns of bite force along the 

tooth row that are especially variable at distal bite points. 
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Fig. 2.12. Raising the TMJ and inclining the muscle resultant vector.  

Raising the TMJ from point 1 to point 2 changes the intersection point 

between the inclined muscle resultant vector and the reference plane, seen 

here in a lateral view.  Region II will begin more anteriorly with the TMJ 

in postion 2. 
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The Buffer Zone 

The constrained lever model predicts that at maximum bite force 

production in Region II, the muscle resultant will lie directly on the medial side of 

the triangle of support.   This configuration allows the maximum amount of b-s 

muscle force without dislocation of the w-s TMJ.   However, even slight 

variations in the position of the muscle resultant in this configuration can result 

either in its further inclusion within the triangle of support, or its exclusion.   

Since the mastication of food is a dynamic process, it is likely that such variations 

in muscle resultant position occur frequently, making Greaves’ (1978) prediction 

of muscle resultant position open to frequent dislocation of the TMJ.    

Spencer (1995, 1999) proposed that to reduce the probability of joint 

dislocation during maximum bite force production in Region II, the muscle 

resultant should lie further within the triangle of support, creating a “buffer zone” 

around its borders.   Region II is defined as the region within the mouth where a 

lateral shift of the muscle resultant is required to maintain its position within the 

triangle of support; therefore, the introduction of a buffer zone effectively changes 

the predictions for the parameters of Region II.   To fall within the triangle of 

support, complete with buffer zone, a muscle resultant must be shifted laterally at 

a more anterior bite point than in Greaves’ (1978) original model (Figure 2.13). 
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Fig 2.13.  Buffer zone.   The muscle resultant lies along the medial side of this 

triangle of support, but not within the triangle’s buffer zone.   To protect the TMJ, 

the muscle resultant should be shifted laterally so that it lies inside the buffer 

zone, out of danger of causing joint dislocation. (mandible illustration from Aiello 

and Dean, 2002; modified after Spencer, 1995). 
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Simple vs. Constrained lever model predictions 

Both the simple lever model and the constrained lever model are useful for 

interpreting craniofacial form, but each model has different predictions due to the 

constraints incorporated into the latter.   As discussed above, predictions for bite 

force, working-side muscle force, and balancing-side muscle force in Region I are 

virtually identical between the simple and constrained models, while predictions 

for bite force profiles in Region II differ significantly between the two due to the 

constrained model’s assumption that muscle force will be decreased in this region 

to maintain joint integrity.   Additionally, mediolateral changes in bite point 

position result in a change in the length of Region II, which affects where on the 

tooth row the highest magnitude bite forces can be produced.   This has been 

supported by theoretical analysis of the human mandible (Osborn, 1996).   

Interpretation of the selection pressures acting on the masticatory system 

may differ depending on which model is used.   The simple lever model predicts 

that maximum bite force increases as the bite point approaches the TMJ.   

Therefore, any evolutionary change that results in more posterior bite points (e.g., 

facial shortening relative to the TMJ) would be interpreted as an adaptation to 

increased bite force.   However, the constrained lever model (and the buffer 

corollary proposed by Spencer [1995]) suggests that such changes may leave the 

TMJ more vulnerable to dislocation, and therefore may only occur if the TMJ is 

adequately protected (e.g.,  b-s muscle force is decreased such that the muscle 

resultant is always located within the triangle of support).  In addition to 

shortening the bite force moment arm relative to the muscle resultant moment 
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arm, facial shortening also results in a reorientation of Region II, a Region in 

which muscle force is continually decreasing.  Thus, a short face may help to 

concentrate high bite forces at the anterior end of Region II (where muscle force 

is relatively high), but does not necessarily augment bite forces on all teeth.  

Experimental Research 

Theoretical models must be grounded in observable data to be useful in 

the interpretation of primate craniofacial configuration.   While direct and explicit 

validation of a model through experimental work is not always possible, 

experimental tools can lend support to a model provided the data are interpreted 

correctly and carefully.   Experimental studies have evaluated both the simple and 

constrained lever models with conflicting results.  While some studies find that 

bite force increases posteriorly as predicted by simple lever models (in monkeys: 

Oyen and Tsay 1991; in humans: Mansour and Reynik, 1975; van Eijden et al., 

1988; van Eijden, 1991; Iwase, 1998), others find that bite forces remain static or 

decrease posteriorly (in humans: Pruim et al., 1980; Spencer, 1998; Ferrario et al., 

2004), conforming more closely to the constrained lever model. 

The conflicting results of experimental studies on bite force may be due to 

limitations of methodology.  Bite force can be directly measured in vivo using bite 

force transducers (Mansour and Reynik, 1975; Hylander, 1978; van Eijden at al., 

1988; van Eijden, 1991; Dumont and Herrel, 2003; Ferrario et al., 2004; Kawata 

et al., 2007) or can be estimated via electromyography (EMG) (Møller, 1966; 

Pruim et al., 1980; Hylander, 1983; Ahlgren et al., 1985; Hylander et al., 1998, 

Spencer, 1998).   However, both transducers and EMG have limitations. 
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Electromyography (EMG) measures the electrical activity of muscles and 

has been used in many studies examining muscle activity while biting (e.g., 

Møller, 1966; Pruim et al., 1980; Hylander, 1983; Ahlgren et al., 1985; Hylander 

et al., 1998).  It has been demonstrated that masticatory muscle activity changes in 

accordance with differing bite forces such that an increase in bite force is 

accompanied by an increase in muscle activity (Lindauer et al., 1993; Proeschel 

and Morneburg, 2002), although it has been shown that EMG may overestimate 

bite force for isometric bites relative to chewing (Proeschel and Morneburg, 

2002).  While muscle activity is not equivalent to muscle force, the two have been 

shown to be highly correlated (Hylander and Johnson, 1989), and it is generally 

acceptable to use EMG data to estimate relative muscle force.  Research shows 

that EMG patterns change as the bite point moves along the tooth row (Spencer, 

1995), indicating differential muscle forces at different bite points.   While 

changes in EMG patterns suggest changes in bite force patterns, these data are 

several steps removed from direct measurement of bite force magnitudes, which 

change based on bite position as well as muscle force magnitude and direction. 

Bite force can be directly measured by using bite force transducers, and 

many studies have used this method (e.g., Mansour and Reynik, 1975; Hylander, 

1978; van Eijden at al., 1988; van Eijden, 1991; Dumont and Herrel, 2003; 

Ferrario et al., 2004; Kawata et al., 2007).   However, even with a direct measure 

of bite force, such studies are limited.   Transducer studies cannot measure bite 

force during normal mastication since doing so would result in a severe 

modification of loading conditions that would result in data inappropriate to 
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evaluate normal feeding mechanics.   Furthermore, to be useful in evaluating 

biomechanical models of force production, bite forces must be compared among 

teeth along the tooth row.   Therefore, many studies that evaluate bite forces on 

one tooth only (e.g., Kawata et al., 2007) do not provide useful information for 

evolutionary questions.    

The predictions of a simple lever model are inconsistent with the 

hypothesis that dental variation along the tooth row matches patterns of maximum 

bite force potential in most primate species.  For all primates (and indeed 

mammals), this model predicts an increase in maximum bite force magnitudes as 

the bite point is moved posteriorly.  If root and crown size are adapted to 

masticatory force production, tooth size gradients should match this pattern.  

However there is wide variation in the pattern of crown and root size among 

primates (Abbott, 1984; Swindler, 2002; Kupczik, 2003; Spencer, 2003).   The 

constrained lever model combined with modifications laid out by Spencer (1995) 

to incorporate a raised TMJ, an anterosuperiorly inclined muscle resultant, and a 

buffer zone around the triangle of support (together referred to as the Spencer 

model throughout the remainder of this dissertation) predicts a wider range of 

possible bite force patterns depending on masticatory configuration, including 

patterns that match tooth size gradients observed in humans and some non-human 

primates (Spencer, 1995, 1998).   Consequently, the Spencer model is the basis 

for the evaluation and interpretation of biomechanical data in this study. 
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Rigorous examination of the relationships among components of the 

masticatory system is necessary to understand past and present variation of 

primate craniodental anatomy.   The current study examines the patterns of dental 

characteristics (root and crown size) along the tooth row to assess their 

relationship with one another and with bite force production.   Additionally, these 

data are compared in primates that are closely related but have diets with differing 

mechanical properties to test the hypothesis that these relationships are functional 

in nature.  While it is possible that some aspects of these morphologies are 

developmentally linked (Kavanaugh et al., 2007), studies have shown that both 

root and crown size vary independently (Abbott, 1984; Kupczik et al., 2003; 

Spencer, 2003; Steele-Perkins et al., 2003).  Thus, it is reasonable to interpret 

variation in tooth and craniofacial morphology within a functional context as 

opposed to relying solely on allometric relationships or developmental processes 

to explain both inter- and intraspecific differences in craniodental morphology.   

HYPOTHESES AND PREDICTIONS 

The current study is separated into two parts.  Part I assesses covariance 

between dental variables along the tooth row in an intraspecific analysis, wherein 

root and crown size patterns are analyzed within each species in the sample.  

Additionally, Part I examines whether variation in root and crown size can be 

explained by differences in function by conducting an interspecific analysis 

utilizing pair-wise comparisons of closely-related primates consuming diets of 

differing mechanical properties.   
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If crown size and root surface area covary along the tooth row, past 

research suggests they may be related to bite force.  To test this hypothesis, Part II 

of the study examines the relationship between dental variation and variation in 

calculated bite force along the tooth row within each species.   

Part I: Dental relationships 

Hypothesis 1a: Root surface area and crown size will covary along the 

tooth row. 

It has been proposed that root surface area (Spencer, 2003; Kupzcik, 2003) 

and crown size (Demes and Creel, 1988; Spencer, 2003; Lucas, 2004) should be 

greatest where bite forces are highest.  If both of these aspects of tooth 

morphology are responding to selection for increased bite force production, then 

root and crown dimensions should covary along the tooth row.  While size 

gradients may vary among species, these parameters are predicted to vary together 

in all taxa.   

Hypothesis 1b: Root surface area and crown size are functionally related, 

and primates with mechanically resistant diets will have relatively higher values 

for these characteristics than closely-related primates with soft diets. 

Rejection criteria: If root surface area and crown size do not covary along 

the tooth row, then Hypotheses 1a and b will be rejected.  If root surface area and 

crown size covary, but primates with mechanically resistant diets do not show 

relatively higher values for these characteristics than their closely-related soft diet 

counterparts, the hypothesis that root surface area and crown size are functionally 

linked via dietary stress resistance will be rejected.   
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Part II: Dental features and bite force patterns 

Hypothesis 2: Teeth that withstand high magnitude bite forces will have 

larger root surface areas relative to teeth that habitually experience lower 

magnitude loading. 

This applies along the tooth row, where bite force magnitude is known to 

change with bite point (Mansour and Reynick, 1975; Pruim et al., 1980; van 

Eijden et al., 1988; van Eijden, 1991; Oyen and Tsay, 1991; Iwase, 1998; 

Spencer, 1998; Throckmorton and Ellis, 2001; Dumont and Herrell, 2003; 

Ferrario et al., 2004), and among species with diets of differing mechanical 

properties (Spencer, 2003).   

Hypothesis 3: Teeth that withstand high magnitude bite forces will have 

larger crowns relative to teeth that habitually experience lower magnitude 

loading. 

Previous researchers have suggested that crown size should be largest 

where bite forces are highest (Hylander, 1985; Demes and Creel, 1988; Spencer, 

2003; Lucas, 2004).   If the suggested relationship is accurate, the pattern of 

crown size should mirror the pattern of bite force magnitude along the tooth row 

within species.  Furthermore, primates with mechanically resistant diets should 

have relatively larger crowns than closely-related primates with soft diets.   

Rejection Criteria: If crown size and/or root surface area variation along 

the tooth row do not correlate with calculated bite force patterns, then Hypotheses 

2 and/or 3 will be rejected accordingly.   
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CHAPTER 3 

MATERIALS AND METHODS 

The hypotheses for Part I of the current study center on dental 

morphological variation.  Data on tooth root and crown surface area were taken 

from three-dimensional (3D) models generated from µCT scans of sample skulls.  

Root and crown surface area are compared within species to determine whether 

root and crown size covary along the tooth row.  Additionally, root and crown 

surface area are compared between species using pair-wise comparisons to 

determine whether primates processing resistant diets have larger tooth roots and 

crowns than closely-related primates with softer diets.  For Part II of the study, 

landmark data were collected from skulls using a digitizer and geometric 

morphometric software programs and used to calculate bite force curves for each 

individual sampled.  Calculated bite forces are compared to both root and crown 

surface area along the tooth row to determine if root and/or crown surface area 

covary with bite force within species.   

SAMPLE 

The sample for this study comprises specimens within Harvard’s Museum 

of Comparative Zoology (MCZ) and the Peabody Museum of Archaeology and 

Ethnology in Cambridge, MA.  Care was taken to include species that encompass 

the vast geographical, taxonomic, and dietary variety within anthropoids.  

Additionally, species that are closely related but that have diets of differing 

mechanical properties have been included to facilitate the use of pair-wise 

comparisons for hypothesis testing.  Adult females (determined by having a fully-
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erupted M3) were preferentially scanned, but to increase sample sizes in species 

with a paucity of specimens, adult males were also included.  Any specimen in 

which sex was not specified and could not be visually determined based on canine 

size was assumed to be female.  Twenty-nine species from seven subfamilies are 

represented for a total of over 200 individuals (see Tables 3.1 and 3.2 for 

specimen list).  Although the sample for the current study includes a broad 

selection of primate taxa, sample sizes for some species are quite small.  Study 

protocols required that all individuals were scanned at the CNS, restricting the 

sample to individuals located on Harvard University campus.  Every effort was 

made to maximize sample sizes for each taxa where possible. 
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TABLE 3.1.  Specimen list for rank correlation  

analyses. 

Subfamily Species N 

Callithrichidae 

a
Callithrix sp. 

M = 7 

F = 7 

a
Saguinus sp. 

M = 5 

F = 5 

Cebinae 

Aotus trivirgatus 

M = 1 

F = 7 

Cebus apella 

M = 5 

F = 9 

Cebus capucinus 

M = 2 

F = 7 

a
Saimiri sp. 

M = 4 

F = 2 

Pitheciinae 

Callicebus moloch 

M = 10 

F = 0 

a
Pithecia sp. 

M = 3 

F = 3 

Atelinae 

Alouatta caraya 

M = 1 

F = 3 

Alouatta palliata 

M = 0 

F = 10 

Ateles geoffroyi 

M = 0 

F = 17 

Colobinae 

Presbytis hosei 

M = 1 

F = 4 

Presbytis rubicunda 

M = 4 

F = 4 

Trachypithecus cristata 

M = 0 

F = 14 

Colobus polykomos 

M = 1 

F = 5 

Piliocolobus badius 

M = 4 

F = 5 

  
     (cont.) 

              a
Specimens with no species designation are noted by their  

          genus name followed by sp. 
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TABLE 3.1 (cont). Specimen list for rank correlation 

 analyses 

Subfamily Species N 

Cercopithecinae 

Macaca fascicularis 

M = 1 

F = 6 

Macaca fuscata 

M = 1 

F = 1 

Lophocebus albigena 

M = 5 

F = 1 

Cercocebus torquatus 

M = 2 

F = 1 

Papio anubis 

M = 3 

F = 2 

Mandrillus sp. 

M = 5 

F = 1 

Cercopithecus mitis 

M = 0 

F = 12 

Erythrocebus patas 

M = 3 

F = 1 

Homininae 

Pan paniscus 

M = 0 

F = 3 

Pan  troglodytes 

M = 0 

F = 13 

Gorilla gorilla 

M = 0 

F = 5 

Total N:    216 
            a

Specimens with no species designation are noted by their  

        genus name followed by sp. 
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TABLE 3.2. Specimen list for comparative analyses. 

Subfamily Species 

Diet 

group N 

Cebinae 

Aotus trivirgatus Soft 

M = 4 

F = 6 

Cebus apella Resistant 

M = 7 

F = 9 

Cebus capucinus Soft 

M = 2 

F = 8 

Saimiri sp. Soft 

M = 5 

F = 5 

Pitheciinae 

Callicebus moloch Soft 

M = 10 

F = 0 

Chiropotes satanas Resistant 

M = 0 

F = 2 

Pithecia sp. Resistant 

M = 4 

F = 3 

Atelinae 

Alouatta caraya Resistant 

M = 1 

F = 3 

Alouatta palliata Resistant 

M = 0 

F = 10 

Ateles geoffroyi Soft 

M = 0 

F = 17 
 a
Specimens with no species designation are noted by their genus  

 name followed by sp. 
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TABLE 3.2 (cont). Specimen list for comparative analyses 

Subfamily Species 

Diet 

group N 

Colobinae 

Colobus polykomos Resistant 

M = 1 

F = 5 

Piliocolobus badius Soft 

M = 4 

F = 5 

Cercopithecinae 

Macaca fascicularis Soft 

M = 1 

F = 8 

Macaca fuscata Resistant 

M = 1 

F = 1 

Macaca sylvanus Resistant 

M = 1 

F = 0 

Lophocebus albigena Resistant 

M = 5 

F = 3 

Cercocebus torquatus Soft 

M = 2 

F = 1 

Papio anubis Soft 

M = 4 

F = 4 

Mandrillus sp. Resistant 

M = 5 

F = 1 

Hominidae 

Pan  troglodytes Soft 

M = 0 

F = 13 

Gorilla gorilla Resistant 

M = 0 

F = 5 

Total N:      166 
a
Specimens with no species designation are noted by their genus  

 name followed by sp. 
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Platyrrhines 

 Among New World monkeys, species from each subfamily are 

represented in the sample.  

Callithrichinae 

 This group includes the genera Callithrix (marmosets) and Saguinus 

(tamarins).  Marmosets have elongated lower incisors and a wide gape that have 

been suggested to be adaptations for gumnivory (Rosenberger, 1992; Garber et 

al., 1996; Vinyard et al., 2003), while tamarins only exploit gum opportunistically 

and rely mostly on fruit (Ferrari and Martins, 1992; Garber et al., 1996).  While 

gum itself is not a resistant food, it has been suggested that the amount of 

masticatory force necessary to gouge through bark to get to the gum is 

considerable (Dumont, 1997, Spencer, 1999; Williams et al., 2000).  However, a 

recent comparative study indicates that craniofacial from within tree-gouging 

primates is optimized for maximum gape, rather than maximum bite force 

(Vinyard et al., 2003).  There is currently no in vivo data to indicate actual force 

production during gouging behavior; consequently, whether tree-gouging requires 

relatively high bite forces is unknown.  It is clear that marmosets are more 

morphologically specialized for gouging behaviors than tamarins (Digby et al., 

2007 and references therein), however, these morphological specializations have 

not been linked to increased bite forces.  Therefore, there is no a priori reason to 

predict that callitrichids will differ from one another in postcanine tooth size.  

Consequently, both Callithrix and Saguinus are in the “Soft” diet food group, and 

were only used in intraspecific analyses. 
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Cebinae 

 

 Included in Cebinae are the genera Cebus and Saimiri.  There has been 

long-standing debate over the place of Aotus within platyrrhine phylogeny and 

molecular studies have variably placed it within cebids (Porter et al., 1997), in its 

own separate family, Aotidae (Groves, 2001), and, most recently, as a sister taxon 

to callitrichids (Perelman et al., 2011).  Although Aotus may be more closely 

related to callitrichids than to cebids, it lacks the morphological specializations 

related to gummivory that characterize tamarins and marmosets, and has not lost 

M3 as tamarins and marmosets have.  Due to these major morphological 

differences, Aotus is included in Cebinae for the purposes of this study.   

Both Cebus and Saimiri are generally frugivorous while also incorporating 

insects into their diet (Sussman, 2000; Campbell et al., 2007).  Saimiri may spend 

up to 80% of its time foraging for insects, and during the dry season becomes 

completely insectivorous for up to a week at a time (Janson and Boinski, 1992).  

Additionally, Saimiri eats soft, ripe fruit that is typically softer and smaller than 

the fruit consumed by Cebus (Janson and Boinski, 1992).  Aotus is a nocturnal 

primate, making it difficult for researchers to determine the exact composition of 

its diet; however, studies indicate that Aotus is primarily frugivorous (Fernandez – 

Duque, 2003; 2007).  Aotus supplements its diet with young leaves, floral nectar, 

and insects (Sussman, 2000). 

The genera Aotus, Cebus, and Saimiri are examined together in a 

Kruskall-Wallace analysis to determine whether tooth morphology differs among 

these groups.  Based on dietary data reported in the literature (discussed above), 
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Aotus and Saimiri fall into the “Soft” food category, while Cebus is in the 

“Resistant” food category.  Accordingly, it is predicted that Cebus will have 

relatively larger tooth roots and crowns than either Aotus or Saimiri. 

Within Cebus it has been shown that Cebus apella regularly exploits foods 

that are more mechanically challenging to breach than other members of its genus 

(Kinzey, 1974; Rosenberger, 1992; Wright, 2005).  Also, Cebus is known to shift 

dietary focus in response to seasonal food availability (Sussman, 2000).  During 

the dry season, C. apella has been observed biting into extremely hard palm nuts 

that cannot be accessed by its close relative, Cebus albifrons (Sussman, 2000); 

furthermore, C. apella accesses these nuts using their canines and premolars 

rather than their molar teeth (Kinzey, 1974; Izawa, 1979).   Due to the well-

documented difference in the mechanical demands of its diet, C. apella 

(Resistant) is compared with C. capucinus (Soft).  It is predicted that C. apella 

will have larger premolar root and crown surface area than C. capucinus, due to 

the emphasis the former places on the use of anterior premolars for hard food 

processing.   

Pitheciinae 

 The pitheciins include the sakis (Pithecia) and bearded sakis (Chiropotes), 

and the titi monkey (Callicebus).  Although Callicebus is morphologically distinct 

from Pithecia and Chiropotes, molecular analysis indicates that it forms a sister 

group with the sakis (Schneider and Rosenberger, 1996; Ray et al., 2005) and so 

is included in the comparative analysis of this group.   
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 Both Pithecia and Chiropotes are seed predators and sclerocarpic foragers.  

Sclerocarpic foraging involves penetrating a fruit’s hard outer pericarp with the 

anterior dentition, then masticating the relatively soft seeds with the postcanine 

dentition (Kinzey and Norconk, 1990).  Both Pithecia and Chiropotes have been 

found to possess derived anterior dental morphology related to their mechanically 

challening diet (Kinzey, 1992; Anapol and Lee, 1994; Norconk et al., 1998; 

Martin et al., 2003).  The fruit eaten by Chiropotes is very hard, exceeding the 

hardness of fruits exploited by Pithecia (Kinzey and Norconk, 1993; Norconk et 

al., 1998). 

 Despite processing a mechanically challenging diet, the molar morphology 

of Chiropotes suggests that after using the anterior teeth to breach a food’s outer 

defenses, the food processed on the postcanine tooth row is relatively soft (Kinzey 

and Norconk, 1990, 1993; Martin et al., 2003).  Pithecia, on the other hand, has 

thicker molar enamel than Chiropotes (Martin et al., 2003); additionally, Pithecia 

supplements its diet with leaves, a behavior not recorded for Chiropotes (Kinzey 

and Norconk, 1990, 1993).  Considering all available dietary information, both 

Pithecia and Chiropotes belong in the “Resistant” food category.  Chiropotes is 

predicted to have larger premolar roots and crowns than Pithecia due to the 

former’s exploitation of very hard fruits inaccessible by the latter (Kinzey and 

Norconk, 1993; Norconk et al., 1998).  However, due to its greater reliance on 

leaves and suggestions that its postcanine tooth row is more adapted to 

mechanically challenging foods (Martin et al., 2003), it is predicted that Pithecia 

will have higher values for molar root and crown surface area than Chiropotes.   
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Callicebus differs from the rest of the pitheciins in that they eat softer, 

fleshy fruits, supplemented with leaves (Sussman, 2000) and have adaptations of 

the anterior dentition to aid in fruit acquisition (Kinzey, 1992).  Callicebus molar 

morphology is consistent with adaptation to frugivory, and there are no 

suggestions that it regularly eats mechanically resistant food items (Sussman, 

2000).  Consequently, Callicebus is placed in the “Soft” food category, and it is 

predicted that both Pithecia and Chiropotes will have larger tooth crowns and 

roots than Callicebus for all postcanine teeth. 

Atelinae 

 The genera Ateles and Alouatta are included in Atelinae, both of which are 

among the largest-bodied and widest-ranging platyrrhine genera.  Alouatta is one 

of the few New World monkeys that consumes large portions of leaves in its diet 

(Sussman, 2000; Teaford et al., 2006; Di Fiore and Campbell, 2007), which is 

reflected in the specialized morphology of its gut (Chivers and Hladik, 1984) and 

molars (Kay and Hylander, 1978).  Alouatta supplements its diet with fruit and 

seeds (Di Fiore and Campbell, 2007), although the seeds are not destroyed as in 

the pitheciins, but rather pass through the intestinal tract intact (Sussman, 2000).  

In contrast to Alouatta, Ateles eats few leaves and instead consumes the bulk of its 

calories in fruit; in fact, Ateles is repeatedly identified in the literature as a ripe 

fruit specialist (Sussman, 2000; Di Fiore and Campbell, 2007; Felton et al., 2008).  

Based on the available data, Alouatta is put into the “Resistant” food category, 

and is predicted to have larger postcanine root and crown surface area than Ateles, 

which is in the “Soft” food category. 
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Catarrhines 

 The sample for this study is also composed of Old World monkeys and 

hominoids from the Colobinae, Cercopithicinae, and Homininae subfamilies. 

Colobinae 

 This group is further subdivided into the Asian colobines (represented in 

this study by Presbytis rubicunda, Presbytis hosei, and Trachypithecus cristata) 

and the African colobines (Colobus polykomos and Piliocolobus badius).  All 

colobines are known as “the leaf-eating monkeys”, and have specialized stomachs 

that allow them to exploit this resource (Chivers 1994, Kay and Davies, 1994).  

However, there is a high degree of dietary variation among species such that some 

species of colobines consume a more mechanically challenging diet than others 

(Dasilva, 1994; Fashing, 2007). 

Both C. polykomos and P. badius prefer to eat young leaves and buds and 

will supplement their diet with flowers, fruit, and seeds (Usongo and Amubode, 

2001; Fashing, 2007).  Additionally, both are described as seed predators, 

although C. polykomos has been documented harvesting seeds from thick, woody 

plants not utilized by P. badius (Dasilva, 1994).  C. polykomos is also 

characterized by a molarized P4 (Swindler, 2002), a trait that has been linked with 

hard object feeding in extinct hominins (Robinson, 1954; Rak, 1983; Lucas et al., 

2008) and in papionins (Fleagle and McGraw, 2002).  Consequently, C. 

polykomos is classified in the “Resistant” diet category, while P. badius is 

classified in the “Soft” dietary category; it is predicted that C. polykomos will 

have larger postcanine tooth crowns and roots than P. badius.  It should be 
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emphasized here that P. badius has a “Soft” food diet only in relation to C. 

polykomos, and is not considered to have a soft diet relative to primates as a 

whole. 

Like African colobines, the diet of Asian colobines centers around 

folivory, supplemented variably with fruits and seeds (Kirkpatrick, 2007).  Within 

this group, P. rubicunda’s diet, while largely folivorous, can include up to 80% 

seeds in some months (Davies, 1988).  P. hosei appears to differ from P. 

rubicunda in that it has not been reported relying as heavily on seeds, and its 

focus is primarily on young leaves and flowers (Kirkpatrick, 2007). 

Trachypithecus has been suggested to be better adapted to leaf-eating than 

Presbytis (Bennett and Davies, 1994; Yeager and Kool, 2000), evidenced by 

greater shearing crests on the molar teeth and larger forestomachs for processing 

chemically-defended plants (Chivers, 1994).  Trachypithecus has also been 

observed to eat more mature leaves than Presbytis, which are more mechanically 

demanding than young leaves (Kirkpatrick, 2007).  However, given that 

specializations for leaf-eating in Trachypithecus center on soft-tissue changes as 

well as tooth shape (but not size), there is no convincing a priori evidence that 

tooth size will differ among these taxa by dietary category. 

Cercopithecinae 

 The cercopithecines make up a very large group that is further broken 

down into macaques, the baboons, mandrills, and mangabeys, and guenons. 
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Macaques 

 Macaques are represented by over 20 species that inhabit a wide variety of 

environments throughout the Old World.  As a group, they are considered 

frugivorous, although this classification obscures the huge variety in habitat and 

resource availability among these monkeys (Menard, 2004; Thierry, 2007).  The 

macaques included in this study are Macaca fascicularis (long-tailed macaque), 

Macaca fuscata (Japanese macaque), and Macaca sylvanus (Barbary macaque).  

All three species are examined in intraspecific analyses, but only M. fascicularis 

and M. fuscata were included in pair-wise comparisons due to an extremely low 

sample size for M. sylvanus. 

 M. fascicularis is considered among the most frugivorous of macaque 

species and spends up to 87% of its feeding time on fruit (Menard, 2004).  They 

will supplement their diet with leaves, pith, seeds, and flowers when fruit is scarce 

(Yeager, 1996), but it has not been suggested that M. fascicularis is specially 

adapted to resistant food item consumption.  M. fuscata lives in Japan, and its diet 

reflects its more temperate habitat.  During the winter, M. fuscata diet is focused 

primarily on bark and seeds, in addition to twigs, roots, and grasses (Hill and 

Lucas, 1996), and it has been suggested that M. fuscata’s craniofacial skeleton 

shows adaptation for consuming resistant food items (Constantino, 2007).  In this 

study, M. fuscata is labeled as “Resistant” and is predicted to have larger 

postcanine tooth roots and crowns than M. fascicularis, a “Soft” food consumer. 
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African papionins: Baboons, Mandrills, and Mangabeys 

 Within baboons, mandrills, and mangabeys are two distinct lineages.  

Lophocebus (arboreal mangabeys), Papio (baboons), and Theropithecus (gelada 

baboons) make up one group, while Cerocebus (terrestrial mangabeys) and 

Mandrillus (mandrills and drills) form the other.  These groupings are firmly 

supported by molecular (Distoell, 2000) and morphological (Fleagle and 

McGraw, 2002) evidence.  On the whole, African papionins are all opportunistic 

omnivores with no major specializations of the digestive tract linking them to one 

specific food type, although what they actually consume is constrained both by 

habitat and competition for resources with other species (Jolly, 2007). 

 In the current study, the Lophocebus-Papio-Theropithecus group is 

represented by two species, Lophocebus albigena and Papio anubis.  L. albigena 

feeds primarily in the tree canopy, and its diet is largely composed of figs and 

other fruits (Olupot et la., 1997); additionally, during times of fruit scarcity they 

rely very heavily on hard-shelled fruits and seeds (Lambert et al., 2004).  P. 

anubis has a typical baboon diet, distinctive in that there is no distinguishable 

dietary specialization (Okecha and Newton-Fisher, 2006, Jolly, 2007).  P. anubis 

has been recorded consuming leaves, fruits, seeds, stems, seedling, bark, roots, 

crops, and even garbage on a regular basis (Okecha et al., 2006).  There is some 

indication that P. anubis dietary composition changes somewhat with season 

(Okecha et al., 2006), but it has not been suggested that P. anubis is especially 

adapted to resistant food items relative to other African papionins.  Consequently, 

L. albigena is put in the “Resistant” food category and P. anubis in the “Soft” 
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category, with the expectation that L. albigena will have higher values for 

postcanine root and crown surface area than P. anubis. 

 The Cercocebus-Mandrillus group is characterized by adaptations to hard 

object feeding and strenuous foraging (Fleagle and McGraw, 2002).  Both 

Cercocebus and Mandrillus forage on the forest floor, consuming fallen fruits, 

fungi, and invertebrates; additionally, Mandrillus will eat especially hard foods, 

including tough-shelled fruits, seeds, pith, and bark that are processed with the 

premolars (Hoshino, 1985; Harrison, 1988). 

 Although the diet of Mandrillus appears to focus more on hard object 

feeding than that of Cercocebus, both have molarized premolar crowns that are 

suggested to be adaptations to a mechanically resistant diet (Fleagle and McGraw, 

2002).  In this study, Mandrillus is classified as “Resistant” and Cercocebus as 

“Soft”, but it must be emphasized that these categories apply only within the 

context of this specific pair-wise comparison.  Relative to other cercopithecoids, 

both Cercocebus and Mandrillus feed on resistant foods. 

Guenons 

 Guenons are cercopithecine (cheek-pouch) monkeys that live in a variety 

of habitats throughout sub-Saharan Africa.  As a group, they are identifiable by 

adaptations to frugivory, including low, rounded molar cusps, simple stomachs, 

and cheek pouches (Enstam and Isbell, 2007).  In the current study, the guenons 

are represented by the forest-dwelling Cercopithecus mitis and its close relation 

Erythrocebus patas, usually found in woodland-savanna environments (Enstam 

and Isbell, 2007; Isbell, 1998).   
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 C. mitis has been recorded consuming large amounts of fruit, variably 

supplemented with young leaves, flowers, arthropods, and other invertebrates 

(Cords, 1986).  The diet of E. patas is largely made up of colonially-living ants 

that are obtained by biting into the swollen thorns of Acacia drepanolobium trees 

(Isbell, 1998); patas monkeys supplement their diet with A. drepanolobium gum 

and a small proportion of fruit (Isbell, 1998; Enstam and Isbell, 2007). 

 Despite the fact that C. mitis and E. patas live in different environments 

with differing food resources, there is no indication that either species consumes 

more mechanically challenging food than the other.  Both are labeled as “Soft” 

food eaters, and they are not considered in pair-wise comparisons since there is no 

prediction that one will have larger tooth roots and crowns than the other.  They 

are, however, considered in the intraspecific analyses investigating patterns of 

tooth size and bite force along the tooth row. 

Homininae 

 The hominoids are represented by Pan troglodytes (common chimpanzee), 

Pan paniscus (bonobo), and Gorilla gorilla (western lowland gorilla).  Although 

P. paniscus is included in intraspecific analyses of patterns of crown size, root 

size, and bite force along the tooth row, it is not included in pair-wise 

comparisons of crown and root size since its diet largely overlaps with P. 

troglodytes (Stompf, 2007).  Chimpanzees are highly frugivorous, even in times 

of food scarcity (Wrangham et al., 1998; Chapman et al., 2002; Stanford and 

Nkurunungi, 2003).  In addition to fruit, chimps will supplement their diet with 

leaves and other low-quality foods during times of resource scarcity (Wrangham 
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et al., 1998; Chapman et al., 2002), however, they have no morphological 

adaptations associated with processing resistant food items. 

 Gorillas have long been considered a folivorous species, with 

morphological correlates to leaf-eating including a large body size, an enlarged 

hindgut, and long hindgut fermentation time (Watts, 1996).  However, it has 

become evident that gorilla diet varies widely among species such that gorillas 

living in high-altitude environments with little-to-no access to fruits are almost 

entirely folivorous (e.g., Gorilla berengei, the mountain gorilla), while gorillas 

living at lower altitudes have more access to fruit and include significantly more 

fruit in their diet (e.g., G. gorilla, examined in this study) (Remis, 1997; Ganas et 

al., 2004; Robbins, 2007).  In addition to fruit, G. gorilla will supplement its diet 

with leaves, pith, and bark during times of fruit scarcity (Remis, 1997; Oates et 

al., 2003). 

 Overall, the diets of chimpanzees and gorillas are similar, but during times 

of fruit scarcity their diets diverge, as chimpanzees continue pursuing fruit 

(Wrangham et al., 1998; Chapman et al., 2002) while gorillas greatly reduce their 

fruit intake and focus more on high fiber, low-quality plants to supply their daily 

calories (Remis, 1997; Oates et al., 2003; Robbins, 2007).  In this study, G. 

gorilla is placed in the “Resistant” food category, and is expected to have larger 

postcanine tooth crowns and roots than P. troglodytes, which has a “Soft” food 

diet. 
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DATA COLLECTION 

µCT scanning 

All sample crania were scanned during using a micro-computed 

tomography (µCT) scanner located at the Center for Nanoscale Systems (CNS) at 

Harvard University. A µCT scan is much like a regular CT scan; a microfocus x-

ray source is aimed at the object being scanned, and a planar x-ray detector 

collects the cross-sectional magnified projection images.  Images are taken at each 

projection point within a 360-degree rotation.  The number of projections can be 

changed depending on the needs of the researcher.  In general, the more 

projections taken, the higher the resolution of the scan; however, increasing the 

number of projections also increases the time it takes to scan an object. A 

computer then synthesizes the stack of virtual cross-sections (commonly called 

slices), which results in the completed scan. 

A µCT scan differs from a regular CT scan in that the resolution of the 

image is increased by decreasing the thickness of each slice from about 1mm to 

10-50µm, increasing the total number of slices, and doubling the amount of pixels 

in each, which allows for the precise and accurate measurement of small 

structures (Peyrin et al., 1998; Ding et al., 1999; Laib et al., 2000), including tooth 

structures such as root surface area and enamel thickness (Olejniczak et al., 2008).  

The scanner at CNS is a X-Tek HMXST225 µCT scanner (Figure 3.1) 

with an open source x-ray tube. The x-ray detector panel is a Perkin Elmer 1621, 

which provides a 2000 x 2000 pixel and 16 inch x 16 inch field of view with a 7.5 

frames per second readout and a physical pixel size of 200 microns.  The µCT 
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computer system consists of three individual 64-bit computers, each with its own 

function.  The first is used for control and data acquisition, the second for three-

dimensional (3D) reconstruction, and the third is a visualization station. 

 

 

 

 

 

 

 

 
   Fig. 3.1.  µCT scanner at Harvard. 
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Each skull was placed in a Styrofoam holder that was then placed inside 

the scanner on a rotating platform.  The Styrofoam held the skull in place while 

allowing the x-rays to fully penetrate the specimen without leaving visual 

artifacts.  All crania in this study were scanned at parameters optimum for the 

highest possible resolution within the time available to capture all samples.  

Crania were placed in the scanner and then rotated 360°.  Resolution was set as 

high as possible while keeping the entire specimen within the limits viewing 

window set by the scanner.  All crania were scanned using 1000-1500 projections, 

scan time per specimen ranged from 18-60 minutes, and resolution ranged from 

40 micrometers (in smaller species, e.g., Callithrix) to 125 micrometers for the 

largest species (e.g., Gorilla) (See Appendix A for all sample scanning 

parameters).  Once each scan was complete, images were saved in DICOM 

format, a standard medical imaging format that is compatible with a wide range of 

biomedical software programs capable of viewing and measuring µCT scans.   

Dental variable measurement 

 Completed scans were loaded into the Mimics 14.11 (Materialise, Inc.) 

software package, which is a program that enables the visualization of CT and 

µCT DICOM files with functions that allow for the production of 3D models from 

the scans.  Each specimen’s right-side maxillary postcanine teeth were isolated 

from the rest of the skull using thresholding and region growing tools. 

 By thresholding a scan, the skull is overlayed with a mask that contains 

only those pixels of the image with a value equal to or higher than the 

thresholding value (Figure 3.2).  This mask is the basis for the 3D models of each 
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individual tooth.  Once the threshold mask is laid down, the region growing tool 

allows for the mask to be split into several distinct objects once connecting pixels 

have been removed (Figure 3.3).  In the current study, a threshold mask was laid 

over the entire skull and dentition for each specimen.  Then, pixels that connected 

the right-side maxillary dentition to the alveolar bone and to each other were 

manually removed.  Once each tooth was isolated, the region growing tool was 

used to create each tooth as a 3D model (Figure 3.4).  Each model was saved and 

then exported as an ASCII STL file to be uploaded in the Geomagic (Raindrop, 

Inc.) software package for measurement.  In specimens with a missing ride-side 

tooth, the corresponding left-side tooth was measured and used for analyses.  

Specimens missing the same tooth on both left and right side were used for 

analyses of individual teeth (e.g., scaling analyses), but were excluded from 

analyses examining patterns of tooth size along the tooth row. 
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      Fig. 3.2. C. mitis scan after thresholding. 

 

 

 

 
Fig. 3.3. C. mitis scan after region growing was used to separate individual 

teeth. 
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     Fig. 3.4. 3D tooth models made from region growing masks. 

 

 Each tooth was measured for root surface area (RSA), crown surface area 

(CSA), and the area of a plane passed through the cervical margin (CMSA).  The 

junction between tooth crown enamel and the tooth root is visually apparent in 

each scan.  RSA was determined by selecting the portion of the tooth inferior to 

the enamel-root junction on all sides.  CSA was determined by orienting the tooth 

in the occlusal view and measuring the total three-dimensional (3D) surface area 

of the visible crown (Figure 3.5).   

Because the measurement for CSA may vary due to differences in enamel 

thickness and overall tooth wear, the two-dimensional (2D) area of the cervical 

margin (CMSA) was also measured as a functional proxy for crown size.  

Although CMSA is almot certainly an underestimation of crown size in most taxa, 

it is representative of the size of the area through which masticatory force must 

travel before reaching the tooth root.  CMSA was calculated similarly to protocols 
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described in Kupzcik et al. (2009), who also used CMSA to help approximate 

crown size. Three points were placed on the inferior-most borders of the enamel 

root junction through which a plane was passed.  Next, the portion of the tooth 

below the plane was removed, resulting in an isolated tooth crown.  The bottom of 

the crown was closed off with a flat plane, and the 2D surface area of this plane 

was then measured as CMSA (Figure 3.6). 
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     Fig. 3.5. Root surface area (RSA, in red) top; Crown surface area (CSA, in  

     red), bottom.  Both images of Callithrix sp. 30579. 
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     Fig. 3.6.  Cervical margin surface area (CMSA) measurement.  Plane being  

     passed just inferior to the enamel-root junction, top.  2D cervical margin  

     surface area, bottom. 
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BITE FORCE ESTIMATION 

3D landmarks reflecting overall size and shape and masticatory 

parameters were collected for each specimen using a Microscribe G2X digitizer 

(Immersion Corp.) prior to scanning (See Figures 3.7, 3.8, and Table 3.3 for 

landmark descriptions).  Landmarks used were based on those used in Spencer 

(1995) for capturing skull size and relative masticatory structure proportions.  

Skulls were placed on an elevated stand with the basicranium oriented superior to 

the neurocranium to facilitate landmark collection from every angle.  Once all 

cranial landmarks were collected, the mandible of each cranium was carefully 

articulated so that the position of the cranium did not shift and landmarks at the 

centroids of masticatory muscle insertion sites were collected. 

 

Fig. 3.7. Landmarks, lateral view.  Note that skull pictured is a catarrhine and 

does not have P
2
.  Adapted after Spencer (1995). 
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Fig. 3.8. Landmarks, inferior view.  Note that the skull pictured is a catarrhine, 

and does not have P
2
.  Adapted after Spencer (1995).  
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TABLE 3.3. Digitized landmarks. 

Landmark # Description 

1, 36 center of occipital condyles 

2, 35 center of articular eminence 

3, 34 porion 

4, 33 

inferior edge of zygomatic 

arch at the 

zygomaticotemporal suture 

5, 32 

inferior edge of zygomatic 

arch at the anteriormost point 

of origin of the superifical 

masseter 

6, 31 

intersection of temporal line 

and frontozygomatic suture 

7, 30 

most medial point in pterion 

region 

8, 29 

sphenopalatine suture at the 

intersection of the medial and 

lateral pterygoid plates 

9, 28 

center of medial surface of 

lateral pterygoid plate 

10, 27  M
3
 

11, 26 M
2
 

12, 25 M
1
 

13, 24 P
4
 

14, 23 P
3
 

15, 22 P
2a

 

16, 21 C 

17, 20 I
2
 

18, 19 I
1
 

37 

intersection of intermaxillary 

and maxillopalatine sutures on 

ventral hard palate 

38 

most posterior midline point 

on vomer 

39 

most anterior midline point of 

foramen magnum 

40 opisthocranion 
    a

P
2
 landmarks in Platyrrhines only            (cont) 
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TABLE 3.3 (cont). Digitized landmarks. 

Landmark # Description 

41 lambda 

42 bregma 

43 glabella 

44 nasion 

45 prosthion 

46, 50 tip of coronoid process 

47, 51 

most anterior projection of 

ramus at the coronoid process 

48, 52 

centroid of insertion of 

superficial masseter on lateral 

ramus 

49, 53 

centroid of insertion of medial 

pterigoid on medial angle of 

mandible 
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Landmarks were chosen such that accurate measurement of masticatory 

parameters could be obtained and used to calculate bite force curves along the 

tooth row (discussed in detail below) for each individual in the sample.  All 

calculations in the current study are based on Spencer’s (1995) analysis of 

Greaves’ (1978) model.  After taking 3D landmarks, point clouds for each 

specimen were imported into MacMorph (Spencer and Spencer, 1993) software 

program for visualization and measurement. 

Additionally, landmarks that captured overall size of the skull were 

collected so that variables could be size-corrected using a geometric mean of skull 

size prior to analysis.  To calculate the geometric mean, six measurements were 

taken: cranial breadth, cranial height, and cranial length, in addition to facial 

breadth, facial height, and facial length.  See Table 3.4 for details. 

 

TABLE 3.4. MacMorph geometric mean 

measurements. 

Variable 

Measurement 

Type Landmarks 

Cranial breadth distance 3, 34 

Cranial height distance 39, 42 

Cranial length distance 40, 43 

Facial breadth distance 4, 33 

Facial height distance 37, 43 

Facial length distance 37, 45 
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Masticatory system measurement 

To estimate bite force curves along the tooth row, it was first necessary to 

collect measurements of basic masticatory system variables (Table 3.5).  3D 

landmark coordinates for each specimen were uploaded into MacMorph software 

and the appropriate measurements were collected.  All measurements were 

defined and projected onto a specific plane (i.e., occlusal or sagittal) to facilitate 

the use of current models of feeding mechanics.  Bicondylar breadth (BB) is the 

distance between articular eminence landmarks (2) and (35) projected onto 

occlusal plane.  Palate breadth (PB) is the distance between M1
 
landmarks (12) 

and (25).  Glenoid height (GH) is the distance of the articular eminence landmark 

(2) to the occlusal plane (landmarks 10, 13, and 24).  The normal bite force 

moment arm length (the distance from the TMJ to the bite point in the sagittal 

plane) (bN) and the horizontal distance from the TMJ to each bite point on the 

occlusal plane (bH) were also measured, in addition to the lengths of the moment 

arms of the masticatory adductors (Table 3.5).  
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TABLE 3.5. MacMorph masticatory measurements 

Measurement 

Measurement 

type Plane Plane points Landmarks 

Bicondylar 

breadth 

Projected 

line to plane Occlusal 

10 (27)
a
, 13, 

24 2, 35 

Palate breadth 

Projected 

line to plane Occlusal 

10 (27), 13, 

24 12, 25 

Glenoid height 

Point to 

plane Occlusal 

10 (27), 13, 

24 2 (35) 

bH 

Projected 

line to plane Occlusal 

10 (27), 13, 

24 

2 to: 10, 11, 

12, 13, 14, 

15, 16, 17 , 

18 

bN 

Projected 

line to plane Sagittal 

40 (41), 42 

(39), 44 

(43) 

2 to: 10, 11, 

12, 13, 14, 

15, 16, 17 , 

18 

Masseter 

moment arm 

Projected 

line to plane Occlusal 

10 (27), 13, 

24 4, 56 

Temporalis 

moment arm 

Projected 

line to plane Occlusal 

10 (27), 13, 

24 7, 55 

Medial pterygoid 

moment arm 

Projected 

line to plane Occlusal 

10 (27), 13, 

24 9, 57 

Masseter 

moment arm 

Projected 

line to plane Sagittal 

40 (41), 42 

(39), 44 

(43) 4, 56 

Temporalis 

moment arm 

Projected 

line to plane Sagittal 

40 (41), 42 

(39), 44 

(43) 7, 55 

Medial pterygoid 

moment arm 

Projected 

line to plane Sagittal 

40 (41), 42 

(39), 44 

(43) 9, 57 
       a

Numbers in parentheses indicate alternate landmarks used to delineate a  

     plane in the event that some landmarks are missing in a specimen. 
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Review of lever model and bite force calculation 

 

Recall from Chapter 2 that the basic equation for bite force estimation is: 

 

Bb + Jj + Mm = 0 

(1) 

where B, J, and M are the bite force, joint reaction force, and muscles force 

respectively, and b, j, and m are their respective moment arms.  By modeling the 

fulcrum at the TMJ (Figure 3.9), the joint reaction force moment arm becomes 

zero and the equation can be rewritten: 

 

Bb - Mm = 0 

(4) 

 

or 

  
   

 
 

(5) 

 

  

Furthermore, since the simple lever model only assesses forces that are normal 

(perpendicular) to the reference line, the equation can be further modified to 

express this assumption: 

   
     
  

 

(6) 

In this simple model, knowing the length of the muscle and bite force moment 

arms along with the magnitude of muscle force allows bite forces to be calculated 

for any bite point. 
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Fig. 3.9. Simple lever model review.  J = joint reaction force, M = muscle 

resultant force, B = bite force, m = muscle resultant moment arm, b = bite 

force moment arm. 

 

However this simple equation (6) does not accurately reflect all of the 

components that contribute to bite force.  Information about muscle resultant 

inclination, TMJ height above the occlusal plane, and constraints that protect the 

lower jaw from dislocation must also be considered (Spencer, 1995, 1999).  

Determination and measurement of muscle force magnitude and inclination, 

muscle resultant moment arm length, and bite force moment arm length for this 

study are discussed in detail below. 

Muscle resultant magnitude (MN) and inclination 

The most important factor in determining the maximum amount of force a 

muscle can produce, its physiological cross-sectional area (PCSA), has no known 

correlate in skeletal architecture.  Therefore, in the current study, muscle resultant 

force, M, is set at a constant, maximum magnitude (until bite points in Region II, 

in which b-s muscle force decreases, discussed below).  Setting M as a constant 

for all individuals precludes the estimation of absolute bite forces for each 

 

J 

(fulcrum) 
M 

B 

Occlusal plane 

m 

b 
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specimen.  However, the current study focuses on changes in the bite force 

magnitude along the tooth row within an individual, and does not compare bite 

force magnitudes among species.  Thus, setting M as a constant does not impede 

our ability to examine predicted force patterns along the tooth row. 
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Fig. 3.10. Measurement of muscle resultant orientation.  The red dotted lines 

indicate the muscle attachment areas for the masticatory adductors (top, 

superficial masseter; middle, anterior temporalis; bottom, medial pterygoid).  

Black circles indicate the estimated centroid of muscle attachment and insertion.  

A black line drawn between the two centroid points estimates muscle resultant 

force vector orientation.  Additionally, the angle of each muscle resultant vector at 

the occlusal plane, Θ, was quantified.  (Modified after Spencer, 1995). 
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To find the angle of the muscle resultant inclination at the occlusal plane 

(θ), first the angles of the anterior temporalis, superficial masseter, and medial 

pterygoid were measured (Figure 3.10).  Muscle moment arm length was 

estimated in MacMorph by measuring the distance between the landmarks at the 

centroids of each muscle origin and insertion (see Table 3.3 for details).  Muscle 

length was measured in both the sagittal and occlusal panes, creating a right 

triangle where muscle length in the sagittal plane (Msagittal) is the hypotenuse and 

muscle length in the occlusal plane (Mocclusal) is the base (Figure 3.11). 

 

 

 

 

 

 
Fig. 3.11. Muscle resultant angle calculation.  See text for details. 

  

Occlusal plane 

M
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The angle at the occlusal plane can be found using a simple trigonometric 

formula: 

 

       (
         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) 

(7) 

 

The temporalis muscle is oriented differently than the superficial masseter and 

medial pterygoid muscles (Figure 3.10, middle).  Instead of inclining anteriorly, 

the temporalis inclines more posteriorly due to the large portion of the muscle that 

extends posterior to its insertion on the mandible.  To correctly calculate 

temporalis angle, the angle calculated in equation (7) must be subtracted from 

180
o
.  To simplify calculations, the muscle angle at the occlusal plane was 

averaged to produced the angle of the masticatory muscle resultant at the occlusal 

plane, θ.  While such simplifying assumptions are common in biomechanical 

analyses, it is important to emphasize that the extent to which each masticatory 

adductor contributes to total bite forces is not equal, so this estimate of muscle 

resultant angle includes some error. 

Bite force moment arm (bN) 

 

Although Greaves (1978) modeled joint reaction force in line with the bite 

point (on the occlusal plane), in primates the TMJ is situated above the occlusal 

plane (discussed in Chapter 2).  Consequently, the reference line changes for each 

bite point (Figure 2.5).  In primates, with an anterosuperiorlly-oriented 

masticatory muscle resultant vector, the bite force moment arm (bN) does not 

equal the horizontal distance from the TMJ to the bite point (bH) (Figure 3.12), 
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because raising the TMJ makes bN into the hypotenuse of a right triangle with one 

side measuring bH and the other side measuring the height of the TMJ above the 

occlusal plane (glenoid height, GH).  Thus, 

 

   √  
      

(8) 

 

Glenoid height, bH and bN were measured in MacMorph based on landmark 

coordinates.   

 

 

 

 

 
Fig. 3.12. Effect of raising the TMJ on bN .  See text for explanation. 
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Muscle resultant moment arm (mN) 

Greaves’(1978) model operates on the assumption that the muscle 

resultant is located directly posterior to the distal-most molars; however, 

measurements of muscle vectors (measured as lines connecting the centroids of 

the attachment and insertion sites for each muscle) suggest that the muscle 

resultant is actually more posteriorly located than indicated in Greaves’ model 

(Spencer, 1995, 1999; Perry et al., 2011).  Spencer (1995, 1999) suggests that 

although the muscle resultant is likely positioned more posteriorly than assumed 

by Greaves’ model, the system behaves as though it is located more anteriorly due 

to the presence of a buffer zone around the triangle of support (discussed in 

Chapter 2).  

Despite the fact that the muscle resultant is likely much more posterior 

than Greaves assumed, Spencer (1995, 1999) found that molar teeth across 

anthropoids are always located within Region II as calculated by Greaves.  This 

supports the hypothesis that the triangle of support includes a buffer zone, and 

explains why the predictions of Greaves’ (1978) model are supported by current 

studies, despite the discovery that the actual position of the muscle resultant 

differs from what was originally assumed.  For this reason, rather than calculate 

estimated muscle resultant positions from muscular attachment and insertion 

landmarks, the a-p position of the muscle resultant for each individual was 

calculated as the horizontal distance from the TMJ to M3
 
in the occlusal plane (bH 

M3). 
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As discussed previously, raising the TMJ above the occlusal plane 

changes the reference line at each bite point, which in turn changes the magnitude 

of bN, normal bite force moment arm.  Similarly, raising the TMJ also affects the 

muscle force resultant moment arm mN.  When the TMJ is raised, mN no longer 

equals the horizontal distance from the TMJ to the muscle force vector in the 

occlusal plane, mH.  Additionally, if the muscle force vector is inclined, as in most 

primates, the reference line will change such that mN will have a different value 

for every bite point along the tooth row (Figure 3.13). 

Glenoid height, bN, and bH were measured in MacMorph, and θ was 

calculated in a previous section.  Given these parameters (see Figure 3.14), it is 

possible to calculate mN with the following equation 

mN = bN – x 

(9) 

To calculate x, it is first necessary to find the value of q, which is the difference 

between mH and bH, and the angle β.  To find β, it is first necessary to calculate α.  

The angle α is determined by the equation 

        (
  

  
) 

(10) 

 

The angle β is simply 180° - (α + θ).  Now that q and β are known, it is possible 

to calculate x using the following equation 



  99 

x = sinΘ (
q

sin  
) 

(11) 

Calculating the muscle resultant moment arm highlights the effects of variation in 

glenoid (TMJ) height and muscle resultant inclination on calculations of bite force 

for any given bite point. 

 

 

 

 

 

 

 
Fig. 3.13. Effect of raising the TMJ on mN.  Note that the reference line 

changes for bite points 1 and 2. 
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Fig. 3.14. Calculation of mN.  See text for details.   

 

 

Calculating lateral muscle resultant movement in Region II 

One major assumption of all lever models of feeding mechanics is that 

muscle force magnitude is always maximized.  For bite points in Region I, this 

means that the muscle resultant falls on the midline, since both w-s and b-s 

muscles are firing equally.  According to Greaves (1978), however, both sides 

only fire maximally in Region I; in Region II, the muscle resultant must move 

laterally to be accommodated within the triangle of support, which is 

accomplished by reducing muscle force on the balancing side.   

To calculate bite forces along the tooth row, the lateral movement of the 

muscle resultant in Region II must also be calculated (Figure 3.15).  To do this, it 

is necessary to know the distance between the w-s and b-s joint reaction forces 
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(bicondylar breadth, BB), the muscle resultant moment arm length in the sagittal 

plane (mG), the angle of the b-s corner of the triangle of support (Σ), and the 

distance between the b-s and w-s muscle resultants (here, modeled as bicondylar 

breadth, BB).  The distance the muscle resultant shifts towards the w-s in Region 

II is: 

   ̅̅ ̅̅ ̅̅  (
  
    

)   (
  

 
) 

(12) 
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Fig. 3.15. Calculating muscle resultant shifts in Region II.  JB and JW are the b-s 

and w-s joint reaction forces, respectively.  MB and MW are the b-s and w-s 

muscle resultants (here, modeled as the same distance as bicondylar breadth, BB).  

Mandible illustration from Aiello and Dean (1992).  Figure adapted from Spencer 

(1995). 
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The normal muscle resultant moment arm, mN, calculated above, can help 

determine the muscle resultant moment arm in the sagittal plane, mG (Figure 3.16) 

where 

mG = sinπ * mN 

(13) 

 

The angle π is easily calculated since angle α is already known (discussed above). 

 

Recall that the lateral shift in the muscle resultant is achieved by reducing 

the working side muscle force, resulting in a reduction of total muscle force (MT ).  

To calculate (MT) we can apply a simple beam model, like that discussed in 

Chapter 2, such that the balancing side muscle force (which is unknown) is 

modeled at the fulcrum.  Therefore, 

          

         ((
  

 
)     ̅̅ ̅̅ ̅̅ ) 

(14) 

 

which can be rewritten as 

 

 

   
(     )

((
  
 )     

̅̅ ̅̅ ̅̅ )

 

(15) 
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Fig. 3.16. Calculation of mG.  See text for details. 

 

 

Summary of Calculations 

 Figure 3.17 shows the measurements, and Table 3.6 summarizes the 

equations used to calculate bite forces along the tooth row in the current study.  

As previously stated, all calculations in the current study are based on Spencer’s 

(1995) lever model.  Bite force curves were calculated for each individual in the 

study.  Measurements of tooth root and crown surface area along the tooth row 

were compared with calculated bite force magnitudes to assess the hypothesis that 

dental variables covary with changes in bite force along the tooth row. 
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Fig. 3.17. Summary of measurements required for calculation of bite force. 
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TABLE 3.6. Equations required to calculate bite force. 

 Basic 

Equation 

Variable 

Required Components 

Region I 

Equations 

MN 

 

M  = M sin  
 

 

  = Θ    
 

 

  = sin 1 (
GH

b 
) 

 

mN 

 

m  = b  – x 
 

 

x = sin Θ (
q

sin  
) 

 

 

  =180 –   
 

 

q = bH   mH 
 

Region II 

Equations 

MT 

 

   
(     )

((
  
 )     

̅̅ ̅̅ ̅̅ )

 

 

 

MLM 
̅̅ ̅̅ ̅̅ ̅= (

mG

tan 
)    (

BB

2
) 

 

 

∑= tan 1
bH

BB  (
(BB    B)

2
)
 

 

mG 

 

mG = sin π   m  
 

 

π = 90 –   
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ANALYTICAL METHODS 

Size and scaling 

The relationship between tooth size and body size has a long history of 

investigation in biological literature (Gould, 1975; Wood, 1979; Gingerich et al., 

1985; Ungar, 1998; Yamashita, 1998; Vinyard and Hanna, 2005; Copes and 

Schwartz, 2010; and many more).  However, repeated investigation suggests that, 

within Primates, teeth scale with body size variably among taxa (reviewed in 

Copes and Schwartz, 2010).  Consequently, in the current study scaling 

relationships among variables were examined prior to statistical analyses designed 

for hypothesis testing.  Rather than using body mass, which is typically not 

available for museum specimens like the ones used for this study, dental 

morphological features were examined in conjunction with skull size, which is 

calculated as a geometric mean of cranial vault and facial length, height, and 

breadth. 

In scaling analyses, regression is used to determine whether or not the 

shape of a particular variable changes as overall size increases.  The slope of the 

regression line indicates whether a variable increases (positive allometry), stays 

the same (isometry), or decreases (negative allometry) in relative size compared 

to overall size of an organism.  Unless there is reason to believe that there is a 

shape change with size increase, isometry is the null hypothesis for scaling 

analyses.  Isometry is geometric similarity; that is, a particular shape at any size 

has the same relative proportions (Schmidt-Nielsen, 1984).  For example, a square 
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is isometric because its shape is the same at any size; all sides of a square are 

equal whether they are two or twenty millimeters.  In the current study, root 

surface area (RSA) is examined along with the geometric mean of skull size 

(GMSkull).  If RSA scales isometrically with GMSkull, it would indicate that the 

relative root size of a small primate and a large primate is the same.  The slope of 

isometry will change depending on the dimension of the features being studied.  

For the current project, the slope of isometry is 2.0 because surface areas are 

compared to linear measurements. 

There are two types of regression analyses that can be utilized in scaling 

analyses:  Model I or Ordinary Least Squares (OLS) regression and Model II or 

Reduced Major Axis (RMA) regression.  One central difference between OLS and 

RMA is their relationship with the correlation coefficient r.  The slope of the OLS 

line is highly affected by r, because r is used in its calculation, whereas the slope 

of the RMA line is calculated independent of the correlation.  This means that an 

RMA regression line has nothing to do with the presence or strength of a 

relationship (Ricker, 1984) and it is the same whether the data are highly 

correlated or not (Aiello, 1992).  The only way to determine the presence of a 

relationship between data is to apply a test of significance, that is, the correlation 

coefficient r.  Since they each have a different relationship with r, the OLS line 

and the RMA line can be very different for the same set of data; however, the 

higher the correlation coefficient, the closer the OLS line is to the RMA line 

(Aiello, 1992). 
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Another major difference between the OLS line and the RMA line is that 

OLS only minimizes the vertical difference between the data point and the line 

whereas RMA minimizes both the vertical and the horizontal distance between a 

data point and the line (Sokal and Rolf, 1981; Ricker, 1984; Aiello, 1992; Smith, 

2009). OLS is therefore considered asymmetrical (Model I regression) since it 

assumes that all of the variability is located within one variable, whereas RMA 

recognizes variability in both variables, making it symmetrical (Model II 

regression) (Sokal and Rolf, 1981; Smith, 2009).   

The issue of symmetry is important, because depending on the biological 

question being asked, one might expect variation to be partitioned symmetrically 

or asymmetrically.  Smith (2009) states “If the biological question indicates that 

natural variation should be partitioned asymmetrically, use OLS; if 

symmetrically, the data should be modeled by RMA . . . .” (481).  Put simply, in a 

symmetrical model (i.e. RMA), it does not matter which variable is plotted as x or 

y; they could be switched around with no effect on the outcome of the analysis.  

In an asymmetrical model (i.e. OLS), the x and y variables are fixed, and all of the 

variation is expected to be located within the y variable.  The current study 

examines root and crown size versus skull size (which indicates an asymmetrical 

model) and also root versus crown size (which indicates a symmetrical model).  

Despite the fact OLS may have been preferred by some researchers for some 

analyses in the current study, RMA was used for each analysis because there is 

variation in all measurements examined, and because it is important to be able to 

compare results directly among analyses; furthermore, the correlation coefficients 
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(r) are very high for all relationships examined, indicating that the results of RMA 

and OLS analyses would be similar, if not the same, in this case (Aiello, 1992).  

Results from these analyses are discussed in Chapter 4. 

 The hypotheses tested in this study focus on the pattern of size change 

among different variables along the tooth row.  Because the comparative sample 

for this study encompasses a broad body size range, even among some closely 

related species, it was necessary to size-adjust each variable prior to statistical 

analysis of pair-wise comparisons.  There are several ways to mathematically 

adjust for size, but among the most common are the use of residuals from an OLS 

regression line and shape ratios (Jungers et al., 1995).  Residuals are preferred by 

some researchers because they are completely size-free; that is, residuals are not 

correlated with x.  Unfortunately, this means that residuals are also often shape-

free, since some aspects of shape are correlated with size (Corrucini, 1987; 

Jungers et al., 1995).   

In residual analysis, the regression line is assumed to represent functional 

equivalence, and residuals are evaluated using a criterion of subtraction (Pilbeam 

and Gould, 1974), meaning that residuals that fall above or below the line are 

interpreted as adaptations.  However, the regression line may in fact represent an 

adaptive relationship; in other words, there is no reason to assume that a scaling 

relationship indicates functional equivalence (Corrucini, 1987; Jungers et al., 

1995).  Additionally, residuals are not intrinsically connected to living creatures; 

their distribution depends a great deal on the sample from which they are derived 

(Corrucini, 1987; Jungers et al., 1995). 
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Shape ratios, like residuals, are a measure of relative size; however, they 

differ from residuals in important ways.  First, shape ratios are never completely 

size-free, because some aspects of shape are correlated with size.  Second, shape 

ratios are made directly from variables of biological interest rather than calculated 

based on the scaling relationship within a specific sample.  Shape ratios may give 

misleading or erroneous results when the relationship among variables is 

allometric; therefore it is important to use isometric variables when constructing 

shape ratios (Jungers et al., 1995).  The current study uses shape ratios to size-

adjust due to their direct relationship to pertinent biological variables and also 

because the variables under study were found to have an isometric relationship 

(discussed in Chapter 4).  Each variable was divided by the geometric mean of 

skull size, and the resulting shape variables were used for subsequent comparative 

analyses. 

Part 1: Dental relationships  

 Hypothesis 1a states that root and crown surface area should covary along 

the tooth row.  Crown surface area as measured in the current study does not 

account for differences in occlusal form due to tooth wear.  Consequently, 

cervical margin surface area (CMSA) was used as a proxy for crown surface area 

(CSA) for all analyses.  To test Hypothesis 1a, the Kendall rank correlation 

coefficient (Kendall’s tau [τ]) was used to determine the similarity of the order of 

ranked dental variables.  In other words, the order of the smallest to largest tooth 

crown along the tooth row should match the order of smallest to largest tooth 

roots along the tooth row.  The correlation coefficient indicates the magnitude and 
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direction of the correlation and can range from -1 (a perfect negative correlation, 

wherein one variable increases as the other decreases) to 1 (a perfect positive 

correlation, wherein both variables increase or decrease concurrently).  Values 

near zero indicate that no relationship exists between the variables.  Hypothesis 1a 

predicts that the correlation coefficient for root and crown size should be positive 

and close to 1. 

Hypothesis 1b states that root surface area and crown size are functionally 

related, and primates with mechanically resistant diets will have relatively higher 

values for these characteristics than closely-related primates with soft diets.  To 

test this hypothesis, closely-related primates of similar size but with diets of 

differing mechanical properties were examined in pair-wise comparisons (see 

Table 3.2 for the list of compared taxa).  Primates were separated into dietary 

categories based on the mechanical properties of their diet (discussed in detail 

above).  Primates whose diets are mechanically demanding (i.e., that are hard 

and/or tough, as discussed in Chapter 2) are in the “Resistant” category, while 

primates whose diets are not mechanically challenging are in the “Soft” food 

category.  Nonparametric Mann-Whitney U-tests (for comparisons between two 

taxa) and Kruskall-Wallis tests (for comparisons between three or more taxa) 

were run to determine whether primates with a more resistant diet also had 

significantly larger tooth roots and crowns than those with soft diets as predicted 

by Hypothesis 1b. 
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Part II: Dental features and bite force patterns 

 Hypotheses 2 and 3 predict that bite force should covary with root size and 

crown size along the tooth row respectively.  First, bite force curves were 

calculated for each specimen, as discussed above.  Then, calculated bite forces 

were compared to measurements of root and crown size along the tooth row.  As 

with Hypothesis 1a, Kendall’s τ was used to assess the direction and magnitude of 

correlation among variables.  Bite force magnitudes along the tooth row were 

ranked and compared with root (RSA) and crown size (CMSA) ranks.  

Hypotheses 2 and 3 predict that the correlation coefficients for bite force and 

dental variables be positive. 
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CHAPTER 4 

SCALING RELATIONSHIPS AMONG DENTAL VARIABLES AND 

SKULL SIZE 

Raw measurements of root surface area (RSA) and cervical margin surface 

area (CMSA) for platyrrhines and catarrhines are reported in Tables 4.1-4.4.  

Before testing Hypotheses 1-3, reduced major axis (RMA) regression (discussed 

in the previous chapter) was used to determine scaling relationships between root 

surface area and skull size, cervical margin surface area and skull size, and root 

and cervical margin surface area.  Platyrrhines and catarrhines were examined 

separately from each other using species averages of measurements.  Tables 4.5-

4.8 report the log-transformed species averages for root size and cervical margin 

surface area for platyrrhines (Tables 4.5 [RSA] and 4.6 [CMSA]) and catarrhines 

(Tables 4.7 [RSA] and 4.8 [CMSA]).   
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TABLE 4.1. Root Surface Area (RSA) in mm
2
: platyrrhines. 

Species Specimen M3 M2 M1 P4 P3 P2 

A. caraya 28095 166.34 234.53 187.53 136.43 125.20 97.63 

A. caraya 28096   174.75 155.09 114.22 108.69 76.00 

A. caraya 28654 176.88 265.92 227.70 157.94 140.02 109.02 

A. caraya 28655 158.47 194.29 173.23 119.26 104.36 80.76 

A. palliata 5323 108.39 159.72 138.01 107.61 110.12 94.69 

A. palliata 5324 85.17 95.28 101.28 137.03 157.21 100.91 

A. palliata 5325 83.16 102.24 104.95 131.60 157.22 99.76 

A. palliata 5327 91.89 116.79 129.13 153.82 175.97 107.91 

A. palliata 5328 88.80 105.47 123.24 162.09 183.68 106.30 

A. palliata 5329 81.34 102.54 110.09 144.22 177.99 118.10 

A. palliata 5331 105.06 117.00 120.88 115.11 190.56 151.12 

A. palliata 6001 75.07 100.42 109.62 154.50 174.13 125.81 

A. palliata 29609 111.97 125.25 131.52 179.89 206.83 135.71 

A. palliata 29611 80.02 96.62 115.06 158.06 171.53 118.01 

A. trivirgatus 8472 14.96 28.96 35.17 27.16 21.44 18.13 

A. trivirgatus 19801 15.75 28.59 29.34 20.79 20.62 13.34 

A. trivirgatus 19802 18.83 32.03 37.00 27.82 26.00 18.30 

A. trivirgatus 19805 16.70 28.89 36.22 26.53 26.04 19.76 

A. trivirgatus 27214 18.49 30.08 34.59 26.55 23.62 20.85 

A. trivirgatus 30562 14.43 21.49 27.71 18.25 14.58 13.89 

A. trivirgatus 39571 21.69 28.75 35.94 26.08 23.08 18.01 

A. trivirgatus 52608 19.49 26.07 30.45 28.71 25.54 20.63 

A. trivirgatus B-8042 17.13 26.90 29.03 23.49 21.36 18.80 

A. trivirgatus B-8043 17.31 27.23 30.57 25.01 22.52 20.28 

A. geoffroyi 5336   74.72 74.31 66.77 66.80 55.22 

A. geoffroyi 5338 52.33 77.34 86.06 74.59 69.74 52.52 

A. geoffroyi 5344 44.16 74.52 94.69 73.68 72.80 57.68 

A. geoffroyi 5345 48.58 82.41 98.49 82.14 72.59 62.23 

A. geoffroyi 5346 35.02 65.11 94.68 67.01 61.22 47.71 

A. geoffroyi 5348 48.16 79.32 93.98 73.24 72.20 58.82 

A. geoffroyi 5349 38.16 62.33 76.39 55.50 57.30 45.42 

A. geoffroyi 5350 44.45 68.50 87.68 69.77 67.61 55.59 

A. geoffroyi 5351 56.34 80.18 89.79 80.50 76.30 57.22 

A. geoffroyi 5352 36.70 77.17 92.33 73.07 69.72   

  (cont) 
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TABLE 4.1 (cont). Root Surface Area (RSA) in mm
2
: platyrrhines. 

Species Specimen M3 M2 M1 P4 P3 P2 

A. geoffroyi 5353 46.89 81.71 84.58 67.10 61.66 48.54 

A. geoffroyi 5354 37.39 66.60 74.33 60.66 62.25 52.85 

A. geoffroyi 5355 59.53 93.93 111.02 93.18 80.59 62.61 

A. geoffroyi 10138 40.75 75.42 101.51 77.33 81.84 66.05 

A. geoffroyi 29626 36.66 73.18 89.36 71.11 63.94 50.96 

A. geoffroyi 29628 26.10 55.09 73.06 58.39 58.31 40.72 

A. geoffroyi 34322 41.06 66.22 73.45 65.57 66.52 54.49 

C. moloch 20186 21.70 35.15 38.22 30.51 25.87 19.85 

C. moloch 26922 31.63 52.43 57.96 42.08 34.72 27.54 

C. moloch 30559 19.36 44.32 55.21 36.85 35.79 29.39 

C. moloch 30566 18.82 34.91 37.01 32.30 28.64 21.88 

C. moloch 32380 20.38 37.93 46.94 37.57 27.31 21.14 

C. moloch 32383 21.86 34.71 41.72 32.11 27.56 23.71 

C. moloch 37828 24.69 44.88 53.32 32.22 32.99 27.28 

C. moloch 39073 20.53 36.61 44.07 34.52 28.54 24.96 

C. moloch 39563 23.67 41.09 46.66 30.38 27.54 23.29 

Callithrix sp. 30579 -- 11.35 16.30 12.82 11.44 11.51 

Callithrix sp. 30580 -- 13.63 16.21 14.56 13.95 13.74 

Callithrix sp. 30582 -- 13.63 16.21 14.56 13.95 13.74 

Callithrix sp. 32164 -- 12.03 17.29 16.49 13.75 16.04 

Callithrix sp. 32165 -- 13.85 16.56 14.77 11.99 14.42 

Callithrix sp. 34573 -- 10.41 17.53 16.51 14.27 13.18 

Callithrix sp. 30577 -- 13.46 15.48 15.04 11.18 12.21 

Callithrix sp. 30586 -- 12.59 14.52 14.20 10.10 9.75 

Callithrix sp. 30603 -- 12.61 16.41 14.27 12.28 13.58 

Callithrix sp. 37826 -- 10.52 14.34 12.93 10.84 10.79 

Callithrix sp. 440 -- 16.43 22.88 18.74 18.16 16.69 

Callithrix sp. 37823 -- 15.60 21.28 15.73 14.41 12.64 

Callithrix sp. 7165 -- 13.89 19.99 14.51 13.74 14.29 

C. apella 25811 42.73 90.32 109.76 106.48 111.42 111.41 

C. apella 27097 27.21 53.36 92.66 80.27 84.64 82.94 

C. apella 30724   53.50 76.82 83.46 87.10 91.33 

C. apella 30726 25.31 55.45 71.46 70.31 73.17 75.59 

C. apella 31062 30.26 59.58 85.63 80.71 83.34 79.20 

(cont) 
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TABLE 4.1 (cont). Root Surface Area (RSA) in mm
2
: platyrrhines. 

Species Specimen M3 M2 M1 P4 P3 P2 

C. apella 31064 25.16 60.02 82.75 85.85 90.73 83.06 

C. apella 31066 26.94 47.03 68.10 74.23 78.03 82.05 

C. apella 31072 22.79 55.55 68.04 80.31 80.75 78.70 

C. apella 32049 24.77 52.79 79.25 82.97 90.79 85.30 

C. apella 37831 30.45 59.93 78.51 87.82 86.15 97.53 

C. apella 41090 22.14 51.81 91.12 79.54 85.73 94.18 

C. apella 49635 33.02 67.78 84.96 96.84 104.87 107.25 

C. apella 314062 30.00 58.77 85.54 79.49 83.35 79.34 

C. capucinus 5332 44.83 58.78 71.55 70.17 76.60 78.09 

C. capucinus 7317 39.96 58.19 75.35 75.78 75.97 75.71 

C. capucinus 7322 35.48 54.30 65.95 66.25 69.85 61.54 

C. capucinus 7323 36.98 59.99 68.09 62.66 68.92 68.41 

C. capucinus 10135 35.24 52.49 61.05 63.75 65.46 56.94 

C. capucinus 10136 34.22 50.27 52.93 60.78 61.54 57.93 

C. capucinus 34323 34.44 53.58 54.20 60.42 63.34 62.77 

C. capucinus 34326 61.63 45.45 55.63 58.43 60.64 55.52 

C. capucinus 34353 44.75 64.57 77.94 73.61 76.04 68.81 

Pithecia sp. 20266 28.79 38.11 43.83 40.04 46.33 34.60 

Pithecia sp. 27124 28.41 35.17 45.08 40.43 42.22 30.38 

Pithecia sp. 30720 23.03 29.80 31.24 33.02 35.35 27.79 

Pithecia sp. 30718 27.30 36.14 37.34 32.42 33.10 31.08 

Pithecia sp. 30719 36.05 46.94 54.60 47.10 45.54 41.50 

Pithecia sp. 31061 26.32 37.82 45.38 40.41 42.17 38.88 

Saguinus sp. 15324 -- 13.81 22.32 22.08 20.13 19.93 

Saguinus sp. 27331 -- 10.39 15.84 14.67 14.39 15.07 

Saguinus sp. 30597 -- 11.99 20.71 19.64 18.39 20.91 

Saguinus sp. 30601 -- 11.63 19.09 21.97 21.15 20.52 

Saguinus sp. 41567 -- 12.15 21.73 17.78 17.10 16.41 

Saguinus sp. 41568 -- 14.98 20.83 18.01 18.46 17.50 

Saguinus sp. 52557 -- 7.78 17.19 16.41 16.84 15.90 

Saguinus sp. 52615 -- 11.75 19.62 17.91 16.25 15.12 

Saguinus sp. 52616 -- 15.97 24.65 20.03 20.45 18.66 

Saguinus sp. 52658 -- 14.22 20.50 18.20 16.46 15.66 

           (cont) 
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TABLE 4.1 (cont). Root Surface Area (RSA) in mm
2
: platyrrhines. 

Species Specimen M3 M2 M1 P4 P3 P2 

Saimiri sp. 10131 11.74 20.15 25.95 26.02 29.49 33.80 

Saimiri sp. 10134 11.27 23.19 26.12 27.34 28.05 34.76 

Saimiri sp. 29488 13.36 23.56 29.31 27.79 31.39 35.36 

Saimiri sp. 20187 16.38 25.10 33.19 27.00 29.30 33.86 

Saimiri sp. 30568 11.25 18.99 26.90 23.60 22.24 21.54 

Saimiri sp. 30569 13.74 24.43 32.68 26.26 28.60 34.25 
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TABLE 4.2. Cervical Margin Surface Area (CMSA) in mm
2
: platyrrhines. 

Species Specimen M3 M2 M1 P4 P3 P2 

A. caraya 28095 28.16 37.76 31.98 17.53 15.55 13.38 

A. caraya 28096 21.37 28.45 25.90 14.13 13.48 10.21 

A. caraya 28654 31.39 42.67 35.97 19.79 18.03 16.74 

A. caraya 28655 26.12 33.51 30.19 14.88 13.73 10.63 

A. palliata 5323 22.42 34.51 32.08 17.66 16.86 15.76 

A. palliata 5324 14.11 14.92 16.41 29.51 32.91 20.56 

A. palliata 5325 14.31 16.63 17.31 28.60 32.84 22.52 

A. palliata 5327 14.08 17.83 19.14 31.43 32.26 21.63 

A. palliata 5328 14.11 17.84 17.81 30.24 34.63 20.88 

A. palliata 5329 11.53 14.07 16.43 28.52 33.51 23.26 

A. palliata 5331 14.29 18.25 18.81 28.78 34.47 24.82 

A. palliata 6001 13.26 15.35 17.90 31.15 37.99 23.58 

A. palliata 29609 15.80 17.25 19.58 31.46 33.77 24.53 

A. palliata 29611 14.46 15.43 19.64 32.25 33.03 24.83 

A. trivirgatus 8472 2.20 4.55 5.29 3.20 2.71 2.54 

A. trivirgatus 19801 2.67 4.45 5.89 3.53 3.52 2.68 

A. trivirgatus 19802 2.91 5.45 6.70 3.80 3.27 3.16 

A. trivirgatus 19805 2.87 5.35 7.02 3.31 3.14 2.80 

A. trivirgatus 27214 3.31 5.83 6.83 4.27 3.71 3.83 

A. trivirgatus 30562 2.71 4.24 5.31 2.87 2.38 2.43 

A. trivirgatus 39571 4.15 5.95 6.82 3.92 3.70 3.46 

A. trivirgatus 52608 3.12 5.23 6.11 3.32 3.06 2.44 

A. trivirgatus B-8042 3.15 5.21 5.31 3.78 3.00 2.83 

A. trivirgatus B-8043 2.55 4.89 4.91 3.55 3.08 2.89 

A. geoffroyi 5336   13.27 13.26 9.23 8.91 8.22 

A. geoffroyi 5338 6.84 11.20 12.51 8.36 7.95 6.90 

A. geoffroyi 5344 8.08 11.53 12.65 8.64 8.02 7.71 

A. geoffroyi 5345 7.52 11.42 13.30 8.40 7.33 6.33 

A. geoffroyi 5346 8.90 13.50 16.35 10.63 9.97 8.81 

A. geoffroyi 5348 10.36 13.26 14.28 9.35 8.89 6.69 

A. geoffroyi 5349 8.74 11.34 12.55 7.84 6.96 6.14 

A. geoffroyi 5350 8.79 11.47 12.12 8.34 7.83 6.99 

A. geoffroyi 5351 7.88 11.04 11.38 8.10 7.98 7.66 

A. geoffroyi 5352 8.27 11.73 13.67 8.08 7.65   

         (cont) 
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TABLE 4.2 (cont Cervical Margin Surface Area (CMSA) in mm
2
: platyrrhines. 

Species Specimen M3 M2 M1 P4 P3 P2 

A. geoffroyi 5353 8.17 12.46 12.36 7.18 6.58 5.72 

A. geoffroyi 5354 5.90 10.63 12.04 7.82 7.52 6.45 

A. geoffroyi 5355 7.69 13.46 14.09 9.62 7.95 7.11 

A. geoffroyi 10138 8.32 11.32 14.98 9.47 10.32 9.27 

A. geoffroyi 29626 7.58 13.00 13.91 10.13 9.30 5.79 

A. geoffroyi 29628 7.14 13.77 16.57 10.64 9.12 5.61 

A. geoffroyi 34322 6.77 12.17 11.58 8.59 7.88 7.32 

C. moloch 20186 3.45 5.47 6.72 3.67 3.17 2.65 

C. moloch 26922 3.91 7.49 8.21 5.00 3.90 2.99 

C. moloch 30559 2.89 7.72 9.44 4.26 3.75 3.19 

C. moloch 30566 3.36 5.99 7.57 3.98 3.66 2.92 

C. moloch 32380 3.54 7.10 8.08 4.81 4.06 3.15 

C. moloch 32383 3.92 5.49 7.44 3.84 3.52 2.73 

C. moloch 37828 3.12 6.01 7.70 3.83 3.34 2.79 

C. moloch 39073 3.06 6.57 7.52 4.16 3.37 3.06 

C. moloch 39563 3.42 6.73 8.22 4.42 3.86 2.99 

Callithrix sp. 30579 -- 1.67 2.98 1.91 1.42 1.34 

Callithrix sp. 30580 -- 2.14 2.96 2.08 1.81 1.81 

Callithrix sp. 30582 -- 2.14 2.96 2.08 1.81 1.81 

Callithrix sp. 32164 -- 2.24 3.27 2.35 1.95 2.02 

Callithrix sp. 32165 -- 2.15 3.16 2.16 1.83 1.78 

Callithrix sp. 34573 -- 1.84 3.04 2.00 1.86 1.57 

Callithrix sp. 30577 -- 2.14 3.31 2.32 1.74 1.43 

Callithrix sp. 30586 -- 2.46 3.13 2.18 1.78 1.46 

Callithrix sp. 30603 -- 2.25 3.25 2.08 1.69 1.77 

Callithrix sp. 37826 -- 1.90 2.82 2.04 1.75 1.46 

Callithrix sp. 440 -- 2.88 4.19 2.57 2.72 2.39 

Callithrix sp. 37823 -- 2.94 4.35 2.75 2.28 1.76 

Callithrix sp. 7165 -- 2.28 3.53 2.23 2.34 1.70 

C. apella 25811 9.20 15.92 20.58 16.00 15.26 13.69 

C. apella 27097 5.58 11.44 17.18 12.08 12.33 11.54 

C. apella 30724   11.29 14.21 11.66 11.70 12.55 

C. apella 30726 5.21 12.35 16.24 12.25 11.81 11.44 

C. apella 31062 4.89 10.38 13.83 11.28 11.24 10.50 

        (cont) 
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TABLE 4.2 (cont). Cervical Margin Surface Area (CMSA) in mm
2
: platyrrhines. 

Species Specimen M3 M2 M1 P4 P3 P2 

C. apella 31064 5.18 11.78 15.49 12.32 12.44 12.10 

C. apella 31066 5.97 10.26 14.29 12.06 12.22 10.99 

C. apella 31072 5.32 10.27 13.54 12.03 11.24 10.55 

C. apella 32049 5.61 10.85 15.83 12.41 12.63 11.52 

C. apella 37831 6.29 13.42 16.50 13.72 13.28 12.77 

C. apella 41090 4.76 10.22 15.35 12.25 11.86 11.40 

C. apella 49635 6.12 12.14 15.72 12.91 12.83 11.56 

C. apella 314062 5.03 9.61 13.73 11.01 10.64 10.09 

C. capucinus 5332 7.46 10.94 15.10 11.02 10.50 10.44 

C. capucinus 7317 6.76 11.59 14.48 10.48 9.96 11.66 

C. capucinus 7322 6.19 10.07 12.76 10.52 10.23 10.62 

C. capucinus 7323 6.74 10.20 12.05 9.10 9.34 9.69 

C. capucinus 10135 7.19 10.40 17.38 10.29 10.83 10.54 

C. capucinus 10136 5.61 10.92 13.86 10.54 10.69 14.18 

C. capucinus 34323 6.95 11.56 13.98 10.05 10.56 10.02 

C. capucinus 34326 5.85 10.14 12.88 9.56 9.19 9.25 

C. capucinus 34353 9.02 12.96 16.39 12.29 13.39 11.65 

Pithecia sp. 20266 7.02 8.07 7.34 5.67 5.69 3.84 

Pithecia sp. 27124 6.17 6.51 7.19 5.63 5.31 3.78 

Pithecia sp. 30720 5.25 5.63 5.81 4.99 4.77 3.59 

Pithecia sp. 30718 6.08 7.69 7.06 5.26 4.77 3.90 

Pithecia sp. 30719 7.10 8.72 9.17 6.70 5.99 4.17 

Pithecia sp. 31061 6.04 7.52 7.06 5.31 5.01 3.64 

Saguinus sp. 15324 -- 1.99 3.09 2.48 2.36 2.19 

Saguinus sp. 27331 -- 1.70 2.91 2.05 1.87 2.54 

Saguinus sp. 30597 -- 1.71 3.06 2.82 2.45 2.73 

Saguinus sp. 30601 -- 1.37 2.78 2.26 2.28 2.19 

Saguinus sp. 41567 -- 1.81 3.22 2.15 2.07 1.97 

Saguinus sp. 41568 -- 2.21 3.34 2.28 2.08 1.97 

Saguinus sp. 52557 -- 1.45 2.73 1.99 2.10 2.02 

Saguinus sp. 52615 -- 1.73 2.76 2.00 1.83 1.91 

Saguinus sp. 52616 -- 2.14 3.58 2.27 2.32 2.17 

Saguinus sp. 52658 -- 2.21 3.25 2.21 2.11 1.89 

        (cont) 
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TABLE 4.2 (cont). Cervical Margin Surface Area (CMSA) in mm
2
: platyrrhines. 

Species Specimen M3 M2 M1 P4 P3 P2 

Saimiri sp. 10131 1.72 3.46 4.57 3.23 3.42 3.84 

Saimiri sp. 10134 1.64 3.73 4.39 3.27 3.31 4.32 

Saimiri sp. 29488 1.88 3.43 5.09 3.07 3.37 4.09 

Saimiri sp. 20187 2.29 3.98 5.40 3.49 3.43 4.01 

Saimiri sp. 30568 1.62 3.18 4.57 2.83 2.85 2.42 

Saimiri sp. 30569 1.87 4.14 5.36 3.38 3.18 3.92 

 

  



  123 

TABLE 4.3. Root Surface Area (RSA) in mm
2
: catarrhines. 

Species Specimen M3 M2 M1 P4 P3 

C. mitis 7088 103.78 148.54 135.55 98.08 80.83 

C. mitis 22734 85.56 107.13 98.99 68.35 50.84 

C. mitis 25022 107.80 147.55 106.18 75.72 60.19 

C. mitis 32003 117.91 134.79 107.86 65.36 50.46 

C. mitis 39389 79.20 121.15 107.87 68.10 46.36 

C. mitis 44264 79.39 131.14 104.78 50.33 43.38 

C. mitis 44268 105.42 138.63 117.59 65.59 57.39 

C. mitis 44274 138.90 176.93 132.53 84.27 65.99 

C. polykomos 21151 163.68 229.98 196.75 121.58 101.10 

C. polykomos 22356 185.50 241.78 241.39 164.02 136.23 

C. polykomos 22624 189.39 242.14 241.81 164.09 137.83 

C. polykomos 22626 199.66 238.07 215.31 169.39 145.89 

C. polykomos 22850 201.20 238.88 215.57 167.06 146.26 

C. polykomos 46368 197.89 240.46 243.69 175.30 126.09 

C. torquatus 32625 307.51 328.78 248.15 193.26 160.70 

C. torquatus 62638 289.82 298.97 232.36 190.70 155.09 

C. torquatus 62639 265.52 361.89 295.16 234.83 185.49 

E. patas 37280 199.27 225.94 160.98 131.35 101.88 

E. patas 47015 163.68 207.82 159.64 104.54 87.80 

E. patas 14016 200.00 204.75 145.93 110.37 91.58 

E. patas 47018 142.61 144.44 142.31 88.87 69.99 

G. gorilla 14750 568.33 938.90 920.52 713.56 706.26 

G. gorilla 26850 605.78 867.23 857.61 641.86 776.11 

G. gorilla 29047 959.32 1188.93 1067.93 870.93 962.45 

G. gorilla 46325 596.16 917.98 884.65 737.91 728.12 

L. albigena 18613 238.70 260.06 200.74 121.12 123.22 

L. albigena 22737 121.36 184.87 162.74 120.58 84.65 

L. albigena 23194 248.85 244.48 196.30 132.72 134.11 

L. albigena 39395 173.02 203.56 170.18 121.48 123.33 

L. albigena 39396 187.77 233.87 184.87 122.16 110.77 

L. albigena 39402 189.72 238.81 190.89 112.88 104.73 

M. fascicularis 12758 191.65 199.63 155.36 103.05 81.18 

M. fascicularis 22277 175.94 187.21 131.78 115.49 86.54 

M. fascicularis 35765 163.58 180.95 133.37 111.22 90.30 

       (cont) 
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TABLE 4.3 (cont). Root Surface Area (RSA) in mm
2
: catarrhines. 

Species Specimen M3 M2 M1 P4 P3 

M. fascicularis 35937 126.33 140.71 103.84 98.99 80.97 

M. fascicularis 35938 126.87 140.89 110.81 97.64 88.36 

M. fascicularis 37781 167.14 174.63 129.05 111.09 90.68 

M. fascicularis 41167 188.24 185.22 136.65 130.61 102.74 

M. fuscata 37709 332.26 364.73 244.36 197.51 143.20 

M. fuscata 61237 482.95 559.68 389.79 310.18 210.69 

Mandrillus sp. 19986 600.49 587.45 372.58 281.90 236.90 

Mandrillus sp. 20085 541.54 501.85 340.46 287.29 253.13 

Mandrillus sp. 23168 509.76 506.93 336.46 302.90 263.98 

Mandrillus sp. 23169 460.76 417.92 259.24 234.45 200.76 

Mandrillus sp. 34089 709.45 713.53 533.10 396.94 293.32 

Mandrillus sp. 34272 349.26 387.07 279.31 190.39 165.62 

P. anubis 8304 601.32 612.92 368.68 267.49 218.13 

P. anubis 21160 488.80 535.80 359.65 231.64 219.14 

P. anubis 29787 349.99 382.73 276.21 176.37 142.62 

P. anubis 31619 493.07 547.27 363.25 271.47 240.06 

P. anubis 31949 595.75 668.03 436.32 319.55 266.71 

P. badius 24080 208.34 232.00 203.27 176.78 129.81 

P. badius 24775 150.64 146.90 125.01 109.97 97.54 

P. badius 24793 181.98 184.21 143.63 125.03 89.07 

P. badius 25627 147.87 156.61 143.09 101.85 87.95 

P. badius 25631 166.76 192.24 170.05 105.76 138.68 

P. badius 25810 180.89 199.50 198.83 140.50 100.82 

P. badius 26552 165.93 169.98 144.33 136.54 100.46 

P. badius 26553 202.77 229.35 209.99 166.14 121.58 

P. badius 31939 131.06 143.51 139.88 84.62 74.49 

P. hosei 35621 106.16 147.59 133.38 91.86 75.67 

P. hosei 37370 82.24 101.89 103.39 90.84 78.34 

P. hosei 37371 85.16 129.94 124.49 121.94 101.10 

P. hosei 37772 89.40 119.57 121.01 113.58 97.09 

P. hosei 37773 90.73 126.06 128.72 125.16 104.82 

P. paniscus 38018 265.21 339.55 321.45 231.95 309.97 

P. paniscus 38019 216.86 257.41 261.00 190.31 237.16 

P. paniscus 38020 230.12 288.62 313.55 211.97 263.31 

          (cont) 
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TABLE 4.3 (cont). Root Surface Area (RSA) in mm
2
: catarrhines. 

Species Specimen M3 M2 M1 P4 P3 

P. rubicunda 22276 110.86 128.88 129.42 108.36 106.48 

P. rubicunda 35704 117.02 129.90 131.32 117.57 106.06 

P. rubicunda 35705 111.27 127.13 129.52 98.93 95.81 

P. rubicunda 35706 97.68 105.17 112.10 96.48 83.36 

P. rubicunda 35712 93.39 110.71 103.55 93.71 81.71 

P. rubicunda 37776 117.53 137.93 134.17 109.73 97.07 

P. rubicunda 37778 116.38 148.51 140.90 150.89 126.88 

P. rubicunda 37779 118.09 140.00 142.32 125.18 107.48 

P. troglodytes 6244 262.09 333.85 336.35 267.11 341.12 

P. troglodytes 9493 205.84 273.37 326.88 247.58 287.76 

P. troglodytes 15312 252.23 364.82 388.54 273.70 324.25 

P. troglodytes 17702 324.56 452.57 461.22 328.63 485.06 

P. troglodytes 23167 363.48 577.12 600.69 394.04 518.77 

P. troglodytes N6960 252.77 389.23 481.48 383.34 455.81 

P. troglodytes N7261 332.31 414.99 444.61 345.18 339.37 

P. troglodytes 46416 259.79 341.99 336.92 241.48 310.36 

P. troglodytes N6908 702.15 943.47 1005.03 765.92 985.96 

P. troglodytes N7265 235.15 317.57 346.64 298.56 316.31 

T. cristata 35586 130.87 153.49 115.56 126.72 102.76 

T. cristata 35603 108.56 136.16 127.94 108.35 82.10 

T. cristata 35604 101.41 121.37 114.06 105.22 94.30 

T. cristata 35610 125.85 133.80 131.54 115.51 85.82 

T. cristata 35618 72.77 90.80 82.28 77.22 62.14 

T. cristata 35636 69.45 81.96 78.21 75.46 58.21 

T. cristata 35640 112.36 128.26 118.22 114.09 94.41 

T. cristata 35663 104.19 118.65 121.11 103.11 79.35 

T. cristata 35678 109.72 147.10 127.49 121.48 88.42 

T. cristata 35682 124.53 137.49 128.95 109.55 82.22 

T. cristata 35683 146.33 147.51 133.16 127.98 100.92 

T. cristata 37387 132.51 160.91 141.29 119.03 91.69 

T. cristata 35584 86.65 124.42 109.89 95.94 75.30 
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TABLE 4.4. Cervical margin surface area (CMSA) in mm
2
: catarrhines. 

Species Specimen M3 M2 M1 P4 P3 

C. mitis 7088 17.88 23.32 20.28 11.96 9.30 

C. mitis 22734 15.78 17.36 15.32 10.57 7.01 

C. mitis 25022 13.23 19.19 13.90 8.70 7.07 

C. mitis 32003 21.38 22.84 16.93 10.16 6.68 

C. mitis 39389 15.44 19.65 17.49 10.37 7.20 

C. mitis 44264 13.24 20.61 15.60 7.91 6.18 

C. mitis 44268 17.76 21.70 17.09 10.53 8.34 

C. mitis 44274 20.75 24.76 20.84 12.39 8.78 

C. polykomos 21151 31.13 33.93 28.55 20.21 16.10 

C. polykomos 22356 27.00 32.60 28.54 18.30 16.70 

C. polykomos 22624 26.02 33.13 29.43 17.83 15.92 

C. polykomos 22626 25.10 28.69 24.44 17.54 18.12 

C. polykomos 22850 26.48 30.14 24.13 17.45 18.10 

C. polykomos 46368 34.01 36.19 33.31 20.27 15.44 

C. torquatus 32625 46.84 53.41 40.96 30.12 22.26 

C. torquatus 62638 42.37 47.06 39.09 25.96 16.79 

C. torquatus 62639 57.70 63.36 48.32 30.70 20.42 

E. patas 37280 29.71 33.30 27.00 16.37 12.92 

E. patas 47015 28.26 38.69 28.72 16.81 13.30 

E. patas 14016 24.44 27.73 22.64 13.67 10.99 

E. patas 47018 25.31 25.78 23.09 11.88 8.86 

G. gorilla 14750 87.33 116.24 117.18 84.28 79.70 

G. gorilla 26850 100.16 131.04 138.24 81.32 85.17 

G. gorilla 29047 116.85 137.28 121.61 84.07 87.17 

G. gorilla 46325 107.85 142.35 127.74 89.97 81.70 

L. albigena 18613 32.02 36.62 28.78 14.38 12.22 

L. albigena 22737 13.90 21.94 19.53 11.15 7.75 

L. albigena 23194 32.06 40.79 30.18 17.77 14.44 

L. albigena 39395 26.62 34.43 26.72 15.31 11.94 

L. albigena 39396 27.97 38.90 28.45 17.92 14.10 

L. albigena 39402 27.31 38.80 33.43 18.31 16.99 

M. fascicularis 12758 42.90 42.60 33.88 16.88 12.95 

M. fascicularis 22277 30.92 32.36 21.26 14.86 11.63 

M. fascicularis 35765 23.60 24.81 18.95 13.54 11.03 

       (cont) 
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TABLE 4.4 (cont). Cervical margin surface area (CMSA) in mm
2
: catarrhines. 

Species Specimen M3 M2 M1 P4 P3 

M. fascicularis 35937 21.53 23.87 17.89 12.16 9.31 

M. fascicularis 35938 27.91 30.62 20.40 12.31 10.23 

M. fascicularis 37781 28.41 30.84 20.96 14.53 11.50 

M. fascicularis 41167 29.51 32.16 21.60 15.64 12.12 

M. fuscata 37709 56.08 59.34 38.87 23.67 18.39 

M. fuscata 61237 75.00 78.56 45.97 31.84 24.31 

Mandrillus sp. 19986 103.52 101.73 63.94 40.88 31.52 

Mandrillus sp. 20085 95.68 86.40 62.07 42.26 35.24 

Mandrillus sp. 23168 94.91 95.47 75.05 53.49 36.06 

Mandrillus sp. 23169 94.17 95.05 61.75 45.83 41.79 

Mandrillus sp. 34089 100.66 102.19 80.90 44.49 33.70 

Mandrillus sp. 34272 78.82 82.02 56.86 35.91 26.85 

P. anubis 8304 112.58 117.56 68.47 42.32 35.58 

P. anubis 21160 95.41 96.73 72.91 34.65 31.19 

P. anubis 29787 71.72 71.15 53.96 30.40 21.73 

P. anubis 31619 92.95 94.80 68.39 35.73 25.39 

P. anubis 31949 100.19 95.58 67.18 38.44 31.54 

P. badius 24080 27.87 31.64 26.58 17.23 13.72 

P. badius 24775 25.32 26.63 22.73 14.16 13.27 

P. badius 24793 28.66 26.76 23.21 17.34 13.52 

P. badius 25627 23.00 22.88 20.73 11.58 11.52 

P. badius 25631 21.78 26.74 25.76 11.93 15.37 

P. badius 25810 22.39 26.19 26.33 14.65 11.86 

P. badius 26552 22.40 22.70 18.97 11.29 9.26 

P. badius 26553 23.98 26.86 23.76 14.24 12.39 

P. badius 31939 21.04 21.46 19.35 12.00 10.96 

P. hosei 35621 19.04 22.21 21.17 11.01 9.54 

P. hosei 37370 12.75 14.59 12.70 7.89 7.21 

P. hosei 37371 12.86 19.25 16.70 10.47 8.99 

P. hosei 37772 13.10 17.98 15.66 10.55 9.86 

P. hosei 37773 12.42 17.65 15.42 10.71 10.17 

P. paniscus 38018 46.51 59.10 57.68 27.98 34.10 

P. paniscus 38019 38.20 49.26 46.56 25.22 25.90 

P. paniscus 38020 37.90 43.62 47.33 26.24 30.47 

      (cont) 
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TABLE 4.4 (cont). Cervical margin surface area (CMSA) in mm
2
: catarrhines. 

Species Specimen M3 M2 M1 P4 P3 

P. rubicunda 22276 18.34 19.51 19.10 11.38 11.86 

P. rubicunda 35704 16.59 18.82 18.00 10.90 10.29 

P. rubicunda 35705 15.31 17.14 17.10 8.51 9.08 

P. rubicunda 35706 12.67 15.71 14.90 9.41 8.69 

P. rubicunda 35712 13.40 16.22 14.81 8.88 8.58 

P. rubicunda 37776 18.11 19.65 19.11 11.20 10.67 

P. rubicunda 37778 14.45 20.82 16.12 12.03 11.22 

P. rubicunda 37779 19.51 21.72 20.39 13.24 12.60 

P. troglodytes 6244 43.82 49.10 48.05 27.30 28.10 

P. troglodytes 9493 42.32 53.61 69.79 32.82 34.60 

P. troglodytes 15312 48.88 60.03 55.51 30.19 33.87 

P. troglodytes 17702 53.89 68.60 65.16 35.92 42.50 

P. troglodytes 23167 61.00 80.82 69.76 39.66 42.48 

P. troglodytes N6960 41.29 62.84 76.39 39.33 41.64 

P. troglodytes N7261 51.94 70.11 78.87 38.33 37.19 

P. troglodytes 46416 51.44 60.81 70.35 33.89 36.78 

P. troglodytes N6908 122.95 141.77 149.15 84.45 96.11 

P. troglodytes N7265 40.33 52.50 61.28 35.52 36.36 

T. cristata 35586 21.41 21.83 16.90 10.31 9.89 

T. cristata 35603 14.24 17.67 17.20 9.46 8.87 

T. cristata 35604 15.26 18.97 15.59 10.19 8.93 

T. cristata 35610 18.42 19.56 17.42 10.99 8.51 

T. cristata 35618 12.07 13.54 11.64 7.11 5.91 

T. cristata 35636 10.76 11.88 10.96 6.21 6.46 

T. cristata 35640 16.84 20.34 16.19 10.09 9.17 

T. cristata 35663 17.24 22.01 17.54 11.44 10.45 

T. cristata 35678 17.23 21.33 19.18 11.59 9.73 

T. cristata 35682 17.73 20.96 17.25 11.24 9.54 

T. cristata 35683 19.07 21.07 16.82 11.68 9.66 

T. cristata 37387 18.68 23.27 18.65 11.89 9.72 

T. cristata 35584 16.24 20.77 16.36 9.07 9.28 
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TABLE 4.5. Species averages for platyrrhines: Root surface area. 

Species N lnGMSkull lnM3 lnM2 lnM1 lnP4 lnP3 lnP2 

Alouatta 

caraya 

M = 1 

3.85 5.12 5.38 5.23 4.88 4.78 4.51 F = 3 

Alouatta 

palliata 

M = 0 

3.84 4.76 5.17 4.99 4.75 4.67 4.50 F = 10 

Ateles 

geoffroyi 

M = 0 

3.89 3.77 4.30 4.48 4.26 4.22 3.96 F = 17 

Aotus 

trivirgatus 

M = 1 

3.37 2.86 3.33 3.48 3.22 3.11 2.90 F = 8 

Callicebus 

moloch 

M = 10 

3.32 3.33 3.84 3.98 3.68 3.52 3.32 F = 0 

Callithrix 

sp. 

M = 7 

3.07 n/a 2.56 2.84 2.70 2.56 2.58 F = 7 

Cebus 

apella 

M = 5 

3.77 3.48 4.03 4.38 4.40 4.44 4.46 F = 9 

Cebus 

capucinus 

M = 2 

3.79 3.71 4.02 4.18 4.19 4.23 4.18 F = 8 

Pithecia 

sp. 

M = 4 

3.55 3.37 3.64 3.78 3.68 3.73 3.53 F = 3 

Saguinus 

sp. 

M = 5 

3.09 n/a 2.52 3.01 2.93 2.89 2.87 F = 5 

Saimiri sp. 

M = 7 

3.34 2.56 3.11 3.38 3.26 3.34 3.50 F = 3 

Chiropotes 

satanas 

M = 0 

3.69 3.35 3.90 4.18 4.22 4.24 3.93 F = 2 

         Total N: 109               
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TABLE 4.6. Species averages for platyrrhines: Cervical margin surface area 

Species N lnGMSkull lnM3 lnM2 lnM1 lnP4 lnP3 lnP2 

Alouatta 

caraya 

M = 1 

3.85 3.29 3.57 3.43 2.81 2.72 2.54 F = 3 

Alouatta 

palliata 

M = 0 

3.84 3.13 3.53 3.41 2.89 2.80 2.65 F = 10 

Ateles 

geoffroyi 

M = 0 

3.89 2.11 2.48 2.57 2.19 2.11 1.95 F = 17 

Aotus 

trivirgatus 

M = 1 

3.37 1.09 1.63 1.79 1.27 1.15 1.07 F = 8 

Callicebus 

moloch 

M = 10 

3.32 1.39 2.01 2.19 1.58 1.42 1.18 F = 0 

Callithrix 

sp. 

M = 7 

3.07 n/a 0.82 1.18 0.79 0.65 0.54 F = 7 

Cebus 

apella 

M = 5 

3.77 1.80 2.42 2.73 2.51 2.49 2.44 F = 9 

Cebus 

capucinus 

M = 2 

3.79 1.93 2.39 2.67 2.35 2.35 2.37 F = 8 

Pithecia 

sp. 

M = 4 

3.55 1.85 2.01 1.99 1.72 1.66 1.34 F = 3 

Saguinus 

sp. 

M = 5 

3.09 n/a 0.61 1.12 0.81 0.76 0.77 F = 5 

Saimiri sp. 

M = 7 

3.34 0.61 1.28 1.57 1.18 1.18 1.33 F = 3 

Chiropotes 

satanas 

M = 0 

3.69 1.68 2.07 2.23 2.07 2.07 1.77 F = 2 

         Total N: 109               
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TABLE 4.7. Species averages for catarrhines: Root surface area 

Species N lnGMSkull lnM3 lnM2 lnM1 lnP4 lnP3 

Lophocebus 

albigena 

M = 5 

4.05 5.26 5.44 5.22 4.85 4.79 F = 3 

Cercocebus 

torquatus 

M = 2 

4.15 5.66 5.80 5.56 5.33 5.12 F = 1 

Cercopithecus 

mitis 

M = 0 

3.88 4.66 4.92 4.73 4.24 4.00 F = 12 

Piliocolobus 

badius 

M = 4 

3.93 5.14 5.21 5.10 4.85 4.65 F = 5 

Colobus 

polykomos 

M = 1 

3.97 5.24 5.47 5.42 5.08 4.88 F = 5 

Erythrocebus 

patas 

M = 3 

4.14 5.13 5.28 5.03 4.69 4.48 F = 1 

Macaca 

fascicularis 

M = 1 

3.89 5.09 5.17 4.89 4.71 4.48 F = 8 

Macaca 

fuscata 

M = 1 

4.19 6.01 6.14 5.76 5.54 5.18 F = 1 

Macaca 

sylvanus 

M = 1 

4.15 5.79 5.76 5.30 5.21 5.10 F = 0 

          (cont) 
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TABLE 4.7 (cont). Species averages for catarrhines: Root surface area 

Species N lnGMSkull lnM3 lnM2 lnM1 lnP4 lnP3 

Mandrillus sp. 

M = 5 

4.49 6.27 6.25 5.87 5.64 5.46 F = 1 

Pan paniscus 

M = 0 

4.49 5.47 5.69 5.70 5.35 5.60 F = 3 

Pan 

troglodytes 

M = 0 

4.50 5.88 6.15 6.14 5.94 6.14 F = 13 

Papio anubis 

M = 4 

4.43 6.23 6.25 5.85 5.51 5.33 F = 4 

Presbytis hosei 

M = 1 

3.83 4.51 4.83 4.81 4.69 4.52 F = 4 

Presbytis 

rubicunda 

M = 4 

3.82 4.68 4.81 4.80 4.68 4.57 F = 7 

Trachypithecus 

cristata 

M = 0 

3.80 4.70 4.86 4.76 4.67 4.43 F = 14 

Gorilla gorilla 

M = 0 

4.69 6.47 6.86 6.84 6.57 6.64 F = 5 

        Total N: 119             
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TABLE 4.8. Species averages for catarrhines: Cervical margin 

 surface area 

Species N lnGMSkull lnM3 lnM2 lnM1 lnP4 lnP3 

Lophocebus 

albigena 

M = 5 

4.05 3.30 3.56 3.34 2.78 2.61 F = 3 

Cercocebus 

torquatus 

M = 2 

4.15 3.89 4.00 3.76 3.36 2.99 F = 1 

Cercopithecus 

mitis 

M = 0 

3.88 2.81 3.04 2.84 2.31 2.01 F = 12 

Piliocolobus 

badius 

M = 4 

3.93 3.18 3.25 3.14 2.63 2.52 F = 5 

Colobus 

polykomos 

M = 1 

3.97 3.34 3.48 3.33 2.92 2.82 F = 5 

Erythrocebus 

patas 

M = 3 

4.14 3.29 3.45 3.23 2.69 2.44 F = 1 

Macaca 

fascicularis 

M = 1 

3.89 3.35 3.42 3.09 2.64 2.40 F = 8 

Macaca 

fuscata 

M = 1 

4.19 4.18 4.23 3.75 3.32 3.06 F = 1 

Macaca 

sylvanus 

M = 1 

4.15 3.61 3.77 3.37 2.84 2.67 F = 0 

 (cont) 
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TABLE 4.8 (cont). Species averages for catarrhines: Cervical margin  

surface area 

Species N lnGMSkull lnM3 lnM2 lnM1 lnP4 lnP3 

Mandrillus sp. 

M = 5 

4.49 4.55 4.54 4.20 3.78 3.53 F = 1 

Pan paniscus 

M = 0 

4.49 3.71 3.93 3.92 3.28 3.41 F = 3 

Pan 

troglodytes 

M = 0 

4.50 4.16 4.35 4.28 3.79 3.89 F = 13 

Papio anubis 

M = 4 

4.43 4.50 4.54 4.18 3.59 3.34 F = 4 

Presbytis hosei 

M = 1 

3.83 2.64 2.91 2.79 2.32 2.21 F = 4 

Presbytis 

rubicunda 

M = 4 

3.82 2.79 2.90 2.85 2.34 2.31 F = 7 

Trachypithecus 

cristata 

M = 0 

3.80 2.81 2.97 2.79 2.30 2.19 F = 14 

Gorilla gorilla 

M = 0 

4.69 4.64 4.89 4.84 4.44 4.41 F = 5 

        Total N: 119             
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Platyrrhine RMA Results 

 Results for the platyrrhine RMA analyses are given in Table 4.9 including 

the slope of the RMA line, the ninety-five percent confidence interval (95% CI) 

for each line, the r value, which indicates the level of correlation between 

variables, and the r
2
 value, which indicates how much of the variation contained 

in the sample is explained by the independent variable (i.e., skull size for the first 

two and root size for the last analysis).  Callithrix and Saguinus were omitted 

from all analyses involving M3.   

When root surface area (RSA) was compared to the geometric mean of 

skull size (GMSkull), the RMA slope was greater than 2 for all teeth.  However, 

the 95% confidence intervals (95% CIs) encompass 2, which means that an 

isometric relationship between root size and skull size cannot be ruled out.  

Results also indicate that root and skull size are correlated, with r values ranging 

from 0.75 to 0.91 for all postcanine teeth.  R
2
 values are between 0.56 and 0.92 

for all postcanine teeth. 
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 TABLE 4.9. RMA results for platyrrhines 

 

Tooth RMA slope 95% CI r r
2
 

a
ln(GMSkull) 

vs. RSA 

M3 3.42 1.58-5.27 0.75 0.56 

M2 2.94 1.95-3.93 0.88 0.77 

M1 2.44 1.74-3.15 0.91 0.83 

P4 2.36 1.82-2.90 0.95 0.90 

P3 2.42 1.93-2.91 0.96 0.92 

P2 2.24 1.66-2.82 0.93 0.87 

      

b
ln(GMSkull) 

vs. CMSA 

M3 3.61 1.84-5.38 0.80 0.64 

M2 3.05 2.07-4.03 0.89 0.79 

M1 2.53 1.77-3.30 0.90 0.82 

P4 2.44 1.89-2.98 0.95 0.90 

P3 2.48 1.97-2.99 0.96 0.91 

P2 2.41 1.82-3.01 0.94 0.89 

      

c
RSA vs. 

CMSA 

M3 1.05 0.91-1.20 0.99 0.97 

M2 1.03 0.96-1.12 0.99 0.99 

M1 1.03 0.91-1.17 0.98 0.97 

P4 1.03 0.93-1.14 0.99 0.98 

P3 1.03 0.92-1.13 0.99 0.98 

P2 1.08 0.94-1.21 0.98 0.97 
          a

Analysis of skull geometric mean, ln(GMSkull), and root surface area,  

        RSA. 
          b

Analysis of skull geometric mean, ln(GMSkull), and cervical margin  

        surface area, CMSA (used as a proxy for crown size). 

       
c
Analysis of root surface area, RSA, and cervical margin surface area,  

        CMSA. 
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 Comparing cervical margin surface area (CMSA) to GMSkull yielded 

similar results to the analysis on root surface area.  RMA slopes were greater than 

2 for all teeth, and the 95% CIs included 2 for all teeth except for M2, which has a 

95% CI of 2.07-4.03.  Thus, an isometric relationship between cervical margin 

surface area and skull size cannot be rejected, except in the case of M2 which 

suggests a slightly positively allometric relationship.  In platyrrhines, M2 cervical 

margin surface area appears to increase at a faster rate than skull size such that a 

platyrrhine with a large skull has both an absolutely and relatively larger M2 

cervical margin surface area than a platyrrhine with a small skull.  CMSA and 

GMSkull are also correlated; the r value is lowest for M3 at 0.75 and ranges from 

0.88 to 0.96 for M2 to P2.  R
2
 values are again lowest at M3 (0.64) and range 

from 0.79 to 0.91 for M2-P2. 

 Finally, root surface area and crown cervical margin area were compared.  

For this analysis, the expected slope of isometry is 1 rather than 2, since both 

RSA and CMSA are surface areas.  The RMA slope is slightly higher than 1 for 

all teeth, and the 95% CIs include 1.  Thus, isometry cannot be ruled out.  Root 

size and cervical margin surface area are very highly correlated, with near-perfect 

r values of 0.98 to 0.99 for all postcanine teeth.  R
2
 values are between 0.97 and 

0.99 for all postcanine teeth. 

Catarrhine RMA Results 

 Results for catarrhines largely mirror those for platyrrhines and are shown 

in Table 4.10.  Comparing RSA to GMSkull, the RMA slope is greater than 2 for 

all teeth, and the 95% CIs encompass 2.  Root and skull size are correlated, with r 
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ranging from 0.89-0.94 in all postcanine teeth.  R
2
 is lowest for M3 (0.79), and 

falls between 0.82-0.88 for all other postcanine teeth.  When CMSA is compared 

to skull size, RMA slopes are also greater than 2 for all teeth, and 95% CIs 

encompass 2 for all teeth except for P2, which has a 95% CI of 2.01-2.77.  R 

values were high, ranging from 0.91-0.97 on postcanine teeth.  R
2
 was again 

lowest for M3 at 0.83, and ranged from 0.88-0.94 for the rest of the postcanine 

tooth row.  Comparing root surface area to cervical margin surface area, the RMA 

slope is greater than 1 for all teeth except for P3, which has a slope of 0.97, and 

95% CIs encompass 1 for all teeth.  Correlation values were very high, ranging 

from 0.97 to 0.99, and r
2
 ranges from 0.94-0.98 for all postcanine teeth. 
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   TABLE 4.10. RMA results for catarrhines 

 

Tooth RMA slope 95% CI r r
2
 

a
ln(GMSkull) 

vs. RSA 

M3 2.19 1.68-2.71 0.89 0.79 

M2 2.16 1.75-2.58 0.93 0.86 

M1 2.09 1.72-2.48 0.94 0.88 

P4 2.14 1.68-2.61 0.90 0.82 

P3 2.46 1.97-2.95 0.92 0.85 

      

b
ln(GMSkull) 

vs. CMSA 

M3 2.29 1.81-2.78 0.91 0.83 

M2 2.21 1.83-2.60 0.94 0.88 

M1 2.14 1.88-2.41 0.97 0.94 

P4 2.24 1.88-2.61 0.95 0.90 

P3 2.39 2.01-2.77 0.95 0.90 

      

c
RSA vs. 

CMSA 

M3 1.04 0.95-1.14 0.98 0.97 

M2 1.02 0.95-1.10 0.99 0.98 

M1 1.02 0.92-1.13 0.98 0.96 

P4 1.05 0.91-1.18 0.97 0.94 

P3 0.97 0.88-1.06 0.98 0.97 
          a

Analysis of skull geometric mean, ln(GMSkull), and root surface area,  

         RSA. 

        
b
Analysis of skull geometric mean, ln(GMSkull), and cervical margin  

         surface area, CMSA (used as a proxy for crown size). 
          c

Analysis of root surface area, RSA, and cervical margin surface area,     

         CMSA. 

 

  



  140 

Discussion of scaling analyses 

 The scaling analysis included in the current study does not directly address 

study hypotheses, but is crucial to establishing the extent to which variation in 

root and crown size is governed by overall skull size.  Since the study hypotheses 

are primarily functional, it is important to establish the presence of variation in 

root and cervical margin surface area that cannot be explained by size alone.  

Results from scaling analyses indicate that almost all calculated RMA slopes are 

greater than the expected slope of isometry, however, the 95% CIs typically 

include a slope of isometry.  Consequently, an isometric relationship between 

tooth size and skull size cannot be rejected.  Furthermore, results indicate that root 

surface area and cervical margin surface area scale isometrically with one another. 

Interestingly, there is variation in the degree of correlation between root 

and crown size and skull size.  For all anthropoids, M3 root surface area and 

cervical margin surface area is noticeably less correlated with skull size than all 

other postcanine teeth.  The relatively low correlation between M3 root and crown 

size and skull size is more pronounced in platyrrhines than in catarrhines, which 

may be due to the reduction in the size of M3 seen among cebids (the significance 

of which is discussed in more detail in Chapter 6).  

 The observed isometric relationship between tooth and skull size means 

that all primates are predicted to have the same relative tooth size regardless of 

skull size.  Thus, any observed variation in tooth size is necessarily the result of 

non-size-related factors.  One important consequence of this isometric 

relationship is that relative tooth root and crown size can be compared among taxa 
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using simple shape ratios, created by dividing the variable of interest (RSA or 

CMSA) by a measurement of overall size (GMSkull) (Jungers et al., 1995).  

Results from comparisons of shape variables are presented in Chapter 5.  If 

variables are allometric (as opposed to isometric), all influences of size cannot be 

"removed" using a simple ratio because variables will still contain size-correlated 

shape differences.  Allometric variables, therefore, are often examined by using 

residuals from a LS regression line (discussed in Chapter 3) using the LS slope as 

a measure of so-called functional equivalence (Pilbeam and Gould, 1974; Jungers 

et al., 1995).  Using residuals, both size and size-correlated shape are removed 

from the variable of interest; however, this removal is achieved by assuming that 

a specific scaling relationship represents some functional standard, an assumption 

that in many cases may not be valid. 

Results of the current scaling analysis differ from results reported in a 

similar analysis by Kupczik et al. (2009) in which the scaling relationship 

between root and crown size in some anthropoid taxa was assessed.  Kupczik et 

al. (2009) report that root and crown volume scale isometrically with one another, 

but that root and crown surface area have an allometric relationship such that 

roots increase in size at a faster rate than crowns.  It is unclear why results from 

the current study, which suggest an isometric relationship between root and crown 

size, do not match previous research since data were collected and measured 

using similar protocols.  However, Kupczik et al. (2009) examined only 

mandibular M2s, while the current study examines maxillary postcanine teeth.  

This suggests that there may be differences in the relationship between root and 
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crown size between maxillary and mandibular teeth, a hypothesis that should be 

explored in future research.   

The results of the scaling analyses provide the logical basis for the 

analyses of function discussed in upcoming chapters.  Assessing the influence of 

skull size on tooth root and cervical margin surface area has revealed that factors 

other than overall size influence variation in tooth size.  While this observation 

alone does not necessarily support a functional link between dental variation and 

force production, it is consistent with the predictions of the functional hypotheses 

examined in the current study.  Furthermore, because root and crown size scale 

isometrically with skull size, variation in dental variables can be compared across 

taxa using shape ratios (see Chapter 5). 
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CHAPTER 5 

PART I: DENTAL VARIABLES RESULTS AND DISCUSSION 

 In the previous chapter, it was shown that tooth root and crown size are 

highly correlated with skull size and one another across primates, and that some 

variation in root and crown size cannot be explained by skull size alone.  The 

current chapter explores the correlation of root and crown size within species 

(Hypothesis 1a) and assesses whether variation in root and crown size can be 

attributed to variation in the functional demands of diet (Hypothesis 1b).  As 

mentioned previously, cervical margin surface area (CMSA) is used as a proxy 

for crown size in the current study. 

Hypothesis 1a: Results 

 Hypothesis 1a was tested using Kendall’s τ (discussed in Chapter 3).  

Kendall’s τ yields correlation coefficients that indicate the magnitude and 

direction of correlation between two sets of variables.  Both root size (RSA) and 

cervical margin surface area (CMSA, a proxy for crown size) were quantified for 

all upper right-side postcanine teeth.  Each variable was ranked largest to smallest 

and then rank order was compared between RSA and CMSA.  A correlation 

coefficient near 1 indicates a strong positive correlation wherein both values 

increase or decrease concurrently.  A value close to -1 indicates a strong negative 

correlation, wherein one value increases as the other decreases.  Values near zero 

indicate that no correlation exists between variables.  There was a significant, 

positive correlation between root and crown size for all taxa examined (See Table 

5.1 for results).  
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TABLE 5.1. Kendall’s τ correlation between root size (RSA) and crown size 

(CMSA as proxy). 

Subfamily Species N 

a
correlation 

coefficient 

b
p-

value 

Callithrichinae 

Callithrix sp. 

M = 7 

0.54 *** F = 7 

Saguinus sp. 

M = 5 

0.72 *** F = 5 

Cebinae 

Aotus trivirgatus 

M = 1 

0.82 *** F = 7 

Cebus apella 

M = 5 

0.41 *** F = 9 

Cebus capucinus 

M = 2 

0.32 ** F = 7 

Saimiri sp. 

M = 4 

0.42 ** F = 2 

Pitheciinae 

Callicebus moloch 

M = 10 

0.85 *** F = 0 

Pithecia sp. 

M = 3 

0.27 * F = 3 

Atelinae 

Alouatta caraya 

M = 1 

1.00 *** F = 3 

Alouatta palliata 

M = 0 

0.83 *** F = 10 

Ateles geoffroyi 

M = 0 

0.68 *** F = 17 

Colobinae 

Presbytis hosei 

M = 1 

0.55 ** F = 4 

Presbytis rubicunda 

M = 4 

0.65 *** F = 4 

Trachypithecus cristata 

M = 0 

0.77 *** F = 14 

(cont) 
a
Correlation coefficient.  The sign of the number indicates a positive or negative      

  correlation. 
b
p-values.  *** = p < 0.001, ** = p < 0.01, * = p < 0.05, ns = not significant. 
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TABLE 5.1 (cont). Kendall’s τ correlation between root size (RSA) and crown size 

(CMSA as proxy). 

Subfamily Species N 

a
correlation 

coefficient 

b
p-

value 

Colobinae 

Colobus polykomos 

M = 1 

0.76 *** F = 5 

Piliocolobus badius 

M = 4 

0.88 *** F = 5 

Cercopithecinae 

Macaca fascicularis 

M = 1 

0.94 *** F = 6 

Macaca fuscata 

M = 1 

1.00 *** F = 1 

Lophocebus albigena 

M = 5 

0.81 *** F = 1 

Cercocebus torquatus 

M = 2 

0.93 *** F = 1 

Papio anubis 

M = 3 

0.91 *** F = 2 

Mandrillus sp. 

M = 5 

0.93 *** F = 1 

Cercopithecus mitis 

M = 0 

0.90 *** F = 12 

Erythrocebus patas 

M = 3 

0.95 *** F = 1 

Homininae 

Pan paniscus 

M = 0 

0.73 ** F = 3 

Pan  troglodytes 

M = 0 

0.43 *** F = 13 

Gorilla gorilla 

M = 0 

0.55 *** F = 5 

Total N:    216     
a
Correlation coefficient.  The sign of the number indicates a positive or negative      

  correlation. 
 b

p-values.  *** = p < 0.001, ** = p < 0.01, * = p < 0.05, ns = not significant. 
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Hypothesis 1a: Discussion 

Results indicate that root and crown size are significantly positively 

correlated in all anthropoid species.  In other words, among primates the tooth 

with the largest root also has the largest crown, the tooth with the second-largest 

root has the second-largest crown, and so forth.  Because sample size varies 

among species in the current study, correlation coefficients cannot be compared, 

so it is not possible to determine whether the correlation between root and crown 

size is stronger in one species than another.  Results unequivocally support the 

prediction of Hypothesis 1a that root and crown size should covary along the 

tooth row. 

Despite the fact that correlation coefficients cannot be directly compared 

among species, it is interesting to note the wide range of values reported above.  

All correlations between RSA and CMSA were statistically significant, however 

coefficients ranged in value from 0.27 in Pithecia sp. to 0.94 in M. fascicularis.  

Such a wide range of values is suggestive that while root and crown size are 

certainly significantly correlated with each other, there does not appear to be an 

inviolable structural relationship between the two.  In other words, root size is not 

solely derived from crown size and vice versa.   

These results are consistent with results from Kupczik et al. (2009), who 

also found that root and crown surface area were significantly positively 

correlated within M. fascicularis and P. anubis (but not in H. sapiens) mandibular 

M2s.  However, Kupczik and colleagues also found that root and crown volume 

did not covary significantly within the same species, suggesting that the 
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relationship between root and crown size for mandibular M2s is not merely 

structural (Kupczik et al., 2009).  As discussed in the previous chapter, a key 

difference between the current study and that of Kupczik et al. (2009) is the use of 

maxillary versus mandibular teeth, respectively.  Consequently, results from 

Kupczik et al. (2009) may not be directly comparable to those from the current 

study; however, it is compelling that results from each study suggest that root and 

crown size may vary independently (see also Spencer, 2003). 

In the previous chapter, results from interspecific scaling analyses showed 

that root and crown size vary in response to factors other than overall skull size.  

Here, results of intraspecific correlation analyses show that root and crown size 

covary along the tooth row, supporting the prediction of Hypothesis 1a.  

Furthermore, the total range of values of correlation coefficients across the sample 

suggests that covariation in root and crown size is not strictly a function of their 

structural connection.  Hypothesis 1b, discussed below, assesses the hypothesis 

that root and crown size vary in response to diet; in other words, if tooth size is 

not related to overall skull size, and if root and crown size can vary 

independently, then it is possible that they covary along the tooth row due to 

functional demands. 

Hypothesis 1b: Results 

Hypothesis 1b states that crown and root size are related to tooth function; 

primates with a more mechanically resistant diet should have larger tooth roots 

and crowns than primates with a soft diet.  To test this hypothesis, pair-wise 
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comparisons were conducted using Mann-Whitney U tests (for comparisons of 

two species) or Kruskall-Wallis tests (for comparisons among three species). 

Results of the comparative analyses are summarized in Tables 5.2 (roots) 

and 5.3 (crowns) for platyrrhines, and Tables 5.4 (roots) and 5.5 (crowns) for 

catarrhines.  Justification of each group of comparisons is discussed in detail in 

Chapter 3.  Note that there are two comparisons that feature primates in the same 

dietary category, the Aotus/Saimiri comparison and the Pithecia/Chiropotes 

comparison.  This is due to the fact that Cebinae (to which Aotus, Saimiri, and 

Cebus belong) and Pitheciinae (to which Pithecia, Chiropotes and Callicebus 

belong) are represented by more than two species in the current study.  Therefore, 

Cebinae and Pitheciinae were analyzed using Kruskall-Wallis tests and multiple 

comparisons.  Each comparison is discussed in detail below. 
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TABLE 5.2. Comparative results: Platyrrhine roots 

Species 

Diet 

Category N P2 P3 P4 M1 M2 M3 

Alouatta 

palliata Resistant 

M = 0 

*** *** *** *** *** *** 

F = 10 

Ateles 

geoffroyi Soft 

M = 0 

F = 17 

Cebus 

apella Resistant 

M = 7 

* *** *** *** ns * 

F = 9 

Aotus 

trivirgatus Soft 

M = 4 

F = 6 

Cebus 

apella Resistant 

M = 7 

*** *** *** *** *** ** 

F = 9 

Saimiri sp. Soft 

M = 5 

F = 5 

Aotus 

trivirgatus Soft 

M = 4 

ns ns ns ns ** *** 

F = 6 

Saimiri sp. Soft 

M = 5 

F = 5 

Cebus 

apella Resistant 

M = 7 

*** *** *** *** ns ** 

F = 9 

Cebus 

capucinus Soft 

M = 2 

F = 8 

Pithecia 

sp. Resistant 

M = 4 

ns ns ns ns ns ns 

F = 3 

Callicebus 

moloch Soft 

M = 10 

F = 0 

Chiropotes 

satanas Resistant 

M = 0 

* * ns ns ns ns 

F = 2 

Callicebus 

moloch Soft 

M = 10 

F = 0 

Pithecia 

sp. Resistant 

M = 4 

ns ns ns ns ns ns 

F = 3 

Chiropotes 

satanas Resistant 

M = 0 

F = 2 

Asterisks (*) denote p-values.  *** = p<.001, ** = p<.01, * = p<.05, ns = not  

significant. 
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TABLE 5.3. Comparative results: Platyrrhine crowns 

Species 

Diet 

Category N P2 P3 P4 M1 M2 M3 

Alouatta 

palliata Resistant 

M = 0 

*** *** *** *** *** *** 

F = 10 

Ateles 

geoffroyi Soft 

M = 0 

F = 17 

Cebus 

apella Resistant 

M = 7 

*** *** *** *** ** ns 

F = 9 

Aotus 

trivirgatus Soft 

M = 4 

F = 6 

Cebus 

apella Resistant 

M = 7 

*** *** *** *** *** *** 

F = 9 

Saimiri sp. Soft 

M = 5 

F = 5 

Aotus 

trivirgatus Soft 

M = 4 

ns ns ns ns ns ** 

F = 6 

Saimiri sp. Soft 

M = 5 

F = 5 

Cebus 

apella Resistant 

M = 7 

* *** *** * ns * 

F = 9 

Cebus 

capucinus Soft 

M = 2 

F = 8 

Pithecia 

sp. Resistant 

M = 4 

* ns ns * ns ** 

F = 3 

Callicebus 

moloch Soft 

M = 10 

F = 0 

Chiropotes 

satanas Resistant 

M = 0 

* * * ns ns ns 

F = 2 

Callicebus 

moloch Soft 

M = 10 

F = 0 

Pithecia 

sp. Resistant 

M = 4 

ns ns ns ns ns ns 

F = 3 

Chiropotes 

satanas Resistant 

M = 0 

F = 2 

Asterisks (*) denote p-values.  *** = p<.001, ** = p<.01, * = p<.05, ns = not 

significant. 
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TABLE 5.4. Comparative results: Catarrhine roots 

Species 

Diet 

Category N P3 P4 M1 M2 M3 

Colobus 

polykomos Resistant 

M = 1 

ns ns * * ns 

F = 5 

Piliocolobus 

badius Soft 

M = 4 

F = 5 

Mandrillus sp. Resistant 

M = 5 

* ns ns ns ns 

F = 1 

Cercocebus 

torquatus Soft 

M = 2 

F = 1 

Lophocebus 

albigena Resistant 

M = 5 

ns ** * ** ** 

F = 3 

Papio anubis Soft 

M = 4 

F = 4 

Macaca fuscata Resistant 

M = 1 

* * * * * 

F = 1 

Macaca 

fascicularis Soft 

M = 1 

F = 8 

Gorilla gorilla Resistant 

M = 0 

ns * * * * 

F = 5 

Pan  troglodytes Soft 

M = 0 

F = 13 

         Asterisks (*) denote p-values.  *** = p<.001, ** = p<.01, * = p<.05, ns =  

         not significant. 
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TABLE 5.5. Comparative results: Catarrhine crowns 

Species 

Diet 

Category N P3 P4 M1 M2 M3 

Colobus 

polykomos Resistant 

M = 1 

*** * * * * 

F = 5 

Piliocolobus 

badius Soft 

M = 4 

F = 5 

Mandrillus sp. Resistant 

M = 5 

* ns ns * * 

F = 1 

Cercocebus 

torquatus Soft 

M = 2 

F = 1 

Lophocebus 

albigena Resistant 

M = 5 

*** *** *** *** *** 

F = 3 

Papio anubis Soft 

M = 4 

F = 4 

Macaca fuscata Resistant 

M = 1 

* * ns * * 

F = 1 

Macaca 

fascicularis Soft 

M = 1 

F = 8 

Gorilla gorilla Resistant 

M = 0 

* * ns * * 

F = 5 

Pan  troglodytes Soft 

M = 0 

F = 13 

         Asterisks (*) denote p-values.  *** = p<.001, ** = p<.01, * = p<.05, ns =  

         not significant. 
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Fig. 5.1. Alouatta/Ateles MWU results. Tooth position is along the x-axis, and  

CMSA and RSA are on the bottom and top y-axes, respectively.  Icons that  

are filled-in indicate significant differences between groups at p < 0.05.  Icons 

 that are not filled in indicate that there is no significant difference between  

groups for that variable.   
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Alouatta palliata, with a resistant diet, was compared to Ateles geoffroyi, 

with a soft diet (Figure 5.1).  For all postcanine teeth, Alouatta RSA and CMSA 

are significantly larger than Ateles.  This is consistent with past studies comparing 

molar size in Alouatta and Ateles (Kay, 1975; Anapol and Lee, 1994; Spencer, 

1995), and matches the predictions of Hypothesis 1b. 

Cebus apella, Saimiri sp., and Aotus trivirgatus were compared using a 

Kruskall-Wallis test (Figures 5.2a, b, and c).  C. apella is in the resistant diet 

category and was predicted to have higher values for premolar RSA and CMSA 

than Saimiri sp. and A. trivirgatus.  Saimiri sp. and A. trivirgatus were not 

expected to differ from each other since they are in the same dietary classification.   

Cebus has larger roots and crowns than Saimiri for all teeth.  Cebus has 

larger roots than Aotus for P3-M1, there is no significant difference between M2 

root size, and Aotus has a significantly larger M3 root than Cebus.  Cebus has 

significantly larger crowns than Aotus for all teeth except for M3, which is not 

significantly different in size than in Aotus.  Saimiri and Aotus show no 

significant differences in RSA and CMSA for P2-M1.  M2 roots, but not crowns, 

are significantly larger in Aotus than in Saimiri, and M3 roots and crowns are 

significantly larger in Aotus than Saimiri.  Results indicate that both Cebus and 

Saimiri have smaller M3s than their relative, Aotus, a trait that has been observed 

in past studies (Kinzey, 1974; Rosenberger, 1992; Spencer, 1995).  Furthermore, 

C. apella has significantly larger premolar roots and crowns than either Saimiri or 

Aotus, as predicted by Hypothesis 1b. 
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       Fig. 5.2a. Cebus/Saimiri compared.  See text for details. 

 

 

 

 

 

 

 

0.6

0.7

0.8

0.9

1

1.1

1.2

R
S

A
 

Cebus

Saimiri

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M3 M2 M1 P4 P3 P2

C
M

S
A

 

Cebus

Saimiri

 

 

 
  



  156 

 

 

 

 

 

 

 

 
Fig. 5.2b. Cebus/Aotus compared.  See text for details. 
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Fig. 5.2c. Saimiri/Aotus compared.  See text for details. 
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Within the genus Cebus, C. apella and C. capucinus were compared using 

a Mann-Whitney U test (Figure 5.3).  C. apella was predicted to have higher 

values for RSA and CMSA on premolar teeth relative to C. capucinus.  C. apella 

has significantly larger root surface area and cervical margin surface area than C. 

capucinus for P2-M1, but C. capucinus M3 is significantly larger in both RSA 

and CMSA.  M2 shows no differences in root or crown size between species.   

Among pitheciins, Callicebus moloch, Pithecia sp. and Chiropotes 

satanas were compared (Figures 5.4a, b, and c).  As discussed in Chapter 3, C. 

moloch is classified as having a soft food diet relative to both Pithecia and 

Chiropotes and was predicted to have smaller relative CMSA and RSA values for 

all postcanine teeth.  Pithecia has larger crowns than C. moloch for P2-P4 and 

M3; C. moloch has a significantly larger M1 crown.  There is no significant 

difference in root size between C. moloch and Pithecia.   Chiropotes has 

significantly larger CMSA and RSA values than C. moloch for premolars, but 

there are no significant differences between the two species for M1-M3.   

Both Pithecia and Chiropotes are categorized as resistant food eaters, but 

Pithecia was predicted to have higher values for molar root and crown size due to 

its increased reliance on processing tough leaves with its molar teeth relative to 

Chiropotes.  Additionally, Chiropotes was predicted to have larger premolar RSA 

and CMSA than Pithecia due to its relative increase in reliance on hard foods that 

are processed with the canine and premolar teeth.    
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      Fig. 5.3. C. apella/C. capucinus compared.  See text for details. 
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       Fig. 5.4a. C. moloch/Pithecia sp. compared.  See text for details. 
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       Fig. 5.4b. C. moloch/Chiropotes compared.  See text for details. 
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       Fig. 5.4c. Pithecia/Chiropotes compared.  See text for details. 
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       Fig. 5.5. P. anubis/L. albigena compared.  See text for details. 
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CMSA was significantly larger in Chiropotes relative to Pithecia for P2 

and P3, with no significant differences in crown size for the rest of the postcanine 

tooth row.  RSA is significantly larger in Chiropotes relative to Pithecia for P3 

and P4, with all other teeth showing no significant difference between the two 

species.   

Papio anubis and Lophocebus albigena were compared (Figure 5.5) using 

a Mann-Whitney U test; it was predicted that L. albigena would have larger roots 

and crowns than P. anubis.  However, results were opposite of what was 

predicted.  For all teeth, P. anubis has significantly larger CMSA than L. 

albigena, and RSA is significantly larger in P. anubis for P4-M3.  P3 RSA is not 

different between the two species. 

Figure 5.6 depicts the results of the comparison between Mandrillus sp. 

and Cercocebus torquatus.  Mandrillus was predicted to have higher values for 

tooth size than C. torquatus, and this prediction was upheld for CMSA on P3, M2, 

and M3.  However, there was no difference between species in the CMSA of P4 

and M1.  Root size was not different between the two species, except for P3 in 

which RSA was significantly larger in C. torquatus than Mandrillus, contrary to 

predictions.  In fact, while Mandrillus has larger postcanine tooth crowns than C. 

torquatus, C. torquatus roots are consistently larger than Mandrillus roots 

(although not at levels reaching statistical significance). 
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       Fig. 5.6. Mandrillus/C. torquatus compared.  See text for details. 
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       Fig. 5.7. M. fuscata/M. fascicularis compared.  See text for details. 
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Macaca fuscata and Macaca fascicularis comparisons can be seen in 

Figure 5.7.  M. fuscata has significantly larger CMSA values than M. fascicularis 

for all teeth except M1, which approaches, but does not reach, significance at p = 

0.059.  Root surface area is significantly larger in M. fuscata for all postcanine 

teeth, as predicted. 

Colobus polykomos and Piliocolobus badius were compared (Figure 5.8), 

with C. polykomos predicted to have larger tooth roots and crowns than P. badius.  

C. polykomos has larger CMSA values than P. badius for all postcanine teeth.  

RSA was significantly larger in C. polykomos for M1 and M2, but no other teeth 

were significantly different for RSA between groups. 

Within hominoids, Gorilla gorilla and Pan troglodytes were compared 

(Figure 5.9), with the expectation that RSA and CMSA values be higher in 

Gorilla.  Gorilla values for CMSA were significantly larger than Pan with the 

exception of M1.  RSA values for Gorilla were significantly larger than Pan for 

all teeth except for P3. 
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       Fig. 5.8. C. polykomos/P. badius compared.  See text from details. 

  

1.15

1.2

1.25

1.3

1.35

1.4

R
S

A
 

C. polykomos

C. badius

0.6

0.65

0.7

0.75

0.8

0.85

0.9

M3 M2 M1 P4 P3

C
M

S
A

 

C. polykomos

C. badius

 
 

 
  

P. badius 

P. badius 



  169 

 

 

 

 

 

 

 
       Fig. 5.9. G. gorilla/P. troglodytes compared.  See text for details. 
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Hypothesis 1b: Discussion 

 

Comparative analysis largely supports the predictions of Hypothesis 1b; 

primates with mechanically resistant diets tend to have larger tooth roots and 

crowns than close relatives with softer diets.  However, results are not 

unequivocal.  The pitheciins and the African papionins demonstrate notable 

deviations from predicted outcomes. 

Results among pitheciins show a clear increase in premolar root and 

crown size in Chiropotes sp. relative to C. moloch and Pithecia sp., an 

observation that is consistent with the results of past research (Kinzey, 1992; 

Rosenberger, 1992; Spencer, 1995), and is likely a product of emphasizing the 

production of high bite forces at the anterior end of the postcanine tooth row.  

Pithecia sp., in contrast, shows no consistent difference in relative molar size 

compared to Chiropotes sp. or C. moloch, contrary to predictions.  Spencer (1995) 

reported relatively small M3s in Chiropotes relative to Pithecia sp., a pattern that 

is apparent in the current study, but not statistically significant.  Taken together, 

results from past and current analyses support Spencer’s (1995) suggestion that 

selection for a targeted increase in force production on relatively anterior 

dentition in Chiropotes sp. may have resulted in an increase in premolar size at 

the cost of molar size.   

Furthermore, the lack of differentiation in molar size between Pithecia sp. 

and Chiropotes sp. could be due to the fact that tooth size is predicted to increase 

when eating hard objects, like seeds (favored by Chiropotes), but not necessarily 

for tough objects, like leaves (favored by Pithecia) (Lucas et al., 1984; Lucas, 
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2004).  Instead, food toughness is more closely related to tooth shape (e.g., the 

presence and size of shearing crests) (Kay, 1979, Lucas et al., 1984; Lucas, 2004).  

If this is the case, then comparing tooth size in an effort to distinguish the 

selection pressures of a tough food versus a hard food diet is inappropriate.  

Future work should measure both occlusal shape and size to determine the extent 

to which either is related to food hardness and toughness.  

Among African papionins, Mandrillus sp. was predicted to have larger 

roots and crowns than C. torquatus.  While this prediction was more or less 

upheld for crown size, Mandrillus sp. tooth roots are not significantly larger than 

C. torquatus roots.  In fact, C. torquatus has larger average premolar root size 

than Mandrillus, although only the P3 root is significantly larger.  Though L. 

albigena was predicted to have larger root and crown dimensions than P. anubis, 

P. anubis has significantly larger tooth roots and crowns than L. albigena.  The 

failure of the predictions of Hypothesis 1b are apparent in the African papionins, 

where each species compared is known for having a mechanically resistant diet.  

Despite evidence that within African papionins there may be differences in diet 

related to food mechanical properties (discussed in Chapter 3), such differences, if 

they exist at all, are too small to be discerned by the current study protocols.  

Currently, there is no good way to distinguish “hard food eaters” from “harder 

food eaters” using dental data alone.   

Results of the current comparative analyses suggest that food mechanical 

properties influence tooth size such that primates that consume a resistant diet 

typically have larger tooth roots and crowns than primates that consume a soft 
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diet.  Furthermore, results support the suggestion that selection for concentrating 

high magnitude bite forces at the anterior end of the postcanine tooth row may 

result in the acquisition of enlarged premolars and small M3s like those seen in 

Chiropotes (Spencer, 1995). 
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CHAPTER 6 

PART II: DENTAL FEATURES AND BITE FORCE PATTERNS 

RESULTS AND DISCUSSION 

In Chapter 4, it was shown that tooth root and crown size are highly 

correlated with skull size and one another across primates, and that some variation 

in root and crown size cannot be explained by skull size alone.  In Chapter 5, it 

was shown that root and crown size are highly positively correlated along the 

tooth row in anthropoids.  Furthermore, results from Chapter 5 support the 

hypothesis that root and crown size vary according to dietary category such that 

primates with a resistant diet have larger tooth roots and crowns than closely-

related primates with a soft diet.  Taken together, these results suggest that tooth 

root and crown surface area may be related to the production of masticatory force. 

Part II of the current study focuses on determining the relationship 

between patterns of bite force and patterns of tooth root and crown size along the 

postcanine tooth row.  Hypotheses 2 and 3 state that teeth that are habitually 

loaded with high magnitude forces will have larger roots and crowns, 

respectively, than teeth that experience lower magnitudes of force.  Data on tooth 

root and crown size were collected from 3D models of teeth derived from µCT 

scans of primate skulls and compared with bite force curves calculated for each 

skull based on measurements taken from landmark data (discussed in detail in 

Chapter 3).  Hypotheses 2 and 3 were tested using Kendall’s τ to determine 

whether patterns of root size (RSA) and crown size (CMSA as a functional proxy) 

matched patterns of bite force (the bite force curve, BFC). 
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Bite force patterns: Results 

 Bite force curves were calculated based on measurements of masticatory 

parameters outlined in Chapter 3.  Tables 6.1 - 6.6 show the measurements taken 

from landmark data on platyrrhines (6.1 – 6.3) and catarrhines (6.4 - 6.6), 

respectively.  Measurements of basic masticatory parameters are located in Tables 

6.1 (platyrrhines) and 6.4 (catarrhines).  Recall that muscle resultant position in 

the current study is estimated by using the horizontal distance from the TMJ to 

M3 in the occlusal plane (bH M3), except in callitrichids in whom it is estimated 

using M2 (bH M2).  Both horizontal bite force moment arm (bH) and normal bite 

force moment arm (bN) were measured for platyrrines (Tables 6.2 and 6.3, 

respectively) and catarrhines (Tables 6.5 and 6.6, respectively).  For discussion of 

equations used in bite force curve calculations, see Chapter 3. 
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TABLE 6.1. Platyrrhine masticatory system measurements (mm). 

Species Specimen 

Bicondylar 

breadth 

Palate 

breadth 

Glenoid 

height 

Muscle 

resultant 

position 

Muscle 

resultant 

angle 

A. caraya 25812 47.23 30.96 30.28 36.77 91.83 

A. caraya 28095 49.09 31.10 21.21 36.84 87.78 

A. caraya 28096 38.27 27.36 10.68 25.80 82.51 

A. caraya 28655 43.29 27.84 19.46 27.44 84.78 

A. caraya 28654 50.93 30.83 25.67   84.52 

A. palliata 29609 40.52 27.12 16.01 24.34 80.08 

A. palliata 29611 45.69 25.54 26.19 26.98 80.79 

A. palliata 5323 46.56 29.23 22.97 29.67 80.12 

A. palliata 5327 46.57 28.39 19.18 27.72 80.97 

A. palliata 5328 45.50 26.21 18.23 29.63 107.36 

A. palliata 5329 48.25 26.00 22.00 30.53 114.62 

A. palliata 5331 44.38 29.06 17.91 30.63 80.09 

A. palliata 5325 41.34 26.61 18.78   81.98 

A. palliata 6001 42.40 26.77 14.51   76.00 

A. palliata 5324 37.38 31.41 20.39 30.14 74.49 

Aotus 19801 25.69 15.92 6.01 14.41 92.23 

Aotus 19802 26.28 16.27 4.06 14.66 83.30 

Aotus 19805 26.32 15.54 3.83 13.57 64.22 

Aotus 27214 25.08 15.96 4.20 12.39 81.93 

Aotus 30562 24.58 14.94 4.26 14.66 87.23 

Aotus 39571 27.99 16.54 6.06 17.18 81.56 

Aotus 52608 26.75 14.31 5.14 14.11 81.86 

Aotus 8472 24.39 16.05 4.71 13.00 77.98 

Aotus B-8042 26.23 15.67 4.32 15.21 117.52 

Aotus B-8043 25.67 15.23 2.90 14.11 61.62 

Ateles 10138 45.65 25.40 5.31 29.49 79.14 

Ateles 29628 44.92 26.08 8.22 23.73 76.49 

Ateles 34322 47.27 26.30 11.58 32.50 74.69 

Ateles 5336 47.63 28.55 21.03 20.60 73.55 

Ateles 5338 47.89 25.78 12.89 30.06 82.16 

Ateles 5344 47.93 26.10 9.14 33.78 80.68 

Ateles 5345 40.55 25.74 7.38 28.96 84.87 

       (cont) 
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TABLE 6.1 (cont). Platyrrhine masticatory system measurements (mm). 

Species Specimen 

Bicondylar 

breadth 

Palate 

breadth 

Glenoid 

height 

Muscle 

resultant 

position 

Muscle 

resultant 

angle 

Ateles 5346 42.65 26.78 8.35 29.71 79.16 

Ateles 5350 47.01 27.10 10.69 29.07 78.09 

Ateles 5351 46.25 28.25 7.74 32.58 106.82 

Ateles 5352 41.37 26.06 8.02 27.25 81.45 

Ateles 5353 43.98 25.64 8.63 29.35 78.28 

Ateles 5354 44.80 24.04 10.02 28.64 78.34 

Ateles 5355 42.30 27.35 9.57 28.71 78.47 

C. apella 30162 41.95 24.39 11.14 24.38 81.70 

C. apella 30166 40.47 24.26 8.50 21.34 86.51 

C. apella 30724 42.32 25.01 6.78 23.23 87.39 

C. apella 30726 38.10 22.47 5.08 19.37 79.92 

C. apella 31064 40.82 24.83 8.21 22.55 77.05 

C. apella 31072 40.69 22.76 8.95 21.27 79.40 

C. apella 32049 38.92 24.75 5.26 20.72 80.99 

C. apella 37831 43.26 24.09 8.93 25.06 80.50 

C. apella 49635 42.58 23.74 6.60 26.79 112.94 

C. apella 25811 45.59 27.15 8.04   84.00 

C. apella 41090 43.16 23.36 8.18   72.25 

C. capucinus 10135 40.07 24.24 6.22 20.24 74.23 

C. capucinus 10136 42.58 24.31 3.86 23.03 76.69 

C. capucinus 34323 39.07 24.06 6.81 24.01 75.95 

C. capucinus 34326 44.52 24.72 5.92 23.92 69.16 

C. capucinus 34353 43.84 24.63 9.55 22.73 73.10 

C. capucinus 5332 44.25 24.98 6.47 25.07 79.68 

C. capucinus 7317 42.99 23.67 3.41 26.40 75.58 

C. capucinus 7322 39.98 23.28 5.79 21.22 77.05 

C. capucinus 7323 40.82 23.21 4.25 22.97 78.11 

Cacajao 27870 42.53 23.48 9.47   78.01 

Callicebus 20186 27.57 15.73 5.11 16.59 86.21 

Callicebus 20188 28.13 16.10 4.70 17.63 76.10 

Callicebus 26922 29.95 16.40 7.62 17.87 70.43 

Callicebus 30559 29.82 16.30 5.68 16.63 61.85 

         (cont) 
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TABLE 6.1 (cont). Platyrrhine masticatory system measurements (mm). 

Species Specimen BB 

Palate 

breadth 

Glenoid 

height 

Muscle 

resultant 

position 

Muscle 

resultant 

angle 

Callicebus 30564 26.91 15.39 5.04 15.99 82.37 

Callicebus 30566 27.68 15.71 6.50 15.98 90.43 

Callicebus 32380 30.11 16.91 5.85 19.18 84.18 

Callicebus 32383 27.55 16.74 5.99 17.23 91.09 

Callicebus 37828 28.09 16.52 7.20 16.64 93.34 

Callicebus 39073 26.28 15.65 6.10 17.33 93.65 

Callicebus 39563 27.71 15.95 6.63 16.67 90.74 

Callithrix sp. 30580 19.07 11.85 2.65 12.16 80.51 

Callithrix sp. 30582 19.42 11.74 1.70 12.31 70.94 

Callithrix sp. 30583 20.10 12.26 1.38 14.44 73.18 

Callithrix sp. 32164 18.66 12.32 2.53 13.30 70.92 

Callithrix sp. 32165 18.93 11.92 2.52 12.00 73.20 

Callithrix sp. 34573 19.31 12.34 1.23 12.56 74.08 

Callithrix sp. 30577 17.94 12.08 2.64 11.05 69.79 

Callithrix sp. 30586 19.22 11.46 2.29 13.16 71.79 

Callithrix sp. 30603 20.85 12.04 2.94 13.19 72.82 

Callithrix sp. 37826 19.36 12.98 1.20 13.35 72.71 

Callithrix sp. 37823 19.90 12.28 1.86 13.35 72.66 

Callithrix sp. 440 21.38 12.24 2.81 12.23 69.64 

Callithrix sp. 7165 19.30 10.63 4.28 12.33 46.83 

Chiropotes 31701 36.37 20.03 7.35 20.68 78.53 

Chiropotes 6028 36.22 19.96 6.10 23.04 75.74 

Pithecia sp. 27124 33.61 18.41 5.68 22.78 79.53 

Pithecia sp. 30720 30.90 17.32 6.19 20.04 74.73 

Pithecia sp. 20265 36.05 16.76 8.74   70.02 

Pithecia sp. 30719 32.95 18.65 6.58 22.54 75.41 

Pithecia sp. 31061 33.16 17.16 5.60 20.76 76.56 

Saguinus sp. 15324 22.83 13.22 1.19 13.06 73.15 

Saguinus sp. 27331 18.43 12.49 2.69 12.24 78.69 

Saguinus sp. 30579 19.54 13.36 2.16 13.02 74.78 

Saguinus sp. 30601 21.17 13.64 1.17 12.74 61.27 

Saguinus sp. 41567 20.71 12.56 0.82 13.79 71.31 

  (cont) 
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TABLE 6.1 (cont). Platyrrhine masticatory system measurements (mm). 

Species Specimen 

Bicondylar 

breadth 

Palate 

breadth 

Glenoid 

height 

Muscle 

resultant 

position 

Muscle 

resultant 

angle 

Saguinus sp. 41568 19.43 13.55 1.12 12.62 72.34 

Saguinus sp. 52557 20.70 12.91 0.38 13.30 81.31 

Saguinus sp. 52558 21.11 13.41 2.45 14.23 67.60 

Saguinus sp. 52616 21.42 12.83 2.96 13.65 71.83 

Saimiri sp. 29488 27.41 14.97 1.97 14.22 74.93 

Saimiri sp. 10131 24.49 15.01 4.77   71.74 

Saimiri sp. 10134 26.54 14.88 4.37   75.24 

Saimiri sp. 30568 22.73 14.67 3.43 10.50 68.35 

Saimiri sp. 30569 24.48 14.59 5.26 13.69 64.64 

Saimiri sp. 20187 26.87 15.84 3.03 15.50 58.63 
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TABLE 6.2. Platyrrhine bH measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 P2 

A. caraya 25812 36.77 44.25 50.94 55.65 60.72 66.33 

A. caraya 28095 36.84 43.88 50.88 56.81 61.00 66.06 

A. caraya 28096 25.80 32.52 38.62 43.02 48.11 52.52 

A. caraya 28655 27.44 33.98 40.70 45.46 49.90 54.15 

A. caraya 28654   47.31 55.31 60.40 65.43 70.52 

A. palliata 29609 24.34 31.21 37.71 42.52 48.04 52.51 

A. palliata 29611 26.98 32.85 39.99 45.38 50.22 54.40 

A. palliata 5323 29.67 36.25 42.65 48.04 53.64 58.00 

A. palliata 5327 27.72 34.10 41.21 46.28 51.52 56.22 

A. palliata 5328 29.63 35.41 41.52 47.58 51.92 56.03 

A. palliata 5329 30.53 36.59 43.87 48.22 52.47 57.01 

A. palliata 5331 30.63 37.51 44.26 49.24 52.74 58.23 

A. palliata 5325   28.26 35.52 41.43 45.37 49.82 

A. palliata 6001   33.63 40.39 45.73 50.76 55.08 

A. palliata 5324 30.14 36.66 43.11 48.02 53.47 63.95 

Aotus 19801 14.41 17.27 20.21 22.49 24.45 26.95 

Aotus 19802 14.66 17.63 20.73 22.97 25.14 27.15 

Aotus 19805 13.57 16.19 19.22 21.24 23.77 25.60 

Aotus 27214 12.39 15.01 17.96 20.73 22.71 24.85 

Aotus 30562 14.66 16.95 19.52 22.24 23.71 26.02 

Aotus 39571 17.18 19.91 22.93 24.81 26.89 28.66 

Aotus 52608 14.11 17.04 20.07 22.27 24.21 26.37 

Aotus 8472 13.00 15.64 18.57 20.47 22.66 24.56 

Aotus B-8042 15.21 17.57 20.51 22.21 24.13 26.56 

Aotus B-8043 14.11 16.80 19.30 21.86 23.82 25.27 

Ateles 10138 29.49 34.19 38.63 42.95 45.65 48.36 

Ateles 29628 23.73 28.45 33.50 37.05 40.31 43.78 

Ateles 34322 32.50 36.90 41.25 44.59 48.13 51.60 

Ateles 5336 20.60   35.54 40.25 43.71 48.50 

Ateles 5338 30.06 34.75 38.40 42.19 45.36   

Ateles 5344 33.78 37.95 43.02 46.55 49.90 54.10 

Ateles 5345 28.96 33.35 38.22 42.37 45.52 49.41 

           (cont) 
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TABLE 6.2 (cont). Platyrrhine bH measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 P2 

Ateles 5351 32.58 36.06 41.27 45.80 48.45 52.07 

Ateles 5352 27.25 31.46 36.10 39.76 43.12 47.05 

Ateles 5353 29.35 33.65 38.22 42.35 46.03 49.62 

Ateles 5354 28.64 32.61 36.91 40.32 44.22 47.67 

Ateles 5355 28.71 33.32 38.22 42.23 46.82 49.09 

C. apella 30162 24.38 27.94 31.59 34.92 39.40 42.35 

C. apella 30166 21.34 24.83 29.03 32.73 37.04 39.82 

C. apella 30724 23.23 26.80 30.60 34.81 37.67 40.89 

C. apella 30726 19.37 23.15 27.11 31.27 33.95 38.12 

C. apella 31064 22.55 26.52 30.39 33.95 37.32 40.40 

C. apella 31072 21.27 24.74 28.95 32.82 35.63 39.31 

C. apella 32049 20.72 23.42 27.92 31.86 34.82 37.93 

C. apella 37831 25.06 28.28 32.41 36.78 40.59 43.52 

C. apella 49635 26.79 30.16 34.10 37.51 41.35 45.40 

C. apella 25811   30.10 35.06 38.97 42.74 46.37 

C. apella 41090   27.67 32.49 35.22 38.46 41.90 

C. capucinus 10135 20.24 23.70 27.94 31.69 35.40 37.91 

C. capucinus 10136 23.03 25.95 30.07 33.95 37.88 40.27 

C. capucinus 34323 24.01 27.13 31.53 34.83 38.47 41.20 

C. capucinus 34326 23.92 27.68 31.89 35.76 39.27 42.84 

C. capucinus 34353 22.73 26.88 31.58 35.17 38.03 43.07 

C. capucinus 5332 25.07 28.32 32.75 37.08 39.38 43.75 

C. capucinus 7317 26.40 29.50 33.86 37.73 40.52 43.76 

C. capucinus 7322 21.22 24.90 29.32 32.56 35.94 39.17 

C. capucinus 7323 22.97 26.81 31.36 35.26 37.97   

Cacajao 27870   32.41 36.06 40.28 42.33 45.93 

Callicebus 20186 16.59 19.79 22.84 25.28 27.52 29.03 

Callicebus 20188 17.63 20.79 23.94 26.35 28.59 30.70 

Callicebus 26922 17.87 20.69 24.13 26.67 28.86 31.20 

Callicebus 30559 16.63 18.99 22.07 24.68 26.48 28.74 

Callicebus 30564 15.99 18.43 22.01 24.57 27.33 29.28 

Callicebus 30566 15.98 18.61 22.15 24.61 27.13 29.21 

Callicebus 32380 19.18 21.83 24.92 27.77 30.37 32.20 

Callicebus 32383 17.23 19.84 22.84 25.44 27.27 29.81 

         (cont) 



  181 

TABLE 6.2 (cont). Platyrrhine bH measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 P2 

Callicebus 37828 16.64 19.18 22.49 25.20 27.60 30.36 

Callicebus 39073 17.33 19.99 23.11 25.64 28.24 29.91 

Callicebus 39563 16.67 19.55 22.64 25.73 27.78   

Callithrix sp. 30580   12.16 14.20 15.85 17.09 19.20 

Callithrix sp. 30582   12.31 14.62 16.06 17.41 19.68 

Callithrix sp. 30583   14.44 16.41 17.42 19.41 20.78 

Callithrix sp. 32164   13.30 15.53 17.61 18.73 21.14 

Callithrix sp. 32165   12.00 13.97 15.42 17.22 18.84 

Callithrix sp. 34573   12.56 14.66 16.49 18.28 19.75 

Callithrix sp. 30577   11.05 13.34 14.67 16.84 18.46 

Callithrix sp. 30586   13.16 15.49 16.71 18.46 20.42 

Callithrix sp. 30603   13.19 15.30 16.69 18.94 20.40 

Callithrix sp. 37826   13.35 15.65 17.43 19.58 21.45 

Callithrix sp. 37823   13.35 15.95 18.19 20.12 21.82 

Callithrix sp. 440   12.23 14.96 16.51 18.29 20.09 

Callithrix sp. 7165   12.33 14.28 15.56 17.58 18.90 

Chiropotes 31701 20.68 23.34 26.51 29.78 32.91 36.00 

Chiropotes 6028 23.04 25.46 28.74 31.96 34.00 36.80 

Pithecia sp. 27124 22.78 25.15 28.48 31.29 33.80 36.26 

Pithecia sp. 30720 20.04 22.48 25.91 28.05 30.96 33.07 

Pithecia sp. 20265   25.52 28.81 31.02 32.81   

Pithecia sp. 30719 22.54 25.36 29.11 31.76 34.15 36.41 

Pithecia sp. 31061 20.76 24.23 27.39 30.54 32.07 34.84 

Saguinus sp. 15324   13.06 15.14 17.14 19.04 20.56 

Saguinus sp. 27331   12.24 14.54 15.76 17.81 19.13 

Saguinus sp. 30579   13.02 15.10 16.80 18.70 20.66 

Saguinus sp. 30601   12.74 14.79 16.77 18.71 20.27 

Saguinus sp. 41567   13.79 15.66 17.24 19.33 20.69 

Saguinus sp. 41568   12.62 15.03 17.38 18.07 20.48 

Saguinus sp. 52557   13.30 15.48 17.67 18.56 20.27 

Saguinus sp. 52558   14.23 16.56 18.05 19.91 21.60 

Saguinus sp. 52616   13.65 15.66 17.38 18.84 21.11 

Saimiri sp. 29488 14.22 16.65 19.37 21.37 23.30 25.16 

Saimiri sp. 10131   15.11 18.16 20.66 21.58 23.71 

         (cont) 
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TABLE 6.2 (cont). Platyrrhine bH measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 P2 

Saimiri sp. 10134   17.01 19.88 21.71 23.58 25.34 

Saimiri sp. 30568 10.50 12.41 15.13 17.48 19.20 20.83 

Saimiri sp. 30569 13.69 15.74 18.22 19.91 22.21 24.63 

Saimiri sp. 20187 15.50 17.92 20.65 22.32 24.39 26.75 
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TABLE 6.3. Platyrrhine bN measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 P2 

A. caraya 25812 46.85 53.52 58.97 62.43 66.88 71.33 

A. caraya 28095 41.77 48.41 54.42 59.49 62.96 67.08 

A. caraya 28096 27.65 34.75 40.11 43.87 48.70 52.67 

A. caraya 28655 33.55 39.40 45.06 48.72 52.49 56.22 

A. caraya 28654   53.67 60.52 64.37 68.70 72.84 

A. palliata 29609 28.00 34.99 40.64 44.21 48.81 52.60 

A. palliata 29611 36.34 41.95 46.05 50.81 54.53 58.14 

A. palliata 5323 36.95 43.02 48.54 52.58 57.47 61.03 

A. palliata 5327 33.04 39.39 45.39 49.17 53.39 57.14 

A. palliata 5328 34.47 40.04 44.59 50.44 53.45 57.06 

A. palliata 5329 36.64 42.51 48.97 51.69 54.86 58.84 

A. palliata 5331 34.91 41.75 47.57 51.67 53.80 58.76 

A. palliata 5325   33.93 40.19 44.79 48.23 51.99 

A. palliata 6001   37.21 43.35 47.90 52.31 56.01 

A. palliata 5324 35.66 42.03 47.56 51.29 55.52 66.40 

Aotus 19801 14.39 17.45 20.32 22.21 23.89 26.01 

Aotus 19802 14.11 17.06 20.23 22.34 24.25 26.00 

Aotus 19805 13.55 16.41 19.33 21.18 23.48 25.16 

Aotus 27214 12.48 15.18 18.08 20.66 22.36 24.31 

Aotus 30562 14.59 17.11 19.49 22.02 23.28 25.47 

Aotus 39571 17.19 20.25 23.09 24.78 26.54 28.14 

Aotus 52608 14.00 17.00 19.99 22.05 23.80 25.62 

Aotus 8472 13.03 15.76 18.54 20.29 22.24 24.05 

Aotus B-8042 14.99 17.40 20.32 21.83 23.53 25.74 

Aotus B-8043 13.88 16.64 19.10 21.51 23.32 24.67 

Ateles 10138 28.34 33.32 37.82 42.19 44.63 47.22 

Ateles 29628 23.24 27.87 32.74 35.91 39.20 42.03 

Ateles 34322 32.89 37.32 42.11 44.65 47.89 50.99 

Ateles 5336 22.53   39.57 44.12 47.34 51.88 

Ateles 5338 30.97 35.51 39.16 42.56 45.58   

Ateles 5344 33.84 38.05 42.99 46.34 49.47 53.56 

Ateles 5345 28.97 33.45 38.21 42.20 45.13 48.77 

Ateles 5346 29.66 33.70 38.92 42.56 46.24 50.34 

Ateles 5350 29.76 33.94 39.07 42.19 45.38 48.60 

         (cont) 



  184 

TABLE 6.3 (cont). Platyrrhine bN measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 P2 

Ateles 5351 33.16 36.92 41.53 46.15 48.43 51.85 

Ateles 5352 27.69 31.92 36.47 39.98 43.12 46.88 

Ateles 5353 29.62 33.95 38.37 42.34 45.82 49.14 

Ateles 5354 28.75 32.79 36.86 39.96 43.82 46.97 

Ateles 5355 29.57 34.31 39.00 42.84 47.04 48.98 

C. apella 30162 25.05 28.70 32.24 35.19 39.20 41.88 

C. apella 30166 21.66 25.32 29.59 32.93 36.93 39.43 

C. apella 30724 21.58 25.57 29.74 33.59 36.26 39.22 

C. apella 30726 18.59 22.73 26.65 30.72 33.27 37.14 

C. apella 31064 22.31 26.35 30.59 33.76 36.77 39.45 

C. apella 31072 20.96 24.64 28.83 32.33 34.83 38.08 

C. apella 32049 19.21 22.45 27.34 31.03 33.86 36.70 

C. apella 37831 24.45 28.18 32.51 36.57 40.03 42.60 

C. apella 49635 25.46 29.67 33.54 36.99 40.58 44.37 

C. apella 25811   29.57 34.53 38.18 41.77 45.19 

C. apella 41090   26.15 31.11 33.75 36.94 40.39 

C. capucinus 10135 19.86 23.64 27.92 31.49 34.95 37.34 

C. capucinus 10136 21.35 24.49 29.07 32.82 36.56 38.81 

C. capucinus 34323 23.59 26.99 31.47 34.72 38.06 40.55 

C. capucinus 34326 22.88 26.94 31.36 35.06 38.44 41.74 

C. capucinus 34353 22.88 27.21 31.79 35.34 38.03 42.68 

C. capucinus 5332 24.24 27.79 32.43 36.56 38.82 42.87 

C. capucinus 7317 24.36 28.25 32.80 36.59 39.30 42.41 

C. capucinus 7322 19.95 24.00 28.53 31.67 35.03 37.58 

C. capucinus 7323 22.08 26.14 30.64 34.55 37.18   

Cacajao 27870   32.65 36.41 40.30 42.19 45.67 

Callicebus 20186 16.78 20.18 23.06 25.20 27.24 28.57 

Callicebus 20188 17.63 20.90 24.04 26.18 28.22 30.20 

Callicebus 26922 18.23 21.17 24.47 26.60 28.57 30.71 

Callicebus 30559 16.10 18.82 21.68 24.11 25.63 27.74 

Callicebus 30564 15.89 18.55 22.00 24.26 26.87 28.70 

Callicebus 30566 16.33 18.98 22.46 24.66 26.93 28.64 

Callicebus 32380 19.35 22.05 25.03 27.62 29.99 31.62 

Callicebus 32383 17.88 20.55 23.37 25.74 27.37 29.60 

          (cont) 
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TABLE 6.3 (cont). Platyrrhine bN measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 P2 

Callicebus 37828 17.67 20.23 23.45 25.82 27.91 30.33 

Callicebus 39073 17.45 20.27 23.31 25.62 27.99 29.42 

Callicebus 39563 17.17 20.23 23.09 25.79 27.53   

Callithrix sp. 30580   12.11 14.25 15.78 16.92 19.14 

Callithrix sp. 30582   12.05 14.52 15.90 17.17 19.37 

Callithrix sp. 30583   14.06 16.16 17.05 18.95 20.34 

Callithrix sp. 32164   13.19 15.50 17.49 18.48 20.89 

Callithrix sp. 32165   12.00 14.02 15.40 17.07 18.72 

Callithrix sp. 34573   12.47 14.60 16.38 18.11 19.57 

Callithrix sp. 30577   11.20 13.51 14.74 16.76 18.66 

Callithrix sp. 30586   12.91 15.27 16.44 18.03 20.13 

Callithrix sp. 30603   12.96 15.07 16.38 18.56 19.96 

Callithrix sp. 37826   13.08 15.51 17.20 19.34 21.20 

Callithrix sp. 37823   12.97 15.66 17.77 19.65 21.33 

Callithrix sp. 440   11.65 14.65 15.97 17.58 19.39 

Callithrix sp. 7165   12.25 14.21 15.23 17.11 18.37 

Chiropotes 31701 21.06 23.82 26.93 30.16 32.97 35.82 

Chiropotes 6028 21.60 24.62 27.98 31.20 33.02 35.83 

Pithecia sp. 27124 22.20 24.72 28.04 30.70 33.11 35.58 

Pithecia sp. 30720 19.70 22.20 25.69 27.66 30.38 32.39 

Pithecia sp. 20265   25.13 28.50 30.65 32.50   

Pithecia sp. 30719 23.00 25.97 29.61 32.14 34.34 36.48 

Pithecia sp. 31061 20.02 23.52 26.75 29.76 31.19 34.32 

Saguinus sp. 15324   12.29 14.56 16.44 18.28 19.82 

Saguinus sp. 27331   12.25 14.65 15.67 17.60 18.85 

Saguinus sp. 30579   12.76 14.92 16.47 18.23 20.19 

Saguinus sp. 30601   12.47 14.49 16.38 18.19 19.76 

Saguinus sp. 41567   13.20 15.23 16.64 18.66 19.98 

Saguinus sp. 41568   12.36 14.87 17.09 17.66 20.14 

Saguinus sp. 52557   12.81 15.08 17.18 18.03 19.79 

Saguinus sp. 52558   14.02 16.39 17.79 19.49 21.20 

Saguinus sp. 52616   13.45 15.54 17.13 18.45 20.81 

Saimiri sp. 29488 13.31 15.99 18.58 20.44 22.26 24.17 

Saimiri sp. 10131   15.40 18.36 20.53 21.27 23.39 

          (cont) 
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TABLE 6.3 (cont). Platyrrhine bN measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 P2 

Saimiri sp. 10134   17.12 19.85 21.37 23.16 24.83 

Saimiri sp. 30568 10.30 12.48 15.12 17.29 18.83 20.39 

Saimiri sp. 30569 13.87 16.11 18.52 19.95 22.02 24.58 

Saimiri sp. 20187 14.91 17.59 20.20 21.65 23.63 26.07 

         (cont) 



  187 

TABLE 6.4. Catarrhine masticatory system measurements (mm). 

Species # 

Bicondylar 

breadth 

Palate 

breadth 

Glenoid 

height 

Muscle 

resultant 

position 

Muscle 

resultant 

angle 

C. mitis 22734 40.30 23.78 6.54 16.39 74.53 

C. mitis 25022 39.63 23.83 8.06 11.32 86.27 

C. mitis 26832 44.15 26.55 8.66 19.65 78.14 

C. mitis 32003 47.04 28.12 8.70 21.72 77.11 

C. mitis 39389 40.38 24.16 5.43 19.17 77.49 

C. mitis 39390 38.12 22.67 5.43 18.45 81.36 

C. mitis 44264 46.97 27.31 11.24 19.30 80.06 

C. mitis 44268 46.10 27.64 9.65 17.98 75.88 

C. mitis 44274 43.82 28.45 12.65 17.15 82.68 

C. mitis 7088 42.76 25.81 6.14 25.39 85.37 

C. polykomos 21147 46.55 28.83 12.21 22.51 86.30 

C. polykomos 21151 51.58 27.41 12.70 23.85 84.01 

C. polykomos 21153 51.82 26.97 8.66 25.38 83.69 

C. polykomos 22356 54.22 29.15 9.82 25.02 85.94 

C. polykomos 22624 53.25 31.43 16.47 23.68 87.11 

C. polykomos 22629 50.38 29.28 11.65 23.39 82.53 

C. polykomos 22850 50.62 27.79 14.89 24.09 89.99 

C. polykomos 46368 48.72 29.72 11.04 27.21 88.70 

C. polykomos 47007 52.02 27.99 11.41 21.35 83.93 

C. torquatus 18612 54.57 29.57 12.21 29.13 90.58 

C. torquatus 19184 60.68 31.59 23.63 25.21 83.08 

C. torquatus 19982 65.04 32.49 19.36 43.65 95.12 

C. torquatus 21155 57.94 32.06 17.48 24.13 84.08 

C. torquatus 23195 59.71 29.88 15.40 34.21 119.21 

C. torquatus 25626 58.16 32.29 15.46 26.84 83.95 

C. torquatus 25630 57.90 31.22 14.56 25.81 87.83 

C. torquatus 32625 61.06 33.76 21.60 33.08 84.44 

C. torquatus 62638 57.14 31.88 15.88 22.14 83.96 

E. patas 37280 50.63 27.78 1.22 27.81 72.40 

E. patas 47015 52.59 31.28 6.44 31.63 75.85 

E. patas 47016 60.40 30.89 11.33 25.84 75.11 

E. patas 47018 46.49 26.51 2.56 22.98 84.01 

 (cont) 
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TABLE 6.4 (cont). Catarrhine masticatory system measurements (mm). 

Species # 

Bicondylar 

breadth 

Palate 

breadth 

Glenoid 

height 

Muscle 

resultant 

position 

Muscle 

resultant 

angle 

G. gorilla 14750 91.34 53.04 47.62 39.70 79.36 

G. gorilla 26850 93.30 49.38 54.36 39.14 81.10 

G. gorilla 29047 94.72 51.05 60.96 27.29 74.70 

G. gorilla 37264 91.76 53.38 48.23 39.31 79.87 

G. gorilla 38326 90.28 51.79 54.45 30.49 79.71 

G. gorilla 46325 92.66 52.69 51.28 45.11 79.12 

L. albigena 18613 52.29 27.53 16.30 20.47 80.51 

L. albigena 32194 55.71 28.67 18.72 18.85 77.30 

L. albigena 39396 50.90 28.97 16.54 22.80 80.84 

L. albigena 39402 49.50 29.63 18.90 22.29 83.20 

L. albigena 6209 50.34 28.84 10.50 22.98 77.86 

L. albigena 35937 42.79 23.92 12.57 14.46 82.26 

M. fascicularis 22277 45.40 23.63 15.55 16.05 73.33 

M. fascicularis 23812 47.04 22.97 11.79 20.30 82.91 

M. fascicularis 35938 40.59 25.08 9.16 21.27 84.02 

M. fascicularis 36030 42.87 26.58 7.98 18.70 78.50 

M. fascicularis 37565 43.14 23.47 9.16 17.60 79.73 

M. fascicularis 41167 33.83 26.29 14.64 23.20 67.15 

M. fuscata 37709 60.83 33.17 15.26 30.51 84.78 

M. fuscata 61273 61.54 37.43 19.30 30.46 87.27 

M. sylvanus 7072 56.17 31.68 18.64 25.24 83.27 

Mandrillus sp. 19986 68.16 42.53 21.01 46.62 88.66 

Mandrillus sp. 20085 76.55 44.49 20.75 45.27 89.20 

Mandrillus sp. 23168 77.20 46.73 21.77 45.74 86.98 

Mandrillus sp. 23169 73.83 43.07 20.55 37.59 84.80 

Mandrillus sp. 374089 77.29 46.58 15.90 60.77 88.21 

Mandrillus sp. 34272 53.82 35.28 12.77 27.02 114.87 

P. anubis 17342 69.45 39.99 12.57 44.15 83.06 

P. anubis 17343 82.11 44.78 25.49 59.93 125.99 

P. anubis 21160 83.05 40.89 19.13 45.37 85.43 

P. anubis 21161 79.01 42.49 20.42 34.88 79.25 

P. anubis 29786 77.30 45.11 20.19 40.58 82.13 

  (cont) 
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TABLE 6.4 (cont). Catarrhine masticatory system measurements (mm). 

Species # 

Bicondylar 

breadth 

Palate 

breadth 

Glenoid 

height 

Muscle 

resultant 

position 

Muscle 

resultant 

angle 

P. anubis 29787 66.63 36.15 11.81 32.55 84.30 

P. anubis 29788 63.29 35.98 6.41 38.91 82.68 

P. anubis 31619 70.24 37.21 14.88 46.08 101.95 

P. anubis 8304 77.93 42.88 16.30 51.17 85.07 

P. badius 24080 50.05 28.56 11.96 22.23 81.07 

P. badius 24775 52.29 27.79 13.02 22.13 76.35 

P. badius 24793 47.66 23.96 12.61 17.94 78.64 

P. badius 25627 36.48 25.12 19.13 35.03 69.25 

P. badius 25631 52.69 26.96 10.62 22.19 78.43 

P. badius 25810 42.16 25.17 8.04 20.90 75.76 

P. badius 26552 49.34 27.25 11.18 24.16 79.53 

P. badius 26553 50.20 27.70 15.16 20.52 81.07 

P. badius 27108 50.85 28.63 17.91 19.94 77.55 

P. badius 31939 44.97 23.95 9.27 18.63 74.35 

P. hosei 35621 46.60 24.24 6.02 21.13 81.01 

P. hosei 37380 44.05 24.67 4.43 20.58 77.11 

P. hosei 37371 47.13 24.37 6.47 18.62 75.49 

P. paniscus 38019 81.40 41.98 26.42 29.67 90.27 

P. paniscus 38020 77.33 46.45 27.31 33.27 77.21 

P. rubicunda 22276 47.77 24.98 6.96 21.73 77.60 

P. rubicunda 35704 42.31 22.81 9.04 14.23 76.36 

P. rubicunda 35705 44.99 24.06 5.33 18.92 77.99 

P. rubicunda 35706 42.16 21.59 7.59 15.37 75.36 

P. rubicunda 35712 45.95 23.89 6.89 19.90 73.71 

P. rubicunda 37666 43.65 22.22 6.44 23.01 80.00 

P. troglodytes 15312 77.57 45.21 32.58 37.24 89.65 

P. troglodytes 17702 77.92 48.94 33.20 35.10 77.98 

P. troglodytes 23167 82.31 47.10 32.49 33.09 79.25 

P. troglodytes 9493 80.08 47.32 35.30 26.36 79.82 

P. troglodytes N6960 81.22 44.36 29.99 34.57 74.41 

P. troglodytes N7261 77.08 50.42 34.28 32.76 72.35 

P. troglodytes N7265 75.09 46.07 28.95 31.82 78.90 

 (cont) 
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TABLE 6.4 (cont). Catarrhine masticatory system measurements (mm). 

Species # 

Bicondylar 

breadth 

Palate 

breadth 

Glenoid 

height 

Muscle 

resultant 

position 

Muscle 

resultant 

angle 

T. cristata 35567 47.23 24.34 7.81 18.92 80.82 

T. cristata 35584 45.93 26.73 7.74 20.32 84.52 

T. cristata 35586 33.79 25.71 5.55 22.09 79.61 

T. cristata 35597 45.18 24.86 8.41 18.15 67.04 

T. cristata 35603 48.66 24.50 7.52 22.24 83.56 

T. cristata 35604 47.54 25.15 6.61 21.48 82.52 

T. cristata 35605 49.46 26.59 6.94 22.98 86.27 

T. cristata 35610 47.70 24.66 8.37 17.94 79.63 

T. cristata 35618 49.37 26.11 8.27 24.68 86.88 

T. cristata 35636 45.06 24.98 5.71 21.39 85.78 

T. cristata 35640 44.09 23.99 7.15 17.38 80.27 

T. cristata 35663 48.33 25.10 5.54 21.05 83.73 

T. cristata 35678 46.87 26.10 8.15 22.96 87.37 

T. cristata 35682 45.98 25.07 5.19 19.03 79.92 

T. cristata 35696 48.34 23.46 6.19 23.71 87.00 

T. cristata 35718 44.94 23.80 4.61 19.72 82.81 

T. cristata 37387 45.86 24.87 9.16 19.38 86.97 
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TABLE 6.5. Catarrhine bH measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 

C. mitis 22734 21.05 26.29 31.02 34.82 37.71 

C. mitis 25022 20.74 25.71 30.41 34.54 38.34 

C. mitis 26832 26.85 32.81 39.43 43.95 48.12 

C. mitis 32003 31.21 37.55 43.09 47.93 51.04 

C. mitis 39389 24.46 29.86 35.07 38.91 42.89 

C. mitis 39390 23.52 29.36 34.80 38.93 42.54 

C. mitis 44264 26.98 32.61 38.97 43.90 47.89 

C. mitis 44268 29.08 34.97 41.23 46.67 50.05 

C. mitis 44274 25.68 32.00 38.40 43.73 47.99 

C. mitis 7088 25.03 30.96 36.85 43.03 47.03 

C. polykomos 21147 28.05 34.88 42.36 48.76 52.74 

C. polykomos 21151 30.85 37.98 45.21 50.96 56.33 

C. polykomos 21153 28.98 35.77 42.87 49.01 54.85 

C. polykomos 22356 32.55 39.25 46.46 52.11 57.65 

C. polykomos 22624 32.67 38.13 44.31 49.87 54.34 

C. polykomos 22629 31.43 38.87 44.82 49.18 55.32 

C. polykomos 22850 34.89 41.63 48.98 54.25 59.46 

C. polykomos 46368 36.45 43.09 49.95 55.44 59.36 

C. polykomos 47007 29.44 35.61 42.11 46.95 52.13 

C. torquatus 18612 30.78 37.08 44.97 51.49 56.05 

C. torquatus 19184 38.72 47.09 54.00 61.00 66.53 

C. torquatus 19982 41.99 50.07 58.03 64.10 69.51 

C. torquatus 21155 36.08 42.82 48.92 55.24 58.84 

C. torquatus 23195 35.68 41.94 45.56 55.00 57.75 

C. torquatus 25626 34.14 36.22 48.26 54.49 59.34 

C. torquatus 25630 35.34 43.55 50.68 56.99 61.65 

C. torquatus 32625 41.93 49.54 58.37 63.60 69.63 

C. torquatus 62638 31.19 38.98 46.12 53.24 58.78 

E. patas 37280 34.88 42.91 50.23 55.93 59.72 

E. patas 47015 50.13 54.94 62.59 67.28 72.81 

E. patas 47016 45.46 53.45 60.33 66.09 71.87 

E. patas 47018 28.51 33.67 40.54 45.58 50.02 

      (cont) 
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TABLE 6.5 (cont). Catarrhine bH measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 

G. gorilla 14750 52.34 65.88 77.52 88.52 98.42 

G. gorilla 26850 60.39 74.18 88.31 100.01 108.24 

G. gorilla 29047 49.02 61.06 74.82 83.66 93.52 

G. gorilla 37264 62.23 76.35 90.33 101.21 110.53 

G. gorilla 38326 48.80 59.93 73.14 84.68 94.93 

G. gorilla 46325 47.37 58.57 73.22 85.31 94.88 

L. albigena 18613 28.37 34.36 40.93 46.84 51.27 

L. albigena 32194 31.93 38.71 44.97 51.22 55.67 

L. albigena 39396 32.12 38.30 44.96 50.24 55.31 

L. albigena 39402 27.12 33.26 40.40 46.52 51.64 

L. albigena 6209 33.63 40.01 45.33 50.85 55.27 

L. albigena 35937 26.76 33.14 38.84 43.65 47.52 

M. fascicularis 22277 27.39 33.92 40.21 45.04 49.14 

M. fascicularis 23812 31.47 37.59 44.27 48.59 52.91 

M. fascicularis 35938 24.56 30.28 36.85 41.44 46.06 

M. fascicularis 36030 27.03 33.47 39.76 44.47 48.77 

M. fascicularis 37565 25.06 30.64 37.74 41.54 45.76 

M. fascicularis 41167 32.19 38.92 45.91 51.12   

M. fuscata 37709 37.50 45.73 54.06 61.05 65.99 

M. fuscata 61273 41.02 50.74 59.72 66.88 72.49 

M. sylvanus 7072 37.55 45.93 50.99 56.79 61.10 

Mandrillus sp. 19986 59.88 70.60 82.18 93.08 100.25 

Mandrillus sp. 20085 56.76 67.89 80.06 89.05 95.16 

Mandrillus sp. 23168 62.22 71.88 82.59 91.36 98.43 

Mandrillus sp. 23169 56.06 67.77 78.23 85.77 92.76 

Mandrillus sp. 374089 77.62 89.54 101.70 112.40 121.43 

Mandrillus sp. 34272 35.43 46.46 57.62 66.92 72.87 

P. anubis 17342 56.07 69.96 80.27 89.42 95.95 

P. anubis 17343 72.07 86.38 95.06 103.92 111.38 

P. anubis 21160 60.11 72.05 84.80 92.53 99.97 

P. anubis 21161 63.24 74.29 86.04 93.83 101.34 

P. anubis 29786 63.86 75.52 87.76 95.34 104.60 

        (cont) 
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TABLE 6.5 (cont). Catarrhine bH measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 

P. anubis 29787 43.87 54.46 65.06 73.23 80.26 

P. anubis 29788 47.31 59.25 69.41 68.87 83.28 

P. anubis 31619 52.92 65.54 77.28 85.79 91.62 

P. anubis 8304 64.49 77.67 89.41 97.41 106.04 

P. badius 24080 28.75 35.01 41.37 46.45 50.66 

P. badius 24775 30.97 37.25 42.24 47.39 50.99 

P. badius 24793 25.95 30.75 37.20 42.55 47.70 

P. badius 25627 40.78 47.45 51.62 56.68 61.69 

P. badius 25631 29.20 34.93 40.97 45.69 50.17 

P. badius 25810 24.48 31.00 37.50 42.87 47.26 

P. badius 26552 28.13 34.25 40.84 45.22 49.51 

P. badius 26553 28.38 34.62 41.13 45.63 50.36 

P. badius 27108 32.62 39.19 45.46 50.70 55.24 

P. badius 31939 26.05 31.77 36.85 42.63 46.02 

P. hosei 35621 25.80 31.13 36.14 40.22 44.21 

P. hosei 37380 28.35 33.05 38.01 43.02 44.92 

P. hosei 37371 24.70 30.07 35.80 39.42 42.94 

P. paniscus 38019 44.33 49.41 55.46 63.43 67.53 

P. paniscus 38020 43.69 52.26 59.06 66.33 73.25 

P. rubicunda 22276 26.92 31.71 37.18 41.62 46.17 

P. rubicunda 35704 21.30 26.54 31.34 35.25 39.77 

P. rubicunda 35705 24.56 29.71 33.75 37.75 41.54 

P. rubicunda 35706 23.95 28.16 32.87 36.48 39.89 

P. rubicunda 35712 27.13 31.62 35.82 39.69 42.88 

P. rubicunda 37666 26.96 30.74 35.33 39.18 42.65 

P. troglodytes 15312 52.71 60.11 70.94 79.29 84.77 

P. troglodytes 17702 50.06 59.25 69.25 77.79 85.31 

P. troglodytes 23167 50.47 60.08 70.73 77.79 85.62 

P. troglodytes 9493 43.99 52.76 62.59 69.04 77.08 

P. troglodytes N6960 49.19 58.37 67.52 78.06 84.86 

P. troglodytes N7261 49.19 58.94 69.09 78.17 86.17 

P. troglodytes N7265 48.10 56.03 65.56 74.15 81.68 

       (cont) 
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TABLE 6.5 (cont). Catarrhine bH measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 

T. cristata 35567 26.72 31.11 37.02 41.17 45.29 

T. cristata 35584 25.78 30.71 37.34 42.25 46.00 

T. cristata 35586 25.93 31.85 37.51 41.63 45.83 

T. cristata 35597 22.89 27.99 33.56 39.10 43.05 

T. cristata 35603 28.68 33.37 38.78 43.44 46.95 

T. cristata 35604 27.73 33.11 38.67 43.48 47.06 

T. cristata 35605 27.98 33.61 40.54 46.10 49.48 

T. cristata 35610 25.74 31.02 36.34 40.54 44.79 

T. cristata 35618 27.49 33.24 38.37 42.74 46.88 

T. cristata 35636 27.51 32.16 38.37 41.84 46.12 

T. cristata 35640 25.15 30.19 35.93 40.40 45.52 

T. cristata 35663 26.18 31.09 36.81 41.98 45.01 

T. cristata 35678 27.38 32.43 37.90 42.79 46.10 

T. cristata 35682 26.21 30.94 37.07 41.18 45.63 

T. cristata 35696 25.97 30.97 37.21 41.41 46.26 

T. cristata 35718 24.83 29.70 35.42 39.23 43.40 

T. cristata 37387 25.18 30.19 35.75 40.59 44.21 
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TABLE 6.6. Catarrhine bN measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 

C. mitis 22734 20.52 26.29 31.04 34.25 37.10 

C. mitis 25022 20.68 26.08 30.67 34.41 38.05 

C. mitis 26832 26.83 33.17 39.65 43.79 47.66 

C. mitis 32003 30.67 37.27 42.88 47.42 50.14 

C. mitis 39389 23.04 28.93 34.27 37.63 41.30 

C. mitis 39390 23.17 29.47 34.78 38.71 42.06 

C. mitis 44264 26.77 32.72 39.05 43.38 46.98 

C. mitis 44268 29.30 35.34 41.37 46.42 49.43 

C. mitis 44274 27.64 33.97 40.10 44.87 48.63 

C. mitis 7088 23.59 30.07 36.02 41.91 45.49 

C. polykomos 21147 29.54 36.47 43.74 49.45 53.01 

C. polykomos 21151 32.00 39.33 46.24 51.34 56.69 

C. polykomos 21153 28.76 36.07 43.20 48.55 54.18 

C. polykomos 22356 32.08 39.10 46.31 51.74 57.17 

C. polykomos 22624 34.50 40.33 46.30 51.15 55.26 

C. polykomos 22629 32.21 39.88 45.49 49.59 54.96 

C. polykomos 22850 35.45 42.41 49.15 54.44 59.45 

C. polykomos 46368 36.69 43.50 50.32 55.57 58.97 

C. polykomos 47007 28.62 35.37 42.00 46.62 51.48 

C. torquatus 18612 29.51 37.07 44.93 51.22 55.56 

C. torquatus 19184 43.48 51.45 57.22 63.82 68.34 

C. torquatus 19982 43.01 51.47 58.93 64.48 70.17 

C. torquatus 21155 37.68 44.39 50.32 56.39 59.41 

C. torquatus 23195 35.85 43.06 46.84 55.59 58.04 

C. torquatus 25626 35.52 38.54 49.64 55.34 59.60 

C. torquatus 25630 35.36 43.71 51.07 56.90 60.94 

C. torquatus 32625 44.71 52.35 60.19 65.32 70.92 

C. torquatus 62638 33.20 40.91 47.67 54.35 59.60 

E. patas 37280 32.49 41.24 48.53 54.20 57.77 

E. patas 47015 49.97 54.91 62.59 67.16 72.63 

E. patas 47016 44.07 52.33 59.09 64.42 70.29 

E. patas 47018 25.56 32.21 39.30 44.20 48.35 

     (cont) 

  



  196 

 

TABLE 6.6 (cont). Catarrhine bN measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 

G. gorilla 14750 68.29 80.40 90.28 98.44 107.82 

G. gorilla 26850 77.89 89.98 102.01 111.01 118.11 

G. gorilla 29047 76.30 86.28 94.05 102.33 109.93 

G. gorilla 37264 76.23 88.83 100.97 110.19 118.52 

G. gorilla 38326 69.87 79.06 89.67 98.18 106.72 

G. gorilla 46325 67.53 77.65 89.02 98.34 106.56 

L. albigena 18613 30.62 36.69 42.88 48.11 52.64 

L. albigena 32194 34.78 41.17 47.07 52.60 56.82 

L. albigena 39396 34.01 40.24 46.69 51.43 56.12 

L. albigena 39402 31.62 37.56 44.19 49.34 54.10 

L. albigena 6209 33.09 40.27 45.58 50.60 54.86 

L. albigena 35937 29.26 35.39 40.65 45.17 48.68 

M. fascicularis 22277 29.38 35.88 41.70 45.84 49.54 

M. fascicularis 23812 29.43 35.67 42.24 46.14 50.11 

M. fascicularis 35938 24.88 30.92 37.38 41.59 45.85 

M. fascicularis 36030 27.29 33.83 39.97 44.54 48.49 

M. fascicularis 37565 24.94 30.81 37.71 41.40 45.32 

M. fascicularis 41167 31.07 38.09 45.16 50.24   

M. fuscata 37709 38.09 46.79 55.06 61.56 65.98 

M. fuscata 61273 43.90 53.38 61.79 68.95 73.72 

M. sylvanus 7072 40.90 48.38 52.94 58.99 62.50 

Mandrillus sp. 19986 62.83 73.14 84.61 95.16 102.45 

Mandrillus sp. 20085 58.03 68.97 81.01 90.05 95.69 

Mandrillus sp. 23168 63.79 73.35 84.16 93.07 99.92 

Mandrillus sp. 23169 57.32 69.08 79.18 86.80 93.51 

Mandrillus sp. 374089 75.37 87.61 100.39 111.11 120.01 

Mandrillus sp. 34272 36.20 47.54 58.41 67.21 72.99 

P. anubis 17342 55.47 69.58 79.75 88.25 95.29 

P. anubis 17343 74.85 88.54 96.79 105.90 113.08 

P. anubis 21160 61.06 73.15 85.73 93.09 100.56 

P. anubis 21161 64.34 75.47 86.40 94.12 101.22 

P. anubis 29786 64.45 76.56 88.56 95.98 105.56 

        (cont) 
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TABLE 6.6 (cont). Catarrhine bN measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 

P. anubis 29787 42.89 53.81 64.57 72.35 79.43 

P. anubis 29788 45.12 57.99 68.80 67.97 82.13 

P. anubis 31619 52.36 65.13 76.90 85.58 91.34 

P. anubis 8304 64.80 77.85 89.68 97.53 105.85 

P. badius 24080 28.99 35.90 42.25 46.46 50.25 

P. badius 24775 30.48 37.59 42.28 47.23 50.16 

P. badius 24793 25.58 31.20 37.53 42.30 47.02 

P. badius 25627 39.37 46.04 50.00 54.79 63.81 

P. badius 25631 28.37 34.54 40.74 45.33 50.26 

P. badius 25810 23.57 30.70 37.32 42.24 46.28 

P. badius 26552 28.21 34.75 41.32 45.28 49.24 

P. badius 26553 29.80 36.10 42.20 45.99 50.42 

P. badius 27108 36.08 42.47 48.29 53.00 56.86 

P. badius 31939 26.10 32.41 37.69 42.39 45.68 

P. hosei 35621 22.28 28.58 33.86 37.61 41.37 

P. hosei 37380 26.66 31.96 37.01 41.84 43.51 

P. hosei 37371 23.21 28.76 34.40 37.89 41.26 

P. paniscus 38019 46.56 53.06 59.03 66.04 70.35 

P. paniscus 38020 49.46 57.63 64.28 70.38 76.98 

P. rubicunda 22276 24.81 30.19 35.86 40.19 44.66 

P. rubicunda 35704 20.56 25.87 30.74 34.48 38.59 

P. rubicunda 35705 21.67 27.40 31.52 35.17 38.85 

P. rubicunda 35706 22.74 27.28 32.06 35.36 38.44 

P. rubicunda 35712 25.21 30.10 34.65 38.28 41.26 

P. rubicunda 37666 24.18 28.75 33.46 37.33 40.47 

P. troglodytes 15312 60.39 67.72 77.78 84.84 90.28 

P. troglodytes 17702 58.71 66.78 76.33 83.37 89.92 

P. troglodytes 23167 58.82 68.18 77.54 83.67 90.47 

P. troglodytes 9493 53.23 61.06 69.43 74.98 81.60 

P. troglodytes N6960 52.85 61.60 71.36 80.19 87.64 

P. troglodytes N7261 59.17 68.51 77.08 84.67 91.27 

P. troglodytes N7265 55.10 62.70 71.44 78.83 84.97 

      (cont) 
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TABLE 6.6 (cont). Catarrhine bN measurements (mm). 

Species Specimen M3 M2 M1 P4 P3 

T. cristata 35567 25.77 31.08 36.90 40.58 44.41 

T. cristata 35584 25.17 31.34 37.09 41.69 45.03 

T. cristata 35586 24.28 30.58 36.36 39.96 43.89 

T. cristata 35597 22.16 27.73 33.14 38.20 41.81 

T. cristata 35603 26.63 31.69 37.16 41.56 44.66 

T. cristata 35604 26.55 32.17 37.79 42.33 45.57 

T. cristata 35605 26.59 32.52 39.78 44.87 47.89 

T. cristata 35610 24.61 30.54 35.73 39.35 43.18 

T. cristata 35618 26.68 32.83 37.70 41.63 45.75 

T. cristata 35636 25.83 31.17 37.55 40.71 45.05 

T. cristata 35640 24.38 29.83 35.57 39.78 44.29 

T. cristata 35663 23.42 29.30 35.12 40.26 42.96 

T. cristata 35678 26.20 32.03 37.61 42.10 44.99 

T. cristata 35682 24.38 29.81 36.05 39.95 44.16 

T. cristata 35696 23.50 29.14 35.28 39.04 43.78 

T. cristata 35718 22.32 27.90 33.62 37.09 41.19 

T. cristata 37387 24.50 30.30 35.97 40.06 43.43 
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TABLE 6.7. Platyrrhine postcanine bite force curves (N). 

Species Specimen M3 M2 M1 P4 P3 P2 

A. caraya 25812 94.82 99.88 104.36 107.69 105.52 96.94 

A. caraya 28095 107.98 110.98 114.47 116.92 112.61 103.73 

A. caraya 28096 108.82 109.14 112.29 114.36 106.14 97.07 

A. caraya 28655 99.55 104.98 109.94 113.58 107.82 100.52 

A. palliata 29609 104.15 106.87 111.17 109.42 97.39 89.07 

A. palliata 29611 95.25 100.46 111.41 105.40 97.14 91.37 

A. palliata 5323 98.66 103.53 107.96 112.26 105.80 98.59 

A. palliata 5324 91.86 94.79 98.51 101.75 104.67 100.59 

A. palliata 5325 129.49 101.34 107.54 112.55 114.46 116.60 

A. palliata 5327 104.25 107.57 112.81 113.43 102.64 93.99 

A. palliata 5328 109.08 112.23 118.16 105.49 93.93 86.08 

A. palliata 5329 108.29 111.87 107.88 93.73 83.15 75.09 

A. palliata 5331 106.04 108.59 112.45 115.18 111.17 101.51 

A. palliata 6001 131.16 110.80 114.23 117.04 118.96 110.36 

Aotus 19801 123.65 122.21 122.81 118.97 108.66 97.26 

Aotus 19802 128.34 127.65 126.58 123.85 112.43 103.22 

Aotus 19805 125.94 124.07 125.04 126.11 116.86 108.66 

Aotus 27214 121.34 120.85 121.41 117.40 106.57 96.97 

Aotus 30562 124.99 123.23 124.58 125.64 119.57 108.71 

Aotus 39571 125.64 123.60 124.84 125.87 124.01 116.30 

Aotus 52608 131.32 130.60 130.82 122.93 113.01 102.95 

Aotus 8472 120.35 119.70 120.82 121.69 112.42 103.91 

Aotus B-8042 127.04 126.43 126.37 124.37 112.61 100.39 

Aotus B-8043 127.61 126.73 126.84 127.57 120.45 113.58 

Ateles 10138 133.72 131.86 131.25 130.82 127.79 120.51 

Ateles 29628 129.20 129.17 129.47 124.47 115.11 105.09 

Ateles 34322 126.98 127.06 125.88 128.33 129.15 124.35 

Ateles 5336 71.76   105.71 99.04 94.02 87.73 

Ateles 5338 126.19 127.23 127.49 128.88 127.32   

Ateles 5344 129.26 129.15 129.58 130.07 130.61 123.29 

Ateles 5345 122.30 121.98 122.37 122.83 123.40 114.97 

Ateles 5346 123.06 122.60 122.98 123.87 124.64 113.94 

Ateles 5350 123.92 124.73 125.66 126.65 125.15 116.18 

  (cont) 

  



  200 

 

TABLE 6.7 (cont). Platyrrhine postcanine bite force curves (N). 

Species Specimen M3 M2 M1 P4 P3 P2 

Ateles 5351 121.99 121.27 123.38 123.22 124.21 118.99 

Ateles 5352 120.76 120.94 121.46 122.03 122.71 114.73 

Ateles 5353 125.19 125.23 125.85 126.37 126.40 117.34 

Ateles 5354 129.66 129.44 130.33 131.33 126.88 117.86 

Ateles 5355 117.93 117.96 119.04 119.73 120.90 116.18 

C. apella 30162 123.09 123.12 123.92 125.50 118.30 110.30 

C. apella 30166 123.20 122.62 122.68 124.28 110.81 102.81 

C. apella 30724 135.32 131.76 129.34 127.58 117.51 107.65 

C. apella 30726 131.08 128.13 127.98 122.02 112.35 99.57 

C. apella 31064 125.69 125.16 123.54 125.06 118.63 109.35 

C. apella 31072 130.16 128.78 128.79 124.39 114.74 103.75 

C. apella 32049 131.87 127.54 124.85 125.53 116.32 106.25 

C. apella 37831 131.67 128.92 128.07 129.20 120.23 111.89 

C. apella 49635 135.12 130.53 130.55 130.21 120.20 108.19 

C. capucinus 10135 127.00 124.93 124.70 125.41 114.27 106.87 

C. capucinus 10136 137.33 134.90 131.69 131.70 119.64 112.22 

C. capucinus 34323 125.98 124.42 124.01 124.17 124.10 115.84 

C. capucinus 34326 134.44 132.13 130.77 131.16 122.22 112.01 

C. capucinus 34353 127.22 126.50 127.21 127.44 119.01 105.83 

C. capucinus 5332 132.21 130.27 129.10 129.65 125.68 112.92 

C. capucinus 7317 139.78 134.69 133.15 133.00 128.96 119.15 

C. capucinus 7322 134.45 131.14 129.90 127.95 116.32 105.39 

C. capucinus 7323 132.64 130.77 130.50 129.15 119.91   

Cacajao 27870 93.06 122.92 112.32 101.08 96.28 89.13 

Callicebus 20186 125.90 124.88 126.13 127.75 117.20 110.73 

Callicebus 20188 127.20 126.53 126.67 128.02 122.65 114.26 

Callicebus 26922 126.68 126.30 127.44 129.57 122.71 114.18 

Callicebus 30559 133.57 130.48 131.64 132.37 126.50 117.24 

Callicebus 30564 128.03 126.41 127.29 126.86 114.15 106.44 

Callicebus 30566 124.85 125.10 125.83 122.79 111.12 102.23 

Callicebus 32380 126.95 126.80 127.51 128.77 123.02 115.75 

Callicebus 32383 119.88 120.11 121.59 122.96 121.47 110.53 

  (cont) 
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TABLE 6.7 (cont). Platyrrhine postcanine bite force curves (N). 

Species Specimen M3 M2 M1 P4 P3 P2 

Callicebus 37828 118.59 119.40 120.78 122.91 113.45 102.50 

Callicebus 39073 124.49 123.62 124.28 125.45 116.11 108.96 

Callicebus 39563 123.24 122.67 124.46 122.78 113.14   

Callithrix sp. 7165 n/a 129.81 129.60 131.76 132.51 132.69 

Callithrix sp. 30580 n/a 123.86 122.92 123.90 124.59 123.74 

Callithrix sp. 30582 n/a 127.34 125.51 125.90 126.39 125.38 

Callithrix sp. 30583 n/a 127.58 126.15 126.92 127.24 126.91 

Callithrix sp. 32164 n/a 121.47 120.70 121.29 122.09 121.91 

Callithrix sp. 32165 n/a 122.72 122.29 122.88 123.80 123.51 

Callithrix sp. 34573 n/a 122.90 122.52 122.84 123.17 123.14 

Callithrix sp. 30577 n/a 117.92 118.02 118.95 120.09 118.24 

Callithrix sp. 30586 n/a 127.72 127.10 127.35 128.28 127.10 

Callithrix sp. 30603 n/a 129.04 128.72 129.19 129.38 128.75 

Callithrix sp. 37826 n/a 122.20 120.81 121.33 121.21 121.14 

Callithrix sp. 37823 n/a 127.30 125.97 126.60 126.64 121.93 

Callithrix sp. 440 n/a 133.52 129.88 131.49 132.32 121.00 

Chiropotes 31701 126.64 126.37 126.96 127.35 124.07 113.70 

Chiropotes 6028 137.54 133.34 132.45 132.08 132.77 123.50 

Pithecia sp. 27124 132.60 131.47 131.25 131.70 131.91 123.86 

Pithecia sp. 30720 130.37 129.78 129.26 129.97 127.78 119.92 

Pithecia sp. 30719 125.16 124.71 125.56 126.20 127.01 124.14 

Pithecia sp. 31061 136.67 135.78 134.95 133.58 127.26 118.39 

Saguinus 15324 n/a 134.59 131.70 132.05 131.92 125.31 

Saguinus 27331 n/a 119.11 118.32 119.90 120.63 120.98 

Saguinus 30579 n/a 121.20 120.22 121.16 121.85 121.55 

Saguinus 30601 n/a 124.27 124.15 124.53 125.11 124.77 

Saguinus 41567 n/a 130.06 128.01 128.99 128.97 128.92 

Saguinus 41568 n/a 120.31 119.10 119.83 120.56 119.82 

Saguinus 52557 n/a 127.89 126.44 126.69 126.80 126.17 

Saguinus 52558 n/a 124.14 123.57 124.09 124.94 124.61 

Saguinus 52616 n/a 126.94 126.05 126.91 127.72 126.88 

Saimiri sp. 29488 138.20 134.69 134.85 130.89 119.54 110.76 

Saimiri sp. 30568 123.91 120.87 121.63 121.29 110.58 102.25 

Saimiri sp. 30569 123.69 122.44 123.28 125.06 124.91 114.72 

Saimiri sp. 20187 130.80 128.19 128.63 129.72 128.60 118.09 
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TABLE 6.8. Catarrhine postcanine bite force curves (N). 

Species Specimen M3 M2 M1 P4 P3 

C. mitis 22734 129.03 125.78 125.70 120.02 111.30 

C. mitis 26832 124.99 123.54 124.20 121.12 110.75 

C. mitis 32003 127.38 126.11 125.79 126.52 120.93 

C. mitis 39389 132.84 129.15 128.05 123.51 111.56 

C. mitis 39390 127.31 124.95 125.49 120.08 109.64 

C. mitis 44264 127.46 126.04 126.21 118.66 108.86 

C. mitis 44268 124.10 123.72 124.61 123.69 115.35 

C. mitis 44274 112.67 114.23 116.13 114.36 104.43 

C. mitis 7088 132.33 128.41 127.59 112.96 102.50 

C. polykomos 21153 132.55 130.45 130.53 115.90 103.61 

C. polykomos 22356 131.98 130.57 130.49 121.78 110.29 

C. polykomos 22624 119.10 118.91 120.36 122.62 113.70 

C. polykomos 22629 123.42 123.28 124.62 125.01 110.92 

C. polykomos 46368 123.41 123.05 123.31 123.93 119.10 

C. polykomos 47007 133.76 130.92 130.37 120.76 108.96 

C. torquatus 19184 117.13 120.38 124.13 119.19 109.76 

C. torquatus 19982 130.21 129.75 131.34 120.20 111.73 

C. torquatus 21155 123.29 124.20 125.17 124.42 116.90 

C. torquatus 25626 123.61 120.86 125.03 120.69 110.93 

C. torquatus 25630 129.86 129.46 128.94 118.00 108.66 

C. torquatus 32625 120.78 121.88 124.90 124.59 114.74 

C. torquatus 62638 120.60 122.32 124.20 112.67 102.82 

E. patas 37280 138.64 134.37 133.67 122.82 114.53 

E. patas 47015 125.81 125.48 125.41 125.63 125.72 

E. patas 47016 136.50 135.16 135.10 135.74 125.37 

E. patas 47018 142.07 133.14 131.39 122.89 111.24 

G. gorilla 14750 96.98 103.68 108.64 108.45 101.19 

G. gorilla 26850 101.40 107.82 113.22 108.77 102.62 

G. gorilla 29047 83.49 91.97 103.39 104.36 97.95 

G. gorilla 37264 103.22 108.68 113.12 114.73 107.19 

G. gorilla 38326 88.77 96.34 103.66 101.22 93.97 

G. gorilla 46325 89.44 96.17 104.87 101.60 94.66 

L. albigena 18613 121.39 122.70 125.06 115.75 107.65 

L. albigena 32194 121.23 124.16 126.15 119.35 111.36 

L. albigena 39396 120.37 121.31 122.73 122.57 112.39 

        (cont) 
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TABLE 6.8 (cont). Catarrhine postcanine bite force curves (N). 

Species Specimen M3 M2 M1 P4 P3 

L. albigena 39402 107.31 110.79 114.38 109.81 100.61 

L. albigena 6209 129.23 126.33 126.46 127.78 120.59 

L. albigena 35937 117.33 120.13 122.57 120.15 110.91 

M. fascicularis 22277 122.63 124.35 126.84 118.64 109.99 

M. fascicularis 23812 143.70 141.61 133.56 121.51 111.31 

M. fascicularis 35938 122.03 121.06 121.87 115.79 104.14 

M. fascicularis 36030 122.28 122.14 122.81 121.25 110.55 

M. fascicularis 37565 130.15 128.82 129.63 118.57 107.81 

M. fascicularis 41167 116.60 114.99 114.41 114.51  

M. fuscata 37709 127.42 126.49 127.07 119.00 110.05 

M. fuscata 61273 116.20 118.21 120.19 118.02 108.74 

M. sylvanus 7072 117.40 121.40 123.17 123.11 118.22 

Mandrillus sp. 19986 117.37 118.88 119.62 120.46 117.32 

Mandrillus sp. 20085 123.72 124.51 125.00 123.14 115.23 

Mandrillus sp. 23168 121.52 122.09 122.26 122.30 122.73 

Mandrillus sp. 23169 123.54 123.92 124.80 124.81 118.19 

Mandrillus sp. 374089 128.52 127.54 126.42 126.24 125.53 

P. anubis 17342 128.29 127.61 127.75 123.68 115.88 

P. anubis 17343 124.61 126.26 127.11 120.76 111.29 

P. anubis 21160 131.93 132.00 132.56 127.23 118.28 

P. anubis 21161 127.83 128.02 129.52 129.66 123.44 

P. anubis 29786 125.14 124.58 125.16 125.45 121.14 

P. anubis 29787 132.62 131.22 130.64 117.48 107.50 

P. anubis 29788 133.70 130.28 128.64 129.20 112.67 

P. anubis 31619 132.14 131.56 130.11 117.15 109.52 

P. anubis 8304 128.40 128.71 128.62 128.85 120.15 

P. badius 24080 126.28 124.18 124.69 120.13 110.28 

P. badius 24775 132.69 129.41 130.47 127.25 118.21 

P. badius 24793 135.02 131.17 131.92 117.05 105.06 

P. badius 25627 122.68 122.07 122.28 122.53 114.51 

P. badius 25631 136.17 133.80 133.05 125.10 115.57 

P. badius 25810 130.07 126.46 125.84 113.35 102.73 

P. badius 26552 128.48 126.99 127.35 121.72 111.52 

P. badius 26553 122.74 123.60 125.62 117.71 107.67 

P. badius 27108 115.69 118.07 120.46 122.40 115.69 

        (cont) 
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TABLE 6.8 (cont). Catarrhine postcanine bite force curves (N). 

Species Specimen M3 M2 M1 P4 P3 

P. badius 31939 130.25 127.92 127.59 121.55 113.20 

P. hosei 35621 152.35 143.30 137.44 122.66 110.89 

P. hosei 37380 136.33 132.57 131.67 130.42 124.54 

P. hosei 37371 140.30 137.84 134.94 122.70 112.60 

P. paniscus 38020 110.37 113.30 114.80 117.76 116.28 

P. rubicunda 22276 142.50 137.94 136.16 126.55 114.24 

P. rubicunda 35704 134.62 133.31 130.37 117.09 104.00 

P. rubicunda 35705 147.69 141.30 139.53 125.05 113.20 

P. rubicunda 35706 139.30 136.53 135.61 128.31 117.27 

P. rubicunda 35712 141.61 138.23 136.03 134.44 124.45 

P. rubicunda 37666 147.77 141.71 139.94 133.49 122.06 

P. troglodytes 15312 110.29 112.16 115.24 118.09 115.66 

P. troglodytes 17702 104.74 108.99 111.45 114.62 113.58 

P. troglodytes 23167 109.15 112.10 116.04 118.27 114.24 

P. troglodytes 9493 103.89 108.63 113.33 115.47 105.65 

P. troglodytes N6960 120.39 122.57 122.39 120.77 114.03 

P. troglodytes N7261 100.52 104.02 108.38 111.63 113.58 

P. troglodytes N7265 108.20 110.77 113.75 116.59 114.24 

T. cristata 35567 136.85 132.11 132.41 127.23 115.60 

T. cristata 35584 129.49 123.88 127.28 118.92 108.69 

T. cristata 35586 121.30 118.30 117.17 118.33 109.78 

T. cristata 35597 133.26 130.22 130.65 117.63 107.19 

T. cristata 35603 143.26 140.08 138.82 127.11 116.87 

T. cristata 35604 136.62 134.62 133.85 124.64 114.65 

T. cristata 35605 136.87 134.43 132.56 117.64 108.95 

T. cristata 35610 137.89 133.91 134.09 123.08 111.05 

T. cristata 35618 134.79 132.45 133.14 123.55 112.78 

T. cristata 35636 137.04 132.76 131.48 128.35 116.54 

T. cristata 35640 133.61 131.09 130.83 122.40 107.90 

T. cristata 35663 147.15 139.68 137.97 120.79 111.90 

T. cristata 35678 134.25 130.07 129.45 123.67 114.17 

T. cristata 35682 139.15 134.34 133.09 125.07 112.47 

T. cristata 35696 148.80 143.11 133.77 119.03 105.99 

T. cristata 35718 145.46 139.19 136.19 122.01 109.84 

T. cristata 37387 133.28 129.21 128.88 118.71 108.86 
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Bite force curves were calculated based on Spencer’s (1995) lever model.  

The constrained lever model predicts that bite forces will increase in Region I, the 

anterior portion of the mouth, but will plateau and remain constant throughout 

Region II, located just posterior to Region I.  The leveling-out of bite forces in 

Region II is due to a constraint within the masticatory system that protects the 

TMJ from dislocation due to tensile loading.  Furthermore, Spencer (1995) 

observed that raising the TMJ above the occlusal plane (the configuration shared 

by anthropoid primates) will affect the bite force curve such that forces in Region 

II may decrease distally (model predictions summarized in Table 6.9).  Thus, bite 

force curves in this study were expected to increase in Region I, then flatten or 

decrease in Region II.  While bite forces were calculated for every bite point 

along the tooth row, only postcanine tooth data were used in the current analysis 

(see Tables 6.7 and 6.8 [above] for playtrrhine and catarrhine bite force curves, 

respectively). 

Calculated bite force patterns are variable both within and among species.  

Because bite forces were calculated using an arbitrary constant for muscle force 

(see discussion in Chapter 3), it is not appropriate to compare force values 

between specimens or species.  However, the pattern of force distribution can be 

compared.  To more clearly see the pattern of force along the tooth row, a 

representative specimen from each species was graphed along with 

representatives of closely-related species (Figures 6.1 to 6.4, below).   
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 TABLE 6.9. Lever model predictions for Regions I and II. 

 Region I Region II 

 

Bite force 

magnitude Why? 

Bite force 

magnitude Why? 

Simple 

lever model increase 

Reduction 

in b, bite 

force 

moment 

arm length increase 

Reduction 

in b, bite 

force 

moment 

arm length 

Constrained 

lever model increase 

Reduction 

in b, bite 

force 

moment 

arm length plateau 

Reduction 

in M, 

muscle 

force 

Spencer 

model increase 

Reduction 

in b, bite 

force 

moment 

arm length 

plateau or 

decrease 

Reduction 

in M, 

muscle 

force and a 

raised 

TMJ 
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 Across anthropoids, there are three typical patterns of bite force on the 

postcanine tooth row.  First, bite forces increase on the premolars and then level-

off on the molars (as in P. anubis, Figure 6.4).  Alternately, bite forces may 

increase on the premolars and then decrease on the molars (as in A. caraya, Figure 

6.1).  Finally, bite forces increase on the premolars, and then continue to increase 

throughout the molar row at a slower relative rate (as in P. rubicunda, Figure 6.3).  

In addition to the three patterns just described, two specimens have bite force 

curves that show a sharp increase in bite force on M3 (as in A. palliata 5325, 

Figures 6.5 and 6.6).  While bite force patterns within a species are generally 

similar, some species, particularly A. palliata (see Figure 6.5), contain a variety of 

bite force curve patterns, underscoring the effect of individual variation on the 

ability of the masticatory system to produce high-magnitude bite forces along the 

tooth row.   
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      Fig. 6.1. Bite force curves for Callithrix and Saguinus (top) and for A. caraya  

      and A. geoffroyi (bottom).  
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      Fig. 6.2. Bite force curves for the subfamily Cebinae. 
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      Fig. 6.3. Bite force curves for C. mitis and E. patas (top) and for colobine  

      monkeys (bottom). 
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Fig. 6.4. Bite force curves for African papionins (top) and hominoids (bottom). 
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      Fig. 6.5. Bite force curves for five A. palliata individuals.   
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Bite force patterns: Discussion 

While many bite force curves calculated for the current study reflect 

steady or decreasing bite forces in Region II, many also indicate that bite forces 

continually increase as the bite point moves distally, even when considering the 

constraints in Region II that protect the TMJ from dislocation (Tables 6.7 and 6.8; 

Figures 6.1-6.5).  While some patterns fell outside of specified model predictions, 

all patterns are consistent with Spencer’s (1995) model in that changes in TMJ 

height, muscle resultant inclination, and muscle force production along the tooth 

row are incorporated into bite force curve estimations.  The varying patterns of 

bite force curves seen in the current study are a result of the incredible amount of 

craniofacial variation seen among anthropoid primates.   

Recall from equation (5) that the major variables affecting bite force are 

muscle resultant force, M, muscle resultant moment arm, m, and bite force 

moment arm, b.  For all models of feeding mechanics discussed in the current 

study, M is predicted to be at a constant, maximum magnitude throughout Region 

I.  Consequently, the predicted increase in bite force in Region I is a result of a 

decrease in b relative to m.  In other words, the continual decrease of the bite 

force moment arm as the bite point moves posteriorly along the tooth row is the 

driving factor behind the increases in bite force typical of Region I. 

In Region II, bite force moment arm continues to decrease, but balancing-

side muscle force also decreases to shift the muscle resultant laterally and protect 

the TMJ from dislocation.  If the decrease in muscle force cannot counteract the 

effect of the increasing muscle resultant moment arm (caused by an 
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anterosuperiorly inclined muscle resultant, discussed in Chapter 2) and decreasing 

bite force moment arm, both of which are changing in ways that result in 

increasing bite force, maximum bite force magnitude will continue to increase 

throughout Region II, albeit at a slower rate than in Region I, producing a bite 

force curve like the ones seen in the examples from C. mitis and P. rubicunda in 

Figure 6.3.  

As mentioned above, the bite force curve of A. palliata 5325 (Figure 6.6) 

differs from the more typical patterns observed in the current study.  Bite force 

increases posteriorly in Region I, a pattern shared among all primates included in 

the current study and predicted by all models of feeding mechanics.  For A. 

palliata 5325, Region II begins with P2 and shows a decline in bite forces until 

M2, which is due to the decrease in the b-s muscle force required to keep joint 

integrity in this region.   

However, bite force on M3 is dramatically increased relative to M2 (or 

indeed any tooth), counter to model predictions.  Examination of the calculations 

involved in estimating bite force reveals that the increase in bite force on M3 in A. 

palliata 5325 is due to a calculated increase in b-s muscle force on this bite point.  

The increase in b-s muscle force is due to a large decrease in muscle resultant 

moment arm at M3 that in turn affects the calculation of the amount of lateral 

shifting necessary to maintain the muscle resultant within the triangle of support 

(Equation 12, discussed in Chapter 3).  In essence, the decrease in m mimics a 

posteriorly-positioned muscle resultant that requires relatively less lateral shifting 
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to remain inside the triangle of support, resulting in a calculated increase in bite 

force on M3.   

 

 

 
 

Fig. 6.6. A. palliata 5325 bite force curve.  See text for details. 
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muscle force is actually decreasing posteriorly due to the safety considerations 

proposed by Greaves (1978) and Spencer (1995), and that the high bite force 

calculated for M3 in this instance is the result of mathematical idiosyncrasy. 

One way to combat the effect of the disjunct between the model of feeding 

mechanics and actual loading parameters is to refine how muscle force is 

approximated.  In Greaves’ (1978) model, b-s muscle force decreases to shift the 

muscle resultant laterally while w-s muscles continue firing at maximum 

magnitudes.  However, experimental studies using EMG show that muscle 

recruitment patterns during mastication in primates is extremely complex.  

Working- and balancing-side muscles fire asynchronously throughout 

mastication, and even muscles on the same side vary in when and at what 

magnitude they fire (Hylander et al., 1992, 2005; Hylander and Johnson, 1994; 

Spencer, 1995).  Furthermore, research has shown that muscle recruitment 

patterns are different for humans, macaques and baboons, owl monkeys, ring-

tailed lemurs, and fat-tailed galagos (Hylander et al., 1994, 2005), suggesting that 

an evolutionary change in muscular recruitment pattern during mastication has 

occurred in these species in addition to changes in craniofacial form over time.   

Experimental studies have shown that both working- and balancing-side 

muscles vary in activity throughout mastication (Hylander et al., 1987), 

suggesting that the simple decrease in balancing- to working-side force ratio 

suggested by Greaves obscures the complexity of actual masticatory muscle force 

output patterns.  Since physiological cross-sectional area (PCSA) is an indicator 

of the magnitude of force a muscle can produce (discussed in Chapter 3), knowing 
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the PCSA of the anterior temporalis, superficial masseter, and medial pterygoid 

muscles for a species would allow each muscle to be weighted in terms of how 

much it can contribute to total muscle force.  Currently, these data are sparse and 

confined to a limited number of primate species; research on PCSA in a variety of 

primate species is necessary to supply to data required to estimate actual muscle 

forces during primate mastication (cf. Perry et al., 2011).   

Calculated bite force curves for primates in this study display a variety of 

patterns, especially at distal bite points.  Bite force increases throughout Region I 

for all species, but force patterns in Region II vary both within and among 

species.  In Region II, calculated bite forces may increase, plateau, or decrease, 

without violating the constraints of Spencer’s (1995) model, depending on the 

exact spatial configuration of the masticatory muscles, TMJs, the gnathic skeleton 

and the teeth.   

Muscle resultant position revisited 

As discussed in Chapter 3, the horizontal distance from the TMJs to M3 in 

the occlusal plane (bH M3) is used in the current study as a proxy for muscle 

resultant position (mH) despite the fact that its actual position is likely more 

posterior in the mouth.  To assess whether data in the current study support a 

more anterior muscle resultant position (as assumed by Greaves) or a more 

posterior muscle resultant position (as found by comparative analyses, Spencer, 

1995; Perry et al., 2011), muscle resultant position was estimated for each 

specimen in the sample using data from landmark coordinates in conjunction with 

MacMorph software (Spencer and Spencer, 1993) and compared to bH M3. 
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To calculate muscle resultant position, the angle of each masticatory 

adductor (superficial masseter, anterior temporalis, and medial pterygoid) was 

calculated as described in Chapter 3.  Next, the horizontal distance from the TMJ 

to the muscle insertion centroid in the occlusal plane (hMI) was calculated from 

measurements taken in MacMorph (Figure 6.7).  Then, the distance from the 

muscle insertion centroid to the occlusal plane (vMI) was measured.  Using the 

muscle resultant angle at the occlusal plane (θ, calculated in Chapter 3), it is 

possible to determine the distance between the muscle insertion centroid and the 

intersection of the muscle vector and the occlusal plane (z) using the equation 

   
   
    

 

(16) 

To find mH for each muscle, z is added to hMI, and the values for each muscle are 

averaged for a single muscle resultant position.  Finally, mH was divided by bH 

M3, and the resulting ratios were compared. 

 Results indicate that the calculated muscle resultant in anthropoids is 

positioned significantly posterior to M3 (p < 0.001; MWU-test), as has been 

suggested by other studies (Spencer, 1995; Perry et al., 2011).  Additionally, the 

mH/bH M3 ratio for platyrrhines is significantly larger than in catarrhines (p < 

0.001; MWU-test).  In other words, the muscle resultant position in platyrrhines is 

more anterior relative to catarrhines, which indicates that Region II is shifted 

anteriorly (or that the buffer zone is smaller) in the former relative to the latter.  

An anterior shift of Region II requires b-s muscle force to be reduced at more 
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anterior bite points, suppressing maximum bite force magnitudes while protecting 

the TMJ; in addition, an anterior movement of Region II would result in the 

concentration of the highest achievable bite forces at its anterior end.  The 

reduction in the distance between the distal-most tooth and the muscle resultant in 

platyrrhines may be a result of the facial orthagnathy characteristic of cebids and 

callitrichids. 

Shifting the tooth row posteriorly relative to the TMJ has been interpreted 

as an adaptation for increasing bite force throughout primate evolution, because 

this configurational shift reduces the length of the bite force moment arm relative 

to the muscle resultant moment arm.  An anterio-posteriorly shortened face has 

been observed in many extant primate species that consume hard and/or tough 

foods (i.e., C. apella), and is a distinguishing feature of the extinct paranthropines, 

who are typically reconstructed consuming a mechanically resistant diet.  

However, when accounting for all of the parameters that influence bite force, 

including raising the TMJ above the occlusal plane and inclining the muscle 

resultant, it becomes apparent that a-p shortening of the face (and thus shortening 

the bite force moment arm) will also impact how and where muscle force is 

distributed along the tooth row such that muscle force begins to decrease at 

relatively anterior bite points to protect TMJ integrity.  It is suggested that there is 

a limit to the extent to which bite forces can be increased with facial shortening in 

primates due to the safety features in place to protect the TMJ from dislocation.  
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Fig. 6.7. Finding mH.  MC = the length between the muscle origin and 

insertion centroids.  vMI = the vertical distance from the muscle insertion 

centroid to the occlusal plane.  hMI = the horizontal distance from the TMJ 

to the muscle insertion centroid in the occlusal plane.  z = the distance 

from the muscle insertion centroid to the muscle vector/occlusal plane 

intersection in the occlusal plane. θ = the angle of the muscle resultant 

force vector at the occlusal plane (calculated in Chapter 3). 

 

Hypotheses 2 and 3: Results 

 

Results indicate that among anthropoids, estimated bite force curves have 

a variety of shapes; estimated force increases in Region I for all taxa, but 

estimated forces in Region II are more diverse (either increasing, staying the 

same, or decreasing).  Hypotheses 2 and 3 predict that, regardless of the shape of 

the bite force curve, root surface area and cervical margin surface area should 

correlate significantly with predicted force along the tooth row.  Root surface area 

(RSA), cervical margin surface area (CMSA), and bite force magnitudes (BFC) 
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were ranked highest to lowest along the tooth row for all postcanine teeth.  RSA 

and CMSA were each compared to BFC separately.  Results are summarized in 

Tables 6.10 (RSA) and 6.11 (CMSA).  For each species there is a correlation 

coefficient, which indicates the magnitude and direction of the correlation 

between bite force and root size or bite force and crown size.  It was expected that 

the tooth with the largest RSA (Hypothesis 2) and the largest CMSA (Hypothesis 

3) should also have the highest calculated bite force (BFC) relative to other 

postcanine teeth.   
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TABLE 6.10. Kendall’s τ results, Part II: Root size and bite force 

Subfamily Species N 

a
correlation 

coefficient 

b
p-

value 

Callithrichidae 

Callithrix sp. 

M = 7 

-0.40 *** F = 7 

Saguinus sp. 

M = 5 

-0.13 ns F = 5 

Cebinae 

Aotus trivirgatus 

M = 1 

0.27 ** F = 7 

Cebus apella 

M = 5 

-0.50 *** F = 9 

Cebus capucinus 

M = 2 

-0.46 *** F = 7 

Saimiri sp. 

M = 4 

-0.43 *** F = 2 

Pitheciinae 

Callicebus moloch 

M = 10 

0.38 *** F = 0 

Pithecia sp. 

M = 3 

-0.10 ns F = 3 

Atelinae 

Alouatta caraya 

M = 1 

0.19 ns F = 3 

Alouatta palliata 

M = 0 

0.24 ** F = 10 

Ateles geoffroyi 

M = 0 

0.22 ** F = 17 

Colobinae 

Presbytis hosei 

M = 1 

0.32 ns F = 4 

Presbytis rubicunda 

M = 4 

0.36 * F = 4 

Trachypithecus cristata 

M = 0 

0.42 *** F = 14 

(cont) 
a
Correlation coefficient.  The sign of the number indicates a positive or negative      

  correlation. 
b
p-values.  *** = p < 0.001, ** = p < 0.01, * = p < 0.05, ns = not significant. 
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TABLE 6.10 (cont). Kendall’s τ results, Part II: Root size and bite force 

Subfamily Species N 

a
correlation 

coefficient 

b
p-

value 

Colobinae 

Colobus polykomos 

M = 1 

0.40 ** F = 5 

Piliocolobus badius 

M = 4 

0.57 *** F = 5 

Cercopithecinae 

Macaca fascicularis 

M = 1 

0.64 *** F = 6 

Macaca fuscata 

M = 1 

0.50 ns F = 1 

Lophocebus albigena 

M = 5 

0.39 * F = 1 

Cercocebus torquatus 

M = 2 

0.38 ns F = 1 

Papio anubis 

M = 3 

0.67 ** F = 2 

Mandrillus sp. 

M = 5 

0.18 ns F = 1 

Cercopithecus mitis 

M = 0 

0.48 *** F = 12 

Erythrocebus patas 

M = 3 

0.41 * F = 1 

Homininae 

Pan paniscus 

M = 0 

-0.23 ns F = 3 

Pan  troglodytes 

M = 0 

0.12 ns F = 13 

Gorilla gorilla 

M = 0 

0.33 ns F = 5 

Total N:    216     
a
Correlation coefficient.  The sign of the number indicates a positive or negative      

  correlation. 
b
p-values.  *** = p < 0.001, ** = p < 0.01, * = p < 0.05, ns = not significant. 
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The pattern of correlation between bite force and root size among 

platyrrhines is complex.  A. palliata, A. trivirgatus, A. geoffroyi, and C. moloch all 

show a moderate, statistically significant positive correlation between bite force 

and root size, as predicted by Hypothesis 2.  However, Callithrix sp., C. apella, C. 

capucinus, and Saimiri sp. all show strong significant negative correlations 

between bite force and root size.  In other words, for these four taxa, an increase 

in bite force magnitude correlates with a decrease in tooth root size.  There is no 

significant relationship between RSA and BFC in A. caraya, Pithecia sp., and 

Saguinus sp. 

Among catarrhines, L. albigena, C. mitis, P. badius, C. polykomos, E. 

patas, M. fascicularis, P. anubis, P. rubicunda, and T. cristata all show a 

significant positive correlation between bite force and root size, as predicted by 

Hypothesis 2.  However, for C. torquatus, G. gorilla, M. fuscata, Mandrillus, P. 

paniscus, P. troglodytes, and P. hosei there is no significant correlation between 

bite force and root size. 
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TABLE 6.11. Kendall’s τ results, Part II: Cervical margin surface area and bite 

force 

Subfamily Species N 

a
correlation 

coefficient 

b
p-

value 

Callithrichidae 

Callithrix sp. 

M = 7 

-0.29 ** F = 7 

Saguinus sp. 

M = 5 

-0.29 * F = 5 

Cebinae 

Aotus trivirgatus 

M = 1 

0.30 ** F = 7 

Cebus apella 

M = 5 

-0.09 ns F = 9 

Cebus capucinus 

M = 2 

-0.26 * F = 7 

Saimiri sp. 

M = 4 

-0.26 ns F = 2 

Pitheciinae 

Callicebus moloch 

M = 10 

0.46 *** F = 0 

Pithecia sp. 

M = 3 

0.26 ns F = 3 

Atelinae 

Alouatta caraya 

M = 1 

0.16 ns F = 3 

Alouatta palliata 

M = 0 

0.32 ** F = 10 

Ateles geoffroyi 

M = 0 

0.25 ** F = 17 

Colobinae 

Presbytis hosei 

M = 1 

0.67 ** F = 4 

Presbytis rubicunda 

M = 4 

0.52 ** F = 4 

Trachypithecus cristata 

M = 0 

0.58 *** F = 14 

(cont) 
    a

Correlation coefficient.  The sign of the number indicates a positive or negative      

    correlation. 
    b

p-values.  *** = p < 0.001, ** = p < 0.01, * = p < 0.05, ns = not significant. 
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TABLE 6.11 (cont). Kendall’s τ results, Part II: Cervical margin surface area and 

bite force 

Subfamily Species N 

a
correlation 

coefficient 

b
p-

value 

Colobinae 

Colobus polykomos 

M = 1 

0.30 ns F = 5 

Piliocolobus badius 

M = 4 

0.60 *** F = 5 

Cercopithecinae 

Macaca fascicularis 

M = 1 

0.61 *** F = 6 

Macaca fuscata 

M = 1 

0.50 ns F = 1 

Lophocebus albigena 

M = 5 

0.39 * F = 1 

Cercocebus torquatus 

M = 2 

0.38 ns F = 1 

Papio anubis 

M = 3 

0.67 ** F = 2 

Mandrillus sp. 

M = 5 

0.21 ns F = 1 

Cercopithecus mitis 

M = 0 

0.51 *** F = 12 

Erythrocebus patas 

M = 3 

0.41 * F = 1 

Homininae 

Pan paniscus 

M = 0 

-0.28 ns F = 3 

Pan  troglodytes 

M = 0 

-0.28 * F = 13 

Gorilla gorilla 

M = 0 

0.10 ns F = 5 

Total N:    216     
  a

Correlation coefficient.  The sign of the number indicates a positive or negative      

   correlation. 
  b

p-values.  *** = p < 0.001, ** = p < 0.01, * = p < 0.05, ns = not significant. 
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When comparing bite force to crown size among platyrrhines, the patterns 

are similar to comparisons with root size, though not the magnitude of the 

correlation.  Among A. palliata, A. trivirgatus, A. geoffroyi and C. moloch, there 

was a moderate, statistically significant positive correlation between bite force 

and crown size as predicted by Hypothesis 3.  Furthermore, for A. palliata, A. 

trivirgatus, A. geoffroyi and C. moloch, the correlation coefficient is higher for 

analyses of crown size relative to analyses of root size, indicating a slightly 

stronger tie between bite force and crown size than bite force and root size for 

these species.  Callithrix sp., C. capucinus, and Saguinus sp. all have significant, 

negative correlations between bite force and crown size.  Interestingly, the 

correlation coefficients show a much weaker relationship between bite force and 

crown size than bite force and root size in Callithrix sp., C. capucinus, and 

Saguinus sp. 

When BFC is compared to CMSA in catarrhines, overall patterns are 

similar to comparisons with RSA.  L. albigena, C. mitis, P. badius, M. 

fascicularis, P. anubis, P. hosei, P. rubicunda, and T. cristata all showed 

significant positive correlations between BFC and CMSA as predicted by 

Hypothesis 3, and in all cases except for M. fascicularis, the correlation 

coefficient increased relative to the comparison between BFC and RSA.  C. 

torquatus, C. polykomos, E. patas, G. gorilla, M. fuscata, Mandrillus, and P. 

paniscus all show no significant correlation between BFC and CMSA.  P. 

troglodytes has a statistically significant, weak negative correlation between BFC 

and CMSA. 
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Hypotheses 2 and 3: Discussion 

 The purpose of Part II of the current study was to determine the extent to 

which tooth size (root and crown size) correlates with bite force magnitude along 

the tooth row.  Although tooth root and crown size are assessed in separate 

analyses, results are similar for both; consequently, the discussion and figures for 

this section will feature analyses of root surface area with the understanding that 

conclusions are the same for both root and crown size unless otherwise indicated.  

Among platyrrhines, four species show a significant, positive correlation between 

root size and bite force magnitude, four species show a significant, negative 

correlation between root size and bite force magnitude, and three species show no 

significant relationship between bite force magnitude and root size.  Among 

catarrhines, nine species show significant, positive correlations between root size 

and bite force magnitude, and seven show no significant relationship between the 

two.  Additionally, P. troglodytes has a significant, negative correlation between 

CMSA and BFC. 

About one half (13 of 27) of the anthropoid species examined in the 

current study show a significant, positive correlation between root/crown size and 

BFC as predicted by Hypotheses 2 and 3.  Ten species show no significant 

relationship between root/crown size and BFC, although restricted sample sizes 

may account for the failure of some species to achieve significance even when 

their correlation coefficients are positive and relatively high (e.g., M. fuscata).  

Furthermore, four species of platyrrhine show significant, negative correlations 

between RSA and BFC, opposite predictions.   
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The negative correlation seen among callitrichids and cebids is due to 

slight variation in estimted molar bite forces combined with molars that 

dramatically decrease in size distally.  Because data were analyzed using rank 

correlations, the magnitude of the difference in calculated force had no effect on 

the outcome.  Consequently, if M1 has a calculated bite force of 125.02 N and M2 

has a calculated bite force of 125.15 N, then M2 bite force is ranked more highly 

than M1 bite force, despite the fact that the slight calculated difference in force 

may not translate to an actual, functional difference.  Thus, slight differences in 

the variables of interest can potentially affect correlation analyses, especially if 

those differences result in a change in rank assignment. 

P. troglodytes also has a significant, negative correlation between CMSA 

and BFC (Figure 6.8).  Closer examination reveals that bite forces for 

chimpanzees were typically estimated to be highest on P4 and then decrease along 

the rest of the molar row.  However, for many specimens, P4 was the smallest 

tooth.  While the patterns of bite force and tooth size along the molar row appear 

consistent with Hypotheses 2 and 3, the fact that the premolars decrease in size 

from P3 to P4 causes the negative correlations seen among chimpanzees.  

 Although the correlation between tooth size and bite force magnitude was 

not significant for ten of the twenty-seven species examined, correlation 

coefficients indicate a positive correlation between the two for most species.  

Although results from correlation analyses examining the relationship between 

bite force and tooth  size are equivocal, the fact that 63% of the time root size and 

crown size correlate significantly is important and compelling.  To achieve a 
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significant result, tooth size must correlate with bite force in one, specific way; 

that is, the largest teeth are located where the highest bite forces are produced.  

Non-significance may result from any number of factors, including there being no 

relationship between tooth size and bite force, but also slight variations in tooth 

size or bite force estimate along the dental arcade that result in differences in rank 

assignment.  That the majority of taxa show significant, positifve relationships 

between tooth size and estimated bite forces, especially considering the large 

amount of individual variation affecting the patterns of each of these variables, 

suggests a true functional link between them. 

 Despite the multitude of different postcanine bite force patterns seen 

across taxa and within species (i.e., A. palliata), there is a significant correlation 

between bite force magnitudes and root and crown surface area on postcanine 

teeth across anthropoid taxa that are diverse in size, geographical location, 

phylogenetic history, and dietary category.  Although tooth size along the dental 

arcade cannot be predicted from estimated bite forces in many sample taxa, 

results provide compelling evidence that information on specific dimensions of 

craniofacial form related to masticatory function can predict relative tooth size 

along the dental arcade among a broad array of anthropoid taxa.  Future studies 

that incorporate more detailed information on relative muscle force contribution 

(discussed above) into calculations of bite force may increase the utility of using 

the lever model in this way by accommodating a broader range of craniofacial 

variability than the current analysis.  
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       Fig. 6.8. Comparison of CMSA and BFC curves in P. troglodytes 9493.   

      Note the decrease in CMSA from P3 to P4 while BFC is increasing between  

      these teeth. 
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CHAPTER 7 

CONCLUSIONS 

The goal of the current study was to determine whether tooth root and 

crown size varies in response to selection for masticatory force production.  In 

other words, are teeth with big roots and crowns also the teeth that withstand the 

highest bite forces?  To assess the relationships among tooth root size, crown size, 

bite force patterns, and skull size, it was necessary to procure data on craniofacial 

spatial relationships and on tooth root and crown size from the same individual.  

Because root size cannot be measured with the tooth in situ without destroying 

samples, and to increase image resolution, µCT scanning of samples was 

necessary to collect the root surface area data integral to this project.  

Consequently, data for this project comprise the largest and taxonomically 

broadest sample of primate root surface area currently available.  

In Chapter 4, the general scaling pattern of root, crown, and skull size was 

examined across anthropoids.  Root and crown size were plotted against the 

geometric mean of skull size to determine the extent to which dental size 

correlates with overall size.  RMA analyses suggest that root and crown size are 

isometric relative to skull size, and that there is a high correlation between both 

root and crown size and skull size across anthropoids, although the strength of this 

relationship is variable along the tooth row.  Results suggest that body size alone 

does not account for all of the variation present in primate tooth root and crown 

size. 
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Chapter 5 reveals the results of Part I of the current study, in which 

Hypotheses 1a and 1b were tested.  Hypothesis 1a simply states that root surface 

area and crown sizes will covary along the tooth row, and is supported by 

research that suggests that  root surface area (Spencer, 2003; Kupzcik, 2003) and 

crown size (Demes and Creel, 1988; Spencer, 2003; Lucas, 2004) should be 

greatest where bite forces are highest.  Scaling analyses clearly indicate that root 

and crown surface area can vary in relative size, a conclusion that is supported by 

results from other studies (Spencer, 2003; Kupczik et al., 2009), which suggests 

that their covaration along the tooth row may be the result of a shared functional 

pressure.  Hypothesis 1a is supported by the results of the current study.  An 

analysis using Kendall’s τ shows that root and crown size are very tightly 

correlated along the tooth row in anthropoid primates.  Covariation in root and 

crown size along the tooth row by itself is not indicative of shared function; big 

crowns may just grow big roots.  However, when considered in conjunction with 

the results of other analyses both from this study and from past research, it is 

suggestive that tooth root and crown size vary in response to masticatory force. 

Hypothesis 1b states that root surface area and crown size are functionally 

related, and primates with mechanically resistant diets will have relatively higher 

values for these characteristics than closely-related primates with soft diets.  Pair-

wise comparisons between primates with resistant versus soft diets support the 

predictions of Hypothesis 1b overall; generally, the primates processing a 

resistant diet had larger tooth roots and crowns than those processing soft diets.  
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There are two groups, however, in which Hypothesis 1b was not supported: the 

pitheciins and the African papionins.   

Among pitheciins, it was predicted that Chiropotes would have larger 

premolar roots and crowns than either Callicebus or Pithecia, and that Pithecia 

would have larger molar roots and crowns than either Chiropotes or Callicebus.  

Although the predictions regarding Chiropotes were supported, those regarding 

Pithecia were not.  Both Pithecia and Chiropotes are categorized as having a 

resistant diet, however, the mechanical properties of diet differ between these 

taxa.  While Chiropotes is an acknowledged hard object feeder and seed predator, 

Pithecia is more folivorous, incorporating more tough plants into its diet (Kinzey 

and  orconk, 1990, 1992).  Although the properties “hard” and “tough” are both 

considered “Resistant” for the purposes of the current study, the mechanical 

properties of a hard food are very different than those of a tough food (discussed 

in detail in Chapter 2).  It has been suggested by Lucas (1984; 2004) that, while 

tooth size will correlate with food hardness, it is tooth shape that correlates with 

food toughness.  As the current study only measures tooth root and crown size, 

and does not quantify shape, dental morphological differences between taxa that 

are related to adaptation for tough food may be overlooked.   

The African papionins, who are as a group classified as durophagous 

(Jolly, 2007), also deviate from hypothesized predictions.  The pair-wise 

comparisons in African papionins paired Lophocebus and Papio, and Cercocebus 

and Mandrillus.  While one of each of these pairs is labeled as a “Soft” food 

consumer for the purposes of the current study, all taxa in this group are eating 
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mechanically resistant items; the differences between a hard food processer and a 

harder food processor are likely too subtle to detect using the data from the 

current study.  Overall, hypotheses in Part I of the current study are upheld.  

Tooth root and crown surface area covary along the tooth row, and are relatively 

larger in primates that process a resistant diet. 

Crown size and root surface area covary along the tooth row; past research 

suggests they may be related to bite force.  Bite force magnitude is known to 

change with bite point (Mansour and Reynick, 1975; Pruim et al., 1980; van 

Eijden et al., 1988; van Eijden, 1991; Oyen and Tsay, 1991; Iwase, 1998; 

Spencer, 1998; Throckmorton and Ellis, 2001; Dumont and Herrell, 2003; 

Ferrario et al., 2004), and comparative studies suggest that teeth with bigger roots 

withstand larger masticatory forces (Spencer, 2003). Furthermore, previous 

research has suggested that crown size should be largest where bite forces are 

highest (Hylander, 1985; Demes and Creel, 1988; Spencer, 2003; Lucas, 2004).  

In Chapter 6 (Part II of the current study) correlation analyses were performed to 

determine whether root (Hypothesis 2) and crown (Hypothesis 3) size increase on 

teeth that typically withstand high-magnitude loading.   

Bite force curves calculated based on the Spencer (1995) model show that 

there are a variety of patterns of bite force along the tooth row among primates.  

While members of the same taxon tended to have similarly-shaped force curves, 

even within a species patterns of maximum force distribution differed.  This 

suggests that even the relatively minor variances present among individuals of the 
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same species can have an enormous impact on the magnitude and patterns of 

force produced along the tooth row.   

Analysis of muscle resultant position as estimated from muscle landmarks 

compared to setting the muscle resultant directly behind M3 (as in Greaves, 

1978), discussed in Chapter 6, reveals that, as a group, platyrrhines have a more 

anteriorly-placed muscle resultant than catarrhines.  Moving the muscle resultant 

anteriorly effectively shifts Region II anteriorly, allowing high bite forces on 

relatively anterior teeth, but results in decreasing b-s muscle force as the bite point 

moves distally, which typically decreases bite force.  In species in which the tooth 

row is located far in front of the TMJ (e.g., Papio), such an anterior shift in 

muscle resultant would not necessarily result in a decrease in distal bite forces 

because when teeth are placed relatively anteriorly to the TMJ there is little 

danger of the muscle resultant falling outside of the triangle of support, even at 

distal bite points.  However, moving the muscle resultant anteriorly in a species 

with an orthognathic face (or reducing facial prognathism in a species with an 

anteriorly-placed muscle resultant) will result in a decrease in bite force at distal 

bite points because anterior movement of the muscle resultant places it and the 

tooth row very close together, increasing the chance of loading the TMJ in 

tension, thus requiring a decrease in b-s muscle force to protect joint integrity.  

An orthognathic face has traditionally been interpreted as a general 

adaptation to produce high bite forces (DuBrul, 1977; Hylander, 1979a, Ravosa, 

1990; Antón, 1994); however, current results suggest that a-p facial shortening 

(on its own) may be most advantageous  in species that concentrate relatively high 
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bite forces on relatively anterior teeth for food processing (i.e., C. apella, 

Chiropotes). 

When bite force curves were compared with patterns of root and crown 

size along the tooth row, results were equivocal.  Bite force and tooth size were 

expected to be significantly, positively correlated, and slightly more than half of 

the examined taxa show the predicted relationship.  In some cases, correlation 

coefficients between tooth size and bite force magnitude were high and positive 

but not significant due to small sample size (i.e., M. fuscata).  Cebids and 

callitrichids demonstrate a significant, negative correlation between tooth size 

patterns and bite force distribution along the tooth row; it is suggested that this 

may be due to slight variations in estimated bite forces on molar teeth that may 

have been impacted by how rank was assigned in some individuals (discussed in 

Chapter 6).  Though correlation results may seem underwhelming, it is important 

to remember that in this case a significant result (found in the majority of 

analyses) is much stronger evidence for supporting the hypothesis than a non-

significant result is for rejecting it (discussed in Chapter 6). 

Taken together, results of the current study indicate that primate teeth vary 

in size depending on the amount of masticatory force production required to 

process food.  Not only do primates with mechanically resistant diets typically 

have larger roots and crowns than close relatives with soft diets, but in many taxa, 

individuals the largest teeth are typically situated where the highest bite forces can 

be produced along the tooth row.   
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Results from the current study potentially impact the interpretation of 

fossil materials.  Among extinct hominins, members of the genus Paranthropus 

are characterized by a specialized facial form that is hypothesized to be related to 

producing high magnitude bite forces.  These characteristics include the anterior 

migration of the masticatory adductors, increased height of the TMJ above the 

occlusal plane and pronounced orthognathy, as well as the presence of molarized 

premolars and hypermegadont molars  (Robinson, 1956; Walker, 1981; Rak, 

1986; Demes and Creel, 1988; Constantino and Wood, 2007).   

 However, while it has been shown that each of the cranial features 

mentioned above can, individually, favor an increase in bite forces, it is also true 

that some combinations of these features may limit bite force production at distal 

bite points.  Specifically, it is suggested here that an increase in facial orthognathy 

combined with anteriorly-placed masticatory muscles will only increase bite 

forces at anterior bite points, not for the whole dental arcade.  This is supported 

by the fact that some exant species examined in the current study that combine an 

anteriorly-positioned muscle resultant and facial orthognathy also have relatively 

small M3s (as in cebids, or no M3s, in the case of callitrichids), and this 

phenomenon has also been observed for Chiropotes by Spencer (1995).   

Based on current comparative evidence, the presence of an a-p short face 

and forward-positioned muscles in Paranthropus should not be accompanied by 

large distal molars.  Molarized premolars are linked to the production of high bite 

forces on premolars (Rak, 1986; Kinzey, 1992; Scott and McGraw, 2001), which 

may compromise bite force production on the molars.  However, the presence of 
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megadont molars in Paranthropus clearly indicates the need to generate high 

forces at more distal bite points.  To increase both anterior and posterior bite 

force, an anteriorly-placed muscle resultant should accompany the anterior 

movement of the dental arcade to circumvent injury to the TMJ (Spencer and 

Demes, 1993; Spencer, 1995).  However, paranthropine orthognathy suggests that 

the teeth were positioned relatively posteriorly (i.e., closer to the TMJ), which 

increases the probability that the muscle resultant will fall outside of the triangle 

of support at posterior bite points.  To maintain high bite forces on distal teeth in 

this configuration, a narrow palate would be expected, since such a 

configurational change would allow the b-s muscles to exert maximum force at 

more posterior bite points before having to decrease force output to protect the 

TMJ.   

 Paranthropines, however, have wide palates, similar to other hominins 

(Kimbel et al., 2004).  A relatively wide palate allows a greater portion of the 

dental arcade to be included in Region II, in which the highest bite forces are 

located relatively anteriorly along the tooth row (Spencer, 1995), but it does not 

counteract the effect of the decrease in b-s muscle force that characterizes Region 

II.  Therefore, although a wide palate allows more teeth to be included in Region 

II, it does not convey higher bite forces at more posterior bites (Spencer, 1995).   

Why, then, does Paranthropus have big molars?  In the past, it has been 

suggested that Paranthropus could exert bite forces over a large occlusal area, but 

that the magnitude of that force was not exceptional when scaled against crown 

size (Demes and Creel, 1988).  Consequently, it has been suggested that 
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Paranthropus morphology is more suited to producing low magnitude, repetitive 

like those required for breaking down tough foods (e.g., leaves) rather than hard 

foods (Demes and Creel, 1988), a suggestion that has found support in recent 

studies of isotope and microwear analyses (Sponheimer et al., 2006; Ungar et al., 

2008; Ungar and Sponheimer, 2011).   

However, in Demes and Creel (1988), the bite force equivalent at 

maxillary M2 was plotted against the occlusal surface area of the entire 

postcanine tooth row.  The current study shows that estimated bite forces can 

change dramatically over the length of the dental arcade, and that individual facial 

configuration can produce variable bite force curves within taxa.  Thus, Demes 

and Creel’s (1988) assessment of Paranthropus bite force capability excludes 

important information about the pattern of force distribution along the tooth row. 

 In an analysis of Neandertal and modern human facial biomechanics, 

Spencer and Demes (1993), suggest that the flattening of anterior dentition against 

the postcanine dentition seen in Neandertals is a way to increase the mechanical 

advantage for anterior bite points without sacrificing molar occlusal area.  

Paranthropus exhibits a similar configuration, in which the anterior teeth are 

greatly reduced in size and the anterior dental arcade appears flattened relative to 

other australopiths (Grine, 1981), and is suggestive that they, too, had to be able 

to produce high anterior (in this case, premolar) bite forces while maintaining a 

large molar surface area.   

Recent research using stable isotope analysis suggests that most hominins 

have an isotopic signature that is indicative of a varied diet that includes plants 
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using both C3 (e.g., fruits) and C4 (e.g., grasses, sedges) photosynthetic pathways 

(Sponheimer and Lee-Thorp, 1999; Sponheimer et al., 2006; Ungar and 

Sponheimer, 2011).  Interestingly, P. boisei does not fit the pattern of other 

hominins; rather than having a mixed bag of C3/C4 foods, P. boisei had a high 

level of C4 foods incorporated into its diet, indicating to some researchers that 

grasses and/or sedges may have been an important food resource (Cerling et al., 

2011; Ungar and Sponheimer, 2011).   

Furthermore, recent microwear analyses suggest that P. boisei and the 

(presumably) closely-related P. robustus have different patterns of wear on their 

molar teeth (Ungar et al., 2008).  While P. robustus molars have a high incidence 

of pitting and surface complexity, indicators of a hard food diet, P. boisei molars 

show little pitting and low levels of surface complexity, suggesting its diet may 

not have consisted of high amounts of hard foods (Ungar et al., 2008). 

The results of these separate lines of inquiry are potentially far-reaching as 

they suggest that P. boisei and P. robustus not only ate different foods, but that 

they ate foods that differed in their mechanical properties (Ungar and 

Sponheimer, 2011).  However, given the certainty that some aspects of 

craniofacial form evolve in response to food mechanical properties, one must ask 

“If they ate foods that differed in mechanical properties, why do their faces look 

the same?” 

The difficulty in teasing out the differences between adaptation for hard 

foods and adaptation for tough foods has been discussed previously (see Chapter 

2).  However, results from the current study suggest that the specific combination 
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of having anteriorly-placed chewing muscles and an orthognathic face (traits 

shared by the paranthropines) confers the ability to concentrate higher magnitudes 

of bite force on premolar teeth, but not on molar teeth.  In extant primates, this 

configuration is seen among Chiropotes sp. and C. apella, which use their 

canine/premolar teeth to puncture the hard, outer shells of seeds, nuts, and some 

fruits.  Because the premolars are preferentially loaded with hard objects in these 

taxa, it has been suggested that premolar microwear (rather than molar 

microwear) may give a more accurate assessment of whether or not hard objects 

were consumed by an extinct species (Strait et al., 2009).  Recently, Daegling et 

al. (2011), examined both premolar and molar microwear in the extant hard-object 

feeder Cercocebus atys (the sooty mangabey), and found no significant 

differences in signal between the two, supporting the validity of conclusions 

based on molar microwear analysis. 

The extent to which P. boisei and P. robustus differ in dietary proclivites 

is unknown, but current isotope and microwear data suggest that P. robustus ate a 

relatively larger variety of foods, including hard objects, while P. boisei focused 

more completely on C4 grasses and/or sedges and did not consume hard objects 

(Ungar and Sponheimer, 2011).  Such a conclusion is at odds with the current 

biomechanical analyses that conclude that the paranthropine face looks the way it 

does due to a similar dietary specialization that included hard object feeding.  

Results from the current study imply that paranthropines may be adapted to 

producing high bite forces on premolars while maintaining a large molar occlusal 

area.  Considering the extremely large estimated size of paranthropine masticatory 
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adductors, it seems likely that both members of the genus Paranthropus could 

produce high bite forces throughout Region II.  However, it is possible that the 

extent to which anterior (premolar) force production is emphasized differs 

between P. boisei and P. robustus.  Data on craniofacial configuration can help to 

reconstruct bite force ability; however, these data are limited for fossil taxa in 

which large portions of the skull may be distorted or missing.  Comparing even a 

few individuals, though, may help to determine the extent to which P. boisei and 

P. robustus differ in specific features, like positions of the tooth row and the 

muscle resultant relative to the TMJ. 

The current study highlights the fact that all craniofacial features related to 

bite forces are not equal.  Adaptations for increasing bite force on anterior teeth 

may result in a sacrifice in distal occlusal surface area to protect the TMJ from 

injury, while configurations favoring high distal bite forces do so at the expense 

of biting hard on anterior teeth.  It is important to distinguish not that a taxon is 

capable of producing high bite forces, but where on the tooth row such forces are 

produced to understand how changes in craniofacial form relate to diet.   

Future research on the relationship between bite force production and 

dental form should also include analysis of relative enamel thickness along the 

tooth row.  Masticatory stress on the tooth crown is resisted by enamel (Thresher 

and Saito, 1973; Yettram et al., 1976; Kaewsuriyathumrong and Soma, 1993) 

(note: some models have suggested that dentin may also resist significant 

masticatory stresses [Spears et al., 1993]).  As variation in enamel thickness 

necessarily affects the way stress is distributed through the tooth, multiple 
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functional hypotheses link enamel thickness to masticatory force production via 

dietary selection pressures.  Species eating an abrasive diet are subject to a 

relatively high rate of dental wear; therefore, it has been proposed that thick 

enamel increases the life of the teeth in these species by increasing the amount of 

wear required to expose the dentin (Molnar and Gantt, 1977; Teaford et al., 1996; 

Schwartz, 2000a).  Alternately, thick enamel has been proposed as an adaptation 

to resist fracture when biting on hard objects (Kay, 1981; Lucas et al., 2008 a,b; 

Vogel et al., 2008).  These hypotheses are not mutually exclusive, and both 

associate thick enamel with a resistant diet. 

Enamel thickness varies along the tooth row (in humans, Macho and 

Berner, 1993; Grine, 2002; in pitheciins, Martin et al., 2003; in hominoids, 

Schwartz et al., 2000a; Smith et al., 2005; across primates, Shellis et al., 1998).  

Studies in humans have detected a trend towards an increase in enamel thickness 

at more posterior tooth positions (Macho and Berner, 1993; Spears and Macho, 

1995, 1998; Macho and Spears, 1999; Schwartz, 2000b; Grine, 2002), and some 

researchers link this increase in thickness to a proposed increase in bite force on 

posterior teeth as predicted by the simple lever model (Macho and Berner, 1993, 

1994; Spears and Macho, 1995, 1998; Macho and Spears, 1999; but see Grine et 

al., 2005 for an alternate interpretation).  However, studies on non-human 

primates do not agree as to whether enamel thickness increases posteriorly (in 

hominoids, Smith et al., 2005) or whether no specific trend exists (across 

primates, Shellis et al., 1998; Papio ursinus, Grine et al., 2005). 
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Confounding adaptive hypotheses of enamel morphology is the fact that 

enamel thickness is highly positively correlated with the size of the tooth crown 

and body size (Shellis et al., 1998; Schwartz, 2000a; Grine et al., 2005) (although 

it is possible that this correlation is due, at least in part, to the fact that enamel 

thickness contributes to crown size).  Despite a general correlation between 

enamel structure and crown and body size (Shellis et al., 1998), many studies 

suggest that dietary pressure has been a major determinant of enamel variation.  

Animals that process hard diets have thicker enamel (primates and bats, Dumont, 

1995, 1999; primates, Shellis et al., 1998; hominoids, Smith et al., 2005, Vogel et 

al., 2008) and more decussation (Maas and Dumont, 1999; Schwartz, 2000a; 

Macho et al., 2003; Martin et al., 2003) than their close relatives who process soft 

diets. 

 In the current study, the relationship among tooth root and crown size and 

bite force production is explored among a broad sample of primates.  Taken 

together, results indicate that tooth root and crown size vary in response to the 

magnitude of occlusal loads.  By linking root size with bite force production, it is 

possible to evalutate hypotheses of force production in extinct species for which 

adequate fossil data on craniofacial form and crown size may be unavailable.  

Results of the current study also suggest that the relationship between tooth roots 

and crowns in maxillary teeth may differ from the relationship between tooth 

roots and crowns in the mandibular teeth (Kupczik et al., 2009).  This may have 

important implications for understanding how masticatory force is distributed in 

the maxilla relative to the mandible, and should be the subject of future research. 
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APPENDIX A  

µCT SCANNING PARAMETERS



 

  

2
6
7
     

 
 
 

Species Museum # kV uA W Projections Voxel size Magnification Volume size 

Alouatta caraya 28095 80 125 10.0 1500 0.11 1.83 967x1093x1293 

Alouatta caraya 28096 80 125 10.0 1100 0.08 2.50 828x1193x1231 

Alouatta caraya 28654 80 125 10.0 1500 0.11 1.83 806x1055x1319 

Alouatta caraya 28655 85 125 10.6 1100 0.08 2.50 967x1382x1476 

Alouatta palliata 5323 85 125 10.6 1100 0.08 2.50 1083x1514x1590 

Alouatta palliata 5324 85 125 10.6 1100 0.08 2.50 966x1374x1475 

Alouatta palliata 5325 85 125 10.6 1100 0.08 2.50 957x1328x1345 

Alouatta palliata 5327 85 125 10.6 1100 0.08 2.50 933x1320x1344 

Alouatta palliata 5328 85 125 10.6 1100 0.08 2.50 964x1357x1460 

Alouatta palliata 5329 85 125 10.6 1100 0.08 2.50 979x1331x1498 

Alouatta palliata 5331 85 125 10.6 1100 0.08 2.50 950x1311x1457 

Alouatta palliata 6001 85 125 10.6 1100 0.08 2.50 913x1278x1394 

Alouatta palliata 29609 85 125 10.6 1000 0.08 2.50 891x1312x1296 

Alouatta palliata 29611 85 125 10.6 1100 0.08 2.50 1208x1369x1410 

Aotus trivirgatus 8472 80 125 10.0 1000 0.04 4.91 1267x1126x1492 

Aotus trivirgatus 19801 80 125 10.0 1000 0.04 4.91 1171x1190x1486 

Aotus trivirgatus 19802 80 125 10.0 1000 0.04 4.91 1208x1158x1428 

Aotus trivirgatus 19805 80 125 10.0 1000 0.04 4.91 1252x1145x1487 

Aotus trivirgatus 27214 80 125 10.0 1000 0.04 4.91 1209x1120x1422 

Aotus trivirgatus 30562 80 125 10.0 1000 0.04 4.91 1225x1134x1447 

Aotus trivirgatus 39571 75 115 8.6 1000 0.04 4.91 1123x1457x1504 

Aotus trivirgatus 52608 80 125 10.0 1000 0.04 4.91 1265x1146x1501 

(cont)  
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Species Museum # kV uA W Projections Voxel size Magnification Volume size 

Aotus trivirgatus B-8042 80 125 10.0 1000 0.04 4.91 1266x1097x1460 

Aotus trivirgatus B-8043 80 125 10.0 1000 0.04 4.91 1038x1287x1458 

Ateles geoffroyi 5336 80 110 8.8 1100 0.08 2.50 945x1431x1482 

Ateles geoffroyi 5338 90 120 10.8 1100 0.06 3.15 1256x1661x1672 

Ateles geoffroyi 5344 80 110 8.8 1100 0.08 2.50 857x1357x1492 

Ateles geoffroyi 5345 80 110 8.8 1100 0.08 2.50 850x1271x1373 

Ateles geoffroyi 5346 80 110 8.8 1100 0.08 2.50 891x1328x1428 

Ateles geoffroyi 5348 80 110 8.8 1100 0.08 2.50 949x1357x1455 

Ateles geoffroyi 5349 90 120 10.8 1100 0.06 3.15 1271x1699x1715 

Ateles geoffroyi 5350 80 110 8.8 1100 0.08 2.50 903x1287x1438 

Ateles geoffroyi 5351 90 120 10.8 1100 0.06 3.15 1271x1687x1724 

Ateles geoffroyi 5352 80 110 8.8 1100 0.08 2.50 840x1280x1397 

Ateles geoffroyi 5353 80 110 8.8 1100 0.08 2.50 850x1177x1319 

Ateles geoffroyi 5354 80 110 8.8 1100 0.08 2.50 930x1231x1394 

Ateles geoffroyi 5355 80 110 8.8 1100 0.08 2.50 897x1320x1428 

Ateles geoffroyi 10138 90 120 10.8 1100 0.06 3.15 1221x1674x1744 

Ateles geoffroyi 29626 90 120 10.8 1100 0.06 3.28 1155x1615x1740 

Ateles geoffroyi 29628 90 120 10.8 1100 0.06 3.15 1209x1646x1639 

Ateles geoffroyi 34322 90 120 10.8 1100 0.06 3.15 1366x1530x1816 

Callicebus moloch 20186 80 120 9.6 1050 0.05 4.25 894x1318x1284 

Callicebus moloch 20188 80 120 9.6 1050 0.05 4.25 1054x1297x1313 

Callicebus moloch 26922 80 120 9.6 1050 0.05 4.25 1089x1347x1353 
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Callicebus moloch 30559 80 120 9.6 1050 0.05 4.25 932x1309x1196 

Callicebus moloch 30564 80 120 9.6 1050 0.05 4.25 1061x1234x1344 

Callicebus moloch 30566 80 120 9.6 1050 0.05 4.25 869x1338x1307 

Callicebus moloch 32380 80 120 9.6 1050 0.05 4.25 926x1436x1227 

Callicebus moloch 32383 80 120 9.6 1050 0.05 4.25 901x1306x1061 

Callicebus moloch 37828 80 120 9.6 1050 0.05 4.25 907x1381x1271 

Callicebus moloch 39073 80 120 9.6 1050 0.05 4.25 1108x1243x1092 

Callicebus moloch 39563 80 120 9.6 1050 0.05 4.25 1077x1294x1347 

Callithrix sp. 30579 80 125 10.0 1000 0.04 4.91 970x854x1145 

Callithrix sp. 30580 80 125 10.0 1000 0.04 4.91 831x843x1086 

Callithrix sp. 30582 80 125 10.0 1000 0.04 4.91 919x787x1133 

Callithrix sp. 30583 80 125 10.0 1000 0.04 4.91 936x907x1140 

Callithrix sp. 32164 80 125 10.0 1000 0.04 4.91 960x750x1190 

Callithrix sp. 32165 80 125 10.0 1000 0.04 4.91 891x817x1136 

Callithrix sp. 34573 80 125 10.0 1000 0.04 4.91 991x821x1183 

Callithrix sp. 30577 80 125 10.0 1000 0.04 4.91 980x803x1177 

Callithrix sp. 30586 80 125 10.0 1000 0.04 4.91 960x750x1190 

Callithrix sp. 30603 80 125 10.0 1000 0.04 4.91 960x751x1162 

Callithrix sp. 37826 80 125 10.0 1000 0.04 4.91 894x860x1152 

Callithrix sp. 440 80 125 10.0 1000 0.04 4.91 894x860x1153 

Callithrix sp. 37823 80 125 10.0 1000 0.04 4.91 954x907x1244 
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Callithrix sp. 7165 80 125 10.0 1000 0.04 4.91 895x835x1139 

Cebus apella 25811 90 120 10.8 1100 0.06 3.35 1234x1648x1645 

Cebus apella 27097 80 115 9.2 1100 0.06 3.40 1055x1599x1548 

Cebus apella 27891 90 120 10.8 1100 0.06 3.35 1142x1558x1567 

Cebus apella 28679 80 115 9.2 1100 0.07 2.78 989x1234x1334 

Cebus apella 30724 80 115 9.2 1100 0.07 2.98 920x1341x1256 

Cebus apella 30726 80 115 9.2 1100 0.07 2.78 796x1146x1183 

Cebus apella 31062 80 115 9.2 1100 0.08 2.50 791x1061x1201 

Cebus apella 31064 80 115 9.2 1100 0.07 2.78 894x1215x1295 

Cebus apella 31066 80 115 9.2 1100 0.07 2.78 834x1146x1259 

Cebus apella 31072 80 115 9.2 1100 0.07 2.98 938x1312x1337 

Cebus apella 32049 80 115 9.2 1100 0.07 2.98 913x1294x1297 

Cebus apella 37831 80 115 9.2 1100 0.07 2.78 942x1300x1294 

Cebus apella 37833 90 120 10.8 1100 0.06 3.35 1287x1724x1702 

Cebus apella 41090 90 120 10.8 1100 0.05 4.11 1686x1388x1876 

Cebus apella 49635 90 120 10.8 1100 0.06 3.35 1124x1451x1617 

Cebus capucinus 5332 80 115 9.2 1100 0.08 2.50 860x1017x1223 

Cebus capucinus 7317 80 115 9.2 1100 0.08 2.50 828x1155x1199 

Cebus capucinus 7322 80 115 9.2 1100 0.08 2.50 762x998x1099 

Cebus capucinus 7323 80 115 9.2 1100 0.08 2.50 775x1053x1172 

Cebus capucinus 10135 80 115 9.2 1100 0.08 2.50 749x1026x1149 

Cebus capucinus 10136 80 115 9.2 1100 0.08 2.50 787x1023x1136 
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Cebus capucinus 34323 80 115 9.2 1100 0.08 2.50 777x1071x1143 

Cebus capucinus 34326 80 115 9.2 1100 0.08 2.50 828x1051x1202 

Cebus capucinus 34353 80 115 9.2 1100 0.08 2.50 828x1061x1206 

Cebus capucinus 73218 80 115 9.2 1100 0.08 2.50 756x1024x1124 

Cercocebus torquatus 32625 85 125 10.6 1100 0.09 2.20 1076x1356x1579 

Cercocebus torquatus 62638 85 125 10.6 1100 0.09 2.20 932x1339x1435 

Cercocebus torquatus 62639 85 125 10.6 1100 0.09 2.20 850x1313x1356 

Cercopithecus mitis 7088 80 125 10.0 1100 0.08 2.50 884x1137x1317 

Cercopithecus mitis 22734 80 125 10.0 1100 0.08 2.50 797x1038x1152 

Cercopithecus mitis 25022 80 125 10.0 1100 0.08 2.50 813x1064x11914 

Cercopithecus mitis 26832 80 125 10.0 1100 0.08 2.50 831x1101x1332 

Cercopithecus mitis 31986 80 125 10.0 1100 0.08 2.50 861x1043x1166 

Cercopithecus mitis 32003 80 125 10.0 1100 0.08 2.50 941x1225x1391 

Cercopithecus mitis 39375 80 125 10.0 1100 0.08 2.50 834x1036x1183 

Cercopithecus mitis 39389 80 125 10.0 1100 0.08 2.50 948x1138x1317 

Cercopithecus mitis 39390 80 125 10.0 1100 0.08 2.50 772x1075x1238 

Cercopithecus mitis 44264 80 125 10.0 1100 0.08 2.50 863x1133x1250 

Cercopithecus mitis 44268 80 125 10.0 1100 0.08 2.50 875x1182x1363 

Cercopithecus mitis 44274 80 125 10.0 1100 0.08 2.50 861x964x1369 

Chiropotes satanas 31701 80 115 9.2 1100 0.05 3.80 1079x1529x1705 

Chiropotes satanas 6028 80 115 9.2 1100 0.05 3.80 1095x1595x1647 

Colobus polykomos 21151 70 110 7.7 1050 0.08 2.63 1300x1098x1608 
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Colobus polykomos 22356 70 110 7.7 1050 0.08 2.63 1193x1136x1708 

Colobus polykomos 22624 85 125 10.6 1050 0.08 2.63 1255x1130x1637 

Colobus polykomos 22626 85 125 10.6 1050 0.08 2.63 1262x1130x1680 

Colobus polykomos 22850 80 105 8.4 1050 0.08 2.63 1225x1054x1803 

Colobus polykomos 46368 70 110 7.7 1050 0.08 2.63 1328x1206x1809 

Erythrocebus patas 37280 80 125 10.0 1100 0.08 2.42 998x1265x1636 

Erythrocebus patas 47015 80 125 10.0 1100 0.08 2.42 1215x1332x1847 

Erythrocebus patas 47016 80 125 10.0 1100 0.08 2.42 1357x1145x1856 

Erythrocebus patas 47018 80 125 10.0 1100 0.08 2.42 876x1156x1580 

Gorilla gorilla 14750 85 90 7.7 1500 0.13 1.59 1086x1117x1938 

Gorilla gorilla 17684 85 90 7.7 1500 0.13 1.59 1095x1221x1905 

Gorilla gorilla 20089 85 90 7.7 1500 0.12 1.68 1240x998x1427 

Gorilla gorilla 26850 85 90 7.7 1500 0.12 1.62 1055x1202x1935 

Gorilla gorilla 29047 85 90 7.7 1500 0.12 1.65 1068x1152x1911 

Gorilla gorilla 37265 85 90 7.7 1500 0.12 1.72 1156x1155x1925 

Gorilla gorilla 37266 85 90 7.7 1500 0.12 1.65 1133x1180x1954 

Gorilla gorilla 38326 85 90 7.7 1500 0.12 1.65 1152x1139x1929 

Gorilla gorilla 46325 85 90 7.7 1500 0.13 1.59 1079x1212x1963 

Lophocebus albigena 6209 80 125 10.0 1100 0.09 2.23 1067x1111x1492 

Lophocebus albigena 18613 80 125 10.0 1100 0.09 2.23 1111x878x1482 

Lophocebus albigena 22737 80 125 10.0 1100 0.09 2.23 972x1107x1514 

Lophocebus albigena 23194 80 125 10.0 1100 0.09 2.23 1030x1240x1534 
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Lophocebus albigena 39388 80 125 10.0 1100 0.09 2.23 910x1092x1394 

Lophocebus albigena 39395 80 125 10.0 1100 0.09 2.23 1161x1265x1547 

Lophocebus albigena 39396 80 125 10.0 1100 0.09 2.23 1030x1226x1511 

Lophocebus albigena 39402 80 125 10.0 1100 0.09 2.23 1221x1228x1460 

Macaca fascicularis 8461 80 125 10.0 1050 0.06 3.25 1193x1473x1856 

Macaca fascicularis 12758 80 125 10.0 1050 0.06 3.25 1202x1445x1895 

Macaca fascicularis 22277 80 125 10.0 1050 0.06 3.25 1196x1421x1722 

Macaca fascicularis 23812 80 125 10.0 1050 0.06 3.25 1092x1389x1658 

Macaca fascicularis 35765 80 125 10.0 1050 0.06 3.25 1250x1105x1645 

Macaca fascicularis 35937 80 125 10.0 1050 0.06 3.25 1020x1309x1520 

Macaca fascicularis 35938 80 125 10.0 1050 0.06 3.25 1101x1288x1497 

Macaca fascicularis 36030 80 125 10.0 1050 0.06 3.25 1536x1159x1690 

Macaca fascicularis 37781 80 125 10.0 1050 0.06 3.25 1369x1045x1693 

Macaca fascicularis 41167 75 120 9.0 1050 0.09 2.20 1155x1256x1494 

Macaca fuscata 37709 80 110 8.8 1050 0.09 2.20 1004x1426x1492 

Macaca fuscata 61273 80 110 8.8 1050 0.09 2.20 1102x1661x1718 

Macaca sylvanus 7072 80 110 8.8 1100 0.09 2.20 1114x1274x1476 

Mandrillus sphinx 19986 85 125 10.0 1100 0.11 1.80 954x1070x1931 

Mandrillus sphinx 20085 85 125 10.0 1100 0.11 1.80 869x1092x1901 

Mandrillus sphinx 23168 85 125 10.0 1100 0.11 1.50 999x1218x1971 

Mandrillus sphinx 23169 85 125 10.0 1100 0.11 1.80 929x1165x1853 

Mandrillus sphinx 34089 85 125 10.0 1100 0.13 1.59 916x1054x1958 
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Mandrillus sphinx 34177 85 125 10.0 1100 0.09 2.20 1045x960x1809 

Mandrillus sphinx 34272 85 125 10.0 1100 0.09 2.20 1102x994x1869 

Mandrillus sphinx 34273 85 125 10.0 1100 0.07 2.74 1190x916x1595 

Pan paniscus 38018 80 120 9.6 1500 0.09 2.13 1307x1269x1924 

Pan paniscus 38019 80 120 9.6 1500 0.09 2.18 1268x1249x1894 

Pan paniscus 38020 80 120 9.6 1500 0.10 2.02 1290x1256x1923 

Pan troglodytes 6244 80 120 9.6 1000 0.08 2.44 1199x859x1561 

Pan troglodytes 6244 80 120 9.6 1500 0.11 1.88 1256x1344x1931 

Pan troglodytes 9493 80 120 9.6 1500 0.11 1.82 1202x1322x1914 

Pan troglodytes 15312 80 120 9.6 1500 0.11 1.90 1359x1391x1913 

Pan troglodytes 17702 80 120 9.6 1000 0.08 2.59 1334x1045x1750 

Pan troglodytes 17702 80 120 9.6 1500 0.10 1.95 1205x1117x1954 

Pan troglodytes 23167 80 120 9.6 1500 0.11 1.89 1159x1212x1941 

Pan troglodytes 26847 80 120 9.6 1500 0.10 2.00 1290x1470x1922 

Pan troglodytes 26849 80 120 9.6 1500 0.11 1.89 1159x1309x1932 

Pan troglodytes 37260 80 120 9.6 1500 0.10 2.00 1297x1124x1844 

Pan troglodytes 46414 80 120 9.6 1300 0.08 2.43 1281x1388x1916 

Pan troglodytes 46415 80 120 9.6 1300 0.09 2.32 1375x1259x1926 

Pan troglodytes 46416 80 120 9.6 1500 0.10 2.00 1346x1256x1884 

Pan troglodytes N6908 80 95 7.6 1500 0.11 1.85 1310x1155x1887 

Pan troglodytes N6911 80 95 7.6 1500 0.11 1.85 1234x1191x1810 

Papio anubis 8304 85 125 10.0 1100 0.12 1.70 1020x1033x1919 
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Papio anubis 8466 85 125 10.0 1100 0.08 2.50 922x897x1441 

Papio anubis 17342 85 125 10.0 1100 0.11 1.86 998x944x1911 

Papio anubis 17343 90 125 11.3 1100 0.13 1.59 913x1008x1957 

Papio anubis 21160 85 125 10.0 1100 0.12 1.70 1082x1209x1885 

Papio anubis 21161 90 125 11.3 1100 0.12 1.70 979x1057x1919 

Papio anubis 26473 85 125 10.0 1100 0.10 2.00 1162x1078x1796 

Papio anubis 29786 80 125 10.0 1100 0.12 1.70 1101x840x1891 

Papio anubis 29787 85 125 10.0 1100 0.10 2.00 1161x1055x1818 

Papio anubis 29788 85 125 10.0 1100 0.10 2.00 1187x1101x1775 

Papio anubis 31619 85 125 10.0 1100 0.11 1.86 1218x1104x1859 

Papio anubis 31949 90 125 11.3 1100 0.11 1.82 1149x1023x1860 

Piliocolobus badius 24080 80 125 10.0 1100 0.08 2.50 1023x1249x1361 

Piliocolobus badius 24775 80 125 10.0 1100 0.09 2.23 1149x960x1369 

Piliocolobus badius 24793 80 125 10.0 1100 0.08 2.50 1002x1315x1284 

Piliocolobus badius 25627 80 125 10.0 1100 0.08 2.50 960x1225x1230 

Piliocolobus badius 25631 80 125 10.0 1100 0.09 2.23 1133x1263x1362 

Piliocolobus badius 25810 80 125 10.0 1100 0.08 2.50 935x1158x1249 

Piliocolobus badius 26552 80 125 10.0 1100 0.08 2.50 992x1288x1262 

Piliocolobus badius 26553 80 125 10.0 1100 0.09 2.23 1007x1075x1476 

Piliocolobus badius 27108 80 125 10.0 1100 0.08 2.50 1001x1389x1473 

Piliocolobus badius 31939 80 125 10.0 1100 0.08 2.50 920x1177x1206 

Pithecia sp. 5057 80 115 9.2 1050 0.05 3.99 1010x1290x1551 

(cont) 
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Pithecia sp. 20265 80 115 9.2 1050 0.05 3.99 1052x1347x1492 

Pithecia sp. 20266 80 115 9.2 1050 0.05 3.99 1029x1438x1514 

Pithecia sp. 27124 80 115 9.2 1050 0.05 3.99 1051x1401x1589 

Pithecia sp. 30720 80 115 9.2 1050 0.05 3.99 946x1296x1488 

Pithecia sp. 30718 80 115 9.2 1050 0.05 3.99 1085x965x1567 

Pithecia sp. 30719 80 115 9.2 1050 0.05 3.99 998x1445x1652 

Pithecia sp. 31061 80 115 9.2 1050 0.05 3.99 4064x1356x1438 

Presbytis hosei 35621 80 125 10.0 1100 0.08 2.50 863x1171x1174 

Presbytis hosei 37370 80 125 10.0 1100 0.08 2.50 879x1172x1175 

Presbytis hosei 37371 80 125 10.0 1100 0.08 2.50 913x1185x1176 

Presbytis hosei 37372 80 125 10.0 1100 0.08 2.50 781x982x978 

Presbytis hosei 37772 80 120 9.6 1100 0.08 2.50 957x1252x1259 

Presbytis hosei 37773 80 120 9.6 1100 0.08 2.50 958x1253x1206 

Presbytis rubicunda 22276 80 120 9.6 1100 0.08 2.50 894x1221x1245 

Presbytis rubicunda 35704 80 125 10.0 1100 0.08 2.50 908x1202x1171 

Presbytis rubicunda 35704 90 125 11.3 800 0.11 1.90 511x476x1904 

Presbytis rubicunda 35705 80 125 10.0 1100 0.08 2.50 894x1192x1107 

Presbytis rubicunda 35705 90 125 11.3 800 0.11   485x470x1894 

Presbytis rubicunda 35706 80 125 10.0 1100 0.08 2.50 869x1168x1036 

Presbytis rubicunda 35712 80 125 10.0 1100 0.08 2.50 891x1189x1216 

Presbytis rubicunda 36820 80 120 9.6 1100 0.08 2.50 904X1119X1083 

Presbytis rubicunda 37666 80 125 10.0 1100 0.08 2.50 907x1055x1171 

(cont)  
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Presbytis rubicunda 37666 90 125 11.3 800 0.10 2.00 372x538x1941 

Presbytis rubicunda 37776 80 120 9.6 1100 0.08 2.50 1208X948X1240 

Presbytis rubicunda 37777 80 120 9.6 1100 0.08 2.50 825x1104x1181 

Presbytis rubicunda 37778 80 120 9.6 1100 0.08 2.50 903X1253X1114 

Presbytis rubicunda 37779 80 120 9.6 1100 0.08 2.50 908x1237x1259 

Saguinus sp. 15324 80 125 10.0 1000 0.04 4.91 998x951x1224 

Saguinus sp. 27331 80 125 10.0 1000 0.04 4.91 906X737X1149 

Saguinus sp. 27332 80 125 10.0 1000 0.04 4.91 873x852x1108 

Saguinus sp. 30597 80 125 10.0 1000 0.04 4.91 791x1045x1259 

Saguinus sp. 30601 80 125 10.0 1000 0.04 4.91 879x1014x1237 

Saguinus sp. 41567 80 125 10.0 1000 0.04 4.91 879x1014x1238 

Saguinus sp. 41568 80 125 10.0 1000 0.04 4.91 957x927x1259 

Saguinus sp. 52557 80 125 10.0 1000 0.04 4.91 947x803x1184 

Saguinus sp. 52615 80 125 10.0 1000 0.04 4.91 938x904x1209 

Saguinus sp. 52616 80 125 10.0 1000 0.04 4.91 844x1051x1206 

Saguinus sp. 52658 80 125 10.0 1000 0.04 4.91 942x900x1215 

Saimiri sp. 10131 80 120 9.6 1050 0.05 4.25 891x1404x1045 

Saimiri sp. 10132 80 120 9.6 1050 0.05 4.25 864x1438x1054 

Saimiri sp. 10133 80 120 9.6 1050 0.05 4.25 838x1158x1382 

Saimiri sp. 10134 80 120 9.6 1050 0.05 4.25 832x1161x1350 

Saimiri sp. 29488 80 120 9.6 1050 0.05 4.25 865x1130x1341 

Saimiri sp. 20187 80 120 9.6 1050 0.05 4.25 952x1212x1400 
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Saimiri sp. 27197 80 120 9.6 1050 0.05 4.25 907x1096x1419 

Saimiri sp. 30568 80 120 9.6 1050 0.05 4.25 806x982x1228 

Saimiri sp. 30569 80 120 9.6 1050 0.05 4.25 878x1202x1231 

Saimiri sp. 30572 80 120 9.6 1050 0.05 4.25 1144x882x1296 

Saimiri sp. 43484 80 120 9.6 1050 0.05 4.25 981x1082x1334 

Trachypithecus cristata 12729 90 125 11.3 800 0.10 2.06 535x618x1844 

Trachypithecus cristata 35567 90 120 10.8 1000 0.05 3.99 1592x1434x1765 

Trachypithecus cristata 35584 90 120 10.8 1000 0.05 3.92 1558x1467x1901 

Trachypithecus cristata 35586 90 120 10.8 1000 0.05 3.99 1687x1517x1789 

Trachypithecus cristata 35597 90 120 10.8 1000 0.05 3.99 1423x1491x1749 

Trachypithecus cristata 35603 90 120 10.8 1000 0.05 3.99 1573x1435x1902 

Trachypithecus cristata 35604 90 120 10.8 1000 0.05 3.99 1624x1433x1869 

Trachypithecus cristata 35605 90 120 10.8 1000 0.05 3.99 1681x1479x1750 

Trachypithecus cristata 35610 90 120 10.8 1000 0.05 3.99 1639x1391x1683 

Trachypithecus cristata 35615 80 110 8.8 1000 0.05 3.99 1335x1464x1759 

Trachypithecus cristata 35618 80 110 8.8 1000 0.06 3.39 1299x1497x1615 

Trachypithecus cristata 35636 80 110 8.8 1000 0.06 3.10 1391x1234x1502 

Trachypithecus cristata 35640 80 110 8.8 1000 0.06 3.59 1244x1529x1686 

Trachypithecus cristata 35645 80 110 8.8 1000 0.05 3.99 1429x1272x1570 

Trachypithecus cristata 35663 80 110 8.8 1000 0.06 3.59 1221x1375x1652 

Trachypithecus cristata 35678 85 120 10.2 1050 0.06 3.40 1208x1451x1667 

Trachypithecus cristata 35682 80 110 8.8 1100 0.07 3.04 1306x1240x1485 

(cont)  

  



 

  

2
7
9
     

 

 

 

 

 

 

 

 

 

 

 

  

Species 

Museum 

# kV uA W Projections 

Voxel 

size Magnification Volume size 

Trachypithecus cristata 35683 80 110 8.8 1000 0.06 3.59 1265x1539x1718 

Trachypithecus cristata 35696 80 110 8.8 1000 0.06 3.19 1379x1162x1614 

Trachypithecus cristata 35718 80 110 8.8 1000 0.06 3.59 1475x1163x1614 

Trachypithecus cristata 37387 80 110 8.8 1000 0.06 3.59 1245x1483x1687 

 

  


